
HAL Id: tel-01751381
https://theses.hal.science/tel-01751381v2

Submitted on 3 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

On the Polling Problem for Decentralized Social
Networks

Bao Thien Hoang

To cite this version:
Bao Thien Hoang. On the Polling Problem for Decentralized Social Networks. Social and Information
Networks [cs.SI]. Université de Lorraine, 2015. English. �NNT : 2015LORR0016�. �tel-01751381v2�

https://theses.hal.science/tel-01751381v2
https://hal.archives-ouvertes.fr

École doctorale IAEM Lorraine

Problème de Sondage dans les Réseaux
Sociaux Décentralisés

∴ ∵ ∴
On the Polling Problem for

Decentralized Social Networks

THÈSE

présentée et soutenue publiquement le 3 Février 2015

pour l’obtention du

Doctorat de l’Université de Lorraine

(mention informatique)

par

HOANG Bao-Thien

Composition du jury

Président : Nacer Boudjlida LORIA/INRIA Nancy, Université de Lorraine

Rapporteurs : Hamamache Kheddouci LIRIS/CNRS, Université Claude Bernard Lyon 1
Sébastien Tixeuil LIP6/CNRS, UPMC Sorbonne Universités

Examinateurs : Stéphane Frénot CITI/INSA Lyon Telecom
Sébastien Gambs IRISA/INRIA Rennes, Université de Rennes 1

Directeurs de thèse : Abdessamad Imine LORIA/INRIA Nancy, Université de Lorraine
Christophe Ringeissen LORIA/INRIA Nancy

Institut National de Recherche en Informatique et en Automatique

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec la classe thesul.

Acknowledgements

First of all, I would like to express my deepest gratefulness and sincerest thanks to my supervisors,
Abdessamad Imine and Christophe Ringeissen, for their constant guidance, precious counseling,
encouragement, inspiration and invaluable suggestions throughout the period of my PhD study at
INRIA and Université de Lorraine. Abdessamad is a brilliant supervisor who proposed and gave
me some interesting topics to work on. Since the first working days at INRIA, he has provided me
everything, which I would need to succeed, with his enthusiasm tremendous patience and huge
effort. My work and publications could not be achieved without his white nights, particularly
the days reaching to the submission deadlines. Christophe spent his valuable time for discussing
insightfully and helped me in writing clearly my problems and solutions. I also thank Michaël
Rusinowitch who provided me his superior practical guidance. Michaël even is not my direct
supervisor but silently encouraged me to overcome the obstacles to take the risks required for
true innovation. That has been my wonderful opportunity and great honor to be their student
as well as to work with them during last three years.

Moreover, it is my honor to express indispensable gratitude to all members of CASSIS team,
including current and former people that I have had chance to interact with, Michaël Rusinowitch,
Mathieu Turuani, Véronique Cortier, Steve Kremer, Laurent Vigneron, Walid Belkhir, Cyrille
Wiedling, Huu-Hiep Nguyen, Éric Le Morvan, Mumtaz Ahmad, Houari Mahfoud, for their kind
assistance, supporting and providing fun environment during my study. I also present sincere
thanks to all my friends at LORIA lab, my Vietnamese friends in Nancy and many others for
sharing with me the living experiences that I could not learn at school.

Additionally, and much importantly, I am greatly thankful the funding sources that helped my
PhD work possible: INRIA-CORDI fellowship, ANR Streams project grant, and CNRS/Université
de Lorraine grant.

Finally, but definitely not the least, I wish to contribute my thankfulness to my beloved
parents and my entire family, especially thank to Ly and Bon, for their valuable loves, supports
and inspirations throughout my work and life.

i

ii

To my parents, Ly and Bon.

iii

iv

Abstract

The recent years have witnessed the explosion of online social networks (OSNs). For in-
stance, Facebook has more than 1.32 billion active users and 829 million daily active users on
average. OSN allows participants to do anything for a variety of purposes concerning business,
entertainment, world’s events and culture such as getting friendship, publishing and sharing in-
formation, exchanging documents, and expressing opinions in politics. Yet, in the existing OSNs
like Facebook, all user data or computations on such platforms are stored and processed by the
central authority that has the full knowledge and control over the network. This poses potential
server failures and particularly severe privacy problems. To overcome these problems, OSN de-
centralization allows for users to keep control on their own data and perform computations in a
distributed way without the existence of central server.

One of the current practical, useful but sensitive topic in OSNs is the polling problem.
In general, polling is the way to determine the most favourite choice amongst some options
from the participants. For example, one company of mobile phone has just launched a new
product and may want to ask customers whether or not its features are comfortable, and user
will choose one option between “Yes” or “No”. Currently, there are some studies and solutions
for this problem in centralized networks, such as FacebookPoll and Doodle. The challenge in
studying this problem is to devise a decentralized polling protocol (without resorting for a central
authority) such that it can perform a secure and accurate process to sum up the initial votes with
the presence of dishonest users, who try to bias the outcome and disclose the votes of honest ones.
Recently, Guerraoui et al. proposed polling protocols based on simple secret sharing scheme and
without requiring any central authority or cryptography system. However these protocols can
be deployed safely and efficiently provided that, inter alia, the social graph structure should be
transformed into a ring structure-based overlay and the number of participating users is perfect
square. Consequently, designing secure and efficient polling protocols regardless these constraints
remains a challenging problem.

In this thesis, we are interested in polling protocols based on decentralized OSNs. More
precisely, we address the problem of deploying these protocols for general social graphs and how
to transform these graphs in order to increase the privacy and/or accuracy properties. Our
contribution is therefore twofold.

As a first contribution, we propose three simple decentralized polling protocols that rely on the
current state of social graphs. The first polling protocol uses synchronous communication model
in which all connection delays are bounded, and the system is driven with the presence of global
clock. Furthermore, to prevent user misbehaviours, we introduce verification procedures based on
shortest path scheme and routing tables. The second polling algorithm is the enhanced version
of the first one. It runs in the asynchronous network model where the arrival order of messages
is unpredictable. Unlike the first protocol, we propose verification process without requiring the
user’s knowledge of shortest path lengths. The third polling protocol is an asynchronous one that
does not require any verification procedures and contains a method for efficiently broadcasting
message under a family of social graphs satisfying what we call the m-broadcasting property.
We show that, despite the use of richer social graph structures, the communication and spatial
complexities of this protocol are close to being linear. To evaluate the correctness of these
protocols, we carry out extensive experiments under the network of 1000 nodes. The experimental
result demonstrates that the dishonest coalition never affects the outcome of the poll outside the
theoretical bounds.

As a second contribution, to securely perform these large-scale computations without requir-
ing any central authority, current protocols use a simple secret sharing scheme, which enables
users to obfuscate their inputs. Nevertheless, these protocols require the minimum degree of the

social graph should not be smaller than a given threshold. This condition is not often satisfied
by all social graphs. In this thesis we formalize the “adding friends” problem such that we can
reuse the social graphs after some minimum structural modifications consisting in adding new
friendship relations. We also devise algorithms for solving this problem in centralized and decen-
tralized networks. We validate our solution with a performance evaluation on real-world social
graphs, which shows that our protocols are accurate, and inside the theoretical bounds.

Finally, the results obtained in this thesis encourage further researches of polling protocols
without using some overlay structures. In future, we plan to implement our suggested polling
algorithms as a plug-in over a distributed P2P social networks such as Diaspora, Friendica and
Tent, and study the polling problem with the presence of Byzantine nodes. This adversary model
will be stronger than the one we considered in this thesis.

Contents

Chapter 1

Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Contributions . 5

1.4 Roadmap . 7

Chapter 2

State of the Art 9

2.1 Polling Protocols . 9

2.1.1 Cryptographic-based approaches . 9

2.1.2 Secret sharing scheme based approaches 12

2.2 Graph transformation problem . 22

2.2.1 Matching problems . 23

2.2.2 Graph anonymization . 27

2.3 Summary and Discussion . 30

Chapter 3

Background 33

3.1 Distributed systems . 33

3.1.1 Communication . 33

3.1.2 Network knowledge . 34

3.1.3 Timing and synchrony . 34

3.2 The social network model . 35

3.2.1 Social graph model . 35

3.2.2 Algorithm performance . 39

3.3 Preprocessing algorithms . 41

3.3.1 Tree building . 41

vii

Contents

3.3.2 All-pairs of shortest paths and network diameter 43

3.4 Summary and Discussion . 44

Chapter 4

Synchronous Model-based Polling Protocol 45

4.1 Polling model . 45

4.1.1 User behaviors . 46

4.1.2 Social graph model . 46

4.2 Polling protocol . 47

4.3 Correctness . 51

4.3.1 Properties of protocol . 51

4.3.2 Protocol and graph without dishonest nodes 52

4.3.3 Protocol and graph with dishonest nodes 54

4.3.4 Particular networks . 61

4.4 Experimental evaluation . 63

4.5 Summary and discussion . 65

Chapter 5

Asynchronous Model-based Polling Protocol 67

5.1 Polling model . 67

5.1.1 Social interactions . 67

5.1.2 Description of graph model . 68

5.2 Polling protocol . 69

5.3 Correctness . 72

5.3.1 Protocol and graph without dishonest nodes 73

5.3.2 Protocol and graph with dishonest nodes 76

5.4 Experimental evaluation . 80

5.5 Summary and discussion . 82

Chapter 6

Polling Protocol with Efficient Communication 83

6.1 Polling model . 84

6.1.1 Social graph model . 84

6.1.2 Secret sharing based graphs . 85

6.2 Polling protocol . 85

6.3 Correctness and Complexity Analysis . 88

6.3.1 Protocol and graph without dishonest nodes 88

viii

6.3.2 Protocol and graph with dishonest nodes 89

6.4 Crash and message loss analysis . 96

6.5 Particular graphs . 97

6.6 Summary and discussion . 98

Chapter 7

On Constrained Adding Friends in Social Networks 99

7.1 Problem statement . 100

7.1.1 Notations . 100

7.1.2 Problem definition . 100

7.2 Centralized protocol . 103

7.2.1 Protocol description . 103

7.2.2 Correctness . 106

7.2.3 Greedy algorithm . 109

7.3 Decentralized protocol . 112

7.3.1 Model . 113

7.3.2 Protocol description . 114

7.3.3 Correctness . 116

7.3.4 Algorithms comparison . 118

7.4 Experimental evaluation . 121

7.4.1 Datasets . 122

7.4.2 Experimental setup . 122

7.4.3 Results . 123

7.5 Conclusion . 125

Chapter 8

Conclusion 127

8.1 Summary . 127

8.2 Discussion and future perspectives . 129

Appendix A

Résumé de la Thèse en Français 131

A.1 Contexte . 131

A.2 Motivation . 132

A.3 Contributions . 136

A.4 Contenu principal . 138

ix

Contents

Bibliography 141

x

List of Figures

2.1 A cluster-ring based overlay and the connection of node n. 20
2.2 SPP-Overlay sub-protocol. 21
2.3 Transform graph with only edge addition operation. 27
2.4 Examples of (a) a 4-anonymous graph and (b) a 2-anonymous graph. 29
2.5 Example of the heuristics approach of Liu and Terzi [123]. 29

3.1 Node n cannot identify whether s or v is dishonest. 38
3.2 Example of social graph. 39

4.1 Producers and consumers of node n. 47
4.2 Polling algorithm for k = 1. 49
4.3 A path ω = 〈s ≡ w1, w2, ..., wi−1, x, wi, ..., wl0+1 ≡ n〉 of length δL(s, n) + 1. . . . 56
4.4 Misbehaviors of the dishonest nodes in the broadcasting phase. Node n receives

different values emitted by the source s. (a) and (b) s and n connect together; (c)
and (d) s and n are not direct friend of each other. 58

4.5 Layered networks. 62
4.6 Cluster-ring based network. 62
4.7 A circle-based network. 63
4.8 Experiment with N = 400, D = 19 to check the accuracy of protocol. 64

5.1 Polling algorithm for k = 1. 71
5.2 Deadlock amongst nodes n ≡ u1, u2,..., u2(i−j+1). 74
5.3 Experiment with N = 1000, D = 50 to check the accuracy of protocol. 81

6.1 Polling algorithm for i = k = 1 and m = 3. 87
6.2 Probability to disclose a node vote with certainty. 90
6.3 Probability to disclose a node vote without certainty. 92
6.4 A graph where protocol tolerates m−1

2 Diam(G) dishonest nodes. 95
6.5 Examples of networks satisfying the 3-broadcasting-source condition. 97

7.1 Example of value κ and λ. 102
7.2 AlgoCen algorithm example. 105
7.3 Node v links to u in A′ and but not do in AlgoCen. 106
7.4 Graph where CS2 is better than CS1. 110
7.5 Graph where CS1 is better than CS2. 111
7.6 Graphs where CS2 is a 3

2 -approximation algorithm. 113
7.7 Example of AlgoDecen for c = 4 and lookahead l = 2. 115
7.8 Termination property in AlgoDecen. 117

xi

List of Figures

7.9 Distance δ(u, v) is reduced by a factor l. 118
7.10 Two weaker nodes u and v cannot contact with each other. 119
7.11 Graph where DS2 is better than DS1. 120
7.12 Graph where DS1 is better than DS2. 121
7.13 Number of added edges. 123
7.14 Percentage of added edges in the output graph. 124

A.1 Un overlay fondé sur le graphe anneau et la connexion de nœud n. 135

xii

Chapter 1

Introduction

Contents
1.1 Context . 1
1.2 Motivation . 2
1.3 Contributions . 5
1.4 Roadmap . 7

1.1 Context

Online social networks (OSNs) have been the most useful and typical technology of the social
media in the last few years. People can discuss, exchange photos and personal news, find others
of a common interest, and many more. The user number of such networks is blowing up exponen-
tially. Just to demonstrate one typical example, as of now Facebook has more than 1.32 billion
monthly active users and 829 million daily active users on average.1 OSN allows participants
to do anything for a variety of purposes related to business, entertainment, world’s events and
culture such as getting friendship, publishing and sharing information, exchanging documents,
expressing opinions in politics.

One of the current practical, useful but sensitive topic in OSNs is polling process. In gen-
eral, polling is the way to determine the most favorite choice amongst some options from the
participants. Each participant can distribute his/her preference by voting; and after aggregating
all votes, the majority option will be chosen as the final result. For instance, one company of
mobile phone has just launched a new product and may want to ask customers whether or not its
features are comfortable, and customers will choose one option between “Yes” or “No”. Another
example of polling is the scheduling that consists of a list of time options at which some tasks
or events are intended to take place, and every user has to express his/her choice from those
options.

Current survey showed that polling in general and scheduling in particular take an important
impact in the lives of Internet users.2 The scheduling experts frequently use electronic calen-
dars or online scheduling services to arrange their appointments. People spend an average of
17 minutes per day on coordinating personal and business meetings. In addition, that study
also revealed that online scheduling is more popular among people who mainly have business

1http://newsroom.fb.com/company-info/
2http://en.blog.doodle.com/doodle-analytics/

1

Chapter 1. Introduction

appointments and people who regularly schedule appointments with more than two individuals.
The stats also mentioned that there is one out of five people in average use an online scheduling
service, especially two-thirds of the Swiss citizens use online scheduling.

Doodle,3 the world’s largest and most successful tool for scheduling group events and voting,
has over 20 million monthly users, 30K new meeting polls on daily, and 20 new Doodle polls
each minute. In 2013, there are more than 17 million scheduling polls created by Doodle users.
Even small groups can save about 15 minutes per poll, which means that Doodle saved more
than four million hours for their users last year.

The electronic voting systems, particularly Internet voting systems, have gained popularity
and have been used for government elections and referendums in the United Kingdom, Estonia
and Switzerland as well as municipal elections in Canada and party primary elections in the
United States and France. These systems help to facilitate decision making processes, increase
participation and in some cases improve the quality of the final decision. Moreover, over the last
years, a number of online trends have been well affected the outcome of the elections. Social
media like OSNs can increase participation and provoke deliberation. In 2008, the presidential
election in the US became as the social media election because of Barack Obama’s highly effective
online campaign including OSNs.

1.2 Motivation

Polling protocol. The main part we tackle in this thesis is the polling problem in OSNs.
We here simply consider a binary polling with only two options “+1” or “−1” that stand for
the choices “Yes” or “No” (or “Agree”/“Disagree”, “Support”/“Against”). Assuming the system
consists of both honest and dishonest users.4 The goal in studying this problem is to devise a
polling protocol such that it can perform a secure and accurate process to aggregate the initial
votes with the presence of dishonest users, who try to bias the outcome and disclose the votes
of honest ones.

The polling problem is simple but it takes an important role in incorporating user’s opinion
online. Thus, currently, there are some studies and solutions for this problem in two settings,
centralized and distributed networks. In the centralized OSNs, like Facebook, all user data and
computations on such platforms are stored and processed by the central authority which has the
full knowledge and control over the network. For the particular case of polling systems, e.g.,
Facebook Poll5 and Doodle, a central server is used to collect the users’ votes and sum up all
values to obtain output. However, this approach suffers from server failures and particularly
privacy problems: each user might generally not want its vote to be known by a central entity,
and it is not guaranteed the server will not bias and disclose the user votes. Furthermore, it
should be noted that the centralized OSNs always consist of potential problem of uncovering
user information for any commercial usage. Just to illustrate a typical example, in 2009, the
Facebook’s new terms of services was planed to impose in the privacy policy that the companies
have an everlasting possession of personal contents even if the users already deactivate and
delete their account.6Although the policy was finally not applied, it infers the curiousness of
the companies about personal data and especially sensitive information. To overcome these
shortcomings of the central authority, OSN decentralization is an alternative approach where the

3http://www.doodle.com/
4We use these terms “user”, “node”, “vertex”, “site”, and “processor” interchangeably henceforth.
5http://apps.facebook.com/opinionpolls/
6http://www.nytimes.com/2009/02/19/technology/internet/19facebook.html

2

1.2. Motivation

users keep their own data and perform computations in a distributed way without the existence
of central server.

In this thesis, we are interested in polling protocol based on decentralized OSN, where privacy
of user is improved as information is not concentrated in one place. Each user site has only partial
network knowledge and it is generally not possible for her/him to know the whole network and
gather information or votes of other ones. In addition, we do not want to rely on cryptography
for ensuring privacy or accuracy of the protocol because [82, 83]: (i) the cryptography uses
complicated computation that impacts to the scalability and practicality of the protocols; (ii)
all cryptography techniques rely on the assumptions which are not proved and might be broken
such as the difficulty for factorizing the product of two big prime numbers or solving the discrete
logarithm problem (we assume a dishonest user has bounded computation in the sense it does
not have enough computing resources to break those cryptographic assumptions); and (iii) some
traditional distributed computing problems can be solved without cryptography as motivated
in [130,157].

Recently, Guerraoui et al. [82, 83] proposed, DPol, a simple decentralized polling protocol
based on secret sharing scheme (without using cryptography) where both honest and dishonest
participants are considered. Honest users completely follow the assigned protocol while dishonest
ones might not. All users care about their reputation: information related to a user is intimately
considered to reflect on the associated real person. Thus, they do not want their votes to
be disclosed nor their misbehaviors, if any, to be publicly exposed. In particular, dishonest
users may misbehave to promote their opinion or disclose the votes of honest users. However,
they never do any misbehavior which will jeopardize their reputation with probability 1. As
such dishonest users are rather restricted but more reflective of the real human behavior than
Byzantine users [120]. In addition, they propose some public verification procedures that are
executed simultaneously with the polling algorithm to detect the misbehaviors and to expose
dishonest users publicly, i.e., without disclosing the users’ votes. Actually, the main goal of these
procedures is to dissuade the user misbehaviors, instead of covering up the impact of dishonest
users (e.g., byzantine fault tolerance BFT [36]) or to prevent their impact (e.g., cryptography
based approaches [20]). The verification processes also enable honest users to tag profiles of
dishonest ones based on collected testimonies. More precisely, an activity affected to the profile
of the node tagged as dishonest is given. For example, when Alice is detected as a dishonest
user by Bob then Alice’s profile is tagged with the statement “Alice has been detected with
bad behavior by Bob” and Bob’s profile appears a tag “Bob accused Alice as a dishonest user”.
Notice that in social networks, no one would like to be tagged as dishonest by the protocol.
Moreover, the authors do not consider the situation where dishonest nodes wrongfully blame
honest ones (including two cases: a single user blames a group of other participants, and a
group of users colluding to blame an other set of users) or attempt to spam the system with
a numerous of blames, because there exist some tools or systems of social relationship between
users that distinguish between legitimate and wrongful accusations. For instance, reputation
systems like EigenTrust [114] and PowerTrust [193], spam mitigation systems like Ostra [138]
and SocialFilter [169], and recommendation systems like SumUp [177] and Digg [2]. Most of
these methods need a consensus of an unaffiliated jury to throw out the user who is considered
suspicious as it tries to blame his/her friends. They also do not regard to Sybil attacks since
these misbehaviors can be solved by other works such as SybilGuard [188], and SybilLimit [187].

In DPol, dishonest nodes can form a coalition so that they could get the full knowledge of
the network and collaborate to achieve these goals without being detected: (i) bias the result of
the poll by promoting their votes or changing the values they received from other honest nodes;
(ii) infer the opinions of other nodes. In order to unify the opinions and not give compensating

3

Chapter 1. Introduction

effects, all dishonest nodes make the single coalition D of size D. However, they also want to
protect their reputation from being affected. They are selfish in the sense if their accomplices
have being suspected, they prefer to take care about their own reputation to covering up these
accomplices.

Because of the presence of malicious users, generally, the design of typical polling system
must satisfy the following main properties:

• Privacy : The system must protect user vote from being leaked to other ones. In other
words, a dishonest node could not learn (except with negligible probability) any information
from the execution of the protocol than it could do from its own input and the output of
the protocol, and no way exists to deduce or verify that the vote has been cast. This
property also relates to the coercion resistance of vote disclosing by examining publication
of intermediate results prior to the end of a poll.

• Accuracy : The poll outcome must correctly reflect to the aggregation of all users’ decisions.
However, due to the absence of cryptography techniques that guarantee more easily the
correctness of the output, we here allow some impact from dishonest nodes to the output.
Thus, the protocol is said to be accurate if the difference between the output and the
expected result is negligible.

DPol ensures privacy of votes and final result accuracy by limiting the impact of dishonest
users. However, it has practically some disadvantages.

• Firstly, DPol relies on a structured overlay, cluster-ring-based structure inspired from [74].
Although it is efficient in term of communication cost, it is on top and really apart from
the normal social graph. It does not take into account the social links among users in the
sense it builds the uniform distribution of users into groups. This is not practical as we
have to target a special case using notion of group instead of reserving the normal structure
of the graph.

• Secondly, the number of users should be a perfect square number such that one social graph
with N users is divided into

√
N groups of size

√
N . It means the protocol could not be

deployed for other social graphs which have arbitrary size.

Later, several protocols and extensions inspired from the idea of DPol have been proposed
such as MPOL [65], PDP [25] and DiPA [24]. However these protocols have minor contribution
compared to DPol, and they all rely on the same ring-based overlay structure.

From our literature review on the polling problem, we raise the following issues:

• Issue 1: Can we devise decentralized polling protocols without cryptography and constraints
such as the use of overlay structure and perfect square number of users?

• Issue 2: Another issue mentioned as an enhanced version of the first one would also be
interesting and brought up, that is: Can we devise decentralized polling protocols with low
communication cost?

• Issue 3: We are aware that users’ sites may be unreliable and crashed, and the com-
munication channels between two sites may be lost. Therefore, the study of the effect of
these factors on polling protocol is also raised: If the network is not reliable in the sense it
contains site crashes and message losses, how these factors affect the polling protocol?

4

1.3. Contributions

Graph transformation. Another challenge that we address concerns graph transformation.
As introduced above, OSNs constitute live platforms exploited by huge number of users for
performing large-scale computations such as conducting polls about political issues and seeking
precise information on huge graph databases. To preserve data privacy during the running of
these computations, recent works [65,79,82,83,181] (and our polling protocols presented in this
thesis) use a secret sharing (SS) scheme. In the SS scheme, e.g., (k, n) scheme [167], a secret
(e.g., cryptographic key) of a user is divided into a set of n shares before sending to n other
users, such that the secret is recovered from any k or more shares in that set, but not with k− 1
or fewer shares. Thus, this scheme allows users to obfuscate their inputs without requiring any
central authority.

For instance, [24, 25, 65, 76, 82, 83] proposed distributed polling protocols in social networks
without requiring cryptographic system. Instead of disclosing his/her vote, the user generates a
set of shares that can regenerate the vote later, then sends only a share to each of its friends.
Thus, splitting the vote into many shares enables users to protect their choices’ confidentiality.

Using secret sharing based protocols imposes a threshold parameter on the number of friends
of each user, e.g., the minimum degree of the social graph should be not smaller than the given
threshold. Unfortunately, not all social graphs fulfill that condition. In other words, users cannot
perform any common computation (e.g. polling process) if this threshold is not achieved. To
satisfy the threshold condition, we try to enrich the social graph with new friendship relations.
We assume these new relations will be accepted by all users as they are relevant to their common
interest (i.e., performing any common computation in secure fashion). Indeed, these relationships
are only for convenience. They do not enforce their partners to share any resource.

To achieve the desired graph, we use a set of graph-modification operations on the initial
graph. For the sake of simplicity, we consider only edge-addition modification operation. A
naive approach consists in modifying a graph in such a way that each node tries to add as many
edges as possible to satisfy the threshold. Nevertheless, our main concern in this work is to
answer the following question, called adding friends problem: How can a graph be minimally
modified to satisfy the threshold on node degree?

The adding friends problem seems to be simple and trivial but it is really not like that. Even
if we try to solve that problem in the centralized network with the presence of central server who
has a global knowledge and privilege over the network, it is not intuitive to find out a suitable
strategy that always gives us the optimal solution. Thus, the next issue considered here is to
study the adding friends problem in the centralized networks:

• Issue 4: Adding friends protocols with full knowledge (centralized approach).

Solving the problem in the distributed system is more challenging because it is generally
not possible for a node to know whole network and gather information of other nodes to re-
quest/accept friendship relations. We also tackle this problem in the decentralized setting as
follows:

• Issue 5: Adding friends protocols with partial knowledge (decentralized approach).

1.3 Contributions

There are five issues to be addressed in this thesis. We respond to these challenges through
presenting the following key contributions:

1. Distributed polling protocols deployed on the original social networks.

5

Chapter 1. Introduction

2. Centralized and decentralized adding friends protocols.

Distributed polling protocols. In designing distributed polling protocols, we consider a
system model as the one in [82,83] (presented above).

Our main objective is to keep the natural property of the graph in the sense user and social
links should be preserved, and each individual can perform the voting process privately and
securely without transforming the graph into any overlay structure.

First, we propose the design of simple decentralized polling protocols not requiring any cen-
tral authority or cryptography system and using a secret sharing scheme. Second, we describe
properties required for the social graph to ensure the correctness of each protocol. Furthermore,
we cover a family of graphs and show their structures constitute necessary and sufficient con-
ditions to ensure vote privacy and limit the impact of dishonest users on the accuracy of the
polling output. It is noted that a ring-based overlay is included in our graph family.

More specifically, we describe the following three distributed polling algorithms:

• The first protocol uses synchronous communication model in which all connection delays
are bounded, and the system is driven with the presence of global clock whose pulses must
satisfy the following property: If a user n sends a message to his neighbor v at pulse p then
that message must arrive at v before pulse p+ 1. Thus, the system looks like to be driven
with the presence of global clock. We are aware that the data sent by one node may be
corrupted by intermediate dishonest nodes. Hence, an honest node may receive distinct
values of the same source. In this protocol, to prevent user misbehaviors, we introduce
verification procedures based on shortest path scheme and routing tables.

• The second polling algorithm is the enhanced version of the first one. It runs in the
asynchronous network model where no global clock exists and nodes cannot decide on their
actions based on clocks. A message sent from a node to its neighbor may arrive within
some finite but unpredictable time. Moreover, it is also impossible to rely on the ordering
of message arrivals from different neighbors to infer the ordering of various computational
events, since the order of arrivals may be arbitrary due to different message transmission
speeds. Unlike the protocol above, we do not need the user’s knowledge of the shortest
path lengths to prevent user misbehaviors.

• Despite the use of richer social graph structures (including the ring-based structure given in
[82,83]), one node can receive/send so many duplicated messages from/to other nodes. This
can lead to flooding the local storage and getting high communication cost. Inspired from
[166], we propose an asynchronous polling protocol which does not require any verification
procedures and contains a method for efficiently broadcasting message under a family of
social graphs satisfying what we call the m-broadcasting property. A graph satisfies the
m-broadcasting property for a parameter m ∈ N such that 1 ≤ m ≤ dmin, where dmin
is the minimum node degree, if for each source node, there exists a topological ordering
of the nodes such that every node either connects directly to the source or to some m
nodes preceding it in the ordering w.r.t. the source. Accordingly, instead of accepting all
messages originating from a source, a node stores only m ones passed by ordered paths.
We show that the communication and spatial complexities of this protocol are close to be
linear.

To describe carefully the distributed implementation of a polling problem, we consider the
following fundamental criteria: accuracy, privacy, and the number of dishonest nodes to be

6

1.4. Roadmap

tolerated. Using the same notion of privacy parameter k in [82, 83], we get the following results
in a system of size N with D dishonest users for these protocols: (i) the probability that an
honest node’s vote is disclosed with certainty is at most (D/N)k+1; (ii) up to 2D votes can be
revealed with certainty by the dishonest coalition; (iii) the maximum impact from the dishonest
coalition to the final result is (6k + 4)D; (iv) the maximum number of dishonest nodes that
the system can tolerate are respectively N/10 and (m − 1)Diam(G)/2 (where Diam(G) is the
network diameter) for the first two algorithms and for the last one. We validate our solution with
a performance evaluation which shows that our protocol is accurate and close to the theoretical
average impact, that is 4k + 2α + 2, where α is the proportion of users correctly voting. Our
result encourages the use of polling protocol without transforming the social graphs into other
overlay structures.

Graph transformation. We first describe the adding friend problem that adds a minimum
number Φ of edges to a given graph while satisfying a threshold parameter c.

For centralized social networks, we propose an algorithm computing the exact value of Φ with
the time complexity in the worst case O(N4) (and in the best case O(cN)). To decrease this
upper bound, we prove that there exist 3

2 -approximation algorithms which take time O(cN2).
As for decentralized social networks, we show that no distributed algorithm is better than

the centralized solution with respect to value Φ for all graph structures. In addition, we also
prove that there is no best decentralized solution, i.e., any decentralized algorithm can be worse
than other decentralized one for some graphs, but it can be better in some other scenarios. We
validate our solution with a performance evaluation on real-world social graphs which shows that
our protocols are accurate and inside the theoretical bounds. To our best knowledge, our work is
the first theoretical study of the adding friend problem in centralized and decentralized models,
using only a simple edge-addition operation.

Publications. Some parts of this thesis have been published and submitted to the following
conferences and journals:

1. B.-T. Hoang and A. Imine. On the Polling Problem for Social Networks. In OPODIS,
pages 46–60, 2012.

2. B.-T. Hoang and A. Imine. On constrained adding friends in social networks. In SocInfo,
pages 467–477, 2013.

3. B.-T. Hoang and A. Imine. Flexible Polling Protocol for Decentralized Social Networks.
Submitted to ACM Transactions on Internet Technology.

1.4 Roadmap

The rest of this thesis is organized as follows.
Chapter 2 gives a brief review of prior works related to polling problem and graph trans-

formation. We distinguish the difference of existing works from ours as well as highlight the
shortcomings and inappropriating points to apply them directly to our considering problems.

In Chapter 3, we provide some definitions for the basic model components and describe our
basic concepts and notations used throughout the remaining of the thesis.

In Chapters 4 and 5, we present our polling protocols with verification procedures respectively
running in synchronous and asynchronous network models. Chapter 6 represent our decentralized
polling protocol that requires no verification process and can be used for a family of social graphs
satisfying what we call them-broadcasting property (wherem is less than or equal to a minimum
node degree). Each of these chapters introduces first the polling model, and a family of social

7

Chapter 1. Introduction

graphs. It then presents the polling protocol and analyzes the correctness of the protocol with
and without the presence of dishonest nodes. We validate our solution with a experimental
evaluation.

In addition, the polling protocols in Chapters 4 and 5 assume the existence of reliable com-
munication among nodes. However, nodes communicate by UDP which may suffer from message
loss on the communication channels or nodes’ crash. In chapter 6, we analyze the effect of these
factors on the protocol by considering impact on the final outcome and the probability of a node
failing to decide and compute the final result.

Chapter 7 first describes our adding friends problem definition. It then presents the adding
friends protocols for the centralized social networks with their correctness properties. We also
describe the distributed algorithms, and show that no one amongst them is the best, as well
as they cannot compete with the centralized solutions. We compare the performance of our
protocols by illustrating our experimental results.

In Chapter 8, we conclude with a summary of this dissertation, discuss our achievements as
well as limitations, and outline some possible future research directions.

Finally, the French version of the introduction is presented in Appendix A.

8

Chapter 2

State of the Art

Contents
2.1 Polling Protocols . 9

2.1.1 Cryptographic-based approaches . 9
2.1.2 Secret sharing scheme based approaches 12

2.2 Graph transformation problem . 22
2.2.1 Matching problems . 23
2.2.2 Graph anonymization . 27

2.3 Summary and Discussion . 30

As presented previously, we are dealing, in this thesis, with two main problems. Firstly,
we tackle the problem of devising distributed polling protocols based on secret sharing and the
current state of social graphs. Secondly, we address the problem of transforming optimally the
social graphs in order to adapt them to the secret sharing scheme. This chapter provides a review
of the evolution of some prior works related to our problems such as distributed polling protocols
and graph modification. We also present their shortcomings as well as figure out several issues
that those works are inadequate for our objective.

This chapter is organized as follows. Section 2.1 presents current research related to polling
protocols including the approaches based on cryptography and secret sharing schemes. Section
2.2 illustrates some typical studies related to graph anonymization. Section 2.3 concludes the
chapter.

2.1 Polling Protocols

Research related to distributed polling has an extremely rich state-of-the-art, aimed to ensure
(i) user privacy and anonymity, i.e., users want to preserve the confidentiality of their votes, and
(ii) the accuracy of the polling outcome. We divide existing research into two main categories:
cryptographic based approaches and secret sharing scheme based approaches.

2.1.1 Cryptographic-based approaches

To securely perform a polling work, cryptography techniques have been used for encrypting
the users’ votes before collecting and decrypting the final result. More precisely, the existing
protocols are based on the following methods:

9

Chapter 2. State of the Art

MIX-net

Introduced by Chaum [37, 41], a MIX-net is computationally secure anonymous channel which
is based on cryptography, regardless any trusted authority and allows an electronic mail system
to obfuscate the content of user communication and the user identity. In this system, each site
consists of a control center called mix. The role of a mix is to hide user in the processing, ensure
no collisions amongst users, and preserve user identity. The anonymous channels are closely
related to voting schemes since they all hide the correspondences between the senders and the
receivers, and ballot and the voting user. Hence, Chaum [37, 41] presented an election scheme
based on this technique in which each user verifies that the ballots are signed with registered
users to form digital signatures. However this system has two drawbacks: (i) the length of
the ciphertext delivered from the sender is very large since it is proportional to the number of
mixes; (ii) the vote fairness is not guaranteed, namely, if one vote is interrupted then all other
votes will be revealed. Another anonymous channel, Dining Cryptographers networks (a.k.a. DC-
nets) [39], and an election scheme [40] based on that anonymous channel are also given by Chaum.
Differing from the mix-net where user identity is preserved by the mix, each user in DC-net has its
own responsibility of providing anonymization. Despite the advantage of unconditionally secure
(which refers to the systems not relying on unproven computational hardness assumptions), DC-
net still has the message collision problem and all users must share initial random numbers.
To overcome these shortcomings, the authors of [147] described a secure anonymous channel
which resolves the problem of the ciphertext length expansion, and an election scheme based
on it which ensures the vote fairness. Other work [111] improved the robustness of MIX-net
by suggesting a technique called Randomized Partial Checking (RPC). This technique is well
suited and has already been used in binding elections in recent years. Nevertheless, Khazaei and
Wikström [116] argued that RPC scheme has a serious security defect, which was consistently
missed in implementations.

Robust scheme using mix-net channels was first introduced in [144] but this scheme has heavy
communication cost because each node must contact regularly with others. Later some other
schemes such as [7] are proposed to reduce the communication cost. In [109, 110], Jakobsson
presented schemes that use mix-net channel and can efficiently do the computation for the large
size of network. Nonetheless, these approaches require the existence of a verifier which has to
trust at least one server to convince himself the accuracy. It means the accuracy is ensured only
when the system has no conspiracy. To overcome this shortcoming, Abe [8] depicted universally
verifiable schemes such that each node neither trust nor contact frequently with any server to
verify the correctness, and hence the communication cost is low. Despite these enhancements,
there remain limitations on the efficiency of these schemes: (i) whenever a mix is detected with
misbehaviors then the mix-net must either be restarted or delayed until a replacement is found;
(ii) there are not much opportunities for mixes to work in parallel.

Blind signature

Blind signature introduced by Chaum [38] is an anonymous credential, i.e., an authorization token
generated by a central trusted authority and allows user to anonymously access to the system.
Inspiring from this anonymous credential and RSA algorithm, the authors of [30] devised a voting
protocol which enables user to anonymously vote as well as verifies the correctness and the trust
level of the voting procedure. However this protocol has some shortcomings. First it is based
on the anonymous credential which is known as credential sharing in the sense each user may
transfer that credential to others (including dishonest users) that will use it. Moreover, dishonest
users can vote more than once and affect to the final result. Thus, it assumes each user has to
vote only once. Second, it relies on the presence of polling server which collects and counts the

10

2.1. Polling Protocols

votes of participants before informing the result. This makes this solution more closely related
to centralized resolution.

Other schemes using blind signatures also take care of the problems of fairness and privacy
(like the schemes based on mix-net channels). For the fairness problem, the center knows the
immediate result of the computation and thus reveals the result. For the privacy problem, vote’s
privacy is revealed if both the administrator and the counter collude together.

For instance, the scheme in [160] solves the privacy problem, unfortunately it still consists
of fairness problem. Fujioka et al. [71] proposed a voting scheme for large scale elections that
solves both problems of fairness and privacy. Yet, voters have to send the decryption keys (with
their real identifications) to the authority at the end of voting process. Hence, the security of
the protocol might not be preserved if the authorities have conspired with dishonest users.

Homomorphic encryption scheme

Based on public key cryptosystems of ElGamal [75] (relying on the difficulty of computing loga-
rithms over finite fields) and Paillier [146], Cramer et al. [55] presented a multi-authority secret-
ballot election scheme that ensures user privacy, universal verifiability, and robustness. In that
scheme, the time and communication complexities are minimal and independent of the number
of authorities (comparing to other works such as [54] where these complexities are linear in the
number of authorities) and each user simply gives an encrypted message containing a proof of
its vote.

In addition, Benaloh and Tuinstra [22] introduced the receipt-freeness concept which mentions
that each voting user could not show he/she has voted for a particular option and he/she could
neither obtain or construct a receipt describing the content of his/her vote. Based on this concept
and MIX-net channel, authors of [162] suggested a voting protocol. But the processing load is
heavy due to tallying in MIX-net scheme. Other scheme using receipt-free concept and blind
signatures was presented by Okamoto [145]. This scheme achieves anonymous communication
but requires the activeness of user in entire polling process; this is not so practical. Hirt and
Sako [94] proposed a polling protocol based on the protocols in [55, 162] and the verifier proofs
in [112]. Although the vote is not disclosed by the receipt, their solution has possibility for
coercion because of the so-called randomization attacks, and it also relies on unrealistic physical
assumption, namely, users’ misbehaviors are negligible.

Cohen and Fischer [50] showed a desirable robustness and verifiable voting scheme. Although
there is high confidence in the correctness of the outcome in such a scheme, the user privacy is
not ensured because of the presence of a central server which may access and compromise every
user’s vote. The work [23] avoided that limitation by distributing the functionality of the central
server in the sense no part of server can detect the vote privacy and even if the system contains
only one honest user, dishonest users could not compromise the privacy of that honest one. The
accuracy of the result is obtained or verified by all users. In that scheme, however, if one of the
users fails to complete the protocol properly, the entire voting process will be failed and no final
result is obtained since they need the exact result.

Sako and Kilian [161] generalized the approach in [23] in such a way that it uses families
of homomorphic encryptions to build some simple interactive proofs. Besides preserving pri-
vacy, and moderating communication cost, low round complexity, that approach also has other
shortcoming: it violates the vote independence, i.e., users must be independent in choosing their
options while voting.

Remarks. Polling protocols using cryptography help users to ensure vote privacy. However,
these solutions have the following drawbacks:

11

Chapter 2. State of the Art

• First, due to the complicated computation characteristics of cryptography, the time and
message complexities of these protocols are high and impact to the scalability and practi-
cality of the protocols. Indeed, no one could wait for hours or even days just to know the
result of this simple binary polling problem.

• Second, some cryptography technique relies on the assumptions which are not proved and
might be broken such as the difficulty for factorizing the product of two big prime numbers
or solving the discrete logarithm problem.

In this thesis, we aim to design a polling protocol independent on cryptography. Instead of
giving exactly the poll outcome, we tolerate some impact from dishonest users on accuracy but
the scalability and performance are preserved.

2.1.2 Secret sharing scheme based approaches

Secret sharing schemes were introduced by both Blakley [26] and Shamir [167] independently
in 1979 as a solution for safeguarding a secret (e.g., cryptography key). A (k, n) secret sharing
scheme, denoted by (k, n)-SS and proposed by Shamir [167], is defined to be a division of a secret
s into n pieces (shares) S = {s1, s2, ..., sn} (n ≥ k) in such a way:

(i) the secret s is recovered from any k or more pieces of S; and,

(ii) the aggregation from any k − 1 or fewer pieces of S discloses nothing about the secret s.

This scheme is based on the polynomial interpolation, namely: given k pairs of values (x1, y1),...,
(xk, yk) where all xi are distinct, then there exists one and only one polynomial f(x) of degree k−1
such that f(xi) = yi for all i ∈ {1, 2, ..., k}. Under the assumption that s is (or could be made) a
number, a (k− 1)-degree polynomial could be chosen as f(x) = a0 + a1x+ a2x

2 + ...+ ak−1x
k−1

where a0 = s. We see that by assigning si = f(i) for i ∈ {1, 2, ..., n}, then the interpolation from
any subset of k values of the set {s1, s2, ..., sn} can reconstruct f(x) by the following formula
f(x) =

∑k
i=1 f(i)Πk

j=1,j 6=i((x− i)/(i− j)), and the secret is obtained as s = f(0). However, any
subset of k − 1 of those values does not give any information about the coefficients of f(x) and,
accordingly, secret s. Note that we can change value of share si easily without changing the
original secret s by giving a new polynomial f(x) with the same free term.

In the Shamir’s (k, n)-SS, we call a user who divides the secret and distributes shares as
dealer, and a user receiving the share as shareholder.

Later, a large number of works based on Shamir’s secret sharing scheme has been published.
We here introduce some typical work in this field as follows.

Secret sharing homomorphisms

In [21], Benaloh proposed secret sharing homomorphisms, a model describing a homomorphism
property to allow multiple secrets to be combined by direct computing on shares. To understand
clearly that property, let us describe the following scenario.

Assume there are two users Alice and Bob which respectively hold secrets A and B. Each
one uses Shamir’s (n, k)-SS [167] to distribute shares of his/her secret to n agents, such that any
k agents can construct his/her secret. Then suppose that k of the agents decide that they want
to determine A + B while disclosing as little information about A and B as possible. How to
solve this problem?

We see that each agent keeps two shares (one is of the secret A and one is of the secret B).
If each of the k agents reveals the sum of the two shares it holds, each of these sums is itself

12

2.1. Polling Protocols

a share of the sum of the secrets A + B. More concisely, the sums of the shares of the secrets
are shares of the sum of the secrets. It is also the case that release of these share sums gives no
information about A and B other than that contained in the release of their sum A+B.

More general, assume each of m users keeps a “sub-secret”, and the composition of these sub-
secrets under some known function (e.g., sum or product) generates a “super-secret”. The parties
want to determine the super-secret without disclosing their sub-secrets and using cryptography.
We say that a (k, n) secret sharing scheme has the homomorphism property if it satisfies the
following conditions: (i) each party generates and distributes the “shares” of its sub-secret to n
agents by using Shamir’s secret sharing scheme (n, k) such that any k agents can construct the
party’s sub-secret; and, (ii) each agent can then aggregate its “shares” into a single “super-share”
such that any k of the super-shares could determine the super-secret.

More formally, if we denote S as the domain of possible secrets, and T as the domain of legal
shares. For each I = {i1, i2, ..., ik} ⊂ {1, 2, ...n} where ij 6= il for j 6= l, we define a function
FI : T k → S. Then the secret s is obtained as s = Fi(si1 , si2 , ..., sik). A (k, n) secret sharing
scheme has the (⊕,⊗)-homomorphism property if for all I [21] we have: if s = Fi(si1 , si2 , ..., sik)
and s′ = Fi(s

′
i1
, s′i2 , ..., s

′
ik

) then s⊕ s′ = Fi(si1 ⊗ s′i1 , si2 ⊗ s
′
i2
, ..., sik ⊗ s′ik).

The homomorphism property implies that the composition of the shares are shares of the
composition. And it has an advantage that any k of the n agents can compute the super-
secret by disclosing their super-shares, but not sharing any information related to the parties’
sub-secrets. The sub-secrets can only be reconstructed if k or more agents reveal their shares.

The homomorphism property w.r.t. addition allows this scheme to be applied as a fault-
tolerance method of holding verifiable secret-ballot elections. In that model, each user generates
and distributes the shares of its vote to n other users in such a way that a user’s vote is revealed
if only if at least k shares are disclosed. Each user then aggregates the receiving shares, and
sums up them to obtain the value, called intermediate tally. If k or more users agree to aggregate
their intermediate tallies, then the final poll result is determined.

Despite the practicality of the voting application using homomorphic property, such a com-
position scheme of Benaloh [21] (and other schemes based on homomorphic secret sharing such
as [54, 161, 165]) could lead to a significantly biased poll outcome because of the following limi-
tations:

• First, it does not give any condition for the initial user’s shares, and so, a dishonest user
could generate an invalid initial set of shares (e.g., giving a set of arbitrary large values),
before sending to other users.

• Second, if the network is not fully connected, the intermediate tally could be corrupted by
intermediate dishonest users before aggregating at the site of honest users.

Verifiable secret sharing scheme (VSS) andMulti-party computation protocol (MPC)

In the Sharmir’s (k, n) secret sharing scheme [167], any shareholder keeping the share of dealer’s
secret must unconditionally trust that the received share is valid. To overcome this shortcoming,
Chor et al. [48] presented a notion of verifiable secret sharing (VSS). According to this work, we
say a set of n shares {s1, s2, ..., sn} is k-consistent if any subset of k of the n shares defines the
same secret. The meaning of the “verifiability” property in this VSS is to enable shareholders
to verify whether the receiving shares satisfy the k-consistent condition without disclosing the
content of shares and the secret. With the presence of multiple dealers in a secret sharing scheme,
the property of verifiability is more desirable since these dealers are mutually distrusted. There

13

Chapter 2. State of the Art

are numerous applications and extensions based on VSS are proposed. In this part, we explore
and discuss the relevance of some works to the design of polling protocol.

The security of VSSs can be classified into two types: computational security and uncondi-
tionally secure. The former term mentions the systems that assume the malicious users have
limited computational resources to break a certain unproven cryptographic primitive (such as
factorizing the protduct of two big prime numbers or solving the discrete logarithm problem). In
contrast, the latter one refers to the systems/schemes’ security not relying on unproven compu-
tational hardness assumptions. For instance, in [68], the authors introduced VSS in which they
used computational security, namely, the hardness of solving discrete logarithm for the security
of VSS. On the contrary, some works based on VSS addressed the unconditional security for
the VSS security such as [143, 150]. We here consider only the works which use unconditional
security.

Benaloh described a VSS [21] which ensures all shares are k-consistent. However, the shares
may not satisfy the security requirements of a Shamir’s (k, n) SS, i.e., Benaloh’s VSS cannot
guarantee that at least k shares are needed to reconstruct the secrets [88], and thus it could not
be applied in voting.

Extending the Sharmir’s SS scheme and a secret sharing scheme with mutually distrusted
dealers given by Pedersen [151], Harn and Lin [88] introduced a new notion, a strong VSS which
overcomes the limitation of Benaloh’s VSS, and also depicted a strong (n, k, n) VSS scheme,
where the first n is the number of dealers, k is the threshold, and the second n refers to the
number of shareholders, in the SS. Liu et al. [124] presented a (n, k, n) multi-secret sharing
scheme (MSS) to allow shareholders to share n − k + 1 secrets, and a verifiable (n, k, n) multi-
secret sharing scheme (VMSS), which is based on the (n, k, n) MSS. All of these schemes are
unconditionally secure and are simple variation of the original Shamir’s (k, n)-SS. Nonetheless,
while powerful, it is difficult to apply them to polling problem, since (i) they do not give any
condition for the initial users’ inputs, and (ii) participants have distinct and predefined roles
that may decrease the scalability and robustness of the system because the load of distributing
shares belongs to the minority of users in the system (e.g., dealers) and they might be failed.

Based on VSS, other extensions and models are also proposed such as Secure Multi-Party
Computation (MPC) [33, 53, 134] and Byzantine agreement [31]. The former aims to compute
at each user site a function whose inputs are held by multiple distributed participants, while
the latter tackles the problem of the cooperation amongst users to agree on a common data
or action [120, 149]. Like VSS, some MPC and Byzantine agreement protocols make use of
cryptography and address the computational security (e.g., [31, 56]), and some other MPC and
Byzantine agreement protocols try to achieve unconditional security. We here focus on the latter
that does not depend on any assumption about computational intractability.

Two common types of corruption from dishonest users are passive and active corruption. The
passive corruption mentions that a dishonest user obtains complete information (i.e., threatens
the privacy) of other honest users, but the protocol is still executed properly by any user. The
latter takes place when the dishonest user has the full control of the corrupted users and users
cannot follow the protocol properly.)

In [53], Cramer et al. showed that VSS and MPC among a set of users can efficiently be based
on any linear secret sharing scheme (LSSS) for the users. LSSS is rather much weaker primitive
than VSS or MPC. The authors provided an efficient construction which builds MPC and VSS
protocols secure against the (passive and active) corruption from dishonest users. The approach
to secure MPC in this work is general and can be applied to both the information-theoretic (i.e.,
secure channels) and the cryptographic setting.

14

2.1. Polling Protocols

Ghodosi et al. [78] studied unconditionally secure MPC protocols in the system consisting
of passive dishonest users. They also proposed a MPC protocol in which dishonest users can
corrupt up to n−1 users, and it makes use of a novel subprotocol for converting an additive secret
sharing over a field to a multiplicative secret sharing. It is also noted that the communication
cost of this MPC protocol is relatively high O(n2), and this makes it inconvenient to be applied
in practice.

By extending the Benaloh’s SS [21], Rabin and Ben-Or [155] presented a VSS protocol by
assuming there is a majority of honest nodes in the system. The secrecy achieved is unconditional
and does not rely on any assumption about computational intractability. Based on VSS, they
also proposed a secure MPC protocol to privately compute the user’s shares and get the output
with the exponentially small probability of error.

Remarks. Despite the practicality and efficiency of all applications and extensions of VSS
schemes and MPC protocols presented above, they all contain some common disadvantages
when applying to the polling problem:

1. All of these techniques assume the existence of fully connected network, complete syn-
chronous communications together with a broadcast channel, secure pairwise communica-
tion channels between participants, and particularly, heavyweight computation in mathe-
matics (that is not our objective in devising a polling protocol).

2. Some MPC protocols do not give any condition on the user’s input. Thus, they allow
dishonest nodes to share arbitrary data, even large values. These activities can affect the
output in the potentially unbounded way.

Other later researches based on MPC have improved some aspects to limit those disadvantages.
Some work [54, 55, 57, 59] focus on the scalability and usability properties in which the most
relevant goal is minimizing the growth of complexity with number of nodes. Authors of [59]
described an unconditionally secure protocol where the communication complexity is linear in
the size n of network (and the number of dishonest users is t < n/3). The work in [57] presented
a general MPC protocol which is simultaneously optimal, up to lower-order terms, with respect
to both efficiency and fault tolerance. Ishai et al. [104] proposed a general MPC protocol which
offers unconditional security but with minimal interaction amongst participants. Chen et al. [44]
discussed the cost of fault tolerance in MPC complexity. They also focused on the problem
of distributed computation of the function over general topologies (not only the cliques). the
drawback of giving no condition of initial users’ inputs still makes them difficult to be applied
in the polling problem.

Anonymous Multi Party Computation (AMPC)

Malkhi and Palov introduced AMPC [131], a technique less general than Secure MPC, but
sufficiently general to solve several multi-party problem models such as oblivious transfer (which
refers to the mode of transferring information, where the sender transmits one of many pieces of
information but does not know whether the receiver actually received it [29, 142, 154]), or one-
time receipt (which refers to the protocol where user getting the receipt can verify its validity
and other users can verify it at the cost of revealing the key [42, 155]). AMPC provides users
with electronic anonymity without using any conventional cryptography solution, or any means
of non-trivial maths. Yet this method requires the assumption about existing of secure channels
between any pair of honest users and under a suitable resilience threshold of dishonest users
t <

√
n where n is a network size. Moreover, although this technique increases privacy, the

AMPC network is built on top of normal social graph in the sense that it uses group notion to

15

Chapter 2. State of the Art

form some levels (rows): users split their inputs into several shares and submit each share to one
of the nodes in the first (top) row; the top row nodes permute the input and split into several
sub-shares and send each sub-share to a node in the second level; each node in the second row
combines the receiving sub-shares, permutes them and continue sending the split shares to the
nodes in the third level, and so on. The process continues until all nodes in the last (bottom)
level send their shares to the receiver which then aggregate these shares to get the original inputs.

Malkhi and Pavlov also presented an example application of AMPC, an electronic voting
protocol. Despite some advantages such as the requirements of heavy computation are relaxed
and users are anonymous, that protocol remains some shortcomings:

• Each voter could neither verify that the talliers have received correctly its ballots during
the voting process nor confirm that it gets a valid election credential before voting. Hence,
each user is not sure about the correctness of the output since it could be corrupted by
other ones.

• This protocol is relatively complicated as the users have to perform the commitments on
the credentials and ballots before doing computation. This leads to high communication
cost for the protocol.

• This protocol is deployed on AMPC building block which is a restricted graph structure
with the notion of groups. And this is not our objective as motivated in Chapter 1.

Electronic-voting protocol

Based on AMPC [131] and an extension of Rabin and Ben-Or’s check vectors [155], Malkhi et
al. [130] proposed a distributed e-voting protocol without cryptography. This protocol is based
on the scheme called enhanced check vectors. In the enhanced check vectors protocol, the authors
defined some roles for users such as dealer DLR, who wants to give a secret V with a meaning
s, e.g., “Yes” or “No”, to intermediate users (that are called tallier or intermediary) INT where
s is opted from a set of possible meanings S. Then INT forwards the secret to one or more
receivers RCVi, ..., RCVm. Each receiver should be able to independently verify whether the
secret meaning is originated by DLR. However, a subset of b or fewer receivers (where b is a
security parameter of the system) should not be able to reconstruct the secret V . Moreover, INT
should be able to verify, with high probability, that the receivers would accept her secret.

Briefly, the e-voting protocol proceeds as follows: First, the dealer (who is also called the
voter) generates a vote vector V that corresponds to his/her desired ballot s (from a set of
possible meaning S) and is of length b + 1, before sending it to INT. Furthermore, it creates a
set of check vectors {B1, ..., Bm}, where m is number of potential receivers, in such a way that
V Bi = s for all 1 ≤ i ≤ m, and one check vector for each of potential receivers. The check
vectors are sent to talliers INT. INT holds a corresponding check vector B for that vote vector
and verifies that indeed V B = s and s is in S. The vote vectors and check vectors are also
forwarded to receivers. Second, after receiving a vote vector V from INT and a check vector B
for that secret, a receiver computes s = BV and verifies whether s is in S. Finally, each receiver
publishes all the ballots it received, and everyone can verify the election results.

Although this protocol is information-theoretically secure with strong property that the sys-
tem can withstand the corruption from almost half number of nodes, it has the following impor-
tant disadvantage:

• Each user needs to maintain some predefined roles such as dealer (who distributes vote
vector designating her ballot), tallier (who verifies the eligibility of the vote vectors from

16

2.1. Polling Protocols

dealers), receiver (who receives and enables to verify the secret originated from dealer).
This may decrease the scalability as a small set of participants that are not part of the
system (e.g., dealers) may get the load of distributing initial shares. And the robustness
of the protocol may also be decreased when that specific participants are crashed in the
network.

• In addition, this protocol supports the requirement of democracy (guaranteeing that each
user is able to vote), verifiability, and unconditional accuracy whereas in our objective, the
polling protocol needs to be simple by relaxing such constraints.

Baudron et al. [20] described a distributed multi-candidate e-election system that guarantees pri-
vacy of users, provides public verification (i.e., anyone can verify and will be convinced that the
voting is fair and correct), robustness (i.e., the system can tolerate with the presence of dishon-
est users trying to cheat during the process of voting) and receipt-freeness (to avoid coercibility
and vote buying). Authors of [195] presented a light-weight scheme for electronic election. The
scheme is general (that can be applied in mobile voting architecture), secure, reliable and ef-
fective. However both methods make use of cryptography. The former is based on the Paillier
cryptosystem [146] and on some related zero-knowledge proof techniques [81]. The latter is in-
spired from the authentication protocol with revocable anonymity which combines public key
cryptosystem (Merkle’s puzzles [135]) and a secure secret sharing scheme [167].

Reputation (rating/ranking) schemes

There are some relations and similarities between reputation (rating) scheme and polling protocol.
Generally, rating scheme relates to the situation where each user (i) evaluates the quality of other
one by locally ranking that person’s behavior, then (ii) aggregates the feedback (opinions) from
the remaining ones of the network to compute its reputation score. A positive feedback is given
if that user has good behavior and accordingly a high reputation score may be assigned. In
contrast, the bad behavior results in negative opinion from other one and a low reputation
score. Currently some studies and applications of rating systems in two approaches, centralized
and distributed systems, are proposed. In centralized networks, a central server collects the
evaluation of all users and figuring out the reputation score of each participant, e.g., e-commerce
websites such as Amazon.com and Ebay.com. We here concentrate only protocols deployed on
decentralized networks as follows.

Authors of [158] analyzed reputation management in the peer-to-peer (P2P) systems. They
discussed the main requirements and features that a reputation system must address, and de-
tailed some main attacks that P2P reputation system can suffer. That paper also presented some
representative distributed reputation systems and showed the strong and weak points of each
proposal in relation to P2P reputation system requirements. Gupta et al. [84] designed a mecha-
nism for accurately rating. More specifically, they described two alternate computation schemes
for the rating system such that the activity of each user is mapped to a dynamically updated
reputation score: (i) debit-credit reputation computation (DCRC) which credits the reputation
scores of partner for serving content and debits for downloading, and (ii) credit-only reputation
computation (CORC) which credits the reputation scores of partner for serving content but does
not debit for any other activities. Moreover, these schemes facilitate local storage of reputations
for fast retrieval. However, it should be noted that these studies [84, 158] concentrated in the
studies of ranking mechanism by either (a) analyzing specific requirements of ranking systems,
or (b) presenting the technique for ranking, instead of providing efficient polling schemes.

Reputation systems are also used as mechanisms to prevent malicious behaviors [52, 60,114]
or promote collaboration [10]. Currently, content pollution is a problem in several popular P2P

17

Chapter 2. State of the Art

file sharing networks. In [52], Costa and Almeida first presented some misbehaving scenarios for
reputation systems like Scrubber and Credence [182]: (a) collusion: dishonest users collude to
defame honest users and to increase their own reputation score, and (b) Sybil attack : a dishonest
user acts as multiple peers to promote their corrupted objects so that the chance of that data
being downloaded will be increased. And then they proposed a new hybrid peer and object
reputation system to fight polluted file content.This approach, however, focuses on the collusion
of users scores rather than designing an efficient voting protocol.

Trustme [168] is an approach addressing anonymous trust management through the use of
mutual anonymity for both the trust host and the trust querying peer. However this approach
also used public key cryptography mechanisms to provide security and prevent unwanted users.
Authors of [183] presented PeerTrust which computes peer reputation scores based on three
basic trust parameters (e.g., feedback a peer receives from other peers, the total number of
transactions a peer performs, and the credibility of the feedback source) and two adaptive factors
(e.g., transaction context factor and the community context factor). Based on the distributed
hash table, EigenTrust [114] and PowerTrust [193] provided methods to compute the global
reputation value of each peer by exchanging reputation through P2P network. To estimate
the trustworthiness of users, TrustGuard [172] presented a mechanism which combines historical
users’ reputations and behavioral fluctuations. Moreover, to improve system robustness, the user
reputation score is built gradually, but may be reduced quickly if a user’s misbehavior is detected.
In FuzzyTrust [171], it uses fuzzy logic inferences and uncertainty information to evaluate the
rating of each user. Meanwhile in GossipTrust [194], a user shares its local shares by randomly
distributing them to its direct neighbors until obtaining the global rationale consensus on user
reputations. In [122], the authors proposed a social network based mechanism, SocialTrust, to
counter collusion in the system. The rating score of each user is also considered on the impact of
some social properties such as social distance, social interest, and the relationship between users.
Dutta et al. [62] discussed a distributed rating mechanism along with rating validation schemes
aimed at tackling the free-riders problem and potential collusion problem in P2P network.

Remarks. Though these works suggested methods to improve effectiveness for the reputation
systems, as well as addressed the affect of user social behaviors on its rating score, it is difficult
to use those solutions for solving polling problem because of the following reasons:

• All of these works have focused on the methods to count and limit the influence of collusion
on user’s reputation score, rather than analyzing the efficient polling protocol.

• These approaches generally do not address to user privacy as all individual ratings are
public. Thus, due to the fear of retaliation from the recipient, user often avoids providing
truthful opinion including negative one [156]. And thus the result of these solutions might
not be correct when applying in the polling problem.

• None of the proposed schemes provide a global polling since the rating computation relies
on only a subset of nodes (as a node usually contacts with only a small group of other ones
in the network) [82,83].

To overcome the lack of privacy in the previous reputation systems, inspired from [148], Hasan et
al. proposed two decentralized privacy preserving reputation protocols, the k-shares protocol [91]
and the Malicious k-shares protocol [92], which protect users privacy by hiding their initial
individual opinions and disclosing only the final reputation score. However, these works still face
some issues which are not our objectives when tackling the polling problem:

18

2.1. Polling Protocols

• Malicious users could collude and promote their opinions in such a way that each malicious
one chooses other malicious neighbors for preserving its privacy. Thus they can submit
many opinions which benefit for themselves without being detected.

• In [92], the protocol uses Paillier cryptosystem [146] and heavy computation for preserving
privacy.

Distributed polling protocols

Guerraoui et al. introduced DPol [82, 83], a simple distributed polling protocol based on secret
sharing scheme and without using cryptography. In the work [82], the authors considered a
binary poll (i.e., a poll with two options, e.g., “Yes” and “No”), while the other work addressed to
the multi-options poll (i.e., a poll with d options and each node votes for a value v ∈ {1, ..., d}).
In DPol, each node is either honest or dishonest. Honest nodes strictly follow the protocol but
dishonest ones might not. Dishonest nodes try to promote their opinion or reveal the opinion of
honest nodes. However, all nodes care about their reputation in the sense that information related
to a node intimately reflects on the associated real person. Dishonest nodes never misbehave if
their activities might be detected with certainty. This attacker model is rather restricted and not
fully Byzantine [120]. To motivate that model, they also suggested an approach that dissuades
dishonest misbehaviors instead of covering up their impact (like byzantine fault tolerance BFT
[36]) or to prevent their impact (like cryptography based approaches [20]). According to this
approach, a verification procedure is executed with the polling algorithm, and tags the profiles of
the related nodes based on collected testimonies. Moreover, DPol assumes that dishonest nodes
do not wrongfully blame honest ones, and not do Sybil attacks as these kinds of attack could be
solved by other existing automatic tools. In addition, dishonest nodes can form a single coalition
to get the full knowledge of the network and collaborate to bias the poll output. In order to unify
the opinions and not give compensating effects, all dishonest nodes make the single coalition.
However, they are selfish in the sense if their accomplices have being suspected, they prefer to
take care about their own reputation to covering up these accomplices.

DPol is deployed on a cluster-ring-based structure. This overlay is constructed as follows.
The N nodes are clustered into m =

√
N ordered groups, from g0 to gm−1. Each group is a

clique, i.e., a node n in group gi maintains a set Po of officemates. Given a parameter k, a
node n in group gi also links to a fixed-size set Pp of nodes, called proxies, in the next group
(Pp ⊂ gi+1 mod m), and a fixed-size set Pc of nodes, called clients, for which n acts as a proxy, in
the previous group (Pc ⊂ gi−1 mod m) where |Pp| = |Pc| = 2k+1. Thus, all groups virtually form
a ring with g0 being the successor of gm−1 (as depicted in Fig. 2.1). Each node only receives
messages that are delivered by nodes in the set Pc ∪ Po and discards all other messages.

Briefly, DPol includes three phases: (i) voting, (ii) intermediate counting, and (iii) local tally
forwarding. In the voting phase, each node generates a set of shares of its vote reflecting its votes
by making use of a simple secret sharing scheme, then sends them to its clients which belong to
the next group. It also receives the shares from its clients before summing them into an individual
tally. The second phase enables a node to broadcast its individual tally all its officemates. The
officemates aggregate all the individual tallies, then sum them into a local tally. After all the
officemates have computed a local tally, each node sends the local tally of its group to its proxies.
This infers each node can obtain the summing of all nodes’ votes of the previous group. In the
last phase, the local tallies are forwarded along the ring and all nodes finally compute the final
outcome.

DPol ensures accuracy and privacy by bounding the impact on the poll outcome by dishonest
nodes and balancing it with the level of privacy ensured. More precisely, in a system of N users

19

Chapter 2. State of the Art

gi Po

n

gi−1 gi+1

Pc Pp

Figure 2.1: A cluster-ring based overlay and the connection of node n.

with D <
√
N dishonest nodes, and a privacy parameter k, the probability for dishonest nodes

to recover a node’s vote is bounded by (D/N)k+1; the impact on the polling output of binary
polling is bounded by 6k+ 2 (in [82]) and on the outcome of each of the d options is bounded by
3k + 2 (in [83], especially, if d = 2 the impact is bounded by 6k + 4). The accuracy is ensured
for any assignment of nodes to groups, and the relative error (i.e., the difference between the
output of the protocol and the expected poll outcome) is negligible when the network size N
is large. This is due to the ability to detect with certainty the dishonest nodes who affect the
result by more than 6k + 2 (in [82]) or 3k + 2 (in [83]) by using public verification procedures
(i.e., detecting misbehaviors without disclosing the nodes’ votes).

Remarks. DPol has provided a new research direction in distributed computing. However,
despite strong points presented above, there remain inherent limitations of DPol when applied
in practice.

• Firstly, DPol relies on a structured overlay, independent of the social graph. In spite of the
efficiency in terms of communication cost, this structure is on top and really apart from
the normal social graph. It does not take into account the social links among users in the
sense it builds the uniform distribution of users into groups. This is not practical as we
have to target a special one using notion of group instead of reserving the normal structure
of the graph.

• Moreover, the number of nodes should be a perfect square such that a graph with N nodes
can be divided into

√
N groups of size

√
N . It means the protocol could not be deployed

for other social graphs which have arbitrary size.

Besides, several extensions and protocols inspired from the idea of DPol have been proposed.

• PDP [25] and its extended version, DiPA [24], take into account the number of nodes
splitting their inputs. More specifically, each node could cast its vote as a single share or
a set of 2k + 1 shares where k is a privacy parameter (like [82, 83]). Since the votes and
the shares belong to the same set (e.g. {“Yes”,“No”}), nodes cannot distinguish between
a vote and a share. Hence, in the system of N nodes with D dishonest nodes, if not
all users split their inputs, then the probability for a node to have its vote revealed with
certainty by a coalition of D dishonest nodes is decrease, i.e., privacy is improved, when
compared to DPol. However the impact of D dishonest participants on the final result is
up to 2(k +

√
N)D. That bound is so high as we know that, theoretically, the maximum

impact is 2N , and compared to other work which impact are represented as functions of

20

2.1. Polling Protocols

C0

C4

C2

C1

C8

(a) Chord overlay

C0

C1 C2

C3 C4 C5 C6

(b) Binary tree

Figure 2.2: SPP-Overlay sub-protocol.

value k and k � N independent of N . Therefore, a node may obtain incorrect result even
the system has a small number of dishonest nodes. DiPA, an enhanced version of PDP,
presents the management of nodes failures. Nonetheless, it does not show the impact of
the message loss and crash on the the accuracy as well as not compute the probability for
these events occur. Additionally, these two works use the same overlay structure as DPol
does.

• Authors of [65] described MPOL, an d-ary polling algorithm (i.e., poll with d options in a
vote) that expands the work [83]. Comparing to DPol, this protocol has some advantages.
First, it enables nodes (if all nodes are honest) to compute exact vote counts for each of
the candidate instead of a winner among several candidates. Besides, MPOL allows nodes
to abstain from voting, i.e., nodes are not required to vote, as long as they continue to join
in other phases of the protocol. Although this mechanism could make MPOL suitable for
applications (like Doodle) in which nodes may not want to express their choices but willing
to support for computing the final result, it still has some drawbacks. First, to ensure
accuracy of poll outcome, in MPOL, each node has to calculate the total number (called
voting counter) of voting nodes participating in each phase of the protocol, and this value
must be sent to other nodes. Thus, the final outcome is correct only if the network contains
no dishonest node. Second, like DPol, this protocol relies on a ring-based structure.

Gambs et al. [76] introduced SPP (Secure and Private Polling), a polling protocol used in
dynamic distributed networks. In an N nodes system, this protocol requires a communication
complexity of O(N log3N). The authors asserted this complexity is near-optimal by showing
that (i) it is impossible to devise, with probability 1, a deterministic polling algorithm which
ensures accuracy (when deployed on the system consisting of Byzantine nodes [120]) and whose
communication complexity is close to be linear in N ; (ii) the lower bound of the number of
messages required to compute any multiparty function (i.e., global function that is a linear
combination of the local inputs, and polling is a specific case) in an accurate way with high
probability is at least Ω(N logN).

Moreover, SPP guarantees the privacy of user’s vote and tolerates up to (1/2−ε)N Byzantine
nodes controlled by an adversary for any constant 0 < ε < 1/2 independent of N . Noted that
Byzantine nodes can behave arbitrarily, for example by promoting their votes, revealing honest
nodes’ opinions, or deviating from the protocol specification. For the accuracy of the protocol,
SPP assures each node outputs the exact poll outcome with high probability when the network

21

Chapter 2. State of the Art

size N tends to infinity.
In a nutshell, SPP is composed of two sub-protocols: (i) SPP-Overlay provides and maintains

a structured overlay (described below) when nodes leave or join the network, and (ii) SPP-
Computation presents the polling algorithm. SPP-Overlay organizes the N nodes into g clusters,
C0, ..., Ci, ..., Cg−1, each of size O(logN). The joining of nodes into the network is inspired from
the protocol in [17]. These clusters are further arranged into a Chord-like overlay [186] (depicted
in Fig. 2.2a) such that the nodes from cluster Ci (for i = 0, ..., g − 1) know all the nodes from
C(i+2j−1) mod g for all 1 ≤ j ≤ log2 g. Furthermore, these clusters are also distributed in a
binary tree of depth O(logN) such that each node in cluster Ci connects to all nodes in C2i+1

(for 2i + 1 < g − 1) and C2i+2 (for 2i + 2 < g − 1) (see Fig. 2.2b). In the SPP-Computation
sub-protocol, first each node in each cluster encrypts its input and broadcasts it to all nodes in
its cluster. It then computes a local aggregate by adding all encrypted inputs it received from
its own cluster (using the addition operation of the homomorphic cryptosystem). This local
aggregate is then propagated along the binary tree as follows: starting from the clusters at the
leaves of the binary tree, the nodes of these clusters send their local aggregates to all the nodes
of their parent clusters. The nodes of the parent clusters computes the sum of its own local
aggregate with two received ones from their children, this sum is called partial aggregate. The
partial aggregates are also propagated towards the root. When the partial aggregates reach root
cluster (e.g., C0), they become the global aggregate. The nodes of the last cluster collaborate to
perform the threshold decryption and to give the output.

Despite many advantages, this protocol has the following shortcomings:

• Like DPol [82, 83], SPP relies on the structured overlay of clusters. In other words, to
ensure the correctness of SPP, it is necessary to construct and maintain such an overlay.
The second sub-protocol, SPP-Computation, is dependent on this overlay to conduct a
poll. This structure is built on top and independent of the social graph.

• SPP uses the cryptographic techniques, a threshold homomorphic cryptosytem [58].

Giurgiu et al. [80] defined the Scalable Secure Computing problem in a distributed social
network called S3 problem. Such computation problem is challenging as it relates to the situation
that nodes need to compute a function f : V → U of their inputs in a set of constant size, in
scalable, private and accurate way. Base on S3 problem, they presented a distributed protocol,
AG-S3, that computed a class of aggregation functions in a S3 manner. On one hand side, this
secret sharing scheme is suitable for polling protocol as its core has some strong characteristics
such as: S3 computation concerning a sequence of message exchanges and local computation
such that honest nodes eventually get the expected final result; node is allowed to obfuscate
their inputs which preserves privacy; and node can do a verification process to potentially tag
the dishonest nodes’ profiles. On the other hand, AG-S3 uses a special overlay graph structure
like DPol where N nodes are distributed into groups of size

√
N . This is the same drawback as

DPol we already analyzed above.

2.2 Graph transformation problem

As motivated in Chapter 1, the second challenges we address in this thesis is to transform social
graphs into other ones such that users could do some secret sharing schemes on them, and thus,
the user privacy and/or accuracy of protocol they are concerned are increased. There exist
several different varieties of works related to this topic. We focus here on graph transformation

22

2.2. Graph transformation problem

problem used in two hot topics: matching and graph anonymization. In this section, we examine
some typical solutions for these problems. It is noted that our objective is to enrich the social
graph with the minimal new friendship relations by using only edge-addition operation.

2.2.1 Matching problems

Given a graph G = (V,E) where V is a set of vertex and E is a set of edges. A matching M in G
is defined as a subset of edges in E such that no two edges have a common vertex. Based on this
definition, a large amount of problems and solutions related to matching has been published.

Stable matching

In [73], Gale and Shapley introduced a College Admissions Problem (CAP): A set of n candidates
applies for the admission of m colleges. Each college i can only accept a quota of qi. The admis-
sion office of the college ranks the applicants in the order of his preference by evaluating their
qualifications. The college can eliminate and not give proposal of admission to some applicants
who do not meet certain condition even if not filling its quota. Additionally, each application
also gives the ranks for the colleges in the order of his preference and excludes the ones which
he does not like because of any circumstances. Under the assumption of existing no ties in the
order lists, the objective of CAP is to determine an assignment of applicants to colleges, i.e., how
many and which candidates will be admitted to each colleges. It is noted that each college may
not know (i) whether a given applicant has also submitted the application to other colleges or
he has been accepted for admission by some colleges, and (ii) the prerequisites he uses to order
the ranking of colleges.

The main objective in studying this problem is to create a stable matching that is an assign-
ment of applicants to colleges such that there does not exist two applicants a1 and a2 satisfying
the following two conditions:

1. a1 and a2 are respectively admitted to colleges c1 and c2.

2. a1 prefers c2 to c1, and a2 prefers c1 to c2.

Gale and Shapley [73] also presented a stable marriage problem (SMP), a special case of
college admissions problem in which the number of candidates and colleges are equal and all
colleges quotas are identical: There are n men and n women in a community where each person
has given ranks to all members of the opposite sex with an unique number between 1 and n
in order of preference for a marriage partner. We find a reasonable solution of marrying off all
members, called stable marriages, such that there is no pair of man and woman who would both
rather be matched to each other than their current partners.

A stable roommates problem (SRP) [73] is similar to SMP where the users are not partitioned
into two disjoint sets, and the number of users is even. More precisely, given an even number
of users, and each user has a complete and strictly ordered preference list, we seek a way to
divide up into pairs of roommates such that all pairs are stable, i.e., no two users who are not
roommates would rather be a roommate of each other than their actual ones.

The authors of [73] presented an algorithm which solves SMP and ensures that everyone gets
married, and the marriages are stable. This solution could be applied for the college admission
and roommate problems. However, in the real-world setting, there might not be a stable matching
for that algorithm. Irving [99] illustrated another algorithm which determines whether a stable
matching exists in any instance of the problem, and if so, that matching will be found out.

The SMP and SRP are also studied in case the preference list is incomplete or contains
ties (i.e., the preference list might not be strictly ordered) [12, 63, 101]. However, the problem

23

Chapter 2. State of the Art

of finding maximum cardinality stable matching with these extensions or proving that no such
matching exists is NP-hard [105, 132, 159]. Some research to give approximation algorithms of
this problem have been proposed. As a stable matching is maximal matching, any two stable
matchings differ in size by at most a factor of two [132]. Thus, instead of building up a polynomial-
time 2-approximation algorithm, much of the sequent works addressed the improvements of the
2-approximation ratio. Iwama et al. [107] gave an algorithm with a performance guarantee of
(2−c/

√
n) for a constant c. They also enhanced the approximation ratio of 1.875 in the work [106].

Later, a 5/3-approximation algorithm [118] was proposed. That is the improvement of Gale-
Shapley solution where a woman may receive more than one proposal from the same man, and
the roles of men and women are exchanged during the execution. Halldórsson et al. [86] improved
the previous performance with an algorithm which approximation is expressible in terms of
the number of lists with ties. These authors [87] then offered a randomized approximation
algorithm of extended SMP in which the upper and lower bound of expected approximation
ratios are respectively 10/7(< 1.4286) and 32/23 (> 1.3913) for a restricted but still NP-hard
case. Moreover, in that work [87], only preference lists of men contain ties, each man writes at
most one tie, and the length of ties is two. Irving and Manlove described a polynomial-time
8/5-approximation algorithm in [102] and an extended version with the ratio of 5/3 in [103].
Iwama et al. [108] ameliorated the upper bound of approximation ratio to 25/17 (< 1.4706) for
the SMP with one-sided ties.

Instead of studying the ordinary stable matching problem, some works have been done in
the area on restriction of it as follows. By dealing with the indifferences in the preference
lists, i.e., considering the partial (rather than strictly) ordered preference lists, the notion of a
stable matching could be expanded in three different ways: the weakly, strongly and super stable
matching. A matching M is weakly stable if it contains no two participants (u, v) ∈ E \ M
such that each of them prefers being matched with the other to his partner in M . As discussed
above, the problem of deciding the existence of a weakly stable matching is NP-complete for the
SRP [159], and some instances of SRP admit no weakly stable matchings [85]. A matching M is
strongly stable if there are no two participants (u, v) ∈ E \M such that u prefers v to his partner
in M , and v either prefers u to his partner in M , or is indifferent between them. A matching M
is super stable if there exist no two users u and v such that u either prefers v to his partner inM ,
or considers them to be tied, and v either prefers u to his partner in M , or considers them to be
tied. Fleiner et al. [69] recently suggested an algorithm for a super-stable roommates problem.

In [9], Abraham et al. depicted a restriction of the SRP in which roommate pairs are ranked
globally, i.e., the user’s preference list may be derived from a ranking of relationship that user
is involved and two roommate pairs may have the same rank. The motivation for studying this
restriction is from real-world situation. For instance, it is not possible for the first-year students
of the university to rank each other explicitly [16]. Alternatively, each student has to express
its preference in several aspects such as the bedtime condition, the cleanliness condition, the
distance between it and other ones, etc., before submitting the form describing these dimensions
to get a rank. In contrast to the unrestricted SRP, weakly stable matchings in the restricted
form in [9] are guaranteed to exist, and additionally, can be found in polynomial time.

Assuming the maximum roommate rank is equal to number of roommate pairs (i.e., number
of edges in the graph), authors of [100, 115] defined a rank-maximal matching that includes the
maximum possible number of rank-1 edges, and subject to this, the maximum possible number
of rank-2 edges, and so on. Irving et al. [100] proposed an algorithm for the problem of finding a
rank-maximal matching in a bipartite graph. And in [9], the authors presented a generalization
of that algorithm to a non-bipartite graph.

The SMP is also approached in a distributed way where each player does not know the

24

2.2. Graph transformation problem

complete player set and information that allow him/her to match up other ones easily. All
others need to get to know each other first before they can engage together. Floreen et al. [70]
analyzed a localized version of stable marriage where men and women are represented as vertices
in a graph can only match to adjacent women or men, respectively. Each user can only exchange
messages with their neighbors. The local algorithm in [70] computes an almost stable matching,
namely ε-stable matching, that is a matchingM in which the number of unstable edges is at most
ε|M | where 0 ≤ ε < 1. However, in this model, the set of adjacent neighbors to be matched with a
given node is fixed, not dynamically changed with respect to their current network neighborhood.
Other works for SMP in decentralized settings that studied similar approaches to almost stable
matchings such as [66]. Moreover, an online algorithm [117], and a parallel protocol [67] are also
examined. Again, they all use assumption about a fixed set of adjacent neighbors of each user.

Contrast to previous works, Arcuate and Vassilvitskii [15] considered locally stable matchings
in a specialized case of stable marriage with dynamic set of matching neighbors. More precisely,
they addressed a job-market game consisting of workers, and firms (who strive to hire workers).
There are static social connections, i.e., the existing links in the original network, among workers.
Each player strives to build a matching link to another player, i.e., a link is created and possibly
deleted by the algorithm. Each firm can match to k workers, but each worker matches to only
one firm. The workers are matched using a run of local variant of the Gale-Shapley algorithm.
The authors also showed that best-response dynamics converge almost surely.

Hoefer [96, 97] generalized the model in [15] by extending the results on convergence of
dynamics. In that model, the set of nodes is not partitioned and nodes may have more than one
matching neighbor. At any point in time, each node is assumed to be matched only to other
ones which are at distance not greater than some given limitation l. For instance for l = 2 it
means that each node knows only adjacent neighbors and its neighbors of neighbors.

Remarks. Despite the advantages of the solutions of stable matching problems (including SMP,
SRP, CAP) introduced above, they could not be applied in our consideration because of the
following reasons:

• Most of studies give the solutions that each node has only one matching partner, for
instance, a man engages with only an other woman, a student is admitted in one college.
In our consideration, one node may link to more than one partner.

• Some works require the static set of matching partners in the sense a node has to match
to the fixed set of friends. This differs from our concern where a set of potential neighbors
to link could be changed after the creation of one connection.

• Even with the solutions with dynamic set of matching partners and it is possible for nodes to
link to more than one partner, such as [15,96,97], they have the disadvantage when focusing
on the maximum quality of adding edges. On the contrary, we aim to minimize the number
of adding edges which quality is identical. In addition, they consider the difference between
social connections and matching connections, while we drop this difference.

By defining the welfare of one node as the sum of the qualities (weights) of incident edges,
Brandes and Wattenhofer [28] presented centralized and distributed algorithms in social networks
which try to maximize the welfare over all nodes. However this work is different from our target.
First, this work allows edge-deletion modification operation in the graph and thus, makes node
much easier and flexible to choose best friends. If there exists a friend in the list which quality is
worse than other one it knows (by finding, or requested by that friend), it can replace the worst

25

Chapter 2. State of the Art

node by a better one. Second, it uses the assumption about limited number of friends of one
node. For instance, in the stable state, no node can add or update more friends. There exist
some nodes which degree might not satisfy our threshold constraint but they cannot request for
adding new friendships since any modification could decrease their welfares. In addition, even
under the assumption all edges have the same quality of 1, this method cannot solve our problem
since each node will try to add as many friends as possible to maximize the number of links and
this is not our objective.

Anshelevich et al. [13] studied the affect of social context on stability and efficiency in match-
ing problem by incorporating social context into the decisions of users. Each user may consider
the well-being of every other one to some degree.Namely, in a matching, each user obtains a re-
ward, and also cares about the rewards of its friends. To demonstrate this care, in the matching
each user holds a perceived or friendship utility which is the average rewards of the friends who
are at distance between 1 and network diameter from this node. The perceived utility is the
quantity users try to increase as much as possible by getting friendships (i.e., matching) with
other ones. A matching is stable if it contains no pair of users which can increase the perceived
utility of each one by linking to each other. Although this scheme is interesting, but again,
like [28], it could not solve our problem becaues (i) it could lead to the case that one user tries to
add as many friends as possible to maximize its perceived utility, and (ii) the number of friends
of some user might not satisfy the threshold when it is stable and thus could not update its
friend list.

b-Matching problem

Several research related to the b-Matching problem have been done such as [14,64, 119,139,176,
178]. The concept of b-matching defined by Edmonds [64] is as follows: For each node n ∈ V
let δ(n) denote the set of edges in E which meet n. For each vector x = (xe : e ∈ E) (where
xe ∈ N) and a subset E′ of E, let x(E′) =

∑
{xe : e ∈ E′}. Let b = (bn : n ∈ V) be a positive

integer vector. A b-matching of G is a nonnegative integer vector x = (xe : e ∈ E) such that
x(δ(n)) ≤ bn ∀n ∈ V . (A b-matching of G with bn = 1 for all n ∈ V is a matching.) From this
definition, in the b-Matching problem, we have to use edge-deletion operation to modify G into
a subgraph G′ in such a way that each node n in the output must satisfy the condition dn ≤ bn.
Conversely, in our transformation problem, we aim to modify G into a supergraph G′ by using
edge-addition operation such that each node n has to satisfy reverse condition for degree value:
dn ≥ bn (and bn = c ∀n ∈ V). Moreover, the b-matching problem on the complement graph is
also not our consideration as the generation of the complement graph is based on the removing
and adding edges from the initial graph. These differences are also applied for the generalization
of the b-Matching problem proposed by Lovász [125, 126], General Factor problem, where each
vertex’s degree of the output graph must belong to a list of possible predefined value called degree
list. It is also known that by results in [51, 133], General Factor problem (where all degree lists
may not contain gaps of length greater than one) and graph editing problem (where all degree
lists are singleton) can be solved in polynomial time.

Mathieson and Szeider [133] provided a study on graph editing problems formulated as
whether a given graph can be modified to satisfy certain degree constraints. More specifically,
each vertex of graph has a list of numbers and the task is to edit the graph such that after edit-
ing each vertex achieves with a degree included in that list by using a limited number of editing
operations such as vertex deletions, edge deletions, or edge additions. Their problems are gener-
alization of General Factor problem [125,126] (by allowing arbitrary lists) and Regular Subgraph
Problem (when the list is singleton). Contrast to previous research on regular subgraph problems
which tried to find all regular subgraphs in a given graph [27,34,43,49,127,140,173,179], Math-

26

2.2. Graph transformation problem

ieson and Szeider provided a more general setting so that in some cases the obtained graph is not
a subgraph of the given one. They defined a Weighted Degree Constraint Editing (S) problem,
or WDCE(S) for short, where S is a set of editing operations (S ⊆ {e, v, a} where v: vertex
deletion, e: edge deletion, a: edge addition), as follows: “Given a graph G = (V,E), two integers
k and r, a weight function ρ : V ∪ E → {1, 2, ...}, and a degree list function δ : V → 2{0,...,r}.
Can we transform G into a graph G′ = (V ′, E′) by using operations in S such that for each node
v ∈ V ′ we have

∑
uv∈E′ ρ(uv) ∈ δ(v) with total editing cost at most k?”.

By denoting: WDCE1(S) to indicate that the given graph is unweighted, WDCE∗(S) if
all degree lists are singletons, WDCEr(S) if all degree lists are {r}, and ∞WDCE(S) to in-
dicate that the editing cost is not restricted, it is showed in [133] that some known problems
map into WDCE(S) problem such as: Cubic Subgraph=∞WDCE3

1({v, e}) [77], r-Regular Sub-
graph=∞WDCEr1({v, e}), and some special cases of r-Regular Subgraph problem which allow
vertex deletion operation could be Maximum Independent Set=WDCE0

1({v}) [77], Maximum In-
duced Matching=WDCE1

1({v}) [32, 174], Maximum Induced r-Regular Subgraph=WDCEr1({v})
[34, 141]. The General Factor problem is ∞WDCE1({e}). It is generalization form of some sim-
pler problems: r-Factor problem=WDCEr1({e}) which asks whether a given graph has a spanning
r-regular graph, a Perfect Matching=WDCE1

1({e}), f -Factor problem=WDCE∗1({e}), and Per-
fect b-Matching=WDCE∗({e}). Noted that these problems relate to edge and vertex deletion
operations, thus, they are different from our concerns.

Mathieson and Szeiderf [133] also showed that WDCE∗(S) and WDCE∗1(S) in which S con-
tains only edge deletion and edge addition operations, i.e., S ⊆ {e, a}, are solvable in polynomial
time. With only edge addition operation (i.e., S = {a}), and a given graph G with the maximum
degree ∆, they proposed a method to alter G into r-regular graph where r = ∆ + (∆ mod 2).
Although the output graph from that algorithm could be r-degree graph, and satisfied the re-
quirements of the Issue 4 (introduced in Section 1.2 of Chapter 1), the number of adding edges is
not optimal. For instance, examine a graph G with ∆ = 3 described in Fig. 2.3a and we desire
to get an output graph where all vertices’ degree are greater than or equal to 3. By applying
that method, we have r = 3 + (3 mod 2) = 4 and obtain a 4-regular graph which satisfies our
requirements (depicted in Fig. 2.3b). However it is easy to show the existence of another method
that adds only more two edges to give our desired output (see Fig. 2.3c).

(a) Initial graph G

e1

e4

e2

e3

(b) 4-regular graph

e2

e1

(c) Our desired output

Figure 2.3: Transform graph with only edge addition operation.

2.2.2 Graph anonymization

Privacy is one of the most important problems occurring in a social network. Some critical and
sensitive information are disclosed due to the easy availability and due to the potential gains of
statistics and analysis of that network. Generally, there are three main sorts of privacy breaches

27

Chapter 2. State of the Art

in social networks [123]: (i) identity disclosure, that is user identity is revealed, (ii) link disclosure,
that is the relationship between two users are disclosed, and (iii) content disclosure, the privacy
extracted from data (e.g., email) is revealed. To prevent these risks of privacy, it is necessary to
preprocess the user data and make it anonymously before publishing [72]. There are numerous
related solutions and models have been proposed.

Firstly, it should be taken into account the privacy-preserving data mining methods. Orig-
inating the so-called k-anonymity concept for tabular data in databases [163, 164, 175], many
research in the database community studied the complexity of the problem as well as tried
to devise algorithms for anonymizing data records under different anonymization schemes such
as [11,113,129,136]. Despite the advantages of data perturbation and anonymization techniques
for tabular data, these works based on k-anonymity could not solve some problems generating
from graph topologies. As we know that the network structures are the sources of invaluable
information for any organization wanting to recognize and learn about social groups, their dy-
namics and members.

To overcome the shortcomings of privacy-preserving data mining methods, some algorithms
and techniques of privacy-preserving for social networks such as graph-modification methods are
presented.

The study on graph modification method to preserve identity-anonymization is originated by
the result of Backstrome et al. [18, 19], which showed that the methods of anonymizing graph
by simply removing the nodes identifiers before publishing the graph may not ensure the user
privacy as dishonest nodes could infer the node identity by figuring out the restricted isomorphism
problems based on uniqueness of small random subgraphs. Moreover the scheme of anonymity
through structural similarity of Hay et al. [93], which is based on the observation that nodes
having similar structures may be indistinguishable to dishonest nodes, still has problem because
the data analysts can get some properties of the original graph from anonymized graph.

Inspiring the observation of structural similarity made in [93] and the concept of k-anonymity
in databases [163, 164, 175], Liu and Terzi [123] presented the notation of k-anonymous graph,
that is a graph where every node has the same degree with at least k − 1 other ones, and the
degree sequence of that graph (i.e., the multiset of positive integers corresponding to the vertex
degrees in the graph) is called k-anonymous. Figure 2.4 depicts two examples of anonymous
graphs. In Fig. 2.4a, all four nodes have the same degree, hence, the graph is 4-anonymous
graph. Likewise, the graph in Fig. 2.4b is 2-anonymous one since it has two nodes of degree 2
and two other nodes of degree 3.

Liu and Terzi [123] also proposed a graph anonymization problem that, given an input graph,
asks for the minimum number of edge additions and deletions to transform that graph to a k-
anonymous one. In addition, a relaxed version of graph anonymization problem, called degree
anonymization problem, with the restriction to edge additions, is also considered. That problem
asks for finding a minimum-size edges set to be added into a given graph G such that the output
graph is k-anonymous. This problem is known as NP-hard even for parameter k ≥ 2 [90]. Liu and
Terzi [123] suggested a heuristics approach for degree anonymization problem. Fig. 2.5 shows
some steps of this approach. From the initial graph G with degree sequence dG = [1, 1, 2, 3, 3]
(Figs. 2.5a and 2.5b), step 1 consists of anonymizing that degree sequence by increasing the
elements in it such that each resulting element in the output degree sequence occurs at least
k times (Fig.2.5c), and step 2 tries to realize the k-anonymous sequence as a supergraph of G
(Fig.2.5d).

Somewhat more general models of the graph anonymization problem have been proposed
later. Zhou and Pei [191, 192] studied graph anonymity related to neighborhoods of nodes: for
each node there exist at least k − 1 other nodes that share isomorphic neighborhoods. Chester

28

2.2. Graph transformation problem

(a) (b)

Figure 2.4: Examples of (a) a 4-anonymous graph and (b) a 2-anonymous graph.

(a) Input graph G
with k = 3

dG = [1, 1, 2, 3, 3]

(b) initial degree se-
quence

dG′ = [4, 4, 4, 4, 4]

(c) k-anonymized degree
sequence

e4
e3e2 e5

e1

(d) k-anonymous
graph G′

e2
e3

e1

(e) Our desired out-
put

Figure 2.5: Example of the heuristics approach of Liu and Terzi [123].

et al. [46] investigated the variant of nodes to be added (instead of edges). Originating from
the research in [189] that some users in a social network might agree to allow some information
release while others want them to be anonymous, Chester et al. [45] introduced a problem of
subset anonymization for an unweighted graph. An other model of subset anonymization, k-label
sequence subset anonymity problem, for a weighted graph are also consider in [47].

Remarks. Although these graph anonymization problems and their solutions of graph trans-
formation enable the anonymity for nodes in the network, but they all are different from our
consideration because: (i) they focus on the number of appearance of a degree value in the degree
sequence, and (ii) there is no threshold constraint on the value of node’s degree. For instance,
from the input graph in Fig. 2.5a, we can have the output graph satisfying the requirements
that each node degree is at least 3 (introduced by the Issue 4 in Section 1.2 of Chapter 1) by
adding more three edges (Fig. 2.5e) instead of adding five edges like Fig. 2.5d. Note that these
differences also apply to some enhanced works of [123] such as [89] (which improved the upper
and lower bounds heuristics), [47] (which improved complexity), [128] (which showed a more
efficient greedy algorithm) and [35] (which presented an algorithm for k-degree anonymity on
large networks).

Not only protection of identities for users in social networks, the protection of relationship be-
tween users is also vital. To limit the possibility of sensitive connection disclosure, Zheleva and
Getoor [190] presented five strategies based on edge-deletion and node-merging operations. Ying
and Wu [185] studied the affect of randomly adding and removing edges on the graph properties
and graph anonymization. More specifically, they focused on the eigenvalues of a network and
presented a spectrum preserving graph randomization method that preserves network proper-
ties and protecting edge anonymity. Despite the solutions could help anonymization, these two
works’ solutions use edge-deletion and do not allow the limitation of node degree which are our
concerns.

29

Chapter 2. State of the Art

Approaches Create
an in-
valid set
of shares

Intermediate
tally are
unlimitedly
corrupted

Rely on
overlays or
restricted
graph
structures

Use crypto
or heavy
computa-
tion

Existence
of fully
connected
network

Existence
of secure
channels

Preserve
user
privacy

Define
user’s
role

Secret sharing
homomorphisms

Yes Yes No No No No Yes No

VSS and MPC Yes No No Yes Yes Yes Yes No
AMPC No Yes Yes No No Yes Yes No
E-voting with-
out crypto

No No Yes No No Yes Yes Yes

Reputation
scheme

Yes Yes No No No No No No

DPol, MPOL,
DiPA, PDP,
AG-S3

No No Yes No No No Yes No

SPP No No Yes Yes No No Yes No

Table 2.1: Comparison of approaches based on secret sharing schemes when applied for polling problem.

Approaches Allow
only static
matching
partners

Give
threshold
constraints
for node
degree

Use edge-
deletion
operation

Use only
edge-
addition
operation

Focus on the
number of
appearance
of a degree
value

Ensure the
threshold
condition

CAP, SMP, SRP Yes No No Yes No No
Maximize welfare [28] No No Yes No No No
b-Matching No Yes Yes No No Yes
WDCE∗

1{a} No Yes No Yes No Yes
Graph anonymization No No No No Yes No

Table 2.2: Comparison approaches for the graph transformation problem. Note that with WDCE∗1{a}
we consider only the method to alter a given graph into a regular graph.

2.3 Summary and Discussion

From what we have surveyed, we can see that existing works are inadequate to our requirements
for polling and graph transformation protocols.

For the polling problem, the previous approaches are either mainly based on cryptography
techniques, or based on secret sharing schemes. The former is not our target since we would like
to address the simple polling protocol without using complicated computation. In the latter,
much research have been proposed, however, they all have some drawbacks when deployed for
polling problem such as creating an invalid initial set of shares, the intermediate tally could be
corrupted by dishonest users, not taking into account the user privacy, predefining some roles
for users, and especially relying on some overlay structures. Table 2.1 resumes the differences
amongst the approaches based on secret sharing schemes. On the contrary, our aim is to design
simple distributed polling protocols that use no cryptography as well as rely on the natural
property of the graph in the sense the nodes and social links of the graph should be preserved,
and each individual can perform the voting process privately and securely on these graphs, not
on any overlay structures.

For the graph transformation problem, most of the recent approaches related to matching
or graph anonymization problems that either allow only static matching partners for one node
(e.g., SMP, SRP), or modify a graph into a subgraph such that each node degree of the output
must satisfy an upper bound condition, or do not give any threshold constraint for node degree
such that the node can add more friends to maximize the welfare (or it cannot add more friends
because it is already stable w.r.t. welfare), or focus on only the number of appearance of the
degree value (in the list of all nodes’ degrees). Table 2.2 summarizes the comparison of the graph
transformation approaches presented in this chapter. Conversely, our objective is to transform a
graph G into a supergraph G′ by using only edge-addition operation such that each node degree

30

2.3. Summary and Discussion

of the output must satisfy a lower bound condition.
In the following Chapter, we define some terms, notions, basic model components and pre-

processing procedures that will be used throughout this thesis.

31

Chapter 2. State of the Art

32

Chapter 3

Background

Contents
3.1 Distributed systems . 33

3.1.1 Communication . 33
3.1.2 Network knowledge . 34
3.1.3 Timing and synchrony . 34

3.2 The social network model . 35
3.2.1 Social graph model . 35
3.2.2 Algorithm performance . 39

3.3 Preprocessing algorithms . 41
3.3.1 Tree building . 41
3.3.2 All-pairs of shortest paths and network diameter 43

3.4 Summary and Discussion . 44

This chapter provides some definitions for the basic model components and computational
notations in a distributed system that will be used throughout this thesis. We also present the
preprocessing procedures needed for the remaining algorithms in this thesis. The content of this
chapter is inspired from the book [152].

This chapter is organized as follows. Section 3.1 illustrates some issues in the distributed
system. We give all terms and notations as well as present a social network that will be used
throughout this thesis in Section 3.2.1. Then Section 3.3 describes some protocols to be used
as preprocessing procedures for others algorithms later on. Finally, Section 3.4 concludes the
chapter.

3.1 Distributed systems

This section presents some issues in the distributed setting including communication information,
partial knowledge of node, timing and synchrony. Noted that these issues are introduced in the
book [152].

3.1.1 Communication

All processors in distributed systems communicate to each other by exchanging information.
This aspect is implicitly nonexistent in centralized networks. However the requirements for

33

Chapter 3. Background

characterizing, developing and analyzing methods for communication amongst participants in
the distributed system are necessary since the communication has certain costs associated with
it. In addition, there are some other properties related to communication such as speed limitation
of the information transmission, or amounts of exchanged information. In certain situations, some
costs dominate others; for instance, with the high development of processing speed of processors,
local processing at the sites of the system may be negligible compared to the real communication
cost associated with sites. Within the context of this thesis, we consider only the communication
cost to propose efficient solutions.

3.1.2 Network knowledge

The knowledge of the network topology is one of the most different points between centralized
setting and decentralized setting. In the former one, each processor has a full knowledge of net-
work structure as well as all information needed for carrying out the computation. In particular,
the input is known in its entirety to the processor at the initiation of the computation. All
intermediate data or result obtained during that computation is also informed and available for
all processors.

In contrast, a participant in the distributed network has only a partial information of the
system and ongoing activities in the sense it may lack some critical information for doing the
computation since it is hidden. For instance, each site may not know the entire input of the
problem at hand, which may be physically distributed among the sites, but only some partial
information stored locally. Moreover, it is not ensured or has any information about the partic-
ipation or collaboration of other sites for the necessary computation as well as the origin of the
information, the current stage and situation of other participants. Thus the coordinating of the
joint activities amongst processors on a common task is much more difficult.

Furthermore, a processor does not necessarily know much information about the surrounding
ones. This concerns to that fact that the amount of topological knowledge available at each
site is limited. For instance, anonymous network [184] is the particular restricted model where
all sites are indistinguishable, not identified by labels and know nothing on the topology of the
network. The mostly powerful model assumes the complete topological knowledge of the network
is maintained at every processor. In this thesis, we consider two somewhat more realistic models:
(i) a model in which processors are uniquely identified and each processor knows the identities
of its neighbors, and also the number of processors in the system, its diameter, or its maximum
degree; (ii) a more permissive model which allows a processor to know other ones at some
neighborhood.

3.1.3 Timing and synchrony

In the distributed system, the time truly affects to the development of the system as well as
analyzing problems and characterizing solutions. Hence, the concept of time and its systematic
methodologies are the most active research areas in the domain of distributed computing. Syn-
chrony of the system is the typical notation in this context. Based on the level of the synchrony,
two main models are classified: the (fully) synchronous model and asynchronous model.

The synchronous model. In this model, it is assumed that all connection delays are bounded.
Each processor keeps a local clock whose pulses must satisfy the following property: If a processor
n sends a message to its neighbor v at pulse p then it must arrive at v before pulse p + 1 of v.
For this consideration, the system looks like to be driven with the presence of global clock. Each
cycle of a processor might be composed of the following three steps:

34

3.2. The social network model

1. Send messages to the neighbors.

2. Receive messages from the neighbors.

3. Perform some local computation.

We assume the processing and computing procedures at each local site take negligible time
compared to message transmission. Therefore, each processor spends the entire cycle on waiting
for receiving messages from its neighbors at the start of the cycle.

The asynchronous model. In this model, the system contains no global clock and processors
cannot decide on their actions based on clocks. A message sent from a processor to its neighbor
may arrive within some finite but unpredictable time. In other words, clocks are rather useless,
at least as far as communication is concerned. We cannot rely on the waiting time elapsed to
deduce that a neighbor did not send a message by a certain time or that the message was lost
during transmission; it can always be the case that the message is still on its way. Moreover, it
is also impossible to rely on the ordering of message arrivals from different neighbors to infer the
ordering of various computational events, since the order of arrivals may reverse due to different
message transmission speeds.

Besides these two models, some other models are proposed in which the systems are attempted
in certain limited degree of synchrony. For example, each processor in the network has upper
and lower bounds on message transmission times. Both synchronous and asynchronous models
are not realistic than those models but they are useful for studying the behavior of a variety of
problems and issues, as they help to define and limit their potential behavior in intermediate
models. For instance, a lower bound or an impossibility result proven for a certain problem in
the fully synchronous model will be extremely useful as it applies to every other intermediate
model as well. Likewise, if an algorithm operated in the fully asynchronous model implies that
an algorithm of the same complexities (or better) exists for every other model.

3.2 The social network model

This section first presents the definitions for the basic social graph model components, then
introduces complexity measures. Finally we discuss the representative models one can employ
in studying the behavior of the distributed systems.

3.2.1 Social graph model

Throughout this thesis, we present the social network in our problem in the form of models of
social graphs. In this part, we first describe the system components, and then define the terms
and notations of graph parameters which occur intensively later on.

Model

Definition 3.1 (Graph). The system model consists of a point-to-point communication network,
described by a simple undirected connected social graph G = (V,E) with N = |V | uniquely
identified nodes representing users (or network processors) and the set E of edges representing
bidirectional social links.

The unique identifiers of nodes are assumed to be taken from an ordered set of integers P =
{p1, p2, ...}, where pi < pi+1 for every i ≥ 1, and the one-to-one mapping between each node

35

Chapter 3. Background

and its identifier is Id : V → P . (We sometimes ignore the distinction between the node itself
and its identifier, i.e., we may refer to the node n as either n or Id(n) interchangeably, where
no confusion arises.) These identifiers may be fixed and assigned to the nodes on the hardware
level. Additionally, we also assume that the identifier Id(n) of each node n is of O(logN) bits.

The node set of a graph G is denoted by V (G) and the edge set by E(G). For the sake of
simplicity, when G is clear from the context, we sometimes omit (G) and write the notations in
the forms of abbreviations without that script, e.g., V (G) and E(G) are written as V and E.

Definition 3.2 (Adjacency). An edge (u, v) is said to join the node u to the node v and is
denoted by uv. We also say that u and v are adjacent nodes and they are incident with the edge
uv. Two distinct edges with a common endnode are adjacent.

We also use a function e(u, v) to indicate the adjacency between two nodes u and v, namely,
e(u, v) = 1 if u is adjacent to v, and e(u, v) = 0 otherwise.

Definition 3.3 (Supergraph and subgraph). A graph G′ = (V ′, E′) is a subgraph of a graph
G = (V,E) and denoted by G′ ⊂ G if V ′ ⊂ V and E′ ⊂ E. We also say that G is a supergraph
of a graph G′.

Definition 3.4 (Neighbor of a node). The set of nodes adjacent to a node n ∈ V is called (direct)
neighbors (or friends) of n and denoted by Γ(n), and dn = |Γ(n)| said to be the degree of n.

The minimum degree and maximum degree of the node are respectively denoted by dmin(G) and
dmax(G) (or dmin and dmax). If dmin(G) = dmax(G) = r, i.e., every node of G has degree of r,
then G is said to be r-regular.

Attacker model in the polling protocols

We consider the same attacker model as the one given by Guerraoui et al. [82, 83]. The system
is composed of honest and dishonest nodes. Honest nodes completely comply with the assigned
protocol and take care about their privacy while dishonest ones might not. All nodes have to
send/receive/forward messages if they are requested. All dishonest nodes can form a coalition
to get the knowledge of the network and try to achieve these goals without being detected: (i)
bias the result of the election by promoting their votes or changing the values they received from
other honest nodes; (ii) infer the opinion of other nodes. In order to unify the opinion and not
give compensating effects, all dishonest nodes make the single coalition D of size D and give the
same corrupted values.

In order to avoid using cryptography, we exploit the social nature of the nodes, especially the
one-to-one association between social network identities and real identities, in the attacker model.
More specifically, all nodes in social networks care about their reputation: any information related
to a node intimately reflects on the associated real person. Using the concern of reputation, we
propose an approach to dissuade misbehaviors: each node can execute a verification procedure
to detect dishonest behaviors and the profiles of the related nodes will be tagged. Just to
demonstrate a typical example, when Bob detects that Alice is a dishonest node, Alice’s profile is
tagged with the statement “Bob accused Alice of doing misbehavior” and Bob’s profile appears the
statement “Alice is a bad guy”. Notice that in social networks, no one would like to be tagged as
dishonest. Thus dishonest nodes never do any misbehavior which will jeopardize their reputation
or affect their profiles like tagging. Moreover, dishonest nodes are also selfish in the sense each of
them prefers to take care about its own reputation to covering up its suspected accomplices. As
such dishonest nodes addressed here are rather restricted than Byzantine nodes [120]. Byzantine

36

3.2. The social network model

nodes may do anything they wish. When messages reach to Byzantine nodes, they can drop or
do not forward these messages to their neighbors even if requested.

To tolerate the existence of dishonest nodes with a limited vote corruption, we assume each
node has at least one honest friend but it does not know exactly which friend is honest or not.

Moreover, we do not take into account the Sybil attacks since they can be solved by other
work such as SybilGuard [188], and SybilLimit [187]. Without Sybil identities, the remaining
attacks of dishonest nodes to be considered are wrongfully blaming. That includes the following
cases: a single dishonest node blames a group of other participants, and a coalition of dishonest
nodes blames another set of nodes. Dishonest nodes also attempt to spam the system with a
large number of blames. Nonetheless, these attacks will affect their reputation when honest
nodes execute verification procedures and tag profiles of the dishonest friends.

For example, in Fig. 3.1, node s broadcasts its values to nodes n and v. Fig. 3.1a depicts
the case where s is dishonest but v is not, and in Fig. 3.1b, s is honest and v is dishonest. In
both cases, n receives two different values orginated from s, one directly from s (+5) and one
from v (−5). As none of the messages were cryptographically secured, n cannot identify whether
s sent two different values or v modified s’s value. Even when n requests both nodes to send
the values they sent/received, this problem could not be solved as dishonest nodes can tamper
with the content of response. For instance, in Fig. 3.1a, if n requests s the value it sent to other
nodes, then s replies that s sent v a value of +5 (to advocate the same value as the one it already
sent to n), in this case, s wrongfully accuses v of being a dishonest node. And in Fig. 3.1b, if n
requests v to give the value it received from s, v can reply that s sent it a value of −5 to justify
its forwarded value. In this case, the problem of finding out who is dishonest cannot be solved.
The only conclusion that n can draw here is that either s or v is dishonest. (Noted that we do not
consider the case where both s and v are dishonest nodes because we assume that all dishonest
nodes unify the opinion and give the same corrupted values.) Thus, in this case, n will tag the
profiles of both s and v. It means the reputation, including the one of dishonest nodes, are finally
affected. From the viewpoint of dishonest nodes, that is their unexpected circumstance because
they really want to participate the polling process and bias the result without involving their
reputation.

More generally, if s is not a direct friend of n: when n receives different values of the source s,
it cannot distinguish whether s sent different values or the intermediate dishonest nodes modified
s’s value. In that case, n tags the profiles of its friends who sent it those different values. These
friends also tag the profiles of their neighbors who forwarded the s’s value to them, and so on.
With this process, the dishonest nodes will be eventually tagged (even if some other honest nodes
are also tagged) by certain honest nodes who are dishonest nodes’ friends. Again, that is not a
desired situation for dishonest nodes.

Actually, in a system where majority of nodes are honest, the probability to expose dishonest
nodes that wrongfully accuse honest ones is high. Several tools or systems could distinguish
legitimate and wrongful accusations. For instance, reputation systems like EigenTrust [114] and
PowerTrust [193], spam mitigation systems like Ostra [138] and SocialFilter [169], and recom-
mendation systems like SumUp [177] and Digg [2]. Hence, for the sake of simplicity, we do not
consider the wrongful blame attack in this thesis.

We represent H(X) and D(X) as the set of honest nodes and dishonest nodes respectively
in a graph X ⊆ G.

Paths and shortest paths

Definition 3.5 (Path). A path p of length l ∈ N is an ordered sequence of l+ 1 nodes such that
there exists an edge connecting two consecutive nodes in the sequence: p = 〈u1, u2, . . . , ul+1〉 with

37

Chapter 3. Background

+5

s

n 77

−5 ''

−5

v

OO

(a)

+5

s

n 77

+5 ''

−5

v

OO

(b)

Figure 3.1: Node n cannot identify whether s or v is dishonest.

ui ∈ V , (ui, ui+1) ∈ E, 1 ≤ i ≤ l. We write |p| to refer the length of path p, i.e., number of the
edges of p. If e(ui, ui+1) = 1 then |〈ui, ui+1〉| = 1. If a path p contains only one node, |p| = 0.

For two nodes u, v ∈ V , let p(u, v) be a path connecting nodes u and v and Pa(u, v) be the
set of all such paths. We write x ∈ p(u, v) if a path p(u, v) contains a node x. For two paths
p(u1, v1), p(u2, v2), we define the intersection of them as follows: p(u1, v1)∩ p(u2, v2) = {x ∈ V |
x ∈ p(u1, v1) and x ∈ p(u2, v2)}.

Definition 3.6 (Shortest path). The shortest path between two nodes u and v, denoted by
pS(u, v), is the path having shortest length comparing to other paths of the set Pa(u, v).

We denote δ(u, v) as the distance, i.e., the length of the shortest path, between nodes u and
v. We also illustrate by PaS(u, v) the set of all shortest paths between two nodes u and v.

Distances, eccentricity, radius and diameter

Definition 3.7 (Ecentricity). The eccentricity Rad(v,G) of a node v ∈ V denotes the distance
from v to the vertex farthest away from it in G: Rad(v,G) = maxw∈V {δ(v, w)}.

Definition 3.8 (Diameter and radius). The diameter Diam(G) of the graph G is defined as the
maximal distance between any two nodes in it: Diam(G) = maxu,v∈V {δ(u, v)} = maxv∈V {Rad(v,G)}.
We illustrate the radius of the network by Rad(G) = minv∈V {Rad(v,G)}.

For the single-node graph G = ({v}, ∅) we suppose that Rad(G) = Diam(G) = 1. To
our best knowledge, the distributed algorithms for computing the exact eccentricity, radius and
diameter of the network take time O(N) [98, 153]. We present these algorithms in Section 3.3.
Moreover, when G is clear from the context, we sometimes omit (G) and write the notations in
the forms of abbreviations without that script such as Rad(v), Rad, and Diam.

Neighborhoods

We rewrite the set of direct neighbors of node n as the form Γ1
n = Γ(n) and define recursively

the collection of neighbors at distance j > 1 from n as follows:

Γjn = {u | δ(u, n) = j} = {u | u ∈ Γv where v ∈ Γj−1
n and u /∈

⋃
k<j

Γkn}

Honest graph

Since each node is either honest or dishonest, for the transmission between two nodes u and v, it
is important to care of the honesty property of each node (i.e., checking whether node is honest
or dishonest) in the paths connecting them. Particularly, if u and v are directly connected, i.e.,
e(u, v) = 1, we should investigate the honesty property of u and v. The transmission is secure

38

3.2. The social network model

s

d

x

t

w

y

Figure 3.2: Example of social graph.

only if they are all honest and is unsecured otherwise. If e(u, v) = 0, we should examine all
paths between u and v. For a path p(u, v) = 〈u ≡ u1, u2, ..., um ≡ v〉 (where e(ui, ui+1) = 1,
1 ≤ i ≤ m−1), we have to check honesty property of each intermediate node ui. The transmission
in that path is secure only if all nodes are honest and we call it honest path. If there exists at
least one honest path between u and v, it guarantees the correct information from u (or v) will
approach to v (or u).

We describe, more formally, the way to check the secure transmission between nodes u and
v by using concept trust level. Let us firstly define the value q for two directly connected nodes
u, v as q(u, v) = 1 if u, v are honest, and q(u, v) = 0 otherwise. Note that the value of q(u, u)
depends on whether u is honest or not. The trust level for a specific path p is:

ϕ(p) =

{
q(u, u) if p = 〈u〉
q(u1, u2).ϕ(〈u2, ..., um〉) if p = 〈u1, u2, ..., um〉

(3.1)

Here, notation “.” is a multiplication operation.

Given two nodes u and v, the trust level ϕ(u, v) is given as:

ϕ(u, v) =
∑

p∈Pa(u,v)

ϕ(p) (3.2)

Obviously, ϕ(u, v) = 0 if u or v is dishonest. Therefore, we often use ϕ(u, v) when u, v are
honest. In case that transmission in path p = 〈u1, u2, ..., um〉 is secure, i.e., ϕ(p) > 0, then p is a
honest path. For instance, consider the graph given in Figure 3.2, where we consider dishonest
nodes are w and y and the remaining are honest ones. According to Formula 3.2: (i) ϕ(w,w) =
0 since q(w,w) = 0, and (ii) ϕ(s, d) = ϕ(p(〈s, w, d〉)) + ϕ(p(〈s, x, d〉)) + ϕ(p(〈s, x, y, d〉)) +
ϕ(p(〈s, x, y, t, d〉)) = 1 since q(s, w) = 0 and q(x, y) = 0.

Definition 3.9 (Honest graph). For a graph G, there exists, for all pairs of honest nodes u, v,
at least one honest path between them, then G is called honest graph. Formally, G is a honest
graph if ∀u, v ∈ H(G) : ϕ(u, v) > 0.

3.2.2 Algorithm performance

In the centralized algorithms, the factors of performance evaluation are often the time and space
complexities. But the corresponding performance consideration in the distributed system are
more sophisticated. They include the assessment for the time, space and additional quantity,
message (or communication). We describe here the formal definitions of these complexities which
are given in [152].

Time complexity

39

Chapter 3. Background

The time complexity is used for evaluating the deadline of the algorithm completion, i.e., the
time by which a node may expect to get the output of their computation. This complexity
measurement for a centralized algorithm is the number of steps that program takes from the
beginning to the end. Since the computation and execution of the program are occurred at one
site, the measurement is robust even if that program might be paused or resumed several times.
In contrast, with the presence of multiprocessors, the execution of a distributed program may
take place at many sites and progress at different times. This leads to the situation where a node
waits for information computed at another and the delays might be important. We consider this
complexity measure in two types of networks: synchronous and asynchronous. Remember that
in the synchronous system, the entire system is driven by a global clock whose pulses satisfies
the following property: If a processor n sends a message to its neighbor v at pulse p then it must
arrive at v before pulse p + 1 of v. As for the asynchronous network, the time for delivering
a message from the source to the destination is not bounded, and there is no global clock to
drive the actions of entire network. To overcome this difficulty, we assume that in asynchronous
network, each message incurs a delay of at most one time unit.

Definition 3.10 (Synchronous time complexity). Given a network G and a synchronous dis-
tributed algorithm A. The time complexity of A when deployed on G is the number of pulses
generated during the execution of A on G in the worst case counting from the first node in G
began the execution until the last node has terminated.

Sometimes, in this thesis, we are interested in considering the time complexity as the maxi-
mum time complexity defined in Definition 3.11.

Definition 3.11. Given a network G and a synchronous distributed algorithm A. The time
complexity of A when deployed on G is the maximum number of pulses generated during the
execution of A on G in the worst case at all nodes.

Definition 3.12 (Asynchronous time complexity). Given a network G and an asynchronous
distributed algorithm A. Under the assumption that each message transmission incurs a delay of
at most one time unit, the time complexity of A when deployed on G is the maximum number
of time units from the start of the execution of A on G to its completion in the worst case at all
nodes.

It is also noted that the assumption in the Definition 3.12 does not refer to the existence of
the bounded delay in the asynchronous systems or does not restrict the prospective scenarios
in any meaningful way. That assumption is used for functioning assessment. In fact, we can
transform any certain scenario where the message transmission takes longer than one time unit
into other one which time of transmission is between 0 and 1 without affecting to the execution
of the algorithm. This may be done by dividing all current transmission times by the suitable
factor, e.g., the maximum transmission time in the system.

Space complexity

The space complexity refers to the maximum memory required for the local computation of the
algorithm at each node, or to the total memory used by algorithm. More formally:

Definition 3.13 (Space complexity). Given a network G and an algorithm A. The space
complexity (resp. total space complexity) of A when deployed on G is the maximum (resp.
total) number of memory bits used by A at at all nodes of G in the worst case.

40

3.3. Preprocessing algorithms

Message complexity

The message complexity is the major difference between distributed systems and centralized
systems. We distinguish this complexity measure with the time complexity in the centralized
settings as follows: the time complexity in the centralized networks includes (i) the estimation
of the deadline for the program completion, and (ii) the cost, i.e., the expected amount of
computation required for the computation. While in the distributed networks, the first evaluation
(i) could still be reached by the time complexity notion, but evaluation (ii) could not be applied
since nodes could collaborate together to speed up the computation. Instead, the communication
cost is assessed based on the message complexity in the distributed systems. This complexity
takes a significant role in the decentralized networks and it relates to the amounts of information
each node or entire system transmits.

Definition 3.14 (Message complexity). Given a network G and a distributed algorithm A.
Under the assumption that the message transmission cost over a link is 1, the message complexity
of A when deployed on G is the total number of messages transmitted during the execution of A
on G in the worst case.

We also examine the message complexity as the number of messages that a node has sent.
We define this consideration in Definition 3.15.

Definition 3.15. Given a network G and a distributed algorithm A. Under the assumption that
the message transmission cost over a link is 1, the message complexity of A when deployed on
G is the total number of messages a node has sent during the execution of A on G in the worst
case.

3.3 Preprocessing algorithms

In Section 3.1.2, we already mentioned that the knowledge about the system at each node is
limited. In some networks, e.g., anonymous networks, each node does not know anything about
the network topology. But in other systems, to simplify and facilitate some processing and
computations, some additional information on the surrounding or partial topological knowledge
may be available to each node. Moreover, some models do not supply much information about
topology explicitly, instead, they implicitly give it by putting various network aspects. For
example, a spanning tree or a Breadth-First-Search (BFS) tree may be known to all nodes
by the following meaning: each node does not know entire the tree structure, and could not
manipulate directly to some of its characteristics. On the contrary, it may recognize which of its
neighbors appear as the neighbors in the tree. Namely, a node v has d links e1, ...ed will store
an array b = {b1, ...bd} of boolean values where bi = 1 (i ≤ d) indicates the link ei is inside
the tree, otherwise bi = 0. Each node also identifies the neighbors in the graph that are its
parent and children in the tree respectively by using a variable parent(v) and child(v) pointing
to corresponding neighbors.

This section aims to give some procedures to compute some partial information of the net-
work such as tree constructions, the distance between two nodes, the network diameter. These
algorithms will be used as preprocessing procedures in our thesis.

3.3.1 Tree building

We here sketch some basic processes for building bread-first-search (BFS) trees, depth-first-search
(DFS) trees in a distributed way given by Peleg (cf. [152]).

41

Chapter 3. Background

BFS tree

Definition 3.16 (BFS tree). BFS is a type of searching process originating from a given root
where one traverses all nodes in such a way that new nodes at minimum distance to the root are
discovered first, before examining the others at higher distance. The tree constructed from that
process is called BFS tree.

Let v0 be the root of the BFS tree BFS(v0). Each node maintains a variable d(v) indicating
the distance to the root. The algorithm constructing BFS(v0) contains the following steps.

1. Each node initializes value of l: l(v0)← 0 and l(v)←∞ for v 6= v0.

2. The root broadcasts the message msg(0) to all its neighbors.

3. For each node v, upon receiving a message msg(d) from a neighbor t, it checks whether
d+ 1 < l(v). If that is true, then v considers w as its parent in the tree, updates value
l(v)← d+ 1 and finally forwards messages msg(d+ 1) to other friends.

In a synchronous model, each nodes updates l(v) for a finite value only once. Thus it only
broadcasts messages to neighbors once. Therefore, the message complexity is O(|E|). The
runtime of the protocol is equal to the time for discovering the farthest node from the root. In
the worst case scenario, it takes O(Diam) if that farthest node is at distance Diam from the
root. In an asynchronous model, under the assumption that each message transmission takes
one time unit, we see that a node at distance d from v0 has received a message msg(d−1) from a
certain neighbor after d time units. Thus, similar to the synchronous case, the time complexity
is O(Diam). For the message complexity: a node v changes the value l(v) at most N − 1 times
since the maximum depth of a node in the tree is N−1, thus it sends at most (N−1)dv messages.
It infers the total messages sent by nodes in the system is O(N

∑
v dv) = O(N |E|).

DFS tree

Definition 3.17 (DFS tree). DFS is a type of searching process originating from a given root
where one traverses all nodes in such a way the search pattern always visits new nodes as far
from the root as possible, before back tracking to a certain region. Accordingly, the tree generating
from that procedure is called DFS tree.

Let us describe a distributed algorithm for building DFS tree DFS(v0) of root v0 in the
following steps.

1. The roots starts the procedure by holding a token τ .

2. For each node v:

Upon receiving a token τ from a neighbor w do:

• If v 6= v0 is visited for the first time then it:

– Sets the node w as its parent and marks w as visited neighbor.
– Sends messages I(v) to all other neighbors to inform them it is already visited.
– Waits for all neighbors’ acknowledgements.

• If v has a neighbor u that was not yet visited, v sends the token τ to u and marks
u as a visited neighbor. Otherwise v sends the token to its parent. If there is

42

3.3. Preprocessing algorithms

no such node, i.e., v = v0 and all neighbors have been visited, the construction
terminates.

Upon receiving a message I(w) from a neighbor w do: mark w as a visited node and
send acknowledgement back to w.

The message I(v) and the acknowledgement help each node to know exactly which of its neighbors
were already visited and which ones were not. Since each node v transmits at most one message
over an edge (including one for token, or one I(v), or one acknowledgement) and each edge might
not be considered by both incident nodes, the message complexity is O(|E|). The runtime of the
algorithm includes the time for the first visiting to nodes (O(1) for each node) and the time for
traversing DFS tree edges. Each tree edge has been visited at most twice. With N nodes, the
DFS tree has N − 1 edges; thus, the time complexity is O(N).

3.3.2 All-pairs of shortest paths and network diameter

In this part, we present an exact algorithm proposed by Holzer and Wattenhofer [98] for com-
puting all pairs of shortest paths (APSP) and a by-product, the diameter, of a network in a
distributed way with time O(N). It is noted that there is a similar algorithm to compute APSP
and network diameter independently introduced by Peleg et al. in [153].

Communication model

We consider a synchronous system modeled as an undirected unweighted connected graph G =
(V,E) as presented in Section 3.2.1. Each node has a unique identifier and has no knowl-
edge of topology except its direct neighbors. The communication model examined here is
CONGEST [152] where nodes can send messages of size O(logN) bits to its neighbors and
also receive messages from them in a round. The local computation is free as it is dominated by
the communication cost. In these algorithms, the time complexity, the number of rounds that
the algorithms takes from the beginning until the end of the algorithm, is evaluated.

Algorithm. The algorithm is executed simultaneously by every node with the following steps.

1. An initiator node v0 in the network builds a bread-first-search BFS tree T0.

2. That initiator sends a token τ to traverse that tree T0.

3. Upon receiving the token τ for the first time, each node v 6= v0 will:

• wait one time slot (in order to avoid congestion).

• start constructing a BFS tree BFS(v) from itself.

4. Upon the process BFS(u) visits v for the first time, node v knows its depth in that
tree, i.e., δ(u, v), and finally knows the value d(v) = maxw{δ(w, v)}.

5. Each node broadcasts d(v) to all nodes in the tree BFS(v). Then it can obtain the
diameter by computing Diam = maxw{d(w)}

Correctness. We see that both BFS(u) and BFS(w) could not be processed at the same time
at any node v. Indeed, w.l.o.g., assume node u and w respectively start building BFS(u) and
BFS(w) at time tu and tw where tu < tw. This infers, node u receives the token τ before w
does, i.e., the token visits u then takes some time ∆t to reach w. Since a message passing one

43

Chapter 3. Background

edge takes one time unit, ∆t ≥ δ(u,w). Moreover, a node w needs waiting one time unit before
starting its BFS(w), the time for establishing that procedure is tw = tu + ∆t+ 1 > tu + δ(u,w).
Therefore, tw + δ(w, v) > tu + δ(u,w) + δ(w, v) ≥ tu + δ(u, v). In other words, the progress of
BFS(w) takes place after the one of BFS(u) does at node v.

Time complexity. All BFS tree processes finish after O(Diam) rounds. The time the toke τ
needs to traverse tree T0 is O(N). The time complexity of the algorithm includes the time of
building T0 (in O(Diam)), traversing the tree T0 by the token τ (in O(N)), and building the
last BFS which τ established (in O(Diam)). In conclusion, it is O(N).

3.4 Summary and Discussion

In this chapter, we presented a general issues including communication model, user knowledge,
timing and synchrony in the distributed system. We also described the social network model
that will be used throughout this thesis. The complexity measurements in the distributed system
are also discussed. Moreover, we mentioned some recent decentralized preprocessing protocols
for computing lengths of shortest paths, network diameter, BFS/DFS trees which are used for
other algorithms later on.

In the following chapter, we will propose our first contribution for the polling problem. More
precisely, we will give the design of a decentralized polling protocol not requiring any central
authority or cryptography system. This protocol is deployed on the original social network and
operates in a synchronous model.

44

Chapter 4

Synchronous Model-based Polling
Protocol

Contents
4.1 Polling model . 45

4.1.1 User behaviors . 46

4.1.2 Social graph model . 46

4.2 Polling protocol . 47

4.3 Correctness . 51

4.3.1 Properties of protocol . 51

4.3.2 Protocol and graph without dishonest nodes 52

4.3.3 Protocol and graph with dishonest nodes 54

4.3.4 Particular networks . 61

4.4 Experimental evaluation . 63

4.5 Summary and discussion . 65

As motivated in Chapter 1, one of the main issues in this thesis is to design distributed polling
protocols to be deployed in social networks. This chapter (and next two chapters) will address
to this issue by proposing a simple decentralized polling protocol that relies on the current state
of social graphs.

This chapter is organized as follows. Section 4.1 describes our polling model, and introduces a
family of social graphs. Section 4.2 presents our polling protocol with its correctness properties.
We establish formally the relation between the protocol and the family of social graphs, and
analyze different complexities to perform the polling in two cases, with and without the presence
of dishonest nodes, in Section 4.3.2 and Section 4.3.3 respectively. Section 4.4 illustrates our
experimental results. We conclude the chapter in Section 4.5.

4.1 Polling model

This section defines the user behaviors and presents the graph models to describe social networks.
It should be noted that we consider the same assumptions given in [82,83].

45

Chapter 4. Synchronous Model-based Polling Protocol

4.1.1 User behaviors

The polling problem consists of a system with N uniquely identified nodes representing users of
a social network. Each participant n expresses its opinion by giving a vote vn ∈ {−1, 1}. After
collecting the votes of all nodes, the expected outcome is

∑
n vn.

We consider here the following assumptions (more details are introduced in Chapter 1 and
Section 3.2.1 of Chapter 3):

1. We consider the synchronous model and the network contains no crash and message
loss.

2. The message transmission to all neighbors of a node takes one time unit.

3. The network includes honest and dishonest nodes.

4. Each node has at least one honest friend but it does not know exactly which friend is
honest or not.

5. Each node has the global knowledge (that are the shortest path lengths between two
arbitrary nodes).

6. The dishonest nodes want to misbehave to achieve these goals without affecting their
reputation and to be tagged in their profiles: (i) bias the result of the election by
promoting their votes or changing the values they received from other honest nodes;
(ii) infer the opinions of other nodes.

7. In order to unify the opinions and not give compensating effects, all dishonest nodes
make the single coalition D of size D and give the same corrupted values.

8. The dishonest nodes are rather restricted than Byzantine nodes.

9. We do not take into account the Sybil attacks, spam and the situation that dishonest
nodes wrongly blame honest ones.

10. All nodes have to send/receive/forward messages without delaying if they are re-
quested.

The assumptions 7, 8 and 9 are motivated in the attacker model in Section 3.2.1 of Chapter
3.

4.1.2 Social graph model

We present the social network in our problem in the form of models of social graphs as introduced
in Section 3.2.1 of Chapter 3.

Recall that each node n maintains a set of direct neighbors Γ(n) (or Γn) of size dn. In
addition, it also holds other two subsets of Γ(n): a set Sn of consumers containing nodes that n
sends messages to, and Rn of producers relating to nodes for which n acts as a consumer. These
subsets might not be disjoint, i.e., Sn ∩Rn 6= ∅, as depicted in Fig. 4.1.

Like [82, 83], we use a predefined parameter k ∈ N and k ≤ b(−1 +
√

3N + 1)/3c (this
parameter will be detailed in section 4.2) to present the features of our social graphs. Let
G = (V,E) be a social graph with the following properties:

46

4.2. Polling protocol

n

x

y

z

a

b

c

producers Rn
consumers Sn

Figure 4.1: Producers and consumers of node n.

Property 4.1 (Pg1). dn ≥ 2k + 1 and |Sn| = |Rn| = 2k + 1, for every n ∈ V .

Property 4.2 (Pg2). G is an honest graph, i.e., for every honest nodes u, v, there exists a
path p(u, v) containing only intermediate honest nodes.

Property 4.3 (Pg3). D ≤ N/10.

According to Property Pg1 , a set of consumers and a set of producers of one node have the same
size and may be not disjoint. Property Pg2 ensures each honest node always obtains one correct
version of data from other honest ones. Property Pg3 enables us to limit the control of dishonest
users in the whole system.

From these properties, we characterize two families of graphs:

(i) G1 = {G | D(G) = ∅ and G satisfies Pg1}.

(ii) G2 = {G | D(G) 6= ∅ and G satisfies Pg1 , Pg2 and Pg3}.

Graphs in G1 contain only honest nodes and satisfy property Pg1 . Graphs in G2 contain honest
and dishonest nodes and satisfy properties Pg1 , Pg2 and Pg3 .

4.2 Polling protocol

Generally, the polling protocol includes three phases (see Algorithm 1): (i) Sharing, (ii) Broad-
casting and (iii) Aggregating. Phase Sharing describes the generation, distribution of a set of
shares of each node to its neighbors as well as collecting these shares from its neighbors. In
the Broadcasting phase, each node broadcasts messages containing the total shares, which are
collected in the Sharing phase, to its direct and indirect neighbors. The last phase, Aggregating,
shows the process that each node decides data received from other nodes and computes the final
outcome.

Sharing. In this phase, each node n contributes its opinion by sending a set of shares expressing
its vote vn ∈ {−1, 1} to its consumers. We inspired the sharing scheme proposed in [61] to
generate shares. Namely, n generates 2k + 1 shares Mn = {m1,m2, ...,m2k+1} where mi ∈
{−1, 1}, i = 1, 2, ..., 2k + 1 including: k + 1 shares of value vn, and k shares of opposite vn’s
value. The intuition of this creation is to regenerate the vote vn when the shares are summed.
Later it randomly generates a permutation µn of Mn, and sends shares to 2k + 1 consumers.
Lines 4–9 in Algorithm 1 describe this activity. Node also receives exactly 2k+ 1 shares from its
producers. Note that Sn and Rn might not be disjoint.

After each node collects 2k + 1 shares from its neighbors, and sums them into collected data
cn (lines 10–11 in Algorithm 1), this phase completes. Fig. 4.2 illustrates an example of the

47

Chapter 4. Synchronous Model-based Polling Protocol

Algorithm 1: Synchronous polling algorithm at node n ∈ {0, 1, ..., N − 1}
Input:
vn: A vote of node n, value in {−1, 1}
k : privacy parameter

Variables:
cn: collected data, cn = 0
Cn: set of possible collected data

Cn[{0, 1, ..., N − 1} → ∅]
hn: set of final deciding collected data

hn[{0, 1, ..., N − 1} → ⊥]
Tn: routing table

Tn[{0, 1, ..., N − 1} → ∅]
Zn: sending data

Zn[{0, 1, ..., N − 1} → ∅]

Output: result

Main Algorithm

1 Sharing(vn)
2 Broadcasting(n, cn, 1, Γ(n))
3 Aggregating()

Procedure Sharing(vn)

4 Mn ← {vn}
5 for i← 1 to k do
6 Mn ←Mn ∪ {vn} ∪ {−vn}

7 µn ←randMn

8 for i← 0 to 2k do
9 send (SHARE, µn[i]) to Sn[i]

Upon event (receiving (SHARE, p) from neighbor r) do

10 if (r ∈ Rn and p ∈ {−1, 1}) then
11 cn ← cn + p

Procedure Broadcasting(n, cn, ln, An)

12 foreach (r ∈ An) do
13 send (DATA, n, cn, ln) to r

Upon event (receiving (DATA, s, cs, ls) from t) do

14 if (s = n or ls > δL(s, n)) then exit

15 if (cs /∈ Cn[s]) then
16 νs ← cs
17 Cn[s]← Cn[s] ∪ {cs}
18 Broadcast(s, νs, ls + 1, Γ(n) r {t})

else
19 νs ← ⊥

20 Tn[s]← Tn[s] ∪ {(t, cs, νs, ls)}

Procedure Aggregating()

21 result← cn
22 for s← 0 to N − 1 do
23 if (s 6= n) then
24 hn[s]← CheckInconsistency(s)
25 result← result + hn[s]

Procedure CheckInconsistency(s)

26 if (|Cn[s]| = 1) then
27 return Cn[s][0]

else
28 return correct value after verifying T [s] of neighbors

protocol for k = 1. Fig. 4.2a presents desired vote of each node, whereas Fig. 4.2b depicts the
sharing phase at node A. Node A would like to vote +1, thus, it generates a set of 2k + 1 = 3
shares {+1,−1,+1} which total equals to vA = 1. Fig. 4.2c shows node A collects the shares
from its producers and computes the collected data cA = 3.

Broadcasting. In this phase, each node needs to disseminate its collected data to all other
nodes in such a way that each other node eventually obtains that correct data. Briefly, this
phase includes the following steps:

1. For the source s do: Send the collected data to all neighbors.

2. For node n 6= s do:

Upon receiving the data of source s for the first time (over a neighbor t) do:

2.1. Store the data in Cn[s].

2.2. Forward it on every other neighbor (except t).

Upon receiving the data again (over other neighbors) do: simply drop it.

More specifically, each node n encapsulates the collected data cn with its identity n and
length counter ln, which expresses the length of the path message has passed (initially, ln = 1),

48

4.2. Polling protocol

1

A

1

E

-1

B

1

D

1

K

1

C

-1

F

1

M

-1

N

(a) Desired votes of nodes

E B D K

1 A

+1 −1 +1

(b) Sharing phase

E B D K

A

+1 +1 +1

+3+3

(c) Sharing phase (cont.)

A C

E

B

TE [A] = {(A, 3, 3, 1), (B, 3,⊥, 2)}

CE [A] = {3}

hE [A] = 3

msg(
A,

3,
1)

msg(A, 3, 1)

msg(A, 3, 2)

m
sg

(A
,3
,2

)
(d) Broadcasting phase

Figure 4.2: Polling algorithm for k = 1.

into message msg and disseminates it to all neighbors (lines 2 and 12–13 in Algorithm 1). This
action is depicted in Fig. 4.2d. When n receives from its neighbor t a message msg(s, cs, ls)
emitted from the source s, it performs the following actions (lines 14–20 in Algorithm 1):

1. Loop detection: n checks contents ofmsg and detects the loop based on the source node(line
14 in Algorithm 1). If this message is the one n has emitted earlier, i.e., s = n, then n
simply drops the message. Otherwise, n accepts msg.

2. Message Forwarding : For a message passing the loop detection, n should get data cs and
forward to its friends except t.

We see that, naively approaching, n can receive cs from many different paths (without
loop) connecting between s and n. However, the number of paths can be blown up to
exponential value. More specifically, the worst case is when G is a clique and each message
passes through all nodes in the network, and thus, the number of possible paths between
s and n is an exponential function. This motivates us to find out an optimal solution to
bound the number of messages emitted from s that n should receive without losing any
necessary information.

Instead of using naive approach, we propose other approach which is useful and more
optimal: node receives messages which passed by paths with the limited length rather than
accepting all. Here, for messages broadcast from s, we use bread-first expansion where the
message transmission in one edge takes one time unit. Hence, we see that firstly n receives
messages from s in the shortest path pS(s, n), and then from other paths of greater length.
By the way, the content of messages can be changed by some intermediate dishonest nodes
in the path p ∈ Pa(s, n). Thus, we should take care the intermediate nodes. For each

49

Chapter 4. Synchronous Model-based Polling Protocol

intermediate node x, it receives message from s in pS(s, x) first and from the longer path
later. Node n also receives message, which passed x, from the shortest path pS(x, n)
first and then from other longer paths p(x, n). Therefore, n receives messages, which are
broadcast from s and passed x, from the paths with length δ(s, x) + δ(x, n) first, and from
other longer paths later. To take care of all possible changes in contents, n should receive
all messages which already passed all intermediate nodes. And so, the maximum length of
the paths passing message n should receive is maxx{δ(s, x) + δ(x, n)}.7 In case that for all
node x, pS(s, x) and pS(x, n) have some common nodes (different from x), n should not
receive messages from the paths of length δ(s, x) + δ(x, n) since they have a loop inside. It
should receive messages from paths of length δ(s, n) instead. So, we combine all of these
results, and define one value which n (resp. s) could use to determine the maximum length
of paths which deliver messages from s (resp. n) to n (resp. s) as follows:

δL(s, n) =

{
maxx∈Usn{δ(s, x) + δ(x, n)} if s 6= n ∧ |Usn| > 0

δ(s, n) otherwise
(4.1)

where Usn =
{
x ∈ V |x 6= s, n and ∃p1 ∈ PaS(s, x), p2 ∈ PaS(x, n) s.t. p1 ∩ p2 = {x}

}
.

For a message with ls ∈
[
δ(s, n), δL(s, n)

]
, node n accepts and does the following activities,

otherwise it simply eliminates that message (line 14 in Algorithm 1).

The activities in the case ls ∈
[
δ(s, n), δL(s, n)

]
are as follows (lines 15–18 in Algorithm 1):

n checks Cn[s], a set of possible values emitted from the source with identity s, to determine
whether cs is already presented in it:

• If cs is not stored in Cn[s]: n will add it into Cn[s], and then forward message
msg(s, νs, ls + 1), where νs is value to be sent (in this case νs = cs), to other di-
rect neighbors except t. All information about the messages from source s is stored
in the routing table Tn[s] which is used for checking inconsistency later. This table
contains the following fields: the neighbor identity from which n received message
(e.g., t), the receiving value (e.g., cs), the value to be forwarded (e.g., νs), and the
length of the path passing message from the source s (i.e., ls). In this case, n adds
tuple (t, cs, νs, ls) into Tn[s].

• Otherwise: when Cn[s] contains value cs, n does not need replicating that value in
Cn[s], as well as forwarding it to other friends as it already did earlier. It just stores
information in the routing table, by setting the sent value as null, i.e., νs = ⊥ (null).

Fig. 4.2d depicts the process when node E receives message emitted from A. When msg(A, 3, 1)
with length 1 arrives to E, it stores cA = 3 into the set CE [A] of possible collected data of source
A. It then forwards msg(A, 3, 2) with length 2 to B and C and adds a tuple (A, 3, 3, 1) into
routing table of source A, i.e., TE [A]. Notice that A also sends msg(A, 3, 1) to B with the same
length as the one to E. Thus, B gets the same message and does the same actions like E. Node
E gets forwarded message with length 2 from B. Since that is the second message having the
same source and collected data, but higher length, E does not forward it. Node E just inserts
one more tuple (B, 3,⊥, 2) expressing the information received from B into routing table TE [A].

Once there is no broadcasting messages in the network, this phase is over. Since each node
just sends and receives a finite number of messages, and all messages eventually arrives, it is
guaranteed this phase terminates correctly.

7See Lemma 4.1 for the correctness of this consideration.

50

4.3. Correctness

Aggregating. In this phase, n has to decide the collected data of other nodes before calculating
the final result. To make decision for node s, it checks |Cn[s]| (lines 26–28 in Algorithm 1): if
|Cn[s]| = 1, the single element in Cn[s] is chosen as a correct collected data, otherwise there
exists an inconsistency and it should do the verification: requesting all routing tables T [s] of
neighbors and indirect neighbors to check information received and forwarded by them. If one
node is detected that it already sent different values of its data or its receiving information, then
an alarm is raised and that node is tagged in its profile. By doing this, n also gets the correct
collected data of source s.8 So, in any case, n achieves the correct copy of collected data of source
s. It then stores that value as one item hn[s] in the array hn, which contains collected data of
other nodes, and adds it into result (lines 21–25 in Algorithm 1). After checking and summing
up all collected data of nodes (including its own collected data cn), n obtains the final result
(that is result = cn +

∑
i 6=n hn[i]).

For instance, we consider Fig. 4.2d again. From formula (4.1), we see that δL(A,E) = δ(A,B) +
δ(B,E) = 2. After receiving message msg(A, 3, 2) from node B, and updating routing table,
node E makes final decision to choose value from source A. As the set CE [A] is singleton, it will
set h[A] = CE [A][0] = 3. This value will be used to compute final outcome of polling later.

4.3 Correctness

In this section, we first present the properties of our polling protocol. Second we analyze its
correctness and complexities when deployed for graphs of G1 and G2. Finally we show those
properties are necessary and sufficient conditions to ensure the correctness of our protocol in
graphs without and with the presence of dishonest nodes.

4.3.1 Properties of protocol

In Section 4.1.1, we already introduced the characteristics of the polling model. It implies that
our protocol should have some properties such that the system can run correctly with (or without)
the existence of dishonest nodes. Namely, each honest node outputs the correct polling result,
controls the impact from the dishonest nodes, and not disclose its private information, whereas
the dishonest coalition could not control the polling process or fool an entire network without
being detected. In this section, we clarify those desirable properties by stating what protocol
should achieve with (or without) the existence of dishonest nodes.

Privacy. The privacy property expresses the ability of the system to prevent the private infor-
mation from being leaked to the dishonest nodes. In other words, the coalition could not reveal
any information of particular honest node beyond what it can deduce from its own vote, the
output of computation and the shares of votes.

Definition 4.1 (Privacy). The protocol is said private if the dishonest nodes cannot learn any-
thing about the vote of honest node. More formally, for any honest node n with vote vn, there
exists a negligible function ξ(k) such that:

Pr[D � vn] ≤ ξ(k) (4.2)

where D � vn denotes the dishonest coalition discloses a vote vn.

8See Lemma 4.6 for the detail of this verification.

51

Chapter 4. Synchronous Model-based Polling Protocol

Accuracy. We define the impact of dishonest nodes as the difference between the output and
the expected result. In our case, vote is either “+1” or “−1”, and thus, with the system of N
nodes, the maximum and minimum final results are N and −N respectively. This implies the
maximum difference amongst the final outputs is 2N . As defined in [80], accuracy is given by
the maximum impact with respect to the maximum difference of the final outputs:

σ =
1

2N
· max
n∈H(G)

∣∣∣resultn −
N−1∑
i=0

vi

∣∣∣ (4.3)

where resultn is the output of the poll.
Due to the absence of cryptography techniques, we here tolerate some impact from dishonest

nodes on the polling output. The formal definition of accuracy property is as follows.

Definition 4.2 (Accuracy). The protocol is said accurate if there exists a negligible function
ξ(k) such that σ ≤ ξ(k).

Termination. Termination is expressed by the characteristics that the protocol is guaranteed to
eventually terminate, and the system is not in the situation of looping indefinitely, for example,
node waits for message never arriving. It means the number of messages each node is supposed to
send or receive in the protocol is known and finite. Noted that, as presented in our assumptions,
all nodes have to send/receive messages if they are requested.

Definition 4.3 (Termination). The protocol is said terminate if there exist m1,m2 ∈ N such
that |Ms| ≤ m1, |Mr| ≤ m2, where Ms and Mr are respectively the set of sending and receiving
messages of one node.

Definition 4.4 (Correctness of the protocol). The polling protocol is said to be deployed correctly
on a graph with (resp. without) the presence of dishonest nodes if it preserves the privacy,
accuracy, and termination (resp. accuracy and termination) properties when deployed on that
graph.

4.3.2 Protocol and graph without dishonest nodes

In this section, we consider only graphs G of family G1 (see Subsection 4.1.2) and analyze the
correctness (including accuracy and termination) of our protocol when deployed for graphs in
G1. Next we give spatial, message and time complexities. Finally, we show properties of G1 are
necessary and sufficient conditions to ensure the correctness of our protocol. Here we do not
consider the privacy property as there is no dishonest nodes in this case.

Correctness

Theorem 4.1 (Correctness). Consider a polling system of size N with only honest nodes where
each node n expresses a vote vn. The polling algorithm is guaranteed to eventually terminate and
each node outputs

∑N−1
n=0 vn.

Proof. (Accuracy). In the sharing phase, each node n sends a set of sharesMn = {mn1 ,mn2 , ...,mn2k+1
}

to its consumers where
∑
mni = (k + 1). vn + k. (−vn) = vn, and also receives a set of shares

{m′n1
,m′n2

, ...,m′n2k+1
} from its 2k + 1 producers to obtain a collected data cn =

∑2k+1
j=1 m′nj .

With the assumption that there is no dishonest node and without crash or message loss, each
message from the source successfully reaches the destination, and thus the set of all sending

52

4.3. Correctness

shares of all nodes will be exactly coincided with the set of all receiving shares of all nodes,
namely: ⋃

V

{mn1 ,mn2 , ...,mn2k+1
} =

⋃
V

{m′n1
,m′n2

, ...,m′n2k+1
}

In the broadcasting phase, each node n broadcasts its collected data to its direct neighbors,
then they do honestly forward that value to neighbors of neighbors of n and so on. Each node’s
data is finally arrived to all other ones. It infers that the array hn contains all collected data
of all nodes in the system and these values comes from all the receiving shares of all the nodes.
Consequently, the final computation gives us the value which is also our expected outcome:

result = cn +
∑

0≤i<N
i 6=n

hn[i] =
N−1∑
i=0

ci =
N−1∑
i=0

2k+1∑
j=1

m′ij =
N−1∑
i=0

2k+1∑
j=1

mij =
N−1∑
i=0

vi

.
Proof. (Termination). In the sharing phase, each node receives a finite number (2k + 1) of
messages. In the broadcasting phase, a node n also receives the finite number of messages from
source s, because it just accepts messages passed through the paths of length belonging to the
interval

[
δ(s, n), δL(s, n)

]
. Moreover, as every node sends the required number of messages and

they are eventually arrived to destination, each phase completes. The algorithm has a finite
number of phases, hence, by Definition 4.3, the protocol is ensured to finally terminate.

Asymptotic complexity

We analyze the spatial, message and time complexities of the protocol in Propositions 4.1–4.3.

Proposition 4.1 (Spatial complexity). The total space each node n must hold is O(k +Ndn).

Proof. Each node n needs to maintain the set of 2k + 1 consumers, the set of 2k + 1 producers,
the list of dn direct neighbors, the set Cn of possible collected data of other nodes, the routing
table Tn, the set hn of N − 1 final deciding collected data. Without the presence of dishonest
nodes, node n just inserts into Cn[s] one value emitted from source s through the shortest path
between s and n, i.e., |Cn[s]| = 1, and thus |Cn| = N − 1. The worst case for the routing table
Tn[s] is when all shortest paths between s and n are passed by its friends. In other words, Tn[s]
contains at most dn rows. It infers that |Tn| ≤ (N − 1)dn. Therefore, the spatial complexity in
this case is O(k) +O(dn) +O(N − 1) +O((N − 1)dn) = O(k +Ndn).

Proposition 4.2 (Message complexity). The number of messages sent by a node n is O(k+Ndn).

Proof. In the sharing phase, a node n sends 2k+1 messages to its consumers. In the broadcasting
phase, it sends dn messages containing collected data to all of its direct neighbors. It also takes
a role as an intermediate node by forwarding message to all of its neighbors except the node it
got that message. For each collected data emitted from source s, the number of messages node
n forwards is equal to the number of elements in the set Cn[s]. The cause is that, after receiving
the first message of value cs passed by the shortest path with length δ(s, n), n stores cs into
Cn[s], forwards message to (dn− 1) neighbors, and never does this action for the message having
the same value but higher length later. Thus the number of forwarded messages is |Cn|(dn − 1).
As there is no dishonest node, node n just inserts into Cn[s] one value emitted from source s
through the shortest path between s and n, i.e., |Cn[s]| = 1, and thus |Cn| = N − 1. Accordingly,
the message complexity is O(2k + 1) +O((N − 1)(dn − 1)) = O(k +Ndn).

53

Chapter 4. Synchronous Model-based Polling Protocol

Proposition 4.3 (Time complexity). The protocol operates in O(Diam(G)).

Proof. The sharing phase operates in one time unit as a node broadcasts shares to all its con-
sumers at the same time. In the broadcasting phase, node n broadcasts its collected data to all
other nodes. The farthest node is at distance Diam(G). Thus this phase takes in O(Diam(G)).
Therefore, the time complexity is O(Diam(G)).

The necessary and sufficient conditions of graph without dishonest nodes

In the following part, we examine the necessary and sufficient conditions for our protocol to be
deployed correctly on graphs without the existence of dishonest nodes.

Theorem 4.2. The properties of G1 are the necessary and sufficient conditions for the polling
protocol to be deployed correctly in the system without dishonest nodes.

Proof. The sufficient condition (⇒) is proved by Theorem 4.1. We only examine the remaining
of this theorem, the necessary condition (⇐). Consider a general graph G which our polling
protocol can be deployed correctly (without the presence of dishonest nodes). We will show
G ∈ G1. In the sharing phase of the protocol, each node n sends (resp. receives) exactly 2k + 1
messages to (resp. from) consumers (resp. producers), i.e., |Sn| = |Rn| = 2k + 1, and these two
sets Sn and Rn might not be disjoint, thus, dn ≥ 2k + 1. Therefore, to apply protocol correctly,
G must have the property Pg1 , and we have, G ∈ G1.

4.3.3 Protocol and graph with dishonest nodes

In this section, we revisit the relation between protocol and graph, but approach it with the
presence of D dishonest nodes. We consider graphs G of family G2 and analyze the correctness
(including privacy, accuracy and termination) of our protocol when deployed for these graphs.
Next we give spatial, message and time complexities. Finally, we show the properties of G2 are
necessary and sufficient conditions to ensure the correctness of our protocol. Here we do not
consider the termination property as it is similar to Theorem 4.1.

Privacy. In this part, we study the probability that a node vote is revealed by a dishonest
coalition.

Theorem 4.3. The probability that a coalition of D dishonest nodes reveals an honest node’s
vote when it gets k + 1 identical shares from that node is bounded by

∑2k
m=k+1

(
D
N

)m(1
2

)2k+1−m.

Proof. The probability that a coalition D discloses a node vote v is equal to the probability of
the event the coalition D gets at least k+ 1 shares of that node in which k+ 1 ones are identical.
Let X and Y be respectively the number of shares (generating from vote v) and the number of
identical shares of value v that a coalition D obtains. We denote E(A) be the event of variable
A. The mentioned probability is:

Pr[D � v] = Pr(E(X ≥ k + 1).E(Y = k + 1))

=

2k∑
m=k+1

Pr(E(X = m).E(Y = k + 1))

=
2k∑

m=k+1

Pr(E(X = m)).P r(E(Y = k + 1/X = m))

54

4.3. Correctness

It is easy to see that Pr(E(X = m)) =
(
D
m

)
/
(
N
m

)
where k + 1 ≤ m ≤ 2k.

Moreover, Pr(E(Y = k+ 1/X = m)) is the probability to get k+ 1 identical shares in the set
of size m which belongs to the set of 2k+ 1 elements containing k+ 1 ones of value v and k ones
of value −v, that is, Pr(E(Y = k + 1/X = m)) =

(
k+1
k+1

)(
k

m−(k+1)

)
/
(

2k+1
m

)
=
(

k
m−(k+1)

)
/
(

2k+1
m

)
.

Consequently, we have

Pr[D � v] =

2k∑
m=k+1

[(D
m

)
/

(
N

m

)]
.
[(k

m− (k + 1)

)
/

(
2k + 1

m

)]

=
2k∑

m=k+1

D(D − 1) . . . (D −m+ 1)

N(N − 1) . . . (N −m+ 1)
.
k(k − 1) . . . (m− k)

(2k + 1)2k . . . (m+ 1)

<
2k∑

m=k+1

(D
N

)m(1

2

)2k+1−m

Theorem 4.4. The probability that D < N/2 dishonest nodes reveal an honest node’s vote when
they get k + 1 identical shares from that node is bounded by k

22k+1 , and the protocol is private.

Proof. By Theorem 4.3, we have:

Pr[D � v] <
2k∑

m=k+1

(D
N

)m(1

2

)2k+1−m
<

2k∑
m=k+1

(1

2

)m(1

2

)2k+1−m
=

k

22k+1

Function ξ(k) = k
22k+1 is negligible (since ξ(k) ≤ 1/k4, i.e., it decreases as 1/k4). By Definition

4.1, our protocol is private.

If the poll outcome is N (resp. −N), it implies all nodes vote for “+1” (resp. “−1”) and they
all are disclosed. Moreover, w.l.o.g., assume each dishonest node always votes for “−1”. Thus,
if the result is N − 2D (resp. −N) then it implies all honest nodes vote for “+1” (resp. “−1”).
Without considering this case, i.e., all honest nodes do not vote for the same option, Theorem
4.5 shows us the maximum number of votes the dishonest coalition could discover.

Theorem 4.5. If all nodes do not vote for the same option, a coalition of D dishonest nodes
can reveal at most 2D votes of honest nodes.

Proof. A node receives 2k + 1 shares, hence, the dishonest coalition collects at most D(2k + 1)
shares. Moreover, a vote v of one node is revealed if the coalition obtains k + 1 identical shares
of value v. Thus the dishonest coalition recovers at most bD(2k+1)

k+1 c ≤ 2D votes.

Accuracy. We present the accuracy based on the ability of the honest nodes to get correct
output and to control the impact from dishonest nodes. We first justify clearly the condition for
receiving broadcast messages from neighbors of each node that we use in the broadcasting phase.

As mentioned in Algorithm 1, in the naive approach, each node broadcasts its data and also
forwards the received data which is not emitted from it. Despite the use of richer social graph
structures, one node can receive/send so many duplicated messages from/to other nodes. This
leads to flooding the local storage. We propose other simple optimal solution: each node n
should receive broadcasting messages from the paths of length ls ∈ [δ(s, n); δL(s, n)]. We use

55

Chapter 4. Synchronous Model-based Polling Protocol

s ≡ w1 w2 wi−1 wi wi+1 wl0 n ≡ wl0+1

x

Figure 4.3: A path ω = 〈s ≡ w1, w2, ..., wi−1, x, wi, ..., wl0+1 ≡ n〉 of length δL(s, n) + 1.

breadth-first expansion from s with the assumption that transmission in one edge takes one time
unit. This gives the fact that node n receives the broadcasting messages from the shortest paths
first, and later it receives messages from the paths which length are not greater than δL(s, n).
Moreover, for each message generated by s and passed from the path p which length satisfies the
condition δ(s, n) ≤ |p| ≤ δL(s, n), n checks whether the collected data cs exists in Cn[s] or not.
If Cn[s] does not contain cs, n inserts cs into Cn[s] and then forwards to other neighbors except
the node which just sent message to n. Otherwise, cs is neither stored in Cn[s] nor forwarded.
This way of creation enables to store only distinct values in Cn[s].

To show the correctness of our optimal approach, we have to prove that all of (distinct)
information that n receives by using naive approach are stored in Cn[s] of the optimal approach
and vice versa. More formally, let us denote:

• Ns,n as the set of all paths between s and n in the naive approach;

• V1 as the set of possible collected data in the naive approach;

• Os,n as the set of all paths between s and n in the optimal solution;

• V2 as the set of possible collected data in the optimal solution.

We prove the correctness of the optimal approach by showing that V1 = V2 in Lemma 4.1.

Lemma 4.1. Prove that V1 = V2.

Proof. Let csn(p) be the collected data receiving from a path p = p(s, n).
We have V1 = {csn(p)|p ∈ Ns,n}, and V2 = {csn(p)|p ∈ Os,n}.
It is easy to see that V2 ⊆ V1 since Os,n ⊆ Ns,n.
We now prove that V1 ⊆ V2, i.e., ∀c ∈ V1 ⇒ c ∈ V2, by contradiction.
Indeed, assume the contrary, i.e., ∃ω ∈ Ns,n : c = csn(ω) ∈ V1 and c /∈ V2.
Since Os,n = {p ∈ Pa(s, n)|δ(s, n) ≤ |p| ≤ δL(s, n)}, it means that (i) |ω| < δ(s, n) or (ii)

|ω| > δL(s, n).
Case (i) cannot occur since δ(s, n) = |pS(s, n)| ≤ |p|, ∀p ∈ Pa(s, n). Thus, we only consider

case (ii). W.l.o.g., assume |ω| = l0 + 1 where l0 = δL(s, n).
Let us consider a path p0(s, n) = 〈s ≡ w1, w2, ..., wl0 , wl0+1 ≡ n〉 (where wi 6= wj if i 6= j) of

length l0 as depicted in Fig. 4.3.
Because n gets value c but does not put it into V2, this value must be transferred by a

certain node wi in the path p0 and is also emitted from a certain node x which is not in the
path p0 but connects to wi. W.l.o.g., suppose x connects to wi−1 and the path ω is: ω = 〈s ≡
w1, w2, ..., wi−1, x, wi, ..., wl0+1 ≡ n〉 of length l0 + 1. (We assume this for easily understanding
the proof. In general, a node x might not connect to other nodes in p0 (except wi) but it is
contained in a certain path such as 〈s ≡ w′1, w

′
2, ..., w

′
i−1〉. In that case, we can consider the

following path: ω′ = 〈s ≡ w′1, w
′
2, ..., w

′
i−1, x, wi, wi+1, ..., wl0+1 ≡ n〉. We see that the role of ω

and ω′ in the proof are equivalent.)

56

4.3. Correctness

Firstly, we prove that x cannot connect to other nodes in p0, except wi and wi−1, i.e.,
e(x,wj) = 0, ∀j /∈ {i, i − 1}. Indeed, if ∃j: e(x,wj) = 1, i < j ≤ l0 + 1, then there exists
a message delivered by the path p′ = 〈s ≡ w1, w2, ..., wi−1, x, wj , wj+1, ..., wl0+1 ≡ n〉 of length
|p′| = i − 1 + (l0 + 1 − (j − 1)) ≤ l0 contains value c. Moreover, as p′ ∈ Os,n, we have c ∈ V2.
Contradiction!

So, path 〈s, w2, ..., wi−1, x〉 ∈ PaS(s, x) and path 〈x,wi, wi+1, ..., wl0+1 ≡ n〉 ∈ PaS(x, n). We
have: l0 = δL(s, n) = maxy{δ(s, y)+δ(y, n)} ≥ δ(s, x)+δ(x, n) = i−1+(l0 +1−(i−1)) = l0 +1.
This inequation gives us the contradiction. Consequently, V1 ⊆ V2.

In conclusion, V1 = V2.

Lemma 4.2. In the broadcasting phase, if an honest node n broadcasts its collected data cn then
all other honest nodes will eventually receive that value.

Proof. By Lemma 4.1, for each honest node, it obtains a set of possible collected data V2 contain-
ing all values which could be obtained from all paths of the naive approach. This also includes
the honest paths which give the correct collected data. This yields the desired result.

Corollary 4.1. If |V2| = 1 then the single element of V2 is a correct collected data.

Proof. This proof is given from Lemma 4.2.

Consider the network with privacy conscious settings. In such a network, each node has no
knowledge to calculate bounds for the path lengths between it and other nodes. In that case, in
the broadcasting phase, after receiving a message from source s, node n could not check the length
of the path delivering that message (i.e., n could not check the condition ls ∈

[
δ(s, n), δL(s, n)

]
).

It just verifies the set Cn[s] and stores (and forwards, resp.) information which has never been
received (and forwarded, resp.) earlier. We call this approach “privacy-conscious one”. Notice
that, this approach is different from the naive one. In the naive approach, node n floods network
by receiving/forwarding messages: it gets all messages, then puts cs into Cn[s], and transfers it
to other friends without checking whether that information is already existed in Cn[s].

Lemma 4.3. By using privacy-conscious approach, no information from s to n is lost.

Proof. Let V3 be the set of possible collected data in the privacy-conscious approach. We first
prove that V3 = V2 = V1. Indeed, from the definition of V1 for the naive approach above, it
is easy to see that V3 ⊂ V1. Moreover, in the privacy-conscious approach, node n receives all
messages without checking the length of the path delivering them, and thus V2 ⊂ V3. By Lemma
4.1, V1 = V2, hence, we have V3 = V2 = V1.

In the following part, we first present all capabilities of dishonest nodes to affect on poll outcome
in Definition 4.5. Then we examine the impact of the dishonest nodes on accuracy.

Definition 4.5 (Dishonest capabilities). A dishonest node may affect the poll outcome with the
following misbehaviors:

1. In the sharing phase, since a node can only generate and send shares to its consumers it
is assigned (otherwise the shares are dropped) and there are at most 2k + 1 consumers to
be assigned, it must send at most 2k + 1 shares in which at most k + 1 ones are identical.
Hence a dishonest node may give the misbehavior by sending more than k + 1 (but not
greater than 2k + 1) identical shares.

57

Chapter 4. Synchronous Model-based Polling Protocol

+3

s

n 77

−3 ''

−3

v

Cn[s] = {+3,−3}
OO

(a)

+3

s

n 77

+3 ''

−3

v

Cn[s] = {+3,−3}
OO

(b)

−1w v//
−1

n$$

−1

s

::

−3 $$ −3t //

−3

x

::
Cn[s] = {−1,−3}

(c)

−1w v//
−1

n$$

−1

s

::

−1 $$ −3t //

−3

x

::
Cn[s] = {−1,−3}

(d)

Figure 4.4: Misbehaviors of the dishonest nodes in the broadcasting phase. Node n receives
different values emitted by the source s. (a) and (b) s and n connect together; (c) and (d) s and
n are not direct friend of each other.

2. It inverts each receiving “+1”-share into a “−1”-share to decrease the collected data.

3. In the broadcasting phase, it modifies the collected data of other honest node or sends a
forged message.

4. It broadcasts or forwards inconsistent data.

Lemma 4.4 (Sharing). After sending a set of shares, a dishonest node may affect at most 2k+2
to the final result.

Proof. In the sharing phase, a dishonest node may give the first misbehavior (1) presented in
Definition 4.5. From the standpoint of the dishonest coalition, the best case is when it votes
v = +1 but sends all 2k+1 shares of value “−1”. As a node is allowed to send only a set of shares
summing to −1 or +1, this misbehavior affects the final result up to 2k + 1 + 1 = 2k + 2.

Lemma 4.5 (Computing collected data). After computing the collected data, a dishonest node
may affect to the final result by 4k + 2.

Proof. Each node receives 2k + 1 shares generating from its 2k + 1 producers. After receiving
the set of shares, a dishonest node can modify the data by inverting all shares of “+1” to shares
of “−1” (misbehavior (2) in Definition 4.5). It can also create a forged data. But in any case,
the dishonest node can only modify and create at most 2k + 1 shares. The best case, from the
viewpoint of the dishonest coalition, is when it gets 2k + 1 shares of “+1” and inverts all into
“−1”-shares. Thus, this attack gives the impact up to 2(2k + 1) = 4k + 2.

Corollary 4.2. A dishonest node that corrupts the collected data to be out of the range [−2k −
1, 2k + 1] is detected with certainty.

Proof. The proof is yielded from Lemma 4.5 since a node sums 2k + 1 shares and each share is
either +1 or −1.

58

4.3. Correctness

Lemma 4.6 (Broadcasting collected data). There exists a public verification scheme that detects
a dishonest node broadcasting (resp. forwarding) inconsistent copies of its (resp. other node’s)
collected data.

Proof. Recall that, as presented in Sub-section 4.1.1, we do not take into account the Sybil
attacks, spam, and wrongfully blaming from dishonest nodes. Thus the capabilities of dishonest
nodes in the broadcasting phase are either modifying the receiving data or modifying the path
length value. The latter case (i.e., modifying the path length value) could be detected due to
the synchronous model. If the broadcasting phase starts at time t (for all nodes), then at time
t′ each node must receive messages with length t′ − t. Notice that, the dishonest nodes cannot
delay in sending or forwarding messages. Moreover, because nodes can guess the path length
between any two nodes in the system, they can detect easily this kind of attack. Hence, we here
concentrate only the former case, i.e., dishonest nodes modify the receiving collected data.

An example of the attack of changing collected data is depicted in Fig. 4.4a: node n receives
two different values from source s, one directly from s (+3) and one from v (−3). If n requests
s the value it sent to other nodes, and s replies that he/she sent value +3 to v (to advocate the
same value as the one it already sent to n), in this case, s will indirectly wrongfully accuse v as
dishonest node, because according to the information from s, v has forwarded to n the different
value from the one it received from s, and thus, v must be dishonest and tagged. Actually, in a
system that honest nodes are majority, the probability that dishonest nodes are exposed when
wrongly accusing honest ones is high. Like in the example, if v is wrongly accused by a small
number of nodes, the allegation would be in doubt and not be considered, and the accuser s
would be finally backfired. By the way, we do not allow this kind of blame in the system, and
assume that no node, which does not wrongly blame other nodes, would like to be tagged as
dishonest.

To detect that misbehavior, we suggest the following verification scheme: requesting and
checking routing tables of neighbors. More particularly, when an honest node n detects incon-
sistency of the collected data from a source s, i.e., Cn[s] = {w1, w2, . . . , wl} where l > 1, wi 6=
wj , i 6= j, for each wi ∈ Cn[s], n checks in the routing table Tn[s] to find out all neighbors
{vi1 , vi2 , . . . , vij} that sent wi to n. Then n sends all entries of Tn[s] which contain the values
Cn[s], as well as requests to check the inconsistency of the value wi to its neighbors, neighbors
of neighbors, and so on. There exists some intermediate honest nodes (in the path between s
and n), who are the nearest (direct or indirect) neighbors w.r.t. dishonest nodes and detect the
violation.

We prove this Lemma by induction on the distance l = δ(s, n).

1. If l = 1: Fig. 4.4a and 4.4b show that node n receives two different values of source s, and
it cannot identify whether s sent two different values or v modified s’s value . As mentioned
in Subsection 3.2.1 of Chapter 3, in this case, if we allowed wrongly blaming, the problem
of finding out who is dishonest cannot be solved since dishonest nodes can tamper with
all information. The only conclusion that n can draw is either s or v is dishonest. Thus,
n will tag the profiles of both s and v as the dishonest nodes. From the viewpoint of
dishonest nodes, that is their unexpected situation because they really want to participate
the polling protocol and bias the polling result, but not to be accused or tagged by any
nodes. However, without the wrongfully blaming attack, n can request s (resp. v) the value
it sent (resp. received) to v (resp. from s), and s (resp. v) cannot spoof the information it
sent (resp. received). With this method, the dishonest node will be exposed.

2. If l > 1: when n receives two different values of the source s (since all dishonest nodes give

59

Chapter 4. Synchronous Model-based Polling Protocol

the same corrupted values, n receives at most two different values which include one correct
value and one corrupted value), it cannot distinguish whether s has sent inconsistent values
or the intermediate dishonest nodes have modified s’s value (see Fig. 4.4c and 4.4d). As
discussed in Subsection 3.2.1 of Chapter 3, node n can tag its direct friends who sent those
different values to it. Those friends do the same activities with their friends, and so on.
Thus, dishonest nodes’ profiles are finally tagged. In addition, without the wrongfully
blaming attack, n can also request its friends, who have sent different values to it, to
send the values they received form their friends. These neighbors have to reply to n the
correct values they received. These neighbors also do the same actions as n does with their
neighbors, and so on. By this process, dishonest nodes will be exposed.

Theorem 4.6 (Accuracy). Every dishonest node may affect the expected final result up to 6k+4.

Proof. By Lemmas 4.1-4.6, each dishonest node affects to the final outcome at most 2k + 2 +
4k + 2 = 6k + 4. Thus, σ = 6k+4

2N = 3k+2
N .

Consider a function ξ(k) = 3k+2
N . With k ≤ b(−1 +

√
3N + 1)/3c and N is fixed, then

ξ(k) ≤ 1/k. It means ξ(k) decreases as 1/k; thus, it is negligible. By Definition 4.2, the protocol
is accurate.

Asymptotic complexity We here examine the complexities of the protocol when deployed for
the graphs of family G2 of size N with the presence of D dishonest nodes.

Proposition 4.4 (Spatial complexity). The total space each node n must hold is O(k+NDdn).

Proof. Each node n needs to maintain the set of 2k + 1 consumers, the set of 2k + 1 producers,
the list of dn direct neighbors to contact, the set Cn of possible collected data of other nodes,
the routing table Tn, the set hn to store the final choosing collected data (N − 1). For Cn, in the
worst case, for each honest source s, dishonest coalition can forward to n at most D different
values, and n also receives one correct value from the honest path. Hence, the maximum size
of Cn is (N − 1)(D + 1). Likewise, the worst case of Tn[s] is when all paths between source
s and n are passed by n’s friends and all dishonest nodes. Since there are dn neighbors and
D honest nodes, we have the size of Tn[s] is at most Ddn, and thus the maximum size of
Tn is (N − 1)Ddn. Consequently, the total space each node must hold in the worst case is
O(k) +O(dn) +O((N − 1)(D + 1)) +O((N − 1)Ddn) +O(N − 1) = O(k +NDdn).

Proposition 4.5 (Message complexity). The number of messages a node n sent is O(k+NDdn).

Proof. A node n sends 2k + 1 messages to its direct neighbors in the first phase, broadcasts dn
messages in the broadcasting phase to all of its direct neighbors, and hence, totally |Cn|(dn − 1)
messages. The worst case for Cn is similar to the one considered Proposition 4.4, i.e., |Cn| =
(N −1)(D+1), and thus, we have the message complexity is O(2k+1)+O((N −1)(D+1)(dn−
1)) = O(k +NDdn).

Proposition 4.6 (Time complexity). The protocol operates in O(Diam(G)).

Proof. The sharing phase operates in one time unit as a node broadcasts shares to all its con-
sumers at the same time. In the broadcasting phase, node n sends collected data cn to dn
neighbors which takes one time unit. The collected data is delivered to some node s through the
path with length at most δL(n, s) ≤ 2.Diam(G). Therefore, the time complexity is O(Diam(G)).

60

4.3. Correctness

The necessary and sufficient conditions of graph with dishonest nodes
We analyze the necessary and sufficient conditions for our protocol to be deployed correctly

for graphs of family G2.

Theorem 4.7. The properties of G2 are the necessary and sufficient conditions for the polling
protocol to be deployed correctly in the system with the presence of dishonest nodes.

Proof. By Theorems 4.3-4.6, we already showed the sufficient condition (⇒), i.e., our protocol
works correctly with graphs of G2 and preserves its properties.

We only need to clarify the remaining proof (⇐) of this theorem. Assume we have a general
graph G. We approach the proof by sketching step by step the requirements G should obtain so
that all properties of protocol are guaranteed.

In the sharing phase of the protocol, each node n sends (or receives) exactly 2k+ 1 messages
to neighbors, i.e., |Sn| = |Rn| = 2k + 1, and these two sets Sn and Rn might not be disjoint,
thus, dn ≥ 2k + 1. Therefore, to apply protocol correctly, G must satisfy property Pg1 .

In addition, in the broadcasting phase of protocol, it can be inferred from Lemma 4.2, in order
to make decision about the collected data of source s, node n has to check |Cn[s]|. If |Cn[s]| > 1
then there exists an inconsistency, and n starts the verification process. In that procedure, it has
to request its neighbors to send the routing tables T [s], and its neighbors do the same activities
with others. The security in this situation is the protection of the table transmission so that the
honest node has some witnesses to expose the dishonest ones. We do not take into account the
case that dishonest nodes blame wrongfully other honest ones in the sense they cannot modify
the value that honest nodes sent to or forwarded in the content of the T . Suppose G is not an
honest graph. Then for every honest nodes u and v, every path p(u, v) contains at least one
dishonest nodes. And thus, the routing message always passes throughout a dishonest node, the
security property of protocol is not preserved. Consequently, G must be an honest graph, or
satisfies Pg2 .

We prove that G has property Pg3 . Indeed, let α, in average, be the proportion of nodes
voting for “+1”. The expected final outcome is αN.1 + (1 − α)N.(−1) = (2α − 1)N . It can
be inferred from Theorem 4.6 that the maximum impact from dishonest coalition is (6k + 4)D.
The final result is not affected if (6k + 4)D ≤ |2α − 1|N . Since k ≥ 1, 0 ≤ α ≤ 1, we have
D ≤ N |2α−1|

6k+4 ≤ N
10 .

In conclusion, G is a member of family G2.

4.3.4 Particular networks

As shown in the previous sections, our polling protocol is correct for graphs in the family G2.
Here we illustrate some particular graphs of this family. We also prove in this part our family of
graphs is more general than other families of graph structures deployed in other works.

Layered networks. The nodes are distributed into layers. Each node in one layer links to all
other nodes in neighboring layer. The number of nodes in each layer might be different. Each
layer has at least one honest node. Fig. 4.5 shows examples of this network in which arrows
represent the direction of the transmission of shares in the first phase of the protocol (i.e., u→ v
means u is a producer of v and v is a consumer of u). Each node in these graphs has 2k+ 1 = 3
consumers and producers. Moreover, as each honest node in layer Vi links directly to all honest
nodes in Vi+1 (and vice versa), for any two honest nodes in two arbitrary layers (even they are
in the same layer), there exists an honest path connecting them. Thus, this kind of networks
fulfills the property Pg2 of G2.

61

Chapter 4. Synchronous Model-based Polling Protocol

L1 L2 L3 L4 L5 L6

(a)

L1 L2 L3 L4 L5 L6

(b)

Figure 4.5: Layered networks.

gi

u

gi−1

gi+1

(a) Connection of node.

gi

u

gi+1

w1

gi+2

w2

gj

w3

v

(b) The honest path between two honest nodes u and v in GP .

Figure 4.6: Cluster-ring based network.

Cluster-ring-based networks [24,25,65,82,83]. The N nodes are clustered into m =
√
N

ordered groups, from g0 to gm−1. Each group is a clique. A node n in group gi also links to a
fixed-size set Sn of nodes in the next group (Sn ⊂ gi+1 mod m), and a fixed-size set Rn of nodes
in the previous group (Rn ⊂ gi−1 mod m) where |Sn| = |Rn| = 2k + 1. Thus, all groups virtually
form a ring with g0 being the successor of gm−1.

In fact, this structure is a particular case of layered networks presented above in which each
layer (group) is a clique of size m =

√
N , each node in one layer links to exact 2k + 1 nodes in

neighboring layer in which there is at least one honest friend, and all layers virtually form a ring
(as depicted in Fig. 4.6).

In this case, the set of consumers of each node vin in a group gi = {vi,0, vi,1, . . . , vi,m−1},
(where 0 ≤ i, n ≤ m− 1) might be determined as the output of the following function:

f : gi → 2gi+1 mod m

vin 7→ {vi+1 mod m,(n+1) mod m, vi+1 mod m,(n+2) mod m, . . . , vi+1 mod m,(n+2k+1) mod m}

We see that |Sin| = |f(vin)| = 2k + 1 and the set of producers of a node vin ∈ gi is Rin =
{vi−1 mod m,(n−1) mod m, . . . , vi−1 mod m,(n−2k−1) mod m} and |Rin| = 2k + 1.

To be more clear, we will show the graph GP in DPol [82, 83] is indeed a member of family
G2. This graph satisfies property Pg1 with the sets of producers and consumers of each node are
presented above. We will show this graph also implicitly fulfills the property Pg2 of family G2,
i.e., GP is an honest graph. Indeed, since an honest node links to at least one honest node in
the neighboring group and each group is a clique, there exists an honest path connecting two
honest nodes inside two consecutive groups. For two arbitrary honest nodes u ∈ H(gi), v ∈ H(gj)

62

4.4. Experimental evaluation

Figure 4.7: A circle-based network.

where i < j, by applying this result for a chain of two consecutive groups gi and gi+1, gi+1 and
gi+2,. . ., gj−1 and gj , we can see that there exists at least one honest path connecting u and v.
For instance, Fig. 4.6b depicts a network of size N = 16. Since there are honest paths between
u and w1, w1 and w2, w3 and v, there exists an honest path between u and v with intermediate
honest nodes w1, w2, w3. In conclusion, GP is an honest graph. Noted that, for these kind of
graphs, our protocol tolerates more dishonest nodes than DPol does [82,83].

Circle-based networks. Consider a graph G0 of size N > 2k+ 1 satisfying properties Pg2 , Pg3
of G2, and each node n has a set of consumers Sn which is the output of the function:

f : A→ 2A

n 7→ {(n− 1) mod N, (n+ 1) mod N, . . . , (n+ 2k) mod N}

where A = {0, 1, 2 . . . , (N − 1)}. Clearly, |Sn| = |f(n)| = 2k + 1. The set of producers is
Rn = {(n+ 1) mod N, (n− 1) mod N, (n− 2) mod N, . . . , (n− 2k) mod N} of size 2k+ 1. This
follows that dn ≥ 2k+ 1 and so, G0 also has property Pg1 . It infers G0 ∈ G2. Fig. 4.7 depicts an
example of this graph with N = 6 and k = 1 where an arrow from u to v depicts that node v is
a consumer of u. In this graph, Sn ∩Rn 6= ∅.

Note that all protocols in [24,25,65,82,83] cannot be deployed in this graph since the condition
Sn ∩ Rn = ∅ (proposed in these works) is not satisfied in G0. From this, we can conclude our
protocol can be deployed on graph structures which are more general than the overlay structure
used in [24,25,65,82,83].

4.4 Experimental evaluation

We do some experiments to analyze the correctness of the protocol by observing the difference
between experiment output and the theoretical one.

Experimental setup

We implement protocol by using an open-source Java library, YALPS9, to demonstrate the
communication amongst node and facilitate the development and testing of the applications.
YALPS supports for both asynchronous and synchronous models. The application based on
YALPS framework can be run both in simulation and real-world mode. In the experiments, we
use the synchronous model in message exchanging without crash or message loss. We conduct
the experiments on the local machine with the following configuration: Intel Core 2 Quad CPU
Q9550 @ 2.83GHz × 4 and Ubuntu OS 11.10.

We study the experiment with the existence of dishonest nodes, and examine whether the
real impact from the dishonest coalition to the outcome is inside the analytical bound or not.

9http://yalps.gforge.inria.fr/

63

Chapter 4. Synchronous Model-based Polling Protocol

-200

-100

 0

 100

 200

 300

 400

 0.5 0.6 0.7 0.8 0.9 1

P
o
ll

re
s
u
lt

Proportion α of nodes voting for +1

Average output
Expected result

Theoretical lower bound
Regression line

Theoretical biased result

(a) k = 1

-200

-100

 0

 100

 200

 300

 400

 0.5 0.6 0.7 0.8 0.9 1

P
o
ll

re
s
u
lt

Proportion α of nodes voting for +1

Average output
Expected result

Theoretical lower bound
Regression line

Theoretical biased result

(b) k = 2

Figure 4.8: Experiment with N = 400, D = 19 to check the accuracy of protocol.

Moreover, we consider the worst case for the system in the sense that the dishonest nodes try to
misbehave by expressing the attack to decrease the final result at most without being detected:
each dishonest node always sends 2k+ 1 shares of value “−1” in the sharing phase, and converts
all receiving shares of “+1” into ones of “−1”. Thus, each dishonest node affects the final result
at most 2k+2 in the sharing phase (if its desired vote is “+1” and it sends 2k+1 shares of “−1”)
and 2(2k+ 1) = 4k+ 2 in the broadcasting phase (if 2k+ 1 receiving shares are “+1” and all are
converted into “−1”). In other words, total impact will be up to 6k+4. If we denote by α number
of nodes voting “+1”, then the expected result will be αN−(1−α)N = (2α−1)N . So theoretically,
the biased final outcome should be inside the interval [(2α− 1)N − (6k + 4)D; (2α− 1)N].

Results

We examine the same experiment condition about number of nodes and dishonest nodes as
in [82,83]. Without loss of generality, we consider α value in the interval [0.5, 1.0].

Fig. 4.8 depicts our experiments for the network with N = 400, D = 19 in two subcases
corresponding to two different values of privacy parameter k = 1 (in Fig. 4.8a) and k = 2 (in Fig.
4.8b). In each test, we compute the average output amongst all nodes and represented it as a
point in the figures. We see that the experimental result is certainly inside two bounds: expected
theoretical bound (thick-dashed line) and lower bound (dot-dashed line). The experiment result
never touches the expected line as the dishonest node always sends 2k + 1 shares of “−1” and
converts all receiving shares of “+1” to “−1” and this decreases the final output and makes it
less than the expected outcome.

Moreover, the experiment result does not reach the theoretical lower bound either, i.e., the
average impact is less than 6k + 4. The reason comes from the fact that the amount of average
impact from dishonest nodes depends on the number of shares “+1” it receives from neighbors.
Namely, in the first phase, nodes voting “+1” will send k+1 shares of “+1” and k shares of “−1”,
and vice versa. Therefore, the probability one node receives shares of “+1” from its neighbors is
α. k+1

2k+1 +(1−α). k
2k+1 = k+α

2k+1 , and the average number of shares of “+1” is (2k+1). k+α
2k+1 = k+α.

From the position of the dishonest nodes, they convert all shares of “+1” into “−1”. Thus, the
impact will be 2(k+α). Combining to the fact that they always distribute 2k+ 1 shares of “−1”
with the maximum impact is 2k + 2 (if its desired vote is “+1”), we achieve the total impact
2k + 2 + 2(k + α) = 4k + 2α + 2. In conclusion, with D dishonest nodes, the average biased

64

4.5. Summary and discussion

outcome is (2α−1)N−(4k+2α+2)D. In Fig. 4.8, we present this average value in a thin-dotted
line.

We try to fit our data points with a regression line a(2α− 1)− b(4k + 2α+ 2) and get these
results (depicted as a solid line in Fig. 4.8): for k = 1: a = 385 and b = 17, and for k = 2:
a = 373 and b = 16. These parameters are quite accurate compared to conditions of network
with N = 400 and D = 19.

In Fig. 4.8, we see that the impact from the dishonest nodes in case k = 2 is greater than in
case k = 1. This result is reasonable since we know that the higher value k is, the higher privacy
can be hold but the higher impact dishonest nodes can enforce, and hence, the worse the final
outcome is.

Besides, all nodes output the correct result (or the final result greater than 0) for k = 1 when
α ≥ 0.67, and for k = 2 when α ≥ 0.75. It means the dishonest nodes confuse the majority of
nodes for k = 1 when α < 0.67, and for k = 2 when α < 0.75. Compared to other recent polling
protocols like [82,83], that value of α in our experiment is similar to them.

4.5 Summary and discussion

In this chapter, we have proposed a design of a distributed polling protocol using synchronous
model and defined a family of social graphs. We proved the structures of our family of graphs
constitute necessary and sufficient condition to ensure privacy and accuracy properties of the
protocol with the presence of dishonest nodes. To detect dishonest nodes’ misbehaviors, we
presented verification procedures by using routing table and shortest path scheme. Furthermore,
a simple but useful technique based on shortest path scheme was introduced to prevent a node
from receiving/sending so many duplicated messages without losing any necessary information.
Unlike other works, we considered a protocol with a more general family of graphs, but obtained
some similar results. More specifically, we achieved the same maximum number of votes that
dishonest coalition can reveal, and the same impact from the coalition to the final output. Next
chapter, we will describe an polling protocol which is based on asynchronous model and each
node does not know the shortest path lengths.

65

Chapter 4. Synchronous Model-based Polling Protocol

66

Chapter 5

Asynchronous Model-based Polling
Protocol

Contents
5.1 Polling model . 67

5.1.1 Social interactions . 67
5.1.2 Description of graph model . 68

5.2 Polling protocol . 69
5.3 Correctness . 72

5.3.1 Protocol and graph without dishonest nodes 73
5.3.2 Protocol and graph with dishonest nodes 76

5.4 Experimental evaluation . 80
5.5 Summary and discussion . 82

In the previous contribution, we have developed a distributed polling protocol and a family
of more general social graphs which ensures the correctness of the protocol and vote privacy of
nodes. Nonetheless, the communication model is synchronous where all connection delays are
bounded, and the system is driven with the presence of global clock.

In this chapter, we present a polling protocol operating in the asynchronous communication
model (see Section 5.2) where the arrival order of messages is unpredictable. Moreover, this
asynchronous version does not require any extra knowledge of the network (e.g., distance between
two nodes) to perform the polling process. Given these two major differences, in this chapter,
the broadcasting phase of the protocol is completely revised, as well as the correctness of the
protocol are thoroughly analyzed (Section 5.3). Likewise the previous protocol, we also present
the public verification scheme to detect dishonest nodes. Finally, we implement this new protocol
and validate it with a performance evaluation (in Section 5.4).

5.1 Polling model
This section defines the user behaviors and presents the graph models to describe social networks.

5.1.1 Social interactions

The polling problem consists of a system with N uniquely identified nodes representing users of
a social network. Each participant n expresses its opinion by giving a vote vn ∈ {−1, 1}. After

67

Chapter 5. Asynchronous Model-based Polling Protocol

collecting the votes of all nodes, the expected outcome is
∑

n vn.
In this chapter, we consider the same assumptions given in Chapter 4 except the communi-

cation model is asynchronous. More precisely:

1. We consider the asynchronous model and the network contains no crash and message
loss.

2. The message transmission in one edge takes one time unit.

3. The network includes honest and dishonest nodes.

4. Each node has at least one honest friend but it does not know exactly which friend is
honest or not.

5. The dishonest nodes want to misbehave to achieve these goals without affecting their
reputation and to be tagged in their profiles: (i) bias the result of the election by
promoting their votes or changing the values they received from other honest nodes;
(ii) infer the opinions of other nodes.

6. In order to unify the opinions and not give compensating effects, all dishonest nodes
make the single coalition D of size D and give the same corrupted values.

7. The dishonest nodes are rather restricted than Byzantine nodes.

8. We do not take into account the Sybil attacks, spam and the situation that dishonest
nodes wrongly blame honest ones.

9. All nodes have to send/receive/forward messages without delaying if they are re-
quested.

5.1.2 Description of graph model

We present the social network in the form of models of social graphs as introduced in Section
3.2.1 of Chapter 3.

Moreover, like the model in the previous chapter, each node n maintains a set of direct
neighbors Γ(n) (or Γn) of size dn. In addition, it also holds other two subsets of Γ(n): a set Sn
of consumers containing nodes that n sends messages to, and Rn of producers relating to nodes
for which n acts as a consumer. They might not be disjoint, i.e., Sn ∩ Rn 6= ∅, as depicted in
Fig. 4.1.

Like [82, 83], we use a predefined parameter k ∈ N and k ≤ b(−1 +
√

3N + 1)/3c (this
parameter will be detailed in section 5.2) to present the features of our social graphs. Let
G = (V,E) be a social graph with the following properties:

Property 5.1 (Pg1). dn ≥ 2k + 1 and |Sn| = |Rn| = 2k + 1, for every n ∈ V .

Property 5.2 (Pg2). G is an honest graph, i.e., for every honest nodes u, v, there exists a
path p(u, v) containing only intermediate honest nodes.

Property 5.3 (Pg3). D ≤ N/10.

According to Property Pg1 , a set of consumers and a set of producers of one node have the same
size and might not be disjoint. Property Pg2 ensures each honest node always obtains one correct

68

5.2. Polling protocol

version of data from other honest ones. Property Pg3 enables us to limit the control of dishonest
users in the whole system.

From these properties, we characterize two families of graphs (which are similar to the ones
presented in Chapter 4):

(i) G1 = {G | D(G) = ∅ and G satisfies Pg1}.

(ii) G2 = {G | D(G) 6= ∅ and G satisfies Pg1 , Pg2 and Pg3}.

Graphs in G1 contain only honest nodes and satisfy property Pg1 . Graphs in G2 contain honest
and dishonest nodes and satisfy properties Pg1 , Pg2 and Pg3 .

5.2 Polling protocol

Generally, the polling protocol includes three phases (see Algorithm 2): (i) Sharing, (ii) Broad-
casting and (iii) Aggregating. Phase Sharing describes the generation, distribution of a set of
shares of each node to its neighbors as well as collecting these shares from its neighbors. In
the Broadcasting phase, each node broadcasts messages containing the total shares, which are
collected in the Sharing phase, to its direct and indirect neighbors. The last phase, Aggregating,
shows the process that each node decides data received from other nodes and computes the final
outcome.

Sharing. In this phase, each node n contributes its opinion by sending a set of shares ex-
pressing its vote vn ∈ {−1, 1} to its consumers. Namely, n generates 2k + 1 shares Mn =
{m1,m2, ...,m2k+1} where mi ∈ {−1, 1}, i = 1, 2, ..., 2k + 1 including: k + 1 shares of value vn,
and k shares of opposite vn’s value. The intuition of this creation is to regenerate the vote vn
when the shares are summed. Later it randomly generates a permutation µn ofMn, and sends
shares to 2k + 1 consumers. Lines 4–9 in Algorithm 2 describe this activity. Node also receives
exactly 2k + 1 shares from its producers. Note that Sn and Rn might not be disjoint.

After each node collects 2k + 1 shares from its neighbors, and sums into collected data cn
(lines 10–15 in Algorithm 2), this phase is complete. Fig. 5.1 illustrates an example of the
protocol for k = 1. Fig. 5.1a presents desired vote of each node, whereas Fig. 5.1b depicts the
sharing phase at node A. Node A would like to vote +1. Thus, it generates a set of 2k + 1 = 3
shares {+1,−1,+1} which total equals to vA = 1. Fig. 5.1c shows node A collects the shares
from its producers and computes the collected data cA = 3.

Broadcasting. This phase operates in cycles. Briefly, at the ith cycle (i ≥ 1), a node n carries
out four steps as follows: This phase operates in cycles. Briefly, at the ith cycle (i ≥ 1), each
node n performs the following four steps:

(B1) It starts a cycle i by sending its direct neighbors data messages that contains the collected
data of neighbors at distance (i− 1) from it.

(B2) It waits for the receipt of data messages of cycle i from all direct neighbors.

(B3) It sends acknowledgement messages of cycle i to all direct neighbors.

(B4) It waits for the receipt of acknowledgement messages of cycle i from all direct neighbors.
It finishes this cycle once it has examined the received information and prepared the data
for the next cycle.

69

Chapter 5. Asynchronous Model-based Polling Protocol

Algorithm 2: Asynchronous polling algorithm at node n ∈ {0, 1, ..., N − 1}
Input:
vn: A vote of node n, value in {−1, 1}
k : privacy parameter

Variables:
cn: collected data, cn = 0
Cn: set of possible collected data

Cn[{0, 1, ..., N − 1} → ∅]
hn: set of final deciding collected data

hn[{0, 1, ..., N − 1} → ⊥]
Tn: routing table

Tn[{0, 1, ..., N − 1} → ∅]
Zn: sending data

Zn[{0, 1, ..., N − 1} → ∅]

Output: result

Algorithm

1 Sharing(vn)
2 Broadcasting(cn)
3 Aggregating()

Procedure Sharing(vn)

4 Mn ← {vn}
5 for i← 1 to k do
6 Mn ←Mn ∪ {vn} ∪ {−vn}

7 µn ←randMn

8 for i← 0 to 2k do
9 send (SHARE, µn[i]) to Sn[i]

10 count← 0
11 while (count < |Rn|) do
12 upon event (receiving (SHARE, m) from neighbor r

in the first time) do
13 if (r ∈ Rn and m ∈ {−1, 1}) then
14 cn ← cn +m
15 count← count+ 1

Procedure Broadcasting(cn)

16 count← 0
17 i← 1
18 while (true) do
19 foreach (r ∈ Γ(n)) do
20 if (i = 1) then send (DATA, n, i, {(n, cn)}) to r
21 else send (DATA, n, i, Zn[r]) to r
22 Zn[r]← ∅

23 Wait until all messages of type (DATA, ∗ , i, Z∗[n])
are received from all direct neighbors and,

24 upon event (receiving message (DATA, t, i, Zt[n])
from direct neighbor t) do

25 if RecDataEvt(t,i,Zt[n], count) = false then break

26 foreach (r ∈ Γ(n)) do
27 send (ACK, n, i) to r

28 if (|Γ(n)| = N − 1) then break
29 Wait until all messages of type (ACK, ∗ , i) are

received from all direct neighbors
30 i← i+ 1

Function RecDataEvt(t, i, Zt[n], count)

31 if (Zt[n] = ∅) then
32 count← count+ 1
33 if (count = |Γ(n)|) then return false
34 else return true

35 foreach (pair (s, cs) in Zt[n]) do
36 if (s = n) then continue
37 if (cs /∈ Cn[s]) then
38 νs ← cs
39 Cn[s]← Cn[s] ∪ {cs}
40 Store (s, cs) into Zn[w] for each neighbor w 6= t

else
41 νs ← ⊥

42 Tn[s]← Tn[s] ∪ {(t, cs, νs, i)}

43 return true

Procedure Aggregating()

44 result← cn
45 for s← 0 to N − 1 do
46 if (s 6= n) then
47 hn[s]← CheckInconsistency(s)
48 result← result + hn[s]

Procedure CheckInconsistency(s)

49 if (|Cn[s]| = 1) then return Cn[s][0]
50 return correct value after verifying T [s] of neighbors

More specifically, at cycle i, firstly, node n sends all direct friends data messages of the type
(DATA, n, i,Zn)10 indicating identity of node n, cycle i, and a set Zn of pairs including collected
data and identities of nodes at distance (i − 1) from it (lines 19–22). Upon receiving a data

10If this message is corrupted, we can detect this misbehavior. See Lemma 5.7 for the detail of this attack.

70

5.2. Polling protocol

1

A

1

E

-1

B

1

D

1

K

1

C

-1

F

1

M

-1

N

(a) Desired votes of nodes

E B D K

1 A

+1 −1 +1

(b) Send shares

E B D K

A

+1 +1 +1

+3+3

(c) Wait and receive shares

E B D K

A

(D
AT

A,
A
,1
,{(
A
, 3
)}

)

(D
A
T
A
,A

,1
,{
(A
,
3
)}

) (D
A
T
A
,A

,1,{
(A
,
3
)})

(DATA,A
,1,{(A

, 3)})

(d) Broadcast data in cycle 1

E B D K

A

(DATA,E
,1,{(E

,−
1)})

(D
A
T
A
,B

,1,{
(B
,
1
)})

(D
A
T
A
,D

,1
,{
(D
,
−
1
)}

)

(D
AT

A,
K
,1
,{(
K
, 3
)}

)

(e) Wait and receive data in cycle 1

E B D K

A

(A
CK

,A
,1
)

(A
C
K
,A

,1
) (A

C
K
,A

,1)

(ACK,A
,1)

(f) Broadcast ACK in cycle 1

E B D K

A

(ACK,E
,1)

(A
C
K
,B

,1) (A
C
K
,D

,1
)

(A
CK

,K
,1
)

(g) Wait and receive ACK in cycle 1

E B D K

A

(D
AT

A,
A
,2
,Z

A
[E
])

(D
A
T
A
,A

,2
,Z

A
[B

])

(D
A
T
A
,A

,2,Z
A
[D

])

(DATA,A
,2,Z

A
[K

])

(h) Broadcast data in cycle 2

Figure 5.1: Polling algorithm for k = 1.

message (DATA, t, i,Zt) from neighbor t, node n performs the following actions (see procedure
RecDataEvt() in Algorithm 2):

1. Termination detection: If the set Zt[n] is nonempty, it does next action. Otherwise, if it
has already obtained all empty data sets from all direct neighbors, node n stops this phase
(lines 25 and 31–34).

71

Chapter 5. Asynchronous Model-based Polling Protocol

2. Data analyzing: Node examines information in the data messages from its neighbors by
checking each pair (s, cs) in the set Zt[n] (lines 35–43). If the pair contains its own data,
it simply ignores that pair. Otherwise n checks Cn[s], a set of possible values of node with
identity s, to determine whether cs is already presented in it: If Cn[s] does not contain
cs, node n will add it into Cn[s]. It also prepares its data messages to send to neighbor
w 6= t for the (i + 1)th cycle by identifying all collected data and identities of nodes at
distance i it has just learned and storing them in the set Zn[w] (line 40). Moreover, as the
information can be changed by intermediate dishonest nodes, each node n also keeps up
the information from source s in the routing table Tn[s] which is used in the verification
process later. This table contains the following fields: neighbor identity of the receiving
message (e.g., t), receiving data (e.g., cs), forwarding data (e.g., νs), cycle (i.e., i).

When n gets data messages from all its direct neighbors, it broadcasts message (ACK, n, i)
in order to inform them that it already obtains all data messages at the ith cycle (lines 26–27).
It then waits for acknowledgement messages of cycle i from all of its neighbors before doing next
cycle i+ 1.

This phase starts with each node sending its own collected data to all its neighbors saying
that it is at distance 0 from itself. A node keeps on transmitting messages at cycle i as long as
it received (and not dropped) a data message containing the set Zt 6= ∅ from a certain neighbor
t at cycle i − 1. More precisely, a node stops transmitting: (i) at cycle i > 1 if until cycle i, it
has obtained empty sets Zt from all of its direct neighbors (lines 31–34); or (ii) at the first cycle
if it has N − 1 direct neighbors (line 28).11

For instance, Figures 5.1d–5.1h depict this phase for node A in the first two cycles. In cycle
1, node A sends messages containing its own collected data to all its neighbors (Fig. 5.1d),
then it waits for their data (Fig. 5.1e). After receiving all data messages in cycle 1, node A
sends acknowledgement messages to all its friends (Fig. 5.1f) and then waits for receiving their
acknowledgements (Fig. 5.1g). Cycle 2 starts when it gets all acknowledgement messages from
its friends (Fig. 5.1h).

Aggregating. In this phase, a node n has to decide on the collected data of other nodes before
computing the final result. To make decision for the one of node s, it checks |Cn[s]| (lines 49–50
in Algorithm 2): if |Cn[s]| = 1, the single element in Cn[s] is chosen as a correct collected data;
otherwise there exists an inconsistency and it should do the verification (this verification will be
explained in Lemma 5.7). By doing this, n gets the correct collected data of source s. So, in any
case, n achieves the correct copy of collected data of source s. It then stores that value as one
item hn[s] in the array hn, which contains the chosen collected data of other nodes, and adds into
result (lines 44–48 in Algorithm 2). After checking and summing up all collected data of nodes
(including its own collected data cn), n obtains the final result (that is result = cn +

∑
i 6=n hn[i]).

5.3 Correctness

In this section, we first we analyze its correctness and complexities when deployed for graphs
of G1 and G2. Then we show those properties are necessary and sufficient conditions to ensure
the correctness of our protocol in graphs without and with the presence of dishonest nodes. The

11We later show that, at the worst case scenario, a node stops transmitting messages only after Diam(G) (resp.
max{Diam(G), N − 1−D}) cycles end when the system contains no (resp. D) dishonest nodes in Theorem 5.5
(resp. Theorem 5.7).

72

5.3. Correctness

properties of the polling protocol are introduced in Sub-section 4.3.1 of Chapter 4 and we omit
that part here.

5.3.1 Protocol and graph without dishonest nodes

In this section, we consider only graphs G of family G1 and analyze the correctness (including
accuracy and termination) of our protocol when deployed for these graphs. Next we give spatial,
message and time complexities. Finally, we show the properties of G1 are necessary and sufficient
conditions to ensure the correctness of our protocol. It is noted that we do not consider the
privacy property as there is no dishonest nodes in this case.

Accuracy

Theorem 5.1 (Accuracy). Consider a polling system of size N with only honest nodes where
each node n expresses a vote vn. The polling algorithm is guaranteed that each node outputs
accurate expected output

∑N−1
n=0 vn.

Proof. In the sharing phase, each node n sends a set of shares Mn = {mn1 ,mn2 , ...,mn2k+1
}

to its consumers where
∑
mni = (k + 1). vn + k. (−vn) = vn, and also receives a set of shares

{m′n1
,m′n2

, ...,m′n2k+1
} from its 2k + 1 producers to obtain a collected data cn =

∑2k+1
j=1 m′nj .

Without the presence of dishonest nodes, crashes and message losses, each message from the
source successfully reaches the destination, and thus the set of all sending shares of all nodes will
be exactly coincided with the set of all receiving shares of all nodes, namely:⋃

V

{mn1 ,mn2 , ...,mn2k+1
} =

⋃
V

{m′n1
,m′n2

, ...,m′n2k+1
}

In the broadcasting phase, each node n broadcasts its collected data to its direct neighbors
in the first cycle, then they do honestly forward that value to neighbors of neighbors of n in the
second cycle and so on. Each node’s data is finally arrived to all other ones. Indeed, a node keeps
on transmitting messages at cycle i+ 1 as long as it received (and not dropped) a data message
containing a set Zt 6= ∅ from a direct neighbor t at cycle i. The set Zt 6= ∅ indicates that its
neighbor t has friends at distance i− 1 from t and it had received some new information of some
other node s in cycle i − 1, thus node n should continue sending messages to other friends at
cycle i + 1 (if that information does not exist in Cn[s]). In contrast, Zt = ∅ means there is no
friend of t at distance ≥ i − 1 from t, hence, n should stop waiting for messages from t. Thus,
if a node stops this phase after cycle i ends, it is ensured to receive all collected data from all
nodes in the network.

Thus, an array hn contains all collected data of all nodes in the system and these values come
from all the receiving shares of all the nodes. Consequently, the final computation gives us the
value:

result = cn +
∑

0≤i<N
i 6=n

hn[i] =
N−1∑
i=0

ci =
N−1∑
i=0

2k+1∑
j=1

m′ij =
N−1∑
i=0

2k+1∑
j=1

mij =
N−1∑
i=0

vi

Termination. In this part, we will show our protocol is ensured to finally terminate. We say:
(i) a node n starts (resp. finishes) cycle i if and only if n already sends (resp. receives) data
(resp. acknowledgement) messages (DATA,n, i,Zn) (resp. (ACK, *, i)) to (resp. from) all its
direct friends; (ii) a node n is blocked in cycle i if and only if n is doing step (B2) or (B4), i.e.,

73

Chapter 5. Asynchronous Model-based Polling Protocol

n ≡ u1 u2 u3 u4
u2(i−j)+1 u2(i−j+1)

wait (DATA, i) wait (ACK, i− 1) wait (DATA, i− 1) wait (DATA, j)

wait (ACK, j − 1)

Figure 5.2: Deadlock amongst nodes n ≡ u1, u2,..., u2(i−j+1).

waiting for data messages or acknowledgement messages from some direct friend; and (iii), a
node n is in cycle i if and only if n is doing some step of cycle i.

Lemma 5.1. If a node n is in step (B2) of cycle i then each direct neighbor of n is either in
cycle i or i− 1.

Proof. Since node n already finished cycle i− 1, it must have got (ACK,u, i− 1) from all direct
neighbors u. This implies they all terminate step (B3) of cycle i−1, i.e., they are at least in step
(B4) of cycle i − 1. Moreover, n has not sent a message (ACK,n, i), thus, all its direct friends
could not finish cycle i. From this, we have the claim of this lemma.

Lemma 5.2. If a node n is in step (B4) of cycle i then each direct neighbor of n is either in
cycle i or i+ 1.

Proof. As a node n already did step (B3) of cycle i, i.e., received messages (DATA, u, i) from
all friends u ∈ Γ(n), it infers all its friends already started cycle ≥ i. In addition, no friend of n
receives (DATA, n, i + 1) because n has not finished cycle i. Thus, they could not accomplish
step (B2) of cycle i + 1, in other words, they are in cycle ≤ (i + 1). This yields the proof of
lemma.

Theorem 5.2. If a node n is blocked in cycle i then each direct neighbor of n is either in cycle
i− 1, or i, or i+ 1.

Proof. The statement is hold by Lemmas 5.1 and 5.2.

Corollary 5.1. If a node n is blocked in cycle i then its neighbors at distance j (where 0 ≤ j < i)
from n are in cycle varied in the range between i− j and i+ j.

Proof. The proof is given by induction with the basic case like the proof in Theorem 5.2.

Lemma 5.3. If a node n is in cycle i then it eventually progresses to cycle i+ 1.

Proof. Assume contrary, i.e., there is a deadlock: n is blocked forever at cycle i because it is
waiting for receiving a data (or acknowledgement) message of some node in cycle i, and there
is also other node waiting for the progress of node n to receive n’s acknowledgement (or data)
message of some cycle j − 1 (or j) for i > j > 1. In other words, w.l.o.g., there is a loop as
depicted in Fig. 5.2: a node n ≡ u1 is waiting for a message (DATA, u2, i) from certain node
u2 ∈ Γ(u1), node u2 is waiting for a message (ACK, u3, i − 1) from other node u3 ∈ Γ(u2) and
u3 ∈ Γ2

u1 . Similarly, u3 must have waited a message (DATA, u4, i−1) from node u4 ∈ Γ(u3) and
u4 ∈ Γ3

u1 , and so on. Node u2(i−j)+1 is waiting for a message (DATA, u2(i−j+1), j) from some node
u2(i−j+1) ∈ Γ

2(i−j)+1
u1 , and node u2(i−j+1) must have waited for message (ACK, u1, j−1). We see

that, u1 already finished cycle i−1 > j−1, thus, it already sent (ACK, u1, j−1) to all neighbors
and u2(i−j+1) must have received it. Therefore the loop does not exist. Contradiction!

74

5.3. Correctness

Theorem 5.3. If a node n is in step (B2) of cycle i then there exist some neighbors at distance
2j doing step (B2) of cycle (i− j) and some neighbors at distance 2j+ 1 doing step (B4) of cycle
(i− j − 1) where 0 ≤ j < i.

Proof. The proof is by induction on j. For j = 0, by Lemma 5.1 there exists a direct neighbor
is in step (B4) of cycle i− 1 and we are done. Let us suppose that the statement of the theorem
holds for some j ≥ 0 (and j < i − 1). It means there exists a node u ∈ Γ2j+1

n such that u is
waiting for receiving a message (ACK,n2j+2, i− j−1) from some node n2j+2 ∈ Γ(u). Note that,
by Lemma 5.3, n2j+2 could not be at distance less than 2j + 1 from n since otherwise there will
be a deadlock similar to Fig. 5.2 and we already shown this deadlock does not exist. Thus, node
n2j+2 ∈ Γ2j+2

n . As u is waiting for receiving a message (ACK,n2j+2, i− j − 1), n2j+2 must have
waited for a message (DATA, n2j+3, i − j − 1) from some node n2j+3 where n2j+3 ∈ Γ(n2j+2),
n2j+3 6= u and n2j+3 ∈ Γ2j+3

n , i.e., n2j+2 is in step (B2) of cycle i − j − 1. That also infers
there exists a node n2j+4 ∈ Γ(n2j+3) and n2j+4 6= n2j+2 such that n2j+3 is waiting for a message
(ACK,n2j+4, i − j − 2) from n2j+4, in other words, n2j+3 is in step (B4) of cycle i − j − 2.
Therefore, the statement is correct for j + 1.

Theorem 5.4. If a node n is in step (B4) of cycle i then there exist some neighbors at distance
2j + 1 doing step (B2) of cycle (i− j) and some neighbors at distance 2j + 2 doing step (B4) of
cycle (i− j − 1) where 0 ≤ j < i.

Proof. The proof is similar to the one of Theorem 5.3.

Theorem 5.5 (Termination). The polling protocol is ensured to eventually terminate.

Proof. In the sharing phase, each node n has to send and receive a finite number (2k + 1) of
messages.

In the broadcasting phase, a node keeps on transmitting messages at cycle i + 1 as long as
it received (and not dropped) a data message containing a set Zt 6= ∅ from a direct neighbor t
at cycle i. The set Zt 6= ∅ indicates that its neighbor t has friends at distance i− 1 from t and
it had received some new information of some other node s in cycle i − 1, thus node n should
continue sending messages to other friends at cycle i + 1 (if that information does not exist in
the set Cn[s]). In contrast, Zt = ∅ means there is no friend of t at distance ≥ i−1 from t, hence,
n should stop waiting for messages from t. At the worst case scenario, its farthest friends are at
distance Diam(G) and thus it stops this phase only after Diam(G) cycles end. It is also noted
that, if a node n has N − 1 friends: n stops transmitting or receiving data after the first cycle.

So, the number of cycles of the broadcasting phase is limited. And in each cycle, each node
n sends/receives exactly dn data messages and dn acknowledgement messages. Moreover, by
Lemma 5.3 the protocol does not have deadlock, and there is no message loss or crash, each
phases completes. The algorithm has a finite number of phases, by Definition 4.3 the protocol is
guaranteed to finally terminate.

Asymptotic complexity. We analyze the spatial, message and time complexities of the pro-
tocol in Propositions 5.1–5.3.

Proposition 5.1 (Spatial complexity). The total space each node n must hold is O(k +Ndn).

Proof. Each node n needs to maintain the set of 2k + 1 consumers, the set of 2k + 1 producers,
the list of dn direct neighbors to contact, the set Zn to store pairs of identity and collected data

75

Chapter 5. Asynchronous Model-based Polling Protocol

for friends, the set Cn of possible collected data of other nodes, the routing table Tn, and the set
hn to store the final choosing collected data (N − 1).

For Zn: in cycle i = 1, it receives one value from a direct neighbor u, and this information is
then stored in Zn[w] for each direct neighbor w 6= u which takes space of size dn − 1. With dn
direct neighbors, this requires the space of size (dn − 1)dn. At the worst case scenario, a node
stops transmitting messages (in the broadcasting phase) only after Diam(G) cycles end. In each
cycle 2 ≤ i ≤ Diam(G), n sends at most N − 2 values for one neighbor u and also receives the
same amount of values from u. Therefore, it needs (N − 2)dn units of storage. This implies, the
total space for storing Zn in the protocol is max{(dn − 1)dn, (N − 2)dn)} = O(Ndn).

Similarly, for Tn: the worst case for the routing table Tn[s] is when all shortest paths between
s and n are passed by its friends. In other words, Tn[s] contains at most dn rows. It infers that
|Tn| ≤ (N − 1).dn.

As there is no dishonest node, during the broadcasting phase, node n just inserts into the set
Cn[s] one value for each node s, i.e., |Cn[s]| = 1, and thus |Cn| = N − 1. Therefore, the spatial
complexity in this case is O(k) +O(dn) +O(Ndn) +O(N − 1) = O(k +Ndn).

Proposition 5.2 (Message complexity). Each node n sends O(k +Diam(G).dn) messages.

Proof. In the sharing phase, a node n sends 2k+1 messages to its consumers. In the broadcasting
phase, it sends 2dn data and acknowledgement messages to all of its direct neighbors. There are
at most Diam(G) cycles. Accordingly, the message complexity is O(2k+1)+O(2dn.Diam(G)) =
O(k +Diam(G).dn).

Proposition 5.3 (Time complexity). Assume time evolves in rounds, i.e., each message trans-
mission incurs a delay of at most one round. Then the protocol operates in O(k+Diam(G).maxn{dn})rounds.

Proof. The sharing phase operates in 2k+1 rounds. In the broadcasting phase, a node n sends 2dn
messages to direct neighbors, and all the nodes broadcast their collected data in parallel, so this
activity takes at most maxn{dn} rounds. Node has to repeat at mostDiam(G) cycles. Therefore,
the time complexity is O(2k+1)+O(maxn{2dn}.Diam(G)) = O(k+Diam(G).maxn{dn}).

The necessary and sufficient conditions of graph without dishonest nodes
In the following part, we examine the necessary and sufficient conditions for our protocol to

be deployed successfully in the ideal case which contains no dishonest nodes.

Theorem 5.6. The properties of G1 are the necessary and sufficient conditions for the polling
protocol to be deployed correctly in the system without dishonest nodes.

Proof. The proof is similar to Theorem 4.2 of Chapter 4

5.3.2 Protocol and graph with dishonest nodes

In this section, we revisit the relation between protocol and graph, but approach it with the
presence of D dishonest nodes. We consider graphs G of family G2 and analyze the correctness
(including privacy, accuracy and termination) of our protocol when deployed for these graphs.
Finally, we show the properties of G2 are necessary and sufficient conditions to ensure the cor-
rectness of our protocol.

Termination. We prove that our protocol is guaranteed to finally terminate in the following
Theorem.

76

5.3. Correctness

Theorem 5.7 (Termination). The polling protocol is ensured to eventually terminate with the
presence of D dishonest nodes.

Proof. In the sharing phase, each node n has to send and receive a finite number (2k + 1) of
messages.

In the broadcasting phase, a node keeps on transmitting messages at cycle i+ 1 as long as it
received (and not dropped) a data message containing the set Zt 6= ∅ from a direct neighbor t
at cycle i. The set Zt 6= ∅ indicates that its neighbor t received some new information of some
other node s at cycle i− 1, and node n transmits that information if it does not exist in Cn[s].

In the worst case, at each cycle, a node n always obtains a set Zt 6= ∅ from some direct
neighbor t which contains a value of some source s not existing in the set Cn[s]. As we know,
each dishonest node can corrupt the received data from a certain source node by sending different
values. Thus, a set Cn[s] of node n could not contain more than D+ 1 different values of source
s. This infers, a node n stops transmitting data of some source s after receiving the data
passed by one path amongst two following paths which has higher length: the longest honest
path or the shortest path (may contain dishonest nodes) between n and s. Note that, since the
network G is honest and contains D < N/2 dishonest nodes, the maximum length of an honest
path is N − 1 − D (and N − 1 − D ≥ D), and the maximum length of all shortest paths is
Diam(G) . Therefore, at the worst case scenario, a node is guaranteed to stop transmitting until
max{Diam(G), N − 1 − D} cycles end. That infers the number of cycles of the broadcasting
phase is limited.

In each cycle, each node n sends/receives exactly dn data messages and dn acknowledgement
messages. Moreover, by Lemma 5.3 the protocol does not have deadlock, and there is no message
loss or crash, each phases completes. The algorithm has a finite number of phases, by Definition
4.3 the protocol is guaranteed to finally terminate.

Privacy. We omit this part as it is analyzed similarly to the one in Section 4.3.3 of Chapter 4.

Accuracy. We present the accuracy based on the ability of honest nodes to get correct output
and to control the impact from dishonest nodes. First we discuss the capabilities of dishonest
nodes to affect the accuracy in the following definition.

Definition 5.1 (Dishonest capabilities). A dishonest node may affect the poll outcome with the
following misbehaviors:

1. In the sharing phase, it sends more than k+1 (but not greater than 2k+1) identical shares.

2. It inverts each receiving “+1”-share into a “−1”-share to decrease the collected data.

3. In the broadcasting phase, it modifies the collected data of other honest node or sends forged
messages.

4. It broadcasts or forwards inconsistent data.

5. It sends data message with an empty data set Z instead of a non-empty one.

6. It sends data message with a non-empty data set Z instead of an empty one.

7. It changes a cycle value.

Lemma 5.4 (Sharing). After sending a set of shares, a dishonest node may affect at most 2k+2
to the final result.

77

Chapter 5. Asynchronous Model-based Polling Protocol

Proof. This proof is similar to Lemma 4.4 of Chapter 4.

Lemma 5.5 (Computing collected data). After computing the collected data, a dishonest node
may affect to the final result by 4k + 2.

Proof. This proof is similar to Lemma 4.5 of Chapter 4.

Corollary 5.2. A dishonest node that corrupts the collected data to be out of the range [−2k −
1, 2k + 1] is detected with certainty.

Proof. This proof is similar to Corollary 4.2 of Chapter 4.

Lemma 5.6. In the broadcasting phase, if an honest node n broadcasts its collected data cn then
all other honest nodes will eventually receive that value.

Proof. Every honest neighbor of n receives directly the value cn after the first cycle. For the nodes
at distance ≥ 2 from n: by Theorem 5.7 node n stops sending messages in the broadcasting phase:
(i) at cycle i = 1 if it connects directly to N − 1 nodes; or (ii) after max{Diam(G), N − 1−D}
cycles end. Because the network is honest with the presence of D dishonest nodes, the upper
bound of honest path’s length is N − 1 − D. This ensure all honest nodes (even the farthest
honest ones from n) receive at least one correct version of cn.

Corollary 5.3. If the set Cn[s] of an honest node n is singleton then the single element is a
correct collected data of the source node s.

Proof. By Lemma 5.6, the set Cn[s] always contains a correct value of source s. This yields the
desired result.

Lemma 5.7 (Broadcasting collected data). There exists a public verification scheme that detects
a dishonest node misbehaving in the broadcasting phase.

Proof. By Definition 5.1, dishonest nodes can do the following misbehaviors in the broadcasting
phase:

1. Broadcast or forward inconsistent collected data: the proof is showed in Lemma 4.6 of
Chapter 4.

2. Send many forged collected data: In one cycle of the broadcasting phase, a node only
receives from one direct friend one data message and one acknowledgement messages. Thus,
if a dishonest node creates and sends many forged (data or acknowledgement) messages to
one honest node, only one of them is accepted, and the remaining messages are dropped
at the site of honest node.

3. Send data message with empty data set Z instead of non-empty one: In this attack, the
coalition receives a non-empty set Z at cycle i but forwards empty set to its honest neigh-
bors at cycle i + 1. This intuition of the dishonest nodes is to prevent honest nodes from
continuing following the broadcasting phase of the protocol. (Since if an honest node has
received all empty sets Z from all its neighbors counting from cycle 1 to cycle i, it stops
the broadcasting phase and does the verification process.) However, as showed in Theorem
5.7, each honest node still progresses in the system since it receives messages from other
honest nodes passed by honest paths which contain non-empty data sets Z. Thus, it is
ensured to progress to cycle i+ 1 and to receive the correct data of all other honest nodes.
Moreover, by doing the public verification like cases 1–2 above, the honest nodes can detect
this misbehavior.

78

5.3. Correctness

4. Send data message with non-empty data set Z instead of empty one: This intuition of
dishonest nodes is to prevent honest nodes from stopping broadcasting phase. But we see
that this case may not affect the accuracy of the honest node’s outcome due to the receipt
of correct data passed by honest paths. A node may do some additional cycles in this
phase, and in the worst case, it does N − 1 cycles (N − 1 is the maximal path length
in the network) and receive more duplication information. Note that it can detect this
misbehavior later by doing verification process like the first case.

5. Change a cycle value: A dishonest node u that is currently at cycle i sends a (data or
acknowledgement) message containing a cycle value j 6= i to an honest node v, in order to
perturb v’s progress. However, this attack is detected with certainty because: (i) if j < i:
node v drops this message as it already finished cycle j (and received all messages of cycle
j from u); (ii) if j > i + 1: by Theorem 5.2, a dishonest node is detected with certainty;
and (iii) if j = i+1: node v accepts a message of the cycle j = i+1 from u if v is executing
at step (B4) of the cycle i (by Lemma 5.2) and it already obtained the message (ACK,u,i)
from u. (This case does not affect the progress of node u.) Otherwise, u will be detected
as dishonest.

Theorem 5.8 (Accuracy). Every dishonest node may affect the expected final result up to 6k+4.

Proof. By Lemmas 5.4-5.7, each dishonest node affects to the final outcome at most 2k + 2 +
4k + 2 = 6k + 4. Thus, σ = 6k+4

2N = 3k+2
N .

Consider a function ξ(k) = 3k+2
N . With k ≤ b(−1 +

√
3N + 1)/3c then ξ(k) ≤ 1/k. It means

ξ(k) decreases as 1/k; thus, it is negligible. By Definition 4.2, the protocol is accurate.

Asymptotic complexity. We here examine the complexities of the protocol when deployed for
the graphs of family G2 of size N with the presence of D dishonest nodes.

Proposition 5.4 (Spatial complexity). The total space each node n must hold is O(k+dnN(N+
D)).

Proof. Each node n needs to maintain the set of 2k + 1 consumers, the set of 2k + 1 producers,
the list of dn direct neighbors to contact, the set Zn to store pairs of identity and collected data
for friends, the set Cn of possible collected data of other nodes, the routing table Tn, and the set
hn to store the final choosing collected data (N − 1).

For Zn: in cycle i = 1, it receives one value from a direct neighbor u, and this information is
then stored in Zn[w] for each direct neighbor w 6= u which takes space of size dn − 1. With dn
direct neighbors, this requires the space of size (dn − 1)dn. At the worst case scenario, a node
stops transmitting messages (in the broadcasting phase) after max{Diam(G), N − 1−D} cycles
end. In each cycle 2 ≤ i ≤ max{Diam(G), N − 1 −D}, n sends at most N − 2 values for one
neighbor u and also receives the same amount of values from u. However, with the existence of
D dishonest nodes, it could receive more D different values of a certain node s. Therefore, it
needs ((N − 2) + (D+ 1))dn units of storage. This implies, the total space for storing Zn in the
protocol is max{(dn − 1)dn, (N − 1 +D)dn} = (N − 1 +D)dn.

Similarly, for Tn: in cycle 1, it stores dn values. In each cycle 2 ≤ i ≤ max{Diam(G), N −
1 − D}, it requires at most (N − 2 + D + 1)dn units of storage. As Diam(G) ≤ N − 1, and
N − 1−D ≤ N − 1, we consider a nodes does N − 1 cycles in the worst case. Hence, the space
of Tn is O(dn + (N − 2)(N − 1 +D)dn) = O(dnN(N +D)).

79

Chapter 5. Asynchronous Model-based Polling Protocol

For Cn: in the worst case, for each honest source’s data, a dishonest coalition can forward to
n at most D different values, and n also receives one correct value from the honest path. Hence,
the maximum size of Cn is (N − 1)(D + 1).

Consequently, the total space each node must hold in the worst case is O(k)+O(dn)+O((N−
1 +D)dn) +O(dnN(N +D)) +O((N − 1).(D + 1)) +O(N − 1) = O(k + dnN(N +D)).

Proposition 5.5 (Message complexity). Each node n sends O(k +Ndn) messages.

Proof. In the sharing phase, a node n sends 2k+1 messages to its consumers. In the broadcasting
phase, it sends 2dn data and acknowledgement messages to all of its direct neighbors. There are
at most max{Diam(G), N − 1 − D} ≤ N − 1 cycles (see Theorem 5.7 for more details of this
bound). Accordingly, the message complexity is O(2k + 1) +O(2dn.N) = O(k +Ndn).

Proposition 5.6 (Time complexity). Assume time evolves in rounds, i.e., each message trans-
mission incurs a delay of at most one round. Then the protocol operates in O(k+N.maxn{dn})
rounds.

Proof. The sharing phase operates in 2k+1 rounds. In the broadcasting phase, a node n sends dn
messages to direct neighbors, and all the nodes broadcast their collected data in parallel, so this
activity takes at most maxn{dn} rounds. Node has to repeat at most max{Diam(G), N −
1 − D} ≤ N − 1 cycles. Therefore, the time complexity is O(2k + 1) + O(maxn{dn}) +
O(maxn{2dn}.N) = O(k +N.maxn{dn}).

The necessary and sufficient conditions with dishonest nodes
We analyze the necessary and sufficient conditions for our protocol to be deployed correctly

for graphs of family G2.

Theorem 5.9. The properties of G2 are the necessary and sufficient conditions for the polling
protocol to be deployed correctly in the system with the presence of dishonest nodes. It should be
noted that the family of graphs G2 is similar to the one in Chapter 4.

Proof. The proof is similar to the one of Theorem 4.7 of Chapter 4.

5.4 Experimental evaluation

We validate our solution with a performance evaluation by observing the difference between
experiment output and the theoretical one.

Experimental setup. In the experiments, we use UDP and asynchrony in message exchang-
ing without crash or message loss. We implement protocol by using framework MaDKit12 to
demonstrate the communication amongst nodes and facilitate the development and testing of
the applications. We conduct the experiments on the local machine with the following configu-
ration: Intel Core 2 Quad CPU Q9550 @ 2.83GHz × 4 and Ubuntu OS 11.10.

Like previous chapter, we study the experiment with the existence of dishonest nodes, and
examine whether the real impact from the dishonest coalition to the outcome is within the
analytical bound or not. Namely, we consider the worst case for the system in the sense that
the dishonest nodes try to misbehave protocol by expressing the attack to decrease the final
result at most without being detected: each dishonest node always sends 2k + 1 shares of value

12http://www.madkit.org/

80

5.4. Experimental evaluation

-600

-400

-200

 0

 200

 400

 600

 800

 1000

 0.5 0.6 0.7 0.8 0.9 1

P
o
ll

re
s
u
lt

Proportion α of nodes voting for +1

Average output
Expected result

Theoretical lower bound
Theoretical biased result

Regression line

(a) k = 1

-600

-400

-200

 0

 200

 400

 600

 800

 1000

 0.5 0.6 0.7 0.8 0.9 1

P
o
ll

re
s
u
lt

Proportion α of nodes voting for +1

Average output
Expected result

Theoretical lower bound
Theoretical biased result

Regression line

(b) k = 2

Figure 5.3: Experiment with N = 1000, D = 50 to check the accuracy of protocol.

“−1” in the sharing phase, and converts all receiving shares of “1” into ones of “−1”. Thus, each
dishonest node affects the final result at most 2k + 2 in the sharing phase (if its desired vote is
“1” and it sends 2k + 1 shares of “−1”) and 2(2k + 1) = 4k + 2 in the broadcasting phase (if
2k + 1 receiving shares are “1” and all are converted to “−1”). In other words, total impact will
be up to 6k + 4. If we denote by α number of nodes voting “+1”, then the expected result will
be αN − (1−α)N = (2α− 1)N . So theoretically, the biased final outcome should be within the
interval [(2α− 1)N − (6k + 4)D; (2α− 1)N].

Results. We examine the experiments for the network with N = 1000, D = 50 in two subcases
corresponding to two different values of privacy parameter k = 1 and k = 2. Fig. 5.3a and
5.3b depict our results for these two test cases. In each test, we compute the average output
over all nodes and represented it as a point in the figures. We see that the experimental result
is certainly within two expected theoretical bounds: upper bound (thick-dashed line) and lower
bound (dot-dashed line). The experiment result never touches the expected line as the dishonest
node always sends 2k + 1 shares of “−1” and converts all receiving shares of “+1” to “−1” and
this decreases the final output and makes it less than the expected outcome. Moreover, the
experiment result does not reach the theoretical lower bound either, i.e., the average impact is
less than 6k + 4.

Furthermore, similar to the analysis in previous chapter, with D dishonest nodes, the average
biased outcome is (2α − 1)N − (4k + 2α + 2)D. In Fig. 5.3, we present this average value in a
thin-dotted line. We try to fit our data points with a regression line a(2α− 1)− b(4k + 2α+ 2)
and get these results (depicted as a solid line in Fig. 5.3): for k = 1: a = 986 and b = 47, and
for k = 2: a = 974 and b = 47. These parameters are quite accurate compared to conditions of
network with N = 1000 and D = 50.

In Fig. 5.3, we see that the impact of dishonest nodes for k = 2 is greater than for k = 1.
This result is reasonable since we know that the higher value k is, the higher privacy can be
hold but the higher impact dishonest nodes can enforce, and hence, the worse the final outcome
is. Besides, all nodes output the correct result (i.e., the final result is greater than 0) for k = 1
when α ≥ 0.63, and for k = 2 when α ≥ 0.74. It means dishonest nodes confuse the majority of
nodes for k = 1 when α < 0.63, and for k = 2 when α < 0.74.

81

Chapter 5. Asynchronous Model-based Polling Protocol

5.5 Summary and discussion

We presented a design of an asynchronous distributed polling protocol that rely on current state
of social graphs. This protocol is the improvement of the one showed in last chapter since it
runs in asynchronous network model. We also described the verification process to dissuade
misbehaviors, where each user does not need any knowledge of shortest path lengths. Both
(synchronous and asynchronous) protocols require verification procedures to ensure the safety
and security, and their communication cost are super-linear in N . Next chapter, we will present
an asynchronous polling protocol which overcomes these shortcomings: it does not require any
verification procedures and contains a method for efficiently broadcasting message.

82

Chapter 6

Polling Protocol with Efficient
Communication

Contents
6.1 Polling model . 84

6.1.1 Social graph model . 84

6.1.2 Secret sharing based graphs . 85

6.2 Polling protocol . 85

6.3 Correctness and Complexity Analysis 88

6.3.1 Protocol and graph without dishonest nodes 88

6.3.2 Protocol and graph with dishonest nodes 89

6.4 Crash and message loss analysis . 96

6.5 Particular graphs . 97

6.6 Summary and discussion . 98

Previously, we have described two simple decentralized polling protocols that run in syn-
chronous and asynchronous network models and rely on the current state of social graphs. In
these protocols, the dishonest participants are tolerated but their misbehaviors are detected with
positive probability by using verification procedures. In addition, the communication cost are
super-linear in N (they are O(N2) with the presence of dishonest nodes).

In this chapter, we present EPol, an asynchronous decentralized polling protocol that relies
on the current state of social graphs, not based on any verification procedures, and the commu-
nication and spatial complexities are close to be linear. More explicitly, we define one family
of social graphs that satisfy what we call the m-broadcasting property (where m is less than or
equal to the minimum node degree) and show their structures enable low communication cost
and constitute necessary and sufficient condition to ensure vote privacy and limit the impact
of dishonest users on the accuracy of the polling output. Different from previous algorithms in
Chapters 4 and 5, in this protocol, with a privacy parameter k, each user can vote with 2i + 1
shares where i ∈ {0, 1, ..., k}. We then analyze the probabilities for disclosing votes with certainty
and greedy (we explain more later in Section 6.3.2).

Since the data sent by one node may be corrupted by intermediate dishonest nodes, an honest
node may receive distinct values of the same data. As stated in [82, 83], the honest node may
decide on the arbitrary data (aka. local tally) sent by dishonest nodes and thus it might be

83

Chapter 6. Polling Protocol with Efficient Communication

incorrect. In contrast, we ensure each node can decide the most represented value to obtain
correct data of other nodes.

Moreover, most of the previous works [24, 25, 65, 82, 83] assume the existence of reliable
communication among nodes. However, nodes communicate by UDP which may suffer message
loss on the communication channels or nodes’ crash. In this chapter, we analyze the affect of
these factors on accuracy and termination of the protocol by considering the impact on the final
outcome and the probability of a node failing to decide and compute the final result. It is also
noted that DPol [82,83] investigated the effect only from crash, and not from message loss.

The remaining of chapter is organized as follows. Section 6.1 describes the ingredients of our
polling model. Section 6.2 presents our polling protocol and Section 6.3 analyzes its correctness
with and without presence of dishonest nodes. Section 6.4 discusses the impact of crash and
message loss on accuracy and termination of the protocol. Section 6.5 shows examples of our
social graph structures. We summarize and conclude this chapter in Section 6.6.

6.1 Polling model

In this section, we define the social graph models and demonstrate the description of our family
of graphs. We consider the same user behaviors given in Section 5.1.1 of Chapter 5 (and we omit
it here).

6.1.1 Social graph model
We use the terms and notations of graphs given in Chapter 3 to describe social graph.

In the network, consider the broadcasting operation initiated by a single node, called source.
The source has a data and wants to disseminate it to all nodes in the network. In the naive
approach, upon receiving a message from a neighbor, a node stores the data then forwards to
all other neighbors. Despite the use of richer social graph structures, one node can receive/send
so many duplicated messages (which may be passed by many paths) from/to other nodes. This
leads to flooding the local storage. To overcome this problem, inspired from [166], we propose a
method for efficiently broadcasting messages by using the concept that we call them-broadcasting
property.

Definition 6.1 (m-broadcasting property). A graph satisfies the m-broadcasting property for
a positive integer m such that 1 ≤ m ≤ dmin, where dmin is the minimum node degree of the
network, if for each source node, there exists a topological ordering of the nodes in the graph
such that every node either connects directly to the source or to some m nodes preceding it in the
ordering w.r.t. the source.

Accordingly, instead of accepting all messages originating from a source, a node receives and
stores only m ones passed by ordered paths.

We denote by βn(s) a number of neighbors of n preceding it in the ordering w.r.t. source
s.13 (We sometimes omit the mentioned source where no confusion arises.) Section 6.5 describes
some examples of graphs satisfying this condition. Just to demonstrate one typical example, for
a graph satisfied 3-broadcasting property in Fig.6.1a (where each node’s order is represented in
the parentheses) and node A does the broadcast operation for its data. In the naive approach,
node F can receive all messages passed by all the paths between F and A. However, by using
3-broadcasting property, F just receives three messages from neighbors E,B and D.

13The list of neighbors is determined by a preprocessing step before the polling process.

84

6.2. Polling protocol

The construction of a graph satisfying the m-broadcasting property from a general graph is
beyond the scope of this work.

6.1.2 Secret sharing based graphs

In this part, we present the family of graphs including the ideal case (network without dishonest
nodes) and normal case (network with the presence of dishonest nodes).

Like previous chapters, we use a predefined parameter k ∈ N and k ≤ b(−1 +
√

3N + 1)/3c
[82,83] and a parameter m ∈ N to describe the features of our social graphs. Let G = (V,E) be
a social graph with the following properties:

Property 6.1 (Pg1). dn ≥ 2k + 1, |Sn| = 2i + 1 and |Rn| ≤ 2k + 1 where i ∈ {0, 1, ..., k},
for every n ∈ V .

Property 6.2 (Pg2). G satisfies the m-broadcasting property.

Property 6.3 (Pg3). For a source node, each other node has less than m/2 dishonest neigh-
bors preceding it in the ordering (w.r.t. source node).

According to Property Pg1 , a set of consumers and a set of producers of one node have the size
of at most 2k+ 1 and might not be disjoint. This condition distinguishes our graph family from
other structures discussed in [65,82,83] and is more flexible than graph families in Chapters 4 and
5 since they all consider the restricted condition where each node has exactly 2k + 1 consumers
and producers. In addition, it also differs from [24, 25] which do not give any condition on the
upper bound of the number of producers (that each node should have). Thus, a dishonest node
can send arbitrary summing data to others and the accuracy of global outcome is easily affected.
Property Pg2 enables us to reduce the communication cost in the system. It is also noted that
this condition implicitly implies the condition that G is an honest graph mentioned in previous
chapters (i.e., for every honest nodes u, v, there exists a path between u and v containing only
intermediate honest nodes). Property Pg3 ensures each honest node always obtains one correct
version of data from other honest ones. Property Pg3 also enables us to limit the size of dishonest
users, that is D ≤ m−1

2 Diam(G) (presented in Theorem 6.8).

From these properties, we characterize two families of graphs:

(i) G1 = {G | D(G) = ∅ and G satisfies Pg1 , Pg2}.

(ii) G2 = {G | D(G) 6= ∅ and G satisfies Pg1 , Pg2 and Pg3}.

6.2 Polling protocol

In this section, we present our polling protocol, EPol, for the network without crash and message
loss. EPol is composed of the following phases:

Sharing. In this phase, each node n contributes its opinion by sending a set of shares expressing
its vote vn ∈ {−1, 1} to its consumers. We inspired the sharing scheme proposed in [61] to
generate shares. Namely, first n chooses randomly a value i such that i ∈ {0, 1, ..., k}. This
value i is not known by other nodes. Then it generates 2i + 1 shares Pn = {p1, p2, ..., p2i+1},
where pj ∈ {−1, 1} and 1 ≤ j ≤ 2i + 1, including: i + 1 shares of value vn, and i shares of

85

Chapter 6. Polling Protocol with Efficient Communication

Algorithm 3: Polling algorithm at node n ∈ {0, 1, ..., N − 1}
Input:
vn: A vote of node n, value in {−1, 1}
k : privacy parameter
m : positive integer where 1 ≤ m ≤ dmin

Variables:
cn: collected data, cn = 0
Cn: set of possible collected data

Cn[{0, 1, ..., N − 1} → ∅]
hn: set of final deciding collected data

hn[{0, 1, ..., N − 1} → ⊥]

Output: result

Polling Algorithm

1 Sharing(vn,Sn, i)
2 Broadcasting(cn)
3 Aggregating()

Procedure Sharing(vn,Sn, i)

4 Pn ← {vn}
5 for j ← 1 to i do
6 Pn ← Pn ∪ {vn} ∪ {−vn}

7 µn ←rand Pn
8 for j ← 0 to 2i do
9 send (SHARE, µn[j]) to Sn[j]

10 count← 0
11 while (count < |Rn|) do
12 upon event (receive (SHARE, p) from neighbor r in

the first time) do
13 if (r ∈ Rn and p ∈ {−1, 1}) then
14 cn ← cn + p
15 count← count+ 1

Procedure Broadcasting(cn)

16 foreach (r ∈ Γ(n)) do
17 send (DATA, n, cn) to r

18 count← 0
19 while (count < N − 1) do
20 upon event (receive message (DATA, s, cs) from

direct neighbor r preceding n in the ordering w.r.t.
source s) do

21 if (r = s) then
22 hn[s]← cs
23 count← count+ 1
24 Forward (DATA, s, cs) to other friends

succeeding n in the ordering w.r.t. source s
25 else if (s /∈ Γ(n)) then
26 Cn[s]← Cn[s] ∪ {cs}
27 if (|Cn[s]| = m) then
28 hn[s]← Decide(Cn[s])
29 count← count+ 1
30 send (DATA, s, hn[s]) to other

dn − βn(s) friends succeeding n in the
ordering w.r.t. source s

Function Decide(Z)

31 return the most represented value in Z

Procedure Aggregating()

32 result← 0
33 for s← 0 to N − 1 do
34 if (s 6= n) then
35 result← result + hn[s]

36 else result← result + cn

opposite vn’s value. The intuition of this creation is to regenerate the vote vn when the shares
are summed. Later it randomly generates a permutation µn of Pn, and sends shares to 2i + 1
consumers. Lines 4–9 in Algorithm 3 describe this activity. Node also receives |Rn| shares from
its producers. Note that Sn and Rn might not be disjoint.14 After each node collects shares from
its producers, and sums into collected data cn (lines 10–15 in Algorithm 3), this phase is over.
It is also noted that because the votes and their generating shares belong to the set {−1,+1},
nodes cannot distinguish between a vote and a share. Hence, if a node opts a value i = 0 and
generates only 2i+1 = 1 share, the dishonest consumer receiving a message from that node could
not distinguish if such share was generated as a single one or it is one among many generated
shares of that node.

Figure 6.1 illustrates an example of the protocol for i = k = 1. Figure 6.1a presents the
network and the ordering of nodes w.r.t. source A in the parentheses. Figure 6.1b depicts the
sharing phase at node A. Node A would like to vote +1, thus, it generates a set of 2i + 1 = 3
shares {+1,−1,+1}. Node A collects the shares from its producers and computes the collected
data cA = 3.

14This distinguishes our protocol from approaches in [24,25,65,82,83]. The set of consumers and producers in
these approaches are separated for each of size 2k + 1.

86

6.2. Polling protocol

A(0)

B(2) D(3) K(4)

M(6)

F (5)

E(1)

N(7)

(a) Ordering of nodes w.r.t. the source A

E B D K

1 A

+1 −1 +1

E B D K

A

+1 +1 +1

+3+3

(b) Sharing phase

E(1) B(2) D(3) K(4)

F (5)

A

hB[A] = 3

(A,3)

(A
,3
) (A

,3)

(A,3)

(A
,
3
)

(c) Broadcasting phase

E(1) B(2) D(3) K(4)

F (5)

M(6)

A

hF [A] = 3, CF [A] = {3, 3, 3}

(A,3)

(A
,3
) (A

,3)

(A,3)

(A,3)

(A
,3)

(A
,3)

(A
,
3
)

(d) Broadcasting phase (cont.)

Figure 6.1: Polling algorithm for i = k = 1 and m = 3.

Broadcasting. In this phase, each node needs to disseminate its collected data to all other nodes
in such a way that each other node eventually obtains that correct data. In the naive approach,
upon receiving a message from the neighbor, a node stores the data then forwards it on every
other edge. Despite the use of richer social graph structures, and with the presence of dishonest
nodes which can corrupt data, one node can receive/send so many duplicated messages (which
may be passed by many paths) from/to other nodes. This leads to flooding the local storage. As
motivated in Section 6.1.2, we propose a method for efficiently broadcasting messages by using
the m-broadcasting property. For a graph satisfying the m-broadcasting property, each node n
first sends its collected data to all neighbors (lines 16–17). Then, upon receipt of the message
containing the collected data of source s from a neighbor r preceding it in the ordering (w.r.t.
source s), node n executes one of the following activities:

• r = s: It decides on the data of source s by storing the received value cs in hn[s]. When
the value hn[s] is assigned, it is further forwarded to all dn − βn(s) nodes succeeding it in
the ordering (lines 21–24).

In Fig. 6.1c, after node A broadcasts its data, node B receives, stores this data in hB[A],
and forwards it to F .

• r 6= s: To avoid the case where the value hn[s] might be computed (and broadcast) twice
for direct neighbor s, node n only considers the case r 6= s and s /∈ Γ(n). If that condition
is satisfied, it adds the value cs to the multiset Cn[s] of possible collected data for s (line
26). When node n has received the expected number m of possible collected data for a
given source s, it decides on the collected data by choosing the most represented value

87

Chapter 6. Polling Protocol with Efficient Communication

in Cn[s] and puts it in hn[s]. (Since the decision is based on the most represented value,
instead of waiting for receiving all m forwarded data, node n can decide the source’s data
upon receipt of more than m/2 identical data.) Node n then further forwards the data to
all dn − βn(s) nodes succeeding it (lines 27–30).

Fig. 6.1d depicts node F receives messages from its neighbors about the data of source A.
It has four friends, but receives only m = 3 messages from preceding neighbors E,B and
D. As all values in CF [A] are 3, node F decides that value as the collected data of A and
stores it in hF [A]. It then forwards that data to its succeeding node M .

When a node decides the collected data of s and has no succeeding friend, the value hn[s] is no
longer forwarded. This phase is complete if a node decides on the collected data of all other ones
in the network.

Aggregating. The final result is obtained at each node by simply summing all deciding collected
data in the set hn and its own collected data: result = cn +

∑
i 6=n hn[i] (lines 32–36).

6.3 Correctness and Complexity Analysis

In this section, we present the correctness and complexity analysis of our protocol when deployed
on the graphs of G1 and G2 without and with the presence of dishonest nodes.

6.3.1 Protocol and graph without dishonest nodes

We first analyze the correctness (including accuracy and termination) of our protocol for the
graphs of G1 in which all participants are honest in Theorem 6.1. Then we analyze the spatial,
message and time complexities in Propositions 6.1–6.2.

Correctness
We show the correctness of the protocol by proving its accuracy and termination properties

in the following theorem.

Theorem 6.1 (Correctness). Consider a polling system of size N with only honest nodes where
each node n expresses a vote vn. The polling algorithm is guaranteed to eventually terminate and
each node outputs

∑N−1
n=0 vn.

Proof (Accuracy). In the sharing phase, each node n sends a set of shares Pn = {pn1 , pn2 , ..., pn2i+1}
to its consumers where

∑
pnj = (i + 1). vn + i. (−vn) = vn, and also receives a set of shares

{p′n1
, p′n2

, ..., p′nl} from its producers (l = |Rn|) to obtain a collected data of value cn =
∑l

j=1 p
′
nj .

With the assumption there is no dishonest node and without crash or message loss, each message
from the source successfully reaches the destination, and thus the set of all sending shares of all
nodes will be exactly coincided with the set of all receiving shares of all nodes, namely:⋃

V

{pn1 , pn2 , ..., pn2i+1} =
⋃
V

{p′n1
, p′n2

, ..., p′nl}

In the broadcasting phase, each node n broadcasts its collected data to their neighbors,
then they do honestly forward that value to neighbors of n’s neighbors (succeeding it in the
ordering w.r.t. source n) and so on. The messages are finally received by all direct and indirect

88

6.3. Correctness and Complexity Analysis

neighbors. Node n builds an array hn that contains all collected data of all nodes in the system.
Consequently, the final computation gives us the value:

result =
∑

0≤j<N
j 6=n

hn[j] + cn =

N−1∑
j=0

cj =

N−1∑
j=0

l∑
t=1

p′jt =

N−1∑
j=0

2i+1∑
t=1

pjt =

N−1∑
j=0

vj

Proof (Termination). In the sharing phase, each node has to receive a finite number (|R|) of
messages. In the broadcasting phase, for a source s, each direct neighbor of s receives only
one message, and each other indirect neighbor receives m messages. Since every node sends the
required number of messages and they are eventually arrived to destination, each phase completes.
As the protocol has a limited number of phases, it is ensured to eventually terminate.

Asymptotic complexity. We here examine the complexities of the protocol in Propositions
6.1–6.2.

Proposition 6.1 (Spatial complexity). The total space each node must hold is O(k +m.N).

Proof. Each node n maintains a set of producers and consumers (at most 2(2k + 1)), a list of
dn direct neighbors, a set of N identities of nodes in the systems, a set of m possible collected
data for each of source s, a set hn to store the deciding collected data. Therefore, the spatial
complexity is O(k) +O(dn) +O(N) +O(m.(N − 1)) +O(N − 1) = O(k +m.N).

Proposition 6.2 (Message complexity). The average number of messages sent by a node n is
O(k +N.(dn −m)).

Proof. In the sharing phase, node n sends at most 2k + 1 messages. In the broadcasting phase,
it sends dn messages containing its collected data, and forwards at most dn −m messages when
receiving collected data of each source s from its neighbors. Accordingly, the message complexity
is O(2k + 1) +O(dn) +O((N − 1).(dn −m)) = O(k +N.(dn −m)).

6.3.2 Protocol and graph with dishonest nodes

In this section, we study the impact of dishonest nodes on privacy and accuracy when EPol is
deployed on the graphs of G2 in the worst and average cases.

Privacy

We denote by γi the proportion of nodes voting with 2i + 1 shares in the sharing phase, where
0 ≤ i ≤ k and

∑k
i=0 γi = 1. We consider two cases for disclosing a nodes’ vote as follows.

Vote disclosing with certainty. We discuss the case when the vote of a given node may be
disclosed with certainty in the following theorem.

Theorem 6.2 (Certain Privacy). Assume a coalition of D dishonest nodes knows the number of
shares sent by a node. The probability Pce this coalition reveals correctly with certainty a vote of
the honest node voting with 2i+ 1 shares (0 ≤ i ≤ k) is at most γi

(
D
N

)i+1.

Proof. The coalition reveals vote v of a node if and only if i+1 consumers receiving i+1 identical
shares of value v belong to the dishonest coalition. There are a proportion γi of these nodes.
Thus, that event occurs with probability Pce = γi

(
D
i+1

)
/
(
N
i+1

)
≤ γi

(
D
N

)i+1.

89

Chapter 6. Polling Protocol with Efficient Communication

Upper bound of probability

 0 0.2 0.4 0.6 0.8 1γi
 0

 1

 2

 3

i

 0

 0.05

 0.1

 0.15

 0.2

f(γi,i)

Figure 6.2: Probability to disclose a node vote with certainty.

Corollary 6.1. If all nodes send 2k + 1 shares in the sharing phase, then the probability that a
coalition of D dishonest nodes reveals correctly with certainty an honest node’s vote is at most(
D
N

)k+1.

Proof. The claim is followed by the result of Theorem 6.2.

We plot the bound of Pce as a function f(γi, i) = γi
(
D
N

)i+1 in Fig. 6.2 for k = 3, N = 100
and D = 20. We see that Pce increases with the increase of γi and the decrease of i. Thus, we
get the maximum privacy when all nodes generate 2k+1 shares, and the minimum privacy when
all nodes generate only one share.

If the poll outcome is N (resp. −N), it implies all nodes vote for “+1” (resp. “−1”) and they
all are disclosed. Moreover, w.l.o.g., assume each dishonest node always votes for “−1”. Thus,
if the result is N − 2D (resp. −N) then it implies all honest nodes vote for “+1” (resp. “−1”).
Without considering this case, i.e., all honest nodes do not vote for the same option, Theorem
6.3 gives us the maximum number of votes the dishonest coalition could discover.

Theorem 6.3. If all honest nodes do not vote for the same option, a coalition of D dishonest
nodes can reveal at most 2D votes of honest nodes.

Proof. A consumer receives on average
∑

i γi(2i+1) shares; hence, the dishonest coalition collects
at mostD

∑
i γi(2i+1) shares. Moreover, a vote v of one node voting with 2i+1 shares is revealed

if and only if the coalition obtains i + 1 identical shares of value v. Thus it recovers at most
bD.

∑
i γi(2i+1)∑
i γi(i+1) c ≤ 2D votes.

Vote disclosing without certainty. This part examines the case where the dishonest nodes
collude to reveal an honest node’s vote without sureness. The coalition decides a node’s vote
based on the received shares in the sense dishonest nodes can decide the vote after getting some
shares or after getting all shares from that node. Thus, they choose one of the following two
strategies: (a) Upon receipt of ρ + 1 identical shares (for some 0 ≤ ρ ≤ k) from a given node,
they will be considered as its vote; (b) After receiving all shares from a given node, the most
represented value of the received shares will be considered as its vote. The former strategy is
used by the “greedy” dishonest users who want to reveal rapidly the honest user’s vote (even if
they have just received one share). The latter one is used by the “non-greedy” dishonest users
who are patient and wait for receiving all node’s shares before trying to disclose the vote. We

90

6.3. Correctness and Complexity Analysis

present the probabilities that a coalition of dishonest nodes discloses an honest node’s vote for
these situations in Theorems 6.4 and 6.5.

Theorem 6.4 (Greedy vote disclosing). Assume a coalition of D dishonest nodes agrees on the
following rule “upon receipt of ρ + 1 identical shares (0 ≤ ρ ≤ k) from a given node, they will
be considered as the node’s vote”. The probability this coalition reveals correctly a node’s vote is
Pgr(ρ) =

∑k
i=ρ γi·

(
D
ρ+1

)∑ρ
j=0

(
D−ρ−1

j

)
/
(

N
j+ρ+1

)
and is bounded by

∑k
i=ρ γi

N+1
N−D+ρ+2(D

N−D+ρ+1)ρ+1.

Proof. The dishonest nodes succeed to discover a node’s vote v if that node has sent 2i+1 ≥ 2ρ+1
shares in which ρ+ 1 identical ones representing v and up to ρ shares of value −v were received
by the dishonest consumers. In contrast, the coalition’s decision is failed if the node has sent
more than 2ρ+ 1 messages (i.e., at least 2ρ+ 3 messages) but the dishonest nodes obtained only
ρ+ 1 messages of value −v and up to ρ messages of value v.

The probability a coalition of D dishonest nodes discloses correctly a vote v is: Pgr(ρ) =∑k
i=ρ γip(i) where p(i) =

(
D
ρ+1

)∑ρ
j=0

(
D−ρ−1

j

)
/
(

N
j+ρ+1

)
.

Using this identity: 1/
(
n
j

)
= (n+ 1)

∫ 1
0 t

j(1− t)n−jdt for some positive n and j, then p(i) is
rewritten as follows:

p(i) = (N + 1)

(
D

ρ+ 1

) ρ∑
j=0

(
D − ρ− 1

j

)∫ 1

0
tj+ρ+1(1− t)N−j−ρ−1dt

= (N + 1)

(
D

ρ+ 1

)∫ 1

0
(1− t)N−ρ−1tρ+1

 ρ∑
j=0

(
D − ρ− 1

j

)(
t

1− t

)j dt
≤ (N + 1)

(
D

ρ+ 1

)∫ 1

0
(1− t)N−ρ−1tρ+1

D−ρ−1∑
j=0

(
D − ρ− 1

j

)(
t

1− t

)j dt
= (N + 1)

(
D

ρ+ 1

)∫ 1

0
(1− t)N−ρ−1tρ+1

[(
1 +

t

1− t

)D−ρ−1
]
dt

= (N + 1)

(
D

ρ+ 1

)∫ 1

0
tρ+1(1− t)N−Ddt

=
N + 1

N −D + ρ+ 2

(
D

ρ+ 1

)
/

(
N −D + ρ+ 1

ρ+ 1

)
≤ N + 1

N −D + ρ+ 2

(
D

N −D + ρ+ 1

)ρ+1

.

This leads the desired result.

In Theorem 6.4, a vote v of the honest node is discovered if that node has sent 2i+1 ≥ 2ρ+1
shares in which ρ+ 1 identical ones representing v and up to ρ shares of value −v were received
by the dishonest consumers. Moreover, by Theorem 6.4, value Pgr increases when γi decreases
(and i increases) and D increases. For example, with N = 100, k = 1 (i.e., each node votes with
one share or 2k + 1 = 3 shares), ρ = 0, we plot the probability Pgr as a function of D and γk in
Fig. 6.3a. As expected, the vote privacy decreases (i.e., Pgr increases) when γk decreases and D
increases.

Theorem 6.5 (Non-greedy vote disclosing). Assume a coalition of D dishonest nodes agrees
on the following rule “the most represented value of the received shares from a given node will
be considered as the node’s vote”. The probability this coalition reveals correctly a node’s vote is
Pun =

∑k
i=0 γi·

∑i+1
j=1

∑j−1
t=0

(
D
j

)(
D−j
t

)
/
(
N
j+t

)
and is bounded by

(
D
N /(1−2DN)

)[
1−

∑k
i=0 γi(2

D
N)2i+1

]
.

91

Chapter 6. Polling Protocol with Efficient Communication

Greedy vote disclosing

 0
 0.2

 0.4
 0.6

 0.8
 1

γk

 0 20 40 60 80

D

 0

 0.2

 0.4

 0.6

 0.8

 1

Pgr

(a) Greedy

Non-greedy vote disclosing

 0
 0.2

 0.4
 0.6

 0.8
 1

γk

 0 20 40 60 80

D

 0

 0.2

 0.4

 0.6

 0.8

 1

Pun

(b) Non-greedy

Figure 6.3: Probability to disclose a node vote without certainty.

Proof. The dishonest nodes reveal successfully a vote v of a node voting with 2i + 1 shares if
they receive j shares of value v and t shares of value −v such that i+ 1 ≥ j > t ≥ 0. This event
occurs with probability p(i) =

∑i+1
j=1

∑j−1
t=0

(
D
j

)(
D−j
t

)
/
(
N
j+t

)
.

We have:
(
D
j

)(
D−j
t

)
/
(
N
j+t

)
≤
(
D
N

)j+t (j+t
j

)
. Denote a = D/N , we will find the upper bound

of
∑i+1

j=1

∑j−1
t=0 a

t+j
(
j+t
j

)
.

Rewrite that expression as
∑2i+1

r=1 ar
∑

i<j∧i+j=r
(
r
i

)
≤
∑2i+1

r=1 ar 1
2

∑r
i=0

(
r
i

)
= 1

2

∑2i+1
r=1 (2a)r =

a
1−2a

(
1− (2a)2i+1

)
.

Since a node sends 2i+ 1 shares with probability γi, and we consider all possibilities of value
i, this gives us the desired result Pun =

∑k
i=0 γip(i) ≤

a
1−2a [1−

∑k
i=0 γi(2a)2i+1].

By Theorem 6.5, the quantity Pun increases when both values γi and D increase (and also
i increases). We consider a graph with N = 100 and k = 1 (i.e., each node votes with one
share or 2k + 1 = 3 shares). Fig. 6.3b shows the impact of the number of dishonest nodes
D and the proportion γk of nodes voting with 2k + 1 shares on the probability of non-greedy
vote disclosing. According to this result, the vote privacy decreases (i.e., value Pun increases)
when both the proportion of nodes voting with 2k+ 1 shares and the number of dishonest nodes
increase.

Combining vote disclosing with and without certainty. The dishonest nodes may try to
reveal a node vote either in certainty or uncertainty. Assume they use the vote disclosing rule
with and without certainty. From the viewpoint of dishonest nodes, they always want their vote
detection to be as certain as possible, i.e., they prefer a node vote being revealed with certainty
than other cases. Hence their strategy is as follows: they first try to disclose a vote of node with
certainty . If they do not succeed, for instance, because of lacking of messages, they will consider
the way to detect that vote without certainty. It means that the probability for a vote disclosure
in this case is Pcom = max{Pce, Pgr, Pun}.

Accuracy. In this part, we evaluate the maximum and average impact on accuracy caused by the
dishonest coalition when we deploy EPol on the graphs of G2. The dishonest nodes’ capabilities
are similar to the ones given in Definition 4.5 of Chapter 4. More precisely, a dishonest node

92

6.3. Correctness and Complexity Analysis

may affect the poll outcome with the following misbehaviors:

(1) It sends more than k + 1 (but not greater than 2k + 1) identical shares.

(2) It inverts each receiving “+1”-share into a “−1”-share to decrease the collected data.

(3) In the broadcasting phase, it modifies the collected data of other honest node or sends a
forged message.

(4) It broadcasts or forwards inconsistent data.

We show the impact of these misbehaviors in Theorems 6.6 and 6.7.

Theorem 6.6 (Maximum impact). Each dishonest node may affect the final result up to 6k+ 4.

Proof. In cases (1) and (2), the worst case of these misbehaviors occurs when the dishonest node
sends 2k+1 shares of value −1 and inverts all 2k+1 receiving shares before summing. As a node
is allowed to send only a set of shares summing to −1 or +1, its first and second acts respectively
affect up to |2k + 1 − (−1)| = 2k + 2 (if its vote is +1 but it generates 2k + 1 −1-shares) and
(2k + 1)− (−2k − 1) = 4k + 2 (if it gets 2k + 1 shares of “+1” and inverts all into “−1”-shares).
In the misbehavior (3), a dishonest node only modifies the collected data of other honest node s
such that the data is in the range [−2k − 1, 2k + 1], otherwise its misbehavior will be detected.
However this activity does not affect the final result since one node receives a direct message from
s (if it is a neighbor of s) or receives m forwarding messages from neighbors in which at most
b(m− 1)/2c messages are corrupted, and majority messages (d(m+ 1)/2e) contain correct data,
thus an honest node always obtains the precise collected data of s. Therefore, the maximum
impact from one dishonest node is 2k + 2 + 4k + 2 = 6k + 4.

Note that from the result of Theorem 6.6, we get a value σ = 6k+4
2N = 3k+2

N . Function
ξ(k) = 3k+2

N ≤ 1/k for k ≤ b(−1 +
√

3N + 1)/3c. It means ξ(k) decreases as 1/k. Thus, it is
negligible. By Definition 4.2, the protocol is accurate.

Moreover, by Theorems 6.2 and 6.6, we see that the number of users voting for 2k+ 1 shares
affects to the privacy and accuracy of EPol. If that number increases, then the privacy increases
but the accuracy decreases, and vice versa.

Theorem 6.7 (Average impact). Let α be the proportion of nodes voting for “+1”. The average
impact from a dishonest node is Iavg =

[∑k
i=0 γi(2i+ 1)

]
·
[
1 + 2

∑k
i=0 γi

i+α
2i+1

]
+ 1.

Proof. Each node generates i+1 shares of its tendency, and i opposite shares; thus, the consumers
receive a +1-share with probability

∑k
i=0 γi[α

i+1
2i+1 + (1−α) i

2i+1] =
∑k

i=0 γi
i+α
2i+1 . In addition, as

the average number of receiving shares is
∑k

i=0 γi(2i + 1), the average number of +1-shares is[∑k
i=0 γi(2i+ 1)

]
·
[∑k

i=0 γi
i+α
2i+1

]
. By altering any receiving +1-share into −1-share this impacts

2
[∑k

i=0 γi(2i+ 1)
]
·
[∑k

i=0 γi
i+α
2i+1

]
. Moreover, a dishonest node sends on average

∑k
i=0 γi(2i+ 1)

shares of −1 which affects by 1 +
∑k

i=0 γi(2i+ 1). Consequently, the total average impact from
a dishonest node is Iavg =

[∑k
i=0 γi(2i+ 1)

]
·
[
1 + 2

∑k
i=0 γi

i+α
2i+1

]
+ 1.

The quantity Iavg is minimized when all nodes generate the same number of shares, e.g.,
2i + 1, and thus Iavg = 2i + 2 + 2(i + α) = 2(2i + α + 1). In the worst case, a dishonest node
always sends 2k + 1 shares, hence, the minimized average impact is Iavg = 2(2k + α+ 1).

Corollary 6.2. If all nodes send 2k+ 1 shares, then the biased final result is (2α− 1)N − (4k+
2α+ 2)D.

93

Chapter 6. Polling Protocol with Efficient Communication

Proof. The expected final outcome is αN.1+(1−α)N.(−1) = (2α−1)N . By Theorem 6.7, total
impact is (4k + 2α+ 2)D, this yields the proof.

By Theorems 6.2–6.7 and Corollaries 6.1–6.2, for a fixed parameter k, the number of users
voting with a high number of shares (e.g., 2k+ 1 shares) affects the privacy and accuracy. More
concretely, if we care about vote privacy, we should augment the number of nodes generating 2k+
1 shares since the probability of vote disclosing with certainty (Pce) and with greedy uncertainty
(Pgr) will decrease. But this rises up the probability Pun of non-greedy vote disclosing and the
impact on the final outcome. In contrast, if we take care of the accuracy of the final result, we
should decrease the number of nodes voting with 2k+ 1 shares since that reduces the impact on
the final outcome. It also decreases the probability of non-greedy vote detection. However this
increases the probability of a node vote to be revealed with certainty and with greedy uncertainty.

Security. In this part, we compute the maximum number of dishonest nodes that EPol can
tolerate.

Lemma 6.1. A node decides correctly the collected data of an honest source s if it connects
directly to s or there are at most (m − 1)/2 dishonest neighbors preceding it (in the ordering
w.r.t. source s).

Proof. It is a trivial case when a node connects directly to source s. We only consider the case
where a node n /∈ Γ(s). Since a node gets randomly m messages among βn(s) ones, and its
decision is based on the majority appearance of a value, it is necessary less than m/2 messages
are corrupted. This infers the desired result.

Theorem 6.8 (Tolerance to Dishonest Nodes). The maximum number of dishonest nodes that
EPol can tolerate is m−1

2 Diam(G).

Proof. Recall the neighborhoods of a node, defined in Chapter 3: the set of direct neighbors
of node n is Γ1

n = Γ(n) and the collection of neighbors at distance j > 1 from n is Γjn = {u |
δ(u, n) = j} = {u | u ∈ Γv where v ∈ Γj−1

n and u /∈
⋃
k<j Γkn}.

We define by ϕn(s) the set of n’s neighbors preceding n in the ordering w.r.t. source s. We
have |ϕn(s)| = βn(s). Recall that δ(u, v) denote the distance, i.e., the length of the shortest
path, between nodes u and v.

By Lemma 6.1, a node n decides correctly about a collected data of honest source s if n ∈ Γ(s)
or |ϕn(s) ∩ D| ≤ (m − 1)/2. To find out the highest number of dishonest nodes in the system
we only consider a node n /∈ Γ(s). In general, a node u ∈ ϕn(s) may be at any distance from
s (even δ(u, s) ≥ δ(n, s)). It means n may receive a corrupted data from a dishonest node at
any distance from s. Since n receives at most (m − 1)/2 corrupted messages, the necessary
condition to guarantee n decides correctly s’s collected data is there are at most (m − 1)/2
dishonest friends of s at distance i, i.e., |Γis ∩ D| ≤ (m − 1)/2 where 1 ≤ i ≤ Rad(s,G) and
Rad(s,G) = maxu∈V {δ(s, u)}.

This gives the maximum number of dishonest nodes, such that each node receives correct
collected data of source s, is D(s) =

∑Rad(s,G)
i=1 |Γis ∩D| ≤ m−1

2 Rad(s,G). Considering all source
nodes in the network, we have D ≤ maxs∈V {D(s)} = m−1

2 Diam(G).
An example of the graph which tolerates D = m−1

2 Diam(G) dishonest nodes is illustrated in
Fig.6.4 for m = 3.

Observation. It is also noted that our protocol can tolerate more than
√
N dishonest nodes

for a ring-based structure introduced in [82, 83]. Indeed, as this structure has the diameter
Diam(G) =

√
N , and with parameter m ≥ 3, the upper bound of D is not less than

√
N .

94

6.3. Correctness and Complexity Analysis

Figure 6.4: A graph where protocol tolerates m−1
2 Diam(G) dishonest nodes.

Corollary 6.3. If D ≤ m−1
2 Diam(G) then a node decides wrongly the collected data of some

other node with the probability converging to 0 exponentially fast in N (and Diam(G)).

Proof. We define by ϕn(s) the set of n’s neighbors preceding n in the ordering w.r.t. source s. By
Lemma 6.1, if |ϕn(s)∩D| ≥ m/2 then a node n may decide wrongly the collected data of source
s (or could not make decision). We inspire the idea from [83] to compute the probability this
event occurs by using standard Hoeffding bounds for sampling from a finite population without
replacement (with the notice that Diam(G) ≤ N − 1):

ps = Pr
[
|ϕn(s) ∩ D| ≥ m/2

]
= Pr

[
|ϕn(s) ∩ D| − D

Diam(G)
≥ 1

Diam(G)
(
m

2
Diam(G)−D)

]
≤ exp(

−2

Diam(G)
(
m

2
Diam(G)−D)2) ≤ exp(

−2

N − 1
(
m

2
Diam(G)−D)2).

As D < m
2 Diam(G), the right-hand function tends to 0 exponentially fast in N (and Diam(G)).

It implies the probability for a node decides wrongly the collected data of some source (or could
not make decision) is

Pc = Pr
[⋃
s∈V
{|ϕn(s) ∩ D| ≥ m/2}

]
≤
∑
s∈V

ps ≤ N exp(
−2

N − 1
(
m

2
Diam(G)−D)2).

The right-hand function also tends to 0 exponentially fast in N .

EPol vs. graphs. We examine the necessary and sufficient condition for our protocol to be
deployed correctly in the following Theorem.

Theorem 6.9. The properties of G1 (resp. G2) are the necessary and sufficient conditions for
EPol to be deployed correctly in the system without (resp. with) the presence of dishonest nodes.

Proof. We here just show this theorem with graphs of G2. For graphs of G1, the proof is easily
considered as its consequence. The sufficient condition (⇐) is proved by Theorems 6.1–6.8 since
our protocol works correctly with graphs of G2 and preserves its properties such as correctness,
privacy, accuracy, termination.

We only need to clarify the remaining proof of this theorem. Assume we have a general graph
G. We give the proof by sketching step by step the requirements G should obtain so that all
properties of protocol are guaranteed.

In the sharing phase, node n sends (or receives) at most 2k+ 1 messages, i.e., |Sn| = |Rn| ≤
2k+1. In addition, it has to send an odd number of messages, thus, |Sn| = 2i+1 where 0 ≤ i ≤ k.
As |Sn| and |Rn| might not be disjoint, then dn ≥ 2k+ 1. Therefore, to apply protocol correctly,
G must have the property Pg1 . In addition, in the broadcasting phase of EPol, a node decides a
data of some source s if it connects directly to s, or to at least m nodes which have preceding
orders. This infers the graph must satisfy the m-broadcasting condition. Finally, the Lemma
6.1 shows the necessary property Pg3 that a graph must satisfy to deploy EPol. Accordingly, the
graph G is a member of family G2 of graphs.

95

Chapter 6. Polling Protocol with Efficient Communication

6.4 Crash and message loss analysis

Nodes communicate by UDP which may suffer message loss on the communication channels. In
addition, nodes may be unreliable, causing expected messages to be lost due to sender crashes.
Assuming the presence of node crashes and message losses in the system, this part analyzes the
effect of these factors on accuracy and termination of the protocol. Here we assume the system
contains no dishonest nodes.

Impact on termination. In the following, we study the effect on termination of the protocol
by computing the probability of a node failing to decide on the final result, i.e., it has not decided
on at least one collected data of a certain source s.

We suppose that nodes crash with probability r (and never recover from a crash) and a
message is lost (after transmitting from a sender) with probability l. We define a probability q
for a node fails to send shares to its consumers in the sharing phase, i.e., q = r + (1− r)l.

A node n fails to forward a collected data of source s to some node if it either: (i) crashed; (ii)
has itself not decided that value; or (iii) has forwarded a message but it is lost while transmitting.
In addition, a node n also fails to decide a collected data of source s if one of the following events
occurs:

1. n = s: s fails to compute its collected data cs.

2. n ∈ Γ(s): n does not receive a broadcast message from s.

3. n /∈ Γ(s): n receives at most (m−1) messages from neighbors (preceding it in the ordering
w.r.t. source s), i.e., more than βn(s)−m (preceding) neighbors fail to forward the collected
data.

Let eni be the probability for a node n at distance i from source s to fail to forward a collected
data of s. Let zni be the probability for a node n at distance i from source s to fail to fail to
decide a collected data of s.

We have eni = r + (1− r)[zni + (1− zni)l]
where:
zn0 = zs =

∑|Rs|−1
j=0

(|Rs|
j

)
(1− q)jq|Rs|−j ,

zn1 = en0 ,

and zni =
∑m−1

j=0

[(
βn(s)
j

)∏j
t=1(1 − entlt)

∏βn(s)
p=j+1 enplp

]
where i ≥ 2, {n1, n2, . . . , nβn(s)} and

{l1, l2, . . . , lβn(s)} are respectively the sets of preceding friends of n (w.r.t. source s) and their
corresponding distances to s. It is noted that lj could be greater than i for j = 1, 2, ...βn(s).

In the worst case, the source s has |Rs| = 2k + 1 and a node does not decide on a collected
data of that node with a probability znRad(s,G)

where Rad(s,G) = maxu∈V {δ(s, u)}. Thus, a
node does not decide on the final result if it has not decided on at least one collected data of a
certain source, that is znDiam(G)

where Diam(G) = maxs∈V {Rad(s,G)}.

Impact on accuracy. A node crash affects the final result when that node has some unique
information and they have not yet been replicated, typically the shares which are generated by
node to represent its votes. It crashes (i) while sending its shares to consumers, or (ii) after
summing up shares from producers. The former case affects to the final outcome up to k + 1 (if
it crashes after sending k shares of −v). The later case affects up to 2k + 1. Hence, the impact
of such a crash on final result is bounded by k + 1 + 2k + 1 = 3k + 2.

96

6.5. Particular graphs

L1 L2 L3 L4 L5 L6

(a) Layered network for m = 3 (b) Backbone network

(c) One-dimensional geometric network

gi

u

gi−1

gi+1

(d) Cluster-ring-based network (e) Circle-based network

Figure 6.5: Examples of networks satisfying the 3-broadcasting-source condition.

6.5 Particular graphs

The algorithm EPol requires the graphs satisfying the m-broadcasting property (see Definition
6.1). Here we illustrate some particular graphs of this family. The examples of these graphs for
m = 3 are also depicted in Fig.6.5 and they can be generalized to any value m. Some of these
graphs are given by the work [166].

(a) Layered networks. Each layer contains at least m nodes, and each node links to all other
nodes in neighboring layer. The number of nodes in each layer could be different. For
each source node, an (increased) ordering satisfying the m-broadcasting property w.r.t. this
source is the ordering of the nodes with respect to the distance from the source.

(b) Networks with a backbone. The graph includes a backbone which is densely connected
graph, and other nodes outside the backbone which connect directly to at least m nodes in
the backbone. An ordering satisfying the m-broadcasting-source property w.r.t. one source
is the ordering under the backbone subgraph, followed by all remaining nodes not in the
backbone.

(c) One-dimensional geometric networks. All nodes are arranged along a line, and there
is a connection between two nodes if their distance is smaller than a fixed threshold. Each
node has at least m connections. An ordering of nodes w.r.t. one source is the order of their
euclidean distance from the source.

97

Chapter 6. Polling Protocol with Efficient Communication

(d) Cluster-ring-based graph [24,25,65,82,83]. The N nodes are clustered into r =
√
N

ordered groups, from g0 to gr−1. Each group is a clique. A node n in group gi also links to
a fixed-size set Sn of nodes in the next group (Sn ⊂ gi+1 mod r), and a fixed-size set Rn of
nodes in the previous group where |Sn| = |Rn| = 2k + 1. Thus, all groups virtually form
a ring with g0 being the successor of gr−1. In fact, this structure is a particular case of
layered networks presented above in which each layer is a clique of size

√
N , and all layers

virtually form a ring. Hence for each source node, an (increased) ordering satisfying the
m-broadcasting property w.r.t. a source is the ordering of the nodes with respect to the
distance from the source. It is also ordered based on the distance from the source and the
direction of sending messages, e.g., from group gi to gi+1 mod r.

(e) Circle-based networks. Consider a graph G0 ∈ G2 of size N > 2k + 1 where each node n
has the set of consumers Sn which is the output of the function:

f : A→ 2A

n 7→ {(n− 1) mod N, (n+ 1) mod N, . . . , (n+ 2k) mod N}

where A = {0, 1, 2 . . . , (N − 1)}. The set of producers is Rn = {(n + 1) mod N, (n −
1) mod N, (n−2) mod N, . . . , (n−2k) mod N} of size 2k+1. Figure 6.5e depicts an example
of this graph with N = 6 and k = 1 in which the arrows express the direction of sending
messages. For each source node, an (increased) ordering satisfying them-broadcasting-source
property w.r.t. this source is the ordering of the nodes with respect to the distance from the
source.

All protocols in [24, 25, 65, 82, 83] cannot be deployed in this graph since the condition Sn ∩
Rn = ∅ (proposed in these works) is not satisfied for every node n.

6.6 Summary and discussion

This chapter introduced the third distributed polling protocol, EPol, that assure vote privacy
and limit the impact on accuracy of the polling outcome and particularly could be deployed on
the family of social networks which satisfy the m-broadcasting property. In this protocol, each
node can obtain a correct data of other node in the broadcasting procedure without requiring any
verification process. In addition, we introduced some uncertain vote disclosing rules for dishonest
node, and presented the probabilities of vote detection in these cases. We also analyzed the
effect of message losses and crashes on accuracy and termination. Despite the use of richer social
graph structures, the communication and spatial complexities of EPol are close to be linear.
Next chapter, we will discuss the graph transformation problem that adds a minimum number
of edges to a given graph while satisfying a threshold parameter.

98

Chapter 7

On Constrained Adding Friends in
Social Networks

Contents
7.1 Problem statement . 100

7.1.1 Notations . 100
7.1.2 Problem definition . 100

7.2 Centralized protocol . 103
7.2.1 Protocol description . 103
7.2.2 Correctness . 106
7.2.3 Greedy algorithm . 109

7.3 Decentralized protocol . 112
7.3.1 Model . 113
7.3.2 Protocol description . 114
7.3.3 Correctness . 116
7.3.4 Algorithms comparison . 118

7.4 Experimental evaluation . 121
7.4.1 Datasets . 122
7.4.2 Experimental setup . 122
7.4.3 Results . 123

7.5 Conclusion . 125

The distributed polling protocols we presented in this thesis and other secret sharing based
protocols (such as [24, 25, 65, 76, 82, 83]) often impose a threshold parameter on the number
of friends, e.g., the minimum degree of the social graph should be not smaller than the given
threshold. Often this condition is not satisfied by all social graphs. Yet we can reuse these
graphs after some structural modifications consisting in adding new friendship relations. In this
chapter, we provide the first definition and theoretical analysis of the “adding friends” problem.
We formally describe this problem that, given a graph G and parameter c, asks for the graph
satisfying the threshold c that results from G with the minimum of edge-addition operations. We
present algorithms for solving this problem in centralized and decentralized networks. We show
that no distributed algorithm is better than centralized one for all graph structures. In addition,
we also prove that there is no best decentralized solution, i.e., any decentralized algorithm can be

99

Chapter 7. On Constrained Adding Friends in Social Networks

worse than other decentralized one for some graphs, but it can be better in some other scenarios.
An experimental evaluation on real-world social graphs demonstrates that our protocols are
accurate and inside the theoretical bounds.

This chapter is structured as follows. Section 7.1 describes our adding friends problem. Sec-
tion 7.2 presents our protocols for the centralized social network with their correctness properties.
Section 7.3 introduces our distributed algorithms, and shows that no one amongst them is the
best, as well as they cannot compete with the centralized solutions. Section 7.4 illustrates our
experimental results. We conclude the chapter in Section 7.5.

7.1 Problem statement

7.1.1 Notations

We model a social network with an undirected connected graph G = (V,E) as presented in
Sub-section 3.2.1 of Chapter 3. Let c be an initial constant parameter in the graph G that is
used to identify two kinds of nodes: weaker and normal nodes.

Definition 7.1. Let G = (V,E) be a graph. A node n ∈ V is weaker (resp. normal) if dn < c
(resp. dn ≥ c). A graph G is c-degree if all nodes are normal. Otherwise, it is called non-c-degree
graph.

In addition, we have the following monotonicity property of the c-degree graph.

Observation 7.1. If a graph is c1-degree, then it is also c2-degree for all c2 ≤ c1.

Observation 7.2. If a graph is non-c1-degree, then it is also non-c2-degree for all c2 ≥ c1.

A set of all weaker nodes is denoted by W = {n ∈ V | dn < c}. A weaker node n ∈ W has to
add one or more edges to become a normal one. Thus, we define yn as the number of these edges,
i.e., yn = c− dn. A weaker node n may create links with some other weaker ones if there are no
connection between n and them. We call them available weaker nodes (i.e., potential friends) of
n, and denote the set of these nodes by Dn = {v ∈ W | e(n, v) = 0} and write its size by xn.

7.1.2 Problem definition

Given a parameter c and a non-c-degree graph G = (V,E) where c < N . Our purpose is to
transform G into a c-degree graph G′ = (V,E′) that is structurally similar to G by using a
graph-modification operation on G. The output G′ must have the same set of nodes as G.

It should be noted that we only use edge-addition operation to modify G into G′. Moreover,
once one friendship link has been established, it cannot be removed or changed later. We assume
that these new friendship links will be accepted by all user nodes as they are aware these new
links will enable them to achieve some common functions (e.g., polling process).

Before presenting formally the definition of our adding friends problem, we describe the
difference between two graph structures as follows.

Definition 7.2. Given two graphs G = (V,E) and G′ = (V,E′). The structural difference Φ
between G and G′ is the difference between sets of edges. More formally,

Φ(G′, G) = |E′ \ E|+ |E \ E′| (7.1)

100

7.1. Problem statement

As we only use edge-addition operation to modify graph, E′ ⊇ E and G′ is a supergraph of
G. Consequently

Φ(G′, G) = |E′ \ E|+ |E \ E′| = |E′| − |E| (7.2)

Naively, to construct G′ from G, one weaker node could create friendship with anyone by
accumulating more and more friends until it becomes normal. However, this naive approach may
be less accurate and unfair:

(i) An unnecessary large number of friendship links may be added, namely it is a 2-approximation
algorithm. For instance, assume we have w unconnected weaker nodes and each weaker
node needs one new link to become normal node. In this case, the naive approach may add
up to w new links, whereas dw2 e is sufficient if we link weaker nodes together;

(ii) The process may not be fair in the sense that some user nodes could get more new links
than others. We also observe that the naive approach takes time O(c|W|) (it takes O(N2)
in the worst case when |W| = N and c = N − 1).

Problem (AddFriends). Given a graph G = (V,E) and a constant parameter c, con-
struct a c-degree graph G′ = (V,E′) by using only an edge-addition operation such that
Φ(G′, G) is minimized.

Minimizing Φ(G′, G) is equivalent to minimize the degree difference between G′ and G. In-
deed, as each edge is incident to exactly two vertices, we have

∑
n dn = 2|E| and

∑
n d
′
n = 2|E′|,

where dn and d′n are the degree of node n in G and G′ respectively. Therefore, Formula (7.2) is
rewritten as Φ(G′, G) = 1

2 ·
∑

n(d′n − dn).
On the first view, our AddFriends problem seems generally related to the b-Matching

problem [64,119,176,178], or the solution could be the reduction of some b-matching algorithms
proposed in [14,139] but it turns out AddFriends problem and b-Matching problem are truly
different. Indeed, the concept of a b-matching was defined by Edmonds [64] as follows: For each
node n ∈ V let δ(n) denote the set of edges in E which link n. For each vector x = (xe : e ∈ E)
and a subset E′ of E, let x(E′) =

∑
{xe : e ∈ E′}. Let b = (bn : n ∈ V) be a positive

integer vector. A b-matching of G is a nonnegative integer vector x = (xe : e ∈ E) such that
x(δ(n)) ≤ bn ∀n ∈ V . From this definition, in the b-Matching problem, we have to use edge-
deletion operation to modify G into a subgraph G′ in such a way that each node n in the output
must satisfy the condition dn ≤ bn. Conversely, in the AddFriends problem we only allow
edge-addition operation to modify G into a supergraph G′ and each node n has to satisfy reverse
condition for degree value dn ≥ bn (and bn = c ∀n ∈ V). Moreover, the b-matching problem
on the complement graph is also not in our consideration as the generation of the complement
graph is based on the removing and adding edges from the initial graph. These differences are
also applied for the generalization of the b-Matching problem proposed by Lovász [125, 126],
General Factor problem, where each vertex’s degree of the output graph must belong to a list
of possible predefined values called degree list. It is also known that by results given in [51,133],
General Factor problem (where all degree lists may not contain gaps of length greater than
one) and graph editing problem (where all degree lists are singleton) can be solved in polynomial
time. Nevertheless, to the best of our knowledge, there is no efficient algorithm solving this
problem with precise complexity.

To solve AddFriends problem, we only examine the following two types of edge related to:
(i) two weaker nodes, (ii) one weaker node and one normal node. It is noted that added edges

101

Chapter 7. On Constrained Adding Friends in Social Networks

is a dynamic process, and during this process, a weaker node may become a normal node. We
denote by κ and λ the number of added edges of type (i) and (ii) respectively with respect to
the dynamic process (not with respect to the original static graph). In other words, an added
edge only counts as a “κ” edge if the two vertices are weak at the time the edge is added, and
it counts as a “λ” edge if one vertex is weak and other other is normal at the time the edge is
added. For instance, given c = 3, Fig. 7.1 illustrates an initial graph G and an output graph
G′, where weaker and normal nodes are drawn in white and gray color respectively, and dashed
lines are added edges. In this case κ = 1 and λ = 1.

(a) Graph G

e2

e1

(b) Output G′

Figure 7.1: Example of value κ and λ.

Lemma 7.1. An algorithm solves the adding friends problem, i.e., obtaining a minimum value
of Φ, if and only if it has a maximum value of κ, or minimum value of λ (w.r.t. all possible
values κ or λ obtained by any other algorithms).

Proof. The total degree of all weaker nodes should be increased is
∑

n∈W yn. Furthermore, as
one edge is incident to exactly two nodes, to add κ (resp. λ) edges established by pairs of two
weaker nodes (resp. pairs of one weaker node and one normal node), total degree of weaker
nodes should be extended more 2κ (resp. λ). It follows

∑
n∈W yn = 2κ+ λ. Thus, Φ = κ+ λ =

κ+
∑

n∈W yn− 2κ =
∑

n∈W yn−κ, and Φ = κ+λ = 1
2

(∑
n∈W yn−λ

)
+λ = 1

2

(∑
n∈W yn +λ

)
.

Because
∑

n∈W yn =
∑

n∈W(c− dn) = c|W|−
∑

n∈W dn is a constant, two equations above yield
the claim.

Lemma 7.1 means: to achieve the minimum number of added edges, we have to target W by
trying to create connections amongst nodes inside W (i.e., increasing κ and decreasing λ).

In this chapter, we study the AddFriends problem in two models:

• Centralized model: There exists a special user node (e.g., super node or central author-
ity) who has the full knowledge and control over the social graph. Given a parameter c,
this super node can detect weaker nodes and accordingly add for them necessary friendship
links. This model encompasses existing social platforms such as Facebook, LinkedIn, etc.
To our best knowledge, there is no known strategy to compute the minimized value Φ.

• Decentralized model: Each user node has only partial knowledge over the social graph.
Solving the AddFriends problem in this model is more challenging because it is generally
not possible for a node to know the whole network and gather information of other nodes to
request/accept friendship relations. Therefore, users can only rely on their local knowledge
to choose prospective friends.

102

7.2. Centralized protocol

7.2 Centralized protocol

In this section, we first present our algorithm, AlgoCen, based on centralized model. Then
we show the correctness of this algorithm and provide a theoretical analysis of its complexity.
Finally we introduce two intuitive greedy algorithms with their complexities, and describe the
comparison in the aspect of accuracy and complexity between greedy algorithms and AlgoCen.

7.2.1 Protocol description

The adding friends protocol, AlgoCen, is composed of two cases (see Algorithm 4). If c = N − 1
we apply the naive approach (lines 1–3), i.e., each weaker node simply links to any other nodes.
Otherwise, we consider the following stages.

Stage 1 (lines 4–27 in Algorithm 4). The system gets some information related to each weaker
node n such as the set of potential friends Dn ⊆ W and its size xn, number of new friends to
be added more yn = c− dn. The boolean variable flag is used to avoid computing Dn twice at
the initial. The idea behind this algorithm is that we assign higher selection priority to weaker
nodes having less number of potential friends than they require. In other words, first a set
R = {n ∈ W | yn ≥ xn and xn ≥ 0} is examined, and later we investigate the set U = W \ R.
After generating R (line 8), we evaluate the following two cases:

1. R 6= ∅ (lines 10–21): each node n ∈ R where xn > 0 links to all nodes v in Dn. The
procedure ConnectUpdateInfo(n, v) (line 15) simply creates a connection between n and
v, then updates their information, e.g., dn, Dn, xn, yn, dv, Dv, xv, yv. (For the sake of
simplicity, we do not describe this procedure in the algorithm.)

After the link between n and v is generated, if v’s degree satisfies the threshold condition,
i.e., dv = c, nodes v is removed out of W and also out of R if it is currently inside R (lines
16–18).

In addition, for a node n ∈ R where xn = 0, it may not connect to any other weaker nodes
as they already linked to n or became normal ones in the dynamic process. Therefore,
n has to request for friendship relations to normal nodes. We use a set T to hold all of
these weaker nodes which have no potential friends. This set will be resolved in next stage.
Thus, in this case node n is put into T (line 19).

It is noted that all nodes in R are finally removed out of R and W (lines 20–21).

2. R = ∅: We first introduce one criterion to evaluate the selection priority of nodes. For
each (weaker or normal) node n, we define a value tn called score as follows:

tn =

yn

xn
if xn 6= 0 and n is weaker

0 if xn = 0 and n is weaker
−1 otherwise

(7.3)

This value expresses the level of aspiration of n to make connection to other nodes when it
currently needs adding more yn links but has a limited number xn of weaker options. The
higher score value, the higher selection priority. (If two nodes have the same score value
then the one with smaller identity is considered to be higher priority.) We say a tuple of
nodes (u1, v1) is better than a tuple (u2, v2) w.r.t. score value (assume initially tu1 ≥ tv1
and tu2 ≥ tv2) iff: (i) tu1 > tu2 , or, (ii) tu1 = tu2 and tv1 ≥ tv2 . A best tuple of nodes w.r.t.
score value is the one that is better than any other tuples of nodes.

103

Chapter 7. On Constrained Adding Friends in Social Networks

Algorithm 4: Centralized Adding Friends Algorithm - AlgoCen
Input: a non-c-graph G = (V,E) with a parameter c
Output: a c-degree graph G′ = (V,E′).

1 if c = N − 1 then
2 Apply the naive approach for G
3 exit

4 Get information about Dn, xn, yn for all n ∈ W
5 flag ← true
6 T ← ∅
7 while W 6= ∅ do
8 R← {n ∈ W | yn ≥ xn and xn ≥ 0}
9 if R 6= ∅ then
10 foreach n ∈ R do
11 if xn > 0 then
12 if flag = false then

Dn ← {u ∈ W | e(n, u) = 0}
13 else flag ← false
14 foreach v ∈ Dn do
15 ConnectUpdateInfo(n, v) /* create connection, update dn, xn, yn,Dn, dv , xv , yv ,Dv */
16 if dv = c then
17 if v ∈ R then R← R \ {v}
18 W ←W \ {v}

19 if dn < c then T ← T ∪ {n}
20 R← R \ {n}
21 W ←W \ {n}

22 else
23 Compute score value for all weaker nodes
24 Find best tuple of weaker nodes (n, v) w.r.t. score value and e(n, v) = 0
25 ConnectUpdateInfo(n, v) /* create connection, update dn, xn, yn,Dn, dv , xv , yv ,Dv */
26 if (dn = c) then W ←W \ {n}
27 if (dv = c) then W ←W \ {v}

28 foreach n ∈ T do
29 Create (c− dn) links between n and arbitrary (c− dn) nodes v ∈ V s.t. e(n, v) = 0

In Algorithm 4, for this case R = ∅ (lines 22–27): we first compute score values for all
weaker nodes, then discover a best tuple of weaker nodes (n, v) w.r.t. score value (and they
currently do not link to each other). Eventually we create a connection between them.

We repeat above activities until W is empty.

Stage 2 (lines 28–29 in Algorithm 4). This stage simply connects each node n ∈ T (if T 6= ∅)
generated from last stage to (c − dn) normal ones which currently do not have any connection
to it.

In order to illustrate how Algorithm 4 works, we examine Example 7.1 below.

Example 7.1. Given c = 6 and the initial graph depicted in Fig. 7.2a.15 All initial information
of weaker nodes are as follows:
for v1: D1 = {v2, v3, v6}, x1 = 3, y1 = 2; for v2: D2 = {v1, v3, v6}, x2 = 3, y2 = 2;
for v3: D3 = {v1, v2, v6}, x3 = 3, y3 = 2; for v4: D4 = {v6}, x4 = 1, y4 = 2;
for v5: D5 = {v6}, x5 = 1, y5 = 2; for v6: D6 = {v1, v2, v3, v4, v5}, x6 = 5, y6 = 4.

In stage 1, we have R = {v4, v5}. We take out randomly node by node from R and connect it
with all available weaker nodes. So v4 links to v6 and v5 also links to v6 by edges e1 and e2 (see

15For the sake of simplicity, throughout this work, we depict only subgraphs of the original connected graph.

104

7.2. Centralized protocol

v1

v2

v3 v4

v5

v6

(a) Initial graph

v1

v2

v3 v4

v5

v6

e1

e2

(b) Stage 1: R 6= ∅

v1

v2

v3 v4

v5

v6

e5

e6
e3

e4

(c) Stage 1 (cont.): R = ∅

v1

v2

v3 v4

v5

v6

e1

e2

e5

e6
e3

e4

e7

(d) Stage 2

Figure 7.2: AlgoCen algorithm example.

Fig. 7.2b) then they are eliminated from R. The updated information of weaker nodes (where
W = {v1, v2, v3, v4, v6}) are:
for v1: D1 = {v2, v3, v6}, x1 = 3, y1 = 2; for v2: D2 = {v1, v3, v6}, x2 = 3, y2 = 2;
for v4: D4 = ∅, x4 = 0, y4 = 1; for v3: D3 = {v1, v2, v6}, x3 = 3, y3 = 2;
for v6: D6 = {v1, v2, v3}, x6 = 3, y6 = 2.

Since x4 = 0 and y4 = 1, node v4 is moved from R to other set T (and considered later).
Moreover, R = ∅ as yi < xi, for all i ∈ {1, 2, 3, 6}. We compute score values for each weaker
node to choose the best tuple of nodes (w.r.t. score value). Since ti = yi

xi
= 3

2 for all i, we can
opt any tuple, e.g., (v1, v2), to link up together by edge e3 (see Fig. 7.2c).

Similarly, we update the information of weaker nodes again as follows:
for v1: D1 = {v3, v6}, x1 = 2, y1 = 1; for v2: D2 = {v3, v6}, x2 = 2, y2 = 1;
for v3: D3 = {v1, v2, v6}, x3 = 3, y3 = 2; for v6: D6 = {v1, v2, v3}, x6 = 3, y6 = 2.

We obtain R = ∅ again and select tuple (v3, v6) as the best tuple w.r.t. score value, before
generating an edge e4. Repeating this process until W = ∅, we get edges e5,e6 as presented in
Fig. 7.2c.

In Stage 2, as T = {v4}, v4 links to any other normal node (which is currently not connected
to v4), e.g., v5, by friendship relation e7. After this step, we have the final output graph illustrated
in Fig. 7.2d. �

105

Chapter 7. On Constrained Adding Friends in Social Networks

v

w1

w2

wl
u

n
(a) In algorithm AlgoCen

v

wi0

z

u

n
(b) In algorithm A′

Figure 7.3: Node v links to u in A′ and but not do in AlgoCen.

7.2.2 Correctness

This section first analyzes the accuracy of AlgoCen and then presents its time complexity.

Theorem 7.1. AlgoCen produces the optimal solution.

Proof. Assume the contrary, i.e., there exists an algorithm A′ different from AlgoCen such that
when these algorithms are deployed into a certain scenario, we obtain Φ′ < Φ, where Φ and Φ′

are respectively the number of added edges produced by AlgoCen and A′.
Let κ and λ (resp. κ′ and λ′) respectively be the number of added edges between two weaker

nodes, and the number of added edges between one weaker node and one normal node produced
by algorithm AlgoCen (resp. A′).

From the proof of Lemma 7.1: Φ =
∑

n∈W yn−κ = 1
2(
∑

n∈W yn+λ) and Φ′ =
∑

n∈W yn−κ′ =
1
2(
∑

n∈W yn+λ′). Because
∑

n∈W yn is constant, Φ′ < Φ iff κ′ > κ (or λ′ < λ). W.l.o.g., suppose
Φ′ = Φ − 1, κ′ = κ + 1, λ′ = λ − 2. Since κ′ > κ, there exists a weaker node u such that it
has greater number of ading edges inside W in algorithm A′ than the one in AlgoCen, i.e., there
exists v ∈ W such that u connects to v in algorithm A′ but not in algorithm AlgoCen (see Fig.
7.3).

Assume after deploying AlgoCen, v links to a set of weaker nodes P = {w1, w2, ..., wl}, where
wi 6= u,∀i = 1, 2, ..., l, and u connects to a certain normal node n as depicted in Fig. 7.3a.

In the process of Stage 1 of AlgoCen, because u wants to connect to some weaker nodes but
there are not enough weaker nodes for it to create connection, hence, xu < yu, i.e., tu > 1.

For node v, since yv = |P | = l, and by hypothesis that in algorithm A′ it can connect to u,
i.e., xv ≥ l + 1 > yv, thus tv < 1.

It implies, by AlgoCen, (i) twi ≥ 1, v is chosen by wi; (ii) at the time wi processes to link to
v, wi already connects to u (for all i = 1, 2, ..., l) and wi also connects to wj (for all i 6= j).

Indeed, in AlgoCen, node with score value t ≥ 1 has higher priority to be taken and connected
to other nodes than nodes with score t < 1. In the dynamic process, before wi links to v, we
have: v has tv < 1, u has tu ≥ 1.

Therefore, in case (i): if twi < 1 then in AlgoCen, u should be chosen to process before node
wi does (since it has the highest priority at that time), and thus, it can connect to the weaker
node v instead of joining to the normal one n. Contradiction!; in case (ii): at the time before wi
links to v, if wi did not have a link with u then wi and u can connect to each other, and wi does
not consider to connect to v. Contradiction!.

It is easy to see at that time wi already linked to wj since otherwise wi can request to wj
to link together, and does not do with v. Fig. 7.3a depicts the adding friend process where wi
already linked to u and to other node wj (i 6= j).

106

7.2. Centralized protocol

In any algorithm, because total added degree from weaker nodes is a constant (
∑

n∈W c− dn),
and in A′, v is a friend of u, hence, there exists a node wi0 ∈ P (showed in Fig. 7.3b) such that
by A′ it is not connected to v (so that the total added degree in V is still l).

It implies wi0 must connect to other weaker node z to obtain the same number of added
edges (between wi0 and other weaker nodes) as the one accomplished by AlgoCen.

It follows that in AlgoCen, before linking to v (and already linked to u), node wi0 has the
number of available weaker nodes xwi0 greater than the number of weaker nodes ywi0 to be added
more, e.g., it chooses one node between v and z to link. It infers that twi0 < 1 at that time
point. Contradiction!

Corollary 7.1. AlgoCen produces value Φ = 1
2

[∑
n∈W yn +

∑p
j=1

∑
ni∈Rj (yni − xni)

]
.

Proof. In Stage 1 of AlgoCen, we see that there is a repeated process of dividing a set W of
weaker nodes into some subsets.

Indeed, firstly, set W is divided into two subsets R and U where R contains only weaker
nodes satisfied condition yn ≥ xn ≥ 0, and U comprises the remaining weaker nodes m where
ym < xm.

If R 6= ∅, each node n ∈ R will add edges to xn available weaker nodes in W (including dn1

edges between it and nodes in R and dn2 edges between it and ones in U where dn1 + dn2 = xn).
It then is put into the set T before making friendship relations with yn− xn normal nodes later.

If R 6= ∅, we create connection between two nodes having the highest score rate. In any case
of R, set W leads to another subset, e.g., W2, where the process is repeated. That set is divided
into two subsets of nodes: a set R2 contains all node n having yn ≥ xn, and a set U2 includes
nodes m where ym < xm. Then W2 becomes a subset W3.

In general, a set Wi will generate two subsets Ri and Ui. If Wi 6= ∅, each node n ∈ Ri
links to dn1 nodes in Ri and dn2 nodes in Ui where dn1 + dn2 = xn, eventually it is put in T .
Otherwise, we make a link for best pair of weaker nodes w.r.t. score value which currently do
not connect to each other. After all, Wi induces Wi+1. Here we denote W1 =W, R1 = R, and
U1 = U .

That operation is repeated in a limited number of times (as the number of nodes is finite),
until the set W could not be separated anymore.

Assume after pth division, the process terminates, i.e., Wp+1 = ∅.
In Stage 2, all nodes in T has to connect to normal ones. It could be easy to see that:

|T | =
∑

n1∈R1

(yn1 − xn1) +
∑

n2∈R2

(yn2 − xn2) + · · ·+
∑

np∈Rp

(ynp − xnp) =

p∑
j=1

∑
ni∈Rj

(yni − xni)

By Lemma 7.1 with |T | = λ, we have:

Φ = κ+ λ =
1

2

(∑
n∈W

yn + λ
)

=
1

2

[∑
n∈W

yn +

p∑
j=1

∑
ni∈Rj

(yni − xni)
]

Proposition 7.1 (Time Complexity). The time complexity of AlgoCen in the worst (resp. best)
case is O(N4) (resp. O(cN)).

107

Chapter 7. On Constrained Adding Friends in Social Networks

Proof. If c = N − 1, the naive approach takes time O(c|W |), and that is O(cN) if |W | = N .
If c 6= N − 1 then: in Stage 1, a set of weaker node W1 = W is divided into R1 and U1 (see
Corollary 7.1 for more information of the division and denotation Wi, Ri, Ui). We consider two
cases as follows:

(i) R1 6= ∅: each node n1 ∈ R1 is moved into set T if xn1 > 0, and contrary, it will be linked to
other nodes in W1. The best situation is that all nodes in R1 are moved to T , and it takes
totally O(

∑
n1∈R1

yn1) = O(
∑

n1∈R1
(c − dn1)) = O(c|R1|). The worst situation in this

subcase is that all nodes in R1 are linked to other nodes in Dn1 , and Dn1 = W1, thus the
time complexity is O((

∑
n1∈R1

yn1)|W1|) = O((
∑

n1∈R1
(c− dn1))|W1|) = O(c|R1||W1|).

(ii) R1 = ∅: To get two highest-score weaker nodes, we order the list of weaker nodes with
respect to score value (which takes O(|W1| log |W1|)), and try to find best tuple (u, v) w.r.t.
score value and they are not connected to each other. In the best situation where all weaker
nodes have different scores and each weaker node does not have connections to all other
weaker ones, it takes O(|W1|) in time. However, at the worst case scenario where all nodes
have the same score value and we have to compare all possible pairs of weaker nodes and
find the best pair, the complexity will be O(|W1|2). Therefore, for this value of R1, we
obtain the complexity for best and worst case respectively are O(|W1| log |W1| + |W1|) =
O(|W1| log |W1|), and O(|W1|2 + |W1| log |W1|) = O(|W1|2).

For any case of R1, we then get a set W2 ⊆ W1. We find out a subset R2 ⊆ W2: if R2 6= ∅,
we make connections for nodes in R2; or conversely, we discover the best pair of two weaker
nodes w.r.t. score value. Similar to result for first division, we have the complexity in the best
case and worst case respectively: (i) if R2 6= ∅: O(c|R2|) and O(c|R2||W2|); (ii) if R2 = ∅:
O(|W2| log |W2|) and O(|W2|2).

This dividing process is repeated until W is empty. In stage 2, we need to enumerate all
items in T which size is at most |W|, and thus, time complexity for this stage is O(|W|).

For the entire process, we see that:

a) The best case of the algorithm: in each ith iteration of stage 1, we get Ri 6= ∅ and all nodes in
Ri are moved into set T , i.e.,

⋃
Ri =W. Hence, the overall time complexity of the algorithm

for this situation is O(c
∑

i |Ri|+ |W|) = O(c|W|+ |W|) = O(c|W|).

b) The worst case of the algorithm: in each ith iteration of stage 1, we getRi = ∅ and we have to
discover all possible pairs of weaker nodes to find the best one which does not have connection
together (with complexity O(|Wi|2)). We see that, each weaker node n has to create (c− dn)
links to other (|W| − 1) ones, and one link is incident to precisely two weaker nodes, the
maximum number of links (and also number of iterations in stage 1) is 1

2

∑
n∈W(c − dn) =

O(c|W|). Moreover, for a set of size |W|, the maximum number of pairs we could have is(|W|
2

)
= O(|W|2). Thus, the number of iteration is max{O(c|W|),O(|W|2)}. The complete

complexity in this case is max{O(c|W|3),O(|W|4)}+O(|W|) = max{O(c|W|3),O(|W|4)}.

If all nodes are weaker, i.e., |W| = N , the time complexity in the best and worst case
respectively are O(cN) and max{O(cN3),O(N4)} = O(N4).

108

7.2. Centralized protocol

Algorithm 5: Greedy Adding Friends CS2
Input: A non-c-graph G = (V,E) with a parameter c
Variables: A set flag of boolean values
Output: A c-degree graph G′ = (V,E′)

1 W ← {u ∈ V | du < c}
2 Sort the list W according to degree value in the increasing order
3 foreach (n ∈ W) do flag[n]← false
4 while W 6= ∅ do
5 n← first node in the list W
6 if (flag[n] = false) then
7 v ← first node in the list W \ {n} and not connect to n
8 if (v 6= null) then ConnectUpdateInfo(n, v)
9 else

10 ConnectUpdateInfo(n,w) where w is any normal node and e(n,w) = 0
11 flag[n]← true

12 else Connect n to arbitrary (c− dn) normal nodes w where e(n,w) = 0 and update dn, dw
13 if (dn = c) then Eliminate n from W
14 else Search and place new position for n in the list W
15 if (v 6= null and v ∈ W and dv = c) then
16 Eliminate v from W
17 else if (v 6= null and v ∈ W) then
18 Search and place new position for v in the list W

7.2.3 Greedy algorithm

This section first introduces the greedy algorithm for our AddFriends problem and then per-
forms computational complexity analysis.

Algorithm description
There are several greedy solutions for the AddFriends problem. Intuitively, we can apply

following two strategies to choose weaker nodes and make connections:

1. (CS1) First select one weaker node with maximum degree and then choose alternative
node with maximum degree of the remaining ones.

2. (CS2) First select one weaker node with minimum degree and then choose alternative node
with minimum degree of the remaining ones.

For the sake of simplicity, we only consider method CS2 presented in Algorithm 5 (Algorithm
CS1 can be obtained from Algorithm 5 by sorting the list W according to degree value in the
decreasing order). In Algorithm 5, we sort the (initial) list W only once (line 2) with the
assumption that if two nodes have the same degree value then the one with smaller identity is
considered to be higher priority. We try to avoid repeating sorting the ordered list W when
one weaker node’s degree is changed, because otherwise the time complexity of this algorithm
becomes much higher. To achieve that complexity advantage: (i) we use a boolean set flag for
weaker nodes such that initially all elements are assigned false value, and as of time we detect
that one weaker node n could not find any other weaker ones to connect, flag[n] is set to true;
(ii) if weaker node n’s degree is changed and flag[n] = false then we find a new position for it
in the list W (which takes less time than sorting the list W again).

Greedy CS1 vs. Greedy CS2

In this part, we first define the performance comparison between two general algorithms,
then analyze the comparison between CS1 and CS2 in Theorem 7.2, and finally analyze the time
complexity of these greedy algorithms.

109

Chapter 7. On Constrained Adding Friends in Social Networks

w

vu

(a) Initial graph G

w

vu e1

e2
e3

(b) CS1

w

vu

e1
e2

(c) CS2

Figure 7.4: Graph where CS2 is better than CS1.

Definition 7.3 (Better/Worse Algorithm). Given two algorithms A1 and A2. Algorithm A1

is said to be better (resp. worse) than A2 if there exist some graph structures G such that
after deploying A1 and A2 into G and receiving output graphs G′ and G′′ respectively, we get
ΦA1(G′, G) > ΦA2(G′′, G) (resp. ΦA1(G′, G) < ΦA2(G′′, G)).

Theorem 7.2. There exist some graph structures such that CS1 is better than CS2 and vice
versa.

Proof. We show the claim by examining the following graph structures.
Consider the AddFriends problem for graph in Fig. 7.4a with c = 3.
The procedure of strategy CS1 is described in Fig. 7.4b. In this strategy, node u and v are

chosen first to link (by edge e1) and they become normal ones as du = dv = c. The remaining
node, w, could not find any weaker nodes to connect, hence, it selects any normal nodes, e.g., u
and v, to become its friends by edges e2 and e3. Consequently, in this approach Φ1 = 3.

Alternatively, by CS2, we obtain a better value of Φ (see Fig. 7.4c). Node w with the
minimum degree is selected first. As there are only two available weaker nodes u and v having
same degree value, w establishes two relationships with them. After making edges e1 and e2, all
weaker nodes u, v and w become normal ones. So we have Φ2 = 2 < Φ1, i.e., CS2 is better than
CS1.

A natural question is raised in this situation: Is strategy CS2 always better than CS1?
The answer is no. Consider a graph in Fig. 7.5a with c = 4, W = {u, v, z, w, t} and

du = dv = dz = dw = 3, dt = 2. Applying scheme CS1 into G2 is depicted in Fig. 7.5b. As u,
v, z, w are maximum degree nodes, assume firstly, we choose node u. It has only one option:
making friendship e1 with t. After this step u becomes a normal node. The remaining weaker
ones have same degree of 3. Suppose we choose node v. It has to connect to t by link e2, and
then both become normal ones. Eventually, z and w establish edge e3, and we have Φ1 = 3.

Similarly, for CS2 (see Fig. 7.5c): Because of minimum degree, node t is chosen first and
linked to other minimum degree node of the remaining, for instance w, by edge e1. Node w
becomes normal. The existing weaker nodes (u, v, z, t) have same degree of 3. We select node u
and t to make friendship relation e2. Then nodes v and z have to find other normal nodes to join.
For instance, v connects to t by edge e3, and z links to w by edge e4. Accordingly, Φ2 = 4 > Φ1,
i.e., CS1 is better than CS2 for a graph G2.

If we deploy algorithm AlgoCen for graphs G in Fig. 7.4a and G2 in Fig. 7.5a, we will obtain
ΦAlgoCen = 2 and ΦAlgoCen = 3 respectively. Therefore AlgoCen is always the best strategy.

Complexity. We describe the complexities of greedy algorithms in the following Proposition
7.2. For the sake of simplicity, we only consider CS2 here.

110

7.2. Centralized protocol

u

v

z w

t

(a) Initial graph G2

u

v

z w

t

e1

e2

e3

(b) CS1

u

v

z w

t

e1

e2

e3

e4

(c) CS2

Figure 7.5: Graph where CS1 is better than CS2.

Proposition 7.2 (Time Complexity). Algorithm CS2 takes at most O(cN2) and at least O(N2)
in time.

Proof. Firstly, the list of weaker nodes is sorted (w.r.t. degree value) in time O(|W| log |W|).
At the ith iteration of the while loop with a set of weaker nodes Wi (where W = W1 ⊇ W2 ⊇
. . . ⊇ Wi), we find a pair of nodes to connect by choosing the first node n in the sorted list
(w.r.t. degree value) and traversing the sorted list to discover the foremost node v which is not
connected to n.

In the worst case (when initially all weaker nodes are not fully connected together), this
activity takes in O(|Wi|).

In the best case (when initially all weaker nodes are fully connected together), for the first
adding link, it takes O(|Wi|) but for the remaining (c− dn − 1) adding ones, it only takes O(1).

Because of new degree, the position of two weaker nodes n and v in the sorted list (w.r.t.
degree value) could be changed. The adjustment can be done by determining the position of
their new value in the degree list and assigning the new correspondent positions in the weaker
node list (using binary search in time O(log |Wi|)) and inserting them into that place.

Each weaker node n has to link to (c− dn) nodes, thus, the number of iteration in the worst
case is

∑
n∈W(c− dn) = O(c|W|), and in the best case is O(|W|).

AsW =W1 ⊇ W2 ⊇ . . ., the time complexity in the worst case is O(|W| log |W|)+O((|W|+
log |W|).(c|W|)) = O(c|W|2), and in the best case is O(|W| log |W|) +O((|W|+ log |W|).|W|) =
O(|W|2). When |W| = N , the time complexity in the worst case and best case are respectively
O(cN2) and O(N2).

Greedy vs. AlgoCen

In the following part, we analyze the difference between greedy algorithms and AlgoCen in
the aspect of time complexity and accuracy.

Complexity. By Propositions 7.1 and 7.2, if all weaker nodes are initially fully connected
together, CS2 runs slower than AlgoCen. However in this case each weaker node has degree
≥ |W| − 1, and it requires a parameter c ≥ |W| (since c > dn ≥ |W| − 1). In current social
networks, the average number d of friends of a user is much less than the size of network (e.g.,
Facebook has over one billion active users but d = 234 [180]), even with a small value of c, we
can obtain a value |W| � c. Consequently, it is reasonable to consider c < |W|. With that
condition, it is guaranteed the subgraph only consisting of weaker nodes is not a clique, and CS2
runs faster than AlgoCen.

111

Chapter 7. On Constrained Adding Friends in Social Networks

Approximation. We show that CS1 and CS2 are 3
2 -approximation algorithms in the following

theorem. W.l.o.g, we only consider method CS2 here. The similar result for CS1 could be easily
obtained.

Theorem 7.3. CS2 is a 3
2 -approximation algorithm.

Proof. Let Φ, κ and λ (resp. Φ∗, κ∗ and λ∗) respectively be the structural difference, the number
of added edges between two weaker nodes, and the number of added edges between one weaker
node and one normal node produced by algorithm CS2 (resp. AlgoCen).

We will show that the ratio r = max
(

Φ
Φ∗ ,

Φ∗

Φ

)
= Φ

Φ∗ ≤
3
2 (since Φ∗ ≤ Φ) where Φ = κ+λ and

Φ∗ = κ∗ + λ∗.
By Lemma 7.1, the total added degree incident to weaker nodes is constant and equals to∑
n∈W yn = 2κ+λ = 2κ∗+λ∗ =

∑
n∈W c− dn = c|W|−

∑
n∈W dn. We denote by α this constant

value.
As κ, λ ≥ 0 and 2κ + λ = α, we have κ ≤ α

2 and λ ≤ α. Moreover, κ + λ = Φ ≤ 2κ + λ =
α ≤ 2(κ+ λ) = 2Φ, it implies α

2 ≤ Φ ≤ α.
Similarly, κ∗ ≤ α

2 , λ
∗ ≤ α, and α

2 ≤ Φ∗ ≤ α.
It is easy to see that Φ = α iff Φ∗ = α. Indeed, suppose by applying AlgoCen into a certain

graph, we obtain Φ∗ = α. We observe that Φ∗ = α iff κ∗ = 0 and λ∗ = α, i.e., by AlgoCen,
each weaker node could not find other weaker one to link, and this is also true for a weaker node
having minimum degree in the graph. It follows that if deploying greedy algorithm into that
graph, all weaker nodes have to connect to normal ones, i.e., κ = 0 and so Φ = λ = α. Likewise,
if Φ = α we also get Φ∗ = α.

To compute the maximum ratio r, we do not examine the case Φ = α (and Φ∗ = α). Instead,
we should take into account the case α

2 ≤ Φ∗ < Φ < α. In that case, the possible value of Φ
and Φ∗ should be α

2 + 1 ≤ Φ ≤ α − 1 and α
2 ≤ Φ∗ < α. It follows r = Φ

Φ∗ ≤
α−1
α
2

= 2 − 2
α .

Moreover, by Lemma 7.1, Φ > Φ∗ iff κ∗ > κ. Combining with the condition κ∗ ≤ α
2 and κ ≥ 1

(since Φ < α), it infers α
2 ≥ 2, and thus r ≤ 2− 2

α ≤
3
2 .

The ratio r is maximized when α = 4, κ∗ = α
2 = 2 and λ∗ = 0, κ = 1 and λ = 2. This takes

place when an initial graph G is the one depicted in Fig. 7.6a for c = 3. The output graphs G′

deployed by greedy CS2 and AlgoCen are respectively presented in Fig. 7.6b and 7.6c.
More generally, we define a family of graphs G4m where m ≥ 1 (see Fig. 7.6d16) constructed

by connecting m subgraphs Gi (same as the one described in Fig. 7.6a), such that each weaker
node vij connects to other (|W|−3) weaker ones and one normal node (vij ’s degree d = |W|−2).
For c = d+ 1, it is easy to see that by deploying AlgoCen, we obtain λ∗ = 0, and κ∗ = Φ∗ = 2m.
In addition, by applying CS2, we get the maximum value of Φ if the output is like Fig.7.6e (that
is a combination of outputs displayed in Fig. 7.6b). It implies κ = m, λ = 2m, and Φ = 3m.
Thus, r = 3m

2m = 3
2 . It is also noted that with this family of graphs G4m, we always find a graph

such that the maximum difference of number of added edges between two algorithms, CS2 and
AlgoCen, is equal to any given input value m.

7.3 Decentralized protocol

So far, Section 7.2 presented an exact O(N4)-algorithm (in the worst case) for solving the
AddFriends problem, which as far as we know is a nontrivial algorithm for this problem.

16For the sake of clarity, we only draw the connections from a weaker node v11 to other (|W| − 3) weaker ones
and one normal node.

112

7.3. Decentralized protocol

u wv1 v2v3 v4

(a) Initial graph G

u wv1 v2v3 v4

e3e1e2

(b) Output G′ by CS2

u wv1 v2v3 v4

e1e2

(c) Output G′ by AlgoCen

u1 w1

u2 w2

um wm

v11 v12v13 v14

v21 v22v23 v24

vm1 vm2vm3 vm4

(d) Graph G4m

u1 w1

u2 w2

um wm

v11

v12v13 v14

v21 v22v23 v24

vm1 vm2vm3 vm4

e13
e11

e12

(e) Output G′4m by CS2

Figure 7.6: Graphs where CS2 is a 3
2 -approximation algorithm.

Clearly, AlgoCen is so expensive especially for social networks which are based on huge social
graphs (e.g. Facebook has one billion users). That is why it is interesting to study the same
problem in the decentralized model in order to get better complexity.

In this section, we investigate our AddFriends problem in decentralized model where each
node only has partial knowledge over the network. We first present the system model and
notations used throughout this section, then describe our distributed protocol, AlgoDecen, and
analyze its correctness. Finally, we give the comparison between centralized and decentralized
algorithms in terms of minimality of value Φ.

7.3.1 Model

In this work, we consider the LOCAL model (cf. [152]), a standard distributed computing model
addressing to the effects of localized property. This model assumes that communication is syn-
chronous and every node (processor) with unique identifier is woken up simultaneously, and
proceeds the computation at the same round. In addition, it can exchange message of unlimited
size with its neighbors as well as perform unbounded local computation.

Nodes cannot connect to arbitrary friends in the network. Instead, we assume that each node
can only see and get a friend within some levels (or hops) counting from it.

Formally, we define by a constant parameter ln, called lookahead, to demonstrate the highest
level of neighborhood of node n. We suppose that node n recognizes the (updated) degrees of
all other ones within ln neighborhood levels. If a certain node creates a new friendship relation,
this information is automatically propagated inside its scope.

For instance, if ln = 2, node n can see its direct friends (1st-level) and its friends of friends
(2nd-level). Any new friendship relations of n should be established between it and other nodes
within these two levels of neighbors.

In this work, for the sake of simplicity, we assume all nodes have the same lookahead value
l, i.e., ln = l for all n.

113

Chapter 7. On Constrained Adding Friends in Social Networks

Algorithm 6: Decentralized Adding Friends Algorithm at node n AlgoDecen

Input:
c: constant parameter
l: lookahead of each node
Γ(n): direct friends
Sn: nodes in the depth up to l
Wn: weaker nodes in the scope

Variables:
Dn: available weaker nodes in the scope
Pn: set of score value of weaker nodes
xn: size of Dn
yn: number of edges to be added more, yn = c− dn

Output: A c-degree graph G′ = (V,E′).

Main algorithm

1 if dn < c then
2 while dn < c do
3 BroadcastScore() | Event ReceiveScore()
4 FindFriend() | Event ReceiveReq()
5 end
6 else
7 Event ReceiveScore()
8 Event ReceiveReq()
9 end

Broadcasting stage

Procedure BroadcastScore()
10 Update Sn, Wn, Dn, xn, yn
11 Pn[v]← ⊥ for all v ∈ Wn

12 Compute score tn and send msg(tn, n, 1) to nodes in
Γ(n)

Upon event ReceiveScore(ts, s, i) from v do
13 if s = n then exit
14 if (dn < c and s ∈ Wn and Pn[s] = ⊥) then
15 Pn[s]← ts
16 if (i < l and never send ts of s) then
17 Forward (ts, s, i+ 1) to nodes in Γ(n) \ {v}

Friend Finding stage

Procedure FindFriend()
18 Find v0 ∈ Sn such that: tv0 = max{Pn} ∧ e(n, v0) = 0
19 Send friendship request to v0

Upon event ReceiveReq() from v do
20 if dn < c then
21 if (v ∈ Wn and v = v0) then
22 Send accepted message and connect to v
23 else Send rejected message to v
24 else Send accepted message and connect to v

Furthermore, as notated in Chapter 3, for each node n, the set of its direct friends is denoted
by Γ(n) (|Γ(n)| = dn), and the set of k-level friends of n, where k > 1, is recursively defined by
Γkn = {u | δ(u, n) = k} = {u | u ∈ Γv ∧ v ∈ Γk−1

n ∧ u /∈
⋃
j<k Γjn} where Γ1

n = Γ(n).
We define the scope Sn of n as the set of all friends of n within distance up to l, i.e.,

Sn =
⋃l
i=1 Γin. To ensure there are enough neighbors to link, we assume |Sn| ≥ c.

We representWn as the set of weaker nodes inside the scope of n, i.e.,Wn = {u ∈ Sn | du < c}.
As mentioned in Section 7.1, adding friends is a dynamic process, and during this process,

some node can join in the scope of a node. For instance, for l = 2, at time t0 a node v ∈ Γ3
n

and out of scope Sn of n but at time t0 + 1 it may appear in the scope of n if a node w, such
that w ∈ Γ(v) and w ∈ Γ2

n, requests the connection and then links n. A node may also become
a normal one and leave out of the set Wn of n. Therefore, Sn and Wn are considered here in the
dynamic process.

7.3.2 Protocol description

The decentralized algorithm, AlgoDecen, operates in cycles (see Algorithm 6). All nodes syn-
chronize to start at the same time. At each cycle, each node has to do following two stages.

Stage 1 (Broadcasting). Each weaker node n updates its local information (lines 10–11) such
as a set of weaker nodes Wn, a set of potential friends Dn = {v ∈ Wn | e(n, v) = 0} (of size
xn), the number of edges that n should add more to become a normal node yn = c − dn, and
(re)initializes a set Pn of score values receiving from other weaker nodes in its scope. Later it
computes its score tn by using Formula (7.3), and broadcasts tn to all direct friends (line 12).
In this stage, each node also receives message msg(ts, s, i) from its direct neighbor v containing
score value ts of node s at distance i ≤ l (see Event ReceiveScore(ts, s, i)). If s is a weaker node

114

7.3. Decentralized protocol

v1

v2 v3

v4

v5v6

v7

v9 v8

(a) Initial graph

v1

v2

v9 v7

t1

t1

t1

(b) Broadcasting

v2 t = 2
3

v1 t = 2 v5 t = 1

req
req

(c) Friend finding

v1

v2 v3

v4

v5v6

v7

v9 v8

e1

e2

e3

e6

e5

e4

(d) Output graph

Figure 7.7: Example of AlgoDecen for c = 4 and lookahead l = 2.

and inside n’s scope, and this is the first updated score ts of s which n gets, then n stores that
data into Pn (lines 14–15) before forwarding it to other friends except v (line 17). Otherwise, it
simply drops the message.
In this stage, normal nodes compute neither score nor other information. They just forward
messages receiving from nodes inside their scopes to other ones.

Fig. 7.7 depicts an example for l = 2, c = 4 (initial graph is showed in Fig. 7.7a). First, each
weaker node determines some information inside its scope as follows:
for v1: D1 = {v2}, y1 = 2, t1 = 2; for v2: D2 = {v1, v4, v5}, y2 = 2, t2 = 2

3 ;
for v3: D3 = {v6}, y3 = 1, t3 = 1; for v4: D4 = {v2, v6}, y4 = 2, t4 = 1;
for v5: D5 = {v2}, y5 = 1, t5 = 1; for v6: D6 = {v3, v4}, y6 = 2, t6 = 1.
Fig. 7.7b shows node v1 transmits its score t1 to its neighbors (v7 and v9). This value is then
forwarded by v7 to weaker node v2.

Once every node in the system has received score value from each of its weaker neighbors,
this stage ends.

Stage 2 (Friend Finding). Each weaker node n finds one (weaker or normal) node, which
currently does not link to n, and has the highest score amongst the neighbors in n’s scope, to
send friendship request (lines 18–19). In this stage, node n may also get friendship request from
other weaker one v in its scope:

(i) If n is a weaker node: it evaluates the request by checking whether v is the one it sent offer
earlier or not. In the former case, n accepts the request from v and creates a connection
between them. In the later case, n refuses that request (lines 21–23).

(ii) If n is a normal node: it accepts all requests (lines 24).

Let us consider Fig. 7.7c. Node v2 has three potential friends {v1, v4, v5} where v1 has the
highest score (t1 = 2), hence, v2 selects v1 as its favorite choice. Node v1 has only one available

115

Chapter 7. On Constrained Adding Friends in Social Networks

weaker node (v2), it sends requests to v2. This is similar to node v5. So node v2 receives two
requests, but it only accepts the request from v1 as that is the node which v2 sent request earlier.
The edge e1 is established as depicted in Fig. 7.7d. For other nodes, the similar process takes
place, e.g., edge e2 is created between v3 and v6.

After receiving the response from a requested node, this stage and cycle i are over. All
nodes prepare information for the next cycle by updating data (e.g., degree, friendships) from
its neighbors in the scope. The algorithm completes when no node is transmitting.

We reconsider an example in Fig. 7.7. By adding edges e1 and e2 in the first cycle, node v3

becomes a normal one. So weaker nodes have the following information:
for v1: D1 = ∅, y1 = 1, t1 = 0; for v2: D2 = {v4, v5, v6}, y2 = 1, t2 = 1

3 ;
for v4: D4 = {v2, v6}, y4 = 2, t4 = 1; for v5: D5 = {v2}, y5 = 1, t5 = 1;
for v6: D6 = {v2, v4}, y6 = 1, t6 = 1

2 .
Therefore, in next cycle, v1 requests for a connection to normal node v8, v2 requests to v4,

but v4 asks for a link with v6 which also requests to v4, and v5 proposes a friendship to v2.
Hence, edges e3 (between v1 and v8) and e4 (between v4 and v6) are generated, and we have
remaining three weaker nodes v2, v4, v6. We repeat this process for next cycles until there is no
weaker node. The final output graph of the example is depicted in Fig. 7.7d.

7.3.3 Correctness

Lemma 7.2 (Termination). The algorithm AlgoDecen is ensured to eventually terminate.

Proof. At each cycle, each node determines its favorite neighbor by requesting the node with
highest score. Fig. 7.8a depicts three weaker nodes u, v, w with their corresponding scope Su,
Sv, Sw, where v ∈ Su, w ∈ Sv, but w /∈ Su.

Since u (resp. v) requests friendship connection to node v (resp. w), we have tv = maxz∈Su{tz}
(resp. tw = maxz∈Sv{tz}).

Assume, the algorithm AlgoDecen never terminates. This takes place if there exists an infinite
chain: one node requests the friendship to some node, but that node also chooses other one to
ask for linking, and so on. As the number of nodes is finite, that such chain must contain a loop
(having at least 3 nodes). W.l.o.g., suppose we have one chain as illustrated in Fig. 7.8b. Node
vi+1 ∈ Svi and vi selects vi+1 as its favorite choice to make friendship, for all i = 1, 2, ..., n, where
vn+1 = v1 and n > 2. Because vi chooses vi+1 to request connection, we have tvi+1 ≥ tvi−1 for
all i, where tvn+1 = tv1 .

In each scope, if two nodes have the same score, then the one with the smallest identity is
considered to be higher priority. Thus, w.l.o.g, all nodes in one scope have different score values.
It infers tvi+1 > tvi−1 for all i.

We consider two cases of n: (i) n is an odd number, and (ii) n is an even number. In the
former case, n = 2m+ 1 (m ≥ 1) we have: tv2 > tv2m+1 , tv3 > tv1 , ..., tv2m+1 > tv2m−1 , tv1 > t2m.
Hence, tv1 > tv2m > tv2m−2 > ... > tv2 > tv2m+1 > tv2m−1 > ... > tv3 > tv1 . Contradiction! In
the latter case, n = 2m (m > 1) we see that tv2 > tv2m , tv4 > tv2 ,..., tv2m > tv2m−2 . It implies
tv2 > tv2m > tv2 . Contradiction!

Corollary 7.2. At each cycle of AlgoDecen, at least one connection is established.

Proof. By Lemma 7.2, there is no loop in stage 2. It infers there exists at least one tuple of
nodes (vi, vi+1) such that they request and establish connection to each other.

116

7.3. Decentralized protocol

u v

w

Su Sv

Sw

(a) Scope of a node.

v1 v2 v3 vn−1 vn

(b) A chain with loop.

Figure 7.8: Termination property in AlgoDecen.

Proposition 7.3 (Spatial Complexity). The total space each node must hold in AlgoDecen is
O(N).

Proof. Each node n maintains a set Sn of neighbors (including weaker and normal ones) in its
scope, a set of score values Pn of weaker nodes. After each cycle, the size of Sn can be increased,
but is always not less than |Pn|. In the worst case, all nodes in network are weaker and stored
in that scope, thus the spatial complexity is O(N).

Proposition 7.4 (Message Complexity). The number of messages sent by a node in AlgoDecen
is O(c2N).

Proof. In stage 1, a node n broadcasts dn messages to neighbors, and receives at most |Wn|
messages comprising score values from weaker nodes. For each receiving message, it then forwards
to (dn − 1) neighbors, thus there are at most dn + (dn − 1)|Wn| messages in this stage. Stage 2
requires node n to send the request to its favorite choice, as well as reply to at most |Wn| nodes
asking for connecting. We see that one node’s request is accepted, in the worst case, after |Wn|
times of requesting. Since there are at most (c− dn) cycles (including two stages in each cycle),
the number of messages each node has to send is at most [dn + (dn − 1)|Wn|+ |Wn|](c− dn) =
|Wn|(dn + 1)(c− dn) ≤ 1

4 |Wn|(c+ 1)2 (this is application of the Cauchy-Schwarz inequality). It
follows the message complexity is O(c2|Wn|), and in the worst case where |Wn| = N , that is
O(c2N).

Proposition 7.5 (Time Complexity). Assume time evolves in rounds, i.e., each message trans-
mission incurs a delay of at most one round. Then the protocol AlgoDecen operates in O(cN(l+
logN)) rounds.

Proof. Stage 1 operates maxn{dn}.l rounds since it requires dn rounds for one node n broadcasts
score value to dn direct friends which are then forwarded to weaker friends in the depth up
to l. In stage 2, each weaker node finds other one to send request by first sorting the list
of nodes in the scope according to score value (in time O(|Wn| log |Wn|)) and traversing the
list to find the first node which is not connected to n (in time O(|Wn|)). Then the system
operates l rounds for one node to send its request and at most l|Wn| rounds for it to response.
These two stages are iterated at most maxn{c − dn} cycles. Therefore, the time complexity is
O((maxn{dn}l + maxn{|Wn| log |Wn| + l + l|Wn|})(maxn{c − dn})). As dn < N , |Wn| ≤ N ,
and c − dn < c for all n, in the worst case we have complexity O((lN + N logN + l + lN)c) =
O(cN(l + logN)).

117

Chapter 7. On Constrained Adding Friends in Social Networks

u vvnv1 v2 v3 v4 v5 v6

l l l

l2

Figure 7.9: Distance δ(u, v) is reduced by a factor l.

7.3.4 Algorithms comparison

In this section, we compare the performance of different algorithms presented in this work.

Lemma 7.3. Given a graph G and two weaker nodes u and v. The distance between u and v
will be reduced at most a constant factor (l2c−du−dv) in the output graph G′.

Proof. Assume, in the original graphG, the shortest path between u and v is p(u, v) = 〈u, v1, v2, ..., vn, v〉
of distance δ(u, v) described in Fig. 7.9.

Each node can contact only with nodes in the level up to l from it. When one intermediate
node connects to other node in that path, δ(u, v) will be decreased. That value is reduced at
most l times when each l-th node makes a friendship with node in the l-level from it, i.e., vl
links to v2l, v2l links to v3l, and so on. The shortest path after this adjustment is p1(u, v) =
〈u, vl, v2l, .., vbn/lc, ..., v〉, and δ(u, v) is decreased by a factor l. Similarly, if we continue that
procedure, each l-th nodes in the path p1(u, v) links to other node in the l-level from them, the
shortest path between u and v will be decreased more. Comparing to original path, the current
path is reduced at most l2: p2(u, v) = 〈u, vl2 , v2l2 , .., vbn/l2c, ..., v〉. As u selects yu = c− du nodes
to connect, that above process finishes after yu times can reduce the shortest path between u and
v at most a factor lyu . For a node v, it can also make yv = c− dv connections, distance δ(u, v)
can also be reduced at most a factor lyv . It infers if u and v have to select yu and yv intermediate
nodes respectively, their distance will be reduced at most lyu .lyv = lyu+yv = l2c−du−dv .

Centralized vs. Decentralized algorithms

In this part, we demonstrate the comparison between centralized and decentralized algorithms
in terms of minimality of value Φ.

Theorem 7.4. There exist some graph structures such that any deterministic decentralized al-
gorithm is worse than a centralized algorithm.

Proof. Let us investigate the initial graph illustrated in Fig. 7.10 for c = 3. In this graph, there
are only two weaker nodes u and v, and the remaining ones are normal. Node u and v currently
have degree du = dv = 2, each one tries to add one more edge. The path connecting them passes
normal nodes v1 and v2 and has a length > l2. Node v1 and v2 are also in a subgraph GS which
diameter is greater than l2. Because of the limitation of visibility, weaker nodes u and v do not
know each other. Notice that, even we try to give the order in choosing weaker node, e.g., u is
selected first, then, by Lemma 7.3 the distance between them is reduced at most a factor l, but
v still does not recognize the position of u as u is outside of v’s visibility. Therefore, for any
decentralized algorithm, node u and v have to link to some normal nodes before generating their
direct connection. It implies the total added edges for this case Φ1 ≥ 2.

Furthermore, in the centralized solution, node u and v can connect to each other and we get
value Φ2 = 1. This yields the desired result.

118

7.3. Decentralized protocol

GS

v2

v3

v5

v7

v8v9

v1

v4 v6

u v

> l2

Figure 7.10: Two weaker nodes u and v cannot contact with each other.

Decentralized vs. Decentralized algorithms
We here only consider distributed algorithms which use the score value as the criterion to

make decision in choosing weaker nodes. There are only three options corresponding to three
methods as follows:

1. (DS1) Select weaker node with maximum score value (AlgoDecen).

2. (DS2) Select weaker node with minimum score value.

3. (DS3) Select randomly weaker node.

We now analyze the comparison amongst these decentralized algorithms as follows.

Theorem 7.5. There exist some graph structures such that any deterministic decentralized al-
gorithm is better than another deterministic decentralized algorithm.

Proof. Let us consider a graph represented in Fig. 7.11 for l = 2 and c = 5. In this figure, we
assume that for two nodes vi and vj where i < j, node vi has smaller identity than node vj , and
if they have the same score value, then vi is considered as the one having higher score than vj .

Degree of weaker nodes are as follows: dv1 = dv7 = 4, other ones has degree 3, i.e., v1 and v7

have to add only one more edge, whereas other ones have to link to two nodes.
Since l = 2, we have sets of available nodes and their size: Dv1 = {v4, v7, v8, v9}, xv1 = 4;

Dv2 = Dv3 = Dv5 = Dv6 = ∅, xv2 = xv3 = xv5 = xv6 = 0; Dv4 = {v1, v8, v9}, xv4 = 3;
Dv7 = {v1}, xv7 = 1; Dv8 = {v1, v4, v9}, xv8 = 3; Dv9 = {v1, v4, v8}, xv9 = 3. And thus, the score
value for nodes: tv1 = 1

4 , tv7 = 1, tv4 = tv8 = tv9 = 2
3 , tv2 = tv3 = tv5 = tv6 = 0.

Fig. 7.11b shows us algorithm DS1: in the scope of v1, node v7 is the one with highest score,
thus, it requests the friendship to v7. Similarly, v7 also asks for connection with v1. Then the link
e1 is established, and v1 and v7 become normal nodes. Three nodes v4, v8 and v9 have the same
score but because of different identities, v4 and v8 request for connection to each other, whereas
v9 requires v4 to link. Hence, v4 accepts to be partnership with v8 by edge e2. Likewise, we can
obtain edges e3 and e4 showed in Fig. 7.11b. For nodes v2, v3, v5, v6, because of the limited
visibility and low score values, they could not make connection to other weaker nodes. They
will link to other normal nodes by edges e5, e6, e7, e8, e9, e10, e11, e12 to satisfy the requirements.
Consequently, we have value Φ1 = 12.

119

Chapter 7. On Constrained Adding Friends in Social Networks

v1 v2 v3

v4 v5 v6

v7

v8

v9

(a) Initial graph

v1 v2 v3

v4 v5 v6

v7

v8

v9

e1

e2

e3 e5 e6 e7 e8

e9 e10 e11 e12

e4

(b) DS1

v1 v2 v3

v4 v5 v6

v7

v8

v9

e1 e2 e3 e4 e6

e8

e9

e10

e5

e7

(c) DS2

Figure 7.11: Graph where DS2 is better than DS1.

Fig. 7.11c describes strategy DS2. Node v1 (resp. v4) is the weaker one having minimum
score in the scope of v4 (resp. v1), and thus, they create an edge e1. By this connection, it
enables v4 and v2 can see each other, and hence, make a link e2. Likewise, edges e3, e4, e5, e6 are
established. Node v8 and v9 add edge e7. They and node v7 also connect to normal nodes by
links e8, e9, e10 to satisfy requirements. In this case, we have Φ2 = 10. It implies, strategy DS2
is better than DS1.

However, we can obtain the reverse result, i.e., DS1 is better than DS2, in Fig. 7.12 for l = 2
and c = 5. Similarly to the analysis above, from initial graph in Fig. 7.12a, we can compute score
value for nodes as follows: tv1 = tv9 = 1

3 , tv7 = 1
4 , tv8 = 1

2 , tv4 = 1, tv2 = tv3 = tv5 = tv6 = 0.
From this information, following algorithm DS1, v1 links to v4 by edge e1. This enables to
generate edges e2, e3, e4, e5, e6. Continue applying DS1, with the notice that after establishing
edge e7 between v8 and v9, node v7 has no available weaker nodes, hence, it connects to any
normal nodes, such as v8 by edge e8. We show the output graph in Fig. 7.12b and Φ1 = 8.
Similarly, deploying DS2 into graph in Fig. 7.12a we achieve an output graph as illustrated in
Fig. 7.12c and Φ2 = 12. So for this graph, algorithm DS1 is better than DS2.

We can see through two examples, even node v1 can choose the favorite neighbor by consider-
ing node with maximum or minimum score, but its knowledge is limited to only a part of graph,
its decision could be wrong or correct for the final output graph later. Since nodes could not
discover full structure of graph, its strategy can give value Φ which is not optimal. This means

120

7.4. Experimental evaluation

v1 v2 v3

v4 v5 v6

v8 v7

v9

(a) Initial graph

v1 v2 v3

v4 v5 v6

v8 v7

v9

e1 e2 e3 e4 e6

e7

e8

e5

(b) DS1

v1 v2 v3

v4 v5 v6

v8 v7

v9

e4 e5 e6 e7 e8

e9 e10 e11 e12

e1

e3e2

(c) DS2

Figure 7.12: Graph where DS1 is better than DS2.

no deterministic strategy is the best.

Theorem 7.6. There exist some graph structures such that any deterministic decentralized al-
gorithm is better than another randomized decentralized algorithm.

Proof. Consider graph structures in Fig. 7.11a and 7.12a. In randomized decentralized algorithm,
DS3, a node v1 can only choose either v4 or v7 in Fig. 7.11a, v4 or v9 in Fig. 7.12a to make
friendship. Thus the probability to obtain better value Φ is 1

2 . Assume we have one graph
generated by combining m consecutive graphs in Fig. 7.12a and m consecutive graphs in Fig.
7.11a, where m = Θ(logN). The probability that strategy DS3 gives a minimized value Φ is
2−m = O(1/N). When N is a large number, that probability is negligible. However, we see that
by applying deterministic decentralized network such as choosing neighbor with maximum score,
we can achieve a better value Φ.

7.4 Experimental evaluation

In this section we validate our centralized solution with a performance evaluation on real-world
social graphs. We start with the description of the datasets using in the experiments, then
present the experimental setup, and finally show our results.

121

Chapter 7. On Constrained Adding Friends in Social Networks

Dataset N |E| CC d

DIP 20K 41K 0.52 4.1
DBLP 511K 1.9M 0.73 7.3
Youtube 1.1M 3M 0.17 5.3

Table 7.1: Datasets.

Dataset Algorithms Threshold c
31 51 71 91 121 151

DIP AlgoCen 0.36 0.38 0.43 0.46 0.53 0.61
CS1 0.07 0.07 0.07 0.08 0.08 0.09
CS2 0.07 0.07 0.08 0.08 0.08 0.09

DBLP AlgoCen 3.61 3.88 4.06 4.25 4.68 4.91
CS1 1.78 1.85 1.89 2.09 2.25 2.46
CS2 1.82 1.91 2.07 2.14 2.29 2.51

Youtube AlgoCen 5.58 6.19 6.81 7.75 8.65 9.43
CS1 3.14 3.65 3.90 4.32 4.56 4.72
CS2 2.62 2.93 3.25 3.61 4.18 4.55

Table 7.2: Average execution time (in ms).

7.4.1 Datasets

We examined our algorithm AlgoCen on the following real-world social graphs demonstrating
different orders of magnitude in terms of network size.

• DIP. The Database of Interacting Proteins (DIP) experimentally determined interactions
between proteins interpreted as undirected graph. The dataset given in [170] is used.

• DBLP. The DBLP dataset provides a full bibliography of publications in computer science
where each node demonstrates an author, and an edge presents the relation of two authors
who publish at least one paper together [121]. We use the snapshot collected in August
2008 by Sommer in [170].

• Youtube. Youtube is a website where users can share video clips together. The Youtube
dataset includes a social graph in which each node corresponds to a user. If two users share
at least one clip, they form a friendship demonstrated by an edge in the social graph. The
data in our experiment is provided by Mislove et al. [137].

Table 7.1 summarizes some properties of datasets used in our experiments. All the graphs are
unweighted, undirected and connected. For each graph, the table shows the size of network N ,
number of edges |E|, clustering coefficient CC (i.e., that is a measure of degree to which nodes in
a graph tend to cluster together), and the average number of friends d for a node and d = 2|E|/N .

7.4.2 Experimental setup

We here evaluate the practical performance of our adding friend algorithms by applying them
into social graphs that are used for performing polling protocols showed in previous chapters

122

7.4. Experimental evaluation

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 31 51 71 91 121 151

Φ
(G

’,
G

)

c

AlgoCen
Greedy CS1
Greedy CS2

Lower bound
Upper bound

(a) DIP

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 31 51 71 91 121 151

Φ
(G

’,
G

)

c

AlgoCen
Greedy CS1
Greedy CS2

Lower bound
Upper bound

(b) DBLP

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 31 51 71 91 121 151

Φ
(G

’,
G

)

c

AlgoCen
Greedy CS1
Greedy CS2

Lower bound
Upper bound

(c) Youtube

Figure 7.13: Number of added edges.

and other works like [79, 82, 83]. In other words, given a value k, we try to transform a simple
general graph into other one such that a minimum degree of the output should not be less than
a given threshold c = 2k + 1. We do the test with different values of threshold c (i.e., different
privacy parameter k) and for each run we measure the Percentage of added edges and Time.
The Percentage of added edges is computed by the formula (|E′| − |E|)/|E| where E′ and E are
respectively the set of edges of output and input graphs. Time refers to the average time required
to create a connection between two nodes. We do 10 independent runs for each experiment and
compute the average of these experimental values.

We implement our protocols in Java and conduct the experiments on a server with 12×Quadcore
AMD 64bit 1.7GHz processor, 48GB of RAM and running Ubuntu OS 12.04.

7.4.3 Results

Percentage of added edges. The number of added edges measurements by different methods
are summarized in Fig. 7.13. In each figure, value Φ is represented as a function of c =
31, 51, 71, 91, 121, 151 (corresponding to k = 15, 25, 35, 45, 60, 75 in [24, 25, 65, 76, 82, 83, 95]). By
Lemma 7.1 we have Φ = κ + λ = 1

2

(∑
n∈W yn + λ

)
. Since 0 ≤ λ ≤ 1

2

∑
n∈W yn, it implies

1
2

∑
n∈W yn ≤ Φ ≤

∑
n∈W yn. Additionally, yn = c − d for all n, we have 1

2

∑
n∈W (c− d) =

123

Chapter 7. On Constrained Adding Friends in Social Networks

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 31 51 71 91 121 151

|E
(G

’)
-E

(G
)|

/E
(G

’)

c

Greedy CS1
Greedy CS2

AlgoCen

(a) DIP

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 31 51 71 91 121 151

|E
(G

’)
-E

(G
)|

/E
(G

’)

c

Greedy CS1
Greedy CS2

AlgoCen

(b) DBLP

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 31 51 71 91 121 151

|E
(G

’)
-E

(G
)|

/E
(G

’)

c

Greedy CS1
Greedy CS2

AlgoCen

(c) Youtube

Figure 7.14: Percentage of added edges in the output graph.

1
2 |W|(c− d) ≤ Φ ≤

∑
n∈W (c− d) = |W|(c− d). In the plots of Fig. 7.13, we observe that value

Φ is always within the theoretical bounds (two black dotted lines in Fig. 7.13). In addition,
algorithm AlgoCen always produces the lowest number of added edges. The curve presenting
AlgoCen nearly touches the lower bound. For two greedy strategies, the results show us that
CS2 is better than CS1.

We also illustrate the percentage of added edges in the output graph in Fig. 7.14, that is
E(G′)−E(G)

E(G) . The lower the value is, the better the structure of the input graph is preserved. We
observe that AlgoCen gives the smallest percentage values.

Time. Table 7.2 describes the average execution time for generating one new edge between two
nodes. This is computed as the total time required for processing the algorithm divided by value
Φ. This also includes the time spent to load the input graph from disk. We see that AlgoCen
is 2–6 times slower than CS1 and CS2, but the execution times still remain in few milliseconds
even for the large graph like Youtube. CS1 runs slower than CS2 for the Youtube graph, but
faster than CS2 in other graphs.

124

7.5. Conclusion

7.5 Conclusion

In this chapter, we formally defined the adding friends, AddFriends, problem and proposed
simple and efficient algorithms for solving it in centralized and decentralized networks. Our
centralized algorithm produces the optimal solution. We showed that no distributed algorithm
is better than a centralized algorithm, and there is no best decentralized solution. i.e., any
decentralized algorithm can be worse than other one for some graphs, but it can be better in
other certain scenarios. We also conducted a set of experiments testing our proposed approaches
on real-world social graphs that demonstrated that our protocols are accurate. To our best
knowledge, our work is the very first theoretical study of the adding friend problem in centralized
and decentralized models, using only a simple edge-addition operation.

125

Chapter 7. On Constrained Adding Friends in Social Networks

126

Chapter 8

Conclusion

Contents
8.1 Summary . 127
8.2 Discussion and future perspectives . 129

In this chapter, we first give the summary of this thesis and then highlight our contributions
to polling problem and graph transformation problem. Finally we identify the shortcomings in
our work, and discuss future work.

8.1 Summary

In this thesis, we have tackled the following problems in social networks.

Polling

First we introduced the polling problem, a simple but important one for incorporating user’s
opinion online. The goal in studying this problem is to devise a polling protocol such that it
can perform a secure and accurate process to sum up the initial users’ votes with the presence
of dishonest users, who try to bias the outcome and disclose the votes of honest ones. Recent
works proposed polling protocols based on simple secret sharing scheme and without requiring
any central authority or cryptography system [24, 25, 65, 82, 83]. However these protocols can
be deployed safely and efficiently provided that, inter alia, the social graph structure should be
transformed into a ring structure-based overlay and the number of participating users is perfect
square. Therefore, one of the key challenges we faced throughout this thesis is to devise efficient
and decentralized polling protocols that does not rely on cryptography and use more general
social networks.

To address this probolem, we first surveyed existing approaches of the literature, then high-
lighted the gap that these protocols are too strict and solve partly the requirements of the prob-
lem. Inspired from a model of faulty nodes in distributed systems which incorporates the human
and social nature of participants through privacy and reputation concerns, given in [82, 83], we
proposed three designs of distributed polling protocols. For each protocol we described a family
of appropriate graphs and showed their structures constitute necessary and sufficient conditions
to ensure vote privacy and limit the impact of dishonest users on the accuracy of the polling
output. More precisely:

Synchronous polling protocol. In Chapter 4, we described a protocol that operates in syn-
chronous communication model. As we know, in a synchronous network, operations are co-

127

Chapter 8. Conclusion

ordinated under the global control of a clock signal, and all delays of connection are limited.
Furthermore, the verification procedures are provided to dissuade the dishonest misbehaviors.
The verification procedures require the information about the shortest path lengths.

Asynchronous polling protocol. This is an enhanced version of the first polling protocol
and has been presented in Chapter 5. More specifically, this protocol runs in the asynchronous
network model in which the system contains no global clock; instead, it operates under dis-
tributed control. It is more difficult for nodes to predict the time of message arrival. And nodes
cannot deduce the ordering of several computational events when considering the ordering of
message arrivals. To overcome this trouble, we suggested a broadcasting phase where each node
must send additional acknowledgments for the received data to its neighbors. Another advan-
tage of this method is to help nodes doing the verification procedures, which prevent dishonest
nodes’ misbehaviors, but without requiring any extra topological knowledge such as shortest
path lengths.

Polling protocol with efficient communication. In Chapter 6, we proposed an asynchronous
polling protocol which does not require any verification procedures and contains a method for
efficiently broadcasting message by using the concept that we call the m-broadcasting property.
Correspondingly, instead of accepting all messages originating from a source, a node stores onlym
ones passed by ordered paths. Despite the use of richer social graph structures, the communication
and spatial complexities of this protocol are close to be linear. Moreover, as messages may be
corrupted by intermediate dishonest nodes, an honest node may receive distinct values emitted by
a certain source. This protocol ensures each node can decide the most represented value, which is
the form of majority, to obtain the correct data of other nodes. In addition, we introduced some
uncertain vote disclosing rules and computed the probabilities these events occur. Furthermore,
in Chapter 6, we also analyzed the affect of node crashes and message losses on accuracy and
termination of the protocol by considering the impact on the final outcome and the probability
of a node failing to decide and compute the final result.

Graph transformation

In Chapter 7, we addressed to the adding friends problem related to some secret sharing based
protocols which impose a threshold parameter on the node degree. For instance, the minimum
degree of the social graph should be not smaller than the given threshold and not all social graphs
fulfill that condition. Thus, our concern is to propose a method that adds a minimum number
of edges to a given graph while satisfying a threshold parameter. More formally, given a graph
G and parameter c, asks for the graph satisfying the threshold c that results from G with the
minimum of edge-addition operations. The problem seems simple and trivial as a special case
of matching and graph anonymization problems. However, by analyzing the previous works in
these fields, we showed it is not that case.

For this problem, we first proposed a centralized algorithm and proved that it is optimal solu-
tion, i.e., it produces the minimum number of added edges satisfying our requirements. Moreover,
we suggested some greedy algorithms and argued that they are 3

2 -approximation algorithms.
As for decentralized social networks, we described some decentralized algorithms for solving

adding friends problem. However, we showed that the centralized algorithm is always better
than any distributed algorithms with respect to the minimum added edges. In addition, no
best decentralized solution exists for this kind of problem. In other words, any decentralized
algorithm, that can be better than other decentralized one for some graphs, can also be worse in
some other graphs.

128

8.2. Discussion and future perspectives

Finally, we tried to validate each of our solutions by implementing it and proceed a perfor-
mance evaluation. All experimental results show that our protocols are accurate and inside the
theoretical bounds.

8.2 Discussion and future perspectives

Beyond contributions, our work also has several limitations. In this section, we discuss these
drawbacks for problems we studied and present some directions for future work.

Polling problem

First we did not validate our distributed polling protocols in practical applications. The sim-
ulation environments used in our thesis [4, 6] have several limitations compared to real world
settings. For example, the simulation world assumes the existence of reliable communication
among nodes, i.e., no message loss, node crashes exist. However, in the real network, these prob-
lems often take place. For future work, we plan to implement our suggested polling algorithms
as a plug-in over a distributed P2P social networks such as Diaspora [1], Friendica [3], Tent [5].

Second, in the polling problem, we use the same model of adversaries as the one proposed
in [82, 83]. In this model, all users care about their reputation: information related to a user
is intimately considered to reflect the associated real person. Thus, they do not want their
votes to be disclosed nor their misbehaviors, if any, to be publicly exposed. In particular, the
dishonest users are rather restricted but more reflective of real human behavior than Byzantine
ones. The dishonest users never do any misbehavior which will jeopardize their reputation and
do not wrongfully blame the honest ones as this may eventually be detected, thus tarnishing
their reputation. To realize this model in practice, it requires the design of an algorithm such
that each user could evaluate and quantify the reputation of others by crosschecking information
such as tags and social friendship relations [83].

Third, we here simply considered a binary polling with only two options in a vote. We plan to
generalize our solutions to deal with multi-options vote in the sense a user must determine his/her
favorite preference amongst multi options. Another problem that would also be interesting to
study in the future is the polling with multi-questions. Our current work studied a polling
problem with only one question, i.e., users are requested to reply for a question, then they
receive the outcome that is related to the aggregation of all users votes for that question. If they
are requested with more than one question, based on the results of all questions, the problem is
to fulfill some statistical computations on the final results without revealing any user votes (e.g.,
how many users voting “Yes” for the first question).

Graph transformation problem

We plan to implement and evaluate the performance of our suggested distributed algorithms, and
give comparison between them and centralized ones (including optimal and greedy protocols).
That evaluation must be realized in distributed P2P social networks like Diaspora [1], Friendica
[3], Tent [5].

Moreover, we also plan to consider a generalization of AddFriends problem where a graph
consists of honest and dishonest nodes. For a given honest node, it completely complies with
the protocol and takes care about its privacy in the sense creating friendship relations with more
dishonest friends gives higher probability of being affected in other secret sharing based protocols
(e.g., polling protocol). Hence, it may not randomly request connections or accept friend requests
from any other nodes. The dishonest node tries to link to honest weaker ones to get as much

129

Chapter 8. Conclusion

their information as possible. This research direction gives us a perfect novel for adding friends
problem in a secure way.

Finally, we also consider the way to construct a graph that satisfies the m-broadcasting
property in the future research.

130

Appendix A

Résumé de la Thèse en Français

Contents
A.1 Contexte . 131
A.2 Motivation . 132
A.3 Contributions . 136
A.4 Contenu principal . 138

A.1 Contexte

Les réseaux sociaux en ligne (OSNs pour Online Social Networks en anglais) est une technologie
ayant pris une ampleur considérable ces dernières années dans les médias sociaux. Tout le monde
peut discuter autour d’un intérêt commun, échanger des photos et des nouvelles personnelles,
etc. Le nombre des utilisateurs de ces réseaux explose exponentiellement. Pour montrer un
exemple typique, jusqu’à présent Facebook a plus de 1,32 milliard d’utilisateurs mensuels actifs
et 829 millions d’utilisateurs quotidiens actifs en moyenne.17 OSN permet aux participants de
faire une variété d’activités liées aux affaires, au divertissement, aux événements du monde et de
la culture comme le tissage de liens d’amitié, l’édition et le partage d’informations, l’échange de
documents, l’expression des opinions politiques.

Un des thèmes pratiques, mais hautement sensibles, est le problème de sondage.18 En général,
un sondage consiste à déterminer un choix favori parmi certaines options. Chaque participant
peut distribuer sa préférence en soumettant un vote, et après l’agrégation des votes, l’option
majoritaire est choisie comme résultat final. Par exemple, une entreprise de téléphone mobile
vient de lancer un nouveau produit et peut demander à ses clients si ses caractéristiques sont
confortables, et l’utilisateur choisira l’option “Oui” ou “Non”. Un autre exemple de sondage est
la planification de réunion qui se compose d’une liste des options de temps où certaines tâches
ou évènements sont destinés à avoir lieu, et chaque utilisateur doit exprimer son choix parmi ces
options.

Une enquête en ligne a montré que le sondage en général et la planification de réunion en
particulier ont un impact important dans la vie des internautes.19 Selon cette enquête, il y a six
rendez-vous en moyenne par individu chaque semaine. Le temps passé à planifier ces rendez-vous

17http://newsroom.fb.com/company-info/
18Nous utilisons ces termes “sondage”, “vote” et “scrutin” désormais interchangeable.
19http://en.blog.doodle.com/doodle-analytics/

131

Appendix A. Résumé de la Thèse en Français

est de 17 minutes. En conséquence, près de 4 jours pleins sont consacrés tous les ans à coordonner
des rendez-vous. En se basant sur cette étude, la planification en ligne est plus fréquemment
utilisée par les internautes qui ont principalement des rendez-vous professionnels et ceux qui
organisent régulièrement des rendez-vous avec au moins deux participants. Les chiffres montrent
également que la planification de rendez-vous en ligne est utilisée par deux tiers des internautes
Suisses et un cinquième des internautes du reste du monde.

Doodle, le plus répandu et abouti des outils pour la planification d’événements, a plus de
20 millions d’utilisateurs chaque mois dans le monde. En 2013, plus de 17 millions de sondages
ont été créés, et un sondage Doodle est effectué toutes les 2 secondes. Même un petit groupe
peut gagner jusqu’à 15 minutes par sondage, c’est-à-dire plus de 4 millions d’heures sont gagnées
par les utilisateurs de Doodle. En 2011, plus de 30K réunions professionnelles ou privées sont
organisées à travers le monde avec Doodle. Cela représente 20 nouveaux sondages Doodle lancés
par minute.

Les systèmes de vote électroniques, en particulier les systèmes de vote par Internet, ont
gagné en popularité et ont été utilisés pour les élections du gouvernement et les référendums
au Royaume-Uni, en Estonie et en Suisse ainsi que les élections municipales au Canada et les
élections primaires des partis aux États-Unis et en France. Ces systèmes permettent de faciliter
les processus de prise de décision, d’accroître la participation et, dans certains cas, d’améliorer
la qualité de la décision finale. Par ailleurs, au cours des dernières années, un certain nombre de
tendances en ligne ont bien influencé le résultat des élections. Les médias sociaux comme OSNs
peuvent augmenter la participation et provoquer des débats. En 2008, l’élection présidentielle
aux États-Unis est considérée comme l’élection des médias sociaux parce que Barack Obama a
beaucoup fait campagne en ligne y compris grâce à OSNs.

A.2 Motivation

Protocole de sondage. La partie principale que nous abordons dans cette thèse est le problème
de sondage dans les OSNs. Nous considérons ici simplement un vote binaire avec seulement
deux options “+1” ou “−1” qui représentent pour les choix “Oui” ou “Non” (ou “D’accord”/“Pas
d’accord”, “Pour”/“Contre”). Le but est de mettre au point un protocole de sondage sûr et
précis pour agréger tous les votes initiaux avec la présence d’utilisateurs malhonnêtes qui tentent
d’influencer le résultat et divulguer les votes d’utilisateurs honnêtes.

Le problème de sondage est simple, mais il a un rôle important dans l’intégration de l’avis
de l’utilisateur en ligne. Par conséquent, actuellement, il y a beaucoup d’études et de solutions
de ce problème dans deux contextes, réseaux centralisés et réseaux distribués. Dans les réseaux
centralisés comme Facebook, toutes les données ou calculs de l’utilisateur sur ces plates-formes
sont stockés et traités par l’autorité centrale qui a pleine connaissance et contrôle du réseau.
Dans le cas particulier des systèmes de vote, par exemple, Facebook Poll20 et Doodle, un serveur
central est utilisé pour recueillir les votes des utilisateurs et récapituler toutes les valeurs pour
obtenir le résultat final. Cependant, cette approche souffre de pannes de serveurs et de prob-
lèmes de confidentialité: généralement un utilisateur ne veut pas que son vote soit connu d’une
entité centrale, et il n’est pas garanti que le serveur n’influencera pas et ne divulguera pas les
scrutins des utilisateurs. En plus, il est bien connu que les OSNs centralisés détournent les infor-
mations de l’utilisateur pour un usage commercial. Pour illustrer un exemple typique, en 2009,
les nouveaux termes des services de Facebook ont imposé le privilège de rester en possession

20http://apps.facebook.com/opinionpolls/

132

A.2. Motivation

perpétuelle des données personnelles, même si les utilisateurs désactivent et suppriment leurs
comptes.21Même si finalement la politique n’a pas été appliquée, cela montre la curiosité des
entreprises sur les données personnelles et particulièrement sur les informations sensibles. Pour
surmonter ces inconvénients d’une autorité centrale, la décentralisation d’OSN est une alternative
où les utilisateurs gardent leurs propres données et effectuent des calculs de manière distribuée
sans l’existence de serveur central.

Dans cette thèse, nous nous intéressons au protocole de vote basé sur un OSN décentralisé,
où la vie privée de l’utilisateur est améliorée parce que ses données ne sont pas concentrées en un
point central. Chaque site d’utilisateur possède les connaissances partielles de réseau et il ne lui
est généralement pas possible de connaitre tout le réseau et de recueillir les informations ou les
votes des autres utilisateurs. En outre, nous ne voulons pas utiliser de cryptographie pour assurer
la confidentialité ou le précision du protocole parce que [82, 83]: (i) la cryptographie utilise un
calcul complexe qui a un impact sur l’évolutivité et l’utilisation en pratique des protocoles; (ii)
toutes les techniques de cryptographie s’appuient sur des hypothèses qui ne sont pas prouvées et
pourraient être remises en cause ultérieurement, par exemple, la difficulté de factorisation d’un
grand nombre ou l’inversion de fonctions mathématiques complexes; et (iii) certains problèmes
traditionnels de calcul distribué peuvent être résolus sans la cryptographie telle qu’elle est motivée
dans [130,157].

Récemment, Guerraoui et al. ont proposé un protocole de sondage décentralisé, DPol, basé
sur la partage de secret et ne nécessitant aucune infrastructure cryptographique. Dans DPol,
des participants honnêtes et malhonnêtes sont considérés. Les utilisateurs honnnêtes suivent
entièrement le protocole, au contraire des utilisateurs malhonnêtes qui peuvent tricher pour
promouvoir leur opinion ou divulguer les votes d’utilisateurs honnêtes. En particulier, tous
les participants se préoccupent de leur réputation: les informations relatives à un utilisateur
du réseau social en ligne reflètent directement la personne réelle associée. Peu d’utilisateurs,
soucieux de leur réputation, souhaitent voir leurs profils accessibles à tous et à leurs proches
en particulier, annotés de la mention “tricheur”. En cela, le modèle d’utilisateurs considéré
est assez limité par rapport aux utilisateurs Byzantins [120]. Les auteurs ont exploité cette
caratéristique des entités d’un réseau social en ligne pour dissuader les mauvais comportements
des utilisateurs, au lieu d’empêcher les tricheries à l’aide de techniques mathématiques complexes
(par exemple, les protocoles cryptographiques) ou de les dissimuler (par exemple, les protocoles
tolérant les utilisateurs byzantins comme BFT - Byzantine Fault-Tolerance). Pour dissuader
les duperies, en parallèle du protocole de sondage, les procédures distribuées de vérification sont
faites pour détecter les mauvais comportements avec une probabilité non-nulle et elles permettent
aux utilisateurs honnêtes de marquer les profils des utilisateurs malhonnêtes. Par exemple, si
Alice est détectée comme un utilisateur malhonnête par Bob, le profil de Alice est annoté avec
une marque “Alice a été détectée avec un mauvais comportement par Bob” et le profil de Bob
apparaît avec une étiquette “Bob a accusé Alice comme un utilisateur malhonnête”. Les auteurs
ne considèrent pas les attaques Sybil puisque ces mauvais comportements peuvent être résolus par
d’autres travaux tels que SybilGuard [188] et SybilLimit [187]. Par ailleurs, ils n’examinent pas de
situation où les utilisateurs malhonnêtes blâment à tort les honnêtes (y compris les deux cas: un
seul utilisateur accuse un groupe d’autres participants, et un groupe d’utilisateurs qui conspirent
pour blâmer un autre ensemble d’utilisateurs) ou tenter de spammer le système avec beaucoup de
blâmes, car il existe des outils basés sur les relations sociales entre les utilisateurs qui permettent
de faire la distinction entre les accusations légitimes et illicites. Par exemple, on peut citer les
systèmes de réputation comme EigenTrust [114] et PowerTrust [193], les systèmes d’atténuation

21http://www.nytimes.com/2009/02/19/technology/internet/19facebook.html

133

Appendix A. Résumé de la Thèse en Français

de mails comme Ostra [138] et SocialFilter [169], et les systèmes de recommandation comme
SumUp [177] et Digg [2].

Dans DPol, les nœuds malhonnêtes peuvent former une coalition afin d’obtenir la pleine
connaissance du réseau et atteindre ces objectifs suivants sans être détecté: (i) fausser le résultat
du scrutin pour promouvoir leurs votes ou changer les valeurs qu’ils ont reçus d’autres nœuds
honnêtes; (ii) déduire les opinions des autres nœuds. Afin d’unifier les opinions et ne pas donner
les effets de compensation, tous les nœuds malhonnêtes font une seule coalition D de la taille
D. Cependant, ils veulent aussi protéger leurs réputations. Ils sont égoïstes dans le sens où
lorsque leurs complices ont été suspectés, ils préfèrent préserver leurs réputations que couvrir
leurs complices.

En raison de la présence des utilisateurs malveillants, en général, la conception typique de
système de vote doit remplir les caractéristiques principales suivantes:

• Vie privée: Le système doit protéger le vote d’utilisateur de manière à ne pas le divulguer
à d’autres. En d’autres termes, un nœud malhonnête ne pourrait pas apprendre (sauf
avec une probabilité négligeable) toute information de l’exécution du protocole différente
de celle qu’il pourrait obtenir à partir de sa propre entrée et sortie du protocole, et aucun
moyen n’existe pour en déduire ou vérifier le vote. Cette propriété se rapporte également à
la résistance à la coercition du vote par examen des résultats intermédiaires publiés avant
la fin du scrutin.

• Précision: Le résultat de sondage doit refléter correctement l’agrégation des décisions de
tous les utilisateurs. Toutefois, en raison de l’absence de techniques cryptographiques qui
garantissent plus facilement l’exactitude de la sortie, nous permettons ici un certain impact
des nœuds malhonnêtes à la sortie. Ainsi, le protocole est dit être précis si la différence
entre la sortie et le résultat attendu est négligeable.

DPol garantit la confidentialité des votes et la précision des résultats en limitant l’impact des
utilisateurs malhonnêtes. Cependant, DPol a en pratique certains inconvénients.

• Premièrement, DPol repose sur des graphes qui ont une structure de recouvrement à base
d’anneau [74]. Bien qu’il soit efficace pour le coût de communication, il est introduit par
dessus et en dehors du graphe social normal. Il ne prend pas en compte les liens sociaux
au sens où il considère une distribution uniforme des utilisateurs en groupes. Ce n’est pas
pratique parce que nous devons cibler un cas particulier en utilisant la notion de groupe
au lieu de réutiliser la structure normale de graphe.

• Deuxièmement, le nombre d’utilisateurs est un carré parfait tel qu’un graphe social avec
N utilisateurs est divisé en N groupes de taille

√
N . Ainsi le protocole ne peut pas être

déployé pour d’autres graphes sociaux qui ont une taille arbitraire.

Par exemple, Fig. A.1 représente la structure d’anneau utilisés dans DPol et la connexion
d’un nœud n. Les N nœuds sont regroupés en m =

√
N groupes ordonné, de g0 à gm−1. Chaque

groupe est une clique, c’est-à-dire, un nœud n dans le groupe gi est élément d’un ensemble Po
de office mates. Étant donné un paramètre k, un nœud n est lié à un ensemble de taille fixe Pp
de nœuds, appelés proxies, dans le groupe suivant (Pp ⊂ g(i+1) mod m), et un ensemble de taille
fixe Pc de nœuds, appelé clients, pour lesquels n agit comme un proxy, dans le groupe précédent
(Pc ⊂ gi−1 mod m) où |Pp| = |Pc| = 2k + 1. Ainsi, les groupes forment un anneau où g0 est
le successeur de gm−1. Chaque nœud reçoit uniquement les messages qui sont délivrés par des
nœuds dans l’ensemble Pc ∪ Po, sans considérer les autres messages.

134

A.2. Motivation

gi Po

n

gi−1 gi+1

Pc Pp

Figure A.1: Un overlay fondé sur le graphe anneau et la connexion de nœud n.

Plusieurs protocoles et extensions inspirés de DPol ont été proposés tels que MPOL [65],
PDP [25] and DiPA [24]. Néanmoins, ces protocoles représentent une contribution mineure
comparée à DPol, et ils reposent sur la même structure de recouvrement à base d’anneau.

De notre revue de la littérature sur le problème du scrutin, nous soulevons les questions
suivantes:

• Question 1: Pouvons-nous concevoir des protocoles de sondage décentralisés sans cryp-
tographie et contraintes telles que l’utilisation de la structure de recouvrement et le nombre
carré parfait d’utilisateurs?

• Question 2: Une autre question, vue comme une version améliorée de la première, serait
aussi intéressante: Pouvons-nous concevoir des protocoles de sondage décentralisés avec un
faible coût de communication?

• Question 3: Nous sommes conscients que les sites des utilisateurs peuvent être non-sûrs
ou défaillants, et les canaux de communication entre deux sites peuvent être perdus. Par
conséquent, l’étude de l’effet de ces facteurs sur le protocole de sondage est également
importante: Si le réseau est non-sûr dans le sens oû le site ne répond pas et les message
sont perdus, comment ces facteurs influent sur la termination du protocole et la précision
du résultat de sondage?

Transformation de graphe. Un autre défi que nous étudions concerne la transformation
de graphe. Comme introduit ci-dessus, OSNs constituent des plate-formes exploitées par un
grand nombre d’utilisateurs pour effectuer des calculs à grande échelle tels que la réalisation de
votes sur des questions politiques et la recherche d’informations précises sur d’énormes bases
de données. Afin de préserver des données privées lors de l’excution de ces calculs, des travaux
récents [65, 79, 82, 83, 181] (et les protocoles de sondage décrits dans cette thèse) utilisent un
schéma de partage de secret.

Par exemple, [24,25,65,76,82,83] ont proposé des protocoles de sondage distribués dans des
réseaux sociaux ne nécessitant aucune infrastructure cryptographique. Au lieu de divulguer son
vote, l’utilisateur génère un ensemble de parts qui peuvent reconstituer son vote plus tard, puis
il transmet une seule part à chacun de ses voisins. Ainsi, la division du vote en parts permet aux
utilisateurs de protéger la confidentialités de leur vote.

Cependant, les protocoles basés sur le partage de secret imposent un paramètre de seuil sur
le nombre d’amis, par exemple, le degré minimal du graphe social ne doit pas être inférieur au

135

Appendix A. Résumé de la Thèse en Français

seuil donné. Malheureusement, tous les graphes sociaux ne remplissent pas cette condition. En
d’autres termes, les utilisateurs ne peuvent pas effectuer de calcul élémentaire (par exemple, le
processus de vote) si ce seuil n’est pas atteint. Afin de satisfaire la condition de seuil, nous
essayons d’enrichir le graphe social avec de nouvelles relations d’amitié. Nous supposons que ces
nouvelles relations sont acceptées par tous les utilisateur puisqu’elles sont pertinentes pour leur
intérêt commun. En effet, ces relations ne sont pas contraignantes, elles n’imposent pas à leurs
partenaires de partager les ressources.

Afin d’obtenir le graphe desiré, nous utilisons un ensemble d’opérations de modification de
graphe appliquées sur le graphe initial. Dans cette thèse, nous ne considérons que l’opération
d’adjonction de lien. Une approche naïve consiste à modifier un graphe de telle sorte que chaque
nœud essaie d’ajouter autant de liens que possible pour satisfaire le seuil. Néanmoins, notre
principale préoccupation dans ce travail est de répondre à la question suivante, appelée “problème
d’ajout d’amis”: Comment un graphe peut-il être modifié minimalement pour satisfaire le seuil
sur le degré de nœud?

Le problème d’ajout d’amis semble être simple et trivial, mais il n’est pas vraiment facile
à résoudre. Même si nous essayons de résoudre ce problème dans un réseau centralisé avec la
présence de serveur central qui a la connaissance globale et tout privilège sur le réseau, il n’est
pas intuitif de trouver une stratégie appropriée donnant toujours la solution optimale. Ainsi, la
question suivante examinée ici est d’étudier le problème d’ajout d’amis dans le réseau centralisé:

• Question 4: Protocoles d’ajout d’amis avec pleine connaissance (approche centralisée).

La résolution du problème dans le système distribué est plus difficile car il est généralement
impossible pour un nœud de connaître le réseau complètement et de recueillir des informations
d’autres nœuds pour demander ou accepter les relations d’amitié. Nous abordons également ce
problème dans le cadre décentralisé comme suit:

• Question 5: Protocoles d’ajout d’amis avec connaissance partielle (approche décentralisée).

A.3 Contributions

Il y a cinq questions à traiter dans cette thèse. Nous y répondons en présentant les contributions
clés suivantes:

1. Protocoles de sondage distribués déployés sur les réseaux sociaux originaux.

2. Protocoles d’ajout d’amis centralisé et décentralisé.

Protocoles de sondage distribués. Dans la conception de protocoles de vote distribués, nous
considérons un même modèle de système que celui de [82,83] (présenté ci-dessus).

Notre principal objectif est de garder la propriété naturelle du graphe, i.e., les utilisateurs et
les liens sociaux doivent être préservés, et chaque individu peut effectuer le processus de vote en
privé et en sécurité sans transformer le graphe en structure de recouvrement.

Premièrement, nous proposons la conception de protocoles de sondage décentralisés simples
ne nécessitant pas une autorité centrale et un système cryptographique et utilisant un schéma
de partage du secret. Deuxièmement, nous décrivons les propriétés requises sur le graphe social
pour assurer l’exactitude de chaque protocole. En plus, nous couvrons une famille de graphes et
montrons que leurs structures constituent des conditions nécessaires et suffisantes pour assurer
la confidentialité du sondage et limiter l’impact des utilisateurs malhonnêtes sur la précision du

136

A.3. Contributions

vote. Il est à noter qu’une structure de recouvrement à base d’anneau fait partie de notre famille
de graphes.

Plus précisément, nous décrivons les trois algorithmes de sondage distribués suivants:

• Le premier protocole utilise le modèle de communication synchrone dans lequel tous les
retards de connexion sont limités, et le système fonctionne grâce à la présence de l’horloge
globale dont les impulsions doivent respecter la propriété suivante: Si un utilisateur n
envoie un message à son voisin v au moment p, ce message doit arriver à v avant le mo-
ment p + 1. Ainsi, le système s’exécute grâce à la présence d’une l’horloge globale. Mais
les données envoyées par un nœud peuvent être corrompues par des nœuds intermédiaires
malhonnêtes. Par conséquent, un nœud honnête peut recevoir des valeurs distinctes de la
même source. Dans ce protocole, afin de prévenir les mauvais comportements des utilisa-
teurs, nous introduisons des procédures de vérification basées sur les tables de routage et
les longueurs des plus courts chemins.

• Le deuxième algorithme de vote est une version améliorée du premièr protocole. Il fonc-
tionne dans le modèle de réseau asynchrone où aucune horloge globale existe et les nœuds
ne peuvent pas décider leurs actions au moyen d’horloges. Un message envoyé à partir d’un
nœud voisin peut arriver dans un temps fini mais imprévisible. Mais il est impossible de
s’appuyer sur l’ordre d’arrivée des messages pour inférer l’ordre des calculs car l’arrivée des
messages peut être arbitraire du fait des vitesses de transmission différentes. Contraire-
ment au protocole ci-dessus, nous n’avons pas besoin de la connaissance des longueurs des
plus courts chemins pour éviter les mauvais comportements.

• Malgré l’utilisation de structures de graphes sociaux plus riches (incluant la structure de
recouvrement à base d’anneau présentée dans [82, 83]), un nœud peut recevoir/envoyer
beaucoup de messages dupliqués d’autres/à d’autres nœuds. Cela peut conduire à une
saturation du stockage local et à un coût de communication élevé. En s’inspirant de [166],
nous proposons un protocole d’interrogation asynchrone qui ne nécessite pas les procédures
de vérification et contient une méthode pour diffuser efficacement les messages pour une
famille de graphes sociaux satisfaisant ce que nous appelons la propriété de m-diffusion. Un
graphe satisfait la propriété dem-diffusion pour un paramètrem ∈ N tel que 1 ≤ m ≤ dmin,
où dmin est le degré minimal de nœud, si pour chaque nœud source, il existe un ordre
topologique des nœuds tel que chaque nœud est connecté directement à la source ou à
m nœuds qui le précèdent dans l’ordre par rapport à la source. En conséquence, au lieu
d’accepter tous les messages émis d’une source, un nœud n’en stocke que m passés par
des chemins ordonnés. Nous montrons que, le coût de communication et la complexité en
espace de ce protocole sont proches d’être linéaires.

Pour décrire soigneusement l’implantation distribuée du problème de sondage, nous consid-
érons les critères fondamentaux suivants: l’exactitude, la vie privée, et le nombre de nœuds
malhonnêtes.

En utilisant la même notion de paramètre de confidentialité k dans [82, 83], nous obtenons
les résultats suivants dans un système de taille N avec D utilisateurs malhonnêtes pour ces
protocoles: (i) la probabilité que le vote d’un nœud honnête est divulgué avec certitude est
au plus (D/N)k+1; (ii) au plus 2D votes peuvent être révélés avec certitude par la coalition
malhonnête; (iii) l’impact maximal de la coalition malhonnête sur le résultat final est (6k+ 4)D;
(iv) le nombre maximal de nœuds malhonnêtes que le système peut tolérer sont respectivement
N/10 et (m − 1)Diam(G)/2 (où Diam(G) est le diamètre du réseau) pour les deux premiers

137

Appendix A. Résumé de la Thèse en Français

algorithmes et la dernier. Nous validons nos solutions avec des évaluations de performance
qui montrent que nos protocoles sont précis et près de l’impact moyen théorique, c’est à dire
4k + 2α+ 2, où α est la proportion d’utilisateurs qui votent correctement.

Transformation de graphe. Nous décrivons d’abord le problème d’ajout d’amis qui ajoute un
nombre minimum Φ de liens et satisfait un paramètre de seuil c.

Pour les réseaux sociaux centralisés, nous proposons un algorithme qui peut calculer la
valeur Φ exacte avec une complexité de temps dans le pire cas O(N4) (et dans le meilleur
cas O(cN)). Afin de diminuer cette borne supérieure, nous prouvons qu’il existe des algorithmes
de 3

2 -approximation avec une complexité en temps de O(cN2).
Dans les réseaux sociaux décentralisés, nous montrons qu’aucun algorithme distribué est

meilleur que la solution centralisée par rapport à la valeur Φ pour toutes les structures de
graphe. De plus, nous montrons également qu’il n’y a pas de meilleure solution décentralisée,
c’est-à-dire, tout algorithme décentralisé peut être pire qu’un autre dans certains graphes, mais
il peut être meilleur dans d’autres scénarios. Nous validons notre solution avec une évaluation de
performance sur les graphes sociaux réels qui montre que nos protocoles sont exacts et dans les
bornes théoriques. À notre connaissance, notre travail est la première étude théorique du prob-
lème d’ajout d’amis dans les modèles centralisé et décentralisé, en utilisant seulement l’opération
d’adjonction de liens.

Publications. Certaines parties de cette thèse ont été publiées dans des conférences et soumises
dans des revues:

1. B.-T. Hoang and A. Imine. On the Polling Problem for Social Networks. In OPODIS,
pages 46–60, 2012.

2. B.-T. Hoang and A. Imine. On constrained adding friends in social networks. In SocInfo,
pages 467–477, 2013.

3. B.-T. Hoang and A. Imine. Flexible Polling Protocol for Decentralized Social Networks.
Submitted to ACM Transactions on Internet Technology.

A.4 Contenu principal

En bref, cette thèse est organisée comme suit.
Le chapitre 1 introduit la motivation et les contributions de la thèse.
le chapitre 2 donne un bref résumé des travaux antérieurs liés aux problèmes de sondage et

la transformation de graphe. Nous présentons leurs désavantages et déterminons en quoi ces
travaux se révèlent insuffisants pour satisfaire nos objectifs.

Dans le chapitre 3, nous fournissons les définitions de base et les notations qui seront utilisées
dans cette thèse. Nous introduisons également les procédures de prétraitement nécessaires pour
les algorithmes décrits dans cette thèse.

Dans les chapitres 4 et 5, nous présentons nos protocoles de sondage avec les procédures
de vérification, respectivement pour les modèles synchrone et asynchrone de réseaux sociaux.
Le chapitre 6 présente notre protocole de sondage décentralisé qui n’exige aucun processus de
vérification et qui est valable pour une famille de graphes sociaux satisfaisant la propriété de
m-diffusion (où m est inférieur ou égal au degré de nœud minimum). Chacun de ces chapitres
commence par introduire le modèle de vote, et une famille de graphes sociaux. Ensuite, il
présente le protocole de vote et analyse l’exactitude du protocole avec et sans présence de nœuds
malhonnêtes. Nous validons notre solution avec une évaluation expérimentale.

De plus, les protocoles de vote dans les chapitres 4 et 5 supposent l’existence d’une commu-
nication fiable entre les nœuds. Cependant, le réseau réel peut contenir un message perdu sur

138

A.4. Contenu principal

les canaux de communication ou une panne de nœuds. Dans le chapitre 6, nous analysons l’effet
de ces facteurs sur la précision et la terminaison du protocole en tenant compte de l’impact sur
le résultat final et la probabilité qu’un nœud ne parvient pas à décider et à calculer le résultat
final.

Le chapitre 7 décrit d’abord la définition du problème d’ajout d’amis. On présente ensuite les
protocoles d’ajout d’amis pour les réseaux sociaux centralisés avec leurs propriétés d’exactitude.
Nous décrivons également les algorithmes distribués, en montrant qu’aucun algorithme n’est
meilleur qu’un autre, et qu’ils ne peuvent pas rivaliser avec les solutions centralisées. Nous
comparons les performances des protocoles en illustrant nos résultats expérimentaux.

Finalement, dans le chapitre 8, nous concluons par un résumé de cette thèse, discutons de
nos réalisations ainsi que des limitations, en esquissant quelques directions de recherche pour le
futur.

139

Appendix A. Résumé de la Thèse en Français

140

Bibliography

[1] Diaspora. https://www.joindiaspora.com/.

[2] Digg. http://digg.com/.

[3] Friendica. http://friendica.com/.

[4] Madkit. http://www.madkit.org/.

[5] Tent. https://tent.io/.

[6] Yalps. http://yalps.gforge.inria.fr/.

[7] M. Abe. Universally verifiable mix-net with verification work independent of the number
of mix-servers. In EUROCRYPT, pages 437–447, 1998.

[8] M. Abe. Mix-networks on permutation networks. In ASIACRYPT, pages 258–273, 1999.

[9] D. J. Abraham, A. Levavi, D. Manlove, and G. O’Malley. The stable roommates problem
with globally ranked pairs. Internet Mathematics, 5(4):493–515, 2008.

[10] E. Adar and B. A. Huberman. Free riding on gnutella. First Monday, 5(10), 2000.

[11] C. C. Aggarwal and P. S. Yu, editors. Privacy-Preserving Data Mining - Models and
Algorithms, volume 34 of Advances in Database Systems. Springer, 2008.

[12] J. Alexander S. Kelso and V. P. Crawford. Job matching, coalition formation, and gross
substitutes. Econometrica, 50(6):1483–1504, November 1982.

[13] E. Anshelevich, O. Bhardwaj, and M. Hoefer. Friendship and stable matching. In ESA,
pages 49–60, 2013.

[14] R. P. Anstee. A polynomial algorithm for b-matchings: An alternative approach. Inf.
Process. Lett., 24(3):153–157, 1987.

[15] E. Arcaute and S. Vassilvitskii. Social networks and stable matchings in the job market.
In WINE, pages 220–231, 2009.

[16] E. M. Arkin, S. W. Bae, A. Efrat, K. Okamoto, J. S. B. Mitchell, and V. Polishchuk.
Geometric stable roommates. Inf. Process. Lett., 109(4):219–224, 2009.

[17] B. Awerbuch and C. Scheideler. Towards a scalable and robust DHT. Theory Comput.
Syst., 45(2):234–260, 2009.

141

https://www.joindiaspora.com/
http://digg.com/
http://friendica.com/
http://www.madkit.org/
https://tent.io/
http://yalps.gforge.inria.fr/

Bibliography

[18] L. Backstrom, C. Dwork, and J. M. Kleinberg. Wherefore art thou r3579x?: anonymized
social networks, hidden patterns, and structural steganography. In WWW, pages 181–190,
2007.

[19] L. Backstrom, C. Dwork, and J. M. Kleinberg. Wherefore art thou r3579x?: anonymized so-
cial networks, hidden patterns, and structural steganography. Commun. ACM, 54(12):133–
141, 2011.

[20] O. Baudron, P.-A. Fouque, D. Pointcheval, J. Stern, and G. Poupard. Practical multi-
candidate election system. In PODC, pages 274–283, 2001.

[21] J. C. Benaloh. Secret sharing homomorphisms: Keeping shares of a secret sharing. In
CRYPTO, pages 251–260, 1986.

[22] J. C. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections (extended abstract). In
STOC, pages 544–553, 1994.

[23] J. C. Benaloh and M. Yung. Distributing the power of a government to enhance the privacy
of voters (extended abstract). In PODC, pages 52–62, 1986.

[24] Y. Benkaouz and M. Erradi. A distributed protocol for privacy preserving aggregation with
non-permanent participants. Computing, pages 1–20, 2014.

[25] Y. Benkaouz, R. Guerraoui, M. Erradi, and F. Huc. A distributed polling with probabilistic
privacy. In SRDS, pages 41–50, 2013.

[26] G. R. Blakley. Safeguarding Cryptographic Keys. In AFIPS National Computer Confer-
ence, volume 48, pages 313–317, 1979.

[27] H. L. Bodlaender, R. B. Tan, and J. van Leeuwen. Finding a bigtriangleup-regular super-
graph of minimum order. Discrete Applied Mathematics, 131(1):3–9, 2003.

[28] P. Brandes and R. Wattenhofer. On Finding Better Friends in Social Networks. In SSS,
pages 266–278, 2012.

[29] G. Brassard, C. Crépeau, and J.-M. Robert. All-or-nothing disclosure of secrets. In
CRYPTO, pages 234–238, 1986.

[30] D. Bruschi, I. N. Fovino, and A. Lanzi. A protocol for anonymous and accurate e-polling.
In TCGOV, pages 112–121, 2005.

[31] C. Cachin, K. Kursawe, and V. Shoup. Random oracles in constantinople: Practical
asynchronous byzantine agreement using cryptography. J. Cryptology, 18(3):219–246, 2005.

[32] K. Cameron. Induced matchings. Discrete Applied Mathematics, 24(1-3):97–102, 1989.

[33] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computa-
tion. In STOC, pages 639–648, 1996.

[34] D. M. Cardoso, M. Kaminski, and V. V. Lozin. Maximum k -regular induced subgraphs.
J. Comb. Optim., 14(4):455–463, 2007.

[35] J. Casas-Roma, J. Herrera-Joancomartí, and V. Torra. An algorithm for k-degree
anonymity on large networks. In ASONAM, pages 671–675, 2013.

142

[36] M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive recovery. ACM
Trans. Comput. Syst., 20(4):398–461, 2002.

[37] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Com-
mun. ACM, 24(2):84–88, 1981.

[38] D. Chaum. Security without identification: Transaction systems to make big brother
obsolete. Commun. ACM, 28(10):1030–1044, 1985.

[39] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient un-
traceability. J. Cryptology, 1(1):65–75, 1988.

[40] D. Chaum. Elections with unconditionally-secret ballots and disruption equivalent to
breaking rsa. In EUROCRYPT, pages 177–182, 1988.

[41] D. Chaum. Untraceable electronic mail, return addresses and digital pseudonyms. In
Secure Electronic Voting, pages 211–219. 2003.

[42] D. Chaum and S. Roijakkers. Unconditionally secure digital signatures. In CRYPTO,
pages 206–214, 1990.

[43] F. Cheah and D. G. Corneil. The complexity of regular subgraph recognition. Discrete
Applied Mathematics, 27(1-2):59–68, 1990.

[44] B. Chen, H. Yu, Y. Zhao, and P. B. Gibbons. The cost of fault tolerance in multi-party
communication complexity. J. ACM, 61(3):19, 2014.

[45] S. Chester, J. Gaertner, U. Stege, and S. Venkatesh. Anonymizing subsets of social networks
with degree constrained subgraphs. In ASONAM, pages 418–422, 2012.

[46] S. Chester, B. M. Kapron, G. Ramesh, G. Srivastava, A. Thomo, and S. Venkatesh. k-
anonymization of social networks by vertex addition. In ADBIS (2), pages 107–116, 2011.

[47] S. Chester, B. M. Kapron, G. Srivastava, and S. Venkatesh. Complexity of social network
anonymization. Social Netw. Analys. Mining, 3(2):151–166, 2013.

[48] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and achieving
simultaneity in the presence of faults (extended abstract). In FOCS, pages 383–395, 1985.

[49] V. Chvátal, J. Sheehan, H. Fleischner, and C. Thomassen. Three-regular subgraphs of
four-regular graphs. Journal of Graph Theory, 3(4):371–386, 1979.

[50] J. D. Cohen and M. J. Fischer. A robust and verifiable cryptographically secure election
scheme (extended abstract). In FOCS, pages 372–382, 1985.

[51] G. Cornuéjols. General factors of graphs. J. Comb. Theo., 45(2):185–198, 1988.

[52] C. P. Costa and J. M. Almeida. Reputation systems for fighting pollution in peer-to-peer
file sharing systems. In Peer-to-Peer Computing, pages 53–60, 2007.

[53] R. Cramer, I. Damgård, and U. M. Maurer. General secure multi-party computation from
any linear secret-sharing scheme. In EUROCRYPT, pages 316–334, 2000.

[54] R. Cramer, M. K. Franklin, B. Schoenmakers, and M. Yung. Multi-autority secret-ballot
elections with linear work. In EUROCRYPT, pages 72–83, 1996.

143

Bibliography

[55] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-
authority election scheme. European Transactions on Telecommunications, 8(5):481–490,
1997.

[56] I. Damgård, Y. Ishai, and M. Krøigaard. Perfectly secure multiparty computation and the
computational overhead of cryptography. In EUROCRYPT, pages 445–465, 2010.

[57] I. Damgård, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. Smith. Scalable multiparty
computation with nearly optimal work and resilience. In CRYPTO, pages 241–261, 2008.

[58] I. Damgård and M. Jurik. A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In Public Key Cryptography, 4th International
Workshop on Practice and Theory in Public Key Cryptography, PKC 2001, Cheju Island,
Korea, February 13-15, 2001, Proceedings, pages 119–136, 2001.

[59] I. Damgård and J. B. Nielsen. Scalable and unconditionally secure multiparty computation.
In CRYPTO, pages 572–590, 2007.

[60] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and P. Samarati. Managing and Sharing
Servents’ Reputations in P2P Systems. IEEE Trans. Knowl. Data Eng., 15(4):840–854,
2003.

[61] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and E. Ruppert. Secretive birds: Privacy
in population protocols. In OPODIS, pages 329–342, 2007.

[62] D. Dutta, A. Goel, R. Govindan, and H. Zhang. The design of a distributed rating scheme
for peer-to-peer systems. In P2P Econ, 2003.

[63] F. Echenique and J. Oviedo. A Theory of Stability in Many-to-many Matching Markets.
Theoretical Economics, 2006.

[64] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. J. Res. Nat. Bur. of
Stand. Sec. B, 69:125–130, 1965.

[65] B. Englert and R. Gheissari. Multivalued and deterministic peer-to-peer polling in social
networks with reputation conscious participants. In TrustCom/ISPA/IUCC, pages 895–
902, 2013.

[66] K. Eriksson and O. Häggström. Instability of matchings in decentralized markets with
various preference structures. Int. J. Game Theory, 36(3-4):409–420, 2008.

[67] T. Feder, N. Megiddo, and S. A. Plotkin. A sublinear parallel algorithm for stable matching.
Theor. Comput. Sci., 233(1-2):297–308, 2000.

[68] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In FOCS,
pages 427–437, 1987.

[69] T. Fleiner, R. W. Irving, and D. Manlove. An algorithm for a super-stable roommates
problem. Theor. Comput. Sci., 412(50):7059–7065, 2011.

[70] P. Floréen, P. Kaski, V. Polishchuk, and J. Suomela. Almost Stable Matchings by Trun-
cating the Gale-Shapley Algorithm. Algorithmica, 58(1):102–118, 2010.

144

[71] A. Fujioka, T. Okamoto, and K. Ohta. A practical secret voting scheme for large scale
elections. In AUSCRYPT, pages 244–251, 1992.

[72] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data publishing: A
survey of recent developments. ACM Comput. Surv., 42(4), 2010.

[73] D. Gale and L. S. Shapley. College Admissions and the Stability of Marriage. The Amer.
Math. Month., 69(1):9–15, 1962.

[74] Z. Galil and M. Yung. Partitioned encryption and achieving simultaneity by partitioning.
Inf. Process. Lett., 26(2):81–88, 1987.

[75] T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[76] S. Gambs, R. Guerraoui, H. Harkous, F. Huc, and A.-M. Kermarrec. Scalable and secure
polling in dynamic distributed networks. In SRDS, pages 181–190, 2012.

[77] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[78] H. Ghodosi, J. Pieprzyk, and R. Steinfeld. Multi-party computation with conversion of
secret sharing. Des. Codes Cryptography, 62(3):259–272, 2012.

[79] A. Giurgiu, R. Guerraoui, K. Huguenin, and A.-M. Kermarrec. Computing in Social
Networks. J. Infor. and Comp., 2013.

[80] A. Giurgiu, R. Guerraoui, K. Huguenin, and A.-M. Kermarrec. Computing in social net-
works. Information and Computation, 234(0):3–16, 2014.

[81] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186–208, 1989.

[82] R. Guerraoui, K. Huguenin, A.-M. Kermarrec, and M. Monod. Decentralized Polling with
Respectable Participants. In OPODIS, pages 144–158, 2009.

[83] R. Guerraoui, K. Huguenin, A.-M. Kermarrec, M. Monod, and Y. Vigfusson. Decentralized
polling with respectable participants. J. Parallel Distrib. Comput., 72(1):13–26, 2012.

[84] M. Gupta, P. Judge, and M. H. Ammar. A reputation system for peer-to-peer networks.
In NOSSDAV, pages 144–152, 2003.

[85] D. Gusfield and R. W. Irving. The Stable marriage problem - structure and algorithms.
Foundations of computing series. MIT Press, 1989.

[86] M. M. Halldórsson, R. W. Irving, K. Iwama, D. Manlove, S. Miyazaki, Y. Morita, and
S. Scott. Approximability results for stable marriage problems with ties. Theor. Comput.
Sci., 306(1-3):431–447, 2003.

[87] M. M. Halldórsson, K. Iwama, S. Miyazaki, and H. Yanagisawa. Randomized approxima-
tion of the stable marriage problem. Theor. Comput. Sci., 325(3):439–465, 2004.

[88] L. Harn and C. Lin. Strong (n, t, n) verifiable secret sharing scheme. Inf. Sci., 180(16):3059–
3064, 2010.

145

Bibliography

[89] S. Hartung, C. Hoffmann, and A. Nichterlein. Improved upper and lower bound heuristics
for degree anonymization in social networks. In SEA, pages 376–387, 2014.

[90] S. Hartung, A. Nichterlein, R. Niedermeier, and O. Suchý. A refined complexity analysis
of degree anonymization in graphs. In ICALP (2), pages 594–606, 2013.

[91] O. Hasan, L. Brunie, and E. Bertino. Preserving privacy of feedback providers in decen-
tralized reputation systems. Computers & Security, 31(7):816–826, 2012.

[92] O. Hasan, L. Brunie, E. Bertino, and N. Shang. A decentralized privacy preserving rep-
utation protocol for the malicious adversarial model. IEEE Transactions on Information
Forensics and Security, 8(6):949–962, 2013.

[93] M. Hay, G. Miklau, D. Jensen, D. F. Towsley, and C. Li. Resisting structural re-
identification in anonymized social networks. VLDB J., 19(6):797–823, 2010.

[94] M. Hirt and K. Sako. Efficient receipt-free voting based on homomorphic encryption. In
EUROCRYPT, pages 539–556, 2000.

[95] B.-T. Hoang and A. Imine. On the Polling Problem for Social Networks. In OPODIS,
pages 46–60, 2012.

[96] M. Hoefer. Local Matching Dynamics in Social Networks. In ICALP (2), pages 113–124,
2011.

[97] M. Hoefer. Local matching dynamics in social networks. Inf. Comput., 222:20–35, 2013.

[98] S. Holzer and R. Wattenhofer. Optimal distributed all pairs shortest paths and applications.
In PODC, pages 355–364, 2012.

[99] R. W. Irving. An efficient algorithm for the "stable roommates" problem. J. Algorithms,
6(4):577–595, 1985.

[100] R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. E. Paluch. Rank-maximal
matchings. ACM Transactions on Algorithms, 2(4):602–610, 2006.

[101] R. W. Irving and D. Manlove. The stable roommates problem with ties. J. Algorithms,
43(1):85–105, 2002.

[102] R. W. Irving and D. Manlove. An 8/5-approximation algorithm for a hard variant of stable
marriage. In COCOON, pages 548–558, 2007.

[103] R. W. Irving and D. Manlove. Approximation algorithms for hard variants of the stable
marriage and hospitals/residents problems. J. Comb. Optim., 16(3):279–292, 2008.

[104] Y. Ishai, E. Kushilevitz, and A. Paskin. Secure multiparty computation with minimal
interaction. In CRYPTO, pages 577–594, 2010.

[105] K. Iwama, D. Manlove, S. Miyazaki, and Y. Morita. Stable marriage with incomplete lists
and ties. In ICALP, 1999.

[106] K. Iwama, S. Miyazaki, and N. Yamauchi. A 1.875: approximation algorithm for the stable
marriage problem. In SODA, pages 288–297, 2007.

146

[107] K. Iwama, S. Miyazaki, and N. Yamauchi. A (2-c(1/sqrt(n)))-approximation algorithm for
the stable marriage problem. Algorithmica, 51(3):342–356, 2008.

[108] K. Iwama, S. Miyazaki, and H. Yanagisawa. A 25/17-approximation algorithm for the
stable marriage problem with one-sided ties. Algorithmica, 68(3):758–775, 2014.

[109] M. Jakobsson. A practical mix. In EUROCRYPT, pages 448–461, 1998.

[110] M. Jakobsson. Flash mixing. In PODC, pages 83–89, 1999.

[111] M. Jakobsson, A. Juels, and R. L. Rivest. Making mix nets robust for electronic voting by
randomized partial checking. In USENIX Security Symposium, pages 339–353, 2002.

[112] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their applica-
tions. In EUROCRYPT, pages 143–154, 1996.

[113] R. J. B. Jr. and R. Agrawal. Data privacy through optimal k-anonymization. In ICDE,
pages 217–228, 2005.

[114] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm for repu-
tation management in p2p networks. In WWW, pages 640–651, 2003.

[115] T. Kavitha and C. D. Shah. Efficient algorithms for weighted rank-maximal matchings
and related problems. In ISAAC, pages 153–162, 2006.

[116] S. Khazaei and D. Wikström. Randomized partial checking revisited. In Topics in Cryp-
tology - CT-RSA 2013 - The Cryptographers’ Track at the RSA Conference 2013, San
Francisco,CA, USA, February 25-March 1, 2013. Proceedings, pages 115–128, 2013.

[117] S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line algorithms for weighted bipartite
matching and stable marriages. Theor. Comput. Sci., 127(2):255–267, 1994.

[118] Z. Király. Better and simpler approximation algorithms for the stable marriage problem.
Algorithmica, 60(1):3–20, 2011.

[119] B. Korte and J. Vygen. Combinatorial optimization. Alg. Comb., 21, 2008.

[120] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[121] M. Ley and P. Reuther. Maintaining an Online Bibliographical Database: The Problem of
Data Quality. In EGC, 2006.

[122] Z. Li, H. Shen, and K. Sapra. Leveraging social networks to combat collusion in reputation
systems for peer-to-peer networks. IEEE Trans. Computers, 62(9):1745–1759, 2013.

[123] K. Liu and E. Terzi. Towards identity anonymization on graphs. In SIGMOD Conference,
pages 93–106, 2008.

[124] Y.-X. Liu, L. Harn, C.-N. Yang, and Y. Zhang. Efficient (n, t, n) secret sharing schemes.
Journal of Systems and Software, 85(6):1325–1332, 2012.

[125] L. Lovász. The factorization of graphs. In Combinatorial Structures and Their Apps, pages
243–246, 1970.

147

Bibliography

[126] L. Lovász. The factorization of graphs. II. Act. Ma. Aca. Sc. Hung., 23:223–246, 1972.

[127] L. Lovász and M. D. Plummer. Matching Theory. North-Holland Math. Stud. Elsevier
Science Publisher, North-Holland, 1986.

[128] X. Lu, Y. Song, and S. Bressan. Fast identity anonymization on graphs. In DEXA (1),
pages 281–295, 2012.

[129] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. L-diversity: Pri-
vacy beyond k-anonymity. TKDD, 1(1), 2007.

[130] D. Malkhi, O. Margo, and E. Pavlov. E-voting without ’cryptography’. In Financial
Cryptography, pages 1–15, 2002.

[131] D. Malkhi and E. Pavlov. Anonymity without ’cryptography’. In Financial Cryptography,
pages 108–126, 2001.

[132] D. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants of stable
marriage. Theor. Comput. Sci., 276(1-2):261–279, 2002.

[133] L. Mathieson and S. Szeider. Editing graphs to satisfy degree constraints: A parameterized
approach. J. Comput. Syst. Sci., 78(1):179–191, 2012.

[134] U. M. Maurer. Secure multi-party computation made simple. Discrete Applied Mathemat-
ics, 154(2):370–381, 2006.

[135] R. C. Merkle. Secure communications over insecure channels. Commun. ACM, 21(4):294–
299, 1978.

[136] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In PODS, pages
223–228, 2004.

[137] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement
and Analysis of Online Social Networks. In IMC, 2007.

[138] A. Mislove, A. Post, P. Druschel, and P. K. Gummadi. Ostra: Leveraging trust to thwart
unwanted communication. In NSDI, pages 15–30, 2008.

[139] G. D. F. Morales, A. Gionis, and M. Sozio. Social content matching in mapreduce. PVLDB,
4(7):460–469, 2011.

[140] O. Moreno and V. A. Zinoviev. Three-regular Subgraphs of Four-regular Graphs. European
Journal of Combinatorics, 19(3):369–373, 1998.

[141] H. Moser and D. M. Thilikos. Parameterized complexity of finding regular induced sub-
graphs. J. Discrete Algorithms, 7(2):181–190, 2009.

[142] M. Naor and B. Pinkas. Oblivious transfer with adaptive queries. In CRYPTO, pages
573–590, 1999.

[143] V. Nikov and S. Nikova. On a relation between verifiable secret sharing schemes and a
class of error-correcting codes. In WCC, pages 275–290, 2005.

[144] W. Ogata, K. Kurosawa, K. Sako, and K. Takatani. Fault tolerant anonymous channel. In
ICICS, pages 440–444, 1997.

148

[145] T. Okamoto. Receipt-free electronic voting schemes for large scale elections. In Security
Protocols Workshop, pages 25–35, 1997.

[146] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT, pages 223–238, 1999.

[147] C. Park, K. Itoh, and K. Kurosawa. Efficient anonymous channel and all/nothing election
scheme. In EUROCRYPT, pages 248–259, 1993.

[148] E. Pavlov, J. S. Rosenschein, and Z. Topol. Supporting privacy in decentralized additive
reputation systems. In iTrust, pages 108–119, 2004.

[149] M. C. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
J. ACM, 27(2):228–234, 1980.

[150] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In CRYPTO, pages 129–140, 1991.

[151] T. P. Pedersen. A threshold cryptosystem without a trusted party (extended abstract). In
EUROCRYPT, pages 522–526, 1991.

[152] D. Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.

[153] D. Peleg, L. Roditty, and E. Tal. Distributed algorithms for network diameter and girth.
In ICALP (2), pages 660–672, 2012.

[154] M. O. Rabin. How to exchange secrets with oblivious transfer. IACR Cryptology ePrint
Archive, 2005:187, 2005.

[155] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In STOC, pages 73–85, 1989.

[156] P. Resnick and R. Zeckhauser. Trust among strangers in internet transactions: Empirical
analysis of ebay’s reputation system. Advances in applied microeconomics, 11:127–157,
2002.

[157] R. L. Rivest. Chaffing and winnowing: confidentiality without encryption. In RSA Labo-
ratories CryptoBytes 4, 1998.

[158] M. Rodriguez-Perez, O. Esparza, and J. L. Muñoz. Analysis of peer-to-peer distributed
reputation schemes. In CollaborateCom, 2005.

[159] E. Ronn. Np-complete stable matching problems. J. Algorithms, 11(2):285–304, 1990.

[160] K. Sako. Electronic voting schemes allowing open objection to the tally. IEICE, E77-A(1),
1994.

[161] K. Sako and J. Kilian. Secure voting using partially compatible homomorphisms. In
CRYPTO, pages 411–424, 1994.

[162] K. Sako and J. Kilian. Receipt-free mix-type voting scheme - a practical solution to the
implementation of a voting booth. In EUROCRYPT, pages 393–403, 1995.

[163] P. Samarati. Protecting respondents’ identities in microdata release. IEEE Trans. Knowl.
Data Eng., 13(6):1010–1027, 2001.

149

Bibliography

[164] P. Samarati and L. Sweeney. Generalizing Data to Provide Anonymity when Disclosing
Information. In PODS, 1998.

[165] B. Schoenmakers. A simple publicly verifiable secret sharing scheme and its application to
electronic. In CRYPTO, pages 148–164, 1999.

[166] N. B. Shah, K. V. Rashmi, and K. Ramchandran. Secure network coding for distributed
secret sharing with low communication cost. In ISIT, pages 2404–2408, 2013.

[167] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[168] A. Singh and L. Liu. Trustme: Anonymous management of trust relationships in decen-
tralized p2p systems. In Peer-to-Peer Computing, pages 142–149, 2003.

[169] M. Sirivianos, K. Kim, and X. Yang. Socialfilter: Introducing social trust to collaborative
spam mitigation. In INFOCOM, pages 2300–2308, 2011.

[170] C. Sommer. Dblp graph. http://www.sommer.jp/graphs/.

[171] S. Song, K. Hwang, R. Zhou, and Y.-K. Kwok. Trusted p2p transactions with fuzzy
reputation aggregation. IEEE Internet Computing, 9(6):24–34, 2005.

[172] M. Srivatsa, L. Xiong, and L. Liu. Trustguard: countering vulnerabilities in reputation
management for decentralized overlay networks. In WWW, pages 422–431, 2005.

[173] I. A. Stewart. On locating cubic subgraphs in bounded-degree connected bipartite graphs.
Discrete Mathematics, 163(1-3):319–324, 1997.

[174] L. J. Stockmeyer and V. V. Vazirani. Np-completeness of some generalizations of the
maximum matching problem. Inf. Process. Lett., 15(1):14–19, 1982.

[175] L. Sweeney. k-anonymity: A model for protecting privacy. International Journal of Un-
certainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.

[176] A. Tamir and J. S. B. Mitchell. A maximum b-matching problem arising from median
location models with applications to the roommates problem. Math. Program., 80:171–
194, 1998.

[177] D. N. Tran, B. Min, J. Li, and L. Subramanian. Sybil-resilient online content voting. In
NSDI, pages 15–28, 2009.

[178] W. T. Tutte. A short proof of the factor problem for finite graphs. Canad. J. Math.,
6:347–352, 1954.

[179] W. T. Tutte. Spanning subgraphs with specified valencies. Discrete Mathematics, 306(10-
11):932–938, 2006.

[180] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow. The anatomy of the facebook social
graph. CoRR, 1111.4503, 2011.

[181] L.-H. Vu, K. Aberer, S. Buchegger, and A. Datta. Enabling Secure Secret Sharing in
Distributed Online Social Networks. In ACSAC, pages 419–428, 2009.

150

http://www.sommer.jp/graphs/

[182] K. Walsh and E. G. Sirer. Experience with an object reputation system for peer-to-peer
filesharing (awarded best paper). In 3rd Symposium on Networked Systems Design and
Implementation (NSDI 2006), May 8-10, 2007, San Jose, California, USA, Proceedings.,
2006.

[183] L. Xiong and L. Liu. Peertrust: Supporting reputation-based trust for peer-to-peer elec-
tronic communities. IEEE Trans. Knowl. Data Eng., 16(7):843–857, 2004.

[184] M. Yamashita and T. Kameda. Computing on an anonymous network. In Proceedings of
the Seventh Annual ACM Symposium on Principles of Distributed Computing, Toronto,
Ontario, Canada, August 15-17, 1988, pages 117–130, 1988.

[185] X. Ying and X. Wu. Randomizing social networks: a spectrum preserving approach. In
SDM, pages 739–750, 2008.

[186] M. Young, A. Kate, I. Goldberg, and M. Karsten. Practical robust communication in
dhts tolerating a byzantine adversary. In 2010 International Conference on Distributed
Computing Systems, ICDCS 2010, Genova, Italy, June 21-25, 2010, pages 263–272, 2010.

[187] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. Sybillimit: A near-optimal social network
defense against sybil attacks. IEEE/ACM Trans. Netw., 18(3):885–898, 2010.

[188] H. Yu, M. Kaminsky, P. B. Gibbons, and A. D. Flaxman. Sybilguard: defending against
sybil attacks via social networks. IEEE/ACM Trans. Netw., 16(3):576–589, 2008.

[189] M. Yuan, L. Chen, and P. S. Yu. Personalized privacy protection in social networks.
PVLDB, 4(2):141–150, 2010.

[190] E. Zheleva and L. Getoor. Preserving the privacy of sensitive relationships in graph data.
In PinKDD, pages 153–171, 2007.

[191] B. Zhou and J. Pei. Preserving Privacy in Social Networks Against Neighborhood Attacks.
In ICDE, 2008.

[192] B. Zhou and J. Pei. The k-anonymity and l-diversity approaches for privacy preservation
in social networks against neighborhood attacks. Knowl. Inf. Syst., 28(1):47–77, 2011.

[193] R. Zhou and K. Hwang. Powertrust: A robust and scalable reputation system for trusted
peer-to-peer computing. IEEE Trans. Parallel Distrib. Syst., 18(4):460–473, 2007.

[194] R. Zhou, K. Hwang, and M. Cai. Gossiptrust for fast reputation aggregation in peer-to-peer
networks. IEEE Trans. Knowl. Data Eng., 20(9):1282–1295, 2008.

[195] A. Zwierko and Z. Kotulski. A light-weight e-voting system with distributed trust. Electr.
Notes Theor. Comput. Sci., 168:109–126, 2007.

151

Bibliography

152

Résumé
Un des thèmes pratiques, mais hautement sensibles, est le problème de sondage dans les réseaux
sociaux où le caractère secret des informations sélectionnées et la réputation de l’utilisateur sont
très critiques. En effet, les utilisateurs désirent préserver la confidentialité de leurs votes et dis-
simuler, le cas échéant, leurs mauvais comportements. Récemment, Guerraoui et al. ont proposé
des protocoles de sondage basés sur la partage de secret et ne nécessitant aucune infrastruc-
ture cryptographique. Néanmoins, ces protocoles ne sont applicables que si le graphe social a
une structure d’anneau et le nombre d’utilisateurs est un carré parfait. Dans cette thèse, nous
traitons, d’une part, du problème du déploiement décentralisé des protocoles de sondage qui sont
basés sur des graphes sociaux ayant des structures générales, et d’autre part, du problème de
transformation des graphes sociaux pour augmenter les propriétés de vie privée et de précision,
nécessaires au déroulement sûr et rentable du sondage décentralisé. Premièrement, nous pro-
posons trois protocoles décentralisés qui s’appuient sur l’état originel (sans transformation) des
graphes sociaux. Les deux premiers protocoles utilisent respectivement des modèles de commu-
nication synchrone et asynchrone, et manipulent des procédures de vérification pour détecter les
utilisateurs malhonnêtes. Quant au troisième protocole, il est asynchrone et ne nécessite pas
de procédures de vérification. Pour que ce protocole permette une diffusion efficace de mes-
sages, nous avons défini une propriété sur les graphes sociaux, appelée “m-broadcasting”. Dans
la deuxième partie de la thèse, nous formalisons le problème de “l’ajout des amis” qui consiste à
trouver une transformation optimale des graphes sociaux pour les adapter au partage de secret.
Pour résoudre ce problème, nous présentons deux algorithmes selon deux approches différentes:
centralisée et décentralisée. Une évaluation expérimentale montre que nos protocoles sont précis
et restreints aux bornes théoriques.

Mots-clés: Réseaux sociaux, Protocole de sondage, Partage de secret, Vie privée, Ajout de
contacts, Problème d’édition dans les graphes, Algorithmes centralisé et décentralisé.

Abstract

One of the current practical, useful but sensitive topic in social networks is polling problem
where the privacy of exchanged information and user reputation are very critical. Indeed, users
want to preserve the confidentiality of their votes and to hide, if any, their misbehaviors. Recently,
Guerraoui et al. proposed polling protocols based on simple secret sharing scheme and without
requiring any central authority or cryptography system. However these protocols can be deployed
safely and efficiently provided that the social graph structure should be transformed into a ring
structure-based overlay and the number of participating users is perfect square. In this thesis,
we address the problem of deploying decentralized polling protocols for general social graphs
and how to transform these graphs in order to increase the privacy and/or accuracy properties.
First, we propose three simple decentralized polling protocols that rely on the current state of
social graphs. The two first protocols use synchronous and asynchronous models and verification
procedures to detect the misbehaving users. The third protocol is an asynchronous one that
does not require any verification procedures and contains a method for efficiently broadcasting
message under a family of social graphs satisfying what we call the m-broadcasting property.
Second, we formalize the “adding friends” problem such that we can reuse the social graphs after
some minimum structural modifications consisting in adding new friendship relations. We also
devise algorithms for solving this problem in centralized and decentralized networks. We validate
our solutions with some performance evaluations which show that our protocols are accurate,
and inside the theoretical bounds.

Keywords: Social networks, Polling protocol, Secret sharing, Privacy, Adding friends, Graph
editing, Centralized and decentralized algorithms.

153

154

	Introduction
	Context
	Motivation
	Contributions
	Roadmap

	State of the Art
	Polling Protocols
	Cryptographic-based approaches
	Secret sharing scheme based approaches

	Graph transformation problem
	Matching problems
	Graph anonymization

	Summary and Discussion

	Background
	Distributed systems
	Communication
	Network knowledge
	Timing and synchrony

	The social network model
	Social graph model
	Algorithm performance

	Preprocessing algorithms
	Tree building
	All-pairs of shortest paths and network diameter

	Summary and Discussion

	Synchronous Model-based Polling Protocol
	Polling model
	User behaviors
	Social graph model

	Polling protocol
	Correctness
	Properties of protocol
	Protocol and graph without dishonest nodes
	Protocol and graph with dishonest nodes
	Particular networks

	Experimental evaluation
	Summary and discussion

	Asynchronous Model-based Polling Protocol
	Polling model
	Social interactions
	Description of graph model

	Polling protocol
	Correctness
	Protocol and graph without dishonest nodes
	Protocol and graph with dishonest nodes

	Experimental evaluation
	Summary and discussion

	Polling Protocol with Efficient Communication
	Polling model
	Social graph model
	Secret sharing based graphs

	Polling protocol
	Correctness and Complexity Analysis
	Protocol and graph without dishonest nodes
	Protocol and graph with dishonest nodes

	Crash and message loss analysis
	Particular graphs
	Summary and discussion

	On Constrained Adding Friends in Social Networks
	Problem statement
	Notations
	Problem definition

	Centralized protocol
	Protocol description
	Correctness
	Greedy algorithm

	Decentralized protocol
	Model
	Protocol description
	Correctness
	Algorithms comparison

	Experimental evaluation
	Datasets
	Experimental setup
	Results

	Conclusion

	Conclusion
	Summary
	Discussion and future perspectives

	Résumé de la Thèse en Français
	Contexte
	Motivation
	Contributions
	Contenu principal

	Bibliography

