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Chapter 1

Introduction

1.1 The Protein Interactome

Proteins are one of the main macromolecular components of life, and protein-protein interactions
(PPIs) are central to many biological processes. Recently, the term interactome has been coined to
describe the set of all PPIs in the cell. The human interactome has been estimated to involve about
130,000 PPIs (Venkatesan et al., 2009). Understanding in detail how the interactome works could
improve our understanding of these biological processes in the cell. Furthermore, because each PPI
involves a physical three-dimensional (3D) interaction, knowing how proteins interact at the structural
level is crucial for understanding the molecular basis of these biological processes. Studying PPls on
a large scale has gained much attention from both academic and corporate scientific organizations
because understanding which proteins interact could be very useful for drug development since
almost all current drugs are directed against proteins (Pandey and Mann, 2000). Therefore, adding
3D structural information to all the PPls in the interactome (i.e. defining the structural interactome;
Figure 1.1) should enrich our understanding of the biological machinery in the cell for therapeutic
purposes.

1.2 Modelling 3D Structures of Protein-Protein Complexes

Recent advances in molecular biology techniques and high-throughput technologies have al-
lowed important progress to be made towards a comprehensive coverage of protein-protein interac-
tions and the 3D structures of protein-protein complexes. Currently, X-ray crystallography is the main
‘gold standard’ experimental technique used to obtain 3D structures of protein-protein complexes.
This technique accounts for over 88% of the structures deposited in the Protein Data Bank (PDB;
Berman et al., 2002), the main worldwide repository of protein 3D structures.

However, recent analyses showed that currently only a small fraction of PPIs have a 3D struc-
ture in the PDB. For example, it has been estimated that the PDB contains structures of protein
complexes for only 8% of the human PPls (Stein et al., 2011). This shortage of structural PP| data
is mainly due to limitations of current experimental techniques. For example, the transient nature

1



Chapter 1. Introduction

Lactate Dehydrogenase

Crystallins

Figure 1.1: An illustration of the structural interactome. Every PPI or protein assembly in the interactome
has a 3D structure. Figure adapted from Aloy and Russell (2004). Protein images were obtained from the
RCSB-PDB “molecule of the month” archive.

of some PPls make crystallization difficult. Hence, computational methods have been developed to
bridge this gap.

Computational modelling approaches aim to calculate the 3D structure of a protein-protein com-
plex starting from either the individual sequences (homology-based modelling) or the individual
structures (ab-initio docking) of the constituent proteins. Although good progress has been made,
it has been shown that the reliability of the predictions is improved if experimental information from
related PPls is incorporated (Lensink and Wodak, 2010).

Previous studies have shown that pairs of proteins with more than 25% sequence similarity often
interact in a similar way (Aloy et al., 2003). This suggests that fairly accurate 3D models of protein-
protein complexes can be obtained if there exist structural templates. Moreover, several studies
have shown that proteins often interact via just one or a small number of binding sites (Shoemaker
et al., 2006, Kim et al., 2006), which suggests that proteins often re-use their binding sites. Re-
cently, Kundrotas et al. (2012) estimated that 47% of known human PPls can be modelled using
existing templates. Furthermore, Skolnick conjectured that there now exists a representative set
of protein-protein interfaces from which new interfaces can be modelled (Gao and Skolnick, 2010).
This suggests that modelling the 3D structures of most/all putative PPIs could be an achievable task,
although it will be an enormous endeavour. Hence, there is much interest in developing efficient
computational methods to organize and describe current knowledge of structural PPls to facilitate
the re-use of 3D information in modelling of PPls.

2



1.3. Structural PPI Resources

1.3 Structural PPl Resources

Currently, a large part of bioinformatics focuses on analyzing relationships between protein se-
quences. Relatively little work has been done on describing 3D structures of protein complexes.
Furthermore, although the volume of structural PPI data is much less than protein sequence data
set, reasoning about 3D structures is much harder. This is mainly due to the three-dimensional
aspect of protein structures and the intricate nature of their interactions. Hence, there is a need
to organize and describe in a systematic way all structural PPl data in order to facilitate the rea-
soning about 3D structures and re-using 3D information to model unknown PPls. Several groups
have collected and classified the structures of protein-protein complexes in the PDB with the aim of
analysing PPls. Some recent structural PPI databases and classifications will be described in the
following chapters (Chapter 2 and 4).

Current structural PPl and DDI databases clearly constitute useful bioinformatics resources.
However, it is not yet straight-forward to use them to model unknown protein-protein complexes. For
example, human expertise is needed to gather information from different resources and to interpret
the information found in order to guide 3D interaction modelling. Moreover, in many cases, there
are multiple database hits and the expert has to go through each of them by hand and by eye. This
tedious task often means that modelling approaches do not predict as accurately as possible 3D
structures of protein-protein complexes because all available PPl information was not used. Addi-
tionally, knowledge of existing protein interaction modes is often not available in an easily accessible
way, and so cannot easily be incorporated into docking algorithms. Indeed, it can require much
effort to use such databases to help model even a single unknown protein-protein complex. One
could even argue that with the growing number of structural data in public databases, manual data
retrieval and analysis has become impractical. Hence, there is a need to develop a more systematic
classification of PPIs in order to facilitate automatic PPI analysis and to improve the prediction of
protein-protein complexes.

1.4 Knowledge Discovery in Databases and Data Mining

Knowledge discovery in databases (KDD) is a powerful technique for detecting patterns in large
data sets. Therefore, it is reasonable to suppose that KDD techniques could be applied to structural
PPI data. This should help to provide a better 3D picture of the known protein interactome, and to
guide predictions of the 3D structures of unsolved protein complexes.

In general, KDD is a process in which voluminous low-level data is transformed into a more
compact, abstract, and useful form (Fayyad et al., 1996). The KDD process is often iterative and
interactive, and consists of processing large volumes of data in order to extract information or knowl-
edge that is non-trivial, potentially useful, significant, and reusable (Napoli, 2005). The KDD process
involves several steps, some of which are understanding the domain application, preparing the data,
finding useful features that describe the data, performing data mining, and interpreting the patterns
and models found. ' In practice, the data preparation step consists of several sub-steps such as

' An introduction to KDD and data mining can be found in Hand et al. (2001) and Han and Kamber (2005).
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data selection, data enrichment, data transformation, and data integration. Data selection is the
stage at which we identify and collect data sets or databases to work with. Data enrichment is the
process of adding additional information to the data sets or accessing additional resources to obtain
extra information. Data transformation is the task of converting raw data into a more convenient form
for data analysis. Data integration/linkage is the non-trivial task of combining several data sources,
eliminating redundancy and conflicts to create a single dataset. The main KDD steps are illustrated
in Figure 1.2. The iterative nature of the KDD process emphasises the need to organise the data in
a structured way (Hand et al., 2001). Consequently, the data preparation step is often the one which
requires the most amount of human expertise and effort.

While KDD refers to the overall process of discovering useful knowledge from data, data mining
refers to a particular step in this process. Data mining may be defined as the automatic or semi-
automatic data analysis step within the KDD process. Data mining usually involves applying algo-
rithms which are often grouped as classification, clustering and association, for example. Fayyad
et al. (1996) define two types of goal in data mining, namely (i) the verification of a hypothesis, and
(i) the discovery of patterns/models. The discovery goal is either a predictive or a descriptive type
of goal. Prediction involves using attribute values of instances in a database to predict unknown
attribute values of a new target instance. Description focuses on finding non-trivial and meaningful
patterns or models describing the data. For example, given a data set in which instances are de-
fined by a set of attributes and where one of the attributes is a class label, the task of a classification
algorithm is to construct a model which describes the data set. The model is often expressed as a
set of rules which should be able to predict to which class a new instance belongs. Decision trees
are examples of rule-based classifications. On the other hand, a clustering algorithm is applied to a
dataset when one wants to identify classes. This is done by grouping similar instances into clusters.

In KDD, discovering new knowledge can often involve defining new concepts (the knowledge
to be learned or described). The output of the KDD process is termed concept description, which
ideally brings out and describes in a concrete way previously unknown or non-obvious relationships
in a data set. Depending on the KDD concepts and the data mining algorithms used, concept
descriptions are not necessarily expressed as rules. For example, they may be described in terms
of closely related instances. The key aspect is that they are described and represented in an easy
way that can be readily used to solve new problems.

1.5 Thesis Aims and Objectives

This thesis aims to develop a systematic knowledge-based approach for representing, describing
and manipulating all available 3D protein-protein interactions. This approach should provide an easy
way to access and exploit knowledge of existing PPIs in order to study 3D interactions on a large
scale and to help develop new knowledge-based ways of analysing interfaces and predicting protein-
protein complexes. For example, from the homology principle, we expect that using knowledge
of the spatial organization of binding sites in protein families could provide a way to guide protein
docking calculations by focusing the calculation around only those binding sites that are employed by
homologous proteins. It therefore seems reasonable to suppose that using such techniques should
help to reduce the number of false positives and improve the accuracy of docking predictions.

4



1.6. Overview of Thesis

Rough data

l Understand domain application
Select data

Selected data

l Integrate data
Transform and enrich data

Processed data

l Identify descriptive features
Apply data mining algorithms

Discovered patterns

l Interpret and evaluate patterns

Knowledge for problem-solving

Figure 1.2: The KDD cycle. Figure adapted from Napoli (2005).

The specific objectives here are: (i) to develop a classification of interaction modes in protein
domain families in order to describe and summarise PPI data; (ii) to develop a systematic approach
to re-use structural knowledge of existing PPIs to facilitate 3D PPl modelling (in particular, docking by
homology); (iii) to create a framework to support large scale analyses of 3D protein-protein interface
features; and (iv) to provide a structural PPI search engine to facilitate docking by homology.

Since conventional data mining techniques cannot be directly applied to protein structural data,
we need to adapt the usual KDD approach to achieve these goals. Hence, describing PPIs in a
computationally useful and automatic way is extremely challenging. However, it is necessary at this
point to emphasize that this thesis does not present a new data mining algorithm per se. Rather,
this thesis tackles a difficult problem of describing 3D PPIs to facilitate the reuse of knowledge of
existing PPIs to solve unknown PPls.

1.6 Overview of Thesis

The rest of this thesis is organised as follows. Since developing an understanding of the appli-
cation domain is essential in any KDD process, a general introduction to proteins, protein-protein
interactions, and their 3D structures is given in Chapter 2. Computational methods to predict the 3D
structures of protein-protein complexes and some existing bioinformatics resources that collect and
classify 3D structural PPI data are also introduced.

Chapter 3 presents a new integrated database resource called KBDOCK, which was developed
during this thesis. KBDOCK integrates 3D coordinate data from the PDB, protein domain family
information from Pfam, and DDlIs from 3DID. The novelty of KBDOCK is that it provides a spatial
view of DDIs for every Pfam protein domain family. Chapter 4 begins by presenting a more detailed
description of existing classifications of protein-protein interfaces. The new concept of “domain

5
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family binding site” (DFBS), introduced in this thesis is described. Next, an analysis of the distribution
of DFBSs across protein domain families is presented. This is followed by a discussion of the
advantages that the DFBS concept provides.

In Chapter 5, a summary of results from previous protein-protein interface analyses is given.
Next, a structural classification of DFBSs similar to the CATH classification is described. Some sta-
tistical analyses of DFBSs carried out to identify frequent secondary structure features at interfaces
are described. Chapter 6 presents a case-based reasoning (CBR) approach to retrieve distinct struc-
tural templates and to model unknown protein-protein complexes. The utility of this CBR approach
is demonstrated using the Protein Docking Benchmark dataset. Finally, Chapter 7 summarises the
contributions of this thesis, and it presents some future possible developments and some scientific
prospects. Appendix A describes the KBDOCK web server, which provides public access to the
KBDOCK resource and its case-based docking functionality. Appendix C and Appendix B contains
copies of one published article and three manuscripts in preparation, respectively.



Chapter 2

Biological Context — Modelling 3D
Protein-Protein Interactions

Contents
2.1 Protein Molecules and their 3D Structures . . . . .. ... ............ 8
2.1.1 Why Study Proteins? . . . . . . ... 8
2.1.2 Building Blocks and Architecture of Proteins . . . . . . . .. ... .. .... 8
2.1.3 Protein Domains and their Classifications . . . . . ... ... ... ... .. 10
2.1.4 Coverage of Protein 3D Structures . . . . . . . .. ... ... ... ..... 12
2.1.5 Computational Methods to Predict 3D Structures of Proteins . . . . . . ... 12
2.2 Protein-Protein Interactions and their 3D Structures . . . ... ... ...... 14
2.2.1 Why Study Protein-Protein Interactions? . . . . . . .. ... ... ... ... 14
2.2.2 Databases of Experimentally-Detected and Predicted PPIs . . . . . . .. .. 14
2.2.3 Different Types of Protein-Protein Interactions . . . . . . .. ... ... ... 15
2.2.4 Coverage of 3D Protein-Protein Interactions . . . . . . ... ... ... ... 15
2.2.5 Previous Analyses of Protein-Protein Complexes . . . . . ... .. ... .. 16
2.2.6 Current Protein-Protein Interface Prediction Algorithms . . . . . . . ... .. 17
2.3 Modelling 3D Structures of Protein-Protein Complexes . . . . .. ... ... .. 18
2.3.1 Template-Based Modelling of Protein Complexes . . . . ... ... ... .. 18
2.3.2 Ab-lnitioDocking . . . . . ... 20
2.3.3 The CAPRI Blind Docking Experiment . . . . . . ... .. ... ... .... 21
2.4 Existing Structural PPIResources . . . . . . . . .. . ittt 22
2.41 Classifications of 3D Structures of Protein-Protein Complexes . . . . . . .. 24
2.4.2 Characterisations of Protein Functional Sites . . . . . . ... ... ... .. 24
2.4.3 Classifications of Protein-Protein Interfaces . . . . . . . ... ... ... .. 25
2.4.4 Structural Databases of Protein-Protein Complexes . . . . . . .. ... ... 25
2.4.5 Integrated Databases, APIs and Libraries . . . . . . ... ... ... .... 25
2.4.6 Docking Benchmark Datasets . . . . . ... ... ... ... ........ 26
25 Conclusion . . . . . . . ... e e e e e e 26




Chapter 2. Biological Context — Modelling 3D Protein-Protein Interactions

2.1 Protein Molecules and their 3D Structures

2.1.1 Why Study Proteins?

Proteins are one of the major groups of macromolecules essential to all living organisms. Pro-
teins perform many biological functions and they participate in virtually all processes within biological
cells. For example, proteins participate in cell signaling, molecular transportation, and cellular regu-
lation, and they also act as structural elements and components of the immune system.

2.1.2 Building Blocks and Architecture of Proteins

Amino Acids are the Building Block of Proteins. Proteins are made up of polypeptides. A
polypeptide is formed when amino acids covalently join to each other in a sequential manner releas-
ing water molecules (Figure 2.1). A polypeptide is thus composed of a chain of amino acid residues
(or simply “residues”). This sequence defines the “primary” structure of a protein. All of the 20
common amino acids have a central carbon atom (C,) to which are attached a hydrogen atom, an
amino group, a carboxy group and a side chain. What distinguishes one amino acid from another is
the side chain (often known as the R group) attached to the C,, (Figure 2.1). This side-chain varies
from a single hydrogen atom in glycine to a large aromatic group of atoms in tryptophan. A typical
protein contains 200-300 amino acids, but some are much smaller and some are much bigger.?
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Figure 2.1: An amino acid contains an amino group, a carboxy group, a side-chain group known as the R
group, and a hydrogen atom. Amino acids are joined together by peptide bonds (shown in blue).

Levels of Protein Architecture. When a protein is being made by the ribosome, its polypeptide
chain is linear and non-functional. To become functional, the polypeptide has to fold and coil (Fig-
ure 2.2) into some unique stable 3D structure (often called its “tertiary” structure).® This occurs
through intermediate forms, when regular segments of the polypeptide fold locally into stable 3D
structures (secondary structures) called a-helices and S-strands. Regions with no specific sec-
ondary structure are called loop or irregular regions. Some examples of secondary structures are
illustrated in Figure 2.3. Many proteins are formed by the association of more than one folded
polypeptide chain. The resulting structure is often called the “quaternary” structure of a protein.
According to Anfinsen’s dogma (Anfinsen et al., 1961, Kresge et al., 2006), the primary sequence
of a protein determines its tertiary structure. More generally, the central dogma of molecular biol-
ogy states that the sequence of amino acids is determined by the sequence of nucleotides in the
gene encoding it. Thus, a protein’s amino acid sequence determines its 3D structure which in turn
determines its biological function.

2 A good introduction to proteins and their structures can be found in Branden and Tooze (1999).
% An introduction to protein folding can be found at http:/www.nature.com/horizon/proteinfolding.
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2.1. Protein Molecules and their 3D Structures

Because protein molecules can contain many thousands of atoms which are too many to visu-
alise simultaneously, the 3D structures of proteins are often drawn using e.g. simplified “cartoon” or
“ribbon” representations to illustrate stable secondary structures. There also exist other graphical
representations, e.g. atoms only, atoms with connecting bonds, and the molecular surface of the
protein (Figure 2.4).

Some secondary More secondary

structure formation ® structure formation

Figure 2.2: An illustration of the formation of secondary structures and protein folding. Figure adapted from
Fedyukina and Cavagnero (2011).
e

-y

Figure 2.3: Examples of secondary structures: a-helix (purple), 8- sheet (yellow), turn (cyan), irregular/coil
(white), 3-10 helix (blue), pi-helix (red), and beta-bridge (olive green). The first four fragments were repro-
duced from Freddolino et al. (2010). The last two fragments are extracted from the PDB structures 1abb and
1ba7.

(

atoms atoms + bonds Ca trace secondary molecular surface
structures

Figure 2.4: Different graphical representations of a protein molecule. Here, a trypsin inhibitor (PDB 1brb
chain ) was used for illustration. Figure produced using the VMD visualisation program (Humphrey et al.,
1996).
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Databases of Protein Sequences. Databases of protein sequences are valuable resources for
the study of protein biological function. The Universal Protein Resource (UniProt; Apweiler et al.,
2004b) is the main publicly available protein sequence resource. UniProt is a multi-database re-
source. For example, UniProt’s Swiss-Prot contains non-redundant high-quality annotated protein
sequences, whereas UniProt’s TrEMBL contains redundant automatically annotated sequences.
The annotation includes the function of the protein, the processes the protein is involved in, the
type of cell the protein is located in, and the post-translational modifications (review by Apweiler et
al., 2004a). These annotations are often described using a controlled vocabulary of terms called
the Gene Ontology (Ashburner et al., 2000) to allow consistent descriptions of proteins and thus to
facilitate database queries.

2.1.3 Protein Domains and their Classifications

What is a Protein Domain? Proteins are often composed of one or more structural subunits called
domains. A domain is a compact region of protein structure that is generally made up of a continuous
segment of amino-acids, and is often capable of folding sufficiently stably to exist on its own. For
example, Figure 2.5 shows the 3D structure of a osteonectin protein which consists of three domains,
namely FOLN (PF09289; blue), Kazal_1 (PF00050; red) and SPARC_Ca_bdg (PF10591; green).
Domains vary in size, but most are around 200 amino acids or less. On average, a protein is
folded into approximately two domains (Sali et al., 2003). In the evolution of proteins, different
combinations of domains give rise to the diverse range of proteins found in nature. In structural
classifications of proteins and domains, a “domain family” is a group of domains sharing similar
structural folds, whereas a “protein family” is a group of single-domain proteins or multi-domain
proteins. (Copley et al., 2002). In this thesis, the term “protein domain family” is used to refer
to either a protein family or a domain family. A domain is often associated with a given function.
Therefore, identifying domains within proteins may provide insights into their function (Copley et al.,
2002 and references therein). For these reasons, protein sequence databases often classify and
organize their sequences into protein domain families and superfamilies.

Sequence-Based Domain Definitions. There exist computational methods to identify domains in
proteins. Because sequence data is more abundant than structural data and since protein sequence
determines protein structure, most domain definitions are based on the identification of conserved
sequences (Copley et al., 2002). Examples of sequence-based domain definitions include Pfam
(Finn et al., 2010) and SMART (Letunic et al., 2009). These approaches usually involve collecting
and aligning similar sequences automatically, manually editing the alignment to improve quality, and
performing an iterative search to identify other related sequences using a hidden Markov model
(HMM) sequence profile. For example, the current version of Pfam contains 13,672 protein domain
families. Figure 2.5 illustrates the Pfam domain assignments for a given sequence.

Structure-Based Domain Definitions. The two widely used structure-based domain classifica-
tions are SCOP (Murzin et al., 1995) and CATH (Orengo et al., 1997). Both SCOP and CATH
have four-level hierarchical classifications. The four levels are: class (secondary structure con-
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Figure 2.5: Pfam domain assignments for a given query sequence (PDB 1bmo chain A). Pfam identifies three
domains, namely, FOLN (PF09289; blue), Kazal 1 (PF00050; red) and SPARC_Ca bdg (PF10591; green).
The positions of domains in a sequence are often represented using a “sequence bar” schematic illustration
where different shapes represent different domains. On the right, the 3D structure of PDB 1bmo (chain A) is
shown. The three domains have been drawn with different colors.

tent), fold/architecture (arrangement of secondary structures), superfamilies/topology (connectivity
between secondary structures), and families/homology (sequence, structure and function similarity).
Figure 2.6 illustrates the CATH top level classification. Since it is well known that protein folds are
often more evolutionary conserved than their sequences (Chothia and Lesk, 1986), structure-based
classifications are able to identify evolutionary relationships not detected by sequence analysis and
hence may provide better insights into function. For these reasons, several groups have calcu-
lated structure-based sequence alignments of SCOP or CATH domain families. PALI (Gowri et al.,
2003) and DALI (Holm and Rosenstrom, 2010) are two examples of databases of structure-based
sequence alignments.

mainly a mixed a-f3

Figure 2.6: lllustration of the top level of CATH classification. There are four classes in total: (1) mainly «, (2)
mainly 3, (3) mixed «-3, and (4) few secondary structures (not shown here). Figure reproduced from Orengo
et al. (1997).

Integrated Resource of Domain Classifications. Given the growing number of computational
methods to identify domains in protein sequences and structures, some integrated resources have
been developed to provide a unified framework for domain analysis. These include CDD (Marchler-
Bauer et al., 2009) and InterPro (Hunter et al., 2012). CDD combines domain definitions from
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several sources such as Pfam (Finn et al., 2010), SMART (Letunic et al., 2009), and TIGRFAM
(Selengut et al., 2007) with 3D structure information from the PDB to define domain boundaries
and to guide multiple sequence alignments. InterPro is currently the largest integrated database
of domain definitions and functional annotations. It includes Pfam, SMART, TIGRFAM, ProDom
(Bru et al., 2005), PIRSF (Nikolskaya et al., 2006), HAMAP (Lima et al., 2009), SUPERFAMILY
(de Lima Morais et al., 2011), CATH-Gene3D (Lees et al., 2010), PANTHER (Mi et al., 2010), and
PROSITE (Sigrist et al., 2010).

2.1.4 Coverage of Protein 3D Structures

Why are Protein 3D Structures Important? Since the biological function of proteins are deter-
mined by their 3D structures, it is essential to know their 3D structures to understand how they
function at the molecular level. A 3D structure provides details about atomic contacts which may be
useful in designing drugs to disrupt an interaction. Currently, the principal experimental techniques
used to obtain 3D structures are crystallography (X-ray), nuclear magnetic resonance (NMR) and
cryo-electron microscopy (cryo-EM).

3D Structure Repository and Coverage. The Protein Data Bank (PDB; Berman et al. (2002);
http://www.rcsb.org/pdb/) is the main worldwide repository of 3D protein structures. Currently, the
PDB contains some 80,000 protein structures. X-ray and NMR techniques account for over 99%
(88% X-ray and 11% NMR) of the 3D structures deposited in the PDB. Compared to UniRef100,
which has some 18,000,000 distinct sequences, the PDB has only 47,000 distinct sequences (as
of September 2012).# This means that there are many proteins for which there are no known 3D
structures. Furthermore, due to limitations in current experimental techniques, such as the difficulty
in obtaining protein crystals, it is unlikely that all proteins will have their 3D structures solved in
a foreseeable future. For this reason, important efforts has been made to develop computational
approaches to predict the 3D structures of proteins from their amino acid sequence (Section 2.1.5;
reviews by Wallner and Elofsson, 2005 and Zhang, 2008).

Conserved Protein Folds. From the principle of homology, evolutionarily related (homologous)
protein sequences are generally assumed to share a similar 3D structure. One of the earliest stud-
ies of protein structures estimated that the large majority of proteins belong to about one thousand
fold families (Chothia, 1992), suggesting that protein folds are often more evolutionarily conserved
than their sequences (Chothia and Lesk, 1986). The current versions of the main protein struc-
tural classifications SCOP and CATH report 1,195 and 1,282 protein folds, respectively. Although
Chothia’s estimate has stood 20 years, it is difficult to say if nature is indeed restricted to these one
thousand or so fold families. For example, other estimates range up to a few thousands (Govin-
darajan et al., 1999). However, statistics from the PDB (Figure 2.7) show that there has been no
significant growth in the number of distinct folds for both SCOP and CATH during the last five years.®

“Statistics obtained from the RCSB PDB website. The number of distinct sequences is calculated using blastclust (http:
//blast.ncbi.nim.nih.gov/) with a sequence identity level of 100%. The number of sequences in UniRef100 was obtained
from http://mrs.cmbi.ru.nl/mrs-5/status

Shttp://www.rcsb.org/pdby/static.do?p=general_information/pdb_statistics/index.html
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Figure 2.7: The growth of distinct SCOP folds per year since 1976. From this figure, it is clear that the number
of folds has not increase for the last four years. Figure reproduced from the RCSB website (September 25th,
2012).

2.1.5 Computational Methods to Predict 3D Structures of Proteins

Most protein structure prediction algorithms use the principles of sequence and structural homol-
ogy, and thus are referred to as homology modelling or comparative modelling algorithms. Given a
target protein sequence, comparative modelling identifies homologous structures or templates and
constructs a target-template multiple sequence alignment. Next, the protein backbone is built from
the aligned region and side-chain coordinates are added using conformational sampling. MOD-
ELLER (Sali and Blundell, 1993) is a widely used protein structure prediction program. Previous
studies have shown that fairly good 3D models of single proteins can be obtained if there already
exists a protein structure with sequence similarity of 25% or more (Aloy et al., 2005).

On the other hand, when there is no direct homology but only templates with low sequence
identity, fragment-based techniques may be used as an alternative way to model protein structures.
Similar to comparative modelling, fragment-based modelling also consists of identifying homologous
or analogous® templates and aligning them with the target protein sequence. Typically, a library of
fragments of protein structures is constructed from the selected templates or from a non-redundant
set of protein structures. Finally, a protein model is obtained by reassembling the fragments with
some form of physics-based minimisation such as Monte Carlo simulation. Rosetta (Simons et al.,
1997) and TASSER (Zhang and Skolnick, 2004, 2005a) are examples of fragment-based algorithms.

®Two proteins are analogous when they share some sequence or fold similarities even though they are not evolutionary
related.
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Zhang and Skolnick suggested that the PDB will often contain suitable structural templates to
model the structures of new protein sequences. However, it still remains a difficulty to retrieve
such templates using current sequence or structure alignment methods. The dataset of Zhang and
Skolnick consisted of 1,489 protein sequences sharing less than 35% sequence identity. For nearly
all of these sequences, they found a structural template with a similar fold to the native structure
with an average RMSD of 2.5 A and a sequence alignment coverage of 82%. Overall, their TASSER
algorithm built models with an RMSD less than 6 A from the native structure, and in 97% of the
cases with an RMSD less than 4 A.

The Critical Assessment of protein Structure Prediction (CASP; http://predictioncenter.org) ex-
periment establishes the current state of the art in single protein structure prediction from protein
sequence. CASP results show that the best predictions are often made when there exists some
sequence homology (Moult et al., 2011). Some recent databases which collect manually-built and
computer-generated 3D models of proteins include PMDB (Castrignano et al., 2006), MMDB (Wang
et al., 2007b), and MODBASE (Pieper et al., 2009).

2.2 Protein-Protein Interactions and their 3D Structures

2.2.1 Why Study Protein-Protein Interactions?

To perform their biological functions, proteins interact with other proteins to form protein as-
semblies. According to Alberts (1998), almost all biological processes in a cell are carried out by
assemblies of 10 or more proteins. Furthermore, Alberts suggested that the entire cell may be
viewed as a large, elaborate, and dynamical molecular network. Understanding the full network of
protein-protein interactions, the so-called “interactome”, could provide useful insights into the mech-
anisms of disease. As discussed in Chapter 1, knowing which proteins interact and how they interact
at the structural level is crucial for understanding the molecular basis of biological processes. The
3D structures of known protein-protein complexes provide crucial atomic details about binding which
can be useful to understand the effect of genetic variations, and to design therapeutic drugs.

2.2.2 Databases of Experimentally-Detected and Predicted PPls

Recent advances in molecular biology techniques have allowed biologists to detect protein-
protein interactions (PPIs) on a large scale. For example, the development of high throughput
technologies (HTT) such as yeast two-hybrid (Y2H), tandem affinity purification coupled to mass
spectrometry (TAP-MS), and protein-fragment complementation assays (PCA) has increased sub-
stantially the number of recorded protein-protein interactions. HTT PPI data sets are now available
for more than 30 organisms in public databases such as BioGRID (Stark et al., 2006), DIP (Salwin-
ski et al., 2004), IntAct (Hermjakob et al., 2004), and MINT (Chatr-Aryamontri et al., 2007). Other
organism-specific PPI databases also exist such as, MPact (Guldener et al., 2006) for yeast and
HPRD (Peri et al., 2003) for human. The PPIs detected by HTT experiments are often represented
as an interaction network. Several tools for exploring and analysing PPI networks have been devel-
oped. One well-known example is Cytoscape (http://www.cytoscape.org/).
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Due its small size, the yeast interactome is the most complete one to date among eukaryotes.
On the other hand, the human interactome which has been estimated to involve about 130,000
PPIs (Venkatesan et al., 2009) currently has 66,000 recorded PPIs. This relative shortage of PPI
data has led to the development of computational methods to predict protein interaction partners.
These methods rely on genomic and sequence information such as phylogenetic profiles, conser-
vation of gene neighborhood, gene fusion, and correlated mutations (review by Valencia and Pazos,
2002). Recent databases of predicted PPIs include OPHID (Brown and Jurisica, 2005), DOMINE
(Raghavachari et al., 2008), PIPs (McDowall et al., 2009), STRING (Jensen et al., 2009), and HAPPI
(Chen et al., 2009). However, Yu et al. (2010) observed that due to the nature of the PPI data used
to train machine learning algorithms, the accuracy reported by such algorithms is often significantly
over-estimated. As well as the shortage of PPl data, it is also a fact that HTT techniques often
produce many false-positive interactions and miss many interactions. For example, it has been
estimated that there are 30-60% false positives and 40-80% false negatives in yeast two-hybrid
and affinity-purification PPl data (von Mering et al.., 2002, Aloy and Russell, 2002, 2006). Hence,
developing computational methods which can distinguish true and false PPls coming from HTT ex-
periments will be useful. A review covering experimental techniques to detect PPIs, PPI databases,
and computational methods to predict PPIs can be found in Shoemaker and Panchenko (2007 a,b).

2.2.3 Different Types of Protein-Protein Interactions

In the analysis of PPls, it is important to distinguish between different types of interaction. Early
work classified PPIs according to the structural similarity of their constituent proteins and the ther-
modynamics and kinetics (i.e. duration) of their associations (Nooren and Thornton, 2003). For
example, interactions between identical proteins may be termed as “homo” PPls. On the other
hand, when dissimilar proteins interact, their interactions are called “hetero”. Interactions between
proteins which exist only in complexed form are known as “obligate” PPIs. In contrast, interactions
between proteins that can exist independently are called “non-obligate” PPIs. Short-lived PPls are
known as “transient” PPIs, while complexes that do not dissociate during their lifetime are known
as “permanent” PPls. Obligate interactions are usually permanent, whereas non-obligate interac-
tions may be transient or permanent (Nooren and Thornton, 2003). Homo complexes are usually
permanent (Jones and Thornton, 1996). PPls are also classified depending on the location of the
constituent proteins within one (“intra”) or on two (“inter”) polypeptide chains. In this thesis, we aim
to describe hetero PPIs because these are often the most difficult structures to solve experimentally
(Ezkurdia et al., 2009, Jones and Thornton, 1996).

2.2.4 Coverage of 3D Protein-Protein Interactions

Due to the complex physical nature of protein-protein interactions, structural genomics initiatives
have been striving to solve 3D structures for every PPl in the interactome. Aloy and Russell (2002)
estimated that there is a total of 10,000 representative protein-protein interactions, and they pro-
posed that most interactions in nature will conform to one of these interactions. According to them,
about 2,000 of the 10,000 representative interactions are known presently (year 2002). This is due
to current limitations in experimental techniques. For example, for short-lived transitory associa-
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tions, it is very difficult to obtain protein crystals. Moreover, although NMR can be used quite easily
to obtain 3D structures of proteins and protein-protein complexes consisting of 300 amino acids, it
is painstaking and costly to solve larger complexes. For these reasons, only a very small proportion
of the 3D structures deposited in the PDB correspond to protein-protein complexes. For example, it
has been estimated that the PDB contains structures of protein complexes for only 8% of the human
PPIs (Figure 2.8; Stein et al., 2011, Kundrotas et al.,2012). It seems unlikely that it will become
possible to solve the structures of protein complexes using current structural genomics techniques
in the forseeable future (Aloy and Russell, 2002, 2006, Ritchie, 2008). Hence, there is a need to
develop computational methods to bridge the gap (Aloy and Russell, 2006, Stein et al., 2011).
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Figure 2.8: The coverage of 3D structures of all experimentally-solved PPIs for different organisms. Both
charts show that the proportion of PPIs with a experimentally-solved 3D structure to those without one is
highly disproportionate except for E. coli. Figures (a) and (b) were reproduced from Stein et al. (2011) and
Kundrotas et al. (2012), respectively.
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2.2.5 Previous Analyses of Protein-Protein Complexes

The collection of experimental 3D structures of protein-protein complexes has allowed several
groups to study the biophysical properties of protein binding sites and interfaces. A protein-protein
interface is the region where two proteins make direct physical contact. In this thesis, we refer to
a protein-protein interface as a protein interface or simply interface. Similarly for a domain-domain
interface. A binding site is one half of an interface and is often referred to as a face by many groups.
See Figure 2.9 for an illustration of a binding site and an interface.

binding site / face
interface

binding site / face

Figure 2.9: An interface is defined as the contacting region between two proteins. An interface is formed by
a pair of binding sites or faces. Here, the PDB 1avw is used for illustration.

Since the size of a protein interface provides a measure of the strength of the binding (Jones and
Thornton, 1996), this simple property is often calculated and analysed. Interface size is measured
as the accessible surface on both proteins that becomes inaccessible to solvent in the complex. This
area is calculated as the sum of the solvent-accessible surface areas (ASA) of the isolated proteins
less that of the protein-protein complex (Lo Conte et al., 1999).

In one of the earliest structural studies of 19 protein-protein complexes, Janin and Chothia (1990)
observed that the interfaces of protease-inhibitor complexes and antigen-antibody proteins often
have similar properties, e.g. interface sizes and number of hydrogen bonds. On the other hand,
Jones and Thornton (1996) found that many interfaces have roughly equal proportions of helix,
sheet, and loop residues, with some interfaces containing only one type of secondary structure,
but most being mixed. Other studies based on alanine scanning mutagenesis have shown that the
stability of a complex is determined by so-called hot spot residues at the interface. These hot spot
interface residues can contribute a large proportion to the total binding energy (Bogan and Thorn,
1998). Bogan and Thorn found that large amino acids such as tryptophan, arginine and tyrosine are
frequent hot spot residues. Thorn and Bogan (2001) collected all experimentally determined hot-spot
residues by alanine scanning and made them publicly available in the ASEdb database. Ma et al.
(2003) found that hot spot residues are more structurally conserved in PPl interfaces than in other
surface regions, and they proposed that this tendency might be used to help predict the locations of
unknown binding sites. Caffrey et al. (2004) found that the residues at protein interfaces are usually
more conserved than other surface residues, particularly in enzyme/inhibitor complexes, but they
also found that such differences are not sufficient to predict interface patches by conservation alone.
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2.2.6 Current Protein-Protein Interface Prediction Algorithms

Identifying protein binding sites and hot-spot residues is important for drug design. Hence,
many computational methods have been developed for predicting protein binding sites. The findings
discussed in the previous paragraph have been useful in determining which binding site features
can be used as predictive attributes in machine learning and other techniques. However, the gen-
eral opinion is that no single parameter can distinguish between binding surface and other surface
patches (Zhou and Qin, 2007). For example, prediction algorithms use a number of sequence and
structural properties, e.g. sequence conservation, proportions of amino acids, secondary structure,
solvent accessibility to train their machine learning algorithms. Such algorithms include support vec-
tor machines (Bradford and Westhead, 2005), neural networks (Ofran and Rost, 2007 a), conditional
random fields (Li et al., 2006), random forests (Sikic et al., 2009) and naives Bayes (Murakami and
Mizuguchi, 2010). Other groups have developed statistical methods to predict protein binding sites,
e.g. the evolutionary trace method of Lichtarge et al. (1996), the surface patch analysis of Jones
and Thornton (1997), the ProMate algorithm of Neuvirth et al. (2004), and the WHISCY algorithm of
de Vries et al. (2006). In addition, other groups have developed so-called meta-predictors, e.g. Qin
and Zhou (2007 a), which combine multiple binding site prediction algorithms. de Vries and Bonvin
(2008) reviewed the performance of several predictors and they concluded that algorithms which
incorporate 3D features as well as sequence-based features performs better. Several reviews are
available on binding sites prediction algorithms (de Vries and Bonvin, 2008, Ezkurdia et al., 2009,
Fernandez-Recio, 2011).

2.3 Modelling 3D Structures of Protein-Protein Complexes

Modelling 3D interactions is the computational task of calculating the 3D structure of a protein-
protein complex starting from either the individual sequences (homology-based modelling) or the
individual structures of the constituent proteins (ab-initio docking). This is different to other com-
putational methods focusing on predicting only the binding regions of the constituent proteins (see
Section 2.2.6) and not the 3D interaction mode.

2.3.1 Template-Based Modelling of Protein Complexes

It has been shown that pairs of proteins with greater than 25% sequence similarity often in-
teract in similar ways (Aloy et al., 2005), and that the active sites of distantly related proteins are
often very similar in geometry (see Chothia (1992) and references therein). Template-based com-
plex modelling techniques are based on these general observations. Most algorithms start with the
individual sequences of the constituent proteins. Similar to template-based modelling of single pro-
teins, the crucial step is to identify the best available structural protein-protein complex template. If
there exists direct homology, then the process is simple and straightforward. The constituent pro-
teins are modelled separately (Section 2.1.5) and a structural alignment is performed to superpose
the modelled proteins onto the structural template to obtain a model of the complex (Kundrotas
and Alexov, 2006, Kundrotas et al., 2008, 2010). On the other hand, if no direct homology exists,
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fragment-based techniques are used to model the protein-protein complex from a library of single
protein structures and complex structures (e.g. see Mukherjee and Zhang, 2011). Some algorithms
perform an information-driven sequence alignment to obtain the optimal target-template alignment.
For example, sequence alignments are guided by other information such as interface residues in
protein-protein complex structural templates (Lu et al., 2002, Kundrotas et al., 2008) and residue
solvent accessibility (Launay and Simonson, 2008). On the other hand, some approaches start from
the 3D structures of the individual proteins. For example, the approach of Glnther et al. (2007) is
a local structure alignment based method which exploits in some way Chothia’s observation that
distantly-related proteins often have similar binding site geometries.

Kundrotas’s Homology-Based Approaches. Kundrotas and Alexov (2006) performed a “cross-
docking” experiment to identify interacting pairs of proteins and to build by homology the structure of
the corresponding hetero complexes. For this study, they filtered their ProtCom database (Kundro-
tas and Alexov, 2007) using a sequence similarity of 40% and excluding complexes with small and
very large interfaces. In this way, their database contains 92 hetero protein-protein complexes and
a further 326 hetero domain-domain interactions which were derived from intra-chain DDIs giving
a total of 418 pairs of true interacting proteins/domains. By enumerating all the possible pairs of
proteins which can be formed by these 418 pairs of proteins and domains, they obtained 350,284
putative pairs of proteins. They experimented with two different approaches - sequence and struc-
tural similarity to retrieve homologous templates from their ProtCom database in order to identify
true interacting pairs of proteins. They used the sequence search tool PSI-BLAST and the struc-
tural alignment program SKA (Yang and Honig, 2000) program to search for templates and they
used the NEST (Petrey et al., 2003) program to model a 3D structure of a protein/domain. They
considered a pair of query sequences to interact if there is at least one database template involving
both query sequences. In the same way, they considered a pair of query structures to interact if
there is at least one database template involving a pair of structures similar to the query pair. Using
this approach, Kundrotas et al. found that their sequence and structure similarity approach correctly
identified 19% and 86 % of 418 true interacting pairs, respectively (out of a total of 350,284 pairs).
However, the ratio of false to true positive was 5:1 and 7:1 for their sequence and structure-based
approaches, respectively. Hence, although the structure-based approach has a better recovery rate,
their sequence-based approach has a better performance. To model the structure of the complex,
(i) for the sequence-based approach, the two structures are modelled individually using the tem-
plate complex and are put together to give a model of the complex, and (ii) for the structure-based
approach, the two structures are superposed onto the templates to build the model of the complex.
Kundrotas et al. evaluated the model of the complex using the number of correct interface residues
and the RMSD of heavy atoms between the model and the solution. They found that intra DDI
templates can be useful in predicting structures of protein-protein complexes.

Kundrotas et al. (2008) extended their PSI-BLAST-based template retrieval approach to incor-
porate interface information in the PSI-BLAST sequence profiles. They found that 74 out of 463
pairs of query protein sequences produce statistically significant pairs of global alignments. In other
words, 16% of pairs of query sequences have a template. Significant alignments are those with
>20% sequence identity and coverage of >40%. This represents an increase in the number of
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templates retrieved compared to their previous study, although this improvement may be due to the
new 3D structures which had since been added to their database. However, it seems there is no
improvement if any in the quality of the models produced from using an augmented PSI-BLAST se-
quence profile. In a more recent study, Kundrotas et al. (2012) uses the structural alignment program
TM-align (Zhang and Skolnick, 2005b) to retrieve structural templates. They found that a structure-
based approach is able to identify templates for more PPIs than a sequence-based approach (see
Figure 2.8 in Section 2.2.4).

The ISEARCH Approach.  Giinther et al. (2007) exploit the fact that non-homologous pairs of
proteins may have similar interfaces to predict the 3D structures of protein-protein complexes using
a structural superposition method. Their method called ISEARCH uses a domain-domain interface
library which consists of the structures of DDIs defined by the SCOP domain classification. Pairs
of interacting SCOP domains are grouped into distinct SCOP superfamily-superfamily clusters. For
each such cluster, a single representative pair of interacting domain-domain is considered in order
to reduce computational cost. Given a pair of query structures, Glinther et al. use their local struc-
tural alignment program called NeedleHaystack (Hoppe and Frdommel, 2003) to search for pairs of
backbone regions which are similar to the domain-domain interface backbone patches in their li-
brary. For each hit obtained, the query structures are transformed according to the superposition
onto the corresponding interface patches to build the model of the complex. Overall, the ISEARCH
approach found at least one acceptable model for 45 of the 59 benchmark cases. As expected, if
the query and template domain pairs belong to the same superfamily pair then an acceptable model
is obtained (20 cases). Interestingly, in 35 cases, at least one acceptable model was obtained us-
ing templates from a different pair of superfamily to the query. These results confirmed previous
suggestions that protein complexes may be modelled from remote homologous pairs of interacting
proteins. However, this local structural similarity-based approach often gives too many templates.
For example, for a given pair of structures, ISEARCH finds about 1500 templates on average.

2.3.2 Ab-Initio Docking

Ab-initio docking aims to calculate the 3D structure of a protein complex starting from the 3D
structures of the unbound components. This problem was first described some thirty years ago
(Wodak and Janin, 1978), and since then many computational docking algorithms have been devel-
oped. A typical protein docking algorithm involves two main stages (Figure 2.10). The first stage
is a global search to generate a list of configurations having good shape complementarity using a
simple scoring function. This list could contain up to a few thousands configurations and it often
contains a near-native configuration. To search and generate rapidly candidate configurations, most
current docking algorithms use the fast Fourier transform correlation (FFT) technique. For example,
ZDOCK (Chen and Weng, 2002), GRAMM (Vakser and Aflalo, 1994), and FTDock (Gabb et al.,
1997). Other global search techniques include spherical polar Fourier correlations (Hex; Ritchie and
Kemp, 2000), geometric hashing (PatchDock; Schneidman-Duhovny et al.,2005), and Monte Carlo
sampling (RosettaDock; Wang et al., 2007). The second stage in docking two proteins is to rank the
list of configurations using a sharper scoring function comprising physics-based or statistical poten-
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tials. Physics-based potentials are derived from electrostatics, hydrogen bonding, and van de Waals
atomic interactions. Statistical potentials (also called knowledge-based potentials) are derived from
atom-atom contacts from existing protein-protein complexes (see e.g. Moont et al., 1999, Chuang
et al., 2008). The ranking step often includes an initial clustering of similar orientations and thus
ranking only the representative orientation from each cluster.
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Figure 2.10: The stages of protein-protein docking. Figure reproduced from Smith and Sternberg (2002).

Modelling protein-protein complexes is a challenging task because most proteins are not rigid.
They change their shape to interact with other molecules to perform their biological function. How-
ever, many protein-protein complexes were found to involve little or no conformation change in their
backbone (Krdl et al., 2009). The main conformational changes were observed in the side-chains of
the proteins (Krél et al., 2009). Some docking algorithms include a third stage to simulate the back-
bone and side-chain rearrangements and dynamics. The HADDOCK program (Dominguez et al.,
2003) is an example of a docking program which simulates both side-chain and backbone flexibil-
ity using molecular dynamics. Movshovitz-Attias et al. (2010) recently carried out a detailed study
on the utility of using structural templates of monomeric proteins when modelling conformational
flexibility in a number of docking problems. They found that in 19 out of 26 target complexes, ho-
mologous templates improve the docking predictions. Furthermore, they found that templates with
different levels of sequence identity are all useful sources of information for modelling backbone
flexibility. Several reviews on protein docking algorithms are available (Halperin et al., 2002, Smith
and Sternberg, 2002, Bonvin, 2006, Ritchie, 2008, Vajda and Kozakov, 2009, Krél et al., 2009).

Korkin’s Restrained Docking Experiment.  Previous studies showed that the locations of protein
interaction sites are often conserved within domain families (Korkin et al., 2005, Shoemaker et al.,
2006). Korkin et al. (2006) performed a study to find out whether binding site information can im-
prove the accuracy of docking predictions. They evaluated their method on a set of 20 single and
multi-domain protein-protein complexes (which is a relatively small test set compared to the dock-
ing benchmark of Hwang et al., 2010). For each SCOP domain in a target complex, they used their
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PIBASE database (Davis and Sali, 2005) to extract binding sites from all domains of the same SCOP
family and they mapped these binding sites onto the target domains using structural alignments. For
a given target domain-domain complex, Korkin et al. performed restrained structure-based docking
using PatchDock (Schneidman-Duhovny et al., 2004) for all possible pairs of binding sites. They
used a shape complementarity scoring function. They collected all the docking predictions from the
multiple PatchDock runs and they filtered out predictions that do not involve the proposed pair-wise
binding sites. They scored the remaining predictions using the DOPE statistical potential of Shen
and Sali (2006) and they retained the top prediction. Korkin et al. compared the predictions ob-
tained by restrained docking on (i) both sides, (ii) one side, and (iii) blind docking. They found that
by restraining the docking on both sides increases significantly the docking prediction (15 out of 20
complexes have an RMSD less than 10A). On the other hand, restraining the docking on only one
side does not give much improvement from blind docking (i.e. 8 out of 20 with blind docking going to
9 out of 20 with restrained docking).

2.3.3 The CAPRI Blind Docking Experiment

Although the main goal of protein docking is to predict the 3D structure of an unknown protein-
protein complex, recent cross-docking studies have used docking to distinguish true interactions
from multiple candidate complexes (Sacquin-Mora et al., 2008, Wass et al., 2011, Melquiond et al.,
2012). Such “cross-docking” studies show that docking can be used to identify PPIs with some
success (Sacquin-Mora et al., 2008). This suggests that docking could be used to confirm PPls
from HTT experiments. However, current docking algorithms still face some difficulties. Similar to
CASP, the Critical Assessment of Protein Interactions (CAPRI) establishes the current state of the
art in modelling 3D structures of protein-protein complexes (http://capri.ebi.ac.uk). Although good
progress has been made, CAPRI results show that it is still very challenging to produce a satisfactory
3D model (2.5A RMSD) of a protein complex using ab initio docking algorithms (Lensink and Wodak,
2010). The main difficulty is to identify the near-native solutions from the list of candidate solutions.
On the other hand, several studies have shown that using the principles of homology or experimental
information such as mutagenesis data to guide and constrain docking calculations (Figure 2.10) can
improve the reliability of the predictions significantly (van Dijk et al., 2005, Lensink and Wodak,
2010). Moreover, Sacquin-Mora et al. (2008) showed that prediction of interacting partners can be
improved if the correct binding interface on each protein is known a priori. Furthermore, Qin and
Zhou (2007b) showed that constraining the docking search space using their interface predictor
cons-PPISP improved the docking rankings in some cases (8 out of 20 CAPRI targets). These
results suggest it would be useful to define and characterise systematically protein binding sites in
order to guide protein docking calculations and 3D interaction modelling in general.

2.4 Existing Structural PPl Resources

Given the growing amount of structural protein interaction data, several groups have developed
bioinformatics resources to integrate, organise, and classify heterogeneous protein interaction data
with the aim of facilitating analysis and more importantly encouraging data re-use. Table 2.1 sum-
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marises some of the recent PPI databases. Several of these are particularly relevant to this thesis,
and are described in further detail in the following chapters.

Database Literature Domain

Classification

Pibase Davis and Sali (2005)
http://pibase.janelia.org/queries.html

SCOP, CATH

3D-Complex Levy et al. (2006) -
http://supfam.mrc-Imb.cam.ac.uk/elevy/3dcomplex/Home.cqi

Dockground Douguet et al. (2006) -
http://dockground.bioinformatics.ku.edu/

Scoppi Winter et al. (2006) SCOP
http://141.30.193.6/scoppi/

Scowlp Teyra et al. (2008) SCOP
http://www.scowlp.org/scowlp/

PiSite Higurashi et al. (2009) -
http://pisite.hgc.jp/

3did Stein et al. (2010) Pfam
http://3did.irbbarcelona.org/

Gwidd Kundrotas et al. (2010) -
http://gwidd.bioinformatics.ku.edu/

Ibis Shoemaker et al. (2010) CDD

http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi

InterEvol Faure et al. (2012) -
http://biodev.cea.fr/interevol/Default.aspx

Hierarchical clustering of secondary structure
topologies, contacting residue and secondary
structure types.

Graph-based classification of topologies of
subunits in protein-protein complexes.

Collection of X-ray structures and docking
models of protein complexes with their
unbound constituent proteins.

Classification of protein-protein interfaces using
1D sequence and 3D structure features.

SCOP-based hierarchical classification of
protein-protein complexes.

Collection of 3D structures of transient hub
proteins and their interaction sites.

HMM sequence profile-based hierarchical
classification of protein-protein interfaces.

Collection of all experimentally-determined
solved PPls and docking models of PPls
without a known 3D structure. PP| sources
include BIND (Bader and Hogue, 2000) and
DIP (Salwinski et al., 2004).

Database of protein-protein interactions
grouped by their CDD domain followed by their
partner domain and the location of their binding
sites.

Close and distant structural homologues of
protein-protein complexes with multiple
sequence and structural alignments.

Table 2.1: A list of recent structural PP| databases.
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Chapter 2. Biological Context — Modelling 3D Protein-Protein Interactions

2.4.1 Classifications of 3D Structures of Protein-Protein Complexes

3D-Complex (Levy et al., 2006) is a structural classification of all X-ray protein complexes in the
PDB. The classification is based on sequence identity, structural homology, interface contacts and
the symmetry between the biological subunits in a protein complex. 3D-Complex uses the SCOP
classification to determine structural homology. It defines an interface when there are at least ten
residue contacts between two subunits. Using the calculated sequence identity, structural homology
and interact contact information, 3D-Complex constructs a graph to represent the “topology” of a
complex (Figure 2.11). To construct a hierarchical classification, 3D-Complex first groups complexes
with similar graph topologies followed by structural homology, the number of genes, and finally,
sequence identities. Using this approach, 3D-Complex grouped 14,112 non-identical structures into
3,473 families (structural homology) and 191 topologies.

identical
%g) chains

hemologous

DB chains

- identities
- homologies
- contacts

O@ different
DO chains

Number of
33 amino-acids

in contact
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both chains)

Crystallographic 3D Complex
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Figure 2.11: lllustration of the graph-based representation of a protein complex in 3D-Complex. Figure
reproduced from Levy et al. (2006).

2.4.2 Characterisations of Protein Functional Sites

PROSITE (Sigrist et al., 2010) is primarily a database of protein family and domain sequence
profiles which are derived from structure-based sequence alignments. The PROSITE developers de-
veloped the ProRule database (Sigrist et al., 2005) which contains manually created rules describing
in a controlled vocabulary the PROSITE profiles. In addition, PROSITE uses sequence profiles’ to
derive regular expressions for biologically important residues such as enzyme catalytic sites, pros-
thetic group attachment sites, metal ion binding amino acids, cysteines involved in disulfide bonds,
and other regions involved in ligand binding. These regular expressions, known as patterns, are
around 10 to 20 amino acids in length. For example, the PROSITE entry PS00286 corresponds to
the Squash Pfam domain family of serine protease inhibitors. The PROSITE consensus sequence
pattern for this family is “C-P-x(5)-C-x(2)-[DN]-x-D-C-x(3)-C-x-C”, where an “x” indicates any amino
acid. The active site is indicated as a hash sign in the pattern “xxCx#xxxxCxxxxxCxxxCxCxxxxxCx”.
Compared to sequence profiles, such PROSITE patterns are not tolerant to mismatches. For exam-
ple, a single mismatch will cause a pattern to fail. Hence, sequence profiles are still a popular way
to describe protein families and domains and their functionally important amino acid residues.

7 A sequence profile is usually derived from a large multiple sequence alignment and it contains for each position in
the sequence alignment a probability value for each of the 20 amino acids.
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2.4.3 Classifications of Protein-Protein Interfaces

Several groups have collected and classified all available protein-protein interfaces in the PDB.
Some recent PPl databases include PIBASE (Davis and Sali, 2005), SCOPPI (Winter et al., 2006),
SCOWLP (Teyra et al., 2006), IBIS (Shoemaker et al., 2010) and 3DID (Stein et al., 2010). Be-
cause protein domains may often be identified as structural and functional units, the 3D structures
of protein complexes are often analysed in terms of their component domain-domain interactions.
Hence, structural PP| databases often describe PPls in terms of DDls. However, this reduction-
ist way of describing PPls gets complicated when dealing with multi-domain PPls. Existing meth-
ods may be grouped according to the kind of information used in the classification, e.g. interface
residues mapped onto sequence alignments, and/or structural alignments. For example, 3DID iden-
tifies and describes DDlIs in PDB structures using Pfam and it clusters domain-domain interfaces
using a sequence-based hierarchical clustering. 3DID gives an average of about 10 interfaces per
Pfam family. On the other hand, SCOPPI defines DDlIs using the SCOP classification, and classi-
fies domain-domain interfaces using a sequence and structure-based approach. SCOPPI gives on
average about 5.4 distinct interface types per SCOP domain family. In general, sequence-based
methods tend to give larger numbers of interface types than structure-based methods.

2.4.4 Structural Databases of Protein-Protein Complexes

GWIDD (Kundrotas et al., 2010) is a database of experimentally-determined 3D structures of
protein-protein complexes as well as 3D models obtained by homology modelling using the NEST
program (Petrey et al., 2003). For every PPl in the BIND and DIP databases, if there is no corre-
sponding 3D structure in the PDB, GWIDD searches for a homologous PDB complex from which it
builds by homology a 3D model of the complex. The GWIDD database organises the experimentally-
solved and modelled 3D structures of PPIs according to the organisms they belong to. GWIDD
contains 126,897 PPIs involving 43,976 proteins from a total of 771 different organisms. Currently,
GWIDD contains 10,924 experimentally-solved structures and 14,635 modelled structures. These
numbers show that only 20% of known PPls have an experimentally-solved or model-built 3D struc-
ture (see Figure 2.8).

2.4.5 Integrated Databases, APIs and Libraries

In order to facilitate the reuse of existing bioinformatics resources, several groups have devel-
oped integrated databases and programming environments. For example, Biskit (Grunberg et al.,
2007) is a modular Python library developed to facilitate the manipulation and analysis of macro-
molecular structures, protein complexes, and molecular dynamics trajectories. With the aim of
automating and parallelizing complex workflows, Biskit gathers several popular programs such as
TMAlign for structural alignment, DSSP for secondary structure prediction, MODELLER for struc-
ture prediction, Hex for docking, and Amber for molecular dynamics simulations. On the other hand,
SNAPPI-DB (Jefferson et al., 2007) is a relational database designed mainly for dealing with struc-
tural domain-domain interactions. It integrates structural, sequence, and functional information from
PDB, SCOP, CATH, Pfam, InterPro, GO, for example. SNAPPI-DB is a useful integrated database
since DDIs are described in terms of three different domain definitions and domain-domain inter-
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faces are classified and aligned by their domain family or superfamily pair. In addition, SNAPPI-DB
provides a Java API to facilitate database access for other applications. SNAPPI-DB provides a
good starting point for many computational methods such as data mining and machine learning.

2.4.6 Docking Benchmark Datasets

Several groups have collected pairs of unbound protein structures and their corresponding com-
plex. These data sets are useful to assess the performance of docking algorithms. The Protein Dock-
ing Benchmark (Hwang et al., 2010) and DOCKGROUND (Douguet et al., 2006) are two examples
of publicly available data sets. The Protein Docking Benchmark is a non-redundant expert-curated
set of 176 protein complexes for which the bound complex structures and most of the unbound
component structures have been solved by X-ray crystallography to a resolution of 3.25 Aor better.
Hwang et al. divided the benchmark into 52 enzyme-inhibitor complexes, 25 antigen-antibody com-
plexes, and 99 “Other” complexes, and they classified each target as “Rigid”, “Medium”, and “Diffi-
cult” according to the degree of conformational changes between the bound and unbound structures.
Targets in the Rigid class should be amenable to rigid body docking algorithms, whereas Difficult
targets normally require a flexible docking algorithm to be used in conjunction with prior knowledge
about the binding mode.

2.5 Conclusion

Although several structural PP| databases have been described recently (Tuncbag et al., 2009),
in our opinion, none of them has been specifically designed to facilitate template-based protein
docking. For example, for a given SCOP family, the SCOPPI database (Winter et al., 2006) outputs
all DDlIs involving the query. The DDlIs are grouped according to their partner domain. For each
group, multiple sequence alignments with interacting residues marked are available for both the
query and partner family. Other information available includes their in-house interface type, interface
area and volume, screenshot of the interface, and links to related publications. Similarly, for a given
Pfam family, 3DID outputs a list of DDIs grouped by their interface profile. IBIS outputs a list of
PPIs involving a given query protein. The interactions are listed as DDls, which are grouped by their
partner domain and their binding site.

Although these databases are useful, they cannot be used to provide docking templates directly
for many reasons. For example, (i) many of them cannot be queried with two domains simultane-
ously, which means that one has to collect and interpret output from two or more database searches;
(ii) it is often the case that the user has to work his way through a long list of complexes, which means
that one often does not model as accurately as possible the 3D structure of a protein-protein com-
plex because all available PPI information was not used; (iii) binding sites and domain interactions
of a given query domain cannot be visualised interactively in a common coordinate frame; (iv) most
databases are based on an “interface” classification instead of “binding site”, which means the fact
that binding sites with domain families are often conserved is not exploited; (v) knowledge of existing
protein interaction modes is often not available in an easily accessible way, and so cannot easily be
incorporated into docking algorithms, e.g. current classifications have too many ‘types’ of interfaces
to be useful; (vi) none of them allows to connect to a docking server using selected PPI information.
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3.1 Introduction

This chapter describes the data selection, data enrichment, data transformation, and data inte-
gration steps which | performed to build an integrated relational database which | call KBDOCK. In
Chapter 2, we have seen that there exist several resources collecting structural information on pro-
tein domains and their pair-wise interactions (review by Tuncbag et al., 2009). Our wish is to reuse
as much as possible such resources to achieve our aim. Since PPI structural data are not available
in a “structured” form for direct input to data mining algorithms such as clustering or classification, it
is essential to identify and collect all relevant data in one place. From our discussion of proteins and
their interactions in Chapter 2, we have seen that proteins are often grouped into protein domain
families and proteins which belong to a specific domain family have similar sequences and share
similar folds, and hence similar biological functions. Moreover, protein-protein interactions are of-
ten described in terms of domain-domain interactions. For example, Figure 3.1 shows sequences
and structures of the enzyme inhibitor Kunitz BPTI domain family. This figure shows some protein-
protein complexes involving the Kunitz BPTI domain family. In terms of overall topology, from this
figure, one can observe that the Kunitz BPTI family has roughly only two “binding sites” (one at the
“north” and one at the “south”). It is much easier to see this feature from the 3D structures than
from the primary structures because distant amino acids in a protein sequence may be close in its
3D structure. Hence, as our first line of attack, we wish to describe the spatial nature of PPls at
the protein domain family level for all PPls with known 3D structures. To do this in a way which is
suitable for subsequent data mining applications, it is important to identify and collect all relevant
data from the diverse sources into one integrated database.

P00974 1brb -AG---EPP--YTG--P--CK---A--RI--IRY--FYN---AKAGLCQ--TF--V-Y--G--G-C--R-A--K---R--NNFKSAED-CMRTA--

P00989 1lbun --D-CDKPP--DTK--I--CQ---T--VV--RAF--YYK---PSAKRCV--QF--R-Y--G--G-C--N-G--N---G--NHFKSDHL-CRCECL-
P17726 1lkig ---LCIKPR--DWI-DE--CD---S--NEG-GERA--YFR---NGKGGCD--SF--W-I------C--P-E--DHTGA--DYYSSYRD-CFNACI-

Figure 3.1: This figure shows six sequences and the corresponding 3D structures of the enzyme inhibitor
Kunitz BPTI domain family. It also shows six enzyme-inhibitor complexes (with the enzyme in gray, Kunitz
BPTI inhibitor in color). We can observe that the Kunitz BPTI domain family involves roughly two binding
sites. In the first three complexes, the binding region is to the “south” while in the last three complexes, the
binding region is to the “north”. One of our KDD aims is to define useful ways of classifying domain-domain
interactions according to the spatial position of their binding site for every protein domain family.

28



3.2. The Three Selected Data Sources

3.2 The Three Selected Data Sources

The KBDOCK database is built from three primary data sources, namely the Pfam database
(Finn et al., 2010), the 3DID database (Stein et al., 2010), and the PDB (Berman et al., 2002).
Domain family information such as multiple sequence alignments is obtained from Pfam. Domain-
domain interactions for all available 3D structures are obtained from 3DID, and protein 3D coordi-
nates are obtained from the PDB. These three databases and the reasons for which we chose them
are discussed in more detail in the following sub-sections.

3.2.1 The Pfam Protein Domain Family Database

Since its first release in 1996, Pfam (Finn et al.,, 2010) has become the most widely used
database of protein families and domain families. The current Pfam database (version 26.0) contains
13,672 manually curated protein domain families (known as Pfam-A or simply Pfam). Pfam classifies
80% of UniProtKB sequences. Automatically generated families (Pfam-B) are available separately.
Of the 13,672 Pfam entries, 26.5% of them have no functional annotation. Pfam entries are clas-
sified into four categories namely “family”, “domain”, “repeat” and “motif” (Bateman et al., 2002).
A family contains sequence-related members. Some families can be defined more specifically as
domains, repeat or motif. A domain is an independent structural unit, or a reusable sequence unit
that may be found in multiple protein contexts. On the other hand, repeats occur in tandem to form
a globular domain. Motifs describe short sequence units found outside globular domains. In this
thesis, we use the term domain family to refer to any of the above Pfam entries.

A Pfam family is built in a four-step process: (i) building a manually-curated high-quality mul-
tiple sequence alignment (called the seed alignment); (ii) constructing a sequence profile using a
hidden Markov model (HMM) from the seed alignment using HMMERS3;?8 (iii) searching the HMM pro-
file against the UniProtKB sequence database, and (iv) choosing manually-curated family-specific
statistical thresholds (Finn et al., 2010). All sequence regions that score above the threshold are
included in the full alignment for the family.

Recently, Pfam introduced the notion of “Pfam clans” which consist of very closely-related protein
families Finn et al. (2006). To help assess whether families are closely-related, Pfam uses high
sequence similarity in addition with structure and function similarity. A clan contains two or more
Pfam families that may have a common evolutionary origin. The total number of clans in the current
version of the Pfam database is 499 for a total of 13,672 Pfam entries. Since Pfam uses structure
similarity to group families into clans, many of the Pfam clans have a similar family membership to
SCOP superfamilies. However, there is not a one-to-one relationship between a Pfam clan and a
SCOP superfamily. The main difference between Pfam and SCOP is that the Pfam classification is
not confined to families that have a known 3D structure. Indeed, some Pfam clans contain groups
of related families in which none of the members have a known 3D structure.

Pfam is publicly accessible at http:/pfam.sanger.ac.uk/. All Pfam data can be downloaded from
ftp://ftp.sanger.ac.uk/pub/databases/Pfam/. Data are available in various flat file formats (e.g. Fasta,
Stockholm, Selex and MSF) and also as a set of MySQL relational database files. For example, a

8 HMMERS is available at http://hmmer.janelia.org/
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Stockholm flat file for a given Pfam entry comprises a multiple sequence alignment of all UniProt
sequences involving that Pfam. For those UniProt sequences which have a 3D structure in the PDB,
Pfam lists their PDB codes and provides secondary structure information. Furthermore, using a
32-class amino acid classification, Pfam calculates for each Pfam entry a “consensus” amino acid
sequence, which is derived from the family multiple sequence alignment. For example, a position in
the multiple sequence alignment is considered to be “conserved” if 60% of the amino acids at that
position belong to the same amino acid class. The first 20 of the 32 amino acid classes correspond
to the 20 standard amino acids and the remaining 12 classes are as follows: alcohol, aliphatic,
aromatic, charged, hydrophobic, negative, polar, positive, small, tiny, turnlike, and ‘not conserved’.?
In a similar way, Pfam also provides a consensus secondary structure sequence for every Pfam
entry, which has at least one 3D structure in the PDB. Pfam is updated almost annually. Here, Pfam
version 24.0 was used. This contains 11,912 Pfam-A entries and 3,132 of them are grouped into
423 Pfam clans.

3.2.2 The 3DID Domain-Domain Interaction Database

The 3DID database (Stein et al., 2010) contains domain-domain and domain-peptide interactions
for which 3D structures are available in the PDB. To collect domain-domain interactions, 3DID scans
all the structures in the PDB and assigns Pfam domains to each individual structure using the Pfam
domain assignment program HMMERS. To identify a domain-domain interface, 3DID calculates
atomic contacts between two domains in the same structure, and a DDI is defined when there
are at least five residue-residue contacts between the two domains. A residue-residue contact
occurs if there is at least one hydrogen bond (N-O distances < 3.5 A), salt bridge (N-O distances
< 55 A), or van de Waals interaction (C-C distances < 5 A). These interactions are classified
as main-chain to main-chain, main-chain to side-chain, or side-chain to side-chain contacts. To
remove crystallographic contacts, interfaces with small buried areas are disregarded. This means
that 3DID may contain DDlIs arising from crystal contacts. The 3DID database is publicly available at
http://3did.irbbarcelona.org, and MySQL dump and flat files containing the full dataset are available
for download. The 3DID database is updated weekly to include newly released PDB structures. We
chose the 3DID database as our source of DDls because it uses the Pfam classification to describe
domains, and because it is one of the most complete and up-to-date structural DDI databases
currently available. The version of 3DID used here (November 2009) contains a total of 140,612
DDlIs drawn from 29,922 PDB structures. A total of 3,755 different Pfam families are involved in at
least one DDI.

3.2.3 The Protein Data Bank

The Protein Data Bank (PDB; http://www.rcsb.org/pdb/; Berman et al., 2012) is the main world-
wide archive of structural data of biological macromolecules. The PDB started in 1974 with 7 struc-
tures and it has since grown to contain 83,266 protein related structures. Nearly 97% of them are

%see ftp://ftp.sanger.ac.uk/pub/databases/Pfam/current_release/userman.txt for full details on the 32 -class amino acid
classification.
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protein-related structures, and 3% are nucleic acids structures. The PDB contains several static
cross-references to other major data resources. These external resources include SCOP, CATH and
Pfam for domain annotation, GO Terms for functional annotation, DSSP for secondary structures,
and MSDsite for ligand binding site annotation. In addition, PDB uses external programs to search
its content. For example, BLAST, FASTA, PSI-BLAST, blast2seq, Smith-Waterman and Needleman-
Wunsch are used for sequence search, and jFATCAT, jCE, TM-Align and TOPMATCH are used for
structure search. PDB structures are available in a plain text file called the PDB format. Recently,
the PDB introduced two new file formats namely the macromolecular crystallographic information file
format (mmCIF) and a XML format (PDBML). Here, the original PDB format is used for compatibility
with external programs such as DSSP, ProFit, Hex, and many others.

3.3 Representing and Querying Pfam and 3DID Data Using Prolog

Given the heterogeneous and complex nature of structural protein interaction data sets, famil-
iarising oneself with such data cannot be achieved using standard data mining toolkit such as
Weka'? because these software require as input relational data. Therefore, as a quick way to get
started with the raw Pfam and 3DID protein interaction data, | chose to use the Prolog language over
other popular bio-languages such as Perl and Python. Here, | use the SWI-PROLOG system'".

Prolog is a simple but powerful language for solving logic problems. It is also commonly used in
database system applications. Hence, in order to facilitate data processing for KDD, all Pfam and
3DID data were converted to Prolog terms. It should be noted that Pfam and 3DID data are not
congruent. In several cases, there are conflicts between the Pfam and 3DID data, such as the first
and last residue numbers of a given domain. Moreover, Pfam data contain several artefacts, e.g.
the position of a domain is not unspecified. Transforming all Pfam and 3DID data into Prolog terms
allows an easy way to resolve most such conflicts.

Prolog’s term unification feature allows quick data retrieval and easy processing. In Prolog,
all data structures are called terms. A term is either a constant, a variable or a compound term.
Syntactically, a constant is either a number or an “atom”. A Prolog atom is a sequence of characters
preceded by a lower case character (e.g. i_am_an_atom) or enclosed within single quotes (e.g. ‘I
am an atom’). A variable is a sequence of characters preceded by an upper case character (e.g.
I_am_a_variable) or preceded by an underscore (e.g. _i_am_a_variable). Compound terms
allow the representation of data with substructure. A compound term consists of a functor followed
by a sequence of one or more arguments. maximal_asa(AminoAcid, MaxASA) is an example of a
compound term. Here, maximal_asa is the name of the functor and it has 2 arguments.

Prolog describe relations in terms of clauses. There are two types of clause: facts and rules. A
rule has a head and a body. Clauses with empty bodies are called facts. Prolog facts are predicate
expressions that declare the properties of objects, or relationships between objects in a database.
For example, the Prolog fact maximal_asa(‘GLY’, 84). declares that the amino acid 'GLY’ has a
maximal surface accessiblity of 84. On the other hand, the Prolog clause

Ohttp://www.cs.waikato.ac.nz/ml/weka/
" http://www.swi-prolog.org/
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is_surface(AminoAcid, ASA) :-
maximal_asa(AminoAcid, MaxASA),
ASA >= MaxASA.

is an example of Prolog rule. Here, the functor is_surface returns true or false. Once we have a
database of facts and rules (known as a fact base), we can ask questions about the stored informa-
tion. For example, if we suppose the Prolog fact base contains the fact maximal_asa(‘GLY’, 84)
then a simple query might be maximal_asa(‘GLY’, MaxASA). To answer this query, the Prolog
system unifies the two clauses maximal_asa(‘GLY’, MaxASA) and maximal_asa(‘GLY’, 84) in
order to give the answer MaxASA = 84. Using this unification technique, Prolog can answer database
queries as well as deduce new facts.

Using the above principle, | converted all of 3DID and Pfam data to Prolog facts. For example,
| defined the Prolog term pfam_pdb(PfamAC, PDB, Chain, Start, End, UniProtAC, UStart,
UEnd) to represent a PDB domain instance extracted from the Pfam Stockholm file. The term con-
tains eight arguments namely the Pfam accession number, the PDB four-letter code, the chain iden-
tifier, the domain start and end region on the PDB chain, the UniProt identifier and the domain start
and end on the UniProt sequence. pfam_entry_type (PfamAC, Type) represents the Pfam entry
type. The Prolog term ddi_3did(PDB, Chainl, Startl, Endl, PfamACl1l, PfamAC2, Chain2,
Start2, End2, PfamAC2, PfamAC2) represents a DDI instance extracted from the 3DID flat file.

The built-in Prolog function findall(Object, Goal, List) can be used to perform searches
in a quick way. For example, by entering as query the following clause

findall( PfamAc-Start-End,
pfam_pdb(PfamAc, ‘lavw’, ‘B’, Start, End, _, _, _),
ListPfamAc).

the Prolog engine will retrieve a list of domain regions involved in the chain labelled ‘B’ in the PDB
structure ‘1avw’.

Furthermore, Prolog supports call-outs to other major programming languages such as C'? and
MySQL'3. Thus it is easy to add new functionality to a Prolog application. For example, SWI-
PROLOG does not support regular expressions (regex). Hence, | wrote a Prolog / C function called
pl_regmatch(term_t myregex, term_t mystring, term_t result) to allow regex queries to
be performed within the Prolog system. Here, result equals true if mystring matches myregex.
| use call-outs to C mainly to speed file parsing and other slow algorithms such as the Needleman-
Wunsch’s dynamic programming algorithm for sequence alignment. In addition, Prolog allows to
execute Bourne shell commands to the operating system. Hence, calling external programs such as
DSSP, HMMER, NRDB, and ProFit is easily done.

'2 SWI-PROLOG / C interface
http://www.swi-prolog.org/pldoc/doc_for?object=section(1,‘9’,swi(‘/doc/Manual/foreign.html’))
'3 SWI-PROLOG / ODBC interface
http://www.swi-prolog.org/pldoc/package/odbc.html
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3.4 Collecting Representative Biological Hetero Structural PPls

3.4.1 Classifying DDIs as Intra, Homo and Hetero

As discussed in Chapter 2, studies of structural PPls often distinguish between homo and hetero
protein-protein complexes (Ofran and Rost, 2003a, Guharoy and Chakrabarti, 2005, 2007) while oth-
ers distinguish between enzyme-inhibitor and antibody-antigen (Lo Conte et al., 1999). Although the
3DID database stores all observed DDls, our main goal is to predict the 3D structures of heteromeric
PPIs, because these are often the most difficult structures to solve experimentally (Ezkurdia et al.,
2009, Jones and Thornton, 1996). Therefore, for each protein domain family in Pfam, all DDIs in-
volving that Pfam are extracted from 3DID and are classified as either “intra”, “homo”, or “hetero”.
Figure 3.2 illustrates these types of domain interactions schematically. | consider a DDI to be intra if
the interacting domains belong to a single protein chain, and homo if the interacting domains belong
to different instances of the same protein chain in a given PDB structure. Otherwise, the interaction
is considered to be hetero. For example, Figure 3.3 shows a homo interaction between two identical
protein chains (PDB 1bmo). Here, only hetero DDIs are considered further.

P1=P2 P1!=P2
homo hetero
<+ -+

intra I intra
homo hetero
-+ -+
| t intra |
homo
P1 P2 P1 P2

Figure 3.2: Schematic illustration of the different types of DDI that may occur between two protein chains, P1
and P2. Protein chains can contain one or more domains and domains may be in direct contact hence forming
domain-domain interfaces (represented by lines with arrow heads). However, some domains are connected
by linker regions (represented by straight lines; see e.g. Figure 3.3 PDB 2c4b) thus there is no domain-domain
interface. Each shape (circle, rectangle, triangle) represents a different Pfam domain.

3.4.2 Distinguishing Between Crystallographic and Biological Contacts

As discussed in Chapter 2, some proteins are made of multiple polypeptide chains. Moreover,
some proteins often form additional interfaces during the crystallization process, which do not exist
in solution. Since the polypeptide chains are often identical, it is difficult to distinguish the biological
interface from crystallographic artefacts. Hence, several groups have developed ways to assign the
quaternary structures and to identify the biological contacts in crystal structures. PISA (Krissinel
and Henrick, 2007), previously known as PQS, is one of the most widely used software for protein
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3bx1

2c4b

Figure 3.3: PDB 2c4b shows an example of a domain linker (in green) between the Squash (in blue) and
Ribonuclease (in red) domains. Thus, this example does not involve an intra DDI because the two domains
are not in physical contact. PDB 1bmo shows an example of a homo PPl interface formed by two symmetrical
hetero DDlIs (between the red and blue domains). PDB 3bx1 is a complex between an alpha-amylase (blue)
and Kunitz inhibitor (green). The biological hetero DDI (solid arrow) is between chain A and C; and chain B
and D. The other interfaces formed are crystal artefacts (dotted arrows).

quaternary structure analysis. For example, a PDB file usually contains the quaternary structure
information provided by the authors or by PISA. However such information is often incomplete or
inconsistent (Ponstingl et al., 2003).

It has been shown that biological interactions usually have larger interfacial areas than non-
biological interactions (Janin and Rodier, 1995, Carugo and Argos, 1997). Several groups have
developed machine learning methods to distinguish between biological contacts and crystallographic
contacts using features such as interface area, and chemical complementarity of interface residues.
These include NOXclass (Zhu et al., 2006) and DiMoVo (Bernauer et al., 2008), for example.

In KBDOCK, biological and crystallographic contacts are distinguished using interface areas.
We use the DSSP program (Kabsch and Sander, 1983) to calculate the solvent accessible surfaces
(ASA) buried within each domain interface. If a given domain has multiple interactions with other
identical domains, e.g. due to crystal packing, we assume that the interaction with the largest buried
SAS corresponds to the biological interaction, and only this DDI is retained. For example, Figure 3.3
shows a crystallographic structure (PDB 3bx1) of a complex between the enzyme alpha-amylase
and the Kunitz inhibitor. In this example, the biological interaction is between chain A and C, or
chain B and D. The other interfaces are crystal artefacts. However, in a few cases, e.g. PDB 1s6v,
the biological interface has a smaller area than the crystallographic one.

3.4.3 Obtaining a Non-Redundant Set of DDIs

Sequence clustering methods have been used by sequence databases to provide non-redundant
sets of sequences for various purposes such as to provide functional annotation or to reduce com-
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putation in sequence database search. For example, UniProtKB provides three databases namely
UniRef100, UniRef90 and UniRef50 for sequence identity cut-off level of 100%, 90% and 50%, re-
spectively. For example, in UniRef100 identical sequences (i.e. 100%) are presented as a single
entry. There exist several sequence clustering programs.'* Examples include NRDB90 (Holm and
Sander, 1998) and CD-HIT (Li et al., 2001).

In order to provide a non-biased set of 3D structures of DDIs, and since 3DID collects all ob-
served DDlIs, it is important to detect and eliminate duplicate or near-duplicate DDIs which may arise
in several ways. For example, the same protein complex might have been solved under different
crystallographic conditions, or a single crystal structure can sometimes contain different copies of
the same complex. In order to deal with such cases in KBDOCK, the sequences of the DDI partners
are concatenated and written to a FASTA file, and the NRDB90 program (Holm and Sander, 1998) is
used with a similarity threshold of 99% to collect automatically a list of distinct non-redundant (NR)
DDlIs. It is worth noting that because we consider every structure to be useful, (e.g. similar pairs of
proteins can interact in different ways) a high similarity threshold is used in order to retain as many
non-duplicate structures as possible.

3.5 Annotating DDIs with Sequence and Structural Information

3.5.1 Identifying Conserved PDB Residues Using Pfam Consensus Sequences

As discussed in Chapter 2, amino acid residues in protein-protein interfaces are often more
conserved than other surface residues. Indeed, due to evolutionary pressure, active site residues
are often less likely to undergo mutation than other residue positions (Zvelebil et al., 1987). This
phenomenon has been exploited previously by several groups to predict molecular interaction sites
(see reviews by de Vries and Bonvin, 2008; Ezkurdia et al., 2009; Fernandez-Recio, 2011). For
example, the evolutionary trace method of Lichtarge et al. (1996) relies on consensus sequence
alignments to identify functional sites in new protein 3D structures.

On the other hand, some biologists believe that proteins may mutate a few of their interface
amino acids in the course of evolution (see Pazos et al., 1997 and references therein). The residues
around the interface in a protein-protein complex can mutate in a coordinated way. For example,
a mutation on one side of the interface might need to be stabilized by a complementary change
in another residue of the other side of the interface. These mutations are thus termed correlated
mutations. The existence of correlated mutated surface residues in multiple sequence alignments
of pairs of protein families can be used to predict the physical location of protein-protein interfaces.
Pazos et al. (1997) found that correlated mutations may be sufficient in many cases for discriminating
near-native from incorrect docking predictions. Hence, domain family multiple sequence alignments
which have been augmented with 3D interface information may represent an important asset for
such studies and others.

In KBDOCK, the non-redundant sets of hetero DDIs are annotated with conserved amino acid
information from Pfam. For each Pfam domain family, the Pfam database provides a multiple se-

47 list of available sequence clustering programs can be found at http://wikipedia.org/wiki/Sequence_clustering
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quence alignment and a consensus sequence of all UniProt sequences belonging to that family (see
Section 3.2.1). We follow the Pfam convention of considering a residue to be conserved if at least
60% of the amino acids at a given position in the multiple sequence alignment are of the same
amino acid type. However, because Pfam uses UniProt sequences rather than PDB structures, and
because PDB structures may contain gaps or unresolved regions, we align each PDB sequence
with its Pfam-aligned UniProt sequence using the Needleman-Wunsch global alignment algorithm
in order to map every PDB residue to its corresponding Pfam consensus position.'® This mapping
allows the Pfam consensus information to be transferred to each PDB residue position in order to
allow conserved residues to be identified. Figure 3.4 shows the Pfam consensus-based sequence
alignments of two example Pfam domain families, namely Kazal 1 and Kunitz BPTI.
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Figure 3.4: Two examples of Pfam consensus-based sequence alignments of PDB domain sequences. The
Kazal 1 (PF00050) domain family has 6 NR domain sequences which are involved in hetero DDIs. The Kunitz
BPTI (PF00014) domain family has 27 NR domain sequences. Core interface residues are shown in green
and rim residues are shown in blue. The consensus sequence is shown in orange.

3.5.2 Classifying Interface Residues as Core or Rim

Recently, protein interfaces have been described in terms of “core” and “rim” regions (Lo Conte
et al., 1999, Chakrabarti and Janin, 2002). The core region is defined by atoms that are fully buried
on complex formation while the surrounding rim region is defined by atoms that remains partially
accessible (Figure 3 in Chakrabarti and Janin, 2002). In their work, Chakrabarti and Janin identified
interface residues as those which lose solvent accessibility on complex formation. They defined an
interface residue as core if it contain at least one buried atom, otherwise it is defined as rim.

®Example of a PDB/UniProt SwissProt residue mapping program is PDBSWS (Martin, 2005).

36



3.5. Annotating DDIs with Sequence and Structural Information

In KBDOCK, interface residue-residue pairings are provided by the 3DID database (Section 3.2.2).
We used DSSP to calculate the change in solvent accessibility for each interaction residue between
the separate and complexed structures of each domain. We defined an interaction residue to be a
core interface residue if it loses at least 75% of its accessible surface area on going from the isolated
to the complexed structure. Otherwise, it is considered to be a rim interface residue. Figure 3.5 il-
lustrates the notion of a core and rim residue using the trypsin/Kunitz inhibitor complex (PDB 1brb).
The domain family sequence alignments shown in Figure 3.4 have been annotated with core and rim
residues. Core and rim residues may provide useful additional information when predicting binding
sites in homologous proteins.

Figure 3.5: This figure illustrates the notion of core and rim residue. The core of the interface (in green)
is surrounded by partially accessible rim residues (in blue). The core and rim residues can be thought of
as forming a kind of “target” though such targets are certainly not perfectly circular. Here, the complex
trypsin/Kunitz inhibitor (PDB 1brb) is used for illustration.

3.5.3 Adding Secondary Structure Information Using DSSP

We use DSSP to annotate all PDB residues in KBDOCK with secondary structure informa-
tion. DSSP defines seven secondary structure types namely: a-helix, 3-10 helix, 7-helix, extended
strand, isolated beta-bridge, hydrogen bonded turn, bend, and loop/irregular. Some examples of
these secondary structure types are illustrated in Figure 2.3.

In addition, we annotate every PDB residue in KBDOCK as surface or buried. We consider a
residue to be at the surface if its relative accessibility is greater or equal to 5% (Jones and Thornton,
1997). Relative ASA = (ASA * 100) / maximum ASA. The maximum accessibility of an amino acid is
equal to its accessible surface in a pentapeptide in an extended conformation. We use the maximum
ASA theoretical values given in Zhou and Shan (2001).'® Lastly, since 3DID does not specify the
interface non-covalent interactions, for every interface residue-residue pairing, we calculate and
store these non-covalent interaction types namely salt bridge, hydrogen bond and van de Waals.
However, for some 3DID residue-residue pairs, no specific interaction type is identified.

16 Maximum ASA values for the twenty amino acids: Ala 106, Arg 248, Asn 157, Asp 163, Cys 135, Gln 198, Glu 194,
Gly 84, His 184, lle 169, Leu 164, Lys 205, Met 188, Phe 197, Pro 136, Ser 130, Thr 142, Trp 227, Tyr 222, Val 142 A2,
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3.6 Superposing DDIs in 3D Space Using ProFit

In order to describe DDlIs for every Pfam domain family, it is important to place all of the DDIs
involving a given Pfam in a consistent orientation in 3D space, as illustrated in Figure 3.6. There
exist many structural alignment programs.!” However, only a few of them such as SSM (Krissinel
and Henrick, 2004) and ProFit'® allow specific regions to be aligned. ProFit is a least-squares fitting
program based on McLachlan’s algorithm (McLachlan, 1982). ProFit has several useful features,
e.g. ability to specify structural regions (or zones) and atom subsets to fit, iterative updating and
optimization of fitting zones, RMSD calculated over fitted region, ability to identify and fit zones from
sequence alignment, and multiple structure fitting. We chose ProFit because it is available as a
command-line program and thus can be launched easily within a Prolog program.

Our mapping between the Pfam consensus sequence and PDB residue numbers provides a
convenient way to identify the conserved residue positions of all domains. Hence, it is straightforward
to derive ProFit zones from these conserved positions and to place the PDB domains (along with
their interacting partner) in a common coordinate frame (Figure 3.6). The fitting was performed on

C. atoms with no iteration.
1 |

‘ Least-squares fitting

1

Domain of interest
Domain partner

Figure 3.6: Superposing a set of Pfam domains (blue) in order to put their interaction partners (grey) in a
common coordinate frame.

3.7 Summary of the KBDOCK Data Processing Steps

In summary, the main data processing steps to integrate data from the 3DID, Pfam, and PDB
databases are as follows: (1) for each Pfam query, retrieve DDIs involving the query Pfam from
3DID; (2) classify the DDIs as intra, homo and hetero interactions and retain only hetero DDlIs; (3)
filter out crystal contacts using interface area criteria; (4) filter out duplicate or near-duplicate DDIs
using sequence identity to obtain a list of non-redundant hetero DDlIs; (5) align the corresponding
PDB domain sequences (involving the query Pfam) against the Pfam consensus sequence to obtain
a multiple sequence alignment; (6) identify conserved residue positions from the multiple sequence
alignment; (7) superpose the corresponding PDB structures of the DDIs in a common coordinate

7 A list of structural alignment programs is available at http://wikipedia.org/wiki/Structural_alignment_software
"Bhttp:/bioinf.org.uk
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frame; (8) annotate all PDB residues with secondary structure and solvent accessibility information;
(9) classify residues as buried or surface; and (10) classify interacting residues as core and rim.

As mentioned in Section 3.3, all data processing and integration steps were made using a small
set of Prolog programs. However, for some specific tasks, e.g. parsing PDB files, C was used for
speed. All calculated data are written to flat files which are then uploaded to a relational database as
described in the next section. Figure 3.7 summarises the main processing steps used to integrate
data from the 3DID, Pfam and PDB databases.

Retrieve list of Classify at Filter out non- LT
DDIs involvin protein-level Retain hetero biological ; All hetero DDIs
the quer 9 — DDIs into intra, [— interactions —| interactions [— involving the
query homo and hetero using interface query domain
domain . . - .-
interactions areacriteria |  Ttv.eL_ _.....- -
Y el
Select non-identical RO Annotate PDB e Secondary structure ™
interactions usin .~ Non-identical set ™. residues with information:
9 — of DDIs involving — secondary structure; A !
99% sequence . ; v ; . . Core and rim interface .
S ‘.. the query domain .. interface residues as “ - e
similarity threshold .. . . el residues
_________________ core/rim using DSSP T
. T C-éhsewed residu-e. at e .
Obtain PDB Map PDBdomain | . each position ... i
sequence for each »| sequence onto SRRl e
domain PFAM consensus KR Alignment of PDB """
sequence Sl domain sequences ....-- -
Obtain a list of Perform least eI e
. . Superposed
conserved square fitting on . complexes in the
residues across »| the conserved [— P
: ; ; . coordinate frame of
PDB domain residues using . . i
. *~.._the query domain _..-
seguences ProFit |  ven Tl e

Figure 3.7: A flowchart showing the main processing steps used to integrate and enrich 3D structural DDI
data from three data sources: 3DID, Pfam and PDB.

3.8 The KBDOCK Data Model

Although Prolog is a powerful programming language, a Prolog fact base is not very efficient for
storing and manipulating large data sets. For this reason, we chose to store all calculated data in a
relational database. Relational databases provide a unified mechanism for fast access to selected
parts of the data (Hand et al., 2001). In Hand et al. (2001), a data model is defined as a set
of constructs that can be used to describe the structure of the data, plus a set of operations for
manipulating the data. In a relational data model, data are presented in tables (relations). Table
column names are attributes and rows are instances. The structured query language (SQL) is

39



Chapter 3. Introducing KBDOCK — An Integrated Database of 3D Protein Domain Interactions

a standard programming language based on relation algebra for defining database structures, for
managining data, for managining access, and for managing changes.

We built the KBDOCK database using the open source MySQL relational database engine.'®
Figure 3.8 shows a simplified UML class diagram of the structure of the KBDOCK database (see
Figure 3.9 for a relational data model). The three main classes are PDB, Pfam_entry, and DDI.
For example, an instance of Pfam_entry has one or many UniProt domain instances, and a UniProt
domain instance may have one (has zero) or several PDB domain instances. A PDB domain instance
may participate in one or many DD/ instance. A DDI instance has one or many interface residue
instances.

The current version of KBDOCK stores a total of 2,721 non-redundant hetero DDIs for a total of
1,035 different Pfam domain families. To provide public access to the KBDOCK database, | imple-
mented a web server which is available at http://kbdock.loria.fr.

hasp»

Pfam_entry |

A is_part E@
PDB UniProt_domain

is_part »
A js part Ajs a
«is_part — articipates » — «is_part
PDB_chain =P PDB_domain P P 1 DDI I P Oriented_DDI
A is_part Ais part

— ] «4is_a
PDB_residue — I Interface_residue ‘

Figure 3.8: A simplified view of the UML class diagram of the KBDOCK database. Rectangles represent
classes and edges represent relationships. There are 3 main classes: PDB, Pfam_entry, and DDI. The class
DFBS is described in the next chapter. See Figure 3.9 for a detailed relational data model.

®http://www.mysgl.com
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3.9 Exploring DDIs in Protein Domain Families with KBDOCK

3.9.1 Querying KBDOCK

Figure 3.10 shows an example of an SQL query and output to retrieve a non-redundant list
of DDlIs involving the query domain family Kunitz_legume (Pfam ID PF00197) from KBDOCK. The
inhibitor Kunitz_legume interacts with 4 different enzymes namely Trypsin (PF00089), Peptidase S8
(PF00082), Alpha-amylase (PF00128), and Thioredoxin (PF00085). Figure 3.11 shows the Pfam
consensus based sequence alignment and superposition of the Kunitz_lequme PDB domains. The
sequence alignment is augmented with core and rim interface residues as discussed previously
(Section 3.5.1 and 3.5.2). The color rendering in the sequence alignment display is done using
HTML. In the future, a more sophisticated tool, e.g. Jalview (Waterhouse et al., 2009) may be used.
Visualisation of the DDI superposition is done in VMD (Humphrey et al., 1996). A small TCL script
was written to allow automatic loading of PDB files in VMD with a specific molecule representation.
This helps the visualisation of several domain family superpositions (see next subsection). For the
web server (see Appendix A), the Jmol plugin (http://jmol.sourceforge.net) is used.

Figure 3.11 shows the multiple sequence alignment of the Kunitz_legume domain family along
with a 3D view of the superposition of the members of this family and their interaction partners.
This figure demonstrates that a multiple sequence alignment is often not sufficient to understand
the 3D nature of interaction modes. From the 3D superposition, it is clear that the Kunitz_legume
domain has roughly four binding sites. However, this is not at all evident from the multiple sequence
alignment even when it is color-coded to highlight the known binding site residues. This example
emphasises the importance of analysing structural interactions in terms of the 3D spatial relation-
ships.

3.9.2 Exploring Pfam Domain Family Superpositions

In KDD, data exploration is a useful way to get a feel for the data. In most KDD processes, data
exploration often involves calculating means and standard deviations, or plotting statistical charts in
order to observe various distributions of the data (Hand et al., 2001).

However, in some KDD cases, the manual nature of data exploration makes it possible to explore
only a few cases (Hand et al., 2001). For example, in our study of 3D protein-protein interactions in
Pfam domain families, data exploration tasks may include e.g. observing the distribution of interac-
tion modes and the diversity of interacting partners in Pfam domain families. The KBDOCK’s DDI
superpositions provides a natural way to explore DDIs in Pfam domain families.

As a more extensive example of data exploration, Table 3.1 lists 20 different Pfam domain fami-
lies in KBDOCK. These families were chosen because they contain multiple instances of DDIs and
because some of them interact with more than one Pfam partner. For example, the Kunitz legume
domain family has five non-redundant hetero DDIs which correspond to four distinct Pfam partners
(Figure 3.11). However, these numbers do not reveal the complexity and richness of the 3D nature
of the interactions.
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mysql> select pc.pdb,

-> pdbdl.pfam_ac, pcl.chain, pdbdl.start, pdbdl.end,

-> pdbd2.pfam_ac, pc2.chain, pdbd2.start, pdbd2.end

-> from ddi as d,

-> pdb_domain as pdbdl, pdb_chain as pcl,

-> pdb_domain as pdbd2, pdb_chain as pc2

-> where d.auto_pdb_domain_1 = pdbdl.auto_pdb_domain

-> and d.auto_pdb_domain_2 = pdbd2.auto_pdb_domain

-> and pdbdl.auto_pdb_chain = pcl.auto_pdb_chain

-> and pdbd2.auto_pdb_chain = pc2.auto_pdb_chain

-> and d.type = ‘hetero’

-> and d.is_hetero_rep = ‘1

-> and pdbdl.pfam_ac = ‘PF00197°;
L T—— Fommmmem o Fommm oo Fommm - LT —— Fommmmem o Fommm oo Fommm oo LT —— +
| pdb | pfam_ac | chain | start | end | pfam_ac | chain | start | end |
Fom - Fommm e oo R T L —— T oo R T L —— +
| 1ava | PF00197 | D | 6 | 177 | PF00128 | B | 17 | 324 |
| 1avw | PF00197 | B | 502 | 675 | PF0O0089 | A | 16 | 238 |
| 2iwt | PF00197 | B | 5 | 177 | PF00085 | A | 14 | 118 |
| 2qyi | PF00197 | B | 606 | 777 | PFO0089 | A | 16 | 238 |
| 3bx1 | PF0O0197 | D | 5 | 177 | PF00082 | B | 6 | 266 |
L T——— TR Fomem - L T—— T Fomem - Fomem - LT —— +
5 rows in set (0.76 sec)

Figure 3.10: Example of a KBDOCK database query and raw text output from MySQL to retrieve a non-
redundant list of biological hetero DDIs involving the query Pfam domain PF00197.

In order to fully appreciate the 3D complexity and variety of domains and their interactions,
Figure 3.12 shows the DDI superposition of the 20 domain families given in Table 3.1. These families
consist of multiple DDI instances and it would be difficult to comprehend if one of the DDI was
not superposed well. On the other hand, when the domain of interest is superposed, the spatial
arrangement of the interacting partners can be appreciated much more easily. For example, the
Kunitz BPTI domain has two inhibitory loops, one to the north and one to the south. Kunitz BPTI
interacts with Trypsin and Peptidase S7 at the ‘north’ loop and with Trypsin and Phospholip A2 1
at the ‘south’ loop. Here, the number of interaction modes is visually apparent in contrast to the
augmented sequence alignment in Figure 3.4.

On the other hand, in contrast to surface loop-rich Kunitz legume, the figure shows that inhibitor
Potato inhibit interacts with two different Pfam domain namely Trypsin and Peptidase S8 via a sin-
gle binding region. Domain families having a single Pfam partner include Ecotin and Squash and
Ribonuclease. Both Ecotin and Squash interact with Trypsin via a single binding region. Ribonucle-
ase interact with Barstar via a single binding region. On the other hand, Thioredoxin interacts with
seven different Pfam domains. The DDI superposition for this family show that there are roughly only
one or two overlapping binding regions. Overall, visual inspection of domain family superpositions
strongly suggest that Pfam domains have a few number of binding modes despite the high number
of DDls and distinct partners.

The DDI superpositions suggest that identifying distinct binding sites in domain families will pro-
vide a useful way to avoid the need of examining tens of similar DDIs which correspond to the
same interaction mode. For example, all of the domain instances of Ecotin and Squash interact with
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Figure 3.11: This figure illustrates the KBDOCK database output for the query domain Kunitz_legume. The
query domain interacts with 4 different Pfam domains. (a) shows the “augmented” Pfam consensus based
PDB sequence alignment. The consensus sequence is shown in orange. Core and rim interface residues are
shown in green and blue, respectively. (b) The DDIs are superposed in the coordinate frame of the query.
The Kunitz_legume domains are shown in black.

Trypsin via a single binding region. Their DDI superposition also shows that the DDIs are clearly
very similar because they overlay very well. Therefore, one could examine only one representative
DDI to find information to model a homologous DDI. Hence, there is the need to identify distinct
binding regions and interaction modes in protein domain families.

Furthermore, for Pfam domains that have many different partners and several distinct binding
sites, it is essential to obtain a representative complex for each distinct interaction mode. For exam-
ple, Actin, Lectin C, Pkinase and Trypsin are all involved in interactions with several different Pfam
domains and their DDI superpositions clearly show that these domain families interact in a number
of different ways. As another example, the Lys domain family is a glycoside hydrolase enzyme family
and has ten non-redundant hetero DDIs. The domain family superposition shows that there are ap-
proximately five binding regions on the Lys domain. Hence, it would be useful to group automatically
these ten DDIs according to the similarity of their binding location. This would indicate the distinct
binding regions in a given domain family.
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PfamID  Pfam Name Function NR Hetero DDIs Distinct Partners
PF00197 Kunitz legume protease inhibitor 5 4
PF00014 Kunitz BPTI protease inhibitor 27 3
PF00280 Potato inhibit protease inhibitor 8 2
PF00089 Trypsin protease 98 32
PF00062 Lys hydrolase 10 4
PF00545 Ribonuclease hydrolase 9 1
PF00022 Actin protein binding 24 12
PF00059 Lectin C glycoprotein binding 14 5
PFO0111 Fer2 ferredoxin 14 5
PF00085 Thioredoxin redox protein 8 7
PF03974 Ecotin protease inhibitor 8 1
PF00299 Squash protease inhibitor 7 1
PF00050 Kazal 1 protease inhibitor 6 3
PF00079 Serpin protease inhibitor 6 2
PF00228 Bowman-Birk leg protease inhibitor 5 1
PF00031 Cystatin protease inhibitor 3 1
PF00082 Peptidase S8 protease 14 6
PF00128 Alpha amylase hydrolase 5 4
PF00017 SH2 signalling protein 4 2
PF00069 Pkinase kinase 24 15

Table 3.1: Total number of hetero DDIs in KBDOCK for 20 example Pfam entries. The last two columns give
the number of NR hetero DDIs and the number of distinct partners (by Pfam). These Pfam domain families
were selected because they have multiple instances of DDIs and some of them interact with more than one

Pfam domain family.
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Figure 3.12: DDI superpositions for twenty example Pfam domains (Table 3.1) in the coordinate frame of the
query. In each case, the query domain is shown in black. This figure was produced using VMD (Humphrey
et al., 1996). A TCL script was written to allow automatic loading of PDB files in VMD.
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3.10 Conclusion

This chapter has introduced the integrated database, KBDOCK, which contains all available
hetero DDIs. KBDOCK constitutes one of the largest collections of 3D hetero DDIs to date. One
particular feature of KBDOCK that distinguishes it from other databases is that DDIs are placed in
a common coordinate frame thanks to Pfam consensus-based sequence alignments. Furthermore,
all DDIs in KBDOCK are annotated with core/rim, secondary structure, and amino acid conservation
information. The data in KBDOCK are organised in a systematic way according to Pfam domain
families and all data are stored in a relational database. This facilitates manipulating data accessing
and querying.

Although other PPI databases such as SNAPPI-DB already exist (Jefferson et al.2007; see
Section 2.4), in this thesis we chose to build a new integrated database because we wish to describe
protein domain binding sites rather than domain-domain interfaces. We chose to use a subset of the
3DID database which corresponds to ‘low-level’ DDI data as our primary source of DDls because it
uses the Pfam domain classification to describe interactions in 3D structures and because it is one
of the most up-to-date database currently available.

This chapter has shown that superposing DDlIs of a Pfam domain family in a common coordinate
frame provides a straightforward way to explore structural relationships between the members of a
given Pfam. This constitutes a first step towards describing binding sites in Pfam domain families.
From the examples of DDI superpositions which we have discussed in this chapter, we saw that
most of them have a few binding regions. This raises the question of whether domain families can
really have such large numbers of binding sites that other studies have suggested. For example,
PIBASE (Davis and Sali, 2005) gives 30,975 binding site types for a total of 1,946 SCOP domain
families. In the next chapter, we try to answer this question.

In terms of KDD, this chapter has described the data selection, data enrichment, data transfor-
mation, and data integration steps. This chapter also showed that DDI exploration was made easier
thanks to the 3D superpositions that KBDOCK calculates for each domain family of interest. This
has allowed us to identify and formulate our first KDD goal — to classify DDIs according to the spatial
position of their binding sites for every Pfam domain family which has hetero DDIs. Classifying DDIs
in protein domain families according to the spatial position of their binding site will provide many
useful prospects for example, (i) to identify the distinct binding regions for any given domain family,
(ii) to provide a systematic way to characterise domain family binding sites, and (iii) to facilitate DDI
information retrieval for a given docking target. These topics are explored in detail in the following
chapters.
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Chapter 4. Spatial Clustering of Protein Domain Family Binding Sites

4.1 Previous Protein-Protein Interface Classifications

Several groups have developed ways of classifying protein-protein interfaces to aid understand-
ing of protein-protein interactions. Since PPls are often described in terms of DDIs, most of these
classifications cluster interfaces between two inter-chain domains or between entire protein chains.
For example, domain interface classifications have been developed by Davis and Sali (2005), Kim
et al. (2006), and Stein et al. (2009). On the other hand, Shulman-Peleg et al. (2004), Keskin et al.
(2004), and Aung et al. (2008) have developed protein interface classifications.

4.1.1 The PIBASE Domain-Domain Interface Classification

Davis and Sali (2005) define domain-domain interactions using both the SCOP and CATH do-
main definitions. They compute several properties, e.g. buried ASA, contacting residue types, con-
tacting secondary structure types, interface chemical bonds (for a complete list see Table 1 in sup-
plementary material of Davis et al., 2005). They calculate “secondary structure topology fingerprints”
for all domain interfaces and binding sites. They perform a first round of hierarchical clustering to
remove redundancy and a second round of clustering to group the topology fingerprints to define
domain-domain interface classes and binding site classes. Their approach gives 18,755 interface
classes and 30,975 binding site classes for 1,946 SCOP domain families involving a total of 20,912
non-redundant domain-domain interactions having an interface area >300A. Their classification is
available as part of the PIBASE database (Davis and Sali, 2005).

4.1.2 The SCOPPI Domain-Domain Interface Classification

The SCOPPI database describes domain-domain interactions using the SCOP domain definition
(Kim et al., 2006 and Winter et al., 2006). Kim et al. (2006) define a domain-domain interface as
a pair of two interacting domain faces. For each SCOP domain family, they defined “face vectors”
which contain a list of ones and zeros to represent the contacting and non-contacting residues
of each domain, respectively. The face vectors are then grouped according to a cosine similarity
function. To reduce computational cost, only representative faces from each cluster are superposed.
These representative faces are then clustered again according to their “face overlap” (spatial overlap
of face atoms) and “face angle” (between a pair of face centroids and the common centroid of the
domains) (Kim et al., 2006). They found that 34% of the SCOP domain families have only one face,
25% have two faces, 15% have three faces, and 9% have four faces (supplementary material of
Kim et al., 2006). Kim et al. combine pairs of faces to define what they call “interface types”. Their
dataset contains 92,979 domain-domain interfaces which are grouped into 8,381 distinct interface
types (Winter et al., 2006). Their classification of domain interfaces is available online as part of the
SCOPPI database (Winter et al., 2006).
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4.1.3 The 3DID Database of Domain-Domain Interfaces

As described earlier (Section 3.2.2), the 3DID database describes DDIs using the Pfam domain
definition (Stein et al., 2005). Stein et al. start by defining domain face types by applying complete
linkage hierarchical clustering to identify groups of common face contacting residues within a Pfam
domain family using the HMM domain family sequence profiles (Stein et al., 2009). Similar to the
work of Kim et al. (2006), Stein et al. combine two domain face types to define what they called
an “interaction topology”. Using this approach, they found that 50% of 159,557 domain-domain
interfaces have only one interaction topology and only a small fraction show ten or more interaction
topologies. Stein et al. used a further round of hierarchical clustering to group together face types
that overlap by 25% or more (see Figure 3 of Stein et al., 2010). They called these clusters “global
interface clusters” and they found that 50% of 4,186 Pfam domain families have one or two global
interface clusters, and few have 10 or more (see Figure 3 of Stein et al., 2010). Their classification
is available as part of the 3DID database (Stein et al., 2005).

4.1.4 The I2I-SiteEngine Protein-Protein Interface Classification

The 12I-SiteEngine approach developed by Shulman-Peleg et al. (2004, 2005) also clusters
protein-protein interfaces. In this method, an interface is represented by a pair of interacting surface
regions (binding sites) and a set of pseudo-centers representing exposed functional atom groups.
Thus, Shulman-Peleg et al. define an interface as two sets of interacting triangles that consist of
triplets of functional groups forming three inter-chain interactions. They use a hashing-based al-
gorithm to detect whether two triplets have complementary properties. Complementary triplets are
then superposed before scoring the shape and physicochemical properties of the interfaces. Their
approach was performed on a small dataset of 64 protein-protein interfaces. These were grouped
into 22 clusters. Similar to the work of Aung et al. (2008), they found that pairs of proteins with
dissimilar folds often have similar interfaces. The 12I-SiteEngine is also available as a web server at
http://bioinfo3d.cs.tau.ac.il/I2]-SiteEngine/.

4.1.5 Keskin’s Classification of Protein-Protein Interfaces

Keskin et al. (2004) clustered protein-protein interfaces using the backbone of Ca atoms from
interacting residues and their neighbouring residues. Their approach consists of three steps: (i) in-
terface fragments are superposed and scored using a geometric hashing-based algorithm, (ii) similar
interface fragments are then clustered, and finally (iii) pairs of whole proteins with similar interfaces
are clustered using a heuristic iterative hierarchical clustering procedure. Their procedure groups
21,686 protein-protein interfaces into 3,799 clusters. When a 50% sequence similarity filtering is
applied together with a merging process to avoid clusters with too few members, 103 clusters are
obtained. Keskin et al. divide the 3,799 clusters into three main categories, which they call Type
[, I'and IIl. Type I and Il clusters contain pairs of interacting proteins that are homologous. Type |
members have similar interfaces but Type Il members have dissimilar interfaces. Type Il clusters
contain pairs of interacting proteins that are non-homologous but have similar faces (one side of the
interface). Type I, Il and Il clusters are illustrated in Figure 4.1. Out of 103 non-redundant clusters,
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54 belong to Type | and Il. They subsequently extended this work to characterise interface features
between the different cluster types (Keskin and Nussinov, 2007). This is discussed in more details
in Chapter 5.

1otfAE

1Y95AB

Figure 4.1: This figure illustrates the three types of interface clusters of Keskin et al. (2004). Type | and Type
Il clusters contain pairs of proteins that are homologous. Type | members have similar interfaces but Type I
members have dissimilar interfaces. Type lll clusters contain pairs of proteins that are non-homologous but
have similar faces (one side of the interface). Figure reproduced from Keskin and Nussinov (2007).

4.1.6 The PPiClust Approach for Clustering Protein-Protein Interfaces

The PPiClust method of Aung et al. (2008) does not describe PPIs in terms of DDIs. Instead,
protein-protein interfaces are clustered to identify distinct interfaces. Their approach consists of
constructing a matrix of Euclidean distances between the Ca atoms of each interface (<5A). The
2D matrices are then cut into submatrices and representative submatrices are reduced to 1D feature
vectors using a frequency-based approach. The 1D feature vectors are then clustered using nearest
neighbour with the cosine distance function. The clusters obtained are then validated using the
silhouette approach?® which provides a visual analysis of how statistically significant the clusters are.

20 Rousseeuw (1987) described a method for assessing the optimal number of clusters and the memberships of clusters.
Their approach is known as the ‘silhouette’ approach.
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Their approach groups 2,634 interfaces into 1,716 clusters, 1,301 of which are singleton clusters.
260 clusters contain two interfaces each and 79 clusters contains three interfaces each. They also
found that protein complexes with different structural folds often have similar interfaces.

4.2 Previous Studies of Protein-Protein Interaction Modes

Several groups have studied the diversity of protein interaction modes. For example, Aloy and
Russell (2003) showed that homologous pairs of proteins sharing 30-40% sequence similarity tend
to interact in the same way. Other studies have found that the locations of protein interaction/binding
sites are often conserved, especially within domain families, regardless of the structures of their
binding partners (Korkin et al., 2005). Additionally, it has also been observed that many protein
families employ only one or a small number of binding sites (Shoemaker et al., 2006), suggesting
that the same surface patch is often re-used. Indeed, it has been demonstrated previously that
the structure of an unknown protein complex may often be successfully modelled using the known
binding sites of homologous domains. In the context of protein docking, previous work include, e.g.
Korkin et al. (2006), Gunther et al. (2007), Launay and Simonson (2008), Kundrotas et al. (2008).
These approaches are discussed further in Chapter 6. Here, we describe briefly the methods and
results of Aloy and Russell (2003), Korkin et al. (2005), and Shoemaker et al. (2006).

4.2.1 Aloy’s Analysis of Interaction Modes Between Domain Families

Aloy and Russell (2003) investigated whether homologous pairs of domains (members of pairs of
SCOP/Pfam domain families) interact in the same way. To compare the binding modes of two DDls,
A-B and A’-B’, where A and A’ belong to the same SCOP/Pfam domain family, they superpose the
complexes firstly, with respect to A, and secondly with respect to B. For each superposed complex,
they calculate for each constituent protein, its centre of mass and 6 nearest coordinates (giving a
total of 14 coordinates for a complex). They then calculate what they call an “interaction RMSD”
(iIRMSD) between two sets of 14 coordinates to measure the similarity between two interaction
modes. They define a pair of interations to be similar if they have an iRMSD of <5A. Their dataset
contains 29,915 DDIs which are derived from 62 interacting pairs of SCOP folds. Aloy and Russell
found that pairs of proteins sharing 30-40% sequence similarity tend to interact in the same way.

4.2.2 Korkin’s Analysis of Binding Sites Within SCOP Families

Korkin et al. (2005) analysed the SCOP domain binding sites in their PIBASE database (Davis et
al., 2005). They define a “localization index” which measures the degree of overlap between binding
sites observed for a given domain family. This index is calculated from a structure-based alignment
procedure. Korkin et al. found that 72% of the 1,847 SCOP domain families in PIBASE have binding
sites with localization values greater than expected by chance — 30% of which are statistically sig-
nificant. They also found that only 8% of SCOP families have significantly low localization index, i.e.
the binding sites are not conserved within a family. Hence, the results of Korkin et al. suggest that
most domain families often have conserved binding regions.
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4.2.3 Shoemaker’s Analysis of Interaction Modes Between Domain Family Pairs

Shoemaker et al. (2006) used the CDD domain definition (Marchler-Bauer et al., 2009) to study
the interaction modes between domain families. They defined a conserved binding mode (CBM)
in which different members of interacting domain families interact in a similar way. Shoemaker et
al. calculate the similarity between two interaction modes using a structure-based alignment ap-
proach. Using their approach, 34,095 DDls representing 1,798 pairs of interacting domain families,
are grouped according to their interface similarity using a single-linkage hierarchical clustering pro-
cedure. They found that the 1,798 pairs of interacting domain families (derived from 34,095 DDIs)
have a total 6,250 binding modes, of which 1,416 are CBMs. Moreover, they found that 833 out of
1,798 pairs (~46%) of domain families have one CBM, suggesting that the same surface and inter-
action mode between similar pairs of domains are reused. Shoemaker et al. found that few domain
family pairs exhibit more than 12 CBMs (see Figure 1 of Shoemakeret al., 2006).

4.3 How Large is the Space of Interface Types?

The studies described above have shown that binding sites and interfaces are often reused,
especially within domain families (Section 4.2). However, beyond listing the residues observed at
the interface between a given pair of proteins or protein domains, there is no generally accepted way
to define what actually constitutes a protein binding site or to quantify whether or not two binding
sites are structurally similar. Although the previous work of e.g. Keskin et al. (2004), Shulman-Peleg
et al. (2005) and Aung et al. (2008) bring out an interesting observation that protein complexes with
different structural folds often have similar interfaces, their approaches nevertheless give remarkably
large numbers of different interface types. On the other hand, PIBASE (Davis and Sali, 2005),
SCOPPI (Winter et al., 2006), and 3DID (Stein et al., 2009) also classify domain-domain interfaces,
and their classifications also give high number of interface types (Section 4.1). This raises very
important questions. Does the PDB contain really so many different interface types? Or do previous
approaches seriously overestimate the number of biologically distinct interfaces. Recently, Gao and
Skolnick (2010) estimate that the number of distinct interface types is roughly 1,000. This number is
much smaller than what previous studies found. According to them, 89% of known interfaces have
a close structural neighbour with similar backbone Ca geometry and interface pattern. Clearly, the
number of distinct interface types depends on the data set, the descriptors, and the method used. It
seems rather strange that different investigators can arrive at such dramatically different estimates
for the total number of possible interfaces.

4.4 Reusing Protein Interface or Binding Site Information

From the studies described above, there are three important observations: (i) homologous pairs
of proteins often interact in the same way, (ii) binding sites within domain families are often con-
served, and (iii) non-homologous pairs of proteins can have similar interfaces. However, in template-
based modelling of protein-protein complexes, the third observation has not been exploited because
it is difficult to find a template interface when there is no sequence or structural homology because
most PPI/DDI databases are only searchable by sequences/domains.
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Clearly, when there exists a homologous PPI (a “full” template PPI) in the database, from the
principle of homology, one can model directly a target PPl as previous results have shown that
similar pairs of proteins often interact in the same way. Case 1 in Figure 4.2 illustrates the idea of
a full template PPI. A full template PPI involves the same domains as the target PPIl. However, it is
often the case that there does not exist a full template PPI. Given that binding sites are often re-used
irrespective of their binding partners (Section 4.1), if no full template PPI exists, it seems reasonable
to reuse the binding sites of the individual target proteins (Case 2; Figure 4.2). For example, if
there exists a template PPI involving one of the target protein, we can reasonably assume that the
binding site in the template protein may be re-used in the target. Hence, docking calculations may
be restricted to only these binding regions.

D D Pair of query
proteins

Find template

Case #1 / \‘ Case #2

[ ro - - T T T T T T T

| |
[ [

| |
[ [

[ [
[ [
| E ) : L { 77 } 777 : 7 gj 77 77 :
Full template exists No full template exists

Reuse interface Reuse binding sites

Figure 4.2: This figure illustrates the two main cases in template-based modelling of protein-protein com-
plexes. When a PPI template involving both query proteins exists (full PPI template), the target complex can
be modelled directly from the template PPIl. When there is no full PPl template, known binding sites on the in-
dividual proteins may be used to guide protein docking, for example. Here, different domains are represented
in different shapes in gray to illustrate homology.

However, from the point of view of protein docking, it is not straightforward to use current PPI
databases (e.g. SCOPPI, 3DID, PIBASE) to retrieve key interface information and more so binding
site information to guide docking calculations. As discussed in Chapter 1, human expertise is needed
to gather information from several different resources and to process the database query output
to extract potentially useful information to guide docking. For example, PIBASE gives very large
number of face types (30,975 face types for a total of 1,946 SCOP domain families). Here again,
this raises a question. Do SCOP families really have so many binding sites? According to SCOPPI,
83% of SCOP families have up to four faces, which seems more reasonable. However, SCOPPI
does not exploit these face types directly but instead chooses to focus on interface types. Hence,
current databases does not provide an easy way to facilitate the reuse of binding sites in domain
families.
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The objective is to define and describe systematically protein binding sites in domain families in
order to facilitate the reuse of both binding site and interface information in protein docking. Since
protein docking is inherently a spatial problem (with six degrees of freedom in the simplest rigid body
assumption), we wish to consider the relative spatial arrangements of binding sites in protein domain
families. Previous approaches have classified protein-protein interfaces only. It seems clear from the
above discussion that we should be able to work with binding sites as well as interfaces. This means
we need to develop a simple but robust 3D method to compare and cluster individual binding sites
without requiring detailed information about the binding partners. Our KBDOCK database provides
the framework for this experimental study.

4.5 Classifying Domain Binding Sites in KBDOCK

4.5.1 Defining a Domain Binding Site Vector

Since we chose to focus on binding sites in protein domain families, it follows that we need to find
a way of analysing domain-domain interactions with their associated binding sites in protein domain
families. Domain instances of a Pfam domain family which are involved in DDIs have different groups
of face/binding site residues. Here, we wish to devise a way of grouping these residues into one or
more binding sites by exploiting the core and rim residue information in KBDOCK (Section 3.5.2;
Figure 3.5). From the augmented sequence alignments in Figure 3.4, it is clear that we cannot dis-
tinguish easily the number of “spatial’ binding sites because sequence residues are not necessary
neighbours in 3D space. Therefore, we need an approximate but robust way to define the spatial
location of binding sites in a Pfam domain family.

In order to group automatically DDI instances which share a common binding site in 3D space,
it is essential to design a descriptor which encodes the spatial position of each binding site. Our
DDI superpositions described in Section 3.9.2 provides a straight-forward and natural way to define
such a variable and allow us to exploit the core and rim information in KBDOCK. In this section,
we introduce the notion of a “domain binding site direction vector” as illustrated in Figure 4.3. We
define a binding site vector, V, pointing from the centre of mass, D, of the domain to the centre of
its binding site, C' (Figure 4.3). An approximate centre of a particular instance of a binding site, C,
can be obtained by calculating a weighted average of the corresponding core (weight 75%) and rim
(weight 25%) C,, coordinates. The centre of mass, D, is calculated from all the atoms in the domain.
Domain binding site vector, V. = (C — D)/|C — D|. We calculate and store D, C, and V  for every
superposed DDI in KBDOCK (Oriented_DDI in Figure 3.9).

4.5.2 Spatial Clustering of Domain Binding Site Vectors

Similar binding site vectors correspond to similar spatial positions of binding sites. To illustrate
this idea, Figure 4.4 shows the superposition of three complexes with respect to a given Pfam
domain family (shown in blue). For each complex, we retrieve from KBDOCK its binding site vector
(v1, v2 and v3 in Figure 4.4). Since the domains belong to the same family, their centre of mass is
likely to be the similar. Hence, the centre of mass can be used as a reference point. In this figure,
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Figure 4.3: A binding site direction vector starts from the centre of mass of the domain to the centre of
binding site. The centre of binding site is calculated using a weighted average of 75% core and 25% rim
residues. The binding site vector can be likened to a target arrow (shown on the left).

vector v1 and v2 are similar, thus corresponding to a similar binding site position. On the other hand,
v3 points in a very different direction, thus corresponding to a different binding site.

In order to group automatically DDIs with spatially similar binding sites for a given Pfam domain
family, we cluster the dimensionless binding site vectors using Ward’s hierarchical agglomerative
clustering algorithm (Ward, 1963). The Euclidean distance measure was used (Figure 4.5). This is
illustrated in Figure 4.4. We manually inspect the clusters obtained for several Pfam domain families
using a TCL script to load structures automatically using a specific molecule representation in VMD.
We find that a clustering distance threshold of 0.4 delineates quite well the distinct spatial positions of
the binding sites. In some cases, this cut-off overestimates the number of binding sites. Overlapping
binding sites are sometimes counted as distinct. Because KBDOCK uses a high sequence similarity
threshold (99%,; Section 3.4.3), it retains many similar structures. However, since our approach is
not based on frequency, this does not give a biased grouping.

DDI superpositions Calculate binding site vectors Hierarchical clustering of
using core and rim residues binding site vectors
v3 vl v2

&

Figure 4.4: For every Pfam domain family in KBDOCK, the superposed DDIs are retrieved and for each
superposed DDI, a binding site direction vector is calculated and stored in KBDOCK (see Figure 4.3). For
each family, the vectors are retrieved and clustered using a hierarchical clustering algorithm.
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v2 X2 y2 22
v3  x3 y3 z3

Here, we chose a hierarchical clustering algorithm because the resulting dendrogram provides a
convenient way to decide what cut-off value to use to define an optimal number of clusters. There ex-
ist several different hierarchical clustering algorithms namely, average linkage, single linkage, com-
plete linkage, and Ward’s. These algorithms give more or less a similar clustering with differences
only in the cluster boundaries. We decided to use Ward’s clustering over other hierarchical cluster-
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ing because Ward’s method is known to produce compact clusters.?! We use the R packages “dist”
and “hclust” to cluster the binding site vectors.?? Since the clustering algorithm uses the distance
between the end point of two vectors and since we normalised the binding site vectors, this is equiv-
alent to clustering the angle between those vectors (Figure 4.5). Hence, in our case the Euclidean
distance and the cosine similarity are equivalent.

Figure 4.5: The Euclidean distance and the cosine similarity are equivalent when comparing two unit-length
vectors. Here, we consider two binding site direction vector similar if they are separated by a distance of no
more than 0.4.

4.6 Defining Domain Family Binding Sites

Superposing families of related DDIs in a common coordinate frame and clustering their binding
site direction vectors provides a straight-forward way to analyse structural relationships between
the members of a given Pfam domain. For example, Figure 4.6 shows the superpositions and
binding site vectors calculated for the five DDIs involving the Kunitz legume Pfam family. Here, PDB
1avw (porcine trypsin / soybean trypsin inhibitor) and PDB 2qyi (bovine trypsin / trypsin inhibitor)
complexes share a common binding site, and clearly have very similar domain binding site vectors.
This figure clearly shows that this domain has four distinct interaction sites, one of which is common
to two different trypsin/inhibitor complexes.

Figure 4.7 shows the clustering dendrogram obtained for the Kunitz legume family. Ward’s clus-
tering gives four clusters for this family. Here, a spatial cluster defines what we called a “domain
family binding site” (DFBS). The first cluster corresponds to two different Kunitz legume/Trypsin
DDIs namely PDB codes 1avw and 2qyi. As the pair-wise superposition shows, these two DDls
clearly have the same binding site positions. As the figure shows, each of the three remaining clus-
ters represents a distinct binding site. For example, the Kunitz legume/Alpha-amylase (PDB 1ava),
Kunitz legume/Peptidase S8 (PDB 3bx1) and Kunitz legume/ Thioredoxin (PDB 2iwt) DDIs interact
via distinct binding sites. Hence, the notion of binding site direction vector provides a simple and
effective way to identify distinct binding sites in a given Pfam domain family.

In KBDOCK, domain interactions are annotated with a DFBS using the following name con-
vention: f/b where f is the Pfam AC of the domain and b is the b’th cluster or DFBS for that do-
main family. For example, the Kunitz legume domain family (PF00197) has four DFBSs PF00197/1,

2! Ward’s clustering minimizes the increase in the variance in distances when merging two clusters. Internal variance
is computed as the sum of distances between each sample in the group and the group’s centroid.
22This description of R dist and hclust packages can be found at http:/stat.ethz.ch/R-manual/
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Superpositions lavw 2qyi 2iwt lava

Figure 4.6: This figure shows the superpositions and domain binding site direction vectors of the five DDIs
of the Kunitz legume Pfam family.
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Figure 4.7: This figure shows the dendrogram obtained when clustering domain binding site vectors of the
Kunitz legume domain family which involves 5 non-redundant hetero DDIs. Here, a cluster defines a domain
family binding site. The domain of interest is shown in black. The DFBS identifiers are shown in blue.

PF00197/2, PF00197/3 and PF00197/4. DFBS PF00197/1 involves an interaction with the Alpha
amylase domain family (PDB 1ava). Similarly, PF00197/2 interacts with Trypsin (PDB 1avw and
2qyi), PF00197/3 interacts with Thioredoxin (PDB 2iwt), and PF00197/4 interacts with Peptidase S8
(PDB 3bx1).
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Figure 4.8 shows the clustering dendrogram obtained for a further eight example Pfam families
which are listed in Table 4.1. This table summarises the number of hetero DDIs and calculated
number of binding sites for the ten example Pfam domain families. This table shows that these Pfam
domains typically have from one to four binding sites according to our spatial clustering algorithm. In
most cases, visual inspection of the superposition (Chapter 3, Figure 3.12) readily confirms the cal-
culated number of binding sites given in Table 4.1. For example, the Potato inhibit domain interacts
with eight other domains belonging to the Trypsin and Peptidase S8 families using a single binding
site. Ribonuclease domains interact with nine other domains belonging to the Barstar domain family
via a single binding site. On the other hand, the Kunitz BPTI/ domain has two inhibitory binding sites,
one to the “north” and one to the “south” as shown in Figure 4.8. Kunitz BPTI interacts with Trypsin
and Peptidase S7 at the “north” loop and with Trypsin and Phospholip A2 1 at the “south” loop. Con-
versely, Thioredoxin domains interact with seven different Pfam families, but it does so using just two
overlapping binding sites. However, for domain families which have multiple binding sites and which
interact with several different domain partners (e.g. Fer2, Lectin C, Lys, Actin, and Trypsin), there is
not a clear-cut separation of binding sites, e.g. the number of binding sites is +1. Moreover, in these
cases, it can be difficult to distinguish all of the interactions visually. Therefore, KBDOCK allows the
user to select and display only those DDIs involving a given binding site (more details in Appendix A).

PfamID  Pfam name Function No. DDIs No. Partners No.binding sites
PF00197 Kunitz legume protease inhibitor 5 4 4
PF00014  Kunitz BPTI protease inhibitor 27 3 2
PF00280 Potato inhibit  protease inhibitor 8 2 1
PF00089 Trypsin protease 98 32 6
PF00062 Lys hydrolase 10 4 5
PF00545 Ribonuclease hydrolase 9 1 1
PF00022 Actin protein binding 24 12 4
PF0O0059 Lectin C glycoprotein binding 14 5 4
PF0O0111  Fer2 ferredoxin 14 5 3
PF00085 Thioredoxin redox protein 8 7 2

Table 4.1: Summary of the number of DDIs, number of distinct partners (by Pfam) and calculated binding
sites for ten example Pfam domains stored in KBDOCK.

It is interesting to note that even domain families which are involved in many DDIs and which
have several different Pfam partners such as Trypsin and Actin still have only a small number of
distinct binding sites. Compared to the previous approaches discussed in Section 4.1, this suggests
that the spatial clustering scheme in KBDOCK is giving a “sharper” view of the binding regions in
protein families.
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Figure 4.8: (Continued on next page).
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Figure 4.9: This figure shows the binding site clusters obtained by clustering the DDI binding site vectors for
eight example Pfam families listed in Table 4.1. In each case, the domain of interest is shown in black.
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4.7 Distribution of DFBS in Pfam Domain Families

Because KBDOCK stores DDI superpositions for all Pfam domain families which have hetero
DDls, it is easy to apply the above spatial clustering to all Pfam domain families which have more
than one hetero DDI. Therefore, we calculated and stored spatial clusters in KBDOCK for all of
the 1,029 Pfam domain families which are involved in hetero interactions. The entity DFBS in the
KBDOCK relational model (Figure 3.9) represents this information. Overall, KBDOCK calculates
1,637 DFBSs for 1,035 domain families which have hetero DDIs in KBDOCK. To study the evolution
of the number of distinct binding sites in time, we filter out DDIs by the PDB deposition date (1999,
2000, 2009). Figure 4.10 shows the distribution and the change with time of the number of binding
sites per domain family of all NR hetero DDIs in KBDOCK. However, we exclude the very large C1-
set immunoglobulin domain family because this family is involved in an exceptionally large number
of DDIs and binding sites.

This figure confirms that most domains typically have from one to four hetero binding sites, and
only a very small number of domains such as Trypsin (6 binding sites) have more than this. Indeed,
over 65% of all hetero domains in KBDOCK have just one binding site, which supports the notion
that domain binding sites are often re-used in different DDlIs. It is interesting to note that despite
the growing number of Pfam domains for which KBDOCK contains hetero complexes, the relative
proportion of domains having 1, 2, 3, or 4 binding sites seems to be remarkably stable.
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Figure 4.10: The calculated number of hetero binding sites per domain family by PDB deposition date for
all Pfam families except the C7-set immunoglobulin domains. The total number of Pfam domains (excluding
C1-set) for which KBDOCK has hetero DDIs are 277, 709, and 1,035 for the years 1999, 2004, and 2009,
respectively.
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4.8 Discussion

By superposing the structures of all hetero DDls in Pfam domain families and by using the simple
notion of a binding site direction vector to define the central region a protein binding site, KBDOCK
identifies a small number of spatially distinct hetero binding sites for each Pfam domain family. This
led us to conceive the notion of domain family binding sites. Here, we studied the DFBSs of hetero
DDIs because hetero complexes are usually the most difficult to solve experimentally (Jones and
Thornton, 1996 and Ezkurdia et al., 2009). However, our approach could equally be used to study
homo DDls as well.

Compared to previous approaches which use several attributes to cluster binding sites or in-
terfaces, our DFBS-based approach uses only knowledge of the Pfam domain and the calculated
binding site direction vector associated with each domain interaction. This allows us to calculate
sharper clusters of closely related binding sites compared to other approaches. For example, as
described in Section 4.1, Kim et al. found that 34% of SCOP domain families have one binding site
type whereas using KBDOCK, we found that nearly 70% of Pfam domain families have just one het-
ero binding site. Moreover, the PIBASE approach of Davis and Sali (2005) gives a very high number
of binding site types (a total of 30,975) compared to a total of 1,439 DFBSs calculated by KBDOCK.
Clearly, from the point of view of re-using binding site information, a sharper definition of binding site
should be useful.

It is also interesting to note that Kim et al. (2006) found that although the number of interface
types continues to grow, the rate of growth is currently much less than the growth in the total number
of multi-domain structures that are being solved (Figure 5 of Kim et al.,2006). Our analysis of the
rate of growth in the number of hetero binding sites since 1999 (Figure 5) also shows only a modest
increase in the number of Pfam families having multiple hetero binding sites, despite over a three-
fold increase in the number of Pfam families for which hetero complexes are now available. This
strongly supports the notion that protein binding sites are very often re-used (Korkin et al., 2005,
Shoemaker et al., 2006). Of course, the hetero complexes available in the PDB are not necessarily
representative of the whole structural interactome. Nonetheless, if the very small numbers of hetero
protein binding sites found here do indeed turn out to be typical, this will have considerable impli-
cations for future data-driven and template-based docking approaches, and for populating 3D PPI
networks on a genomic scale.
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5.1 Related Work on Protein-Protein Interface Analysis

Chapter 4 has shown how previous studies have demonstrated that homologous pairs of proteins
often interact in the same way, and that proteins often interact via just one or a small number of
binding sites, suggesting that binding sites are often re-used. However, these kinds of studies raise
many interesting and challenging questions. For example, what features distinguish a protein binding
surface from the rest of the surface? Furthermore, what features distinguish a promiscuous binding
site from a selective binding site?

To try to answer such questions, several groups have studied the physicochemical properties of
protein binding sites and interfaces with the aim of structurally characterizing protein-protein recog-
nition sites. Such protein-protein recognition studies highlight or reveal useful properties which
machine learning algorithms could exploit to predict protein binding sites. For recent reviews, see
e.g., Moreira et al. (2007), de Vries and Bonvin (2008), Keskin et al. (2008), Ezkurdia et al. (2009),
Patil et al. (2010), and Fernandez-Recio (2011). For example, Keskin et al. (2008) summarise the
factors which have been examined by several groups in order to characterise protein binding sites
and interfaces. These include amino acid residue conservation, the proportion of polar, non-polar
and charged residues, the types of secondary structures present, the shape and surface area of
the binding site, the number of water molecules buried on binding, the number of available hydro-
gen bonds and salt bridges, the strength of the interaction, and the presence of so-called “hot spot”
residues for example. Here, we describe some results of several groups working on protein-protein
interface characterization.

5.1.1 Various Ways of Dissecting Protein Binding Sites

Lo Conte et al. (1999) and Chakrabarti and Janin (2002) described the binding site in terms of
core and rim residues. They defined core binding site residues as those with at least one buried
binding site atom. Rim residues are binding site residues for which all atoms are accessible to
solvent. On the other hand, Levy (2010) adapted the core/rim model to add another region which
he called “support”. He defined support residues as those which are largely buried in the unbound
protein and become more buried in the complex. According to Levy’s model, core binding site
residues are those which are exposed in the unbound protein and become buried in the complex.
Rim residues are largely exposed in the unbound form and becomes less exposed in the complex.
As described in Chapter 3, KBDOCK adopts Lo Conte’s core/rim definition of binding site residues.

5.1.2 Hot Spot Residues

Experimental studies based on alanine scanning mutagenesis have shown that the stability of
a complex is determined by so-called hot spot residues. A hot spot residue is defined as a residue
that when mutated to alanine leads to a significant drop in the binding energy. Hot spot interface
residues are believed to contribute a large proportion to the total binding energy. Thorn and Bogan
(2001) have collected all hot-spots residues experimentally determined by alanine scanning and
made them publicly available in the ASEdb database (http://www.asedb.org). The ASEdb database
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contains 2,919 single alanine mutations in protein-protein, protein-nucleic acid, and protein-small
molecule complexes. Bogan and Thorn (1998) carried out a study of hot spot residues in 12 hetero
protein-protein complexes. They observed that the interfaces formed an O-ring structure in which
the hot spot residues are surrounded by residues which occlude solvent from the hot spots. They
found that amino acids such as Trp, Arg and Tyr are the frequent hot spot residues and that Ser, Thr,
Leu and Val are the rare hot spot residues. Keskin et al. (2005) observed that as the interface sizes
increases, the number of hot spot residues increase linearly. As proposed by Bogan and Thorn
(1998), Keskin et al. (2005) observed that hot spot residues are usually found at the core of the
interface rather than the rim.

5.1.3 Hydrogen Bonds and Salt Bridges Across Interfaces

Since hydrogen bonds and salt bridges are known to contribute to the protein stability and binding
energy, these have been analysed in several studies, e.g. Janin and Chothia (1990), Xu et al. (1997),
Lo Conte et al. (1999), and Ofran and Rost (2003a). 2> The datasets of Janin and Chothia (1990)
and Xu et al. (1997) consisted of 19 and 319 protein-protein complexes, respectively. Despite the
increase in the size of the dataset, they both found that on average there are 10 hydrogen bonds in
protein-protein interfaces and that the number of hydrogen bonds is strongly correlated with interface
size. They also found that that there are on average 20 water molecules at interfaces, with most
interfaces having less than 10 water molecules. Xu et al. (1997) found that there are on average
2 salt bridges at the interface. Moreover, Ofran and Rost (2003a) found that homo interfaces are
usually depleted in salt bridges. Janin and Chothia (1990) suggested that small conformational
changes occur to facilitate the close packing and hydrogen bond formation at the interface. Lo Conte
et al. (1999) who studied 75 protein-protein complexes found that interface size is often related to
the conformational change.

5.1.4 Interface Residue Composition

Janin and Chothia (1990) found that the binding sites consists on average of 34+7 A closely-
packed residues, and that interface sizes are 1600350 A2. Jones and Thornton (1996) analysed
32 homo and 27 hetero complexes and found that homo interfaces which are usually permanent are
more likely to be hydrophobic, and that hetero interfaces are often more planar than homo interfaces.
Their study also showed that enzyme-inhibitor and permanent hetero complexes often have good
shape complementarity. 2* Jones et al. (2000) analysed 151 intra-chain domain-domain interfaces
and found that these are smaller in size due to the flexible linkers and that the interface amino acid
composition is not much different from those on other surface region. Glaser et al. (2001) who anal-
ysed 621 representative interfaces derived from 440 3D structures found that large interfaces are
often composed of hydrophobic residues while small interfaces prefer non-polar residues. Bartlett

23 An introduction to chemical interactions in folded proteins can be found in Chapter 1 of Petsko and Dagmar (2004).
24 Shape complementarity along with electrostatics are the two main biophysical properties used in nearly all docking
methods.
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et al. (2002) analysed 151 enzyme catalytic sites and observed that 65% of catalytic residues are
charged (H, R, K, E, D) amino acid residues. They also found that 85% of 151 enzymes have >50%
of their catalytic residues located in the three largest clefts.

Chakrabarti and Janin (2002) analysed 70 protein-protein complexes and found that while the
rim interface region has no particular distinctive feature, the core interface possesses hydropho-
bic residues and has a preference for aromatic residues such as Trp, Tyr and Phe. Guharoy and
Chakrabarti (2005) analysed 122 homo and 70 hetero protein complexes. They uses sequence
entropies derived from multiple sequence alignments to analyze the conservation of core and rim
residues at interfaces in homo and hetero complexes and in crystal contacts. Moreover, Guharoy
and Chakrabarti analysed the interfaces formed by true interactions and crystallization. They found
that core residues are more conserved than rim residues in true interfaces and that there is no
significant difference in sequence entropies of core and rim residues in crystal contact interfaces.
Hence, they suggest that core/rim sequence entropy ratio may be used to distinguish biological from
crystallographic interfaces. Levy (2010) also confirmed that hydrophobic amino acids are preferred
at the protein interior, and that charged amino acids are preferred at the surface. He found that
on average interface core, rim, and support regions have similar numbers of residues, with core
residues contributing over two thirds of the contact surface. Levy also found that the amino acid
composition of the rim is nearly identical with that of the surface, that of the support is identical to
that of the interior, and that interface core composition is intermediate between the surface and the
interior.

5.1.5 Interface Residue-Residue Contacts

Several groups have studied the preferred residue-residue contacts at protein-protein interfaces,
e.g. Glaser et al. (2001), Ofran and Rost (2003a), and De et al. (2005). For example, Glaser et
al. found that residue-residue contacts between pairs of large hydrophobic residues such as Trp
and Leu are the most favoured, and that contacts between pairs of small residues, such as Gly
and Ala are the least favoured. Ofran and Rost assembled a dataset of 1,812 3D structures in
which no pair of proteins had more than 25% sequence identity. The 1,812 structures involved 6
types of interfaces among which are permanent/transient homo/hetero protein-protein interfaces and
intra-chain domain-domain interfaces. They found that the six types of interfaces have significantly
different amino acid residue composition and residue-residue contacts. For example, they found that
tryptophan is underrepresented in homo interfaces and that transient homo interfaces are very likely
to involve contacts between identical amino acid residues. Given 1000 residues or 1000 residue-
residue contacts, Ofran et al. could predict with >63% accuracy to which of the six types an interface
belong. The same group developed a sequence-only interaction site predictor called I1SI (Ofran and
Rost, 2003b, 2007b). De et al. (2005) analysed 82 obligate and 30 non-obligate complexes and
found that obligate and non-obligate interfaces have different residue-residue contacts e.g. obligate
interfaces are mainly non-polar and have on average 20+14 contacts while non-obligate interfaces
have 1346 contacts. Caffrey et al. (2004) found that transient interfaces usually are smaller in size
than permanent interfaces.
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5.1.6 Conservation of Amino Acid Residues at Interfaces

Ma et al. (2003) analyzed surface and interface residues using multiple structure alignments and
they found that structurally conserved residues in protein families may indicate a binding site, in
particular if these residues are Trp, Phe and Met. Keskin et al. (2005) found that the core interface
is highly conserved and is surrounded by a moderately conserved rim region. In addition, Hu et al.
(2000) suggested that polar hot spot residues are highly conserved. Caffrey et al. (2004) found that
in general residues at protein interfaces are usually more conserved than other surface residues,
particularly in enzyme/inhibitor complexes. Active sites residues are known to be more conserved
than any other exposed residues to retain their biological function (Bartlett et al., 2002). On the other
hand, antibody interfaces are not conserved because they always need to interact with new foreign
antigens. Choi et al. (2009) found that most proteins have a more conserved interface than the rest
of the surface and that permanent interfaces are more conserved than transient interfaces. Residues
on large protein interfaces are inclined to be more conserved than residues on small interfaces (Choi
etal., 2009 and references therein). Choi et al. suggested that interface conservation may be used to
discriminate between near-native and incorrect docking predictions. Although several groups agree
that interface residues are likely to be conserved, using a surface patch analysis, Caffrey et al. found
that amino acid conservation alone is not sufficient to predict interface patches.

5.1.7 Non-Homologous Interactions With Structurally-Similar Faces

Keskin and Nussinov (2007) analysed their three interface types (Keskin et al., 2004) which we
discussed in Section 4.1. Briefly, Type | clusters contain homologous protein-protein complexes with
similar interfaces and functions. Type Il clusters contain non-homologous complexes with similar
interfaces but dissimilar functions. Type lll clusters contain non-homologous complexes with simi-
lar faces (one side of the interface) but dissimilar functions. Keskin et al. regard Type | interfaces
are specific-partner interface and Type Il interfaces as “promiscuous” because structurally-similar
faces/binding sites are interacting with proteins with different folds and functions (multi-partner in-
terface). For example, Keskin et al. found that (i) multi-partner interfaces are smaller in size (1235
A2) than specific-partner interfaces (1967 A2), (i) multi-partner interfaces are not as closely packed
as specific-partner interfaces, (iii) multi-partner interfaces have 77% «a-helix content while specific-
partner interfaces have 38%, (iv) residues of single-partner interfaces are more conserved than
residues of multi-partner interfaces, (v) structurally similar proteins interacting with different proteins
are smaller and their interfaces are more planar.

5.1.8 Secondary Structure Preferences at Interfaces

An early study by Jones and Thornton (1996) who analysed 32 homo and 27 hetero complexes
found that many interfaces have roughly equal proportions of helix, sheet, and loop residues, with
some interfaces containing only one type of secondary structure, but most being mixed. Bartlett et al.
(2002) analysed 151 enzyme catalytic sites and observed that 50% of catalytic residues are involved
in loops. De et al. (2005) found that (i) non-obligatory interfaces are more likely to be involved in ir-
regular secondary structures, (ii) obligate interfaces have a preference for 3-8 contacts and (iii) non-
obligatory interfaces are depleted of beta-sheets. More recently, Guharoy and Chakrabarti (2007)
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carried out an analysis of the content of secondary structures in obligate homo and non-obligate
hetero protein-protein complexes. Their dataset consists of 122 homo and 204 hetero complexes.
They defined a secondary structure segment (SSS) as a continuous segment of residues bounded
by interface residues. They used DSSP to calculate secondary structures and they grouped the
eight secondary structure types into 3 groups: helix (H), strand (S) and non-regular (NR) region.
They defined 4 secondary structure interface types namely «, 5, mixed («3) and NR. « interfaces
contain >40% interface residues in helix and <10% in strand. § interfaces contain >40% interface
residues in strand and <10% in helix. Mixed interfaces contain >40% interface residues in helix
and strands, with >10% in each group. NR interfaces contain >60% interface residues in turn, loop
or other unstructured regions. According to this classification, 32% of their hetero dataset belongs
to the NR type; the § content is almost the same in the homo and hetero datasets; and « and af
are more abundant in the homo dataset. According to their classification, Guharoy and Chakrabarti
found that (i) homo interfaces prefer helix and strand structures; (ii) the secondary structure content
does not vary with interface size in homo complexes; (iii) & and 8 become more abundant in larger
interfaces in hetero complexes; (iv) homo interfaces are mainly composed of a—a, a—NR and NR—
NR pairings of interface secondary structures; (v) a—3 and 5—3 pairings are under-represented in
both the homo and hetero interfaces.

5.1.9 Structural Analyses of Hub Proteins

As discussed in Section 2.2.2, high-throughput techniques such as Y2H and TAP-MS detect
PPIs on a large scale and the resulting PPIs can be represented as a protein interaction network.
Proteins which interact with several proteins with different functions are known as “hub” proteins.
Hub proteins are those with a large number of interactions in a protein-protein interaction network. It
is believed that hub proteins must have some specific structural features to allow them to recognize
and interact with several other proteins. Hence, several groups (e.g. Higurashi et al., 2008) have
analysed the 3D structures of hub and non-hub proteins in order to identify features that distinguish
hub from non-hub proteins. These features include the structural flexibility of the proteins, the protein
surface charge, and the number of distinct binding regions on the proteins (Patil et al., 2010). For
example, due to structural flexibility, a protein can adopt multiple distinct conformations and thus
may interact with proteins with different shapes. Loops which have usually higher flexibility than
helices and strands were shown not to be a distinguishing feature of hub proteins (Higurashi et al.,
2008). Hub proteins can also interact with different proteins through distinct binding regions. As we
saw in Figure 4.8, Thioredoxin interacts with seven different Pfam partners through two overlapping
binding sites. While structural flexibility is likely to be involved in large proteins, small hub proteins
have been shown to have highly charged surface residues (see Patil et al. and references therein).

Tsai et al. (2009) suggest that the presence of hubs in PPI network is not due to a single protein
structure having many different interactions but that hub proteins are simply different forms of just
one protein obtained from a single gene. They suggest that one should consider “gene products”
rather than “proteins” in PPl networks. For example, they propose that cellular processes such as
alternative splicing, post-translational modification and allostery effects result in different conforma-
tions or different binding specificity for the hub protein. They believe that alternative splicing in exons
generates large number of isomers and each of them interacts with a protein.
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5.2 Large-Scale Analysis of Protein Domain Family Binding Sites

As the previous section demonstrates that there is considerable interest in understanding how
experimentally observed PPl networks can be explained in terms of 3D structural interactions (Tsai
et al., 2009, Patil et al., 2010). However, it is not a trivial task to analyse protein-protein interfaces
to identify distinctive features for each interface type namely intra-chain vs inter-chain domain in-
terfaces; inter-chain homo vs hetero protein interfaces; permanent vs transient protein complexes;
obligate vs non-obligate protein complexes; and hub vs non-hub proteins. For example, there is
the need for a sufficiently diverse data set of 3D structures of protein-protein complexes (Ezkurdia
et al., 2009). Furthermore, there is the need to distinguish accurately between permanent and tran-
sient complexes, and obligate and non-obligate complexes. In addition, accurate distinction between
crystal artifacts and true interactions is necessary. Clearly, there is a need for a non-redundant data
set that contains 3D structures for all the different types of protein-protein complexes mentioned
above. Results from previous interface analyses highlights the need for a well-defined terminology
and methodology with which to describe, classify, and analyse the structural nature of PPls and
protein binding sites.

Overall, the results of the studies discussed above are largely congruent with one another. The
general opinion is that there is no single parameter which can distinguish between binding surface
and other surface patches (Zhou and Qin, 2007). For example, de Vries and Bonvin (2008) reviewed
the performance of several interface predictors and they concluded that predictors who incorporate
both 3D features as well as sequence-based features tend to perform better. We have seen from
previous analyses of protein-protein interfaces discussed above that many of the datasets are rel-
atively small. Thanks to our large spatial classification of annotated hetero DDIs (Chapter 3 and
4), we are now in a position to carry out a large study of domain family binding sites (DFBS). In
practice, KBDOCK allows us to analyse most of the features used by previous studies (Section 5.1).
For example, amino acid composition, residue-residue contacts, secondary structures, non-covalent
interactions, and hub/non-hub interactions. Here, we focus on analysing the secondary structure
features of domain family binding sites.

5.3 KBDOCK Provides a Large Dataset for Statistical Analyses

In Chapter 3, we described how we built the KBDOCK database from three primary data sources
namely, the 3DID database for DDI information, the Pfam domain family classification, and the PDB.
KBDOCK superposes and spatially clusters a set of non-redundant hetero DDIs in order to identify
a small number of DFBSs for each Pfam domain (Chapter 4). The non-redundant set of DDIs
was obtained using a high sequence similarity cut-off of 99% in order to retain as many DDIs as
possible since highly similar DDIs may still interact in different ways. For example, the double-headed
arrowhead protease inhibitor API-A interacts with two trypsins via distinct binding sites (PDB 3e8I).

To achieve a robust classification and reliable statistics, KBDOCK filters its DDI instances involv-
ing each DFBS using a 60% sequence similarity threshold in order to retain only distinct pairs of
domains associated with any given DFBS. For example, 3DID has 23 DDIs for the Kunitz legume
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domain family which KBDOCK reduces to 5 non-redundant hetero DDIs (sequence threshold of
90%), and which it then clusters spatially to identify 4 DFBSs on the Kunitz legume domain. From
Figure 4.7 one can see that one DFBS Kunitz legume is common to two very similar DDIs. Hence,
in this case, the 60% filter reduces these two DDI instances to one DDI instance.

In contrast to previous approaches which analysed instances of protein interfaces individually,
here we describe interactions at the level of Pfam domain family. Since Pfam domain families may
involve one or more DFBSs, interactions are described in terms of DFBS-DFBS pairs. Here, we
consider a total of 1,439 Pfam DFBSs located on 947 different Pfam domain families, and which
are involved in a total of 1,009 DFBS-DFBS interactions or simply domain family interactions (DFls).
In KBDOCK, a DFBS is denoted as f/b which means DFBS b on domain family f where f is the
Pfam AC of the domain and b is the b’'th DFBS for that domain family. For example, as shown
in Figure 4.7, the Kunitz legume domain family (PF00197) has four DFBSs namely PF00197/1,
PF00197/2, PF00197/3 and PF00197/4. Each DFBS may interact with one or more DFBSs lo-
cated on a partner domain family. For example, PF00197/1 interacts with an alpha-amylase DFBS
(PF00128/1) Similarly, PF00197/2 interacts with a Trypsin DFBS, PF00197/3 interacts with a Thiore-
doxin DFBS, and PF00197/4 interacts with a Peptidase S8 DFBS.

5.4 Annotating DFBSs with Secondary Structure Information

As described in Section 3.5.3, KBDOCK annotates domain and DFBS residues with secondary
structural information using the DSSP program (Kabsch and Sander, 1983). DSSP defines eight
types of SSE: a-helix (H), 3/10-helix (G), w-helix (), residue in isolated 8-bridge (B), extended strand
(E), hydrogen bonded turn (T), bend (S), and loop/irregular (L). However, because several of these
types are broadly quite similar, and because only a few instances of turns and bends are found in the
KBDOCK database, we group the eight DSSP types into three main SSE classes which we denote
here as « (H, Gand I), 8 (B and E), and v (T, S, and L). We then calculate the SSE propensity,
P;y(s), of each DFBS defined by the domain family f and its DFBS b for each SSE class, s, as the
average of the DSSP frequencies in the corresponding member domain binding sites:

S

Py y(s) (5.1)

M
M Nab"‘N b+Nr’ZL,b

where M is the total number of non-redundant DDls involving Pfam family f and DFBS b. N, is
the count of the number of residues of type s at DFBS b of the m'"* DDI member of family f. Each
SSE propensity value calculated in this way is automatically normalised to fall within the range [0, 1].
That is, Pf’b(a) + vab(ﬂ) + Pbe(’)/) =1.

5.5 Classifying and Analysing DFBSs

In order to examine whether DFBSs might exhibit any preferred combinations of secondary struc-
tures, we first used Ward’s hierarchical clustering algorithm (Ward, 1963), as implemented in the R
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software®, to cluster the 1,439 DFBSs on the selected three classes of SSE. Visual inspection of
the resulting dendrogram indicated that using 7 clusters would be the most parsimonious. However,
because we believe hierarchical clustering is not necessarily the most robust clustering technique to
use with smooth continuous functions, we next applied the expectation-maximization (EM) algorithm
as implemented in the Weka data mining toolkit?®, to re-cluster the DFBSs using this number of
target clusters. We then applied Weka’s “JRip” propositional rule learning algorithm to generate a
set of rules able to map DFBS instances to the selected clusters. In the following sections we refer
to the clusters described by these rules as “DFBS SSE types.” We then analysed the DFBSs and
their interactions with respect to these DFBS SSE types.

5.6 Secondary Structure-Based Classification of DFBSs

Table 5.1 shows the mean and standard deviations (SDs) of the DFBS clusters obtained from
EM clustering. Because these clusters are seen to describe biologically interesting combinations
of SSE classes (e.g. “mainly «”, etc.), and because each cluster has a broadly similar number of
members, we adopted these clusters as a useful classification of the secondary structural compo-
sition of DFBSs. Visual inspection of Table 5.1 suggests that these clusters may be labeled as “a”
(mainly o), “a + 7" (approximately equal o and ~ with almost no 5), “8 + ~4” (mainly 5 plus some =),
“y + «” (mainly v plus some «), “y + 57 (mainly v plus some 5 ), “v” (nearly all v), and “a + 3 + ¥”
(approximately equal «, 8, and «). It is interesting to note that there is no specific “a + 8” DFBS
SSE type in this classification. Although binding sites containing both « and 5 SSEs are observed
quite frequently (cluster 7, 161 instances), they always contain a considerable fraction of v SSEs
(average 34.6%). Indeed, Table 5.1 shows that each of the DFBS SSE types contains a significant

~ component.

Cluster 1 2 3 4

No. DFBSs 261 207 258 118
P(a) 80.1 £11.5 53.7+5.7 29.6 £ 8.2 4.5+ 6.5
P(pB) 0.0+ 0.0 04+1.2 59+6.8 61.7+13.6
P(V) 19.3 £11.5 46.0 £5.8 64.5 £ 8.7 33.8 £13.9
DFBS SS Type « a+y Y+ o B+
Cluster 5 6 7

No. DFBSs 209 225 161

P(a) 3.8+54 4.3+6.2 41.1 £16.6

P(B) 30.3+94 2.6 4.4 24.2 +13.2

P(y) 65.9 £9.7 93.0+74 34.6 £12.9

DFBS SS Type v+ ¥ a+ B+

Table 5.1: Mean and SDs (per cent units) of the SSE propensities for the seven DFBS clusters obtained
using EM clustering.

Figure 5.1 shows how our dataset of 1,439 DFBSs is distributed over the seven DFBS SSE types.

Shttp://www.r-project.org
®http://www.cs.waikato.ac.nz/ml/weka/
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This figure confirms that helix and irregular SSEs are the most common types of SSE in domain
binding sites. It is worth noting that despite the fact that a “mainly o” DFBS requires a considerably
higher proportion of a SSEs than the proportion of 3 SSEs in a “5 + " DFBS, Figure 5.1 still shows
that the most common type of DFBS are those that involve oo SSEs.

300

261 258

250 1
225

207 209

200

161
150 -
118

100 1

Number of DFBSs

50

0

a oa+y y+ta Pty y+Bp v o+P+y
DFBS type

Figure 5.1: The distribution of DFBSs over the seven DFBS SSE types.

Although Table 5.1 shows the observed SSE propensities, it does not provide a convenient way
to classify a new instance. We therefore used the JRip algorithm using a 10-fold cross validation to
generate a set of rules able to map DFBS instances to the selected clusters. These rules are able
to classify correctly 96% of the DFBS instances. However, because some of these rules are rather
complex, they were manually simplified by rounding each threshold to the nearest 5%. Table 5.2
shows the simplified rules obtained in this way.

Binding Site SSE Propensity Rule DFBS SS Type

P(a) >= 170 !

P(B) >=45 B+
P(B8)>=20& P(a)<=15 v+ 0
P(y) >=80 ot

P(a) >=45& P(y) >=35 o+
P(a) >=20& P(v) >=55 v+«
Otherwise a+f+y

Table 5.2: Simplified relationships between binding site SSE propensities (per cent units) and assigned
DFBS SS types.

5.7 Do DFls Have SSE Pairing Preferences?

Figure 5.2 shows some examples of DDIs involving various associations of DFBS types. With
seven DFBS SSE types, there are 7« 6/2 + 7 = 28 possible pairs of DFBS SSE types. Table 5.3
lists the numbers of occurrences of DFIs for each pair of DFBS SSE types (total 1,009 DFls). To
determine the significance of these numbers, we applied a standard confidence interval statistical
test (95% significance level) to compare the observed frequencies of occurences with what would be
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expected from a random distribution (Devore, 2008). The values in Table 5.3 which are significantly
different from random (i.e. 21 out of 28) according to this test are shown in bold. Table 5.3 shows that
the most frequent types of DFls consist of interactions between identical DFBS SSE types except
for v < ~. For example, a + « (62/1009), v + a <> v+ « (59/1009), v + B + ~ + £ (57/1009)
are frequent DFIs. Also frequentare DFIs v + a <> v (64), v +a < a(47),andy+a < a+7y
(55). As might be expected from Table 5.1, Table 5.3 shows that the v+ SSE is present in all frequent
associations of DFBS SSE types.

Figure 5.2: Examples of different types of DFI: (a) « with o (PDB code 1VRC, chains A, C); (b) o + «y with
« (PDB code 2CG5, chains A, B); (c) 8 + v with v (PDB code 2YIB, chains F, B); (d) v + « with v + 3 (PDB
code 1TE1, chains A, B). Binding site SSEs are shown in red.

« a+y [B+v v+a v+p0 ¥ a+ P+

! 62 53 21 47 33 32 22
o+ 30 24 55 22 33 26
B+ 15 18 32 27 20
v+ 59 51 64 25
v+ 57 58 35
5 34 21
a+ B+ 33

Table 5.3: The numbers of DFIs observed for each pair of DFBS SS types. The total number of DFIs is
1,009. Numbers of occurences which differ significantly from what would be expected in a random distribution
are shown in bold.

In order to compare these frequencies more readily, Table 5.4 shows the marginal probabilities
derived from Table 5.3. Here again, statistically significant probabilities are shown in bold. For
example, if a given DFBS has been classified as « type, Table 5.4 shows that the probability that
any partner of that domain will also have a mainly « binding site is 23% (statistically significant).
On the other hand, the probability that any partner of that domain will have at least some o« SSEs
is 23 + 19.7 + 17.4 4+ 8.2 = 68.3%. Similarly, if a given DFBS has been classified as 5 + ~, then
the probability of observing 5 + v is only 9.6%. More generally, this table shows that interactions
between pairs of a-rich DFBSs and also those between pairs of ~-rich DFBSs are quite probable,
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whereas a-3 and -4 interactions are somewhat rare.

Partner
Query Q@ a+y [+y y+a v+p ~ a+ B+
«@ 23.0 197 7.8 17.4 123 116 8.2
a+y 21.8 123 9.9 226 9.1 13.6 10.7
B+ 13.4 153 9.6 11.5 204 172 12.6
v+ 147 17.2 5.6 18.5 16.0 20.1 7.9
v+ 0 11.5 7.6 11.1 17.7 19.8 20.1 12.2
~y 119 123 10.0 23.8 216 126 7.8
a+p+y 121 14.3 11.0 137 19.2 115 18.2

Table 5.4: The marginal probabilities (per cent units) of observing each type of “partner” binding site for a
given “query” binding site. Numbers of occurences which differ significantly from what would be expected in
a random distribution are shown in bold.

5.8 Are Binding Site Surfaces Special?

In a similar manner, we investigated whether the mean SSE propensity of a domain binding site
is different from the SSE propensity of the rest of the domain’s accessible surface. Table 5.5 shows
the marginal probabilities regarding the prediction of a domain’s binding site given knowledge of
the SSE character of the rest of the domain’s surface (statistically significant probabilities in bold).
Comparing the main diagonal and off-diagonal elements of this table suggests that the type of SSE
in the binding site is well correlated with the SSE type of the domain’s surface as a whole. In other
words, there is often little or no difference between the SSE character of a domain’s binding site and
that of the rest of the domain’s surface. For example, a surface that is 3 + « is also likely to have a
B + ~v binding site (36.0%). On the other hand, it is interesting to note that a surface of v + 3 is likely
to have a 8 + «y binding site (34.1%). In other words, this suggests that the g part of a v + 8 domain
is rather likely to appear in the binding site. Conversely, 5 + v surfaces are likely to have a ~ binding
site (22.7%), i.e. a binding site that does not have a 8 component.

Binding Site

Surface « a+y [B+v vy+a ~v+p0 y a+f+y
@ 52.0 23.6 2.7 11.5 0.7 4.7 4.7
a+y 41.3 269 1.9 18.1 0.0 8.8 3.1
B+ 0.4 0.4 36.0 11.3 202 227 8.9
v+ 11.7 19.2 9.2 25.2 5.2 17.7 11.7
v+ p 12.2 7.3 341 4.9 19.5 171 4.9

y 3.2 0.0 3.2 22.6 3.2 67.7 0.0
a+p+vy 156 117 14.8 18.0 9.0 11.9 19.0

Table 5.5: The marginal probabilities (per cent units) of observing a particular type of binding site with respect
to the SSE type of the rest of the domain’s surface. Statistically significant probabilities are shown in bold.
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5.9 Are Multi-Partner Binding Sites Special?

We also assessed whether there are any significant differences between single partner binding
sites and binding sites that interact with more than one domain. Figure 5.3 shows the distribution of
the number of distinct Pfam partners for both the 947 Pfam domain families and the 1,439 DFBSs
stored in the KBDOCK database. This figure shows that some 62% (584 out of 947) of these Pfam
families interact with just one Pfam family, 21% interact with two different Pfam families, and only
17% interact with three or more different Pfam families. When considering DFBSs, the trend is even
stronger, with over 80% (1,186 out of 1,439) of DFBSs involving interactions with just one Pfam
family. Only 17.5% (252 out of 1,439) of DFBSs involve interactions with more than one Pfam family,
and very few (in fact just 42) involve interactions with more than three different Pfam families.

In a similar manner, Table 5.6 shows the DFBS frequency and marginal probabilities of the vari-
ous DFBS SSE types according to the number of their domain family partners. This table shows that
for single-partner DFBSs, the observed frequencies of SSE types is almost no different from what
would be expected from random (final row of Table 5.6). However, multi-partner DFBSs tend to be
slightly depleted in a-containing SSEs and richer in ~-containing SSEs, although these tendencies
are not especially strong.

1200

B Domain families
1 Domain family binding sites

Total
600 800 1000

400
L

—
-
i

-—— I _

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15

Number of distinct Pfam partners

Figure 5.3: Histogram of the number of different partners by Pfam domain family and by DFBS.

DFBSs DFls a a+y B+y y+a v+ v oa+ B+

1186 1 18.8 143 88 16.8 13.6 16.1 11.6
159 2 15.1 13.2 44 258 189 126 10.1

52 3 192 250 39 115 173 173 5.8

42 >3 95 7.1 119 286 214 95 9.5
Expected 18.1 14.4 82 179 145 156 11.1

Table 5.6: Marginal probability comparison (per cent units) of binding site type with respect to the number of
Pfam partners. The final row shows the probabilities that would be expected from a random distribution.

Table 5.7 lists the number of distinct Pfam domain partners for the 10 Pfam domains which
have the greatest numbers of DFBSs and domain partners. It is interesting to note that the Trypsin
domain currently has the most interactions, presumably due to its rich variety of substrates and
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because interactions involving proteases have been heavily studied as therapeutic targets. As might
be expected, most of the other domains such as Ras, PKinase, ubiquitin, V-set, and C1-Set are
central to cell regulation, signaling, and the immune system, for example. Thus, the identity and
function of the domains listed in Table 5.7 are rather consistent with their known function and with
evidence from high throughput experiments. For example, Patil et al. (2010) report that kinase
domains are frequently observed in PPl network hubs, with some 405 hubs having some kind of
kinase activity.

Partners Total
Pfam domain per DFBS Partners
Peptidase S8 1 5 6
Cytochrome C1 1 3 5 9
Ubiquitin conjugating enzyme 1 2 2 5 10
Photosynthetic reaction centre 2 3 3 5 13
Protein kinase domain 2 4 4 5 15
Immunoglobulin C1-set 1 1 5 6 7 20
Ubiquitin 2 2 3 6 9 22
Immunoglobulin V-set 5 6 10 10 31
Ras 4 2 7 8 8 11 36
Trypsin 3 4 5 14 15 41

Table 5.7: The numbers of distinct Pfam partners for the 10 Pfam domains having the greatest numbers of
DFBSs

Finally, in order to estimate whether there are any gross physical differences between DFBSs
with just one binding site partner and those with more than one partner, we used DSSP to calculate
the solvent accessible surface (SAS) of each DFBS (these calculations assume that each binding
site contributes equally to the buried SAS at a DDI interface). Table 5.8 shows the average surface
areas and number of binding site residues of DFBSs according to the number of Pfam partner
domains. This table suggests that smaller DFBSs tend to have more interaction partners. Applying
a Wilcoxon signed rank test to the difference in size between single-partner and two-partner DFBSs
shows that this difference is statistically significant at the 5% level (p = 0.014). However, there are
too few instances of three-partner DFBSs to confirm this trend statistically.

Binding Site Binding Site
DFBSs DFls SAS (?) Residues
1186 1 709 + 560 15+11
159 2 576 + 377 12+ 7
52 3 559 £ 340 12+ 7
42 >3 670 £ 253 14+ 6

Table 5.8: Average DFBS sizes calculated with respect to the number of their Pfam domain partners.
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5.10 Discussion and Conclusion

We have shown that hetero domain binding sites can be clustered into seven main secondary
structure types, each consisting of different proportions of the main secondary structure elements
(SSEs), namely helices, sheets, and irregular structures. In addition, we have proposed simple
rules with which to classify new instances of binding sites. Thus our structural classification of
domain binding sites naturally extends the top level of the CATH domain family classification (i.e.,
a, B, a + (3, and irregular), as originally defined by Levitt and Chothia (1976). We used our binding
site classification to determine whether there are any general relationships between the SSEs of
pairs of binding sites, and to investigate whether there are any differences in the structural features
of domain binding sites which have just one domain partner (the majority) and those with more than
one domain partner.

This classification and study was possible thanks to the well-characterized and non-redundant
set of binding sites stored in KBDOCK using our spatial clustering algorithm described in Chapter 4.
Because KBDOCK is built from 3DID, which we consider to be the largest and most up-to-date DDI
database, our SSE-based classification of binding sites may be considered as the most compre-
hensive one to date. Hence, the present work represents one of the largest systematic studies of
structural domain interactions to have been described to date and, to our knowledge, the first study
to have considered quantitatively the nature of such interactions at the domain family level.

Our three SSE propensity “coordinates” («, 3, y) are compatible with those of the top level of the
CATH domain family classification. However, the continuous nature of these coordinates mean that
it is difficult to find simple clustering rules to describe binding sites, and any derived rules may need
to evolve as new DDIs are added to the structural interactome. It should also be emphasised that a
CATH class does not necessarily entail structural homology. Similarly, our classification of binding
sites does not imply any kind of structural homology. It aims only to provide a practical framework
in which to describe different combinations of domain binding site SSEs in a way that reflects well
the observed SSE propensities. Nevertheless, for present purposes, we believe that the very large
coverage and the lack of redundancy of our dataset make our classification quite reliable.

Several previous studies of structural PPIs have identified potentially interesting relationships
between the shapes and physical properties of protein-protein interfaces, and most such studies
have suggested that it might be possible to use such properties predictively. However, these earlier
studies of PPIs have been somewhat limited by the relatively small numbers of hetero protein-protein
complexes available, and by the problem of how to select a suitable sub-set of protein binding sites
to work with. The study described here is based on a set of 1,009 DFIs between a total of 1,439
DFBS involving 947 different Pfam domain families, representing the first systematic study of DDIs
at the Pfam domain family level.

Our results confirm previous findings that a-helices are found more often at interfaces than -
sheets. More specifically, we find that a-« interactions and irregular-irregular interactions are quite
probable, whereas a-5 and -5 interactions are rather strongly disfavoured. On the other hand, we
find there is very little difference, if any, between the SSE character of single partner binding sites
and multi-partner binding sites. However, two-partner binding sites are found to have significantly
smaller surface areas than single partner binding sites. Knowledge of these secondary structure
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pairing propensities could be useful for the prediction of unknown DDIs, especially if combined with
other near-orthogonal physical properties (de Vries and Bonvin, 2008).

Perhaps more significantly, our results show that some 60% of domain families and 80% of the
DFBSs for which 3D structural DDI information is available interact with just one type of Pfam do-
main, and that very few DFBSs interact with more than three different Pfam domains. Interestingly,
these DFBSs are always found in domains containing more than one DFBS (see Table 5.7). Al-
though our analysis can successfully identify some known hub proteins such as the Ras and protein
kinase domains, we do not see any obvious evidence at a structural level to explain the very large
numbers of interactions reported by HTT PPI experiment. This suggests either that the PDB still
contains example of only a very small number of the PPIs observed in HTT experiments, or that
the explanation proposed by Tsai et al. (2009) may indeed turn out to be a more satisfactory way to
explain the “hub phenomenon.”

In conclusion, our structural classification of DFBSs provides a useful way to classify and analyse
the secondary structure propensities of DDIs, and it highlights some SSE pairing preferences which
might be useful for the prediction of unknown DDls. We expect KBDOCK can be used in a similar
way to analyse other protein interface features on a large scale. Furthermore, the next version of
KBDOCK will include homo and intra DDIs and therefore comparative studies between intra, homo
and hetero domain-domain interfaces can be performed using the DFBS concept.
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6.1 Introduction

Chapter 2 reviewed some existing homology-based approaches for modelling protein-protein
complexes. This chapter describes a new case-based reasoning (CBR) approach to model the
structures of protein-protein complexes from the known domain-domain interactions stored in KB-
DOCK. Our approach is based primarily on two assumptions, namely, (i) similar pairs of domains
interact in a same way, and (ii) binding sites within domain families are often conserved. Here, we
apply these assumptions concretely using the notion of domain family binding sites (DFBSs) which
was introduced in Chapter 4. More specifically, we assume that the interface between a new pair of
proteins can be modelled using suitable instances of DFBSs in the KBDOCK database. This chapter
introduces some basic principles of CBR and it then shows how these can be applied to the protein
docking problem. Finally it presents the results obtained using this approach on the Protein Docking
Benchmark.

6.2 Overview of Case-Based Reasoning

CBR algorithms aim to solve new problems by adapting the solutions found for similar previous
cases (Kolodner, 1992). CBR is a very broadly defined method of problem-solving, and many types
of CBR systems have been implemented in many different ways. For reviews on CBR and CBR
systems, see Kolodner (1992), Aamodt and Plaza (1994), Watson and Marir (1994), Bergmann
et al. (2005), and de Mantaras et al. (2005). Most CBR systems typically maintain a “case base”
(CB) of previous cases, and they solve problems (new cases) by applying four main steps, namely,
(i) retrieving the most similar case or cases from the CB, (ii) re-using or adapting those cases in
order to better match the problem and to propose a solution, (iii) revising the proposed solution if
necessary, and (iv) retaining the solved case in the CB for future use. The revision and retention
steps are rarely performed without human intervention. These steps are illustrated in Figure 6.1.
Here, we briefly describe each step.

Case Content and Representation. The success of a CBR system depends to a large extent
on the structure and content of its CB (Aamodt and Plaza, 1994). Since a new case is solved by
retrieving previous similar cases, the case retrieval step needs to be effective and time efficient if the
CBis large. A case typically comprises a description of the problem and a description of the solution.
Often, a description detailing how a solution was derived is also stored in a case (de Mantaras et al.,
2005). One common way of representing a case is the feature-vector approach in which each case
is represented by a vector of attribute-value pairs.

Case Indexing and Retrieval. Cases are often indexed to facilitate efficient retrieval. In general,
indices are ideally abstract to allow their retrieval in a wider context but at the same time indices need
to be concrete in order to allow cases to be recognised for case retrieval (Watson and Marir, 1994).
Indexing is usually performed on existing attributes or on derived attributes. A variety of similarity
measures exist for case retrieval and their applicability depends on the case representation used.
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For a feature-vector case representation, the k-nearest neighbour algorithm is commonly used for
case classification and retrieval. In this representation, attributes can be assigned weights to express
their importance in the retrieval step (de Mantaras et al., 2005). For example, while a local similarity
measure might use only a selected set of attributes, a global similarity measure could be computed
as a weighted average of all the attributes.

Case Adaptation. Once a similar case is retrieved, a CBR system adapts that case to propose a
solution to the new problem. The case adaptation step often depends on various aspects such as
the differences between the past case and the new case, and which parts of the past case can be
adapted to solve the new case (Aamodt and Plaza, 1994). There are many adaptation techniques in
CBR such as reusing the past case solution without any adaptation, adjusting the parameters of the
past case solution according to the parameters of the new case, and reusing the past method that
constructed the solution (Aamodt and Plaza, 1994, Watson and Marir, 1994). Some CBR systems
generate solutions to new problems by combining multiple past case solutions.

Case Revision and Retention. Before a new case solution can be added to the case base, the
case solution needs to be evaluated. This is often done by a human expert. If the case solution
proposed is not satisfactory, the solution is revised using domain-specific knowledge or by the human
expert. Once a satisfactory solution is obtained, the CBR system updates its case base with the new
case solution. This can be done in two ways. Either the new case is added if there has been case
revision, or, the past case is generalized if needed (Aamodt and Plaza, 1994).

Problem
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Case
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/———
l Previous
Cases

General
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Solution Solution

Figure 6.1: A typical CBR cycle. Figure reproduced from Aamodt and Plaza (1994).
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6.3 A Formal CBR Approach to Docking By Homology

From a computational point of view, docking by homology can be considered as a kind of case-
based reasoning process. Here, it might at first seem natural to build a collection of solved protein
complexes to serve as the CB, and to predict the structure of a new complex by matching its com-
ponent proteins to the structures in the CB. However, this would allow only a limited number of
full-length single-chain complexes to be modelled. In order to be able to deal with a much wider and
more diverse range of protein-protein modelling problems, we therefore treat individual domains and
their associated domain-level interactions as the structural units of knowledge. From this starting
point, a basic docking problem would then be expressed by querying the case base with a pair of
query domains, and the CBR system would return a closely matching instance of a DDI from its case
base. More generally, it seems reasonable to suppose that we can use some basic principles from
CBR to develop a systematic way to exploit partial or incomplete structural DDI information in order
to model both pair-wise and multi-domain protein complexes. In other words, even if a complete
multi-domain protein-protein template does not exist, by applying the principles of homology all the
way from sequence families to DDIs and PPls, it should still be possible to propose 3D models of
multi-domain protein complexes by reasoning about the available structural knowledge of the com-
ponent domains. However, given that a protein may consist of one or more domains, and knowing
that domain families may have several binding sites, it follows that multiple possible combinations of
DDIs should be considered when modelling PPIs. Hence, predicting PPIs from DDIs is a non-trivial
problem.

6.4 The KBDOCK Case Representation

Figure 6.2 illustrates the main steps of our CBR-based approach to protein docking. Unlike
other CBR systems, we do not apply the final CBR step of storing the generated solutions in the
case base in order to ensure that all of our predictions are derived only from experimentally solved
and validated 3D structures. As mentioned in Section 6.2, a case is a collection of attributes or
features which describe a solved problem (here, the experimentally determined structures of a pair
of interacting domains). In general, each case may be described by a number of indexed and non-
indexed attributes. Indexed attributes are used for case retrieval, whereas non-indexed attributes
provide useful contextual information. Here, the Pfam domain identifiers of the query structures
serve as the main indexed attributes, whereas the non-indexed attributes include PDB codes, PDB
chain identifiers, amino acid sequences and atomic coordinates. If necessary, indexed attributes
may be derived from the non-indexed attributes. For example, KBDOCK uses PfamScan (Finn
et al., 2010) to determine the Pfam identifiers of the problem domains from their sequences.

As illustrated in Figure 6.3, the information associated with each case includes instance-specific
information such as the lists of residues of each domain which participate in a specific DDI, along
with other derived instance-specific information such as the calculated geometric centre of the bind-
ing site, and the residue of each domain which KBDOCK assigns as the central, or “key”, residue of
that particular binding site. KBDOCK also stores a domain family binding site (DFBS) identifier for
each DDl instance (Chapter 4). Thus, instances of DDIs in the CB may be grouped and retrieved ac-
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cording to both the Pfam families and the DFBSs involved. For example, the Kunitz_legume domain
family has five non-redundant hetero DDI cases involving four distinct DFBSs. KBDOCK identifies
each DFBS using a compound identifier, PlamAC/BindingSite. Thus, for example, PF00197/1 refers
to the first DFBS of the Kunitz_legume family.

Problem Similar cases
retrieve
Case-base
reuse
and
adapt
Ranked solutions Suggested solutions

refine and rank
o ——

Figure 6.2: Overview of the KBDOCK CBR-inspired approach for modelling DDIs. Unlike other CBR systems,
KBDOCK may propose one or more solutions and it does not retain new solutions in its case base. The figure
is adapted from (Watson, 1997).

PDB lavw Structure

Deposition date 27-Sep-97 ‘

Expt. Technique  X-ray diffraction Resolution 1.75A
Chain_1 A Chain_2 B

Sequence_1 IVGGYTCAANSI...  Sequence_2 DFVLDNEGNPL...
PfamID_1 Trypsin PfamID_2 Kunitz_legume
PfamAC_1 PF00089 PfamAC_2 PF00197
Region_1 16-238 Region_2 502-675
BindingSite_1 2 BindingSite_2 1

BS res 1 {Phe-502, ...} BS res 2 {His-57, ...}
BS centre_res_1 Ser-195 BS centre_res_2 Ser-560

BS centre_xyz_1 (x,, z) BS_centre_xyz_ 2 (x,y, 2)

Figure 6.3: An example of a DDI case in KBDOCK. Each case consists of a collection of attributes or
features. Indexed attributes which may be used for case retrieval (the Pfam accession codes and the binding
site identifier) are shown in bold. For cases that match a given problem, the non-indexed attributes such as the
domain sequences or the pre-computed binding site centre residues are used to guide the case adaptation
and refinement steps, and to rank the proposed solutions.
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6.5 The KBDOCK Case Retrieval

6.5.1 Pfam-based Case Retrieval

By denoting a pair of Pfam DFBSs as d1/b1 and d2/b2 (meaning DFBS b1 on domain family d1),
we use the notation ¢(d1/b1,d2/b2) to represent a DDI case in the CB. Similarly, by following the
Prolog convention of using upper case identifiers to represent unknown or uninstantiated instances,
we denote a new problem (query) as ¢(d1/B1,d2/B2), or often just simply ¢(d1,d2). This notation
allows known binding sites to be given as part of the query if such knowledge is available, and it
allows partial or incomplete matches with the CB to be represented in a consistent way. However,
because the Pfam domain identifiers are the main indexed attributes, d1 and d2 are always instanti-
ated. Naturally, the aim is to find cases which match (or, more generally, which can be unified with)
the given query specification. If both of the query domains can be unified with cases in the CB, we
call this a full-homology (FH) problem, and we denote the set of matching cases as F H(d1, d2).

It is worth noting that even for the most favourable problems in which FH cases exist in the CB,
the stored cases may involve more than one pair of DFBSs. For example, a recent CAPRI target con-
cerned the complex between trypsin and arrowhead protease inhibitor A (Lensink and Wodak, 2010)
which has two solutions involving two different inhibitor binding sites (PDB code 3E8L). On the other
hand, it is also possible for one or both of the given query domains to match individually one half of a
known DDl in the CB. We call such problems semi-homology (SH) problems, and we let SH (d1, D2)
and SH(D1,d2), where D1 # d1 and D2 # d2, denote the two possible sets of SH cases for a
given pair of query domains. Furthermore, we call a problem for which both |SH (d1, D2)| > 0 and
|SH(D1,d2)| > 0 a SH-two problem, and we call a problem in which only one query domain has
matching cases a SH-one problem. This distinction becomes significant at the docking refinement
stage (Section 6.7). Of course, if |FH(d1,d2)| = |SH(d1,D2)| = |SH(D1,d2)| = 0, then no ho-
mologous cases exist, and it is necessary to adapt other more distantly related cases or to use ab
initio docking. In the present study, we do not consider the possibility of applying adaptation beyond
the Pfam level. In other words, if no FH, SH-two or SH-one are found, KBDOCK does not attempt a
generalization step (such as going up a level in the Pfam hierarchy) to find further possible cases.

6.5.2 The Single-Domain Docking Test Set

In order to explore the utility of using KBDOCK to find homology templates for protein docking,
we apply our approach to a subset of the protein docking targets in the Protein Docking Benchmark
(Hwang et al., 2010) which was described in Section 2.4.6. We selected all single domain complexes
belonging to the “Enzyme-Inhibitor” (here called “Enzyme”) and “Other” categories of the Docking
Benchmark for this preliminary experiment. In other words, for simplicity we exclude the Benchmark
“Antibody” complexes (because apart from involving the antibody hypervariable loops, antibody-
antigen interactions generally do not entail homology) and we exclude all other complexes involving
multiple domains. This gives a first test set of 36 Enzyme and 37 Other target complexes. For all
targets, the structures of the unbound domains given by Hwang et al. (2010) were used as query
domains, and the corresponding crystallographic complex (i.e. the expected solution) was excluded
from the modelling procedure.
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It should be noted that the Docking Benchmark complexes do not necessarily provide an unbi-
ased set of homology modelling targets. For instance, because several of the Benchmark proteins
have been relatively well studied, it is possible that the PDB could contain more homologues of those
complexes than randomly selected complexes. In order to take into account this possible source of
bias, a stringent test would be to exclude as templates all structures with more recent PDB depo-
sition dates than the target structure. However, filtering complexes by target date (hereafter called
“date filtering”) often excludes a large proportion of the database. Therefore, in order to provide
upper and lower bounds on the utility of template-based modelling, and to try to quantify the growing
usefulness of knowledge-based approaches, we report results both with and without date filtering.

6.5.3 Coverage of FH, SH-two and SH-one Cases

Table 6.1 shows that KBDOCK retrieves FH templates for 45 out of single-domain 73 targets
when no date filtering is applied. The number of SH-two and SH-one templates retrieved are 8 and
16, respectively. No templates could be found for 4 out of 73 targets. As might be expected, fewer
FH templates are available when PDB date filtering is applied, and this causes an increase in the
number of SH-two or SH-one templates. For example, the number of FH templates drops from 45 to
26 (out of 73). Of these 19 affected targets, 8 targets become SH-two or SH-one problems and 11
targets have no templates. Overall, applying date filtering increases the number of targets for which
there are no suitable templates from 4 to 15. On the other hand, the overall number of SH-one and
SH-two templates increases from 24 to 32 templates. As might be expected, the number of targets
for which KBDOCK finds no template increases from 4 to 15 (out of 73). The number of targets which
have FH, SH-two and SH-one templates in KBDOCK are summarised in Table 6.2. This table shows
that, even with date filtering, the KBDOCK database contains a good nhumber of candidate cases for
the selected queries. This suggests that CBR-based docking could provide a useful approach to the
protein docking problem.

Table 6.1 also shows that KBDOCK sometimes finds more than one distinct FH interface for a
given pair of query domains. In other words, the instances of two domain families can sometimes
interact via more than one combination of binding sites. For example, KBDOCK retrieves two FH
templates for three of the Enzyme targets (1dfj, 1eaw, 2pcc) without date filtering, and for just one
target (1eaw) when date filtering is applied. Similarly, KBDOCK retrieves two FH templates for two
of the Other targets (1fgj, 1ml0) without date filtering, and just one target (1ml0) when date filtering
is applied. Table 6.3 shows that most domains involved in the 73 benchmark targets (a total of
146 domains) have just one or two DFBSs, as was generally observed for all Pfam domain families
(Chapter 4). The enzyme Trypsin has the largest number of DFBSs (five or six).
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Target Dep. Target D1 D1 D2 D2 FH FH
PDB year Class® Pfam name DFBSs? Pfam name DFBSs® DDIs DFBSs®
Enzymes (36)
1avx 1997 RB Trypsin 5(5) Kunitz legume 4 (1) 2(0) 1(0)
1lay7 1997 RB Ribonuclease 1(1) Barstar 1(1) 7(1) 1(1)
1cgi 1991 RB Trypsin 6(2) Kazal 1 2(1) 4(2) 1(1)
1dér 1999 RB Trypsin 6 (5) Bowman-Birk leg 2(1) 4(1) 1(1)
1dfj 1996 RB RnaseA 3(0) LRR 1 3(0) 2(0) 2(0)
1ebe 2000 RB Pyr redox 2 3(1) Fer2 3(2) 0(0) 0 (0)
1eaw 2001 RB Trypsin 6 (6) Kunitz BPTI 2(2) 24 (14) 2(2)
1ezu 2000 RB Trypsin 6 (5) Ecotin 1(1) 7(2) 1(1)
1134 2000 RB Asp 1(1) Pepsin-I3 0(0) 0(0) 0(0)
1fle 1996 RB Trypsin 6 (3) WAP 1(0) 1(0) 1(0)
1gi 2001 RB Trypsin 6 (6) Pacifastin | 0(0) 0(0) 0(0)
1hia 1996 RB Trypsin 6 (3) Antistasin 0(0) 1(0) 1(0)
1jtg 2001 RB BLIP 1 (0) Beta-lactamase 1 (0) 3(0) 1 (0)
1mah 1995 RB COesterase 2(1) Toxin 1 1(1) 3(1) 1(1)
1n8o 2002 RB Trypsin 6 (6) Ecotin 1(1) 8(5) 1(1)
10c0 2003 RB Somatomedin B 0 (0) Serpin 1(1) 0 (0) 0 (0)
1oph 2003 RB Trypsin 6 (6) Serpin 2(2) 4(2) 1(1)
1ppe 1991 RB Trypsin 6 (2) Squash 1(0) 6 (0) 1(0)
1rOr 2003 RB Peptidase S8 2(2) Kazal 1 2(1) 1(0) 1(0)
1yvb 2005 RB Peptidase C1 2(1) Cystatin 1(1) 2(2) 1(1)
2jot 2006 RB Peptidase M10 2(2) TIMP 2(2) 3(2) 1(1)
208v 2006 RB PAPS reduct 1(1) Thioredoxin 2(2) 0 (0) 0 (0)
2oul 2007 RB Peptidase C1 2(1) Chagasin 142 1(1) 3(1) 1(1)
2pce 1993 RB peroxidase 2(0) Cytochrom C 4 (0) 4(0) 2(0)
2sic 1991 RB Peptidase S8 2(1) SSI 1(0) 1(0) 1(0)
2sni 1988 RB Peptidase S8 2(1) potato inhibit 1(1) 6 (1) 1(1)
3sgq 1999 RB Trypsin 6 (4) Kazal 1 2(1) 4 (4) 1(1)
7cei 1998 RB Colicin Pyocin 0(0) E2R135 0(0) 0(0) 0(0)
1acb 1991 MD Trypsin 5(2) potato inhibit 1(1) 0 (0) 0(0)
1nw9 2003 MD Peptidase C14 1(1) BIR 1(0) 0(0) 0 (0)
4cpa 1982 MD Peptidase M14 1 (0) CarbpepA inh 0(0) 0 (0) 0 (0)
1fém 2000 D Pyr redox 2 4 (0) Thioredoxin 2(1) 0 (0) 0 (0)
1fq1 2000 D CDKN3 0(0) Pkinase 4 (3) 0(0) 0(0)
1pxv 2003 D Peptidase C47 1 (0) Staphostatin B 0(0) 1(0) 1 (0)
1zli 2005 D Peptidase M14 1(1) Inhibitor 168 1(0) 2(0) 1(0)
203b 2006 D Endonuclease NS 0(0) NuiA 0(0) 0(0) 0(0)

Table 6.1: Overall docking template results for the 73 docking benchmark targets (continued on the following
page).
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Target Dep. Target D1 D1 D2 D2 FH FH
PDB year Class® Pfamname  DFBSs® Pfam name DFBSs? DDIs DFBSs®
Others (37)
1ak4 1997 RB Pro isomerase 1(0) Gag p24 0(0) 0 (0) 0 (0)
1buh 1998 RB Pkinase 4(2) CKS 0 (0) 0 (0) 0 (0)
1e96 2000 RB Ras 6 (3) TPR 1 0 (0) 0 (0) 0 (0)
1efn 1996 RB F-protein 0 (0) SH3 1 3(0) 0 (0) 0 (0)
1ffw 2000 RB Response reg 3(2) CheY-binding 1(1) 1(1) 1(1)
11qj 2000 RB G-alpha 2(2) RGS 3(1) 7 (1) 2(1)
1gcq 2000 RB SH3 1 3(1) SH3 2 0 (0) 0 (0) 0 (0)
1gpw 2001 RB His biosynth 1(1) GATase 2(2) 1(1) 1(1)
1hod 2001 RB Runt 0 (0) CBF beta 0 (0) 0 (0) 0(0)
1he1 2000 RB Ras 5(3) YopE 1(1) 1(1) 1(1)
1j2j 2003 RB Arf 3(2) GAT 1(0) 0 (0) 0 (0)
1kac 1999 RB Adeno knob 3 (0) V-set 4 (1) 3(0) 1(0)
1ktz 2002 RB TGF beta 2(1) ecTbetaR2 0(0) 0 (0) 0 (0)
1ml0 2002 RB M3 2 (0) IL8 3(0) 2 (0) 2 (0)
1s1q 2004 RB UEV 1(0) ubiquitin 5(2) 1(0) 1(0)
1xd3 2004 RB Peptidase C12 1(1) ubiquitin 5(3) 1(1) 1(1)
2a9%k 2005 RB Ras 5(5) Binary toxA 2(1) 1(1) 1(1)
2btf 1994 RB Actin 4 (0) Profilin 1(0) 3(0) 1(0)
2977 2006 RB TBC 0 (0) Ras 5 (5) 0 (0) 0 (0)
2hle 2006 RB Ephrin Ibd 1(1) Ephrin 1(1) 3(2) 1(1)
200b 2007 RB UBA 3(2) ubiquitin 5(4) 5 (4) 1(1)
1grn 1998 MD Ras 5(2) RhoGAP 1(1) 2(2) 1(1)
1mq8 2002 MD ICAM N 2 (0) VWA 4(2) 1(0) 1(0)
1r6q 2003 MD Clp N 1(1) ClpS 1(1) 1(1) 1(1)
1syx 2004 MD DIM1 0 (0) GYF 0 (0) 0 (0) 0 (0)
1wgi 1997 MD Ras 5(2) RasGAP 0 (0) 0 (0) 0 (0)
2ayo 2005 MD UCH 1(1) ubiquitin 4 (3) 3(1) 1(1)
2cfh 2006 MD TRAPP 2 (0) TRAPP 2(0) 0 (0) 0 (0)
2h7v 2006 MD Ras 5 (5) Ract 0(0) 0(0) 0 (0)
2nz8 2006 MD Ras 5 (5) RhoGEF 2(1) 10 (7) 1(1)
20za 2007 MD Pkinase 3(3) Pkinase 3(3) 0 (0) 0 (0)
2z0e 2007 MD Peptidase C54 1(0) MAP1 LC3 1(0) 1(0) 1(0)
3cph 2008 MD GDI 2(2) Ras 5 (4) 3(2) 1(1)
1r8s 2003 D Arf 3(3) Sec?7 1(0) 2 (0) 1(0)
1y64 2004 D Actin 4 (4) FH2 0(0) 0 (0) 0 (0)
2ido 2006 D RNase-T 1(1) DNA pol3 theta 0(0) 0 (0) 0 (0)
20t3 2007 D Ras 5 (5) VPS9 1(0) 1(0) 1(0)

Table 6.1: D1 denotes the first query domain; D2 denotes the second query domain. Figures in brackets
show the results when PDB deposition date filtering is applied. “The Docking Benchmark target class — RB:
Rigid Body; MD: Medium Difficulty; D: Difficult. * The number of DFBSs involving the query domain (excluding
the target domains of the target structure). “The number of pairwise DFBSs calculated for full homology (FH)
DDls.
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Target Total FH SH-two SH-one No
class targets templates templates templates templates
No date filtering

Enzyme 36 24 5 5 2
Other 37 21 3 11 2
Total 73 45 8 16 4
With date filtering

Enzyme 36 13 5 11 7
Other 37 13 1 15 8
Total 73 26 6 26 15

Table 6.2: Summary of the number of FH, SH-two, and SH-one binding site templates which KBDOCK finds
for the 73 targets in our single-domain docking test set.

Target No. target No. Homologous DFBSs in KBDOCK
class domains 0 1 2 3 4 5 6
No date filtering

Enzyme 72 11 23 17 4 4 2 11
Other 74 15 19 10 11 6 12 1
Total 146 26 42 27 15 10 14 12
With date filtering

Enzyme 72 25 26 10 3 1 3 4
Other 74 31 17 11 7 3 5 0
Total 146 56 43 21 10 4 8 4

Table 6.3: Distribution of the number of possible DFBS templates for the 146 individual domains of the 73
selected Protein Docking Benchmark targets.

6.6 The KBDOCK Case Adaptation

In Section 6.2, we described some different kinds of case adaptation in CBR (Aamodt and Plaza,
1994, Watson and Marir, 1994). For example, substitution adaptation re-instantiates parts of a
previous case by applying a domain-specific transformation operator to map it onto the problem
case. Here, we wish to apply this principle to the protein docking problem, but due to the spatial
nature of this task and the fact that we may have to deal with multiple combinations of domains, we
also need to take into account the possibility that not all of the retrieved DDI cases will be mutually
compatible, and that similar docking problems may have different solutions. Hence, to model a
protein complex, we need to consider multiple possible adaptations from the CB, and we need to
rank them according to how well they collectively correspond to the target complex.

6.6.1 Modelling FH Problems Using Substitution Adaptation

Previous studies have shown that similar pairs of domains often interact in the same way (Aloy
and Russell, 2003). Therefore, FH cases are very likely to provide good homology docking models
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and they require a minimum adaptation. In Section 6.5.3, we saw that KBDOCK sometimes retrieves
more than one FH case which correspond to different pairs of DFBSs. Thus, we collect the instances
in F'H (d1, d2) into groups having distinct pairs of DBFSs, and we rank the members of each group
by their overall sequence similarity to the concatenated sequences of ¢(d1, d2). We then select the
most similar member (to the query) of each group, and superpose its domains onto the query using
the ProFit program in order to give a final ranked list of substitution-adapted solutions.

6.6.2 Modelling SH Problems Using Transformation Adaptation
Calculating an Initial Docking Pose Using Known DFBSs

For SH-two problems, we assume that the target complex may be modelled using a pair of
existing DFBSs. We therefore take the Cartesian product P(d1/B1,d2/B2) = SH(d1/B1) x
SH(d2/B2) to enumerate all possible candidate pairs of DFBSs. However, this does not form 3D
interfaces between the DFBSs, it only gives a set of symbolic associations. Therefore, for each
instance of P, we construct a putative DDI, p(d1/b1,d2/b2), using the coordinates of the stored
centre of gravity and central interface residues in order to locate the two domains on the global
z axis with their central residues facing each other near the origin, and with d1 on the negative z
axis and d2 on the positive z axis. This is illustrated in Figure 6.4. These transformations have
been implemented using call-outs to functions from the Hex docking program (Ritchie and Kemp,
2000). Up to a small translation and an undetermined twist about the z axis, each pair of such
configurations defines a putative pair-wise interface which could be refined by a rigid body docking
search. However, since the aim is to find solutions for the given query, we then superpose the
domains in ¢(d1,d2) onto the oriented pair p(d1/b1,d2/b2) in order to obtain a set of candidate
solutions. For SH-one problems, in which one or more DFBSs are known for just one of the query
domains, the query domains are oriented on the z axis as described above, using a random surface
residue for the uninstantiated binding site centre residue. Here, we chose the z axis because we
used the Hex docking program to perform focused docking (see next section) and Hex uses the
z-axis as the intermolecular axis. Given the coordinates of the centre of binding site and centre of
mass, this is sufficient for Hex to perform a focused docking search.

6.6.3 Evaluating the FH and SH Cases

This section describes the results when KBDOCK is applied to the 73 single-domain benchmark
targets (Section 6.5.2). Table 6.4 lists the templates retrieved and the extent to which DFBSs are
re-used for both FH and SH cases. Here, a FH template is considered to be correct if the root
mean squared deviation (RMSD) between it and the native complex is less than 10A. This is similar
to the CAPRI criteria for an “acceptable” docking prediction (Mendez et al., 2005). When only SH
templates are retrieved, we assess their quality by comparing each proposed binding site with that of
the native complex and if our binding site vector clustering algorithm would group them together, we
consider the retrieved template to be correct. The final two columns of Table 6.4 show the outcome
of this test. Similarly, Table 6.5 reports the corresponding results when date filtering is applied. A
summary of the overall case retrieval results from a template modelling point of view is given in
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Figure 6.4: lllustration of an initial docking pose between a pair of candidate SH domains. Black spheres
represent the centre of mass of each domain, and red spheres represent the central residue of each binding
site. The angles 31 and j3; represent the Hex docking search range angles which will be applied to focus the
docking search around the putative interface as will be described in Section 6.7.

Table 6.6.4.
Evaluation of FH Cases

Table 6.4 shows that the FH cases retrieved by KBDOCK provide good models of the target
complex. For example, the first row of this table shows that the target 1avx can be modelled using
the template 1avw with a very low of RMSD of 0.49 A. However, in this particular case, given the
similarity of the PDB file names, it is very likely that the template and the target structures were
both solved at the time. The next row shows a more interesting example with sequence identities of
30.4% between the first query domain (1rgh_B) and the first template domain (1b2s_C), and 97.6%
between the second query domain (1a19_B) and the second template domain (1b2s_F). In this
case, a FH template with a RMSD of 2.89 A is obtained in which the corresponding binding sites of
the template domains are re-used (indicated as tick marks in the final two columns).

As described in Section 6.5.3, KBDOCK sometimes finds more than one distinct FH template for
a given pair of query domains. For example, KBDOCK retrieves two FH templates for three of the
Enzyme targets (1dfj, 1eaw, 2pcc) without date filtering, and for just one target (1eaw) when date
filtering is applied. Subsequent visual inspection of the calculated templates for the matriptase/BPTI
target (PDB code 1eaw) showed that the first trypsinogen/BPTI DDI (2r9p) provides a very good
template (with an overall RMSD between the template and target of 0.79 A), whereas the second
(lower sequence identity) FH template corresponds to a different inhibitor orientation found in the
prothrombin/boophilin complex (2ody; 8.54 A RMSD). This is illustrated in Figure 6.5.

On the other hand, the two DDIs (1z7x and 2bex) calculated for the large RnaseA/LRR 1 Enzyme
complex (1dfj) were seen to overlap considerably, and the two large binding sites calculated for the
RnaseA domain should have been clustered as a single binding site. We believe that such clustering
artefacts sometimes arise due to different assignments of core and rim residues in different instances
of homologous DDls.

The peroxidase/cytochrome C Enzyme target (2pcc) is another interesting case. Although the
two DDIs calculated for this target are quite distinct, further investigation revealed that one of the
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DDlIs (1s6v) arises because the crystal contact between these domains was larger than the biologi-
cal contact in the structure. Consequently, two binding sites instead of one were also calculated for
these domains.

KBDOCK retrieves two FH templates for two of the Other targets (1fgj, 1ml0) without date fil-
tering, and just one target (1ml0) when date filtering is applied. Visual inspection of the calculated
templates for the first two targets confirmed that these FH templates correspond to two different
binding modes for the G-protein complex (1fgj), and the M3-protein complex (1ml0), and that the
first (highest sequence identity) template best matches the target (0.70 A and 1.03 A RMSD, re-
spectively). However, as discussed above, our binding site vector algorithm tends to overestimate
the number of binding sites. For example, two of the Other targets (1mq8, 2ayo) are calculated to
have two “new” binding sites although visual inspection again suggests these are known binding
sites. The FH template proposed for these two targets gives a good model of the target complex
(RMSD 2.93 and 1.76 A, respectively). Thus, KBDOCK can successfully retrieve alternate FH bind-
ing modes when they exist in the database, but it can also be seen that its clustering algorithm has
a slight tendency to overestimate the number of distinct binding sites.

Evaluation of SH Cases

Table 6.4 also shows that SH-two templates exist for 5 of the Enzyme targets (1e6e, 20v8, 1acb,
1nw9, 1fém). For example, the target PDB 1e6e involves a DDI between the Pyr_redox 2 and Fer2
domain family. Each of these domain families has three DFBSs according to our binding site vector
algorithm. As illustrated in Figure 6.5, the DFBS vectors of both domains point to distinct positions.
The target 1e6e reuses the DFBS of 2v3b_A (Pyr_redox_2) and 1ffv_D (Fer2). Similarly, the targets
1acb and 1f6m reuse their known DFBSs. The target 208v involves a DDI between PAPS reduct
and Thioredoxin domain family. The target 208v reuses one of the known DFBSs on its Thioredoxin
domain but does not reuse their known DBFS on the PAPS reduct domain. The target 1nw9 is a
case where each domain does not reuse their known DFBSs. There are three Other targets (2ayo,
2cfh, 20za) for which SH-two templates exist but none of the known DFBSs are reused in the targets.
In other words, these three targets have DDI binding modes which are not known in KBDOCK.

For those targets where only SH-one templates exist, one of the known DFBSs is found to be
re-used in a total of 3 out of 5 Enzyme targets (1gl1, 4cpa, 1fq1) and 5 out of 11 Other targets (1kiz,
2977, 1wq1, 2h7v, 1y64). In order to assist any subsequent docking calculation that might use these
templates, Table 6.4 and 6.5 show the proposed PDB template along with the name of the query
residue calculated to be at the centre of the binding site. These residues may be used to set up a
focused docking calculated as explained in the previous section.
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Target Query Query Template %-Seq (RMSD) Template %-Seq (RMSD) Key Res  Key Res FH DFBS DFBS
PDB Di¢ D2¢ D1b Di¢ D2b D2¢ D14 D2¢ RMSDe  Dt/f D2f
Enzymes (36)
lavx_A_B 1gqu_A 1ba7_B 1lavw_A (97) 99.1 (0.40) tavw_B (97) 99.4 (0.45) S-195 S-60 0.49 v v
lay7_ A B 1rgh_B 1a19 B 1b2s_C (98) 30.4 (1.59) 1b2s_F (98) 97.6 (0.64) Y-86 A-36 2.89 v v
1cgi E_| 2cga_B 1hpt_A 1cgj_E (91) 100.0 (0.69)  1cgj_I (91) 98.0 (0.67) Y-146 C-16 1.56 v v
1dér_A_| 2tgt_A 1k9b_A 2iln_B (06) 100.0 (0.53)  2iln_I (06) 72.0 (0.90) W-215 A-42 1.60 v v
1dfi_E_I 9rsa_B 2bnh_A 127x_X (05) 69.4 (0.71)  1z7x_W (05) 18.9 (1.60) N-67 S-91 1.42 v v
2bex_D (04) 33.6 (1.14)  2bex_B (04) 18.9(1.58) P-42 S-86 3.86 X X
1e6e_ A B 1ein_A 1cje_D 1y56_A (04) 10.3 (1.95)  2jgr_B (07) 97.7 (0.58) T-87 D-76 - X X
2eq9_K (07) 13.8 (1.69)  1ffv_A (00) 17.8 (1.87) L-181 1-94 - X X
2v3b_A (07) 13.6 (1.89)  1ffv_D (00) 17.8(1.80) V-47 V-33 - v v
leaw A B 1eax A Ipti_A 2r9p_B (07) 41.1 (0.79) 2r9p_F (07) 98.1 (0.26) S-195 C-14 0.79 v v
2ody_D (06) 34.4 (1.03) 2ody_F (06) 45.3 (0.70) G-216 Y-23 8.54 v X
lezu_C_ B  1trm_A lecz_A 1slu_B (96) 95.4 (0.47)  1slu_A (96) 95.3 (0.79) W-215 S-82 0.95 v v
1134 A B 4pep A 1132_A 1htr_B (94) 50.9 (1.23) - - F-15 = = X =
1fle_E_| 9est_A 2rel_A_4 2z7f_E (07) 38.6 (1.02) 2z7f_|(07) 51.1 (1.58) F-215 C-23 1.47 v v
1g1_A_l 1k2i_1 ipmc_A 6 1acb_E (91) 98.6 (0.34) - - M-192 - - v -
1tab_E (90) 41.8(0.93) - - W-215 - - v -
114z_A (02) 38.4(0.98) - -  T144 - - X -
1bml_B (99) 38.4(0.83) - - T62 - - X -
1bui_B (98) 389 (1.12) - - G-25 - - X -
1wss_H (04) 35.6 (1.01) - - S-164 - - X -
thia_B_| 2pka_Y 1bx8_A 1c9p_A (99) 26.5(1.11)  1c9p_B (99) 30.6 (1.61) S-195 C-29 1.24 v v
1jtg_ B_A 3gmu_B 1zg4_A 2b5r_D (05) 100.0 (0.75)  2b5r_B (05) 98.8(0.38) E-73 Y-105 1.89 v v
imah_A_F 1j06_B 1fsc_A 1ku6_A (02) 99.2 (0.41) 1ku6_B (02) 82.0 (0.78) V-73 V-34 0.76 v v
1in8o_C_E 8gch_F 1ifg_A 1ezu_C (00) 24.0 (0.82 1ezu_B (00) 96.2 (0.91) H-57 S-82 1.31 v v
1ocO_A_B  2jg8_A_4 1b3k_A - — 1k9o_I (01) 30.1 (1.44) - R-346 - - X
loph_ A B  1utg A 1qlp_A 1k90_E (01) 71.7 (0.55)  1k9o_I (01) 28.4 (1.40) Q-192 L-353 0.65 v v
1ppe_E_| 1btp_A 1lu0_A 2btc_E (98) 100.0 (0.42)  2btc_l| (98) 89.7 (0.44) Q-192 G-29 0.44 v v
1rOr_E_| 1scn_E 2gkr_| 1yu6_A (05) 100.0 (0.33)  1yu6_C (05) 100.0 (0.76) L-126 T17 1.05 v v
1yvb_A_| 2ghu_A 1cew_| 1stf_E (93) 33.8(1.13)  1stf_1(93) 19.8 (1.51) G-40 L-54 2.98 v v
2j0t_A_D 966¢_A 1d2b_A 20 1uea_C (97) 59.0 (0.72) 1uea_D (97) 70.5(1.28) A-182 T-2 2.01 v v
208v_A B 1sur_A 2trx_A 1zun_A (05) 17.9 (1.61 2ajq_B (05) 100.0 (0.63) P-167 I-75 - X X
- -  2puk_C (07) 46.2 (0.97) - 1-75 - - v
20ul_A_B 3bpf_A 2nnr_A 2nqd_B (06) 36.4 (1.12)  2nqd_A (06) 96.0 (0.72) H-174 P-30 6.31 v v
2pcc_A_B 1ccp A 1ycc_A 1u74_A (04) 100.0 (0.39) 1u74_B (04) 99.0 (0.59) N-196 R-13 0.40 v v
1s6v_A (04) 98.3 (0.41) 1s6v_D (04) 98.0 (0.50) K-29 K-86 15.4 X X

Table 6.4: The calculated docking templates and key binding site residues for the 73 benchmark targets without date filtering (continued on next page)
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Target Query Query Template %-Seq (RMSD) Template %-Seq (RMSD) Key Res  Key Res FH DFBS DFBS

PDB Di¢ D2 D1® D1¢ D2b D2¢ D1¢ D2¢ RMSDe  Di1f D2f
Enzymes (contd)
2sic_E_| 1sup_A 3ssi_A 3sic_E (91) 100.0 (0.27)  3sic_I (91) 98.9 (0.64) L-126 C-71 0.18 v v
2sni_E_| 1ubn_A 2ci2_| 1sbn_E (91) 99.6 (0.34) 1sbn_l(91) 35.9(1.40) L-126 T-58 1.70 v v
3sgq_E_| 2qa9_E 2ovo_A 3sgb_E (83) 99.4 (0.54) 3sgb_l (83) 98.0 (0.43) G-215 C-16 0.22 v v
7cei_ A B 1unk_B 1m08_B — - - = - - — —
lacb_E_|I 2cga_A 1legl_A 1cgi_E (91) 100.0 (0.71)  2tec_I (90) 98.4 (1.02) R-145 V-43 - v v
1tab_E (90) 41.8(1.02) - - w215 = = v =
105f_H (03) 38.6 (1.04) - - C-122 - - X -
114z_A (02) 385(1.01) - - P-152 = = X =
1bmi_A (99) 38.5(1.02) - - T62 - - X -
1nw9_B_A 1jxq_A 20py_A 1i4e_B (01) 35.3(0.97) 2pop_B (07) 34.8 (0.72 R-341 Q-283 - X X
4cpa_A_| 8cpa A 1h20_A 9 1pyt B (95) 97.1 (0.40) - -  F-279 = = v =
1fém_A_C  1cl0_A 2tir_A 2eq9_K (07) 23.7 (1.37)  2ajq_B (05) 99.0 (0.62 Q-214 1-75 - v v
2f5z_C (05) 18.8 (2.05) 208v_B (06) 98.1 (0.69 E-209 C-32 - v X
2v3b_A (07) 17.3(2.00) - - W-52 - - X -
1y56_A (04) 15.0 (1.49) - - R95 - - X -
1fq1_A B 1fpz_F 1b39_A - —  1bi8_A (98) 13.8(1.88) — N-91 - - X
- —  3gni_B (09) 13.7(1.87) - H-28 - - X
= - 2qvs_E (07) 13.4 (1.81) - S-159 - - v
- — 2f2c_B (05) 11.0(1.93) - S-33 - - X
1pxv_A_C  1x9y_A inyc_A 1y4h_A (04) 98.8 (0.73 1y4h_C (04) 100.0 (0.78) H-340 S-92 0.70 v v
1zl A B 1kwm_A  2jto_A_6 1zlh_A (05) 38.3 (0.85 1zlh_B (05) 100.0 (1.84) R-127 G-45 1.24 v v
203b_. A B 1zm8 A 1j57_A - - - - - - - - -
Others (38)
1lak4_A_D  2cpl_A 1e6j_P 1mzw_A (02) 53.4 (0.58) - - T4 - - X -
1buh_A_B  1hcl_A 1dks_A 1jsu_A (96) 87.6 (0.94) - - V79 - - X -
2iw9_A (06) 85.7 (1.01) — - 152 - - X -
2bkz_A (05) 85.2 (1.01) - -  R-122 - - X -
1fq1_B (00) 84.8(1.17) - - E-208 - - X -
196 A B 1mh1_A 1hh8_ A 1g4u_R (00) 100.0 (0.78) - - G-12 - - X -
2h7v_B (06) 100.0 (0.88) - - R-68 - - X -
1hh4_B (00) 100.0 (0.80) - - R-68 - - X -
2dfk_B (06) 71.3(1.03) - - T125 - - X -
2v55_D (08) 457 (0.97) - - E-171 = = X =
2¢5I_A (05) 309 (1.19) - - D-38 - - X -

G6

Table 6.4: (continued on next page)
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Target Query Query Template %-Seq (RMSD) Template %-Seq (RMSD) Key Res  Key Res FH DFBS DFBS
PDB D1¢ D2¢ D1® Di¢ D2b D2¢ D14 D2¢ RMSDe D1/ D2f
Others (contd)
1efn_B_A lavw_A 1g83_A - - 1m27_C (02) 100.0 (0.54) - D-100 - - X
- - 1ju5_C (01) 429 (1.16) - W-139 - - X
- — 1ubs_A (04) 32.0 (1.06) - V-88 - - X
1ffw_A_B 3chy_A 1fwp_A 1a0o_E (97) 100.0 (0.54) 1a0o_F (97) 100.0 (1.48) 1-95 V-53 0.52 v v
1fq_ A B 1tnd_C 1fqi_A 1fgk_A (00) 90.3 (0.47) 1fgk_B (00) 95.7 (0.82) T-178 N-364 0.47 v v
2bcj_Q (05) 51.3(0.89) 2bcj_A (05) 14.8 (1.48 H-252 A-356 17.0 X X
1gcg_B_C  1griB 1gcp_B 2jt4_A (07) 40.8 (1.16) — - P49 - - X -
1m27_C (02) 35.4(0.83) - - E-16 - - X -
1u5s_A (04) 26.5(1.31) - - 14 - - X -
igpw_A_B  1thf D 1k9v_F 1ka9_F (01) 58.5(0.90) 1ka9_H (01) 37.1(1.17) D-98 M-421 3.57 v v
1hod_ A B  1ean_A  1ilf_A_1 - - - - - - - - -
1hei_C_A 1mh1_A 1he9_A 1g4u_R (00) 100.0 (0.77)  1g4u_S (00) 30.0 (1.43) G-12 R-146 0.98 v v
1j2_ A B9 103y A 1oxz_A 2j59_D (06) 100.0 (0.56)  1wr6_D (04) 459 (1.03) T-31 L-227 - - -
1re0_A (03) 99.4(0.98) - - G-50 - - - -
3bh7_A (07) 46.0 (0.77) - -  A27 - - - -
ikac_A B 1nob_F 1f5w_B 1p69_A (03) 99.4 (0.51) 1p69_B (03) 97.5(0.68) P-418 E-56 0.10 v v
1iktz_A_B 1tgk_A 1m9z_A 2p6a_A (07) 33.1(1.14) - - V92 - - v -
1m4u_L (02) 31.6(1.22) - - Y50 - - X -
1mO_A D 1mkf_ A  1dol_A 2nyz_B (06) 100.0 (0.73)  2nyz_E (06) 27.7(0.97) L-273 C-12 1.03 v v
2nz1_A (06) 100.0 (0.62) 2nz1_E (06) 90.8 (0.96) L-174 1-20 24.3 X X
1s1g. A B 2for_A 1yj1_A 1uzx_A (04) 23.0 (1.14)  1uzx_B (04) 87.8(0.66) F-44 F-45 1.97 v v
1xd3_A_B 1uch_A 1yj1_A 1cmx_A (99) 23.5(1.42) 1cmx_B (99) 87.8 (0.66) A-11 V-70 1.12 v v
2a9%_A B 1u90_A  2c8b_X 2a78_A (05) 99.4 (0.63) 2a78_B (05) 33.0 (0.80) A-70 1-97 1.03 v v
2btf A P 1ijj_B 1pne_A 1hlu_A (97) 92.5 (1.45 1hlu_P (97) 100.0 (0.54) C-774 N-99 0.75 v v
2g77_A_B  1fkm_A 1206_A - —  1ukv_Y (03) 413(01.17) - Y-103 - - X
- —  3cue_R (08) 419 (1.29) - W-87 - - X
- —  2fu5_D (06) 36.3(1.52) - R-71 - - X
- - 1wgl1_R (97) 35.3(1.25) - S-42 - - v
= -  1wa5_A (04) 26.9(1.32) - D-161 - - X
2hle_A_B 2bba_A  1iko_P 1kgy_C (01) 442 (1.07) 1kgy_G (01) 97.9 (0.88) A-186 G-126 2.01 v v
200b_ A B 200a_ A 1yj1_A 2g3qg_A (06) 30.6 (0.90) 2g3q_B (06) 83.8(0.93) R-964 V-70 7.59 X v
1grn_A_ B 1adr_A 1rgp_A 2ngr_A (98) 99.4 (0.68) 2ngr_B (98) 95.3(0.64) Q-61 V-198 1.74 v v
img8_A_B  1iam_A 1imq9_A 3bn3_B (07) 26.1 (1.46) 3bn3_A (07) 93.8 (0.53) E-34 S-141 2.93 X X
1r6g_ A_C  1r6c_X  2w9r A 1mg9_B (02) 100.0 (0.82) 1mg9_A (02) 97.6 (0.42) T-26 V-80 0.77 v v
1syx_A B 1qgv_A 12z A 1 - - = - = - - - -

Table 6.4: (continued on next page)
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Target Query Query Template %-Seq (RMSD) Template %-Seq (RMSD) Key Res Key Res FH DFBS DFBS
PDB D@ D2¢ D1? D1¢ D2v D2¢ D1¢ D24 RMSDe D1/ D2/
Others (contd)
iwgi_R_G 6qg21_D 1wer_A 1xd2_A (04) 99.4 (0.66) — - V44 - - X -
3brw_D (07) 57.1(0.91) - - G-60 - - v -
3cf6_R (08) 55.6 (1.04) — - D-57 - - X -
1ukv_Y (03) 37.4(1.03) - - Y71 - - X -
2dfk_B (06) 31.4(1.18) - - A122 - - X -
2ayo_A_B 2ayn_A  2fcn_A 1nbf_A (02) 22.1 (1.35) 1nbf_D (02) 90.5 (0.68) S-275 L-69 1.76 X X
2cth_A_C 1sz7_A  2bjn_A 2j3w_D (06) 95.4 (0.62)  2j3t_B (06) 53.0 (0.95) V-116 M-107 - X X
2j3t_A (06) 96.0 (0.78)  2j3w_F (06) 21.9(1.26 L-60 L-135 - X X
2h7v.A C 1mhi_A 2h70_A 1g4u_R (00) 100.0 (0.77) - - G112 = = N =
1hh4_B (00) 100.0 (0.80) - - R-68 - - v -
1i4d_D (01) 99.4 (0.70) - - S-71 — — v -
1e96_A (00) 98.9 (0.61) — - P-29 - - X -
2v55_D (08) 45.7 (0.98) - -  E171 - - X -
2nz8_A B imh1i_A 1inty_A 2vrw_A (08) 98.9 (0.93) 2vrw_B (08) 22.4 (1.66) T-58 Q-1368 2.84 v v
20za_ B_.A  3hec_ A  3fyk_X 1jsu_A (96) 35.1 (1.31)  2qus_E (07) 27.4 (1.58)  V-52 S-265 - X X
1fq1_B (00) 34.8 (1.42) 2vgo_B (07) 27.6 (1.63) H-228 V-137 - X X
1w98_A (04) 34.8 (1.21) 3ddg_C (08) 20.8 (1.53) R-70 E-104 - X X
2z0e_A B 2d1i_A 1v49_A_1  2zzp_ A (09) 95.7 (0.60) 2zzp_B (09) 99.1 (1.46) S-316 F-80 0.82 v v
3cph_G_A  3cpi_ G 1g16_A 1ukv_G (03) 99.1 (1.34)  1ukv_Y (03) 51.9(0.76) R-248 Y-89 1.86 v v
1r8s_A_E thur A 1r8m_E 1r8q_A (03) 100.0 (1.02)  1r8q_E (03) 98.9 (1.15)  1-46 1-193 2.27 v v
1y64_A_B 2fxu_A 1ux5_A 1lot_B (02) 93.4(0.59) - - M-283 - - X -
2pbd_A (07) 93.1 (1.01) - - R-116 - - X -
2ff3_B (05) 92.8(0.54) - - Y143 = = v =
1mvw_Y (02) 92.2(0.74) - - Y53 - - X -
2ido_A B 1j54_A 1se7_A_1  1zbu_A (05) 17.8(1.52) — - E-85 - - N -
20t3_B_.A  1yzu A 1txu_A 2efe_D (07) 39.1 (1.17)  2efe_C (07) 439 (1.42) D-74 L-316 3.50 v v

Table 6.4: ¢ The unbound structures of the query domains, as given by Hwang et al., (2010). D1 denotes the first query domain; D2 denotes the second
query domain. D1 and D2 are given in Table 6.1. ?The best template found by KBDOCK with which to model the target complex. The PDB deposition year of
the template is given in parentheses. ¢ The percentage sequence identity between the query and the template domain sequences. The RMSD between the
C., atoms of the target complex and the selected template is given in parentheses. ¢ The residue shown is the query residue calculated to be at the centre of
the interface in the target complex. © When a FH template is found, the unbound query structures are superposed onto the template and the overall RMSD
between the superposed query domains and those of the target complex is calculated. f The selected template and target DFBSs are the same according
to the KBDOCK DFBS clustering threshold. 9 The template DFBS could not be compared with the target in this case (1j2]) because 3DID does not provide
DDls for this structure. A hyphen indicates “no data found”.
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Target Query Query Template %-Seq (RMSD) Template %-Seq (RMSD) Key Res  Key Res FH DFBS DFBS
PDB D1 D2¢ D1? D1¢ D2b D2¢ D14 D2¢ RMSDe Dt/ D2/
Enzymes (36)
1avx_A_B 1gqu_A 1ba7_B 1mct_A (92) 100.0 (0.46) 1ava_C (97) 30.1 (1.23) S-195 P-168 - v X
1tab_E (90) 81.5(0.50) - - W-215 - - v -
2hpp_H (93) 37.6 (0.96) — - F94 - - X -
1hut_H (93) 37.5(1.05) - - G-208 - - X -
1avg_H (97) 37.2(0.46) — - F82 - - X -
lay7_A_B 1rgh_B 1a19_ B 1brs_C (94) 30.4 (1.70)  1brs_F (94) 98.8 (0.49) H-85 D-39 3.24 v v
1cgi_E_| 2cga_B 1hpt_A 1tgs_Z (82) 41.8 (1.04) 1tgs_1(82) 66.0 (1.06) Y-146 C-16 1.62 v v
1dér_A_| 2tgt A 1k9b_A 1tab_E (90) 100.0 (0.59)  1tab_I (90) 36.0 (1.05) W-215 C-41 1.65 v v
1dfi_E_|I 9rsa_B 2bnh_A - - = - = - - - -
1e6e_ A B leln A 1cje_D 1f6m_F (00) 12.3(1.73)  1ffv_A (00) 17.8 (1.71)  A-180 1-94 - X X
- —  1ffu_D (00) 17.8 (1.71) - C-46 - - X
leaw_A_B leax_A Ipti_A 1bzx_E (98) 39.6 (0.84) 1bzx_I (98) 98.1 (0.26) S-195 C-14 0.69 v v
1kig_H (97) 33.2(0.99) 1kig_I (97) 241 (1.33) G-219 R-42 7.60 X X
lezu_C_ B  1trm_A lecz_A 1sIx_B (96) 96.8 (0.50)  1slIx_A (96) 95.3(0.78) W-215 S-82 0.97 v v
1134 A B 4pep A 1f32_A 1htr_B (94) 50.9 (1.23) - - F-15 = = X =
1fle_E_|I 9est_A 2rel_A_4 1pyt_C (95) 53.8(0.78) - - F-215 - - v -
1hrt_H (93) 30.0 (1.14) - - Y207 - - X -
2hpp_H (93) 291 (1.09) - - W-94 - - X -
1gi1_A_| 1k2i_1 ipmc_A_6 lacb_E (91) 98.6 (0.34) - - M-192 - - v -
1slv_B (96) 42.1 (1.00) - - S8-195 - - v -
1bui_B (98) 38.9(1.12) - - G-25 - - X -
1bml_B (99) 38.4(0.83) - -  T62 - - X -
1j9c_H (01) 35.6 (1.00) - - S-164 - - X -
1sgf_X (97) 29.5(0.96) - - G-187 - - X -
thia_B_| 2pka_Y 1bx8_A 2kai_B (84) 100.0 (0.55) - - W-215 - - v -
2hpp_H (93) 18.7 (1.06) — - H-101 - - X -
lets_H (92) 18.7(1.09) - - G-208 - - X -
1jtg_B_A 3gmu_B 1zg4_A = = = = = = = = =
imah_A_F 1j06_B 1fsc_A 1fss_A (95) 58.9 (0.77)  1fss_B (95) 82.0 (0.79) Y-72 V-34 0.79 v v
1n80_C_E  8gch_F 1ifg_A 1ezu_C (00) 24.0 (0.82) 1ezu_B (00) 96.2 (0.76) H-57 S-82 1.31 v v
10c0_A B 2jg8 A 4 1b3k A - - 1k90_I (01) 301 (1.44) - R-346 - - X
1oph_A_B  1utg_A 1glp_A 1k9o_E (01) 71.7 (0.55)  1k9o_1I (01) 28.4(1.40) Q-192 L-353 0.65 v v
1ppe_E_| 1btp_A 1lu0_A 1tab_E (90) 100.0 (0.44) - - W-215 - - v -
1hgt_H (91) 36.3(0.97) - -  G-203 - - X -
1rOr_E_| 1scn_E 2gkr_| 1cse_E (88) 100.0 (0.30) 3sgb_I (83) 100.0 (0.46) L-126 C-16 - v v
1scj_A (98) 68.2 (0.51) - - Y104 - - X -
1yvb_A_l 2ghu_A 1cew_| 1stf_E (93) 33.8(1.13)  1stf_1(93) 19.8 (1.51) G-40 1-58 2.98 v v
20t A D 966c_A 1d2b_A 20 1uea_C (97) 59.0 (0.72) 1uea_D (97) 70.5(1.28) A-182 T2 2.01 v v
208v_A B  1sur A 2trx_A 1zun_A (05) 17.9 (1.61)  2ajq_B (05) 100.0 (0.63) P-167 1-75 - X X
- —  2ipa_A (06) 46.2(1.32) - 1-72 - - X

Table 6.5: The calculated docking templates and key binding site residues for the 73 benchmark targets with date filtering (continued on next page).

buiuoseay paseg-asen buisn Bunfooq uiejoid-uisjold -9 seydeysn



66

Target Query Query Template %-Seq (RMSD) Template %-Seq (RMSD) Key Res  Key Res FH DFBS DFBS
PDB D1 D2¢ D1? D1¢ D2? D2¢ D1¢ D24 RMSDe  Dt1/f D2/
Enzymes (contd)
20ul_A_B 3bpf_A 2nnr_A 2nqd_B (06) 36.4 (1.12) 2nqd_A (06) 96.0 (0.72) H-174 P-30 6.31 v v
2pcc_A_B 1cep A 1ycc_A — - - - - - — -
2sic_E_| 1sup_A 3ssi_A 1cse_E (88) 69.0 (0.55 ) = - L-126 = = v =
2sni_E_| 1ubn_A 2ci2_| 1cse_E (88) 68.6 (0.54) 1cse_l (88) 35.9(1.39) L-126 V-57 1.96 v v
3sgq E_| 2qa9_E 20vo_A 3sgb_E (83) 99.4 (0. 54) 3sgb_I(83) 98.0 (0.43) G-215 C-16 0.57 v v
7cei_A_B 1unk_B 1m08_B - - - - - — -
lacb_E_| 2cga_A legl A 1cgj_E (91) 100.0 (0.73 ) 2tec_| (90) 98.4 (1.02) R-145 V-43 - v v
1hgt_H (91) 35.1 (1.10) - - W-207 - - X -
1inw9_B_A  1jxq_A 20py_A 1i4e_B (01) 35.3 (0. 97) - -  R-341 - - X -
4cpa_A | 8cpa_A 1h20_A 9 - - - - - - -
1fém_A_C  1cl0_A 2tir_ A - - 1t7p_B (97) 99.0 (0. 55) - I-75 - - v
1fqgi_A B  1fpz_F 1b39_A = —  1big_C (98) 13.8(1.72) - N-91 = = N
- —  1buh_A (98) 109 (1.77) - L-156 - - X
- — 1b6c_D (99) 10.8 (1. 72) - S-69 - - X
1pxv_A_C 1x9y_A 1nyc_A - - - - - - - -
1zIi_ A B 1kwm_A  2jto_A_6 2bo9_C (05) 39.0(0.98) - - Y-198 - - v -
203b_A_B 1zm8 A 1j57_A - - - - - - - -
Others (38)
lak4 A D 2cpl A 1e6j_P - - - - - - - - -
1buh_A_ B  1hcl_A 1dks_A 1fin_C (96) 85.2(0.96) - - |52 - - X -
1jsu_A (96) 87.6 (0.94) - - V79 - - X -
1e96_A B 1mh1_A 1hh8_A 1foe_D (00) 96.6 (0.95) — - D-57 - - X -
1ds6_A (00) 94.8 (0.80) - - R-68 - - X -
1rrp_A (99) 27.4 (1.24) - - Y23 - - v -
1efn_B_A 1avw_A 1983_A - - = - - - - - -
1ffw_A B 3chy_A 1fwp_A 1a0o_E (97) 100.0 (0.54) 1a0o_F (97) 100.0 (1.48) I-95 V-53 0.52 v v
1fq_ A B 1tnd_C 1fqi_A 1agr_A (97) 62.9 (0.77) 1agr_E (97) 35.3(1.16) T-178 N-364 0.78 v v
1gcq B.C 1gri_B 1gcp_B 1ycs_B (96) 32.6 (0.85) — -  F-47 - - X -
1gpw_A_B  1thf D 1k9v_F 1ka9_F (01) 58.5 (0.90 1ka9_H (01) 37.0 (1.17 D-98 M-421 3.57 v v
1hod_ A B  1ean_A 1ilf_A_1 - - - - - - - - -
thel_C_A 1mh1_A 1he9_ A 1g4u_R (00) 100.0 (0.77)  1g4u_S (00) 30.0 (1.43) G-12 R-146 0.98 v v
1j2j_A_BY 103y_A 1oxz_A 1ksj_A (02) 45.3(0.87) - - V53 - - - -
1m2o0_B (02) 36.6 (0.97) - - T48 - - - -
1tkac_A B 1nob_F 1f5w_B - -  1akj_E (97) 16.7 (1.37) - L-73 - - v
1iktiz A B 1tgk A 1m9z_A 1es7_A (00) 30.8(1.26) - - R-52 = = X =
1mlI0_A_D  1mkf_A 1dol_A - - - - - - - -
1s1qg_A_B 2for_A 1yj1_A - - 1cmx_B (99) 87.8 (0.4 ) - V-70 - - X
= - lotr_B (03) 83.8(1.25) - I-44 = = X
1xd3_A_B  1uch_A 1yj1_A 1cmx_A (99) 23.5(1.42) 1cmx_B (99) 87.8(0.66) A-11 V-70 1.12 v v
2a9%« A B 1u90_A 2c8b_X 2a78_A (05) 99.4 (0.63) 2a78_B (05) 32.9 (0.80) A-70 1-97 1.03 v v

Table 6.5: (continued on next page).
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Target Query Query Template %-Seq (RMSD) Template %-Seq (RMSD) Key Res  Key Res FH DFBS DFBS
PDB D1@ D2¢ D1? D1¢ D2v D2¢ D14 D2¢ RMSDe Dt/ D2/
Others (contd)
2btf_A_P 1iji_B 1pne_A - - - - - - - - -
2977 A B 1fkm_A  1z06_A = - 1ukv_Y (03) 413(1.17) - Y-103 = = X
- — 2d7c_A (05) 38.4 (1.11) - V-68 - - v
- —  2fu5_D (06) 36.3 (1.06) - R-71 - - X
- — 1xd2_B (04) 35.3(1.13) - D-88 - - v
- — 1wa5_A (04) 26.9(1.32) - D-161 - - X
2hle_A_B 2bba_A 1iko_P 1kgy_D (01) 44.2 (1.04) 1kgy_H (01) 97.9 (0.84) A-186 G-126 2.02 v v
200b_A_B 200a_A  1yj1_A 2g3qg_A (06) 30.6 (0.90) 2g3qg_B (06) 83.8(0.93) R-964 V-70 7.59 X v
1grn_A_B 1adr_A 1rgp_A 1am4_D (97) 94.4 (0.83 1am4_A (97) 96.0 (0.85) Q-61 V-198 1.74 v v
1mg8_A B liam_A  1mg9_A = - ijk_A (01) 21.7 (1.41) - K-276 = = X
- -  1m10_A (02) 21.7(1.52) - Q-167 - - X
16 A C  1r6c_ X  2wor A 1mg9_B (02) 100.0 (0.82)  1mg9_A (02) 97.6 (0.42) T-26 V-80 0.77 v v
1syx_ A B 1ggv_A 112z_A_1 - - = - - - - - -
1wql_R_G 6921_D 1wer_A 1gua_A (96) 57.7 (0.93) - - Y40 - - X -
1am4_D (97) 30.2(1.25) - - Q-6 - - v -
2ayo_A_B 2ayn_A 2fcn_A 1nbf_B (02) 22.1 (1. 31) 1nbf_C (02) 90.5 (0.68) S-275 L-69 1.76 X v
2cfh_A_C 1sz7_A 2bjn_A - - - - - -
2h7v_A C imh1i_A  2h70_A 1hh4_B (00) 100.0 (0.80) - - R-68 - - v -
1g4u_R (00) 100.0 (0.77) - - G-12 - - X -
1i4d_D (01) 99.4 (0.70) - - ST = = v =
1e96_A (00) 98.9 (0.61) - -  P-29 - - X -
1wa5_A (04) 27.4 (1.26) - - Q141 - - X -
2nz8_ A B imh1i_A 1Inty_A 1foe_D (00) 96.6 (0.95) 1foe_C (00) 22.8 (2.01) D-57 1-1364 3.61 v X
20za_ B A 3hec_ A 3fyk X 1fq1_B (00) 34.8 (1.32) 2bfx_B (04) 27.0(1.63) H-228 V-137 - X X
1jsu_A (96) 35.1(1.32) 1f3m_C (00) 21.3(1.43) V-52 S-265 - X X
1w98_A (04) 34.8 (1. 21) 2g99x_C (06) 211 (1.50) R-70 E-104 = X X
2z0e_A B 2d1i_A 1v49 A1 - - - - - - - -
3cph_G_A  3cpi G 1g16_A 1ukv_G (03) 99.1 (1 34) 1ukv_Y (03) 51.9 (0.76) R-248 Y-89 1.86 v v
1r8s_A_E Thur_A 1r8m_E 1r4a_B (03) 55.2(0.90) - - Y81 - - v -
1ksh_A (02) 44.3(0.88) - - T55 - - v -
1m20_D (02) 35.6(1.05) - - D-67 - - X -
1y64_A_B 2fxu_A 1ux5_A 1t44_A (94) 92.8 (0.68) - - Y-143 - - v -
1rgi_A (03) 91.4 (0.55) - - E-93 - - X -
1kxp_A (02) 91.4(0.53) - - L1171 = = X =
1tyq_A (04) 345(1.39) - - R-256 - - X -
2ido_A_B 1j54_A 1se7_A 1  1zbu_A (05) 178(1.52) - - E-85 - - X -
20t3_B_A 1yzu_A 1txu_A 2hv8_A (06) 38.3(1.17) - - A54 - - v -
1ukv_Y (03) 37.0 (1.04) - - Y89 - - X -
2fu5_D (06) 34.0(1.24) - - L-57 = = X =
2a78_A (05) 325(1.24) - - G-77 - - X -
1wa5_A (04) 315(1.27) - - Q145 = = X =

Table 6.5: The column headings are described in Table 6.4.
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6.6. The KBDOCK Case Adaptation

Figure 6.5: This figure illustrates the domain family binding sites of the Trypsin / Kunitz BPTI and
Pyr_Redox_2 / Fer2 docking targets. The example on the left shows the trypsin (yellow) and Kunitz BPTI
(orange) query domains with their binding site direction vectors (calculated from the 2r9p and 2ody FH tem-
plates) shown as arrows. The target complex (PDB code 1eaw) shown below may be modelled to within 0.79
A RMSD by re-using the DFBS of the highest sequence identity FH template, 2rp9_B/ 2rp9_F (see Table 6.4).
The example on the right shows the three binding site direction vectors of each of the Pyr_Redox_2 (yellow)
and Fer2 (orange) query domains, with the target complex (PDB code 1e6e) shown below. This target has no
FH templates, but the complex may still be modelled by re-using the SH binding sites of 2v3b_A and 1ffv_D
(Table 6.4).

6.6.4 Summary of KBDOCK Case Retrieval Results

Table 6.6 summarises the results given in Table 6.4 and Table 6.5. Overall, it can be seen that
KBDOCK can provide high quality FH docking templates for a total of 45 of the 73 targets (or 26 out
of 73 with date filtering). Even when no FH templates exist, KBDOCK can still find useful binding
site information for at least one of the domain partners for 12 of the remaining 28 targets (or 18 out
of 47 with date filtering). More specifically, KBDOCK finds good FH templates for a total of 24 out
of 36 Enzyme target complexes, although this number falls to 13 when PDB deposition date filtering
is applied. A further 10 Enzyme targets have SH DDlIs involving one or both of the target domains,
and just 2 Enzyme targets have no hetero DDI information. Similarly, Table 6.6 shows that 21 (or
13 with date filtering) of the 37 Other targets may be modelled using FH templates, and a further 14
targets have SH DDIs involving one or both of the target domains. Like the Enzyme targets, only 2
of the Other targets have no hetero DDI information.

Table 6.6 also shows that all of the retrieved FH templates are correct according to the 10A
RMSD threshold. Thus, if KBDOCK retrieves a FH template, there is a high probability that it repre-
sents a good model of the target complex. Half of the number of targets for which only SH templates
are available were found to reuse their known DFBSs. This suggests that in these cases focused
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Chapter 6. Protein-Protein Docking Using Case-Based Reasoning

docking would give better predictions than blind docking. These results demonstrate that the ap-
proach embodied in KBDOCK provides a useful way to find protein docking templates.

Target Total FH SH-two SH-one No
class targets templates templates template templates
No date filtering

Enzyme 36 24 /24 (3+1)/5 3/ 5 2
Other 37 21 /21 (0+0)/3 5/11 2
Total 73 45/ 45 (3+1)/8 8/16 4
With date filtering

Enzyme 36 13/13 (2+1)/5 7 /11 7
Other 37 13/13 (0+0)/1 8/15 8
Total 73 26 /26 (2+1)/6 15/26 15

Table 6.6: Summary of the KBDOCK template modeling results for the 73 selected Protein Docking Bench-
mark targets. This table shows the number of docking targets for which the proposed templates are correct
compared to the total number of templates retrieved. When SH-two templates are found, the figures in brack-
ets give the number of cases in which both binding sites are modeled correctly plus the number in which only
one binding site is modeled correctly.

6.7 The KBDOCK Case Refinement

Section 6.6.2 has shown that the CBR approach can often find potentially useful cases with
which to model SH-two and SH-one problems but it cannot fully specify the proposed 3D binding
mode. In this section, we describe how we use Hex rigid body docking program to refine the poses
proposed by KBDOCK and we compare predictions obtained from such docking refinement against
blind docking.

Using Hex for Fast Docking Refinement

The Hex rigid-body docking algorithm (Ritchie and Kemp, 2000) is used to refine and rank the SH
initial poses generated using the procedure described in Section 6.6.2. Since Hex can perform all-
versus-all docking of multiple PDB model structures, it is relatively straight-forward to prepare a Hex
script to perform a rigid-body docking search around each putative DDI in the list P(d1/b1,d2/b2).
For SH-two cases, the docking search is focused around the given pair of binding site centre residues
using two angular constraints, 51 and 3, (Ritchie et al., 2008), as shown in Figure 6.4. On the other
hand, for SH-one problems, just one angular constraint is applied to the known binding site, and the
other domain is allowed to spin freely in order to search over its entire surface. If no DFBSs match
the query, unconstrained blind docking is applied. Here, each pair-wise Hex docking run used 3D
FFT shape-based correlation searches with range angles of 5,=£,=45°, as appropriate, and 40
translational steps of 0.5 A along the = axis with respect to each given starting orientation. This
generates approximately 60, 360, and 2,000 million trial rigid body orientations for each pair-wise
SH-two, SH-one, and blind docking run, respectively, of which the top 2,000 are re-scored using the
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6.7. The KBDOCK Case Refinement

DARS potential (Chuang et al., 2008) within Hex. For docking runs involving multiple combinations
of DFBSs, individual pair-wise docking results are merged and sorted by DARS energy to give the
final ranked list of solutions. Algorithm 1 shows some high-level pseudo-code which summarises
the modelling choices of the KBDOCK approach.

Algorithm 1 High-level pseudo-code for modelling a DDI by CBR.
if |[FH(d1,d2)| > 0 then
apply substitution adaptation
else if |[SH(d1,D2)| > 0 A |[SH(D1,d2)| > 0 then
apply two substitutions and focused docking
else if |[SH(d1,D2)| > 0V |SH(D2,d2)| > 0 then
apply one substitution and loosely constrained docking
else
apply blind docking
end if

6.7.1 The Extended Docking Test Set

In the first test set described above, we considered only single-domain targets from the Protein
Docking Benchmark. Here, we wish to test the KBDOCK CBR approach against a larger test set
and therefore we include both single and multi-domain targets. The Protein Docking Benchmark 4.0
(Hwang et al., 2010) consists of 176 targets in total. Here again, we exclude the 25 antigen-antibody
complexes because the antibody binding sites are known a priori and because the antigen binding
sites generally do not entail homology. We also exclude 11 targets for which no Pfam domain could
be identified in one or both of their subunits (PDB codes 1clv, 1e6e, 1udi, 2abz, 2b42, 2uuy, 1151,
1j2j, 19a9, 1xgs, 2hrk), leaving 140 target complexes. In order to simulate a scenario in which trivial
solutions of each target do not already exist, all targets were modelled using only structures with
PDB deposition dates earlier than those of the query structures. Because we want to compare
predictions obtained with blind docking with those obtained using the KBDOCK CBR approach,
we exclude targets which have no DDI information in the KBDOCK database. This removed a
further 39 targets from consideration, leaving 102 targets for which non-trivial homologues exist in
the KBDOCK database for one or both partners. Of these 102 targets, 54 are single-domain targets
and the remaining 48 are multi-domain targets.

6.7.2 Docking Refinement Results for Single-Domain Targets

Table 6.7 compares the CBR-based modelling results with blind Hex docking for the 54 single-
domain target complexes of the extended docking test set (Section 6.7.1). Except for the angular
search range constraints, the blind Hex runs used the same docking parameters as for the SH
problems described above. For the target 1eaw, three FH template cases were found. Hence, for this
target, the template with the highest overall similarity was used to build the final model by substitution
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adaptation. As can be seen from the Rank and RMSD columns in Table 6.7, this procedure allowed
23 out of the 24 single-domain targets to be modelled accurately, with known DFBSs being re-used
in all but one of the targets (indicated with an asterisk). The final two columns of Table 6.7 show
the results obtained using Hex blind docking. Here, relatively low accuracy solutions were found for
only 8 of the 24 targets, with six of those being ranked in the top 10 by the Hex scoring function. A
hyphen in this table indicates that no “acceptable” solution within 10A RMS from the native complex
was found within the first 2,000 solutions using blind docking. These contrasting results highlight the
utility of modelling DDlIs using known DFBSs.

The next two sections of Table 6.7 show that 30 of the docking targets may be treated as some-
what more challenging SH problems (26 SH-one and 4 SH-two problems). Of the 26 SH-one prob-
lems, 15 of the known DBFSs turn out to be re-used, whereas 11 targets use previously unknown
binding sites (according to the PDB date filter). It is unsurprising that KBDOCK gives no acceptable
solution when the known DFBS is not reused in the target. Of the 15 targets that re-use known
DFBSs, KBDOCK finds 8 good solutions, of which 6 are ranked within the top 4. For the remaining 7
targets (out of the 15), KBDOCK retrieves the template DFBSs, but the angular constraint passed to
the docking stage is too tight to include a near-native orientation in the search space. Blind docking
finds slightly more (11 targets) solutions overall, but the ranks for two of these (1kac and 1s1q) are
too low to be useful. There are two SH-one targets (1kac and 2g77) for which blind docking finds a
solution but KBDOCK does not.

On the other hand, for two of the four SH-two cases, the DFBSs on both partners are re-used
and KBDOCK finds two good solutions at rank 1 and 2 for targets 1rOr and 1acb, respectively. Rigid
body docking with Hex finds only one rather poor solution for these four targets. Overall, these
results suggest that focused docking gives better predictions when the known DFBSs are reused in
the targets.

6.8 Modelling Multi-Domain Docking Problems

So far we have considered only the relatively straightforward task of modelling single-domain
protein complexes. This section describes how we extend the KBDOCK approach to deal with multi-
domain PPls. Here, we consider the problem of aggregating DDI-level CBR cases to model the 3D
structure of a multi-domain protein complex.

6.8.1 Aggregating Multiple DDIs

In general, each protein to be docked may consist of multiple domains. Therefore, if X =
(d1,d2,...,dN) and Y = (el,e2,...,eM) represent the proteins X and Y and their component do-
mains, then the preceding analysis of DDIs might suggest that we should take the Cartesian product
of all possible pairs of component domains, apply the above KBDOCK CBR modelling procedure
to each pair of domains, and then aggregate the solutions. However, because rigid body docking
inevitably produces multiple false-positive solutions, it is important to consider computational dock-
ing as a measure of last resort, and to defer any docking calculation for as long as possible in the
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6.8. Modelling Multi-Domain Docking Problems

Target Target Template %-Seq %-Seq DFBS DFBSs CBR +Hex Blind Hex
PDB Class PDB 1 2 Pairs Re-used Rank RMSD Rank RMSD
Single-domain FH (no Hex docking)

lay7 E/R 1brs 29.4 941 1 Y+Y 1 2.89 - -
1cgi E/R 3sgb 20.6 347 1 Y+Y 1 1.56 2 9.07
1eaw E/R 1tfx 415 39.6 3 Y+VY 1 0.93 7 8.06
imah E/R 1fss 58.9 96.7 1 Y+Y 1 0.76 2 4.63
1n8o E/R 1lezu 413 953 1 Y+VY 1 1.31 - -
1oph E/R 1jmo 289 35.6 1 Y+Y 1 0.65 - -
1yvb E/R 1stf 33.8 19.8 1 Y+Y 1 2.98 - -
2jot E/R 1baq 467 31.2 1 Y+Y 1 2.01 5 9.07
2oul E/R 2nqd 36.4 94.0 1 Y+Y 1 6.31 2 9.61
2sni E/R 1cse 63.1 35.9 1 Y+Y 1 1.70 - -
3sgqg E/R 1cgj 184 34.0 1 Y+Y 1 0.22 - -
1ffw O/R 1a0o 98.3 985 1 Y+Y 1 0.52 411 9.72
1fqj O/R 1agr 63.6 35.3 1 Y+Y 1 0.47 - -
1igpw O/R 1ka9 58.5 37.6 1 Y+Y 1 3.57 5 8.78
1hel O/R 1g4u 99.4 30.0 1 Y+Y 1 0.98 - -
1xd3 O/R 1cmx 21.8 94.2 1 Y+Y 1 1.12 - -
2a%k O/R 2a78 98.8 33.2 1 Y+Y 1 1.03 - -
2hle O/R 1shw 442 26.7 1 Y+Y 1 2.01 - -
200b O/R 2bwe 20.5 333 1 Y+N * * 335 9.90
1grn O/M 1am4 93.8 96.0 1 Y+Y 1 1.74 - -
1r6q O/M 1r60 98.0 98.8 1 Y+Y 1 0.77 - -
2ayo O/M 1nbf 221 9741 1 Y+Y 1 1.76 - -
2nz8 O/M 2dfk 240 713 1 Y+VY 1 2.84 - -
3cph O/M 1vg0 19.4 379 1 Y+VY 1 1.86 - -
Single-domain SH-one (with Hex docking)

1134 E/R 1htr 51.0 - 1 N+U * * 5 8.64
1fle E/R 1pyt 53.8 - 3 Y+U 1 7.24 - -
1gl1 E/R 1acb 98.6 - 6 Y+U 4 8.01 6 7.32
1hia E/R 2kai 64.3 - 3 Y+U 52 9.56 11 8.45
10c0 E/R 1k9o 30.1 - 1 N+U * * - -
1ppe E/R 1tab 100.0 - 2 Y+U 1 3.54 1 3.29
2sic E/R 1cse 63.4 - 1 Y+U 1 9.69 1 7.33
1nw9 E/M 1ide 34.9 - 1 N+U * * 23 6.49
1fq1 E/D 1buh 98.6 - 3 N+U * * - -
1zli E/D 2bo9 7.5 - 1 Y+U 2 7.77 2 7.13
1buh O/R 1fin 98.6 - 2 N+U * * - -
1e96 O/R 1foe 97.2 - 3 N+U * * - -
1gcq O/R 1ycs 32.7 - 1 N+U * * - -
1i4d O/R 1g4u 99.4 - 3 N+U * * - -
1kac O/R 1akj - 17.0 1 u+Y - - 265 8.76

Table 6.7: Summary of the CBR-based docking results (continued).

reasoning process. Furthermore, since each of the target proteins will normally be provided as
complete 3D structures, it is not necessary to model any internal DDIs because these are given as
part of the problem. Indeed, such internal interactions will obviously “consume” a certain number
of DFBSs, thus blocking them from interacting with the domains of the other protein. Therefore,
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Target  Target Template %-Seq %-Seq  DFBS DFBSs CBR +Hex Blind Hex
PDB Type PDB 1 2 Pairs  Re-used Rank RMSD Rank RMSD
Single-domain SH-one (with Hex docking; contd)

1s1q O/R 1otr - 899 2 U+N * * 190 9.59
1z0k O/R 1ukv 49.4 - 5 Y+U 2 3.00 2 7.06
2977 O/R 1ukv - 407 5 Uu+Y - - 55 8.58
1Ifd O/M 1wq1l 99.4 - 2 Y+U 48 8.59 - -
1img8 O/M 1ijk - 217 2 U+N * * - -
1wqi Oo/M 1gua 57.7 - 2 Y+U - - - -
2h7v Oo/M 1g4u 99.4 - 5 Y+U - - - -
1r8s O/D 1rd4a 55.6 - 3 Y+U - - - -
1y64 O/D 1nm1 89.3 - 4 Y+U - - - -
2ido O/D 1zbu 17.8 - 1 N+U * * - -
20t3 O/D 2hv8 38.3 - 5 Y+U - - - -

Single-domain SH-two (with Hex docking)

1avx E/R imct + 1ava 100.0 30.1 5 Y+N * * - -
1rOr E/R 1cse + 1ppf 89.5 100.0 2 Y+Y 2 2.61 61 9.90
208v E/R 1zun + 2bto 17.9  99.0 2 N+Y - - - -
1acb E/M 1cgj + 2tec 100.0 100.0 2 Y+Y 1 8.60 - -

Table 6.7: Summary of the KBDOCK versus blind docking results. A — denotes no solution found within the
top 2,000 docking predictions. An * denotes no solution was found by KBDOCK because a DFBS was not re-
used. Other abbreviations used: E, O, R, M and D stand for ‘Enzyme’, ‘Other’, ‘rigid body’, ‘medium difficulty’
and ‘difficult’ target, respectively. Y, N and U stand for ‘Yes’ (DFBS re-used), ‘No’ (DFBS not re-used), and
‘Unknown’ binding site, respectively.

our first strategy is to remove from consideration any DDIs that are implicitly blocked by the other
components of the query. This is done by identifying the binding site centres of each domain in the
query protein (by querying the CB as described above) and by striking out any binding sites whose
centre residues are buried in the query protein. This reduces the number of DFBSs that should be
considered as possible docking sites. The overall procedure is illustrated in Figure 6.6.

The next step is to form a Cartesian product of the surviving DFBSs of each protein, and to query
the CB with each putative pair of such DFBSs in order to collect sets of FH and SH cases from the
CB. If no cases are retrieved, then Hex blind docking is applied directly. Otherwise, if any FH cases
are retrieved we assume that the problem can be modelled by superposing the query structures onto
the best FH template, as before (Section 6.6.1). The only difference from the single DDI procedure
is that now all of the atoms of each protein are transformed by the superposition transformation.
On the other hand, if no FH case and no SH-two cases are retrieved the proteins are docked and
ranked by applying the SH-one procedure to the set of available DBFSs (Section 6.6.2). Otherwise,
all available domains are cross-docked and ranked using the SH-two procedure. Here again, the
main difference from the single DDI SH modelling procedure is that now all of the atoms of each
protein are transformed when making a docking pose.
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Figure 6.6: Overview of the KBDOCK approach for modelling multi-domain PPIs. Given two proteins, KB-
DOCK uses PfamScan to identify the Pfam domains. For each Pfam domain, KBDOCK retrieves one or more
DFBSs and it filters out any DFBS which is consumed by intra DDIs. From the remaining DFBSs, KBDOCK
enumerates all the possible pairings using a Cartesian product. Depending on the type of the DFBS case
(FH or SH), a coordinate transformation is applied and a docking refinement is used if necessary. If FH cases
are found, the predictions are ranked according to sequence similarity. Otherwise, the Hex rigid-body docking
program is used to refine and rank the initial docking poses.

6.8.2 KBDOCK Modelling Results for Multi-Domain Targets

Table 6.8 shows the results obtained for the 48 multi-domain targets. Like the single-domain
targets, the first group of entries shows a very satisfying pattern of results for six multi-domain FH
problems. For the three targets 1d6r, 1ezu, and 1wdw, one of the partners is a large symmetric
homodimer. In all three of these cases, the KBDOCK approach correctly retrieves very low RMSD
solutions for each monomer of the dimer (shown as three rank-1 solutions in the table). The next
three targets, 2vdb, 1h1v, and wi9b, involve three assymetric repeats of the same domain in one of
the partners, and KBDOCK again finds acceptable or better quality docking for these three targets
(two of which are “Difficult”). In contrast, for these six targets, blind docking found only one solution
(for 1d6r) with a very poor rank.

On the other hand, only a relatively small number of the 34 multi-domain SH-one targets are
predicted well either by KBDOCK or by blind docking. Of the 34 targets, 13 targets do not reuse
their known DFBSs and therefore focused docking does not find any acceptable solution. Blind
docking finds acceptable solutions for one of these 13 targets. The remaining 21 targets reuse one
of their known DFBS but focused docking finds acceptable solutions for only 5 of them (2 targets
within the top 10 rank). For these 5 targets, blind docking performs better (3 targets within the top 10
rank). This is because 9 of the 21 targets for which their DFBSs are reused are intrinsically difficult
to score and rank using a rigid body docking algorithm.
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Target  Target Template %-Seq %-Seq  DFBS DFBSs CBR +Hex Blind Hex
PDB Type PDB 1 2 Pairs Re-used Rank RMSD Rank RMSD
Multi-domain FH (no Hex docking)

1d6ér E/R 1tab 100.0 654 2 Y+Y 1 1.60 379 8.22
1ezu E/R lazz 38.6 99.2 2 Y+Y 1 0.95 - -
Twdw E/R 2tys 60.0 304 2 Y+Y 1 0.71 - -
2vdb O/R 1tf0 25.7 96.0 3 Y+Y 1 3.59 - -
1hiv O/D 1d4x 925 96.4 3 Y+Y 1 8.79 - -
2i9b O/D 2fd6 20.5 100.0 3 Y+Y 1 6.02 - -
Multi-domain SH-one (with Hex docking)

1bvn E/R 1viw 50.2 - 1 Y+U 1 9.76 1 4.19
1lewy E/R 1ep3 19.6 - 1 Y+U 1 7.82 3 5.98
1oyv E/R 2sec 89.5 - 2 Y+U - - - -
1tmq E/R 1dhk 52.5 - 2 Y+U 17 6.25 3 7.73
1ijk E/M Thyr - 246 2 U+N * * - -
1jiw E/M 1smp - 369 1 Uu+Y - - - -
1kkl E/M 1ggr - 345 1 u+Y - - - -
1a2k O/R 1wg1i 27.2 - 1 Y+U - - - -
1azs O/R 1992 - 3941 1 u+Y - - - -
1b6c O/R 1fin - 215 3 U+N * * 1 6.16
1fcc O/R 1frt 19.5 - 2 U+N * * - -
1jwh O/R 1buh - 294 3 U+N * * - -
1kiz O/R 1es7 - 340 1 U+N * * - -
1kxp O/R 1hlu 92.5 - 4 Y+U - - - -
1ofu O/R 1ia0 - 143 1 U+N * * - -
1pvh O/R 1f6f 26.6 - 2 Y+U - - - -
1rv6 O/R 1pdg 24.4 - 2 N+U * * - -
1t6b O/R 1v7p - 16.2 3 U+N * * - -
1xul O/R 1oqd 37.0 - 6 Y+U 109 7.56 - -
2b4j O/R 1cbv 63.0 - 2 N+U * * - -
2fju O/R 1g4u - 994 4 u+Y - - - -
3bp8 O/R 102f - 943 1 U+Y - - - -
3d5s O/R 1ghq 99.6 - 2 Y+U 28 8.93 64 3.29
1he8 O/M 1gua 57.1 - 2 Y+U - - - -
1i2m O/M 1ibr 98.1 - 3 Y+U - - - -
1k5d O/M 1rrp 99.2 - 3 Y+U - - - -
1n2c O/M 3min 99.8 - 4 Y+U - - - -
1bkd O/D 1wq1t 99.4 - 2 Y+U - - - -
1de4 O/D 1gqd 44.2 - 5 Y+U - - - -
1eer O/D 1axi - 144 2 U+N * * - -
1fak O/D 1kig 41.5 - 4 N+U * * - -
1jmo O/D 2hpp - 99.6 6 u+Y - - - -
1zm4 O/D 1aip 15.7 - 3 N+U * * - -
2c0l O/D 1e96 16.7 - 1 N+U * * - -
Multi-domain SH-two (with Hex docking)

1gxd E/R 1uea + 1smp 275 413 2 N+N * * - -
imi0 E/M 1ijk + 1df 98.3 36.0 1 N+N * * 147 8.85
1akj O/R 1hhg + 1agf 100.0 23.9 3 N+Y * * 150 7.55
1hcf O/R 1sgf + 1evt 48.7 20.7 2 N+N * * - -
1klu O/R 1aqgd + 1klg 100.0 98.1 44 Y+Y - - - -
1sbb O/R 1rvf + 2seb 31.3 81.0 3 N+N * * - -
1gp2 O/M 1got + 1got 68.9 98.3 13 Y+Y 148 9.11 - -
1ibr O/D 1gbk + 1rrp 98.1 183 3 Y+Y - - - -

Table 6.8: Summary of the KBDOCK versus blind docking results for multi-domain targets. See Table 6.7 for
abbreviations used.
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6.9 Discussion and Conclusion

This chapter has described a systematic CBR-based approach to model the 3D structures of
protein complexes from structural DDIs, and we have tested it on a well known benchmark dataset.
By working at the Pfam domain level, we are able to draw upon a non-redundant set of almost all
currently known hetero DDIs to model pair-wise DDIs and furthermore to aggregate pair-wise DDIs
to predict larger complexes. The results in Tables 6.7 and 6.8 show that for FH problems, in which
previously solved cases may be re-used, our approach provides a near-perfect way to retrieve good
3D templates and to build high quality models of the target complexes.

To our knowledge, none of the previous homology docking methods have grouped binding sites
in domain families according to their location in 3D space. The closest related work is probably the
work of Korkin et al. (2006). As described in Section 2.3.3, the approach of Korkin et al. needs
multiple docking runs and there is a need for an additional step of merging the predictions and
ranking them. For example, given a target pair of domains (d1, d2) which have N and M instances of
SCOP domains which are involved in an interaction, the number of docking runs performed is Nx M.
This number can be large for pairs of SCOP families which have many DDl instances. The KBDOCK
CBR approach can also involve running several docking calculations but because we initially cluster
the DDlIs into distinct DFBSs, the number of docking runs in our approach is normally much less.

Using PDB deposition date filtering to exclude trivial FH solutions from consideration caused
a good proportion of the benchmark targets to be treated as more difficult SH problems. For the
single-domain SH targets, we find that known binding sites are re-used in approximately half of
the benchmark targets, and this knowledge can usefully be exploited to guide rigid-body docking.
Hence our case-based method of re-using DDls extends the reach of current homology modelling
techniques. Indeed, our results show that if known binding sites are in fact re-used, a good model
is often ranked within the first handful of solutions. Although our current implementation can miss
some SH-one solutions which are found by blind docking, we believe this is mainly because the
angular constraint passed to the rigid docking stage is too strict.

On the other hand, our results for multi-domain SH targets show that it is difficult to use com-
putational docking to identify the correct pair of binding sites in multi-domain complexes. This is
perhaps not surprising given that each trial pair of initial docking poses will produce a large number
of false-positive docking predictions which will mask any near-native solutions. Indeed, if both part-
ners have multiple binding sites, then without additional biological knowledge we essentially revert to
a blind docking problem (as in the SH-two targets 1klu and 1gp2 examples, with 44 and 13 candidate
DDlIs to be docked, respectively). Hence, it would be desirable to incorporate more sophisticated
restraints derived from other kinds of biological evidence and to use a more powerful flexible docking
algorithm such as HADDOCK (de Vries et al., 2010), especially when dealing with difficult targets
involving conformational flexibility.
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Chapter 7

Conclusions

7.1 Summary of the Main Contributions

This thesis has presented a systematic KDD-based approach for representing, describing, and
comparing 3D protein-protein interactions on a large scale and to facilitate knowledge-based mod-
elling of protein-protein complexes. We have used KDD techniques to integrate protein and PPI data
from several sources in order to extract structural knowledge in a useful form. Particular emphasis
was put on deriving 3D PPl knowledge that can be reused easily because, in our opinion, current
PPI resources do not provide an easy way to incorporate homology information into computational
methods for predicting 3D protein-protein complexes.

The main contributions of this thesis are the following: (1) we have developed an integrated
database of non-redundant 3D hetero domain-domain interactions; (2) we have described a novel
method of describing and clustering DDIs according to the spatial orientations of their binding part-
ners, thus introducing the notion of domain family binding sites; (3) we have proposed a structural
classification of DFBSs similar to the CATH classification of protein folds, and we have presented
a study of secondary structure propensities of DFBSs and interaction preferences; (4) we have in-
troduced a systematic case-base reasoning approach to model automatically the 3D structures of
protein complexes from existing structural DDIs. All of these contributions have been made publicly
available through a web server (http://kbdock.loria.fr). The research contributions of this thesis have
been described in one published article and in three further manuscripts which are currently being
revised for submission. Copies of these articles are provided in Appendices B and C.

7.1.1 The KBDOCK Database of 3D Non-Redundant Hetero DDIs

The KBDOCK database provides the foundation of this thesis. KBDOCK integrates DDI and
residue contact information from the 3DID database, domain family information from the Pfam
database, and structural information from the PDB. The data in KBDOCK are organised accord-
ing to Pfam domain families to facilitate the analysis of 3D interactions. Thus, for each Pfam domain
family, KBDOCK calculates and stores a non-redundant set of hetero DDIs which are placed in a
common coordinate frame using least-squares fitting based on a Pfam consensus sequence align-
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ment. Chapter 3 has shown that this provides a useful way to explore the structural relationships
between the members of a given Pfam family. The current version of KBDOCK contains a total of
2,721 non-redundant hetero DDIs involving 1,029 different Pfam domain families. Hence, KBDOCK
constitutes one of the largest collections of 3D hetero DDIs to date. It therefore provides a useful
framework for performing statistical analyses and applying data mining algorithms to 3D DDI data in
order to discover trends and patterns at domain-domain interfaces.

7.1.2 The Domain Family Binding Site Concept

The remarkable consistency of many of the DDI superpositions observed in Figure 3.12, for
example, led us to organize the DDIs in protein domain families according to the spatial position
of their binding sites. To do this, we calculated a binding site direction vector from the all-atom
centre of mass of a domain to the centre of its binding site for each superposed domain using a
weighted average of its core and rim residues. For each Pfam family, we clustered the binding
site direction vectors of the family members using a hierarchical clustering algorithm. Each of the
obtained clusters represents a group of binding sites belonging to the same Pfam family and for
which the binding partners appear in similar spatial positions. We used this grouping to define
the concept of a domain family binding site (DFBS). This concept has provided a natural basis
with which to perform large-scale studies of the spatial arrangements of DDIs by Pfam family. For
example, we explored whether binding sites are conserved within Pfam families and whether binding
sites might be promiscuous. Chapter 4 has shown that nearly 70% of the 1,029 Pfam domain
families in KBDOCK have only one DFBS, and most of the remaining families have from just two
to four DFBSs. This confirms previous studies that DDls often re-use their binding sites (Korkin
et al., 2005, Shoemaker et al., 2006). Additionally, we found that over 80% of DFBSs (out of a
total of 1,439 DFBSSs) interact with just one type of Pfam domain family, and that very few DFBSs
interact with more than three different Pfam domain families. This indicates that most DFBSs are
primarily monogamous in their structural relationships with other domains. These results have been
described in an article published in Bioinformatics (Ghoorah et al., 2011). The DFBS concept has
played a central role in the other contributions of this thesis, as summarized below.

7.1.3 Structural Classification and Study of Domain Family Binding Sites

Another question that arises when studying interactions between different protein domain fami-
lies is whether the binding sites of different Pfam families might have common features. Therefore,
we analysed the secondary structure content of DFBSs, and the secondary structure preferences
between pairs of DFBSs. To achieve this, we proposed a structural classification of binding sites sim-
ilar to the CATH domain family classification (Cuff et al., 2009). Our classification identifies seven
main secondary structure types, each consisting of different proportions of the three main secondary
structure elements (SSEs). Chapter 5 has shown that helices and irregular secondary structures are
the most common types of SSE in DFBSs. These results confirm some previous findings (Keskin
and Nussinov, 2007, Guharoy and Chakrabarti, 2007). However, our classification also showed that
there is no specific “a + 8” type and that DFBSs always contain a considerable fraction of v SSEs
(average 34.6%). In addition, our study showed that a-« interactions and ~-+ interactions are rather
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frequent, whereas «-5 and §-g interactions are rather strongly disfavoured. Chapter 5 has also
shown that there is almost no difference in the SSE character of single partner binding sites and
multi-partner binding sites. Thanks to KBDOCK, our study of structural interactions represents the
most comprehensive one to date. A manuscript describing this work was submitted to ISMB 2012
and is being revised to take into account the referees’ comments.

7.1.4 Case-Based Protein Docking

This thesis has also shown how to use DFBSs within a case-based reasoning framework in order
to guide protein docking calculations. By exploiting the fact that pairs of similar domains often interact
in the same way and the fact that the binding sites within domain families are often conserved, we
have designed and implemented a CBR approach within KBDOCK to propose templates and key
binding site residues for modelling single and multi-domain protein-protein complexes. The DFBS
notion forms the basis for case indexing and retrieval in our CBR approach and thus provides a
convenient way to retrieve distinct DDIs from the KBDOCK database. Chapter 6 has shown that
when FH DDIs exist, KBDOCK provides a near-perfect way to retrieve good 3D templates and to
build high quality models of the target complexes using a simple structural superposition. Otherwise,
when only SH DDIs exist, KBDOCK uses their DFBS information to propose a starting orientation
for focused docking. Our results using the Hex docking algorithm show that when known DFBSs
are re-used in the query domain structures, focused docking can improve significantly the docking
predictions. A manuscript describing this approach was submitted to ECCB 2012 and received
favorable comments. A revised manuscript is in preparation.

7.1.5 The KBDOCK Web Server

We have developed a web server (http://kbdock.loria.fr) to provide open access to the KBDOCK
resource. Since it was first published on-line in March 2011, it has received 3,115 visits (as of
October 2012). As shown in Appendix A, the KBDOCK web server has an easy-to-use form-based
interface, and it can be queried in two main ways. In browse mode, the user may find and visualise
a list of hetero DDIs involving either one or a pair of given Pfam query domains. The retrieved
DDlIs are grouped by their DFBS and the user can pick a DFBS of interest for further analysis. In
docking mode, the user provides two structures. The user is then provided with a non-redundant list
of candidate DDI templates. Even if no matching DDIs exist in the database, KBDOCK can often
still provide useful binding site information for one or both query domains using knowledge of their
known binding sites. This knowledge may then be used automatically to provide starting orientations
which can then be docked and refined using the Hex server (Macindoe et al., 2010). All of the results
of queries against the database may be visualised in a common coordinate frame using the Jmol
plug-in, and all queries may be expressed using Pfam IDs or by providing the PDB codes or amino-
acid sequences of the domains of interest. A manuscript describing the KBDOCK server is ready
for submission in the next web server issue of the Nucleic Acid Research journal.
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7.2 Timeliness and Novelty

Given the growing amount of structural data in public databases, the KBDOCK system repre-
sents a timely contribution. The recent interest in using docking algorithms to predict protein inter-
action partners (Sacquin-Mora et al., 2008, Wass et al., 2011, Melquiond et al., 2012), suggests
the need for reliable docking predictions. As discussed in Chapter 1, the reliability of docking pre-
dictions can be improved if experimental information from related PPIs is incorporated into docking
algorithms (van Dijk et al., 2005, Qin and Zhou, 2007b, Lensink and Wodak, 2010). However, until
now, it has been difficult to find relevant PPI information automatically.

Compared to previous PPl databases, our KBDOCK database was designed right from the be-
ginning to identify automatically structural templates with which to guide protein docking calculations.
Hence, KBDOCK has many features which distinguish it from existing structural PPI database ap-
proaches: (i) it uses the Pfam consensus sequence to guide structural alignments, (ii) it places all
of the complexes involving a given Pfam domain family into a common coordinate frame in order
to locate the interaction partners consistently in 3D space, (iii) it uses the notion of “core” and “rim”
binding site residues to group the complexes by the spatial position of their binding site, (iv) it finds
automatically the best available DDI template to use to model by homology a complex of two given
structures, (v) if more than one interface is found, it proposes a model for each, (vi) if no suitable
DDI template exists, it can still propose candidate binding sites for one or both interaction partners,
(vii) it calculates a centre residue for each proposed binding site which may be used to initialise a
docking calculation and finally (viii) using its proposed starting orientations, it prepares and submits
a focused docking job using the Hex docking server Macindoe et al. (2010). Hence, KBDOCK pro-
vides a novel and useful resource for analysing the 3D structures of DDls within and between Pfam
domain families, thus helping to provide a sharper picture of the 3D interactome.

7.3 Future Extensions to KBDOCK

The current KBDOCK database is built from the November 2009 version of the 3DID database.
We are updating KBDOCK to use the latest version of 3DID. In the new version, we will include intra
and homo interactions because these may provide useful information for predicting multi-domain
hetero interactions. Our binding site direction vector algorithm can be applied to homo and intra
DDlIs, and therefore we will define DFBSs for homo and intra DDIs as well as the existing hetero
DFBSs. We will then apply our secondary structure analyses to homo and intra DFBSs. This
will represent the largest study of domain binding sites in hetero, homo and intra DDls. We will
also use knowledge of homo and intra DDIs to improve our DDI aggregation method of predicting
multi-domain PPIs. We will extend the KBDOCK CBR case retrieval algorithm to handle a wider
range of semi-homology problems. For example, we will use either the SCOP or CATH hierarchy
to generalise docking problems. Furthermore, we plan to explore ways to compare and re-use 3D
peptide fragments within binding sites.

Regarding the KBDOCK web server, we are currently extending it to provide the starting docking
orientations and the corresponding interaction restraints (AlIRs) which the user can download in
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order to perform focused docking with other popular programs such as HADDOCK. Furthermore, we
are extending the server to deal with multi-domain complexes. Other possible technical extensions
could include providing a web service access to KBDOCK. We could also distribute the KBDOCK
database and programs to allow users to launch queries locally.

7.4 Future Prospects

Given the rapid growth in the number of 3D structures in the PDB, there is a growing need to be
able to study and predict 3D interactions on a large scale. We expect that KBDOCK may be used:
(i) to analyse binding sites shapes and geometries within and across protein domain families; (ii) to
provide supporting evidence (by cross-docking) for PPls coming from HTT data; (iii) to investigate the
structural nature of hub proteins; and (iv) to calculate the 3D structures of all the interactions in a PPI
network. In the future, we hope that other PPI databases could provide cross-references to KBDOCK
to enrich PPI networks with 3D structural information. In conclusion, we believe the KBDOCK system
will be useful to anyone interested in studying protein-protein interactions, template-based modelling
of 3D protein-protein complexes, and docking by homology. More generally, we expect that KBDOCK
will provide a useful foundation for further KDD-based studies of the 3D interactome.
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Appendix A

The KBDOCK Web Server

A.1 Introducing the KBDOCK Web Server

To provide open access to the KBDOCK database, | have implemented the KBDOCK web server
(http://kbdock.loria.fr/). The server implements much of the functionality described in the previous
chapters. It has an easy-to-use form-based interface (Figure A.1), and it can be queried in two main
ways. In browse mode, the user may find and visualise a list of hetero DDIs involving a given Pfam
query domain. In docking mode, the user provides two query domains, and is provided with a non-
redundant list of candidate DDI docking templates. Even if no matching DDIs exist in the database,
KBDOCK can often still provide useful binding site information for one or both query domains using
knowledge of their known binding sites. In either case, the user can select a pair of binding sites
to launch a focused docking calculation using the Hex docking server (Macindoe et al., 2010). All
of the results of queries against the KBDOCK database may be visualised in a common coordinate
frame using the Jmol plug-in, and all queries may be expressed using Pfam IDs or by providing
the PDB codes or amino-acid sequences of the domains of interest. Thus, the KBDOCK server
provides a novel and easy way to explore and visualise known DDIs and for finding knowledge-
based templates with which to model unsolved protein complexes. The following sections describe
the implementation details and the functionality of the KBDOCK server in more detail.

A.2 Implementation Details

The KBDOCK server was written mainly in the PHP scripting language. Some JavaScript was
used for handling certain mouse events. Database queries are processed using PrologScript?” and
Linux shell scripts. The Jmol 28 plug-in is used for graphical visualisation. The Jmol plugin requires
Java version 1.4 or later. The web interface has been tested using several popular browsers for the
Windows, Linux, and Mac OS X operating systems.

%" http://www.swi-prolog.org/
®http://jmol.sourceforge.net
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Figure A.1: A screenshot of the KBDOCK “Search” page.

A.3 Analysing Binding Sites by Pfam Family

In order to analyse the binding sites of a given Pfam family, the user may use the KBDOCK
“Search” page (Figure A.1) to enter either a Pfam identifier (e.g. Kunitz_legume), a Pfam accession
number (e.g. PF00197), a keyword (e.g. inhibitor), an amino acid sequence, or a PDB file of a protein
structure. If a sequence or a structure is entered, the PfamScan utility 2° is used to determine the
Pfam accession number. Otherwise, the accession number is found directly from the KBDOCK
database. KBDOCK then retrieves a non-redundant list of hetero DDIs involving the query domain,
grouped by their domain family binding site.

Figure A.2 shows the results page when KBDOCK is queried using the Kunitz_legume protease
inhibitor domain (PF00197). The Jmol plugin shows the retrieved DDlIs in the coordinate frame of
the query domain. By convention, the query domain is shown in black and interacting residues
are shown as wire sticks. The user may choose to view the DDIs together or individually. A Pfam
consensus-based sequence alignment of the retrieved domains is also provided, in which each se-
quence is colour-coded according to the calculated core, rim and centre residues. A link to download
the superposed PDB files as a single compressed file for further analysis is also available. A unique
feature of KBDOCK is that it can also be queried with two query domains simultaneously. For exam-
ple, Figure A.3 shows the output when KBDOCK is queried using the Kunitz_BPTI protease inhibitor
domain (PF00014) and the Trypsin domain (PF00089). The results show that Kunitz_BPTI domain
interact with Trypsin in two different ways.

% ftp://ftp.sanger.ac.uk/pub/databases/Pfam/Tools/

120


ftp://ftp.sanger.ac.uk/pub/databases/Pfam/Tools/

A.3. Analysing Binding Sites by Pfam Family

Non-redundant list of

hetero DDIs involving the

query domain, grouped
. by their binding site.

Visualisation of all
DDlIs in a common
coordinate frame.

Query domains are in

black. Interacting

residues are shown in
\ wireframe

Pfam consensus-
based domain
sequence alignment.

Top sequence is the
Pfam consensus
sequence.

Each sequence is
annotated with core
and rim interacting
residues, and also the
' binding site centre
\ residue.

Fle Edit View Go Bookmarks Tabs Help

Superposition for Kunitz_legume

Pfam consensus sequence for Kunitz_legume with binding site information

Note (i) Top sequence is the Pfam consensus sequence
(i) Binding site residue color-coding scheme: "center" , "core", "rim"
(i) Position cursor lay the PDB chain label
(i) Pfam Consens

Vibhpeecle. . s.Gs. pyhihs

‘Consensus_PFO0197.

PF00197_1ava_D_5_177.
PFO0197_lavw_B_502_675,
PF00197_2iwt_B_5_177
PF00197_2qyi_B_606_777,
PF00197_3bx1_D_5_177.
Consensus_PF00197.
PFO0197_lava_D_5_177

> PF00197_lavw_B_502_675,
PF00197_2iwt_B_5_177
PF00197_2qyi_B_606_777,
PF00197_3bx1_D_5_177.

© loria.friphp/do_search.php?query=PF0019
About KBDOCK Home Browse Search Help Contact h Z
a—
a resource for knowledge-based protein docking
Protein-protein Structure Sequence Download New
complexes analyses analyses data Query
PE00197 Kunitz lequme
hetero biological i

sitel>  PDB Pfam ID Chain  start  End pfam ID FindDDIs  Chain  stat  End
1 lava Kunitz lequme D 5 177 Alpha-amylas KED 8 17 324
2 law Kunitz_lequme ] 502 675 Trypsin KBDOCK A 16 238
2 2qyi Kunitz_lequme B 606 777 Trypsin KBDOCK A 16 238
3 2int Kunitz_lequme 8 s 177 KBDOCK A 14 118
4 3bx1 Kunitz_lequme [} B 177 Peptidase_S8 KBDOCK B 6 266

Select interface
a6
lava_D_5_177
Lavw_B_502_675
2ayi_B_606_777
2wt 85 177
3bx1 0 5 177

Select binding site

Jmol S

shhs..s

PF00197_1ava_D_5_177.
PF00197_lavw_B_502_675,
PF00197_2iwt_B_5_177
PF00197_2qyi_B_606_777,
PF00197_3bx1_D_5_177.

Download data for Kunitz_legume

Zip-compressed PDB files  Dounload

| Enter a web address to open, or a phrase to search for

Consensus_PFO0197. pGhPVpFos. . .. SpspssVIptso. 1s1pF 5. .ss0s. . ph.sss
PF00197_lava_D_5_177. DGFPVRITPYG- -VAPSDKIIRLSTOVRISF-R--AYTT--CL-QST--~
PF00197_1avv_B_502_675. KGIGTIISSFY--R IRF IAEGHP LSLKFDSF IHL--CV-GIP--~
PF00197_2iwt_B_5_177. DGFPVRITPYG- -VAPSDKIIRLSTOVRISF-R--AYTT--CL-QST--~
PF00197_2qyi_B_606_777. KGEPIRISSQF -R-SLFIPRG- - - SLVALGE -A- -NPPS - ~CA-ASP - - -
PF00197_3bx1_D_5_177. DGFPVRITPYG- -VAPSDKIIRLSTOVRISF-R--AYTT-~CL-QST--~
Consensus_PFO0197. shK1tpps ss tsh. . .hvsTGGstu
PF00197_lava_D_5_177. - --EWHIDSEL --AA- R---HVITGPVKD
PF00197_1avv_B_502_675. TEWSVVEDL PE- GP- - -AVKIGENKD
PF00197_2iwt_B_5_177. -EWHIDSEL A - --HVITGPVKD
PF00197_2qyi_B_606_777. WWTVVDSP P - --AVKLSQQKL
PF00197_3bx1_D_5_177. - --EWHIDSEL R- - -HVITGPVKD
Consensus_PFO0197. SShFKIpKSSS. . .5 Ypls.acP.s
PF00197_lava_D_5_177. 3
PF00197_1avv_B_502_675. AMDGWFRLERVS - --===== === EFNNYKLY -FCP-Q----~
PF00197_2iwt_B_5_177. YKL
PF00197_2qyi_B_606_777. -PEKDTLVFKFEKVSH---§ ===~ NTHVYKLL - YCQHDEE - - -
PF00197_3bx1_D_5_177.

Consensus_PFO0197. tps. C.hslehh.hp phs.sp. ...sh.hhe

- -~ LKGGAWFLGATE - -PYHVVVFKK- - - -
DKC-GDIGIS- ID- -HDDGTRRLVVSKN - -KP LVVQFQK-
- - LKGGAWFLGATE - -PYHVWWFKK- - - -
-RNGNRRLVVTEE- NP LELVLL-K- - -
DWC - QDLGVF-RD- - - LKGGAWFLGATE - -P YHVWVFKK- - - -

, N
Click on the KBDOCK \
icon to find DDIs for the

' partner domain family !

I Select to visualise a DDI

) "Select to visualise a group 5
of DDIs sharing a similar
_binding site

[ ’Download PDB files for
\ further analysis

Figure A.2: A screenshot of the KBDOCK results page for the query domain family, Kunitz_legume. The
results page consists of four sections: (i) a non-redundant list of hetero DDIs grouped by their binding site, (ii)
a Jmol view of the DDIs in the coordinate frame of the query domain (the query domain is shown in black and

interface residues are shown in wireframe), (iii) a Pfam consensus-based sequence alignment of the domains
annotated with the core (green), rim (blue), and centre (red) binding site residues, (iv) a link to download the
superposed PDB files as a single compressed file for further analysis.
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Figure A.3: A screenshot of the KBDOCK results page for the pair of query domain families, Kunitz_legume

and Trypsin.

A.4 Proposing Binding Sites for a Query Domain Structure

KBDOCK can propose the locations of possible binding sites for a given query domain structure
using the known binding sites of the corresponding Pfam family. For example, Figure A.4 shows a
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screenshot of the results page obtained when querying KBDOCK using PDB code 1nty. This struc-
ture involves the RhoGEF domain family for which KBDOCK identifies two DFBSs. To illustrate a
DFBS, KBDOCK shows a Jmol view of the DDI template with the query domain structure super-
posed onto it. In addition, to indicate the approximate centre of the DFBS of the query domain, the
calculated centre residue is shown in wire frame. For each DFBS found, KBDOCK shows a colour-
coded sequence alignments of the query and template domains showing the core, rim, and centre
binding site residues.
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Figure A.4: A screenshot showing the KBDOCK results page when querying KBDOCK with a single domain
structure to propose DFBSs.
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A.5 Finding Docking Templates

As discussed in previous chapters, a protein complex may often be successfully modelled using
the known binding sites of homologous domains. Given two query domain structures, KBDOCK
searches for full-homology (FH) DDls involving the same Pfam families as the query domains. The
query domains are then superposed onto the FH template(s) in order to propose a docking model
of the complex. If several FH DDlIs exist in the database and if they correspond to different pairs of
binding sites, KBDOCK outputs a possible docking template for each distinct pair of binding sites.

On the other hand, if no FH templates are found, KBDOCK searches for and outputs semi-
homology (SH) DDIs containing the individual query domains because these can still provide useful
information for a docking calculation. In these cases, the query domain is superposed onto each
template in turn in order to propose a binding site on the query domain. If several SH templates
are found for a given query domain, KBDOCK selects as a template the domain with the highest
sequence similarity to the query. The overall approach is illustrated schematically in Figure A.5.
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Figure A.5: Schematic illustration of how KBDOCK processes a docking query. Here, dots represent the
calculated binding site centre residues. When a FH template is available, KBDOCK superposes the query
domains onto the template to propose a docking model. When only SH templates exist, KBDOCK proposes
one or more binding site(s) on each query domain. For each selected template, KBDOCK calculates the core,
rim, and binding site centre residues.

Y

-
/
d
o ___/

A.5.1 Full-Homology Templates

To find docking templates, the user enters two PDB codes or uploads two PDB files and he
then specifies which pair of Pfam domains in those structures should be used as queries. Currently,
the KBDOCK web server supports only one pair of query domains. If KBDOCK finds one or more
FH DDI templates for the query domains, it shows a Jmol view of the superposed query and FH
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template(s), along with colour-coded sequence alignments of the query and template domains as
described before. As before, the user may download the query and template structures for later
analysis. Figure A.6 shows a screenshot of the results page obtained when querying KBDOCK
using PDB codes 1thf and 1k9v (which correspond to the His_biosynth and GATase Pfam domains,
respectively). According to KBDOCK, these two domains interact via a single interaction mode.
Hence, KBDOCK proposes only one FH template. In this example, the best FH template (selected
using overall sequence identity) is PDB code 1gpw (an imidazole glycerol phosphate synthase).

A.5.2 Semi-Homology Templates

Even if no pair-wise DDI homologues can be found, KBDOCK can often propose binding sites
for the individual domains, which can be useful for conventional docking calculations. Hence, if
no FH DDIs exist in the database, KBDOCK will output in a similar way a non-redundant list of SH
templates and their colour-coded sequence alignments along with a Jmol view of the superpositions.
Figure A.7 shows a screenshot of the results page obtained when querying KBDOCK using PDB
codes 103y and 1oxz (which correspond to the Arf and GAT Pfam domains, respectively). Here,
KBDOCK found SH DDls for both query domains. The Arf domain family has three DFBSs. Hence,
KBDOCK proposes three DDI templates, each corresponding to a distinct binding site according to
our spatial clustering algorithm. According to KBDOCK, the GAT domain family has one DFBS only.

A.6 Focused Docking Using Hex

In Section 6.7, we described how the template DDI and DFBS information retrieved from the
KBDOCK database can be used to set up a focused docking calculation. Hence, it is natural to
connect the KBDOCK server with a protein docking server to avoid the user to download and upload
data from one server to another. To start with, we link the KBDOCK server with the Hex docking
server (Macindoe et al., 2010). The Hex docking server provides web access to the Hex docking
program (Ritchie and Kemp, 2000).

Even though the KBDOCK server can currently provide DDI templates only for single-domain
proteins, multiple DFBSs on each query structure can be still specified for focused docking by Hex
because Hex can perform all-versus-all docking of multiple PDB structures (see Figure A.5 and Sec-
tion 6.7 for details). For example, in Section A.5.2, the pair of query structures involves the Arf and
GAT domains, which have three and one DFBS, respectively. Hence, the user can select which
DFBS to use on the Arf domain as shown in Figure A.7a. In addition, the user can specify the Hex
docking search range angle as well as other Hex docking parameters. Based on the user selection,
the KBDOCK server prepares a PDB model structure file for each query domain and a Hex script
containing all the selected parameter values. The KBDOCK server sends the docking job to the Hex
server which provides a link to the Hex results page (Figure A.7b). The user can then download the
Hex predictions and view them in any visualisation tool.
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alignments of the query and template domains highlighting the template core, rim, and centre binding site
residues.
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Figure A.7: A screenshot showing the KBDOCK results page when SH templates are found for both query
domains.
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Figure A.8: A screenshot showing (a) the form where the user selects the DFBS to focus the docking
calculations, and (b) the Hex docking results page.
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Appendix B

Published Article

B.1 Spatial Clustering of Protein Binding Sites for Template-Based
Protein Docking

The following article was published in Bioinformatics (impact factor 5.5) in August 2011. It has
already received three citations (Google Scholar).
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ABSTRACT

Motivation: In recent years, much structural information on protein
domains and their pair-wise interactions has been made available in
public databases. However, it is not yet clear how best to use this
information to discover general rules or interaction patterns about
structural protein-protein interactions. Improving our ability to detect
and exploit structural interaction patterns will help to provide a better
3D picture of the known protein interactome, and will help to guide
docking-based predictions of the 3D structures of unsolved protein
complexes.

Results: This article presents KBDOCK, a 3D database approach for
spatially clustering protein binding sites and for performing template-
based (knowledge-based) protein docking. KBDOCK combines
residue contact information from the 3DID database with the Pfam
protein domain family classification together with coordinate data
from the Protein Data Bank. This allows the 3D configurations of all

to biol | function, k ledge of the 3D structures of

protein—protein complexes is vitally important. To date, over 65 000
protein structures have been deposited in the Protein Data Bank
(PDB; Berman ez al., 2002). However, it has been estimated recently
that only ~12% of these structures correspond to heteromeric
complexes (Stein et al., 2011). Therefore, to bridge this gap, there
is much interest in pi i i to predict
how two proteins fit together to form a complex (Aloy ef al., 2005).
However, until recently, many of the hetero complexes in the PDB
have been enz; inhibit which are relatively easy
to model directly. Hence, so-called template-based protein docking
has not yet attracted much attention from the research community
(Kundrotas et al., 2008).

Since it is well known that protein folds are often more
evolutionarily conserved than their sequences (Chothia and Lesk,
1986), and since it has been shown that proteins with similar

known hetero domain-domain it ions to be st and

clustered for each Pfam family. We find that most Pfam domain
families have up to four hetero binding sites, and over 60% of
all domain families have just one hetero binding site. The utility of
this approach for template-based docking is demonstrated using 73
complexes from the Protein Docking Benchmark. Overall, up to 45
out of 73 complexes may be modelled by direct homology to existing
domain interfaces, and key binding site information is found for 24
of the 28 remaining complexes. These results show that KBDOCK
can often provide useful information for predicting the structures of
unknown protein complexes.
Availability: http://kbdock.loria.fr/
Contact: Dave.Ritchie@inria.fr

Yy i St ttary data are available at
Bioinformatics online.

Received on June 11, 2011; revised on August 5, 2011; accepted on
August 22, 2011

1 INTRODUCTION

Protein—protein interactions (PPIs) are central to many cellular
processes. Proteins often perform their function by interacting
with other proteins to form protein—protein complexes. In order
to understand and predict PPIs reliably, and to relate such

*To whom correspondence should be addressed.

often interact in similar ways (Aloy er al., 2003),
it follows that close structural homologues should also be expected

to interact in similar wa;

Several studies have found that the
locations of protein interaction sites are often conserved, especially
within domain families, regardless of the structures of their binding
partners (Gunther er al., 2007; Keskin er al., 2005; Korkin et al.,
2005, 2006). Additionally, it has also been observed that many
protein families employ only one or a small number of binding sites
(Keskin and Nussinov, 2007; Shoemaker ef al., 2006), suggesting
that the same surface patch is often re-used. Indeed, it has been
demonstrated previously that the structure of an unknown protein
complex may often be successfully modelled using the known
binding sites of homologous domains (Kundrotas et al., 2008;
Launay and Simonson, 2008). This may be described as template-
based docking or docking by homology (Korkin et al., 2006;
Kundrotas and Alexov, 2006).

In recent years, much structural information on protein domains
and on PPIs has been made available in on-line databases
(Tuncbag et al., 2009). However, beyond listing the residues
observed at the interface between a given pair of proteins or
protein domains, there is no generally accepted way to define
what actually constitutes a protein binding site or to quantify
whether or not two binding sites are structurally similar. For
example, recent methods to compare structural interfaces have
used techniques based on e.g. geometric hashing of cliques of
interface Ca atoms (Keskin ez al., 2004), combining geometric
hashing with a physicochemical complementarity scoring function

2820 © The Author 2011. Published by Oxford University Press. All rights reserved. For
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(Shulman-Peleg et al., 2004), geometric overlap and face angle
scores of residue contact vectors (Kim et al., 2006), principal
component analysis of residue contact matrices (Aung et al., 2008),
complete linkage hierarchical clustering of groups of interface
residues (Stein er al., 2010) and dynamic programming-based
fragment assembly (Gao and Skolnick, 2010).

Some recent examples of structural PPI databases are PIBASE
(Davis and Sali, 2005), SCOPPI (Winter er al., 2006), SCOWLP
(Teyra et al., 2006), 3D Complex (Levy et al., 2006), 3D-partner
(Chen er al., 2007), PiSite (Higurashi er al., 2009), IBIS (Shoemaker
et al., 2010) and 3DID (Stein er al., 2010). Several of these
databases describe PPIs in terms of domain-domain interactions
(DDIs) because protein domains may often be identified as structural
and functional units. Three widely used domain definitions are Pfam
(Finn et al., 2010), SCOP (Murzin ef al., 1995) and CATH (Cuff
et al., 2009). Pfam defines domain using sequence similarities, while
the SCOP and CATH domain definitions are based on both sequence
and structural similarities. Current structural PPI databases clearly
constitute useful bioinformatics resources. However, it is not yet
straightforward to use them to extract general patterns that describe
the spatial nature of PPIs at the family level. Furthermore, because
the question of how best to compare and cluster protein interfaces
remains an open problem, it is not yet clear how best to use structural
databases to propose suitable templates for homology-based docking
predictions.

Here we present KBDOCK, a 3D database approach for spatially
clustering protein binding sites and for performing template-based
(knowledge-based) protein docking. KBDOCK combines residue
contact information from the 3DID database with the Pfam protein
domain family classification and protein coordinate data from
the PDB in order to superpose and spatially cluster all known
hetero DDIs for each Pfam family. The main features that distinguish
KBDOCK from existing structural PPI databases are that: (i) it uses
the Pfam consensus sequence to guide structural alignments;
places all of the complexes involving a given Pfam domain family
into a common coordinate frame in order to locate the interaction
partners consistently in 3D space; (iii) it uses the notion of ‘core’
and ‘rim’ interface residues to help define the geometric centre
of a binding site; (iv) for each domain of interest, it spatially
clusters a weighted combination of the core and rim interface
residues of all DDIs involving that domain in order to define domain
family binding sites; (v) it may be used to identify automatically
the best available DDI template to use to model by homology a
complex of two given domains; and (vi) even when no suitable DDI
template exists, it can still propose candidate binding sites on one or
both interaction partners as potential constraints for computational
docking. Thus, KBDOCK a novel ki based
approach for proposing structural templates for protein docking.

Our approach is illustrated using 10 example query domains, each
having multiple hetero interactions that may be clustered into a
small number of domain family binding sites. The utility of the
approach for template-based protein docking is demonstrated using
73 complexes from the Protein Docking Benchmark (version 4).
Overall, up to 45 out of 73 complexes may be modelled by
direct homology to existing domain interfaces, and key binding site
information is found for 24 of the 28 remaining complexes. There are
only four targets for which no homologous hetero DDIs exist. These
results show that KBDOCK can often provide useful information for
predicting the structures of unknown protein complexes.

Fig. 1. Overview of the main KBDOCK data sources and processing steps.

2 METHODS
2.1 Overview of KBDOCK

KBDOCK is built from three main data sources. Multiple sequence
alignments and consensus sequences are provided by Pfam, residue contact
data and Pfam domain assignments are extracted from the 3DID database,
and protein coordinates are obtained from the PDB. We use 3DID as our
source of DDIs because it uses the Pfam classification to describe domains,
and because it is one of the most complete and up-to-date structural PPI
databases currently available. 3DID considers an interface to exist between
two domains whenever five or more contacts (hydrogen bonds, electrostatic,
or van der Waals atomic interactions) exist between the two domains. This
means that 3DID contains both permanent and transient DDIs which may
arise from both biologically relevant and non-biological (i.e. crystal contact)
interactions. The version of 3DID used here (November 2009) contains a
total of 140612 DDIs drawn from 29922 PDB structures. A total of 3755
different Pfam families are involved in at least one DDI.

The KBDOCK database is implemented using the MySQL relational
database (http://www.mysql.com). All calculations and queries against
the database are made using a small set of Prolog programs
(http://www.swi-prolog.org/) and R scripts (http:/www.r-project.org/). A
web interface (] loria.fr) has been i using the PHP
scripting language (http://php.net) and the Jmol plug-in for visualization
(http://jmol net). Figure 1 summarizes the ing steps used
to populate the KBDOCK database. These are described in further detail
below. The current version of KBDOCK stores Pfam domain family binding
site information for a total of 2721 non-redundant (NR) hetero DDIs
involving 1029 Pfam domain families. A MySQL dump of the database is
available from the authors on request.

2.2 Selecting non-redundant hetero DDIs

Although the 3DID database stores all known DDIs, our main goal is to
predict the 3D structures of heteromeric PPIs, as these are often the most
difficult structures to solve experimentally (Ezkurdia et al., 2009). Therefore,
for each protein domain present in 3DID, all DDIs involving that domain
are extracted and classified as either ‘intra’, *homo’ or ‘hetero’. We consider
aDDI to be intra if the interacting domains belong to a single protein chain,
and homo if the interacting domains belong to different instances of the
same protein chain in a given PDB structure. Otherwise, the interaction is
considered to be hetero. Figure 2 illustrates these types of domain interactions
schematically. Here, only hetero DDIs are considered further, although in
principle the approach could also be used to model homo dimers.

Next, non-biological hetero interactions are filtered out. It has been
shown that biological interactions usually have larger interfacial areas than
non-biological interactions (Janin and Rodier, 1995). Hence, we use the
DSSP program (Kabsch and Sander, 1983) to calculate the solvent accessible
surfaces (SASs) buried within each domain interface. If a given domain has
‘multiple interactions with other identical domains, e.g. due to crystal packing,
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Fig. 2. Schematic illustration of the different types of DDI that may occur
between two protein chains, P1 and P2. Protein chains can contain one
or more domains connected by linker regions (straight lines). Each shape
(circle, rectangle, triangle) represents a different Pfam domain. Lines with
arrowheads represent DDIs.

we assume that the interaction with the largest buried SAS corresponds to
the biological interaction, and only this DDI is retained.

It is also important to detect and eliminate duplicate or near-duplicate
DDIs that may arise in other ways. For example, the same protein complex
might have been solved under different crystallographic conditions, or a
single crystal structure can sometimes contain different copies of the same
complex. In order to deal with such cases, the sequences of the DDI partners
are concatenated, and the NRDB90 program (Holm and Sander, 1998) is used
with a similarity threshold of 99% to collect a final list of distinct NR DDIs.

It is worth noting that because we consider every structure to be useful, a
high similarity threshold is used in order to retain as many non-duplicate
structures as possible. This does not introduce any bias because here binding
sites are defined by spatial clustering and not by counting residue frequencies.

2.3 Annotating DDI interfaces

As discussed above, the residues in PPI sites are often conserved across
domain families. Indeed, due to evolutionary pressure, active site residues are
often less likely to undergo mutation than other residue positions (Zvelebil
et al., 1987), and this phenomenon has been exploited previously to predict
molecular interaction sites (Aytuna er al., 2005; Lichtarge et al., 1996).
Therefore, the representative sets of hetero DDIs stored in KBDOCK are
annotated with both 1D sequence information from Pfam and 3D structure
information calculated using DSSP, respectively. For each Pfam domain
family, the Pfam database provides a multiple sequence alignment and a
consensus sequence of all UniProt sequences belonging to that family. We
follow the Pfam convention of considering a residue to be conserved if at
least 60% of the amino acids at a given position in the multiple sequence
alignment are of the same amino acid type. However, because Pfam uses
UniProt sequences rather than PDB structures, and because PDB structures
may contain gaps or unresolved regions, we align each PDB sequence
with its Pfam/UniProt sequence in order to map every PDB residue to its
corresponding Pfam consensus position. This mapping allows the 1D Pfam
consensus information to be transferred to each PDB residue position.

domain of interest along with the structures of all of the corresponding DDI
partners, and to place these in a common coordinate frame using the ProFit
(http://bioinf.org.uk) least-squares fitting program.

Superposing all the DDIs involving a given Pfam domain in this way
provides a straightforward way to cluster individual binding sites and to
identify automatically distinct PPIs in 3D space. For example, for each
superposed DDI, the centre of mass, C, of each binding site is calculated
as a weighted average of the corresponding core (75%) and rim (25%) Cy
coordinates. By also calculating the all-atom centre of mass D for each
domain, an interface direction vector, V, may then be calculated as

Y=C-D/IC-DI. O]

In order to define domain family binding sites automatically, we cluster
the dimensionless interface vectors using Ward's hierarchical clustering
algorithm (Ward, 1963). This is illustrated in Supplementary Figure 1. From
visual inspection of several example interfaces, we find that a clustering
threshold of 0.4 often gives acceptable clusters.

2.5 Finding docking templates

In order to predict the 3D interaction between a pair of proteins, we need to
query the database with two or more domains and to calculate the intersection
of the results. This broadly corresponds to calculating a spatial join in
a conventional relational database. Although one PPI can involve several
DDIs, for simplicity only pair-wise DDIs are considered here. This leads to
four possible outcomes, namely that the database is found to contain DDIs
involving (i) both query domains together; (ii) both domains individually;
(iii) just one domain; o (iv) neither domain.

In the first case, which we call a full homology (FH) DDI, the database
DDI would be very likely to provide a good template with which to model the
unknown interaction. The two query domains could be docked by homology
simply by superposing them onto the FH template. If several such DDIs exist
in the database, and if they correspond to different binding sites on the query
domain(s), KBDOCK selects for each site the DDI with the highest overall
sequence identity to the query domains. On the other hand, if homologous
DDISs exist in the database for both of the query domains individually (case ii),
it is reasonable to suppose that their binding sites might be re-used in the
target complex, thus providing a rational way to initialize a more exhaustive
computational docking calculation. Similarly, if just one of the target domains
has known binding sites (case iii), these could still be used to constrain a
computational docking run. These two cases may be termed docking by
“semi-homology’ (SH) in analogy to the notion of a semi-join in relational
algebra. In such cases, KBDOCK selects the best available homologous
DDI for one or both query domains, as appropriate, and it identifies the
residue(s) on the query domain(s) which lie closest to the centre of the
corresponding binding site(s). These residue identities could then be used to
defi i docking Clearly, if the datab: ins no
homologous interactions, the target complex must be modelled by ab initio
docking. However, as this study is primarily concerned with exploring a
new knowledge-based approach for finding docking templates, the use of

In order to enhance the 1D domain family i with 3D
information, DSSP is used to calculate the change in solvent accessibility
for each interaction residue (as defined by 3DID) between the separate and
complexed structures of each domain. Here, we use the notion of ‘core’ and
‘rim’ residues, as defined by Chakrabarti and Janin (2002). An interaction
residue is considered to be a core interface residue if it loses at least 75%
of its accessible surface area on going from the isolated to the complexed
structure. Otherwise, it is considered to be a rim interface residue.

2.4 Defining protein domain family binding sites

Our mapping between the Pfam consensus sequence and PDB residue
numbers provides a convenient way to identify the conserved residue

docking techniques is not considered here.

2.6 The Protein Docking Benchmark

Tn order to explore the utility of using KBDOCK to find homology templates
for protein docking, our approach was used to predict a subset of the protein
docking targets in version 4 of the Protein Docking Benchmark (Hwang et al.,
2010). The Docking isa dund: e ted set of 176
protein complexes for which the bound complex structures, and most of the
unbound component structures, have been solved by X-ray crystallography
toaresolution of 3.25 A or better. Since KBDOCK works at the domain level,
we selected all single domain complexes belonging to the ‘Enzyme-Inhibitor”
(here called ‘Enzyme’) and ‘Other’ categories of the Docking Benchmark

positions of all domains stored in KBDOCK. Hence, it is strai al
to retrieve the C, coordinates of the conserved residue positions in a given

for this preliminas . In other words, for simplicity we exclude
the Benchmark *Antibody’ complexes (because apart from involving the
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Fig. 3. This figure shows the superpositions and interface direction vectors [Equation (1)] of the five DDIs of the Kunitz legume Pfam family. Here, the lavw
(porcine trypsin/soybean trypsin inhibitor) and 2qyi (bovine trypsin/trypsin inhibitor) complexes share a common binding site, and clearly have very similar

interface vectors.

antibody hypervariable loops, antibody-antigen interactions generally do not
entail homology) and we exclude all other complexes involving multiple
domains. This gives a test set of 36 Enzyme and 37 Other target

Table 1. Summary of the number of DDIs and calculated binding sites for
10 example Pfam domains stored in KBDOCK

It should be noted that the Docking Benchmark complexes do not
necessarily provide an unbiased set of homology modelling targets. Because
several of the benchmark proteins have been relatively well studied, it is
possible that the PDB could contain more homologues of those complexes
than randomly selected complexes. In order to take into account this possible
source of bias, a stringent test would be to exclude as templates all structures
with more recent PDB deposition dates than the target structure. However,
filtering complexes by target date often excludes a large proportion of the
database. Therefore, in order to provide upper and lower bounds on the utility
of template-based modelling, and to try to quantify the growing usefulness of
knowledge-based approaches, we report results both with and without date
filtering.

3 RESULTS

3.1 Defining domain family binding sites

Superposing families of related DDIs in a common coordinate
frame and clustering their interface direction vectors [Equation (1)]
provide a straightforward way to analyse structural relationships
between the members of a given query domain. Figure 3 shows
the superpositions and interface vectors calculated for the five
DDIs involving the Kunitz legume Pfam family. This figure clearly
shows that this domain has four distinct interaction sites, one of
which is common to two different trypsin/inhibitor complexes.
Supplementary Figure S1 shows the spatial clustering dendrogram
for this family, and for a further three example Pfam families
(namely, Kunitz BPTI, Ribonuclease and Actin).

Spatial clusters have been calculated and stored in KBDOCK
for all the 1029 Pfam domain families which are involved in
hetero interactions. Superposing and clustering all Pfam domain
binding sites in KBDOCK takes ~8 CPU hours on a 64-bit 2.8 GHz
Q9550 proce:
partners and calculated binding sites for 10 example Pfam domain
families, including the four examples considered above. This table
shows that these Pfam domains typically have from one to four
binding sites, according to our spatial clustering algorithm. It is
interesting to note that even domains involved in many DDIs such
as Kunitz BPTI, Trypsin and Actin still have only a relatively small
number of distinct binding sites.

Figure 4 shows the DDI superpositions for the 10 Pfam families
listed in Table 1. In most cases, visual inspection of the complexes
in this figure readily confirms the calculated number of binding sites

r. Table 1 summarizes the number of hetero DDI

PfamID Pfamname  Function No.of  No. of
DDIs  binding sites

PF00197 Kunitz legume  Protease inhibitor 5 4
PF00014 Kunitz BPTI  Protease inhibitor 27 2
PF00280 Potato inhibit  Protease inhibitor 3 1
PFO0089 Trypsin Protease 98 6
PF00062 Lys Hydrolase 10 5
PF00545 Ribonuclease  Hydrolase 9 1
PF00022  Actin Protein binding 24 4
PF000S9  Lectin C Glycoprotein binding 14 4
PFOOI11  Fer2 Ferredoxin 14 3
PF00085 Thioredoxin  Redox protein 8 2

given in Table 1. For example, the Potato inhibit domain interacts
with eight other domains (all serine proteases) using a single binding
site. On the other hand, the Kunitz BPTI domain has two inhibitory
binding sites, and, as shown in Table 1, the Kunitz legume inhibitor
has four binding sites that form distinct interfaces with four different
domain families, namely Trypsin, Thioredoxin, Alpha-amylase and
Peptidase S8. Conversely, Thioredoxin interacts with eight different
Pfam families, but it does so using just two overlapping binding
sites.

For domains that have multiple binding sites and which interact
with several different domain partners (e.g. Fer2, Lectin C, Lys, Actin
and Trypsin), it can be difficult to distinguish all the interactions
visually. Hence, KBDOCK allows the user to select and display only
those DDIs involving a given binding site. Comparing the DDIs of
binding sites selected in this way using 3D graphical visualization
software such as Jmol often shows that our clustering algorithm
calculates acceptable clusters in almost all cases.

Figure 5 shows the distribution and the change with time of the
number of binding sites per domain family (excluding the very large
Cl-set immunoglobulin domain family) of all NR hetero DDIs in
KBDOCK. This figure confirms that most domains typically have
from one to four hetero binding sites, and only a very small number
of domains such as Trypsin (six binding sites) have more than this.
Indeed, over 60% of all hetero domains in KBDOCK have just one
binding site, which supports the notion that domain binding sites are
often re-used in different DDIs. It is interesting to note that despite
the growing number of Pfam domains for which KBDOCK contains
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Fig. 4. DDI superpositions for 10 example Pfam domains (Table 1) in the coordinate frame of the query. In each case, the query domain is shown in black.
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Fig. 5. The calculated number of hetero binding sites per domain family by
PDB deposition date for all Pfam families except the C/-set immunoglobulin
domains.

hetero complexes, the relative proportion of domains having 1,2, 3,
or 4 binding sites scems remarkably stable.

3.2 Docking by homology

Table 2 summarizes the results of querying KBDOCK to find
docking for the 73 target 1 both with and without
filtering DDIs by PDB deposition date. Full details of these results
are given in Tables S1-S3. 'y Figure S2
shows two examples of docking targets for which KBDOCK finds
FH and SH templates, respectively. For all targets, the structures
of the unbound domains given by Hwang ef al. (2010) were used
as query domains, and the corresponding crystallographic complex
(i.e. the expected solution) was excluded from the modelling
procedure. Here, a FH template is considered to be correct if the root
mean squared deviation (RMSD) between it and the native complex
is <10 A. This is similar to the CAPRI criteria for an ‘acceptable’
docking prediction (Mendez et al., 2005). According to this criterion,
Table 2 shows that KBDOCK finds good FH templates for a total of
24 out of 36 Enzyme target complexes, although this number falls to
13 when PDB deposition date filtering is applied. A further 10 targets
have SH DDIs involving one or both of the target domains, and

Table 2. Summary of the KBDOCK template modelling results for the 73
selected Protein Docking Benchmark targets*

Target Total FH Two SH One SH No

class targets  templates  templates  template  templates
No date filtering

Enzyme 36 24124 GB+Di5 3/5 2

Other 37 21/21 (©+0)3 5/11 2

Total 73 45/45 B+1)8 8/16 4

With date filtering

Enzyme 36 13/13 Q+Di5 11 7

Other 37 13/13 ©+0)/1 8/15 8

Total 73 2626 2+1)/6 15/26 15

“This table shows the number of docking targets for which the proposed templates
are correct compared to the total number of templates retrieved. When SH templates
are found for both domains individually (“Two SH templates’), the figures in brackets
give the number of cases in which both binding sites are modelled correctly plus the
number in which only one binding site is modelled correctly. Full details are presented
in Supplementary Tables $1-S3.

just two Enzyme targets have no hetero DDI information. Similarly,
Table 2 shows that 21 (or 13 with date filtering) of the 37 Other
targets may be modelled using FH templates, and a further 14 targets
have SH DDISs involving one or both of the target domains. Like the
Enzyme targets, only two of the Other targets have no hetero DDI
information.

Table 2 shows that all the retrieved FH templates are correct
according to the 10 A RMSD threshold. Thus, if KBDOCK retrieves
a FH template, there is a high probability that it represents a good
model of the target complex. However, Supplementary Table S1
shows that KBDOCK sometimes finds more than one distinct FH
interface for a given pair of query domains. In other words, the
instances of two domain families can sometimes interact via more
than one combination of binding sites. For example, KBDOCK
retrieves two FH templates for three of the Enzyme targets (1dfj,
leaw, 2pcc) without date filtering, and for just one target (leaw)
when date filtering is applied. Subsequent visual inspection of
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the calculated templates for the matriptase/BPTI target (PDB code
leaw) showed that the first trypsinogen/BPTI DDI (2r9p) provides
a very good template (with an overall RMSD between the template
and target of 0.79 A), whereas the second (lower sequence identity)
FH template corresponds to a different inhibitor orientation found
in the prothrombin/boophilin complex (20dy; 8.54 A RMSD).

Similarly, visual i ion of the calculated for two
of the Other targets (1fqj, Iml0) confirmed that these FH templates
correspond to two different binding modes for both the G-protein
complex (1fgj) and the M3-protein complex (Iml0), and that the
first (highest sequence identity) template best matches the target
(0.70 and 1.03A RMSD, respectively). On the other hand, the
two DDIs (1z7x and 2bex) calculated for the large RnaseA/LRR
1 Enzyme complex (1dfj) were seen to overlap considerably, and
the two large binding sites calculated for the RnaseA domain should
have been clustered as a single binding site. Similarly, two of the
Other DDIs (1mg8, 2ayo) are calculated to have two distinct binding
sites, although visual inspection again suggests that these should
have been clustered as a single binding site. We believe that such
clustering artefacts sometimes arise due to different assignments of
core and rim residues in different instances of homologous DDIs.
The peroxidase/cytochrome C Enzyme target (2pcc) is another
interesting case. Although the two DDIs calculated for this target
are quite distinct, further investigation revealed that one of the DDIs
arises, because the crystal contact between these domains was larger
than the biological contact in the 1s6v structure. Consequently, two
binding sites instead of one were also calculated for these domains.
Thus, KBDOCK can successfully retrieve alternate FH binding
modes when they exist in the database, but it can also be seen that
its clustering algorithm has a slight tendency to overestimate the
number of distinct binding sites.

As might be expected, fewer FH templates are available when
PDB data filtering is applied, and this causes an increase in the
number of proposed SH templates. When only SH templates are
retrieved, we assess their quality by comparing each proposed
binding site with that of the native complex and if our interface
clustering algorithm would group them together, we consider
the retrieved template to be correct. The final two columns of
Supplementary Tables S2 and S3 show the outcome of this test,
and Table 2 summarizes the overall results. For example, SH DDIs
involving the two individual query domains exist for five of the
Enzyme targets. Supplementary Table S2 shows that three of these
targets (le6e, lacb, 1f6m) may be modelled correctly by re-using
their Pfam domain binding sites, and one further target (10v8) may
be partially modelled by re-using one of the two proposed SH
templates. On the other hand, there are three Other targets for which
the two query domains both have SH templates, but none of these
lead to acceptable models. For those cases where only one SH
template exists for a given target, the binding sites of one of the
queries is found to be re-used in the target DDI in a total of three
out of five Enzyme targets (g1, 4cpa, 1fql) and five out of 11
Other targets (1ktz, 2g77, Iwql, 2h7v, 1y64). In order to as

putati that might use these
templates, Supplementary Tables S2 and S3 show the proposed
PDB template along with the name of the query residue calculated
to be at the centre of the binding site.

Overall, it can be seen that KBDOCK can provide high-quality
FH docking templates for a total of 45 of the 73 targets (or 26/73 with
date filtering). Even when no FH templates exist, KBDOCK can still

t any

I docking

find useful binding site information for at least one of the domain
partners for 12 of the remaining 28 targets (or 18/47 with date
filtering). These results demonstrate that the approach embodied in
KBDOCK provides a useful way to find protein docking templates.

4 DISCUSSION

4.1 Comparison with previous approaches

Because the main aim of KBDOCK iis to facilitate automatic docking
by homology, it has several novel aspects that have not been
explored in previous studies of structural PPIs. In particular, because
protein docking is inherently a spatial problem (with six degrees
of freedom in the simplest rigid body assumption), KBDOCK was
designed from the start to consider the relative spatial arrangements
of interacting protein domains, and to deal with cases where a full
homology template is not necessarily available. This is in contrast
to the most previous PPI classification approaches, which generally
apply clustering techniques to groups of residues belonging to both
partners of existing interfaces. For example, 3DID defines a domain
interface by applying complete linkage hierarchical clustering to
identify groups of shared interface residues within a Pfam domain
family (Stein et al., 2009). It then labels each distinct occurrence of
a domain/interface pair as an ‘i ion topology’, and it applies
a further round of hierarchical clustering to define ‘global interface
clusters’ that group together individual interfaces (Stein er al., 2010).
This gives an average of about 10 global interfaces per Pfam domain
[see Figure 3 of Stein ez al. (2010)].

Kim ef al. (2006) represent an interface as a pair of *face vectors’,
each of which contains a list of ones and zeros to represent the
contacting and non-contacting residues of each domain, respectively.
The face vectors within a SCOP domain are then grouped according
to the cosine similarity between their face vectors, and interfaces
with similar faces are superposed and clustered according to their
face overlap and the angle between the centroids of pairs of faces
(Kim et al., 2006; Winter et al., 2006). Pairs of faces are then
combined to define interface types. This procedure is reported
to give on average about 5.4 distinct interface types per SCOP
domain family (Winter et al., 2006). Other approaches such as
3DID, PPiClust (Aung et al., 2008) and I12I-SiteEngine (Shulman-
Peleg et al., 2004) also cluster and analyse pair-wise interfaces
rather than individual binding sites. Clearly, the interface direction
vectors used in KBDOCK share a similar inspiration to the face
angle measure of Kim er al. (2006). However, Kim et al. (2006)
focused on studying the diversity of domain interfaces, the evolution
of hub proteins and gene fusion events (often manifested as
intra-domain interactions), whereas our study focuses on finding
docking templates for hetero domain interactions. Thus, our study
complements and extends previous work.

Previous template-based docking approaches have used
comparative patch analysis, threading and sequence alignment
techniques (Chen and Skolnick, 2008; Korkin er al., 2006;
Kundrotas and Vakser, 2010; Kundrotas er al., 2008; Launay
and Simonson, 2008), for example. Hence, at a conceptual level,
KBDOCK shares a similar inspiration with the comparative patch
analysis approach of Korkin er al. (2006). This approach defines
and clusters binding sites of interacting SCOP domains using a
scalar ‘localisation index” calculated as a sum of contact residue
frequencies in the context of the superposed domains of a given
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SCOP family (Korkin et al., 2005). This index serves as a kind
of fuzzy set membership measure, and does not consider the
directional nature of the interface, whereas KBDOCK explicitly
clusters binding sites according to the spatial orientation of their
core and interface residues.

From a template docking point of view, KBDOCK is somewhat
similar to the HOMBACOP approach of Kundrotas er al. (2008).

Pfam families for which hetero complexes are now available. This
strongly supports the notion that protein binding sites are very often
re-used. Of course, the hetero complexes available in the PDB are
not necessarily representative of the whole structural interactome.
Nonetheless, if the very small numbers of hetero protein binding
sites found here do indeed turn out to be typical, this will have
considerable implications for future data-driven and template-based

HOMBACOP begins by using PSI-BLAST to identify did:

structural templates for a given pair of sequences, and these
are refined using a further round of sequence-based template
matching using a position-specific scoring matrix enriched with
interface information of the known templates. In a similar spirit,
Launay and Simonson (2008) use the solvent accessibility of

interface residues to enhance their Wunsch

docking approaches, and for 3D PPI networks on a
genomic scale.

5 CONCLUSION
KBDOCK provides a systematic way to store and analyse the

of candidate templates. However, they then use an energy function
to select the final template, whereas HOMBACOP uses sequence
similarity and KBDOCK uses structural similarity to the target
domains as the final selection criteria. Compared with HOMBACOP
that used the PROTCOM database (Kundrotas and Alexov, 2007)
without date filtering to produce 19 models for 43 targets (44%)
from the Docking Benchmark version 2 (Mintseris ef al., 2005),
KBDOCK finds good FH templates for 26 (36%) and 45 (62%) out
of 73 targets with and without date filtering, respectively. Hence,
KBDOCK appears to be rather competitive compared to the earlier
approach.
Overall, KBDOCK provides high-quality FH docking

3D of protein domain binding sites. By superposing the
structures of all hetero DDIs involving a given query domain, and
by using the simple notion of an interface direction vector to define
the central region a protein binding site, a small number of spatially
distinct binding sites may be identified for each Pfam domain family.
Using this approach, we find that the majority of the 1029 Pfam
domain families have a small number (up to four) of hetero binding
sites, and over 60% have just one hetero binding site.

KBDOCK can be used to find automatically homologous hetero
DDIs with which to model the unknown 3D structure of given
protein complex. In 60% of the docking benchmark examples
studied, KBDOCK finds a small number of high quality DDI

for 62% of the targets studied here, and it finds useful binding
site information for a further 39% (11/28) of the remaining targets.
Following these very promising results, we are extending KBDOCK
to deal with multi-domain complexes, and to link it directly to our
rigid body docking software (Ritchie and Kemp, 2000).

4.2 Implications for the 3D interactome
There is growing interest in using docking techniques to predict
large-scale structural PPIs (Kundrotas er al., 2010; Launay and
Simonson, 2008; Mosca et al., 2009; Sinha et al., 2008; Wass
et al., 2011). However, results from the CAPRI docking experiment
(Lensink and Wodak, 2010) show that current docking algorithms
still face the problem of how to distinguish a good solution from a list
of feasible but mostly incorrect predicted docking orientations. On
the other hand, exploiting biochemical or biophysical knowledge
in data-driven docking (van Dijk et al., 2005) can often help
to constrain the scope of a docking calculation and considerably
improve the quality of the results (Korkin et al., 2006; Lensink and
Wodak, 2010; Ritchie, 2008). Hence, if prior biological knowledge
is available in a suitable form, it would be desirable to be able to
incorporate it in a docking .
Kim ez al. (2006) note that many of the currently known interface
types only started to become available in the mid-1990s. Hence,
carly docking and interface studies only had a small repertoire of
interface types to work with. They also found that although the
number of interface types continues to grow, the rate of growth
is currently much less than the growth in the total number of
multi-domain structures that are being solved (Figure 5 of Kim
et al., 2006). Our analysis of the rate of growth in the number
of hetero binding sites since 1999 (Fig. 5) also shows only a
modest increase in the number of Pfam families having multiple
hetero binding sites, despite over a 3-fold increase in the number of

with which to model the target complex. Furthermore,
one of the unique strengths of KBDOCK is that it can find semi-
homologous templates even when no full homology template is
available. Hence, KBDOCK provides a useful knowledge-based
approach for template-based protein docking and for helping to
describe and understand structural PPIs on a genomic scale.
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ABSTRACT
Motivation: There is considerable interest in ur ing how

form protein-protei These may consist of

experimentally observed protein-protein interaction (PPI) networks
can be explained in terms of 3D structural interactions. There is a
rapidly growing number of 3D structures which have been solved.
However it is not yet clear how best to understand and exploit
knowledge of the 3D interactions between these structures. Here,
we classify and analyse the secondary structural features of a
comprehensive and non-redundant set of representative DDIs drawn
from 140,612 structural DDIs provided by the 3DID database. Our
dataset consists of 947 Pfam domain families involving a total of
1,439 hetero domain binding sites and 1,009 distinct domain family
interactions.

Results: We have classified Pfam domain binding sites into seven
structural types based on different combinations of three secondary
structural elements (SSEs). We find that a-a domain interactions
and irregular-irregular interactions are quite probable, whereas a-3
and 3-8 interactions are rather strongly disfavoured. Furthermore,
we find there is very little difference between the SSE character of
single partner binding sites and multi-partner binding sites. However,
two-partner binding sites are found to have significantly smaller
surface areas than single partner binding sites. Additionally, we
find that over 80% of Pfam domain binding sites interact with just
one other type of Pfam domain, and very few domain binding sites
interact with more than three different Pfam domains. Although our
analysis can successfully identify known hub proteins such as the
protein kinase domain (and can possibly explain their promiscuity),
we find that most domains are primarily monogamous in their
physical relationships with other domains, and this finding could have
considerable implications for the interpretation of large-scale PPI
networks and for drug targeting.

Availability: http://kbdock.loria.fr/

Contact: Dave.Ritchie@inria.fr

1 INTRODUCTION

Protein-protein interactions (PPIs) are central to many biological
processes. At the thi di ional (3D) structural level, proteins
often perform their function by interacting with other proteins to

*to whom correspondence should be addressed

homo-dimers or higher order homo-multimers, or they may involve
heteromeric interactions between different protein chains. While
homo-interactions are observed relatively often in crystal structures,
most processes of biological interest involve hetero interactions, and
the corresponding structures are normally much more difficult to
determine experimentally and to predict computationally (Ezkurdia
et al., 2009). Hence, although the number of solved 3D protein
structures appears to be growing exponentially (Berman, 2008),
there is an equally growing need to be able to classify and analyse
the structural repertoire of known hetero PPIs using computational
modeling and analysis techniques.

Following the principle of homology, it is often assumed that
proteins with similar 3D structures will have similar biological
functions. Several studies have shown that proteins often interact
via just one or a small number of binding sites (Shoemaker et al.,
2006; Keskin and Nussinov, 2007; Ghoorah er al., 2011), and
several groups have studied the biophysical properties of protein
binding sites and interfaces. For recent reviews, see e.g., de Vries
and Bonvin (2008), Keskin er al. (2008), Ezkurdia er al. (2009),
and Fernandez-Recio (2011). For example, Keskin et al. (2008)
summarise the factors which have been examined by several groups
in order to characterise protein binding sites. These include, residue
conservation, the types of secondary structures present, the shape
and surface area of the binding site, the number of water molecules
buried on binding, the number of polar and non-polar residues,
the number of available hydrogen bonds and salt bridges, and the
presence of so-called “hot spot™ residues, for example.

In one of the earliest structural studies of PPIs, Janin and Chothia
(1990) observed that the binding sites of protease inhibitors and
antibody proteins often have similar structural properties. On the
other hand, Jones and Thornton (1996) found that many interfaces
have roughly equal proportions of helix, sheet, and loop residues,
with some interfaces containing only one type of secondary
structure, but most being mixed. Lo Conte er al. (1999) found
that the size of the recognition site is related to the conformational
changes. Xu et al. (1997) suggest that hydrogen bonds are weaker
at the interface and that salt bridges play a significant role in protein
association. Other studies based on alanine scanning mutagenesis
have shown that certain called hot spot interface residues can
contribute a large proportion to the total binding energy (Bogan
and Thorn, 1998), and that large amino acids such as tryptophan,

© Oxford University Press 0000.
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arginine and tyrosine are the frequent hot spot residues. Ma ef al.
(2003) found that hot spot residues such as tryptophan, and to a
lesser extent phenylalanine and methionine, are more structurally
conserved in PPI interfaces than in other surface regions, and
they proposed that this tendency might be used to help predict the
locations of unknown binding sites. Caffrey et al. (2004) found that
the residues at protein interfaces are usually more conserved than
other surface residues, particularly in homodimers, but they found
that such differences are not sufficient to predict interface patches
by conservation alone. Thus, even though some general trends have
been observed, it is not clear how best to use this knowledge to
differentiate and classify different types of binding sites. Indeed, we
recently argued that there is still no universally accepted definition
of what actually constitutes a protein binding site per se (Ghoorah
etal.,2011).

In order to relate the structure and function of different proteins
in a systematic way, PPIs are often described in terms of domain-
domain interactions (DDIs) because protein domains may often
be identified as structural and functional units. Three widely used
domain definitions are Pfam (Finn et al., 2010), SCOP (Murzin
et al., 1995), and CATH (Cuff et al., 2009). Pfam defines domains
using multiple sequence alignments in order to identify families of
sequences which will often correspond to distinct functional and
structural regions. The SCOP and CATH classifications use both
sequence and structural similarities to collect and relate protein
domains in a hierarchical system of related domain families.

It should be noted that both the SCOP and CATH classifications
can contain many instances of a given Pfam domain family, and that
DDIs may be described and analysed both in terms of individual
pairs of 3D domain structures (i.e. one instance of a DDI) and in
terms of interactions at the domain family level (i.e. one or more
instances of interactions between two Pfam domain families which
have been observed experimentally).

In a previous study we defined protein domain family binding
sites (DFBSs) using spatial clustering of hetero DDIs (Ghoorah
et al., 2011). Here, we analyse the secondary structural features
of DFBSs themselves and within domain family interactions (DFIs)
using our collection of 947 different Pfam domain families involving
a total of 1,439 domain family binding sites (DFBSs) and 1,009
distinct domain family interactions (DFIs) which we derived from
the 3DID database Stein er al. (2010). Hence, the present work
represents one of the largest systematic studies of structural domain
interactions to have been described to date and, to our knowledge,
the first study to have considered quantitatively the nature of such
interactions at the domain family level.

Here, we show that hetero domain binding sites can be clustered
into seven main groups, cach consisting of different proportions
of the main secondary structure elements (SSEs), namely helices,
sheets, and irregular structures. We therefore propose a structural
classification of domain binding sites which naturally extends the
top level of the CATH domain family classification (i.e., a, 8, a + 3,
and irregular), as originally defined by Levitt and Chothia (1976).
‘We use our binding site classification to determine whether there are
any general relationships between the SSEs of pairs of binding sites,
and to investigate whether there are any differences in the structural
features of domain binding sites which have just one domain partner
(the majority) and those with more than one domain partner.

Our results confirm previous findings that a-helices are found
more often at interfaces than (-sheets. More specifically, we

find that a- interactions and irregular-irregular interactions are
quite probable, whereas a-3 and
strongly disfavoured. On the other hand, we find there is very
little difference, if any, between the SSE character of single
partner binding sites and multi-partner binding sites. However, two-
partner binding sites are found to have significantly smaller surface
areas than single partner binding sites. Although our analysis can
successfully identify known hub proteins such as the protein kinase
domain, we find that most domains are primarily monogamous in
their physical relationships with other domains, and this finding
could have considerable implications for the interpretation of large-
scale PPI networks and for drug targeting.

interactions are rather

2 METHODS
2.1 The KBDOCK database

The KBDOCK database has been described previously (Ghoorah
et al., 2011). Briefly, KBDOCK combines DDI information from
the November 2009 version of the 3DID database (Stein et al.,
2010) with the Pfam protein domain classification (Finn e al.,
2010) together with coordinate data from the Protein Data Bank
(PDB; Berman et al., 2002) for all known structural DDIs. The
version of 3DID used here consists of a total of 140,612 DDIs
drawn from 29,922 PDB structures and involving a total of
3,755 different Pfam domain families. However, many of these
DDIs result from multiple copies of a given DDI appearing in a
single crystal structure or from the same complex solved under
different crystallographic conditions. Therefore, to achieve a robust
classification and statistics, KBDOCK first filters the 3DID database
to select DDIs involving only hetero interactions using a sequence
similarity threshold of 99% for the concatenated sequences of
each DDI. It then superposes and spatially clusters hetero DDIs in
order to identify a small number of DFBSs for each Pfam domain
(Ghoorah et al., 2011). Finally, the DDI instances involving to
each DFBS are filtered again, this time using a 60% sequence
similarity threshold, in order to retain only distinct pairs of domains
associated with any given DFBS. For example, 3DID has 23 DDIs
for the Kunitz_legume domain (Pfam accession no. PF00197) which
KBDOCK reduces to 5 non-redundant hetero DDIs, and which it
then clusters spatially to identify 4 DFBSs on the Kunitz_legume
domain. The 60% filter then reduces the 5 DDI instances to 4
representative DFIs. Overall, the KBDOCK filtering and clustering
procedures give a total of 1,439 Pfam DFBSs located on 947
different Pfam domain families, and which are involved in a total
of 1,009 distinct DFIs. The KBDOCK web server is available at
http://kbdock.loria.fr. This provides an easy-to-use public interface
to explore and analyse domain family interactions and their binding
sites and to propose protein docking templates. A full dump of the
database is available from the authors on request.

2.2 Structural annotation of DFBSs

We use the DSSP program (Kabsch and Sander, 1983) to annotate
domain and DFBS residues with secondary structural information.
DSSP defines eight types of SSE: a-helix (H), 3/10-helix (G),
7-helix (I), residue in isolated S3-bridge (B), extended strand
(E), hydrogen bonded turn (T), bend (S), and loop/irregular (L).
However, because several of these types are broadly quite similar,
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and because only a few instances of turns and bends were found in
the KBDOCK database, the eight DSSP types were grouped into
three main SSE classes which we denote here as o (H, G and 1), 8
(B and E), and ~y (T, S, and L). The SSE propensity, Ps,;(s), of each
DFBS, (f,b), is calculated for each SSE class, s, as the average of
the DSSP frequencies in the corresponding member domain binding

sites:
M

N¢
Pry(s) = — R R— )
) M= NG+ Ni,b +No

where M is the total number of non-redundant DDIs involving Pfam
family f, and Ny, ;, is the count of the number of residues of type s
at the b™ binding site of the 7™ DDI member of family f. Each SSE
propensity value in this way is i normalised
to fall within the range [0, 1].

2.3 Classifying and analysing DFBSs

In order to examine whether DFBSs might exhibit any preferred
combinations of secondary structures, we first used Ward’s
hierarchical clustering algorithm (Ward, 1963), as implemented
in the R software (htp://www.r-project.org), to cluster the 1,439
DFBSs on the selected three classes of SSE. Visual inspection of
the resulting dendrogram indicated that using 7 clusters would be
the most parsimonious. However, because we believe hierarchical
clustering is not necessarily the most robust clustering technique
to use with smooth continuous functions, we next applied the
expectation-maximization (EM) algorithm as implemented in the
‘Weka data mining toolkit (http://www.cs.waikato.ac.nz/ml/weka/),
to re-cluster the DFBSs using this number of target clusters. Weka’s
“JRip” propositional rule learning algorithm was then applied to
generate a set of rules able to map DFBS instances to the selected
clusters. In the following sections we refer to the clusters described
by these rules as “binding site types.” Finally, several specialised
KBDOCK queries were implemented in Prolog to analyse the
DFBSs and their interactions with respect to these binding site types.
VMD (http://www.ks.uiuc.edu/Research/vmd/) was used to generate
the molecular graphics figures.

3 RESULTS
3.1 Rule-based classification of DFBSs

Table 1 shows the mean and standard deviations (SDs) of the
DFBS clusters obtained from EM clustering. Because these clusters
are seen to describe biologically interesting combinations of SSE
classes (e.g. “mainly a”, etc.), and because each cluster has a
broadly similar number of members, we adopted these clusters as
a useful classification of the secondary structural composition of
DFBSs. Visual inspection of Table 1 suggests that these clusters
may be labeled as “a” (mainly a), “o + 7 (approximately equal a
and « with almost no ), “G +~™ (mainly /3 plus some 7), “y + o™
(mainly ~ plus some «), “y + 37 (mainly v plus some 3 ), “y”
(nearly all 7), and “a + 3+~ (approximately equal c, 3, and ).
It is interesting to note that there is no specific “a + 37 type in
this classification. Although binding sites containing both a and 3
SSEs are observed quite frequently (cluster 7, 161 instances), they
always contain a considerable fraction of v SSEs (average 34.6%).
Indeed, Table 1 shows that each of the binding site types contains a
significant v component.

Figure 1 shows how our dataset of 1,439 DFBSs is distributed
over the seven types of binding site. This figure confirms that helices
and irregular SSEs are the most common types of SSE in domain
binding sites. It is worth noting that despite the fact that a “mainly
«” DFBS requires a considerably higher proportion of a SSEs than
the proportion of 3 SSEs in a “8 +~” DFBS, yet Figure 1 still shows
that the most common type of DFBS are those that involve o SSEs.
Although Table 1 shows the observed SSE propensities, it does not
provide a convenient way to classify a new instance. We therefore
used JRip to generate a set of rules able to map DFBS instances to
the selected clusters. These rules are able to classify correctly 96%
of the DFBS instances. However, because some of these rules are
rather complex, they were manually simplified by rounding each
threshold to the nearest 5%. Table 2 shows the simplified rules
obtained in this way.

Table 2. Simplified relationships between binding site SSE
propensities (per cent units) and assigned binding site types.

Binding Site SSE Propensity Rule Binding Site Type

a
B+
T+8
5
a+y
Yo
Otherwise a+ B+
300
251 250
250
225
8 7 209
8 200
id
s 161
S 150
H s
£ 100
2
50
0% T wFy yra Py yFB ¥ a+Pry
DFBS type

Fig. 1. The distribution of DFBSs over the 7 selected binding site types.

3.2 Do DFIs have SSE pairing preferences?

Figure 2 shows some examples of DDIs involving various
associations of DFBS types. With 7 structural types of DFBS, there
are 7% 6/2 4 7 = 28 possible pairs of binding site types. Table 3
lists the numbers of occurrences of DFIs for each pair of binding
site types (total 1,009 DFIs). Given that the DFBS types are rather
uniformly populated, with the exception of the 3 + v and o + 3 +
types which are under-represented (Figure 1), a random distribution
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Table 1. Mean and SDs (per cent units) of the SSE propensities for the 7 selected DFBS clusters.

Cluster 1 2 3 4 5 6 7
P(a) 80.14+11.5 53.7+57 29.6+82 45+ 65 3.8+54 43+6.2 41.1+16.6
P(B) 00+ 00 04412 59+68 61.7+13.6 303+£94 26444 2424132
P(v) 19.3+11.5 46.0£5.8 645+87 33.8+13.9 659+9.7 93.0+74 346=+12.9
No. DFBSs 261 207 258 118 209 225 161

of our DFIs would give an average of about 36 DFIs (1009/28) per
pair of DFBSs. Hence, Table 3 shows that the most frequent types of
DFI consist of interactions between pairs of o (62/1009) and ~y + a
(55/1009), and between ~y + c and ~y (64/1000). Also frequent are
DFIs involving v + a with a, a + 7, and 7 + «, giving 47, 55,
and 59 interactions, respectively. DFIs in which ~ + 3 pairs with
7+ 3, or v are also relatively frequent with 57 and 58 interactions,
respectively. Thus, as might be expected from Table 1, the v SSE is
present in all frequent associations of binding site types.

In order to compare these frequencies more readily, Table 4 shows
the marginal probabilities derived from Table 3. For example, if a
given DFBS has been classified as a type, Table 4 shows that the
probability that any partner of that domain will also have a mainly
« binding site is 23% (compared to a random value of 100/7 ~
14%). On the other hand, the probability that any partner of that
domain will have at least some o SSEs is 23 +19.7+17.44+8.2 =
68.3%. Similarly, if a given DFBS has been classified as 3 + -y, then
the probability of observing 3 + = is only 9.6%. More generally,
this table shows that interactions between pairs of a-rich DFBSs
and also those between pairs of ~y-rich DFBSs are quite probable,
whereas a-3 and (-3 interactions are rather strongly disf:

Table 3. The numbers of DFIs observed for each pair of binding

site types.
o a+y B4y y+a 7+B8 7 a+f+y

@ 62 53 21 47 33 32 22
a+y 30 24 55 22 33 26
Bty 15 18 32 27 20
T+a 59 51 64 25
v+ B 57 58 35
~y 34 21
a+f+y 33

Table 4. The marginal probabilities (per cent units) of observing
cach type of “partner” binding site for a given “query” binding site.

Fig. 2. Examples of different types of DFL: (a) a with a (PDB code 1VRC,
chains A, C); (b) a + v with o (PDB code 2CGS, chains A, B); (c) 8 +
with v (PDB code 2YIB, chains F. B); (d) ¥ + o with 7 + 3 (PDB code
ITEI, chains A, B). Binding site SSEs are shown in red.

3.3 Are binding site surfaces special?

In a similar manner, we wished to investigate whether the mean
SSE propensity of a domain binding site is different from the
SSE propensity of the rest of the domain’s accessible surface.
Table 5 shows the marginal pi ilitie ing the predicti

Partner
Query a a+y By v+a v+B v a+B+y
a 230 197 78 174 123 116 82

a+y 218 123 99 226 9.1 13.6 10.7
B+ 134 153 9.6 115 204 172 12.6
T+ 147 172 56 185 16.0 20.1 79
v+ 1.5 76 111 177 198 20.1 12.2
¥ 122 122 100 238 211 121 78
a+f+~ 121 143 110 137 192 115 18.2

of a domain’s binding site given knowledge of the SSE character
of the rest of the domain’s surface. Comparing the main diagonal
and off-diagonal elements of this table suggests that the type of
SSE in the binding site is well correlated with the SSE type of the
domain’s surface as a whole. In other words, there is often little or
no significant difference between the SSE character of a domain’s
binding site and that of the rest of the domain’s surface. However,
it is worth noting that there seems to be a negative correlation
for y-rich surfaces, i.e., given a y-rich domain surface it is rather
unlikely that its binding site is also ~y-rich.

3.4 Are multi-partner binding sites special?

We also wished to assess whether there are any significant
differences between single partner binding sites and binding sites
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Table 5. The marginal probabilities (per cent units) of observing a
particular type of binding site with respect to the SSE type of the
whole of the corresponding domain’s surface.

Binding Site
Suface  a a+y B4y v+a y+B v a+B+v
a 205 253 04 180 19 04 245
a+y 169 208 05 372 15 00 232
B+ 19 14 426 177 67 05 292
Y+a 66 112 109 392 08 27 287
y+8 09 00 424 178 68 09 314

¥ 31 62 249 356 31 93 218
a+f+y 43 31 137 292 12 00 48.5

that interact with more than one domain. Figure 3 shows the
distribution of the number of distinct Pfam partners for both the 947
Pfam domain families and the 1,439 DFBSs stored in the KBDOCK
database. This figure shows that some 62% (584/947) of these Pfam
domains interact with just one type of domain partner, 21% interact
with two types of domain, and only 17% interact with three or more
different Pfam families. When considering DFBSs, the trend is even
stronger, with over 80% (1,186/1,439) of DFBSs having just one
type of domain partner. Only 17.5% (252/1,439) of DFBSs have
more than one type of partner, and very few (in fact just 42) have
more than three different domain partners.

In a similar manner, Table 6 shows the DFBS frequency and
marginal probabilities of the various binding site types according to
the number of their domain partners. This table indicates that multi-
partner DFBSs tend to be slightly depleted in a-containing SSEs
and richer in y-containing SSEs, although these tendencies are not
especially strong.

Table 7 lists the number of distinct Pfam domain partners for
the 10 Pfam domains having the greatest numbers of DFBSs
and domain partners. It is interesting to note that the Trypsin
domain currently has the most interactions, presumably due to
its rich variety of substrates and because interactions involving
proteases have been heavily studied as therapeutic targets. As might
be expected, most of the other domains such as Ras, PKinase,
ubiquitin, V-set, and C1-Set are central to cell regulation, signaling,
and the immune system, for example. Thus, the identity and
function of the domains listed in Table 7 are rather consistent
with their known function and with evidence from high throughput
experiments. For example, Patil et al. (2010) report that kinase
domains are frequently observed in PPI network hubs, with some
405 hubs having some kind of kinase activity.

Finally, in order to estimate whether there are any gross physical
differences between DFBSs with just one binding site partner and
those with more than one partner, we used DSSP to calculate the
solvent accessible surface (SAS) of each DFBS (these calculations
assume that each binding site contributes equally to the buried SAS
at a DDI interface). Table 8 shows the average surface areas and
number of binding site residues of DFBSs according to the number
of Pfam partner domains. This table suggests that smaller DFBSs
tend to have more interaction partners. Applying a Wilcoxon signed

Table 6. Marginal probability comparison of binding site type with respect
to the number of Pfam partners.

DFBSs DFls a a+y B+y y+a v+ v a+pB+y

1186 1188 143 88 168 13.6 16.1 1.6
159 2 151 132 44 258 189 126 10.1
52 3 192 250 39 115 173 173 5.8
42 >3 9.5 7.1 119 286 214 95 9.5

Table 7. The numbers of distinct Pfam domain partners for the
10 Pfam domains having the greatest numbers of DFBSs.

Partners Total
Pfam domain per DFBS Partners
Peptidase S8 15 6
Cytochrome C1 13 5 9
Ubiquitin conjugating enzyme 1 2 2 5 10
Photosynthetic reaction centre 2 3 3 5 13
Protein kinase domain 24 45 15
Immunoglobulin C1-set 115 6 7 20
Ubigquitin 22 3 6 9 22
Immunoglobulin V-set 56 10 10 31
Ras 4 27 8 811 36
Trypsin 34 51415 41

rank test to the difference in size between single-partner and two-
partner DFBSs shows that this difference is statistically significant
at the 5% level (p = 0.014). However, there are too few instances
of three-partner DFBSs to confirm this trend statistically.

1200
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O Domain family binding sites

Total
600 800 1000

400

f—
-

"

!

!

Number of distinct Pfam partners

Fig. 3. Histogram of the number of different Pfam domain partners by Pfam
domain and by DFBS.
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Table 8. Average DFBS sizes calculated with
respect to the number of their Pfam domain
partners.

Binding Site  Binding Site
DFBSs DFIs  SAS(A%)  Residues

1186 1 709 £560 15411
159 2 576 £377 124+ 7
52 3 559 +£340 12+ 7
42 >3 6704£253 14+ 6

4 DISCUSSION

There is considerable interest in understanding how experimentally
observed PPI networks can be explained in terms of 3D structural
interactions (Tsai et al., 2009; Patil er al., 2010). However,
it is difficult to rationalise or consolidate the results from
different groups because different investigators often use different
terminologies to describe different types of interaction (e.g. homo vs
hetero, transient vs permanent, obligate vs non-obligate, biological
vs non-biological contact, date hub vs party hub, sociable vs non-
sociable, “singlish” interface vs multi-interface). Such variety of
language highlights the need for a well-defined terminology and
methodology with which to describe, classify, and analyse the
structural nature of PPIs and protein binding sites.

As a natural extension of the CATH domain classification, we
have classified domain binding sites into seven SSE-based types,
and we have proposed simple rules with which to classify new
instances of binding sites. This classification was possible thanks
to the well-characterized and non-redundant set of binding sites that
we identified and stored previously in KBDOCK using our spatial
clustering algorithm (Ghoorah et al., 2011). Because KBDOCK is
built from 3DID, which we consider to be the largest and most up-
to-date DDI database, our SSE-based classification of binding sites
may be considered as the most comprehensive one to date.

Our three SSE propensity “coordinates” («, /3, ) are compatible

described here is based on a set of 1,009 DFIs between a total of
947 different Pfam domains, representing the first systematic study
of DDIs at the Pfam domain family level.

As well as supporting previous findings regarding the preference
for a-rich features in binding sites, our analysis indicates
that irregular-irregular interactions are also favoured, but that
interactions rich in a-3 and 3-8 are rather strongly disfavoured.
Knowledge of these secondary structure pairing propensities could
be useful for the prediction of unknown DDIs, especially if
combined with other near-orthogonal physical properties (de Vries
and Bonvin, 2008).

Perhaps more significantly, our results show that some 60% of
domain families and 80% of the DFBSs for which 3D structural
DDI information is available interact with just one type of Pfam
domain, and that very few DFBSs interact with more than three
different Pfam domains. Interestingly, these DFBSs are always
found in domains containing more than one DFBS (see Table 7).
This suggests there may exist a “two-level multiplication” in the
number of different partners for these domains. This multiplication
of partners could be further enhanced when such multiple-partner
domains are bled in multi-d in protein archi Thus,
such a combinatorial expansion of partners could explain the
structural basis for the observed promiscuity of some hub proteins.
‘We are planning future analyses to verify whether the small set of
multi-partner DFBSs and their corresponding domains are actually
involved in the architecture of these proteins.

5 CONCLUSION

Our structural classification of DFBSs provides a useful way to
classify and analyse the secondary structure propensities of DDIs,
and it highlights some SSE pairing preferences which might be
useful for the prediction of unknown DDIs. We have used this
classification to analyse the structural interactions of a large set of
1,439 domain family binding sites located on 947 Pfam domain
families, and involving 1,009 distinct hetero domain interactions.
We find that a-cv interactions and irregular-irregular interactions
are rather frequent, whereas a-3 and 3-8 interactions are rather

with those of the top level of the CATH domain family
However, the continuous nature of these coordinates mean that any
derived rules may need to evolve as new DDIs are added to the
structural interactome. It should also be emphasised that a CATH
class does not necessarily entail structural homology. Similarly, our
classification of binding sites does not imply any kind of structural
homology. It aims only to provide a practical framework in which
to describe different combinations of domain binding site SSEs in a
way that reflects well the observed SSE propensities. Nevertheless,
for present purposes, we believe that the very large coverage and
the lack of redundancy of our dataset make our classification quite
reliable.

Several previous studies of structural PPIs have identified
potentially interesting relationships between the shapes and physical
properties of protein-protein interfaces, and most such studies
have suggested that it might be possible to use such properties
predictively. However, these earlier studies of PPIs have been
somewhat limited by the relatively small numbers of hetero protein-
protein complexes available, and by the problem of how to select
a suitable sub-set of protein binding sites to work with. The study

strongly disf . We find there is very little difference, if
any, between the SSE character of single partner binding sites and
multi-partner binding sites. However, two-partner binding sites are
found to have statistically significantly smaller surface areas than
single partner binding sites. Additionally, we find that over 80%
of those Pfam domains for which 3D structural DDI information
is available interact with just one other type of Pfam domain,
and that very few domain binding sites interact with more than
three different Pfam domains. This indicates that most domains
are primarily monogamous in their physical relationships with
other domains. Hence, the results from this early glimpse of the
structural interactome could have considerable implications for the
interpretation of large-scale PPI networks and for drug targeting.
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ABSTRACT

Motivation: The protein docking problem is the problem of how to
calculate the three-dimensional (3D) structure of a protein complex
from its unbound components. Although ab initio docking algorithms
are improving, there is a growing need to use homology modeling
techniques to exploit the rapidly increasing volumes of structural
information that now exist. However, previous homology modeling
approaches have been applied either only at the domain level, or
they are limited to using the complete single-chain structures of a
homologous protein complex as a 3D template. Here we wish to avoid
such limitations by modeling protein complexes directly from known
domain-domain interactions (DDIs). However, modeling 3D protein
complexes from multiple DDIs is a non-trivial problem.

Results: We have developed a case-based reasoning approach for
modelling the structures of 3D protein complexes by systematically
identifying and re-using domain family binding sites from our
database of non-redundant DDIs. When tested on 101 protein
complexes from the Protein Docking Benchmark, our approach
provides a near-perfect way to model single-domain and multi-domain
protein complexes when suitable templates are available, and it
extends our ability to model more difficult problems when only partial
or il exist. This rep a first step towards
automatically reasoning about PPI networks at a structural level.
Availability: http:/kbdock.loria.fr/

Contact: Dave.Ritchie@inria.fr

1 INTRODUCTION

The protein docking problem is the problem of how to calculate
the three-dimensional (3D) structure of a protein complex starting
from the unbound components. This problem was first described
some thirty years ago (Wodak and Janin, 1978), and since then
many computational docking algorithms have been developed
(Halperin et al., 2002). Nowadays, there is growing interest in
using docking techniques to model the structural basis of protein-
protein interaction (PPI) networks (Aloy et al., 2005). Some recent
studies have started to use computational docking to predict protein
interaction partners and structural PPI networks (Sacquin-Mora
et al., 2008; Mosca et al., 2009; Wass et al., 2011). In the last ten

*to whom correspondence should be addressed

years, the “CAPRI” (Critical Assessment of Predicted Interactions)
blind docking experiment has stimulated many improvements (Janin
et al., 2003; Wodak and Mendez, 2004). However, while some
good progress has been made (Lensink and Wodak, 2010), it still
remains challenging to produce a satisfactory 3D model of a protein
complex using ab initio docking algorithms, and cross-docking
multiple proteins can produce many false-positive interactions. On
the other hand, several studies have shown that using experimental
information to guide and constrain docking calculations can
improve the reliability of the predictions significantly (van Dijk
et al., 2005; Lensink and Wodak, 2010). Given that the number
of solved structures in the Protein Data Bank (PDB) appears to be
growing exponentially (Berman, 2008), the possibility to exploit
existing structural knowledge of proteins and their interactions
seems to be an increasingly promising way to model the 3D
structures of unknown complexes.

Because protein domains may often be identified as structural and
functional units, the 3D structures of protein complexes are often
analysed in terms of their component domain-domain interactions
(DDIs). Several structural interaction databases describe PPIs in
terms of DDIs (Tuncbag et al., 2009). Since it has been shown
that proteins with similar sequences often interact in similar ways
(Aloy et al., 2003), and since it is well known that protein folds
are often more conserved than their sequences (Chothia and Lesk,
1986), it follows that homologous families of protein domains could
be expected to interact in structurally similar ways. Indeed, several
studies have found that the locations of protein interaction sites
are often conserved within domain families (Korkin ez al., 2005;
Shoemaker et al., 2006).

Several groups, including ourselves, have described homology-
based PPI modeling approaches. For example, Lu et al. (2002),
Grimm et al. (2006), Launay and Simonson (2008), and Mukherjee
and Zhang (2011) used threading techniques to predict the 3D
structure of a complex starting from the sequences of the component
proteins and a library of known complexes. Korkin et al. (2006) used
their ive patch analysis ique together with knowledge
of known binding sites to define docking restraints for modeling
a selection of protein complexes. The ISEARCH algorithm of
Gunther er al. (2007) models protein complexes by comparing the
local surface similarity of pair of query domains with a library
of DDIs derived from the PDB. The HOMBACOP approach of
Kundrotas et al. (2008) uses BLAST to retrieve complex templates
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which are similar to the given query sequences. Movshovitz-Attias
et al. (2010) recently carried out a detailed study on the utility of
using structural templates when modeling conformational flexibility
in a number of enzyme-inhibitor and antibody-antigen docking
problems.

However, to our knowledge, all such approaches have either
been applied only at the domain-domain level, (Gunther er al.,
2007; Launay and Simonson, 2008; Ghoorah et al., 2011), or they
need to have available the complete single-chain structures of a
homologous protein-protein complex. We believe that even if a
complete protein-protein template does not exist, by applying the
principles of homology all the way from sequence families to DDIs
and PPIs, it should still be possible to propose 3D models of protein
complexes by reasoning about the available structural knowledge
of the component domains. However, given that a protein may
consist of one or more domains, and knowing that domain families
may have several binding sites, it follows that multiple possible
combinations of DDIs should be considered when modeling PPIs.
Hence, predicting PPIs from DDISs is a non-trivial problem.

From a computational point of view, docking by homology
can be i as a kind of case-based reasoning (CBR). In
general, CBR algorithms aim to solve new problems by adapting
the solutions found for similar previous cases (Kolodner, 1992).
CBR is a very broadly defined method of problem-solving, and
many types of CBR systems have been implemented in many
different ways (Aamodt and Plaza, 1994). Nonetheless, most CBR
systems typically maintain a “case base™ (CB) of previous cases,
and they solve problems (new cases) by applying four main steps
(de Mantaras et al., 2005), namely, (i) retrieve the most similar case
or cases from the CB, (ii) re-use or adapt those cases in order to
better match the problem and to propose a solution, (iii) revise the
proposed solution if necessary, and (iv) retain the solved case in the
CB for future use.

In docking by homology, it might at first seem natural to build a
collection of solved protein complexes to serve as the CB, and to
predict the structure of a new complex by matching its component
proteins to the structures in the CB. However, as explained above,
this would allow only a limited number of full-length single-chain
complexes to be modeled. In order to be able to deal with a much
wider and more diverse range of protein-protein modeling problems,
we therefore treat individual domains and their associated domain-
level interactions as the structural units of knowledge.

Here, we present a CBR-inspired approach for modelling protein
complexes which extends our previously described KBDOCK
system for modelling pair-wise DDIs (Ghoorah et al., 2011). Briefly,
KBDOCK collects and clusters structural DDI information from the
3DID database (Stein et al., 2010) in order to define a non-redundant
set of domain family binding sites (DFBSs) using the Pfam (Finn
et al., 2010) domain definition. The version of KBDOCK used
here was built using a total of 140,612 DDIs from 29,922 PDB
structures. These DDIs were filtered, superposed, and spatially
clustered (Ghoorah ez al., 2011) to give a total of 1,439 Pfam DFBSs
which are involved in 1,009 distinct domain family interactions.
Hence, the public KBDOCK database contains the largest non-
redundant set of 3D hetero DDIs currently available. We found that
nearly 70% of domain families have just one hetero DFBS, and
that very few have four or more DFBSs (Ghoorah et al., 2011).
Our statistics confirm previous indications (Korkin er al., 2005;
Shoemaker ef al., 2006) that domain binding sites are often re-used

in DDIs. Our basic assumption, therefore, is that the 3D structures
of unsolved protein can be p by aggregating the
interactions observed between their component DFBSs.

Our main aim here is to use some basic principles from CBR to
lay down a systematic way to exploit partial or incomplete structural
DDI information in order to extend our ability to model multi-
domain protein complexes. In other words, we wish to develop a
formal way to reason about and combine knowledge of existing
DDIs in order to predict the 3D structures of protein complexes
without requiring full-length homology templates to exist. Thus, our
approach for modelling a protein complex aims to be a versatile
hybrid between template-based and ab initio docking which will

ically adapt itself ding to the structural knowledge
available for each target. However, in order to ensure that all of
our predictions are derived only from experimentally solved and
validated 3D structures, we do not apply the final CBR step of
storing the generated solutions in the case base.

2 METHODS

2.1 H logy deling in the I of CBR

In the language of CBR, a case is a collection of attributes or
features which describe a solved problem (here, the experimentally
determined structures of a pair of interacting domains). In general,
each case may be described by a number of indexed and non-indexed
attributes. Indexed attributes are used for case retrieval, whereas
non-indexed attributes provide useful contextual information. Here,
the Pfam domain identifiers of the query structures serve as the main
indexed attributes, whereas the non-indexed attributes include PDB
codes, PDB chain identifiers, amino acid sequences and atomic
coordinates. If necessary, indexed attributes may be derived from
the non-indexed attributes. For example, KBDOCK uses PfamScan
(Finn et al., 2010) to determine the Pfam identifiers of the problem
domains automatically from their sequences.

As shown in Figure 1, the information associated with each case
includes instance-specific information such as the lists of residues
of each domain which participate in a specific DDI, along with
other derived instance-specific information such as the calculated
geometric centre of the binding site, and the residue of each
domain which KBDOCK assigned as the central residue of that
particular binding site. By spatially clustering binding sites within
Pfam families, KBDOCK also stores a family-level binding site
identifier for each instance of a binding site. Thus, instances of
DDIs in the CB may be grouped and retrieved according to both
the Pfam families and the family-level binding sites involved. For
example, the Kunitz_legume domain family has five non-redundant
hetero DDI cases involving four distinct DFBSs. Because we define
binding sites at the Pfam family level, KBDOCK identifies each
binding site using a compound identifier, PfamAC/BindingSite.
Thus, for example, PF00197/1 refers to the first DFBS of the
Kunitz_legume family.

2.2 Pfam-based case retrieval

By denoting a pair of Pfam DFBSs as d1/b1 and d2/b2, we use
the notation ¢(d1/b1,d2/b2) to represent a DDI case in the CB.
Similarly, by using upper case identifiers to represent unknown
or uninstantiated instances, we denote a new problem (query) as




3D protein using based

PDB 1aww Structure
Deposition date  27-Sep-97
Expt. Technique  X-ray diffraction  Resolution 1754
Chain_1 A Chain_2
Sequence_1 IVGGYTCAANSL... Sequence_2 DFVLDNEGNPL...
PfamiD_1 Trypsin PfamiD_2 Kunitz_legume
PfamAC_1 PF00089 PlamAC 2 PF00197
Region_1 16-238 Region_2 502675
BindingSite 1 2 BindingSite 2 1

_res_ {Phe-502, ..} BS_res 2 {His57, ..}
BS_centre_res 1 Ser-195 BS_centre_res 2 Ser-560
BS_centre_xyz_1 (x.y.2) BS_centre_xyz_2 (x.y.2)

Fig. 1. An example of a DDI case in KBDOCK. Each case consists of a
collection of attributes or features. Indexed attributes which may be used for
case retrieval (the Pfam accession codes and the binding site identifier), and
are shown in bold. For cases that match a given problem, the non-indexed
attributes such as the domain sequences or the pre-computed binding site
centre residues are used to guide the case adaptation and refinement steps,
and to rank the proposed solutions.

q(d1/B1,d2/B2), or often just simply ¢(d1,d2). This notation
allows known binding sites to be given as part of the query if such
knowledge is available, and it allows partial or incomplete matches
with the CB to be represented in a consistent way. Naturally, the
overall aim is to find cases in the CB which match (or, more

account the possibility that not all of the retrieved DDI cases will be
mutually compatible, and that similar docking problems may have
different solutions. Hence, to model a protein complex, we need to
consider multiple possible adaptations from the CB, and we need
to rank them according to how well they collectively correspond
to the target complex. Figure 2 illustrates this approach. Although
this may seem obvious in the context of protein docking, it seems
that the notion of case amalgamation has only recently started to be
considered in the CBR community (Ontafién and Plaza, 2010).

Problem Similar cases
retrieve ﬁ | I
Case-base

reuse
and
% adapt

refine and rank
-—

Ranked solutions

generally, which can be unified with) the given query sp
If both of the query domains can be unified with cases in the CB,
we call this a full-homology (FH) problem, and we denote the set
of matching cases as F'H(d1,d2). It is worth noting that even for
the most favourable problems in which FH cases exist in the CB,
the stored cases may involve more than one pair of DFBSs. For
example, a recent CAPRI target concerned the complex between
trypsin and arrowhead protease inhibitor A (Lensink and Wodak,
2010) which has two solutions involving two different inhibitor
binding sites (PDB code 3E8L). On the other hand, it is also
possible for one or both of the given query domains to match
individually one half of a known DDI in the case base. We call such
p semi-homology (SH) p and we let SH(d1, D2)
and SH(D1,d2), where D1 # d1 and D2 # d2, denote the two
possible sets of SH cases for a given query. Furthermore, we call a
problem for which both |SH(d1, D2)| > O and [SH(D1,d2)| >0
a SH-two problem, and we call a problem in which only one query
domain has matching cases a SH-one problem. This distincti

Fig. 2. Overview of the KBDOCK approach for modelling DDIs.

2.4 Modeling FH problems

Since we know from previous experience (Ghoorah et al., 2011) that
FH cases very often provide good homology docking models, we
collect the instances in F"H (d1, d2) into groups having distinct pairs
of DBFSs, and we rank the members of each group by their overall
sequence similarity to the concatenated sequences of ¢(d1, d2). We
then select the most similar member of each group, and superpose
its domains onto the query using the ProFit least-squares fitting
program (http://bioinf.org.uk) in order to give a final ranked list of
substitution-adapted solutions.

becomes significant at the docking refinement stage. Of course, if
|FH(d1,d2)| = |SH(d1,D2)| = |SH(D1,d2)| = 0, then no
homologous cases exist, and it is necessary to adapt other more
distantly related cases or to use ab initio docking. In the present
study, we do not consider the possibility of applying adaptation
beyond the Pfam level.

2.3 Case adaptation in CBR

Many different kinds of adaptation in CBR have been described
(Aamodt and Plaza, 1994; Watson, 1997; de Méntaras er al.,
2005). For example, substituti d i i i parts
of a previous case by applying a domain-specific transformation
operator to map it onto the problem case. Here, we wish to apply
this principle to the protein docking problem, but due to the spatial
nature of this task and the fact that we have to may have to deal
with multiple combinations of domains, we also need to take into

2.5 Modeling SH probl

For SH-two problems, we assume that the target complex may
be modeled using a pair of existing DFBSs. We therefore take
the Cart product P(d1/B1,d2/B2) = SH(dl/B1) x
SH(d2/B2) to enumerate all possible pairs of candidate DFBSs.
This broadly corresponds to generating amalgamations of cases in
CBR (Ontaiién and Plaza, 2010). However, this does not form
3D interfaces between the DFBSs, it only gives a set of symbolic
associations. Therefore, for each instance of P, we construct a
putative DDI, p(d1/b1,d2/b2), using the coordinates of the stored
centre of gravity and central interface residues in order to locate
the two domains on the global z axis with their central residues
facing each other near the origin, and with d1 on the negative z
axis and d2 on the positive z axis, as illustrated in Figure 3. These

have been impl d using i from the
Hex docking program (Ritchie and Kemp, 2000). Up to a small
translation and an undetermined twist about the z axis, each pair
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of such configurations defines a putative pair-wise interface which
could be refined by a rigid body docking search. However, since
the aim is to find solutions for the given query, we then superpose
the domains in g(d1, d2) onto the oriented pair p(d1/b1, d2/b2) in
order to obtain a set of candidate solutions.

For SH-one problems, in which one or more DFBSs are known
for just one of the query domains, the query domains are oriented
on the z axis as described above, using a random surface residue for
the uninstantiated binding site centre residue.

2.6 Refining and ranking SH problems

Our Hex rigid-body docking algorithm (Ritchie and Kemp, 2000)
is used to rank the putative SH solutions generated using the
above procedure. Since Hex can perform all-versus-all docking
of multiple PDB model structures, it is relatively straight-forward
to prepare a Hex script to perform a rigid-body docking search
around each putative DDI in p(d1/b1,d2/b2). For SH-two cases,
the docking search is focused around the given pair of binding site
centre residues using two angular constraints, 3, and S2 (Ritchie
et al., 2008), as shown in Figure 3. On the other hand, for SH-
one problems, just one angular constraint is applied to the known
binding site, and the other domain is allowed to spin freely in order
to search over its entire surface. If no DFBSs match the query,
unconstrained blind docking is applied. Algorithm 1 shows some
high-level pseudo-code which summarises these modelling choices.

Here, each pair-wise Hex docking run used 3D FFT shape-based
correlation searches with range angles of 31=/32=45, as appropriate,
and 40 translational steps of 0.5 A along the z axis with respect
to each given starting orientation. This generates approximately
60, 360, and 2,000 million trial rigid body orientations for each
pair-wise SH-two, SH-one, and blind docking run, respectively,
of which the top 2,000 are re-scored using the DARS (Decoys as
Reference State) potential (Chuang er al., 2008). For docking runs
involving multiple combinations of DFBSs, individual pair-wise
docking results are merged and sorted by DARS energy to give the
final ranked list of solutions.

Algorithm 1 High-level pseudo-code for modeling a DDI by CBR.
if |FH(d1,d2)| > 0 then
apply substitution adaptation
elseif |SH(d1, D2)| > 0 A [SH(D1,d2)| >0 then
apply two substitutions and focused docking
elseif |SH(d1, D2)| > 0V [SH(D2,d2)| >0 then
apply one substitution and loosely constrained docking
else

apply blind docking
end if
27 Modeli iod PR
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‘We now consider the problem of aggregating DDI-level CBR cases
to model the 3D structure of a multi-domain protein complex. In
general, each protein to be docked may consist of multiple domains.
Therefore, if X = (d1,d2,...,dN) and Y = (el,e2,...,eM)
represent the proteins X and Y and their component domains,
then the preceding analysis of DDIs might suggest that we should

Fig. 3. Illustration of an initial docking pose between a pair of candidate
SH domains. The angles 31 and f32 represent the Hex docking search range
angles which will be applied to focus the docking search around the putative
interface. Black spheres represent the centre of mass of each domain, and
red spheres represent the central residue of each binding site.

take the Cartesian product of all possible pairs of component
domains, and apply the above CBR modeling procedure to each
pair of domains, and then aggregating the solutions. However,
because rigid body docking inevitably produces multiple false-
positive solutions, it is important to consider computational docking
as a measure of last resort, and to defer any docking calculation
for as long as possible in the reasoning process. Furthermore, since
each of the target proteins will normally be provided as complete
3D structures, it is not necessary to model any internal DDIs
because these are given as part of the problem. Indeed, such internal
interactions will obviously “consume™ a certain number of DFBSs,
thus blocking them from interacting with the domains of the other
protein. Therefore, our first strategy is to remove from consideration
any DDIs that are implicitly blocked by the other components of
the query. This is done by identifying the binding site centres of
each domain in the query protein (by querying the CB as described
above) and by striking out any binding sites whose centre residues
are buried in the query protein. This reduces the number of DFBSs
that should be considered as possible docking sites.

The next step is to form a Cartesian product of the surviving
DFBSs of each protein, and to query the CB with each putative
pair of such DFBSs in order to collect sets of FH and SH cases
from the CB. If no cases are retrieved, then Hex blind docking
is applied directly. Otherwise, if any FH cases are retrieved we
assume that the problem can be modeled by superposing the query
structures onto the best FH template, as before (see Section 2.4).
The only difference from the single DDI procedure is that now all
of the atoms of each protein are transformed by the superposition
transformation. On the other hand, if no FH case and no SH-two
cases are retrieved the proteins are docked and ranked by applying
the SH-one procedure to the set of available DBFSs (Section 2.5).
Otherwise, all available domains are cross-docked and ranked using
the SH-two procedure. Here again, the main difference from the
single DDI SH modeling procedure is that now all of the atoms of
each protein are transformed when making a docking pose.

3 RESULTS

‘We used the Protein Docking Benchmark 4.0 (Hwang et al., 2010)
as our test dataset. This consists of 176 protein-protein complexes
for which the bound structures and the unbound components of
at least one of the docking partners are available. Hwang er al.
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divided the benchmark into 52 enzyme-inhibitor complexes (here
called “Enzyme”), 25 antigen-antibody complexes, and 99 “Other”
complexes, and they classified each target as “Rigid”, “Medium”,
and “Difficult” according to the degree of conformational changes
between the bound and unbound structures. Targets in the Rigid
class should be amenable to rigid body docking algorithms, whereas
Difficult targets normally require a flexible docking algorithm to be
used in conjunction with prior knowledge about the binding mode.
Here, we exclude the 25 antigen-antibody complexes because the
antibody binding sites are known a priori and because the antigen
binding sites generally do not entail homology. We also exclude 11
targets for which no Pfam domain could be identified in one or both
of their subunits (PDB codes Iclv, le6e, ludi, 2abz, 2b42, 2uuy,
1151, 1j2j, 1qa9, 1xgs, 2hrk), leaving 140 target complexes.

However, it is worth noting that when the structure of a complex
is solved by X-ray crystallography, the structures of the unbound
proteins are often solved and deposited in the PDB by the same
laboratory at the same time. Therefore, in order to simulate a
scenario in which trivial solutions of each target do not already exist,
all targets were modeled using only structures with PDB deposition
dates earlier than those of the query structures. This removed a
further 39 targets from consideration, leaving 101 targets for which
non-trivial homologues exist in the CB for one or both partners.

Table 1 compares the CBR-based modeling results with blind
Hex docking for the 101 target complexes used in the current study.
Except for the angular search range constraints, the blind Hex runs
used the same docking parameters as for the SH problems described
above. Overall, 30 of the benchmark targets are FH problems,
of which 24 are single-domain targets and six are multi-domain
targets. These were modeled by retrieving cases involving the same
Pfam families as the query structures, and by ranking the cases
with respect to the query sequences and by applying superposition
adaptation on the highest ranking cases. For the third target (1eaw),
three FH template cases were found. Hence, for this target, the
template with the highest overall similarity was used to build the
final model. As can be seen from the Rank and RMSD columns
in Table 1, this procedure allowed 23 out of the 24 single-domain
targets targets to be modeled accurately, with known DFBSs being
re-used in all but one of the targets (indicated with an asterisk). A
hyphen in this table indicates that no “acceptable™ solution within
10A RMS from the native complex was found within the first
2,000 solutions. The final two columns of Table 1 show the results
obtained using Hex blind docking. Here, relatively low accuracy
solutions were found for only eight of the 24 targets, with only four
of those being ranked in the top 10 by the Hex scoring function.
These contrasting results highlight the utility of modeling DDIs
using known DFBSs.

The next two sections of Table 1 show that 30 of the docking
targets may be treated as somewhat more challenging SH problems
(26 SH-one and four SH-two problems). Of the 26 SH-one
problems, 15 of the known DBFESs turn out to be re-used, whereas
12 targets use previously unknown binding sites (according to the
PDB date filter). Of the 15 targets that re-use DFBSs, KBDOCK
finds eight good solutions, of which six are ranked within the
top 4. Blind docking finds slightly more (11) solutions overall,
but the ranks for two of these (1kac and 1slq) are too low to be
useful. There are two SH-one targets (lkac and 2g77) for which
blind docking finds a solution but CBR does not. Here, KBDOCK
retrieves the template DFBSs, but the angular constraint passed to

the docking stage is too tight to include a near-native orientation in
the search space. On the other hand, for two of the four SH-two
cases, the DFBSs on both partners are re-used and CBR finds two
good solutions at rank 1 and 2 for 1r0r and lacb, respectively. Rigid
body docking with Hex finds only one rather poor solution for these
four targets.

The right-hand part of Table 1 shows the results obtained for the
multi-domain targets. Like the single-domain targets, the first group
of entries show a striking pattern of results for six multi-domain FH
problems. For the three targets 1dér, lezu, and 1wdw, one of the
partners is a large symmetric homodimer. In all three of these cases,
the CBR approach correctly retrieves very low RMSD solutions for
each monomer of the dimer (shown as three rank-1 solutions in the
table). The next three targets, 2vdb, Thlv, and wi9b, involve three
assymetric repeats of the same domain in one of the partners, and
KBDOCK again finds acceptable or better quality docking these
three targets (two of which are “Difficult”). In contrast, for these
six targets, blind docking found only one solution (for 1d6r) with a
very poor rank.

On the other hand, only a relatively small number of the multi-
domain SH targets are predicted well either by CBR or by blind
docking. This is because several of these targets involve binding
sites which are in fact not re-used in the complex (marked with “N”
and “*” in Table 1), and because several of the targets (the final 11
SH-one rows marked as “M” and “D”) are intrinsically difficult to
score and rank using a rigid body docking algorithm.

4 DISCUSSION AND CONCLUSION

We have described a systematic CBR-based approach to model
the 3D structures of protein complexes from structural DDIs, and
we have tested it on a well known benchmark dataset. Previous
I ! delling-based app have either focused on
docking only DDIs, or they require full-length homology templates
to exist. However, it is difficult to compare our results with previous
work because each of the previous studies used a different dataset.
Here, by working at the Pfam domain level, we are able to draw
upon a non-redundant set of almost all currently known hetero
DDIs, and we can avoid the above limitations by aggregating pair-
wise DDIs to predict larger complexes. The results in Table 1 show
that for FH problems, in which previously solved cases may be re-
used, our approach provides a near-perfect way to retrieve good 3D
templates and to build high quality models of the target complexes.

Using PDB deposition data filtering to exclude trivial FH
solutions from consideration caused a good proportion of the
benchmark targets to be treated as more difficult SH problems. For
the single-domain SH targets, we find that known binding sites
are re-used in approximately half of the benchmark targets, and
this knowledge can usefully be used to guide rigid-body docking.
Hence our case-based method of re-using DDIs extends the reach
of current homology modeling techniques. Indeed, our results show
that if known binding sites are in fact re-used, a good model is often
ranked within the first handful of solutions. Although our current
implementation can miss some SH-one solutions which are found
by blind docking, we believe this is mainly because the angular
constraint passed to the rigid docking stage is too strict. On the
other hand, our results for multi-domain SH targets show that it is
difficult to use computational docking to identify the correct pair
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Table 1. Summary of the CBR-based docking results.*

Table 1. (continued).

Target Target  Source  SID SID DFBS DFBSs CBR :tHex  Blind Hex Target Target  Source  SID  SID DFBS DFBSs CBR :tHex  Blind Hex
PDB Type PDB 1 2 Puirs Re-used Rank RMSD Rank RMSD PDB Typc  PDB I 2 Pairs Re-used Rank RMSD Rank RMSD
Single-domain FH (no Hex docking) Multi-domain FH (no Hex docking)
lay7 E/R Db 294941 1 Y+Y 1 28 - - ld6r E/R lab 1000 654 2 Y+Y 1 160 379 822
legi E/R 3sb 206347 1 Y+Y 1 156 2 907 lew E/R - lazz 386 992 2 Y+Y 1 095 - -
leaaw E/R Ik 415396 Y+Y 1 093 7 806 Iwdw E/R  2iys 600 304 2 Y+Y 1 071 - -
Imah E/R  Mfss 589967 1 Y+Y 1 076 2 463 vdb O/R 10 257 960 3 Y+Y 1 359 - -
InSo E/R  lem 413953 1 Y+Y 1 131 - - Ihiv 0/D  lddx 925 %4 3 Y+Y 1 879 - -
loph E/R  Ijmo 289356 1 Y+Y 1 06 - - 20 O/D 206 2051000 3 Y+Y 1 602 - -
b E/R lsf 338198 1 Y+Y 1 298 - -
200 E/R Ibgq 467312 1 Y+Y 1 201 5 907 . o
2ou E/R  2ngd 364940 1 Y+Y 1 631 2 96l ';1'\':"?'/";'" SH';’:“;(W"" 's’afzd“k"‘y LovsU 1 976 1 4
2mi E/R lese 631359 1 Y+Y 1 L0 -
lewy E/R  lep3 196 - 1 Y+U 1 78 3 598
3gq E/R leg 184340 1 Y+Y 1 022 - lov E/R e 85 - 2 yiu - oo 7%
Uw O/R  lao 983985 1 Y+Y 1 052 411 972 lq B/R 1k 5 - 2 YeU U 63 3 17
fgj O/R  lagr 636353 1 Y+Y 1 047 - - W EM e Y ie 2 vaw Lm0
lgpw O/R 1k 585376 1 Y+Y 1 357 5 878 i BNt e 1 uvey T oo
lhel O/R  lgdu 994300 1 Y+Y 1 098 - - BB e A
Ix3 O/R  lemx 218942 1 Y+Y 1 L2 - - ok /R el 22 o0 wau - - oo
20k O/R 2078 988332 1 Y+Y 1 103 - ls O/R e Tl vey - - -0 C
e O/R  Ishw 442267 1 Y+Y 1 201 - - e /R s s uan - 1 e
2000 O/R  2bwe 205333 1 Y+N = * 335 990
e O/R Ift 195 - 2 U+N  * * - _
lgm O/M  lamd 938960 1 Y+Y 1 174 - liwh O/R  1bub T
6g O/M  lio 980988 1 Y+Y 1 077 TR e e U - . oo
2jo O/M  Imbf 221970 1 Y+Y 1 176 - - oy O/R I 025 4 yaeu
M8 O/M 2k 240713 1 Y+Y 1 28 - - o o/R 1o T s 1 Uven -« -
3ph O/M  Ivg0 194379 1 Y+Y 1 18 - - Imh O/R IS 6 - 2 yiu - - -
Iv6 O/R  Ipdg 244 - 2 N+U - -
Single-domain SH-one (with Her docking) e O/R  IvIp 162 3 UsN o+ o -
134 /R I 510 - 1 N+U * * 5 864 Il O/R  logd 370 - 6 Y+U 109 756 - -
e E/R Ipyt 538 - 3 Y+U 1 724 - - 24 O/R by 630 - 2 N+U o+ ¢ -
lgl E/R lacb 986 - 6 Y+U 4 801 6 732 2u O/R  lghu - 994 4 UsY - - - -
Ihia E/R ki 643 - 3 Y+U 52 956 11 845 3bp8 O/R  lodf - 043 1 UsY - - -
loc0 E/R 1K 300 - 1 N+U = = - _ 3dss O/R  lghq 996 - 2 Y+U 28 893 64 329
lppe E/R lwb 1000 - 2 Y+U 1 35 1 329 lhe8 O/M  lga 571 - 2 Y+U - - -
2ic E/R lese 634 - 1 Y+U 1 96 1 733 l2m O/M  libr 981 - 3 Y+U - - -
w9 E/M  lide 349 - 1 N+U * * 23 649 Iksd O/M  Imp 92 - 3 Y+U - - - -
gl E/D  lbuh 986 3 N+U o+ ¢ In2e O/M  3min 9938 4 Y+U
i E/D 209 75 - 1 Y+U 2 777 2 713 Ibkd O/D  Iwqgl 994 - 2 Y+U - -
lbuh O/R  Ifn 986 - 2 N+U * o+ _ lde4 O/D  lggd 442 - 5 Y+U - - - -
19 O/R  lfee 972 - 3 N+U * o+ ler O/D  laxi - 144 2 UsN ¢+ o -
lgg O/R lyes 327 - 1 N+U * o+ - - 1k O/D  Ikig 415 - 4 N+U o+ -
lidd O/R  lgdu 994 - 3 N+U * v — limo O/D  2hpp - 96 6 UsY - - - -
Ikac O/R  lakj 170 1 UsY - - 265 876 Izmd O/D  lap 157 - 3 N+U o+ o+ - _
Islg O/R ot —899 2 UsN = * 190 959 200 O/D 196 167 - 1 N+U o+ x - -
120k O/R  lukv 494 - 5 Y+U 2 300 2 706
2¢77 O/R - duky ST s Uey o 3838 Multi-domain SH-two (with Hex docking)
I O/M  Iwql 994 - 2 Y+U 48 85 - -
X S L lgxd E/R luca+lsmp 275 413 2 N+N  * L -
:’\:gf gm Ilguu‘; 517 21'1 ; S:E - L Imi0 E/M lik+1dfj 983 360 1 N+«N  * % 147 885
laj O/R lhhg+lagf 1000 239 3 N+Y *  * 150 755
M O/M I 994 5 Y+U . e %07 2 Nan -+
SO S - Ihef O/R lsgf+levt 487 20. )
Iku O/R lagd+Iklg 1000 98.1 44 Y+Y - - - -
64 O/D loml 893 - 4 Y+U - - - - : : S
B o Isbb O/R Inf+2seb 313 810 3 N+N - -
o ey s Y o lgp2 O/M  lgot 689 983 13 Y+Y 148 901 - -
libe O/D Igok+1lmp 981 183 3 Y+Y - - - -
Single-domain SH-two (with Hex docking) “For several targets, multiple cases are retrieved and considered (“DFBS Pairs™). This
fav E/R met+ lava 1000 =5 YN -2 r o - - table shows only a single template o pair of templates for cach docking target, being
Ior E/R lese+lppf 895 - 2 Y+Y 2 261 61 990 the one with the highest percentage sequence identity (SID) to the query structures. In
208y E/R lzun+2bo -990 2 N+Y - - - - the table, a hyphen (=) denotes no solution found within the top 2,000 orientations. An
lab E/M legi+2tec 1000 - 2 Y+Y 1 860 - -

(continued)

asterisk (*) denotes no solution was found by CBR because a binding site was not re-
used. Abbereviations used: E: Enzyme-inhibitor target; O: Other target; R: Rigid body
target; M: Medium difficulty target; D: Difficult target; Y: Yes (binding site re-used); N:
No (binding site not re-used); U: Unknown binding site
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of binding sites in multi-domain complexes. This is perhaps not
surprising given that each trial pair of initial docking poses will
produce a large number of false-positive docking predictions which
will mask any near-native solutions. Indeed, if both partners have
multiple binding sites, then without additional biological knowledge
we essentially revert to a blind docking problem (as in e.g. the SH-
two targets lklu and 1gp2, with 44 and 13 candidate DDIs to be
docked, respectively). Hence, it would be desirable to incorporate
more sophisticated restraints derived from other kinds of biological
evidence and to use a more powerful flexible docking algorithm such
as e.g. HADDOCK (de Vries et al., 2010), especially when dealing
with difficult targets involving conformational flexibility.
Nonetheless, given the rapid growth in the number of 3D
structures in the PDB, and the growing volumes of other
biochemical and biophysical data which can usefully be applied to
help model macromolecular complexes (van Dijk ef al., 2005), it is
becoming more and more time-consuming and tedious to study and
model even individual protein s. Therefore, in
order to understand more fully the complex biomolecular networks
and mechanisms which drive the cell, we need to develop more
systematic and automated ways to reason about and model the 3D
structural interactions which occur between the
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components. We believe that the CBR approach presented here
demonstrates a practical first step towards this goal.
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ABSTRACT

KBDOCK is a 3D database system that defines
and spatially clusters protein binding sites for
knowledge-based protein docking. KBDOCK
integrates protein domain-domain interaction (DDI)
information from 3DID, sequence alignments from
Pfam, and structural information from the PDB. This
allows the spatial arrangements of DDIs within Pfam
families to be analysed and predicted. KBDOCK can
be queried using Pfam domain identifiers, protein
sequences, or 3D protein structures. For a given
query domain, KBDOCK provides a non-redundant
list of its DDIs and their binding sites in a common
coordinate frame. A unique feature of KBDOCK is
that it can also be queried with two query domains
simultaneously. In this case, KBDOCK provides the
best DDI for both query domains, if available, for
use as a docking template. Even if no pair-wise
DDI homologues can be found, KBDOCK can often
propose binding sites for the individual domains,
which can be useful for conventional docking
calculations. The KBDOCK web interface is freely
available at http:/kbdock.loria.fr/.

INTRODUCTION

Protein-protein interactions play a central role in many
cellular processes. To date, over 65,000 protein structures
have been deposited in the Protein Data Bank (PDB (1)).
However, it has been estimated recently that only about
12% of these structures correspond to heteromeric complexes
(2). Therefore, to bridge this gap, there is much interest in
developing computational docking techniques to build models
of protein complexes. There currently exist many protein
docking algorithms (3), but ab initio docking can be difficult,
and it is often advantageous to exploit biological knowledge
about the nature of the interaction (4, 5, 6). In recent years,
much structural information on protein interactions has been
made available in on-line databases (7). These databases
constitute useful bioinformatics resources, but there remains

a need to develop automated ways to exploit the three-
dimensional (3D) nature of this data more effectively.

Here we present KBDOCK, a new resource for knowledge-
based protein docking. KBDOCK integrates domain-domain
interaction (DDI) information from 3DID (8) and sequence
alignments from Pfam (9) together with structural information
from the PDB in order to analyse the spatial arrangements of
DDIs by Pfam family, and to propose structural templates for
protein docking. KBDOCK has an easy-to-use web interface
which can be queried by Pfam domain, protein sequence or
structure information. For a given query domain, KBDOCK
finds a list of non-redundant hetero DDIs, and allows the user
to visualise them interactively in the coordinate frame of the
query. A unique feature of KBDOCK is that it can also be
queried with two query domains simultaneously. In this case,
KBDOCK provides the best DDI for both query domains,
if available, for use as a docking template. Even if no pair-
wise DDI homologues can be found, KBDOCK can often find
binding sites involving the individual domains, which can be
useful for conventional docking calculations. Thus, KBDOCK
provides a novel and easy way to analyse known DDIs, and
to find structural templates to help model unsolved protein
complexes.

MATERIALS AND METHODS
Defining Pfam family-level binding sites

Figure 1 summarizes the data sources and processing steps to
populate the KBDOCK database. Briefly, for each of the 3,713
Pfam families in 3DID, DDIs are extracted and are classified
into “intra,” “homo,” and “hetero” interactions. Currently, only
hetero interactions are retained. Next, biologically relevant
interfaces are distinguished from crystal contacts using
interface areas calculated by the DSSP program (10), and
interface residues are annotated as “core” or “rim” depending
on their solvent accessibility (11). To obtain a set of non-
redundant interactions, the NRDB90 program (12) is used
with a sequence similarity threshold of 99%. The sequences
of the selected domains are then aligned with the Pfam
consensus sequence in order to obtain a mapping between
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the UniProt and PDB sequence numbers. This mapping is
used to superpose DDIs using the ProFit least squares fitting
program (http://bioinf.org.uk). For each superposed domain,
an interface direction vector is calculated from the all-atom
centre of mass of each domain to the centre of its binding
site using a weighted average of its core (75%) and rim
(25%) residues. Finally, in order to define domain family
binding sites, interface direction vectors are clustered using
a hierarchical clustering algorithm. The results of all of the
above calculations are stored in the KBDOCK database.

=S

/
=
Eamat

Figure 1. The three primary data sources are PDB for protein structures,
Pfam for protein domain assignments and multiple sequence alignments, and
3DID for DDIs and residue contacts. Different shapes such as circles and
triangles represent different Pfam domains. Processing this data involves four
‘main steps: (i) selecting hetero DDISs, (i) mapping PDB sequences to the Pfam
consensus and identifying core and rim residues, (iii) superposing DDIs and
calculating interface direction vectors, and (iv) clustering interface vectors to
define Pfam family-level binding sites.

The data model

Figure 2 shows a simplified view of the KBDOCK
relational data model. The Pfam_PDB_domain entity contains
the mapping of all the PDB domain sequences to their
corresponding Pfam consensus sequence. The DDI entity
contain DDIs classified into intra, homo, or hetero. For every
hetero DDI, the binding._site entity contains 3D information
about the interaction, such as the atomic coordinates of
the interaction in the superposed orientation, the centre of
mass of each domain, the calculated center of the interface,
along with the binding site direction vector, and the residue
calculated to be closest to the centre of the binding site.
The core_rim_residues entity lists the interacting residues
annotated as either core or rim.

The physical database is implemented using the MySQL
database engine (http://www.mysgl.com). Operations such as
parsing and processing the data are implemented in Prolog
(http://www.swi-prolog.org/). Binding site direction vectors
are clustered using R scripts (http://www.r-project.org/). The
current version of KBDOCK contains 2,721 non-redundant
hetero DDIs involving 1,029 Pfam families, and was built
using Pfam version 24.0 and the November 2009 version of
3DID.

The web interface

The KBDOCK web interface is written mainly in the PHP
scripting language (http://php.net). Queries are processed
using Prolog and Linux shell scripts. The Jmol plug-in is used
for graphical visualisation (http://jmol.sourceforge.net). The

"
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[PoB_chain_residues | [Pram_uniProt_domain |-—<@>
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PDB_complex_residues
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Figure 2. A simplified view of the entity-relationship diagram of the
KBDOCK database.

web interface has been tested using several popular browsers
for the Windows, Linux, and Mac OS X operating systems.

Finding homology docking templates

Given two query domain structures, KBDOCK searches for
DDIs involving the same Pfam families as the query domains.
We call any DDIs that satisfy this search “full-homology”
(FH) templates. As discussed above, a protein complex may
often be successfully modeled using the known binding
sites of homologous domains. Hence, the query domains are
superposed onto the FH template(s) in order to propose a
docking model of the complex. If several FH DDIs exist in the
database and if they correspond to different pairs of binding
sites, KBDOCK outputs a proposed docking model for each
distinct pair of binding sites.

On the other hand, if no FH templates are found, KBDOCK
searches for and outputs DDIs containing the individual query
domains because these can still provide useful information for
a docking calculation. We call such DDIs “semi-homology”
(SH) templates in analogy to a semi-join in relational algebra.
In these cases, the query domain is superposed onto each
template in turn in order to propose a binding site on the query
domain. If several SH templates are found for a given query
domain, KBDOCK selects as a template the domain with the
highest sequence similarity to the query. The overall approach
is illustrated schematically in Figure 3.

RESULTS
Analyzing binding sites by Pfam family

In order to analyse the binding sites of a given Pfam family,
the user may use the KBDOCK *“Search” page (Figure 4) to
enter either a Pfam identifier (e.g. Kunitz_legume), a Pfam
accession number (e.g. PF00197), a keyword (e.g. inhibitor),
an amino acid sequence, or a PDB file of a protein structure.
If a sequence or a structure is entered, the PfamScan utility
(ftp://ftp.sanger.ac.uk/pub/databases/Pfam/Tools/) is used to
determine the Pfam accession number. Otherwise, the
accession number is found directly from KBDOCK database.
KBDOCK then retrieves a non-redundant list of hetero DDIs
involving the query domain, grouped by their binding site.
Figure 5 shows the output when KBDOCK is queried using

[15:07 8/8/2011 Kbdock server.tex] 07 8/8/2011 kbdock'server.tex] Page:2 15

Page: 1 }—5[15



FH templates FH models

+
Query )

structures L

09

B SH templates SH models

- .

a®

(nlam +

QA Y

Figure 3. Schematic illustration of how KBDOCK processes a docking
query. Here, dots represent the calculated binding site centre residues. When
a FH template is available, KBDOCK superposes the query domains onto
the template to propose a docking model. When only SH templates exist,
KBDOCK proposes one or more binding site(s) on each query domain. For
each selected template, KBDOCK calculates the core, rim, and binding site
centre residues.

the Kunitz_legume protease inhibitor domain (PF00197). The
Jmol plugin shows the retrieved DDISs in the coordinate frame
of the query domain. The query domain is shown in black
and interacting residues are shown as wire sticks. The user
may choose to view the DDIs together or individually. A Pfam
consensus-based sequence alignment of the retrieved domains
is also provided, in which each sequence is colour-coded
according to the core, rim and centre residue assignments.
A link to download the superposed PDB files as a single
compressed file for further analysis is also available.
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Figure 4. A screenshot of the KBDOCK “Search” page.
Finding docking templates

To find docking templates, the user enters two PDB codes or
uploads two PDB files and he then specifies which pair of
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Figure 5. A screenshot of the KBDOCK results for the query domain family,
Kunitz_legume. The results page consists of four sections: (i) a non-redundant
list of hetero DDIs grouped by their binding site. (ii) a Jmol view of the DDIs
in the coordinate frame of the query domain (the query domain is shown in
black and interface residues are shown in wireframe), (iii) a Pfam consensus-
based sequence alignment of the domains annotated with the core (green),
rim (blue), and centre (red) binding site residues, (iv) a link to download the
superposed PDB files as a single compressed file for further analysis.

Pfam domains in those structures should be used as queries. If
KBDOCK finds one or more FH DDI templates for the query
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domains, it shows a Jmol view of the superposed query and
FH template(s), along with colour-coded sequence alignments
of the query and template domains showing the core, rim,
and centre binding site residues. As before, the user may
download the query and template structures for later analysis.
Figure 6 shows a screenshot of the results page obtained when
querying KBDOCK using PDB codes 1thf and 1k9v (which
correspond to the His_biosynth and GATase Pfam domains,
respectively). In this example, the best FH template is PDB
code 1gpw (an imidazole glycerol phosphate synthase). If no
FH DDIs exist in the database, KBDOCK will output in a
similar way a non-redundant list of SH templates and their
colour-coded sequence alignments along with a Jmol view of
the superpositions (details not shown).
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Protein Docking Benchmark results

KBDOCK has been evaluated using 73 targets from
the Protein Docking Benchmark (13). Overall, KBDOCK
produced high quality FH docking templates for 45 of the 73
complexes and it found useful SH templates for 24 of the 28
remaining complexes. Thus, KBDOCK represents a novel and
useful way to find structural templates for knowledge-based
protein docking.

DISCUSSION
Comparison with other structural databases

Although several structural PPI databases have been described
recently, to our knowledge, KBDOCK is the only one
which has been specifically designed to facilitate template-
based protein docking. Some recent examples of structural
PPI databases are SCOPPI (14), IBIS (15), and 3DID
(8). SCOPPI classifies domain-domain interfaces based on
geometric overlap and face angle scores of residue contact
vectors (16). For a given SCOP family, SCOPPI outputs all
PDB complexes involving the query. The DDIs are grouped
according to their partner domain. For each group, multiple
sequence alignments with interacting residues marked are
available for both the query and partner family. Other
information available includes their in-house interface type,
interface area and volume, screenshot of the interface, and
links to related publications. 3DID classifies domain-domain
and domain-peptide interacions using hierarchical complete
linkage clustering of groups of interface residues. For a
given Pfam family, 3DID outputs a list of all its partner
domains grouped by their interface profile. IBIS stores
experimentally determined and inferred interactions between
proteins, peptides, DNA, and RNA, and other small molecules.
Like 3DID, IBIS classifies DDIs using hierarchical complete
linkage clustering of groups of interface residues. For a given
query protein, IBIS outputs a list of all its partner proteins.
The interactions are listed as DDIs, which are grouped by their
partner domain and their binding site. The identities of binding
site residues on the query protein are also proposed.
Although these databases are useful, they cannot be used
to provide docking templates directly because they cannot
be queried with two domains simultaneously. Furthermore,
they do not allow the binding sites and domain interactions
of a given query domain to be visualised interactively in
a common coordinate frame. In contrast, KBDOCK was
designed right from the beginning to identify automatically
structural templates with which to guide protein docking
calculations. Hence, KBDOCK has many features which
distinguish it from existing structural PPI databases: (i)
it uses the Pfam consensus sequence to place all of the
complexes involving a given Pfam domain family into a
common coordinate frame, (ii) it uses the notion of “core™
and “rim” interface residues to group the complexes by the
spatial position of their binding site, (iii) it finds automatically
the best available DDI template to use to model by homology
a complex of two given structures, (iv) if more than one
interface is found, it proposes a model for each, (v) if no
suitable DDI template exists, it can still propose candidate
binding sites for one or both interaction partners, and (vi)
it calculates a centre residue for each proposed binding site
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which may be used to initialise a docking calculation using,
e.g., HexServer (17). Additionally, thanks to the Jmol plug-
in, the KBDOCK web server provides a convenient way to
view and compare Pfam binding sites and calculated docking
templates.

Perspectives

We are currently extending KBDOCK to deal with multi-
domain complexes. We are also developing machine learning
techniques which aim to discover symbolic rules to describe
protein binding sites and interfaces at the domain family level.
‘We hope that such developments will provide further ways to
help guide protein docking calculations.

CONCLUSIONS

KBDOCK was designed specifically to identify structural
templates in order to guide protein docking calculations.
KBDOCK therefore provides a novel and useful resource
for analysing the 3D structures of DDIs within and between
Pfam domain families, and for proposing knowledge-based
templates to help predict the structures of unknown protein
complexes.
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Résumé

Létude structurale de I'interactome cellulaire peut conduire a des découvertes intéressantes sur les bases moléculaires de certaines
pathologies. La modélisation par homologie et 'amarrage de protéines (“protein docking”) sont deux approches informatiques pour
modéliser la structure tri-dimensionnelle (3D) d’une interaction protéine-protéine (PPIl). Des études précédentes ont montré que ces
deux approches donnent de meilleurs résultats quand des données expérimentales sur les PPIs sont prises en compte. Cependant, les
données PPI ne sont souvent pas disponibles sous une forme facilement accessible, et donc ne peuvent pas étre re-utilisées par les
algorithmes de prédiction. Cette thése présente une approche systématique fondée sur I'extraction de connaissances pour représenter
et manipuler les données PPI disponibles afin de faciliter I'analyse structurale de I'interactome et d’améliorer les algorithmes de prédiction
par la prise en compte des données PPI.

Les contributions majeures de cette thése sont de : (1) décrire la conception et la mise en oeuvre d’'une base de données intégrée
KBDOCK qui regroupe toutes les interactions structurales domaine-domaine (DDI); (2) présenter une nouvelle méthode de classification
des DDlIs par rapport a leur site de liaison dans I'espace 3D et introduit la notion de site de liaison de famille de domaines protéiques
(“domain family binding sites” ou DFBS); (3) proposer une classification structurale (inspirée du systeme CATH) des DFBSs et présenter
une étude étendue sur les régularités d’appariement entre DFBSs en terme de structure secondaire; (4) introduire une approche systé-
matique basée sur le raisonnement a partir de cas pour modéliser les structures 3D des complexes protéiques a partir des DDIs connus.
Une interface web (http://kbdock.loria.fr) a été développée pour rendre accessible le systtme KBDOCK.

Le systeme KBDOCK couvre plus de 2,700 hetero DDIs non-redondantes correspondant & 1,439 DFBSs localisés sur 947 domaines
Pfam distincts. KBDOCK a permis de réaliser plusieurs études étendues. Par exemple, KBDOCK a été utilisé pour montrer que: (1)
prés de 70% de familles de domaines protéiques n’ont qu'un seul DFBS et les autres familles en ont un petit nombre seulement, ce
qui suggere que les DDIs re-utilisent souvent les mémes sites de liaison; (2) plus de 80% de DFBSs interagissent avec une seule
famille de domaines protéiques et les autres DFBSs interagissent avec un petit nombre de familles, ce qui indique que la plupart des
DFBSs sont principalement monogames dans leur interactions avec les autres domaines protéiques; (3) les DFBSs impliqués dans des
interactions présentent des régularités en terme de structure secondaire, ce qui pourrait servir comme un descripteur complémentaire
dans la prédiction d’interaction; (4) lorsque les domaines re-utilisent leur DFBS, le docking orienté vient améliorer les prédictions. Ainsi,
KBDOCK constitue une ressource unifiée qui permet d’enrichir les connaissances sur I'interactome structural.

Mots-clés: extraction de connaissances a partir des bases de données (ECBD); fouille de données; classification; base de données
relationnelle; programmation logique; bioinformatique structurale; interaction protéine-protéine; protein docking; KBDOCK.

Abstract

Understanding how the protein interactome works at a structural level could provide useful insights into the mechanisms of diseases.
Comparative homology modelling and ab initio protein docking are two computational methods for modelling the three-dimensional (3D)
structures of protein-protein interactions (PPIs). Previous studies have shown that both methods give significantly better predictions
when they incorporate experimental PPl information. However, in general, PPl information is often not available in an easily accessible
way, and cannot be re-used by 3D PPl modelling algorithms. Hence, there is currently a need to develop a reliable framework to facilitate
the reuse of PPI data. This thesis presents a systematic knowledge-based approach for representing, describing and manipulating 3D
interactions to study PPIs on a large scale and to facilitate knowledge-based modelling of protein-protein complexes.

The main contributions of this thesis are: (1) it describes an integrated database of non-redundant 3D hetero domain interactions;
(2) it presents a novel method of describing and clustering DDIs according to the spatial orientations of the binding partners, thus
introducing the notion of “domain family-level binding sites” (DFBS); (3) it proposes a structural classification of DFBSs similar to the
CATH classification of protein folds, and it presents a study of secondary structure propensities of DFBSs and interaction preferences;
(4) it introduces a systematic case-base reasoning approach to model on a large scale the 3D structures of protein complexes from
existing structural DDIs. All these contributions have been made publicly available through a web server (http://kbdock.loria.fr).

The KBDOCK database contains 2,721 non-redundant hetero DDIs corresponding to 1,439 DFBSs located in 947 distinct domain
families. The KBDOCK database allows large-scale studies. For example, it was used to show that: (1) nearly 70% of protein domain
families have just one binding site and the remaining families have a small number of binding sites which suggests that DDls often re-use
the same binding sites; (2) over 80% of DFBSs interact with just one other type of protein domain family, and very few DFBSs interact
with more than three different Pfam domain families, which indicates that most DFBSs are primarily monogamous in their structural
relationships with other domains; (3) Pfam families often have secondary structure pairing preferences, which might be useful for the
prediction of unknown DDlIs; (4) when DFBSs are in fact re-used, focused docking improves significantly the docking predictions. Thus,
KBDOCK provides a useful framework for enriching our knowledge of the structural interactome.

Keywords: knowledge discovery in databases (KDD); data mining; classification; relational database; logic programming; structural
bioinformatics; protein-protein interactions; protein docking; KBDOCK.
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