
THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences Lettres

PSL Research University

Préparée à l’École normale supérieure

Learning structured models on weighted graphs,
with applications to spatial data analysis

Apprentissage de modèles structurés sur graphes pondérés et application à l’analyse

de données spatiales

Soutenue par

Loïc Landrieu
le 26 septembre 2016

Dirigée par

Guillaume Obozinski
et Francis Bach

École doctorale n°386
Sciences Mathématiques de Paris Centre

Spécialité: Informatique

COMPOSITION DU JURY:

M BLASCHKO Matthew

KU Leuven, Rapporteur

M FADILI Jalal

ENSICAEN, Rapporteur

M BACH Francis

INRIA, Directeur de thèse

M OBOZINSKI Guillaume

ENPC, Directeur de thèse

M BONIN Olivier

IFSTTAR, Membre du Jury

M PESQUET Jean-Christophe

Université Paris Est, Membre du Jury

M VALLET Bruno

IGN, Membre du Jury

ii

iii

Abstract

Modeling complex processes often involves a large number of variables with
an intricate correlation structure. For example, many spatially-localized pro-
cesses display spatial regularity, as variables corresponding to neighboring
regions are more correlated than distant ones. More specifically, as natural
or man-made boundaries have a profound influence on geostatistical pro-
cesses, suitable models must be able to take the induced structure into ac-
count. The framework of weighted graphs allows us to capture relationships
between interacting variables in a compact manner, permitting the resolu-
tion of problems involving millions of interacting variables. Furthermore,
many spatial analysis tasks can be cast as optimization problems struc-
tured by fitting graphs. This thesis, motivated by the kind of optimization
problems arising from geostatistical data analysis, makes two types of con-
tribution: it develops new algorithms which solve existing problems faster
and introduces a new model for processes defined on weighted graphs.

The first part of this manuscript focuses on optimization problems with
graph-structured regularizers, such as the total variation or the total bound-
ary size. First, we present the convex formulation and its resolution with
proximal splitting algorithms. We introduce a new preconditioning scheme
for the existing generalized forward-backward proximal splitting algorithm,
specifically designed for graphs with high variability in neighborhood config-
urations and edge weights. We then introduce a new algorithm, cut pursuit,
which exploits the links between graph cuts and total variation in a work-
ing set scheme. We also present a variation of this algorithm which solves
the non-convex formulation penalized by the boundary size. We show that
our proposed approaches reach or outperform state-of-the-art methods for
geostatistical aggregation as well as image recovery problems.

The second part focuses on the development of a new model, expand-
ing continuous-time Markov chain models to general undirected weighted
graphs. This model allows us to take into account the interactions between
neighboring nodes in structured classification more precisely. We demon-
strate the advantages of this model for supervised land-use classification
from cadastral data.

Résumé

La modélisation de processus complexes peut impliquer un grand nombre
de variables ayant entre elles une structure de corrélation potentiellement
compliquée. Par exemple, les processus décrivant des phénomènes spatiaux
possèdent souvent une forte régularité spatiale, se traduisant par une cor-
rélation entre variables d’autant plus forte que les régions correspondantes
sont proches. Les obstacles naturels ou artificiels jouent également un rôle
structurant très fort sur les processus géospatiaux, renforçant ou bloquant la
corrélation entre variables associées aux régions qu’ils séparent. Le formal-
isme des graphes pondérés permet de capturer de manière compacte ces re-
lations entre variables, autorisant le traitement de problèmes impliquant des
millions de variables interdépendantes. De nombreux problèmes d’analyse
de données spatiales se traduisent ainsi en termes d’optimisation structurée
par des graphes pondérés. Les contributions de cette thèse, motivées par
les problèmes d’optimisations associés à l’analyse de données géospatiales,
sont de deux natures: le développement de nouveaux algorithmes permet-
tant la résolution efficace des problèmes associés à des modèles existants, et
la création d’un nouveau modèle plus précis pour les processus définis sur
un graphe pondéré.

La première partie du manuscrit se concentre sur la résolution efficace de
problèmes de régularisation spatiale, mettant en jeu des pénalités telle que
la variation totale ou la longueur totale des contours entre régions con-
stantes. Nous traitons en premier l’approche convexe et sa résolution à l’aide
d’algorithmes dit d’éclatement proximal. Nous présentons une stratégie de
préconditionnement de l’algorithme generalized forward-backward qui est
spécifiquement adaptée à la résolution de problèmes structurés par des graphes
pondérés présentant une grande variabilité de configurations et de poids.
Nous présentons ensuite un nouvel algorithme appelé cut pursuit, qui ex-
ploite les relations entre les algorithmes de flots et la variation totale au
travers d’une stratégie dite de working set. Nous présentons également une
variante de l’algorithme adaptée à la minisation de fonctions pénalisées par
la longguer totale des contours des régions constantes. Ces algorithmes
présentent des performances supérieures à l’état de l’art pour des tâches de
traitement de l’image ainsi que pour des problèmes d’agrégation de données
géostatistiques.

La seconde partie de cete thèse se concentre sur le développement d’un
nouveau modèle qui étend les chaînes de Markov à temps continu au cas
des graphes pondérés non orientés. Ce modèle autorise la prise en compte
plus fine des interactions entre nœuds voisins dans le cadre de la prédiction
structurée, comme nous l’illustrons pour la classification supervisée de tissus
urbains à partir de données cadastrales.

vi

Dedication

Á Alex et Mado, qui ont transmis à Blandine et à moi deux très précieux
cadeaux: le goût des sciences et de l’effort.

viii

Acknowledgements

I would like to thank first my advisors, Guillaume Obozinski and Francis
Bach, for having me as a PhD student. The best ideas of this manuscript
came at the white board with Guillaume, or on the RER A - to the despair
of our fellow passengers.

I want to thank Hugo Raguet for our shared passion and the late night dis-
cussions at the black board, under the incredulous eye of Peter and Paulette.

I feel very lucky to have spent some times in such dynamic and impressive
teams as SIERRA-WILLOW and IMAGINE. The coffee machine talks and
after-work beers were always a great motivation boost, and also simply a
nice time.

I am thankful to Jean-Yves Audibert who was my first contact with the
research world and whose encouraging words lead me to pursue this PhD.

I would like to give a special thanks to my family and friends for their
continuing support during those years, and to Alix for her careful editing.

x

Contents

1 Introduction 1

1.1 Spatial data and geostatistics . 2

1.2 Spatial data analysis . 3

1.3 Characteristics of geostatistical data . 4

1.4 The weighted graph framework . 6

1.5 Variational aggregation on weighted graphs 7

1.6 Graph structured prediction . 10

1.7 Organisation of the thesis . 12

2 Proximal methods for structured optimization 19

2.1 Introduction . 19

2.2 Structured optimization problems . 20

2.3 Proximal splitting for structured optimization 24

2.4 Generalized forward-backward . 28

2.5 Experimental setup and results . 35

2.6 Conclusion . 39

3 Aggregating spatial statistics with a generalized forward-backward
splitting algorithm 47

3.1 Aggregation as an optimization problem 47

3.2 Interpretation . 49

4 Cut Pursuit: fast algorithms to learn piecewise constant functions on
general weighted graphs 59

4.1 Introduction . 59

4.2 A working set algorithm for total variation regularization 65

4.3 Minimal partition problems . 74

4.4 Experiments . 82

4.5 Conclusion . 94

5 Learning in graphical models 101

5.1 Introduction . 101

5.2 Undirected graphical models . 102

xi

CONTENTS

5.3 Potts model . 106
5.4 Continuous time Markov models . 111
5.5 Conclusion . 115

6 Continuously indexed Potts model 119
6.1 Introduction . 119
6.2 Continuous graph Potts models . 122
6.3 Learning with continuous graphs . 127
6.4 Experiments . 133
6.5 Conclusion . 142

A Converting spatial data to graph 149
A.1 Converting spatial data to graph . 149

B Appendix of Chapter 2 159

Bibliography 161

C Appendix of Chapter 4 163

D Appendix of Chapter 6 171

xii

Chapter 1

Introduction

Everything is related to everything
else, but near things are more related
than distant things.
First Law of Geography

Waldo Tobler, 1970

Nearly two hundred years ago, De Châteauneuf (1834) represented the death toll of
a cholera epidemic using colour gradients over a partition of Paris into districts. This
historic report is considered to be the first attempt at formalizing a geographical process
to facilitate its analysis (Coppock and Rhind, 1991). Over a century and a half later,
Dana Tomlin developed the Map Algebra framework, a formalization of geographical
information mapping ground in set theory (Tomlin, 1990, 2013). This framework is still
the at the core of modern approaches to spatial data analysis and implemented in most
mapping softwares (Theobald, 2007).

From hyperspectral satellite imagery to mobile laser scanning and web-based tech-
nologies, our capacity to collect information has exceeded the capacity of geographers
to process it. Consequently the need for automated analysis tools for large-scale geo-
graphic databases has became more and more obvious. The advent of computer systems
permitted the creation of the first Geographic Information System (GIS) by Tomlin-
son (1968), which tremendously increased cartographers’ power of analysis (Chrisman,
2006). However special caveats must be taken into account when considering spatial
statistics, and operations on geographical data must be performed within a framework
that captures the data’s spatial configuration with precision. Furthermore as the size
of available data keeps increasing, a modern data analysis approach must be developed
(Chen et al., 2006; Graham and Shelton, 2013).

After first defining spatial data analysis, we will describe the specific characteristics
of spatial data themselves. We will then present a graph-based framework that is
able to capture some of these characteristics. Finally we present present the graph-
based optimization problems developed in this thesis, as well as their applications as
geographical operations on spatial data.

1

1. INTRODUCTION

Figure 1.1: Rastered average income of Grand Lyon at different scales. From left to right:
Intercommunality of Grand Lyon, city of Lyon, first Arrondissement

1.1 Spatial data and geostatistics

Spatial data designate information relative to objects defined within a two or three
dimensional space. These objects are typically either elements of a grid, or present
simple geometric shapes such as points, lines or polygons. However spatial data also
include a wide variety of objects, such as 3D objects, networks or irregular partitions
such as Triangulate Irregular Network (Peucker et al., 1978). Each object is associated
with an array of numeric values, which can vary greatly from attitude in the case of
Digital Elevation Models (Zhang and Montgomery, 1994), to disease rates in the case
of epidemiology (Clarke et al., 1996) or even socio-economic values (Wang, 2014). Im-
portantly, geometric features such as length, surface or eccentricity of objects are often
also provided when applicable. To efficiently retrieve information, spatial databases use
spatial indexing of objects, typically with a grid or with more sophisticated structures
such as R-trees (Guttman, 1984).

In this thesis we focus on geostatistical data, a subset of spatial data in which
the observed values are taken as realizations of random variables. Its particularity
in terms of statistics is its intricateness, as correlations between variables corresponding
to adjacent objects play a prevalent role.

The oldest and most frequently used spatial data structure is the raster, in which
objects are the cells of a regular lattice and whose values describe their content. For
example the French National Institue for Statistics and Economic Research has made
public a spatialized database composed of 18 socio-economic variables on a 200× 200m
raster, represented in Figure A.1. More generally any kind of aerial/satellite imagery can
be interpreted as a raster data in which the cells are the pixels. The other important data
format is vector data, which are often used when the modelling requires a higher degree
of precision, for example at the level of individual buildings or roads. The geometry of
each object, be it polygonal or linear, is given by a sequence of georeferenced segments,
as shown in Figure A.3.

2

1.2 Spatial data analysis

Figure 1.2: Buiding shape (top) and road network (bottom) at different scales. From left
to right: Intercommunality of Grand Lyon, city of Lyon, first Arrondissement.

1.2 Spatial data analysis

Spatial data analysis covers the array of methods used to extract knowledge from spa-
tial data, from prediction to semantic labelling. It is used in many different fields
such as biology or socioeconomics, and has theoretical foundations in many different
fields of mathematics and computer science. The rest of this section provides a non-
comprehensive list of spatial data analysis tasks.

Interpolation. Motivated by mining exploration as a way to map underground ore
from very sparse observations, interpolation consists in estimating unknown values from
observed data. While methods such as linear or bilinear interpolation (Shepard, 1968)
have long existed, interpolation as applied to spatial data was at the origin of the de-
velopment of the field of geostatistics (Matheron, 1962), which interprets spatial data
as realizations of correlated random variables. The methods developed, such as kriging,
have many links with modern statistical tools such as Gaussian processes (Williams,
1998) and are still widely used today, for example to estimate wood volumes in forested
areas (Maselli and Chiesi, 2006).

Classification. Classification is the task of annotating spatial objects into semantically-
defined classes, for example, classifying urban areas according to their nature, be it dense
habitat, individual housing, periphery, agricultural land and so on. It has applications
in many domains such as deforestation analysis (Asner et al., 2005; Seto et al., 2012)
or urban modelling (Rellier et al., 2004; Voisin et al., 2013; Zhou and Neumann, 2012).
This task is closely related to computer vision and shares many of the same models,
such as CRFs (Hoberg et al., 2015) or deep neural networks (Pacifici et al., 2009). The

3

1. INTRODUCTION

classification is usually performed over radiometric measurements such as RGB chan-
nels, but also hyperspectral imaging (Camps-Valls et al., 2014; Rellier et al., 2004), SAR
images (Oliver and Quegan, 2004; Voisin et al., 2013), elevation models (Kluckner et al.,
2009) or LIDAR echos (Weinmann et al., 2014). Gomez-Chova et al. (2015) states that
the best classification rates are obtained when using a combination of different sources.

Generalization. Cartographic generalization is the task of formatting information so
that it can be represented in an intelligible way on a map at a given scale (Brassel
and Weibel, 1988; Gruenreich, 1992; Shea and McMaster, 1989). It involves discarding
unimportant or redudant objects, selecting and enhancing relevant ones, as well as dis-
placing them when necessary. It can also involve aggregating similar objects into larger
ones. While many aspects of cartographic generalization are centered around human
perception, aggregation can be translated in mathematical terms as we will show in
Section 1.5.

Modelling. Modelling is the task of understanding and simulating urban and geograpi-
cal processes. One of the most iconic models is the Concentric Ring Model introduced
by Burgess (1967), which attempted to model the growth of the city of Chicago and
explain the wealth distribution within its different areas. Numerous models also develop
the links between urbanisation and industry (Wegener, 1994) as well as transportation
networks (Wegener, 2004). Simulations of these processes and interactions are often
performed at the individual level though multi-agent systems (Batty and Jiang, 1999;
Chaker, 2009; Parker et al., 2003).

Prediction. Prediction is the branch of modeling focused on the evolution of dynamic
urban and geographical processes such as urban growth (He et al., 2006) or climate
change (Houghton and Callander, 1992). Cellular automata (Goodchild et al., 1996)
are widely used for raster data. This approach consists of discretizing the space into
cells which can be in different states, and whose evolution is determined by a set of
rules involving the states of the neighborhood cells.

Detection. As the quantity of information and the number of objects consituting
spatial databases keeps increasing, detecting specific objects or events proves crucial,
such as forest fires (Lafarge et al., 2006) or vegetation (Zhou et al., 2011). Close to its
computer vision counterpart, spatial object detection focuses on finding a given class
of object in a geographical database (Ardeshir et al., 2014; Crandall et al., 2009). De-
tecting events in temporal spatial data can also be used to monitor disease outbreaks
(Watkins et al., 2009; Wiafe and Davenhall, 2005).

1.3 Characteristics of geostatistical data

Geostatistical data have some specific characteristics that need to be taken into account
for their analysis. Here we present a non-comprehensive list of such traits.

Spatially-correlated. As formalized by Tobler (1970) as the First Law of Geography,
objects that are closer are more correlated. Indeed proximity and adjacency play an
important structuring role and in general geographical processes can be assumed to only

4

1.3 Characteristics of geostatistical data

candidate A low
density

candidate B
high

density

Figure 1.3: Illustration of the variability of elements in spatial data. On the left, the
2007 presidential election results are broken down by constituency in French Brittany.
On the right, we show population density, with dark red standing for densely-inhabited
constituencies.

change gradually in space.

Geometrically-constrained. Geographical spaces are structured not only by natu-
ral obstacles such as rivers and mountains, but also man-made boundaries such as road
networks or administrative borders. Consequently, although proximity does indeed play
an important role, spatial data also display sharp changes across geometrical divides.
Models of spatial processes must therefore be able to accomodate simultaneously spatial
regularity and sharp transitions.

Multi-scale. Spatial data pertains to the content of a geographical space at a given
scale, however it is rarely the case that such spaces are free from influence operating at
a much larger or smaller scale. For example the growth pattern of a city can’t be fully
explained without a nation-wide analysis of labour market and migration. Conversely,
analysis of spatial processes such as the influence of transportation over land use by
monitoring car flows lies fundamentally on behavior and decisions taken at the individ-
ual level. Consequently, the level at which spatial data analysis operates is a delicate
matter that will influence its outcome.

Multi-modality. As stated earlier, proximity plays an important structuring role over
spatial data. However the relevant notion of distance can change depending on the
application, and multiple distances can be at play in a single application. Indeed while
transportation analyses often use the topological distance along the road network, the
speed and capacity of each road can also be taken into account to define accessibility
(Weiping and Chi, 1989). When studying land use interaction, other metrics can be
designed to take into account their proximity such as length of shared borders, shortest
distance between buildings in a block (Veenendaal et al., 2000).

Heterogeneity. Unlike image analysis in which all pixels are similar in importance and
configuration, elements of spatial databases display more variability. For example the
results of an election aggregated by voting constituencies should be intepreted without
forgetting to take into account the number of voters, as (see Figure 1.3).

5

1. INTRODUCTION

1.4 The weighted graph framework

Weighted graphs are a general framework for modeling interactions between entities
(Balakrishnan and Ranganathan, 2012; Berge, 1958; Harary, 1969). Therefore they
appear as a natural tool to capture the structure of spatial data and formalize their
analysis (Gaetan and Guyon, 2008).

A weighted graph G = (V,E) is defined by a node set V , usually identified by an
integer so that : V = [1, · · · , n], and an edge set E ⊂ V × V linking nodes two by
two. We denote the number of the edge by m = |E| . Each edge (i, j) is weighted by
a non-negative real number wij ∈ R+. Each node i is weighted by a non-negative real
number µi ∈ R+.

We consider spatial data associating a real statistical value to regions partionning a
bounded space of dimension D = 2 or 3. In the weighted graph framework, the regions
consituting the spatial data are represented by the node set V while the relationship of
proximity between pairs of elements are represented by edges. The degree of proximity
can be represented by the edge weight w, usually the higher the weight, the closer
the regions. The variability of importance of the elements can be encoded by the
node weight µ. See Appendix A for details about converting vector and raster data to
weighted graphs. In this framework, geostatistical data can be represented as a vector
x ∈ Rn.

Graphs with weighted edges are very common in a number of fields including graph
theory, operational research and machine learning (Shi and Malik, 2000; Zhu et al.,
2005). As emphasized in the previous section, regions constituting spatial data can be
very different from one another, be it in size, shape or content. Consequently, the graph
considered must be able to take this property into account which is why each node is
associated with a weigh µ. Although graphs with node weights are studied in depth in
computer science (Takahashi and Matsuyama, 1980), they are seldom used in machine
learning to the author’s knowledge.

The graph structure of urban space has been studied extensively, in particular for
network analysis (Thomson and Richardson, 1995). Indeed the analysis of the graph
morphology itself, whether it was obtained from the network itself or to capture rela-
tionship between spatial objects, can be very informative regarding the geographical
space being considered (Doğrusöz and Aksoy, 2007; Erath et al., 2009). In this thesis
we consider however problems involving variables whose relationships are determined
by the graph, rather than the structure of the graph itself, as formalized by Gaetan and
Guyon (2008, Chapter 2).

This approach allows us to capture the structure and variability specific to spatial
data. Indeed spatial correlations as well as geometrical constraints can be encoded
by the edges of the graph and their respective weights. The variability of importance
among elements can be described by the weight of the nodes. More importantly, as
shown in the next sections, the weighted graph framework allows us to cast certain data

6

1.5 Variational aggregation on weighted graphs

Figure 1.4: Graph conversion corresponding to the French Regions as of 2014 (from
INSEE). Each node corresponds to a region and the edges correspond to adjacency.

analysis tasks on spatial data as optimization problems on graphs.

1.5 Variational aggregation on weighted graphs

Map generalization is the problem of representing complex spatial data in a readable
map to provide decision makers with an overall view of the land and its main character-
istics (Lee, 1996). Aggregation is one of the operations in cartographic generalization,
and consists of merging adjacent regions of a geographical space to improve readability.
This operation requires finding a trade-off between the simplicity of the resulting map
and faithfulness to the original data.

Spatial data can be highly sensitive to the parameters of aggregation, such as the
scale or the shape of the regions. This sensitivity decreases the robustness and inter-
pretability of the resulting aggregation, as minute changes in parameters could lead
to vastly different results, as illustrated in Figure 1.5. This problem, first observed in
Gehlke and Biehl (1934), was later referred to as the Modifiable Area Unit problem by
Openshaw (1984). It is still mostly unresolved and at the center of spatial statistics
research (Holt et al., 1996; Nelson and Brewer, 2015). Several models allow us to under-
stand how the aggregation effects work on spatial statistics. For example Cockings et al.
(2011) designed an automated procedure to produce appropriate zoning for census, in
particular ensuring homogeneity in population size and built environment.

Aggregation as a clustering task Merging adjacent regions with similar statis-
tics to obtain a simpler representation can be formulated from a machine learning
perspective as a clustering problem with structural constraints. In fact, we argue that
within the weighted graph framework, we can formulate this geographical problem into
a classic optimization problem.

7

1. INTRODUCTION

Figure 1.5: Illustration of the Modifiable Area Unit Problem. From the same pointwise
data, one can obtain vastly different aggregations by either a change of scale or a shift of
the grid.

In machine learning, clustering is often performed to group together data points that
have similar features, the k-means algorithm being the most famous example (Mac-
Queen et al., 1967) of clustering algorithms. However it does not take into account
the simplicity of the resulting representation. Spectral clustering is another classical
method used to cluster data points on a graph. The structure of the graph is derived
from the similarity matrix of the features associated with each node (Shi and Malik,
2000). In spatial data aggregation however, the adjacency of the nodes derives from
geographicaldistance measures and not from their respective features.

Following the ideas of (Mumford and Shah, 1989) in image processing, we define a
map as simple if it can be partitioned into regions with constant statistics, and such
that the total length of their contour is small. The rationale behind this choice is that
a representation with short contours will be easy to read as it must have few constant
regions with clean borders.

The simple, piecewise constant approximation of an input image is defined as the
result of an optimization problem, in which a data fidelity term is regularized by the
contour length of the regions. The fidelity term insures fidelity to the original data while
the regularizer inforces the simplicty of the solution. When the number of partitions
is fixed in advance, this problem is known as the minimal partition problem or the
(spatially continuous) Potts model Pock et al. (2009); Santner et al. (2011). When the
fidelity term is the squared difference with the observation, this model is called the
piecewise constant Mumford-Shah problem.

For an observed image represented by a square integrable function J ∈ L
2(R2), and

8

1.5 Variational aggregation on weighted graphs

a candidate image with bounded variation I ∈ BV (R2) composed of k constant regions
R = {Ri}

k
i=1, the piecewise constant Mumford-Shah problem writes:

min
R

k
∑

i=1

∫

Ri

(Ii − J(x))
2 dx+ λ Per(R), (1.1)

with Ii =
∫

Ri
J(x)dx/

∫

Ri
dx the constant values of I in region Ri and Per(R) the total

surface interface of the boundaries of the constant region set R, as defined in (Chambolle
et al., 2010, equation 90). Note that Per(R) in dimension 2 is the length, and the surface
in dimension 3. λ is a non-negative value controlling the regularization strength.

Expression within the weighted graph framework This approach, initially
designed for the processing of images viewed as continuous functions, can be applied to
the discrete setting in which elements correspond to a partition of a space Ω of dimension
D = 2 or 3. More generally, graph can capture geographical space of dimension more
than 2 Let P be a partition of Ω into n regions {P1, · · · ,Pn}. We consider the weighted
graph G = (V,E, µ, w) such that V = {1, · · ·n} corresponds to the regions of P, E
the the pairs of adjacent regions, µv the suface or volume of each region, and finally
wv,v′ = HD−1

(

P̄v ∩ P̄v′
)

the perimeter of the interface shared by each pair of adjacent
regions (formally the D − 1-Hausdorf measure of the intersection of the topological
closure of adjacent regions). For J ∈ Rn, the set of observed features for all regions and
I ∈ Rn×d the candidate estimation, the fidelity term can be rewritten with V and µ:

∑

v∈V
µv (Iv − Jv)

2,

with Iv the value of I in region Pv. Note that in this formulation the number of constant
regions k does not appear explicitly, although it is bounded by n, the total number of
regions in Ω. The perimeter of the constant regions can also be expressed with the edge
set E and the weight w:

length(R) =
∑

(v,v′)∈E
wv,v′δ(Jv 6= Jv′),

with δ(x 6= y) being equal to zero if x = y and 1 elsewhere. The minimal partition
problem (1.1) can be rewritten with the graph structure:

min
I

∑

v∈V
µv ‖Iv − Jv‖

2
2 + β

∑

(v,v′)∈E
wv,v′δ(Jv 6= J′v), (1.2)

Equation (1.2) corresponds to the minimization of a non-continuous, non-differentiable
and non-convex energy, which makes it a very difficult problem.

Rudin et al. (1992) introduced the total variation, a convex penalization to spatially
regularize images while conserving sharp edges. This regularizer is also a simplicity-
inducing penalty, and can be translated in the weighted graph framework as follows:

9

1. INTRODUCTION

min
I

∑

v∈V
µv ‖Iv − Jv‖

2
2 + β

∑

(v,v′)∈E
wv,v′ |Iv − Jv|, (1.3)

with ‖·‖ the norm in Rd. This approach boasts numerous applications in various fields
such as vision and signal processing. Chapter 2 presents modern approaches to the
resolution of problem (1.3) and presents a novel algorithm allowing for faster resolution.
An application of this algorithm to spatial data aggregation is given in Chapter 3.
Chapter 4 proposes a novel family of algorithms designed to solve problems of both
problems (1.2) and (1.3) when the results are expected to be simple.

1.6 Graph structured prediction

Probabilistic Classification A central task of automatic analysis of geographical
information is the classification of regions into different predefined types. This task is
performed by compiling a list of attributes for each parcel which can come from not
only aerial or satellite imagery (Santos and Moreira, 2006), but also socio-economic or
cadastral data (Johanna et al., 2013). The regions are then classified into the different
categories, for example using predefined rules (Malinverni et al., 2010). A discriminative
classifier can also be trained from an ensemble of hand-annotated parcels Santos and
Moreira (2006).

The generative approach to classification is to build a probabilistic model of the
process generating the data. We consider a set of n regions for which we observe a
label in [1 · · ·K]. The model, parametrized by a vector θ, determines the emission
probability of a labelling y = (y1, · · · , yn). We denote ℓ(θ, y) the log-likelihood of
parameter θ having generated the labels y:

ℓ(θ; y) = log (P (y; θ))

This model allows us to to learn the parameters θ̂ that best fit the observed labelling:

θ̂ = argmin
θ
−ℓ (θ; y).

Conversely, when the parameter θ is fixed, the model allows us to estimate the probabil-
ity that a node i has labels yi: P (yi; θ). We refer to this task as probabilistic inference.

Land-use classification on a graph Land-use shows some spatial regularity: we
are unlikely to find an industrial plot between residential parcels. Consequently, when
establishing a model for land-use, the ability to take the spatial structure into account
is an important feature of the weighted graph framework.

From vector or cadastral data we can construct a graph G = (V,E, µ, w) in which
the nodes are the regions and the edges links neighboring regions. The node weight µ
encodes the importance of the regions while the edge weight w encodes the proximity
between linked regions. See Appendix A for more details on how to build this graph.

10

1.6 Graph structured prediction

Figure 1.6: On the left is a partition of the French city of Sevran into city blocks. On the
right we show the associated weighted graph encoding proximity. The distance between
points - and hence their influence - varies across edges.

Potts models are a powerful framework to perform inference and learning for discrete
processes structured by graphs, as detailed in chapter 5. This model is well-suited for
land-use as it can model the influence of neighboring regions. Johanna et al. (2013) use
local context and proximity by exploiting the grid-structure of the data with a Potts
model.

For a process modelled by a Potts model structured by graph G = (V,E, µ, w), the
log-likelihood writes:

ℓ(y; θ) ∝
∑

i∈V
ǫi(yi) +

n
∑

(i,j)∈E
ǫij(yi, yj),

with ǫi(yi) the potential associated node being in state yi, and ǫi,j(yi, yj) the potential
of a transition between labels yi and yj taking place between two neighboring nodes.
Potential are a generalization of probabilities which do not need to be normalized. States
associated with higher potential values are more likely. Chapter 4 presents a review of
inference and learning within this model.

We argue, however, that in order to accurately capture the spatial structure of
the data, the model must be able to take into account the edges’ weights. Indeed all
proximities between regions are not all equivalent, as illustrated in Figure 1.6. In the
case of land-use, neighboring regions can have varying degrees of influence, depending
on the length of the shared boundaries or the proximity of the respective buildings for
example.

In Chapter 5 we present a novel graphical model, the Continuously Indexed Potts
Model, which allows us to continuously model proximity between nodes and thus take
the influence of neighboring regions into account more accurately. Furthermore our
model allows us to learn parameters to fit a partially observed labelling.

11

1. INTRODUCTION

1.7 Organisation of the thesis

Chapter 2 presents an overview of proximal splitting methods for solving convex struc-
tured optimization problems, in particular the generalized forward-backward algorithm.
A novel preconditioning scheme for this algorithm is introduced, which is well adapted
for problems structured by graphs with high variance in edge weights and neighborhood
size. On such problems, our approach reaches state-of-the-art levels of performance.

Chapter 3 describes an application of the preconditioned generalized forward-backward
algorithm on a map simplification task. We show that the proposed formulation allows
for simplified maps with adaptive scales, thus allowing for increased levels of detail near
high population centers.

Chapter 4 introduces a new algorithm called cut pursuit to solve problems regularized
with either the convex total variation or its non-convex counterpart, the total perime-
ter. This algorithm exploits the links existing between the total variation and graph-cut
algorithms in a working set scheme in which the graph is iteratively split into constant
regions until the optimum is reached. On problems with few level-sets this algorithm is
significantly faster than other approaches.

Chapter 5 reviews inference and learning in graphical models. In particular we discuss
the Potts models and continuous time Markov chains for processes structured respec-
tively by an unweighted unoriented general graph and an oriented weighted chain-like
graph.

Chapter 6 introduces the continuously indexed Potts model, which is designed to take
edge weights into account in a consistent manner in the parameterization of a learnable
model. A dedicated EM algorithm is then proposed to learn the model.

12

Bibliography

Ardeshir, S., Zamir, A. R., Torroella, A., and Shah, M. (2014). GIS-assisted object
detection and geospatial localization. In Computer Vision–ECCV 2014, pages 602–
617. Springer. 4

Asner, G. P., Knapp, D. E., Broadbent, E. N., Oliveira, P. J., Keller, M., and Silva,
J. N. (2005). Selective logging in the Brazilian Amazon. Science, 310(5747):480–482.
3

Balakrishnan, R. and Ranganathan, K. (2012). A textbook of graph theory. Springer
Science & Business Media. 6

Batty, M. and Jiang, B. (1999). Multi-agent simulation: new approaches to exploring
space-time dynamics in GIS. 4

Berge, C. (1958). La theorie des graphes. Dunod. 6

Brassel, K. E. and Weibel, R. (1988). A review and conceptual framework of auto-
mated map generalization. International Journal of Geographical Information System,
2(3):229–244. 4

Burgess, E. W. (1967). The growth of the city: an introduction to a research project.
Ardent Media. 4

Camps-Valls, G., Tuia, D., Bruzzone, L., and Atli Benediktsson, J. (2014). Advances in
hyperspectral image classification: Earth monitoring with statistical learning meth-
ods. Signal Processing Magazine, IEEE, 31(1):45–54. 4

Chaker, W. (2009). Modélisation multi-échelle d’environnements urbains peuplés: ap-
plication aux simulations multi-agents des déplacements multimodaux. PhD thesis,
Université Laval. 4

Chambolle, A., Caselles, V., Cremers, D., Novaga, M., and Pock, T. (2010). An intro-
duction to total variation for image analysis. Theoretical foundations and numerical
methods for sparse recovery, 9:263–340. 9

Chen, Y.-Y., Suel, T., and Markowetz, A. (2006). Efficient query processing in geo-
graphic web search engines. In Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, pages 277–288. ACM. 1

13

BIBLIOGRAPHY

Chrisman, N. (2006). Charting the unknown: How computer mapping at Harvard became
GIS. Esri Press. 1

Clarke, K. C., McLafferty, S. L., and Tempalski, B. J. (1996). On epidemiology and ge-
ographic information systems: a review and discussion of future directions. Emerging
Infectious Diseases, 2(2):85. 2

Cockings, S., Harfoot, A., Martin, D., Hornby, D., et al. (2011). Maintaining existing
zoning systems using automated zone-design techniques: methods for creating the
2011 census output geographies for England and Wales. Environment and Planning-
Part A, 43(10):2399. 7

Coppock, J. T. and Rhind, D. W. (1991). The history of GIS. Geographical Information
Systems: Principles and Applications, 1(1):21–43. 1

Crandall, D. J., Backstrom, L., Huttenlocher, D., and Kleinberg, J. (2009). Mapping
the world’s photos. In Proceedings of the 18th International Conference on World
Wide Web, pages 761–770. ACM. 4

De Châteauneuf, L.-F. B. (1834). Rapport sur la marche et les effets du Choléra-Morbus
dans Paris et les communes rurales du département de la Seine, Année 1832. Impr.
royale. 1

Doğrusöz, E. and Aksoy, S. (2007). Modeling urban structures using graph-based spatial
patterns. In Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE
International, pages 4826–4829. IEEE. 6

Erath, A., Löchl, M., and Axhausen, K. W. (2009). Graph-theoretical analysis of
the swiss road and railway networks over time. Networks and Spatial Economics,
9(3):379–400. 6

Gaetan, C. and Guyon, X. (2008). Modélisation et statistique spatiales. Springer. 6

Gehlke, C. E. and Biehl, K. (1934). Certain effects of grouping upon the size of the
correlation coefficient in census tract material. Journal of the American Statistical
Association, 29(185A):169–170. 7

Gomez-Chova, L., Tuia, D., Moser, G., and Camps-Valls, G. (2015). Multimodal classi-
fication of remote sensing images: a review and future directions. Proceedings of the
IEEE, 103(9):1560–1584. 4

Goodchild, M. F., Steyaert, L. T., and Parks, B. O. (1996). GIS and environmental
modeling: progress and research issues. John Wiley & Sons. 4

Graham, M. and Shelton, T. (2013). Geography and the future of big data, big data
and the future of geography. Dialogues in Human Geography, 3(3):255–261. 1

14

BIBLIOGRAPHY

Gruenreich, D. (1992). ATKIS - a topographic information system as a basis for GIS
and digital cartography in germany. From Digital Map Series to Geo-Information
Systems, Geologisches Jarhrbuch Series A. Hannover, Germany: Federal Institute of
Geosciences and Resources. 4

Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching. In
Proceedings of the 1984 ACM SIGMOD international conference on Management of
data, pages 47–57. ACM. 2

Harary, F. (1969). Graph theory. Westview Press. 6

He, C., Okada, N., Zhang, Q., Shi, P., and Zhang, J. (2006). Modeling urban expansion
scenarios by coupling cellular automata model and system dynamic model in Beijing,
china. Applied Geography, 26(3):323–345. 4

Hoberg, T., Rottensteiner, F., Queiroz Feitosa, R., and Heipke, C. (2015). Conditional
random fields for multitemporal and multiscale classification of optical satellite im-
agery. Geoscience and Remote Sensing, IEEE Transactions on, 53(2):659–673. 3

Holt, D., Steel, D., Tranmer, M., and Wrigley, N. (1996). Aggregation and ecological
effects in geographically based data. Geographical Analysis, 28(3):244–261. 7

Houghton, J. T. and Callander, B. A. (1992). Climate change 1992. Cambridge Uni-
versity Press. 4

Johanna, B., Etienne, C., Aknin, P., and Bonin, O. (2013). Hierarchical and multiscale
mean shift segmentation of population grid. In 22th European Symposium on Artificial
Neural Networks (ESANN 2013), page 6p. 10, 11

Kluckner, S., Mauthner, T., Roth, P. M., and Bischof, H. (2009). Semantic classification
in aerial imagery by integrating appearance and height information. In Computer
Vision–ACCV 2009, pages 477–488. Springer. 4

Lafarge, F., Descombes, X., Zeruda, J., and Mathieu, S. (2006). Détection de feux de
forêt par analyse statistique d’événements rares à partir d’images infrarouges ther-
miques. Traitement du Signal, 23(4). 4

Lee, D. (1996). Making databases support map generalization. In GIS LIS-
INTERNATIONAL CONFERENCE-, volume 1, pages 467–480. 7

MacQueen, J. et al. (1967). Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the fifth Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pages 281–297. Oakland, CA, USA. 8

Malinverni, E., Tassetti, A., and Bernardini, A. (2010). Automatic land use/land cover
classification system with rules based both on objects attributes and landscape indi-
cators. GEOgraphic Object-Based Image Analysis GEOBIA 2010. 10

15

BIBLIOGRAPHY

Maselli, F. and Chiesi, M. (2006). Evaluation of statistical methods to estimate forest
volume in a mediterranean region. IEEE Transactions on Geoscience and Remote
Sensing, 44(8):2239. 3

Matheron, G. (1962). Traité de géostatistique appliquée. 1 (1962), volume 1. Editions
Technip. 3

Mumford, D. and Shah, J. (1989). Optimal approximations by piecewise smooth func-
tions and associated variational problems. Communications on Pure and Applied
Mathematics, 42(5):577–685. 8

Nelson, J. K. and Brewer, C. A. (2015). Evaluating data stability in aggregation struc-
tures across spatial scales: revisiting the modifiable areal unit problem. Cartography
and Geographic Information Science, pages 1–16. 7

Oliver, C. and Quegan, S. (2004). Understanding synthetic aperture radar images.
SciTech Publishing. 4

Openshaw, S. (1984). The modifiable areal unit problem. 7

Pacifici, F., Chini, M., and Emery, W. J. (2009). A neural network approach using
multi-scale textural metrics from very high-resolution panchromatic imagery for urban
land-use classification. Remote Sensing of Environment, 113(6):1276–1292. 3

Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., and Deadman, P.
(2003). Multi-agent systems for the simulation of land-use and land-cover change: a
review. Annals of the Association of American Geographers, 93(2):314–337. 4

Peucker, T. K., Fowler, R. J., Little, J. J., and Mark, D. M. (1978). The triangu-
lated irregular network. In Amer. Soc. Photogrammetry Proc. Digital Terrain Models
Symposium, volume 516, page 532. 2

Pock, T., Chambolle, A., Cremers, D., and Bischof, H. (2009). A convex relaxation
approach for computing minimal partitions. In Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on, pages 810–817. IEEE. 8

Rellier, G., Descombes, X., Falzon, F., and Zerubia, J. (2004). Texture feature analysis
using a gauss-markov model in hyperspectral image classification. IEEE Transactions
on Geoscience and Remote Sensing, 42(7):1543–1551. 3, 4

Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise
removal algorithms. Physica D: Nonlinear Phenomena, 60(1–4):259 – 268. 9

Santner, J., Pock, T., and Bischof, H. (2011). Interactive multi-label segmentation.
Springer. 8

Santos, M. Y. and Moreira, A. (2006). Automatic classification of location contexts with
decision trees. In Proceedings of the Conference on Mobile and Ubiquitous Systems,
pages 79–88. Universidade do Minho. Escola de Engenharia. 10

16

BIBLIOGRAPHY

Seto, K. C., Güneralp, B., and Hutyra, L. R. (2012). Global forecasts of urban expansion
to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the
National Academy of Sciences, 109(40):16083–16088. 3

Shea, K. S. and McMaster, R. B. (1989). Cartographic generalization in a digital
environment: When and how to generalize. In Proceedings of AutoCarto, volume 9,
pages 56–67. 4

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced
data. In Proceedings of the 1968 23rd ACM national conference, pages 517–524.
ACM. 3

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 22(8):888–905. 6, 8

Takahashi, H. and Matsuyama, A. (1980). An approximate solution for the Steiner
problem in graphs. Math. Japonica, 24(6):573–577. 6

Theobald, D. M. (2007). GIS concepts and ArcGIS methods. Conservation Planning
Technologies. 1

Thomson, R. C. and Richardson, D. E. (1995). A graph theory approach to road network
generalisation. In Proceeding of the 17th international cartographic conference, pages
1871–1880. 6

Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region.
Economic Geography, 46:234–240. 4

Tomlin, C. D. (1990). Geographic information systems and cartographic modeling. Pren-
tice Hall. 1

Tomlin, C. D. (2013). GIS and cartographic modeling. Esri Press. 1

Tomlinson, R. F. (1968). A geographic information system for regional planning. In
GA Stewart,(ed.: Symposium on Land Evaluation, Commonwealth Scientific and In-
dustrial Research Organization, MacMillan of Australia., Melbourne. 1

Veenendaal, B., Houweling, T., and Joondalup, J. D. (2000). Gut feelings, crime data
and gis. In Conference on Crime Mapping: Adding Value to Crime Prevention and
Control, pages 21–22. 5

Voisin, A., Krylov, V. A., Moser, G., Serpico, S. B., and Zerubia, J. (2013). Classifi-
cation of very high resolution sar images of urban areas using copulas and texture
in a hierarchical markov random field model. IEEE Geoscience and Remote Sensing
Letters, 10(1):96–100. 3, 4

Wang, F. (2014). Quantitative methods and socio-economic applications in GIS. CRC
Press. 2

17

BIBLIOGRAPHY

Watkins, R. E., Eagleson, S., Veenendaal, B., Wright, G., and Plant, A. J. (2009).
Disease surveillance using a hidden Markov model. BMC Medical Informatics and
Decision Making, 9(1):1. 4

Wegener, M. (1994). Operational urban models state of the art. Journal of the American
Planning Association, 60(1):17–29. 4

Wegener, M. (2004). Overview of land-use transport models. Handbook of Transport
Geography and Spatial Systems, 5:127–146. 4

Weinmann, M., Jutzi, B., and Mallet, C. (2014). Semantic 3d scene interpretation:
a framework combining optimal neighborhood size selection with relevant features.
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences, 2(3):181. 4

Weiping, H. and Chi, W. (1989). Urban road network accessibility evaluation method
based on gis spatial analysis techniques. The International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, 38 Part II. 5

Wiafe, S. and Davenhall, B. (2005). Extending disease surveillance with GIS. Arc User,
8(2):1–4. 4

Williams, C. K. (1998). Prediction with Gaussian processes: From linear regression
to linear prediction and beyond. In Learning in Graphical Models, pages 599–621.
Springer. 3

Zhang, W. and Montgomery, D. R. (1994). Digital elevation model grid size, landscape
representation, and hydrologic simulations. Water Resources Research, 30(4):1019–
1028. 2

Zhou, J., Proisy, C., Couteron, P., Descombes, X., Zerubia, J., le Maire, G., and Nou-
vellon, Y. (2011). Tree crown detection in high resolution optical images during the
early growth stages of eucalyptus plantations in brazil. In The First Asian Conference
on Pattern Recognition, pages 623–627. IEEE. 4

Zhou, Q.-Y. and Neumann, U. (2012). Modeling residential urban areas from dense
aerial lidar point clouds. In Computational Visual Media, pages 91–98. Springer. 3

Zhu, X., Lafferty, J., and Rosenfeld, R. (2005). Semi-supervised learning with graphs.
Carnegie Mellon University, language technologies institute, school of computer sci-
ence. 6

18

Chapter 2

Proximal methods for structured

optimization

Chapter Abstract

This chapter presents an overview of structured optimization and how the proximal
operator can be used to leverage the structure of the problem. We develop in particu-
lar the problem of minimzing the anisotropic total variation on an arbitrary weighted
graph. We first define the context of structured optimization and give several exam-
ples. We then provide an overview of some of the most well-known methods for solving
such problems using the proximal operator. Finally, we present in greater detail the
Generalized Forward-Backward algorithm, introduce a preconditioned version and give
numerical experiments.

The material of section 2.4 and 2.5 is based on Raguet and Landrieu (2015), pub-
lished in the 2015 issue of SIAM Journal of Imaging Science (SIIMS), volume 8 issue
4.

2.1 Introduction

Many of the optimization problems encountered in machine learning are ill-posed in the
sense that they are underconstrained and have too many solutions, becoming susceptible
to overfitting (Hadamard, 1902). A solution is to add regularization functions, providing
the problem with mathematical properties which ensure the solution is unique (Tihonov
and Arsenin, 1978). Regularization can also be interpreted as encouraging the solution
of the problem to satisfy a set of desirable properties. Those properties could represent
prior knowledge, such as the solution belonging to a given set, or useful properties such
as smoothness.

Among the diversity of such regularizers existing in the litterature, many lack differ-
entiability. This is notably the case of set-characteristic functions and sparsity-inducing
penalizations (Bach et al., 2012a), which encourage the solution to be mostly comprised

19

2. PROXIMAL METHODS FOR STRUCTURED OPTIMIZATION

of zeros. The non-differentiability of such problems prevents the use of traditional first
order schemes such as gradient descent. The most straigh-forward approach to solving
such problems is the subgradient descent (Boyd et al., 2003) which, while simple, is
quite slow with a distance to optimality that decreases as O(1√

t
). However it is often

the case that the non-differentiable functions encountered present a special structure. In
particular, regularized problems usually have a differentiable fidelity term ensuring that
the solution stays close to the obervations, and a non-differentiable regularizer. Fur-
thermore such regularizers often present a simple structure, such as separability. This
structure can be leveraged to design algorithms that have similar convergence rates as
problems that are differentiable: O(1t), or O(1

t2
) for accelerated schemes.

2.2 Structured optimization problems

This chapter presents some examples of optimization problems whose structure can be
computationally exploited. We focus in particular on regularized problems, i.e. mini-
mization problems whose optimized function can be broken down into two parts:

x⋆ = argmin
x∈Rn

f(x) + λΦ(x), (2.1)

with f : Rn 7→ R a fidelity function, typically smooth, and Φ the regularizer. f measures
the accuracy of a candidate solution x with respect to the observation, while Φ is
the regularizer. The regularization strength λ > 0 balances the influence of the two
functions. While an optimal parametrization in λ is hard to find in general, low values
denote trust in the observed data while high values indicate an emphasis on the desired
properties.

2.2.1 Projection on simple sets

Let us consider f a smooth function to minimize over a convex subset Ω ∈ R. The
optimization problem can be written as follows:

x⋆ = argmin
x∈Ω

f(x).

Such a problem can be rewritten under regularized form by choosing

Φ(x) = ιx∈Ω =

{

0 if x ∈ Ω

∞ else.

As will be detailed further in this chapter, such problems can be solved efficiently
as long as Ω is easy to project onto. Examples of such sets include:

• box constraints: Ω = {x | ai ≥ xi ≥ bi, ∀i ∈ 1 · · ·n}, for a, b ∈ Rn.

• simplex constraints: Ω = {x | xi ≥ 0, ∀i ∈ 1 · · ·n,
∑n

i=1 xi = 1}.

• ℓ1 cone: Ω = {x |
∑n

i=1 xi ≤ ω} for ω ∈ R.

• subspace constraint: Ω is a sub-vector space of Rn.

20

2.2 Structured optimization problems

2.2.2 Regular sparsity

The solution of an optimization is said to be sparse if its values at most indices are zero.
Sparsity can be desirable, as such solutions are easier to interpret, are more compact in
memory (Tropp et al., 2007), or can correspond to knowledge of the optimizer on the
solution set.

The sparsity of the solutions can be assured by adding a sparsity inducing penalty to
an optimization problem, i.e a function Φ : Rn 7→ R that decreases with the cardinality
of the set of non-zeros elements of its argument, called the support :{k | xk 6= 0}. The
most natural approach is to penalize by the cardinality of the support:

Φ(x) = ‖x‖0 = |{k | xk 6= 0}| .

The non-continuous and non-convex nature of this penalty can lead to combinatorial
problems that are difficult to solve (Tropp, 2004). A successful alternative approach is
to replace the cardinal with a convex approximation (Bach et al., 2012a) such as the ℓ1
norm:

Φ(x) = ‖x‖1 =

n
∑

i=1

|xi| .

This is the celebrated Lasso penalty (Tibshirani, 1996), which has numerous advantages.
Its convexity ensures the uniqueness of the solution, and has been shown to be consistent
(Zhao and Yu, 2006) in the sense that under some conditions it retrieves the same
support as the non-relaxed problem. Furthermore the non-differentiablity of |·| at 0
encourages most coordinates of x⋆ to be zero, thus inducing sparsity.

This behaviour can be illustrated by the one-dimension minimization problem ob-
tained for f(x) = 1

2(x−y)
2, Ψ(x) = |x| and (x, y) ∈ R2. The solution of this regularized

optimization problem is as follows:

x⋆ =

y + λ if y < −λ

0 if |y| ≤ λ

y − λ if y > λ,

and is represented in Figure 2.1. We can see that x⋆ is encouraged to take the value
zero for y, which is smaller than the regularization strength λ. We can also observe
that for |y| ≥ λ, the solution x⋆ is shifted towards zero. This biais is not observed in
the ℓ0 case, and can be a drawback of this approach.

2.2.3 Structured Sparsity

Sparse methods are not limited to finding solutions for which the majority of parameters
are zero. Indeed Huang et al. (2011) extend the sparsity of the vector of parameters to
the notion of coding complexity, a measure of the simplicity adapted for a given problem.
Bach et al. (2012b) give an overview of how structured forms of sparsity can be induced
by extending the ℓ1 norm to appropriate structured norms.

21

2. PROXIMAL METHODS FOR STRUCTURED OPTIMIZATION

−λ

λ

y
x⋆

Figure 2.1: Set of solutions of the one-dimensional LASSO with square error fidelity
1
2 (x− y)

2. Red represents the solution x⋆ for the different values of y.

.

For example, group sparsity is induced by the group Lasso regularization (Bakin,
1999; Yuan and Lin, 2006). Consider [1, · · · , n] partioned into k meaningful groups
{g1, · · · , gk}. The group Lasso regularization takes the following form:

Φ(x) =
k
∑

i=1

‖xφi
‖2 ,

with ‖xg‖2 =
(

∑

j∈g x
2
j

) 1
2
. As in the regular LASSO, the discontinuity of ‖·‖2 at 0

encourages whole blocks x⋆φi
to be exactly zero. This could be a desirable property of

the solution, and can be exploited to decrease the number of samples needed to find the
solution (Obozinski et al., 2011; Wipf and Rao, 2007).

Another variation of the LASSO is the fused LASSO, used to encourage the sparsity
of the parameters as well as the difference between successive elements in an ordered
set (Tibshirani et al., 2005). Suppose that the ordering of [1, · · · , n] is meaningful, then
the fused lasso regularization writes:

Ψ(x) = α
n
∑

i=2

|xi − xi−1|+ β
n
∑

i=1

|xi|

The first part of this regularization encourages most consecutive values of x⋆ to be
equals, forming a piecewise constant structure, while the second part encourages values
to be exactly zero. Hence the solution x⋆ is not only sparse but its non-zero values show
a piecewise constant structure with respect to the chosen ordered set.

2.2.4 Graph-structured Sparsity

An important class of regularizers derive their structure from graphs, as illustrated in
(Peyré et al., 2008) for image processing. For example, the spatial structure of an image
with n pixels can be captured by an unoriented graph G = (V,E,w) with each element
of V = [1, · · · , n] being associated with one pixel, E linking neighboring pixels (4, 8
or 16 neighborhood are usually used). In this context x ∈ Rn is the greyscale value
associated with each pixel. The edge weights wi,j can be set based on the norm of

22

2.2 Structured optimization problems

the gradient between two pixels to account for the likelihood of object boundaries to
display sharp color changes (Boykov and Jolly, 2001). In the special case of a regular
grid graph in theplane,Goldfarb and Yin (2009) propose to set the edge weights such
that the total weight of the edges intercepted by a cut of the graph approximates its
curve length using the Cauchy-Crofton formula.
A natural way for regularizers to take into account a graph structure is to be factorizable
with respect to the graph gradient :

Φ(x) =
∑

(ij)∈E
φij(xi − xj), (2.2)

with φij : R 7→ R. Well-chosen edge weights will capture the specificity of each edge
so that the functions φij take the form : φij = wijφ with φ : R 7→ R+. In this case
spatial regularity can be achieved when φ is a sparsity inducing function. Indeed as φ
encourages xi = xj for most neighboring nodes, x will be constant for large connected
components of G.

The challenge is to design a penalty which will induce spatial regularity while autho-
rizing sharp discontinuities. Piecewise constant approximations have in particular been
considered in the image processing literature. In that context Mumford and Shah (1989)
introduce an energy whose minimization produces piecewise-smooth approximations of
images (see Chapter 4 for a more detailed presentation of this literature). By setting the
smoothness term to infinity, one can obtain piecewise constant approximations. With
this parameterization, the energy amounts to a squared difference data term penalized
by the contour lentgh of the constant regions. For an arbitrary data term, and when the
number of regions is fixed in advance, this problem is known as the minimal partition
problem.

Rather than viewing images as functions on a continuous set, we consider the clas-
sical discretization of the problem on a regular grid. In this setting we can transpose
this penalty by choosing

φ(x) = 1x 6=0 =

{

0 if x = 0

1 else,

and G = (V,E,w) the pixel neighborhood graph weighted with the Cauchy-Crofton
formula. For these choices Φ(x) can be interpreted as the approximate length of the
boundaries between the connected components of G in which x is constant. Remark
that the form of the regularizer (2.2) is not specific to grid graphs, and can be extended
to arbitrary weighted graphs.

The main drawback of this penalty is its non-convexity, which implies a potential
multitude of local optima and the impossibility of estimating their quality compared to
the global optima . (Rudin et al., 1992) introduce a convex penalization inducing spatial
regularity while authorizing sharp discontinuities, the total variation. In our graph
setting, this penalty is obtained by setting φ = |·|. This particular implementation is

23

2. PROXIMAL METHODS FOR STRUCTURED OPTIMIZATION

known as the anisotropic weighted total variation:

Φ(x) =
∑

ij∈E
wij |xi − xj | (2.3)

2.3 Proximal splitting for structured optimization

In this section we present a brief overview of proximal splitting algorithms. An index
of the methods presented and the context in which they are applicable is presented in
Table 2.1. This chapter is inspired by the work of (Bauschke and Combettes, 2011;
Combettes, 2004; Combettes and Pesquet, 2009), as well as the survey by Parikh and
Boyd (2013)s.

2.3.1 The subgradient

Let Φ : Ω 7→ R be a proper convex function defined over Ω ⊂ Rn. The subgradient is
a generalization of the notion of gradient for convex functions that are not necessarily
differentiable everywhere. By contrast with the gradient which is a point-to-point op-
erator, the subgradient ∂Φ takes its value in the convex subsets of Rn. The subgradient
of Φ at x0 in Rn is defined by the hyperplanes tangent to the set of points above the
graph:1

∂Φ(x0) = {c ∈ Ω | Φ(x)− Φ(x0) ≥ 〈c, x− x0〉 ∀x ∈ Rn} (2.4)

In dimension 1, the subgradient of Φ at x0 is the set containing the slopes of all the lines
going through (x0, f(x0)) and that are under the graph of φ everywhere, as illustrated
in Figure 2.2.

x0

Φ(x)

x

y

Figure 2.2: Illustration of the subgradient of a convex function. In blue ,the graph
of φ. In red , the lines bounding the slopes in the subgradient. In pink , the set
of points through which pass the lines defined by the slopes in the subgradient of Φ at x0.

If φ is differentiable, we have ∂Φ(x) = {∇Φ(x)}. Generalizing the notion of gradient,
the subgradient can be used to characterize stationarity of non-differentiable functions.

1this set is called the epigraph of the function

24

2.3 Proximal splitting for structured optimization

x1

x2

x3

x4 x⋆

Figure 2.3: Illustration of the proximal operator. The full black line represents the
boundary of the defition domain of φ, while the dashed line represents its level sets.
The red arrow points from point x to the proximal operator value proxΦ(x). Observe
that the red arrows are perpendicular to the level set of Φ at their destination.

Proposition 1. (x = argminz∈Rn Φ(z))⇔ 0 ∈ ∂Φ(x).

2.3.2 The proximal operator

The proximal operator is a keys concept from convex analysis to design optimization
algorithms for non-differentiable functions (Moreau, 1965).

Definition 2. For x ∈ Rn and λ > 0 the proximal operator of λΦ at x is defined as:

proxλΦ(x) = argmin
t∈Rn

{
1

2
‖t− x‖2 + λΦ(t)}

.

If Φ = ιC is the characteristic function of a convex set C whose values are 0 in C and
∞ elsewhere, then proxλΦ(x) = argmint∈C{

1
2 ‖t− x‖

2}, i.e. the orthogonal projector
onto C. The proximal operator can thus be seen as a generalization of the orthogonal
projection.

If Φ is differentiable, then t = proxλΦ(x) is such that t + λ∇Φ(t) = x. In other
words t is obtained from x by a gradient descent step for which the gradient would be
computed at its destination t. This property is the reason why the adjective implicit or
backward is used to describe algorithms relying on proximal operators. An example of
a proximal operator is the soft thresholding which is the proximal operator of Φ = | · |:

proxλ|·|(x) =

x+ λ if x < −λ

0 if |x| ≤ λ

x− λ if x > λ

We can see that t = proxλ|·|(x) gives the same result as a gradient step of length λ on
the function |·| while dealing with the non-differentiablity.

More generally, the proximal operator of a function Φ maps a point x to a point t
which reflects a compromise between decreasing Φ and moving away from x, all while
remaining in the domain of Φ, as illustrated in Figure 2.3.

25

2. PROXIMAL METHODS FOR STRUCTURED OPTIMIZATION

Proximal point algorithm As suggested by the links between the proximal oper-
ator and gradient methods, the former can be used to characterize optimality as well.

Proposition 3. For x⋆ ∈ Rn we have the following equivalence:

(

x⋆ = argmin
z∈Rn

Φ(z)

)

⇔ (x⋆ = proxΦ(x
⋆))

Proof. Proof in Appendix B.

This fixed-point characterization of optimality suggests the following algorithmic
scheme:

xt+1 ← proxλΦ(x
t). (2.5)

It is well known that such fixed-point algorithms converge to their fixed-point for oper-
ators T : Rn → Rn that are contracting, ie:

‖T (x− y)‖ ≤ λ ‖x− y‖ , (2.6)

for 0 ≤ λ < 1. The proximal operator is almost a contracting operator, in the sense that
it (2.6) for λ = 1. However convergence is not ensured for such operators. A stronger
condition requirement for an operator T is firm nonexpansivity :

‖T (x)− T (y)‖2 ≤ 〈x− y, T (x)− T (y)〉 .

for all x, y in the domain of T . Firm nonexpansivity ensures that the sequence of the
iterates converges weakly to a fixed point of T , as stated by the Krasnoselskii-Mann
theorem (Krasnosel’skii, 1955; Mann, 1953; Reich and Zaslavski, 2000). Consequently, a
damping scheme can be used to ensure convergence, as suggested by Combettes (2004)
and Bertsekas (2015, Chapter 5).

This algorithm is not used in practice because of its nested structure: each iteration
requires solving a minimization problem almost as difficult as minimizing Φ itself. If Φ
is not strictly convex however, the proximal problem is easier as it corresponds to the
minimization of a strongly convex fonction, but this does not justify actually using the
proximal point algorithm in practice.

For some functions however, the proximal operator is easy to compute. We call such
functions proximable. Well-known examples include characteristic functions of simple
sets such as the ones listed in (2.2.1), ‖·‖2, the LASSO and some of its structured variants
such as the group-LASSO. Remark that while minimizing these functions is trivial, their
proximable property proves useful however within the context of regularization.

26

2.3 Proximal splitting for structured optimization

2.3.3 Proximal splitting

Structured optimization refers to the optimization algorithms that leverage the structure
of the function to minimize. In this section, we are interested in proximal splitting and
consider F : Ω 7→ R a convex function that can be written as:

F (x) = f(x) + Φ(x),

with both f and Φ convex.

Forward-Backward Splitting This scheme handles cases where Φ is proximable
and f is differentiable with L-Lipschitz gradient for L > 0:

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ ∀x, y ∈ Rn.

Forward-backward splitting (Chen and Rockafellar, 1997; Combettes and Wajs, 2005;
Passty, 1979) is a fixed-point algorithm with the following update:

xt+1 ← proxλΦ
(

xt − λ∇f(xt)
)

. (2.7)

This update can be understood as alternating a gradient step on f : xt+1 ← xt −
λ∇f(xt) (the forward step) with a proximal step: xt+1 ← proxλΦ(x

t) (the backward
step). It takes advantage of the split of F into a differentiable part, for which we can
compute the gradient, and a non-differentiable part whose proximal operator can be
easily computed. Well-known examples include:
- Φ = 0 : reduces to gradient descent
- f = 0 : reduces to the proximal point algorithm
- Φ = ιC with C a convex set : reduces to projected gradient descent (Bertsekas, 1999,
chapter 2)
- Φ = |·| : reduces to iterative soft thresholding (Daubechies et al., 2004)

This algorithm is a fixed-point algorithm as well, whose optimality at convergence is
a classical results that we recall in Proposition 4. This method will converge for λ < 2/L,
and inertial acceleration schemes can be used to accelerate the gradient descent part of
the algorithm (Beck and Teboulle, 2009; Nesterov, 1983, 2013).

Proposition 4. x⋆ is a fixed point of (2.7) if and only if it is a minimizer of f +Φ.

Proof. Proof in Appendix B.

Douglas-Rachford Splitting The Douglas-Rachford splitting algorithm (Com-
bettes, 2004; Douglas and Rachford, 1956) applies when f and Φ are both proximable,
with no hypothesis on their differentiablity, and corresponds to the following scheme:

xt+1 = proxλf (y
t − wt)

yt+1 = proxλΦ(y
t+1 + wt)

wt+1 = wt + xt+1 − yt+1

(2.8)

This scheme is equivalent to the celebrated ADMM: alternating direction of Multi-
pliers method (Boyd et al., 2011), as shown in Appendix B.

27

2. PROXIMAL METHODS FOR STRUCTURED OPTIMIZATION

f1

f2 differentiable proximable

differentiable gradient descent forward-backward

proximable forward-backward Douglas-Rachford

f(Kx) with f proximable Chambolle-Pock
∑n

i=1 fi(x) with fi proximable generalized forward-backward

Table 2.1: Summary of the algorithms presented in section 1.2 with their case of appli-
cability

Primal-Dual Splitting Chambolle and Pock (2011)’s primal dual splitting deals
with the case of f proximable and Φ of the form Φ(x) = φ(Kx) with K being a
continuous linear operator and φ proximable as well. Their scheme is written as follows:

yt+1 = proxσφy
t + σKx̃t

xt+1 = proxτfy
t − τK∗yt+1

x̃t+1 = xt+1 + θ
(

xt+1 − xt
)

,

with θ, σ > 0 and θ ∈ [0, 1]. This scheme is particularly useful as it avoids the inversion
of the linear operator K.

This splitting is obtained from the Douglas-Rachford splitting by the addition of the
term to the first line of the update, which simplifies the terms involving the inverse of K.
The addition of this step is often refered to as a preconditioning step (Esser et al., 2010).
The primal dual splitting can also be seen as a relaxed version of the Arrow-Hurwicz
algorithm, whose modified version by Popov (1980) is obtained for θ = 0.

2.4 Generalized forward-backward

2.4.1 A Generalized forward-backward splitting

Motivation Raguet et al. (2013) presents a proximal splitting scheme for optimiza-
tion problems of the form

x⋆ = argmin
x∈Rn

f(x) +

k
∑

i=1

φi(x), (2.9)

where f is differentiable with L-Lipschitz gradient and all φi are proximable.
Douglas-Rachford splitting has been extended for such arbitrary number of prox-

imable functions (Combettes and Pesquet, 2008; Eckstein and Svaiter, 2009). The idea
behind this splitting is to introduce auxiliary variables for each function, allowing us to
compute the proximal operator of each function individually and in parallel (Spingarn,
1983, section 5). The objective variable is then obtained by averaging the auxiliary
variables. However this scheme does not extend to the forward-backward scheme but

28

2.4 Generalized forward-backward

rather to the splitting Douglas-Rachford, and it is hence limited to regularization of
problems in which the fidelity term is proximable itself. Chaux et al. (2009) present an
algorithm in which the proximal operator of the sum

∑

i φi is computed numerically,
nested in a forward-backward splitting scheme. However the nested structure of this
algorithm increases both computation time and the number of parameters.

Generalized forward-backward splitting (GFB) is a scheme in which the fidelity
funcion f is only handled through its gradients, and the functions φi through their
proximal operators. In this sense it is a hybrid algorithm, in which a forward step is
performed on f and a backward step is performed separately on each φi, individually
and in parallel.

Algorithmic scheme The algorithmic scheme is the following: γ ∈]0, 2L[and w ∈
[0, 1]k such that

∑k
i=1wi = 1:

Algorithm 1: Generalized forward-backward splitting

z ∈ (Rn)k;
x←

∑

iwizi;
repeat

for i = 1 · · ·n do

zi ← zi + proxγφi

wi
(2x− zi − γ∇f(x))− x;

x←
∑

iwizi;

until convergence;
return x.

Interpretation The main advantage of this scheme is that it allows for more com-
plicated fidelity functions that need not be proximable, while allowing for a complex
non-differentiable penalization in the form of

∑

i φi. Each φi is handled by an auxiliary
variable zi, so that the proximal operators can be computed in parallel. The variable
x is then obtained as a weighted average of the auxiliary variables with weights wi.
Typical values for those weights are wi =

1
n .

The auxiliary variable z belongs to the product space {Rn}k, endowed with the scalar
product:

〈z, z′〉 =
k
∑

i=1

wi〈zi, z
′
i〉.

The scheme presented in Algorithm 1 ensures that z⋆, the fixed point of the iterate
operator is such that x⋆ =

∑k
i=1wizi is a solution of (2.9). We refer the reader to

Raguet et al. (2013, section 4) for a detailed proof of the convergence.

The choices of the step size γ ensures that the operator in the fixed-point equation,
denoted here T , is a firmly nonexpansive operator in the Hilbert space defined by the
product space {Rn}k endowed with the aforementioned scalar product.

29

2. PROXIMAL METHODS FOR STRUCTURED OPTIMIZATION

Applications The hybrid nature of GFB proves particularly useful in image pro-
cessing, in which smooth but complicated fidelity terms can arise, as observed when
using complex linear representations or when dealing with complex linear observation
processes. The gradient is generally easier to produce, as a closed form can be obtained
for most reasonnable choices of f .
The sum of proximable functions

∑

i φi can encode any penalization that can be fac-
tored over the graph gradient, such as the anisotropic total variation. In the case of an
image defined on a grid of size I ×J of pixel for which the 4-neighborhood is taken, the
total variation semi-norm can be rewritten as a sum of 4 functions:

TV (x) =
I
∑

i=2

J
∑

j=1

|xi,j − xi−1,j |+
I
∑

i=1

J
∑

j=2

|xi,j − xi,j−1|

=

⌊ I2⌋
∑

i=1

J
∑

j=1

|x2i−1,j − x2i,j |+

⌊ I2⌋
∑

i=1

J
∑

j=1

|x2i,j − x2i+1,j |

+
I
∑

i=1

⌊J2 ⌋
∑

j=1

|xi,2j−1 − xi,2j |+
I
∑

i=1

⌊J2 ⌋
∑

j=1

|xi,2j − xi,2j+1| .

It is clear that each of those 4 functions is proximable as a sum of proximable
functions of disjoint set of variables. However a drawback of this method is that the
duplication of the variables induces high memory requirements. This consideration has
led to the development of the algorithm presented in the next section.

2.4.2 Preconditioning of a generalized forward-backward splitting

In this section we present the algorithm introduced in Raguet and Landrieu (2015),
which proposes an extension of the generalized forward-backward splitting with better
memory requirement and allowing preconditioning strategies for consequential speed-
ups.

Metric adaptation for gradient descent Consider the simple gradient descent
aiming at minimizing f , a convex, bounded below and differentiable function with
gradient L-Lipschitz: xt+1 ← xt − γ∇f(xt). This scheme converges to the solution for
γ < 2

L (Nesterov, 2004).
However if the variations of the gradient of f are much sharper along one direction

than along others, the information carried by its Lipschitz constant L might not be
representative of its overall behavior. More formally, this scheme is based on the con-
struction of an upper bound of the function whose Hessian is scalar. If the Hessian of
the function ∇2f is badly-conditioned, this upper bound is very loose and might impose
a step size that is too small in most directions, leading to slow converence rates.

A more precise approach would be to allow the step size to be different in each
direction, or more generally to replace the step size γ by a matrix Γ addressing the bad-
conditionning of the function to minimize. This can be interpreted as a metric change,

30

2.4 Generalized forward-backward

as in the euclidian space Rn equipped with the scalar product 〈x, y〉Γ 7→ 〈Γ
−1x, y〉, we

have that Γ∇f is the gradient of f . Since 〈∇f(x), ·〉 = 〈Γ∇f(x), ·〉Γ, this can be seen
as a consequence of Riesz’s representation theorem (Riesz, 1907). Such matrix Γ is also
referred to as the preconditonning matrix.

Metric change algorithms have been long studied have long been studied, the most
famous being Newton or quasi-Newton methods (Broyden, 1967) for twice differentiable
functions. But generalization of such methods to problems that count proximable non-
differentiable terms are delicate. In this chapter, we study metric adaptation to mini-
mize sum of non-differentiable functions, and in particular for the generalized forward-
backward algorithm.

Our goal is to define a metric which would take on a role similar to that of the
Hessians for twice differentiable functions, while keeping tractable the computation of
the proximal operators of the non differentiable parts. We limit ourselves to precon-
ditonning matrices Γ that are diagonal, following the rationale of Giselsson and Boyd
(2014a). Since neither f nor φi are supposed twice differentiable, Γ will be determined
with diagonal pseudo Hessians, as explained in Section 2.4.2.

Preconditioning of proximal splittings Qian (1992) was the first to introduce
variable metrics in the context of proximal operators, and more specifically for the
proximal point algorithm. Chen and Rockafellar (1997) give a variable metric version
of the forward-backward splitting in finite dimension. Both papers focused on the
theoretical convergence without providing insight on how to chose metrics.

Those results were used ten years later by Parente et al. (2008) to speed up the res-
olution of differential equations systems. Pock and Chambolle (2011) extend their cele-
brated primal-dual splitting (Chambolle and Pock, 2011) to allow a metric change that
remains fixed after the first iteration, an operation known as preconditioning. They then
explain how to easily compute a diagonal preconditioner that leads to significant gains
in convergence speed for badly-conditioned problems. Giselsson and Boyd (2014a,b)
explore the rationale behind the choice of preconditoners for proximal splittings. They
suggest favoring diagonal splittings in order to keep the proximable properties of the
functions, and show how a well-chosen metric can greatly decrease the condition num-
ber of a problem and subsequently increase both theoretical and empirical convergence
speeds.

Metric change is not limited to preconditioning however, and Becker and Fadili
(2012) uses such variable metrics to apply quasi-Newton updates to the twice-differential
part of a forward-backward splitting. Combettes and Vũ (2014) provide a convergence
proof of a forward-backward splitting in which the metric is free to change at each itera-
tion. Finally Lorenz and Pock (2014) introduce the inertial forward-backward algorithm
in which the step size changes at each iteration.

In the footsteps of those algorithms, the preconditioned generalized forward-backward
splitting represents an improved scheme from Raguet et al. (2013). It uses variable met-
rics not only to accelerate the convergence without using second order information but
also to decrease the memory requirement as well. Finally, a reconditioning strategy is

31

2. PROXIMAL METHODS FOR STRUCTURED OPTIMIZATION

presented.

Tight Primal Splitting Recall from section 2.4 that the generalized forward-
backward algorithm introduces the auxiliary variables zi in order to compute the prox-
imal operator of each functions φi separately. In Raguet et al. (2013) each zi is a full
copy of the original variable x.

In the case of the total variation on a regular graph such as a 4 neighborhood grid
this memory requirement is not an issue. It can however be problematic in the case of
a highly irregular graph. Indeed for a graph of degree k, the naive splitting would need
a set of k full sized auxiliary variables, most of which will be unused: the computation
of xv for a nodes v of degree k′ smaller than k only involve k′ auxiliary variables.

We introduce the notion of tight splitting, in which all auxiliary variables are used
in their entirety. More formally, a splitting is tight when the auxiliary variables are
defined in a Cartesian produce of subspace Hi ⊂ Rn for which there exists no strict
subspace H (Hi such that φi = φi ◦ PH with PH the projector onto H.

We define Ii ⊂ [1, · · · , n] as the subset of the variables x1, · · · , xn involved in φi.
We define Hi as the subspace generated by the variables relevant to φi:

Hi = span({ei}i∈φi
) = {x ∈ Rn | xj = 0 for j 6∈ Ii},

with ei ∈ {0, 1}
n the binary vector whose sole non-zero value is at the ith row. The

restricted product space X
k
i=1Hi is naturally a tight splitting. Whereas in 2.4 the the

auxiliary variable z was in the product space Xk
i=1R

n, it suffices here to take z in Xk
i=1Hi,

whose values are all used. We denote zi the vector of auxilliary variables associated with
phii and whose entries zji are zeros for all j /∈ Ii.

In the case of the anisotropic total variation, we split Φ(x) =
∑

ij∈E wij |xi − xj |
into m = |E| functions. The need for a tight primal splitting is clear as a naive splitting
would induce a memory requirement O(n × k) with k the degree of the graph, which
is impractical for most real life problems. Fortunately, each function gij = wij |xi − xj |
only depends on two variables, xi and xj , and we set Hij = span

(

1{i},1{j}
)

. With this
tight splitting the memory requirement for the auxiliary variables are limited to O(2m)
with m the number of edges in the graph.

Weights matrices We introduce the weight matrices Wi ∈ Rn×n for each function
φi, which play a role similar to the scalar weights wi of section 2.4, but in matrix
form. For simplicity we will limit ourselves to diagonal weight matrices as well Wi =
diag(w1

i , · · · , w
n
i). In the same manner that the wi of section 2.4 sum to unity, the Wi

must satisfy
∑k

i=1Wi = Id. We also impose that [wj
i] be zero for j outside of Ii, and

strictly greater than zero for j in Ii. For an auxiliary variable zi ∈ Hi and j ∈ [1, · · · , n]
we denote:

[Wizi]j =

{

wj
i z

j
i for j ∈ Ii

0 else,

32

2.4 Generalized forward-backward

Consequently, we can interpret
∑

iWizi as the average of all auxiliary variables weighted

by the matrices Wi. We denote xHi the projection of x onto Hi and proxWiΓ
−1

φ the proxi-

mal operator of φ in the Hilbert space Hi with inner product 〈x, y〉WiΓ−1
.
= 〈WiΓ

−1x, y〉:

proxWiΓ
−1

φi
(x) = argmin

t∈Rn

{〈x− t, x− t〉WiΓ−1 + φ(t)}.

Algorithmic scheme We consider the problem of minimizing f +
∑k

i=1 φi with
f convex continuously differentiable. We suppose that there is a self-adjoint, positive
definite matrix L for which L− 1

2 ◦ ∇f ◦ L− 1
2 is non-expansive. The functions φi are

assumed to be convex, continuous and the sets of relevant variables Ii verify ∪ki=1Ii =
[1, · · · , n].

We denote Γ a diagonal, positive definite preconditionning matrix which verifies
∥

∥

∥
L

1
2ΓL

1
2

∥

∥

∥
< 2. We denote Wi the diagonal, positive definite weight matrices, which

satisfy
∑k

i=1Wi = Id and [wj
i] zero for j outside of Ii, and strictly greater than zero for

j in Ii.

Under those hypothesis, the following scheme define a sequence {xt} which converges
strongly towards the mimizer of (2.9).

Algorithm 2: Preconditioned generalized forward-backward splitting

z ∈ Xk
i=1Hi

x←
∑

iWizi
repeat

p← 2x− Γ∇f(x)
for i = 1 · · ·n do

zi ← zi + proxWiΓ
−1

φi

(

pHi − zi
)

− xHi

xt+1 ←
∑

iWizi
until convergence;
return x.

Diagonal preconditioning the generalized forward-backward splitting
Choice of the preconditioner: The literature on metric adaptation for gradient
descent is based on Newton’s method and implies either exact or approximated compu-
tation of the inverse of the Hessian. Similarily, metric adaptation for proximal splittings
relies on a smoothness hypothesis. In particular Becker and Fadili (2012) use second or-
der information to precondition a forward-backward scheme, while Giselsson and Boyd
(2014b) assume that f is both smooth an strongly convex.
In our setting however, f is only assumed to be convex and once continuously differen-
tiable and no smoothness hypothesis is made on the functions φi, so that the Hessians of
the functions composing the objective do not exist in general. We can however compute
pseudo Hessian for f and φi. To reduce the cost of the computation of the inverse, we

33

2. PROXIMAL METHODS FOR STRUCTURED OPTIMIZATION

limit ourselves to diagonal pseudo-Hessians.

We propose to derive diagonal pseudo Hessian from quadratic approximations of
f and φi at a current value xt, i.e. functions of the form x 7→ 〈12Ax + b, x〉 + c with
b, c ∈ Rn and A the diagonal pseudo-Hessian, a positive definite diagonal matrix such
that the approximation matches the value and differential of the function at xt. We
denote A = diag(a1, · · · , an) the pseudo-Hessian of f and Ai = diag(a1i , · · · , a

n
i) the

pseudo-Hessian of φi.
Those approximations are used a heuristic to accelerate the convergence of the al-

gorithm. The convergence of the algorithm itself only require that A be diagonal with
stricly positive diagonal terms, which may be enforced by the addition of regularizers.
In particular, although the quadratic functions detailed in section 2.5 are also majorizers
of the function they approximate, it is not a requirement of the algorithm. In section 2.5
we provide examples of such approximations, demonstrating that common regularizers
can be easily approximated by quadratic functions despite their lack of differentiability.
The quadratic approximation of the data term however must be chosen on a case-by-case
basis.

From Algorithm 1, we would like to incorporate those pseudo-Hessians such that
their inverses determine the size of the step. In other words, we would like to have
Γ−1 ≈ A and WiΓ

−1 ≈ Ai. However this is not completely straightforward as we must
verify the algorithm’s hypotheses on both Γ and Wi.

Choosing Γ: We want to chose Γ = diag(γ1, · · · , γn) so that Γ−1 ∼ A but it must

also verify that
∥

∥

∥
L

1
2ΓL

1
2

∥

∥

∥ < 2 for L self-adjoint, positive matrix for wich L− 1
2 ◦∇f ◦L− 1

2

is non expansive. Γ−1 ∼ A would encourage us to chose γi ∼
1
ai

. However, since the
choice of the preconditioner Γ determines the metric shaping all auxiliary variables, we
opt to recondition with respect to the whole functional:

γi ∼
1

ai +
∑

j∈Ii a
j
i

.

Numerical experiments demonstrated the superiority of this approach compared to dif-
ferent choices of Γ, and the reconditoning in section 2.5 are chosen as such.

To ensure the condition
∥

∥

∥
L

1
2ΓL

1
2

∥

∥

∥
< 2, we make the simplifying hypothesis that

we know a matrix L satisfying this inequality and that it is diagonal as well, which
can be always be achieved since f is continuously differentiable. In this case, for L =
diag(l1, · · · , ln), both conditions combined yield:

γi = min

(

2δ

li
,

1

ai +
∑

j∈Ii a
i
j

)

.

with 0 < δ < 1, typically equal to 0.99
Choosing W : We want to chose Wi = diag

(

w1
i , · · · , w

n
i

)

such that Wi ≈ ΓAi,
∑k

i=1Wi = Id and wj
i = 0 for all j 6∈ Ii, the set of variables relevant to φi. This leads

us to set:

34

2.5 Experimental setup and results

w̃j
i =

{

γia
j
i if j ∈ Ii

0 else,

and

wi
j =

w̃j
i

∑

k∈Ii w̃
k
i

.

See Raguet and Landrieu (2015, section 3) for a more detailed analysis.

Reconditioning and variable metric As explained in the previous sections,
we propose to compute quadratic approximations of our functions in order to emulate
the second order preconditioning generally applied to smooth functions. However it is
natural that this preconditioning is only as good as the quadratic approximations, which
is why we suggest updating the quadratic approximations periodically and changing the
metric accordingly. We call this heuristic reconditioning.

Unfortunately the auxiliary variables zi are defined with respect to one given metric,
and are no longer adapted after reconditioning, setting back convergence. The auxiliary
variables therefore need to be updated to the new metric. For that purpose, we make
the hypothesis that when the reconditioning step takes place, the auxiliary variables
are close to convergence. This allows us to update the current auxiliary points so that
they are adapted to the new metric. If we denote (Γ,W) the old preconditoners and
(Γ̂, Ŵ) the new ones, the updated ẑi are:

ẑi =
(

x− Γ̂∇f(x)
)Hi

− Ŵ−1
i Γ̂yi, with yi = Γ−1Wi (x− Γ∇f(x)− zi)

Because this update relies on the hypothesis that the convergence is almost reached
with respect to the current metric, this reconditioning strategy should not be applied
at each iteration. On the contrary, we advocate only reconditioning when the relative
change of the iterate at iteration t, i.e. ‖xt − xt−1‖ / ‖xt−1‖ is below a certain threshold
θ. As the algorithm progresses, each time this threshold is reached, it We chose to
divide the threshold by a constant factor.

Furthermore, for the convergence proof presented in Raguet and Landrieu (2015)
to hold, the reconditioning steps must only be applied a finite number of times. A
potential lead to overcoming this restriction may be found in Liang et al. (2014), who
proved that if the metric changes only induce summable errors with respect to the first
metric, then the convergence holds for many proximal splitting algorithms including the
generalized forward-backward splitting.

2.5 Experimental setup and results

We now present a numerical application of our algorithm on a high-dimensional prob-
lem structured on an irregular graph. Solving it implies performing a sequence of badly
conditioned, non-differentiable optimization problems, providing a good illustration of

35

2. PROXIMAL METHODS FOR STRUCTURED OPTIMIZATION

Experiment A B C

Number of vertices 252,183 252,183 4,670,492
Number of edges 378,258 378,258 7,002,424

ℓ1 penalty no yes no

Table 2.2: Dataset summary for each experimental setting

several notions developed in the previous sections. We show how the convergence speed
of the preconditioned GFB algorithm compares with concurrent preconditioned prox-
imal algorithms over three different experimental setups. The applied motivation and
setup of the experiments presented here are detailed in the next chapter.

2.5.1 Problem formulation

We consider a graph G = (V,E) with n
.
= |V | and m

.
= |E|.

Each node is assigned a scalar observation value yi ∈ R. We consider the mini-
mization of a function F defined as the sum of a weighted least square fidelity term, a
weighted total variation term and of an ℓ1 penalty:

F (x) =
1

2

∑

v∈V
νv |xv − yv|

2 + s1
∑

(u,v)∈E
µuv |xu − xv|+ s2

∑

v∈V0

λv |xv|, (2.10)

with νv ∈ Rn
+, µuv ∈ Rm

+ , λv ∈ Rn
+ and V0 ⊂ V . The penalization strength s1 and s2 are

non negative as well. We consider 3 experiments with dimensions given in Table 2.2.
The motivations for choosing this specific function are discussed in the next chapter.

2.5.2 Applying a preconditioned generalized forward-backward

There are several ways to cast this problem as an instance of (2.9); we describe one of
them.

Tight splitting We set f as the smooth part:

f(x) =
1

2

∑

v∈V
νv (xv − yv)

2.

The rest of the energy constitutes the regularization, whose terms we split individually
into |E|+ |V0| separate functions:

∀(u, v) ∈ E

{

φuv = µuv |xu − xv|

Huv = span(1u,1v)
and ∀w ∈ V0

{

φw = λw |xw|

Hw = span(1w)

It is easy to see that those functions are proximable. Thanks to the tight splitting
property, the generalized forward splitting algorithm can be applied without demulti-
plying the memory requirement. Indeed the restricted product space (Xu,v∈EHuv) ×
(Xw∈V0Hw) is only of dimension 2 |E|+ |V0|.

36

2.5 Experimental setup and results

Preconditioning As stated in 2.4.2, our reconditioning scheme relies on comput-
ing a diagonal pseudo-Hessian obtained from quadratic approximation of the involved
functions. In our case, f being already quadratic, with a diagonal Hessian, it does not
need to be approximated. More complicated data terms involving a non diagonal design
would need more work to find a suitable approximation.

We approximate the functions φw at point x̂ by the tightest quadratic upper bound
at the current point x̂:

qw(x) =
λw

2 |x̂w|
x2w +

|x̂w|λw
2

,

as illustrated in Figure 2.4. The Hessian of this approximation is the diagonal matrix

diag
(

λw

|x̂w|

)

. However if x̂w = 0 the corresponding term is unbounded, which causes

numerical issues. Hence we chose for diagonal pseudo-Hessian the following matrix :

diag
(

λw

max(|x̂w|,ǫ1)

)

for ǫ1 a small value. In our implementation we chose ǫ1 = 10−6x̄

with x̄ being the average of all x̂.
Similarily, the best quadratic approximation of guv at point x̂ is the function quv

defined by:

quv(x) =
µuv

2 |x̂u − x̂v|
(xu − xv)

2 +
µuv |x̂u − x̂v|

2
.

The Hessian of this quadratic function is however not diagonal, and we drop the
off-diagonal terms. To avoid the same numeric issues faced with qw we take the pseudo-

Hessian of guv to be diag
(

µuv

max (|x̂u−x̂v |,ǫ2)

)

with ǫ2 > 0 a small real number. In our

implementation we observed best results for ǫ2 = 10−1x̄.

x̂v

qv

v

xv

Figure 2.4: Quadratic upper bound of φv.

.

Competing algorithms In the following, we compare the performance of our pre-
conditioned generalized forward-backward splitting algorithm for the minimization of

37

2. PROXIMAL METHODS FOR STRUCTURED OPTIMIZATION

F , against other preconditioned proximal splitting algorithms available in the literature.
Preconditioned primal-dual algorithm (PPD): We implemented the well-known
primal-dual algorithm of Chambolle and Pock (2011). The function is split as F =
f + φ ◦K, where f is the same data-fidelity term, and φ and K are defined as follows:

K :

{

Rn → R|E| × R|V0|

x 7→ (δ, ξ),
with

{

∀(u, v) ∈ E, δuv = µuv(xu − xv)

∀w ∈ V0 , ξw = λw xw,

and

φ :

{

R|E| × R|V0| → R

(δ, ξ) 7→
∑

(u,v)∈E |δuv|+
∑

v∈V0
|ξ| .

It is easy to see that the functions f and g are proximable and that K is indeed
a linear operator as requested by the primal dual algorithm. We apply the diagonal
preconditioning suggested by the authors following Lemma 2, equation (10), and take
the parameter α = 1 as well as θ = 1, as suggested by the authors.
Note that this preconditioning procedure only depends on the operator K and does not
take f into account.

Inertial preconditioned primal-dual algorithm of (IPPD): The iteration (30)
of Lorenz and Pock (2014) can be seen as an inertial extension of the above spliting,
where in addition the functional f can be taken into account through an explicit gra-
dient step. The preconditioning matrices can in turn incorporate information about f
following Lemma 10, equation (35) in their paper. After trying different parameters,
we selected γ = 1, δ = 0, r = 1, s = 1 and α taken as one half of the upper bound given
by Lemma 6, equation (25).

Preconditioned generalized forward-backward splitting (PGFBθ):. We use
the splitting and preconditioning described in Section 2.4. Note that, at the very begin-
ning of the optimization process, we initialize the preconditioners with a coarse precon-
ditioning, following Section 2.4.2 but in which x is substituted with the observation y.
We denote PGFBθ the implementation of the algorithm for a reconditioning threshold
θ, and PGFB0 the implementation where only the initial preconditioning is applied.

Results For each dataset in Table 2.2, we fix reasonable values for the parameters
s1 and when applicable s2, and illustrate the solution in the next chapter. For each
algorithm, we monitor the computation time and the decrease of the objective func-
tional F over one thousand iterations. Finally, we compute an approximate minimum
F̃∞ by running five thousand iterations of PGFB. In Figure 2, we plot the distance

between the relative primal suboptimality gap
|F̃t−F̃∞|
|F̃∞|

on a logarithmic scale against

the corresponding computational time.
All performance results show the same trend, in spite of the variety of the prob-

lems, of the conditionings, and of the data size considered. In all three experiments, we
see that PPD and IPPD iterations are faster than PGFB iterations as it take them
less time to compute one thousand iterations. Yet, the coarse initial preconditioning is

38

2.6 Conclusion

already enough for PGFB0 to outperform PPD and IPPD. The three different recon-
ditioning threshold values illustrate that reconditioning must happen neither too early
nor too late for optimal performance. Indeed the version of PGFB without recondi-
tioning (but only preconditioning) performs consistently worse than its preconditioned
counterparts. On the contrary, undesirable spikes can be observed on the top right of
Figure 2.5 when the reconditionings are too close. However in all cases, it is clear
that the computational cost of the reconditionings is negligible, and that it allows for a
significant increase in speed compared to PGFB0.

For our algorithm and the competing ones, we tried different preconditioning schemes
which yielded inferior results and are not represented in this chapter. In particular we
tried a Douglas Rachford version of our algorithm by setting f = 0, and different less
successful preconditioning schemes. Similarily for the primal dual algorithms, we tried
to include the data term in the preconditioning matrix, which induced slower conver-
gence. Finally we tried an inertial version of the PGFB algorithm following the idea
of Lorenz and Pock (2014), but the gain in convergence speed was offset by the longer
iterations and a doubling of the memory requirements.

2.6 Conclusion

In this chapter we presented some proximal splitting algorithms, as well as their ap-
plications in the context of structured optimization. We expanded in particular the
generalized forward-backward algorithm and showed how the concept of gradient step
size can be expanded to a matrix through reconditoning, which can be interpreted as an
adequate change of metric. We presented a scheme which allows for such adaptations
without the hypothesis of twice differentiability and allows for a substantial decrease in
convergence time. The drawback of the generalized forward backward scheme is the du-
plication of auxiliary variables, even though tight splittings strongly mitigates the issue.
Finally, we demonstrated the acceleration permitted by the preconditioned generalized
forward-backward algorithm on a spatial aggregation task detailed in the next chapter.

Future work to be done includes the generalization of this method to cases in which
the node values are constrained within a multidimensional convex set. An interesting
direction to explore would be to consider the potential links with stochastic optimiza-
tion techniques such as the random block coordinate primal dual algorithm (Combettes
and Pesquet, 2015; Repetti et al., 2015). Indeed the choice of a stochastic activation
function for block coordinate algorithms shares a common objective with precondition-
ing schemes: focusing the optimization efforts on the most difficult parts of the function
to minimize, be it by adapting step sizes or activation probabilities.

39

2. PROXIMAL METHODS FOR STRUCTURED OPTIMIZATION

0 10 20 30 40
10−5

10−4

10−3

10−2

10−1

GFB10−3

GFB10−4

GFB10−5

0 10 20 30 40

10−5

10−4

10−3

10−2

10−1

GFB10−3

GFB10−4

GFB10−5

0 100 200 300 400 500 600

10−2

10−1

100

101

GFB10−2

GFB10−3

GFB10−4

PPD

IPPD

GFB0

Vertical axis : Ft−F∞

F∞
Horizontal axis : time in second

Figure 2.5: Relative primal suboptimality grap Ft−F∞

F∞
for the different data sets: top

left : population, top right : revenue, bottom left : vote. The different algorithms are
preconditioned primal dual splitting : PPD , Inertial preconditioned primal dual splitting
IPPD Preconditoned Generalized Forward-Backward Splitting GFB0: and generalized
forward backward with reconditioning for different values of the threshold (see image leg-
ends) and for one thousand iterations.

40

Bibliography

Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. (2012a). Optimization with
sparsity-inducing penalties. Foundations and Trends in Machine Learning, 4(1):1–
106. 19, 21

Bach, F., Jenatton, R., Mairal, J., Obozinski, G., et al. (2012b). Structured sparsity
through convex optimization. Statistical Science, 27(4):450–468. 21

Bakin, S. e. a. (1999). Adaptive regression and model selection in data mining problems.
PhD thesis, The Australian National University. 22

Bauschke, H. H. and Combettes, P. L. (2011). Convex analysis and monotone operator
theory in Hilbert spaces. Springer Science & Business Media. 24

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202. 27

Becker, S. and Fadili, J. (2012). A quasi-newton proximal splitting method. In Advances
in Neural Information Processing Systems, pages 2618–2626. 31, 33

Bertsekas, D. P. (1999). Nonlinear programming. Athena scientific. 27

Bertsekas, D. P. (2015). Convex optimization algorithms. Athena Scientific Belmont.
26

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed opti-
mization and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122. 27

Boyd, S., Xiao, L., and Mutapcic, A. (2003). Subgradient methods. lecture notes of
EE392o, Stanford University, Autumn Quarter, 2004:2004–2005. 20

Boykov, Y. Y. and Jolly, M.-P. (2001). Interactive graph cuts for optimal boundary &
region segmentation of objects in nd images. In Computer Vision, 2001. ICCV 2001.
Proceedings. Eighth IEEE International Conference on, volume 1, pages 105–112.
IEEE. 23

Broyden, C. G. (1967). Quasi-newton methods and their application to function min-
imisation. Mathematics of Computation, pages 368–381. 31

41

BIBLIOGRAPHY

Chambolle, A. and Pock, T. (2011). A first-order primal-dual algorithm for convex
problems with applications to imaging. Journal of Mathematical Imaging and Vision,
40(1):120–145. 28, 31, 38

Chaux, C., Pesquet, J.-C., and Pustelnik, N. (2009). Nested iterative algorithms for
convex constrained image recovery problems. SIAM Journal on Imaging Sciences,
2(2):730–762. 29

Chen, G. H. and Rockafellar, R. (1997). Convergence rates in forward–backward split-
ting. SIAM Journal on Optimization, 7(2):421–444. 27, 31

Combettes, P. L. (2004). Solving monotone inclusions via compositions of nonexpansive
averaged operators. Optimization, 53(5-6):475–504. 24, 26, 27

Combettes, P. L. and Pesquet, J.-C. (2008). A proximal decomposition method for
solving convex variational inverse problems. Inverse problems, 24(6):065014. 28

Combettes, P. L. and Pesquet, J.-C. (2009). Proximal splitting methods in signal pro-
cessing. arXiv preprint arXiv:0912.3522. 24

Combettes, P. L. and Pesquet, J.-C. (2015). Stochastic quasi-fejér block-coordinate fixed
point iterations with random sweeping. SIAM Journal on Optimization, 25(2):1221–
1248. 39

Combettes, P. L. and Vũ, B. C. (2014). Variable metric forward–backward splitting
with applications to monotone inclusions in duality. Optimization, 63(9):1289–1318.
31

Combettes, P. L. and Wajs, V. R. (2005). Signal recovery by proximal forward-backward
splitting. Multiscale Modeling & Simulation, 4(4):1168–1200. 27

Daubechies, I., Defrise, M., and De Mol, C. (2004). An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Communications on Pure and
Applied Mathematics, 57(11):1413–1457. 27

Davidon, W. C. (1991). Variable metric method for minimization. SIAM Journal on
Optimization, 1(1):1–17.

Douglas, J. and Rachford, H. H. (1956). On the numerical solution of heat conduction
problems in two and three space variables. Transactions of the American mathematical
Society, 82(2):421–439. 27

Eckstein, J. and Svaiter, B. F. (2009). General projective splitting methods for
sums of maximal monotone operators. SIAM Journal on Control and Optimization,
48(2):787–811. 28

Esser, E., Zhang, X., and Chan, T. F. (2010). A general framework for a class of
first order primal-dual algorithms for convex optimization in imaging science. SIAM
Journal on Imaging Sciences, 3(4):1015–1046. 28

42

BIBLIOGRAPHY

Giselsson, P. and Boyd, S. (2014a). Diagonal scaling in Douglas-Rachford splitting and
ADMM. In Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on,
pages 5033–5039. IEEE. 31

Giselsson, P. and Boyd, S. (2014b). Metric selection in fast dual forward backward
splitting. Automatica. 31, 33

Goldfarb, D. and Yin, W. (2009). Parametric maximum flow algorithms for fast total
variation minimization. SIAM Journal on Scientific Computing, 31(5):3712–3743. 23

Hadamard, J. (1902). Sur les problèmes aux dérivées partielles et leur signification
physique. Princeton university bulletin, 13(49-52):28. 19

Huang, J., Zhang, T., and Metaxas, D. (2011). Learning with structured sparsity. The
Journal of Machine Learning Research, 12:3371–3412. 21

Krasnosel’skii, M. A. (1955). Two remarks on the method of successive approximations.
Uspekhi Matematicheskikh Nauk, 10(1):123–127. 26

Liang, J., Fadili, J., and Peyré, G. (2014). Convergence rates with inexact non-expansive
operators. Mathematical Programming, pages 1–32. 35

Lorenz, D. A. and Pock, T. (2014). An inertial forward-backward algorithm for mono-
tone inclusions. Journal of Mathematical Imaging and Vision, 51(2):311–325. 31, 38,
39

Mann, W. R. (1953). Mean value methods in iteration. Proceedings of the American
Mathematical Society, 4(3):506–510. 26

Moreau, J.-J. (1965). Proximité et dualité dans un espace hilbertien. Bulletin de la
Société mathématique de France, 93:273–299. 25

Mumford, D. and Shah, J. (1989). Optimal approximations by piecewise smooth func-
tions and associated variational problems. Communications on pure and applied math-
ematics, 42(5):577–685. 23

Nesterov, Y. (1983). A method of solving a convex programming problem with conver-
gence rate o(1/k2). Soviet Mathematics Doklady, 27(2):372–376. 27

Nesterov, Y. (2004). Introductory lectures on convex optimization, volume 87. Springer
Science & Business Media. 30

Nesterov, Y. (2013). Gradient methods for minimizing composite functions. Mathemat-
ical Programming, 140(1):125–161. 27

Obozinski, G., Jacob, L., and Vert, J.-P. (2011). Group lasso with overlaps: the latent
group lasso approach. arXiv preprint arXiv:1110.0413. 22

43

BIBLIOGRAPHY

Parente, L. A., Lotito, P. A., and Solodov, M. V. (2008). A class of inexact variable
metric proximal point algorithms. SIAM Journal on Optimization, 19(1):240–260. 31

Parikh, N. and Boyd, S. (2013). Proximal algorithms. Foundations and Trends in
Optimization, 1(3):123–231. 24

Passty, G. B. (1979). Ergodic convergence to a zero of the sum of monotone operators
in hilbert space. Journal of Mathematical Analysis and Applications, 72(2):383–390.
27

Peyré, G., Bougleux, S., and Cohen, L. (2008). Non-local regularization of inverse
problems. In Computer Vision–ECCV 2008, pages 57–68. Springer. 22

Pock, T. and Chambolle, A. (2011). Diagonal preconditioning for first order primal-
dual algorithms in convex optimization. In Computer Vision (ICCV), 2011 IEEE
International Conference on, pages 1762–1769. IEEE. 31

Popov, L. D. (1980). A modification of the arrow-Hurwicz method for search of saddle
points. Mathematical Notes, 28(5):845–848. 28

Qian, M. (1992). Variable metric proximal point algorithm: convergence theory and
applications. PhD thesis, University of Washington. 31

Raguet, H., Fadili, J., and Peyré, G. (2013). A generalized forward-backward splitting.
SIAM Journal on Imaging Sciences, 6(3):1199–1226. 28, 29, 31, 32

Raguet, H. and Landrieu, L. (2015). Preconditioning of a generalized forward-backward
splitting and application to optimization on graphs. SIAM Journal on Imaging Sci-
ences. 19, 30, 35

Reich, S. and Zaslavski, A. (2000). Convergence of krasnoselskii-mann iterations of
nonexpansive operators. Mathematical and Computer Modelling, 32(11):1423–1431.
26

Repetti, A., Chouzenoux, E., and Pesquet, J.-C. (2015). A random block-coordinate
primal-dual proximal algorithm with application to 3d mesh denoising. In 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3561–3565. IEEE. 39

Riesz, F. (1907). Sur une espèce de géométrie analytique des systèmes de fonctions
sommables. CR Acad. Sci. Paris, 144:1409–1411. 31

Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise
removal algorithms. Physica D: Nonlinear Phenomena, 60(1–4):259 – 268. 23

Spingarn, J. E. (1983). Partial inverse of a monotone operator. Applied mathematics
and optimization, 10(1):247–265. 28

44

BIBLIOGRAPHY

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267–288. 21

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity and
smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 67(1):91–108. 22

Tihonov, A. and Arsenin, V. (1978). Solutions of ill-posed problems. Mathematics of
Computation, 32(144):1320–1322. 19

Tropp, J., Gilbert, A. C., et al. (2007). Signal recovery from random measure-
ments via orthogonal matching pursuit. Information Theory, IEEE Transactions
on, 53(12):4655–4666. 21

Tropp, J. A. (2004). Just relax: Convex programming methods for subset selection and
sparse approximation. ICES report, 404. 21

Wipf, D. P. and Rao, B. D. (2007). An empirical Bayesian strategy for solving the
simultaneous sparse approximation problem. Signal Processing, IEEE Transactions
on, 55(7):3704–3716. 22

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
68(1):49–67. 22

Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. The Journal of
Machine Learning Research, 7:2541–2563. 21

45

BIBLIOGRAPHY

46

Chapter 3

Aggregating spatial statistics with a

generalized forward-backward

splitting algorithm

Chapter Abstract

In this chapter we present a mathematical formalization of the geospatial data aggre-
gation problem. We then show how this problem can be efficiently solved with the
algorithm presented in the previous chapter, and provide illustrations and interpreta-
tions of the results.

3.1 Aggregation as an optimization problem

As stated in the introduction of this manuscript, the weighted graph framework allows
us to cast the task of aggregating spatial data as an optimization problem.

3.1.1 Aggregating spatial statistics

The amount of geo-referenced socio-economic data available has reached volumes that
exceeds our ability to analyse it. We consider the problem of aggregating spatial statis-
tics to obtain simple yet accurate representations in map form, facilitating analysis and
providing valuable decision aids. Our spatial data consists of an observation (the result
of an election in percentages), related to an observation weight (the number of voters),
defined over subregions of a geographical space (electoral constituencies). See Table 3.2.
In order to capture the spatial structure of the data, we consider a graph G = (V,E),
where the vertices V represent the subregions and the edges E ⊂ V ×V represent spatial
adjacencies between subregions. Further spatial information is available, encoded by the

strictly positive node weight λ and edges weight µ. The node weight λ = (λv)v∈V ∈ R
|V |
+

weights the vertices by their surface, and the edge weight µ = (µuv)uv∈E ∈ R
|E|
+ corre-

sponds to the length of the border between adjacent subregions. y = (yv)v∈V ∈ R|V |

47

3. AGGREGATING SPATIAL STATISTICS WITH A GENERALIZED
FORWARD-BACKWARD SPLITTING ALGORITHM

Variable Signification Domain Example

V node set subregions

E edge set subregion adjacency

λ node weight R
|V |
+ subregions surface

µ edge weight R
|E|
+ subregions border length

y observation R|V | electoral results in percentage

ν observation weight R
|V |
+ population in subregion

V0
nodes with zero

observation weight uninhabited subregions

Table 3.1: Summary of the variables introduced in the map simplification problem

denotes the observed spatial data and its respective weight is denoted by ν = (νv)v∈V ∈

R
|V |
+ . In addition, we single out the set V0 of vertices corresponding to regions for

which the observation weight is zero. The variables introduced in this section and their
meaning are given in Table 3.1.

3.1.2 Problem formulation

We define the simplification energy F such that the simplified data x⋆ is defined by
x⋆ ∈ argminx∈Rn{F (x)} and defined as follows:

F (x) =
1

2

∑

v∈V
νv |xv − yv|

2 + s1
∑

(u,v)∈E
µuv |xu − xv|0 + s2

∑

v∈V0

λv |xv|0

with V0 = {v ∈ V | νv = 0} the set of nodes with zero observation weight and |·|0 = δ·6=0

the function equal to zero at zero and one everywhere else. This energy is comprised of
three parts, each weighted by its respective regularization coefficient. The first term is a
data-fidelity measure, favoring a solution x⋆ close to the observation y. Each quadratic
difference is naturally weighted by its observation weight.
The second term is a penalization ensuring the simplicity of the solution, as it tends to
merge together neighboring subregions with similar values. We weight the contribution
of each edge proportionally to the length of the borders between the corresponding
adjacent regions. This term is thus proportional to the total length of the contours of
the constant regions of x, in a similar fashion to the geometric term in the Mumford-
Shah functional (see for instance the review of Vitti (2012)). The coefficient s1 ∈ R++

scales its influence relatively to the other terms in F.
Finally, the last term penalizes non-zero values attributed to regions whose observation
weight is zero. Without this term, large areas could take values of little significance,
eventually cluttering the map. Consequently, we penalize such regions proportionally
to their surface. Again, s2 ∈ R++ scales its overall influence in F .

The minimization of F is very challenging because the functional |·|0 is neither
continuous nor non-convex. Thus, we consider the convex analog of the non-convex

48

3.2 Interpretation

problem F̃ :

F̃ (x) =
1

2

∑

v∈V
νv |xv − yv|

2 + s̃1
∑

(u,v)∈E
µuv |xu − xv|+ s̃2

∑

v∈V0

λv |xv|. (3.1)

We solve the non-convex problem my solving a sequence of convex problems of the
form (3.1), but with coefficients λ and ν depending each time on the previously found
solution, following classical reweighting techniques (see in particular the recent review of
Ochs et al. (2015)). We observe that the energy in (3.1) corresponds to the experimental
setup presented in the last chapter. Consequently the solution x⋆ of each problem (3.1)
can be efficiently computed using the generalized Forward Backward Splitting in its
reconditioned form.

3.1.3 Experimental Setting

We perform aggregation of spatial statistics over three different datasets, presented in
Table 3.2. The datasets population and revenue are open-source, available at the
French National Institute for Statistic and Economics Studies 1. The dataset election
is also open-source, provided by the Cartelec project (Colange et al., 2013).

For each experiment a region is partitionned into subregions, and for each subregion
a value is observed with respect to an observation weight. In the first experiment it is
population density weighted by the subregions surface;i n the second, average revenue
weighted by population; in the third election results weighted by number of voters.

The first two experiments are rasterized data, i.e. square cells organized along a
regular lattice. In the third experiment the vote percentages are given with respect
to constituencies and their populations. Constituencies shape can be arbitrary and
possibly very complex. To obtain more readable maps, the Delaunay triangulation of
the vertices composing the cells is computed, with the constraint that all region borders
must be used as edges by the triangles (see Chew (1989)). To each triangle forming
a consituency we associate the observation corresponding to its region. In turn, the
observation weight is shared among the triangles, proportionally to their surface area.
See Appendix A for a more detailed explanation of this process.

In the first and third experiment no regions have a zero obervation weight, as no
regions has a zero surface area, and no consituency zero voters. In the second experiment
however some of the triangles have zero observation weight (no population), and hence
V0 is not empty, while it is empty for the two other experiments.

3.2 Interpretation

We list here the benefits and limits of our approach as a map simplification algorithm.

1IdeesLibres.org 01/2015, INSEE 20/11/2013, https://www.data.gouv.fr/fr/datasets/donnees-
carroyees-a-200m-sur-la-population/

49

https://www.data.gouv.fr/fr/datasets/donnees-carroyees-a-200m-sur-la-population/
https://www.data.gouv.fr/fr/datasets/donnees-carroyees-a-200m-sur-la-population/

3. AGGREGATING SPATIAL STATISTICS WITH A GENERALIZED
FORWARD-BACKWARD SPLITTING ALGORITHM

Dataset population revenue election

Observation y population density average revenue election results
Observation weight ν region surface population number of voters

Space division rasters rasters constituencies
Spatial extent Ile-de-France Ile-de-France France

Number of vertices 252.183 252.183 4.670.492
Number of edges 378.258 378.258 7.002.424
Presence of zero

no yes no
observation weights

Table 3.2: Dataset summary for each experimental setting

3.2.1 Aggregation as compression

As long as there is no sparsity-inducing ℓ1 penalization, our aggregation method can
be seen as a lossy compression process, where one simply seeks for a trade-off between
data size and loss of information. As already pointed out in the aggregation model, the
complexity of a map is estimated by the total length of the contours between constant
regions. We thus measure the compression ratio of the aggregation x of the spatial
statistics y as:

∑

uv∈E µuv |yu − yv|0
∑

uv∈E µuv |xu − xv|0

A compression of c means that the contours are c times shorter. A high value means
that the resulting map is much simpler. Similarily, a relevant measure of the relative
error is the root (weighted) mean square error between the simplified and observed
maps, which we normalize by the (weighted) standard-deviation of the latter:

√
∑

v∈V νv(xv − yv)
2

√
∑

v∈V νv(yv − ȳ)2
, with ȳ =

∑

v∈V νvyv
∑

v∈V νv
.

A relative error of r means that a proportion 1−r of the standard deviation is retrieved
by the simplified map. A low value of r means that the simplified map is faithful to the
original map. The values of compression obtained for different regularizing strengths
can be found in Table 3.3.

Such measures are reported on Figures 3.2 and 3.1. Because of the presence of
the sparsity-inducing penalization term, the aggregations on the revenue dataset are
somewhat more difficult to interpret. Note that on Figure 3.1- revenue, local areas
without population can still be distinguished, in spite of high degrees of simplification.

3.2.2 Weighted vs uniform regularization

Our formulation allows us to weight the nodes in the fidelity term according to the
significance they hold in the error estimation. For example in the case of aggregating
the results of an election, the weight of each subregion is determined by the number of

50

3.2 Interpretation

compression relative error

1 0
6 0.34
12 0.45
21 0.51
26 0.54
38 0.57

Table 3.3: Compression and error for the aggregation for the population data set in the
order they are represented in Figure 3.1.

voters. Figure 3.2 represents the results of aggregation weighted by either population or
surface for a detail of the election dataset. If both results are comparable in simplicty,
the maps regularized with voters count allows us to better capture high density details
such as the political polarization at the scale of a city.

3.2.3 Adaptive scaling

Our approach allows the region sizes to adapt to local increase in variability and weight,
as opposed to more traditional approaches such as Laplacian regularization Ando and
Zhang (2007). Indeed by penalizing by the lenght of contours, the (local) optimum
will tend to greatly simplify regions of low density or low variation to concentrate the
borders in high variability areas such as urban centers, while still being able to visualize
global trends. Our approach overlooks differences between low density areas in favor of
statistically more significant local effect. On the contrary, the level of detail has to be
set globally for Laplacian based regularizations, as illustrated in Figure 3.3.

51

3. AGGREGATING SPATIAL STATISTICS WITH A GENERALIZED
FORWARD-BACKWARD SPLITTING ALGORITHM

52

3.2 Interpretation

Figure 3.1: Left: Aggregation of the population density in the greater Paris area for
increasing values of s1. The colormap represents high density areas in dark red and low
density areas in pale orange.
Right: Aggregation of the average yearly revenue density in the greater Paris area for
increasing values of s1 and s2. The colormap represents areas of high revenues in dark blue
and areas of low revenues in cyan.

53

3. AGGREGATING SPATIAL STATISTICS WITH A GENERALIZED
FORWARD-BACKWARD SPLITTING ALGORITHM

(a) Original data (b) Density

(c) Voters weighted regularization (d) Surface weighted regularization

(e) Detail: city of Brest (f) Detail: city of Brest

Figure 3.2: Close-up on the election dataset: results of the second round of the 2007
French presidential election, broken down by constituencies in French Brittany. Two can-
didates are opposed, the colormap goes thus from blue to red, representing respectively the
regions where one candidate achieve its highest score, respectively its lowest score. Top
left: Original map; top right: Number of voters per surface unit over constituencies, from
low density in pale orange to high density in dark red; middle left: aggregation weighted by
number of voters; middle right: aggregation weighted by surface of preccincts. Compres-
sion ratio 9, relative error 0.22. At the bottom row we see a close-up of the city of Brest
and can appreciate how an aptly-weighted formulation allows us to capture local details
corresponding to high population areas.

54

3.2 Interpretation

(a) Original data (b) Density

(c) Laplacian regularization (d) Total Variation regularization

(e) Total boundary length regularization

Figure 3.3: Aggregation results for different regularization methods with the same error
rate (0.23).

55

3. AGGREGATING SPATIAL STATISTICS WITH A GENERALIZED
FORWARD-BACKWARD SPLITTING ALGORITHM

56

Bibliography

Ando, R. K. and Zhang, T. (2007). Learning on graph with laplacian regularization.
Advances in neural information processing systems, 19:25. 51

Chew, L. P. (1989). Constrained delaunay triangulations. Algorithmica, 4(1-4):97–108.
49

Colange, C., Beauguitte, L., and Freire-Diaz, S. (2013). Base de données socio-
électorales cartelec (2007-2010). 49

Ochs, P., Dosovitskiy, A., Brox, T., and Pock, T. (2015). On iteratively reweighted
algorithms for nonsmooth nonconvex optimization in computer vision. SIAM Journal
on Imaging Sciences, 8(1):331–372. 49

Vitti, A. (2012). The mumford–shah variational model for image segmentation: An
overview of the theory, implementation and use. ISPRS Journal of Photogrammetry
and Remote Sensing, 69:50–64. 48

57

BIBLIOGRAPHY

58

Chapter 4

Cut Pursuit: fast algorithms to

learn piecewise constant functions

on general weighted graphs

Chapter Abstract

In this chapter we propose working-set/greedy algorithms to efficiently solve problems
penalized respectively by the total variation on a general weighted graph and its ℓ0
counterpart the total level-set boundary size when the piecewise constant solutions have
a small number of distinct level-sets; this is typically the case when the total level-set
boundary size is small, which is encouraged by these two forms of penalization. Our
algorithms exploit this structure by recursively splitting the level-sets of a piecewise-
constant candidate solution using graph cuts. We obtain significant increase in speed
over state-of-the-art algorithms for images that are well approximated with few level-
sets.
The material of this chapter is based on Landrieu and Obozinski (2016a) , published
in the 19th International Conference on Artificial Intelligence and Statistics (AISTATS
2016), and from its journal version Landrieu and Obozinski (2016b), unpublished.

4.1 Introduction

Estimation or approximation with piecewise constant functions has many applications in
image and signal processing, machine learning and statistics. In particular, the assump-
tion that natural images are well modeled by functions whose total variation is bounded
motivates its use as a regularizer, which leads to piecewise constant images for discrete
approximations. Moreover a number of models used in medical imaging (El-Zehiry and
Elmaghraby, 2007) assume directly piecewise constant images. More generally, piece-
wise constant models can be used for compression, for their interpretability and finally
because they are typically adaptive to the local regularity of the function approximated

59

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

(Wang et al., 2014). Piecewise constant functions display a form of structured sparsity
since their gradient is sparse.

Both convex and non-convex formulations have been proposed to learn functions
with sparse gradients. The most famous being the formulation of Rudin et al. (1992),
hereafter referred to as ROF, which proposed minimizing the total variation subject to
constraints of approximation of the noisy signal in the least squares sense, as well as
the formulation of Mumford and Shah (Mumford and Shah, 1989), which proposed pe-
nalizing the total length of discontinuities of piecewise smooth functions. A fairly large
literature is devoted to these formulations mainly in the image processing and optimiza-
tion domain. Although the connection between the total variation, the Mumford-Shah
energy and graph cuts is today well-established, algorithms that leverage this connection
are relatively recent. In particular for ROF, Chambolle and Darbon (2009); Goldfarb
and Yin (2009) use the fact that the problem can be formulated as a parametric max-
flow. El-Zehiry and Grady (2011) use graph cuts to solve the formulation of Mumford
and Shah for the case of two piecewise constant components.

The literature on sparsity in computational statistics and machine learning has
shown how the sparsity of the solution sought can be exploited to design algorithms
which use parsimonious computations to solve the corresponding large-scale optimiza-
tion problem with significant increase in speed (Bach et al., 2012). Our work is moti-
vated by the fact that this has to the best of our knowledge not been fully leveraged
to estimate and optimize with piecewise constant functions. In the convex cases, the
algorithms proposed to exploit sparsity are working set1 algorithms and the related
(fully corrective) Frank-Wolfe algorithm (Harchaoui et al., 2014). In the non-convex
cases, forward selection algorithms such as OMP, FoBa and others have been proposed
(Mallat and Zhang, 1992; Needell and Tropp, 2009; Zhang, 2009)2.

It is well understood that algorithms for the convex and non-convex case are in fact
fairly related. In particular, for a given type of sparsity, the forward step of working set
methods, Frank-Wolfe and greedy algorithm is typically the same, and followed by the
resolution of a reduced problem.

Given their similarity, we explore in this chapter both greedy and working set strate-
gies. The working set approach is used to solve optimization problems regularized by
the total variation while the greedy strategy solves problems penalized by the total
boundary size for piecewise constant functions. In the convex case, our algorithms do
not apply only to cases in which the data fitting term is the MSE or a separable smooth
convex function, for which some efficient algorithms implicitly exploiting sparsity ex-

1We distinguish working set algorithms (aka column generation algorithm) that maintain an ex-
pansion of the solution which may have zero coefficients from active set algorithms that maintain an
expansion using only non-zero coefficients and discard all other directions (or variables). This distinc-
tion can also be understood in the dual, where working set algorithms (which are dually cutting plane
algorithms) maintain a superset of the active constraints, while active set algorithms maintain the exact
set of active constraints.

2Proximal methods that perform soft-thresholding or the non-convex IHT methods maintain sparse
solutions, but typically need to update a full dimensional vector at each iteration, which is why we do
not cite them here. They blend however very well with active set algorithms.

60

4.1 Introduction

ist (Bach, 2013; Chambolle and Darbon, 2009; Kumar and Bach, 2015), but also to a
general smooth convex term.

Our algorithms are very competitive for deblurring and are applicable to the esti-
mation of piecewise constant functions on general weighted graphs.

4.1.1 Notations

Let G = (V,E,w) be an unoriented weighted graph whose edge set is of cardinality m
and V = [1, · · · , n]. For convenience of notations and proofs, we encode the undirected
graph G, as a directed graph with for each pair of connected nodes a directed edge in
each direction. Thus E denotes a collection of couples (i, j) of nodes, with (i, j) ∈ E if
and only if (j, i) ∈ E. We also have w ∈ R2m and wij = wji. For a set of nodes A ⊂ V
we denote 1A the vector of {0, 1}n such that [1A]i = 1 if and only if i ∈ A. For F ⊂ E
a subset of edges we denote w(F) =

∑

(i,j)∈F wij . By extension, for two subsets A and

B of V we denote w(A,B) = w
(

(A × B) ∩ E
)

the weight of the boundary between
those two subsets. Finally we denote C the set of all partitions of V into connected
components.

4.1.2 General problem considered

Problem formulation In this work we consider the problem of minimizing func-
tions Q of the form f(x) + λΦ(x) with f : Rn → R differentiable and Φ : Rn → R a
penalty function that decomposes as Φ(x) =

∑

(i,j)∈E wij φ(xi − xj) with φ : R →

R+ a sparsity-inducing function such that φ(0) = 0. The general problem writes
minx∈Rn Q(x) with

Q(x)
.
= f (x) +

λ

2

∑

(i,j)∈E
wij φ(xi − xj). (4.1)

Energies of this form were first introduced by Geman and Reynolds (1992) for image
regularization, and are widely used for their inducing spatial regularity as well as pre-
serving discontinuities. The function φ is typically the absolute value, which corresponds
to the total variation (denoted TV), or one minus the Kronecker delta at 0, which leads
to the total boundary size penalty for piecewise constant functions. More generally, for
functions φ that have a non-differentiability at 0, the solution x⋆ of (4.1) has a sparse
gradient {x⋆i − x

⋆
j | (i, j) ∈ E}. As a consequence, these solutions are constant on the

elements of a certain partition of V that is typically coarse, i.e. such that has much
fewer elements than |V |. We therefore reformulate the problem for candidate solutions
that have that property. We define the support of a vector x ∈ Rn as the set S(x) of
edges supporting its gradients

S(x)
.
= {(i, j) ∈ E | xi 6= xj}, (4.2)

and we will use Sc(x)
.
= E\S(x) for the set on which the gradients are zero.

61

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

In the general case the approach presented in Section 4.2 can be easily adapated to
functions φ that are differentiable in R \ {0}, are decreasing on R−, non-decreasing on
R+ and such that limh→0,h>0 φ

′(h) > 0 and limh→0,h<0 φ
′(h) < 0. We will limit our

scope however to the absolute value.

Decomposition on a partition Any x ∈ Rn can be written as x =
∑k

i=1 ci1Ai

with Π = {A1, · · · , Ak} ∈ C a partition of V into k connected components and c ∈ Rk.
Conversely we say that x can be expressed by partition Π = (A1, · · · , Ak) if it is in the
set span(Π) = span(1A1 , · · · ,1Ak

) = {
∑k

i=1 ci1Ai
| c ∈ Rk}. We denote

xΠ
.
= argmin

z∈span(Π)
Q(z), (4.3)

the solution of (4.1) when x is constrained to be in span(Π). Assuming that the regu-
larization strength is such that the solution x⋆ decomposes over a coarse partition, and
that the constrained problem (4.3) is easy to solve for such a partition, problem (4.1)
boils down to finding an optimal partition Π⋆:

Π⋆ .
= argmin

Π∈C

Q(xΠ). (4.4)

An additional motivation to consider a sequence of partitions and solve sequentially
problems with x constrained to span(Π) is that the vectors of the form w(B,Bc)−1

1B are
extreme points of the set {x|TV(x) ≤ 1}. In fact, the total variation is an atomic gauge
in the sense of Chandrasekaran et al. (2012) and the vectors of the form w(B,Bc)−1

1B

are among the atoms of the gauge. We do not develop this more abstract point of view
in this chapter, but provide a discussion in Appendix C.

Before presenting our approach we review some of the main relevant ideas in the
related literature.

4.1.3 Related work

Mumford and Shah (1989) describe an image as simple if it can be expressed as a
piecewise-smooth function with few and small discontinuities, i.e. if the space can par-
titioned in regions with short contours and such that the image varies little in each of
these regions. Given an observed noisy image viewed as a square integrable function
J ∈ L(R2), Mumford and Shah therefore propose recovering the original image with
bounded variation I ∈ BV (R2) , via the minimization of an energy composed of three
terms: a fidelity term quantifying the distortion between I and J , a part evaluating the
smoothness of I outside of a one-dimensional set of discontinuities Γ, and finally the
one-dimensionnal Hausdorff measure of this set H1(Γ):

min
I,Γ

∫

Ω

(

I(x)− J(x)
)2
dx+ µ

∫

Ω\Γ
‖∇I(x)‖2 dx+ λH1(Γ). (MS)

µ and λ are two nonnegative regularization coefficient. When µ→∞, the smoothness
term forces the function to be infinitely smooth outside of the boundary, i.e. constant
on each set Ri of a collection Π = {Ri}

k
i=1 of disjoint connected regions.

62

4.1 Introduction

When the number of regions k is fixed this problem is called the piecewise constant
Mumford-Shah problem and can be reformulated as:

min
Π,I

k
∑

i=1

∫

Ri

(

Ii − J(x)
)2
dx+ λ length(Π), (PC-MS)

with Ii the constant value of I on Ri and length(Π) the one dimensionnal Hausdorff
measure of the boundaries between pairs of sets in Π. For general data terms it is referred
to as the minimal partition problem (Santner et al., 2011). The setting in which the
number of regions k = 2, is known as the Chan-Vese problem and was first solved
using active contour methods (Aubert et al., 2003; Kass et al., 1988). Chan and Vese
(2001) propose a level-set based method for the binary case, which has the advantage
of foregoing edges and gradient completely, as they are typically very sensitive to noise.
This method has since been extended to the so called multiphase setting where the
number of phases, that is of level-sets of the function, is a power of two (Vese and Chan,
2002). The resolution of those problems is substantially sped up by the introduction
of graph-cut methods, for binary phase (El-Zehiry and Elmaghraby, 2007) and in the
multiphase setting (El-Zehiry and Grady, 2011).

Independently of the work of Mumford and Shah, Rudin, Osher and Fatemi proposed
in Rudin et al. (1992) the idea that the class of functions with bounded variation is a
good model for images, and relied on this idea to motivate the minimization of the total
variation under MSE approximation constraint as an approach for image denoising. The
introduction of the total variation had a lasting impact in imaging sciences and was used
for various tasks including denoising, deblurring and segmentation (Chambolle et al.,
2010). When the total variation is used as a regularizer1, the ROF problem can be
formulated as

min
I∈BV

∫

Ω

(

I(x)− J(x)
)2
dx+ λTV(I), (ROF)

where BV is the space of functions with bounded total variation.

In this chapter we consider discretized versions of these formulations, in which the
function takes its value on the node set of a weighted graph G = (V,E,w). Such
discretizations are for example naturally obtained if an a priori fine grained partition of
the space in a collection of elementary regions2 R0 is chosen and the image or function
I is constrained to be constant on each of these regions. The edge set E captures
adjacencies between the elements, and the weights w the size of the boundary between
each pair of regions.

A first approach to minimizing functions regularized by the total variation is to
consider explicitly the set of edges presenting discontinuities and iteratively update this
set using calculus of variations based on the Euler-Lagrange equations (Chambolle et al.,
2010).

1In Rudin et al. (1992) the TV(I) is minimized under a constraint on the L2 distance between I

and J .
2In the context of images these could be though of as super-pixels, for example.

63

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

The level-sets approach (Osher and Sethian, 1988; Tsai and Osher, 2005) takes the
opposite point of view and defines the discontinuity set as the zero set of an auxil-
iary function. The evolution of the curve is thus indirectly handled, thereby avoiding
complications associated to making discrete changes in the structure of the contours.

In the recent literature, problems regularized with the total variation are typically
solved using proximal splitting algorithms (Chambolle and Pock, 2011; Raguet et al.,
2013). Some of the connections between graph-cuts and the total variation were al-
ready known in Picard and Ratliff (1975) but some of these connections have been
only fully exploited recently, when Chambolle and Darbon (2009) and Goldfarb and
Yin (2009) among others, exploited the fact that the ROF model can be reformulated
as a parametric maximum flow problem, which they moreover show can be solved by
a divide-and-conquer strategy: this algorithm entails solving a sequence of max-flow
problems on the same graph, and the algorithm makes it possible to efficiently reuse
partial computations performed in each max-flow problem. These results on the total
variation are actually an instance of results that apply more generally to submodular
functions (Bach, 2013). Indeed, the intimate relation existing between the total vari-
ation and graph-cuts is due fundamentally to the fact that the former is the Lovász
extension of the value of the cut, which is a submodular function. Beyond the case
of the total variation, Bach (2011) considers regularizers that are obtained as Lovász
extensions of symmetric submodular functions and recent progress made on the efficient
optimization of submodular functions produces simultaneously new fast algorithms to
compute proximal operators of the Lovász extension of submodular function (Jegelka
et al., 2013; Kumar and Bach, 2015).

Problems regularized by the total variation or the total boundary size are also related
to the Potts model. Indeed, if the values of the level-set are quantized, the corresponding
energy to minimize is that of a discrete valued conditional random field (CRF), with as
many values as there are quantization levels (Ishikawa, 2003; Tsai and Osher, 2005).

A number of optimization techniques exist for CRFs (Szeliski et al., 2006). One
of the fastest is the α-expansion algorithm of Boykov et al. (2001b), which relies on
graph-cut algorithms (Boykov and Kolmogorov, 2004).

In the literature on sparsity, a number of algorithms have been proposed to take
advantage computationally of the sparsity of the solution. In the convex setting, these
algorithms includes homotopy algorithms such as the LARS (Efron et al., 2004) or
working set algorithms (Friedman et al., 2010; Obozinski et al., 2006; Roth and Fischer,
2008). It should be noted that the Frank-Wolfe algorithm (Jaggi, 2013), which has been
revived and regained popularity in recent years, is closely-related to working set meth-
ods and also provides a rationale to algorithmically exploit the sparsity of solution of
optimization problems. Although originally designed to solve constrained optimization
problems, Harchaoui et al. (2014) have shown how a variant can be naturally con-
structed for the regularized setting, and can be applied to the case of total variation
regularization. The counterparts of these algorithms in the ℓ0 setting are (a) greedy
forward selection approaches that compute a sequence of candidate solutions by itera-
tively decreasing the sparsity of the candidate solutions, such as orthogonal matching

64

4.2 A working set algorithm for total variation regularization

pursuit (Mallat and Zhang, 1992), orthogonal least squares (Chen et al., 1991) and re-
lated algorithms (Needell and Tropp, 2009), (b) forward-backward selection approaches
such as the Single Best Replacement (SBR) algorithm (Soussen et al., 2011), based on
an ℓ0 penalization or the FoBa algorithm (Zhang, 2009), which add backwards steps to
remove previously introduced variables that are no longer relevant. See (Bach et al.,
2012) for a review. Bach (2013) proposes a number of algorithms to minimize submod-
ular functions, compute the associated proximal operators of the corresponding Lovász
extensions. In particular, generic primal and dual active set algorithms are proposed to
solve a linear regression problem regularized with the Lovász extension of a submodular
function (Bach, 2013, Chap. 7.12).

4.2 A working set algorithm for total variation regulariza-

tion

In this section, we consider the problem of solving the minimization of a differentiable
function f regularized by a weighted total variation of the form TV(x) =
1
2

∑

(i,j)∈E wij |xi − xj | with wij some nonnegative weights. Based on the considerations
of Section 4.1.2, we propose a working set algorithm which alternates between solving a
reduced problem of the form minx∈span(Π)Q(x) for Q(x) = f(x)+λTV(x), and refining
the partition Π. In Section 4.2.3, we will discuss how to solve the reduced problem
efficiently, but first we present a criterion for refining the partition Π.

4.2.1 Steepest binary cut

Given a current partition Π and the solution of the associated reduced problem xΠ =
argminx∈span(Π)Q(x), our goal is to compute a finer partition Πnew leading to the largest
possible decrease of Q. To this end we consider updates of x of the form xΠ+huB with
uB = γB1B − γBc1Bc for some set B ⊂ V and some scalars h, γB and γBc such that
‖uB‖2=1. We postpone to Section 4.2.2 the precise discussion of how the choice of B
leads to a new partition and focus first on a rationale for choosing B, but essentially,
introducing uB in the expansion of x will lead to a new partition in which the elements
of Π are split along the boundary between B and Bc. A natural criterion is to choose the
set B such that uB is a descent direction which is as steep as possible, in the sense that Q
decreases the most, at first order. We denote Q′(x, v) = limh→0 h

−1(Q(x+ hv)−Q(x))
so that, when d ∈ Rn is a unit vector, Q′(x, d) denotes the directional derivative of Q
at x ∈ Rn in the direction d. Consequently, choosing B for which the direction uB is
steepest requires solving minB⊂V Q

′(xΠ, uB).
To further characterize Q′ we decompose the objective function: Since the absolute

value is differentiable on R∗, setting S
.
= S(xΠ) allows us to split Q into two parts QS

and TV|Sc which are respectively differentiable and non-differentiable at xΠ:

{

QS(x)
.
= f(x) + λ

2

∑

(i,j)∈S wij |xi − xj |,

TV|Sc(x)
.
= λ

2

∑

(i,j)∈Sc wij |xi − xj |.

65

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

TV|Sc is a weighted total variation on the graph G but with weights wSc such that
[wSc]i,j

.
= wij for (i, j) ∈ Sc and 0 for (i, j) ∈ S. We extend the previous notations and

define wSc(A,B)
.
= wSc(A×B) = w((A×B) ∩ Sc).

Proposition 1. For x ∈ Rn, if we set S = S(x) then the directional derivative in the
direction of 1B is

Q′(x,1B)=〈∇QS(x),1B〉+λwSc(B,Bc).

Moreover if 〈∇f(x),1V 〉 = 0 then

Q′(x, uB) = (γB + γBc)Q′(x,1B).

Proof. See Appendix C.

Considering the case x = xΠ, then for S = S(xΠ), ∇f(xΠ) is clearly orthogonal to
span(Π) and thus to 1V . Therefore, by the previous proposition, finding the steepest
descent direction of the form uB requires solving

min
B⊂V

(γB + γBc)Q′(xΠ,1B)

To keep a formulation which remains amenable to efficient computations, we will assume
that γB+γBc is constant or ignore this factor1. This leads us to define a steepest binary
cut as any cut (BΠ, B

c
Π) such that

BΠ ∈ argmin
B⊂V

〈∇QS(xΠ),1B〉+λwSc(B,Bc). (4.5)

Note that since Q′(x,1∅) = 0, we have minB⊂V Q
′(x,1B) ≤ 0. If ∅ is a solution

to (4.5), we set BΠ = ∅. As formulated, it is well known, at least since Picard and
Ratliff (1975), that problem (4.5) can be interpreted as a minimum cut problem in
a suitably defined flow graph. Indeed consider the graph Gflow = (V ∪ {s, t}, Eflow)
illustrated in Figure 5.2, where s and t are respectively a source and sink nodes,with
Eflow the edge set and the associated nonzero (undirected) capacities c ∈ R|Sc|+n. Let
∇+

.
= {i ∈ V | ∇iQS(x) > 0} and ∇−

.
= V \∇+. We have the following edge set:

Eflow = {(s, i), ∀i ∈ ∇+} ∪ {(i, t), ∀i ∈ ∇−} ∪ {(i, j), ∀(i, j) ∈ S
c},

and the associated capacities:

ci,j =

∇jQS(x) for i = s and j ∈ ∇+

−∇iQS(x) for j = t and i ∈ ∇−
λwij for (i, j) ∈ Sc

(4.6)

where ∇+
.
= {i ∈ V | ∇iQS(x) > 0} and ∇−

.
= V \∇+. The vector ∇QS(x) is directly

computed as ∇QS(x) = ∇f(x)+
1
2λD

⊤y, with D ∈ R2m×n the weighted edge incidence
matrix whose entries are equal to D(i,j),k

.
= wij(1{i=k} − 1{j=k}) and y ∈ R2m is the

66

4.2 A working set algorithm for total variation regularization

s

t

i

j
λwij

∂QS(x)
∂xi

−∂QS(x)
∂xi

nodes in ∇−

nodes in ∇+

edge in Sc

Figure 4.1: Directed graph for which finding a maximal flow is equivalent to solving
(4.5). Neighboring nodes with different values of x in the original graph are linked by an
undirected edge with capacity λwij , nodes with non-negative gradient are linked to the
source, and nodes with negative gradient to the sink with capacity |∇QS(x)|.

vector whose entries are indexed by the elements of E and such that y(i,j)
.
= sign(xi−xj)

with the convention that sign(0) = 0.

As stated in the next proposition, finding a minimal cut in this graph provides us
with the desired steepest binary cut.

Proposition 2. Let S = S(x) then (C, Vflow\C) is a minimal cut in Gflow if and only
if C\{s}, and its complement in V are minimizers of B 7→ Q′(x,1B).

This result is a well-know result which was first discussed in Picard and Ratliff
(1975). We refer the reader to Kolmogorov and Zabih (2004) for a proof.

Note that the min-cut/max-flow problem of Figure 5.2 decouples on each of the
connected components of the graph G|Sc

.
= (V, Sc) and that as a result solving (4.5) is

equivalent to solving separately

min
C⊂A
〈∇QS(xΠ), 1C〉+ λw(C,A\C)

for each set A that is a connected components of G|Sc . The binary steepest cut thus
actually reduces to computing a steep cut in each connected component of the graph,

1γB and γBc could otherwise be determined by requiring that 〈1V , uB〉 = 0. More rigorously,
descent directions considered could be required to be orthogonal to span(Π), but this leads to even less
tractable formulations, that we therefore do not consider here.

67

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

and they can all be computed in parallel. Let us insist that the connected components
of G|Sc are often but not always the elements of Π since they can be unions of adjacent
elements of Π when they share the same value.

We can now characterize the optimality of xΠ or of the corresponding partition Π,
based on the value of the steepest binary partition:

Proposition 3. We have x = argminz∈Rn Q(z) if and only if minB⊂V Q
′(x,1B) = 0

and Q′(x,1V) = 0.

Proof. See Appendix C

Note that the rationale we propose to choose the new direction 1B is different
than the one typically used for working-set algorithms in the sparsity literature and
variants of Frank-Wolfe. When considering the minimization of an objective of the
form f(x) + λΩ(x), where f : Rn → R is a differentiable function and Ω is a norm,
the optimality condition in terms of subgradient is − 1

λ∇f(x) ∈ ∂Ω(x), where ∂Ω(x)
is the subgradient of the norm Ω at x. A classical result from convex analysis is that
∂Ω(x) = {s ∈ Rn | 〈s, x〉 = Ω(x) and Ω◦(s) ≤ 1} where Ω◦ denotes the dual norm
(Rockafellar, 1970, Thm. 23.5). In particular, the subgradient condition is not satisfied
if Ω◦(−∇f(x)) ≥ λ and since Ω◦(s) = maxΩ(ξ)≤1〈s, ξ〉 then argmaxΩ(ξ)≤1〈−∇f(x), ξ〉
provides a direction in which the inequality constraint is most violated. This direction
is the same as the Frank-Wolfe direction for the optimization problem minx:Ω(x)≤κ f(x),
also the same as the direction proposed in a variant of the Frank-Wolfe algorithm
proposed by Harchaoui et al. (2014) for the regularized problem, and again the same
as the direction that would be used in the primal active set algorithm of Bach (2013,
Chap. 7.12) for generic Lovász extensions of submodular function, which is essentially
a fully corrective and active-set version of the algorithm of Harchaoui et al. (2014).
This rationale extends to the case where Ω is more generally a gauge and is most
relevant when it is an atomic norm or gauge (Chandrasekaran et al., 2012), which we
discuss in Appendix C. For decomposable atomic norms (Negahban et al., 2009) that
have atoms of equal Euclidean norm, one can check that the steepest descent direction
that we propose and the Franck-Wolfe direction are actually the same. However, for
the the total variation the two differ. The Frank-Wolfe direction leads to the choice
B⋆ = argmaxB⊂V −w(B,B

c)−1〈∇f(xΠ),1B〉. We show in Section 4.4.1 and via results
presented in Figure 4.6 that using the steepest cut direction outperforms the Frank-
Wolfe direction.

4.2.2 Induced new partition in connected sets and new reduced prob-
lem

For Π = (A1, · · · , Ak), BΠ is chosen so that the addition of a term of the form
huB = hγB1B − hγBc1Bc to x =

∑k
i=1 ci1Ai

decreases the objective function Q the
most. At the next iteration, we could thus consider solving a reduced problem that
consists of minimizing Q under the constraint that x ∈ span(1A1 , . . . ,1Ak

,1B) with
B = BΠ. But there is in fact a simpler and more relevant choice. Indeed, on the set

68

4.2 A working set algorithm for total variation regularization

span(1A1 , . . . ,1Ak
,1B), the values xi1 , xi2 , xi3 and xi4 with i1 ∈Aj ∩ B, i2 ∈Aj ∩ B

c,
i3∈Aj′∩B and i4∈Aj′∩B

c are a priori coupled; also, if Aj ∩ B has several connected
components i 7→ xi must take the same value on these components. These constraints
seem unnecessarily restrictive.

Consider SΠ
.
=
⋃

(A,A′)∈Π2 ∂(A,A′) with ∂(A,A′)
.
= (A×A′)∩E. With the notion of

support S(x) that we defined in (4.2) we actually have span(Π) = {x ∈ Rn | S(x) ⊂ SΠ}.
Now, if x ∈ span(1A1 , . . . ,1Ak

,1B), we have in general S(x) ⊂ Snew
.
= SΠ ∪ ∂(B,B

c),
which corresponds to allowing a larger support. But then it makes sense to allow x to
remain in the largest set with this maximal support Snew, that is equivalent to staying in
the vector space XSnew

.
= {x′ | S(x′) ⊂ Snew}. But, if we now define Πnew as the partition

of V defined as the collection of all connected components in G of all sets Aj ∩BΠ and
Aj ∩ B

c
Π for Aj ∈ Π, then it is relatively immediate that span(Πnew) = XSnew . The

construction of Πnew from Π is illustrated in Figure 4.2.

A1 A2

(a) Initial partition Π =
{A1, A2}

B

B

(b) Steepest Binary Cut B

A1 A2

A3 A4

A5

(c) Πnew =
{A1, A2, A3, A4, A5}

Figure 4.2: Illustration of the induced new partition. From an initial partition Π, the
steepest binary cut B induced a new partition Πnew. The solid line represent the
initial contours S, and the dashed line the new contours Snew \S introduced by B.
Note that the binary partition induced by B can more than double the number of resulting
components.

We therefore set Πnew to be the new partition and solve the reduced problem con-
strained to span(Πnew). Note that in general we do not have S(xΠ) = SΠ, because
the total variation regularization can induce that the value of xΠ on several adjacent
elements of Π is the same.

The following result shows that if a non-trivial cut (BΠ, B
c
Π) was obtained as a

solution to (4.5) then the new reduced problem has the following solution xΠnew =
argminx∈span(Πnew)Q(x) which is strictly better than the previous one.

Proposition 4. If BΠ 6= ∅, Q(xΠnew) < Q(xΠ).

Proof. We clearly have

span(Π) ⊂ span(1A1 , . . . ,1Ak
,1BΠ

) ⊂ span(Πnew),

so that
Q(xΠnew) = min

x∈span(Πnew)
Q(x) ≤ min

x∈span(Π)
Q(x) = Q(xΠ).

69

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

(a) (b) (c) (d) (e)

Figure 4.3: Two first iterations of cut pursuit for the ROF problem on the picture in (a).
Images (b) and (d) represent the new cut at iterations 1 and 2 with BΠ and Bc

Π respectively
in black and white, and (c) and (e) represent the partial solution in levels of gray, with the
current set of contours S in red. The contours induced by the cut in (b) (resp. (d)) are
superimposed on (c) (resp. (e)).

Moreover, if BΠ 6= 0, then Q′(xΠ,1B) < 0, which entails that there exists ε > 0 such
that Q(xΠnew) ≤ Q(xΠ + ε1B) < Q(xΠ). This completes the proof.

Algorithm 3: Cut Pursuit

Initialize Π← {V }, xΠ ∈ argminz=c1V ,c∈R Q(z), S ← ∅

while minB⊂V 〈∇QS(xΠ),1B〉+λwSc(B,Bc) < 0 do
Pick BΠ ∈ argminB⊂V 〈∇QS(xΠ),1B〉+λwSc(B,Bc)
Π← {BΠ ∩A}A∈Π ∪ {Bc

Π ∩A}A∈Π
Π← connected components of elements of Π
Pick xΠ ∈ argminz∈span(Π)Q(z)
S ← S(xΠ)

return (Π, xΠ)

We summarize the obtained working set scheme as Algorithm 3, and illustrate its
two first steps on a ROF problem in Figure 4.3.* At the beginning of each iteration,
if minB⊂V Q

′(xΠ,1B) < 0 then the steepest binary partition is not trivial: BΠ 6= ∅.
Consequently the new partition Πnew will have at least one more component than Π,
and Proposition 4 states that the solution associated with Πnew will be strictly better
than xΠ. This insures that the objective function is strictly decreasing along iterations
of the algorithm. If minB⊂V Q

′(xΠ,1B) = 0, then Proposition 3 insures that optimality
is reached. Provided that each constrained problem xΠ ∈ argminz∈span(Π)Q(z) is solved
exactly in finite time, this proves that xΠ converges to the the optimum x⋆. In term
of complexity, since the number of component of Π is strictly increasing and bounded
by n, the algorithm converges in at most n steps, in the worst case scenario. In the
next section we discuss how to exploit the sparse structure of xΠ to solve the reduced
problem efficiently.

70

4.2 A working set algorithm for total variation regularization

node of V

edge of E

node of V

edge of E

n1

n2

n3

n4

n5

1

2

1

2

3

1
3 5

{n1} {n2,n3} {n3,n4}

Figure 4.4: Example of reduced graph. Left: graph G with weights (wij)(i,j)∈E on the
edges, Middle: partition Π of G into connected components, Right: reduced graph G with
weights (wAB)(A,B)∈E on the edges.

4.2.3 A reduced graph for the reduced problem

Let Π be a coarse partition of V into connected components. We argue that the min-
imization problem minz∈span(Π)Q(z) can be solved efficiently on a smaller weighted
graph whose nodes are associated with the elements of partition Π, and whose edges
correspond to pairs of adjacent elements in the original graph. Indeed, consider the
graph G = (V,E) with V = Π and E = {(A,B) ∈ V2 | ∃(i, j) ∈ (A×B)∩E}. Figure 4.4
shows an example of graph reduction on a small graph. For x ∈ span(Π) we can indeed
express TV(x) simply:

Proposition 5. For x =
∑

A∈Π cA1A we have TV(x)=TVG(c) with
TVG(c)

.
= 1

2

∑

(A,B)∈Ew(A,B) |cA − cB|.

Proof.

2TV(x) =
∑

(i,j)∈E
wij |xi − xj | =

∑

(i,j)∈E
wij

∑

(A,B)∈Π2

1{i∈A,j∈B} |cA − cB|

=
∑

(A,B)∈Π2

|cA − cB|
∑

(i,j)∈E∩(A×B)

wij ,

hence the result using the definition of w(A,B).

Note that if TV is the total variation associated with the weighted graph G with
weights (wij)(i,j)∈E then TVG is the total variation associated with the weighted graph

G and the weights
(

w(A,B)
)

(A,B)∈E. Denoting f̃ : c 7→ f(
∑

A∈Π cA1A), the reduced

problem is equivalent to solving minc∈Rk f̃(c) + λTVG(c) on G. If Π is a coarse par-
tition, we have |E| ≪ 2m and computations involving TVG are much cheaper than
those involving TV. As illustrated in Section 4.2.4, the structure of f̃ can often be
exploited as well to reduce the computational cost on the reduced problem. The con-
struction of the reduced graph itself G is cheap compared to the speed-ups allowed,
as it is obtained by computing the connected components of the graph (V,E\S(x)),
which can be done in linear time by depth-first search. Note that once the reduced
problem is solved, if cΠ ∈ argminc f̃(c) + λTVG(c), then S(xΠ) is directly computed as
S(xΠ) =

⋃
{

∂(A,A′) | (A,A′) ∈ E, cA 6= cA′

}

.

71

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

4.2.4 Solving linear inverse problems with TV

A number of classical problems in image processing such as deblurring, blind deconvo-
lution, and inpainting are formulated as ill-posed linear inverse problems (Chan et al.,
2005), where a low TV prior on the image provides appropriate regularization.

Typically if x0 ∈ Rn is the original signal, H a p × n linear operator, ǫ additive
noise, and y = Hx0 + ǫ ∈ Rp the degraded observed signal, this leads to problems of
the form:

x⋆ = argmin
x∈Rn

1

2
‖Hx− y‖2 + λTV(x) (4.7)

First order optimization algorithms, such as proximal methods, only require the
computation of the gradient H⊺Hx − H⊺y of f and can be used to solve (4.7) effi-
ciently. However the reduced problem can be computed orders of magnitude faster
provided that the current partition is coarse. Indeed for a k-partition Π of V we de-
note K ∈ {0, 1}n×k the matrix whose columns are the vectors 1A for A ∈ Π. Any
x ∈ span(Π) can be rewritten as Kc with c ∈ Rk. The gradient of the discrepancy
function with respect to c writes: ∇c1/2 ‖HKc− y‖

2 = K⊺H⊺HKc−K⊺Hy. As a re-
sult, the reduced problem can be solved by a similar first-order scheme of much smaller
size, with parameters K⊺H⊺HK and K⊺Hy, which are of size k× k and k respectively,
and which can be precomputed in O(k p n) time, which is the same complexity as one
iteration of gradient descent of the full problem. Solving the reduced problem is then
very quick provided k is small compared to n.

In the case of a blurring operator H with adequate symmetry, for which p = n
is large, manipulating the matrices H or H⊺ directly should be avoided. However
x 7→ Hx being a convolution, it can be computed quickly using fast Fourier transform.
The parameters K⊺H⊺HK and K⊺Hy can also be precomputed using fast Fourrier
transform in O(k2 n log n) time, and the reduced problem can in turn be solved very
quickly for k small.

4.2.5 Complexity analysis

The computational bottlenecks of the algorithm could a priori be (a) the computation
of the steepest binary cut which requires to solve a min cut/max flow problem, (b) the
cost of solving the reduced problem, (c) the computation of the reduced graph itself,
(d) the number of global iterations needed.

(a) The steepest binary cut is obtained as the solution of a max-flow/min-cut opti-
mization problem. It is well-known that there is a large discrepancy between the
theoretical upper bound on the complexity of many graph-cut algorithms and the
running times observed empirically, the former being too pessimistic. In partic-
ular, the algorithm of Boykov et al. (2001a) has a theoretical exponential worst
case complexity, but scales essentially linearly with respect to the graph size in

72

4.2 A working set algorithm for total variation regularization

practice. In fact, it is known to scale better than some algorithms with polynomial
complexity, which is why we chose it.

(b) Solving the reduced problem can be done with efficient proximal splitting algo-
rithms such as Raguet and Landrieu (2015), which is proved to reach a primal
suboptimality gap of ε in O(1/ε2) iterations; in practice, the observed convergence
rate is almost linear. Preconditioning greatly speeds up convergence in practice.
Moreover, the problems induced on the reduced graph can typically be solved at a
significantly reduced cost: in particular, as discussed in section 2.4, for a quadratic
data fitting term and H a blurring operator, the gradient in the subgraph can be
computed in O(k2) time, based on a single efficient FFT-based computation of
the Hessian per global iteration which itself takes O(k2n log n) time. For prob-
lems with coarse solutions, this algorithm is only called for small graphs so that
this step only contributes to a small fraction of the the running time.

(c) Computing the reduced graph requires computing the connected components of
the graph obtained when removing the edges in S, and the weights w(A,B)
between all paris of components (A,B). Theis can be efficiently performed in
O(m+ n) through a depth-first exploration of the nodes of the original graph.

(d) The main factor determining the computation time is the number of global itera-
tions needed. In the worst case scenario, this is O(n). In practice, the number of
global iterations seems to grow logarithmically with the number of constant re-
gions at the optimum. If for simple images or strongly regularized natural images
4 or 5 cuts seems to suffice, a very complex image with very weak regularization
might need many more. In the end, our algorithm is only efficient on problems
whose solutions do not have too many components. E.g. in the deblurring task, it
is competitive for solutions with up to 10, 000 components for a 512× 512 image.

We would like to draw the reader’s attention to the fact that even though we ignored
in Section 4.2.1 the term γB + γBc , this is not the case in general, our proofs still hold.
The direction 1B + 1Bc will not be in general the steepest descent direction, however
Proposition 4 insures that it is always a descent direction. Furthermore Proposition 3
states that if no descent direction of this form can be found, optimality is reached. In
practice, foregoing the value of γB+γBc favors binary partitions BΠ which are balanced,
i.e. such that the cardinal of BΠ is close to n/2. As such partitions are more likely to
have many connected components, this leads to faster partitioning of the graph. The
trade-off being that it tends to overshoot, resulting in a final partition that is more
refined than it needs to be, increasing the reduced problem’s size.

4.2.6 Regularization path of the total variation

Since the regularization coefficient λ is difficult to choose a priori, it is typically useful to
compute an approximate regularization path, that is the collection of solutions to (4.1)
for a set of values λ0 > · · · > λj > 0. For ℓ1 sparsity, Efron et al. (2004) showed how a

73

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

fraction of the exact regularization path can be computed in a time of the same order of
magnitude as the time need to compute of the last point. In general, when the path is
not piecewise linear, the exact path cannot be computed, but similar results have been
shown for group sparsity (Obozinski et al., 2006; Roth and Fischer, 2008). The case of
total variation has been studied as well for 1-dimensional signals in Bleakley and Vert
(2011). We propose a warm start approach to compute an approximate1 solution path
for the total variation.

The rationale behind our approach is that, if λi and λi+1 are close, the associated
solutions x⋆i and x⋆i+1 should also be similar, as well as their associated optimal partition,
which we will refer to as Π⋆

i and Π⋆
i+1. Consequently, it is reasonable to use a warm-

start technique which consists of initializing Algorithm 3 with Π⋆
i to solve the problem

associated with λi+1 and to expect that it will converge in a small number of binary
cuts. It is important to note that while our algorithm lends itself naturally to warm
starts, to the best of our knowledge similar warm-start techniques do not exist for
proximal splitting approaches such as Raguet et al. (2013) or Chambolle and Pock
(2011). Indeed solutions whose primal solutions are close can have vastly different
auxiliary/dual solutions, and in our experiments no initialization heuristics consistently
outperformed a naive initialization.

4.3 Minimal partition problems

We consider now a generalization of the minimal partition problem minx∈Rn Q(x) with
Q(x) = f(x) + λΓ(x) where Γ(x)

.
= 1

2

∑

(i,j)∈S(x)wij the total boundary size penalty
for piecewise constant functions. This non-convex non-differentiable problem being sig-
nificantly harder than the previous one, we restrict the functions f we consider to be
separable functions of the form f(x) =

∑

i∈V fi(xi) with fi : R 7→ R continuously differ-
entiable and convex. Our formulation, unlike most examples of the minimal partition
problem in the literature, does not imply fixing the number of components in advance.
We call the corresponding problem generalized minimal partition problem.

Inspired by greedy feature selection algorithms in the sparsity literature and by the
working set algorithm we presented for TV regularization, we propose exploiting the
fact that the optimal partition |Π∗| is not too large to construct an algorithm that
greedily optimizes the objective by adding and removing cuts in the graph.

Indeed, the problem that we consider has a fixed regularization coefficient λ, and so
its natural counterpart for classical sparsity is the problem of minimizing an objective
of the form f(x) + λ‖x‖0 which subsumes AIC, BIC and other information criteria.
The algorithmic approach we consider is thus the counterpart of a very natural greedy
algorithm to minimize the former objective, which surprisingly is almost absent from

1In fact for a quadratic data fitting term regularized by the total variation, the regularization
path is piecewise linear and could thus in theory computed exactly, with a scheme similar to the
LARS algorithm (Efron et al., 2004). It should however be expected that this path has many point of
discontinuity of the gradient, which entails that the cost of computation of the whole path is likely to
be prohibitively high. We therefore do not consider further this possibility.

74

4.3 Minimal partition problems

the literature, perhaps for the following reasons: On the one hand, work on stagewise
regression and forward-backward greedy algorithms, which both add and remove vari-
ables, goes back to the 60ies (Efroymson, 1960), but the algorithms then considered
were based on sequences of tests as opposed to a greedy minimization of a penalized
criterion. On the other hand, the literature on greedy algorithms for sparse models has
almost exclusively focused on solving the constrained problem minx f(x) s.t. ‖x‖0 ≤ k,
with algorithms such as OMP, Orthogonal least squares (OLS), FoBa, and CoSamp,
which can alternatively be viewed as algorithms that are greedily approximating the
corresponding Pareto frontier. A notable exception is IHT.

A very natural variant of OLS solving minx f(x) + λ ‖x‖0 can however be obtained
by adding the ℓ0 penalty to the objective. This algorithm was formally considered in
Soussen et al. (2011) under the name Single Best Replacement (SBR), in reference to
the similar Single Maximum Likelihood Replacement (SMLR) of Kormylo and Mendel
(1982). At each iteration, the algorithm considers adding or removing a single variable,
whichever reduces the value of the objective the most. It should be noted that while the
similar OLS and OMP are forward algorithms, SBR is a forward-backward algorithm,
which can remove a variable provided doing so only increases f by less than λ.

We argue in the following sections that a similar natural algorithm can be designed
for the generalized minimal partition problem, where forward steps split existing com-
ponents and backward steps merge two components (with the further possibility of
combined merge-resplit moves). We call this algorithm ℓ0-Cut Pursuit, since it is also
naturally very similar to Cut Pursuit.

4.3.1 A greedy algorithm for regularized minimal partition

As for the working set algorithm, we propose building an expansion of x of the form
x =

∑k
i=1 ci1Ai

, for Π = (A1, · · · , Ak) a partition of V , by recursively splitting some of
the existing sets A ∈ Π. Assume that we split the set of existing regions (Aj)1≤j≤k by
introducing a global cut (B,Bc) for some set B ⊂ V . This cut induces a cut on each
element Aj of the form (Aj∩B,Aj∩B

c). Two simple properties should be noted: (a) the
additional boundary length incurred with the cut is simply the sum of the lengths of the
cuts induced within each element Aj and is precisely of the form

∑k
j=1w(Aj∩B,Aj∩B

c)
— the boundary of previously accepted component is thus “free” (cf Figure 4.2), (b) if
the value of x is re-optimized under the constraint that it should be constant on each of
the elements Aj ∩B and Aj ∩B

c of the new partition, then the separability of f entails
that the optimization is independent on each set Aj . As a consequence of (a) and (b)
the choice of an optimal cut reduces to independent choices of optimal cut on each set
Aj as defined by the objective

min
B⊂V

min
(hj ,h′

j)

∑

i∈Aj∩B
fi(hj) +

∑

i∈Aj∩Bc

fi(h
′
j) + λw(Aj ∩B,Aj ∩B

c).

We should therefore design an algorithm that cuts a single set A at a time. To simplify
notations we consider hereafter the case Π = {V }, which corresponds to the very first
cut of the algorithm.

75

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

Optimal binary cut with alternating minimization In the same way that
we defined the steepest binary cut in the working set algorithm, we define the optimal
binary partition (B,Bc) of V such that Q optimized over span(1B,1Bc) is as small as
possible. Ideally, we should impose that B and Bc have a single connected component
each, because as argued in section 4.2.3, it does not make sense to impose that xi should
have the same values in different connected components. However, since this constraint
is too difficult to enforce, we first ignore it and address it later with post-processing.
Note however that the penalization of the length of the boundary between B and Bc

should strongly discourage the choice of sets B with many connected components.
Since Γ(h1B + h′1Bc) = Γ(1B) = w(B,Bc), and ignoring the connectedness con-

straint, the corresponding optimization problem is of the form

min
B⊂V

min
h,h′∈R

∑

i∈B
fi(h) +

∑

i∈Bc

fi(h
′) + λw(B,Bc). (4.8)

This problem is a priori hard to solve in general, because B 7→ minh,h′∈R f(h1B+h′1Bc)
is not a submodular function. However, when h, h′ are fixed, the assumption that f is
separable entails that B 7→ f(h1B +h′1Bc) is a modular function, so that the objective
can be optimized with respect to B by solving a max-flow problem. Similar to the flow
problem (4.9) we define the flow graph Gflow = (V ∪ {s, t}, Eflow) whose edge set and
capacities are defined as followed, with ∇+

.
= {i ∈ V | fi(h) > fi(h

′)} and ∇−
.
= V \∇+.:

Eflow = {(s, i), ∀i ∈ ∇+} ∪ {(i, t), ∀i ∈ ∇−} ∪ {(i, j), ∀(i, j) ∈ S
c},

and the associated capacities:

ci,j =

fj(h)− fj(h
′) for i = s and j ∈ ∇+

fi(h
′)− fi(h) for j = t and i ∈ ∇−

λwij for (i, j) ∈ Sc

(4.9)

where ∇+
.
= {i ∈ V | fi(h) > fi(h

′)} and ∇−
.
= V \∇+.

The smoothness and convexity of f with respect to h and h′ guarantee that the
objective can be minimized efficiently with respect to these variables. As suggested by
Bresson et al. (2007) or El-Zehiry et al. (2011), ψ(B, h, h′) =

∑

i∈B fi(h)+
∑

i∈Bc fi(h
′)+

λw(B,Bc) can be efficiently minized by alternatively minimizing with respect to B and
(h, h′). This alternated procedure can be shown to find a local minimum of ψ(B, h, h′)
with the following assumptions:

• (A0): the function fi are continuous.

• (A1): the solution of min(h,h′) ψ(h, h
′, B) exists and is unique for all sets B.

• (A2): the minimizer with respect to B of ψ(hA, h
′
A, B) is unique for all A.

Note that (A1) holds if for example all functions fi are strictly convex. (A2) can
be shown to hold with probability one if fi is appropriately random, for example if
fi(·) = (· − xi)

2 with xi drawn i.i.d. from a continuous distribution, which corresponds
to our case of interest.

76

4.3 Minimal partition problems

Proposition 6. Assuming that the assumptions (A0), (A1) and (A2) hold, the alternate
minimization scheme converges in a finite number of iterations to a local minimum of
ψ(h, h′, B) in the sense that there exists a neighborhood NB of (hB, h′B) such that for
all (h, h′, A) ∈ NB × 2V , we have ψ(h, h′, A) ≥ ψ(hB, h′B, B).

Proof. Let ψ(B) = minh,h′ ψ(h, h′, B). By construction and with assumption (A1), the
sequence (ψ(Bt))t is strictly decreasing until minimization with respect to either (h, h′)
or B yields no progress, i.e. until a partial minimum with respect to both blocks is
attained. Since the set 2V is finite, the algorithm must converge in a finite number of
iterations.

The point B attained must be a local minimum in the sense above: indeed for any
set A different than B, we must have φ(hB, h

′
B, B) < φ(hB, h

′
B, A) because the algo-

rithm stopped (which excludes φ(hB, h
′
B, B) > φ(hB, h

′
B, A)) and because an equality

is excluded by (A2). But then by assumption (A0), φ is continuous with respect to
(h, h′) so that in a neighborhood NB of (hB, h

′
B) we must have φ(h, h′, A) sufficiently

close to φ(hB, h
′
B, A) for the inequality characterising a local minimum to hold.

From binary cut to partition in connected components Like the working
set algorithm proposed for the total variation, ℓ0-Cut Pursuit recursively splits the
components of the current partition Π. The sets B and Bc obtained as a solution of
(4.8) are not necessarily connected sets, but splitting B and Bc into their connected
components and assigning each connected component its own value obviously does not
change the contour length Γ and can only decrease f . Given the collection of connected
components A1, . . . , Ak of B and Bc we therefore set x = h11A1 + . . .+ hk1Ak

with hj
the minimizer of h 7→

∑

i∈Aj
fi(h). Note that each hi could possibly be computed in

parallel given the separability of f .

Backward step In greedy algorithms for plain sparsity, backward steps remove
variables to reduce the support of the solution. In our case, the appropriate notion
of support is S(x), which is formed as the union of the boundaries between pairs of
components. A backward step is a step that reduces the total boundary length (or
size). The most natural way to obtain this is by merging two adjacent components.
Using the same ideas as the ones proposed in Soussen et al. (2011) for plain sparsity,
we consider backward steps when the reduction of penalty obtained is larger than the
increase of f .

Simple merge step: If a pair of adjacent components (A,B) is merged into a single
constant component, Γ(x) decreases by w(A,B) and the merge is worth it if f increases
by less than λw(A,B). If we denote Π−(A,B) the partition obtained by merging A
and B, the corresponding decrease in energy δ−(A,B) is

δ−(A,B) = f(xΠ)− f(xΠ−(A,B)) + λw(A,B),

with Π−(A,B)
.
= Π\{A,B}∪{A∪B}. It should be noted that the merge step considered

does not in general not correspond to canceling a previous cut.

77

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

A shortcoming of the simple merge step is that while the removal of boundaries
between components is considered, a shift or other type of remodeling of the created
boundaries is not possible. But since the optimal binary computation only considers
binary partitions, the shape of the components might be suboptimal without justifying,
however, a complete removal. We therefore consider another kind of step:

Merge-resplit: This step is a combination of a merge step immediately followed by a
new cut step on the merged components. It is a “backward-then-forward” step, which
can be worth it even if the corresponding backward step taken individually is not de-
creasing the objective. It amounts to solve the corresponding min cut/max flow problem

min
zi∈{0,1},i∈A∪B

∑

i∈A∪B
zifi(xA) + (1− zi)fi(xB) +

λ

2

∑

(i,j)∈(A×B)∩E
wij |zi − zj |.

Note that finding the best way to resplit is very similar to what Boykov et al.
(2001b) call an α-β swap in the context of energy minimization in Markov random
fields: nodes assigned to other components1 than A or B keep their current assignments
to components, but the nodes of A ∪B are reassigned to A or B so that the boundary
between A and B minimizes the above energy. Note that the merge-resplit step includes
the possibility of a simple merge step (without resplitting), since all elements can be
“swapped” in the same set by the α-β swap , so that the new boundary is effectively
empty. Note that during the merge-resplit step the value of xA and xB is held constant
and only updated upon completion of the step. In fact, in a number of cases, it might
be possible to iterate such steps for a given pair (A,B). We do not consider this
computationally heavier possibility.

Remark: The work we presented in this section focussed on a formulation in which
the total boundary size is penalized and not constrained. It is worth pointing out that
trying to solve directly the constrained case seems difficult: indeed, designing algorithms
that are only based on forward steps (e.g., in the style of OMP, OLS, etc) might not
succeed, because of the dependence between the cuts that need to be introduced to
form the final solution. Based on similar ideas as the ones used in ℓ0-Cut Pursuit, we
designed and tested an algorithm generalizing the FoBa algorithm (Zhang, 2009). The
obtained algorithm tended to remain trapped in bad local minima and yielded solutions
that were much worse than the ones based on the penalized formulation.

4.3.2 Implementation

Similar to the convex case, ℓ0-Cut Pursuit maintains a current partition Π that is
recursively split and computes optimal values for each of its components. It is comprised
of three main steps: the splitting of the current partition, the computation of the
connected components and their values, and a potential merging step, when necessary.

Splitting. For each component an optimal binary partition (B,Bc) is obtained by

1In the context of MRFs the components correspond to a number of different classes fixed in advance
and are in general not connected.

78

4.3 Minimal partition problems

solving (4.8) as described in section 4.3.1: we alternatively minimize the objective with
respect to B and with respect to (h, h′) until either B does not change or a maximum
number of iterations is reached. In practice, the algorithm converges in 3 steps most
of the time. The choice of an appropriate initialization for B is non-trivial. Since
the problem in which λ = 0 is often simpler, and can in a number of cases be solved
analytically, we chose to use that solution to initialize our alternating minimization
scheme. Indeed, for λ = 0, and when f is a squared Euclidean distance f : x 7→ ‖x−x0‖

2
2

the objective of (4.8) is the same as the objective of one dimensional k-means with k = 2;
in this particular setting, the problem reduces to a change-point analysis problem, and
an exact solution can be computed efficiently by dynamic programming (Bellman, 1973).
This can be generalized to the case of Bregman divergences and beyond (Nielsen and
Nock, 2014).

As described in section 4.3.1, the partition Π is updated by computing its connected
components after it is split by (B,Bc). Subroutine 1 gives the procedure algorithmi-
cally. It is important to note that this is the only operation that involves the original
graph G, and hence will be the computational bottleneck of the algorithm. Fortunately
since f is separable, this procedure can be performed on each component in parallel.

Component saturation. We say that a component is saturated if the empty cut is
an optimal binary cut. A saturated component will no longer be cut (because the sepa-
rability of f entails that other cuts do not change the fact that it is saturated) unless it
is first involved in a merge or merge-resplit step. A partition Π is said to be saturated
if all its components are saturated.

Simple merge. This backward step consists of checking for each neighboring com-
ponents A and B in Π whether merging them into a single component decreases the
energy. δ− is computed for each neighboring components, and stored in a priority queue.
Each pair that provides a nonnegative decrease is merged, and δ− is updated for the
neighbors of A and B to reflect the change in value and graph topology. This operation
scales with the size of the reduced graph only, and therefore can be performed efficiently
for problems with a coarse solution.

Merge-resplit. This more complex backward step, already described in 4.3.1 is signif-
icantly computationally more intensive as it is performed on the edges of the full graph,
by contrast with the simple merge which only considers the edges of the reduced graph.
As a consequence, while all potential simple merge steps can be precomputed and per-
formed based on a priority queue by merging first the pair of components yielding the
largest decrease in objective value, this would be too computationally heavy here and
we perform boundary changes only once for each pair of neighbors in the graph E. The
pseudocode of the procedure is detailed in subroutine 3.

Algorithm structure: In Algorithm 4 and 5, we present implementations of the algo-
rithm using respectively only simple merge or merge-resplit steps. We chose to alternate
between splitting all components at once (possibly in parallel) and then iterating back-
ward steps over all adjacent pairs of components. This allows for the splitting to be
done in parallel directly on the original flow graph, thus avoiding the memory over-

79

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

heads associated with constructing a new flow graph for each new component. It would
have been theoretically possible to be more greedy and to perform a single forward step
(corresponding to splitting a single region) at a time or a single backward step at a
time by maintaining a global priority queue and greedily choosing the most beneficial.
However we did not implement this option because the overhead costs would have been
prohibitive.

Subroutine 1: [Π,E]← split(Π,E, A)

Split component A with a binary cut.
Π← Π \ {A}
B ← argminB⊂A,h,h′

∑

i∈B fi(h) +
∑

i∈Bc fi(h
′)

while not_converged do
x← argminh

∑

i∈B fi(h)
x′ ← argminh

∑

i∈A\B fi(h)
B ← argminB⊂A

∑

i∈B fi(x) +
∑

i∈Bc fi(x
′) + λw(B,Bc)

[B1, · · · , Bk]← connected components of B and A \B
Π← Π ∪ {B1, · · · , Bk}
E← updated adjacency structure return Π;

Subroutine 2: [Π,E]← simple_merge(Π,E, A,B)

Merges components A and B
Π← Π \ {A,B} ∪ {A ∪B}
E← E \

{

{A,B}
}

for C neighbors of A or B do
E← E ∪

{

{A ∪B,C}
}

Subroutine 3: [Π,E]← merge_resplit(Π,E, A,B)

Perform a merge-resplit operation on components A and B.
[Π,E]← simple_merge(Π,E, A,B)
Π← Π \ {A ∪B}
xA ← argminh

∑

i∈A fi(h)
xB ← argminh

∑

i∈B fi(h)
C ← argminC⊂A∪B

∑

i∈C fi(xA) +
∑

i∈A∪B\C fi(xB) + λw(C,A ∪B \ C)
[C1, · · · , Ck]← connected components of C and A ∪B \ C
Π← Π ∪ {C1, · · · , Ck}
E← updated adjacency structure

80

4.3 Minimal partition problems

Algorithm 4: Simple merge variant
(ℓ0-CPm)

Initialization: Π0 = {V }, E = ∅

while Π is not saturated do
for A ∈ Π in parallel do

if A is not saturated then
[Π,E]← split (Π,E, A)

Compute δ−(A,B) for all
(A,B) ∈ E

while max(A,B)∈E δ−(A,B) > 0

do
(A,B) =
argmax(A′,B′)∈E δ−(A

′, B′)
[Π,E]← merge (Π,E, A,B)
Update δ−(A,B) for all
(A,B) ∈ E

Algorithm 5: Merge-resplit variant
(ℓ0-CPs)

Initialization: Π0 = {V }, E = ∅

while Π is not saturated do
for A ∈ Π in parallel do

if A is not saturated then
[Π,E]← split (Π,E, A)

E′ ← E

for {A,B} ∈ E′ do
if {A,B} ∈ E then

[Π,E]← merge_resplit

(Π,E, A,B)

We now prove the local optimality of the solution provided the following assumption:

• (A4) the solution of minz∈R
∑

i∈B fi(h) exists and is unique for any B ⊂ V .

Proposition 7. If assumptions (A0) and (A4) are verified, then the ℓ0 cut pursuit
algorithm provides in a finite number of iterations a partition Π = (A1, · · · , An) such
that xΠ

.
= argminz∈span(Π)Q(z) is a local minimum of Q.

Proof. Assumption (A4) and the fact that f is separable ensure that xΠ can be mini-
mized separately over each connected component: xAi

= argminz
∑

i∈Ai
fi(z).

We denote Πt the partition at iteration t, and xtΠ the associated solution. We
first prove that the sequence Q(xtΠ) is strictly decreasing. Indeed if the stopping cri-
teria for the algorithm is not met, then there exists at least one component Aj which
is not saturated, i.e. such that there exists a binary partitions B (Aj such that
minh,h′

∑

i∈B fi(h) +
∑

i∈Bc fi(h
′) + λw(B,Bc) <

∑

i∈Aj
fixAj

. Consequently this com-
ponent will be split in the next partition to yield a strict decrease of the objective
function Q, at least equal to the one provided by the miminizing arguments (h, h′).
Since the set of all partition is a finite set, the algorithm stops in a finite number of
steps.

We now prove that the partition Π attained when the algorithm stops is such that
the corresponding variable xΠ is a local minima of Q. Let E be the set of pairs of
adjacent components of Π. We can assume that xA 6= xB for any (A,B) ∈ E. If it
is not the case we replace Π by the partition in which such components are merged,
without changing xΠ. Consequently there exists δ > 0 such that |xA − xB| > δ for any
(A,B) ∈ E.

Let x′ be an element of the ball B centered on xΠ and of radius 1
3δ such that

Q(x′) ≤ Q(xΠ). We can first recognize that since the values of xΠ associated to each

81

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

connected component differs by at least δ, x′ cannot have two connected components
of Π sharing a common value. Consequently the boundary length can only increase
Γ(x′) ≥ Γ(xΠ).

If we first assume that Γ(x′) = Γ(xΠ), then x′ must be piecewise constant with
respect to Π, and be such that f(x′) ≤ f(xΠ), which is contradictory with (A4) and the
definition of xΠ. We must then assume that Γ(x′) > Γ(x), and since (A0) states that f
is continuous, there exists a neighborhood of xΠ included in B such that xΠ is a local
minima of Q.

4.4 Experiments

4.4.1 Deblurring experiments with TV

(a) Original (b) PSNR : 12.1 (c) PSNR : 20.1

(d) Original (e) PSNR : 15.9 (f) PSNR : 27.2

(g) Original (h) PSNR : 23.3 (i) PSNR : 24.5

Figure 4.5: Benchmark on the deblurring task. Left column: original images, middle
column: blurred images, right column: images retrieved by Cut Pursuit (CP)

To assess the performance in terms of speed of our working set algorithm for the
total variation regularization, we compare it with several state-of-the-art algorithms on
a deblurring task of the form presented in section 4.2.4. Specifically, given an image x,
we compute y = Hx + ǫ, where H is a Gaussian blur matrix, and ǫ is some Gaussian
additive noise, and we solve (4.1) with a total variation regularization based on the
8-neighborhood graph built on image pixels. We use three 512× 512 images of increas-
ing complexity to benchmark the algorithms: the Shepp-Logan phantom, a simulated

82

4.4 Experiments

example, and Lena, all displayed in Figure 4.5. For all images the standard deviation
of the blur is set to 5 pixels.

Competing methods Preconditioned Generalized Forward Backward
(PGFB). As a general baseline, we consider a recent preconditioned generalized forward-
backward splitting algorithm by Raguet and Landrieu (2015) whose prior non-precon-
ditioned version was shown to outperform state-of-the art convex optimization on de-
blurring tasks in Raguet et al. (2013), including among others the algorithm of Cham-
bolle and Pock (2011). Raguet and Landrieu (2015) demonstrate the advantages of
the preconditioning strategy used over other adaptive metric approaches, such as the
preconditioning proposed in Pock and Chambolle (2011) and the inertial acceleration
developed in Lorenz and Pock (2014).

Accelerated forward-backward with parametric max-flows (FB+). Since effi-
cient algorithms that solve the ROF problem have been the focus of recent work, and
given that the ROF problem corresponds to the computation of the proximal operator of
the total variation, we also compare with an implementation of the accelerated forward-
backward algorithm of Nesterov (2007). To compute the proximal operator, we use an
efficient solver of the ROF problem based on a reformulation as a parametric max-flow
proposed by Chambolle and Darbon (2009). The solver we use is the one made publicly
available by the authors, which is based on a divide and conquer approach that works
through the resolution of a parametric max-flow problem. This implies computing a
sequence of max-flow problems, whose order make it possible to re-use the search trees
in the Boykov et al. (2001b) algorithm, thereby greatly speeding up computations.

Cut Pursuit with Frank-Wolfe descent direction (CPFW). We consider an al-
ternative to the steepest binary partition to split the existing components of the partial
solution: Inspired by the conditional gradient algorithm for regularized problems pro-
posed by Harchaoui et al. (2014), consider a variant of Cut Pursuit in which we replace
the steepest binary cut by the cut (B,Bc) such that 1B is the Frank-Wolfe direction
for the total variation, i.e. minimizing w(B,Bc)−1〈∇f(x),1B〉 (see the discussion at
the end of Section 4.2.1 and Appendix C). Note that the corresponding minimization
of a ratio of combinatorial functions can in this setting be done efficiently using a slight
modification of the algorithm of Dinkelbach (1967). See Appendix C for more details.
We chose not to make direct comparisons with the algorithms of Harchaoui et al. (2014)
and of Bach (2013, Chap. 7.12), since it is clear that these algorithms will be outper-
formed by CPFW. Indeed, these algorithms include a single term of the form 1A in the
expansion of x at each iteration, while CP and CPFW grow much faster the subspace
in which x is sought (its dimension typically more than doubles at each iteration). This
entails that these algorithms must be slower than CPFW, because for the former and
for the latter, a single iteration requires to compute a Frank-Wolfe step, which requires
solving several graph-cuts on the whole graph, and, as we discuss in Section 4.4.1 and
illustrate in Figure 4.7, the cost of graph cuts already dominates the per iteration cost
of CP and CPFW.

Cut Pursuit. To implement our algorithm (CP), we solve min-cut problems using

83

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

the Kohli and Torr (2005) solver, which itself is based on Boykov et al. (2001b) and
Kolmogorov and Zabih (2004). The problems on the reduced graph are solved using the
PGFB algorithm. This last choice is motivated by the fact that the preconditioning is
quite useful as it compensates for the fact that the weights on the reduced graph can
be quite imbalanced.

0 5 10 15 20 25 30 35

10−5

10−4

10−3

10−2

10−1

time

Q
t/
Q

∞
−
1

0 5 10 15 20 25 30 35
10−5

10−4

10−3

10−2

10−1

time

Q
t/
Q

∞
−
1

0 10 20 30 40 50

10−3

10−2

10−1

time

Q
t/
Q

∞
−
1 FB+

PGFB
CP
CPFW

Figure 4.6: Relative primal suboptimality gap Qt/Q∞−1 at time t (in seconds) for
different algorithms on the deblurring task: accelerated forward backward (FB+), Precon-
ditonned Generalized Forward Backward (PGFB), Cut pursuit (CP) and a variant using
Frank-Wolfe directions (CPFW), and for different 512 × 512 images and different regu-
larization values: Shepp-Logan phantom (left), our simulated example (middle) and Lena
(right). The marks in (FB+), (CP) and (CPFW) corresponds to one iteration.

Results Figure 4.6 presents the convergence speed of the different approaches on
the three test images on a quad-core CPU at 2.4 Ghz. Precisely, we represent the
relative primal suboptimality gap (Qt−Q∞)/Q∞ where Q∞ is the lowest value obtained
by CP in 100 seconds. We can see that our algorithm significantly speeds up the

84

4.4 Experiments

direct optimization approach PGFB when the solution is sparse, and that it remains
competitive in the case of a natural image with strong regularization. Indeed since
the reduced problems are of a much smaller size than the original, our algorithm can
perform many more forward-backward iterations in the same allotted time.

The variant of Cut Pursuit using Frank-Wolfe directions (CPFW) is as efficient over
the first few iterations but then stagnates. The issue is that the computation of a
new Frank-Wolfe direction does not take into account the current support S(x) which
provides a set of edges that are “free”; this means that the algorithm overestimates the
cost of adding new boundaries, resulting in overly-conservative updates.

Accelerated forward-backward with parametric max-flow (FB+) is also slower than
the Cut Pursuit approach in this setting. This can be explained by the fact that the
calls to max-flow algorithms, represented by a mark on the curve, are better exploited
in the cut pursuit setting. Indeed in the forward-backward algorithm, the solutions of
parametric max-flow problems are exploited by performing one (accelerated) proximal
gradient step. By contrast, in the Cut Pursuit setting, the solution of each max-flow
problem is used to optimize the reduced problem. Since the reduced graph is typically
much smaller than the original, a precise solution can generally be obtained very quickly,
yet resulting in significant decrease in the objective function. Furthermore, as the graph
is split into smaller and smaller independent connected components by Cut Pursuit, the
calls to the max-flow solver of Boykov et al. (2001b) are increasingly efficient because
the augmenting paths search trees are prevented from growing too wide, which is the
main source of computational effort.

Figure 4.7 presents the breakdown of computation time for each algorithm over 60
seconds of computation. In PGFB, the forward-backward updates naturally dominate
the computation time, as well as the fast Fourier transform needed to compute the gra-
dient at each iteration. In FB+, the computation of the proximal operator of the partial
solution through parametric maximum flows is by far the costliest. Our approach and
CPFW share a similar breakdown of computation time as their structures are similar.
The maximum flow represents the highest cost, with the fast Fourier transform needed
to compute K⊺H⊺HK a close second. Finally diverse operations such as computing
the reduced graph takes a small fraction of the time. More interestingly, solving the
reduced problem (with the PGFB subroutine of CP) takes comparatively very little
time (roughly 3%) when this is the only step that actually decreases the objective func-
tion. This is expected as, even at the last iteration, the reduced graph had only 300
components so that the associated problem is solved very rapidly.

Approximate regularization path We now present the computation of an ap-
proximate regularization path for the ROF minimization, using warm-starts as described
in Section 4.2.6. We consider the task of ROF-denoising on three natural images pre-
sented in Figure 4.9. For each image we pick 20 values of λ evenly distributed loga-
rithmically in the range of parameters inducing from coarse to perfect reconstructions.

85

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

PGFB FB+ CP CPFW
0%

20%

40%

60%

80%

100%

FFT Forward-Backward Maxflow Other

Figure 4.7: Time breakdown for the different algorithms over 60 seconds of optimization.

Competing methods Parametric max-flows (PMF). We use the parametric
max-flow based ROF solver of Chambolle and Darbon (2009) to compute each value.
In our numerical experiments, it was the fastest of all available solvers, and moreover
returns an exact solution.

Cut Pursuit (CP). We use the algorithm presented in this chapter to separately
compute the solutions for each parameter value. The algorithm stops when it reaches a
relative primal suboptimality gap Qt/Q∞−1 of 10−5, with Q∞ the exact solution given
by PMF.

Cut Pursuit Path (CPP). We use the warm start approach proposed in Section 4.2.6,
with the same stopping criterion.

Results We report in Figure 4.9 the time in seconds necessary to reach a primal
suboptimality gap of 10−5 for the different approaches. We observe that, in general,
cut pursuit (CP) is slightly faster than the parametric max-flow. It should be noted,
however, that the latter finds an exact solution and remains from that point of view
superior. Warm starts allow for a significant acceleration, needing at most two calls
to the max-flow code to reach the desired gap. Unlike the deblurring task, for high
noise levels, Cut Pursuit remains here very competitive for natural images which are
not sparse, as illustrated in Table 4.10 and Figure. 4.8.

As the regularization strength decreases, the coarseness of the solution decreases,
and as a consequence the Cut Pursuit approaches CP and CPP become less and less
efficient. This is because as the number of components increases, so does the time
needed to solve the reduced problem. We note however that for the values provided
with the peak PSNR, the warm-start approach is faster than PMF.

86

4.4 Experiments

Original
PSNR:

λ = 3.16
20.0

λ = 1.62
24.6

λ = 0.83
29.2

λ = .43
31.3

λ = .25
29.4

Noisy
11.7

Original
PSNR:

λ = 0.79
23.2

λ = .55
24.5

λ = .38
25.6

λ = .27
26.2

λ = .20
25.1

Noisy
11.4

Original
PSNR:

λ = 0.79
22.7

λ = .55
23.4

λ = .38
23.9

λ = .27
23.7

λ = .20
22.0

Noisy
10.6

Figure 4.8: Illustration of the regularization path for the three images in the data set for
5 of the 20 values in the regularization parameters in the path. The peak PSNR is reached
for λ = 0.53, 0.28 and 0.34 respectively.

PMF and CP perform significantly worse on sparse images and for high values of
λ. This can be explained by the inner workings of the max-flow algorithm of Boykov
et al. (2001b). Indeed for high values of λ or sparse images, the pairwise term of the
corresponding Potts model will dominate, which forces the algorithm to build deep
search trees to find augmenting paths. Indeed as the size of the regions formed by the
cut increase, the combinatorial exploration of all possible augmenting paths drastically
increases as well. The warm-started path approach does not suffer from this problem
because the graph is already split in smaller components at the warm-start initialization,
which prevents the search trees from growing too large.

4.4.2 Experiments on minimal partitions

Denoising experiment We now present experiments empirically demonstrating
the superior performance of the ℓ0-Cut pursuit algorithm presented in section 4.3. We
assess its performance against two state-of-the art algorithms to minimize the problem
regularized by the total boundary size for two noisy 512×512 images: the Shepp-Logan
phantom (Shepp and Logan, 1974) and another simulated example. In order to illustrate
the advantage of our algorithm over alternatives which discretize the value range, we
add a small random shift of grey values to both images. We also test the algorithms

87

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

10−0.6100100.5
0

10

20

30

λ

ti
m

e
(i

n
s)

10−0.710−0.410−0.1
0

2

4

6

λ

ti
m

e
(i

n
s)

10−0.710−0.410−0.1
0

2

4

6

8

λ

ti
m

e
(i

n
s)

CP
CPP
PMF
peak PSNR

Figure 4.9: Time in seconds necessary to solve the problem regularized with a given λ
(from the warm-start initialization when applicable) with a relative primal suboptimality
gap of 10−5, for regularly sampled values of λ along the regularization path. The competing
methods are Cut Pursuit (CP), Cut Pursuit with warm start (CPP) and the parametric
max-flow solver (PMF) for different 512 × 512 noisy images: simulated example (left),
Lena (middle) and eagle (right). The computation times are averaged over 10 random
degradations of the images by uniform noise. The blue arrow indicates the best PSNR
value.

on a spatial statistic aggregation problem using open-source data1 which consists of
computing the statistically most faithful simplified map of the population density in
the Paris area over a regular grid represented in Figure 4.12. The raster is triangulated
to obtain a graph with 252, 183 nodes and 378, 258 edges. We use the squared loss
weighted by the surface of each triangle as a fidelity term.

Competing methods α-expansions on quantized models (CRFi). If the
range of values of xi is quantized, the MPP and TV problems reduce to a Potts model,

1https://www.data.gouv.fr/fr/datasets/donnees-carroyees-a-200m-sur-la-population

88

4.4 Experiments

Method Simulated Lena Eagle

CPP 59 25 27
CP 194 62 70

PMF 356 67 91

Figure 4.10: Time in seconds necessary to compute the entire approximate regularization
path at a relative primal suboptimality gap of 10−5 for the different algorithms, averaged
over 10 samplings of the noise.

in which each class c is associated with a (non necessarily connected) level-set (Ishikawa,
2003). In the MPP case, the pairwise terms are of the form 1{ci 6=cj}wij . We use α-
expansions (Boykov et al., 2001b) to approximately minimize the corresponding energy.
More precisely, we use the α-expansions implementation of Fulkerson et al. (2009),
which uses the same max-flow code (Boykov and Kolmogorov, 2004) as our algorithm.
We denote the resulting algorithm CRFi where i is the number of levels of quantization
of the observed image value range. While this algorithm is not theoretically guaranteed
to converge, it does in practice and the local minima are shown by Boykov et al. (2001b)
to be within a multiplicative constant of the global optimum.

Non-convex relaxation (TV0.5). We implemented a non-convex analog of the total
variation, inspired by Nikolova et al. (2010) and the adaptive Lasso of Zou (2006), with

t 7→ (ǫ+ t)
1
2 in lieu of t 7→ |t|. The resulting functional can be minimized locally using

a reweighted TV scheme described in Ochs et al. (2015). We use our Cut Pursuit algo-
rithm to solve each reweighted TV problem as it is the fastest implementation.

ℓ0-Cut Pursuit We implemented three versions of ℓ0 cut pursuit with different back-
ward steps. In the simplest instantiation, ℓ0-CPf, no backward step is used and the
reduced graph can only increase in size. In ℓ0-CPm, described in Algorithm 4, the
simple merge step is performed after each round of cuts. Finally in ℓ0-CPs, described
in Algorithm 5, merge steps are replaced by merge-resplit steps but without priority
queue.

After a few preliminary experiments, we chose not to include either level-set methods
(Chan and Vese, 2001) or active contour methods based on solving Euler-Lagrange
equations (Kass et al., 1988) as their performances were much lower than the algorithms
we consider.

Comparing speed results of code is always delicate as the degree of code optimization
varies from one implementation to another. The α-expansion code uses the implemen-
tation of Fulkerson et al. (2009) which is a highly optimized code, ℓ0-CPf and ℓ0-CPm
are implemented in C++, while ℓ0-CPs and TV0.5 are implemented in Matlab with a
heavy use of mex-files. Even if minor improvements could be obtained on the latter,
we believe that it would not change the performances significantly. In particular, a
justification for direct time comparisons here is that computation time for each of the
algorithms is mostly spent computing min cuts which is done in all codes using the
same implementation of Boykov and Kolmogorov (2004) and which accounts for most
of the computation time.

89

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

Results Given that the MPP is hard, and that all the algorithms we consider only
find local minima, we compare the different algorithms both in terms of running time
and in terms of the objective value of the local minima found. The marks on the curves
correspond to one iteration of each of the considered algorithms: For TV0.5 there is a
mark for each reweighted TV problem to solve, for CRFk, a mark corresponds to one
α-expansion step, i.e. solving k max-flow problems. For ℓ0-CP this corresponds to one
forward (split) and one backward step. For clarity, the large number of marks were
omitted in the third experiment, as well as for ℓ0-CPs in the first experiment.

In Figure 4.11, we report the energy obtained by the different algorithms normalized
by the energy of the best constant approximation. We can see that our algorithms find
local optima that are essentially as good or better than α-expansions for the discretized
problems in less time, as long as the solutions are sufficiently sparse. For the population
density data, the implementation ℓ0-CPm with simple merge is faster and finds a better
local minimum than CRF40, but is outperformed by CRF60. The implementation with
swaps merge-resplit (ℓ0-CPs) is on par with CRF60 when it comes to speed, and finds
a slightly better minimum.

The simple merge step provides with a better solution than the purely forward
approach at the cost of a slight increase in computational time. The merge-resplit
backward step improves the quality of the solution further, but comes with a significant
increase in computation.

In Figure 4.14, we report the performance of approximations with CRFs solved with
iterative α-expansions for different numbers of quantization levels, as compared to the
performance of ℓ0-CPm. We observe that although CRFs can outperform ℓ0-CPm in
terms of quality of the local minima found for some of the higher numbers of quantization
levels, the performances are very unstable with respect to this number. The fact that ℓ0-
CP does not rely on an a priori quantized level leads to overall good performance, with
significantly faster computation times. Plotting the corresponding PSNR shows that
the smaller local minima of the objective found correlates well with gain in PSNR. It is
interesting to note however that small improvements of the objective, which could be
assessed as negligible, can yield unexpectedly high improvements in PSNR, as illustrated
in Table 4.13.

90

4.4 Experiments

0 5 10 15 20

0.504

0.506

0.508

0.51

0.512

time (in s)

Q
t/
Q

0

CRF15
CRF30

0 2 4 6 8 10 12 14
0.082

0.083

0.084

0.085

0.086

time (in s)
Q

t/
Q

0

CRF15
CRF30

0 5 10 15 20 25
0.255

0.26

0.265

0.27

0.275

0.28

time (in s)

Q
t/
Q

0

CRF40
CRF60

TV0.5

ℓ0-CPf
ℓ0-CPm
ℓ0-CPs

Figure 4.11: Mumford-Shah energy at time t (in seconds) divided by the same energy
for the best constant approximation obtained by different algorithms: Non-convex relax-
ation (TV0.5), ℓ0-CPf with no backward step, ℓ0-CPm with simple merge step, ℓ0-CPs with
merge-resplit steps, and finally, α-expansions with different number of levels of quantization
(see image legends), for different images: the Shepp-Logan phantom (left), our simulated
example (middle) and the map simplification problem (right). Markers correspond re-
spectively to one reweighting, one α-expansion cycle and one cut for (TV0.5), (CRF) and
(ℓ0-CP).

91

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

(a) PSNR : 24.8 (b) PSNR : 38.1

(c) PSNR : 18.8 (d) PSNR : 34.8

(e) Population density of
Paris

(f) Simplified map

Figure 4.12: Benchmark on the denoising task. First two lines: (left) noisy images,
(right) images retrieved by Cut Pursuit (CP). Last line: (left) rasterized population density
of Paris area, (right) simplified map obtained by ℓ0-Cut Pursuit with simple merge steps
(ℓ0-CPm): 69% of variance explained with 1.2% of contours length.

Experiment Phantom Simulated

Algorithm PSNR time PSNR time

Noisy image 16.8 - 16.8 -

ℓ0-CP 33.5 4.3 37.0 4.6

CRF15 32.6 8.6 34.2 4.0

CRF30 33.3 25.3 34.8 11.4

TV0.5 32.2 16.4 33.6 18.0

Figure 4.13: PSNR at convergence and time to converge in seconds for the four algorithms
as well as the noisy image for the first two denoising experiments.

92

4.4 Experiments

0 10 20 30 40
0.24

0.25

0.26

0.27

0.28

classes

Q
t/
Q

0

0 10 20 30 40
0

10

20

30

classes

co
n
ve

rg
en

ce
ti

m
e

0 10 20 30 40
15

20

25

30

35

classes

P
S
N

R

0 10 20 30 40
0.125

0.13

0.135

0.14

0.145

0.15

classes

Q
t/
Q

0

0 10 20 30 40
0

5

10

15

20

classes

co
n
ve

rg
en

ce
ti

m
e

0 10 20 30 40
15

20

25

30

35

40

classes

P
S
N

R

CRF ℓ0-CPM noisy image

Figure 4.14: Behavior of the CRF algorithm for different number of quanti-
zation levels for the phantom (top) and the simulated data (bottom) averaged on 10
denoising experiments: (left) ratio between the energy Q at convergence and the energy at
time 0, (middle) running time, (right) corresponding PSNRs. The two algorithms repre-
sented are α-expansions (CRF) for a varying number of quantization levels and ℓ0-CPM.

93

4. CUT PURSUIT: FAST ALGORITHMS TO LEARN PIECEWISE
CONSTANT FUNCTIONS ON GENERAL WEIGHTED GRAPHS

4.5 Conclusion
We proposed two algorithms to minimize functions penalized respectively by the total
variation and by the Mumford-Shah boundary size. They computationally exploit the
fact that for sufficiently large regularization coefficients, the solution is typically piece-
wise constant with a small number of pieces, corresponding to a coarse partition. This
is a consequence of the fact that, in the discrete setting, both the total variation and the
Mumford-Shah boundary size penalize the size of the support of the gradient: indeed,
functions with sparse gradients tend to have a small number of distinct level sets which
are moreover connected. The sparsity that is optimized is thus not exactly the same as
the sparsity which is exploited computationally, although both are related.

By constructing a sequence of approximate solutions that are themselves piecewise
constant with a small number of pieces, the proposed algorithms operate on reduced
problems that can be solved efficiently, and perform only graph cuts on the original
graph, which are thus the remaining bottleneck for further speed-ups. Like all working-
set algorithms, the cut pursuit variants are not competitive if the solution has too many
connected level-sets.

In the convex case, cut pursuit outperforms all proximal methods for deblurring
images with simple solutions. For denoising with a ROF energy, it outperforms the
parametric maxflow approach when computing sequences of solutions for different regu-
larization strengths. In the ℓ0 case, our algorithm can find a better solution in a shorter
time than the non-convex continuous relaxation approach as well as the approach based
on α-expansions. Furthermore, while the performance of the latter hinges critically
on setting an appropriate number of level-sets in advance, cut pursuit needs no such
parametrization.

Future developments will consider the case of Lovász extensions of other symmetric
submodular functions (Bach, 2011) and to the multivariate case. It would also be
interesting to determine the conditions under which the alternating scheme presented
in 4.3.1 provides a globally optimal solution of (4.8), as it would be a necessary step in
order to prove approximation guarantees to the solution of ℓ0-cut pursuit itself.

94

Bibliography

Aubert, G., Barlaud, M., Faugeras, O., and Jehan-Besson, S. (2003). Image segmenta-
tion using active contours: calculus of variations or shape gradients? SIAM Journal
on Applied Mathematics, 63(6):2128–2154. 63

Bach, F. (2013). Learning with submodular functions: a convex optimization perspec-
tive. Foundations and Trends in Machine Learning, 6(2-3):145–373. 61, 64, 65, 68,
83

Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. (2012). Optimization with
sparsity-inducing penalties. Foundations and Trends in Machine Learning, 4(1):1–
106. 60, 65

Bach, F. R. (2011). Shaping level sets with submodular functions. In Advances in
Neural Information Processing Systems, pages 10–18. 64, 94

Bellman, R. (1973). A note on cluster analysis and dynamic programming. Mathematical
Biosciences, 18(3):311–312. 79

Bleakley, K. and Vert, J.-P. (2011). The group fused Lasso for multiple change-point
detection. arXiv preprint arXiv:1106.4199. 74

Boykov, Y. and Kolmogorov, V. (2004). An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(9):1124–1137. 64, 89

Boykov, Y., Veksler, O., and Zabih, R. (2001a). Efficient approximate energy minimiza-
tion via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(12):1222–1239. 72

Boykov, Y., Veksler, O., and Zabih, R. (2001b). Fast approximate energy minimization
via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(11):1222–1239. 64, 78, 83, 84, 85, 87, 89

Bresson, X., Esedoḡlu, S., Vandergheynst, P., Thiran, J.-P., and Osher, S. (2007). Fast
global minimization of the active contour/snake model. Journal of Mathematical
Imaging and Vision, 28(2):151–167. 76

95

BIBLIOGRAPHY

Chambolle, A., Caselles, V., Cremers, D., Novaga, M., and Pock, T. (2010). An intro-
duction to total variation for image analysis. In Theoretical foundations and numerical
methods for sparse recovery, pages 263–340. De Gruyter. 63

Chambolle, A. and Darbon, J. (2009). On total variation minimization and surface evo-
lution using parametric maximum flows. International Journal of Computer Vision,
84(3):288–307. 60, 61, 64, 83, 86

Chambolle, A. and Pock, T. (2011). A first-order primal-dual algorithm for convex
problems with applications to imaging. Journal of Mathematical Imaging and Vision,
40(1):120–145. 64, 74, 83

Chan, T., Esedoḡlu, S., Park, F., and Yip, A. (2005). Recent developments in total
variation image restoration. In Mathematical Models of Computer Vision, pages 17–
31. Springer Verlag. 72

Chan, T. F. and Vese, L. A. (2001). Active contours without edges. IEEE Transactions
on Image Processing, 10(2):266–277. 63, 89

Chandrasekaran, V., Recht, B., Parrilo, P. A., and Willsky, A. S. (2012). The convex
geometry of linear inverse problems. Foundations of Computational mathematics,
12(6):805–849. 62, 68

Chen, S., Cowan, C. F., and Grant, P. M. (1991). Orthogonal least squares learning
algorithm for radial basis function networks. IEEE Transactions on Neural Networks,
2(2):302–309. 65

Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science,
13(7):492–498. 83

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al. (2004). Least angle regression.
The Annals of statistics, 32(2):407–499. 64, 73, 74

Efroymson, M. (1960). Multiple regression analysis. Mathematical methods for digital
computers, 1:191–203. 75

El-Zehiry, N. and Grady, L. (2011). Discrete optimization of the multiphase piecewise
constant Mumford-Shah functional. In Energy Minimization Methods in Computer
Vision and Pattern Recognition, pages 233–246. Springer. 60, 63

El-Zehiry, N., Sahoo, P., and Elmaghraby, A. (2011). Combinatorial optimization of the
piecewise constant Mumford-Shah functional with application to scalar/vector valued
and volumetric image segmentation. Image and Vision Computing, 29(6):365–381.
76

El-Zehiry, N. Y. and Elmaghraby, A. (2007). Brain MRI tissue classification using graph
cut optimization of the Mumford–Shah functional. In Proceedings of the International
Vision Conference of New Zealand, pages 321–326. 59, 63

96

BIBLIOGRAPHY

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22. 64

Fulkerson, B., Vedaldi, A., and Soatto, S. (2009). Class segmentation and object local-
ization with superpixel neighborhoods. In Proceedings of the International Conference
on Computer Vision, pages 670–677. IEEE. 89

Geman, D. and Reynolds, G. (1992). Constrained restoration and the recovery of discon-
tinuities. IEEE Transactions on Pattern Analysis & Machine Intelligence, (3):367–
383. 61

Goldfarb, D. and Yin, W. (2009). Parametric maximum flow algorithms for fast total
variation minimization. SIAM Journal on Scientific Computing, 31(5):3712–3743. 60,
64

Harchaoui, Z., Juditsky, A., and Nemirovski, A. (2014). Conditional gradient algo-
rithms for norm-regularized smooth convex optimization. Mathematical Program-
ming, 152(1–2). 60, 64, 68, 83

Ishikawa, H. (2003). Exact optimization for Markov random fields with convex priors.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10):1333–1336.
64, 89

Jaggi, M. (2013). Revisiting Frank-Wolfe: projection-free sparse convex optimization.
In Proceedings of the 30th International Conference on Machine Learning, pages 427–
435. 64

Jegelka, S., Bach, F., and Sra, S. (2013). Reflection methods for user-friendly sub-
modular optimization. In Advances in Neural Information Processing Systems, pages
1313–1321. 64

Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models.
International Journal of Computer Vision, 1(4):321–331. 63, 89

Kohli, P. and Torr, P. H. (2005). Efficiently solving dynamic Markov random fields using
graph cuts. In International Conference on Computer Vision (ICCV), volume 2, pages
922–929. IEEE. 84

Kolmogorov, V. and Zabih, R. (2004). What energy functions can be minimized via
graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(2):147–159. 67, 84

Kormylo, J. J. and Mendel, J. M. (1982). Maximum likelihood detection and esti-
mation of Bernoulli-Gaussian processes. IEEE Transactions on Information Theory,
28(3):482–488. 75

Kumar, K. and Bach, F. (2015). Active-set methods for submodular optimization. arXiv
preprint arXiv:1506.02852. 61, 64

97

BIBLIOGRAPHY

Landrieu, L. and Obozinski, G. (2016a). Cut pursuit: fast algorithms to learn piecewise
constant functions. In 19th International Conference on Artificial Intelligence and
Statistics (AISTATS 2016). 59

Landrieu, L. and Obozinski, G. (2016b). Cut pursuit: fast algorithms to learn piecewise
constant functions on general weighted graphs. 59

Lorenz, D. A. and Pock, T. (2014). An inertial forward-backward algorithm for mono-
tone inclusions. Journal of Mathematical Imaging and Vision, 51(2):311–325. 83

Mallat, S. and Zhang, Z. (1992). Adaptive time-frequency decomposition with matching
pursuits. In Time-Frequency and Time-Scale Analysis, Proceedings of the IEEE-SP
International Symposium, pages 7–10. IEEE. 60, 65

Mumford, D. and Shah, J. (1989). Optimal approximations by piecewise smooth func-
tions and associated variational problems. Communications on pure and applied math-
ematics, 42(5):577–685. 60, 62

Needell, D. and Tropp, J. A. (2009). CoSaMP: Iterative signal recovery from incomplete
and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301–
321. 60, 65

Negahban, S., Yu, B., Wainwright, M. J., and Ravikumar, P. K. (2009). A unified frame-
work for high-dimensional analysis of m-estimators with decomposable regularizers.
In Advances in Neural Information Processing Systems, pages 1348–1356. 68

Nesterov, Y. (2007). Gradient methods for minimizing composite objective function.
Technical report, Université catholique de Louvain, Center for Operations Research
and Econometrics (CORE). 83

Nielsen, F. and Nock, R. (2014). Optimal interval clustering: Application to Bregman
clustering and statistical mixture learning. Signal Processing Letters, 21(10):1289–
1292. 79

Nikolova, M., Ng, M. K., and Tam, C.-P. (2010). Fast nonconvex nonsmooth minimiza-
tion methods for image restoration and reconstruction. IEEE Transactions on Image
Processing, 19(12):3073–3088. 89

Obozinski, G., Taskar, B., and Jordan, M. (2006). Multi-task feature selection. Statistics
Department, UC Berkeley, Tech. Rep. 64, 74

Ochs, P., Dosovitskiy, A., Brox, T., and Pock, T. (2015). On iteratively reweighted
algorithms for nonsmooth nonconvex optimization in computer vision. SIAM Journal
on Imaging Sciences, 8(1):331–372. 89

Osher, S. and Sethian, J. A. (1988). Fronts propagating with curvature-dependent
speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational
Physics, 79(1):12–49. 64

98

BIBLIOGRAPHY

Picard, J.-C. and Ratliff, H. D. (1975). Minimum cuts and related problems. Networks,
5(4):357–370. 64, 66, 67

Pock, T. and Chambolle, A. (2011). Diagonal preconditioning for first order primal-dual
algorithms in convex optimization. In Proceeding of the International Conference on
Computer Vision (ICCV), pages 1762–1769. IEEE. 83

Raguet, H., Fadili, J., and Peyré, G. (2013). A generalized forward-backward splitting.
SIAM Journal on Imaging Sciences, 6(3):1199–1226. 64, 74, 83

Raguet, H. and Landrieu, L. (2015). Preconditioning of a generalized forward-backward
splitting and application to optimization on graphs. SIAM Journal on Imaging Sci-
ences, 8(4):2706–2739. 73, 83

Rockafellar, R. T. (1970). Convex analysis. Princeton University Press. 68

Roth, V. and Fischer, B. (2008). The group-lasso for generalized linear models: unique-
ness of solutions and efficient algorithms. In Proceedings of the 25th international
conference on Machine learning, pages 848–855. ACM. 64, 74

Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise
removal algorithms. Physica D: Nonlinear Phenomena, 60:259 – 268. 60, 63

Santner, J., Pock, T., and Bischof, H. (2011). Interactive multi-label segmentation.
pages 397–410. Springer. 63

Shepp, L. A. and Logan, B. F. (1974). The Fourier reconstruction of a head section.
IEEE Transactions on Nuclear Science, 21(3):21–43. 87

Soussen, C., Idier, J., Brie, D., and Duan, J. (2011). From Bernoulli–Gaussian de-
convolution to sparse signal restoration. IEEE Transactions on Signal Processing,
59(10):4572–4584. 65, 75, 77

Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A.,
Tappen, M., and Rother, C. (2006). A comparative study of energy minimization
methods for Markov random fields. In Proceeding of the European Conference in
Computer Vision (ECCV), pages 16–29. Springer. 64

Tsai, Y.-H. R. and Osher, S. (2005). Total variation and level set methods in image
science. Acta Numerica, 14:509–573. 64

Vese, L. A. and Chan, T. F. (2002). A multiphase level set framework for image
segmentation using the Mumford and Shah model. International Journal of Computer
Vision, 50(3):271–293. 63

Wang, Y.-X., Sharpnack, J., Smola, A., and Tibshirani, R. J. (2014). Trend filtering on
graphs. arXiv preprint arXiv:1410.7690. To appear in JMLR. 60

99

BIBLIOGRAPHY

Zhang, T. (2009). Adaptive forward-backward greedy algorithm for sparse learning
with linear models. In Advances in Neural Information Processing Systems, pages
1921–1928. 60, 65, 78

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American
Statistical Association, 101(476):1418–1429. 89

100

Chapter 5

Learning in graphical models

Chapter Abstract

In this chapter we present an overview of the framework of graphical models, introducing
the theoretical foundations used in the next chapter. We highlight the links that exist
between conditional independance in a set of random variables and the factorization of
its probability density function over a graph structure. We present as well the framework
of exponential families. We review how probabilistic inference and learning can be
performed in two particular graphical models, namely Potts model and the continuous
time Markov chain. This chapter does not present original work, it serves however as
an introduction and motivation for the continuously indexed Pott’s model presented in
the next chapter.

This chapter refers extensively the very comprehensive book Graphical models, ex-
ponential families, and variational inference by Wainwright and Jordan (2008).

5.1 Introduction

Graphical models are a powerful framework used to model interactions between ran-
dom variables with graphs. They boast applications across numerous fields, such as
bioinformatics, computer vision, and speech and natural language processing. In the
general setting, when considering a set of random variables one must assume that the
conditional probability distribution of each variable involves the realization of all other
variables. In the simplest case where each variable has a Bernoulli marginal distri-
bution, this would involve an exponential number of configurations for each variable.
For any real life application with millions of nodes, a naive parameterization of such
distributions appears unreasonable. However in many cases, the direct influence of a
random variable is sparse in the sense that its realization only influences the conditional
probabilities of a limited number of other random variables. Markov chains are a prime
example of such sparse influence, as the conditional distribution of variable at time t is
solely determined by the realization at t− 1.

We can create a graphical model for any given collection of variables by assigning

101

5. LEARNING IN GRAPHICAL MODELS

nodes to represent random variables, with the edges between nodes encoding the direct
influence of the corresponding variables. The goal of graphical models is to represent
models in a compact form by exploiting that the joint distribution of the variables
can be represented in a simplified form. This framework allows us to use graph-based
algorithms like message passing schemes to solve queries on the models, such as marginal
inference or parameters learning. Graphical models also blend well with exponential
families. This latter class of models has great expressive power and has been well-
studied, and also makes it possible to cast queries on the distribution as optimization
problems.

In this chapter we study two graphical models in more detail : the Potts model, a
special case of unoriented discrete state Markov random field, and the directed contin-
uous time Markov Chain, as well as the extension of the latter to trees.

5.2 Undirected graphical models

5.2.1 Conditional independence

We are interested in modelling the behavior of a multivariate random variable X =
{X1, · · · , Xn} with Xi ∈ X for all i. Realizations of the random variable Xi are denoted
by xi ∈ X. For a realization x = {x1, · · ·xn} ∈ Xn we denote p(x1, · · ·xn) = P (X1 =
x1, · · · , Xn = xn) its probability. For A ⊂ V a subsets of nodes we denote XA the
corresponding multivariate random variables and xA a realization.

The notion of influence between nodes is more rigourously formalized with the notion
of conditional independence, which extends the traditional notion of random variable
independance to the conditional setting. For A,B and C, three subsets of nodes, we
say that the two random variables XA and XB are independent given Xc if

p(xA, xB | xC) = p(xA | xC) p(xB | xC),

or equivalently, with Bayes rule:

p(xA | xB, xC) = p(xA | xC).

The random variables X = {X1, · · · , Xn} may have a complex dependance struc-
ture, in which the realization of certain variables influences the conditional probability
distibution of others. We denote G = (V,E) the graph formalizing the structure of
dependency between those random variables with V = {1, · · · , n} the node set. The
edge set E ⊂ V × V contains the edges (i, j) if and only if the conditional probability
distribution of Xi given all other variables depends on the realization of Xj . Note that
a simple appliaction of Bayes rule shows that this relationshipis symetrical, thus we
take the edges of G to be unoriented. The graph G is constrcuted so that for i ∈ V we
have:

p
(

xi|xV \i
)

= p (xi|xNi
) ,

with Ni the neighors of node i in graph G.

102

5.2 Undirected graphical models

In the unoriented setting the conditional independance of two variables given a set
of other variables can be deduced directly from graph G with the notion of separation
in graph-theory: a node subset A is said to be separated from a node subset B by a
a node subset C if and only if every path from A to B go through a C. The chain
rule of probability allows to see the equivalence between separation of A and B and the
conditonal independance of XA and XB given XC .

It is important to note that in the oriented setting the naive notion of separation
is neither necessary nor sufficient to insure conditional independance. It is however
the case if G is supposed to be oriented but also tree-shaped, provided there are no
v-structure. We refer the reader to Wainwright and Jordan (2008) for more details.

5.2.2 Factorization

A set of nodes c ⊂ V is called a clique if all pairs of nodes of c are connected by an edge
in G. We denote C(G) the sets of maximal cliques of graph G, i.e. the set of cliques
that are not contained within another clique. We say that the probability distribution
of multivariate random variable X = {X1, · · · , Xn} factorize on a graph G if its density
function can be written as followed:

p(x1, · · ·xn) ∝
∏

c∈C(G)

ψc(xc), (5.1)

where ψi : K 7→ R+ and ψi,j : K2 7→ R+ are called potential functions. Note that
contrary to probability and conditional probability distributions, potential functions
aren’t normalized, and the probability density function (5.1) needs to be normalized.

A key result underpinning graphical models is the Hammersley–Clifford theorem
(Hammersley and Clifford, 1971; Lafferty et al., 2001) which states that conditional
independance and the factorization of the probability distribution over a graph are
equivalent. This is the fundamental theorem of Graphical Models, linking probability
and the graph-theoretic notion of separation.

Theorem 1 (Hammersley–Clifford). Let X = {X1, · · · , Xn} be a multivariate random
variable such that its conditional independance structure is captured by G and p(x) > 0
for all x ∈ Xn. The probability distribution of X factorizes over G following equation 5.1.

5.2.3 Parameterization

Exponential families Many graphical models are naturally parametrized as mem-
ber of an exponential family. A collection of distribution distribution is called an expo-
nential family if the logarithm of the probability density function ℓ of all member can
be written under the following form:

ℓ(x; θ) = 〈b(θ), φ(x)〉 −A(θ).

with respect to a base measure γ on x. The involved quantities are:

103

5. LEARNING IN GRAPHICAL MODELS

• φ(x) = [φ1(x), · · · , φk(x)]
⊺ ∈ RK the sufficient statistics vector. It is comprised

of a collection of functions φi : ξ 7→ R encompassing the relevant statistics of x.

• θ ∈ RK the canonical parameter vector, which weighs each sufficient statistic.

• b(θ) are called the transformed parameters. When b is the identity, the family is
called a flat exponential family, and a curved exponential family otherwise.

• A(θ) : RK 7→ R+ is the log-partition function insuring that p defines indeed a
probability.

We denote Ω = {θ | A(θ) < ∞} the set of admissible parameters, called domain.
A parameterization is said to be minimal if the sufficient statistics are linearly inde-
pendent. A distribution in the exponential family defined by such φ and γ is uniquely
defined by a vector of canonical parameter θ.

This formulation is very general and includes, among many others, the following
family of distributions: Bernoulli, binomial, normal, exponential, Poisson, gamma and
beta.

Mean parameterization We define the mean parameter with respect to an arbi-
trary distribution density function p as:

µp = Ep(φ(X)) =

∫

Xn

φ(x)p(x)dγ(x).

The set of all achievable mean parameters plays an important role and is called the
marginal polytope M:

M = {µp | p ∈ P} ,

with P the set of all distributions over Xn. It is important to note that in the definition
of M, p is not restricted to members of the exponential family defined by φ and γ.
However we will show that in the case of a minimal representation there is a one-to-
one mapping between canonical parameters and mean parameters. Consequently an
exponential family parametrized by θ can also be equivalently parameterized by the
associated mean parameter µθ obtained for pθ the distribution parametrized by θ.

The log-partition function The normalization of distributions in an exponential
family is ensured by the log-partition function A(θ):

A(θ) = log

∫

Xn

exp 〈θ, φ(x)〉dγ(x).

This function, although convex, is impractical to compute for most problems as one
must integrate over all possible realizations of X, which is a combinatorial set. However
in some circumstances it can be computed, either exactly or approximately, as we will
expand upon in section 5.3.3. A key property of the log-partition function is the relation

104

5.2 Undirected graphical models

between its derivative with respect to the canonical parameters and the associated mean
parameters :

∂A(θ)

∂θ
= µθ, (5.2)

where µθ is the mean parameter defined with respect to the distribution pθ associated
with θ. This property constitutes a mapping from canonical parameters to mean pa-
rameters, and is very useful in a context of learning. An important result is that even if
the representation is not minimal, this mapping from Ω to the interior of M is surjective,
which means that any mean parameter µ within the interior of the marginal polytope
can be obtained for the canonical parameter θ(µ).

Fenchel conjugate Since A(θ) is convex, we can define its Fenchel conjugate:

A∗(µ) = sup
θ∈Ω
〈µ, θ〉 −A(θ). (5.3)

We denote θ(µ) a minimizing argument of this optimization problem. Conversely we
have

A(θ) = sup
µ∈M
〈µ, θ〉 −A∗(µ), (5.4)

and denote µ(θ) a maximizing parameter of this optimization problem. At the optimum
we have∇A∗(µ(θ)) = θ. Consequently, it appears that∇A∗ defines the reverse mapping
from mean parameterization to canonical parameters.

Finally an important result states that the conjugate of the log-partition function
can be expressed with the entropy of the probability distribution:

A⋆(µ) =

{

−H(pθ(µ)) if µ ∈M◦

+∞ if µ 6∈ M̄,

where M◦ is the inetrior of M and M̄ is its closure. The value at at the frontier of M is
determined by the limit of a converging sequence. Denote that for X a finite set, M is
a closed set.

5.2.4 Inference and learning

Inference Inference is the problem of predicting the value of a model given its param-
eters. Wa can distinguish between several forms of inference, such as Bayesian inference,
which consists of estimating the likelihood of an hypothesis, or MAP -inference, which
consists of finding the model’s value of highest probability. In this chapter we are in-
terested in marginal inference, which consists of estimating the probability of a certain
subsets of variables taking a particular value. For a single variable Xi this amounts to
finding p(xi) for xi ∈ X.

Such marginal probabilities are in general hard to compute. There are however
algorithms that perform either exact or approximate inference in specific settings, as
we will illustrate for several models in the rest of the chapter.

105

5. LEARNING IN GRAPHICAL MODELS

Learning Given a model for observed data, learning can be reduced to the estimation
of the fitting parameters. One of the main estimators is the the maximum likelihood
estimator, which is the one we opt for in this manuscript. Note that this is not the only
way that learning a model can be understood as there are alternatives such as Bayesian
learning, which involves priors on the distribution and subsequent penalizations, risk
minimization and many other approaches. However this is the point of view we chose
for the rest of the chapter.

From a set of independent observations {xt}Tt=1 of a random variable X, we define
learning as finding the parameters θ which maximize the emission probability of the
observed data. This is formalized by the maximization of the log-likelihood:

ℓ({xt}Tt=1; θ) =
T
∑

t=1

ℓ(xt; θ), (5.5)

with ℓ(xt; θ) the log-likelihood associated with the model paramerized by θ given ob-
servation xt. Learning the model amounts to finding the optimal parameter:

θ̂ = argmax
θ∈Ω

ℓ({xt}Tt=1; θ).

5.3 Potts model

5.3.1 Definition

The Potts model is a graphical model in which the variables take their value in a discrete,
finite set, and in which the direct influence between variables is pairwise. In other words
the conditional probability of a given variable is influenced by the realizations of other
variables separately. This excludes conditional probabilities depending on the joint
realizations of two or more other variables. Let X = (X1, · · · , Xn) ∈ Xn be a random
variable whose distribution follows a Potts model with d states, meaning that each node
can be one of d labels. We parameterize the state of each node by the discrete simplex
X = {z ∈ {0, 1}d|

∑d
i=1 zi = 1}. A node i is in state k when xi is equal to the vector of

size d with value 1 at index k and zeros elsewhere. We sometimes write for convenience
xi = k in this case.

Factorization Let G = (V,E) be the graph which captures the dependency struc-
ture of X, as described in Section 5.2.1. As the model is pairwise, we can rewrite 5.1
as:

p(x1, · · ·xn) =
1

Z

∏

(∈V
ψi(xi)

∏

(ij)∈E
ψij(xi, xj), (5.6)

with ψi : K 7→ R+ and ψij : K2 7→ R+ respectively the unary and binary potential
functions.

106

5.3 Potts model

i

j

θi

θij

node of G
edge of G
unary potential
binary potential

Figure 5.1: Potts model obtained for undirected graphG with unary and binary potentials
represented.

Parameterization From Equation 5.6 one can see a Potts model can naturally be
parameterized as an exponential family. Furthermore, they comform to a particular
parameterization called the standard overcomplete representation. Indeed as influence
between variables is pairwise, the sufficient statistics for each variable are the realization
vector xi ∈ X and the combined realization xix

⊺
j ∈ X2 for nodes which are adjacent on

the graph G. Hence the canonical parameters θ can be split into an unary parameter
{θi}i∈V and pairwise parameter {θi,j}(i,j)∈E . The unary parameter θi ∈ RK associates a

value θik to the realization xi = k, and the binary parameter θ(i,j) ∈ RK×K associates θi,jk,l
to the joint realization xi = k and xj = l. The log-likelihood of such parameterization
given realization x can be rewritten as follows:

ℓ(x; θ) =
∑

i∈V
x⊺i θ

i +
∑

i,j∈E
x⊺i θ

i,jxj −A(θ).

Remark that as its name suggest, the standard overcomplete representation is not
minimal as the sufficient statistics xix

⊺
j , xi and xj are not independant. As detailed

in Section 5.2.3 the mean parameter plays an important role as well. We define µiθ =

Eθ(xi) ∈ [0, 1]d and µi,jθ = Eθ(xix
⊺
j) ∈ [0, 1]d×d. According to Equation 5.2 we have:

∂A(θ)

∂θi
= µiθ and

∂A(θ)

∂θi,j
= µi,jθ

5.3.2 Inference in Potts models

We consider the problem of finding the marginal probability in a Potts model. With
the canonical parameterization, this is equivalent to finding the mean parameters:

pθ(xi) = Eθ(xi) = µiθ

107

5. LEARNING IN GRAPHICAL MODELS

As stated in Section 5.2.4, the probabilistic inference problem is difficult in general.
It is in fact NP-complete for Potts models. In this section we present several algorithms
for exact and approximate inference.

5.3.3 Exact inference

Belief propagation on trees If G has a tree structure one can use a dynamic pro-
gramming algorithm to efficiently organize the summation over an exponential number
of terms involved in the computing of the marginals:

pθ(xi) =
∑

y ∈ Xn | yi = xi

pθ(y)

The algorithm is called belief propagation because it can be interpreted as messages
going through each edge, carrying information about the partial tree structure which is
obtained by removing the edge. More precisely the message Mi→j contains all necessary
information about the subtree containing i obtained when removing (i, j) from E. The
messages are defined as follows:

Mj→i(xi) ∝
∑

xj

ψij(xi, xj)ψ(xj)
∑

v∈Nj\i
Mv→j(xj),

where Ni denotes the neighbors of i in G. This scheme, called collect and distribute,
starts on leaves and is propagated to the root and back. Once the messages have
converged, the marginals are obtained with the following equation:

µiθ ∝ ψi(xi)
∏

j∈Ni

Mj→i(xi)

The junction tree algorithm The sum product algorithm can be generalized for
exact inference on cyclic graphs with the junction tree algorithm. The first step of the
algorithm is to compute the clique tree, whose nodes are the maximal cliques of G.
The second step is a similar message passing scheme on the clique tree. This algorithm,
although exact, has an exponential complexity with respect to the cardinal of the largest
clique (treewidth) of the graph, hence is only used in specific graphical models whose
junction tree has a know low treewidth.

5.3.4 Approximate inference

Although message passing algorithms provide exact marginals on trees in a reasonable
time, this is not the case for general graphs. In practice, approximate inference is often
used, as it allows us to find good approximate solutions faster.

108

5.3 Potts model

Sampling methods Gibbs sampling is the most straightforward way to obtain ap-
proximate values for the marginals. The idea is to obtain a set of realizations (samples)
from which the marginals can be approximatively inferred. The samples are obtained
by initializing a realization x0 randomly and iteratively updating xti for each node while
the values of all other nodes are fixed. In other words, xti is sampled according to
p(xi | x

t−1
1 , · · ·xt−1

i−1, x
t−1
i+1, · · · , x

t−1
n). After a sufficient number of iterations the value

obtained is considered a realization of the joint probability. Averaging over all obtained
samples gives an approximation of the marginal distribution, which has been proved
to converge to the real distribution for a high enough number of samples (Geman and
Geman, 1984). In practice the first few samples are usually discarded following the burn
in heuristic.

The update can be done sequentially with each node (usually in a random order),
but this process is often very long as many samples are needed to obtain. Parallel
computations would be faster but the scheme would then not converge to the desired
distribution. Gonzalez et al. (2011) proposes a parallel scheme in which the graph is
colored so that no adjacent nodes share the same color. Then each color of the nodes
is sequentially updated in parallel. This process allow for a consequent acceleration as
well as provable convergence.

5.3.5 Loopy belief propagation

The sum-product algorithm detailed in the previous section has only be proved to pro-
vide an exact result on tree-shaped graphs. It has however been applied on general
graphs with good empirical success. This heuristic was dubbed Loopy belief propaga-
tion due to the presence of cycles in the graphs considered. In this section we will
see that although there is no theoretic guarantee to find the same result as the exact
inference, the approximations made are well understood and convergence results have
been obtained under restrictive conditions (Heskes, 2004; Tatikonda and Jordan, 2002;
Weiss, 2000). Wainwright and Jordan (2008) have presented how this algorithm can be
understood as the combination of two approximations.

The local polytope Even though the marginal polytope is convex, its structure
can be very complex, with a number of facets growing exponentially in the number of
nodes. The first approximation is using a surrogate polytope called local polytope L

whose structure is simpler. For a marginal µ to be realizable, it must be consistent.
The unary marginals µi must be probabilities:

{

∑d
k=1 µ

i
k = 1 ∀i ∈ V

µik ≥ 0 ∀i ∈ V, ∀k = 1, · · · , d,
(5.7)

and the binary marginals µij must be consistent with the unary marginals:

d
∑

k=1

µi,jk,l = µil and
d
∑

l=1

µi,jk,l = µik. (5.8)

109

5. LEARNING IN GRAPHICAL MODELS

The local polytope is the set of mean parameters µ that respect conditions (5.7) and
(5.8). It is obvious that any reachable marginals µ in M must also be consistent, and
hence that M is included in L. This inclusion is actually tight for trees.

Bethe entropy The second approximation is replacing the entropy which appears
as the conjugate of the log partition function A⋆(µ) by the Bethe entropy −HBethe(µ):

HBethe(µ) = −
∑

i∈V

K
∑

k=1

µik log(µ
i
k)−

∑

(i,j)∈E

K
∑

k,l=1

µi,jk,l log

(

µi,jk,l

µikµ
j
l

)

. (5.9)

Here again, this approximation is tight on trees.

Bethe variational problem The two prior approximations induce an approxi-
mate mapping between canonical parameters and mean parameters: the approximate
marginals µ̃ are solutions of the following variational problem:

µ̃ = argmax
µ∈L

〈θ, µ〉+HBethe(µ)

This problem, although not concave, is differentiable and its constraints are simple. The
marginal distribution has been proved to be a fixed point of the sum-product algorithm
and a local maximum of the Bethe variational problem (Yedidia et al., 2005).

Convergence issue In addition to the non-concavity of the problem, the belief
propagation algorithm may have some convergence issues. Ihler et al. (2005) introduces
an index which depends on the graph values, which insures convergence when bounded
by 1. As this index is the maximum over all edges of a quantity which increases with
the number of neighbors and the strength of the corresponding potentials, convergence
requires simultaneously weak potentials and a small enough neighborhood structure for
all nodes.

Noorshams and Wainwright (2013) propose a stochastic synchronous scheme which
is not only faster on trees where the convergence is proven, but is also more robust with
respect to convergence. However the synchronous nature of the algorithm makes it
slower in general, as updates cannot be computed in parallel. Heskes (2002) details how
one can obtain a more resilient algorithm by damping the message updates: messages
are taken as linear combinations between the updated messages and the ones previously
obtained.

5.3.6 Learning in Potts models

Let {xt}Tt=1 be a set of T independent observations of the Potts model. Equation 5.5
rewrites:

ℓ(x; θ) =

T
∑

t=1

∑

i∈V
x⊺i θ

i +
∑

i,j∈E
x⊺i θ

i,jxtj

− T ·A(θ). (5.10)

110

5.4 Continuous time Markov models

Denoting µ̂i = 1
T

∑T
t=1 x

t
i and µ̂i,j = 1

T

∑T
t=1 x

⊺
i x

t
j the vectors of empirical marginals we

can rewrite (5.11) as:

ℓ(x; θ) = T

∑

i∈V
(µ̂i)⊺θi +

∑

i,j∈E
1
⊺
(

µ̂i,j ⊙ θij
)

1−A(θ)

 , (5.11)

with 1 the vector of ones of size K and ⊙ the entrywise matrix product, otherwise
known as Hadamard product. This quantity is concave and hence can be maximized
with a first order method such as gradient ascent. Recalling from Equation 5.4, we have
: ∇θA(θ) = µθ. The gradient of the log-likelihood writes:

{

1
T∇θiℓ(x; θ) = µ̂i − µiθ
1
T∇θi,jℓ(x; θ) = µ̂i,j − µi,jθ

Note that the gradient computation requires performing inference. The particular form
of the gradient is easily interpretable: the parameters are optimal when they perfectly
explain the observations, i.e when the empirical mean and the mean of the model are
the same. This property is called the moment matching property, and is only true for
flat parametrizations.

5.4 Continuous time Markov models

In this section we present another type graphical model, the Continuous Time Markov
models which displays some major difference with the Potts models, mainly due to
its continuous nature. The simplest version of these models is the Continuous Time
Markov Chain, which is used to describe the evolution of a continuous time process
that has the Markov property. Typical examples of applications include the study of
chemical reactions speed (Anderson and Kurtz, 2011), the spread of infectious diseases
(Jacquez and O’Neill, 1991; Keeling and Ross, 2008) and queuing theory (Gross and
Harris, 1998).

Continuous time Markov trees are an extension of Markov chains and are used when
the continuous time process can branch out. A prime example is the study of speciation
events through the analysis of phylogenetic trees. Holmes and Rubin (2002) proposes
this framework for protein sequence alignment.

5.4.1 Continuous time Markov chain

Definition We consider the continuously indexed set of random variables {Xt}t∈[0,T]

with T > 0 which take values in the set X = {z ∈ {0, 1}d|
∑d

i=1 zi = 1}, and denote
{xt}t∈[0,T] a realization of the process. The random variables{Xt}t∈[0,T] define a process
for which we make two assumptions: the Markov property and a notion of homogeneity
that we detail below.

111

5. LEARNING IN GRAPHICAL MODELS

The Markov property implies that the influence of the past is entirely comprised of
the last observation. In other words, for 0 < s, t < T , {xt}t∈[0,T] a realization and k ∈ X

we have:

p(Xs+t = k | x[0,t]) = p(Xs+t = k | xt). (5.12)

Homogeneity states that the evolution of the process is identical at all times. In the
case of as continuous time Markov chain, it translates into the following property, for
k ∈ X and h, t > 0:

p(Xt+h = k | xt) is independent of t.

This property allows us to define the transition matrix Ph ∈ Rd×d
+ at distance h:

[Ph]i,j = p(Xh = i | X0 = j) ∀(i, j) ∈ X2 (5.13)

From (5.13) we immediatly see that P is a stochastic matrix. We assume that P :
R 7→ RK×K

+ is a continuous application, which entails that P0 = I. The chain rule of
probability translates into the following equation, for s, t > 0:

Ps+t = PsPt (5.14)

Parameterization We denote W the rate matrix, or infinestimal generator, defined
as the derivative of Ph at h = 0:

W , lim
h→0

Ph − I

h
. (5.15)

Combining equations (5.14) and (5.15) we can write the transition matrix at distance
h asfollows:

Ph = exp(hW), (5.16)

with exp being the matrix exponential. Simple calculus, detailed in the next chapter,
shows that the stochasticity of P implies that the columns of W must sum to zero. The
process needs to be initialized, and we define π ∈ RK

+ the initial probability:

[π]k = p(X0 = k). (5.17)

Factorization The law of a process with an infinite number of variables cannot
be expressed directly. We write the joint probability for an arbitrary finite number
of variables which corresponds to points on the chains. Furthermore, Kolmogorov’s
extention theorem (Kallenberg, 2006, Theorem 5.14) insures the existence of the process
at all points of the chain if it can be written for an arbitrarily large but finite number
of points.

Let t0 = 0 ≤ t1 < · · · < tn ≤ T be the ordered position on the chain of the variables
considered, and let us denote Xi = Xti the variable indexed by ti, and xi its realization.
Note that the process is however defined at all points 0 ≤ t ≤ T .

112

5.4 Continuous time Markov models

From equation (5.12) and (5.17), the probability of a realization x = {x0, · · · , xT }
of the variable formed by X = {X0, · · · , Xn} can be factorized as follows:

p(x0, · · · , xn) = π(x0)
n
∏

i=1

Pti−ti−1 (xi | xi−1) (5.18)

t1 t2 t3 t3 + dt ∞

Figure 5.2: Continuous time random Markov chain.

Exponential family The form of the distribution defined in (5.18) suggests writing
the process as a member of the exponential family with sufficient statistics x0 and
{x⊺i−1xi}

n
i=1. Indeed we can write the logarithme of the density function as:

ℓ(x0, · · · , xn; θ) = x⊺0θ
0 +

n
∑

i=1

x⊺i−1θ
ixi, (5.19)

with θ0 and θi the parameters as defined:

{

θ0 = log(π0)

θi = log(Pti−ti−1),

where log is the entrywise logarithm. Remark that θ as defined are not the canonical
parameters but the transformed parameters. The canonical parameter of this represen-
tation is the rate matrix, and the transformation is the matrix exponentation to the
power defined by the edge weights.

Inference Marginal inference on continuous Markov chains can be performed with
the same collect and distribute algorithm used in tree-shaped Potts models.

Learning With the homogeneity hypothesis and Equation (5.16), the canonical pa-
rameters can be expressed with the infinitesimal generator, which only has at most
d(d − 1) free parameters. The derivation of the log-likelihood’s gradient with respect
to W can be found in Holmes and Rubin (2002), and very similar calculations can be
found in the next chapter. Consequently the infinestimal estimator can be learnt from a
single realization of the process on the chain, as each transition between obserevd nodes

113

5. LEARNING IN GRAPHICAL MODELS

gives information about W . This is a difference with the setting detailed for the Potts
model in Section 5.3.6, which implied learning from several independent realization of
the process. In the next section we extend these derivations to the case of tree-shaped
graphs.

5.4.2 Continuous time Markov tree

Definition Holmes and Rubin (2002) use the framework of continuous time Markov
trees to study protein alignements using phylogenetic trees. Let G = (V,E,w) be a

tree-shaped graph with w ∈ R
|E|
+ being a length associated with each edge. We consider

an homegeneous process continuously indexed by the edge of the tree: edges can be
viewed as continuous Markov chains. As in the continuous Markov chain setting, we
limit ourself to a finite number of variables, taken at the nodes of graph G.

As for the Potts model, conditional independance in directed trees is equivalent to
graph separation. Consequently each edge can be treated independently given x. The
probability density function p can be written as follows:

p(x1, · · · , xn) = π(x0)
∏

(i,j)∈E
pi,j(xi | xj), (5.20)

with π the marginal probability vector of the root node, and pi,j(xi | xj) the probability
of node i having the value xi given that node j has value xj .

Parameterization Since the process is homogeneous over the entire tree, its joint
probability can be parametrized by a single rate matrix W and the multinomial distri-
bution π of the state of the root node. Note that in the protein aligmnent context of the
article, the homogeinity of the transition rate matrix is an empirically well-established
fact.

The further hypothesis of time reversibility of the process implies the detailed balance
equation linking π and W :

πiWij = πjWji

Consequently the matrix S = Wij

√

πi

πj
is symetrical and can be diagonalized by V ∈

RK,K and µ ∈ Rn: S = V ⊺diag(µ)V .

5.4.3 Inference and learning

Inference can be made by performing the collect and distribute algorithm as the results
on chains generalizes on tree shaped graphs easily. Learning however is more intricate
and requires an Expectation Maximization scheme. The E step implies performing
inference, and the M step is closed-form thanks to the diagonal parameterization (V, µ).

114

5.5 Conclusion

5.5 Conclusion

In this chapter we reviewed the framework of graphical models and how the problem
of inderence and learning can be formulated using concepts from exponential families.
In particular, we’ve presented several well-known graphical models, namely the Potts
model and the continuous time Markov chains and trees. Those two models are quite
different:

• continuous-time models are defined at all wheras Potts models are only defined
on nodes

• cycles in the graph are forbidden for continuous time Markov trees, whereas gen-
eral graph can structure a Potts model.

• continuous-time model are oriented and Potts models are defined on unoriented
graphs.

In the next chapter we present a new model which takes charactersitics from both
model,a s it expands continuous time Markov trees to the case of general unoriented
graphs.

115

5. LEARNING IN GRAPHICAL MODELS

116

Bibliography

Anderson, D. F. and Kurtz, T. G. (2011). Continuous time markov chain models for
chemical reaction networks. In Design and analysis of biomolecular circuits, pages
3–42. Springer. 111

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on pattern analysis and machine
intelligence, (6):721–741. 109

Gonzalez, J., Low, Y., Gretton, A., and Guestrin, C. (2011). Parallel Gibbs sampling:
From colored fields to thin junction trees. In International Conference on Artificial
Intelligence and Statistics, pages 324–332. 109

Gross, D. and Harris, C. (1998). Fundamentals of queueing theory. 111

Hammersley, J. M. and Clifford, P. (1971). Markov fields on finite graphs and lattices.
103

Heskes, T. (2002). Stable fixed points of loopy belief propagation are local minima of
the Bethe free energy. In Advances in neural information processing systems, pages
343–350. 110

Heskes, T. (2004). On the uniqueness of loopy belief propagation fixed points. Neural
Computation, 16(11):2379–2413. 109

Holmes, I. and Rubin, G. (2002). An expectation maximization algorithm for training
hidden substitution models. Journal of Molecular Biology, 317(5):753–764. 111, 113,
114

Ihler, A., Fisher, J., and Willsky, A. (2005). Loopy belief propagation: Convergence
and effects of message errors. The Journal of Machine Learning Research, 6:905–936.
110

Jacquez, J. A. and O’Neill, P. (1991). Reproduction numbers and thresholds in
stochastic epidemic models in homogeneous populations. Mathematical Biosciences,
107(2):161–186. 111

Kallenberg, O. (2006). Foundations of modern probability. Springer Science & Business
Media. 112

117

BIBLIOGRAPHY

Keeling, M. J. and Ross, J. V. (2008). On methods for studying stochastic disease
dynamics. Journal of The Royal Society Interface, 5(19):171–181. 111

Lafferty, J., McCallum, A., and Pereira, F. C. (2001). Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data. 103

Noorshams, N. and Wainwright, M. J. (2013). Stochastic belief propagation: A low-
complexity alternative to the sum-product algorithm. Information Theory, IEEE
Transactions on, 59(4):1981–2000. 110

Tatikonda, S. C. and Jordan, M. I. (2002). Loopy belief propagation and gibbs measures.
In Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence,
pages 493–500. Morgan Kaufmann Publishers Inc. 109

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families,
and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–305.
101, 103, 109

Weiss, Y. (2000). Correctness of local probability propagation in graphical models with
loops. Neural computation, 12(1):1–41. 109

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2005). Constructing free-energy ap-
proximations and generalized belief propagation algorithms. IEEE Transactions on
Information Theory, 51(7):2282–2312. 110

118

Chapter 6

Continuously indexed Potts model

Chapter Abstract

This chapter introduces an extension to undirected graphical models of the classical
continuous time Markov chains. This model can be used to solve a transductive or
unsupervised multi-class classification problem at each point of a network defined as a
set of nodes connected by segments of different lengths. The classification is performed
not only at the nodes, but at every point of the edge connecting two nodes. This is
achieved by constructing a Potts process indexed by the continuum of points forming
the edges of the graph. We propose a homogeneous parameterization which satisfies
Kolmogorov consistency, and show that classical inference and learning algorithms can
be applied. We then apply our model to a problem from geomatics, namely that of
labelling city blocks automatically with a simple typology of classes (e.g. industrial
area, collective housing) from simple properties of the shape and sizes of buildings of
the blocks. Our experiments shows that our model outperform standard MRFs and a
discriminative model like logistic regression.
The material of this chapter is based on Landrieu and Obozinski (2014) , published at
the 30th Conference on Uncertainty in Artificial Intelligence (UAI2014), pages 459 to
468.

6.1 Introduction

Connections in networks typically have a length or weight that gives a measure of
distance between the nodes connected, or the intensity of their interaction. This length
information has been used to perform unsupervised or semi-supervised classification on
graphs based among others on graph partitioning algorithms (see e.g. Zhu and Goldberg,
2009). When defining probabilistic graphical models on such networks, it is not clear
how to take this distance into account naturally so that the interaction decreases with
the distance. In this chapter, we propose an unoriented counterpart of the continuous-
time Markov process on a tree proposed by Holmes and Rubin (2002) which is naturally
generalized to any unoriented graph.

119

6. CONTINUOUSLY INDEXED POTTS MODEL

In a continuous time Markov chain, a random state Xt is associated with every
point t ∈ R+. The generalization to a continuous tree mode considered by Holmes and
Rubin (2002) is most simply described through its application in phylogenetics. The
phylogenetic tree of a family of species is assumed given as a directed tree with branches
of different lengths. The length of the branches measure the genetic distance between
extant or extinct species. Branching nodes are associated with speciation events. Each
point of each branch of the tree corresponds to the form taken by a species as it existed
at one time in the past and the variable modeled as a random process and defined
at each such point is typically a discrete trait of that species such as the nucleic acid
among {A,C, T,G} at a certain position in the DNA. In the absence of speciation event,
the state evolves like a continuous-time Markov chain, with time here being measure
in terms of the genetic distance along an edge. When a branching occurs, the Markov
chain is split into two identical states which continue to involve independently. For that
process, if the edges of the trees are identified with line segments, there is a random
variableXt associated with every point t of each of these segments. Since a tree is simply
connected, removing point t will split the tree in at least two components, and with
this model we have the fundamental Markov property that the subprocesses defined on
each component are conditionally independent given Xt.

We aim to extend these models in two ways. First, these continuously indexed pro-
cesses are fundamentally oriented. This stems for the fact that the continuous Markov
chain in this model is homogeneous, which implies that the conditional distributions for-
ward in time are constant, a property which, while true forward, is not in general true
backwards in time. This implies in particular that all marginals of the process on any
finite set of points including at least all nodes of degree different than two is naturally
parameterized as a product of conditionals p(xs|xt) whose value depends on the graph
only through the distance between s and t. We aim to propose natural parameteriza-
tion for unoriented continuously indexed models with the same Markov property as the
oriented trees. Second, the considered models are simply connected and we would like
to propose an extension from weighted trees to general weighted graphs, where all edges
are identified with a real segment of lengths equal to their weights, and which satisfy the
Markov property in the sense that if a finite set of points A on these segments cuts the
graph into several connected components, the processes on the two subgraphs are con-
ditionally independent given (Xa)a∈A. The obtained models will be Potts models that
take into account in a natural way the length of the edges and such that the interaction
between two nodes decreases with the distance separating them.

More precisely, we consider a continuous graph formed of a set of junction nodes
connected by segments of different lengths. In such a graph, each point of each segment
can be viewed as a node of the graph linked to its neighbors by edges of infinistimal
length. We then construct a discrete valued random process defined at any point of the
graph, such that the process induced on the junction nodes of the graph is a usual Potts
model, but with binary potentials that take into account in a natural way the length of
the edges and such that the interaction between two nodes decreases with the distance
separating them.

120

6.1 Introduction

After a discussion of related work, we first consider the simplest case of an unoriented
continuous chain for which we propose an exponential family parametrization. Next, we
show how this parametrization is naturally extended to general unoriented continuous
graphs. We derive the marginal log-likelihood of different subsets of nodes, as well as
the form of its gradients, and show that inference and learning in these models can be
obtained with classical algorithms. We then extend the model and algorithms to the
hidden Markov random field case where a feature vector is attached to a certain number
node. In terms of experiments, we consider first a transductive classification problem
from geomatics, which consists in assigning city blocks to different classes from simple
buildings characteristics, while taking into account the distances between the blocks.
Then we illustrate the possibility of using the model for transfer learning in order to
refine predictions for city blocks from a new entirely unlabelled city.

6.1.1 Related work

The model we consider in this work can be viewed as an extension to undirected graphs
of the continuous time Markov chain (CTMC). We therefore first review the literature
pertaining to both CTMCs and graphical models The continuous-time Markov chain
(Norris, 1997) is a fundamental model in probability and statistics for random variables
that takes values in a set of discrete states and that can transition at any point in
continuous time from one state to another. Beyond its theoretical value, it has been
applied directly in queuing theory, for the statistical modeling of chemical reactions and
in genetics. Indeed they provide a natural parameterization of how the joint distribution
of two discrete valued random variables should change as these variables are separated
in time, or in terms of a genetic divergence or another type of distance.

In genetics, CTMC models have been notably used to propose models of the evolu-
tion of DNA at the nucleotide level (Durrett, 2008; Nielsen, 2005), with among several
others, the celebrated Jukes-Cantor model. In this context, these models have been
extended to directed trees, where the tree corresponds to a phylogeny of species or of
proteins, and which has been used to estimate rate matrices or for genetic sequence
alignment (Von Bing and Speed, 2004). The rate matrices of bases substitutions have
been empirically proven to be temporally homogenous , and this model allows for ac-
curate alignment of large of DNA, RNA or protein sequences.

Like for CTMCs, the fact that these models are continuous arise from temporality,
and the models derived are thus intrinsically oriented. For these CTMC on trees, Holmes
and Rubin (2002) proposed an exponential family parametrization of the likelihood
and showed that it was possible to design an EM algorithm to learn the rate matrices
modeling the substitution of DNA bases over time, in a way that generalizes the classical
EM algorithm on trees.

As is the case for the CTMC, continuously indexed processes arise typically as
the limit of discretely indexed processes. Along these lines, Yaple and Abrams (2013)
consider a continuum limit of the Ising model on a regular grid where the lengths of
the edges are infinitesimal and use it to characterize the patterns of magnetic polarity
in ferromagnetic materials through the resolution of integro-differential equations.

121

6. CONTINUOUSLY INDEXED POTTS MODEL

A different but also recent line of research combining ideas from the graphical mod-
els literature with stochastic processes is known under the name of continuous time
Bayesian networks (CTBNs, Nodelman et al., 2002). These are models of structured
multivariate stochastic processes in time in which the interaction between the different
components of the process can be modeled by a graphical model. These models are
quite different than the continuous time tree models or the models we will propose in
this chapter in that, for CTBNs, the graphical model structure is somehow orthogonal
to the direction of time which is the unique global oriented continuous variable for the
process.

Last but not least, a common family of approaches which take into account the
length of edges in a graph in the context of unsupervised or semi-supervised classification
are the graph partitioning and related spectral clustering techniques (see e.g. Zhu and
Goldberg, 2009, chap. 5). A review of these techniques is beyond the scope of this
chapter. We however discuss how these methods differ and are not directly comparable
to ours in section 6.3.3.

6.1.2 Notations

All multinomial variables considered take values in K = {1, . . . ,K} and are represented
by the indicator vector x ∈ {0, 1}K whose sole non zero entry is xk when the multinomial
is the kth state. We thus define X = {x ∈ {0, 1}K |

∑

k∈K xk = 1}. Given a vector
x ∈ RK , diag(x) is the diagonal matrix whose elements are the entries in x. We use
⊙ (resp. ⊘) to denote the Hadamard product (resp. division), that is the entrywise
multiplication (resp. division) of matrices. We will denote nodes of graphical model
with the sans-serif font a, b, and set of nodes with upper capitals of the same font: A,B.

6.2 Continuous graph Potts models

6.2.1 Parametrization

An unoriented continuous chain model To derive a parameterization of the
model, we start with the case of an unoriented chain that we identify with the [0, l]
segment, where without loss of generality l is an integer. We will denote by Xa a
multinomial random variable associated with the point a ∈ [0, l]. Before defining the
process at any point of the segment, we model the joint distribution of the random
variables Xk for k an integer in {0, . . . , l}. Denoting by xk ∈ {0, 1}

K an instance of Xk,
and assuming that both unary and binary potentials are constant, the log-likelihood of
the parameterization given a realization (xk)k∈{0,1,...,l} can be written in multiplicative
form as

p(x0, x1, . . . , xl; U, h) ∝
l
∏

k=0

h⊺xk

l−1
∏

k=0

x⊺kUxk+1, (6.1)

with h ∈ RK
+∗ the vector of unary potential values and U ∈ RK×K

+∗ the matrix of
binary potential values. For reasons of symmetry and invariance along the chain, we

122

6.2 Continuous graph Potts models

assume that those parameters do not depend on the position k and that U = U⊺.
Note that, while similar in spirit, the assumption that these parameters are constant is
different from assuming that the Markov chain is homogeneous; we discuss this point
in section 6.3.3. To get concise forms for the log-likelihood induced on subsets of the
Xks by marginalization, we introduce further H = diag(h) and W = H

1
2UH

1
2 , which is

a parameter that combines the binary potential with half of the unary potentials from
each point of an edge. This allows us to rewrite (6.1) as follows:

p(x0, x1, . . . , xl; U, h) ∝
l−1
∏

i=0

x⊺iUxi+1

l
∏

i=0

h
⊺

xi

∝

l−1
∏

i=0

x⊺iH
− 1

2WH− 1
2xi+1

l
∏

i=0

Hxi

∝
l
∏

i=0

x⊺iH
1
2

l−1
∏

i=0

x⊺iH
− 1

2WH− 1
2xi+1

l
∏

i=0

H
1
2xi

∝ x⊺0H
1
2

(

l−1
∏

i=0

x⊺iH
1
2x⊺iH

− 1
2WH− 1

2xi+1H
1
2xi

)

H
1
2xl

∝ x⊺0H
1
2

(

l−1
∏

i=0

x⊺iWxi+1

)

H
1
2xl

We can now marginalize all variables except for the extreme points of the segment to
obtain:

p(x0, xl; W,h) ∝
∑

x1···xl−1

p(x0, x1, . . . , xl; W,h)

∝ x⊺0H
1
2

∑

x1···xl−1

l−1
∏

i=0

x⊺iWxi+1

H
1
2xl

∝ x⊺0H
1
2

(

x⊺0W
lxl

)

H
1
2xl

∝ htx0

(

x⊺0H
− 1

2W lH− 1
2xl

)

h⊺xl (6.2)

We call W the corrected binary potential matrix. This matrix takes into account the
unary potentials of the hidden states, and allows to write the likelihood by separating the
influence of the edge and the end nodes, which allows for a more natural generalization
to graphs later on.

Similar calculations show that, for any sequence a0 = 0 < a1 < . . . < am = l with
ak ∈ {0, . . . , l}, denoting dj = d(aj , aj−1) = aj − aj−1 the distances between consecutive

123

6. CONTINUOUSLY INDEXED POTTS MODEL

nodes and A = {a0, · · · , am}, we have:

p(xA; W,h) ∝
m
∏

j=0

h⊺xaj

m
∏

j=1

x⊺aj−1
H− 1

2W djH− 1
2xaj .

By simply taking the logarithm of this expression we obtain a curved exponential family
of distributions with log-likelihood

ℓ (xA; θ) =
m
∑

j=0

η⊺xaj +
m−1
∑

j=0

x⊺ajΛ(θ, dj)xaj+1 −A(θ), (6.3)

with ∀k ∈ K, ηk = log(hk), θ = (W, η), A the log-partition function and where Λ(θ, d)

is defined entrywise by [Λ(θ, d)]kk′ = log([H− 1
2W dH− 1

2]kk′).
It is now very natural to try and use this formula to extend the definition of the

process to any sequence of points a0=0<a1<. . .<am= l that are no longer restricted to
take integer values. This requires however that for all for all s ≥ 0, W s should be a well
defined real valued matrix with non-negative (or for learning purposes positive) entries.
The fact that W is real symmetric and that all its powers should be real implies that
it should have non-negative eigenvalues. Since we can approximate a low rank matrix
with a full rank matrix, we assume for convenience that all it eigenvalues are positive
(any low rank matrix can be approximated by a full rank one). W is then a matrix
exponential W = exp(Π). The fact that all its powers should have non-negative entries
implies in particular that for any s, W s is completely positive.1 We therefore need to
characterize which conditions on Π are needed to obtain a valid W . Note that Π can
be viewed as the counterpart of the rate matrix for CTMCs.

Infinitesimal generator Π To easily compute the matrix exponential we use the
eigendecomposition of Π:

Π = P ⊺ΣP, Σ = diag(σ), P ⊺P = PP ⊺ = IK (6.4)

and exponentiate its eigenspectrum.2 In the context of learning, it is natural to assume
that the entries of W s are actually strictly positive so that the log-likelihood is always
finite. The following lemma provides sufficient and necessary conditions on Π for the
entries of exp (lΠ) to be either non negative or positive.

Lemma 1. For Π a square matrix, [exp (lΠ)]i,j ≥ 0 ∀l ∈ R+ and ∀i, j if and only if
Πi,j ≥ 0 for all i 6= j. Similarly, [exp (lΠ)]i,j > 0 for all i, j and ∀l ∈ R∗

+, if and only

if the sequences
(

u
(k)
i,j

)

k∈k
with u(k)i,j =

[

Πk
]

i,j
is such that its first non-zero value exists

and is strictly positive, for all i 6= j .

1A ∈ RK×K is completely positive iff there exists B ∈ RK×m
+ with A = BB⊺ (see e.g. Seber (2008)

p. 223).
2 One caveat of this parametrization is that if W is close to low rank, the corresponding eigenvalues

in σ have to take large negative values. This could be addressed by working with (σ−1
k)k∈K.

124

6.2 Continuous graph Potts models

Proof. See Appendix D.

Remark: it is easy to see from the proof of the lemma that Πi,j > 0 for i 6= j is a
sufficient condition for [exp (lΠ)]i,j to be positive for all i, j and for all l ∈ R∗

+.

Note that because of its normalization the likelihood obtained in (6.3) is invariant
by a multiplication of H or U and thus of W by a positive scalar. As a result it is also
invariant by addition of a constant multiple of the identity matrix to Π or equivalently
to σ. This means that the likelihood is invariant by addition of an arbitrary identical
constant to all the eigenvalues (σi)i∈K. In particular, it is possible to choose this constant
sufficient large to guarantee that the diagonal of Π is positive. This implies that it will
be conveniently possible to parameterize the model by the entrywise logarithm of Π.

Existence of the process on the chain We now go on to prove the existence
of such process when k the number of points in A approaches infinity and the distance
dj between points of A decreases towards zero.

Proposition 2. There exists a stochastic process (Xa)a∈[0,l] defined at all points of the
segment [0, l] whose finite marginal on any finite set of points containing a0 and al is
given by (6.3).

Proof. Let A = {a0, . . . , am} and B = {b0, . . . , bn} two such sets with a0 = b0 = 0
and am = bn = l. It is clear that using (6.3) to define a joint log-likelihood given
(Xa)a∈A∪B, the log-likelihood obtained by marginalization of elements of A\B using the
same type of derivation used in (6.2) is still of the form of (6.3). Since the same holds
for B\A, we just showed that the collection of proposed marginals are consistent and by
Kolmogorov’s extension theorem (Chung and Speyer, 1998, chap. 6). This proves the
existence of the process.

6.2.2 Extending the model to graphs

Real graphs To extend the model we proposed on a segment to undirected trees and
more generally to undirected graphs, we first define what we will call continuous graphs
or real graphs.1 Given a weighted graph G = (V,E) with the weight dab associated with
the edge (a, b) ∈ E, we define the associated real graph G as the space constructed as
the union of line segments of lengths dab associated with the edges (a, b) ∈ E and whose
extreme points are respectively identified with the nodes a and b through an equivalence
relation. Put informally, a real graph is the set of line segments that we usually draw
to represent an abstract graph. For any pair of points a′, b′ on the same segment [a, b],
we will denote by da′b′ the length of that subsegment.

Remark: Continuous trees have been studied by the field of geometrical topology
. In this chapter we limit ourselves to the study of simplicial trees for which the set of
nodes with more than two neighbors is discrete and finite.

1Real graphs extend the notion of real trees which have been introduced previously in the literature
(Chiswell, 2001) and are of interest notably in mathematical cladistics and to construct Brownian trees.

125

6. CONTINUOUSLY INDEXED POTTS MODEL

(a) (b)

Figure 6.1: (a) Representation of a real graph with a zoom that shows that edges are
actually a continuum of nodes linked by infinestimal unoriented edges. (b) The induced
discrete graph associated with the junction nodes in red and the observed nodes in blue.

It should be noted that, in a real graph, the segments connecting a node of degree
two are essentially merged into a single segment by concatenation. We will call all nodes
of degree different than two junction nodes. Conversely, identifying nodes and points in
the real graph, any point that is not a junction node can actually be viewed as a degree
two node.

Figure 6.2: (left) Toy example illustrating that the process is defined at all points of the
continuous graph. For a model on three classes (red, green blue) each point of each edge is
colored with the mixture of these three colors corresponding to the probability of observing
each of the classes, given that all the circle nodes are observed with the given colors.

Definition 3. Let S be the set of junction nodes. Given A a set of points on the real
graph, we will call the induced discrete graph on A ∪ S, denoted by GA the graph with
vertices A ∪ S and whose edges EA link the nodes that can be joined on the real graph
by segments not containing elements of A ∪ S: EA = {(a, b) |] a, b [∩ (A ∪ S) = ∅}. To
distinguish the set of nodes in A from S \ A, we will call them observed nodes.

The concepts of real graph, junction node, observed node and induced graph are
illustrated on Figure 6.1.

126

6.3 Learning with continuous graphs

Towards a Potts model on real graphs To extend the stochastic process pre-
viously defined to real graphs, we first define its marginals. In particular, given a set
of points A = {a0, · · · , am}, the marginal on A ∪ S is naturally defined as follows: let
GA = (A ∪ S, EA) be the induced discrete graph on A ∪ S, we propose to define the
log-marginal likelihood given (Xa)a∈A∪S as

ℓ (xA∪S; θ) =
∑

a∈A∪S
η⊺xa +

∑

(a,b)∈EA

x⊺aΛ(θ, dab)xb −A(θ), (6.5)

with θ = (η,W) which we reparametrize from now on with θ = (η,Π). If A does not
contain S, then p (xA) is obtained by marginalizing xS\A out in p (xA∪S).

Existence of the process on a real graph The existence of the process on a
real graph is again proven using Kolmogorov’s theorem:

Proposition 4. There exists a stochastic process (Xa)a∈G defined at all points of the
real graph G with log-marginals on any set of nodes A containing the junction nodes
given by Eq. (6.5).

Proof. Let A and B be two subsets of nodes on the real graph G, for which the distri-
butions xA and xB are obtained by marginalizing S out of xA∪S and xB∪S in Eq. (6.5).
We note that a node on an edge is conditionally independent of any node on a different
edge given xS. Proposition 2 tells us that the marginals are consistent on each edge
with fixed endpoints, from which we can deduce that the definition of the definition of
the process on A ∪ S and B ∪ S provided in Eq. (6.5) is consistent since it is obtained
by marginalization of the joint distribution at the nodes A ∪ B ∪ S. The process being
consistent on A and A∪ S by definition of p(xA), and similarly on B and B∪ S, we have
proved Kolmogorov consistency between A and B which in turn proves the existence of
the process on the real graph.

We will refer to the obtained process, illustrated on Figure 6.2, as a continuous
graph Potts model or continuous graph Markov random field (CGMRF).

6.3 Learning with continuous graphs

6.3.1 Inference

Probabilistic inference is an operation which is key to learning and making predictions
in graphical models. It usually consists in computing the log-partition function, some
cliques marginals or the expected value of some sufficient statistics in exponential fam-
ilies.

In the case of our continuous graph G, if we consider any segment [a, b] with a, b ∈ S

and any a′, b′ ∈ [a, b], it should be noted that p(x{a,a′,b′,b}) = p(x{a′,b′}|x{a,b})p(x{a,b})
where p(x{a,b}) is computed as a clique marginal of p(xS), and p(x{a′,b′}|x{a,b}) reduces
to the model on the segment and hence has a simple analytical expression. This implies

127

6. CONTINUOUSLY INDEXED POTTS MODEL

that marginal distributions on any finite collection of nodes on the same edge can be
computed efficiently provided the edge marginals of the induced model on S can be
computed efficiently. In spite of the fact that the graph has uncountably many nodes,
inference can thus be performed by any classical inference algorithm scaling with |A∪S|
and |EA|. For example, if the graph is a tree the sum-product algorithm can be used, and
typically approximate inference techniques otherwise, such as loopy belief propagation.

6.3.2 Learning

In this section, we focus on learning the model from data. Since the process values
are only observed at a finite number of points, we are somehow always in the situation
where some nodes are unobserved. However, when all junctions nodes are observed the
joint likelihood of a given set of nodes has the closed form expression of Eq. (6.5). Since
this a curved exponential family, the log-likelihood is in general not a concave function
of the parameters.1

To avoid having to cope with positivity constraints, and given the rapid divergence
of the likelihood on the boundary of the domain we parameterize the likelihood by η and
the entrywise logarithm of Π, since given the remark following lemma 1, it is possible
to take Π positive entrywise.

For the CTMC directed tree, Holmes and Rubin (2002) consider the likelihood of the
entire process, show that it has a canonical exponential family form with a small number
of sufficient statistics and derive an EM algorithm based on this representation to learn
the parameters. A similar exponential family form can be obtained for our process,
with also a small number of sufficient statistics and in theory it is possible to construct
a similar EM algorithm. Unfortunately, in our case the M-step of the algorithm would
still require solving a convex optimization problem whose solution is not closed form.
We therefore do not pursue further this approach or detail the corresponding canonical
exponential family form of the process. We propose instead to optimize the likelihood
using a gradient based method. We show that the gradient can be computed from the
moments obtained by performing the probabilistic inference on the model in different
settings. In the next sections, we derive the form of the gradient of the likelihood, first
when all junction nodes are observed, then, when any set of nodes is observed, and
finally, when some nodes are observed and another (typically larger) set of nodes emits
observed vectors of features that are each conditionally independent given the state
of associated node, as in a hidden Markov random field setting. Since computing the
inference is typically intractable in graphs, we introduce a variational approximation in
6.3.2 that allows for faster (linear) computation.

Gradient of the likelihood on a segment Given that the model is parameter-
ized by exponentials of Π, the gradients involve the differential of the matrix exponential.
We will therefore repeatedly use the function ψl,Π with ψl,Π (X) = P ⊺

(

(PXP ⊺)⊙Γl,Π

)

P,

1It is however clearly concave when all edges are of the same length, because the constraint of
equality of the parameters for all potentials is a convex constraint.

128

6.3 Learning with continuous graphs

where Π = P diag(σ)P ⊺ is the eigenvalue decomposition of Π and

[Γl,Π]i,j =

exp (l σi)− exp (l σj)

σi − σj
if σi 6= σj

l exp(l σj) if σi = σj .

The function ψ is such that the gradient of x⊺ exp (lΠ) y is ψl,Π (xy⊺). It is essentially
switching to the spectral space of Π, where the gradient has a simple multiplicative form
given by Γ and then maps the result back to the original space. With this function, we
thus have

Lemma 5. The gradient with respect to variable Π of the log-likelihood ℓ of xa and xb
on a segment of length l whose end points are a and b can be written as

∇Πℓ (xa, xb; θ) = ψl,Π

((

xax
⊺
b
− E

[

XaX
⊺
b

])

⊘W l
)

.

We first prove the following intermediate result:

Proposition 6. For x and y elementary vectors of size K, for wich the only non-
zero value is set to one we have ∇Π [x⊺ exp (dΠ) y] = ψd,Π (xy⊺) , with ψd,Π (X) =
P ⊺ ((PXP ⊺)⊙ Γd)P and

[Γd]i,j =

exp (l σi)− exp (d σj)

σi − σj
if σi 6= σj

d exp(d σj) if σi = σj ,

with Π = Pdiag(σ)P
⊺

the eigenvalue decomposition of Π.

Proof. In Appendix D.

Using the previous result we can show the following proposition:

Proposition 7. ∇Π [x⊺Λ(d)y] = ψd

(

xy⊺ ⊘W d
)

Proof. With Proposition 6 we have that∇Π

(

x⊺H− 1
2 exp (dΠ)H− 1

2 y
)

= ψd

(

H− 1
2xy⊺H− 1

2

)

and since
x⊺Λ(d)y = log

(

x⊺H− 1
2W dH− 1

2 y
)

,

we have, with ⊘ denoting the termwise division,

∇Π (x⊺Λ(d)y) = ψd

(

H− 1
2

(

xy⊺ ⊘
(

H− 1
2W dH− 1

2

))

H− 1
2

)

= ψd

(

xy⊺ ⊘W d
)

. (6.6)

Finally we compute the gradient of the log partition:

129

6. CONTINUOUSLY INDEXED POTTS MODEL

Proposition 8. ∇ΠA (Π, h) = ψd

(

E [XY ⊺]⊘W d
)

Proof. It is a classical result in the theory of exponential families that ∇Λ(d)A (Π, h) =
E [X⊺Y]. By the chain rule, we have

∇Π (A (Π, h)) = J (Λ(d),Π)⊺∇Π [A (Π, h)] .

where J (Λ(d),Π) is the Jacobian of the function Π 7→ Λ(d), which is given by 6.6 :

[J (Λ(d),Π)](i,j),(k,l) =
∂ [Λ(d)](k,l)

∂Π(i,j)
= ψd

(

1k,l ⊘W
d
)

,

in which 1k,l denote theK×K matrix whose only non zero entry is 1 at k, l.Consequently

∇Π (A (Π, h)) = J (Λ(d),Π)⊺ × E [XY ⊺]

= ψd

(

E [XY ⊺]⊘W d
)

, (6.7)

Subtracting the equation found in proposition 7 from the one in proposition 8
yields the gradient of the likelihood with respect to variable Π announced in lemma 5.

Partially observed junction nodes To learn from partially labelled data it is
necessary to consider the likelihood of XB for B a set of nodes that does not necessarily
contain S. Let B be a set of observed nodes, i.e. for which we know the states xB, and
A a set of unobserved nodes containing S\B. We have the following log-likelihood:

ℓ (xA∪B; θ) =
∑

a∈A∪B
η⊺xa +

∑

(a,b)∈EA∪B

x⊺aΛ(θ, dab)xb −AA∪B (θ)

ℓ (xA|xB; θ) =
∑

a∈A∪B
η⊺xa +

∑

(a,b)∈EA∪B

x⊺aΛ(θ, dab)xb −AA|B(θ, xB) ,

We can rewrite the log-likelihood as follows (Wainwright and Jordan, 2008) :

ℓ (xB; θ) = AA|B (Π, h, xB)−AA∪B (Π, h) ,

and its gradient are therefore computed according to the following proposition:

Proposition 9.

∇Πℓ (xB; θ) =
∑

〈a,b)∈EA∪B

ψdab,Π

(

(µab|B − µab)⊘W
dab
)

∇ηℓ (xB; θ) =
∑

a∈A∪B
µa|B − µa

−1
2

∑

(a,b)∈EA∪B

(

µa|B − µa + µb|B − µb
)

.

with µab|B = E
[

XaX
⊺
b
|XB = xB

]

and µa|B = E [Xa|XB = xB].

130

6.3 Learning with continuous graphs

Hidden Markov model We consider a hidden Markov random field variant of our
model in which some nodes have, in addition to the state variable, a feature vector with
a state specific distribution. More precisely, we envision to learn from data on a graph in
which the states of a set of nodes B are observed and in which each node in a set A (with
A ∩ B 6= ∅) provides an observed feature vectors ya which is conditionally independent
of the rest of the graph given the corresponding node state xa. For simplicity, we assume
that S ⊂ A ∪ B.

The joint and conditional likelihood of observed and unobserved variables are very
similar as above

ℓ (xA∪B, yA; θ, κ) =
∑

a∈A∪B
η⊺xa +

∑

a∈A
log (p (ya|xa;κ))

+
∑

(a,b)∈EA∪B

x⊺aΛ(θ, dab)xb −AA∪B (θ, κ)

ℓ (xA|yA, xB; θ, κ) =
∑

a∈A∪B
η⊺xa +

∑

a∈A
log (p (ya|xa) ;κ)

+
∑

(a,b)∈EA∪B

x⊺aΛ(θ, dab)xb −AA|B (θ, κ, xB, yA) ,

which allows us to rewrite the likelihood of observations as ℓ (xB, yA) = AA|B (θ, κ, yA, xB)−
AA∪B (θ, κ).
Given that the model for p(ya|xa) is Gaussian or at least an exponential family, when
envisioning an EM algorithm to learn κ and θ, it is easy to see that the update for κ is
closed form while that of θ is not.

This motivates a variant of the EM algorithm which does not attempt to maximize
with respect to both κ and θ simultaneously but which either maximizes the expected
likelihood with respect to κ or maximizes it with respect to θ. The algorithm can then
be summarized as an E-M1-E-M2 algorithm, where the E-step is the usual computation
of expected sufficient statistics given current parameters, M1 solves for κ in closed form
and M2 maximizes with respect to θ using gradient ascent.1

Variational approximation For graphs with cycles, since inference is intractable,
we replace the likelihood by a pseudo-likelihood obtained using a variational approxi-
mation of the log-partition. Our variational approximation is the one associated with
the entropy of Bethe (see, e.g. section 4.1 in Wainwright and Jordan, 2008), but other
choices would be possible. The main motivation behind this approximation is that the
exact gradient of this pseudo-likelihood is directly obtained from the pseudo-moments
given by loopy BP. In practice, damping needs to be used (see Wainwright and Jordan,
2008, chap. 7).

1Note that gradient ascent itself requires to perform some inference to recompute the log-partition
function

131

6. CONTINUOUSLY INDEXED POTTS MODEL

In term of complexity, the parametrization of CGMRF could suggest that inference
is slower than in the discrete setting since the computation of the SVD of Π is required.
However, since the number of states is typically much smaller than the number of nodes
in the graph, the computational cost of the SVD is negligeable compared to the overall
cost of the algorithm. Hence, inference in the CGMRF is just as hard as for any discrete
MRF.

The log-likelihood is a curved exponential family and is in particular not a convex
function of the parameters, while it is convex for a standard MRF. As a consequence the
pseudo log-likelihood based on the variational approximation is also non-convex. We
take advantage of the likelihood’s invariance and impose that the largest eigenvalue of
Π be 0 and that the largest value of η be 0. We use gradient descent with a line-search
based on the Wolfe (see Nocedal and Wright, 1999, chap. 3) conditions to approximate
the maximum of the likelihood. Empirically the iterates are attracted to the same sta-
tionnary point from random initializations. It does however more iterations to converge
than the MRF counterpart. Experiments showed that the training for CGMRFs was
only two times longer than for regular MRFs.

6.3.3 Power of expression of the model

In this section, we discuss more precisely features of CGMRFs that are unique or com-
mon with other models and approaches existing in the literature.

First, we note that for a tree, our model is not equivalent to that of Holmes and
Rubin (2002). Their model uses a constant rate matrix (i.e. the Markov process is
homogeneous) while we use constant infinitesimal potentials, which do not lead to a
constant rate matrix on any orientation of the tree. If the tree is just the segment [0, L],
for s and t with 0 < s < t < L a CTMC is such that p(xt|xs) only depends on t− s and
not on L. By contrast for our model log p (xt|xs) depends also on L− t and L− s since
log p (xt|xs) = x⊺sΛ (t−s)xt + x⊺t η + x⊺tΛ (L−t)1 − x⊺sΛ (L−s)1, where for simplicity
we omitted the dependance in θ, and 1 is the constant vector equal to 1.

Consequently in our model the conditional probability does not only depends on
the position from the conditioned variable but also from the the position in the graph.
Conversly to a CTMP it is possible to have p (xt|xs) to be non-monotonic in t − s as
can be seen on Figure 6.3. To obtain this figure we consider a binary process on a chain
which state 1 is repulsive, ie transitions to state 0 are very attractive from either state,
even more so than 1 to 1 transitions. As a result the probability of being in state 1 is
higher on the edges of the chain than at its center because edges have only one neighbor
instead of two. Even when only conditioning on the first node of the chain this gives a
non-monotonic probability distribution.

To obtain Figure 6.3 we chose the following value for U and h:

U =

[

1.7 .9
.9 .6

]

and h =

[

1
1.3

]

.

We can see that when in state 1 the process has a higher incentive to switch in
state 0 in which it stays. This behavior is impossible to obtain with a homogeneous

132

6.4 Experiments

continuous time markov process. More generally our model take into account the graph
structure better than an oriented model, at the price of regular homogeneity.

0 0.5 1
0

0.5

1

CGRMF

CTMC

Figure 6.3: Conditional probability of being in state 0 on a segment conditionally on
the first node being in state 1 for different processes: (blue) CGMRF with state 1 being
repulsive, (red) different CTMC interpolation sharing the same conditional probability on
the last node.

Our model has in common with graph partitioning techniques and spectral clustering
(SC) that the distance between nodes are taken into account. But there are several
important differences: first, in SC, there is no model learning in the sense that no
parameters are learned to optimize the model (Bach and Jordan (2006) who learn the
metric for SC, are an exception). Second, our model captures that there could be
different transition probabilities between different classes along the graph which is not
possible in SC. Then, the main assumption in SC is that classes are separated by edges of
smaller weights so that each class is as disconnected as possible. By contrast, our model
authorizes (to some extent) transitions between classes on short edges and moreover
permits that each class corresponds to several connected components. Our models
extends naturally to a hidden Markov model that makes it possible to include feature
vectors for some nodes and not for others, which is not possible with SC techniques.

Another graph-based approach to classification which is perhaps more related to
ours is the work of Zhu et al. (2003) on binary classification with harmonic functions.
Indeed, the Gaussian field considered there is similar to the Potts model we obtain on
the junction nodes. The approach of Zhu et al. (2003) is however just concerned by
inference and not by learning, but their approach could be extended both to multi-class
classification and to perform learning of the parameters.

6.4 Experiments

We present in this section experiments on real as well as synthetic data.

6.4.1 Synthetic data

In this section we provide a detailed description of simulated experiments destined to
test the core model of CGMRF in a setting with no hidden layers.

133

6. CONTINUOUSLY INDEXED POTTS MODEL

We consider two multi-class classification problems on real graphs: in the first case
the real graph is a tree and the data is drawn exactly according to the model proposed
in this chapter, in the second case we consider the problem of predicting regions in the
plane corresponding to a quantization of level sets of a random Gaussian function

Potts process on an unoriented graph In this first experiment, we generate a
random weighted graph and generate data on this graph following the Potts model on
the continuous graph. We compare the labels predicted with a CGMRF trained with
the maximum likelihood principle, with the predictions obtained from the true CGMRF
model, and with the prediction of a standard Potts model, i.e. which ignores the length
of the edges (and which is thus the classical MRF counterpart of the CGMRF). We
consider a semi-supervised setting in which only a small fraction of the labels of the
nodes of the continuous graph are observed.

The graph is generated by picking greedily 3 random neighbors for each node and
each edge is assigned a length sampled from a gamma distribution. Then, the variables
at the junction nodes are sampled using Gibbs sampling, given a set of parameters.

We hide a portion of those variables, learn the parameters of the process following
the maximum likelihood principle using a trust-region algorithm and infer the labels of
the unseen nodes based those learned parameters using damped loopy belief propagation
(Wainwright and Jordan, 2008, chap. 7).

For each model, we construct a precision-coverage curve reported on Figure 6.5 and
based on sorting the probabilistic predictions by increasing values of the entropies of
these predictions.

As a possible contender to compare our algorithm with, we consider a variant of
the k-nearest neighbor (k-NN) algorithm on the graph that was called graph geodesic
k-nearest neighbor in Herbster and Pontil (2006) (even though not the focus of that
work) and where the geodesic distance is the shortest path in the graph in the sense
of the sum of the lengths of the edges. In practice, we find nearest labelled neighbors
in the geodesic sense using a simple algorithm based on a priority queue that explores
recursively neighbors of neighbors. We should stress that the algorithm is not a label
propagation algorithm based on the graph and that we actually follow geodesics until
we find labelled points. We also consider a variant of this geodesic k-NN in which
the prediction is obtained with weighted majority vote with weights that are inversely
proportional to the exponential of the graph induced distance between them. The
prediction is thus probabilistic and the predictor is a form of Nadaraya-Watson estimator
based on the geodesic distance. For both of these methods, the number of neighbors k
is chosen by cross validation. Finally we also compare with the naive algorithm which
predicts systematically the most frequent label. We do not make any comparisons with
graph partitioning algorithms for the reasons expressed in the discussion section.

The results are as follows. The baseline naive algorithm that constantly picks the
most frequent labels of the revealed nodes attains a precision of 61% for the experi-
ment (reported on Figure 6.5), and the geodesic k-NN algorithm cross validated on k
yields a similar precision of 60.9%. For the weighted geodesic k-NN, since it produces

134

6.4 Experiments

probabilistic predictions, we report its precision-coverage curve on Figure6.5. This
precision-coverage curves indicate that, even when a small proportion of node labels are
revealed, the precision obtained when learning parameters is almost as high as when us-
ing the true generating distribution and significantly above the precision obtained with
the discrete random Markov field. Confident predictions of our models have a much
higher precision than the k-NN algorithm, which can be very useful if not all data has
to be labelled or in an active learning context.

The labels form clusters on the graph and it is tempting to try and apply other
common clustering algorithm such as spectral clustering on the tree, but this fails for
the following reasons: first the clusters from the labels are not connected. Second
the main hypothesis of spectral clustering is that the different clusters are in different
connected component, or at least somewhat separated. This is not the case in this
setting for which the label can possibly transition on an edge of small length. Finally
the semi-supervision of the algorithm is not possible here as there are many more clusters
than labels, since a given label can appear on different clusters.

Level sets of a random Gaussian function As mentioned in the discussion
section, one of the advantages of our model over approaches based only on distance is
that it can learn that some transitions between classes are more likely than others. To
illustrate this we generate highly structured spatial data in the following way: we sample
points uniformly on [0, 1]2 and compute at each point the value of a random function
obtained as a random linear combination of Gaussian functions. We then quantize these
values into a finite number of classes. See Figure 6.4.

From such data, we construct a graph by connecting together the points whose
Voronoi cells are adjacent. We could also have used a k nearest neighbor graph.

As a baseline we implemented a classical k-NN algorithm based on the Euclidean
distance and a weighted k-NN algorithm using weights that are inversely proportional to
the exponential of the Euclidean distance to the point, like in the previous experiment
but with the Euclidean distance. Again k is chosen by cross validation. We compare
the precision of the result of learning for standard Potts model (MRF) and for the
continuous Potts model (CGMRF).

We report average precision-coverage curves over 100 replicates of the experiment
on Figure 6.6.

When making prediction for all unlabeled points, the different algorithms have the
following precision: for k-NN 77.4%, for the weighted k-NN 81%, the MRF 71.2%, and
our CGMRF 83.5%. It is interesting to note that weighted k-NN outperforms k-NN
by a large margin and that the MRF has lower precision than k-NN, even though it
has a much higher precision for confident predictions. In spite of the fact that the
precision coverage curve of the weighted k-NN is quite close, the misclassification error
of the CGMRF is 13% smaller than weighted k-NN, 27% smaller than k-NN, and 42.7%
smaller than the MRF. The gain in precision is not only obtained in average since the
misclassification error of the CMRF was lower than that of its closest competitor, the
weighted k-NN, in 99 out of 100 experiments, which means that the CMRF performs

135

6. CONTINUOUSLY INDEXED POTTS MODEL

significantly better and by a large margin than all competitors based on Wilcoxon
signed rank tests. It is interesting to note that the MRF has initially a higher precision
than the CGMRF on Figure 6.6. This is explained by the fact that predictions of
the CGMRF can be very confident if the closest neighbor is very close and behave in
those pathological case like 1-NN, while the MRF requires that a large fraction of the
neighbors have the same label to reach a similar level of confidence.

6.4.2 Experiments on real data

In geographic information systems, data is often aggregated either on regular grid or
on cells corresponding to abstract administrative boundaries, which do not necessarily
reflect the structure of a city. A fairly natural type of representation for urban environ-
ment is based on graphs and in particular weighted graphs which can encode a distance
information.

We consider a problem from geomatics in which this type of representation could
be beneficial and which consists in predicting building use in urban and peri-urban
environments from a few annotations and simple building shape characteristics that
can be extracted easily from aerial images. More precisely, we consider the transductive
learning problem of assigning city blocks to one category from {individual housing,
collective housing, industrial/commercial area}.

Building the city block continuous graph A city can be divided into city
blocks using its layout and road network as in Figure 6.7. Assuming that the blocks are
given, we compute the Voronoi diagram of the block centroids and link together blocks
with adjacent Voronoi cells. Edges are annotated with a proximity measure, in our case
the distance between their respective closest buildings. This provides a continuous graph
encapsulating the s tructure of the city. Each block is then annotated into one of three
categories : individual residential, collective residential and industrial/commercial area.
The blocks are annotated by hand using cadastral information, business registration
codes, and resorting to Google street view images for ambiguous blocks (see Figure 6.7).

Data descriptors and learning setting A block is then described by the weighted
average of characteristics of the buildings it contains, each building counting with a
weight proportional to its volume. We tested 10 different building descriptors, found
that floor area and height were the most discriminative, and that adding more descrip-
tors actually decreases the performance of all tested algorithms.

We use the example of Sevran, a French city of 50 000 inhabitants north of Paris.
We divided it into 461 blocks, 400 of which can clearly be assigned one of three labels
mentioned above and the rest being of insignificant size, ambiguous, or corresponding
to other categories such as schools or hospitals.

We consider the transductive learning problem of predicting all block labels from a
subset of labelled blocks. In our experiments, 7% of annotated labels, corresponding to
28 blocks, are used for training and the remaining are used for testing.

136

6.4 Experiments

Figure 6.4: Inference of the algorithm on a random Gaussian map. (top) Quantized levels
of the random Gaussian map. (middle) nodes drawn from the map with nodes whose labels
are provided to the algorithm circled in black. (bottom) predictions of the CGMRF with
mistakes marked with ×.

137

6. CONTINUOUSLY INDEXED POTTS MODEL

0 0.2 0.4 0.6 0.8 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

coverage

P
re

c
is

io
n

Precision−coverage in random continuous graph

Weighted k−NN

Oracle

MRF

CGMRF

k−NN

Figure 6.5: Averaged precision coverage curves for the inference in 28 random continuous
trees of 500 nodes with 6 states and 20% of the labels revealed. We plot the precision of
the inference with the exact parameters used to generate the data (red), parameters learnt
in the continuous graph (black), in the discrete graph, or Markov random field (green),
the weighted nearest neighbors alogorithm (blue) and the nearest neighbors alogorithm
(magenta).

Competing algorithms As baselines we consider two algorithms that do not take
into account spatial information: a generative Gaussian mixture model and a logistic
regression trained each using the 7% revealed labels. We also consider classical hidden
MRFs, which cannot take into account the distance, and whose graph is either the
same as for the CGMRF or a pruned graph in which all edges longer than a threshold
(corresponding to the average city block radius) have been removed. The different
graphs are illustrated on Figure 6.8. Note that the Gaussian mixture model does not
take the graph structure into account, and can be interpreted as an edgeless MRF

In all Markov models, we use Gaussian emissions to model the distribution of the
building descriptors given the block label, which can conveniently be optimized in closed
form. To train the CGMRF and MRF models we learn the parameter θ with the
maximum likelihood principle following the approach presented in section 6.3.2.

Results analysis For each model, we construct a precision-coverage curve, obtained
by sorting the probabilistic predictions by increasing values of their entropies, and re-
ported on Figure 6.9. The confidence bands represented corresponds to one standard
error for the estimation of the mean precision. The classification error at 100% coverage
is reported in Table 6.1.

We can see that enriching the simple Gaussian mixture model by adding a graph
structure significantly improves the overall performance. Building a MRF using all
the edges from the Voronoi proximity or only retaining a fraction of the shorter edges
yields similar results, on par with logistic regression. Building a CMRF using the edges

138

6.4 Experiments

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

coverage

P
re

c
is

io
n

Precision − coverage for random Gaussian map

Weighted k−NN

MRF

CGMRF

k−NN

Figure 6.6: Averaged precision coverage curves for the inference in 100 random gaussian
maps with 5 level sets, containing 1000 nodes each and with 20% of the labels revealed. We
plot the precision of the inference parameters learnt in the continuous Potts model (black),
in the Markov random Field (green), and the performance of thek-nearest neighbors algo-
rithm, weighted (blue) and not (red).

Figure 6.7: (left) Buildings and road network of Sevran. (middle) Division into city
blocks. (right) City blocks with annotations. Blue: individual housing, cyan: collective
housing, red: industrial/commercial area. (Best seen in color.)

Figure 6.8: (left) continuous graph used to train the HCGMRF, the darker the edge the
shorter the annoted distance, (middle) graph used for the HMRF including all edges or
(right) with only edges shorter than a threshold.

139

6. CONTINUOUSLY INDEXED POTTS MODEL

Figure 6.9: Precision coverage curves on Sevran. Averaged precision coverage
curves for the inference for 300 random resamplings of 7% of revealed labels on the city of
Sevran. (Best seen in color.)

Method error relative gain

CGMRF 6%
Gaussian Mixture 12% 50%
Logistic Regression 7.5% 20%

MRF 7.6% 21%
Pruned MRF 8.4% 29%

Table 6.1: Error at 100% coverage for the different methods in the Sevran dataset over
300 random resamplings. The relative gain represent the improvement in error by using
the best methods (CGMRF).

annotated with a distance measure leads to a performance which is significantly above
all others based on estimated standard errors.

When making prediction for all unlabeled points from the 7% of revealed anno-
tations, the different algorithms yield the following average precisions (over the 300
resamplings): for the Gaussian mixture model 88.0%, for logistic regression 92.5%,
the full MRF 92.4%, the pruned MRF 91.6% and our CGMRF 94.0%. Both pruned
MRF and full MRF outperform the simple Gaussian mixture model, but not logistic
regression, even though their precision at intermediate coverage is higher. The misclas-
sification error of the CGMRF is 20% smaller than that of logistic regression, 21.5%
smaller than for the best MRF model, and 50.2% smaller than for the Gaussian mixture.
The gain in precision is not only obtained in average since the misclassification error in
the CMRF was lower than MRF and logistic regression in respectively 193 and 293 out
of 300 experiments. Wilcoxon signed rank tests assigns respectively p-values of 7 ·10−26

and 3 · 10−24 to the common median hypothesis.

In this experiment, with 461 nodes and 2718 edges the inference takes less than 0.1s
on a CPU at 3.3GHz. Learning requires usually around 50 calls to the inference step
for the MRF (5s total), while it is closer to 100 for the CGMRF (10s total).

140

6.4 Experiments

GRAPH A

ANNOTATION A

GRAPH B

LEARNING LEARNING

TESTING

θ̂, κ̂

(a) No transfer learning.

GRAPH A

ANNOTATION A

GRAPH B

LEARNING LEARNING

TESTING

θ̂, κ̂

θ̂, κ̂

(b) Transfer learning

Figure 6.10: Illustration of the transfer learning process from a data set A to a data set
B. (a) The parameters are learnt in a semi-supervized fashion with graph A and partial
annotation A, then directly applied on graph B. (b) The parameters are learnt with graph
A and annotation A and serve as initilialization while unsupervized learning is performed
on graph B. The parameters relearnt on graph B may outperform those learnt on graph
A.

Transfer learning on another city We now consider the problem of predicting
block labels on a new unannotated city using partial annotation from a given city. More
precisely, we train our model with 15% of revealed labels from Sevran, and consider
several schemes to make predictions on the neighboring urban area formed by Pierrefitte-
sur-Seine together with Stains, for a total of 63000 inhabitants and 583 blocks, for which
both graph and features are available but no labels are revealed. We consider logistic
regression and the Gaussian mixture model trained from the annotated blocks from
Sevran as baselines, and test for each of the CGMRF and MRF the models learnt as
follows:

• θ and κ are learnt on data from Sevran

• idem followed by a single EM-step on κ alone (E-M2) on the graph of Pier-
refitte+Stains

• idem followed by an EM-step on θ (E-M1) and then an EM-step on κ (E-M2).

This process is illustrated in Figure 6.10 and the results on Figfure 6.11.

Results analysis The precision coverage curves for the different methods on the
Pierrefitte-Stains dataset, with and without relearning are reported in Figure 6.11. The
classification error at 100% coverage is reported in Table 6.2.

The results observe on Figure 6.11 demonstrates both the benefit of relearning, and
the superiority of the CGMRF approach. Indeed the relearning step decreases the error
by 15% for the CGMRF approach, allowing a gain of 46% and 35% against respectively
the Gaussian Mixture and Logistic Regression appraoch. The MRF approach however

141

6. CONTINUOUSLY INDEXED POTTS MODEL

Figure 6.11: Precision coverage curves for transfer learning. Averaged precision
coverage curves for the inference on the Pierrefitte/Stains conglomeration for 200 random
resamplings of 15% of revealed labels on the city of Sevran. (Best seen in color.)

Method error relative gain

CGMRF relearning 6.8%
CGMRF 8% 15%

Gaussian Mixture 12.6% 46%
Logistic Regression 10.4% 35%

MRF 10.6% 36%
MRF relearning 12% 43%

Table 6.2: Error at 100% coverage for the different methods in the SPierrefitte-Stains
dataset over 200 random resamplings. The relative gain represent the improvement in
error by using the best methods (CGMRF with relearning).

see its performance decreased by the tyransfer learning. This is explained by the non-
supervized nature of the relearning step, which relies entirely on the quality of the
initialization and the adequacy between the model and the data, both of which are
inferior in the MRF setting. The pruned MRF heuristic, performing worse with or
without relearning, is not represented here.

6.5 Conclusion

In this chapter, we constructed a Potts model over a continuous graph and showed
how to compute the likelihood of several of its variants as well as the corresponding
gradients, for the purpose of learning.

Our experiments on a problem from geomatics show that this model outperforms
regular MRFs, and compares favorably with logistic regression which although discrim-
inative does not leverage unlabelled data. Finally, we showed that the model can be

142

6.5 Conclusion

used to perform transfer learning from a first partially labelled graph towards a new
completely unlabeled graph.

We use the 359 labelled blocks (out of 583) of the Pierrefitte/Stains conglomeration
as a testing set and construct the precision-coverage curves reported on Figure 6.11 We
observe that the CGMRF setting is superior to its competitors, and that the relearning
step improves the performance. The MRFs does not perform as well, which can be
explained by the initial prediction being inferior, and relearning degrades its perfor-
mance. The setting where only one E-M2 step is performed yields in both cases results
comprised between the two other settings.

143

6. CONTINUOUSLY INDEXED POTTS MODEL

144

Bibliography

Bach, F. R. and Jordan, M. I. (2006). Learning spectral clustering, with application to
speech separation. The Journal of Machine Learning Research, 7:1963–2001. 133

Chiswell, I. (2001). Introduction to Lambda Trees. World Scientific Publishing Company.
125

Chung, W. H. and Speyer, J. L. (1998). Stochastic Processes, Estimation, and Control.
Society for Industrial and Applied Mathematics. 125

Durrett, R. (2008). Probability models for DNA sequence evolution. Springer. 121

Herbster, M. and Pontil, M. (2006). Prediction on a graph with a perceptron. In
Advances in Neural Information Processing Systems, pages 577–584. 134

Holmes, I. and Rubin, G. (2002). An expectation maximization algorithm for training
hidden substitution models. Journal of Molecular Biology, 317(5):753–764. 119, 120,
121, 128, 132

Landrieu, L. and Obozinski, G. (2014). Continuously indexed potts models on unori-
ented graphs. In UAI 20114-30th Conference on Uncertainty in Artificial Intelligence,
pages 459–468. 119

Nielsen, R. (2005). Statistical methods in molecular evolution. Springer. 121

Nocedal, J. and Wright, S. (1999). Numerical Optimization. Springer. 132

Nodelman, U., Shelton, C. R., and Koller, D. (2002). Continuous time Bayesian net-
works. In Proceedings of the Eighteenth conference on Uncertainty in artificial intel-
ligence, pages 378–387. Morgan Kaufmann Publishers Inc. 122

Norris, J. R. (1997). Markov chains. Cambridge University Press. 121

Seber, G. A. (2008). A matrix handbook for statisticians, volume 15. Wiley. 124

Von Bing, Y. and Speed, T. P. (2004). Modeling DNA base substitution in large genomic
regions from two organisms. Journal of Molecular Evolution, 58(1):12–18. 121

145

BIBLIOGRAPHY

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families,
and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–305.
130, 131, 134

Yaple, H. A. and Abrams, D. M. (2013). A continuum generalization of the Ising model.
arXiv1306.3528. 121

Zhu, X., Ghahramani, Z., and Lafferty, J. (2003). Semi-supervised learning using Gaus-
sian fields and harmonic functions. In Proceedings of the International Conference on
Machine Learning (ICML), volume 3, pages 912–919. 133

Zhu, X. and Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis
lectures on Artificial Intelligence and Machine Learning, 3(1):1–130. 119, 122

146

Conclusion

The key motivation of this thesis was to develop tools to handle some of the specifities
of spatial data, and more precisely geostatistics. This led us to consider the problems of
learning and generalizing from data whose structure is encoded by weighted graphs with
high variability in edge weight and node degrees, as opposed to the grid graphs typi-
cally used when considering images or raster data. Examining corresponding machine
learning questions led us to develop several mathematical methods for efficiently and
accurately solving graph-structured optimization and classification problems. While
initially conceived for geostasistics, the methods developed in this manuscript can also
be applied to more general problems that can be modelled by a weighted graph. This
thesis made two types of contribution: it developed faster algorithms for solving prob-
lems induced by existing models, and it introduced a new model to accurately represent
discrete processes defined on a weighted graph. We illustrated the efficiency of our
algorithms on image recovery and spatial data analysis tasks, for which we provided
context and analysis as well.

The first chapter introduced spatial data analysis, the specifities of geostatistics, and
how prior knowledge of the organization of spatial data imposes a specific structure on
associated problems. In chapters 2 to 4, we focused on the development of convex opti-
mization algorithms to efficiently solve problems structured by general weighted graphs.
In particular, we presented a novel preconditioning scheme for the Generalized Forward-
Backward proximal splitting algorithm well suited for graphs with high variance in edge
weights and neighborhood size, which lead to badly-conditioned structured optimization
problems. The proposed preconditioning allowed us to obtain faster convergence than
classical approaches, such as the first order primal dual algorithm, as demonstrated for
geostatistical data aggregation. In chapter 4, we introduced a new algorithm, cut pur-
suit, which exploits the relationship between total variation and graph-cut algorithms
in a simple and novel manner. It follows a working set scheme in which the graph is
iteratively split into constant regions until the optimum is reached. For problems that
can be well-estimated with few level-sets, our approach displays a significant gain in
computational speed. In the non-convex Mumford-Shah setting, we proposed a variant
of cut pursuit which is able to find better approximated solutions than the state-of-the-
art methods such as α-expansion, and in a shorter time. We illustrated the algorithm’s
performance with image recovery and spatial aggregation problems.

In chapters 5 and 6, we considered the problem of probabilistic classification for

147

BIBLIOGRAPHY

data structured by a weighted graph. We proposed a novel graphical model that we
call continuously indexed Potts model, which provides a mathematically principled way
of taking edge weights into account for inference and learning. This model extends the
continuous time Markov chains to the general undirected graph setting, with the length
of each edge corresponding to its weight. An important difference from Potts models is
that the associated process is defined at all points of the continuum forming the edges,
and not just at a discrete set of nodes. This model was used for the spatially-structured
problem of predicting land-use in urban environement. Our approach neither increases
the number of parameters nor the computation time compared to standard approaches,
and allows us to take into account more accurately the influence between neighboring
regions, leading to more precise classification.

The weighted graph framework being highly versatile and expressive, we argue that
many spatial analysis problems could be formalized and efficiently solved by extending
the methods proposed in this manuscript. Spatial data types not covered in this thesis,
such as multispectral aerial photography or LIDAR point clouds, can also be embedded
in a weighted graph structure. Tasks such as segmentation or regularization of semantic
classification could then be cast as the optimization problem similar to the ones tackled
in this thesis.

148

Appendix A

Converting spatial data to graph

Chapter Abstract

This appendix presents details on how to convert raster or vector data into a weighted
graph structure.

A.1 Converting spatial data to graph

In this section we present two methods for capturing the spatial structure of a geograph-
ical space with graphs. The examples are taken from Grand Lyon, an intercommunal
structure based around the French city of Lyon and its suburbs. With just under 1.3
million inhabitants, 500.000 distincts buildings and 40.000 roads segments, it is one of
the major French population and economic center. We consider two types of urban
data: raster and vector data.

A.1.1 Raster data

Raster data are geographical data aggregated over a regular grid, which often is isotropic.
For example the French National Institue for Statistics and Economic research have
made public a spatialized database composed of 18 socio-ecomomic variables on a
200 × 200m raster. The rasterization also causes several problems depending on the
scales at which we want to consider the data: from afar the resolution is too refined
and prevent the global tendencies and information from standing out. At closer view,
the 200× 200m raster appears coarse and do not respet the finer urban structure, such
as buildings blocks or roads network.

To convert a raster structure to a graph the general baseline is to compute the
adjacency graph of each of the rectangular cell. This approach has however several
limitations. In image and spatial data analysis it is common for the length of the
contour of a zone to intervene, and it is in particular the case for the models presented
in chapter 2 to 4. However in a square grid this length is obtained from the Manhattan
distance, which tends to induce numerous anisotropic artifacts, as a square of side 1

149

A. CONVERTING SPATIAL DATA TO GRAPH

Figure A.1: Rastered average income per consumption unit of Grand Lyon at different
scales (left) Intercommunality (middle) Lyon (right) First Arrondissement

π
4√
2π
16

Figure A.2: Illustration of the conversion of raster data into a weighted graphs. Remark
that the gaps are taken into account by adding empty cells.

and a circle of diameter 1 share the same perimeter. Another limitation is the case of
incomplete grids: as some cells are missing the adjacency structure do not capture the
gaps well.

To tackle those issues some empty nodes are added to complete the grid, and the 8
neighborhood is computed. The edge weight are chosen to best approximate the length
of the curves with the Cauchy-Crofton formula (Goldfarb and Yin, 2009, formula 2.5).

A.1.2 Vector data

Vector data are given at the level of each individual building and road. For each building
is given shape of the floor space as well as facade height. For each road is given its extent
and its type, as illustrated in Figure A.3.

Individual building are often not a convenient unit when modeling urban phe-

150

A.1 Converting spatial data to graph

Figure A.3: Buidlings shape (top) and roads network (bottom) of Grand Lyon at different
scales (left) Intercommunality (middle) Lyon (right) First Arrondissement

nomenons as it is too granular, making the choice of statistically significant parameters
difficult. Indeed morphological descriptors such as height and surface at the individual
building level have little spatial structure, and are not robust to arbitrary modelisation
choices. For example, the modeliser must determine if two buildings linked by a thin
stretch shall be considered as a large unique buildings, or two smaller ones? If so what
is the width threshold?

Hence it is desirable to automatically group buildings into geographical meaning-
ful units, such as urban blocks Keating and Krumholz (2000). This partition groups
together buidings that are : (a) close by (b) not separated by any roads. City blocks
are preferred to rasters as they are less arbitrary and more robust. Furthermore they
capture in part the spatial structure of the underlying urban space by taking into ac-
count the cadastral data and the road network simultaneously. We present here an
algorithmic approach to grouping buildings into city blocks. City blocks are defined by
the following properties:

(i) building within the same building blocks are close to one another and are not
separated by any roads

151

A. CONVERTING SPATIAL DATA TO GRAPH

(a) Fixed-radius neighbors (b) 4-nearest neighbors (c) Voronoi neighbors

Figure A.4: Adjacency graphs for different notion of neighborhood on a non-uniform
sample of points. Remark that only A.4c connects point across rows.

(ii) city blocks are polygonal and completely covers the floor space of enclosed build-
ings

(iii) city blocks boundaries do not cross roads.

Grouping buildings The first step is to find buildings that are close to one another.
There are numerous ways to cluster buildings by proximity, such as from k-nearest
neighbors or distance thresholding. We prefer however the parameters free relative
neighborhood graphs of Jaromczyk and Toussaint (1992), which amount to compute the
Voronoi cells of the centroids of all buildings and link buildings whose cells are neighbors.
Indeed this approach allows to better capture line-of-sight neighborhood, and is more
robust to irregular configuration of buildings. Indeed houses belonging densely packed
in a row would not be connected to the building they are facing in other directions
with fixed radius or the k-nearest neighbor approach, as illustrated in Figure A.4a and
Figure A.4b. The relative neighborhood graph would connect adjacent house as well as
houses from other rows, as seen on Figure A.4c. The latter approach defines a notion
of proximity that is more relevant to the urban setting capture better the urban notion
of promiscuity betwenen buildings (Cetinkaya et al., 2015).

Following (ii) we define the pruned relative neighborhood graph (PRNG) as the
relative neighborhood graph in which the edges crossing roads are removed. To avoid
linking buidlings that are too distant we also prune edges linking buildings whose cen-
troids are further away than a given threshold. This is the only parameter, and only
intervene on a minority of edges as the road network cuts most long edges. The con-
nected components of this graph provide a clustering of buildings that take the network
into account, see Figure A.5.

Computing the blocks’ shape Property (ii) imply that the polygon correspond-
ing to each connex component of the PRNG must cover entirely the surface area of

152

A.1 Converting spatial data to graph

(a) the selected roads (b) Buildings centroids

(c) Pruned relative Neighborhood Graph

: buildings

: roads
: buildings centroids
: edges of the PRNG
: edges too long
: edges intersecting a road

Figure A.5: Illustrtation of the process of the building grouping process. From the shape
of all buildings (a) is computed their centroids (b). Then the relative neighborhood graph
is computed and the edges that are either too long or intersecting a road are removed (c).

the inclosed buildings. We choose the convex hull of all points composing the buildings
contours and perform a dilatation, see Figure A.6. To verify property (iii) we must
reshape this polygon until it doesn not cross any roads. We define an intercepting path
a set of consecutive roads segments that crosses the initial polygon exactly twice and
both its free ends are oustide the polygon. Such a path split the polygon in two parts,
one containing all the buildings, and another that contains none, and therefore must be
discarded, see Figure A.6.

Computing the partition At this point of the process are computed a set of
polygons containing the different connected component of the PRNG and following the
road network. We would like to have a polygonal partition of the entire space, and
hence need to add polygons between the current blocks.
To proceed we compute the relative neighborhood graph of the vertices constituing the
boundaries of the city blocks, see Figure A.7b. To decrease redudnancy we merge the
triangles joining the same blocks, see Figure A.7c.

153

A. CONVERTING SPATIAL DATA TO GRAPH

(a) Initial block (b) Intersecting roads

: building

: Convex hull

: roads
: intersecting roads

: city block

Figure A.6: Illustration of the computation of the shape of a city block. First the convex
hull of all buildings is computed as well as the neighboring roads (a), then the intersecting

roads are detected (b) and finally the city block is retrieved (c).

The polygon added in this process, which contains no buildings, are called empty blocks,
and will defines regions with observation weight zero, as described in Chapter 3.

154

A.1 Converting spatial data to graph

(a) City blocks (b) RNG of the city blocks vertices

(c) final partition

: city block

: city blocks’ vertex
: edge of vertices’ RNG

: empty block

Figure A.7: Illustration of the computation of the polygonal partition. The relative
neighborhood graph of the verices forming the city blocks ’a) is computed (b). Then the
triangles joining the same blocks are merged (c).

155

A. CONVERTING SPATIAL DATA TO GRAPH

156

Bibliography

Cetinkaya, S., Basaraner, M., and Burghardt, D. (2015). Proximity-based grouping of
buildings in urban blocks: a comparison of four algorithms. Geocarto International,
30(6):618–632. 152

Goldfarb, D. and Yin, W. (2009). Parametric maximum flow algorithms for fast total
variation minimization. SIAM Journal on Scientific Computing, 31(5):3712–3743.
150

Jaromczyk, J. W. and Toussaint, G. T. (1992). Relative neighborhood graphs and their
relatives. Proceedings of the IEEE, 80(9):1502–1517. 152

Keating, W. D. and Krumholz, N. (2000). Neighborhood planning. Journal of Planning
Education and Research, 20(1):111–114. 151

157

BIBLIOGRAPHY

158

Appendix B

Appendix of Chapter 2

Proof of proposition 3 and 4

Proposition 3. For x⋆ ∈ Rn we have the following equivalence:

(

x⋆ = argmin
z∈Rn

Φ(z)

)

⇔ (x⋆ = proxΦ(x
⋆))

Proof. (⇒) If x⋆ = argminz∈Rn Φ(z) then by definition:

Φ(x) ≥ Φ(x⋆)

Φ(x) +
1

2
‖x− x⋆‖2 ≥ Φ(x⋆) +

1

2
‖x⋆ − x⋆‖2

x⋆ = proxΦ(x
⋆)

(⇐) If x⋆ = proxΦ(x
⋆) then by definition x⋆ = argmin{Φ(x) + 1

2 ‖x− x
⋆‖2}. Using

Proposition 1 we have that: 0 ∈ ∂Φ(x⋆) + (x⋆ − x⋆) and finally x⋆ = argminz∈Rn Φ(z).

Proposition 4. x⋆ is a fixed point of (2.7) if and only if it is a minimizer of f +Φ.

Proof.

x⋆minimizer of f +Φ

⇔ 0 ∈ ∂Φ(x⋆) +∇f(x⋆)

⇔ 0 ∈ λ∂Φ(x⋆)− x⋆ + x⋆ + λ∇f(x⋆)

⇔ (I − λ∇f)(x⋆) ∈ (I + λ∂Φ)(x⋆)

Consequently t = (I − λ∇f)(x⋆) is such that 0 ∈ x⋆ − t + ∂Φ(x⋆) and hence x⋆ is a
minimizer of 1

2 ‖x− t‖
2 +Φ(x), ie x⋆ = proxλΦ(t) = proxλΦ(x

⋆ − λ∇f(x⋆)).

159

B. APPENDIX OF CHAPTER 2

Equivalency between Douglas-Rachford and ADMM schemes

The following calculation shows how one can obtain the Douglas-Rachford iterates from
ADMM. In the ADMM framework, a splitting is operated on the variables of the two
functions: minx∈Rn f(x) + Φ(x) is equivalent to solve minx,z∈Rn f(x) + Φ(y) s.t x = y.
We write the augmented Lagrangian (Eckstein and Yao, 2012) corresponding to the
constrained optimization with dual variable z and parameter ρ > 0:

L(x, y, z) = (x) + Φ(y) + z⊺ (x− y) +
ρ

2
‖x− z‖2

The ADMM update to minimize this augmented Lagrangian is the following:

xt+1 = argminxL(x, y
t, zt)

yt+1 = argminy L(x
t+1, y, zt)

zt+1 = zt + ρ
(

xt+1 − yt+1
)

,

which can rewritten as:

xt+1 = argminx f(x) + z⊺x+ ρ
2

∥

∥x− yt
∥

∥

2

yt+1 = argminy Φ(y)− z
⊺y + ρ

2

∥

∥y − xt+1
∥

∥

2

zt+1 = zt + ρ
(

xt+1 − yt+1
)

.

The first line of the update can be rewritten as a proximal operation:

xt+1 = argmin
x

f(x) + z⊺x+
ρ

2

∥

∥x− yt
∥

∥

2

xt+1 = argmin
x

f(x) +
ρ

2

∥

∥

∥

∥

x− yt + z
1

ρ
zt
∥

∥

∥

∥

2

xt+1 = argmin
x

1

ρ
f(x) +

1

2

∥

∥

∥

∥

x− (yt −
1

ρ
zt)

∥

∥

∥

∥

2

,

and with w = 1
ρz and λ = 1

ρ we obtain:

xt+1 = argmin
x

λf(x) +
1

2

∥

∥x− (yt − wt)
∥

∥

2

xt+1 = proxλfy
t − wt,

which is identical to the first line of Douglas-Rachford updates. The second and
third lines can similarily be rewritten with the same change of variable

160

Bibliography

Eckstein, J. and Yao, W. (2012). Augmented Lagrangian and alternating direction
methods for convex optimization: A tutorial and some illustrative computational
results. RUTCOR Research Reports, 32. 160

161

BIBLIOGRAPHY

162

Appendix C

Appendix of Chapter 4

The total variation as an atomic gauge

It is well known that the total variation is the Lovász extension of the submodular
function F : B 7→ w(B,Bc) (see Bach, 2013, chap. 6.2). The base polytope associated
with F is the set BF

.
= {s ∈ Rn | s(B) ≤ F (B), B ⊂ V, s(V) = F (V)}, where

s(B)
.
=
∑

i∈B si. For any submodular function F such that F (∅) = F (V) = 0, which
is true in particular for all symmetric submodular functions, the Lovász extension γF
is a gauge function which is the support function1 of BF : γF (x) = maxs∈BF

〈s, x〉 and
its polar gauge is the gauge of BF (Bach, 2011). The total variation is thus a gauge
function and its polar gauge is TV◦ with

TV◦(s) =

max
∅(B(V

s(B)

w(B,Bc)
if s(V) = 0

+∞ else.

Chandrasekaran et al. (2012) have recently introduced the concept of atomic gauge.
Given a closed set A ⊂ Rn whose elements are called atoms, the associated atomic
gauge is the gauge γA of the convex hull CA of A ∪ {0}, i.e. γA(x)

.
= inf{t |x∈ t CA}.

The polar gauge is the support function of A ∪ {0}, that is γ◦
A
(s) = supa∈A∪{0}〈a, s〉.

Given that A ⊂ Rn, using Caratheodory’s theorem, we have that

γA(x) = inf
{
∑

a∈A ca | ∀a ∈ A, ca ≥ 0,
∑

a∈A ca a = x
}

.

Regularizing with an atomic gauge thus favors solutions that are sparse combinations
of atoms, which motivated the use of algorithms that exploit the sparsity of the solu-
tion computationally (Jaggi, 2013; Rao et al., 2015). It is clear from previous defini-
tions that Lovász extensions are atomic gauges. In particular the total variation is the
atomic gauge associated with the set of atoms A =

{

w(B,Bc)−1
1B+µ1V

}

B/∈{∅,V }, µ∈R
or equivalently the set A′ =

{

1
2w(B,B

c)−1(1B −1Bc)+µ′1V
}

B/∈{∅,V }, µ′∈R. Expressing

1See Rockafellar (1970) for definitions of gauge, polar gauge and support function of a set.

163

C. APPENDIX OF CHAPTER 4

solutions to problem regularized with the total variation as combinations of set indica-
tors or cuts as we propose to do in this paper is thus very natural from this perspective.

For the total variation, the Frank-Wolfe direction associated to s = −∇f(x) such
that 〈s,1V 〉 = 0 is

argmax
ξ:TV(ξ)≤1

〈s, ξ〉 = argmax
1B :B/∈{∅,V }

1

w(B,Bc)
〈s,1B〉, (C.1)

since the maximizer is necessarily an extreme point of the set {ξ | TV(ξ) ≤ 1} and
therefore among the atoms.

Proof of proposition 1

Proposition 1. For x ∈ Rn, if we set S = S(x) then

Q′(x,1B)=〈∇QS(x),1B〉+λwSc(B,Bc).

Moreover if 〈∇f(x),1V 〉 = 0 then

Q′(x, uB) = (γB + γBc)Q′(x,1B).

Proof. For B ⊂ V we have that Q′(x,1B) = 〈∇QS(x),1B〉+supǫ∈∂TV|Sc(x)〈ǫ,1B〉. This
can be shown using the chain rule for subgradients that we have:

∂TV|Sc(x) =
{

1
2D

⊺δ | δS = 0, ‖δSc‖∞ ≤ 1, ∀(i, j) ∈ E, δij = −δji
}

,

with D ∈ R2m×n the matrix whose only non-zero entries are D(i,j),i = wij and D(i,j),j =
−wij for all (i, j) ∈ E, and with the notations δS ∈ R2m and δSc ∈ R2m for the
vectors whose entries are equal to those of δ respectively on S and Sc and equal to zero
otherwise. Therefore if ǫ = 1

2D
⊺δSc then

〈ǫ,1B〉 = 〈
1
2δSc , D1B〉 =

1

2

∑

(i,j)∈Sc

δijwij([1B]i − [1B]j)

so that sup
ǫ∈∂TV|Sc(x)

〈ǫ,1B〉 = wSc(B,Bc). For the second statement, we have that

Q′(x, uB) = 〈∇QS(x), uB〉+ sup
ǫ∈∂TV|Sc(x)

〈ǫ, uB〉.

Letting g = QS(x), and since 〈∇f, 1〉 = 0 we have 〈∇g, 1〉 = 0 for g = ∇QS(x). Conse-
quently 〈g,1Bc〉 = 〈g,1− 1B〉 = −〈g,1B〉, we have

〈g, uB〉 = γB〈g,1B〉 − γBc〈g,1Bc〉 = (γB+γBc)〈g,1B〉.

Similarly, 〈ǫ, uB〉 = 〈
1
2δSc , DuB〉 =

1
2γB〈δSc , D1B〉−

1
2γBc〈δSc , D1Bc〉 = 1

2(γB+γBc)〈δSc , D1B〉
because D1B = −D1Bc . Taking the supremum over ǫ then proves the result.

164

Proof of proposition 3

Proposition 3. We have x = argminz∈Rn Q(z) if and only if minB⊂V Q
′(x,1B) = 0

and Q′(x,1V) = 0.

Proof. (⇒) If x is the solution of problem (1), the directional derivative of Q along
any direction must be nonnegative, which implies that Q′(x,1B) ≥ 0 for all B. But
minB⊂V Q

′(x,1B) ≤ Q′(x,1∅) = 0, which proves the first part. Then since w(V,∅) = 0
we have Q′(x,1V) = 〈∇QS(x),1V 〉, and, in fact, since all elements of the subgradi-
ent of TV|Sc are orthogonal to 1V we also have Q′(x,−1V) = −〈∇QS(x),1V 〉. So
0 ≤ Q′(x,−1V) = −Q′(x,1V) ≤ 0.

(⇐) Conversely we assume that minB⊂V Q
′(x,1B) = 0 and Q′(x,1V) = 0.

Since Q′(x,1V) = 0 and since wSc(V,∅) = 0 we have 〈∇QS(x),1V 〉 = 0. Now,
for any set A which is a maximal connected component of G|Sc

.
= (V, Sc), we also

have wSc(A,Ac) = 0 so that 0 ≤ Q′(x,1A) = 〈∇QS(x),1A〉 but the same holds for
the complement Ac and 〈∇QS(x),1A〉 + 〈∇QS(x),1Ac〉 = 〈∇QS(x),1V 〉 = 0 so that
〈∇QS(x),1A〉 = 0.

As a consequence the capacities of the graph Gflow defined in (3) of the article are
such that, for any set A which is a maximal connected component of G|Sc , we have

∑

i∈∇+∩A
csi =

∑

i∈∇−∩A
cit. (C.2)

Then since Q′(x,1∅) = 0 and since minB⊂V Q
′(x,1B) = 0 it is a minimizing argu-

ment. The characterization of the steepest partition as a minimal cut then guarantees
that there exists a minimal cut in Gflow which does not cut any edge in Sc and isolates
the source or the sink from the rest of the graph. Given equality (C.2), the set of mini-
mal cuts are the cuts that remove indifferently for each maximal connected component
A either all edges {(s, i)}i∈A or the edges {(i, t)}i∈A.

A consequence of the max-flow/min-cut duality is that to this cut corresponds a
maximal flow e ∈ R2m in Gflow. This flow is such that it is saturated at the minimal
cut, and we thus have esi = csi for all i ∈ ∇+ and eit = cit for all i ∈ ∇−, again because
of equation (C.2).

Writing flow conservation yields
{

esi +
∑

j∈Ni
(eji − eij) = 0 ∀i ∈ ∇+

−eit +
∑

j∈Ni
(eji − eij) = 0 ∀i ∈ ∇−,

(C.3)

with Ni = {j|(i, j) ∈ S
c}.

By replacing esi and eit by their value, the flow conservation (C.3) at node i rewrites

∇iQS(x) +
∑

j∈Ni

λwijδij = 0

∇iQS(x) +
1

2

∑

j∈Ni

λwij (δij − δji) = 0, (C.4)

165

C. APPENDIX OF CHAPTER 4

with δij =
eji−eij
λwij

for (i, j) ∈ Sc(x) and δij = δji = 0 for all edges (i, j) ∈ S(x). The flow

e must respect the capacity at all edges and hence 0 ≤ eij ≤ cij = λwij for all edges in
Sc(x). Since the flow is maximal, only one of eij or eji is non zero. Hence δ we naturally
have δij = −δji, and |δij | ≤ 1. But we can rewrite (C.4) as ∇QS(x) = 1

2λD
⊺δ with

δS = 0 and ‖δSc‖ ≤ 1 with D as in the characterization of the subgradient of TV|Sc

which shows that − 1
λ∇QS(x) ∈ ∂TV|Sc(x) thus that 0 ∈ ∂Q(x), and finally that x

minimizes Q.

Remark: We proved Proposition 3 using directly the flow formulation and the sim-
plest possible arguments. It is also possible to prove the result more directly using more
abstract results. We actually used the fact that x is a minimum of Q if and only if, for
S = S(x), − 1

λ∇QS(x) ∈ ∂TV|Sc(x). But it is possible to give another representation
of ∂TV|Sc(x) using that the subgradient of a gauge γ at x is ∂γ(x) = {s | 〈x, s〉 =
γ(x), γ◦(s) ≤ 1}. Indeed, for γ = TV, the set {γ◦(s) ≤ 1} is simply the submodular
polytope PF of F : B 7→ w(B,Bc). As a result ∂TV|Sc(x) = {s ∈ Rn | 〈s, x〉 =
1, ∀B, s(B) ≤ wSc(B,B)}. But having that minB⊂V 〈∇QS(x),1B〉 + λwSc(B,Bc) = 0
is equivalent to having − 1

λ∇QS(x) ∈ {s ∈ Rn | ∀B, s(B) ≤ wSc(B,B)}. There thus
just remains to show that 〈∇QS(x), x〉 = TV(x). Let ΠS denote the set of maximal
connected components of G|Sc = (V, Sc), so that we have x =

∑

A∈ΠS
cA1A. Since

wSc(V,∅) = 0, we have 0 = Q′(x,1V) = 〈∇QS(x), 1V 〉. Similarly for A ∈ ΠS , we
have wSc(A,Ac) = 0, which entails that 〈∇QS(x), 1A〉 ≥ 0. But then −〈∇QS(x), 1A〉 =
〈∇QS(x), 1Ac〉 ≥ 0 also, which proves 〈∇QS(x), 1A〉 = 0. Finally by linearity 〈∇QS(x), x〉 =
∑

A∈ΠS
cA〈∇QS(x), 1A〉 = 0 = TV|Sc(x) which proves the result.

Computation of the Frank-Wolfe direction

The computation of the Frank-Wolfe direction defined in (C.1) requires to optimize a
ratio of combinatorial functions. More precisely, it requires to solve

max
B/∈{∅,V }

N(B)

D(B)
with N(B)

.
= −〈∇f(x),1B〉, and D(B)

.
= w(B,Bc).

But B 7→ N(B)
D(B) it is the ratio of a supermodular function (in fact a modular function)

and a nonnegative submodular function, which, as we explain in this appendix, can thus
be minimized using a natural extension to combinatorial functions of the algorithm
proposed by Dinkelbach (1967) to minimize the ratio of a convex function to a positive
concave function.

We first consider the case where D is a positive function (which is not the case for
the cut function since D(∅) = D(V) = 0). We then have:

Lemma. Let N : 2V → R and D : 2V → R+ \ {0}. We have that λ0
.
= N(A0)

D(A0)
=

maxA⊂V
N(A)
D(A) if and only if N(A0)− λ0D(A0) = maxA⊂V N(A)− λ0D(A) = 0.

166

Proof. Let us define A0
.
= argminA⊂V

N(A)
D(A) and λ0 = N(A0)

D(A0)
. Since D is positive, we

have
{

N(A)− λ0D(A) ≤ 0, for all A ⊂ V,

N(A0)− λ0D(A0) = 0.

We conclude that A0 is a maximizer of N(A)− λ0D(A).

Conversely, let A0 be such that N(A0)−λ0D(A0) = argmaxA⊂V N(A)−λ0D(A) =

0, and so, for all A ⊂ V we have that N(A)
D(A) ≤ λ0 =

N(A0)
D(A0)

.

This lemma from Dinkelbach (1967), shows that, up to the determination of λ0, the
original maximization problem is equivalent to the maximization of Gλ0 for Gλ : A 7→
N(A) − λD(A). Moreover it is immediate that λ 7→ maxAGλ(A) is a nondecreasing
function which is equal to 0 for λ0, it is therefore easy to find λ0 with a bisection
algorithm.

The problem maxA⊂V Gλ(A) is easy to solve if Gλ is a supermodular function
(Dinkelbach’s paper considers the case of functions of real vectors and focusses on the
case in which G is convex). But Gλ is supermodular for all λ ∈ R if and only if N is su-
permodular and D is submodular. In that case, the algorithm proposed by Dinkelbach
is immediately applicable to our setting and we have the following result:

Proposition 7. If N and D are respectively supermodular and submodular and if D is
positive them Algorithm 6 is finitely convergent and converges to argmaxA⊂V

N(A)
D(A) .

Proof. The proof of this proposition follows the same arguments as the ones of Dinkel-
bach (1967).

Algorithm 6: Dinkelbach’s al-
gorithm

Initialization:
λ0 = 1, λ−1 = 0, t = 0
while λt 6= λt−1 do

At ← argmaxA⊂V N(A)−
λtD(A)

λt+1 ←
N(At)
D(At)

t← t+ 1
return At

Proposition 8. If N : 2V → R, D : 2V → R+ and if there exists a set Z ⊂ 2V

such that Z = {A | D(A) = 0} = {A | N(A) = 0}, if then M
.
= ArgmaxA/∈Z

N(A)
D(A) ,

M⋆ .
= ArgmaxA∈M N(A), and A⋆ ∈M⋆, if N(A⋆)

D(A⋆) > 0 then

M⋆ = argmax
A

N(A)

D(A) + η
∀η s.t. 0 < η < min

B:N(B)<N(A⋆)

D(A⋆)D(B)
N(A⋆)−N(B)

(N(B)
D(B) −

N(A⋆)
D(A⋆)

)

.

167

C. APPENDIX OF CHAPTER 4

Proof. For any such η, it is easy to check that N(A⋆)D(B)−N(B)D(A⋆)+η (N(A⋆)−
N(B)) > 0 for any B /∈ M⋆, which yields the result by dividing this inequality by
(D(A⋆)+η)(D(B)+η) and noting that for any A′ ∈M⋆ we must have N(A′) = N(A⋆)
and D(A′) = D(A⋆).

By setting Z = {∅, V } in the previous proposition, we see that it is applies to the
computation of the Frank-Wolfe direction for any point x such that 〈∇f(x),1V 〉 = 0,
because N(B) = −N(Bc) and D(B) = D(Bc), which guarantees that the maximum is
strictly positive. Proposition 7 then shows that the maximization is obtained by solving
a sequence of problems of the form maxB∈V −〈∇f(x),1B〉−λw(B,Bc) which are of the
exact same general form as (4.5) and are thus solved as max-flow problems. In practice
the algorithm converges in a few iterations.

168

Bibliography

Bach, F. (2013). Learning with submodular functions: a convex optimization perspec-
tive. Foundations and Trends in Machine Learning, 6(2-3):145–373. 163

Bach, F. R. (2011). Shaping level sets with submodular functions. In Advances in
Neural Information Processing Systems, pages 10–18. 163

Chandrasekaran, V., Recht, B., Parrilo, P. A., and Willsky, A. S. (2012). The convex
geometry of linear inverse problems. Foundations of Computational mathematics,
12(6):805–849. 163

Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science,
13(7):492–498. 166, 167

Jaggi, M. (2013). Revisiting Frank-Wolfe: projection-free sparse convex optimization.
In Proceedings of the 30th International Conference on Machine Learning, pages 427–
435. 163

Rao, N., Shah, P., and Wright, S. (2015). Forward–backward greedy algorithms for
atomic norm regularization. IEEE Transactions on Signal Processing, 63(21):5798–
5811. 163

Rockafellar, R. T. (1970). Convex analysis. Princeton University Press. 163

169

BIBLIOGRAPHY

170

Appendix D

Appendix of Chapter 6

Proof of lemma 1

In this section we prove the lemma regarding the neccessary and sufficient conditions
on the infinestimal generator Π to ensure the term wise positivity of exp (Π ∗ l), and
hence all possible binary edge potential. We first prove the following lemma:

Lemma. If Π is such that for all i 6= j, Πi,j ≥ 0, then the sequences u(k)i,j =
[

Πk
]

i,j
have, if it exists, a first non-zero value which is strictly positive.

Proof. We consider the set

Ω =
{

k ∈ N∗|∃ (i, j) , i 6= j | u
(k)
i,j < 0 and ∀t < k ⇒ u

(t)
i,j = 0

}

,

and assume that it is non empty. It must therefore have a smallest element that we
denote k0 = min (Ω), associated with the matrix coordinates (i0, j0).

By definition u
(k0)
i0,j0

=
∑

t 6=i0
Πi0tu

k0−1
tj0

< 0, which imply that the set

Ii0,j0,k0 =
{

i 6= i0 | Πi0,i > 0, u
(k0−1)
i,j0

< 0
}

cannot be empty.
For any element i of Ii0,j0,k0 the sequence ui,j0 must have taken a strictly positive

value before k0, or else we would have min (Ω) ≤ k0 − 1. This implies that the set

Ki,j0,k0 =
{

k ∈ N∗ | k < k0 − 1, u
(k)
i,j0

> 0
}

is not empty.

We now consider k1 = min
(

⋃

i∈Ii0,j0,k0
Ki,j0,k0

)

, associated with i1. Since k1 + 1 <

k0, we can deduce that u
(k1+1)
i0,j0

= 0.

But the fact that u
(k1+1)
i0,j0

=
∑

t 6=i0
Πi0tu

k1
tj0

= 0 together with the definition of k1

imply that Πi0,i · u
k1
i1,j0

> 0, so that we must have that
∑

t 6=i0,i1
Πi0tu

k1
tj0
< 0.

171

D. APPENDIX OF CHAPTER 6

This implies that we can find i2 6= i0, i1 such that uk1i2j0 < 0. But since k1 < k0 the
sequence ui2,j0 must have once before taken a strictly positive value, which contradicts
the definition of k1 .

Finally, we can conclude that the set Ω is empty, which proves the lemma.

We are now ready to prove lemma 1.

Lemma 1. For Π a square matrix, [exp (lΠ)]i,j ≥ 0 ∀l ∈ R+ and ∀i, j if and only if
Πi,j ≥ 0 for all i 6= j. Similarly, [exp (lΠ)]i,j > 0 for all i, j and ∀l ∈ R∗

+, if and only

if the sequences defined as u(k)i,j =
[

Πk
]

i,j
is such that its first non-zero value exists and

is strictly positive, for all i 6= j .

Proof. We first prove the lemma for the non-strict inequalities, i.e. that if we have
Πi,j ≥ 0 for i 6= j then

∀(i, j) ∈ K2, ∀l ∈ R+, [exp (lΠ)]i,j ≥ 0.

We define the continuous functions

fi,j : l 7→ [exp (lΠ)]i,j , ∀ (i, j) ∈ K2,

and introduce the sequences of derivatives of fi,j at zero :

u
(k)
i,j =

∂kfi,j (0)

∂lk
=
[

Πk
]

i,j
.

Since for i 6= j ,

u
(k+1)
i,j =

K
∑

t=1

Πi,t · u
(k)
t,j ≥ Πi,i · u

(k)
i,j

and u
(1)
i,j ≥ 0, it appears that either u

(k)
i,j is identically zero or its first non-null value

must be strictly positive.

On the diagonal, ∀i ∈ K, fi,i (0) = 1 and since fii (l) is continuous there exists an
ηi > 0 such that

∀s ∈ R, |s| ≤ ηi ⇒ fii (s) ≥ 0.

Outside of the diagonal, ∀i, j ∈ K2, fi,i (0) = 0. If the sequence ui,j is identically

equal to zero then fi,j (0) = 0 for all l ∈ R since fi,j (l) =
∑∞

k=0

lku
(k)
i,j

k! and we set
ηi,j = 1.

Otherwise, the first non zero derivative of fi,j at zero must exist and be strictly
positive, implying that we can find ηi,j > 0 such that ∀s ∈ R, |s| ≤ ηi,j ⇒ fij (s) ≥ 0.

With

η = min
(

(ηi)i∈K , (ηi,j)i,j∈K2

)

,

we have that ∀l ∈ R, ∃n ∈ N such as
∣

∣

l
n

∣

∣ ≤ η and then, ∀i, j ∈ K2, fij
(

l
n

)

≥ 0.

172

The properties of the matrix exponential gives us that [fij (l)] =
[

fij
(

l
n

)]n
in term

of matrix exponentiation, and since fij
(

l
n

)

≥ 0 ∀i, j ∈ K2, we also have

[

fij

(

l

n

)]n

≥ 0, ∀i, j ∈ K2

which proves that all the fi,j are non negative for i 6= j.

The proof for the strict inequality is similar because the first non zero derivatives
are strictly positive, implying that the fi,j must be strictly positive for t > 0.

We now go on to prove that conversly, if [exp (lΠ)]i,j ≥ 0 ∀l ∈ R+ and ∀i, j then
necessarily Πi,j ≥ 0 for i 6= j.

For all fi,j with i 6= j to be non negative the sequence of their derivatives at zero
must either have their first non-zero value positive, or be identically zero, which implies
that Πi,j ≥ 0. For the strict inequality, since we have that [exp (tΠ)]i,j > 0 the sequences

of u
(k)
i,j cannot be identically zero. This shows that the sequences of derivatives at zero

of the functions fi,j must have their first non-zero value and and that it must necessarily
be strictly positive, which proves the lemma.

Proof of proposition 6

Proposition 6. For x and y elementary vectors of size K, for wich the only non-
zero value is set to one we have ∇Π [x⊺ exp (dΠ) y] = ψd,Π (xy⊺) , with ψd,Π (X) =
P ⊺ ((PXP ⊺)⊙ Γd)P and

[Γd]i,j =

exp (l σi)− exp (d σj)

σi − σj
if σi 6= σj

d exp(d σj) if σi = σj ,

with Π = Pdiag(σ)P
⊺

the eigenvalue decomposition of Π.

Proof. In the remainder of the proof, we will use the matrix max-norm defined for
a matrix M ∈ RK×K by ‖M‖max = maxk,k′ |Mk,k′ |, and the matrix operator norm
‖M‖∞ = maxk

∑′
k |Mk,k′ |. We first compute the differential. For ǫ a K × K matrix

such that ‖ǫ‖max ≤ 1, we have:

173

D. APPENDIX OF CHAPTER 6

x⊺ (exp (d (Π + ǫ))) y − x⊺ (exp (dΠ)) y

= x⊺

(∞
∑

k=0

dk

k!

(

(Π + ǫ)k −Πk
)

)

y

= x⊺

(∞
∑

k=1

dk

k!

(

k−1
∑

t=0

ΠtǫΠk−1−t + r (ǫ, k)

))

y

=
∞
∑

k=1

k−1
∑

t=0

dk

k!
Tr
(

ǫΠk−1−tyx⊺Πt
)

+ x⊺
∞
∑

k=1

dk

k!
r (ǫ, k) y

= Tr

(

ǫ

(∞
∑

k=1

k−1
∑

t=0

dk

k!
Πtxy⊺Πk−1−t

)⊺)

+ x⊺
∞
∑

k=1

dk

k!
r (ǫ, k) y,

Where we have r (ǫ, k) are the terms of second order and more in the expansion of

(Π + ǫ)k. To prove that we do have the differential we must prove that
∣

∣

∣x⊺
(

∑∞
k=1

dk

k! r (ǫ, k)
)

y
∣

∣

∣

is bound by an term which is O(ǫ2).

∣

∣

∣

∣

∣

x⊺

(∞
∑

k=1

dk

k!
r (ǫ, k)

)

y

∣

∣

∣

∣

∣

≤

∞
∑

k=1

dk

k!
‖r (ǫ, k)‖max

≤ ‖ǫ‖2max

∞
∑

k=1

dk

k!

∥

∥

∥

∥

r

(

ǫ

‖ǫ‖max

, k

)∥

∥

∥

∥

max

≤ ‖ǫ‖2max

∞
∑

k=1

dk

k!

∥

∥

∥

∥

∥

(

Π+
ǫ

‖ǫ‖max

)k

−Πk −

k−1
∑

t=0

Πt ǫ

‖ǫ‖max

Πk−1−t

∥

∥

∥

∥

∥

max

≤ ‖ǫ‖2max

∞
∑

k=1

dk

k!

(∥

∥

∥

∥

∥

(

Π+
ǫ

‖ǫ‖max

)k
∥

∥

∥

∥

∥

max

+
∥

∥

∥
Πk
∥

∥

∥

max

+

∥

∥

∥

∥

∥

k−1
∑

t=0

Πt ǫ

‖ǫ‖max

Πk−1−t

∥

∥

∥

∥

∥

)

.

We have the immediate result:
∥

∥Πk
∥

∥

max
≤ Kk ‖Π‖∞, and the less immediate one:

∥

∥

∥

∥

∥

k−1
∑

t=0

Πt ǫ

‖ǫ‖max

Πk−1−t

∥

∥

∥

∥

∥

≤ kKk ‖Π‖k−1
max .

Injecting those expressions in the main inequality we have that:

∣

∣

∣

∣

∣

x⊺

(∞
∑

k=1

dk

k!
r (ǫ, k)

)

y

∣

∣

∣

∣

∣

≤ ‖ǫ‖2max

∞
∑

k=1

dk

k!

(

Kk

∥

∥

∥

∥

Π+
ǫ

‖ǫ‖max

∥

∥

∥

∥

k

∞
+Kk ‖Π‖kmax + kKk ‖Π‖k−1

max

)

≤ ‖ǫ‖2max (exp (dK ‖Π‖max + 1) + (dK + 1) exp (dK ‖Π‖max))

174

This proves that:

∇Π [x⊺exp (lΠ) y] =

∞
∑

k=1

k−1
∑

t=0

dk

k!
Πtxy⊺Πk−1−t.

Since

Πtxy⊺Πk−1−t = P ⊺σtPxy⊺P ⊺σk−1−tP = P ⊺

(

(Pxy⊺P ⊺)⊙
[

σtaσ
k−1−t
b

]

a,b

)

P

and
k−1
∑

t=0

σtaσ
k−1−t
b = [γk]i,j =

σki − σ
k
j

σi − σj
if σi 6= σj

kσk−1
i if σi = σj ,

we have

∇Π [x⊺exp (sΠ) y] = P ⊺
∞
∑

k=1

k−1
∑

t=0

dk

k!

(

(Pxy⊺P ⊺)⊙
[

σ−t
a σk−1−t

b

]

a,b

)

P

= P ⊺

(

(Pxy⊺P ⊺)⊙
∞
∑

k=1

dk

k!
γk

)

P

= P ⊺ ((Pxy⊺P ⊺)⊙ Γd)P. (D.1)

175

D. APPENDIX OF CHAPTER 6

176

Abstract
Modeling complex processes often in-
volve a high number of variables with an
intricate correlation structure. For exam-
ple, many spatially-localized processes
display spatial regularity, as variables cor-
responding to neighboring regions are
more correlated than distant ones. The
formalism of weighted graphs allows us
to capture relationships between inter-
acting variables in a compact manner,
permitting the mathematical formulation
of many spatial analysis tasks.
The first part of this manuscript focuses
on optimization problems with graph-stru-
ctured regularizers, such as the total vari-
ation or the total boundary size. We
first present the convex formulation and
its resolution with proximal splitting al-
gorithms. We introduce a new precon-
ditioning scheme for the existing gener-
alized forward-backward proximal split-
ting algorithm, specifically designed for
graphs with high variability in neighbour-
hood configurations and edge weights.
We then introduce a new algorithm, cut
pursuit, which used the links between
graph cuts and total variation in a work-
ing set scheme. We also present a vari-
ation of this algorithm which solved the
problem regularized by the non convex
total boundary length penalty. We show
that our proposed approaches reach or
outperform state-of-the-art for geostatis-
tical aggregation as well as image recov-
ery problems. The second part focuses
on the development of a new model, ex-
panding continuous-time Markov chain
models to general undirected weighted
graphs. This allows us to take into ac-
count the interactions between neighbour-
ing nodes in structured classification, as
demonstrated for a supervised land-use
classification task from cadastral data.

Keywords
machine learning, structured optimization, graphical mod-

els, total variation, Mumford-Shah, spatial data

analysis

Résumé
La modélisation de processus complexes
peut impliquer un grand nombre de vari-
ables ayant entre elles une structure de
corrélation compliquée. Par exemple, les
phénomènes spatiaux possèdent souvent
une forte régularité spatiale, se traduisant
par une corrélation entre variables d’autant
plus forte que les régions correspondantes
sont proches. Le formalisme des graphes
pondérés permet de capturer de manière
compacte ces relations entre variables,
autorisant la formalisation mathématique
de nombreux problèmes d’analyse de don-
nées spatiales.
La première partie du manuscrit se con-
centre sur la résolution efficace de prob-
lèmes de régularisation spatiale, mettant
en jeu des pénalités telle que la variation
totale ou la longueur totale des contours.
Nous présentons une stratégie de pré-
conditionnement pour l’algorithme gener-
alized forward-backward, spécifiquement
adaptée à la résolution de problèmes struc-
turés par des graphes pondérés présen-
tant une grande variabilité de configura-
tions et de poids. Nous présentons en-
suite un nouvel algorithme appelé cut pur-
suit, qui exploite les relations entre les
algorithmes de flots et la variation totale
au travers d’une stratégie de working set.
Ces algorithmes présentent des perfor-
mances supérieures à l’état de l’art pour
des tâches d’agrégations de données geo-
statistiques. La seconde partie de ce doc-
ument se concentre sur le développement
d’un nouveau modèle qui étend les chaînes
de Markov à temps continu au cas des
graphes pondérés non orientés généraux.
Ce modèle autorise la prise en compte
plus fine des interactions entre nœuds
voisins pour la prédiction structurée, comme
illustré pour la classification supervisée de
tissus urbains.

Mots Clés
Apprentissage machine, optimisation structurée, modèles

graphiques, variation totale, Mumford-Shah, analyse de

données spatiales

	1 Introduction
	1.1 Spatial data and geostatistics
	1.2 Spatial data analysis
	1.3 Characteristics of geostatistical data
	1.4 The weighted graph framework
	1.5 Variational aggregation on weighted graphs
	1.6 Graph structured prediction
	1.7 Organisation of the thesis

	2 Proximal methods for structured optimization
	2.1 Introduction
	2.2 Structured optimization problems
	2.3 Proximal splitting for structured optimization
	2.4 Generalized forward-backward
	2.5 Experimental setup and results
	2.6 Conclusion

	3 Aggregating spatial statistics with a generalized forward-backward splitting algorithm
	3.1 Aggregation as an optimization problem
	3.2 Interpretation

	4 Cut Pursuit: fast algorithms to learn piecewise constant functions on general weighted graphs
	4.1 Introduction
	4.2 A working set algorithm for total variation regularization
	4.3 Minimal partition problems
	4.4 Experiments
	4.5 Conclusion

	5 Learning in graphical models
	5.1 Introduction
	5.2 Undirected graphical models
	5.3 Potts model
	5.4 Continuous time Markov models
	5.5 Conclusion

	6 Continuously indexed Potts model
	6.1 Introduction
	6.2 Continuous graph Potts models
	6.3 Learning with continuous graphs
	6.4 Experiments
	6.5 Conclusion

	A Converting spatial data to graph
	A.1 Converting spatial data to graph

	B Appendix of Chapter 2
	Bibliography
	C Appendix of Chapter 4
	D Appendix of Chapter 6

