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Abstract

In this thesis, we study some dependence modeling problems between continuous time stochastic
processes. These results are applied to the modeling and risk management of electricity markets.

In a first part, we propose new copulae to model the dependence between two Brownian motions
and to control the distribution of their difference. We show that the class of admissible copulae for
the Brownian motions contains asymmetric copulae. These copulae allow for the survival function
of the difference between two Brownian motions to have higher value in the right tail than in the
Gaussian copula case. Results are applied to the joint modeling of electricity and other energy
commodity prices.

In a second part, we consider a stochastic process which is a sum of a continuous semimartingale
and a mean reverting compound Poisson process and which is discretely observed. An estimation
procedure is proposed for the mean reversion parameter of the Poisson process in a high frequency
framework with finite time horizon, assuming this parameter is large. Results are applied to the
modeling of the spikes in electricity prices time series.

In a third part, we consider a doubly stochastic Poisson process with stochastic intensity function
of a continuous semimartingale. A local polynomial estimator is considered in order to infer the
intensity function and a method is given to select the optimal bandwidth. An oracle inequality is
derived. Furthermore, a test is proposed in order to determine if the intensity function belongs to
some parametrical family. Using these results, we model the dependence between the intensity of
electricity spikes and exogenous factors such as the wind production.

Keywords
Dependence ; Copula ; Brownian motion ; High frequency statistics ; Semimartingale ; Poisson pro-
cess ; Stochastic intensity ; Non parametric estimation ; Local polynomial estimation ; Bandwidth
selection ; Oracle inequality ; Electricity markets ; Spikes ; Wind production ; Risk management ;
Mathematical finance.
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Résumé

Cette thèse traite de problèmes de dépendance entre processus stochastiques en temps continu. Ces
résultats sont appliqués à la modélisation et à la gestion des risques des marchés de l’électricité.

Dans une première partie, de nouvelles copules sont établies pour modéliser la dépendance entre
deux mouvements Browniens et contrôler la distribution de leur différence. On montre que la classe
des copules admissibles pour les Browniens contient des copules asymétriques. Avec ces copules,
la fonction de survie de la différence des deux Browniens est plus élevée dans sa partie positive
qu’avec une dépendance gaussienne. Les résultats sont appliqués à la modélisation jointe des prix
de l’électricité et d’autres commodités énergétiques.

Dans une seconde partie, nous considérons un processus stochastique observé de manière discrète
et défini par la somme d’une semimartingale continue et d’un processus de Poisson composé avec
retour à la moyenne. Une procédure d’estimation pour le paramètre de retour à la moyenne est
proposée lorsque celui-ci est élevé dans un cadre de statistique haute fréquence en horizon fini. Ces
résultats sont utilisés pour la modélisation des pics dans les prix de l’électricité.

Dans une troisième partie, on considère un processus de Poisson doublement stochastique dont l’in-
tensité stochastique est une fonction d’une semimartingale continue. Pour estimer cette fonction,
un estimateur à polynômes locaux est utilisé et une méthode de sélection de la fenêtre est proposée
menant à une inégalité oracle. Un test est proposé pour déterminer si la fonction d’intensité appar-
tient à une certaine famille paramétrique. Grâce à ces résultats, on modélise la dépendance entre
l’intensité des pics de prix de l’électricité et de facteurs exogènes tels que la production éolienne.

Mots-clés
Dépendance ; Copule ; Mouvement Brownien ; Statistique haute fréquence ; Semimartingale ; Pro-
cessus de Poisson ; Intensité stochastique ; Estimation non paramétrique ; Estimateur à polynômes
locaux ; Sélection de fenêtre ; Inégalité oracle ; Marchés de l’électricité ; Pics ; Production éolienne ;
Gestion des risques ; Finance mathématique.
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Introduction

1 Context

1.1 Motivation

This thesis focuses on dependence modeling between continuous time stochastic processes and their
statistical estimation for risk management purposes. The different works of this thesis are driven
by one application: the modeling of electricity markets. In particular, we are interested in the
modeling of the dependence between electricity prices and different risk factors. Electricity being
produced using other energy commodities which are traded on financial markets, there exists a
dependence between its prices and the other commodity prices. Electricity prices are also strongly
related to physical factors (electricity consumption, weather variable like wind, temperature...)
which are considered as risk factors. For instance, especially in France, low temperature leads to
the use of heating which leads to an increase of the demand and then of the electricity prices. In
Germany, high wind leads to an increase of renewable production and then a decrease of electricity
prices. These two types of dependence,

1) commodity dependence and

2) physical dependence,

are the main applications to our works.

Taking into account these dependences is necessary and have at least two main interests:

• to better capture the dynamics of the electricity prices and its behavior,

• to have a better quantification of financial risks ;

these two points are of course related. We can for instance take the point of view of an electricity
producer which owns a coal plant. If St denotes the electricity price at time t, Ct denotes the coal
price at time t and K a fixed cost, its incomes at time T can be modeled in a simplified way by
R T

0

(St �HCt �K)

+ dt where H is a constant of normalization between electricity prices and coal
prices which are not of the same unit. It is then important to have a model that represents well
the statistical properties of the two time series S and C but it is also important to model their
dependence. The dependence between S and C has an impact on the distribution of the incomes
and then on the financial risks of the producer. An other example considered in this thesis is the
one of a producer wanting to buy a part Q of the wind production Wt at a fixed price K during
a period T . Its incomes at time T are equals to Q

R T

0

Wt (St �K) dt and the dependence between

1
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S and W will have an impact on its distribution. These dependences also have an impact on the
way to hedge the different risks.
Continuous time stochastic processes are convenient tools in order to model the dynamics of the
prices, especially in a risk management context. Indeed, stochastic calculus is an useful tool for
pricing and hedging financial options. Whereas theoretical studies are at the heart of this thesis,
operational feasibility can not be neglected:

• proposed models have to be tractable, simulation and pricing of classical options have to be
feasible in a reasonable time ;

• estimation problematics have to be considered in a context of discrete time observations.

This context leads us to study in this thesis two types of dependence:

(i) the dependence between two Brownian motions in Chapter 1 and Chapter 2, applied to the
dependence modeling between electricity prices and fuel prices,

(ii) the dependence between a point process and a continuous semimartingale in Chapter 4 and
Chapter 5, applied to the dependence between spikes frequency appearance of electricity
prices and exogenous factors. An estimation procedure for the intensity function depending
on an exogenous variable is proposed in Chapter 4.

Before studying the dependence between spikes and exogenous factors, one prerequisite is to pro-
pose a model that we can infer for the spike modeling of electricity spot prices and that is adapted
for risk management purposes ; this corresponds to Chapter 3 where we propose the estimation of
a spike process noised by a continuous semimartingale.

1.2 Description of electricity markets
In order to better understand the modeling, we briefly describe in this section the electricity
markets. Electricity markets are local markets, that is there is one market by country and the
regulation is different depending on the country. However, equilibrium between consumption and
production needs to be satisfied everywhere and we find the same market structure in different
countries. There exists three submarkets ordered according to the time horizon.

The intraday market

This market is an over the counter market and corresponds to a maturity less than one day. It
insures the security of the system by a balancing mechanism: the different actors can rebalance
their offer or demand continuously. We do not not give more details as this market is not considered
in this thesis.

The spot market

The spot market is a physical market where the electricity is delivered. It is an auction market
driven by the equilibrium between demand and supply. The day before delivery, each participant
submits a bid curve per hour (or semi-hour). This curve is constructed using merit order: the
cheapest mean of production is used first, which is solar and wind production in general. As other
energy commodities are used to produce electricity, their price has an impact on this curve and
then on spot price ; dependence is then strong. The demand is crossed with the supply for each
hour (or semi-hour) giving the spot price.

2
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Remark The spot price is more a day ahead price than a spot price because the price is fixed
24 hours before.

The electricity is not a classical financial asset and presents some particularities. First, it is non
storable and can not be traded as any financial asset. Second, prices have a delivery period: the
electricity is not delivered instantly but continuously during a period of 1 hour for instance. All
these particularities leads to the following features of electricity spot prices time series:

• Seasonality: they exhibit daily, weekly and yearly seasonality. This seasonality is highly
related to the one of the consumption due to the non-storability of electricity.

• Spikes: prices jump upward or downward to high values, positive or negative, before to
revert quickly to their original level. They can appear when demand is abnormally high or
temperature abnormally low or high. In case of high temperature, air conditioning produces
these spikes and in case of low temperature, heating is responsible.

• Negative prices: this is a consequence of non storability. If the production is higher than
expected, the cost of stopping a production plant may be high and the producer may pre-
fer to pay for consuming electricity. In Germany, unexpected production is caused by the
penetration of the renewable energies in the system. For instance, high unexpected wind
production may cause negative spikes.

• Mean reversion: mean reversion is present for the spikes where it is very strong but also when
the behavior of the price is normal with a lower mean reversion.

Figure 1 shows some of these features on the French market.

(a) Seasonality (week of the 04th of July 2016). (b) Spikes.

Figure 1: French spot price illustrations.

The forward market

The forward market is a classical market with tradable assets and is over the counter. They have a
maturity as in classical forward markets but also a delivery period. Contrarily to the spot market,
even if there is a delivery period, the electricity is not delivered and the market is then open to
everyone. The forward products can be used for hedging purposes but also for speculation.

3
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Different products exist depending on the maturity and the delivery period which can be weeks,
months, quarters, seasons or years. If today is the 20

th of June 2017, the contract called "July
2017" corresponds to the delivery of electricity continuously during the month of July ; the contract
called "Year 2018" corresponds to the delivery of electricity continuously during the year 2018. The
first contract is denoted by 1 Month Ahead (1MAH), corresponding to the product starting from
the first of next month during one month. In the same way, the second one is denoted by 1 Year
Ahead (1YAH). Thus, depending on the date, the 1MAH corresponds to different contracts, same
for the 1YAH. The 2MAH corresponds to the product "August 2017". Table 1 gives some examples
to understand the nomenclature. Figure 2 represents the 1YAH between January 2011 and March
2017. The decrease of the level of the price is mainly caused by the decrease of the fuel prices.

Product Contract name Begin of delivery End of delivery
1 Month Ahead July 2017 01/07/2017 31/07/2017
2 Month Ahead August 2017 01/08/2017 31/08/2017
3 Month Ahead September 2017 01/09/2017 30/09/2017
1 Quarter Ahead Q3 2017 01/07/2017 31/09/2017
2 Quarter Ahead Q4 2017 01/10/2017 31/12/2017

1 Year Ahead 2018 01/01/2018 31/01/2018

Table 1: Forward products seen from the 20

th of June 2017.

Figure 2: 1 Year Ahead price on the French market between January 2011 and March 2017.

1.3 Some modeling aspects
Electricity markets modeling is strongly related to the modeling of bond markets in the litera-
ture. As for bond markets, one needs to compute the spot price St but also the forward curve
f (t, T ) , t  T corresponding to the price at time t of the product that delivers at time T 1MWh
of electricity during one hour. This product does not exist in reality but is a way to model the

4



Introduction

existing product f (t, T, ✓) that delivers 1MWh of electricity between T and T + ✓. By absence of
arbitrage opportunity, we have

f (t, T, ✓) =
1

✓

Z T+✓

T

f (t, u) du.

Joint modeling of spot and forward products prices is necessary because our portfolio is often
constituted with all these assets, especially because forward products are a way to hedge financial
risks linked to spot price. Two approaches exist, which is also the case in bond markets.

• The first approach consists in modeling directly the spot price, corresponding to the model
of the interest rates in bond markets which have first been modeled by Vasicek [57]. In this
case, the forward price f (t, T ) is equal to EQ

(ST |Ft) where Ft is the filtration generated
by the spot that corresponds to the information provided by the spot until time t and Q is
a risk neutral probability. As the spot is a non tradable asset, the fundamental theorem of
asset pricing [31] does not apply and the spot does not need to be martingale even under a
risk neutral probability, letting us with some liberty in the modeling. However, the forward
products need to be martingales as they are tradable, which can be insured by the martin-
gality of f (t, T ) ; by definition of f (t, T ) as a conditional expectation, it is the case. Most
common models consist in modeling the spot (or the logarithm of the spot) as the sum of a
seasonality function and a multi-factor diffusion part Yt of the form

Yt =

m
X

i=1

wiY
i
t , dY

i
t = ��iY i

t dt+ dLi
t, t 2 [0, T ]

where Li are Levy processes, often Brownian motions to model the diffusive part and com-
pound Poisson processes to model the spike part. The reader can refer to [20; 9; 44] for more
information on this model.

• The second approach is related to the Heath Jarrow Morton approach [32] and consists in
modeling directly the forward curve f (t, T ). The spot price is then given by St = lim

T!t
f (t, T ).

As said before, the stochastic process f (t, T ) is generally modeled by a martingale for each
T under Q in order to have the products f (t, T, ✓) martingales. The most common model
consists in modeling the forward curve by

df (t, T ) = f (t, T )

 

N
X

i=1

�i (t, T ) dW
i
t

!

with
�

W i
�

i=1..N
a multivariate Brownian motion. The reader can refer to the work of Benth

and Koekebakker [11] for more information on this model and its applications. In this thesis,
for application, we often consider the particular case of the two factor model corresponding
to

N = 2, �
1

(t, T ) = �se
�↵(T�t), �

2

(t, T ) = �l.

The dynamics of the curve T 7! f (·, T ) is driven by two factors: a short term factor
�se�↵(T�t)dW 1

t and a long term factor, �ldW 2

t . The short term factor models the Samuelson
effect: the volatility increases when time to maturity decreases. The long term factor models
the volatility of long term products: the short term volatility is close to 0 for long term
products and we would have a null volatility for them without long term volatility which is
not the case.
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Concerning the dependence modeling, one approach specific to power prices consists in modeling the
electricity spot prices construction (by merit order principle) from fundamental variables (electricity
demand, fuel prices, production capacities...). These models are called structural models, see
[2; 3; 17; 16] for some examples. The dependence between spot prices and risk factors are in
general well captured but computation of forward prices and option prices is costly. We prefer to
consider reduced form models, where spot price is modeled by a diffusion. Most common practice is
to model the dependence between electricity prices (spot or forward) and other commodity prices
(spot or forward) by a correlation matrix between the Brownian motions, see [18] for instance.
This is also the case for dependence between temperature and electricity spot prices [12]. More
complex structures of dependence in a diffusion modeling context are present in the literature
and we present some of them here. In a spot modeling framework, an interesting model for
the dependence retaining our attention is the Nakajima and Ohashi model [46] that includes co-
integration with other commodity prices in a Brownian motion framework. The electricity spot
price revert to a weighted average of all the commodity prices including itself. However, forward
prices are hard to compute and do not present long term volatility, implying that products with
long term maturity have quasi null volatility. Benth [10] uses time dependent copulae in a discrete
time framework in order to model the dependence between electricity spot price and gas spot price.
A recent work by Benth proposes to include co-integration [8] in a multi-factor framework with
Levy processes ; this model is adapted for both forward modeling and spot modeling.

2 First part: Dependence modeling for Brownian motions

Natural structure of dependence for a multidimensional Brownian motion is the correlation matrix.
This correlation matrix corresponds to linear dependence between the Brownian components at
each time t and is very easy to manipulate. This structure of dependence is used in most of financial
models, the most used being the multivariate Black Scholes model [19]. One of the main application
of the multidimensional Brownian motion in finance is pricing and hedging of multi-asset options
with payoff h (ST ) where S is a multidimensional diffusion driven by a multidimensional Brownian
motion. An important case in two dimensions is h (x, y) = (x� y �K)

+ with K a constant,
corresponding to a spread option. The price of the option is given by EQ

(h (ST )) where Q is a
risk neutral probability under which S is martingale. One can see that the price of this option is
impacted by the marginal models of each component of S but also by the structure of dependence
between the different components, which can not be neglected.

Dependence modeling with correlation matrix presents some limitations and one of them is sym-
metry. In this part, we only consider the two dimensional case. Let us consider two Brownian
motions B1 and B2. In the simplified case where volatility of the two assets S1 and S2 are the
same, the payoff

�

S1

T � S2

T �K
�

+ of the spread option depends on the distribution of B1

T � B2

T ,
as both assets are martingale under Q and have null drifts. Our main interest is then the distri-
bution of B1 �B2. Let us suppose first that their dependence is modeled by a correlation, that is
dhB1

t , B
2

t i = ⇢dt. In this case, we have for x 2 R and t > 0,

P
�

B1

t �B2

t � x
�

= P
�

B1

t �B2

t  �x
�

implying for x � 0,

P
�

B1

t �B2

t � x
�  1

2

.
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The distribution of B1

t �B2

t is then symmetric. This symmetry is due to the symmetric structure
of dependence between B1

t and B2

t at a given time t, corresponding to the copula of
�

B1

t , B
2

t

�

. Let
us recall that a (two dimensional) copula is a two increasing function C : [0, 1]2 7! [0, 1] having
uniform marginal distributions ; the reader can refer to [47] for more information on copulae.
Sklar’s theorem [54] states that for any two dimensional random variable (X,Y ), its distribution is
characterized by the marginal distribution of X, the marginal distribution of Y and a copula C that
represents the structure of dependence. In the correlation case, at time t, the copula of

�

B1

t , B
2

t

�

is called a Gaussian copula and is symmetric, that is C (u, v) = C (v, u) for u, v 2 [0, 1]. In a
more general way, if X and Y have the same distribution function and their copula is symmetric,
we prove that the distribution X � Y is symmetric. As the marginal distribution of B1

t and B2

t

are known, the control of the distribution of B1

t �B2

t only depends on the copula of
�

B1

t , B
2

t

�

. In
order to have higher values for the quantity P

�

B1

t �B2

t � x
�

for x � 0 than 1

2

, one has to consider
asymmetric copulae, which are not easy to construct, see [40] or [59] for instance. However, copula
is a natural tool for random variables but not from stochastic processes. Classical asymmetric
copulae might not be adapted for Brownian motions. This leads to the following questions:
Question 1 Are there asymmetric and admissible copulae for modeling the dependence between
two Brownian motions ?
Question 2 Are there admissible copulae allowing for P

�

B1

t �B2

t � x
�

to have higher values than
in the correlated case ?

A first step to answer Question 1 is to give a suitable definition for admissible copulae for Brownian
motions. Literature about copulae for stochastic processes is not large and can be divided in three
different topics. First one concerns copulae for discrete time stochastic processes. These copulae
have been introduced by Patton [48] and generalized by Fermanian [27]. At each time t, the
copula is constructed conditionally on what happens before time t � 1. In a continuous time
framework, [25] considers the copula between Xs and Xt where X is a stochastic process and
gives some conditions on this copula for X to be a Markovian process. The last framework is
the one we consider and consists in studying the copula between two stochastic processes, and
in particular Brownian motions, for each time t [13; 24; 53; 14; 35]. In [14] and [35], the notion
of admissible copula is linked to a local correlation function between two Markovian diffusions.
In [24], those results are generalized in dimension n. The Markovian framework seems to be the
natural framework for Brownian motions and is also considered in [13]. We propose a definition
similar to the one of [13] that includes the work of [14], [35] and [24].

Definition (Admissible copula for Markovian diffusions) We say that a collection of copulae
C = (Ct)t�0

is an admissible copula for the n real valued Markovian diffusions, n � 2,
�

Xi
�

1in

defined on a common probability space (⌦,F ,P) if there exists a Rm Markovian diffusion Z =

�

Zi
�

1im
, m � n, defined on a probability extension of (⌦,F ,P) such that

8

<

:

L �

Zi
�

= L �

Xi
�

, 1  i  n,
Zi
0

= Xi
0

, 1  i  n,
for t � 0, the copula of

�

Zi
t

�

1in
is Ct.

where L (Y ) is the infinitesimal generator of a Markovian process Y .

This definition includes, in the case of Brownian motions, deterministic correlation, local correlation
but also stochastic correlation if this one is a Markov process as it is possible to have m � n. In
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the local correlation model, in the two dimensional case, Jaworski and Krzywda [35] prove that a
copula is admissible for Brownian motions if

�

�

�

�

�

1

2

e
��1(v)2���1(u)2

2
@2u,uC (u, v)

@2u,vC (u, v)
+

1

2

e
��1(u)2���1(v)2

2
@2v,vC (u, v)

@2u,vC (u, v)

�

�

�

�

�

< 1 8(t, u, v) 2 R+ ⇥ [0, 1]2

when the copula does not depend on time with � the cumulative distribution function of a stan-
dard normal random variable. In particular, they prove that the extension of the Farlie-Gumbel-
Morgenstern copula in a dynamical framework Ct (u, v) = uv (1 + a (1� u) (1� v)) , t � 0 with
a 2 [�1, 1] is admissible for Brownian motions. However, this copula is not asymmetric.

Let us consider a Brownian motion B1 defined on a filtered probability space (⌦, F , (Ft)t�0

, P)
with (Ft)t�0

satisfying the usual hypothesis (right continuity and completion) with B1 adapted to
(Ft)t�0

. While the correlation is the standard way to construct a dependent Brownian motion B2

from B1, an other way existing in the literature is to consider the reflection of B1 on x = h with h 2
R which is also a F Brownian motion according to the reflection principle (see [36, Theorem 3.1.1.2,
p. 137]). The reflected Brownian motion ˜Bh is defined by ˜Bh

t = �B1

t + 2(B1

t � B⌧h)1t�⌧h with
⌧h = inf{t � 0 : B1

t = h}. Let us consider M (u, v) = min (u, v) and W (u, v) = max (u+ v � 1, 0)

for u, v 2 [0, 1]. The copula of (B1, ˜Bh
),
⇣

Cref,h
t

⌘

t�0

, is defined by

Cref,h
t (u, v) =

(

v if �

�1

(u)� �

�1

(v) � 2hp
t

W (u, v) + �

⇣

�

�1

(M (u, 1� v))� 2hp
t

⌘

if �

�1

(u)� �

�1

(v) < 2hp
t

and is admissible for Brownian motions. An illustration is given in Figure 3a. One way to construct
new copulae from this copula is to consider the dependence between B1 and a correlated Brownian
motion to the reflection of B1, see Figure 3b. An other way is to use a random variable for the
barrier, see Figure 3c where the barrier is equal to h+ E with E following an exponential law.

(a) (b) (c)

Figure 3: The Reflection Brownian Copula Cref,h and some of its extensions at time t = 1 with
h = 2. Figure 3a is the Reflection Brownian Copula. Figure 3b is the extension considering
a Brownian motion correlated to the reflection of the first Brownian with a correlation ⇢ = 0.95.
Figure 3c is the extension in the case of a random barrier equals to the sum of h and an exponential
random variable with parameter � = 2.
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Result 1 The copula Cref,h and its extensions are admissible copulae for Brownian motions and
are asymmetric.

Before answering Question 2, let us look to the range of values achievable for P (X � Y � x)
when X and Y are two standard normal random variables, corresponding to the static case of our
problem.

Result 2 The range of values achievable for P (X � Y � x) is
⇥

0,�
��x

2

�⇤

if we restrict the set
of copulae to Gaussian copulae and to

⇥

0, 2�
��x

2

�⇤

otherwise.

The supremum bound 2�

��x
2

�

is achieved by the copula

Cr
(u, v) =

(

M (u� 1 + r, v) if (u, v) 2 [1� r, 1]⇥ [0, r],
W (u, v) if (u, v) 2 [0, 1]2 \ ([1� r, 1]⇥ [0, r])

with r = 2�

��⌘
2

�

, see Figure 4a for illustration. The copula presents two states of dependence:
the first one corresponds to the countermonotonic copula W , equivalent to a correlation of �1,
in the upper left part of the unit square and the second one corresponds to the comonotonic
copula M , equivalent to a correlation of 1. The result follows from [47, Section 6.1] and [29;
52; 41] where finding achievable bounds on P (X + Y > x) is considered. The range of values
between

⇥

�

��x
2

�

, 2�
��x

2

�⇤

is achieved by considering the copula with a relaxed correlation in the
countermonotonic part, see Figure 4.

(a) ⇢ = 1. (b) ⇢ = 0.95.

Figure 4: Patchwork copula Cr
(u, v) presenting two states depending on the value of u: the first

copula is in the upper left part of the plan and is W ; the second one is the Gaussian copula with
correlation equal to ⇢, with ⇢ = 1 that is the degenerated copula M or ⇢ = 0.95. r is equal to
2�

��⌘
2

�

with ⌘ = 0.2.

Result 3 is the same than Result 2 but in a dynamical framework and gives an answer to Question
2.

Result 3 The range of values achievable for P
�

B1

t �B2

t � x
�

is
h

0,�
⇣

�x
2

p
t

⌘i

if we restrict the

set of copulae to correlation dependence and to
h

0, 2�
⇣

�x
2

p
t

⌘i

if we consider all admissible copulae
for Brownian motions. These values can be achieved using the Reflection Brownian Copula.
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The range of values that can be achieved is the same than in the static framework with random
variables. An interesting result is that the Reflection Brownian Copula that achieves these values
has also two states of correlation: one with correlation equal to 1 and one with correlation equal
to -1, as for the copula achieving the upper bound in the static case.

Application to energy commodity prices modeling Spread options are common on energy
commodity markets. Let us recall the problem of the producer owning a coal plant with incomes
modeled by (St �HCt �K)

+. S and C are modeled by diffusions driven by Brownian motions
and dependence between those Brownian motions is usually modeled by a correlation, implying
symmetry in the distribution of St �HCt. Nevertheless, coal is a fuel for electricity and HCt is
more likely to be lower than St, which can not be done with a correlation. As marginal models
are satisfying, we only want to change the structure dependence between electricity prices and
coal prices, corresponding to the copulae between Brownian motions. Results of this part has
shown that to capture asymmetry and higher value for the survival function of the difference of
two Brownian motions, one has to consider two states of correlation, one negative and one positive,
instead of one. This leads to the two following models:

• A multi-barrier model based on the copula of a Brownian motion and its reflection: we
define two barriers ⌫ and ⌘ with ⌫ < ⌘ and we consider two independent Brownian motions
X and BY . We construct the Brownian motion Y n that is correlated to ˜Xn: Y n

= ⇢ ˜Xn
+

p

1� ⇢2BY , with ˜Xn the Brownian motion equal to �X at the beginning and reflecting
when X�Y n hits a two-state barrier equal to ⌘ before the first reflection and switching from
⌘ to ⌫ or from ⌫ to ⌘ at each reflection.

• A local correlation model with two states of correlation: the local correlation function is
chosen such that it is Lipschitz and equal to ⇢

1

< 0 when x � y  ⌫ and to ⇢
2

> 0 when
x� y � ⌘ with ⌘ > ⌫.

These two models seem to be equivalent. Concerning the first model, we derive a closed formula for
the cumulative distribution function of the difference between the two Brownian motions. While the
second one is more easy to use and understand than the first one, it does not give a closed formula
for the cumulative distribution function. Higher values than 1

2

are achieved for P
�

B1

t �B2

t � x
�

where x � 0 in both model.

Each commodity price is modeled by a two factor diffusion

df i
(t, T ) = f i

(t, T )
⇣

�i
se

�↵i

(T�t)dW s,i
t + �i

ldW
l,i
t

⌘

, i = {Electricity, Coal}.

The parameters are estimated on forward markets of electricity and of coal during 2014 in France
with daily observations using the method of [28]. We consider the benchmark model corresponding
to dependence modeled by a correlation matrix between the four Brownian motions and the multi-
barrier model where the dependence between the two long term Brownian factors are modeled
using the multi-barrier model. Modeling the two short term factors using the multi-barrier model
has no impact because short term volatilities are too different. Figure 5 corresponds to the survival
function of the difference between products Spot, 1MAH, 3MAH and 6MAH of each commodity
for the two models of dependence. Survival function in the multi-barrier model takes higher values
than in the benchmark model for x � 0 for long term products, which is consistent with the fact
that the dependence is changed between the long term Brownian motions. Results are the same
considering the local correlation model.
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(a) Multi-barrier model. (b) Benchmark model.

Figure 5: Empirical survival function of the difference between the price of electricity and the
price of coal at time t = 365 days estimated with 10000 simulations with a time step of 1

24

days for
different products (Spot, 1MAH, 3MAH, 6MAH) in the multi-barrier model and in the benchmark
model.

One of the main issue of this model is calibration and the choice of the values of the barrier, that
must depends on the initial value of fElectricity

(0, T )�HfCoal

(0, T ) if we want to have more impact
on the survival function of fElectricity

(t, T )�HfCoal

(t, T ).

3 Second part: Inference of a spike process in high frequency
statistics

A spike is defined as a jump, positive or negative, coming back to 0 in a short period of time.
A natural stochastic model for it is a mean reverting jump process with strong mean reversion,
see Figure 6. Now, let us consider a stochastic process X defined on a filtered probability space
⇣

⌦,F , (Ft)
0tT ,P

⌘

of the form

Xt =

Z t

0

µsds+

Z t

0

�sdWs + Z�
t , t � 0

with

Z�
t =

Z t

0

Z

R
xe��(t�s)p (dt, dx) ,

W a standard Brownian motion, µ and � two adapted cádlág processes and p a Poisson measure on
R+⇥R independent from W with compensator q = �dt⌦⌫ (dx). X is then the sum of a continuous
Itô semimartingale and a mean reverting jump process corresponding to the spike process.
X is observed on a regular grid M = {ti = i�n, 0  i  b T

�

n

c} with �n =

T
n . We assume

that �n ! 0 with T fixed, corresponding to a high frequency framework with fixed time horizon.
Our objective is to estimate the parameters of the spike process Z� and especially the parameter
� corresponding to the speed of the mean reversion. If we do not add any further assumptions,
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Figure 6: Illustration of a spike process.

the parameter � is a drift parameter and is not identifiable if T is fixed ; one can refer to Aït-
Sahalia and Jacod [6] for the non identifiability of the drift. Nevertheless, the case in which we are
interested is when the mean reversion is strong, corresponding to a spike mode. An illustration
is given in Figure 7a: if � is too low compared to �n, we do not observe the spike effect and
the process does not even revert to 0 before T . To model this spike effect, we need to add the
assumption � = �n ! 1. One has to work under assumption �n�n . 1 in order to observe all
the spikes: in the other case, a spike can happen and revert to 0 in a period of �n and it is not
possible to observe it, see Figure 7b. An non divergence assumption is also needed in the case
� = �n, which is �

n

�
n

. 1: in the other case, the average number of jumps �n is stronger than the
speed of mean reversion �n and the process diverges as illustrated in Figure 7c. An other condition
which is classical is �2n�n ! 0, meaning that there is at most one jump in an interval of size �n.
In this framework, there are no results about the identifiability or non identifiability of �, raising
the following questions.

(a) Low mean reverting. (b) Frequency too high. (c) Number of jumps too high.

Figure 7: Spikes processes in non considered regimes.

Question 1 How to identify the jump times and sizes of the spike process in this new framework
?
Question 2 How to estimate the parameter �n if it is possible and what is the error of estimation
?

Jump detection in a jump diffusion model with high frequency observations is an important question

12
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which has been studied by many authors in the literature. One of the main applications is the
estimation of volatility in presence of a jump component. The reader can refer to the works of
Mancini [42; 43], Aït and Jacod [5; 6] or Lee and Mykland [38]. In all these works, the main idea
consists in looking to the size of the increments �n

i X = Xt
i

�Xt
i�1 . This increment can be written

as the sum of the drift increment, the Brownian one and the jump one. As the drift is absolutely
continuous with respect to the Lebesgue measure, its increment is of order �n. The Brownian
increment is of order

p
�n. The jump increment is of size 1 when there is a jump between times

ti�1

and ti and is equal to 0 when there is no jump in this interval. Thus considering a threshold
vn ⇣ �

�$
n with $ 2 �

0, 1

2

�

, the quantity |�n

i

X|p
�

n

v
n

converges to 0 in the absence of jumps but to 1
in the presence of it.

In our case, the problem is slightly different because there is an extra term caused by the mean
reversion after a jump of order �n�n. In the case �n�n ! 0, it is still possible to distinguish the
jump increment from the mean reversion increment, see Figure 8. In the case where �n�n ⇣ 1, it
is not possible to distinguish a mean reversion increment from a jump increment as they have the
same size, see Figure 9. However, we can see that after a jump, the next increment which is the
mean reversion one has an opposite sign. One can also show that, under suitable conditions, after
a mean reversion increment which is over the threshold vn

p
�n, if there are not too many jumps,

the next increment is of the same sign than the mean reversion one. The following strategy is then
adopted: let In (1) < ... < In

⇣

ˆ�n
⌘

the indices i 2 {1, ..., n� 1} such that

• |�n
i X| > vn

p
�n if �n�n ! 0,

• |�n
i X| > vn

p
�n, �n

i X�

n
i+1

X < 0 if �n�n ⇣ 1.

We have the following result:

Result 1 With probability converging to 1, ˆ�n = N
1

and Tq 2 ((In (q)� 1)�n, In (q)�n] with
Tq the jump times.

(a) X. (b)

�n

i

X

�0.49
n

.

Figure 8: Jump detection in the case �n�n = 0.3.

Once the spike times are identified, a natural estimator of their size is �n
I
n

(q)X for q 2 {1, .., ˆ�n}
which is equal to �XT

q

e��
n

(T
q

�I
n

(q)�
n

) plus an error term with �XT
q

the size of the qth jump.

13
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(a) X. (b)

�n

i

X

�0.49
n

.

Figure 9: Jump detection in the case �n�n = 1.

The term e��
n

(T
q

�I
n

(q)�
n

) includes a bias caused by the fact that the jump happens between times
(In (q)� 1)�n and In (q)�n and has already started to mean revert at the moment of observation.
If �n�n ! 0, this term is equal to 1+O (�n�n) and it is possible to identify the size of the jump.
If �n�n ⇣ 1, it is not possible to identify the jump size because we do not know exactly the jump
time. However, if �n ! 1, it is possible to average this error and we have the following result:

m�n�n

(1� e�m�
n

�

n

)

ˆ�n

ˆ�
n

X

q=1

⇣

�

n
I
n

(q)X
⌘m

!
Z

R
xm⌫ (dx)

for every integer m > 0 such that
R

R xm⌫ (dx) < 1. This estimator differs from the classical

estimator 1

ˆ�
n

P

ˆ�
n

q=1

⇣

�

n
I
n

(q)X
⌘m

by the term m�
n

�

n

(1�e�m�

n

�
n

)

: this correction corresponds to the
average error of the bias caused by the mean reversion. To estimate the moments of the jump
sizes, one needs to have a consistent estimator of �n.

To estimate the parameter �n, we consider the slope of the process after a jump

�sgn

⇣

�

n
I
n

(q)

⌘

�

n
I
n

(q)+1

X

which is of order
�

1� e��
n

�

n

� |�XT
q

| where sgn is the sign function. Averaging these quantities
over all the jumps allows to average the noise caused by the Brownian motion. Dividing by an
approximation of

P

ˆ�
n

q=1

|�XT
q

|, and taking a logarithm transformation of the average, we obtain
the following estimator

b�n =

�1

�n
log

0

@

0

@

1 +

P

ˆ�
n

q=1

sgn(�

n
I
n

(q)X)

⇣

�

n
I
n

(q)+1

X + 2�n

Pq�1

j=1

�

n
I
n

(j)X
⌘

P

ˆ�
n

q=1

|�n
I
n

(q)X|
1
ˆ�
n

>0

1

A _�n

1

A .

where a correction term 2�n

Pq�1

j=1

�

n
I
n

(j)X is added in order to avoid a bias term of order �
n

�
n

.

Result 2 The error b�
n

��
n

�
n

is equal to Op

⇣

�n�n +min

⇣

�
n

�
n

,�
� 1

2
n

⌘

+

�

�n
p
�n�n

��1

⌘

and a cen-
tral limit theorem is given under some asymptotic assumptions.
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The first error term is a bias term, the second one is due to noise caused by previous jumps that
have not revert to 0 entirely and the third one is caused by the Brownian motion. In order for the
estimator to be consistent, we need to have the Brownian motion error

�

�n
p
�n�n

��1 ! 0 as the
two first errors terms converge to 0. This condition can be explained by the fact that the size of
the noise due to an increment of the Brownian motion is of order

p
�n, the one due to the average

of increments happening after a jump is then of order
q

�

n

�
n

and the size of the mean reversion if
of order �n�n. For the noise to be negligible compared to the estimator which is the slope, it is
needed to have

q

�

n

�
n

= o (�n�n), corresponding to our condition.

Application to spike modeling in electricity time series Let us generalize the two factor
model in order to have a spike component. We model the forward price f (t, T ) under the historical
probability by

f (t, T ) =

Z t

0

µsds+ f c
(t, T ) +

Z t

0

Z

R
xe��(T�s)p (ds, dx)

where
df c

(t, T ) = f c
(t, T )

⇣

�se
�↵(T�t)dWs + �ldWl

⌘

corresponds to the classical forward dynamics. The spot price is then equal to

St =

Z t

0

µsds+ Sc
t +

Z t

0

Z

R
xe��(t�s)p (ds, dx)

where Sc is the equivalent spot model of the two factor model and is a semimartingale. We have
established a simple model on the forward and the spot, that differs only slightly from the classical
models by adding a spike component. We apply our estimation procedure on French, German and
Australian spot prices to estimate the spike component. When we compute the forward products
f (t, T, ✓), the component due to f� is of order �

� which is negligible compared to the continuous
part of the forward. The spot factor has not impact on the forward prices, which is consistent
with the data. The parameters of the continuous part of the model can then be estimated on the
forward products as there were no spikes. The continuous part is calibrated on the French forward
products. Figure 10 corresponds to one simulation of the models with and without spikes using
estimated parameters on French market and shows that the spike factor has no impact on forward
products prices but only on the spot. We also show that spike modeling has also a strong impact
on strips of call options pricing of the form

R T

0

(St �K)

+ dt.

4 Third part: Non parametric estimation of the intensity of
a doubly stochastic Poisson process depending on a covari-
able

In this part, we are interested in a continuous semimartingale X and in a doubly stochastic Poisson
process N defined on the common filtered probability space

⇣

⌦,F , (Ft)
0tT ,P

⌘

. The law of the
doubly stochastic Poisson process is entirely determined by its intensity function � which is also
a stochastic process. Modeling the dependence between N and X is then the same as modeling
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(a) Spot. (b) 1WAH.

(c) 1MAH.

Figure 10: Simulation of different products in a two factor model with and without spikes between
the 27

th of February 2017 and the 31

st of March 2017. We illustrate the spot, the 1WAH starting
the 27

th of February 2017 and the 1MAH starting the 01

st of March 2017.

the dependence between � and X. We assume that X and N are observed continuously on a time
horizon [0, T ]. We assume that

�s = nq (Xs) , s 2 [0, T ]

where n 2 N, n � 1 corresponds to the asymptotic. Conditionally on (Xt)
0tT , N is an inhomo-

geneous Poisson process with intensity at time t nq (Xt). Our objective is to estimate the function
q on a given interval I of R. The literature on non parametric estimation of intensity function for
Poisson processes is large. The simplest case corresponds to the inhomogeneous Poisson process
where the intensity is a deterministic function of the time: [50; 51] use model selection techniques
and projection estimators in a non asymptotic framework. A penalization function is proposed in
oder to select the optimal model. [26; 15] use kernel estimators in an asymptotic framework ; in
[15], a method to select the bandwidth is proposed. Most used doubly stochastic Poisson process
models are the one of Aalen and Cox [1; 23]. In the Aalen model, the intensity function is of
the form ↵tYt with ↵t a function of time and Yt a stochastic process. In the Cox model, it is of
the form ↵t exp

�

�TZ
�

with Z a multi-dimensional random variable or stochastic process in some
cases (see [45] for instance). Again, projection estimators are used by [22] and local polynomial
estimators which are generalization of kernel estimators are used by [21] for those models. In [60],
the intensity of a doubly stochastic Poisson process is inferred as a function of time using kernel
methods in an asymptotic framework. To our knowledge, non parametric methods of estimation
in our framework is less common in the literature except for [56] that proposes a kernel estimator
of the function q in the case where T goes to 1 and when X satisfies some conditions, which can
be for instance stationarity. We want to work in a more general framework when X does not need
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to be stationary.

First, in order to estimate the function q at some point x 2 I, we need for X to be close to x a
certain amount of time before T . One way to evaluate the time spend by X around x when X is
a semimartingale is the local time lxT . We consider the natural local time of X being the measure
verifying the occupation time formula

Z t

0

f (Xs) ds =

Z

R
f (x) lxt dx, 0  t  T

for any measurable function f on ⌦⇥R. It differs from the classical local time used in the literature
where the integration of the left hand side is with respect to dhXis [49, Chapter 6] but both are
linked. lxT can also be defined by

lim

✏!0

1

2✏

Z T

0

1|X
s

�x|✏ds.

If we write Xt =
R t

0

µsds+
R t

0

�sdWs, a sufficient condition for the existence of lxT is inf

s2[0,T ]

�s � �

almost surely with � > 0 a constant. Adding the assumption E
✓

R T

0

|µs|ds+ sup

0tT
| R T

0

�sdWs|
◆

<

1, we have E
✓

sup

x2R
lxT

◆

< 1 which is needed in this part. All these results can be derived easily

using [49, Exercise 1.15] and [7, Equation (III)� ]. We also consider the degenerated case Xt = t
corresponding to the inhomogeneous Poisson process. We then work under one of the following
assumptions:

(i) inf

0sT
�s � � with � > 0 a deterministic constant and

E
 

Z T

0

|µs|ds+ sup

0tT
|
Z T

0

�sdWs|
!

< 1,

(ii) Xt = t for all t in [0, T ].

In order to estimate q at point x 2 I, we then need to have lxT > 0. We then choose to work
conditionally on the event D (I, ⌫) defined by

D (I, ⌫) = {! 2 ⌦, inf

x2I
lxT (!) � ⌫T

|I| }

with ⌫ 2 (0, 1]. This framework is the same as the one of [33] in the context of non parametric
estimation of the volatility function � (Y ) of a diffusion Y .

Let K be a positive kernel function with bounded support [�1, 1], kKk1 = sup

x2R
K (x) < 1,

Kh (x) = h�1K
�

x
h

�

for x 2 R and h > 0 the bandwidth parameter. We consider the local
polynomial estimator of q with degree m for h > 0 and x 2 R

q̂h (x) =
1

n

Z T

0

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)1X
s

2IdNs
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with

U (x) =

✓

1, x,
x2

2!

, ..,
xm

m!

◆T

, w (x, h, z) = UT
(0)B (x, h)�1 U (z)1B(x,h)2S+

m+1
, z 2 R

and

B (x, h) =

Z T

0

U

✓

Xs � x

h

◆

UT

✓

Xs � x

h

◆

Kh (Xs � x)1X
s

2Ids.

If B (x, h) 2 S+

m+1

, this estimator is equal to UT
(0)

ˆ✓h (x) with

ˆ✓h (x) = argmin
✓2Rm+1

� 2

n
✓T

Z T

0

U

✓

Xs � x

h

◆

Kh (Xs � x)1X
s

2IdNs

+ ✓T
Z T

0

U

✓

Xs � x

h

◆

UT

✓

Xs � x

h

◆

Kh (Xs � x)1X
s

2Ids✓.

We denote by qh the conditional expectation of q̂h given X:

qh (x) =

Z T

0

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)1X
s

2Iq (Xs) ds.

On the event D (I, ⌫), if there exists � > 0 and K
min

> 0 such that K (x) � K
min

1|x|�

for x 2 R,
we prove that B (x, h) 2 S+

m+1

for x 2 I and 0 < h  2

3

�|I|.
In order to evaluate the performance of our estimator, we choose to work with the integrated
quadratic loss on I, conditionally on D (I, ⌫), that is with the quantity E

�kq � q̂hk2I |D (I, ⌫)
�

where kfk2I is equal to
R

I
f (x)2 dx. We want to answer the following questions:

Question 1 How to choose the bandwidth parameter h in an optimal way ?
Question 2 What is the speed of convergence of our estimator and is it optimal ?
Question 3 Is the function q belongs to some parametric family ?

Question 1 is central because the bandwidth parameter has an impact on the quality of our estima-
tor and Question 2 will assess its quality in terms of speed convergence. Question 3 has operational
purposes: it is easier in terms of comprehension and modeling to work with a parametric function
than a non parametric one.

The loss function can be written as the sum of a bias term E
�kq � qhk2I |D (I, ⌫)

�

decreasing with h
and a variance term E

�kqh � q̂hk2I |D (I, ⌫)
�

increasing with h. The bandwidth h that minimizes the
sum of the bias and the variance is then optimal in the sense that the loss function is minimized.
However, this optimal bandwidth depends on q that we do not know and is called the oracle
bandwidth. One wants to choose a bandwidth h such that the value of the loss function is close
to the oracle one. The same issue exists for density estimation where the observations are i.i.d.
random variables, see the discussion in [55, Section 1.8].

One solution is to give unbiased estimators of the bias and the variance terms and to choose for the
bandwidth h the one minimizing the sum of the two. While an unbiased estimator of the variance
term is easily to find, the main issue is the approximation of the bias term. In the i.i.d case, the
variance term is deterministic and known but in our case, an unbiased estimator of it is given by

ˆVh =

1

n2

Z T

0

Z

I

✓

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)

◆

2

1X
s

2IdxdNs.
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Concerning the estimator of the bias term, in a context of i.i.d observations with a kernel estimator,
[37] proposes to approximate the bias kq � qhk2I by kq � qhmink2I with h

min

sufficiently small. If
h
min

! 0, the bias kqhmin �qk2I ⇡ 0 and kqhmin �qhk2I ⇡ kq�qhk2I . This method is derived from the
classical Goldenshluger Lepski method [30; 39]. We adapt the method of [37] to the Poisson process
framework but also to the local polynomial framework. An unbiased estimator of kqhmin � qhk2I is
given by

kq̂hmin � q̂hk2I � ˆVh � ˆVhmin + 2

ˆVh,hmin

with ˆVh,hmin equals to

1

n2

Z T

0

Z

I

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)w

✓

x, h
min

,
Xs � x

h
min

◆

Khmin (Xs � x)1X
s

2IdxdNs.

At the end, we select the following bandwidth

ˆh = argmin
h2H

kq̂hmin � q̂hk2I � ˆVh + 2

ˆVh,hmin + � ˆVh

among a finite set H included in (0,1) with � > 0 an hyper parameter chosen by the statistician.
We assume that minH = h

min

� kKk1kKk1|I|
n , with kKk

1

=

R

R |K (u) |du and maxH  2

3

|I|�.
This choice of bandwidth leads to the following result.

Result 1 Assume sup

x2I
q (x) < 1. The loss E

�kq � qhk2I |D (I, ⌫)
�

is bounded by the sum of

✓

� _ 1

�
+O

⇣

log (n)�1

⌘

◆

min

h2H
E
�||q̂h � q||2I |D (I, ⌫)

�

and

O (log (n))E
�||qhmin � q||2I |D (I, ⌫)

�

+

1

⌫2
O

 

log (n _ |H|)6
n

!

.

Result 1 consists in an oracle inequality that is derived from the two concentration inequalities [51,
Equation (2.2)] and [34, Theorem 4.2]. The error term of order log (n)E

�||qhmin � q||2I |D (I, ⌫)
�

is
caused by the approximation of kq�qhk2I by kq�qhmink2I . The error coming from this term depends
of the regularity of q. The term 1

⌫2 corresponds to an error caused by the quantity of observations
of X in I and if it is small, it leads to more error. When n is large, and if � = 1, our choice of
bandwidth gives values of the loss close to the optimal one if log (n)E

�||qhmin � q||2I |D (I, ⌫)
�

is
enough small.

Result 1 does not give information about the quality of our estimator. For ⇢, �, L > 0, let
⇤⇢,� = {f : I ! R : f (x) � ⇢, sup

x2I
f (x) < 1} \ ⌃ (�, L, I) where ⌃ (�, L, I) is the Hölder class

of order � on I with bounding constant L. Result 2 and Result 3 assess the performance of q̂
ˆh

in the minimax sense over ⇤⇢,� and answer to Question 2. We recall that m is the degree of the
estimator polynomial.

Result 2 The sequence E
�

'2

nkq � q̂
ˆhk2I |D (I, ⌫)

�

is bounded uniformly over ⇤⇢,� with 'n equals
to n

��

2�+1 if m � b�c and n
�m

2m+1 if m < b�c.
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Result 3 The rate of convergence n
��

2�+1 is a lower bound in the minimax sense.

Then, if m � b�c, our estimator in optimal in the minimax sense with rate of convergence n
��

2�+1 .

To answer Question 3, we propose to test
⇢

H
0

: 9✓
0

2 ⇥, q = g✓ against
H

1

: 8✓ 2 ⇥, q 6= g✓

with ⇥ ⇢ Rd, d � 1 and g✓ a function parametrized by ✓. Let us consider the contrast

Mn (✓) = kq̂
ˆh (·)�

Z T

0

w

✓

·, ˆh, Xs � ·
ˆh

◆

K
ˆh (Xs � ·)1X

s

2Ig✓ (Xs) dsk2I

� 1

n2

Z

I

Z T

0

w2

✓

x, ˆh,
Xs � x

ˆh

◆

K2

ˆh
(Xs � x)1X

s

2IdNsdx.

The second term is a bias correction term in order to have an asymptotic unbiased estimator. The
first term measures the distance between q̂

ˆh which is an estimator of q under both hypothesis and
g✓, or rather a biased version of it allowing to avoid a bias term in this distance. This contrast
converges in probability to kq � g✓k2I and a natural estimator of ˆ✓n of ✓

0

under H
0

is

ˆ✓n = inf

✓2⇥

Mn (✓) .

A way to test H
0

is to look at Mn

⇣

ˆ✓n
⌘

that is small under H
0

but diverges under H
1

.

Result 4 Under H
0

, ˆ✓n converges to ✓
0

at the rate n� 1
2 and a critical region of the test at level

↵ is
|Mn

⇣

ˆ✓n
⌘

| � ĉ (↵) = n�1

ˆh� 1
2

q

ˆVn�
�1

⇣

1� ↵

2

⌘

where

ˆVn = C (K)

Z

I

 

g
ˆ✓
n

(y)
R T

0

K
ˆh (y �Xs)1X

s

2Ids

!

2

dy,

C (K) is a constant depending only of K and � is the cumulative distribution function of a N (0, 1)
random variable.

A central theorem is also given for ˆ✓n. Result 4 indicates that Mn

⇣

ˆ✓n
⌘

converges to 0 in probability

at the convergence rate n�1

ˆh� 1
2 under H

0

and to 1 under H
1

. This test is similar to the one of
[4] used to test if the drift and volatility of a diffusion belong to some parametric family.

Application to dependence modeling between electricity spot prices and wind produc-
tion Following the ideas of [58], we study the dependence between the electricity spot price and
the wind penetration index in Germany. The wind penetration index is defined as the ratio between
the wind production and the total electricity production. Data considered are the hourly German
spot price and hourly wind penetration index between year 2012 and 2016, both included. Our
intuition is that high wind penetration index leads to negative spikes in electricity spot price time
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series. Spikes are modeled by a strong mean reverting Poisson process, as in Chapter 3. Method
of Chapter 3 is then used in order to detect the spikes in the spot time series. We distinguish
positive and negative spikes and estimate the intensity of the point process as a function of the
wind penetration index for each process using the local polynomial estimator of Chapter 4 of order
0, that is with kernel, see Figure 11a and Figure 11b. Using the parametrical test, we test if the
two intensity functions are constant: the test is not rejected for positive spikes but is for negative
ones with a confidence level at 95%. We also find an increasing function of the wind penetration
for the negative spikes intensity.

(a) For negative spikes. (b) For positive spikes.

Figure 11: Kernel estimators of the intensity of the spot spikes as a function the wind penetration.

Based on these results, the spot price is modeled as the sum of a seasonality function, a continuous
autoregressive process and two spikes process: one for the positive spikes and one for the negative
ones, both having the same mean reversion. The intensity of the positive spike process is modeled by
a constant but the one of the negative one has two states: a low intensity for low wind penetration
values and a high intensity for high wind penetration values, see Figure 11a. Concerning the wind
penetration index, as its values lie between 0 and 1, its logit is modeled by the sum of a seasonality
function and a continuous autoregressive process of order 24. Methods of estimation are provided
for both models.

In order to study the impact of our modeling, one consider the point of view of an electricity
company buying electricity to an wind producer at a fixed price K. The wind producer produces
Q% of the total wind production. The incomes of the electricity company over a period T are
then equals to Q

R T

0

CtWPt (St �K) dt where Ct is the total load. Value at Risk and Expected
Shortfall of this model are compared to the ones of the model where the intensity of negative spikes
is constant: the difference is significant between the two models.

5 Structure of the thesis
The thesis is composed of five chapters based on the following works:

- [Chapter 1] On the control of the difference between two Brownian motions: a dynamic copula
approach, published in Dependence Modeling.

- [Chapter 2] On the control of the difference between two Brownian motions: an application to
energy markets modeling, published in Dependence Modeling.
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- [Chapter 3] Estimation of a fast mean reverting jump process with application to spike modeling
in electricity prices, joint work with O. Féron and M. Hoffmann.

- [Chapter 4] Local polynomial estimation of the intensity of a doubly stochastic Poisson process.

- [Chapter 5] A joint model for electricity and wind penetration with dependence in the electricity
spikes, joint work with A. Veraart, submitted in Forecasting and Risk Management for Renewable
Energy 2017: Conference proceedings.
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1 Contexte

1.1 Objet de la thèse
Cette thèse traite de problèmes de modélisation de la dépendance entre processus stochastiques
en temps continu et de leur estimation statistique pour une application en gestion des risques. Les
différents travaux de cette thèse sont motivés par une application : la modélisation des marchés
de l’électricité. En particulier, nous sommes intéressés par la modélisation de la dépendance entre
les prix de l’électricité et différents facteurs de risque. L’électricité étant produite par différentes
commodités énergétiques vendues sur des marchés financiers, une dépendance existe entre son prix
et le prix des autres commodités. Les prix de l’électricité sont aussi fortement liés à des aléas
physiques (consommation d’électricité, variable météorologique telle que le vent, la température...)
considérés comme des facteurs de risque. Par exemple, en particulier en France, une basse tempé-
rature entraîne une utilisation des chauffages qui fait augmenter la demande et donc les prix de
l’électricité. En Allemagne, un fort vent entraîne une augmentation de la production des énergies
renouvelables et donc une diminution des prix de l’électricité. Ces deux types de dépendance,

1) dépendance avec les autres commodités et

2) dépendance physique,

constituent les applications principales de nos travaux.

Il est nécessaire de prendre en compte ces dépendances qui ont au moins deux principaux intérêts :

• mieux capturer la dynamique des prix de l’électricité et son comportement,

• avoir une meilleure quantification des risques financiers ;

ces deux points sont bien sûr liés. Prenons par exemple le point de vue d’un producteur d’électricité
possédant une centrale à charbon. Si St dénote le prix de l’électricité à l’instant t, Ct le prix du
charbon à l’intant t et K un coût fixe, ses revenus à la date T peuvent être modélisés de manière
simplifiée par

R T

0

(St �HCt �K)

+ dt où H est une constante de normalisation entre les prix de
l’électricité et les prix du charbon qui n’ont pas la même unité. Il est donc important d’avoir
un modèle qui représente bien les propriétés statistiques des deux séries temporelles S et C mais
il est aussi important de modéliser leur dépendance. La dépendance entre S et C a un impact
sur la distribution des revenus et donc des risques financiers du producteur. Un autre exemple
considéré dans cette thèse est celui d’un producteur voulant acheter un pourcentage Q de la
production éolienne Wt à un prix fixe K pendant une période T . Ses revenus à la date T sont
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égaux à Q
R T

0

Wt (St � S
0

) dt et la dépendance entre S et W a un impact sur sa distribution. Ces
dépendances ont aussi un impact sur la manière de couvrir ces différents risques.

Les processus stochastiques en temps continu sont des outils pratiques pour la modélisation de
la dynamique des prix, en particulier dans un contexte de gestion des risques. En effet, le calcul
stochastique est un outil utile pour la valorisation et la couverture d’options financières. Bien
que les études théoriques soient au coeur de cette thèse, la faisabilité opérationnelle ne peut être
négligée :

• les modèles proposés doivent être "maniables", les simulations et la valorisation d’options
classiques doivent être réalisables en un temps raisonnable ;

• les problématiques d’estimation doivent être effectuées dans un cadre d’observations discrètes.

Ce contexte nous amène à étudier dans cette thèse deux types de dépendance :

(i) la dépendance entre deux mouvements Browniens dans le Chapitre 1 et dans le Chapitre 2,
appliquée à la modélisation de la dépendance entre les prix de l’électricité et les prix des
combustibles,

(ii) la dépendance entre un processus ponctuel et une semimartingale continue dans le Chapitre 4
et le Chapitre 5, appliquée à la modélisation de la dépendance entre la fréquence d’apparition
des pics dans les prix de l’électricité et des facteurs exogènes. Une méthode d’estimation de
la fonction d’intensité du processus de Poisson fonction d’une variable exogène est proposée
dans le Chapitre 4.

Avant d’étudier la dépendance entre les pics de prix et des facteurs exogènes, il est nécessaire de
proposer un modèle que l’on peut inférer pour la modélisation des pics de prix de l’électricité et
qui est adapté à un contexte de gestion des risques ; cela correspond au Chapitre 3 où l’on propose
l’estimation d’un processus de pics bruité par une semimartingale continue.

1.2 Description des marchés de l’électricité
Pour mieux comprendre les aspects de modélisation, nous décrivons brièvement dans cette section
les marchés de l’électricité. Les marchés de l’électricité sont des marchés locaux : il y a un marché
par pays et la régulation est différente selon le pays. Cependant, l’équilibre entre consommation et
production doit être satisfait partout et l’on trouve la même structure de marché dans les différents
pays. Il existe trois sous marchés ordonnés selon leur horizon de temps.

Le marché intraday

Ce marché est un marché gré à gré et correspond à une maturité inférieure à un jour. Il assure la
sécurité du système par un mécanisme de balancement : les différents acteurs peuvent rebalancer
leur offre et leur demande de manière continue. Ce marché n’étant pas considéré dans cette thèse,
nous ne donnons pas plus de détails.

Le marché spot

Le marché spot est un marché physique où l’électricité est livrée. C’est un marché d’enchères.
Le jour précédant la livraison, chaque participant soumet une courbe d’offre par heure (ou par
demi-heure). Cette courbe est construite selon l’ordre au mérite : le moyen de production le moins
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cher est utilisé en premier, correspondant à la production solaire et éolienne en général. Comme
les autres commodités énergétiques servent à produire l’électricité, leur prix a un impact sur cette
courbe et donc sur le prix spot ; la dépendance est forte. La demande est croisée avec l’offre pour
chaque heure (ou demi-heure) donnant ainsi le prix spot.

Remarque Le prix spot est plus proche d’un prix day ahead que d’un prix spot car le prix est
fixé 24 heures avant.

L’électricité n’est pas un actif financier classique et présente quelques particularités. Premièrement,
l’électricité n’est pas stockable et ne peut pas être échangée comme n’importe quel actif financier.
Deuxièmement, les prix sont associés à une période de livraison : l’électricité n’est pas livrée
instantanément mais de manière continue sur une période d’une heure par exemple. Toutes ces
particularités font que les prix de l’électricité possèdent les caractéristiques suivantes :

• Saisonnalité : ils possèdent une saisonnalité horaire, hebdomadaire et annuelle. Cette sai-
sonnalité est fortement liée à celle de la consommation à cause de la non stockabilité de
l’électricité.

• Pics de prix : les prix sautent vers le haut ou vers le bas prenant de fortes valeurs, positives ou
négatives, avant de revenir très rapidement vers leur niveau d’origine. Ces pics apparaissent
par example quand la demande est anormalement haute ou que la température est anormale-
ment haute ou basse. Dans le cas d’une forte température, l’air conditionné produit ces pics
et dans le cas d’une basse température, c’est le chauffage.

• Prix négatifs : c’est une conséquence de la non stockabilité. Si la production est plus forte
que prévue, le coût d’arrêter une centrale peut être élevé et le producteur peut préférer payer
pour que l’électricité soit consommée. En Allemagne, une production imprévue est causée par
la pénétration des énergies renouvelables dans le système. Par exemple, une forte production
éolienne non prévue peut entraîner des pics de prix négatifs.

• Retour à la moyenne : le retour à l’équilibre est présent pour les pics où il est très fort mais
aussi quand le comportement des prix est normal avec un retour moins fort.

La Figure 1 montre quelques-unes de ces caractéristiques pour le marché Français.

Le marché forward

Le marché forward est un marché classique avec des actifs échangeables ; c’est un marché gré à gré.
Les actifs ont une maturité comme pour les marchés forward classiques mais aussi une période de
livraison. Contrairement au marché spot, même si il existe une période de livraison, l’électricité
n’est pas livrée et le marché est ouvert à tout le monde. Les produits forward peuvent être utilisés
dans un but de couverture mais aussi de spéculation.

Différents produits existent en fonction de la maturité et de la période de livraison qui peuvent
être de plusieurs semaines, mois, trimestres, saisons ou années. Si nous sommes le 20 Juin 2017
aujourd’hui, le contrat dénommé "Juillet 2017" correspond à une livraison de l’électricité de manière
continue durant le mois de Juillet ; le contrat "Année 2018" correspond à une livraison durant
l’année 2018. Le premier contrat est noté One Month Ahead (1MAH) et correspond au produit qui
délivre à partir du premier du mois suivant pendant tout le mois. De la même manière, le deuxième
contrat est noté One Year Ahead (1YAH). Selon la date, le 1MAH correspond à plusieurs contrats,
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(a) Saisonnalité (semaine du 04 Juillet 2016). (b) Pics.

Figure 1: Illustration du prix spot Français.

de même pour le 1YAH. Le 2MAH correspond au produit "Août 2017". Le Tableau 2 donne quelques
exemples pour comprendre la nomenclature. La Figure 2 represente le 1YAH entre Janvier 2011 et
Mars 2017. La diminution du niveau du prix est principalement due à la diminution du prix des
combustibles.

Produit Contrat Début de la livraison Fin de la livraison
1 Month Ahead Juillet 2017 01/07/2017 31/07/2017
2 Month Ahead Août 2017 01/08/2017 31/08/2017
3 Month Ahead Septembre 2017 01/09/2017 30/09/2017
1 Quarter Ahead Q3 2017 01/07/2017 31/09/2017
2 Quarter Ahead Q4 2017 01/10/2017 31/12/2017

1 Year Ahead 2018 01/01/2018 31/01/2018

Table 2: Produits forward vus du 20 Juin 2017.

1.3 Quelques aspects de modélisation
Dans la littérature, la modélisation des marchés de l’électricité est fortement liée à celle des marchés
d’obligations. Comme pour les marchés obligataires, il est nécessaire de calculer le prix spot St

mais aussi la courbe forward f (t, T ) , t  T qui est le prix à la date t du produit qui délivre
à la date T 1MWh d’électricité durant une heure. Ce produit n’existe pas mais est un moyen de
modéliser le produit existant f (t, T, ✓) qui délivre 1MWh d’électricité entre T et T+✓. Par absence
d’opportunité d’arbitrage, nous avons

f (t, T, ✓) =
1

✓

Z T+✓

T

f (t, u) du.

La modélisation jointe du prix spot et du prix des produits forward est nécessaire car notre porte-
feuille contient souvent tous ces actifs, et surtout car les produits forward permettent de couvrir
les risques financiers liés au prix spot. Deux approches existent, ce qui est aussi le cas pour les
marchés obligataires.
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Figure 2: Prix du 1 Year Ahead sur le marché Français entre Janvier 2011 et Mars 2017.

• La première approche consiste à modéliser directement le prix spot, ce qui est équivalent à
la modélisation des taux d’intérêt pour les marchés d’obligations ; Vasicek [57] a proposé le
premier modèle pour ces marchés. Dans ce cas, le prix forward est égal à EQ

(ST |Ft) où Ft

est la filtration générée par le prix spot correspondant à l’information donnée par le spot
jusqu’à la date t et Q est une probabilité risque neutre. Comme le spot n’est pas un actif
échangeable, le théorème fondamental de la valorisation d’actifs [31] ne s’applique pas et le
spot n’a pas besoin d’être modélisé par une martingale même sous une probabilité risque
neutre, ce qui nous laisse une certaine liberté pour la modélisation. Cependant, comme les
produits forward sont échangeables, leur prix doit être martingale : ceci est assuré par la
martingalité de f (t, T ) qui est défini comme une espérance conditionnelle. Les modèles les
plus communs consistent en une modélisation du spot (ou du logarithme du spot) par une
somme d’une fonction de saisonnalité et d’une diffusion multi-facteurs de la forme

Yt =

m
X

i=1

wiY
i
t , dY

i
t = ��iY i

t dt+ dLi
t, t 2 [0, T ]

où les Li sont des processus de Levy, souvent des mouvements Browniens pour modéliser la
partie diffusive et des processus de Poisson composés pour modéliser la partie pic. Le lecteur
peut se référer à [20; 9; 44] pour plus d’informations sur ce modèle.

• La seconde approche est liée à celle de Heath Jarrow Morton [32] et consiste à modéliser
directement la courbe forward f (t, T ). Le prix spot est alors donné par St = lim

T!t
f (t, T ).

Comme mentionné précédemment, le processus stochastique f (t, T ) est généralement modé-
lisé par une martingale pour chaque T sous Q pour avoir les produits f (t, T, ✓) martingales.
Le modèle le plus présent consiste en une modélisation de la courbe par

df (t, T ) = f (t, T )

 

N
X

i=1

�i (t, T ) dW
i
t

!
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où
�

W i
�

i=1..N
est un mouvement Brownien multidimensionnel. Le lecteur peut se référer

au travail de Benth et Koekebakker [11] pour plus d’informations sur ce modèle et ses ap-
plications. Dans cette thèse, nous considérons souvent pour les applications le modèle deux
facteurs qui correspond au cas

N = 2, �
1

(t, T ) = �se
�↵(T�t), �

2

(t, T ) = �l.

La dynamique de la courbe T 7! f (·, T ) est contrôlée par deux facteurs : un facteur court
terme �se�↵(T�t)dW 1

t et un facteur long terme �ldW 2

t . Le facteur court terme modélise l’effet
Samuelson : la volatilité augmente quand le temps à maturité diminue. Le facteur long terme
modélise la volatilité des produits long terme : la volatilité court terme est proche de 0 pour
ces produits et nous aurions une volatilité nulle sans la volatilité long terme, ce qui n’est pas
le cas.

Concernant la modélisation de la dépendance, une approche spécifique consiste en la modélisation
de la construction des prix spot (par ordre au mérite par exemple) par les variables fondamentales
(demande, prix des combustibles, capacités de production...). Ces modèles sont appelés modèles
structurels, voir [2; 3; 17; 16] pour quelques exemples. La dépendance entre les prix de l’électricité
et les facteurs de risque est en général bien capturée mais le calcul des prix forward et du prix
des options est coûteux. Nous préférons considérer des modèles à forme réduite, où le prix spot
est modélisé par une diffusion. La pratique la plus courante est de modéliser la dépendance entre
les prix de l’électricité (spot ou forward) et les prix des autres commodités énergétiques (spot ou
forward) par une corrélation entre les mouvements Browniens, voir [18] par exemple. C’est aussi
le cas pour la modélisation de la dépendance entre la température et les prix spot [12]. Nous
pouvons trouver dans la littérature des modèles de dépendances plus complexes dans un cadre
de modélisation avec des diffusions et nous en présentons quelques uns ici. Dans un contexte de
modélisation des prix spot, un modèle intéressant est celui de Nakajima et Ohashi [46] qui incorpore
de la co-intégration avec les autres prix des commodités dans un cadre de diffusions Browniennes.
Le prix spot de l’électricité retourne vers une moyenne pondérée des prix des commodités, incluant
lui-même. Cependant, les prix forward sont durs à calculer et ne présentent pas de volatilité long
terme, ce qui implique que les produits à maturité longue ont une volatilité quasi nulle. Benth [10]
utilise des copules dépendantes du temps pour la modélisation de la dépendance entre les prix de
l’électricité et ceux du gaz en temps discret. Un récent travail de Benth propose d’inclure de la
co-intégration dans un cadre multi-facteurs avec des processus Levy [8] ; ce modèle peut être utilisé
pour les prix forward et les prix spot.

2 Première partie : Modélisation de la dépendance entre mou-
vements Browniens

La structure naturelle pour la modélisation de la dépendance pour les composantes d’un mou-
vement Brownien multidimensionnel est l’utilisation d’une matrice de corrélation. Cette matrice
de corrélation correspond à une dépendance linéaire entre les composantes du mouvement Brow-
nien à chaque instant t et est très facile à manipuler. Cette structure de dépendance est utilisée
dans la plupart des modèles financiers, le plus utilisé étant le modèle de Black Scholes multivarié
[19]. Une des principales applications du mouvement Brownien multidimensionnel en finance est
la valorisation et la couverture d’options indexées sur plusieurs actifs avec un payoff h (ST ) où S
est une diffusion multidimensionnelle menée par un mouvement Brownien multidimensionnel. Un
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cas important en deux dimensions est le cas h (x, y) = (x� y �K)

+ avec K une constante, ce
qui correspond à une option spread. Le prix de l’option est donné par EQ

(h (ST )) où Q est une
probabilité risque neutre sous laquelle S est martingale. Nous pouvons voir que le prix de l’option
est impacté par les modèles marginaux pour chaque composante de S mais aussi par la structure
de dépendance entre les différentes composantes, qui ne peut être négligée.

La modélisation de la dépendance par une matrice de corrélation présente quelques limites et
une d’entre elle est la symétrie. Dans cette partie, nous considérons seulement le cas en deux
dimensions. Soient B1 and B2 deux mouvements Browniens. Dans le cas simplifié où les volatilités
des deux actifs S1 and S2 sont les mêmes, le payoff de l’option spread

�

S1

T � S2

T �K
�

+ dépend
de la distribution de B1

T �B2

T comme les deux actifs sont martingales sous Q et ont des tendances
nulles. Le principal sujet d’intérêt est donc la distribution de B1�B2. Supposons dans un premier
temps que leur dépendance est modélisée par une corrélation, c’est-à-dire que dhB1

t , B
2

t i = ⇢dt.
Dans ce cas, nous avons pour x 2 R and t > 0,

P
�

B1

t �B2

t � x
�

= P
�

B1

t �B2

t  �x
�

impliquant pour x � 0,
P
�

B1

t �B2

t � x
�  1

2

.

La distribution de B1

t � B2

t est donc symétrique. Cette symétrie est causée par la structure de
la dépendance entre B1

t et B2

t qui est symétrique pour un temps donné t et qui correspond à la
copule de

�

B1

t , B
2

t

�

. Rappelons qu’une copule (en dimension deux) est une fonction deux-croissante
C : [0, 1]2 7! [0, 1] à marges uniformes ; le lecteur peut se référer à [47] pour plus d’informations
sur les copules. Le théorème de Sklar [54] indique que pour n’importe quel couple de variables
aléatoires (X,Y ), sa distribution est caractérisée par la distribution marginale de X, la distribution
marginale de Y et une copule C représentant la structure de dépendance. Dans le cas d’une
corrélation, la copule de

�

B1

t , B
2

t

�

est appelée copule gaussienne et est symétrique, c’est-à-dire que
C (u, v) = C (v, u) pour u, v 2 [0, 1]. Dans un cas plus général, nous prouvons que si X et Y ont la
même distribution et que leur copule est symétrique, alors la distribution de X�Y est symétrique.
Comme les distributions marginales de B1

t and B2

t sont connues, le contrôle de la distribution de
B1

t � B2

t dépend seulement de la copule de
�

B1

t , B
2

t

�

. Pour avoir des valeurs supérieures 1

2

pour
la quantité P

�

B1

t �B2

t � x
�

, x � 0, il est nécessaire de considérer des copules asymétriques, qui
ne sont pas faciles à construire, voir [40] ou [59] par exemple. Cependant, les copules sont un outil
naturel pour les variables aléatoires mais ce n’est plus le cas pour les processus stochastiques. Les
copules asymétriques classiques ne sont peut être pas adaptées pour les mouvements Browniens.
Cela mène aux questions suivantes :
Question 1 Existe-t-il des copules asymétriques et admissibles pour modéliser la dépendance entre
deux mouvements Browniens ?
Question 2 Y-a-t-il des copules admissibles permettant à P

�

B1

t �B2

t � x
�

de prendre des valeurs
plus élevées que dans le cas où les Browniens sont corrélés ?

Une première étape pour répondre à la Question 1 est de définir convenablement ce qu’est une
copule admissible pour des mouvements Browniens. La littérature concernant les copules pour
les processus stochastiques n’est pas très étoffée et peut être divisée en trois sujets différents. Le
premier sujet concerne les copules pour les processus stochastiques en temps discret. Ces copules
ont été introduites par Patton [48] et généralisées par Fermanian [27]. A chaque temps t, la copule
est construite conditionnellement à ce qu’il s’est passé au temps t � 1. Dans un cadre en temps
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continu, [25] considère la copule entre Xs et Xt avec X un processus stochastique et donne des
conditions sur cette copule pour que X soit un processus Markovien. Le dernier cadre est celui dans
lequel on se place et consiste à étudier la copule entre deux processus stochastiques, et en particulier
deux mouvement Browniens, pour chaque temps t [13; 24; 53; 14; 35]. Dans [14] et [35], la notion
de copule admissible est liée à une fonction de corrélation locale entre deux processus Markoviens.
Dans [24], ces résultats sont généralisés en dimension n. Le cadre Markovien semble naturel pour
les mouvements Browniens et est aussi considéré dans [13]. Nous proposons une définition similaire
à celle de [13] incluant le travail de [14], [35] and [24].

Définition (Copule admissible pour les diffusions Markoviennes) Une collection de copules C =

(Ct)t�0

est admissible pour les n diffusions Markoviennes à valeurs dans R, n � 2,
�

Xi
�

1in

définies sur un espace probabilisé commun (⌦,F ,P) si il existe une diffusion Markovienne dans Rm

Z =

�

Zi
�

1im
, m � n, définie sur une extension de (⌦,F ,P) telle que

8

<

:

L �

Zi
�

= L �

Xi
�

, 1  i  n,
Zi
0

= Xi
0

, 1  i  n,
pour t � 0, la copule de

�

Zi
t

�

1in
est Ct.

avec L (Y ) le générateur infinitésimal d’un processus Markovien Y .

Cette définition inclut, dans le cas des mouvements Browniens, la corrélation déterministe, la
corrélation locale mais aussi la corrélation stochastique si cette dernière est un processus Markovien
comme il est possible d’avoir m � n. Dans le modèle à corrélation locale, dans le cas de la dimension
deux, Jaworski and Krzywda [35] prouvent qu’une copule est admissible pour deux mouvements
Browniens si

�

�

�

�

�

1

2

e
��1(v)2���1(u)2

2
@2u,uC (u, v)

@2u,vC (u, v)
+

1

2

e
��1(u)2���1(v)2

2
@2v,vC (u, v)

@2u,vC (u, v)

�

�

�

�

�

< 1 8(t, u, v) 2 R+ ⇥ [0, 1]2

quand la copule ne dépend pas du temps avec � la fonction de répartition d’une loi normale
standard. En particulier, ils prouvent que l’extension de la copule Farlie-Gumbel-Morgenstern dans
un cadre dynamique Ct (u, v) = uv (1 + a (1� u) (1� v)) , t � 0 avec a 2 [�1, 1] est admissible
pour les mouvements Browniens. Cependant, cette copule n’est pas asymétrique.

Soit B1 un mouvement Brownien défini sur une espace de probabilité filtré (⌦, F , (Ft)t�0

, P) avec
(Ft)t�0

satisfaisant les conditions usuelles (continuité à droite et complétude) avec B1 adapté à
(Ft)t�0

. Alors que la corrélation est le moyen standard de construire un mouvement Brownien B2

dépendant de B1 à partir de B1, un autre moyen existant dans la littérature est de considérer
la réflexion de B1 sur x = h avec h 2 R qui est aussi un F mouvement Brownien selon le
principe de réflexion (voir [36, Theorem 3.1.1.2, p. 137]). Le Brownien réfléchi ˜Bh est défini par
˜Bh
t = �B1

t + 2(B1

t � B⌧h)1t�⌧h avec ⌧h = inf{t � 0 : B1

t = h}. Soient M (u, v) = min (u, v) et
W (u, v) = max (u+ v � 1, 0) pour u, v 2 [0, 1]. La copule de (B1, ˜Bh

),
⇣

Cref,h
t

⌘

t�0

, est définie
par

Cref,h
t (u, v) =

(

v if �

�1

(u)� �

�1

(v) � 2hp
t

W (u, v) + �

⇣

�

�1

(M (u, 1� v))� 2hp
t

⌘

if �

�1

(u)� �

�1

(v) < 2hp
t
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et est admissible pour les mouvements Browniens. Une illustration est donnée dans la Figure 3a.
Un moyen de construire de nouvelles copules à partir de celle-ci est de considérer la dépendance
entre B1 et un Brownien corrélé à la réflexion de B1, voir Figure 3b. Un autre moyen est de
considérer une barrière stochastique, voir Figure 3c où la barrière est égale à h + E et E suit une
loi exponentielle.

(a) (b) (c)

Figure 3: La Reflection Brownian Copula Cref,h et certaines de ses extensions au temps t = 1

avec h = 2. La Figure 3a est la Reflection Brownian Copula. La Figure 3b est la l’extension
considérant un Brownien corrélé à la réflexion du premier avec une corrélation ⇢ = 0.95. La Figure
3c est l’extension dans le cas où la barrière est stochastique et est égale à la somme de h et d’une
variable aléatoire exponentielle de paramètre � = 2.

Résultat 1 La copule Cref,h et ses extensions sont admissibles pour les mouvements Browniens
et sont asymétriques.

Avant de répondre à la Question 2, intéressons nous à la plage de valeurs pouvant être prises par
P (X � Y � x) quand X et Y sont deux variables aléatoires suivant une loi normale standard, ce
qui correspond au cas statique de notre problème.

Résultat 2 La plage de valeurs pouvant être prises par P (X � Y � x) est
⇥

0,�
��x

2

�⇤

si l’on se
limite à l’ensemble des copules gaussiennes et

⇥

0, 2�
��x

2

�⇤

sinon.

La borne supérieure 2�

��x
2

�

est achevée par la copule

Cr
(u, v) =

(

M (u� 1 + r, v) if (u, v) 2 [1� r, 1]⇥ [0, r],
W (u, v) if (u, v) 2 [0, 1]2 \ ([1� r, 1]⇥ [0, r])

avec r = 2�

��⌘
2

�

, voir Figure 4a. La copule présente deux états de dépendance : le premier
correspond à la copule contre monotone W , équivalente à une corrélation de �1, en haut à gauche
du carré unitaire et le second correspond à la copule monotone M , équivalente à une corrélation
de 1. Le résultat provient de [47, Section 6.1] et [29; 52; 41] où les bornes de P (X + Y > x) sont
étudiées. La plage de valeurs entre

⇥

�

��x
2

�

, 2�
��x

2

�⇤

est atteinte en considérant la copule avec
une corrélation relâchée dans la partie contre monotonique, voir Figure 4.

Le Résultat 3 est le même que le Résultat 2 dans un cadre dynamique et donne une réponse à la
Question 2.
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(a) ⇢ = 1. (b) ⇢ = 0.95.

Figure 4: Copule patchwork Cr
(u, v) présentant deux états selon la valeur de u : la première

copule est en haut à gauche du carré unitaire et est W ; la seconde est la copule gaussienne avec
une corrélation égale à ⇢, avec ⇢ = 1 correspondant à la copule dégénérée M ou ⇢ = 0.95. r est
égal à 2�

��⌘
2

�

avec ⌘ = 0.2.

Résultat 3 La plage de valeurs pouvant être prises par P
�

B1

t �B2

t � x
�

est
h

0,�
⇣

�x
2

p
t

⌘i

si l’on

se limite à une dépendance avec corrélation et
h

0, 2�
⇣

�x
2

p
t

⌘i

si l’on considère toutes les copules
admissibles pour les mouvements Browniens. Ces valeurs peuvent être atteintes en utilisant la
Reflection Brownian Copula.

La plage de valeurs pouvant être prises est la même que dans le cadre statique où l’on considère
des variables aléatoires. Un résultat intéressant est que la Reflection Brownian Copula qui atteint
la borne supérieure présente aussi deux états de corrélation : un avec une corrélation égale à 1 et
un avec une corrélation égale à -1, comme pour la copule achevant la borne supérieure dans le cas
statique.

Application à la modélisation des prix des commodités énergétiques Les options spread
sont courantes sur les marchés des commodités. Rappelons ici le problème du producteur possédant
une centrale à charbon dont les revenus sont modélisés par (St �HCt �K)

+. S et C sont modélisés
par des diffusions menées par des mouvements Browniens et la dépendance entre ces Browniens
est souvent modélisée par une corrélation, impliquant de la symétrie dans la distribution de St �
HCt. Cependant, le charbon est un combustible pour l’électricité et HCt a plus de probabilité
d’être inférieur, ce qui ne peut pas être modélisé avec une corrélation. Les modèles marginaux
étant satisfaisant, nous souhaitons seulement changer la structure de dépendance entre les prix
de l’électricité et ceux du charbon, ce qui revient à changer la copule entre les deux mouvements
Browniens. Les résultats de cette partie ont montré que pour capturer de l’asymétrie et des plus
grandes valeurs pour la fonction de survie de la différence des deux Browniens, il faut considérer
deux états de corrélation, un négatif et un positif, à la place de un. Ce résultat mène aux deux
modèles suivants :

• Un modèle multi-barrière basé sur la copule entre un mouvement Brownien et sa réflexion :
nous définissons deux barrières ⌫ et ⌘ avec ⌫ < ⌘ et nous considérons deux mouvements
Browniens indépendants X et BY . Nous construisons le mouvement Brownien Y n qui est
corrélé à ˜Xn : Y n

= ⇢ ˜Xn
+

p

1� ⇢2BY , avec ˜Xn le mouvement Brownien égal à �X au
début et réfléchissant quand X�Y n tape une barrière à deux états égale à ⌘ avant la première
réflexion et passant de ⌘ à ⌫ ou de ⌫ à ⌘ à chaque réflexion.
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• Un modèle à corrélation locale avec deux états de corrélation : la fonction de corrélation
locale est choisie Lipschitz et égale à ⇢

1

< 0 quand x � y  ⌫ et à ⇢
2

> 0 quand x � y � ⌘
avec ⌘ > ⌫.

Ces deux modèles semblent être équivalents. Concernant le premier modèle, une formule fermée
est établie pour la fonction de répartition de la différence entre les deux mouvements Browniens.
Le second modèle est plus facile à utiliser mais ne dispose pas d’une formule fermée pour cette
fonction. Des valeurs supérieures à 1

2

sont atteintes par P
�

B1

t �B2

t � x
�

avec x � 0 dans chacun
des modèles.
Chaque prix de commodité est modélisé par une diffusion à deux facteurs

df i
(t, T ) = f i

(t, T )
⇣

�i
se

�↵i

(T�t)dW s,i
t + �i

ldW
l,i
t

⌘

, i = {Electricité, Charbon}.
Les paramètres sont estimés sur les marché forward électricité et charbon durant 2014 en France
avec des observations journalières en utilisant la méthode de [28]. Nous comparons le modèle
benchmark utilisé qui correspond à une dépendance modélisée par une matrice de corrélation entre
les quatre mouvements Browniens et un modèle où la dépendance entre les deux facteurs long terme
est modélisée avec le modèle multi-barrière. Modéliser la dépendance entre les facteurs court terme
avec un modèle multi-barrière n’a pas d’impact sur les résultats car les volatilités court terme sont
trop différentes. La Figure 5 représente la fonction de survie de la différence entre les produits Spot,
1MAH, 3MAH et 6MAH de chaque commodité pour chaque modèle de dépendance. La fonction de
survie dans le modèle multi-barrière prend des valeurs plus hautes que dans le modèle benchmark
pour x � 0 et pour des produits long terme, ce qui est cohérent avec le fait que la dépendance est
modélisée sur les Browniens long terme. Les résultats sont les mêmes si l’on considère le modèle à
corrélation locale.

(a) Modèle multi-barrière. (b) Modèle benchmark.

Figure 5: Fonction de survie empirique de la différence entre le prix de l’électricité et le prix
du charbon au temps t = 365 jours estimée avec 10000 simulations et un pas de temps égal à 1

24

jour pour différents produits (Spot, 1MAH, 3MAH, 6MAH) dans le modèle multi-barrière et dans
le modèle benchmark.

Un des principaux problèmes de ce modèle est la calibration et le choix des valeurs de la barrière,
qui doit dépendre de la valeur initial de fElectricité

(0, T )�HfCharbon

(0, T ) si l’on veut avoir plus
d’impact sur la fonction de survie de fElectricité

(t, T )�HfCharbon

(t, T ).
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3 Deuxième partie : Estimation d’un processus de pics en
statistiques haute fréquence

Un pic est défini comme un saut, positif ou négatif, revenant à la valeur 0 en une courte période de
temps. Un modèle naturel pour celui-ci est un processus de saut avec un fort retour à la moyenne,
voir Figure 6. Considérons un processus stochastique X défini sur un espace de probabilité filtré
⇣

⌦,F , (Ft)
0tT ,P

⌘

de la forme

Xt =

Z t

0

µsds+

Z t

0

�sdWs + Z�
t , t � 0

avec
Z�
t =

Z t

0

Z

R
xe��(t�s)p (dt, dx) ,

W un mouvement Brownien standard, � et µ deux processus càdlàg adaptés et p une mesure de
Poisson sur R+ ⇥ R indépendante de W de compensateur q = �dt⌦ ⌫ (dx). X est donc la somme
d’une semimartingale d’Itô et d’un processus de saut avec retour à la moyenne correspondant au
processus de pics.

Figure 6: Illustration d’un processus de pics.

X est observé sur une grille régulière M = {ti = i�n, 0  i  b T
�

n

c} avec �n =

T
n . Nous

supposons que �n ! 0 avec T fixé, correspondant à un cadre haute fréquence avec horizon fini.
Notre objectif est d’estimer les paramètres du processus de pics Z� et plus particulièrement le
paramètre � correspondant à la vitesse de retour à la moyenne. Si nous n’ajoutons pas d’autres
hypothèses, le paramètre � est un paramètre de drift et est non identifiable si T est fixé ; le
lecteur peut se référer à Aït-Sahalia et Jacod [6] pour la non identifiabilité du drift. Néanmoins,
nous sommes intéressés par le cas où la vitesse de retour à la moyenne est forte. Une illustration
est donnée en Figure 7a : si � est trop petit par rapport à �n, l’effet pic n’est pas observé et
le processus ne revient pas à 0 avant l’instant T . Pour modéliser cet effet pic, il est nécessaire
d’ajouter l’hypothèse � = �n ! 1. Il faut travailler cependant sous l’hypothèse �n�n . 1 pour
observer tous les pics : dans le cas contraire, un pic peut avoir lieu et revenir à 0 en un temps �n

et il n’est pas possible de l’observer, voir Figure 7b. Une hypothèse de non divergence est aussi
nécessaire dans le cas � = �n qui est �

n

�
n

. 1 : dans le cas contraire, le nombre moyen de sauts �n
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est plus grand que la vitesse de retour à la moyenne �n et le processus diverge comme illustré dans
la Figure 7c. Une autre condition qui est classique est �2n�n ! 0, supposant qu’il y a au plus un
saut dans un intervalle de temps de taille �n. Dans ce cadre, il n’y a plus de résultats concernant
l’identifiabilité ou non du paramètre �, amenant aux questions suivantes.

(a) Retour à la moyenne faible. (b) Fréquence trop forte. (c) Nombre de sauts trop élevé.

Figure 7: Processus de pics dans des régimes non considérés.

Question 1 Comment identifier les temps et les tailles de sauts du processus de pics dans ce
nouveau cadre ?
Question 2 Comment peut-on estimer le paramètre �n si cela est possible et quelle est l’erreur
d’estimation ?

La détection de sauts dans un modèle de diffusion à sauts avec des observations haute fréquence
est une question importante qui a été étudiée par plusieurs auteurs dans la littérature. Une des
principales applications est l’estimation de la volatilité en présence d’une composante de saut. Le
lecteur peut se référer aux travaux de Mancini [42; 43], Aït et Jacod [5; 6] ou Lee et Mykland
[38]. Dans tous ces travaux, l’idée principale consiste à regarder la taille d’un incrément �

n
i X =

Xt
i

� Xt
i�1 . Cet incrément peut être écrit comme la somme d’un incrément de tendance, d’un

incrément de Brownien et d’un incrément de saut. Comme la tendance est absolument continue
par rapport à la mesure de Lebesgue, son incrément est d’ordre �n. L’incrément du Brownien est
d’ordre

p
�n. L’incrément du saut est d’ordre 1 quand il y a un saut entre les instants ti�1

et ti et
égal à 0 si il n’y en a pas. Ainsi, si l’on considère un seuil vn ⇣ �

�$
n avec $ 2 �

0, 1

2

�

, la quantité
|�n

i

X|p
�

n

v
n

converge vers 0 en l’absence de sauts mais vers 1 lorsqu’il y en a.

Dans notre cas, le problème est légèrement différent à cause du terme supplémentaire dû au retour
à la moyenne après un saut qui est d’ordre �n�n. Lorsque �n�n ! 0, il est encore possible de
différencier l’incrément du saut de l’incrément du retour à la moyenne, voir Figure 8. Lorsque
�n�n ⇣ 1, il n’est plus possible de distinguer les deux comme ils ont le même ordre de grandeur,
voir Figure 9. Cependant, après un saut, l’incrément qui est celui de retour à la moyenne a le signe
opposé de celui du saut. Nous pouvons montrer, sous certaines conditions, qu’après un incrément
de retour à la moyenne qui est supérieur au seuil vn

p
�n, si il n’y a pas trop de sauts, l’incrément

suivant aura le même signe que celui de retour à la moyenne. La stratégie suivante est donc adoptée :
soient In (1) < ... < In

⇣

ˆ�n
⌘

les indices i 2 {1, ..., n� 1} tels que

• |�n
i X| > vn

p
�n si �n�n ! 0,

• |�n
i X| > vn

p
�n, �n

i X�

n
i+1

X < 0 si �n�n ⇣ 1.

On a le résultat suivant :
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Résultat 1 Avec une probabilité convergeant vers 1, ˆ�n = N
1

et Tq 2 ((In (q)� 1)�n, In (q)�n]

avec Tq les instants de sauts.

(a) X. (b)

�n

i

X

�0.49
n

.

Figure 8: Détection de sauts dans le cas �n�n = 0.3.

(a) X. (b)

�n

i

X

�0.49
n

.

Figure 9: Détection de sauts dans le cas �n�n = 1.

Une fois que les temps de pics sont identifiés, un estimateur naturel de leur taille est �n
I
n

(q)X pour
q 2 {1, .., ˆ�n} qui est égal à �XT

q

e��
n

(T
q

�I
n

(q)�
n

) plus une erreur avec �XT
q

la taille du qème

saut. Le terme e��
n

(T
q

�I
n

(q)�
n

) inclut un biais dû au fait que le saut apparaît entre les instants
(In (q)� 1)�n et In (q)�n et a déjà commencé à retourner vers 0 au moment de l’observation.
Si �n�n ! 0, ce terme est égal à 1 + O (�n�n) et il est possible d’identifier la taille du saut. Si
�n�n ⇣ 1, il n’est pas possible de l’identifier car nous n’avons pas accès au temps de saut exact.
Cependant, si �n ! 1, il est possible de moyenner cette erreur et l’on a le résultat suivant :

m�n�n

(1� e�m�
n

�

n

)

ˆ�n

ˆ�
n

X

q=1

⇣

�

n
I
n

(q)X
⌘m

!
Z

R
xm⌫ (dx)

en probabilité pour tout entier m > 0 tel que
R

R xm⌫ (dx) < 1. Cet estimateur diffère de l’es-

timateur classique 1

ˆ�
n

P

ˆ�
n

q=1

⇣

�

n
I
n

(q)X
⌘m

par le terme m�
n

�

n

(1�e�m�

n

�
n

)

: cette correction correspond
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à l’erreur moyenne du biais causée par le retour à la moyenne. Pour estimer les moments de la
distribution des sauts, il est nécessaire d’avoir un estimateur consistant de �n.

Pour estimer le paramètre �n, nous considérons la pente du processus après un saut

�sgn

⇣

�

n
I
n

(q)

⌘

�

n
I
n

(q)+1

X

qui est de l’ordre de
�

1� e��
n

�

n

� |�XT
q

| avec sgn la fonction signe. Moyenner ces quantités sur
tous les sauts permet de moyenner le bruit causé par le mouvement Brownien. En divisant par
une approximation de

P

ˆ�
n

q=1

|�XT
q

| et en prenant le logarithme de la moyenne, nous obtenons
l’estimateur suivant :

b�n =

�1

�n
log

0

@

0

@

1 +

P

ˆ�
n

q=1

sgn(�

n
I
n

(q)X)

⇣

�

n
I
n

(q)+1

X + 2�n

Pq�1

j=1

�

n
I
n

(j)X
⌘

P

ˆ�
n

q=1

|�n
I
n

(q)X|
1
ˆ�
n

>0

1

A _�n

1

A .

où un terme de correction 2�n

Pq�1

j=1

�

n
I
n

(j)X est ajouté pour éviter un terme de biais d’ordre �
n

�
n

.

Résultat 2 L’erreur b�
n

��
n

�
n

est égale à Op

⇣

�n�n +min

⇣

�
n

�
n

,�
� 1

2
n

⌘

+

�

�n
p
�n�n

��1

⌘

et un
théorème central limite est donné sous certaines hypothèses.

Le premier terme d’erreur est un terme de bias, le second est dû au bruit causé par les sauts qui ne
sont pas encore retournés à 0 complètement et le troisième est dû au mouvement Brownien. Pour
que l’estimateur soit consistent, il faut que l’erreur du mouvement Brownien

�

�n
p
�n�n

��1 ! 0

comme les deux premiers termes convergent vers 0. Cette condition peut être expliquée par le fait
que la taille du bruit dû à un incrément du mouvement Brownien est de l’ordre de

p
�n, celle dû

au moyennage de ces incréments arrivant après un saut est de l’ordre de
q

�

n

�
n

et la taille d’un
incrément de retour à la moyenne est de l’ordre de �n�n. Pour que le bruit soit négligeable devant
l’estimateur qui est la pente, il faut avoir

q

�

n

�
n

= o (�n�n), ce qui correspond à notre condition.

Application à la modélisation des pics dans les prix de l’électricité Généralisons le
modèle deux facteurs dans le but d’intégrer un terme de pic. Le prix forward est modélisé sous la
probabilité historique par

f (t, T ) =

Z t

0

µsds+ f c
(t, T ) +

Z t

0

Z

R
xe��(T�s)p (ds, dx)

où
df c

(t, T ) = f c
(t, T )

⇣

�se
�↵(T�t)dWs + �ldWl

⌘

correspond à la dynamique classique des forward. Le prix spot est donc égal à

St =

Z t

0

µsds+ Sc
t +

Z t

0

Z

R
xe��(t�s)p (ds, dx)

où Sc est le modèle spot équivalent au modèle deux facteurs et est une semimartingale. Nous
aboutissons à un modèle simple sur le forward et le spot, qui ne diffère que très légèrement des
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modèles classiques par l’ajout d’un terme. Notre procédure d’estimation du facteur de pics est
utilisé sur les données spot françaises, allemandes et australiennes. Lors du calcul des produits
f (t, T, ✓), la composante dû à f� est d’ordre �

� ce qui est négligeable devant la partie continue
du forward. Le facteur de pics a très peu d’impact sur la partie forward, ce qui est consistant
avec les données. Les paramètres de la partie continue des prix spot et forward peuvent donc
être calibrés sur les produits forwards de la même manière que sans la composante de pics. Nous
calibrons la partie continue sur les données forward françaises. Figure 10 représente une simulation
des modèles avec et sans pics avec les paramètres du marché français ; le facteur pic est bien
négligeable pour les produits forward. La composante de pics n’a qu’un impact sur le prix spot.
Nous montrons que la modélisation des pics a un fort impact sur la valorisation d’options strip de
la forme

R T

0

(St �K)

+ dt.

(a) Spot. (b) 1WAH.

(c) 1MAH.

Figure 10: Simulation de différents produits dans un modèle deux facteurs avec et sans pics entre
le 27 Février 2017 et le 31 Mars 2017. Nous illustrons le spot, le 1WAH commençant le 27 Février
2017 et le 1MAH commençant le 01 Mars 2017.

4 Troisième partie : Estimation non paramétrique de l’in-
tensité d’un processus de Poisson doublement stochastique
fonction d’une covariable

Dans cette partie, nous nous intéressons à une semimartingale continue X et à un processus de
Poisson doublement stochastique N définis sur un espace de probabilité filtré

⇣

⌦,F , (Ft)
0tT ,P

⌘

commun. La loi du processus de Poisson doublement stochastique est entièrement déterminé par
sa fonction d’intensité � qui est aussi un processus stochastique. Modéliser la dépendance entre N
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et X est donc équivalent à modéliser la dépendance entre � et X. Nous supposons que � et X sont
observés de manière continue sur un horizon de temps [0, T ]. Nous supposons que

�s = nq (Xs) , s 2 [0, T ]

où n 2 N, n � 1 correspond à une asymptotique. Conditionnellement à (Xt)
0tT , N est un

processus de Poisson inhomogène d’intensité nq (Xt) à l’instant t. Notre objectif est d’estimer la
fonction q sur un intervalle donné I de R. La littérature sur l’estimation non paramétrique de
l’intensité d’un processus de Poisson est large. Le cas le plus simple est le cas d’un processus de
Poisson inhomogène où l’intensité est une fonction déterministe du temps : [50; 51] utilisent des
techniques de sélection de modèle et des estimateurs par projection dans un cadre non asympto-
tique. Une fonction de pénalité est proposé pour sélectionner le modèle optimal. [26; 15] utilisent
des estimateurs à noyau dans un cadre asymptotique ; dans [15], une méthode de sélection de la
fenêtre est proposée. Les processus de Poisson doublement stochastiques les plus utilisés sont ceux
de Cox et d’Aalen [1; 23]. La fonction d’intensité du modèle de Aalen est de la forme ↵tYt avec
↵t une fonction du temps et Yt un processus stochastique. Celle du modèle de Cox est de la forme
↵t exp

�

�TZ
�

avec Z un vecteur aléatoire ou un processus stochastique dans certains cas (voir [45]
par example). Encore une fois, des estimateurs par projection sont utilisés par [22] et des estima-
teurs à polynômes locaux qui généralisent les estimateurs à noyau sont utilisés par [21]. Dans [60],
l’intensité d’un processus de Poisson doublement stochastique est estimé comme une fonction du
temps avec des estimateurs à noyau dans un cadre asymptotique. A notre connaissance, les mé-
thodes d’estimation non paramétrique dans notre cadre sont moins répandues dans la littérature à
part pour [56] qui propose un estimateur à noyau de la fonction q dans le cas où T tend vers 1 et
quand X satisfait certaines conditions, qui peuvent être par exemple la stationnarité de X. Nous
voulons travailler dans un cadre plus général où X n’est pas forcément stationnaire.

Tout d’abord, pour estimer la fonction q en un point x 2 I, il faut que X soit proche de x un
certain nombre de fois avant l’instant T . Un moyen d’évaluer le temps passé par X autour de x
quand X est une semimartingale est le temps local lxT . Nous considérons le temps local naturel de
X qui est la mesure vérifiant la formule de temps d’occupation

Z t

0

f (Xs) ds =

Z

R
f (x) lxt dx, 0  t  T

pour n’importe quelle fonction mesurable f sur ⌦ ⇥ R. Il diffère du temps local classique utilisé
dans la littérature où l’intégration se fait sur le terme de gauche par rapport à dhXis[49, Chapter
6] mais les deux sont liés. lxT peut aussi être défini par

lim

✏!0

1

2✏

Z T

0

1|X
s

�x|✏ds.

Si nous écrivons Xt =

R t

0

µsds +

R t

0

�sdWs, une condition suffisante pour l’existence de lxT est
inf

s2[0,T ]

�s � � presque sûrement avec � > 0 une constante. En ajoutant la condition

E
✓

R T

0

|µs|ds+ sup

0tT
| R T

0

�sdWs|
◆

< 1, nous avons E
✓

sup

x2R
lxT

◆

< 1 qui est nécessaire dans

cette partie. Tous ces résultats peuvent être obtenus facilement en utilisant [49, Exercise 1.15] et
[7, Equation (III)� ]. Nous considérons aussi le cas dégénéré Xt = t correspondant au processus de
Poisson inhomogène. Nous travaillons donc sous l’une des hypothèses suivantes :
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(i) inf

0sT
�s � � avec � > 0 une constante déterministe et

E
 

Z T

0

|µs|ds+ sup

0tT
|
Z T

0

�sdWs|
!

< 1,

(ii) Xt = t pour tout t dans [0, T ].

Pour estimer la fonction q au point x 2 I, il est donc nécessaire d’avoir lxT > 0. Nous choisissons
de travailler conditionnellement à l’évènement D (I, ⌫) défini par

D (I, ⌫) = {! 2 ⌦, inf

x2I
lxT (!) � ⌫T

|I| }

avec ⌫ 2 (0, 1]. The cadre est le même que celui de [33] dans le contexte de l’estimation non
paramétrique d’une fonction de volatilité � (Y ) d’une diffusion Y .

Soient K une fonction noyau positive à support borné [�1, 1], kKk1 = sup

x2R
K (x) < 1, Kh (x) =

h�1K
�

x
h

�

pour x 2 R avec h > 0 le paramètre de fenêtre. Nous considérons l’estimateur à poly-
nômes locaux de q de degré m pour h > 0 et x 2 R

q̂h (x) =
1

n

Z T

0

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)1X
s

2IdNs

avec

U (x) =

✓

1, x,
x2

2!

, ..,
xm

m!

◆T

, w (x, h, z) = UT
(0)B (x, h)�1 U (z)1B(x,h)2S+

m+1
, z 2 R

et

B (x, h) =

Z T

0

U

✓

Xs � x

h

◆

UT

✓

Xs � x

h

◆

Kh (Xs � x)1X
s

2Ids.

Si B (x, h) 2 S+

m+1

, cet estimateur est égal à UT
(0)

ˆ✓h (x) avec

ˆ✓h (x) = argmin
✓2Rm+1

� 2

n
✓T

Z T

0

U

✓

Xs � x

h

◆

Kh (Xs � x)1X
s

2IdNs

+ ✓T
Z T

0

U

✓

Xs � x

h

◆

UT

✓

Xs � x

h

◆

Kh (Xs � x)1X
s

2Ids✓.

Soit qh l’espérance conditionnelle de q̂h sachant X :

qh (x) =

Z T

0

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)1X
s

2Iq (Xs) ds.

Sur l’évènement D (I, ⌫), si il existe � > 0 et K
min

> 0 tels que K (x) � K
min

1|x|�

pour x 2 R,
nous prouvons que B (x, h) 2 S+

m+1

pour x 2 I et 0 < h  2

3

�|I|.
Pour évaluer les performances de notre estimateur, nous choisissons de travailler avec la perte
quadratique intégrée sur I, conditionnellement à l’évènement D (I, ⌫), c’est-à-dire avec la quantité
E
�kq � q̂hk2I |D (I, ⌫)

�

avec kfk2I égal à
R

I
f (x)2 dx. Nous voulons répondre aux questions suivantes :
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Question 1 Comment choisir la fenêtre h de manière optimale ?

Question 2 Quelle est la vitesse de convergence de notre estimateur et est-elle optimale ?

Question 3 Est-ce que la fonction q appartient à une famille paramétrique ?

La Question 1 est centrale car le paramètre de fenêtre a un impact sur la qualité de notre estimateur
et la Question 2 permettra de vérifier sa qualité en terme de vitesse de convergence. La Question
3 a des objectifs opérationnels : il est plus facile en terme de compréhension et de modélisation de
travailler avec une fonction paramétrique plutôt qu’avec une fonction non paramétrique.

La fonction de perte peut être écrite comme la somme d’un terme de biais E
�kq � qhk2I |D (I, ⌫)

�

qui décroît avec h et d’un terme de variance E
�kqh � q̂hk2I |D (I, ⌫)

�

qui croît avec h. La fenêtre h
minimisant la somme du biais et de la variance est donc optimale dans le sens où la fonction de
perte est minimisée. Cependant, cette fenêtre optimale dépend de q que nous ne connaissons pas et
est appelée fenêtre oracle. Nous voulons déterminer une fenêtre h telle que la valeur de la fonction
de coût est proche de celle de l’oracle. Le même problème existe pour l’estimation de la densité
lorsque les observations sont des variables aléatoires i.i.d., voir la discussion dans [55, Section 1.8].

Une solution est de proposer des estimateurs non biaisés des termes de biais et de variance et de
choisir la fenêtre h minimisant la somme des deux. Alors qu’un estimateur de la variance est facile
à trouver, le problème principal est d’approcher le terme de biais. Dans le cas i.i.d., le terme de
variance est déterministe et connu mais dans notre cas, un estimateur non biaisé est donné par

ˆVh =

1

n2

Z T

0

Z

I

✓

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)

◆

2

1X
s

2IdxdNs.

Concernant l’estimateur du terme de biais, dans un contexte d’observations i.i.d. avec un estimateur
à noyau, [37] propose d’approcher le biais kq�qhk2I par kq�qhmink2I avec h

min

suffisamment petit. Si
h
min

! 0, le biais kqhmin �qk2I ⇡ 0 et kqhmin �qhk2I ⇡ kq�qhk2I . Cette méthode est une extension de
la méthode classique de Goldenshluger Lepski [30; 39]. Nous adaptons la méthode de [37] au cadre
de processus de Poisson mais aussi au cadre d’estimateurs à polynômes locaux. Un estimateur non
biaisé de kqhmin � qhk2I est donné par

kq̂hmin � q̂hk2I � ˆVh � ˆVhmin + 2

ˆVh,hmin

avec ˆVh,hmin égal à

1

n2

Z T

0

Z

I

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)w

✓

x, h
min

,
Xs � x

h
min

◆

Khmin (Xs � x)1X
s

2IdxdNs.

Au final, nous sélectionnons la fenêtre suivante

ˆh = argmin
h2H

kq̂hmin � q̂hk2I � ˆVh + 2

ˆVh,hmin + � ˆVh

parmi un ensemble fini H inclus dans (0,1) avec � > 0 un hyperparamètre choisi par le statisticien.
Nous supposons que minH = h

min

� kKk1kKk1|I|
n , avec kKk

1

=

R

R |K (u) |du et maxH  2

3

|I|�.
Ce choix de fenêtre amène au résultat suivant.
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Résultat 1 Supposons sup

x2I
q (x) < 1. La perte E

�kq � qhk2I |D (I, ⌫)
�

est bornée par la somme

de
✓

� _ 1

�
+O

⇣

log (n)�1

⌘

◆

min

h2H
E
�||q̂h � q||2I |D (I, ⌫)

�

et

O (log (n))E
�||qhmin � q||2I |D (I, ⌫)

�

+

1

⌫2
O

 

log (n _ |H|)6
n

!

.

Le Résultat 1 est une inégalité oracle qui est déduite des deux inégalités de concentration [51,
Equation (2.2)] et [34, Theorem 4.2]. Le terme d’erreur d’ordre log (n)E

�||qhmin � q||2I |D (I, ⌫)
�

est
dû à l’approximation de kq � qhk2I par kq � qhmink2I . L’erreur provenant de ce terme dépend de la
régularité de q. Le terme 1

⌫2 correspond à l’erreur due à la quantité d’observations de X dans I et si
celle-ci est petite, cela entraîne plus d’erreurs. Quand n est grand, et si � = 1, notre choix de fenêtre
donne des valeurs de la perte proches de la perte optimale si log (n)E

�||qhmin � q||2I |D (I, ⌫)
�

est
suffisamment petit.

Le Résultat 1 ne donne pas d’informations sur la qualité de notre estimateur. Pour ⇢, �, L > 0,
soit ⇤⇢,� = {f : I ! R : f (x) � ⇢, sup

x2I
f (x) < 1} \ ⌃ (�, L, I) où ⌃ (�, L, I) est la classe de

Hölder d’ordre � sur I avec une borne L. Les Résultats 2 et 3 évaluent la performance de q̂
ˆh au sens

minimax sur ⇤⇢,� et répondent à la Question 2. Nous rappelons que m est le degré du polynôme
de l’estimateur.

Résultat 2 La suite E
�

'2

nkq � q̂
ˆhk2I |D (I, ⌫)

�

est bornée uniformément sur ⇤⇢,� avec 'n égal à
n

��

2�+1 si m � b�c et n
�m

2m+1 si m < b�c.

Résultat 3 La vitesse de convergence n
��

2�+1 est une borne inférieure au sens minimax.

Si m � b�c, notre estimateur est donc optimal au sens minimax avec une vitesse de convergence
n

��

2�+1 .

Pour répondre à la Question 3, nous proposons de tester
⇢

H
0

: 9✓
0

2 ⇥, q = g✓ contre
H

1

: 8✓ 2 ⇥, q 6= g✓

avec ⇥ ⇢ Rd, d � 1 et g✓ une fonction paramétrisée par ✓. Considérons le constraste

Mn (✓) = kq̂
ˆh (·)�

Z T

0

w

✓

·, ˆh, Xs � ·
ˆh

◆

K
ˆh (Xs � ·)1X

s

2Ig✓ (Xs) dsk2I

� 1

n2

Z

I

Z T

0

w2

✓

x, ˆh,
Xs � x

ˆh

◆

K2

ˆh
(Xs � x)1X

s

2IdNsdx.

Le deuxième terme est un terme de correction du biais qui permet d’avoir un estimateur non biaisé
asymptotiquement. Le premier terme mesure la distance entre q̂

ˆh qui est un estimateur de q sous
les deux hypothèses et g✓, ou plutôt une version biaisé de ce dernier permettant d’éviter un terme
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de biais dans la distance. Ce contraste converge en probabilité vers kq � g✓k2I et un estimateur
naturel de ✓

0

sous H
0

est
ˆ✓n = inf

✓2⇥

Mn (✓) .

Un moyen de tester H
0

est de regarder Mn

⇣

ˆ✓n
⌘

qui est petit sous H
0

mais qui diverge sous H
1

.

Résultat 4 Sous H
0

, ˆ✓n converge vers ✓
0

à la vitesse n� 1
2 et une région critique du test au niveau

↵ est
|Mn

⇣

ˆ✓n
⌘

| � ĉ (↵) = n�1

ˆh� 1
2

q

ˆVn�
�1

⇣

1� ↵

2

⌘

où

ˆVn = C (K)

Z

I

 

g
ˆ✓
n

(y)
R T
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C (K) est une constante dépendant uniquement de K et � est la fonction de répartition d’une
variable aléatoire N (0, 1).

Un théorème central limite est aussi donné pour ˆ✓n. Le Résultat 4 indique que Mn

⇣

ˆ✓n
⌘

converge

vers 0 en probabilité à la vitesse n�1

ˆh� 1
2 sous H

0

et vers 1 sous H
1

. Ce test est similaire à celui de
[4] utilisé pour tester si le drift et la diffusion d’une volatilité appartiennent à une certaine famille
paramétrique.

Application à la modélisation de la dépendance entre les prix spot de l’électricité et
la production éolienne Suivant les idées de [58], nous étudions la dépendance entre le prix
spot de l’électricité et l’indice de pénétration éolien en Allemagne. L’indice de pénétration éolien
est défini comme le ratio entre la production éolienne et la production totale d’électricité. Les
données considérées sont le prix spot et l’indice de pénétration éolien horaires Allemands entre les
années 2012 et 2016, les deux années étant incluses. Notre intuition est qu’un indice de pénétration
fort entraîne des pics de prix négatifs dans les prix spot de l’électricité. Les pics sont modélisés
par une processus de Poisson avec un fort retour à la moyenne, comme dans le Chapitre 3. La
méthode du Chapitre 3 est alors utilisée pour détecter les pics dans la série temporelle des prix.
Nous distinguons les pics négatifs des pics positifs et nous estimons l’intensité du processus de
comptage comme une fonction de l’indice de pénétration pour chaque processus en utilisant notre
estimateur à polynômes locaux d’ordre 0, c’est-à-dire à noyau, voir Figure 11a et Figure 11b. Nous
testons si les deux fonctions d’intensité sont constantes avec notre test paramétrique : le test n’est
pas rejeté pour les pics positifs mais l’est pour les pics négatifs avec un niveau de confiance à
95%. Nous trouvons aussi que l’intensité des pics négatifs est une fonction croissante de l’indice de
pénétration éolien.

Basé sur ces résultats, le prix spot est modélisé comme la somme d’une fonction de saisonnalité, d’un
processus continu autorégressif d’ordre 24 et de deux processus de pics : un pour les pics positifs
et un pour les négatifs, les deux ayant le même paramètre de retour à la moyenne. L’intensité du
processus de pics positifs est modélisée par une constante mais celle du processus de pics négatifs
possède deux états : un état de faible intensité pour les faibles valeurs de l’indice et un état de forte
intensité pour les fortes valeurs de l’indice, voir Figure 11a. L’indice de pénétration éolien prenant
ses valeurs entre 0 et 1, nous modélisons son logit par la somme d’une fonction de saisonnalité et
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(a) Pour les pics négatifs. (b) Pour les pics positifs.

Figure 11: Estimateurs à noyau de l’intensité des pics de prix spot fonction de la pénétration
éolienne.

d’un processus continu autorégressif d’ordre 24. Des méthodes d’estimation sont données pour les
deux modèles.

Pour étudier l’impact de notre modèle, nous considérons le point de vue d’un fournisseur d’électri-
cité achetant de l’électricité à un producteur éolien à un prix fixe K. Le producteur éolien produit
Q% de la production éolienne totale. Les revenus du fournisseur d’électricité sur une période T

sont donc égaux à Q
R T

0

CtWPt (St �K) dt avec Ct la consommation totale. La Value at Risk et
l’Expected Shortfall de ce modèle sont comparés à celles du modèle où l’intensité des pics de prix
négatifs est constante : la différence est signifiante entre les deux modèles.

5 Structure de la thèse
Cette thèse est composée de cinq chapitres basés sur les travaux suivants :

- [Chapitre 1] On the control of the difference between two Brownian motions : a dynamic copula
approach, publié dans Dependence Modeling.

- [Chapitre 2] On the control of the difference between two Brownian motions : an application to
energy markets modeling, publié dans Dependence Modeling.

- [Chapitre 3] Estimation of a fast mean reverting jump process with application to spike modeling
in electricity prices, travail en collaboration avec O. Féron et M. Hoffmann.

- [Chapitre 4] Local polynomial estimation of the intensity of a doubly stochastic Poisson process.

- [Chapitre 5] A joint model for electricity and wind penetration with dependence in the electricity
spikes, travail en collaboration avec A. Veraart, soumis dans Forecasting and Risk Management for
Renewable Energy 2017 : Conference proceedings.
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Chapter 1

On the control of the difference
between two Brownian motions: a
dynamic copula approach

Abstract

We propose new copulae to model the dependence between two Brownian motions and to control
the distribution of their difference. Our approach is based on the copula between the Brownian
motion and its reflection. We show that the class of admissible copulae for the Brownian motions
are not limited to the class of Gaussian copulae and that it also contains asymmetric copulae.
These copulae allow for the survival function of the difference between two Brownian motions to
have higher value in the right tail than in the Gaussian copula case. Considering two Brownian
motions B1

t and B2

t , the main result is that the range of possible values for P
�

B1

t �B2

t � ⌘
�

with
⌘ > 0 is the same for Markovian pairs and all pairs of Brownian motions, that is

h

0, 2�
⇣

�⌘

2

p
t

⌘i

with � being the cumulative distribution function of a standard Gaussian random variable.
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1 Introduction

1.1 Motivation

Modeling dependence between risks has become an important problem in insurance and finance. An
important application in risk management for commodity energy markets is the pricing of multi-
asset options, and in particular the pricing of spread options. Spread options are used to model
the incomes of a plant, such as coal plant. A review on the spread options and on the pricing
and hedging models is done by Carmona [4]. The simplest model used for derivative pricing and
hedging on several underlying is the multivariate Black and Scholes model [5]. Each price is modeled
by a geometric Brownian motion and the dependence between the different Brownian motions is
modeled by a constant correlation matrix. The copula between the Brownian motions when they
are linked by correlation is called a Gaussian copula. Copulae have many applications in finance
and insurance, especially in credit derivative modeling. For instance, Li [17] used the Gaussian
copula to model the dependence between time until default of different financial instruments. For
more information on the use of copulae in finance, the reader can refer to [7].

Let Xt be the price of electricity at time t, Yt the price of coal and H the heat rate (conversion
factor) between the two. The income of the coal plant at time t can be modeled by (Xt�HYt�K)

+

where K is a constant and corresponds to a fixed cost (we have neglected the price of carbon
emissions). Coal is a combustible used to produce electricity and H is the cost of one unit of
coal used to produce one unit of electricity. Thus we expect to have Xt > HYt, i.e. the price of
electricity greater than the price of the coal used to produce it, with a probability greater than
1

2

. Let us consider that the two commodities are modeled by an arithmetic Brownian motion with
a zero drift under a risk neutral probability P: Xt = �XB1

t and HYt = �Y B2

t and we suppose
that hdB1, dB2it = ⇢dt. The dependence between the two Brownian motions is modeled by a
correlation, i.e a Gaussian copula. For x 2 R, we have

P (Xt �HYt � x) = P (Xt �HYt  �x)

and then, if x � 0,

P (Xt �HYt � x)  1

2

.

The distribution of the difference between the two prices is symmetric and moreover, the value
of its survival function is limited to 1

2

in the right tail. We would like to have higher values for
this probability in order to enrich our modeling. The modeling of the dependence with a constant
correlation does not allow to capture the asymmetry in the distribution of the difference of the prices
and limits the values that can be achieved by its survival function. Today, it is common practice
to use a factorial model [1] to model prices of commodities which is based on Brownian motions.
Marginal models, i.e. when we consider only one commodity at the time, are enough performant for
risk management. However, the dependence between them is modeled by a Gaussian copula, which
is not enough to capture the asymmetry and the values taken by the survival function of their
difference. Sklar’s Theorem [24] states that the structure of dependence can be separated from the
modeling of the marginals with the copula. Studying the impact of the structure of dependence on
the modeling is equivalent to studying the impact of the copula.

Whereas copulae are very useful in a static framework where random variables are modeled, mod-
eling with copulae is much more difficult in a dynamic framework, that is when processes are
involved. In a discrete time framework, Patton [21] introduces the conditional copula which is a
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copula at time t defined conditionally on the information at time t� 1. Fermanian and Wegkamp
[12] generalize the concept of conditional copula. In a continuous time framework, Darsow et al.
[9] consider the modeling of the time dependence by a copula. They give sufficient and necessary
conditions for a copula to be the copula of a Markov process X = (Xt)t�0

between times t and
s, i.e. the copula of (Xt, Xs), using the Chapman-Kolmogorov equation. We are more interested
in the space dependence, that is the dependence between two different processes at a given time
t. The question is studied by Jaworski and Krzywda [15]. They consider two Brownian motions
and they are interested in copulae that make the bivariate process self-similar. They find neces-
sary and sufficient conditions for the copula to be suitable for the Brownian motions deriving the
Kolmogorov forward equation. The copula is linked by a local correlation function into a partial
derivative equation. Further work has been done in the thesis of Bosc [3] where there are no con-
straints of self-similarity and it is not only limited to Brownian motions ; a more general partial
derivative equation is found. More details about their work are given in Section 2.2. However, con-
ditions for the copula to be suitable for the Brownian motions are very restrictive. An equivalent
approach to the copula one is the coupling approach. A coupling of two stochastic processes is a
bi-dimensional measure on the product space such that the marginal measures correspond to the
ones of the stochastic processes. For more information on coupling, the reader can refer to [6]. One
of the most important coupling is the coupling by reflection [18], based on the reflection of the
Brownian motion which has some importance in this article.

1.2 Objectives and results

The objective of this article is to control the distribution of the difference between two Brownian
motions at a given time t. The distribution of the difference between two Brownian motions B1

and B2 can be described by x 7! P
�

B1

t �B2

t � x
�

, x 2 R, t � 0. If B1

t � B2

t has a continuous
cumulative distribution function, this function is the survival function of B1

t � B2

t at point x. In
particular, we want to find asymmetric distributions for B1 �B2 with more weight in the positive
part than in the Gaussian copula case, i.e. P

�

B1

t �B2

t � ⌘
�

greater than 1

2

for a given ⌘ > 0. Since
distributions of B1

t and B2

t are known, we control this distribution with the copula of
�

B1

t , B
2

t

�

.
One of the main issues is to work in a dynamical framework ; we then first need to extend the
definition of copulae to Markovian diffusions. If we denote by CB the set of admissible copulae for
Brownian motions, which is properly defined in Section 2.2, our main goal is to study the range of
the function

S⌘,t : CB ! [0, 1]
C 7! PC

�

B1

t �B2

t � ⌘
�

denoted by Ran (S⌘,t) with PC the probability measure associated to
�

B1, B2

�

when C 2 CB and
with ⌘ > 0 and t � 0 given. Our problem is related to the one consisting in finding bounds of
P (X + Y < ⌘) with X and Y two random variables with given distributions, see [20, Section 6.1]
and [13; 22; 19]. In our case, we add the constraint that the copulae are in CB .

Considering the set of Gaussian copulae, it is easy to prove that
h

0,�
⇣

�⌘

2

p
t

⌘i

⇢ Ran (S⌘,t) by
controlling the correlation between the two Brownian motions with � the cumulative distribution
function of a standard normal random variable. Furthermore, if we consider the restriction of S⌘,t

to the set of Gaussian copulae S⌘,t Cd

G

, we have Ran
⇣

S⌘,t Cd

G

⌘

=

h

0,�
⇣

�⌘

2

p
t

⌘i

, see Proposition
1.6 (i) below.

Our major contribution is to construct a family of dynamic copulae in CB that can achieve all the
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values between 0 and the supremum of S⌘,t on CB . We first prove that

sup

C2C
B

S⌘,t (C) = 2�

⇣ �⌘
2

p
t

⌘

in Proposition 1.6 (ii), implying that the Gaussian copulae can not describe all the values that
can be achieved by S⌘,t. This supremum is achieved with the copula of the Brownian motion
and its reflection, which we call the Reflection Brownian Copula, and which a closed formula is
given in Proposition 1.1. In the case where X and Y are two normal random variables N �

0,
p
t
�

,
the supremum of P (X � Y � ⌘) without constraint on the copula is also equal to 2�

⇣

�⌘

2

p
t

⌘

, see
Proposition 1.5 (ii) below that follows from [20, Section 6.1, Example 6.2]. The supremum for
PC

�

B1

t �B2

t � ⌘
�

is then the same for Markovian pairs and all pairs of Brownian motions. Deriving
a new family of copulae that is described in Proposition 1.3 from the Reflection Brownian Copula,
it is possible to achieve all the value between 0 and 2�

⇣

�⌘

2

p
t

⌘

, which means that

Ran (S⌘,t) =

h

0, 2�
⇣ �⌘
2

p
t

⌘i

;

this is the result of Proposition 1.6 (iii). The range of possible values for PC

�

B1

t �B2

t � ⌘
�

is
the same for Markovian pairs and all pairs of Brownian motions. Copulae used to achieve values
in Ran (S⌘,t) present two states depending on the value of B1

t � B2

t : one of positive correlation
and one of negative one. These copulae are asymmetric and to our knowledge, these are the only
asymmetric copulae suitable for Brownian motions available in the literature.

1.3 Structure of the paper
In Section 2, we define the notion of dynamic copulae for Markovian diffusion processes and in
particular for the case of two Brownian motions. We show that our definition includes several
model of dependence present in the literature such as stochastic correlation models. In Section 3,
we compute a copula called the Reflection Brownian Copula based on the dependence between a
Brownian motion and its reflection and we derive new families of asymmetric copulae based on
this copula. In Section 4, after showing the limitations of modeling the dependence between two
random variables with symmetric copulae, we establish the results on the range of the function
S⌘,t, first in a static framework and then in a dynamical framework with Brownian motions.

2 Markov Diffusion Copulae
In finance and insurance, modeling of two dimensional processes is usually based on a 2 dimensional
Brownian motion, that is when the structure of dependence between two 1 dimensional Brownian
motions is modeled by a correlation. The copula of the two Brownian motions at a given time then
belongs to the class of Gaussian copulae.

Let us recall that a function C : [0, 1]2 7! [0, 1] is a copula if:

(i) C is 2-increasing, i.e. C (u
2

, v
2

)�C (u
1

, v
2

) +C (u
1

, v
1

)�C (u
2

, v
1

) � 0 for u
2

� u
1

, v
2

� v
1

and u
1

, u
2

, v
1

, v
2

2 [0, 1],

(ii) C (u, 0) = C (0, v) = 0, u, v 2 [0, 1],
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(iii) C (u, 1) = u,C (1, u) = u, u 2 [0, 1].

We denote by C the set of copulae and by CG the set of Gaussian copulae completed by the upper
and lower Frechet copulae M (u, v) = min (u, v) and W (u, v) = max (u+ v � 1, 0) corresponding
to the limit cases ⇢ = 1 and ⇢ = �1. CG = {C 2 C : 9⇢ 2 (�1, 1) , C = CG,⇢}[{M,W} where CG,⇢

denote the Gaussian copula with parameter ⇢. We have

CG,⇢(u, v) = �⇢(�
�1

(u),��1

(v))

with � the cumulative distribution function of a standard normal random variable and �⇢ the
cumulative distribution function of a bivariate normal random variable with correlation ⇢:

�⇢(x, y) =

Z y

�1

Z x

�1

1

2⇡
p

1� ⇢2
e
� 1

2(1�⇢

2)
(u2

+v2�2⇢uv)
dudv.

In the following, a Gaussian copula will abusively refer to an element of CG.

In this section, we want to generalize the concept of copula which is adapted for random variables
to a dynamical framework. We want to define the notion of copula for Markov diffusions in Section
2.1. In particular, we are interested in copulae suitable for Brownian motions in Section 2.2.

2.1 Definition

In order to work in a dynamical framework, we need to extend the concept of copula to Markovian
diffusions. Our definition is based on the work of Bielecki et al. [2] and gives a more general
definition.

We recall that if P = (Pt)t�0

is a Markovian diffusion solution of the stochastic differential equation

dPt = µ (Pt) dt+ � (Pt) dWt,

with W = (Wt)t�0

a standard Brownian motion, the infinitesimal generator L of P is the operator
defined by

Lf (x) =
1

2

�2

(x) f 00
(x) + µ (x) f 0

(x)

for f in a suitable space of functions including C2.

Definition 1.1 (Admissible copula for Markovian diffusions). We say that a collection of copula
C = (Ct)t�0

is an admissible copula for the n real valued Markovian diffusions, n � 2,
�

Xi
�

1in

defined on a common probability space (⌦,F ,P) if there exists a Rm Markovian diffusion Z =

�

Zi
�

1im
, m � n, defined on a probability extension of (⌦,F ,P) such that

8

<

:

L �

Zi
�

= L �

Xi
�

, 1  i  n,
Zi
0

= Xi
0

, 1  i  n,
for t � 0, the copula of

�

Zi
t

�

1in
is Ct.

The strongest constraint to be admissible is that Z has to be a Markovian diffusion. Without this
constraint, all the copulae are admissible. Sempi [23] studies the Brownian motions linked by a
copula without this constraint. Definition 1.1 is consistent with the approach of [15] or [3] consisting
of modeling dependence by a local correlation function. However, our approach is totally different.
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2.2 Brownian motion case

From now on, we work in a 2 dimensional framework and we denote by CB the set of admissible
copulae for Brownian motions, that is when X1 and X2 are Brownian motions. The only well
known suitable copulae for Brownian motion are the Gaussian copulae.

We can extend the definition of CG to a dynamical framework by defining

Cd
G = {(Ct)t�0

: 8t 2 R+, Ct 2 CG} \ CB .

It is necessary to take the intersection with CB because we do not know if conditions are needed on
Ct for the copula to be admissible. We are not interested in this question in this paper. However,
we know this intersection is not empty because {(Ct)t�0

: 9⇢ 2 (�1, 1) , 8t 2 R+ Ct = CG,⇢} ⇢ CB .
One of our objective is to find copulae that are admissible for Brownian motion but that are not
Gaussian copulae.

Jaworski and Krzywda [15] prove that the set of admissible copulae for Brownian motions was not
reduced to the Gaussian copulae. By linking local correlation and copula with the Kolmogorov
backward equation, they find that a sufficient condition to be admissible is

�

�

�

�

�

1

2

e
��1(v)2���1(u)2

2
@2u,uC (u, v)

@2u,vC (u, v)
+

1

2

e
��1(u)2���1(v)2

2
@2v,vC (u, v)

@2u,vC (u, v)

�

�

�

�

�

< 1 8(t, u, v) 2 R+ ⇥ [0, 1]2

(1.1)
when the copula does not depend on time. In particular, they prove that the extension of the FGM
copula CFGM

(u, v) = uv (1 + a (1� u) (1� v)) , a 2 [�1, 1] in a dynamical framework defined by
Ct (u, v) = CFGM

(u, v) , t � 0, is an admissible copula for Brownian motions. Bosc [3] has also
found admissible copulae.

Let us consider two independent Brownian motions B1 and Z defined on a common probability
space (⌦,F ,P). Definition 1.1 includes several models for Brownian motions used in the literature.

Deterministic correlation Let us consider a function t 7! ⇢ (t) defined on R+ with values in

[�1, 1]. Let B2

t =

R t

0

⇢ (s) dB1

s +

R t

0

q

1� ⇢ (s)2dZs.

B2 is a Brownian motion and the dynamic copula defined at each time t by the copula of
�

B1

t , B
2

t

�

is in CB .

Local correlation Let us consider a function (x, y) 7! ⇢ (x, y) defined on R+ with values in [�1, 1]
and measurable. If the stochastic differential equation

dB2

s = ⇢
�

B1

t , B
2

t

�

dB1

s +

q

1� ⇢ (B1

t , B
2

t )
2

dZs

has a strong solution, the dynamic copula defined at each time t by the copula of
�

B1

t , B
2

t

�

is in
CB by the Lévy characterization of Brownian motion.
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Stochastic correlation Let us consider a Markovian diffusion ⇢ = (⇢s)s�0

independent of
�

B1, Z
�

locally square integrable and with values in [�1, 1].
We can extend the probability space and the filtration generated by

�

B1, Z
�

. The stochastic process

B2 defined by B2

t =

R t

0

⇢ (s) dB1

s+
R t

0

q

1� ⇢ (s)2dZs is a Brownian motion and the dynamic copula
defined at each time t by the copula of

�

B1

t , B
2

t

�

is in CB .
We can also consider a correlation diffusion driven by B1, Z and an independent Brownian motion.
If the system of stochastic differential equations has a strong solution, the copula is still in CB .

Contrary to the approaches of Jaworski and Krzywda [15], Bosc [3] or Bielecki et al. [2], Definition
1.1 includes stochastic correlation models. However, we need for the stochastic correlation to be a
Markovian diffusion which is not needed in a general case ; the stochastic correlation has only to
be progressively measurable.

3 Reflection Brownian Copula
In this section, our objective is to construct Markov Diffusion Copulae defined in Section 2. We
construct a new copula based on the reflection of the Brownian motion. We show that the copula
between the Brownian motion and its reflection is adapted to a dynamical framework and is a
suitable copula for Brownian motions. Furthermore, we give a closed formula of this copula in
Section 3.1. To our knowledge, this copula has not been studied in detail and it is the new copula
suitable for Brownian motions. We also construct new families of copulae by extension of the
Reflection Brownian Copula in Section 3.2.

3.1 Closed formula for the copula

In this section, we study the copula between the Brownian motion and its reflection. Since its
reflection is also a Brownian motion, the copula is a good candidate for being in CB .

Let us consider a filtered probability space (⌦, F , (Ft)t�0

, P) with (Ft)t�0

satisfying the usual
hypothesis (right continuity and completion) and B = (Bt)t�0

a Brownian motion adapted to
(Ft)t�0

. We denote by ˜Bh the Brownian motion reflection of B on x = h with h 2 R, i.e. ˜Bh
t =

�Bt + 2(Bt � B⌧h)1t�⌧h with ⌧h = inf{t � 0 : Bt = h}. Thus, ˜Bh is a F Brownian motion
according to the reflection principle (see [16, Theorem 3.1.1.2, p. 137]). Proposition 1.1 gives the
copula of

�

B, ˜Bh
�

.

We recall that M (u, v) = min (u, v), W (u, v) = max (u+ v � 1, 0), u, v 2 [0, 1] and that � denotes
the cumulative distribution function of a standard normal random variable.

Proposition 1.1. Let h > 0. The copula of (B, ˜Bh
),
⇣

Cref,h
t

⌘

t�0

, is defined by

Cref,h
t (u, v) =

(

v if �

�1

(u)� �

�1

(v) � 2hp
t

W (u, v) + �

⇣

�

�1

(M (u, 1� v))� 2hp
t

⌘

if �

�1

(u)� �

�1

(v) < 2hp
t

(1.2)

and
⇣

Cref,h
t

⌘

t�0

2 CB. We call this copula the Reflection Brownian Copula.
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3.2 Extensions

In this section, we give methods to construct new admissible copulae for Brownian motions from
the Reflection Brownian Copula.
Proposition 1.2 and its proof gives an approach to construct different admissible copulae for Brow-
nian motions based on the Reflection Brownian Copula considering a correlated Brownian motion
to the reflection of the Brownian motion. Thus, the copula of Proposition 1.2 is the copula of
⇣

B, ⇢ ˜Bh
+

p

1� ⇢2Z
⌘

, with h > 0, ⇢ 2 (0, 1) and Z = (Zt)t�0

a Brownian motion independent
from B.
Proposition 1.2. Let h > 0 and ⇢ 2 (0, 1). The copula

Ct(u, v) =

8

>

>

>

<

>

>

>

:

�⇢

⇣

�

�1

(u) ,��1

(v) + 2⇢hp
t

⌘

+ v � �

⇣

�

�1

(v) + 2⇢hp
t

⌘

if u � �

⇣

hp
t

⌘

��⇢

⇣

�

�1

(u) ,��1

(v)
⌘

+ �⇢

⇣

�

�1

(u)� 2hp
t
,��1

(1� v)� 2⇢hp
t

⌘

+

�⇢

⇣

�

�1

(u)� 2hp
t
,��1

(v)
⌘

� �

⇣

�

�1

(u)� 2hp
t

⌘

if u < �

⇣

hp
t

⌘

is in CB.

Contrary to the Reflection Brownian Copula, this copula is non degenerated in the sense that we
have two distinct sources of randomness. Indeed, in the Reflection Brownian Copula case, if we
know the trajectory of the Brownian motion, we also know the one of its reflection.
Remark 1.1. In the case ⇢ = 0, we still have a copula which is the independent copula and then
that is in CB.

An other way to construct admissible copulae is to consider a random barrier ⇠. By enlarging
the filtration, the copula of the two processes is an admissible copula and it can be computed
by integrating the copula of the Reflection Brownian motion according to the law of the barrier.
Proposition 1.3 gives the copula of

�

B, ˜B⇠
�

which is clearly in CB because
�

B, ˜B⇠, ⇠
�

is Markovian.

Proposition 1.3. Let ⇠ be a positive random variable with law having a density and F
⇠ its survival

function. The copula

C⇠
t (u, v) = v �

Z

�

�1
(M(1�u,v))

�1

e
�w

2

2p
2⇡

F
⇠
⇣

p
t

2

�

�

�1

(M (u, 1� v))� w
�

⌘

dw

is in CB.

Example 1.1 below gives a copula with closed formula built with the method of Proposition 1.3.

Example 1.1. Let ⇠ d
= h+X with h 2 R and X a random variable following an exponential law

with parameter � > 0. We have F
⇠
(x) =

⇢

1 if x  h
e��(x�h) if x > h

and the copula

Cexp,h,�
t (u, v) = W (u, v) + min

h

�

⇣

�

�1

(M (1� u, v))� 2hp
t

⌘

,M (u, 1� v)
i

(1.3)

� �

⇣

min

h

�

�1

(M (1� u, v))� 2hp
t
,��1

(M (u, 1� v))
i

� �
p
t

2

⌘

e�h+
�

2
t

4 +

�

p
t

2 �

�1
(M(u,1�v))

is in CB.
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The methods of Proposition 1.2 and 1.3 could be used simultaneously to construct new classes of
admissible copulae. Figure 1.1 represents the Reflection Brownian Copula and some of its exten-
sions.

(a) (b) (c)

Figure 1.1: The Reflection Brownian Copula Cref,h and some of its extensions at time t = 1 with
h = 2. Figure 1.1a is the Reflection Brownian Copula. Figure 1.1b is the extension considering
a Brownian motion correlated to the reflection of the first Brownian with a correlation ⇢ = 0.95,
which is the copula of Proposition 1.2. Figure 1.1c is the extension in the case of a random barrier
following an exponential law with parameter � = 2, which is the copula of Example 1.1.

Remark 1.2. In Proposition 1.1, Proposition 1.2 and Proposition 1.3, the given copula is the
copula between two Brownian motions B1

t and B2

t at time t. In Patton [21], the dynamic copula
in a discrete time setting is the copula between B1

t and B2

t knowing the filtration generated by
�

B1

t�1

, B2

t�1

, B1

t�2

, B2

t�2

, ..., B1

0

, B2

0

�

. In our case, the copula of
�

B1

t , B
2

t

�

is conditioned to the val-
ues of B1

0

and B2

0

, which are equals almost surely to 0. One could compute the copula of
�

B1

t , B
2

t

�

knowing
�

B1

s , B
2

s

�

, but this is not the subject of this paper. We want to study P
�

B1

t �B2

t � ⌘
�

that
only requires the copula of

�

B1

t , B
2

t

�

and not P
�

B1

t �B2

t � ⌘ | B1

s , B
2

s

�

. Furthermore, the depen-
dence between B1

t , B
2

t , B
1

s and B2

s is implicitely given in the dynamic of (B
1

, B
2

) that we know.
For application, we want to price European spread options of the form

�

f
�

B1

t

�� g
�

B2

t

��

+, that
depends only of the law of

�

B1

t , B
2

t

�

and hence of the copula of
�

B1

t , B
2

t

�

. For American spread
options, we know the dynamic of

�

B1, B2

�

and we work in a Markovian framework.

Remark 1.3. The study of the range of P
�

B1

t �B2

t � ⌘ | B1

s , B
2

s

�

seems very close to our prob-
lem: P

�

B1

t �B2

t � ⌘ | B1

s , B
2

s

�

= P
�

B1

t �B1

s � �

B2

t �B2

s

� � ⌘ � �

B1

s �B2

s

� | Bs
1

, Bs
2

�

and Bt
1

�Bs
1

(resp. Bt
2

�Bs
2

) is a Brownian motion independent from Bs
1

(resp. Bs
2

). However, we let this problem
for further studies.

4 Control of the distribution of the difference between two
Brownian motions

Let B1 and B2 be two standard Brownian motions defined on a common filtered probability space
(⌦, F , (Ft)t�0

, PC) with (Ft)t�0

satisfying the usual hypothesis and where PC is the probability
measure associated to

�

B1, B2

�

and C = (Ct)t�0

2 CB is the copula of
�

B1, B2

�

. In this section,
we are interested in the distribution of the difference between B1 and B2, i.e. the function x 7!

61



1. On the control of the difference between two Brownian motions: a dynamic copula approach

PC

�

B1

t �B2

t � x
�

for t > 0 and in particular in the right tail of this distribution, i.e. when x > 0.
Since the distributions of B1 and B2 are known, this function is entirely determined by the copula
of
�

B1, B2

�

. Our goal is to find the range of values that can be achieved by this function at a given
x > 0. Given ⌘ > 0 and t � 0, we define the function

S⌘,t : CB ! [0, 1]
C 7! PC

�

B1

t �B2

t � ⌘
�

.
(1.4)

Remark 1.4. PC is a probability measure that verifies

PC

�

B1

t  x,B2

t  y
�

= Ct

✓

�

✓

xp
t

◆

,�

✓

yp
t

◆◆

for x, y 2 R. However, C does not describe entirely PC . Indeed, C describe the dependence between
B1

t and B2

t at a given time t but not between B1

s and B2

t with s 6= t for instance.

Our objective is to control the value of this function at a given time t by controlling the dependence
between the two Brownian motions. For this, we first study the range of this function Ran (S⌘,t).
We show that the Reflection Brownian Copula defined in Section 3 and its extensions allow us to
control S⌘,t and to achieve all the values in Ran (S⌘,t). After showing the limitations of symmetric
copulae for the control of S⌘,t in Section 4.1, we give a result about Ran (S⌘,t) in a static case in
Section 4.2, i.e. in the case of two Gaussian random variables. Most of results of Section 4.1 and
Section 4.2 are classic for the sum of random variables ; we adapt them to the difference case.
Finally, we give the main result concerning the range of S⌘,t in Section 4.3.

4.1 Impact of symmetry on S⌘,t

In this section, we show that modeling the dependence between two random variables with sym-
metric copulae limits the values that can be taken by the distribution of the difference between
two random variables. It imposes some constraints on this distribution. Using asymmetric copulae
is then necessary to control S⌘,t. We also show that we can find asymmetric copulae suitable for
Brownian motions.

Definition 1.2. A copula C is symmetric if C (u, v) = C (v, u), u, v 2 [0, 1]. We denote by Cs the
set of symmetric copulae.

Note that CG ⇢ Cs with CG the set of Gaussian copulae.

If X and Y are two random variables with continuous cumulative distribution functions, we denote
by CX,Y the copula of (X,Y ). Sklar’s Theorem [24] guarantees the existence and the unicity of
CX,Y . Proposition 1.4 gives properties on the distribution the difference of two random variables
if their copula is symmetric.

Proposition 1.4. Let X and Y be two real valued random variables defined on the same probability
space (⌦, F , P) with copula CX,Y and with continuous marginal distribution functions FX and
FY . If FX

= FY and CX,Y 2 Cs then P (X � Y  �x) = P (X � Y � x).

We can extend the definition of symmetry and asymmetry to Markov Diffusion Copulae: we denote
by Cd

a = {(Ct)t�0

: 8t � 0, Ct 2 Cs} the set of symmetric Markov Diffusion Copulae and by
Cd
s = {(Ct)t�0

: 8t � 0, Ct 2 C \ Cs} the set of asymmetric Markov Diffusion Copulae.
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Corollary 1.1. For ⌘ > 0 and t > 0, we have:

Ran
⇣

S⌘,t Cd

s

⌘

⇢
h

0,
1

2

i

with S⌘,t Cd

s

the restriction of S⌘,t to Cd
s .

Proof If we consider two Brownian motions B1 and B2 with dynamic copula C 2 Cd
s , we have

according to Proposition 1.4: P
�

B1

t �B2

t � x
�

= P
�

B1

t �B2

t  �x
�

. However, P
�

B1

t �B2

t � x
�

+

P
�

B1

t �B2

t  �x
�  1 if x � 0. Then we have the constraint P

�

B1

t �B2

t � x
�  1

2

. ⇤
In particular, since the Gaussian copula is symmetric, it is not possible to obtain asymmetry in
the distribution of B1

t �B2

t at each time t when the dependence between two Brownian motions is
given by a correlation structure. Limiting the modeling of the dependence to the Gaussian copula
or to symmetric copulae makes the distribution of their difference symmetric and limits the value
of S⌘,t.

Modeling the dependence by an asymmetric copula is then necessary to have higher values than 1

2

for S⌘,t. We have
CB \ Cd

a 6= ;.
Indeed, the Reflection Brownian Copula defined in Equation (1.2) is in CB and is asymmetric. The
set of admissible copulae for Brownian motion is not reduced to the set of Gaussian copulae and
furthermore it contains an asymmetric copula which is the Reflection Brownian Copula. Jaworski
and Krzywda [15] and Bosc [3] have proven the existence of symmetric suitable copulae for Brow-
nian motions. However, they did not find asymmetric copulae suitable for Brownian motions. We
can also show that extensions of the Brownian Reflection Copula defined in Section 3.2 are asym-
metric. To our knowledge, these copulae are the only asymmetric copulae suitable for Brownian
motions in the literature.

Remark 1.5. Copulae constructed in Section 3.2 can also be used as a method to construct asym-
metric copulae, which is not always evident.

4.2 The Gaussian Random Variables Case

Let us consider two standard normal random variables X and Y defined on a common probability
space (⌦, F , PC) where PC is the probability measure associated to the copula C of (X,Y ). Since
the laws of the marginals of X and Y are fixed, the probability measure only depends on the copula
of (X,Y ), which justifies the notation PC . In this section, we study the control of the distribution
of the difference PC (X � Y � ⌘) for a given ⌘. We need to adapt the definition of S⌘,t for the
static case, i.e. when the copula are not dynamic. We define the function

˜S⌘ : C ! [0, 1]
C 7! PC (X � Y � ⌘)

for a given ⌘ > 0.

Remark 1.6. PC is defined by PC (X  x, Y  y) = C (� (x) ,� (y)) for x, y 2 R.
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In particular, we look for an upper bound of ˜S⌘. Lower bound is trivial and is achieved by the
copula M (u, v) = min (u, v). Note that this copula is equivalent to having correlation 1 between
the two random variables and corresponds to a case of comonotonicity. The problem is similar to
the one consisting in finding bounds on the distribution of the sum. Makarov [19] finds bounds on
the cumulative distribution function of the sum of two random variables at a given point given
the marginals. Rüschendorf [22] proves this result using optimal transport theory. Frank et al. [13]
prove the same result using copulae and find a copula that achieves the bound. Furthermore, the
results are extended to dimensions greater than 2 and to the cumulative distribution function of
L(X,Y ) where L is a non decreasing continuous function in X and Y with X and Y two random
variables. Finding these bounds have several applications in finance and insurance such as finding
bounds on value-at-risk [11].

In Proposition 1.5, we study the range of values taken by ˜S⌘. In particular, we look for an upper
bound when the copula is taken among the set of Gaussian copulae then among all the copulae.
We also find the range of ˜S⌘. In order to maximize ˜S⌘ (C) over all the copulae, we use the approach
of Frank et al. [13] with copulae.

Proposition 1.5. Let ⌘ > 0.

Let

Cr
(u, v) =

(

M (u� 1 + r, v) if (u, v) 2 [1� r, 1]⇥ [0, r],
W (u, v) if (u, v) 2 [0, 1]2 \ ([1� r, 1]⇥ [0, r])

with r = 2�

��⌘
2

�

.

We have:

(i) Ran
⇣

˜S⌘ C
G

⌘

=

⇥

0,�
��⌘

2

�⇤

with ˜S⌘ C
G

the restriction of ˜S⌘ to CG,

(ii) sup

C2C
˜S⌘ (C) = 2�

��⌘
2

�

and the supremum is achieved with Cr,

(iii) Ran
⇣

˜S⌘

⌘

=

⇥

0, 2�
��⌘

2

�⇤

.

If we only consider the set of Gaussian copulae, ˜S⌘ can only achieve the values in
⇥

0,�
��⌘

2

�⇤

. If
we consider all the copulae, values in

⇥

�

��⌘
2

�

, 2�
��⌘

2

�⇤

can also be achieved. Indeed, we can use
the family of copulae constructed in Proposition 1.5 to achieve these values. It has a particular
structure: it is divided in two parts according to the value of the first random variable. One state
corresponds to a positive correlation and the upper bound is achieved in the comonotonic case.
The other state corresponds to the countermonotonic case.

The family of copulae constructed in Proposition 1.5 are patchwork copulae [10]. Given a copula C,
a patchwork copula is constructed by changing the value of C in a subrectangle of the unit square
and replacing it with an other copula. In our case, we consider the countermonotonic copula and we
change its values in the rectangle [1� r, 1]⇥[0, r], replacing it by a Gaussian copula with parameter
⇢. The copula achieving the bound corresponds to ⇢ = 1 and in this particular case, the copula is
called a shuffle of M copula [20]. Figure 1.2 shows illustration of the copulae family constructed in
Proposition 1.5 with a correlation of 1 and a correlation of �0.95.
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(a) ⇢ = 1 (b) ⇢ = 0.95

Figure 1.2: Patchwork copula Cr
(u, v) presenting two states depending on the value of u: the first

copula is in the upper left part of the plan and is W ; the second one is the Gaussian copula with
correlation equal to ⇢, with ⇢ = 1 that is the degenerated copula M or ⇢ = 0.95. r is equal to
2�

��⌘
2

�

with ⌘ = 0.2.

If we consider two Brownian motions B1 and B2, B1

t and B2

t at a given time t are Gaussian random
variables with variance t. Proposition 1.5 can be applied with ⌘

0
=

⌘p
t
. Modeling the dependence

of Brownian motions with a Gaussian copula then limits us in terms of values taken by S⌘,t. In
particular, it is not possible to have probabilities greater than 1

2

which was already proven with
the symmetry property of Gaussian copulae.

In this section, we showed the limits of the Gaussian copulae and that it was possible to achieve new
values for ˜S⌘ or to put asymmetry in the distribution of the difference with the use of different types
of copulae. However, the copulae were used to model the dependence between the two Gaussian
variables, i.e. two Brownian motions at given time t. We do not know if the copulae are suitable to
model the dependence between B1

= (B1

t )t�0

and B2

= (B2

t )t�0

, that is in a dynamical framework.

4.3 The Brownian Motion Case

Proposition 1.6 gives a time dynamical version of Proposition 1.5.

Proposition 1.6. Let ⌘ > 0 and t > 0. We have:

(i) Ran
⇣

S⌘,t Cd

G

⌘

=

h

0,�
⇣

�⌘

2

p
t

⌘i

with S⌘,t Cd

G

the restriction of S⌘,t to Cd
G,

(ii) sup

C2C
B

S⌘,t (C) = 2�

⇣

�⌘

2

p
t

⌘

and the supremum is achieved with Cref, ⌘2 which is the Reflection

Brownian Copula defined by Equation (1.2),

(iii) Ran (S⌘,t) =

h

0, 2�
⇣

�⌘

2

p
t

⌘i

.

We have found a copula which maximizes S⌘,t at each time t which is admissible for Brownian
motions. This copula is also a solution to the problem sup

C2C
˜S ⌘p

t

(C) and gives an alternative solution

of the supremum copula of Proposition 1.5. We also notice than Ran (S⌘,t) = Ran
⇣

˜S ⌘p
t

⌘

. The
constraint to be in CB does not change the solution of our problem, values that can be achieved
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are the same ; only copulae differ. Furthermore, copulae used to achieved the range of S⌘,t gives
Markovian pairs of Brownian motions: the range of possible values for P

�

B1

t �B2

t � ⌘
�

is the same
for Markovian pairs and all pairs of Brownian motions. As in the copula of Proposition 1.5, the
copula that achieves the supremum has two states: one of comonotonicity and one of countermono-
tonicity, depending here on the value of the B1

t �B2

t . Figure 1.3 represents the Reflection Brownian
Copula at time t = 1 with a reflection at ⌘

2

= 0.1. We can see that the structure is the same than
the copula of Figure 1.2a. However, in Figure 1.2a the two lines are in separated parts of the square
and in Figure 1.3, there is a part of the square where they are both present. This is due to the fact
that ˜Bt is not a deterministic function of Bt but a deterministic function of Bt and sup

st
Bs.

Figure 1.3: Reflection Brownian Copula C
ref, ⌘2
t at time t = 1 with ⌘ = 0.2.

Part (iii) of Proposition 1.6 gives us a way to control S⌘,t. Furthermore, when the copula is the
Reflection Brownian one, the probability for B1

t �B2

t to have strictly higher value than ⌘ is equal
to 0 and there is a discontinuity at ⌘ ; copulae of part (iii) allow us to solve this issue. The copulae
become suboptimal but still achieves higher values than in the Gaussian copula case.

Result of Proposition 1.6 (ii) can be interpreted with coupling. Let X be a stochastic process. Let
Xa and Xb be processes with the dynamic of X such that Xa

0

= a and Xb
0

= b. A coupling is
said successful if T = inf{t � 0 : Xa

t = Xb
t } < 1 almost surely. T is called the coupling time. In

our situation, the two Brownian motions start at 0 and are coupled when Bt = ˜B
⌘

2
t + ⌘ which is

equivalent to consider one Brownian starting at 0 and the other starting at ⌘. We have the coupling
inequality:

kQa (t)�Qb (t) k  2P (T > t) (1.5)

with kk the total variation norm and Qa(t) the distribution of Xa
t (same for Qb(t) and Xt

b). In
case of equality for (1.5), the coupling is said to be optimal [14]. The coupling by reflection [18],
consisting of taking the reflection of the Brownian motion according to the hyperplane x =

a+b
2

,
is optimal for Brownian motion. Hsu and Sturm [14] prove that in the case of Brownian motions,
it is the only optimal Markovian coupling (definition 1.3).

Definition 1.3. [14] Let X = (X
1

, X
2

) be a coupling of Brownian motions. Let FX be the filtration
generated by X. We say that X is a Markovian coupling if for each s � 0, conditional on FX

s , the
shifted process {(X

1

(t+ s), X
2

(t+ s)), t � 0} is still a coupling of Brownian motions (now starting
from (X

1

(s), X
2

(s))).

66



1. On the control of the difference between two Brownian motions: a dynamic copula approach

In the optimal case, P (T > t) is minimal. The coupling by reflection can then be interpreted as
the fastest way for the two processes to be equal. In our case, it is the fastest way for the B1 �B2

to be greater than ⌘.

We found an admissible copula for Brownian motions which has the property to be asymmetric
and to achieve upper bound for S⌘,t. We have also constructed new families of asymmetric copulae
allowing us to control the value of S⌘,t.

5 Proofs

5.1 Preliminary results

We start with well known results that will be useful for the proofs of propositions.

Lemma 1.1. Let B = (Bt)t�0

be a standard Brownian motion on a filtered probability space
⇣

⌦,F , (Ft)t�0

,P
⌘

. We have, for y � 0,

P
⇣

Bt  x, sup
st

Bs  y
⌘

=

8

<

:

�

⇣

xp
t

⌘

� �

⇣

x�2yp
t

⌘

if x < y

2�

⇣

yp
t

⌘

� 1 if x � y
.

Proof The reader is referred to [16, Theorem 3.1.1.2, p. 137]. ⇤

5.2 Proof of Proposition 1.1

We have:

P
⇣

Bt  x, ˜Bh
t  y

⌘

= P
⇣

Bt  x, ˜Bh
t  y, sup

st
Bs  h

⌘

+ P
⇣

Bt  x, ˜Bh
t  y, sup

st
Bs � h

⌘

. (1.6)

We compute the first term of Equation (1.6):

P
⇣

Bt  x, ˜Bh
t  y, sup

st
Bs  h

⌘

= P
⇣

Bt  x,�Bt  y, sup
st

Bs  h
⌘

= P
⇣

�y  Bt  x, sup
st

Bs  h
⌘

=

⇣

P
⇣

Bt  x, sup
st

Bs  h
⌘

� P
⇣

Bt  �y, sup
st

Bs  h
⌘⌘

1x+y>0

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�

⇣

xp
t

⌘

� �

⇣

x�2hp
t

⌘

+ �

⇣

yp
t

⌘

� �

⇣

y+2hp
t

⌘

if x  h,

y � �h,
x+ y > 0

2�

⇣

hp
t

⌘

� 1 + �

⇣

yp
t

⌘

� �

⇣

y+2hp
t

⌘

if x > h,

y � �h
0 otherwise
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by application of Lemma 1.1. In the same way, we compute the second term of Equation (1.6):

P
⇣

Bt  x, ˜Bh
t  y, sup

st
Bs � h

⌘

= P
⇣

Bt  x,Bt  y + 2h, sup
st

Bs � h
⌘

= P
⇣

Bt  min (x, y + 2h) , sup
st

Bs � h
⌘

=

8

<

:

�

⇣

min(x,y+2h)�2hp
t

⌘

if min (x, y + 2h) < h

�2�

⇣

hp
t

⌘

+ 1 + �

⇣

min(x,y+2h)p
t

⌘

if min (x, y + 2h) � h
.

Combining the last two equations, we obtain

P
⇣

Bt  x, ˜Bh
t  y

⌘

=

8

<

:

�

⇣

min(x,y+2h)�2hp
t

⌘

if x+ y  0 or (y  �h, x+ y > 0)

�

⇣

min(x,y+2h)p
t

⌘

� �

⇣

y+2hp
t

⌘

+ �

⇣

yp
t

⌘

if y > �h, x+ y > 0

=

8

>

>

>

<

>

>

>

:

�

⇣

yp
t

⌘

if x� y � 2h

�

⇣

x�2hp
t

⌘

if x� y < 2h, x+ y  0

�

⇣

xp
t

⌘

� �

⇣

y+2hp
t

⌘

+ �

⇣

yp
t

⌘

if x� y < 2h, x+ y > 0

(1.7)

=

8

<

:

�

⇣

yp
t

⌘

if x� y � 2h

W
⇣

�

⇣

yp
t

⌘

+ �

⇣

xp
t

⌘⌘

+M
⇣

�

⇣

x�2hp
t

⌘

,�
⇣

�y�2hp
t

⌘⌘

if x� y < 2h
.

We conclude using Cref,h
t (u, v) = P

⇣

Bt 
p
t��1

(u) , ˜Bh
t  p

t��1

(v)
⌘

.

5.3 Proof of Proposition 1.2

Recall that �⇢ denotes the bivariate cumulative distribution function of two standard normal
variables correlated with ⇢ 2 [�1, 1]. We start with a technical lemma.

Lemma 1.2. Let a, b and x 2 R. We have:

(i)
Z x

�1
� (au+ b)

e
�u

2

2p
2⇡

du = �

�ap
a

2+1

⇣ bp
a2 + 1

, x
⌘

.

(ii)

�

p
1�⇢2 (x, y) = � (y)�

⇣x�
p

1� ⇢2y

⇢

⌘

+ � (x)� �⇢

⇣

x,
x�

p

1� ⇢2y

⇢

⌘

, x, y 2 R, ⇢ > 0

(iii)
�⇢ (x, y) = � (y)� ��⇢ (�x, y) , x, y 2 R

Proof
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(ii) Let a < 0, b, z 2 R. We have:

�

�ap
a

2+1

⇣ bp
a2 + 1

, z
⌘

=

Z z

�1
� (au+ b)

e
�u

2

2p
2⇡

du

= � (az + b)� (z)� a

Z z

�1

e
�(au+b)2

2p
2⇡

� (u) du

= � (az + b)� (z) +

Z

+1

az+b

e
�u

2

2p
2⇡

�

⇣u� b

a

⌘

du

= � (az + b)� (z) + �

⇣ bp
1 + a2

⌘

� �

1p
a

2+1

⇣ bp
a2 + 1

, ax+ b
⌘

.

We conclude by taking a =

�⇢p
1�⇢2

, b = x
p
1 + a2, z =

y�b
a .

(iii) Let (X,Y ) be a Gaussian vector with X and Y having correlation ⇢. We have:

P (X  x, Y  y) = P (�X � �x, Y  y) = P (Y  y)� P (�X  �x, Y  y) .

⇤
We can now prove Proposition 1.2. Let X = B and Y = ⇢ ˜Bh

+

p

1� ⇢2Z where B and Z are two

independent Brownian motions. X and Y are Brownian motions and we have

P (Xt  x, Yt  y) = P
⇣

Bt  x, ˜Bh
t  y �

p

1� ⇢2Zt

⇢

⌘

= E
h

P
⇣

Bt  x, ˜Bh
t  y �

p

1� ⇢2Zt

⇢
| Zt

⌘i

.

Since B is independent from Z, using Equation (1.7), we find that P (Xt  x, Yt  y) is the sum
of the three following terms:

(i)

E
h

�

⇣y �
p

1� ⇢2Zt

⇢
p
t

⌘

1
Z

t

� ⇢(2h�x)+yp
1�⇢

2

i

,

(ii)

E
h

�

⇣x� 2hp
t

⌘

1
Z

t

 ⇢(2h�x)+yp
1�⇢

2

1Z
t

� ⇢x+yp
1�⇢

2

i

,

(iii)

E
h⇣

�

⇣ xp
t

⌘

� �

⇣y + 2h⇢�
p

1� ⇢2Zt

⇢
p
t

⌘

+ �

⇣y �
p

1� ⇢2Zt

⇢
p
t

⌘⌘

1
Z

t

 ⇢(2h�x)+yp
1�⇢

2

1Z
t

 ⇢x+yp
1�⇢

2

i

.

The first term (i) is equal to:

E
h

�

⇣y �
p

1� ⇢2Zt

⇢
p
t

⌘i

� E
h

�

⇣y �
p

1� ⇢2Zt

⇢
p
t

⌘

1
Z

t

 ⇢(2h�x)+yp
1�⇢

2

i

.
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Furthermore, using Lemma 1.2, we have

E
h

�

⇣y �
p

1� ⇢2Zt

⇢
p
t

⌘

1
Z

t

 ⇢(2h�x)+yp
1�⇢

2

i

=

Z

⇢(2h�x)+yp
(

1�⇢

2
)

t

�1
�

⇣y �
p

1� ⇢2
p
tu

⇢
p
t

⌘e
�u

2

2p
2⇡

du

= �

p
1�⇢2

⇣ yp
t
,
⇢(2h� x) + y
p

(1� ⇢2) t

⌘

and

E
h

�

⇣y �
p

1� ⇢2Zt

⇢
p
t

⌘i

= �

⇣ yp
t

⌘

.

We compute terms (ii) and (iii) using the same method and we find that P
⇣

Xt  x, Yt  y
⌘

is
equal to

�

⇣ yp
t

⌘

� �

p
1�⇢2

⇣ yp
t
,
⇢ (2h� x) + y
p

(1� ⇢2) t

⌘

+ �

p
1�⇢2

⇣ yp
t
,
⇢min (2h� x, x) + y

p

(1� ⇢2) t

⌘

� �

p
1�⇢2

⇣y + 2h⇢p
t

,
⇢min (2h� x, x) + y

p

(1� ⇢2) t

⌘

+ �

⇣ xp
t

⌘

�

⇣⇢min (2h� x, x) + y
p

(1� ⇢2) t

⌘

+ �

⇣x� 2hp
t

⌘⇣

�

⇣⇢ (max (2h� x, x)) + y
p

(1� ⇢2) t

⌘

� �

⇣ ⇢x+ y
p

(1� ⇢2) t

⌘⌘

.

After some algebra, we find using Lemma 1.2:

P
⇣

Xt  x, Yt  y
⌘

=

8

<

:

�⇢

⇣

y+2⇢hp
t

, xp
t

⌘

+ �

⇣

yp
t

⌘

� �

⇣

y+2⇢hp
t

⌘

if x � h

��⇢

⇣

yp
t
, xp

t

⌘

+ �⇢

⇣

�y�2⇢hp
t

, x�2hp
t

⌘

+ �⇢

⇣

yp
t
, x�2hp

t

⌘

� �

⇣

x�2hp
t

⌘

if x < h

and the copula is equal to P
�

Xt 
p
t��1

(u) , Yt 
p
t��1

(v)
�

.

5.4 Proof of Proposition 1.3
Let f⇠ be the density of ⇠. Let B be a Brownian motion independent from ⇠. We enlarge the
filtration of B to take into account ⇠. We consider the reflection of the Brownian motion ˜B⇠. We
have:

P
⇣

Bt 
p
t��1

(u) , ˜B⇠
t  p

t��1

(v)
⌘

= E
h

P
⇣

Bt 
p
t��1

(u) , ˜B⇠
t  p

t��1

(v) | ⇠
⌘i

. (1.8)

Since B is independent from ⇠, we have according to Proposition 1.1:

P
⇣

Bt 
p
t��1

(u) , ˜B⇠
t  p

t��1

(v) | ⇠
⌘

=v1
�

�1
(u)��

�1
(v)� 2⇠p

t

+W (u, v)1
�

�1
(u)��

�1
(v)< 2⇠p

t

+ �

⇣

�

�1

(M (u, 1� v))� 2⇠p
t

⌘

1
�

�1
(u)��

�1
(v)< 2⇠p

t

Thus, the right hand side of Equation (1.8) is the sum of the three following terms:

(i)

E
h

v1
�

�1
(u)��

�1
(v)� 2⇠p

t

i

= vF ⇠
⇣p

t
�

�1

(u)� �

�1

(v)

2

⌘

,
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(ii)

E
h

W (u, v)1
�

�1
(u)��

�1
(v)< 2⇠p

t

i

= W (u, v)F
⇠
⇣p

t
�

�1

(u)� �

�1

(v)

2

⌘

,

(iii)

E
h

�

⇣

�

�1

(M (u, 1� v))� 2⇠p
t

⌘

1
�

�1
(u)��

�1
(v)< 2⇠p

t

i

,

that we denote by I.

We have:

I =

Z

+1
p
t
��1(u)���1(v)

2

�

⇣

�

�1

(M (u, 1� v))� 2hp
t

⌘

f⇠
(h) dh

= M (1� u, v)F
⇠
⇣p

t
�

�1

(u)� �

�1

(v)

2

⌘

� 2p
t

Z

+1
p
t
��1(u)���1(v)

2

�

0
⇣

�

�1

(M (u, 1� v))� 2hp
t

⌘

F
⇠
(h) dh.

Adding the three terms of Equation (1.8), since M (1� u, v) +W (u, v) = v, we obtain:

C⇠
t (u, v) = v � 2p

t

Z

+1
p
t
��1(u)���1(v)

2

�

0
⇣

�

�1

(M (u, 1� v))� 2hp
t

⌘

F
⇠
(h) dh

= v �
Z

�

�1
(M(1�u,v))

�1
�

0
(h)F

⇠
⇣

p
t

2

�

�

�1

(M (u, 1� v))� h
�

⌘

dh

with �

0
(x) = e

�x

2

2p
2⇡

, which achieves the proof.

5.5 Proof of Proposition 1.4
[8, Proposition 2.1] states that

P (X + Y  x) =

Z

1

0

@uC
⇣

u, FY
⇣

x� �

FX
��1

(u)
⌘⌘

du, x 2 R. (1.9)

The existence of @uC
⇣

u, FY
⇣

x� �

FX
��1

(u)
⌘⌘

for u 2 [0, 1] is assured by [8, Lemma 2.1].
We also have

F�Y
(y) = 1� FY

(�y) , y 2 R and, (1.10)

CX,�Y
(u, v) = u� C (u, 1� v) , (u, v) 2 [0, 1] , (1.11)

with CX,�Y the copula of (X,�Y ).
Equation (1.9) is also valid for (X,�Y ). Using Equation (1.10) and Equation (1.11), we have

P (X � Y  x) =

Z

1

0

h

1� @uC
⇣

u, FY
⇣

�

FX
��1

(u)� x
⌘⌘i

du, x 2 R (1.12)

and

P (X � Y > x) =

Z

1

0

@uC
⇣

u, FY
⇣

�

FX
��1

(u)� x
⌘⌘

du, x 2 R. (1.13)
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Let us suppose that CY,X 2 Cs and that X and Y have the same continous marginal distribu-
tion function F . Let CY,X be the copula of (Y,X). We have CY,X

(u, v) = CX,Y
(v, u). However,

CX,Y
(v, u) = CX,Y

(u, v) then CY,X
(u, v) = CX,Y

(u, v) and

P (X � Y � x) = P (Y �X  �x)

=

Z

1

0

h

1� @uC
Y,X

⇣

u, F
⇣

(F )

�1

(u) + x
⌘⌘i

du

=

Z

1

0

h

1� @uC
X,Y

⇣

u, F
⇣

(F )

�1

(u) + x
⌘⌘i

du

= P (X � Y  �x)

using Equation (1.12).

5.6 Proof of Proposition 1.5

(i) Let ⇢ 2 [�1, 1]. We have ˜S⌘ (CG,⇢) = �

⇣

�⌘p
2(1�⇢)

⌘

. This function is decreasing in ⇢ and then

the extremum are achieved for ⇢ = 1 and ⇢ = �1 and are equal to 0 and �

��⌘
2

�

.
(ii) This is a direct application of the results of [13] where superior and inferior bounds on
P (X + Y < ⌘) are found and where X and Y are two random variables with known marginals. As

1) sup

C2C
PC (X � Y � ⌘) = 1� inf

C2C
PC (X � Y < ⌘) ,

2) �Y and Y have the same law,

the bound is equal to
1� inf

C2C
PC (X + Y < ⌘) .

The copula achieving the bound is defined by the transformation

CX,Y
(u, v) = u� CX,�Y

(u, 1� v) .

(iii) We want to prove that for all x in
⇥

0, 2�
��⌘

2

�⇤

, there exists C in C such that ˜S⌘ (C) = x.

If x 2 ⇥

0,�
��⌘

2

�⇤

, we use a Gaussian copula with ⇢ = 1� 1

2

2

⇣

⌘
�

�1
(x)

⌘

2

.

Let us suppose that x 2 ⇥

�

��⌘
2

�

, 2�
��⌘

2

�⇤

. We use the copula Cr to construct a new class of
copulae. As for Cr, we separate the square [0, 1]2 in two parts and to define a copula in each
part of the square. We use the concept of patchwork copula defined by Durante et al. [10]. Let
H = [1� r, 1]⇥ [0, r], Hc

= [0, 1]2 \H and ⇢ 2 (�1, 1). Let Cp
⇢ (u, v) the patchwork copula defined

by C⇢ in H and W in Hc:

Cp
⇢ (u, v) = µW (([0, u]⇥ [0, v]) \Hc

) + rCG,⇢

⇣

1

r
max (u+ r � 1, 0) ,

1

r
min (v, r)

⌘

= (W (u, v)�W (u, r))1v�r + rCG,⇢

⇣

1

r
max (u+ r � 1, 0) ,min

�v

r
, 1
�

⌘

where µW is the measure induced by the copula W .
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If we consider two standard normal random variables with copula Cp
⇢ , the survival function of their

difference at point x is equal, according to Equation (1.13), to
Z

1

0

@uC
p
⇢

�

u,�
�

�

�1

(u)� x
��

du =

Z

1

0

⇣

1u��

(

x

2 )
� 1u�1�r

⌘

1u��(�

�1
(r)+x)du

+

Z

1

1�r

�

⇣

�

�1

�

min

�

�(�

�1
(u)�x)
r , 1

��� ⇢��1

�

u+r�1

r

�

p

1� ⇢2

⌘

du

=

⇣

1� r � �

⇣x

2

⌘⌘

1x2�

�1
(1�r)

+

Z

1

1�r

�

⇣

�

�1

�

min

�

�(�

�1
(u)�x)
r , 1

��� ⇢��1

�

u+r�1

r

�

p

1� ⇢2

⌘

du

which is continuous at x = ⌘. Thus, ˜S⌘

�

Cp
⇢

�

is equal to the survival function of their difference at
point ⌘, which is:

˜S⌘

�

Cp
⇢

�

=

Z

1

1�r

�

⇣

�

�1

�

min

�

�(�

�1
(u)�⌘)
r , 1

��� ⇢��1

�

u+r�1

r

�

p

1� ⇢2

⌘

du.

Using the previous equation and dominated convergence theorem, we can prove that ⇢ 7! ˜S⌘

�

Cp
⇢

�

is continuous on (�1, 1).
We have Cp

1

= Cr and Cp
�1

= W . Furthermore, we can show after some algebra that

˜S⌘

�

Cp
⇢

� �!
⇢!1

2�

⇣�⌘
2

⌘

=

˜S⌘ (C
p
1

)

and
˜S⌘

�

Cp
⇢

� �!
⇢!�1

�

⇣�⌘
2

⌘

=

˜S⌘

�

Cp
�1

�

.

Then ⇢ 7! ˜S⌘

�

Cp
⇢

�

is continuous on [�1, 1], which achieves the proof.

5.7 Proof of Proposition 1.6
(i) As the copulae of Cd

G are of the form (CG,⇢
t

)t�0

, the demonstration of this part of the proposition
is similar to the one of the static framework.
(ii) Let (B1, B2

) be two Brownian motion with copula Cref, ⌘2 . B2 is then the reflection of B1

according to the stopping time ⌧ = inf{t � 0 : B1

t =

⌘
2

} = inf{t � 0 : B1

t � B2

t = ⌘}. For t < ⌧ ,
B1

t �B2

t < ⌘ and for t � ⌧ , B1

t �B2

t = ⌘. Thus, we have:

S⌘,t

⇣

Cref, ⌘2

⌘

= P
Cref,

⌘

2
(t � ⌧) = P

Cref,

⌘

2

⇣

sup

st
B1

s � ⌘

2

⌘

= 2�

⇣ �⌘
2

p
t

⌘

according to Lemma 1.1.
If C 2 CB , the copula Ct is in C and then according to Proposition 1.5

sup

C2C
B

PC

�

B1

t �B2

t � ⌘
�  sup

C2C
PC

�

B1

t �B2

t � ⌘
�

= 2�

⇣ �⌘
2

p
t

⌘

,
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which concludes this part of the proof.
(iii) We want to prove that for all x in

⇥

0, 2�
��⌘

2

�⇤

, there exists C in C such that ˜S⌘ (C) = x. Let
x 2

h

0, 2�
⇣

�⌘

2

p
T

⌘i

.

If x 2
h

0,�
⇣

�⌘

2

p
t

⌘i

, we consider the Gaussian dynamic copula with (⇢s)s�0

= 1 � 1

2t

⇣

⌘
�

�1
(x)

⌘

2

which is in [�1, 1] and we have S⌘,t (CG,⇢) = x.

If x 2
h

�

⇣

�⌘

2

p
t

⌘

, 2�
⇣

�⌘

2

p
t

⌘i

, we consider the copula Cref, ⌘2+� defined by Equation (1.2) with
� � 0. With the use of Lemma 1.1, we find that

P
Cref,

⌘

2
+�

�

B1

t �B2

t � x
�

=

(

�

⇣

�x
2

p
t

⌘

+ �

⇣

x�2⌘�4�

2

p
t

⌘

if x  ⌘ + 2�

0 if x > ⌘ + 2�

Then,

S⌘,t

⇣

Cref, ⌘2+�
⌘

= �

✓ �⌘
2

p
t

◆

+ �

✓�⌘ � 4�

2

p
t

◆

As we have:

1) � 7! S⌘,t

�

Cref, ⌘2+�
�

is continuous on [0,1),

2) S⌘,t

�

Cref, ⌘2+�
� �!

�!0

2�

⇣

�⌘

2

p
t

⌘

,

3) S⌘,t

�

Cref, ⌘2+�
� �!

�!1
�

⇣

�⌘

2

p
t

⌘

,

we can conclude.
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Chapter 2

On the control of the difference
between two Brownian motions: an
application to energy markets
modeling

Abstract

We derive a model based on the structure of dependence between a Brownian motion and its
reflection according to a barrier. The structure of dependence presents two states of correlation:
one of comonotonicity with a positive correlation and one of countermonotonicity with a negative
correlation. This model of dependence between two Brownian motions B1 and B2 allows for the
value of P

�

B1

t �B2

t � x
�

to be higher than 1

2

when x is close to 0, which is not the case when the
dependence is modeled by a constant correlation. It can be used for risk management and option
pricing in commodity energy markets. In particular, it allows to capture the asymmetry in the
distribution of the difference between electricity prices and its combustible prices.
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1 Introduction

1.1 Motivation
One of the major issues in commodity energy markets is the pricing and hedging of multi-assets
options, in particular the spread options. For instance, if we denote by Xt the price of electricity
at time t, by Yt the price of coal at time t, and by H the heat rate (conversion factor) between the
two, the income of the coal plant can be modeled by (Xt �HYt �K)

+, with x+

= max (x, 0) and
K representing a fixed cost. To evaluate the value of this coal plant, one needs to model jointly the
price of electricity and the price of coal. Because the coal is a fuel for electricity, the two prices can
not be considered independent and dependence between the two needs to be modeled. For more
information on spread options, the reader can refer to [6].

To model energy commodities forward prices, two different approaches exist: the first one consists
in the modeling of the spot price and is equivalent to the Vasicek modeling of interest rates [20],
the second one consists in the modeling of the forward curve and is similar to the a Heath-Jarrow-
Morton approach [12]. In the first approach, one way to model dependence is the use of structural
models [1; 2; 5]. In structural models, electricity is a function of the residual demand and of the
fuels used to produce it. Some constraints are imposed in order for the electricity price to be
higher than the minimum price of its combustibles with a high probability. An other way to model
dependence is the use of co-integration between the different commodities spot prices [17]. However,
structural models and co-integration models are very computational costly and are not adapted
for practitioners. They prefer to use the second type of models, using a forward curve. We denote
by f i

(t, T ) the forward price of commodity i at time t with maturity T , that is of the delivery
of commodity i during one unit of time. The most common model for f i

(t, T ) is the two-factor
model, see [3] for instance. The forward price of commodity i, i = 1, .., n is modeled by the following
stochastic differential equation:

df i
(t, T ) = f i

(t, T )
⇣

�i
se

�↵i

(T�t)dBs,i
t + �i

ldB
l,i
⌘

(2.1)

with Bs,i and Bl,i, i = 1, .., n, 2n brownian motions. The dependence between the Brownian
motions is usually modeled by a constant correlation matrix. In the following, we are interested
only in factorial models with two commodities, electricity and one of its fuel. Marginals model (if
we consider only one commodity) are really efficient and allow us to price efficiently options based
on one underlying. However, dependence modeling is not satisfying because it does not capture
the asymmetry in the distribution of the difference between the forward price of electricity and the
one of its fuel. Furthermore, the probability for the price of electricity to be lower than the price
of its fuel is closed to 1

2

which is not consistent with the reality. Indeed, the fuel is used to produce
the electricity.

Modeling the dependence between the forward prices is equivalent to the modeling of the depen-
dence between the Brownian motions. We consider only two Brownian motions. To capture asym-
metry, it is needed to consider an other approach than the constant correlation model. A common
approach to construct a pair of Brownian motions is the use of stochastic correlation. Stochastic
correlation models are a generalization in a multivariate framework of stochastic volatility models,
such as the Heston model [13] where the volatility is modeled by a Cox-Ingersoll-Ross process.
The matrix of volatility-correlation is stochastic and can be modeled for instance by a Wishart
processes [11]. In a stochastic correlation framework, as the difference between the two Brown-
ian motions does not follow a normal law, it is possible to capture asymmetry. However, if the
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stochastic correlation (⇢s)s�0

is independent from the two Brownian motions, we have for x � 0:

P
�

B1

t �B2

t � x
�

= E
⇣

�

⇣ �x
q

2

R t

0

(1� ⇢s) ds

⌘⌘

 1

2

with � the normal cumulative distribution function. Stochastic correlation does not allow to have
higher value then 1

2

for P
�

B1

t �B2

t � x
�

. An other way to construct a pair of Brownian motions
is the use of a local correlation. The concept of local correlation is directly derived from the one
of local volatility. In a Black and Scholes framework, the volatility is constant with the maturity
and strikes which is not coherent with the implied volatilities from call and put option prices.
Dupire introduces the local volatility in order to have a price model which is compatible with the
volatility smiles and which is a complete market model [9]. Langnau introduces local correlation
model which is the generalization of local volatility for a multi-dimensional framework [16]. A
less common approach is the use of copulae. Copulae are used to model the dependence between
random variables and have many applications in finance [7]. Indeed, Sklar’s theorem [19] states that
modeling the distribution of a couple of random variables (X,Y ) is equivalent than modeling the
law of X, the law of Y and a copula function C corresponding to the dependence between the two.
However, use of copulae is more complicated in a continuous time framework, that is when processes
are involved. In [4] and [14], a partial derivative equation is derived linking the copula between two
Brownian motions and their local correlation function based on the Kolmogorov forward equation.
Constraints on the copula to be admissible for Brownian motions are very restrictive, especially
if one want to find asymmetric copulae admissible for Brownian motions. Deschatre [8] derives
families of copula that are admissible for Brownian motions and asymmetric. Furthermore, he
studies the range of the function C 7! PC

�

B1

t �B2

t � ⌘
�

for ⌘ > 0 and t > 0 where B1 and B2

are two Brownian motions and PC denotes the measure of probability when C is the copula of
�

B1, B2

�

. Some Markovian constraints are imposed on the copula C. The range of this function
is equal to

h

0, 2�
⇣

�⌘

2

p
t

⌘i

and the supremum is achieved with the copula between the Brownian
motion and its reflection according to the barrier ⌘

2

. However, those results are not adapted to a
modeling framework because of the degenerescence of the model: the Brownian motions are either
correlated to 1 or to -1 depending on the value of B1.

1.2 Objectives and results

The main objective of this paper is to construct a model of dependence for solutions f1

(t, T )
and f2

(t, T ) of the stochastic differential equations (2.1). This model of dependence must create
asymmetry in the difference between the two processes. In particular, we want to have high value
for P

�

f1

(t, T )� f2

(t, T ) � x
�

with x close to 0. The dependence between the two processes is
determined by the dependence between the Brownian motions. We reduce our problem to the
construction of two Brownian motions B1

=

�

B1

t

�

t�0

and B2

=

�

B2

t

�

t�0

presenting asymmetry
in their dependence and with values for P

�

B1

t �B2

t � x
�

higher than 1

2

when x is close to 0. Our
model is based on the work of Deschatre [8]. The value of P

�

B1

t �B2

t � ⌘
�

for ⌘ > 0 is maximized
when B2 is the reflection of B1 according to the barrier ⌘

2

. The copula between those two Brownian
motions presents two states of dependence: one of comonotonicity corresponding to a correlation of
1 and one of countermonotonicity corresponding to a correlation of -1. We release these two states
of dependence by allowing lower correlations in absolute value. This gives the copula of Proposition
2.1. This copula is asymmetric and Proposition 2.2 gives the survival function of difference between
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the two Brownian motions coupled with this copula:

P
�

B1

t �B2

t � x
�

= �

⇣ �x+ 2⇢h
p

2 (1� ⇢) t

⌘

�

⇣x� 2h (1 + ⇢)
p

2 (1 + ⇢) t

⌘

+ �

⇣

2h� x
p

2 (1� ⇢) t

⌘

�

⇣ �x
p

2 (1 + ⇢) t

⌘

.

This model of dependence gives higher values for P
�

B1

t �B2

t � x
�

than the constant correlation
case and than 1

2

when x close to 0 and for ⇢ high enough.

We generalize this model by allowing several reflections: it is the multi-barrier correlation model.
We define two barriers ⌫ and ⌘ with ⌫ < ⌘. We consider two independent Brownian motions X
and BY , and we construct the Brownian motion Y n that is correlated to ˜Xn:

Y n
= ⇢ ˜Xn

+

p

1� ⇢2BY ,

with ˜Xn the Brownian motion equal to �X at the beginning and reflecting when X � Y n hits
a two-state barrier equal to ⌘ before the first reflection and switching from ⌘ to ⌫ or from ⌫ to
⌘ at each reflection. For a given x 2 [⌘, ⌫] and t > 0, Corollary 2.1 states that the sequence
P (Xt � Y n

t � x) is increasing with n. Furthermore, the number of reflections in [0, t] Nt is finite
almost surely, see Proposition 2.3 (iii). We then consider the process Yt = Y N

t

t which is a Brownian
motion, see Proposition 2.3 (iv), that corresponds to the case n ! 1. Proposition 2.4 gives the
survival function of Xt � Yt, which is higher than in the constant correlation case and higher than
1

2

when x 2 [⌘, ⌫] and ⇢ is high enough. This model can be transposed to a local correlation model:
(

dXt = dBX
t

dYt = ⇢̃ (Xt � Yt) dBX
t +

q

1� ⇢̃ (Xt � Yt)
2dBY

t

with ⇢̃ a Lipschitz function such that sup

x2R
|⇢̃ (x) | < 1, ⇢̃ (x) = ⇢

1

if x  ⌫ and ⇢̃ (x) = ⇢
2

if x � ⌘.

This system of stochastic differential has a strong solution (X,Y ), see Proposition 2.5. This model
seems to be equivalent to the multi-barrier model when the two barriers have close values and
⇢
2

= �⇢
1

= ⇢. The solution has the advantage to be Markovian.

The multi-barrier correlation model is applied to the factorial model (2.1) in order to model jointly
forward prices of electricity and forward prices of coal. Empirical results show that the model
works well for products with a long delivery maturity (3 Month Ahead and 6 Month Ahead): the
difference between the two products has an asymmetric distribution and the probability for the
electricity product to be higher than the coal one is high. However, it is not the case for products
with a short delivery maturity, such as the spot. This can be explained by a difference of volatility
too high between the electricity spot price and the coal spot price. Indeed, the electricity and coal
volatilities of the long term factors that drives the prices of long maturity products are close to
each other whereas they are very different for the short term factors. An other limitations of our
model is that it is highly sensitive to initial conditions, that is the initial prices of electricity and
coal products. We also estimate prices of European spread options in our model with Monte Carlo.
Results are the same in the local correlation model.

1.3 Structure of the paper

In Section 2, we provide a first model to construct two Brownian motions with a two-state corre-
lation structure based on the dependence between a Brownian motion and its reflection. We give
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a closed formula for the survival function of the difference between the two Brownian motions:
the distribution of the difference is asymmetric and can take higher values than in the constant
correlation case. In Section 3, we improve the model of Section 2 by allowing several reflections to
construct a multi-barrier correlation model. We give results about the survival function between
the two Brownian motions and show that it takes higher values than the one in the model of Sec-
tion 2. We also derive a local correlation model which gives the same results than the multi-barrier
correlation model. Section 3 is our major contributions. In Section 4, we apply our results to the
modeling of the forward prices of two commodities which are electricity and coal and to the pricing
of spread options. Proofs are given in Section 5.

2 A two-state correlation copula
In this section, we derive a copula based on the Brownian motion and its reflection according to
a barrier. As seen in [8], this copula contains two states depending on the value of the difference
between the two Brownian motions: one of comonotonicity and one of countermonotonicity, that
is correlation equal to 1 and -1. This copula maximizes P

�

B1

t �B2

t � ⌘
�

when the barrier is equal
to ⌘

2

, see [8, Proposition 3]. However, the dependence between the two Brownian motions when
it is modeled by these copulae is degenerated in the sense that the difference between the two
Brownian motions becomes constant in an infinite horizon. In this section, we construct a copula
which does not present this degeneracy but which allows higher values for P

�

B1

t �B2

t � ⌘
�

than in
the Gaussian copula case. The idea is to relax the correlation: instead of having states of correlation
with correlations equals to 1 and -1, we have states of correlation with correlations equals to ⇢ and
�⇢, |⇢| < 1.

2.1 Model
Let us consider a filtered probability space (⌦, F , (Ft)t�0

, P) with (Ft)t�0

satisfying the usual
hypothesis (right continuity and completion) and B1

=

�

B1

t

�

t�0

a Brownian motion adapted
to (Ft)t�0

. We denote by ˜Bh the Brownian motion reflection of B on x = h with h 2 R, i.e.
˜Bh
t = �B1

t + 2(B1

t �B1

⌧h

)1t�⌧h with ⌧h = inf{t � 0 : B1

t = h}. Thus, ˜Bk is a F Brownian motion
according to the reflection principle (see [15, Theorem 3.1.1.2, p. 137]). Let ⇢ 2 (0, 1) and Z a
Brownian motion independent from B1. We consider the stochastic process B2

= ⇢ ˜Bh
t +

p

1� ⇢2Z,
which is a Brownian motion by Lévy characterisation.

2.2 The copula
Let us recall that a function C : [0, 1]2 7! [0, 1] is a copula if:

(i) C is 2-increasing, i.e. C (u
2

, v
2

)�C (u
1

, v
2

) +C (u
1

, v
1

)�C (u
2

, v
1

) � 0 for u
2

� u
1

, v
2

� v
1

and u
1

, u
2

, v
1

, v
2

2 [0, 1],

(ii) C (u, 0) = C (0, v) = 0, u, v 2 [0, 1],

(iii) C (u, 1) = u,C (1, u) = u, u 2 [0, 1].

According to Skar’s theorem [19], if X and Y are two random variables with continuous dis-
tribution function FX and FY , there exists an unique copula C such that P (X  x, Y  y) =

C
�

FX
(x) , FY

(y)
�

. We will call C the copula of (X,Y ).

81



2. On the control of the difference between two Brownian motions: an application to energy markets
modeling

In the following, we will denote by � the cumulative distribution function of a standard normal
random variable and by �⇢ the cumulative distribution function of a bivariate gaussian vector of
two standard normal random variables correlated with correlation ⇢, ⇢ 2 (�1, 1).

Proposition 2.1 gives the copula between B1 and B2.

Proposition 2.1 (Proposition 3 of [8]). Let h > 0, t > 0 and ⇢ 2 (0, 1). The copula

Ct(u, v) =

8

>

>

>

<

>

>

>

:

�⇢

⇣

�

�1

(u) ,��1

(v) + 2⇢hp
t

⌘

+ v � �

⇣

�

�1

(v) + 2⇢hp
t

⌘

if u � �

⇣

hp
t

⌘

��⇢

⇣

�

�1

(u) ,��1

(v)
⌘

+ �⇢

⇣

�

�1

(u)� 2hp
t
,��1

(1� v)� 2⇢hp
t

⌘

+

�⇢

⇣

�

�1

(u)� 2hp
t
,��1

(v)
⌘

� �

⇣

�

�1

(u)� 2hp
t

⌘

if u < �

⇣

hp
t

⌘

,

is the copula between B1

t and B2

t at time t which are defined in the model of Section 2.1.

This copula is clearly asymmetric in the sense that Ct (u, v) 6= Ct (v, u) for u, v 2 [0, 1] , t > 0 which
is a necessary condition if we want to have for x > 0, P

�

B1

t �B2

t � x
� � 1

2

, see [8, Proposition
2]. The copula contains two states of correlation: one of positive dependence (⇢ > 0) and one of
negative dependence (⇢ < 0). Figure 2.1 gives the copula of Proposition 2.1 with ⇢ = 0.95 and in
the degenerated case ⇢ = 1, h = 2 and t = 1.

(a) ⇢ = 0.95. (b) ⇢ = 1.

Figure 2.1: Copula between a Brownian motion and Brownian motion correlated to the refection
of the first one with a correlation ⇢ = 0.95 and in the degenerated case ⇢ = 1 at time t = 1 and a
barrier h = 2, which is the copula of Proposition 2.1.

2.3 Distribution of the difference between the two Brownian motions
Proposition 2.2 gives the survival function of B1

t �B2

t .

Proposition 2.2. Let t > 0, h > 0, ⇢ 2 (0, 1) and x 2 R. Let B1 and B2 the two Brownian
motions defined in the model of Section 2.1. We have:

P
�

B1

t �B2

t � x
�

= �

⇣ �x+ 2⇢h
p

2 (1� ⇢) t

⌘

�

⇣x� 2h (1 + ⇢)
p

2 (1 + ⇢) t

⌘

+ �

⇣

2h� x
p

2 (1� ⇢) t

⌘

�

⇣ �x
p

2 (1 + ⇢) t

⌘

.

Figure 2.2 represents the survival function of B1

t �B2

t at time t = 1 and t = 20 with h = 0.25 and
⇢ = 0.9. The value of this function is close to 0.7 when x is close to 0 at time t = 1. However, when
t = 20, it becomes close to 1

2

and the asymmetry disappears.
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(a) t = 1. (b) t = 20.

Figure 2.2: Survival function of B1

t �B2

t in the model of Section 2.1 at time t = 1 and t = 20 with
parameters h = 0.25 and ⇢ = 0.9.

This model allows us to have higher values than in the Gaussian copula case for P
�

B1

t �B2

t � z
�

when z is close to 0. However, it presents some limitations in terms of modeling:

(i)
⇣

B1, ˜Bh, B2

⌘

is Markovian but the couple
�

B,B2

�

is not.

(ii) The asymmetry disappears in the distribution of B1

t �B2

t when t becomes large.

(iii) Let us consider the probability P
�

B1

t �B2

t � z | Gs

�

with G the filtration generated by
⇣

B1, ˜Bh, B2

⌘

. Let us suppose that the barrier has already been crossed at time s, i.e.
˜Bh
s = B1

s � 2h. Thus, the correlation between B1 and B2 at times t � s is equal to ⇢
and does not change. We are in the same case than in the Gaussian copula case after time s,
and then we do not optimize P

�

B1

t �B2

t � z | Gs

�

.

3 Multi-barrier correlation model
In this section, we improve the model of Section 2 by allowing several reflections. In the model
of Section 2, once the reflection has happened, the two Brownian motions stay correlated with
correlation ⇢ even if the difference between the two becomes low. We want to have two Brownian
motions X and Y with the following correlation structure: if the value of X � Y is under a certain
level that we denote by ⌫, X and Y have a negative correlation �⇢ and if it is over an other level
denoted by ⌘, their correlation is positive and equal to ⇢. One way to obtain this structure is to
start with two Brownian motions having a negative correlation. When the difference between them
reaches the barrier ⌘, Y reflects and the correlation becomes positive. If the correlation is positive
(resp. negative) and X � Y reaches ⌫ (resp. ⌘), Y reflects and the correlation becomes negative
(resp. positive). The number of reflection that can happen is a parameter of our model denoted
by n. Y is then correlated to a reflection of X reflecting each time the difference between the two
reaches one of the two barriers. Figure 2.3 gives an illustration of our model. In Section 3.3, we
develop a local correlation model based on the same principle. The local correlation model seems to
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be equivalent to the multi-barrier correlation model when the two barriers are close. Furthermore,
in the local correlation model, the couple (X,Y ) is Markovian.

Figure 2.3: One trajectory of X, Y and X � Y in the multi-barrier correlation model with ⌫ = 0,
⌘ = 0.5, ⇢ = 0.9.

3.1 Model
Let BX and BY be two independent Brownian motions defined on a common filtered probability
space (⌦, F , (Ft)t�0

, P) with (Ft)t�0

satisfying the usual properties. We will denote indifferently
BX by X.
Let ⌘ > 0, ⌫ < ⌘ and ⇢ 2 [0, 1].

Let ↵k =

8

<

:

0 if k = 0

⌘ if k odd
⌫ if k even, k 6= 0

.

Let
⇣

˜Bk
⌘

k�0

,
�

Y k
�

k�0

and (⌧k)k�0

be defined by

8

<

:

⌧
0

= 0

˜B0

= �BX

Y 0

t = ⇢ ˜B0

+

p

1� ⇢2BY

,

8

<

:

⌧k = inf{t � ⌧k�1

: BX
t � Y k�1

t = ↵k} k � 1

˜Bk
= R(

˜Bk�1, ⌧k) k � 1

Y k
= ⇢ ˜Bk

+

p

1� ⇢2BY k � 1,

where R(B, ⌧) is the reflection Brownian motion of B with the reflection happening at time ⌧ and
⌧ a stopping time, i.e. R(B, ⌧)t = �Bt + 2(Bt �B⌧ )1t�⌧ .
Let Nt =

P1
n=1

1⌧
n

t be the number of reflections that happened before time t and Yt = Y N
t

t .
Y N is well defined because Nt < 1 almost surely according to Proposition 2.3 (iii). Proposition
2.3 gives results about the model.
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Proposition 2.3. (i)
�

Y k
�

k�0

is a sequence of (Ft)t�0

Brownian motions and (⌧k)k�0

is a se-
quence of (Ft)t�0

stopping times.

(ii) For t > 0,

Xt �Y n
t =

8

<

:

⇣

1 + (�1)

k ⇢
⌘

�

BX
t �BX

⌧
k

��
p

1� ⇢2
�

BY
t �BY

⌧
k

�

+ ↵k, ⌧k  t  ⌧k+1

, 0  k  n

(1 + (�1)

n⇢)
⇣

BX
t �BX

⌧
n+1

⌘

�
p

1� ⇢2
⇣

BY
t �BY

⌧
n+1

⌘

+ ↵n+1

, ⌧n+1

 t
.

(2.2)

(iii) Nt < 1 almost surely.

(iv) Y is a Brownian motion.

Figure 2.4 is the empirical copula of (Xt, Y n
t ) for different n at time t = 1. The copula is asymmetric

and we observe two states of correlation, as for the model of Section 2.

(a) n = 0. (b) n = 5.

(c) n = 10. (d) n = 50.

Figure 2.4: Empirical copula of (X,Y n
) in the multi-barrier correlation model at time t = 1 with

parameters ⌫ = 0, ⌘ = 0.5 and ⇢ = 0.9 and a time step of 0.001 for different values of n done with
1000 simulations.
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3.2 Results on the distribution of the difference between the two Brow-
nian motions

Proposition 2.4 gives an analytic formula for the survival function for Xt � Y n
t and Xt � Yt.

Proposition 2.4. Let t > 0 and x 2 R. Let (pn (t, x))n�0

the sequence defined by:

p
0

(t, x) = �

⇣ �x
p

2 (1 + ⇢) t

⌘

, (2.3)

pn(t, x) =

8

>

<

>

:

�

⇣

x�↵
n+1p

2(1+(�1)

n⇢)t
� u

n+1p
t

⌘

� �

⇣

x�↵
n+1q

2

(

1+(�1)

n+1⇢
)

t
� u

n+1p
t

⌘

if x < ↵n+1

�

⇣

x�↵
n+1p

2(1+(�1)

n⇢)t
+

u
n+1p
t

⌘

� �

⇣

x�↵
n+1q

2

(

1+(�1)

n+1⇢
)

t
+

u
n+1p
t

⌘

if x � ↵n+1

(2.4)

where (un)n�0

is the sequence defined by:

(

u
0

= 0

un =

⌘p
2(1+⇢)

+

(⌘�⌫)p
2

⇣ bn

2 cp
1�⇢

+

bn�1
2 cp
1+⇢

⌘

k � 1

and b.c is the floor function.

We have:

P (Xt � Y n
t � x) =

n
X

k=0

pk (t, x)

and

P (Xt � Yt � x) =
1
X

k=0

pk (t, x) .

Corollary 2.1. Let t > 0. For x 2 [⌫, ⌘], the sequence P (Xt � Y n
t � x) is increasing with n when

⇢ > 0.

For x 2 [⌫, ⌘], the survival function takes higher values than in the constant correlation case and
than 1

2

. Furthermore, it is possible to increase the value of P (Xt � Y n
t � x) by increasing the

number of reflections with this model, which is why the case n = 1 is considered.

Results of Proposition 2.1 are illustrated in Figure 2.5a. The case n = 0 corresponds to the Gaussian
case. We can see that in [⌫, ⌘], the survival function is increasing with n. In Figure 2.5a, the curves
for n = 5, n = 10 and n = 50 are the same. At time t = 1, the probability to cross more than 5
barrier is very weak then the Brownian reflection reflects less than 5 times with a high probability.
The convergence in n at small time is fast. In Figure 2.5b, we can observe the difference between
the cases n = 5, n = 10 and n = 50 at time t = 20. The survival function continues to grow. The
survival function does not present the problem of the one the model of Section 2: its value stays
high when t = 20 which is caused by the several reflections.

The results are confirmed with Figure 2.6. The higher the number of reflections is, more X�Y n is
concentrated in the region [⌫, ⌘]. However, in the positive part of the plan, X�Y n take lower values
than in the Gaussian case n = 0. One explanation comes from the martingality of X�Y n. As X�Y n

is a martingal, we have E (Xt � Y n
t ) = E (X

0

� Y n
0

) = 0. Furthermore, P (Xt � Y n
t � 0) > 1

2

and is
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(a) t = 1. (b) t = 20.

Figure 2.5: Survival function of X � Y n in the multi-barrier correlation model at time t with
parameters ⌫ = 0, ⌘ = 0.5 and ⇢ = 0.9 for different values of n.

higher than in the case of a constant correlation between the two Brownian motions. The probability
mass in the positive part of the real line increases, but the expectation on all the real line stay
the same: values taken by the random variables become lower in the positive part of the real line
and becomes higher in the negative.We also remark that the symmetry present in the case n = 0

disappears when n is higher.

3.3 A local correlation model
As in Section 3.1, we develop a model based on a two-states structure of correlation. However, we
use a totally different approach where the reflection of the Brownian motion does not appear. Our
model is a local correlation model and the correlation depends on the value of the difference between
the two Brownian motions. The local correlation function presents two states of correlation: one
of negative correlation if the difference of the two Brownian motion is under a certain barrier, one
of positive correlation if the difference if over an other barrier and between the two barriers the
function is chosen with sufficient regularity.

Let BX and BY be two independent Brownian motions defined on a filtered probability space (⌦,
F , (Ft)t�0

, P).
Let ⌘, ⌫, ⇢

min

and ⇢
max

be real numbers with ⌘ > ⌫, |⇢
min

| < 1, |⇢
max

| < 1.
Let ⇢̃(x) be a function such that ⇢̃ (x) = ⇢

min

for x  ⌫, ⇢̃ (x) = ⇢
max

for x � ⌘ and sup

x2R
|⇢̃ (x) | < 1.

Let us assume that ⇢̃ is Lipschitz.

Let us consider the following system of stochastic differential equations:
(

dXt = dBX
t

dYt = ⇢̃ (Xt � Yt) dBX
t +

q

1� ⇢̃ (Xt � Yt)
2dBY

t

(2.5)

with X
0

= 0 and Y
0

= 0.

Proposition 2.5 gives results about the solution of (2.5).
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(a) n = 0. (b) n = 5.

(c) n = 10. (d) n = 50.

Figure 2.6: 50 simulations of X � Y n in the multi-barrier correlation model between time 0 and
20 with parameters ⌫ = 0, ⌘ = 0.5 and ⇢ = 0.9 and a time step of 0.001 for different values of n.

Proposition 2.5. The system of stochastic differential equations (2.5) has an unique strong solu-
tion (X,Y ) with X and Y two Brownian motions. Furthermore, (X,Y ) is Markovian.

Contrary to the multi-barrier correlation model, the local correlation model has the advantage to
give a Markovian solution, which has some importance in practice. However, less analytical results
are available for this model. In the following, we gives empirical results about it. Results are close
to the ones of the multi-barrier correlation model.

As the local correlation function is asymmetric, i.e. ⇢ (x, y) 6= ⇢ (x, y) , x, y 2 R, the copula of the
solution of (2.5) is expected to be asymmetric. Figure 2.7 represents the copula of (Xt, Yt) at time
t = 1. It is similar to the one of the multi-barrier correlation model.

Figure 2.8 represents the survival function of the Xt � Yt in the local correlation model at time
t = 1 and t = 20 with parameters ⌫ = 0, ⌘ = 0.5, ⇢

min

= �0.9 and ⇢
max

= 0.9. The local
correlation function is chosen linear between ⌫ and ⌘. As for the multi-barrier correlation model,
the distribution of Xt �Yt is asymmetric. The survival function seems equivalent to the one of the
multi-barrier correlation model. Between ⌫ and ⌘, the survival function is over 1

2

(Gaussian copula
case). The survival function increases at the right of ⌫ between time t = 1 and t = 20.
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Figure 2.7: Empirical copula of (Xt, Yt) in the local correlation model at time t = 1 with parameters
⌫ = 0, ⌘ = 0.5, ⇢

1

= �0.9 and ⇢
2

= 0.9 and a time step of 0.001 with 1000 simulations.

(a) t = 1. (b) t = 20.

Figure 2.8: Empirical survival function of Xt � Yt in the local correlation model at time t with
parameters ⌫ = 0, ⌘ = 0.5, ⇢

min

= �0.9 and ⇢
max

= 0.9 with interval confidence bounds at 99%

and estimated with 1000 simulations and a step time of 0.001.

Figure 2.9 represents 50 simulations of X � Y in the correlation local model with parameters ⌫ =
0, ⌘ = 0.5, ⇢

min

= �0.9 and ⇢
max

= 0.9. As for the multi-barrier correlation model, the trajectories
are concentrated in the positive part of the plan.
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Figure 2.9: 50 simulations of X�Y in the correlation local model with parameters ⌫ = 0, ⌘ = 0.5,
⇢
min

= �0.9 and ⇢
max

= 0.9 between time t = 0 and t = 20 and a time step of 0.001.

4 An application for joint modeling of commodity prices on
energy market

In this section, we use the multi-barrier correlation model for the joint modeling of the forward
prices of two commodities, electricity and coal. Coal is a fuel used to produce electricity which
implies an asymmetry in the distribution of the difference between the two prices ; it is more likely
that price of coal is lower than price of electricity (in the same unit). Modeling the dependence with
a Gaussian copula is then not adapted. An advantage of our model is that it contains asymmetry
in the distribution of the difference between the two prices. Furthermore, it allows not to change
the marginal models.

4.1 Model

Let us consider a two-factor model for both electricity and coal. For more information on the
two-factor model, we refer to the study of Benth and Koekebakker [3].

Let fE
(t, T ) (resp. fC

(t, T )) the forward price of the electricity (resp. coal) at time t with maturity
T , that is of the delivery of electricity (resp. coal) at maturity T during one day. Stochastic
differential equation (2.6) gives dynamic of these products.

8

<

:

dfE
(t, T )=fE

(t, T )
⇣

�E
s e

�↵E

s

(T�t)dBE,s
t + �E

l dB
E,l
t

⌘

dfC
(t, T )=fC

(t, T )
⇣

�C
s e

�↵C

s

(T�t)dBC,s
t + �C

l dB
C,l
t

⌘ (2.6)

where BE,s, BE,l, BC,s, BC,l are standard Brownian motions defined on a common probability
space (⌦,F ,P).
In the dynamic of each commodity, there is one factor corresponding to the short term factor with
a volatility �i

se
�↵i

s

(T�t), i = E,C . This short term factor is used to model the Samuelson effect
[18], that is the decrease of volatility with time to maturity. The other factor is the long term factor
with a constant volatility �i

l , i = E,C.
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Products traded on the market have a delivery period, except for the spot. We denote by f i
(t, T, ✓) , i =

E,C the price of the product at time t that delivers i at time T during a period ✓. By absence of
arbitrage opportunities, we have

f i
(t, T, ✓) =

1

✓

Z T+✓

T

f i
(t, u) du.

In the following, we will only consider n Month Ahead (nMAH), n � 1, which are products with a
delivery period of one month and a delivery date which is the 1

st of the nth following month from
today.

Equation (2.7) gives the solutions of (2.6).
(

fE
(t, T )=fE

(0, T ) e
R

t

0 �E

s
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s
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0 �C

s

e�↵

C

s

(T�u)dBC,s

u

� 1
2

R
t

0 (�
C

s

)

2
e�2↵C

s

(T�u)du+�C

l

BC,l

t

� 1
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2
t

(2.7)

The spot price of electricity is given by SE
t = fE

(t, t) and the one of coal by SC
t = fC

(t, t). Then
we have
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(2.8)

We model the dependence as follow:

• BE,s and BE,l are independent,

• BC,s and BC,l are independent,

• BE,s and BC,s are independent,

• BE,l and BC,l are constructed following the multi-barrier correlation model defined in Section
3.

Usually, a constant correlation matrix is used to model the dependence between the 4 Brownian
motions.

4.2 Parameters

We consider the parameters of the marginal laws given in Table 2.1. Units are taken according to
the year. We use the forward prices of electricity and of coal during 2014 in France to estimate
these parameters. The method used for estimation is the first one of [10].

Parameters Electricity Coal
�l 10.2555% 9.2602%
�s 97.2925% 11.2134%
↵s 17.0363 2.07832

Table 2.1: Parameters of the two-factor model for electricity and coal.
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Parameters for the multi-barrier correlation model used to model the dependence between BE,l

and BC,l are chosen arbitrarily ; we choose ⌫ = 0, ⌘ = 0.5, ⇢ = 0.9, n = 1.

In the benchmark model where dependence between BE,l and BC,l is modeled by a constant
correlation, the correlation is equal to 0.275. The other correlation are equals to 0.

We assume that fE
(0, T )�HfC

(0, T ) = 0 and fE
(0, T ) = 100 for all T (which does not represent

the reality because we do not take into account the seasonality of the prices of electricity and coal).
H is a conversion factor between the unit of electricity prices and the unit of coal prices and is
called the heat rate.

4.3 Numerical results
We are interested in the difference between fE

(t, T ) and HfC
(t, T ). We only are interested in the

multi-barrier correlation model ; results are the same for the local correlation model.

(a) Multi-barrier correlation model. (b) Benchmark model.

Figure 2.10: Empirical survival function of the difference between the price of electricity and the
price of coal at time t = 365 days estimated with 10000 simulations with a time step of 1

24

days for
different products (Spot, 1MAH, 3MAH, 6MAH) in the multi-barrier correlation model and in the
benchmark model.

Figure 2.10 represents the survival function of the difference between spot, 1MAH, 3MAH, and
6MAH prices. In the multi-barrier correlation model, the probability for the difference between
the two spot prices to be non negative is close to 50%, which is the same value than in the
benchmark model. However, we have good results if we consider long term products as 1MAH,
3MAH and 6MAH: we have probabilities closed to 60% for the 1MAH, and 70% for the 3MAH and
6MAH in the multi-barrier correlation model whereas we have probabilities closed to 50% in the
benchmark model. The probability increases with the time to maturity. In the case of spot prices,
the volatilities of the prices of the commodities is dominated by the short term factor, which we
do not control ; in the other cases, these volatilities are small and the long term factor which we
control dominates. This explains that we do not increase a lot the probability for the difference
between the spot prices to be non negative. We also observed that in the multi-barrier correlation
model, the survival function decreases faster than in the benchmark model and probability of being
superior to 20 is closed to 0, which is not the case in the benchmark model.
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(a) Spot prices of electricity and coal. (b) 1MAH prices of electricity and coal.

(c) 3MAH prices of electricity and coal. (d) 6MAH prices of electricity and coal.

Figure 2.11: One year trajectory of electricity and coal products in the multi-barrier correlation
model with a time step of 1

24

days.

Figure 2.11 represents one trajectory of the different products. In the case of the spot prices, since
electricity has a high volatility, it is difficult to control the difference between the two processes.
For the other products, as the short term volatility decreases, we see that there is a control between
the two processes.

Remark 2.1. Using a multi-barrier correlation model to model the dependence between BE,s and
BC,s does not improve the results for the different survival functions. That is why we consider them
independent.

Results are sensitive to initial conditions. If we choose fE
(0, T ) = 100 and HfC

(0, T ) = 120 for
instance, fE

(0, T )�HfC
(0, T ) = �20 and we will have a distribution that is concentrated around

-20, because the difference between the price is a martingale. The probability to be greater than -20
is higher in the multi-barrier correlation model than in the benchmark model but the probability to
be positive is lower than in the benchmark model: it is closed to 0 in the multi-barrier correlation
model whereas it is closed to 10% in the benchmark model. Figure 2.12 represents the survival
function of the difference between prices of electricity and coal for different products with ⌫ = 0

and ⌘ = 0.5. As we choose a barrier near 0, the survival function will be maximized around -20.
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(a) Multi-barrier correlation model. (b) Benchmark model.

Figure 2.12: Empirical survival function of the difference between the price of electricity and the
price of coal at time t = 335 days estimated with 10000 simulations with a time step of 1

24

days for
different products (Spot, 1MAH, 3MAH, 6MAH) in the multi-barrier correlation model and in the
benchmark model if the difference is equal to -20 at time t = 0.

One way to improve the value of the survival function around 0 is to choose a higher ⌘. The idea in
our model is that we want BE,l to go over BC,l

+ ⌘, using correlation of -1 when the two prices are
equals at time t = 0. We want for the price of the electricity to go over the price of coal, that happens
when fE

(t, T ) = HfC
(t, T ), i.e. when �E

l B
E,l
t � �C

l B
C,l
t = log

⇣

HfC

(0,T )

fE

(0,T )

⌘

if we neglect the short

term factors. We have �E
l ⇡ �C

l ⇡ � = 0.1 year�1. Then, we want BE,l
t �BC,l

t ⇡ 1

� log

⇣

HfC

(0,T )

fE

(0,T )

⌘

.
In the case with the same initial conditions, the right hand side term is equal to 0 and we choose
a barrier of ⌘. Heuristically, we then choose a barrier of ⌘

0
= ⌘ +

1

� log

⇣

HfC

(0,T )

fE

(0,T )

⌘

⇡ 170.5 and
⌫ = 170. Figure 2.13 gives the survival function of the different products in the multi-barrier
correlation model with barriers ⌫ = 170 and ⌘ = 170.5.

We can see that around 0, the values of the survival function are much better than in the benchmark
model: around 20% in the multi-barrier correlation model and around 10% in the benchmark model.
However, the values are still low. Indeed, even in the maximal case where the second Brownian
motion is the reflection of the first one and the volatilities are equals, the probability for the
difference between the Brownian motions to be positive knowing that one starts at �x, x > 0 and
the other at 0 is equal to 2�

⇣

�x
2

p
t

⌘

which decreases with x.

4.4 Pricing of European spread options

In this Section, we compare prices of European spread options in the factorial model (2.6) with
different structures of dependence: the multi-barrier correlation model (m-b) with correlation equals
to 0.3, 0.6, 0.9 and the benchmark model (constant correlation) with correlation equals to 0 and
0.275. Benchmark model with correlation equal to 0 is the same model than multi-barrier correlation
model with correlation equal to 0. We price options with payoff (Xt �HYt)

+, where Xt is an
electricity product, Yt a coal product and H is the conversion factor between electricity and coal.
Xt and Yt are Spot, 1MAH, 3MAH and 6MAH. Parameters used are those of Table 2.1. The price

94



2. On the control of the difference between two Brownian motions: an application to energy markets
modeling

Figure 2.13: Empirical survival function of the difference between the price of electricity and the
price of coal at time t = 335 days estimated with 10000 simulations with a time step of 1

24

days
for different products (Spot, 1MAH, 3MAH, 6MAH) in the multi-barrier correlation model if the
difference is equal to -20 at time t = 0 and with barriers ⌫ = 170 and ⌘ = 170.5.

of the option is equal to E
⇣

(Xt � Yt)
+

⌘

. We use Monte Carlo to estimate this expectation with a
number of simulations equal to 10000. To simulate the processes, we use a step time of 1 hour.

Table 2.2 gives 95% confidence intervals for the price of spread options with maturity 1 year when
X

0

= HY
0

= 100. For the multi-barrier correlation model, we choose ⌫ = 0 and ⌘ = 0.5. In the
multi-barrier correlation model, the value of the option decreases with the correlation parameters.
Indeed, when the correlation parameters increases, the probability to be over 0 is higher, but the
values taken by the difference Xt�HYt are smaller and smaller. The increase in the probability do
not compensate the decrease in the values that can be taken and the expectation, i.e. the value of
the option decreases. Value of the option in the benchmark model with correlation equal to 0.275 is
close to the one in the multi-barrier correlation model with correlation equal to 0.6. We also observe
that the value of the option decreases with the product maturity, in all the models. Table 2.3 gives

Products / Parameters ⇢ = 0 ⇢ = 0.3, m-b ⇢ = 0.6, m-b ⇢ = 0.9, m-b ⇢ = 0.275, benchmark
Spot [8.39, 8.92] [8.44, 8.96] [7.87, 8.37] [7.29, 7.75] [7.69, 8.19]

1MAH [6.54, 6.94] [6.56, 6.94] [5.96, 6.30] [5.00, 5.29] [5.80, 6.16]
3MAH [5.45, 5.78] [5.41, 5.70] [4.79, 5.03] [3.27, 3.41] [4.72, 5.00]
6MAH [5.33, 5.69] [5.26, 5.55] [4.65, 4.87] [3.02, 3.15] [4.60, 4.88]

Table 2.2: Values of European Spread options (Xt �HYt)
+ between electricity and coal products

in the benchmark model and in the multi-barrier correlation model with parameters ⌫ = 0, ⌘ = 0.5
with X

0

= HY
0

= 100.

95% confidence intervals for the price of spread options with maturity 1 year when X
0

= 100 and
HY

0

= 120. For the multi-barrier correlation model, we choose ⌫ = 170 and ⌘ = 170.5. Contrarily
to results of Table 2.2, the value of the option increases with the correlation parameter in the
multi-barrier correlation model. Furthermore, the value of the option in the multi-barrier case
is greater than the one of the benchmark model, for all the given correlations. In the constant
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correlation case, the probability to be greater than 0 is very low. The increase of probability in the
multi-barrier correlation model is enough for the option value to be higher.

Products / Parameters ⇢ = 0 ⇢ = 0.3, m-b ⇢ = 0.6, m-b ⇢ = 0.9, m-b ⇢ = 0.275, benchmark
Spot [2.52, 2.83] [2.92, 3.25] [3.03, 3.36] [3.13, 3.48] [2.09, 2.37]

1MAH [1.24, 1.42] [1.57, 1.77] [1.72, 1.92] [1.74, 1.98] [0.88, 1.02]
3MAH [0.67, 0.79] [0.9, 1.02] [1.03, 1.15] [0.81, 0.90] [0.37, 0.45]
6MAH [0.63, 0.74] [0.82, 0.94] [0.92, 1.03] [0.67, 0.74] [0.33, 0.41]

Table 2.3: Values of European Spread options (Xt �HYt)
+ between electricity and coal products in

the benchmark model and in the multi-barrier correlation model with parameters ⌫ = 170, ⌘ = 170.5
with X

0

= 100 and HY
0

= 120.

5 Proofs

5.1 Preliminary results

We start with well known results that will be useful for the proofs of propositions.

Lemma 2.1. Let B = (Bt)t�0

be a standard Brownian motion on a filtered probability space
⇣

⌦,F , (Ft)t�0

,P
⌘

. We have:

(i) for y � 0,

P
⇣

Bt  x, sup
st

Bs  y
⌘

=

8

<

:

�

⇣

xp
t

⌘

� �

⇣

x�2yp
t

⌘

if x < y

2�

⇣

yp
t

⌘

� 1 if x � y
,

(ii) for y  0,

P
⇣

Bt  x, inf
st

Bs  y
⌘

=

8

<

:

�

⇣

xp
t

⌘

if x  y

2�

⇣

yp
t

⌘

� �

⇣

�x+2yp
t

⌘

if x > y
.

Proof The reader is referred to [15, Theorem 3.1.1.2, p. 137] for the proof of (i) and to [15, Section
3.1.5, p. 142] for the proof of (ii). ⇤

Lemma 2.2. Let B1

=

�

B1

t

�

t�0

and B2

=

�

B2

t

�

t�0

be two independent standard Brownian motion

defined on a common filtered probability space
⇣

⌦,F , (Ft)t�0

,P
⌘

with (Ft)t�0

having all the good
properties. Let h � 0 and ⌧h = inf{t � 0 : B2

t = h}. We have:

P
⇣

B1

t �B1

⌧h

 x, ⌧h  t
⌘

= �

⇣x� hp
t

⌘

1x<0

+

⇣

�

⇣x+ hp
t

⌘

� 2�

⇣ hp
t

⌘

+ 1

⌘

1x�0

.
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Proof Conditional on {t � ⌧h}, B1

t �B1

⌧h

is a Brownian motion independent to F⌧h . Then

P
⇣

B1

t �B1

⌧h

 x, ⌧h  t
⌘

= E
⇣

�

⇣ xp
t� ⌧h

⌘

1t�⌧h

⌘

.

The same argument can be used to prove that

P
⇣

B2

t �B2

⌧h

 x, ⌧h  t
⌘

= E
⇣

�

✓

xp
t� ⌧h

◆

1t�⌧h

⌘

.

Then we have

P
⇣

B1

t �B1

⌧h

 x, ⌧h  t
⌘

= P
⇣

B2

t �B2

⌧h

 x, ⌧  t
⌘

= P
⇣

B2

t  x+ h, sup
st

B2

s � h
⌘

.

We can conclude using Lemma 2.1. ⇤

Lemma 2.3. Let a, b and x 2 R. We have:

(i)
Z x

�1
� (au+ b)

e
�u

2

2p
2⇡

du = �

�ap
a

2+1

⇣ bp
a2 + 1

, x
⌘

.

(ii)

�

p
1�⇢2 (x, y) = � (y)�

⇣x�
p

1� ⇢2y

⇢

⌘

+ � (x)� �⇢

⇣

x,
x�

p

1� ⇢2y

⇢

⌘

, x, y 2 R, ⇢ > 0

(iii)
�⇢ (x, y) = � (y)� ��⇢ (�x, y) , x, y 2 R

Proof The reader is referred to [8, Proof of Lemma 19, Section 5.3]. ⇤

5.2 Proof of Proposition 2.2
Let B1 and Z two independent Brownian motion. We consider B2

= ⇢ ˜Bh
+

p

1� ⇢2Z with ˜Bh

the reflection of B according to the barrier h. We have:

P
�

B1

t �B2

t � x
�

= P
⇣

B1

t �B2

t � x, sup
st

B1

s  h
⌘

+ P
⇣

B1

t �B2

t � x, sup
st

B1

s � h
⌘

When sup

st
B1

s  h, B2

t = �⇢B1

t +

p

1� ⇢2Zt and when sup

st
B1

s � h, B2

t = ⇢B1

t �2h⇢+
p

1� ⇢2Zt.

Thus, P
�

B1

t �B2

t � x
�

is the sum of the three following terms:

(i) P
⇣

B1

t  x�2⇢h+
p

1�⇢2Z
t

(1�⇢) , sup
st

B1

s  h
⌘

,

(ii) �P
⇣

B1

t  x+
p

1�⇢2Z
t

(1+⇢) , sup
st

B1

s  h
⌘

,
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(iii) P
⇣

(1� ⇢)B1

t �
p

1� ⇢2Zt � x� 2⇢h
⌘

.

Since B1 and Z are independent, (i) is equal to the sum of the three following terms:

E
⇣

�

⇣x� 2⇢h+

p

1� ⇢2Zt

(1� ⇢)
p
t

⌘

1
Z

t

h(1+⇢)�xp
1�⇢

2

⌘

, (2.9)

� E
⇣

�

⇣x� 2h+

p

1� ⇢2Zt

(1� ⇢)
p
t

⌘

1
Z

t

h(1+⇢)�xp
1�⇢

2

⌘

(2.10)

and
E
⇣⇣

2�

⇣ hp
t

⌘

� 1

⌘

1
Z

t

�h(1+⇢)�xp
1�⇢

2

⌘

(2.11)

with the use of Lemma 2.1. According to Lemma 2.3 (i), (2.9) is equal to

��
p

1+⇢

2

⇣ x� 2⇢h
p

2 (1� ⇢) t
,
h (1 + ⇢)� x
p

(1� ⇢2) t

⌘

. (2.12)

Using Lemma 2.3 (ii), we find that the first term of (i) (2.12) is equal to

� �

p
1+⇢

2

⇣ �x+ 2⇢h
p

2 (1� ⇢) t
,
h (1 + ⇢)� x
p

(1� ⇢2) t

⌘

+ �

⇣h (1 + ⇢)� x
p

(1� ⇢2) t

⌘

. (2.13)

In the same way, the second term of (i) (2.10) is equal to:

�

p
1+⇢

2

⇣ �x+ 2h
p

2 (1� ⇢) t
,
h (1 + ⇢)� x
p

(1� ⇢2) t

⌘

� �

⇣h (1 + ⇢)� x
p

(1� ⇢2) t

⌘

. (2.14)

The last one (2.11) is equal to
⇣

2�

⇣ hp
t

⌘

� 1

⌘

�

⇣x� h (1 + ⇢)
p

(1� ⇢2) t

⌘

. (2.15)

Using the same scheme of proof that for (i), we find that (ii) is equal to the sum of the three
following terms:

�

p
1�⇢

2

⇣ �x
p

2 (1 + ⇢) t
,
h (1 + ⇢)� x
p

(1� ⇢2) t

⌘

� �

⇣h (1 + ⇢)� x
p

(1� ⇢2) t

⌘

, (2.16)

� �

p
1�⇢

2

⇣�x+ 2h (1 + ⇢)
p

2 (1 + ⇢) t
,
h (1 + ⇢)� x
p

(1� ⇢2) t

⌘

+ �

⇣h (1 + ⇢)� x
p

(1� ⇢2) t

⌘

(2.17)

and
�
⇣

2�

⇣ hp
t

⌘

� 1

⌘

�

⇣x� h (1 + ⇢)
p

(1� ⇢2) t

⌘

. (2.18)

Using Lemma 2.3 (iii), we find that (2.16) is equal to

�

⇣ �x
p

2 (1 + ⇢) t

⌘

�

⇣ �x+ 2h
p

2 (1� ⇢) t

⌘

� �

p
1+⇢

2

⇣ �x+ 2h
p

2 (1� ⇢) t
,
h (1 + ⇢)� x
p

(1� ⇢2) t

⌘

. (2.19)
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and that (2.17) to

� �

⇣�x+ 2h (1 + ⇢)
p

2 (1 + ⇢) t

⌘

�

⇣ �x+ 2⇢h
p

2 (1 + ⇢) t

⌘

+ �

p
1+⇢

2

⇣ �x+ 2⇢h
p

2 (1� ⇢) t
,
h (1 + ⇢)� x
p

(1� ⇢2) t

⌘

. (2.20)

Finally, we have (iii) equal to

�

⇣ �x+ 2⇢h
p

2 (1� ⇢) t

⌘

. (2.21)

P
�

B1

t �B2

t � x
�

is the sum of (2.13), (2.14), (2.15), (2.19), (2.20), (2.18) and (2.21).

5.3 Proof of Proposition 2.3
(i) This part of the proof can be done by induction.
(ii) For ⌧

0

= 0  t  ⌧
1

, Xt � Y n
t = (1 + ⇢)BX

t �
p

1� ⇢2BY
t . The equality holds for k = 0.

Let us suppose that the property true at rank k < n+ 1, that is

Xt � Y n
t =

⇣

1 + (�1)

k ⇢
⌘

�

BX
t �BX

⌧
k

��
p

1� ⇢2
�

BY
t �BY

⌧
k

�

+ ↵k, ⌧k  t  ⌧k+1

.

If ⌧k  t  ⌧k+1

, Y n
t = ⇢ ˜Bk

t +

p

1� ⇢2BY
t then

Xt � ⇢ ˜Bk
t �

p

1� ⇢2BY
t =

⇣

1 + (�1)

k ⇢
⌘

�

BX
t �BX

⌧
k

��
p

1� ⇢2
�

BY
t �BY

⌧
k

�

+ ↵k. (2.22)

As ˜Bk
t does not change after time ⌧k+1

, this relationship remains true for all time greater than ⌧k.
At time ⌧k+1

, we have the equation

↵k+1

=

⇣

1 + (�1)

k ⇢
⌘⇣

BX
⌧
k+1

�BX
⌧
k

⌘

�
p

1� ⇢2
⇣

BY
⌧
k+1

�BY
⌧
k

⌘

+ ↵k. (2.23)

Taking the difference between Equation (2.22) and Equation (2.23), we have

Xt � ⇢ ˜Bk
t �

p

1� ⇢2BY
t =

⇣

1 + (�1)

k ⇢
⌘⇣

BX
t �BX

⌧
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⌘
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⇣

BY
t �BY

⌧
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⌘

+ ↵k+1

.

Let ⌧k+1

 t  ⌧k+2

. If k = n, the proof is over because Y n
t = ⇢ ˜Bn

t +

p

1� ⇢2BY
t for ⌧n+1

.
Otherwise, Y n

t = ⇢ ˜Bk+1

t +

p

1� ⇢2BY
t with ˜Bk+1

t = R
⇣

˜Bk
t , ⌧k+1

⌘

= 2

˜Bk
⌧
k+1

� ˜Bk
t and

Xt � Y n
t = Xt � ⇢ ˜Bk+1

t �
p

1� ⇢2BY
t

= Xt � ⇢ ˜Bk
t �

p

1� ⇢2BY
t + ⇢( ˜Bk

t � ˜Bk+1

t )

= Xt � ⇢ ˜Bk
t �

p

1� ⇢2BY
t + 2⇢( ˜Bk

t � ˜Bk
⌧
k+1

)
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⇣

1 + (�1)

k ⇢
⌘⇣

BX
t �BX

⌧
k+1

⌘

�
p

1� ⇢2
⇣

BY
t �BY

⌧
k+1

⌘

+ ↵k+1

+ 2⇢
⇣

˜Bk
t � ˜Bk

⌧
k+1

⌘

.

Let s, t > ⌧k, we have

˜Bk
t � ˜Bk

s = � ˜Bk�1

t + 2

˜Bk�1

⌧
k

+

˜Bk�1

s � 2

˜Bk�1

⌧
k

= �
⇣

˜Bk�1

t � ˜Bk�1

s

⌘

= (�1)

k
(

˜B0

t � ˜B0

s )

= (�1)

k+1

�

BX
t �BX

s

�

.
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Then 2⇢
⇣

˜Bk
t � ˜Bk

⌧
k+1

⌘

= 2⇢ (�1)

k+1

⇣

BX
t �BX

⌧
k+1

⌘

and we find that the property holds at rank
k + 1, which achieves the proof.
(iii) We first need Lemma 2.4.

Lemma 2.4. We have
⌧k

d
= inf{t � 0 : Bt = uk} (2.24)

where
(

u
0

= 0

uk =

⌘p
2(1+⇢)

+

(⌘�⌫)p
2

⇣ b k

2 cp
1�⇢

+

b k�1
2 cp
1+⇢

⌘

k � 1

(2.25)

with B a standard Brownian motion and b.c the floor function.

Proof. The property holds for k = 1. Let us suppose that the property holds for k = 2p + 1.

X⌧
k

� Y n
⌧
k

= ⌘ and ⌧k+1

is the first time greater than ⌧k when Xt � Y n
t goes to ⌫. According to

Equation (2.2),

P (⌧k+1

 t) = P
⇣

inf

⌧
k

st
(1� ⇢)

�

BX
s �BX

⌧
k

��
p

1� ⇢2
�

BY
s �BY

⌧
k

�

+ ⌘  ⌫, t � ⌧k
⌘

.

If t � ⌧k, (BX
t � BX

⌧
k

) and (BY
t � BY

⌧
k

) are Brownian motions independent of F⌧
k

. Then using
Lemma 2.1 and Lemma 2.2, we have

P (⌧k+1

 t) = E
⇣

2�

⇣ ⌫ � ⌘
p

2 (1� ⇢) (t� ⌧k)

⌘

1t�⌧
k

⌘

= 2P
⇣

(1� ⇢)
�

BX
t �BX

⌧
k

��
p

1� ⇢2
�

BY
t �BY

⌧
k

�  ⌫ � ⌘, t � ⌧k
⌘

= 2�

⇣ ⌫ � ⌘
p

2 (1� ⇢) t
� uk

⌘

.

This is the law of the stopping time ⌧ = inf{t � 0 : Bt = uk +

⌘�⌫p
2(1�⇢)

} and the property holds
for k + 1. The proof is similar for k = 2p.

The proof of (iii) can be done. {Nt = n} = {⌧n  t, ⌧n+1

> t} and then we have

E (Nt) =

1
X

n=1

nP (⌧n  t, ⌧n+1

> t) 
1
X

n=1

nP (⌧n  t)

According to Lemma 2.4, P (⌧n  t) = 2

R1
u

np
t

e
�y

2

2p
2⇡

dy = 2�

⇣

�u
np
t

⌘

. Since lim

n!1un = 1 and n =

O
n!1 (un),

P (⌧n  t) = o
n!1

⇣

e
�u

2
n

2t

⌘

= o
n!1

⇣

1

u3

n

⌘

= O
n!1

⇣

1

n3

⌘

.

Then nP (⌧n  t) = O
n!1

�

1

n2

�

and E (Nt) < 1 by comparison theorem of positive series, implying
Nt < 1 almost surely.
(iv) If n � Nt, the number of reflections of X � Y n between time 0 and time t is equal to Nt and
Y N

t

t = Y n
t = almost surely.
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5.4 Proof of Proposition 2.4 and Corollary 2.1
We start with Lemma 2.5.

Lemma 2.5. For t > 0, x 2 R,

P (Xt � Y n
t  x, t � ⌧n) =

8

>

<

>

:

�

⇣

x�↵
np

2(1+(�1)

n⇢)t
� u

np
t

⌘

if x < ↵n

�

⇣

x�↵
np

2(1+(�1)

n⇢)t
+

u
np
t

⌘

� 2�

⇣

u
np
t

⌘

+ 1 if x � ↵n

and

P (Xt � Y n
t  x, t � ⌧n+1

) =

8

>

<

>

:

�

⇣

x�↵
n+1p

2(1+(�1)

n⇢)t
� u

n+1p
t

⌘

if x < ↵n+1

�

⇣

x�↵
n+1p

2(1+(�1)

n⇢)t
+

u
n+1p
t

⌘

� 2�

⇣

u
n+1p
t

⌘

+ 1 if x � ↵n+1

.

Proof We have P (Xt � Y n
t  x, t � ⌧n) equal to

P
⇣

(1 + (�1)

n ⇢)
�

BX
t �BX

⌧
n

��
p

1� ⇢2
�

BY
t �BY

⌧
n

�

+ ↵n  x, t � ⌧n
⌘

= E
⇣

�

⇣ x� ↵n
p

2 (1 + (�1)

n ⇢) (t� ⌧n)

⌘

1t�⌧
n

⌘

.

However, according to Equation (2.24), ⌧n ⇠ ⌧ 0 = inf{t � 0 : Bt = un} where Bt is a standard
Brownian motion. Then we have, using Lemma 2.2,

P (Xt � Y n
t  x, t � ⌧n) = E

⇣

�

⇣ x� ↵n
p

2 (1 + (�1)

n ⇢) (t� ⌧ 0)

⌘

1t�⌧ 0

⌘
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p

2 (1 + (�1)
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� unp
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⌘

1x<↵
n

+

⇣

�

⇣ x� ↵n
p

2 (1 + (�1)

n ⇢) t
� unp

t

⌘

� 2�

✓

unp
t

◆

+ 1

⌘

1x�↵
n

.

The proof is the same for P (Xt � Y n
t  x, t � ⌧n+1

).
⇤

We can now prove Proposition 2.4. We have:

P
�

Xt � Y n+1

t � x
�� P (Xt � Y n

t � x) = P (Xt � Y n
t  x)� P

�

Xt � Y n+1

t  x
�

which is equal to

P (Xt � Y n
t  x, ⌧n+1

 t)� P
�

Xt � Y n+1
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� t)� P
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�

.

For ⌧n+1

� t, Xt � Y n
t and Xt � Y n+1

t are equals then

P (Xt � Y n
t  x, ⌧n+1

� t) = P
�
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t  x, ⌧n+1

� t
�

.
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We then have

P
�

Xt � Y n+1

t � x
��P (Xt � Y n

t � x) = P (Xt � Y n
t  x, ⌧n+1

 t)�P
�

Xt � Y n+1

t  x, ⌧n+1

 t
�

and we can conclude using Lemma 2.5.
Since for n � Nt Xt�Y n

t = Xt�Y N
t

t , Xt�Y N
t

t is the limit in law of Xt�Y n
t , and P (Xt � Yt � x) =

lim

n!1P (Xt � Y n
t � x).

The proof for Corollary 2.1 follows.
Let x 2 [⌫, ⌘] and let assume ⇢ > 0. We have:

P
�

Xt � Y n+1

t � x
�� P (Xt � Y n

t � x) = pn+1

(t, x) .

If n is even,

pn+1

(t, x) = �

⇣ x� ⌘
p

2 (1 + ⇢) t
� un+1p

t

⌘

� �

⇣ x� ⌘
p

2 (1� ⇢) t
� un+1p

t

⌘

> 0.

If n is odd,

pn+1

(t, x) = �

⇣ x� ⌫
p

2 (1� ⇢) t
+

un+1p
t

⌘

� �

⇣ x� ⌫
p

2 (1 + ⇢) t
+

un+1p
t

⌘

> 0,

which achieves the proof.

5.5 Proof of Proposition 2.5
As ⇢̃ is Lipschitz and sup

x2R
|⇢̃ (x) | < 1,

p

1� ⇢̃2 is Lipschitz on R and

(x, y) 7!
 

1 0

⇢̃ (x� y)
q

1� ⇢̃ (x� y)2

!

is Lipschitz on R2, which is a sufficient condition for the

system to have a strong solution. This solution is Markovian.
X is clearly a Brownian motion. By the Lévy characterization of the Brownian motion, Y is also
a Brownian motion.
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Chapter 3

Estimation of a fast mean reverting
jump process with application to
spike modeling in electricity prices

Abstract

Let us consider the model Xt = Xc
t + Z�

t where Xc
t is a continuous semimartingale and Z�

t =

R t

0

R

R xe��(t�s)p (dt, dx) is a mean reverting compound Poisson process. From discrete observations
X i

n

, i = 0, ..., nT with T fixed, an estimation procedure of the parameter � is proposed when
�n =

T
n ! 0 but also when � = �n ! 1, allowing for the identification of � which is a drift

parameter. The asymptotic on � allows to model spikes in time series, that is a jump process
reverting to 0 very fast. A method for detection of the jumps is also proposed in this new framework.
We apply these results on the modeling of spikes in electricity spot prices. A model including spikes
is derived and includes both forward and spot modeling ; this model can generalize most of the
continuous models of the literature in a simply way. The estimation procedure is applied on French,
German and Australian spot prices data.
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1 Introduction

1.1 Motivation
A striking empirical feature of electricity spot prices is the presence of spikes, that can be described
by a jump in the price process immediately followed by a fast mean reversion, see Figure 3.1 below
that shows in particular the behaviour of the French and German EPEX electricity spot markets
over one year of historical data. These spikes can be related to abnormal temperature oscillations,
failures of power plant or any other dramatic physical event. The modeling of such exogenous
events has some importance, especially for risk management. Since electricity is not a storable
commodity, hedging options with spot electricity is meaningless, and forward contracts are to be
used instead. If (St)t�0

denotes the spot price in a given electricity market, the value of the forward
at time t with delivery period T can be defined as

f(t, T ) = E
⇥

ST

�

�Ft

⇤

, t � 0 (3.1)

where Ft is the available information up to time t. The quantity f(t, T ) specifies the price at
time t of the contract that delivers one unit of electricity during 1 hour (in MWh) starting in
T . Obtaining tractable formulas for f (t, T ) from a given stochastic model for the process (St)t�0

is thus of major importance, especially in the presence of fast mean-reverting spikes, as observed
empirically. In this context, a popular and tractable model, developed for instance in Lucia et al.
[18], consists in modeling (St)t�0

as

St = ⇢(t) + Yt, dYt = ��Ytdt+ �dWt, t � 0

where ⇢(t) is a deterministic component and (Yt)t�0

is an Ornstein-Uhlenbeck process driven by a
Brownian motion (�Wt)t�0

with variance �2 and mean-reversion parameter � > 0. This tractable
model however leaves out the feature of spikes. Cartea and Figueroa [8] extend this approach by
adding a jump component to the Ornstein-Uhlenbeck part (replacing St by logSt), resulting in

logSt = ⇢(t) + Yt, dYt = ��Ytdt+ �(t)dWt + log JdNt, t � 0,

where (Nt)t�0

is a Poisson process and J is the jump size drawn proportional to a log-normal
distribution. A similar model is proposed in Geman and Roncoroni [12], adding up a threshold
parameter that determines the sign of the jumps.
In these two extensions, the mean reverting coefficient � > 0 is the same for the continuous com-
ponent and for the spike component. However, statistical evidence shows that the mean reversion
of the spike component is much stronger than the one of the Brownian component, see for in-
stance Benth et al. [6]. The estimated parameter for the mean reversion underestimates the one of
the spike mean reversion and overestimates the one of the continuous mean reversion, which can
have dramatic consequences for the calibration of the forward prices f(t, T ) from historical data.
Furthermore, the model of Geman and Roncoroni [12] does not provide with explicit formulae for
deriving f(t, T ). Yet another approach is undertaken in Benth et al. [5; 6] with multi-factor models.
The dynamic of the spot now takes the form

St =

m
X

i=1

wiY
i
t , dY i

t = ��iY i
t dt+ dLi

t, t � 0, i = 1, . . . ,m,

for some weights wi, and where (Li
t)t�0

are independent time-inhomogeneous subordinators that
ensure that (St)t�0

remains nonnegative. Benth and collaborators establish in [5; 6] that m = 2
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(a) French spot price. (b) German spot price.

(c) Australian spot price.

Figure 3.1: Series of the spot price during the year 2016 for France, Germany and Australia. The
frequency of the data is 1 hour for France and Germany and 30 minutes for Australia. Spot jumps
are estimated using a threshold of 5�̂�0.49

n where �̂ is the multi-power variation of order 20.

is sufficient for modeling purposes, each factor (Y i
t )t�0

having its own mean reverting parameter,
allowing for a fast mean reversion and a slower one in the case of two factors. However, the use
of subordinators implies that the volatility of the process seems to be underestimated. Finally,
multi-factor models with a Brownian component and a spike component are studied in Meyer and
Tankov [21], Schmidt [25] and Gonzales et al. [13]. Meyer and Tankov estimate the mean-reverting
parameters using spectral methods and the jumps are detected by filtering. In Schmidt [25], the
parameters of the model are estimated using maximum likelihood with the EM algorithm, im-
plying an approximation of the process with its Euler scheme. Gonzales and co-authors develope
a Bayesian framework and recover the parameters of the model by MCMC. In a more general
context than electricity price modeling , Moreno et al. [22] use a method of moments to estimate
the parameter of a jump diffusion model when the log-price is the sum of an arithmetic Brownian
motion and a mean reverting compound Poisson process.

The goal of the paper is threefold:

i) Introduce a spot electricity price model consistent with historical data that encompasses the
previous approaches and overcomes their limitations.

ii) Develop within this model efficient and robust statistical procedures that estimates the char-
acteristics of the presence of spikes.
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iii) Derive an explicit correction formula for the value f(t, T ) of forward contracts (3.1) revealing
the effect of spikes that can be implemented thanks to ii).

1.2 Main results
We consider an extended framework that encompasses [21], [25] and [13]. In particular, our approach
does not require that the continuous part of the price process is an Ornstein-Uhlenbeck, a necessary
condition in the aforementioned models.

A semimartingale models with fast mean-reverting jumps

On a rich enough filtered probability space (⌦,F , (Ft)t�0

,P) that will accommodate all the con-
sidered random quantities, we model the electricity spot price Xt = St or logSt (depending on the
choice of modeling) by

Xt = Xc
t + Z�

t , t � 0, (3.2)

where (Xc
t )t�0 is a continuous Itô semimartingale and (Z�

t )t�0

is what we call the spike process,
governed by a mean-reverting factor � > 0. More specifically, we assume that

Xc
t = Xc

0

+

Z t

0

µsds+

Z t

0

�sdWs, t � 0 (3.3)

where (�t)t�0

and (µt)t�0

are two adapted càdlàg processes, (Wt)t�0

a (Ft)-standard Brownian
motion and

Z�
t =

Z t

0

Z

R
xe��(t�s)p (dt, dx) , t � 0, (3.4)

with p a random Poisson measure on [0,1)⇥ R independent of (Wt)t�0

, with intensity

q = � dt⌦ ⌫(dx),

for some � > 0 and a probability measure ⌫(dx) on R. We thus model the electricity spot price as
a classical continuous Itô semimartingale (Xc

t )t�0

allowing for the usual financial fluctuations and
usual models (factor models, mean-reverting models and so on) to which we add an perturbation
(Z�

t )t�0

of “spikes" or “jumps", triggered by exogeneous physical hazard, at intensity � and magni-
tude ⌫(dx), but with a relaxation period 1/� comparable to � that accounts for the absorption of
such events by the market toward resulting in stable prices at large scales. The term comparable is
a bit vague at this stage, and will be assessed precisely in Section 2.1 below, enabling us to speak
of fast mean-reversion. In this setting, model (3.2)-(3.3)-(3.4) is well posed and can reproduce, at
least visually, the general shape of electricity spot markets, compare historical data from Figure
3.1 and sample paths simulations given in Figure 3.2 and detailed in the simulation Section 3.2.

Statistical setting

We assume that we observe the process (Xt)t�0

given by (3.2)-(3.3)-(3.4) over the time interval
[0, T ] on a regular grid

0 = t
0,n < t

1

< . . . , tn, n = T, ti,n = i�n, for 0  i  n,

with mesh �n. Thus we have n (or rather n+ 1) observations

Xn
= (X

0

, X
�

n

, . . . , Xn�
n

= XT ).
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(a) �n = 10, �n = 300. (b) �n = 10, �n = 1000.

(c) �n = 75, �n = 300.

Figure 3.2: Simulation of the process X in the case of a model having continuous part defined in
(3.11) and with jump sizes having law 0.4 (�E (40)) + 0.6E (30) for different values of �n and �n.

Asymptotics are taken as n ! 1. We assume that T is constant, and we take T = 1 with no loss
of generality. Equivalently, �n = 1/n ! 0 as n ! 1. This asymptotic setting is usually referred
to as the “high-frequency" framework (for instance the classical textbook [3] by Aït-Sahalia and
Jacod), but this terminology is a bit misleading: our framework certainly belongs to statistical
finance, but it has no link to high-frequency finance or microstructure modeling of any sort. In
practice, we apply our methodology to three markets: the French EPEX, the German EPEX and
the Australian electricity spot in Queensland, see Section 3 below. We use data between 2015,
Jan. 01 and 2016, Dec. 31. with hourly data (even less in the case of Australian data), so that
n = 17064 is considered to be large. Equivalently, 30 minutes is considered to be small in front of
2 years. In our setting, the important fact about the assumption that T is fixed is that we leave
out any stationarity or ergodicity of the underlying process. We thus make an implicit statistical
robustness assumption, which we believe is of importance when considering recent energy markets
over such time horizons.

The parameters of interest are �,� > 0 that govern our correction formulas see the application
to forward contracts prices f(t, T ) below. In particular we leave out the issue of identifying the
continuous semimartingale part (Xc

t )t�0

i.e. the drift (µt)t�0

and the volatility process (�t)t�0

as
well as the jump distribution ⌫(dx).

The mean-reversion factor over the observation increment [ti�1,n, ti,n] is of size ��n, and by requir-
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ing ��n to be large compared to the order of magnitude �

1/2
n of Xc

t
i,n

�Xc
t
i�1,n

, we may hope to
recover � asymptotically. We thus introduce the asymptotic setting � = �n with the requirement

� = �n ! 1 while �n
p

�n ! 1 (3.5)

Condition (3.5) becomes
�n
p

�n�n ! 1 (3.6)

if we let � = �n ! 1, another necessary condition that enough jumps are available over the
observation period [0, T ]. A second crucial assumption is

�n�n . 1, (3.7)

since otherwise, the spikes caused by the jumps of p are absorbed by the Brownian fluctuations of
Xc due to the fast relaxation period 1/�n and therefore cannot be detected by Xn.

Statistical results

Heavily relying on classical techniques in high-frequency finance (for instance [3, Theorem 10.26,
p.374]), we estimate in a first step the times and sizes of the jumps which are random quantities,
allowing �n and �n to be either bounded or to grow to 1 with n, see Proposition 3.1. In a second
step, we construct an estimator of �n taking into account the interplay between �n, �n and �n

dictated by the asymptotic regime (3.5)-(3.6)-(3.7). This estimator is based on an estimator bsn of
the right-derivative or instantaneous slope of t 7! Z�

t right after a jump is detected . The estimator
bsn is based on averaging of instantaneous slope proxies of the form (XT

q

�XT�
q

)(1� e��
n

�

n

) that
govern the relaxation effect after a jump of size XT

q

�XT�
q

has occured at time Tq and it enables
us to consider

b�n = � 1

�n
log (1� bsn)

as our estimator of �n. Since �n itself varies with n and grows to infinity, the notion of convergence
has to be considered carefully. Under suitable assumptions, we prove in Theorem 3.1 that the
relative error

En =

b�n � �n
�n

! 0 (3.8)

in probability as n ! 1. The error En has two components: a first term of order 1/(�n
p
�n�n) due

to Brownian oscillations, and a second term of order min{�n/�n, 1/
p
�n}+

p
�n/�n that accounts

to the effect of jumps that are still present in the price process despite the relaxation effect. When
�n

p
�n�n ! 1 and �n/�n . 1, we have En converges to 0. If we assume further

p
�n/�n ! 0,

we obtain a central limit theorem for En with a Gaussian limit and an explicit rate of convergence
that depends on the interplay between �n,�n and �n. We have an analogous result (although less
demanding) for the estimation of the jump intensity �n detailed in Proposition 3.2.

Application to pricing forward contracts

We show in Theorem 3.2 that in the model defined by (3.2)-(3.3)-(3.4), the value of a forward
contract at time t and delivery period T (over one hour) is given by

f (t, T ) = f c
(t, T ) + f�

(t, T ) ,
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where
f c

(t, T ) = E
⇥

Xc
T | Ft

⇤

and

f�
(t, T ) = e��(T�t)Z�

t +

�

�

Z

R
x⌫(dx)

⇣

1� e��(T�t)
⌘

.

The term f c
(t, T ) corresponds to the price of the forward contract in a continuous case framework.

The computation of this value has been extensively studied for different continuous models and it
is known analytically for the most common models, see for instance [5; 6] among others. The term
f�

(t, T ) is a correction that follows from our approach. It is of order �/� and is usually small for
the applications we have in mind, see the practical implementation Section 3 and 4. On balance,
the presence of spikes does not impact significantly the price of forward contracts to within these
order of magnitudes. This is consistent with our data, for which spikes are not observed on forward
prices. By neglecting the term f�

(t, T ), we can calibrate the process Xc
t on f (t, T ). Our model can

easily be used for risk management: we implement the prices of the forward with historical data
on electricity prices in Section 4 and we show the impact of the spike modeling on the valuation
of strip options with payoff of the form

Pp
i=1

(St
i

�K)

+ for different times ti. As expected, the
value of this option increases if we add significant large spikes. In some particular, we show that
some out-of-the-money options have a significant value if we incorporate spikes in our modeling,
while having a value close to 0 otherwise.

1.3 Organisation of the paper

Section 2 develops a rigorous mathematical framework for the stochastic model (3.2)-(3.3)-(3.4)
and gives the explicit construction of the estimators described in Section 1.2 above together with
their asymptotic properties in Proposition 3.1, 3.2 and Theorem 3.1. Section 3 establishes the
numerical feasibility and consistency of our statistical estimation results on simulated and real data,
based over two years (2015 and 2016) of hourly sampled data over three different markets (French,
German and Australian). Section 4 is devoted to the application of our model and statistical results
to forward contracts. We establish in Theorem 3.2 a correction formula that takes into account the
modeling of spikes and discuss its consistency with daily forward prices on the French market with
historical data over two years (2015 and 2016). The proofs are given in Section 5.

2 Statistical results

2.1 Model assumptions

We consider the process (Xt)t�0

defined by (3.2)-(3.3)-(3.4) in Section 1.2. Following closely the
standard notation of Aït-Sahalia and Jacod [3] we write f (x) ? ⌫ for the integral

R

R f (x) ⇢ (dx)
of a real-valued function f with respect to the positive measure ⌫ on R. Remember that we work
over a finite time horizon T = 1.

Assumption 3.1. We have E[(Xc
t )

2

] < 1 for every t � 0. Moreover, t 7! �t is continuous on [0, 1]
and inft �t > 0 and for some deterministic �, �̄, c

0

> 0, we have 0 < �2  inft �2

t  supt �
2

t  �̄2

and supt |bt|  c
0

. We also add the assumption that the process
R t

0

�sdWs is independent from Z�.
Finally the jump probability measure ⌫(dx) satisfies ⌫({0}) = 0 and |x|2 ? ⌫ < 1.
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Since our asymptotic results will be given in distribution (see Theorem 3.1 below), the conditions
on the drift (bt)t�0

and (�t)t�0

can substantially be weakened (in order to accomodate for instance
diffusion coefficients of the form �t = Xc

t h(X
c
t ) with a bounded h or even locally integrable) by

standard localisation procedures, see for instance [14, Section 4.4.1].
We observe

Xn
= (X

0

, X
�

n

, . . . , Xn�
n

= X
1

)

and asymptotics are taken as n ! 1 or equivalently �n = n�1 ! 0. We also allow � = �n and
� = �n to either grow to 1 with n or remain bounded.

Assumption 3.2. We have

�n . �n, �n�n . 1, and �n�n ! 0.

The condition �n . �n ensures the stability of Xt as n ! 1 since Var(Xt) = Var (Xc
t )+Var(Z�

n

t ) =

Var (Xc
t )+ |x|2 ? ⌫ �

n

t
2�

n

�

1� e�2�
n

� ! 1 if supn �n/�n = 1. The condition �n�n . 1 is necessary
to identify spikes (or jumps): otherwise, a spike that occurs in the interval ((i� 1)�n, i�n] will
be absorbed by the relaxation effect before we observe Xi�

n

. Finally, the condition �n�n ! 0

controls the no accumulation of jumps within the rate of observation.

In order to estimate the time and sizes of the jumps, we need the following:

Assumption 3.3. We have either (I) or (II), where

(I) For some $ 2 (0, 1/2):

(i) �2n�n ! 0, (ii) �n1{|x|>�

1/2�$

n

/(�
n

�

n

)} ? ⌫ ! 0, and (iii) �n1{|x|<�

1/2�$

n

} ? ⌫ ! 0.

(II) For some $ 2 (0, 1/2) and a sequence of integers kn � 1:

(i) �2n�nk
2

n ! 0, (ii) �n1{|x|>e�n

�
n

k

n

�

1/2�$

n

} ? ⌫ ! 0, (iii) �n1{|x|<�

1
2
�$

n

}
? ⌫ ! 0

and (iv) �ne�(�
n

�

1�$

n

)

2 ! 0.

Assumption 3.3 (I) implies �n�n = o (1). Condition (i) ensures that the number of jumps in a
interval of size �n is essentially 1. In the case where �n is bounded, (ii) is implied by (i) and we
have the usual conditions for the detection of jumps (see Mancini [19]). Condition (ii) controls the
size of the mean-reversion. Condition (iii) controls the size of the small jumps:

�

�XT
q

�

q2{1,...,N1}
that cannot converge too fast to 0 ; if |�XT

q

| > C If the jumps are bounded below by some
constant as Mancini, [19], the condition is automatically satisfied.

Assumption 3.3 (II) (iv) implies that �n�1�$
n ! 1 and in particular �n�

1/2
n ! 1, implying

that the mean reversion of order �n�n is stronger than the order of magnitude �

1/2
n of Brownian

increments. It also allows for the case �n�n ⇡ 1. In the setting of Assumption 3.3 (II), the mean
reversion is more difficult to distinguish from the jumps and in the case �n�n ⇡ 1, the jumps
and the drift have the same size and are not distinguishable from their size solely. Condition (i)
states that there is at most one jump in an interval of size kn which is large enough for the spike
to vanish. Assumption 3.3 (II) also implies that �2n/�n ! 0. Assumption 3.3 (II) allows for high
values of �n but the number of jumps needs then to be smaller than in case Assumption 3.3 (II)
compared to �n.
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2.2 Estimation of the jumps times and �n

We first construct estimators of the sequence of the jumps and of their intensity �n. Assumption
3.3 is in force. Let

Nt =

X

st

1
�X

s

6=0

, �Xs = Xs �Xs� , t � 0,

denote the number of jumps of (Xt)t�0

up to time t and let T
1

< T
2

< . . . , Tq < . . . denote
the random times at which jumps occur. By construction, the sizes of jumps

�

�XT
q

�

q�1

form a
sequence of IID random variables independent of (Nt)t�0

. Let i (n, q) be the random integer such
that

(i (n, q)� 1)�n < Tq  i (n, q)�n

Define the increasing sequence

In (1) < ... < In(b�n) ⇢ {1, . . . , n}

of indices i 2 {1, . . . , n} defined by the realisation of the following successive events:
n |�n

i X|p
�n

> �

�$
n

o

under Assumption 3.3 (I)

and
n |�n

i X|p
�n

> �

�$
n , �n

i X�

n
i+1

X < 0

o

under Assumption 3.3 (II).

Finally, define
bT (n, q) = In(q)�n q = 1, . . . , b�n.

Under Assumption 3.3 (II), we need the supplementary condition �

n
i X�

n
i+1

X < 0 for the following
reason: whenever a jump occurs, the mean reverting is dominant in the next observation interval
and has a direction opposite to the sign of the jump. Furthermore, it enables us to discard the
increments caused by the mean reversion that are large enough to be detected as jumps. Indeed, if
we detect a false jump due to the mean reversion effect, the next increments will follow the same
dynamics and it will share the same sign with first increment. The proprerty that there no jump
lies within the next observation interval is ensured by the existence of kn. Let

⌦n =

n

b�n = N
1

, 8q 2 {1, ..., N
1

} : Tq 2 �

bT (n, q)��n, bT (n, q)
⇤

o

.

Proposition 3.1. Work under Assumption 3.1, 3.2 and 3.3. We have P (⌦n) ! 1.

The proof of Proposition 3.1 relies on a result of Aït-Sahalia and Jacod [3, Theorem 10.26, p.374].
However, the presence of a drift term ��n

R t

0

Z�
n

s ds that depends on n together with the fact that
�n ! 1 makes the extension not completely trivial. Proposition 3.1 also provides us with an
estimator b�n of �n. In the case �n ! 1, we have the following asymptotic property:

Proposition 3.2. Work under Assumption 3.1, 3.2 and 3.3 and assume that �n ! 1. We have

p

�n
b�n � �n
�n

! N (0, 1) (3.9)

in distribution as n ! 1.
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This result is asymptotically optimal : consider indeed the seemingly richer experiment where one
continuously observes a Poisson process (Pt)0t1

with intensity � > 0. The variable P
1

is a
sufficient statistic and the Cramer-Rao bound tells us that any unbiased estimator b� necessarily
satisfies E[(b� � �)2] � I(�)�1, where I(�) = 1 + ��1 is the Fisher information associated to the
observation of P

1

, i.e. a Poisson random variable with parameter �. Equivalently E
⇥�b���

�

�

2

⇤ �
(��1

+ ��2

) ⇠ ��1 as �! 1 which is consistent with the convergence (3.9).

A natural estimator of the jump sizes is �n
I
n

(q)X for q 2 {1, ..., b�n}, see [3, Theorem 10.21, p.370]. In
our case, �n

I
n

(q)X is equal to �XT
q

e��
n

(T
q

�I
n

(q)�
n

) plus an negligible term. If �n�n ! 0, �n
I
n

(q)X

is then equivalent to �XT
q

but if �n�n ⇣ 1, the bias �XT
q

�

1� e��
n

(T
q

�I
n

(q)�
n

)

�

remains and it
is not possible to identify the size of the jump. However, if �n ! 1, one can infer some statistical
properties of the jumps size. Indeed, (Tq � In (q)�n)

1qb�
n

has a known distribution and this
error can be averaged. We can easily prove the following result:

m�n�n

(1� e�m�
n

�

n

)

b�n

b�
n

X

q=1

�

�I
n

(q)X
�m !

Z

R
xm⌫ (dx)

in probability for every integer m > 0 such that
R

R xm⌫ (dx) < 1. The proof for the case m = 1

appears in the proof of Theorem 3.1. Combining this result with an estimator of �n provided in
the following allows to have an estimator for the moments of ⌫.

2.3 Estimator of �n

We are ready go construct an estimator of �n. Define the sign function as sgn(x) = 1 if x � 0 and
�1 otherwise. On the event {b�n > 0}, define b�n via

exp(��n
b�n) = max

n

1 +

Pb�
n

q=1

sgn(�

n
I
n

(q)X)

�

�

n
I
n

(q)+1

X + 2�n

Pq�1

j=1

�

n
I
n

(j)X
�

Pb�
n

q=1

|�n
I
n

(q)X|
,�n

o

(3.10)

and set b�n = 0 otherwise. Our main result describes precisely the behaviour of b�n under the
different asymptotic regimes of interest:

Theorem 3.1. Work Assumption 3.1, 3.2 and 3.3. Let �n
p
�n�n ! 1.

i) The following expansion holds on the set {b�n > 0}:

b�n � �n
�n

= Mn + VnJ T
n ,

where

Mn = e�n

�

n

�n
�n

x ? ⌫ sgn(x) ? ⌫

|x| ? ⌫
�e�n

�

n � 1

�n�n
� 1

�

,
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Vn = (V(i)
n )

1i4

2 R4 is such that

V(1)

n = e�n

�

n

p
�np

3�n|x| ? ⌫
p

(sgn(x) ? ⌫)2|x|2 ? ⌫ + (x ? ⌫)2 � 2sgn(x) ? ⌫|x|2 ? ⌫,

V(2)

n = e�n

�

n

min

�

s

|x|2 ? ⌫
(|x| ? ⌫)2

1

2�n

(1� e�2�
n

�

n

)

2�n�n
,
�n
�n

 

,

V(3)

n = e�n

�

n

q

R

1

0

�2

sds

|x| ? ⌫p�n�n
p
�n

,

V(4)

n = e�n

�

n

�

1� e��
n

�

n

�n�n

�

q

R

1

0

�2

sds
p
�n

|x| ? ⌫p�n
,

and Jn = (J (i)
n )

1i4

2 R4 is bounded in probability as n ! 1.

ii) If �n ! 1, then
(J (3)

n ,J (4)

n ) ! N (0, IdR2
)

in distribution as n ! 1,

iii) If �n ! 1, |x|3 ? ⌫ < 1 and (sgn(x) ? ⌫)2|x|2 ? ⌫+(x ? ⌫)2 � 2sgn(x) ? ⌫|x|2 ? ⌫ 6= 0, we have

(J (1)

n ,J (3)

n ,J (4)

n ) ! N (0, IdR3
)

in distribution as n ! 1,

iv) If �n/�2n ! 0, the conditions of iii) and |x|4 ? ⌫ < 1 hold together, we finally obtain

Jn ! N (0, IdR4
).

in distribution as n ! 1.

The asymptotic regime (3.5)-(3.6)-(3.7) and the need for �n to grow to 1 with n discussed in
Section 1.2 appear naturally in Theorem 3.1. Some remarks are in order to analyse the different
errors terms: 1) the term of order 1/(�n

p
�n�n) accounts for the presence of a Brownian motion in

the term (Xc
t )t�0

. When �n is bounded, we need �n
p
�n ! 1 or equivalently

p
�n = o (�n�n):

the size of the slope of (Z�
t )t�0

after a jump needs to dominate the Brownian motion part which is
of order

p
�n. In the case where �n ! 1, we can average the error due to the Brownian martingale

part and then diminish the order of the error. In that case, we do not need the restriction
p
�n =

o (�n�n) anymore but rather
p

�n/�n = o (�n�n). 2) The error terms of order min{ 1p
�
n

, �
n

�
n

},
p
�
n

�
n

and �n�n account the jumps that occur before the observation increment used to estimate
the slope of the process. 3) The term 2�n

Pq�1

j=1

�

n
I
n

(j)X introduced in the definition of b�n in
(3.10) is a bias correction that enables us to obtain a consistent estimator in the case �n/�n ⇡ 1.

3 Practical implementation

3.1 Choice of the threshold
The method to detect the jumps is based on the use of the threshold which is proportional to �

1
2�$
n

; this method is classic for jumps estimation in high frequency statistics. Concerning the choice of
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this threshold and the choice of $, no exact method is provided in the literature. However, the
threshold is recommended to be chosen of the form C�̂�

1
2�$
n in [2, Section 5.3] and [3, Section

6.2.2, p. 187] where C is a constant and �̂ is an estimator of the integrated volatility
R

1

0

�2

sds.
They advise to choose 1

2

�$ closed to 0.5, that is $ close to 0. Moreover, [2] suggests to choose C
between 3 and 5. These choices are the one considered in the literature, see [16] (C = 3) and [17]
(C = 4).

It remains to find an estimator of the integrated volatility. A natural choice is the multipower
variation estimator, see [4] and [27] for more details. The order of the multipower variation estimator
is set to 20 in the practical applications in this paper, which is high compared to the orders typically
chosen in the literature. This choice is justified by the strong mean reversion of the spikes. As for
the jumps, spikes have large increments that need to be compensated in the multipower variation
estimator and can be present during two or three time steps. We compensate these large increments
with a higher order of the multipower variation. Some simulations on simple models show that an
order of 20 seems to be reasonable.

3.2 Numerical illustration
In this section, we use our estimation procedure to estimate the parameter �n on simulated data
of the process defined by (3.2)-(3.3)-(3.4) on simulated data in order to illustrate the results of
Theorem 3.1. To be consistent with real data, the process is simulated with a step time �n = 10

�4,
which is the order of the size of one year of data with a step time of one hour, see Section 3.3 for
calibration on real data. We pick

dXc
t = Xc

t

�

(

1

2

2

2 � 100 log(Xc
t ))dt+ 2dWt

�

(3.11)

corresponding to the logarithm of an Ornstein-Uhlenbeck process with the mean reverting pa-
rameter equals to 100 and volatility parameter equal to 2. The sizes of the jumps follow the law
0.4 (�E (15)) + 0.6E (10), with E(⇢) denoting the exponential distribution with parameter ⇢ > 0.
Figure 3.2 illustrates a sample paths of the process for different parameters �n and �n. We realize
10000 simulations. In Table 3.1, we consider the estimator of � in the case where the jump times
and sizes are known. Concerning b�n, we first use jump detection under Assumption 3.3 (II): we
only keep increments having successive opposite signs. We use three different thresholds for the
detection of jumps of the form C�̂�0.49

n , corresponding to $ = 0.01, with �̂ the multi-power vari-
ation of order 20 of X : C = 3 in Table 3.2, C = 4 in Table 3.3 and C = 5 in Table 3.4. We
only consider the increments verifying �

n
i X�

n
i+1

X < 0. In Table 3.5, we only keep the increments
greater bigger than the threshold that we fix to 5�̂�0.49

n .

As expected, quality of convergence increases with the values of �n and �n. In the case where
�n = 300 and �n, the convergence is not good due to the value of 1p

�
n

�

n

�
n

= 0.1. Concerning
the method to detect the jump, the one filtering the strong mean reverting increments gives better
results, except for �n = 300 corresponding to a low value of �. We also observe that false jump
detection impacts the quality of estimation of �n but missing jumps does not impact it: we conclude
that the second method with filtering is more promising than the first one.

3.3 Practical implementation on real data
In this section, we use our procedure estimation on real data. Electricity spot historical data do
exhibit spikes with strong mean reversion, see Figure 3.1. We expect to obtain relatively high values
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(�n,�n) Mean Quantile interval
(10, 300) 295.01 [173.89, 411.81]
(10, 1000) 996.92 [854.81, 1136.97]
(75, 300) 295.88 [249.91, 342.86]
(75, 1000) 995.63 [925.65, 1066.34]
(75, 5000) 4993.75 [4799.59.59, 5194.22]

Table 3.1: Results on the estimator b�c
n for different parameters of (�n,�n) in the case of a model

having continuous part defined in (3.11) and with jump sizes having law 0.4 (�E (15)) + 0.6E (10).
The mean and the quantile interval are computed with 10000 simulations and a step time of �n =

10

�4.

(�n,�n) Mean Quantile interval % of jumps of false detection % not detected
(10, 300) 534.89 [311.81, 983.54] 79.27 20.72
(10, 1000) 1128.04 [955.14, 1463.84] 55.03 10.94
(75, 300) 356.92 [309.97, 434.46] 0.53 24.30
(75, 1000) 1031.02 [973.08, 1111.91] 0.56 15.82
(75, 5000) 4997.81 [4856.85, 5147.49] 3.02 10.57

Table 3.2: Results on the estimator b�n with threshold 3�̂�0.49
n and keeping the increments having

the opposite sign of the following increments. The results are given for different parameters of
(�n,�n) in the case of a model having continuous part defined in (3.11) and with jump sizes having
law 0.4 (�E (15)) + 0.6E (10). The results are computed with 10000 simulations and a step time of
�n = 10

�4.

(�n,�n) Mean Quantile interval % of jumps of false detection % not detected
(10, 300) 358.79 [258.22, 505.61] 5.15 21.82
(10, 1000) 1025.00 [903.85, 1163.90] 3.35 12.47
(75, 300) 353.54 [[307.26, 429.79]] 0.057 25.96
(75, 1000) 1027.88 [970.38, 1107.22] 0.27 18.49
(75, 5000) 5003.33 [4862.48, 5152.72] 0.76 13.42

Table 3.3: Results on the estimator b�n with threshold 4�̂�0.49
n and keeping the increments having

the opposite sign of the following increments. The results are given for different parameters of
(�n,�n) in the case of a model having continuous part defined in (3.11) and with jump sizes having
law 0.4 (�E (15)) + 0.6E (10). The results are computed with 10000 simulations and a step time of
�n = 10

�4.

for �n, a necessary condition in order to apply our procedure estimation. The goal is to estimate
the parameters of the process Z�

n , that is �n and �n using spot prices time series, assuming that
the spot price is the sum of a continuous semimartingale and a spike process. We dispose of the
following data:

1. French electricity EPEX spot prices between the first of January of 2015 (included) and the
first of January 2017 (not included) with data each hour 1,

1Source: https://www.epexspot.com/
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(�n,�n) Mean Quantile interval % of jumps of false detection % not detected
(10, 300) 341.33 [249.55, 458.29] 0.34 22.94
(10, 1000) 1014.96 [�895.84, 1142.14] 0.25 13.98
(75, 300) 350.98 [305.06, 427.46] 0.01 27.62
(75, 1000) 1025.25 [968.22, 1104.04] 0.14 21.17
(75, 5000) 5002.79 [4862.25, 5148.03] 0.52 16.23

Table 3.4: Results on the estimator b�n with threshold 5�̂�0.49
n and keeping the increments having

the opposite sign of the following increments. The results are given for different parameters of
(�n,�n) in the case of a model having continuous part defined in (3.11) and with jump sizes having
law 0.4 (�E (15)) + 0.6E (10). The results are computed with 10000 simulations and a step time of
�n = 10

�4.

(�n,�n) Mean Quantile interval % of jumps of false detection % not detected
(10, 300) 315.2 [248.7, 391.1] 26.96 10.37
(10, 1000) �416.43 [�1993.92, 669.86] 171.87 11.21
(75, 300) 263.99 [181.78, 328.40] 4.34 15.09
(75, 1000) 434.26 [150.92, 674.31] 54.90 18.47
(75, 5000) �2572.70 [�2572.70,�2554.73] 168.76 15.54

Table 3.5: Results on the estimator b�n with threshold 5�̂�0.49
n . The results are given for different

parameters of (�n,�n) in the case of a model having continuous part defined in (3.11) and with
jump sizes having law 0.4 (�E (15)) + 0.6E (10). The results are computed with 10000 simulations
and a step time of �n = 10

�4.

2. German electricity EPEX spot prices between the first of January of 2015 (included) and the
first of January 2017 (not included) with data each hour 1,

3. Australian electricity spot prices in Queensland between the first of January of 2015 (in-
cluded) and the first of January 2017 (not included) with data each 30 minutes 2.

The Australian market is particularly interesting because of the number of spikes and because
of the frequency of the data. We estimate those parameters using a threshold vn = C�̂�0.49

n ,
corresponding to $ = 0.01 with �̂ the multi-power variation of order 20 and C a constant set to 3,
4 or 5 and filtering the mean reversion increments. Results are presented in Table 3.6. Figure 3.1
gives the time series of these three sets of data with jumps time estimated in the case C = 5.

Market C = 3 C = 4 C = 5

French (100, 19169.57) (51, 20259.01) (35, 21042.533)
German (145, 9848.07) (62, 13438.35) (34, 14531.32)

Australian (337, 22897.06) (227, 22883.81.6) (177, 22884.36)

Table 3.6: Estimation of (�n,�n) for different markets using a threshold of the form C�̂�0.49
n where

�̂ is the multi-power variation of order 20 and C takes different values.

2Source: https://www.aemo.com.au/
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4 Application to electricity spot price

Let us consider the forward product that delivers one MWh of electricity during one hour at time
T and with price f (t, T ) at time t. For risk management purposes, it is a valuable property of a
model to provide analytical formulas for f (t, T ). Two approaches generally exist for the modeling
of electricity prices:

1. The spot price approach: we model the spot price (St)t�0

under a risk neutral probability Q,
which makes f (t, T ) martingale and f (t, T ) is defined by

f (t, T ) = EQ⇥ST | Ft

⇤

.

2. The forward approach: we model directly the forward curve f (t, T ) and the spot price S is
defined by

ST = lim

t!T
f (t, T ) .

In general, we can find an equivalence between the two approaches. In Section 4.2, we consider
the second approach and we model the forward curve. However, we need a a spike component
in the spot. Thus, in Section 4.1, we compute the forward prices starting from the spot
modeling and we find the equivalent forward dynamics to have the component Z� in the
spot price.

4.1 The spot price approach

Suppose that we have a model under a risk neutral probability Q on the spot price process (St)t�0

of the form Sc
t + Z�

t . Forward products with value f (t, T, ✓) at time t delivers electricity during a
period ✓. By absence of arbitrage opportunity, we must have

f (t, T, ✓) =
1

✓

Z T+✓

T

f (t, u) du.

On the market, we do not observe directly f (t, T ) but products of the form f (t, T, ✓). For instance,
the One Month Ahead (1MAH) is the product delivering during one month, each hour, 1kWh of
electricity. The delivery starts the first day of next month. The One Week Ahead (1WAH) is the
one delivering during one week with delivery starting next Monday.

Theorem 3.2. Suppose that the spot price is modelled by St = Sc
t + Z�

t , t � 0, according to
(3.2)-(3.3)-(3.4) under a risk-neutral probability Q.

1. We have an explicit representation of f (t, T ) = EQ⇥ST

�

�Ft

⇤

given by

f (t, T ) = f c
(t, T ) + f�

(t, T ) ,

with
f c

(t, T ) = EQ⇥Sc
T

�

�Ft

⇤

and
f�

(t, T ) = e��(T�t)Z�
t +

�x ? ⌫

�

�

1� e��(T�t)
�

.
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2. We also have f (t, T, ✓) = f c
(t, T, ✓) + f�

(t, T, ✓), with f c
(t, T, ✓) = 1

✓

R T+✓

T
f c

(t, u) du and

f�
(t, T, ✓) =

e��(T�t) � e��(T+✓�t)

�✓
Z�
t +

�x ? ⌫

�

�

1� e��(T�t) � e��(T+✓�t)
)

�✓

�

.

The term f�
(t, T, ✓) is then negligible for the computation of forward products if �

� and 1

�✓ are
small. In this case, we can estimate the jump process part on the spot and calibrate (Sc

t )t�0

on
forward products. The proof is a direct consequence of the formula (3.2)-(3.3)-(3.4) and can be
readily obtained by integrating.

4.2 The forward approach
From now, instead of putting a model on the spot price, we specifiy a model for the forward prices.
Let thus f (t, T ) denote the forward time at time t with maturity T . We assume that we have a
decomposition of the form

f (t, T ) =

Z t

0

µsds+ f c
(t, T ) + f�

(t, T ) ,

where df c
(t, T ) = f c

(t, T ) (�ldW l
t +�se

�↵(T�t)dW s
t ) with (W l

t ,W
s
t )t�0

a two-dimensional Brown-
ian motions under the historic probability P with correlation ⇢. This dynamics corresponds to the
popular two factors model for forward prices of electricity [15]. The short term volatility �se�↵(T�t)

captures the Samuelson effect: the volatility increases when T � t decreases. In order to have the
equivalence between (Z�

t )t�0

and f�
(t, T ), according to Theorem 3.2, we model f� by

f�
(t, T ) =

Z t

0

Z

R
xe��(T�t)p (ds, dx) .

The spot price is then equal to St =
R t

0

µsds+ Sc
t + Z�

t with

Sc
t = f c

(0, t) exp
�� �2

l t

2

� �2

s

2

Z t

0

e�2↵(t�u)du+ �ldW
l
t + �s

Z t

0

e�↵(t�u)dW s
u

�

,

having

dSc
t

Sc
t

=

�

@t log (f
c
(0, t))+↵�2

s

Z t

0

e�2↵(t�u)du+↵�s

Z t

0

e�↵(t�u)dW s
u

�

dt+�ldW
l
t +�sdW

s
t . (3.12)

If �
� and 1

�✓ are small, we can approximate f (t, T, ✓) by f c
(t, T, ✓) and estimate f c

(t, T ) using the
forward products. An estimation procedure is given by Féron and Daboussi [10] to estimate the
parameters in this model.

4.3 Change of measure and pricing of options
We have seen that forward products are not impacted by the spikes if �

� is small. However, it can
have an important impact on options on the spot, for instance strip call options, with payoff of the
form

Pp
i=1

(St
i

�K)

+ for prescribed dates ti. If we consider an option with payoff having a single
component (St �K)

+, the jump process will have a slow impact on the price of this option. The
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probability to have a jump at time t is equal to 0 and even if there is a jump before, it disappears
very quickly. However, the jump process may have a significant impact on the value of options with
payoff

Pp
i=1

(St
i

�K)

+ because the probability of having spikes on [0, 1] is non zero. (Note that
only upward spikes will have an impact on the price of these options.)
Unlike spot prices, forward contracts are tradable assets. In the following, we assume absence of
arbitrage opportunity. According to the fundamental theorem of asset pricing, there exists a prob-
ability measure Q equivalent to the historical measure P such that f (t, T ) is a local martingale
under Q. Because of the presence of jumps, the market is incomplete and Q is not unique. Ac-
cording to [24, Theorem 2], there exists a predictable process (�t)t�0

and a predictable process
(Y (., t, x))t�0,x2R such that:

1) µt + �tct +
R t

0

R

R x�Y (t, x) e��(T�t)⌫ (dx) = 0 (P⌦ dt almost-surely),

2)
R

1

0

�2scsds < 1 almost surely,

3)
R

1

0

R

R |x|2 ^ |x|Y (t, x) e��(T�t)�⌫ (dx) < 1 (P⌦ dt almost -surely).

with ct equal to f c
(t, T )

q

�2

l + �2

se
�↵(T�t) in our case. Under the equivalent measure, f (t, T ) is

an Itô semi-martingale with drift 0, volatility c and jump measure p⇤ = Y p following

df (t, T ) = df c
(t, T ) + df�

(t, T )

with
df c

(t, T ) = f c
(t, T )

⇣

�ldW
l,⇤
t + �se

�↵(T�t)dW s,⇤
t

⌘

,

df�
(t, T ) =

Z

R
xe��(T�t)

�

p⇤ (dt, dx)� �Y (t, x) ⌫ (dx) dt
�

for two Brownian motions (W s,⇤,W l,⇤
) under the new measure. The volatility does not change

unlike the intensity and the law of jump sizes of the Poisson process.
In order to choose the martingale measure change, one usually choose a certain optimisation crite-
rion. The most common criterion is the local risk-minimisation introduced by Föllmer and Schweizer
(see [26] for details). The variance of the cost of the strategy is minimised locally, infinitesimally at
each time. This strategy corresponds to choose as risk neutral probability the minimal martingale
measure defined in [11]. Under certain assumptions, this measure is a true probability measure
and the asset is a local martingale under this measure. Furthermore, the intensity changes and
depends on the drift µ, which is also true for most common criteria. Since we work on a finite time
framework, the drift is not identifiable and it is not possible to estimate it. We may alternatively
choose the historical approach of Merton consisting of picking a change of probability that does
not affect the intensity and the jump sizes of the Poisson measure [20]. The equivalent probability
measure is defined by

dQM

dP = exp

��
Z

1

0

✓ud
�
l

W l

u

+�
s

W s

up
�2
l

+�2
s

e�2↵(T�u)
� 1

2

Z

1

0

✓2udu
�

with ✓u =

�(µ
u

+e��(T�u)
R
R x⌫(dx)

)

fc

(u,T )

p
�2
l

+�2
s

e�2↵(T�u)
. The Nikonov condition is satisfied so it defines in turn a genuine

probability measure. Under QM , the price of the forward contract f (t, T ) follows the dynamics
df (t, T ) = df c

(t, T ) + df�
(t, T ) with

df c
(t, T ) = f c

(t, T )
�

�ldW
l,QM

t + �se
�↵(T�t)dW s,QM

t

�
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and
df�

(t, T ) =

Z

R
xe��(T�t)

�

p (dt, dx)� �⌫ (dx) dt
�

,

where W l,QM

and W s,QM

are two QM -Brownian motions. Merton chooses this probability con-
sidering that the risk associated to the jumps is diversifiable. As noticed in Tankov in [9, Section
10.1], using this strategy leaves one exposed to the risk of the jumps. It only corrects the average
effect of jumps (provided the jump component of the electricity price is independent of the other
asset, which is the case here: we understand the electricity spikes caused by physical exogenous
events; it can in particular be caused by the production capacity and the demand which are not
assets (see the structural model of Aid et al. [1] for instance). Finally, the price of an option with
payoff H (ST ) = H (f (T, T )) at time t is given by

EQM

⇥

H (ST ) | Ft

⇤

.

4.4 Application to the French market with real data
In the following, we focus on the French market and we work on the model of Section 4.2. We
dispose of the daily forward prices in 2015 and 2016.

Parameters of f� We use the parameters found in Table 3.6 to calibrate Z� on the spot prices.
We model the size of the jumps by its empirical distribution, each jump being estimated with
�

n
I
n

(q)X, knowing that a bias is present.

Parameters of f c We observe on the market the forward products of the form f (t, T, ✓) (✓ is
between one week and one year). As �

� and 1

�✓ are small, we can neglect the part of the jump part
on the forward prices and consider that the forward products have only a continuous part. We use
the method of Féron and Daboussi [10] to calibrate the parameters of f c on the forward data. We
find for the different parameters ↵ = 12.56 y�1, �s = 1.03 y�

1
2 , �l = 0.25 y�

1
2 and ⇢ = �0.11.

Forward products In Figure 3.3, we display a simulation of the spot price, the 1WAH and the
1MAH with and in absence of spikes. The parameters of the spike component are the one of Table
3.6 with $ = 0.15. We observe that the difference between the trajectory of the forward products
with and without spikes is very small but significant for the spot price.

Strip options We recall that strip options are of the form
Pp

i=1

(St
i

�K)

+ with price equal
to EQM

⇥

Pp
i=1

(St
i

�K)

+

⇤

. We give in Table 3.7 confidence intervals at level 95% for the price
of strip options computed using Monte Carlo method with 10000 simulations. The strip options
delivers during one year each hour and we consider the different strikes 100, 200 and 300. We
consider the case where there is no spikes and the cases with spikes using the different threshold
of the form C�̂�0.49

n with C = 3, C = 4 and C = 5. Considering spikes leads to higher value for
the strip options. Furthermore, options valued at zero have now non negligible values. We notice
that the choice of the threshold have a low impact on the price of the option. Indeed, a higher C
leads to less jumps, but the empirical distribution contains only the larger jumps which are the
ones impacting the price for high strikes.
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(a) Spot. (b) 1WAH.

(c) 1MAH.

Figure 3.3: Simulation of different products in a two factor model with and without spikes between
the 27

th of February 2017 and the 31

st of March 2017. We illustrate the spot, the 1WAH starting
the 27

th of February 2017 and the 1MAH starting the 01

st of March 2017.

5 Proofs

In the following proofs, we set the drift µ to zero. Generalizing to the non-null drift case is done
using the usual argument based on the Girsanov theorem.

5.1 Proof of Proposition 3.1

The proof follows the path of [3, Theorem 10.26, p.374] and the one of [19]. We will denote by ⇠⌫
a random variable distributed according to ⌫. We set vn = �

�$
n . Let

An =

�

i 2 {1, . . . , n, i 6= i(n, q) 8q � 1} .

Proof under Assumption 3.3 (I)

We first need to prove
P
�

sup

i2A
n

|�n

i

X|p
�

n

> vn
� ! 0, (3.13)

P
�

inf

i2Ac

n

|�n

i

X|p
�

n

< vn
� ! 0 (3.14)

and
P
�

sup

i2{1,...,n}
�

n
i N � 2

� ! 0. (3.15)
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Model / Strike 100 200 300
Without spike [1716.22, 1806.83] [0.0089, 0.063] [0, 0]
Spikes, C = 3 [2482.57, 2576.17] [434.21, 450.26] [264.14, 274.00]
Spikes, C = 4 [2442.66, 2536.26] [412.98, 428.44] [251.72, 262.29]
Spikes, C = 5 [2417.24, 2510.79] [397.74, 412.76] [242.04, 252.41]

Table 3.7: Confidence intervals at level 95% for the price of strip options computed using Monte
Carlo method with 10000 simulations for different strikes and different models.

Step 1). We have
�

n
i Xp
�n

=

��n
R t

i

t
i�1

Z�
s dsp

�n

+

�

n
i X

0
p
�n

with
X 0

t =

Z t

0

µsds+

Z t

0

�sdWs +

Z t

0

Z

R
xp (ds, dx) .

By [3, Equation (10.71), p.374] we have P
�

sup

i2A
n

|�n

i

X0|p
�

n

> vn
� ! 0, Therefore, in order to prove

(3.13), we need to show that

P
�

sup

i2A
n

|�
n

R
t

i

t

i�1
Z�

s

ds|
p
�

n

> vn
� ! 0. (3.16)

For i 2 An, we have |�n
R t

i

t
i�1

Z�
s ds| =

�

1� e��
n

�

n

� |Z�
t
i�1

| and sup

i2A
n

|�
n

R
t

i

t

i�1
Z�

s

ds|
p
�

n

is dominated

by �n
p
�n sup

t2[0,1]

R t

0

R

R |x|e��
n

(t�s)p (ds, dx). Also P
�

sup

t2[0,1]

R t

0

R

R |x|e��
n

(t�s)p (ds, dx) > v
n

�
n

p
�

n

�

equals the probability that sup

t2[0,1]

R t

0

R

R |x|e��
n

(t
i

�s)p (ds, dx) crosses the barrier v
n

�
n

p
�

n

at least

one time. By Markov’s inequality it is further bounded by 2�nP
�|⇠⌫ | > v

n

�
n

p
�

n

�

according to [7,
Equation (10)] which converges to 0 under Assumption 3.3 (ii). Thus

P
�

vn
p

�n  sup

i2{1,...,n}
�n�n|Z�

t
i

|� ! 0 (3.17)

and (3.16) follows which completes the proof of (3.13).

Step 2). We next turn to (3.15). The left hand side of (3.15) is equal to P ([n
i=1

�

n
i N � 2) . �2n�n

which converges to 0 if �n
p
�n ! 0. With no loss of generality we may (and will) work on the set

{ sup

i2{1,...,n}
�

n
i N  1}. In the interval ((i (n, q)� 1)�n, i (n, q)�n], there is only one jump and we

have
�

n
i(n,q)Z

�
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1� e��
n

�

n

�

Zt
i(n,q)�1

+ e��
n

(i(n,q)�T
q

)

�XT
q

for all q � 1, therefore

|�n
i(n,q)X|p
�n

� e��
n

�

n |�XT
q
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c|p
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�
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� sup
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.

124



3. Estimation of a fast mean reverting jump process with application to spike modeling in electricity
prices

It follows that P
�

inf

i2 ¯A
n

|�n

i

X|p
�

n

 vn
�

is dominated by the sum of the three following terms:

P
�

inf

q2{1,...,N1}
|�XT

q

|e��
n

�

n  3vn
p

�n

�

, (3.18)

P
�

inf

q2{1,...,N1}
|�XT

q

|e��
n

�

n  3 sup

i2 ¯A
n

|�n
i X

c|� (3.19)

and
P
�

inf

q2{1,...,N1}
|�XT

q

|e��
n

�

n  3 sup

i2{1,...,n}
�n�n|Z�

t
i

|�. (3.20)

The term (3.18) equals

E
⇥

1� �

P
�|⇠⌫ | > 3vn
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�ne
�
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�

n

��N1
⇤

= 1� exp

�� �nP(|⇠⌫ |  3vn
p

�ne
�
n

�

n

)

�

and converges to 0 under the assumption �nP
�|⇠⌫ |  �

1
2�$
n

� ! 0.The term (3.19) is dominated
by

P
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|�XT
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n  3vn
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�n

◆

+ P
 

vn
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�n  sup
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|�n
i X

c|
!

. (3.21)

The left hand side of (3.21) is equal to (3.18) and converges to 0. According to [19, Corollary 3.3],
for i 2 {1, ..., n},

P
⇣

�

n
i X

c > vn
p

�n

⌘

 2e�
v

2
n

2�̄2 .

The right hand side of (3.21) is then dominated by
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The term (3.20) is dominated by

P
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◆
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The left hand side of (3.21) is equal to (3.18) and converges to 0. The right hand side of (3.21)
converges also to 0 according to (3.17).

Work under Assumption 3.3 (II)

First, we have

P
 

sup

i2{0,...,n�k
n

}
|N

(i+k
n

)�

n

�Ni�
n

| � 2

!

. �2n�nk
2

n ! 0.

Thus, we can work on the set { sup

i2{0,...,n�k
n

}
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(i+k
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�Ni�
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|  1}. We need to prove:

P
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and
P
✓

9i 2 Ac
n :

|�n
i X|p
�n

< vn or �

n
i X�

n
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X > 0

◆

! 0. (3.24)

Step 1). The left hand side of (3.23) is dominated by the sum of
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(3.25) is dominated by
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using the same argument as for (3.16) and (3.23) follows.

Step 2). The left hand side of (3.24) is dominated by the sum of
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To prove the convergence of (3.30) to 0, it is sufficient to prove that �
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that converges to 0 if we use a similar proof than the one of (3.14). The proof of (3.32) is similar
because there is no jumps in the interval and (i (n, q) , i (n, q) + 1] and
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The proof is then the same except we have to control the term
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5.2 Estimator of �n in the case where the jump times and sizes are
known

In order to prove Theorem 3.1, we start by giving an estimator of �n when the jump times and
sizes are known.
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The proof is given here. For simplification of the proof, we assume in the following that (�t)
0t1

is
a deterministic function. The generalization to the stochastic case can be done easily by taking all
the elements of the proof. Only central limit theorems involving Brownian increments need further
technical tools for their proof , which can be found in [14, Section 2.2.5].
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Thus, we can write (3.33) as the sum of:
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bscn is then the sum of (3.34), (3.35) and (3.36). From now, we work on the set {N
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) = 0 and Xc is independent of p, the left hand side of (3.46) has expectation 0 and
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The second term of (3.47) is dominated in absolute value by
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(3.48)
Combining (3.43) and (3.48), we have for the denominator
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Convergence of the jump process part (3.36)
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As for the proof of (3.43), we show that the difference between the numerator
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Thus, let us study the convergence of
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corresponds to the case with more than one jump. Using Fubini’s theorem
for Poisson measures, we can write the left hand side of (3.54) as the sum of
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Remark 3.1. The computation of the variance is not detailed because it is technical in term of
calculus and does not present any interest.
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Furthermore, we can show that
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As we have (3.49), we can finally write (3.53) as
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Central limit theorem To have a central limit theorem, we will use the results of [23, Theorem
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Convergence of the Brownian part (3.34)

As for the proof of the convergence of the denominator, we show that the numerator of (3.34) is
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We can write the numerator of (3.60) as
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Using Cauchy Schwartz inequality, we find that
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that converges to 0. Thus, the Lindeberg condition is verified and
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Thus, (3.35) is equal to
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Finally, (3.35) is equal to
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this term can also be omitted. The proof of Proposition 3.3 is achieved.
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5.3 Proof of Theorem 3.1
As for the proof of Theorem 3.3, we consider the case where the volatility is deterministic. The
generalization to the stochastic case can be easily done.
First, in order to prove Theorem 3.1, we first need Lemma 3.1.
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The case where Assumption 3.3 (II) corresponds to (3.31) which is already proved. ⇤
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and
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(3.74) can be written as the sum of a bias and a variance term with the bias equal to
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The variance term is the sum of the following terms
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and
bscn = Ms,n + �n�nVs,nJs,n.

Let
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which is equal to � 1
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log (1� bsn) for n enough large. We apply Taylor’s expansion in order to
have the results of Theorem 3.1 with Mn = Mc,n + e��n

M
n,3

�
n

�

n

. The error of order

Op

⇣

�n�n

⇣p
�n�n +

p
�

n

�
n

⌘⌘

in (3.76) becomes an error of order Op

⇣p
�n�n +

p
�

n

�
n

⌘

for b�
n

��
n

�
n

which is negligible compared to the errors of the variance terms. The term Mn is equal to
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Chapter 4

Local polynomial estimation of a
doubly stochastic Poisson process

Abstract

We consider a doubly stochastic Poisson process with stochastic intensity �t = nq (Xt) where X
is a continuous Itô semimartingale and n is an integer. Both processes are observed continuously
over a fixed period [0, T ]. An estimation procedure is proposed in a non parametrical setting for
the function q on an interval I where X is sufficiently observed using a local polynomial estimator.
A method to select the bandwidth in a non asymptotic framework is proposed, leading to an oracle
inequality. If m is the degree of the chosen polynomial, the accuracy of our estimator over the
Hölder class of order � is n

��

2�+1 if m � b�c and n
�m

2m+1 if m < b�c and is optimal in the minimax
sense if m � b�c. A parametrical test is also proposed to test if q belongs to some parametrical
family. Those results are applied to French temperature and electricity spot prices data where we
infer the intensity of electricity spot spikes as a function of the temperature.
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1 Introduction

1.1 Motivation

Jump processes are used in several domains such as finance, insurance or neuroscience. They are
a particular case of point processes, see [19] for more details. In finance, they allow to model
discontinuities in equity prices time series and heavy tails in asset returns [12]. An application
for insurance is the model of extreme events such that occurrence times of earthquakes [24]. In
neuroscience, these processes model spikes which is a potential difference in the membrane of a
neuron [29]. Spikes is a high increase of the potential in the membrane followed by a quick reversion
to the initial level of the potential. Spikes are also present in electricity spot prices time series and
can be both negative and positive: price level is very high or very low during a short time period
before coming back to its original level [5]. Spikes are often modeled by mean reverting jump
processes [9; 22].

In all these areas, the frequency of the jumps can be explained by an exogenous variable. Modeling
these dependences can not be omitted, because they have an impact on risk management or pre-
diction and help us to understand some behaviors. In [29], the author explains the neural spiking
activity with three king of covariates: the previous spikes, exogenous stimuli and concurrent neural
activity. In [3], the authors propose a model for financial contagion. Financial contagion is the
fact that a large price move in a market causes large price moves in other markets ; jumps are
explained by a first jump and in this case we often use multidimensional Hawkes process which are
mutually exciting processes, see [3]. For electricity spot prices, spikes are often caused by abnormal
temperatures which are not modeled by a jump process. In a general case, when the covariate is
not an other jump process, we often use doubly stochastic Poisson processes, which are Poisson
processes with stochastic intensity. Two of the most famous models are the Aalen multiplicative
model introduced in [1] where the intensity process is of the form ↵tYt with ↵t a function of time
and Yt a stochastic process and the Cox regression model introduced in [13] where the intensity
process is of the form ↵t exp

�

�TZ
�

with Z a multi-dimensional random variable. Both are used
mainly for life times modeling.

A large literature is dedicated on methods of estimation for intensity estimation of Poisson process,
especially in a non parametric setting. In the case of inhomogeneous Poisson processes, [27] and [28]
use projection estimators and model selection techniques. Several finite dimensional spaces called
models are considered to find projection estimators and they propose a penalty criterion in order to
select a model. They work in a non asymptotic framework and a concentration inequality is found.
Furthermore, minimax rates are found over several classes of functions. A different approach for the
estimation of the intensity is the use of kernel methods as in [15] and [8]. In [15] and [8] , asymptotic
properties of the kernel estimator are studied ; in [8], methods to select the bandwidth is proposed.
In [33], the intensity can be stochastic and is also estimated as a function of time with a kernel
estimator in an asymptotic framework. In the context of Cox and Aalen processes, [11] also proposes
model selection techniques with projection estimators ; local polynomial estimator, which is a
generalization of kernel estimators, is proposed by [10] and studied in an asymptotic framework. A
method of estimation in asymptotic framework for Cox regression with a time dependent covariable
is established in [23].
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1.2 Objectives and results

In our case, we are interested in a doubly stochastic Poisson process denoted by N where its
intensity � is a function of an exogenous covariate which is a stochastic process Xt

�t = q (Xt)

and our goal is to estimate the function q. In this case, conditionally on X, N is a inhomogeneous
Poisson process. We assume that we observe N and X over a time horizon [0, T ]. We can think
of the example of the frequency of electricity spot prices spikes as a function of the temperature
depending also on time. This framework has already been studied. Indeed, [31] proposes a kernel
estimator of the function q in the case where T goes to 1 and when X satisfies some conditions,
which can be for instance stationarity. In [14], Xt corresponds to the fractional part of a Brownian
motion and the doubly stochastic Poisson process is used to model the limit order book ; an
estimation procedure is proposed in an asymptotic framework. We consider a different framework
where X is a continuous Itô semimartingale. X must also have a local time lxT for x in R measuring
the time spend by X around x before time T verifying properties of Proposition 4.1 which can be
insured by low restrictions given in Assumption 4.1. The function q can be estimated at point x
only if X takes this value before time T , or if lxT > 0. We estimate q on an arbitrarily interval I
and we need to work conditionally on the event

D (I, ⌫) = {! 2 ⌦, inf

x2I
lxT (!) � ⌫T

|I| }

with ⌫ 2 (0, 1]. We choose to work in a non parametric framework and in a non asymptotic
framework. To our knowledge, inferencing the intensity of a doubly stochastic Poisson process as
a function of a continuous Itô semimartingale in a non-asymptotic framework is not present in the
literature.

A local polynomial estimator q̂h of q is proposed in Section 3 with h a bandwidth parameter.
The criteria used to evaluate the performance of our estimator is the L

2

norm on I, k · kI . We
also gives a method to select a bandwidth over a finite set H. We adapt the method of [20] used
for density estimation with i.i.d. observations to our context of intensity estimation for doubly
stochastic Poisson process. The method consists in approximating the bias of q̂h by an estimator
of kqh � qhmink2I where qh = E (q̂h|X) and h

min

= min H. Indeed, if h
min

is sufficiently small, the
bias of q̂hmin is negligible and kqh � qhmink2I ⇡ kq� qhk2I . This method is an extension of the one of
Goldenshluger and Lepski [16]. One of our main results is the oracle inequality of Proposition 4.6.
If we write

�t = nq (Xt)

with n 2 N, n � 1, we obtain

E
�kq � q̂

ˆhk2I |D (I, ⌫)
� 

✓

� _ 1

�
+O

⇣

log (n)�1

⌘

◆

min

h2H
E
�kq � q̂hk2I |D (I, ⌫)

�

+O
�

log (n)E
�kq � qhmink2I |D (I, ⌫)

��

+O

 

log (n _ |H|)6
n

!

where ˆh is the bandwidth obtained using our selection method and � > 0 a parameter chosen
by the statistician present in the penalty criteria. Furthermore, if we consider that q belongs the
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Hölder class on I with parameter �, our estimator is optimal in the minimax rate sense and the
minimax rate of convergence is n� �

2�+1 if the degree of the polynomial is greater than b�c, see
Proposition 4.7. In addition to give a method of estimation for the intensity as a function of X,
we have also shown that the method of [20] is adapted to inhomogeneous Poisson process because
the case Xt = t respects the assumptions.
A second objective is to test if our function q belongs to some class of parametrical model. In-
deed, non parametric estimators are not convenient for operational applications. This objective is
achieved in Section 4 where a test is proposed. We test

H
0

: q = q✓ on I for some ✓ 2 ⇥

against
H

1

: q 6= q✓ on I for all ✓ 2 ⇥

where ⇥ 2 Rd. We consider the contrast Mn (✓) defined in (4.10) that is an unbiased estimator of
the distance between q and g✓ based on our estimator q̂

ˆh which is an estimator of q under both
hypothesis. Under H

0

, the minimum of the contrast gives an estimator of ✓, ˆ✓n, converging at the
rate

p
n and a central limit theorem is given when n ! 1, see Proposition 4.8 (i). Furthermore,

the quantity ˆh
1
2nMn

⇣

ˆ✓n
⌘

converges in law towards a normal random variable under H
0

, see
Proposition 4.8 (ii), but to 1 under H

1

, see Proposition 4.8 (iii). This allows us to propose a
critical region for the test.
In Section 5, our estimation procedure is applied on electricity prices and temperature data in order
to model the dependence between the spikes frequency of electricity prices and the temperature.
In Section 6, results on simulated data are given.
Proof of the oracle inequality is given in Section 7 and other proofs in Section 8.

2 Statistical setting
Let (Xt)

0tT be a real valued continuous semimartingale of the form

Xt = X
0

+

Z t

0

µsds+

Z t

0

�sdWs (4.1)

defined on a filtered probability space
⇣

⌦,F , (Fs)
0sT ,P

⌘

where (Wt)
0tT is a standard Brown-

ian motion, (bt)
0tT and (�t)

0tT are cádlág, progressively measurables and verify
R T

0

�|µs|+ �2

s

�

ds <
1 almost surely. Let (Nt)

0tT be a doubly stochastic Poisson process with intensity (�t)
0tT

also defined on
⇣

⌦,F , (Fs)
0sT ,P

⌘

. We observe the two processes on [0, T ] with T finite. We
assume that the intensity, which is the function of interest, is of the form

�t = nq (Xt)

where n 2 N, n � 1 corresponds to the asymptotic. As we observe the counting process on a finite
time horizon, we need to have a sufficient number of jumps during this finite period, which is of
order

R T

0

�udu and then in our case of order n. We denote by ⇤· =
R ·
0

�udu the compensator of N
and by M = N �⇤ the compensated Poisson process. Conditionally on X, N is an inhomogeneous
Poisson process with deterministic intensity at time t nq (Xt). Our aim is to estimate the function
(q (x) , x 2 I) for an arbitrary compact interval I.
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Assumption 4.1. We assume that one of the following assumptions is true:

(i) inf

0sT
�s � � with � > 0 a deterministic constant and

E
 

Z T

0

|µs|ds+ sup

0tT
|
Z T

0

�sdWs|
!

< 1,

(ii) Xt = t for all t in [0, T ].

Remark 4.1. Assumption 4.1 (ii) can be more general. These assumptions are sufficient but not
necessary conditions for existence of a local time. In the case µ deterministic and � = 0, we need
for all 0  s  T , µs 6= 0 but only the case µ = 1 is interesting. Existence of local time with a
stochastic drift and a null volatility could also be considered but existing results about local times
for absolute continuous processes are not enough in the literature to consider it.

Proposition 4.1. Let X the process defined in (4.1). Under Assumption 4.1, there exists a function
defined on R⇥ [0, T ] and denoted (x, t) 7! lxt verifying

(i) an occupation time formula of the form
Z t

0

f (Xs) ds =

Z

R
f (x) lxt dx, 0  t  T

for any measurable function f on ⌦⇥ R,

(ii) E
✓

sup

x2R
lxT

◆

< 1 and

(iii) x 7! lxT is continuous on R under Assumption 4.1 (i) and has one point of discontinuity
under Assumption 4.1 (ii).

As noticed in [17], the estimation of q (x) at point x 2 I is meaningful only if the process X hits
the point x before time T , or if lxT > 0. Indeed, lxT is equal to

lim

✏!0

1

2✏

Z T

0

1|X
s

�x|✏ds

and measures the time spend by X arround the point x. For ⌫ 2 (0, 1], let us define the event

D (I, ⌫) = {! 2 ⌦, inf

x2I
lxT (!) � ⌫T

|I| }

with |I| the Lebesgue measure of I. From now, we work on the event D (I, ⌫). Under (ii), if Xt = t,
the natural choice of I is [0, T ] and ⌫ = 1.

Remark 4.2. We choose ⌫ being dimensionless, justifying the normalization by |I|
T . Indeed, the

local time have dimension equal to time times the inverse of the dimension of X. Furthermore, if
I =

⇥

I, ¯I
⇤

, and if we do the mapping X 0
t =

X
tT

�I
|I| for t 2 [0, 1], we have inf

x2[0,1]
lx
1

(X 0
) =

|I|
T inf

x2I
lxT

where lx
1

(X 0
) is the local time of X 0 at time 1 and point x. As

R

I
lxT dx � inf

x2I
lxT |I| and

R

I
lxT dx =

R T

0

1X
s

2Ids  T , inf

x2I
lxT  T

|I| and ⌫ has to be bounded by 1.
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3 Local polynomial estimation

Let m > 0 be an integer, K a kernel function and S+

m+1

the set of positive definite matrix of
Rm+1⇥m+1. Let

Kh (u) = h�1K
⇣u

h

⌘

, u 2 R, h > 0.

Let us consider the local polynomial estimator for h > 0 and x 2 R:

q̂h (x) =
1

n

Z T

0

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)1X
s

2IdNs (4.2)

with
w (x, h, z) = UT

(0)B (x, h)�1 U (z)1B(x,h)2S+
m+1

, z 2 R, (4.3)

U (x) =

✓

1, x,
x2

2!

, ..,
xm

m!

◆T

,

and

B (x, h) =

Z T

0

U

✓

Xs � x

h

◆

UT

✓

Xs � x

h

◆

Kh (Xs � x)1X
s

2Ids. (4.4)

If B (x, h) 2 S+

m+1

, the estimator q̂h (x) is equal to UT
(0)

ˆ✓h (x) with

ˆ✓h (x) = argmin
✓2Rm+1

� 2

n
✓T

Z T

0

U

✓

Xs � x

h

◆

Kh (Xs � x)1X
s

2IdNs

+ ✓T
Z T

0

U

✓

Xs � x

h

◆

UT

✓

Xs � x

h

◆

Kh (Xs � x)1X
s

2Ids✓. (4.5)

The case l = 0 corresponds to the classical Nadaraya Watson estimator. The term 1X
s

2I allows us
to avoid issues at the boundaries. We denote by qh the conditional expectation of q̂h given X:

qh (x) =

Z T

0

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)1X
s

2Iq (Xs) ds.

If q is a polynomial function of degree m on I, qh (x) is equal to q (x), see Proposition 4.2.

Proposition 4.2. Let x 2 I and h > 0 such that B (x, h) 2 S+

m+1

where B is defined in (4.4). Let
Q be a polynomial function of degree  m. For any realization of the process X, we have

Z T

0

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)1X
s

2IQ (Xs) ds = Q (x) .

In particular,
Z T

0

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)1X
s

2Ids = 1,

Z T

0

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)1X
s

2I (Xs � x)k ds = 0, 1  k  m.
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Proof of Proposition 4.2 is immediate using the Taylor’s expansion of a polynomial function and
(4.5) ; it is similar to the proof of [30, Proposition 1.12].
For B (x, h)�1 to be defined, the positive matrix B (x, h) must be definite. Assumption 4.2 is
sufficient for B (x, h)�1 to be well defined on the event D (I, ⌫), see Proposition 4.3.

Assumption 4.2. We assume that:

(i) there exists K
min

> 0 and � > 0 such that K (u) � K
min

1|u|�

for all u in R,

(ii) K has a compact support belonging to [�1, 1] and kKk1 = sup

x2R
|K (x) | < 1.

Proposition 4.3. Let 0 < h  2

3

�|I|. Under Assumption 4.2, on the event D (I, ⌫), the matrix
B (x, h) defined in (4.4) belongs to S+

m+1

and for x 2 I, z 2 R,

|w (x, h, z)1|z|1

|  |I|
AK⌫T

with w defined in Equation (4.3) and AK a constant depending on K.

3.1 Method for bandwidth selection
Our objective is to propose a method in order to choose the bandwidth h. We want for this band-
width to minimize the L

2

loss on the interval I, E
�kq � q̂hk2I |D (I, ⌫)

�

, with kfk2I =

R

I
f (x)2 dx

for f 2 L
2

(I). This loss is equal to the sum of a bias term, E
�kq � qhk2I |D (I, ⌫)

�

, which depends
on the regularity of q and is usually increasing with h, and a variance term E

�kq̂h � qhk2I |D (I, ⌫)
�

,
decreasing with h. The theoretical bandwidth minimizing this quantity depends on the function
q itself which is unknown and is called the oracle. One wants to find an estimator of this oracle,
ˆh, such that E

�kq � q̂
ˆhk2I |D (I, ⌫)

�  (1 + o (1))min

h2H
E
�kq̂h � qk2I |D (I, ⌫)

�

+ o (1) when n ! 1, in

order to have a loss with ˆh close to the minimal one ; this type of inequality is called an oracle
inequality. The usual method to find this estimator of the oracle, which is done in this section,
is to find an unbiased estimator of the bias and of the variance and to consider the bandwidth h
minimizing the sum of the two estimators. In the following, we will also denote by < ·, · >I the
associated scalar product of k · kI .
In order to select the bandwidth parameter, we use the approach of [20] which is used for density
estimation. We consider a finite set H of (0,1) and h

min

= minH. The idea is to approximate the
bias by E

�kqh � qhmink2I
�

with h
min

sufficiently small. A natural estimator of E
�kqh � qhmink2I

�

is

kq̂h � q̂hmink2I .

This estimator induces a bias equal to the expectation of

�1

n

Z

I

Z T

0

✓

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)� w

✓

x, h
min

,
Xs � x

h
min

◆

Khmin (Xs � x)

◆

2

dxq (Xs) ds

which can be estimated by

� 1

n2

Z

I

Z T

0

✓

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)� w

✓

x, h
min

,
Xs � x

h
min

◆

Khmin (Xs � x)

◆

2

dxdNs.
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This estimator can be written as

� ˆVh � ˆVhmin + 2

ˆVh,hmin

where
ˆVh =

1

n2

Z T

0

Z

I

✓

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)

◆

2

1X
s

2IdxdNs

and

ˆVh,hmin =

1

n2

Z T

0

Z

I

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)w

✓

x, h
min

,
Xs � x

h
min

◆

Khmin (Xs � x)1X
s

2IdxdNs. (4.6)

An unbiased estimator of the variance which is equal to

E
 

1

n

Z T

0

Z

I

✓

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)

◆

2

1X
s

2Idxq (Xs) ds

!

is given by

ˆVh =

1

n2

Z T

0

Z

I

✓

w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)

◆

2

1X
s

2IdxdNs.

In order to choose the bandwidth, we use the criteria

kq̂h � q̂hmink2I + pen (h)

where
pen� (h) = � ˆVh � ˆVh � ˆVhmin + 2

ˆVh,hmin , with � > 0. (4.7)

The optimal bandwidth ˆh is given by

ˆh = argmin
h2H

kq̂h � q̂hmink2I + pen (h) . (4.8)

In the following, we want to derive an oracle inequality for the estimator q̂
ˆh which has not be done

to our knowledge.

3.2 Concentration inequalities
In order to compute this oracle inequality, we first need the two following concentration inequalities,
from [28] and [18]. The concentration inequality of Proposition 4.4 is a weak Bernstein inequality,
the one of Proposition 4.5 is an inequality for the Poisson U-statistic. These inequalities will be
useful in our case because N is an inhomogeneous Poisson process conditionally on X.

Proposition 4.4. [28, Equation (2.2)] Let T > 0. Let N be an inhomogeneous Poisson process
with intensity �·, ⇤· =

R ·
0

�udu and M = N �⇤. For all u � 0, with probability larger than 1� e�u

|
Z T

0

f (s) dMs| 
s

2u

Z T

0

f2

(s) d⇤s +

sup

x2[0,T ]

|f (x) |u

3

.
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Proposition 4.5. [18, Theorem 4.2] Let T > 0. Let N be an inhomogeneous Poisson process with
intensity �·, ⇤· =

R ·
0

�udu and M = N�⇤. For all ✏, u � 0, with probability larger than 1�2.77e�u

Z T

0

Z s�

0

f (u, s) dMudMs  2 (1 + ✏)
3
2 C

p
u+ 2⌫ (✏)Du+ � (✏)Bu

3
2
+ � (✏)Au2

where

⌫ (✏) =
p
2

�

2 + ✏+ ✏�1

�

, � (✏) = e
�

1 + ✏�1

�

2

 (✏) +
⇣p

2
�

2 + ✏+ ✏�1

�

⌘

_ (1 + ✏)2p
2

,

� (✏) =
⇣

e
�

1 + ✏�1

�

2

 (✏)
⌘

_ (1 + ✏)2

3

,  = 6,  (✏) = 1.25 +
32

✏

and

A = sup

(u,s)2[0,T ]

2

f (u, s) , B2

= max{sup
sT

Z s

0

f (u, s)2 d⇤u, sup
uT

Z u

0

f (u, s)2 d⇤s},

C2

=

Z T

0

Z s

0

f (u, s)2 d⇤ud⇤s, D = supR
T

0 a2
u

d⇤
u

=1,
R

T

0 b2
s

d⇤
s

=1

Z T

0

au

Z T

u

bsf (u, s) d⇤ud⇤s.

3.3 Oracle inequality

For a function f 2 L1 (I), we denote by kfkI,1 the norm sup

x2I
|f (x) |. We will also need for the

kernel the following norms: k · k
1

, k · k = k · k
2

and k · k1 corresponding respectively to the
L
1

, L
2

and L1 norms on R, with the Lp norm defined by kfkp =

�R

R |f (x) |p�
1
p , p � 1 and

kfk1 = sup

x2R
|f (x) |. Proposition 4.6 gives an oracle inequality for q̂

ˆh.

Proposition 4.6. Assume 4.1 and 4.2. Let x � 1, ✏ 2 (0, 1). Let H a finite subset of (0,1)

such that minH = h
min

� kKk1kKk1|I|
n and maxH  2

3

|I|�. Let q̂h the local polynomial estimator
defined in (4.2) and ˆh the bandwidth defined in (4.8). With conditional probability given X larger
than C

1

|H|e�x, on the event D (I, ⌫),

kq̂
ˆh � qk2I  C

0

(✏,�)min

h2H
kq̂h � qk2I + C

2

(✏,�) kqhmin � qk2I

+

C
3

(✏,K,�) |I|
⌫2T 2

✓

(1 + kqkI,1klT kI,1|I|)x2

n
+

x3|I|
n2h

min

◆

where C
0

(✏,�) = � + ✏ if � � 1 and C
0

(✏,�) =

1

� + ✏ if 0 < � < 1, C
2

(✏,�) is a constant
depending only on ✏ and � and C

3

(✏,K,�) is a constant depending only on ✏, K and �. Furthermore,
C

2

(✏,�) ⇣ 1

✏ and C
3

(✏,K,�) ⇣ 1

✏3 when ✏! 0.
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We also have,

E(kq̂
ˆh � qk2I |D (I, ⌫)) 

 

� _ 1

�
+

˜C
1

log (n)

!

min

h2H
E
�kq̂h � qk2I |D (I, ⌫)

�

+

˜C
2

(�) log (n)E
�kqhmin � qk2I |D (I, ⌫)

�

+

˜C
3

(K,�) |I|
⌫2T 2

 

(1 + kqkI,1E (klT kI,1|D (I, ⌫)) |I|) log (n _ |H|)5
n

+

log (n _ |H|)6
n

!

+

˜C
4

kqk2I
n4

+

˜C
5

(K) |I|
⌫2T 2

q

P

4

i=1

(kqk1,IT )
i

n
. (4.9)

where ˜C
1

and ˜C
4

are constant, ˜C
2

(�) is a constant that only depends on �, ˜C
3

(K,�) is a constant
that only depends on K and � and ˜C

5

(K) is a constant that only depends on K.

In this inequality, one can see the presence of an error of order log (n)E
�kqhmin � qk2I |D (I, ⌫)

�

.
This error comes from the approximation of the bias kqh� qk2I by kqh� qh

m

ink2I and is negligible if
h
min

is small enough. We also remark that if � = 1, the constant of the oracle inequality is optimal.

3.4 Adaptative minimax estimation
In this section, we study the performance of the estimator q̂

ˆh in terms of convergence rate. We now
work with the asymptotic n ! 1, meaning the number of jumps becomes large when n ! 1. For
⇢,�, L > 0, let ⇤⇢,� = {f : I ! R : f (x) � ⇢, kfkI,1 < 1} \ ⌃ (�, L, I) where ⌃ (�, L, I) is the
Hölder class on I defined as the set of l = b�c differentiable functions f : I ! R whose derivative
f (l) verifies

|f (l)
(x)� f (l)

(x0
) |  L|x� x0|��l, 8x, x0 2 I,

see [30, Definition 1.2]. We will restrict to the study of q 2 ⇤⇢,� .

To evaluate the performance of an estimator q̃n of q, we consider the minimax risk

R (q̃n,⇤⇢,� ,'n) = sup

�2⇤

⇢,�

E
✓

'�2

n

Z

I

(q̃n (N,X, x)� q (x))2 dx|D (I, ⌫)

◆

.

An estimator q̃⇤n is said to attain an optimal rate of convergence 'n (⇤⇢,�) if

lim sup

n!1
R (q̃⇤n,⇤⇢,� ,'n (⇤⇢,�)) < 1

and no estimator can attain a better rate:

lim inf

n!1 inf

q̃
n

R (q̃n,⇤⇢,� ,'n (⇤⇢,�)) > 0

where the infimum is taken over all estimators.

Proposition 4.7. Assume 4.1 and 4.2. Let us consider the set of bandwidth H = {h > 0|h �
kKk1kKk1|I|

n , h  2

3

|I|� and h�1 2 N}. Let q̂
ˆh the estimator defined in Proposition 4.6 and let m

be the degree of the polynomial. In the case where m � b�c, q̂
ˆh is optimal in the minimax sense

and the optimal rate of convergence is given by ' (⇤⇢,�) = n
��

2�+1 . In the case where m < b�c, the
rate of convergence of q̂h is n

�m

2m+1
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4 Test for a parametric family

Let us consider the parametric family P = {g✓ (·) , ✓ 2 ⇥} with ⇥ a subset of Rd, d � 1. Our
objective is to test if the intensity function q is in P . Let us consider the two following hypothesis:

⇢

H
0

: 9✓
0

2 ⇥, q (·) = g✓ (·)
H

1

: q /2 P
.

We want to test H
0

against H
1

. Under both hypothesis, one way to estimate q is to use the local
polynomial estimator q̂

ˆh. As we work in an asymptotic framework, we denote by hn the optimal
bandwidth ˆh. Under H

0

, to estimate the parameter ✓, let us consider the contrast

Mn (✓) = kq̂h
n

(·)�
Z T

0

w

✓

·, hn,
Xs � ·
hn

◆

Kh
n

(Xs � ·)1X
s

2Ig✓ (Xs) dsk2I

� 1

n2

Z

I

Z T

0

w2

✓

x, hn,
Xs � x

hn

◆

K2

h
n

(Xs � x)1X
s

2IdNsdx. (4.10)

The contrast defined in (4.10) is similar to the one in [2], used in the case of the estimation of the
drift and the volatility of an Itô diffusion. However, in [2], the norm is weighted by the density of
X, that is lxT is our case. As it is important to have a good estimate of q everywhere on I, the norm
is not weighted in our case. The second term in the right hand side of (4.10) is a correction of the
bias. We can also notice that we use the function

R T

0

w
⇣

·, hn,
X

s

�·
h
n

⌘

Kh
n

(Xs � ·)1X
s

2Ig✓ (Xs) ds

and not directly g✓ in order to eliminate the bias part of the norm. An estimator of ✓ under H
0

is
then

ˆ✓n = inf

✓2⇥

Mn (✓) . (4.11)

Under classical assumptions 4.3, this estimator is consistent at a speed rate of
p
n, see Proposition

4.8 (i). The idea of the test is that under H
0

, Mn

⇣

ˆ✓n
⌘

is close to M (✓
0

) which is equal to 0.

The rate of convergence is of order n
p
hn, see Proposition 4.8 (ii). However, under H

1

, Mn

⇣

ˆ✓n
⌘

converges to inf

✓2⇥

kq�g✓k2I which is different from 0 and then nhnMn

⇣

ˆ✓n
⌘

goes to 1, see Proposition

4.8 (iii).

Assumption 4.3. We assume that

(i) The set ⇥ is compact in Rd.

(ii) For some M = MI > 0,

sup

x2I
|g✓1 (x)� g✓2 (x) |  Mk✓

1

� ✓
2

kd for ✓
1

, ✓
2

2 ⇥

where k · kd is the Rd Euclidian norm.

(iii) For all x in I, ✓ 7! g✓ (x) is three times continuously differentiable. Furthermore, x 7! g✓ (x),
x 7! @✓g✓ (x) are continuous on I and @2,✓g✓

@✓
i

@✓
j

, @3,✓g✓
@✓

i

@✓
j

@✓
k

are bounded on I for i, j, k = 1, .., d

for all ✓ 2 ⇥.
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(iv) For some ⌘ = ⌘I > 0,

inf

(x,✓)2I⇥✓
�
min

⇣

@✓g✓ (x) @✓g✓ (x)
T
⌘

� ⌘

where �
min

(A) is the smallest eigenvalue of a matrix A f

(v) The equality g✓1 = g✓2 on I implies ✓
1

= ✓
2

.

(vi) hn ! 0 and n
p
hn ! 1.

(vii) The intensity function q is continuous on I and the kernel function K is continuous on R.

Proposition 4.8. Let Mn (✓) and ˆ✓n defined respectively by (4.10) and (4.11). We work under
Assumption 4.1, Assumption 4.2 and Assumption 4.3. On the event D (I, ⌫), under H

0

,

(i)

p
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In order to test the null hypothesis at level ↵, we reject H
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only depends on K and � is the cumulative distribution function of a N (0, 1) random variable.
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5 Dependence between the frequency of electricity spot spikes
and temperature

5.1 Data
We dispose of

• the hourly French spot price between the first January of 2006 and the first of January 2017
not included,

• the hourly French temperature, which is an spatial average of the temperature over 32 cities,
between the first January of 2006 and the first of January 2017 not included.

The times series are given in Figure 4.1 for the year 2010.

(a) Spot price. (b) Temperature.

Figure 4.1: French spot price and temperature during 2010.

5.2 Detection of the jumps
In the spot price time series, we observe spikes that are characteristic of the electricity spot market.
A spike can be defined as a jump with a strong mean reversion. We then assume that the spot
price S has the following dynamic:

St = Yt + Zt

with Yt a continuous Itô semi-martingale and

Zt =

Z t

0

Z

R
xe��(t�s)p (dt, dx)

with p a Poisson measure on R+ ⇥ R with compensator q = �tdt ⌦ ⌫ (dx). Indeed, Z has the
dynamic

dZt = ��Ztdt+

Z

R
xp (dt, dx)

corresponding to a mean reverting Poisson process. Let us consider N the Poisson process associated
to the jump times of X. N has intensity (�t)

0tT which is the intensity we want to estimate as
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a function of the temperature. In order to detect the jumps, we use the method of Chapter 3 with
a threshold equal to 5�̂�0.49

n where �n is the frequency of observations and �̂ is the multipower
variation estimator of order 20. We keep only the increments verifying �

n
i S�

n
i+1

S < 0 as jumps.
The data are segmented in periods of one year for the detection of the jumps in order to avoid
too much change in the volatility. In Chapter 3, the intensity of the Poisson process is constant.
Assuming that � is bounded below and above, the results can easily be extended to the case where
� is stochastic. Jump times are represented in Figure 4.1. In the following, we consider that we
observe N but we are aware that we only have an estimator of it.

5.3 Dependence with temperature

In this section, we estimate the intensity of the jump process as a function of the temperature,
using the method of Section 3. In addition to the statistic interest, quanto options are financial
options with temperature and spot price as underlying. They can be used for instance to hedge both
volume and price risks. In order to price these options, it is necessary to capture the dependence
between the temperature and the spot price. More details are given in [6] where the dependence
between the two is only modeled by a correlation and the spikes are not represented.

The temperature is illustrated in Figure 4.1 along with the jump times. The spikes seems to happen
more often for high and low temperatures. The observed temperature belongs to the interval
[�8.50, 33.95]. The temperature is not observed continuously but because of the high frequency of
the data and the long range of observation, we pretend that the error due to the discretization is
negligible. One wants to estimate the intensity of the spike process as a function of the temperature
on the interval [�5, 33] where the temperature is sufficiently observed. To estimate the intensity
function, we consider the Epanechnikov kernel K (u) = 3

4

�

1� u2

�

1|u|1

and the local polynomial
estimator with degree 1 considered in Section 3. We choose h

min

equals to |I|kKk1kKk1|I|
N

I

= 0.13,
where kKk

1

= 1, kKk1 =

3

4

and NI = 219 is the number of jumps in the interval I. The tuning
parameter of the estimation procedure � is chosen equal to 1. The optimal bandwidth is selected
among the set H = {h = h

min

+ 0.1i, h
min

 11}. The minimum of the criteria is achieved for
h = 8.73 and the estimator for this value of h is given in Figure 4.2.
This result confirms our intuition: spikes happen more often when temperature is low. We now
want to test the hypothesis that the intensity is a quadratic function of the temperature:

q (x) = a
0

exp (a
1

x) for x 2 I

with a
0

> 0, a
1

< 0. The constant

Z

R

✓

Z

R
w (u)w (u+ p)K (u)K (u+ p) du

◆

2

dp =

413113

985600

is needed for the test. Using the test of Section 4, we find that the null hypothesis is not rejected for
a level of confidence at 95% (with a p value equals to 0.083) and that the estimated parameters are
(â

0

, â
1

) = (1033.8,�0.2). Figure 4.2 includes the parametric estimator of the intensity as a function
of the temperature. We also test if the intensity function is independent from the temperature,
corresponding to q constant: the test is rejected for a level of confidence at 95% (with a p value
equals to 0).
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Figure 4.2: Local polynomial estimator and parametric estimator of the intensity as a function of
the temperature.

6 Numerical results

In order to evaluate the performance of our estimation procedure, we present some simulation
results. To be consistent with data, let us consider a model reproducing the temperature data and
the spike times.

As in [7], we model the temperature ✓t as the sum of a trend seasonality function

�t = a+ bt+ c
1

sin

✓

2⇡t+ ⌧
1

365⇥ 24

◆

+ c
2

sin

✓

2⇡t+ ⌧
2

24

◆

corresponding to yearly and daily seasonality and a diffusion Xt having dynamics

dXt = �↵Xtdt+ �dWt

where Wt is a standard Brownian motion. In [7], the temperature is modeled by a CARMA process
with stochastic seasonal volatility but for simplicity we consider the simplest one corresponding
to an Ornstein Uhlenbeck process. Using classical estimation procedures, we find a = 12.06, b =

0.0000072, c
1

= 7.81, c
2

= �3.18, ⌧
1

= �16924.50, tau
2

= 10.84, ↵ = 0.011, � = 0.46.

The spike intensity �t is considered as an exponential function of the temperature

�t = a
0

exp (a
1

✓t)

with a
0

= 1033.8 and a
1

= �0.2. As the quality of the estimation procedure depends on the interval
of estimation, we consider three intervals: [�1, 29], [�3, 31] and [�5, 33]. As for the estimation on
data, we consider a local polynomial estimator of degree 1 with a Epanechnikov kernel. On each
interval, we apply our estimation procedure and our bandwidth selection method with � = 1,
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h
min

=

|I|kKk1kKk1|I|
200

and H = {h = h
min

+0.1i, h
min

 11}. To evaluate the performance on our
estimator, we consider the error

e = E
 

R

I

�

q (x)� q̂
ˆh (x)

�

2

dx
R

I
q2 (x) dx

!

where ˆh is the optimal bandwidth given by our estimation procedure and we compare it to the
oracle error

eo = min

h2H
E
 

R

I
(q (x)� q̂h (x))

2 dx
R

I
q2 (x) dx

!

.

In practice, we consider estimators of these errors, ê and êo. In a second time, we test if the intensity
is of the form a

0

exp (a
1

x) and if it is constant, that is independent of the temperature.

Results are given in Table 4.1 where 500 simulations of the model during 6 years with a step
time of one hour are considered. % converged corresponds to the percentage estimators that have
been computed, meaning that their local time was large enough and the matrix B invertible. This
percentage diminishes with the length of the interval, and is very low for the last interval. However,
this interval corresponds to the one we have estimated the parameters. One explanation is that the
model does not capture all the features of the data. For instance, seasonal volatility is not modeled
whereas it impacts impact the number of high and low values taken by the temperature. The two
errors ê and ê

0

increases with the length of the interval, caused by boundary effects: less values of
the temperature are observed near the bounds. Furthermore, the ratio between ê and ê

0

increases:
the bandwidth selection procedure is less efficient for larger interval. This corresponds to the term
1

⌫2 in the oracle inequality. Columns % exponential and constant corresponds to the percentage
of simulation for which the corresponding test has not been rejected at level 95%. Results are
satisfying both for exponential and constant test. Estimators of a

0

and a
1

are consistent with the
true parameters but present a small bias, probably due to the form of Mn (✓) that adds a bias term
inside the norm in order to suppress the bias. The mean of q̂

ˆh is represented in Figure 4.3 for each
interval I. One can see that there is a bias in the lower boundary for each interval.

Interval ê ê
o

% converged % exponential % constant a0 a1

[�1, 29] 0.055 0.026 100 97 0 [1030.60, 1059, 65] [�0.210,�0.202]
[�3, 31] 0.082 0.03 81 97 0.25 [1015.67, 1041.91] [�0.223,�0.202]
[�5, 33] 0.19 0.04 12.6 73 0 [935.77, 973.50] [�0.253,�0.2212]

Table 4.1: Performance of the local polynomial estimation procedure and parametrical test on
different intervals for simulated data.

7 Proof of Proposition 4.6

In order to prove Proposition 4.6, we need Proposition 4.9 and Proposition 4.10. Proposition 4.9
gives an approximation of the error by the bias and the variance. This proposition is similar to the
one of [21, Proposition 4.1] in the context of density estimation.

During the proof, ˜C denotes a constant that can change from line to line. ˜C (·) denotes a constant
depending on · that can also change from line to line.
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4. Local polynomial estimation of a doubly stochastic Poisson process

(a) I = [�1, 29]. (b) I = [�3, 31]. (c) I = [�5, 33].

Figure 4.3: Mean of local polynomial and parametric estimator for different intervals with simulated
data.

Proposition 4.9. Assume 4.1 and 4.2. Let x � 1, ⌘ 2 (0, 1]. Let H a finite subset of (0,1)

such that minH = h
min

� kKk1kKk1|I|
n and maxH  2

3

|I|�. Let q̂h the local polynomial estimator
defined in (4.2) and ˆh the bandwidth defined in (4.8). With conditional probability given X larger
than 1� ˜C|H|e�x, on the event D (I, ⌫), for any h 2 H,

kq � q̂hk2I  (1 + ⌘)
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and
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Kh (Xs � x)
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2Idx
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q (Xs) ds

and AK is a constant depending on K which is introduced in Proposition 4.4.

Proposition 4.10. Assume 4.1 and 4.2. Let x � 1, ✓ 2 (0, 1). Let H a finite subset of (0,1) such
that minH = h

min

� kKk1kKk1|I|
n and minH = h

min

� kKk1kKk1

n . Let q̂h the local polynomial
estimator defined in (4.2) and ˆh the bandwidth defined in (4.8). Let ˆVh,hmin defined in Equation
(4.6) and pen (�) defined in Equation (4.7). With conditional probability given X larger than 1 �
C

1

|H|e�x, on the event D (I, ⌫), for any h 2 H,

(1� ✓) kq̂
ˆh � qk2I  (1 + ✓) kq̂h � qk2I +

⇣
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⌘
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� 2
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+

C
2

✓
kqhmin � qk2I +

C (K) |I|
⌫2T 2✓

✓

(1 + kqkI,1klT kI,1|I|)x2

n
+

x3|I|
n2h

min

◆

(4.12)

where C
1

and C
2

are constant and C (K) is a constant depending on K.

7.1 Proof of Proposition 4.9
In the following, we work conditionally on X. We also work on the event D (I, ⌫). Conditionally
on X, the process N is a inhomogeneous Poisson process. Proposition 4.4 and Proposition 4.5 are
then verified taking the conditional probability given X.
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4. Local polynomial estimation of a doubly stochastic Poisson process

The norm kq � q̂hk2I is the sum of kq � qhk2I which is a bias term, kq̂h � qhkI which is a variance
term and the cross term 2 < q � qh, qh � q̂h >I . In order to control kq � q̂hk2I by kq � qhk2I + Vh,
we will control the variance term by Vh and the cross term by kq � qhk2I + Vh.

Control of the variance term First, let us control the term kqh � q̂hk2I . This term is equal to
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which can be written as the sum of
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(4.14)
The term (4.13) is a simple Poisson integral and can be controlled with Proposition 4.4. As
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with conditional probability given X larger than 1� 2|H|e�u, on D (I, ⌫),
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Using Young’s inequality
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we find
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The term (4.14) is an U-statistics which can be controlled with Proposition 4.5 ; it is dominated
in absolute value by
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⇣

C
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.
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By the occupation time formula, B2 is bounded by
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Using again the occupation time formula and Young’s inequality for convolutions,
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We then have for x � 1, for all h 2 H, with conditional probability given X larger than 1� ˜C|H|e�x,
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Combining (4.15) and (4.16) with ✓ =
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Control of the cross term The cross term < q̂h � qh, qh � q >I is equal to
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Combining (4.17) and (4.18), we find, with conditional probability given X larger than 1� ˜C|H|e�x,
on D (I, ⌫), for any h 2 H,
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Taking ✓ = ⌘
4

, the proof is achieved.

7.2 Proof of Proposition 4.10
We continue to work conditionally on X and we work on the event D (I, ⌫). The beginning of the
proof is similar to the one of [20, Theorem 9]. Let ✓0 2 (0, 1). For any h 2 H,
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We then want to approach < q̂h � q, q̂hmin � q >I by ˆVh,hmin . Let us define
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Using Cauchy Schwarz inequality,
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4T 4

.

Thus,

B2  VhkKk2|I|2
A2

Kn2⌫2T 2h
min

+

kqkI,1klT kI,1kKk2
1

kKk2|I|4
h
min

A4

Kn3⌫4T 4

,

B 
s

VhkKk2|I|2
A2

Kn2⌫2T 2h
min

+

s

kqkI,1klT kI,1|I|4kKk2
1

kKk2
n3A4

Kh
min

⌫4T 4

and

Bx
3
2  ✓0

3

Vh +

6

✓0
kKk2|I|2x3

A2

Kn2⌫2T 2h
min

+

kKk2|I|2x3

2h
min

A2

Kn2⌫2T 2

+

kKk2
1

kqkI,1klT kI,1|I|2
2nA2

K⌫
2T 2

 ✓0

3

Vh +

13

2✓0
kKk2|I|2x3

A2

Kn2⌫2T 2h
min

+

kKk2
1

kqkI,1klT kI,1|I|2
2✓0nA2

K⌫
2T 2

.

To dominate C2 which is bounded by

2

n4

Z T

0

Z T

0

(Gh,hmin (Xu, Xs))
2 d⇤sd⇤u, (4.21)

we use the occupation time formula and Young’s inequality for convolutions:

C2  kqkI,1klT kI,1|I|2
n3A2

K⌫
2T 2

Z T

0

kw
✓

·, h, Xu � ·
h

◆

Kh (Xu � ·)1X
u

2I1·2I ⇤Khmin (·) k2d⇤u

 kqkI,1klT kI,1kKk2
1

|I|2
n3A2

K⌫
2T 2

Z T

0

kw
✓

·, h, Xu � ·
h

◆

Kh (Xu � ·)1·2I1X
u

2Ik2d⇤u

=

kqkI,1klT kI,1kKk2
1

|I|2
A2

Kn⌫2T 2

Vh.

We then have
C
p
x  ✓0Vh +

˜C
kKk2

1

kqkI,1klT kI,1|I|2x
nA2

K⌫
2T 2✓0

.

Using twice Cauchy Schwarz inequality, we find that D is bounded by (4.21) and then

Dx  ✓0Vh +

˜C
kKk2

1

kqkI,1klT kI,1|I|2x2

nA2

K⌫
2T 2✓0

.

Finally, if x � 1 and ✓0 2 (0, 1), with conditional probability given X greater than 1 � ˜C|H|e�x,
on D (I, ⌫),

|U (h, h
min

) |  ✓0Vh +

˜C
kKk2

1

kqkI,1klT kI,1|I|2x2

n⌫2T 2✓0
+

˜C
kKk1kKk

1

|I|2x3

⌫2T 2A2

K✓
0n2h

min

. (4.22)
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Control of S We need to control S (h, h
min

) and S (h
min

, h). Let h, h0 in H. We can write

S (h, h0
) =

1

n

Z T

0

Z

I

(qh0 � q)w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)1X
s

2IdxdMs

and it is possible to control it with Proposition 4.4. First, using occupation time formula and
Proposition 4.2,

1

n

Z

I

(qh0 � q) (x)w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)1X
s

2Idx  |I|
nAK⌫T

kKk
1

kq � qh0kI,1

 2kKk2
1

klT kI,1kqkI,1|I|2
nA2

K⌫
2T 2

.

Then, using the occupation time formula and Young’s inequality for convolutions, the term

1

n2

Z T

0

✓

Z

I

(qh0 � q) (x)w

✓

x, h,
Xs � x

h

◆

Kh (Xs � x)1X
s

2Idx

◆

2

d⇤s

is bounded by

klT kI,1kqkI,1|I|2
nA2

K⌫
2T 2

k (qh0 � q) (·)1·2I ⇤Kh (·) k2  kqh0 � qk2IkKk2
1

klT kI,1kqkI,1|I|2
nA2

K⌫
2T 2

.

With conditional probability given X larger than 1� ˜Ce�x, on D (I, ⌫),

S (h, h0
)  ✓0

2

kqh0 � qk2I + ˜C
kKk2

1

klT kI,1|I|2kqkI,1x

nA2

K⌫
2T 2✓0

. (4.23)

We apply the previous inequality for S (h, h
min

) and S (h
min

, h).

Control of < qh � q, qhmin � q >I We have:

| < qh � q, qhmin � q >I |  ✓0

2

kqh � qk2I +
1

2✓0
kqhmin � qk2I . (4.24)

At the end, combining (4.20), (4.22), (4.23) and (4.24), we have with conditional probability given
X higher than 1� ˜C|H|e�x for any h 2 H, on D (I, ⌫),

| < q̂h � q, q̂hmin � q >I � ˆVh,hmin |  ✓0
�kqh � qk2I + Vh

�

+

✓

✓0

2

+

1

2✓0

◆

kqhmin � qk2I

+

˜C (K) |I|
⌫2T 2✓0

✓kqkI,1klT kI,1|I|x2

n
+

x3|I|
n2h

min

◆

. (4.25)

Furthermore, Proposition 4.9 states that with conditional probability given X higher than 1 �
˜C|H|e�x for any h 2 H, on D (I, ⌫),

kq � qhk2I + Vh  2kq � q̂hk2I + ˜C
|I| �1 + 2kqkI,1klT kI,1|I|kKk2

1

�

x2

n
. (4.26)

We combine (4.19), (4.25) and (4.26) and we take ✓0 = ✓
4

to conclude.
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7.3 Proof of Proposition 4.6
Let ⌧ = �� 1, ✏ 2 (0, 1) and ✓ 2 (0, 1). Using Proposition 4.10, with conditional probability given
X larger than 1� ˜C|H|e�x, on D (I, ⌫), for any h 2 H,

(1� ✓) kq̂
ˆh � qk2I + ⌧ ˆV

ˆh  (1 + ✓) kq̂h � qk2I + ⌧ ˆVh +

˜C

✓
kqhmin � qk2I

+

˜C (K) |I|
⌫2T 2✓

✓

(1 + kqkI,1klT kI,1|I|)x2

n
+

x3|I|
n2h

min

◆

Equation (4.15) states that with conditional probability given X larger than 1 � ˜C|H|e�x, on
D (I, ⌫), for any h,

| ˆVh � Vh|  ✓

2

Vh +

˜C
x|I|

nA2

K⌫
2T 2✓

.

First, let us consider the case ⌧ � 0. We then have, with conditional probability given X larger
than 1� ˜C|H|e�x, on D (I, ⌫), for any h 2 H,

(1� ✓) kq̂
ˆh � qk2I  (1 + ✓) kq̂h � qk2I + ⌧

✓

1 +

✓

2

◆

Vh +

˜C

✓
kqhmin � qk2I

+

˜C (K) |I|
⌫2T 2✓

✓

(1 + kqkI,1klT kI,1|I|)x2

n
+

|I|x3

n2h
min

◆

.

Using Proposition (4.9) with ⌘ =

✓
2+✓ , with conditional probability given X larger than 1� ˜C|H|e�x,

on D (I, ⌫), for any h 2 H,

⌧Vh  ⌧

✓

1 +

✓

2 + ✓

◆

kq � q̂hk2I + ⌧
˜C (K) |I| (1 + kqkI,1klT kI,1|I|)x2

n✓3⌫2T 2

.

As
�

1 +

✓
2

�

⇣

1 +

✓
2+✓

⌘

= 1 + ✓, with probability larger than 1� ˜C|H|e�x, on D (I, ⌫),

(1� ✓) kq̂
ˆh � qk2I  (1 + ✓ + (1 + ✓) ⌧) kq̂h � qk2I +

˜C

✓
kqhmin � qk2I

+

|I|
⌫2T 2

 

˜C (K)

✓
+

˜C (K)

✓3

!

✓

(1 + kqkI,1klT kI,1|I|)x2

n
+

|I|x3

n2h
min

◆

.

With ✓ = ✏
✏+2+2⌧ , we have

kq̂
ˆh � qk2I  (1 + ⌧ + ✏) kq̂h � qk2I +

˜C (✏+ 2 + 2⌧)2

(2 + 2⌧) ✏
kqhmin � qk2I

+

˜C (K, ✏, ⌧) |I|
⌫2T 2

✓

(1 + kqkI,1klT kI,1|I|)x2

n
+

x3|I|
n2h

min

◆

.

If �1 < ⌧  0, according to (4.15),

| ˆV
ˆh � V

ˆh| 
✓

2

V
ˆh +

˜C
x|I|

nA2

K⌫
2T 2✓

.
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and according to Proposition 4.9,

⌧V
ˆh  ⌧

✓

1 +

✓

2 + ✓

◆

kq � q̂hk2I + ⌧
˜C (K) |I| (1 + kqkI,1klT kI,1|I|)x2

n✓3⌫2T 2

.

We find

(1� ✓ + ⌧ (1 + ✓))kq̂
ˆh � qk2I  (1 + ✓) kq̂h � qk2I +

C
2

✓
kqhmin � qk2I

+

|I|
⌫2T 2

 

˜C (K)

✓
+

˜C (K)

✓3

!

✓

(1 + kqkI,1klT kI,1|I|)x2

n
+

x3|I|
n2h

min

◆

.

Taking ✓ = (

✏(⌧+1)

2
)

2+✏(1�⌧2
)

< 1, we obtain, with conditional probability given X larger than 1� ˜C|H|e�x,
on D (I, ⌫), for any h 2 H,

kq̂
ˆh � qk2I 

✓

1

1 + ⌧
+ ✏

◆

kq̂h � qk2I + ˜C (✏, ⌧) kqhmin � qk2I

+

˜C (K, ✏, ⌧) |I|
✓

(1 + kqkI,1klT kI,1|I|)x2

n
+

x3|I|
n2h

min

◆

.

Inequality (4.12) is then verified.

Now, let us use (4.12) with x = 5 log (n _ |H|) and ✏ = ˜C (log (n))�1. Let E be the event on which
(4.12) is true. Integrating with respect to X and dividing by P (D (I, ⌫)), we find

E
�kq̂

ˆh � qk2I1E |D (I, ⌫)
� 

✓

� _ 1

�
+

˜C (log (n))�1

◆
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h2H
E
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+

˜C (�) log (n)E
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�

+

˜C (K,�) |I| log (n)3
⌫2T 2

 

25|I|kqkI,1E (klT kI,1|D (I, ⌫)) log (n _ |H|)2
n

+

125|I| log (n _ |H|)3
n2h

min

!

.

(4.27)

Let NI =

R T

0

1X
s

2IdNs. On Ec \D (I, ⌫), using Cauchy Schwarz,

kq̂
ˆh � qk2I  2kqk2I +

2|I|2
⌫2T 2A2

Kn2

NI

Z

I

Z T

0

K2

h (Xs � x)1X
s

2IdNsdx

 2kqk2I +
2N2

I kKk1kKk
1

|I|2
⌫2T 2A2

Kn2h

 2kqk2I +
2N2

I |I|
⌫2T 2A2

Kn
.

Using Cauchy Schwarz,
E
�

N2

I 1Ec |X�  E
�

N4

I |X
�

1
2 P (Ec|X)

1
2 .

Using Laplace transform formula, we easily show that NI has the law of a Poisson random variable
with parameter n

R T

0

q (Xs)1X
s

2Ids conditionally on X and

E
�

N4

I |X
�  ˜Cn4

⇣

kqkI,1T + (kqkI,1T )2 + (kqkI,1T )3 + (kqkI,1T )4
⌘

.
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We also have

P (Ec|X)  ˜C
|H|

n5 _ |H|5


˜C

n4

.

Integrating with respect to X and dividing by P (D (I, ⌫)), we find

E
�kq̂

ˆh � qk2I1Ec |D (I, ⌫)
�  ˜C

kqk2I
n4

+

˜C (K)

|I|
q

P

4

i=1

(kqk1,IT )
i

⌫2T 2n
. (4.28)

We obtain (4.9) combining (4.27) and (4.28).

8 Other proofs

8.1 Proof of Proposition 4.1
Under Assumption 4.1 (i), we can define a local time in the sense of the continuous semimartingale
Lx
t continuous in t, cadlag in x, see [26, Chapter 6] for more information. [26, Exercise 1.15] states

that for every measurable function h on [0, T ]⇥ ⌦⇥ R.
Z t

0

h (s,Xs) d < Xs, Xs >=

Z

R
da

Z t

0

h (s, a) dLa
s .

Let f be a measurable function on ⌦ ⇥ R. As �s � � > 0 for every s 2 [0, T ] almost surely and
d < Xs, Xs >= �2

sds, we have
Z t

0

f (Xs) ds =

Z

R
f (a) da

Z t

0

1

�2

s

dLa
s

and (i) is verified with lxT =

R T

0

1

�2
s

dLa
s . According to [4, Equation (III)� ], as

E
 

sup

0tT
|
Z t

0

�sdWs|+
Z T

0

|µs|ds
!

< 1,

E
✓

sup

x2R
Lx
T

◆

< 1

and because �s � � a.s., we obtain (ii). The continuity of x 7! lxT follows from [32, Example 2.2.3
(a)] and �2

s > 0 for all s 2 [0, T ].

Under Assumption 4.1 (ii), we have lxt = 1x2[0,t] for all x in R and t in [0, T ].

8.2 Proof of Proposition 4.3
Let k · kk denoting the Euclidian norm on Rk for k 2 N. We work on D (I, ⌫). We have

�
min

(B (x, h)) = inf

kvk
m

=1

vTB (x, h) v.
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Let v in Rm with kvkm = 1. Using the occupation time formula, we have

vTB (x, h) v =
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✓
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Z
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3
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Z
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�
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1
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2
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Thus, for all x 2 I, �
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✓
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�
min

✓

Z

R
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◆
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✓

Z

R
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✓

�
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✓
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R
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2
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◆
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✓

Z

R
U (u)UT
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◆◆

> 0

applying [30, Lemma 1.4] with K (u) = 1
0u�

2
and K (u) = 1��

2 u0

.
We have

|w
✓

x, h,
Xs � x

h

◆

1|Xs

�x
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|1

|  kB (x, h)�1 U

✓
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◆
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h
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◆
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�x

h
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 1

�
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1 +

1

(1!)

2

+

1
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2

+ ...+
1
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2

.

Then,
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✓

x, h,
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h

◆
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�x
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|1
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(4.29)
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with

AK =

K
min

min

⇣

�
min

⇣

R

R U (u)UT
(u)1

0<u<�
2
du
⌘

,�
min

⇣

R

R U (u)UT
(u)1��

2 <u<0

du
⌘⌘

2

.

8.3 Proof of Proposition 4.7
Lower bound. We suppose for simplicity that I = [0, 1]. As in [30, Section 2.6.1], we consider a
real number c

0

> 0 and

m = bc
0

n
1

2�+1 c+ 1, hn =

1

m
, xk =

k � 1

2

m
,

'k (x) = Lh�
nK

✓

x� xk

hn

◆

, k = 1, ..,m, x 2 [0, 1]

and
K (u) = a exp

✓

� 1

1� 4u2

◆

1|2u|1

, a > 0.

For a sufficient small, K 2 ⌃

�

�, 1

2

� \ C1
(R). According to [30, Equation (2.5)], the functions 'k

belongs to ⌃

�

�, L
2

, I
�

and the set of function

C = {q : q (x) = ⇢+
m
X

k=1

wk'k (x) , wk = 0, 1, x 2 I}

is included in ⇤⇢,� as  k have disjoint supports.

Let us suppose that m � 8. According to [30, Lemma 2.9], there exists a subset ˜C of C such that
for all fw = ⇢+

Pm
k=1

wk'k (x) 2 ˜C and all fw0
= ⇢+

Pm
k=1

w0
k'k (x) 2 ˜C, we have

m
X

k=1

(vk � v0k)
2 � m

8

and with
M � 2

m

8

where M + 1 = | ˜C|. Now, if we consider two elements fw and fw0 of ˜C, we have

kfw � fw0kI = Lh�+ 1
2 kKk

v

u

u

t

m
X

k=1

(wk � w0
k)

2

� Lh�+ 1
2 kKk

r

m

16

=

L

4

kKkh�
n =

L

4

kKkm�� .

Thus, if n � n⇤
=

⇣

7

c0

⌘

2�+1

, m � 8 and m�  (2c
0

)

� n
�

2�+1 . Hence,

kfw � fw0kI � 2sn (4.30)

179



4. Local polynomial estimation of a doubly stochastic Poisson process

with sn = An� �

2�+1 and A =

L
8

kKk (2c
0

)

�� .

The following part of the proof differs from [30]. ˜C can be written {q
0

, q
1

, ...qM}. Let us denote
by Pj the probability measure associated to the intensity nqj (Xs) , s 2 [0, T ]. We consider the
Kullback divergence between P

0

and Pj denoted by K (P
0

,Pj).
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✓
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using the fact that for x > �1, log (1 + x) � x
1+x . Continuing from (4.31), we have:
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We have according to (4.30) and (4.32)

(i) k�j � �kkI > 2sn for all j 6= k with sn = An� �

2�+1 and

(ii) 1
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PM
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We can conclude using [30, Theorem 2.5]:
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180



4. Local polynomial estimation of a doubly stochastic Poisson process

Upper bound. Let us assume that l  m. Let h in H. If q 2 ⌃ (L,�, I), the bias part of
E
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Using Proposition 4.2 and Taylor’s expansion, there exists (⌧s)
0sT such that the integral inside

the expectation in (4.34) is equal to, on the event D (I, ⌫),
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Hence, as |H|  ˜C (K, |I|)n where ˜C (K, |I|) is a constant depending only on K and |I|,
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In the case where l > m, we apply the Taylor expansion formula of the bias up to the order m
and we find that the bias is of oder n2m as q(m) is bounded. The convergence rate is then of order
n

�m

2m+1 .

8.4 Proof of Proposition 4.8

For simplicity, the proof is done in the case where ⇥ ⇢ R, that is when d = 1. The proof is similar
for any d � 1. In the following, let us use the following notation:

˜K (x, h, z) = w (x, h, z)K (z) , for x 2 I, h > 0, z 2 R.

As X is an ancillary statistic, one can work as if X was deterministic. We also work on the event
D (I, ⌫).
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The first term (4.36) has expectation 0 and variance equal to
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Using the occupation time formula, (4.39) is equal to
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Using the continuity properties of x 7! lxT from Proposition 4.1, several times the dominated
convergence theorem and the fact that inf

x2I
lxT � ⌫ > 0 and klT kI,1 < 1, we find that (4.39) is
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converges in probability to
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The last term corresponding to (4.38) is bounded by

MI |✓0 � ˜✓n|
Z T

0

˜K

✓

x, hn,
Xs � x

hn

◆

1X
s

2IdMs

Z T

0

˜K

✓

x, hn,
Xs � x

hn

◆

1X
s

2Ids

equal to Op

�

1

n

�

. Thus,

� 2

h
3
2
n

Z

I

Z T

0

˜K

✓

x, hn,
Xs � x

hn

◆

1X
s

2IdMs

Z T

0

˜K

✓

x, hn,
Xs � x

hn

◆

⇣

q (Xs)� g
ˆ✓
n

(Xs)

⌘

1X
s

2Ids

is equal to Op

�p
hn

�

and converges to 0 in probability. Finally,

n
p

hnMn

⇣

ˆ✓n
⌘ L!

v

u

u

t

2

Z

R

✓

Z

R
w (u)w (u+ p)K (u)K (u+ p) du

◆

2

dp

Z

I

(q (y))2

(lyT )
2

dyN (0, 1) .

Convergence of Mn

⇣

ˆ✓n
⌘

under H
1

. Under H
1

, the term (4.37) is bounded and then

|n
p

hnMn

⇣

ˆ✓n
⌘

| ! 1.

186



Bibliography

[1] Odd Aalen. Nonparametric inference for a family of counting processes. The Annals of
Statistics, pages 701–726, 1978.

[2] Yacine Ait-Sahalia. Testing continuous-time models of the spot interest rate. Review of
Financial studies, 9(2):385–426, 1996.

[3] Yacine Aït-Sahalia, Julio Cacho-Diaz, and Roger JA Laeven. Modeling financial contagion
using mutually exciting jump processes. Journal of Financial Economics, 117(3):585–606,
2015.

[4] Martin T Barlow and Marc Yor. Semi-martingale inequalities via the garsia-rodemich-rumsey
lemma, and applications to local times. Journal of functional Analysis, 49(2):198–229, 1982.

[5] Fred Espen Benth, Rüdiger Kiesel, and Anna Nazarova. A critical empirical study of three
electricity spot price models. Energy Economics, 34(5):1589–1616, 2012.

[6] Fred Espen Benth, Nina Lange, and Tor Age Myklebust. Pricing and hedging quanto options
in energy markets. Journal of Energy Markets, 2015.
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Chapter 5

A joint model for electricity spot
prices and wind penetration with
dependence in the extremes

Abstract

This article analyses the dependence between electricity spot prices and the wind penetration index
in the European energy market. The wind penetration index is given by the ratio of the wind energy
production divided by the total electricity production. We find that the wind penetration has an
impact on the intensity of the spike occurrences in the electricity prices, and we formulate a joint
model for electricity prices and wind penetration and calibrate it to recent data. We then use the
new joint model in an application where we assess the impact of the modelling assumptions on the
potential income of an electricity distributor who buys electricity from a wind farm operator.
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1 Introduction
The trend to increase renewable energy production all over the world with the possibility of phasing
out conventional energy sources while at the same time ensuring reliability of energy networks
constitutes one of the key challenges of modern societies. Due to their high variability renewable
sources of energy tend to be more difficult to predict and for instance their precise impact on
electricity prices is far from being understood. The recent literature presents various attempts to
model and characterise the impact of wind energy production on electricity prices, see for instance
[9], [10], [5] and [11] for some recent accounts. In these studies, wind is often considered as an
exogenous variable for the electricity price. However, for many applications, one of which will
be presented in this article, we in fact need a joint model for electricity prices and wind energy
generation (and possibly other sources of electricity as well). Hence the goal of this article is to
formulate and estimate a joint model for electricity spot prices and wind energy production, more
precisely wind penetration, which is the ratio between wind energy production and total energy
production.
Our modelling idea which is guided by our statistical analysis rests on the hypothesis that increasing
wind penetration typically results in lower electricity spot prices and that high wind penetration
might increase the frequency at which negative price spikes occur. In order to formalise these ideas
we draw on new statistical methodology for estimating jump intensities and mean reversion rates
in mean-reverting jump processes, which has been developped in Chapter 3 and Chapter 4.
The outline of the remainder of this article is as follows. Section 2 gives a detailed description of
the data and data sources used in our statistical analysis. The key contributions are then collected
in Section 3, where we introduce and estimate a joint model for hourly electricity spot prices from
Germany and Austria and the corresponding wind penetration index. Finally, in Section 4, we take
the point of view of an electricity distributor and we ask the question of how his estimated income
of a contract which allows him to buy a certain amount of electricity from a wind farm operator
depends on the dependence modelling between the electricity spot price and the wind penetration
index.

2 Data description and exploratory study

2.1 Data description
In this article we analyse German and Austrian wind energy production data, electricity price data
and load data covering a period from the 1

st of January 2012 to the 31

st of December 2016. The
data have been downloaded from the following website
https://data.open-power-system-data.org/. The precise data sets considered are the following
ones:

• The German and Austrian hourly electricity spot prices (from the day-ahead auction) from
the 1

st of January 2012 to the 31

st December 2016,

• the German and Austrian hourly load data from the 1st of January 2012 to the 31st December
2016,

• the German and Austrian hourly wind energy production data from the 1

st of January 2012
to the 31

st December 2016. Note that the data has been aggregated over the four German
transmission system operators 50 Hertz Transmission, Amprion, Tennet TSO and EnBW
Transportnetze and the Austrian transmission system operator APG.
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Throughout this article, we will be analysing and modelling the hourly data from the day-ahead
market rather than the daily data, which is often done in the literature. The hourly data are
revealed in the daily auction at the same time, but it has been found in e.g. [7] that when taking
seasonality into account, they can be successfully modelled by classical time series models at an
hourly frequency. An alternative approach, which we leave for future research, would be to model
the hourly data as a 24-dimensional vector of daily data, as it has for instance been done by e.g. [8]
in the discrete-time setting and by [19] in the continuous-time setting.
Motivated by the work by [9] we use our data to compute the German/Austrian wind penetration
index, defined as the ratio of the wind energy production and the electricity load. In [9] the authors
found a strong association between the wind penetration index and the corresponding electricity
prices. Figure 5.1a and Figure 5.1b depict the time series of the German/Austrian spot price and the
wind penetration, respectively. We observe that the wind penetration index takes values between
zero and one, except for eleven values in 2016 when it exceeds one. This can happen because of
the interconnection between the transmission networks of the various European countries. Since
the total electricity production can also be used in other countries in Europe, a wind penetration
index exceeding one tells us that in these particular hours all of the German/Austrian electricity
came from wind energy.

2.2 Exploratory data analysis

Next, we aim to study the relation between the prices and the wind penetration index. To this
end, let us look at Figure 5.1c. Here we observe that high negative values of spot prices happen
when the wind penetration crosses a certain threshold. More precisely, Figure 5.1d reveals that
high negative price returns appear when the wind penetration is over 0.4. Next, Figures 5.1e and
5.1f depict the returns of the spot price against the returns of the wind penetration index, where
extreme values have been removed in the latter picture. (The procedure of how the extremes were
removed is described below.) The corresponding correlation coefficients for the data in Figures
5.1e and 5.1f are given by �0.125 and �0.148, respectively. We want to investigate now whether
or not there is any association between wind penetration and extreme spot returns. We recall
from Figure 5.1a that both positive and negative spikes appear in the data. Hence when we are
talking about extreme values in the following we mean the absolute value of the corresponding spot
returns. Note that as a positive spike (resp. negative) leads to a negative (resp. positive) extreme
return due to the high mean reversion, we do not consider to study negative and positive extreme
values separately: in this case, the negative (resp. positive) extreme value is caused by the positive
(resp. negative) one and not by the wind.

In order to identify the extreme values in the spot returns, we establish the QQ-Plot of the spot
returns against a normal law: we obtain Figure 5.2a. Removing the values having an absolute value
greater than 20, we obtain the QQ-Plot in Figure 5.2b. This new plot shows a better correspon-
dence with the normal distribution and we consider the returns of the spot having an absolute
value greater than 20, corresponding to the quantile of order 99.1%, as extreme values. Figure 5.3
represents the extreme values of the spot return against the wind penetration.
We remark that our procedure of filtering out extreme values can be regarded as a hard thresholding
approach, whereas one could also use more sophisticated techniques based on methods from extreme
value theory as in [12; 19].

In order to study the impact of wind penetration on spot returns extreme values, one indicator,
omitting the time dependency aspect, is the quantity P (|R| > 20|WP > x) for a given x where R
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(a) Spot price. (b) Wind penetration.

(c) Spot price against wind penetration. (d) Spot returns against wind penetration.

(e) Spot returns against wind penetration
returns.

(f) Non extreme spot returns against wind
penetration returns.

Figure 5.1: Hourly German spot price and wind penetration index.

corresponds to the return of the spot and WP is the wind penetration. Figure 5.4 corresponds to
the function x ! P (|R| > 20|WP > x). For x = 0, the function takes value 0.82% where it reaches
level of order 2% when x increases: the probability to have an extreme value in the time series of
the spot price is higher with higher values of wind penetration; this dependence has to be taken
into account if we want to model the joint distribution of the spot price and the wind penetration.
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(a) QQ-Plot with all the values. (b) QQ-Plot without extremal returns.

Figure 5.2: QQ-Plot of spot returns against a normal law, with and without certain extreme values.

Figure 5.3: Returns of the spot price against the the wind penetration with extreme spot returns.

3 A joint model for the electricity spot price and the wind
penetration index

The main contribution of this article is that we present and estimate a joint stochastic model for
the hourly electricity spot price (denoted by S) and the corresponding wind penetration index
(denoted by WP ). We will now proceed by explaining step-by-step the stochastic model and the
corresponding estimation procedure.
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Figure 5.4: Probability to have an extreme returns conditionally on wind production greater than
a certain threshold.

3.1 Model for the electricity spot price
Let (St)

0tT denote the electricity spot price. Motivated by our exploratory study, we decompose
S in the following way:

St = �

1,t +X
1,t + Yt

where �

1

is a seasonality function, X represents a continuous stochastic part of the spot price and
Y represents a spike part. The process �

1

+X
1

is assumed to be a continuous semi-martingale.

Modelling the spike part Y

While Section 2.2 gives statistical evidence of a dependence in the extreme values of electricity
spot returns and wind penetration, in this section, we add the temporal aspect to our analysis. We
note that spikes are characteristic of electricity prices and correspond to extreme values in the time
series. We are interested in studying the relation between the intensity of the spike occurrence and
the wind penetration index. To this end, we start by modelling the spikes by a doubly stochastic
and mean-reverting Poisson-type process. We first need to identify the times of the spikes, and
next the intensity of the doubly stochastic Poisson process is studied as a function of the wind
penetration. A spike can be modelled as a jump going back to 0 with a strong mean reversion and
with a typically stochastic size. Thus, we can model the spike part of the spot Y by

Yt =

Z t

0

Z

R
xe��(t�s)p (dt, dx) , (5.1)

where p (dt, dx) is a Poisson measure with compensator q = �tdt ⌦ ⌫ (dx), � > 0 is the speed of
the mean reversion and ⌫ is a finite measure satisfying ⌫({0}) = 0 and

R

R x2⌫ (dx) < 1. Y is the
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unique solution of the stochastic differential equation

dYt = ��Ytdt+ xp (dt, dx) ,

with initial condition Y
0

= 0.

Estimation of the times of the spikes. Chapter 3 establishes a method for estimating the
arrival times of the jumps in the above setting. We remark that in Chapter 3, the Poisson measure
is not stochastic. However, adding the assumption that � is bounded below and above, the result
can easily be extended to the stochastic case using the same arguments as in the original proof.
Let us briefly recall the key ideas: Suppose the price S is observed over the time interval [0, T ] for
some T > 0 at discrete times ti = i�n, for i = 0, 1, . . . , bT/�nc. Here �n > 0 and �n ! 0 as
n ! 1. Note that the asymptotic framework, contrarily to classical high-frequency statistics, is
not limited to �n ! 0; in Chapter 3 an asymptotic is added on �, � = �n ! 1 when n ! 1, and
on �, �s = �s,n = ln˜�s and ln ! 1 when n ! 1; the case when ln is bounded is also considered,
but we need it to go to 1 for the estimation procedure and statistical test of the intensity function
described in the following. The following assumptions are needed in order to have a consistent
framework with the data:

(i) �n�n . 1, otherwise a jump can happen and go back to 0 in a period �n and is not observed,

(ii) l
n

�
n

. 1, insuring the stability of Yt by taking the frequency of appearance of jumps not large
compared to the speed of mean reversion,

(iii) l2n�n ! 0, in order to have at most one jump between two observations.

The method for identifying the jumps is based on the use of a threshold of the form C�

$
n for the

returns, where C > 0 and $ 2 (0, 0.5) are constants which we specify below. This method is classic
for the estimation of jumps in jump diffusion models, see [2, Section 10.4] for instance, and has
been adapted to the spike case in Chapter 3. Indeed, as the mean reversion is large and can be of
the size of a jump, we need to add the condition that �

n
i S�

n
i+1

S < 0, where �

n
i S = St

i

� St
i�1 .

It indicates that after a jump (in the interval ((i� 1)�n, i�n]), the subsequent increment will be
of the opposite sign of the jump. We choose a threshold equals to 5�̄�0.49

n with �̄2 the multipower
variation estimator of the volatility with order 20; the reader can refer to [3] and [17] for more
details about multipower variation. The particular choice of our threshold is motivated by the
following findings in the literature: First, both [1], see Section 5.3, and [2], see Section 6.2.2, p. 187,
recommend using a constant of the form C =

˜C�̄, where ˜C is a constant and �̄ is an ‘average’ of
the volatility. Moreover they advise choosing $ 2 (0, 0.5) close to 0.5. In addition, [1] also suggests
choosing ˜C between 3 and 5, see also [14] ( ˜C = 3) and [15] ( ˜C = 4).
In order to avoid too much change in volatility, the data are segmented in time series of one year
in order to identify the jumps. That means that �̄ does not stay constant over the entire sample,
but just over each of the five years. For the considered data, we find an estimated number of 114
jumps, 30 of which are negative and 84 positive. Figure 5.5a corresponds to the spot price time
series with the times of the jumps marked by upward triangles for positive jumps and by downward
triangles for negative jumps.

Remark 5.1. The multipower variation estimator of the volatility is chosen with order 20 which
is high compared to the orders typically chosen in the literature. Contrarily to classical jumps,
spikes have a strong mean reversion. Using for instance bipower variation in such a scenario is not
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suitable because the impact of the jump is not diminished by the increments that follows. One also
needs to compensate the effect of the mean reversion, that can be present in two or three increments
following the jumps. Moreover, some spikes have a large amplitude, and then have a strong impact
on the value of the volatility estimator if the order is low. Having 8760 observations per year allows
us to choose an order 20 with a good estimation quality. Some simulations have been performed
on simple models such as an arithmetic or geometric Brownian motions plus spikes and order 20
appears to be a good choice. The choice of 20 corresponds to a thresholds around 20 Euros per MWh
per year, corresponding to the one used to select the extreme values in the quantile-quantile plot.
Note that we found that the choice of the order of the multipower does not influence the results
significantly in any case. Decreasing the order of the estimator leads to higher values for volatility
estimator and then also for the threshold. A threshold of 10 leads to a detection of 61 positive spikes
and 27 negative spikes. The number of negative spikes, which is our key object of interest, does
not change much. Also, the results concerning the dependence with the wind penetration are not
affected.

(a) Spot. (b) Wind penetration.

Figure 5.5: Jumps in German spot price and wind penetration time series.

Dependence of the spike intensity on the wind penetration index. Figure 5.5b depicts
the positive and negative jump times of the spot price superimposed on the time series plot of
the wind penetration index. We observe that negative jumps appear more often when the wind
penetration is high, whereas positive jumps also appear for small values of wind penetration. In
the following, we will separate the positive and the negative jumps in order to study the impact
of the wind penetration on each type of jumps independently.
To this end, let us consider two point processes corresponding to the positive and the negative
jumps, respectively. We want to study the dependence between the point processes and the wind
penetration. In order to simplify the exposition, we do not use superscripts for the two differ-
ent doubly stochastic Poisson processes we are considering, but just the generic N for the doubly
stochastic Poisson process governing either the positive or the negative spikes. The doubly stochas-
tic Poisson process is entirely defined by its intensity process denoted by �n =

⇣

ln ˜�t
⌘

0tT
. Since

we are interested in studying the dependence between the intensity �n and the wind penetration,
we assume a functional relationship of the form:

˜�t = q (WPt) , t 2 [0, T ] ,
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where q : R 7! (0,1) is a deterministic function. We remark that conditional on the wind pene-
tration index, N is an inhomogeneous Poisson process. Our goal is to estimate the function q on a
given time interval I where wind penetration data is available.

In the following, let us assume that every jump has been identified meaning that we have an
estimated sample path of N . In order to estimate the function q, we use a discretised version of
the classical Nadaraya-Watson estimator defined, for h > 0, by

q̂h (x) =
1

ln

Pn
i=1

Kh

�

WPt
i�1 � x

�

1WP
t

i�12I�
n
i N

�n

Pn
j=1

Kh

�

WPt
j�1 � x

�

1WP
t

j�12I

,

where �

n
i N denote the increments of the estimated path of N and where

Kh (x) = h�1K
⇣x

h

⌘

,

and K a kernel function. In order to estimate the optimal bandwidth, that is the one minimising

E
�kq̂h � qk2

2,I

�

= E
✓

Z

I

(q̂h (x)� q (x))2 dx

◆

,

Chapter 4 proposes to choose the bandwidth as

ˆh = argmin
h2H

kq̂h � q̂h
min

k2
2,I + pen↵ (h) ,

where
pen↵ (h) = ↵ ˆVh � ˆVh � ˆVhmin + 2

ˆVh,hmin , ↵ > 0,

ˆVh =

1

l2n

Z

I

Pn
i=1

K2

h

�

WPt
i�1 � x

�

1WP
t

i�12I�
n
i N

�

2

n

⇣

Pn
j=1

Kh

�

WPt
j�1 � x

�

1WP
t

j�12I

⌘

2

dx,

ˆVh,hmin =

1

l2n

Z

I

Pn
i=1

Kh

�

WPt
i�1 � x

�

Khmin

�

WPt
i�1 � x

�

1WP
t

i�12I�
n
i N

�

2

n

Pn
j=1

Kh

�

WPt
j�1 � x

�

1WP
t

j�12I

Pn
k=1

Khmin

�

WPt
k�1 � x

�

1WP
t

k�1
2I

dx,

and H is a finite subset of (0,1), hmin = minH � kKk1kKk1

l
n

. Choosing this bandwidth leads to
an oracle inequality, justifying this particular choice. In Chapter 4 it is shown that the bandwidth
selection procedure can be applied more generally to local polynomial estimators of the intensity
function; here we consider the particular case of kernel estimator corresponding to a polynomial
of order 0. This method is similar to the one used by [13] for the kernel estimation of a density,
which is an extension of the Goldenshluger-Lepski method [6].
We remark that Chapter 4 is casted in a continuous-time framework, whereas our estimation is done
in discrete time. However, since �n ! 0 and T is large, the resulting approximation error which
is of order �n is asymptotically negligible and the processes can be assumed to be continuously
observed. This approximation is justified by the assumption l2n�n ! 0.
In the following, let us consider the Epanechnikov kernel K (u) =

3

4

�

1� u2

�

1|u|1

. Also, the
parameter ↵ is set to 1, leading to an optimal oracle inequality. Choosing I = [0.05, 0.95], H =

{h = h
min

+ 0.01 ⇥ i, i 2 N, h  0.4}, h
min

= 0.0225 for negative jumps and h
min

= 0.0089
for positive ones, the optimal bandwidths given by this method are ˆh = 0.25 for negative jumps
and ˆh = 0.30 for positive ones. The optimal estimator q̂

ˆh for negative jumps is given in Figure
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5.6a and the one for positive jumps in Figure 5.6b. Chapter 4 proposes a method to test if the
intensity function belongs to some parametric function. Using this method, we test if the intensity
function q is constant with respect to the wind penetration. The test is rejected for negative jumps
at level 95% (with p-value equal to 0) but is not for positive jumps (with p-value equal to 0.47).
These results confirm our intuition: the wind penetration index has an impact on the probability
to have a negative spike but not on the probability to have a negative one. High wind penetration
implies that other means of production are not used to satisfy the demand, and renewable energies
constitute the cheapest means of energy production. Because of the non-storability of electricity, a
producer owning a plant not used to satisfy the demand needs to pause it. Sometimes, it is cheaper
for him to pay someone to consume the produced electricity rather than stop and restart his plant.
This leads to negative jumps and negative prices for the electricity spot price.

(a) For negative jumps. (b) For positive jumps.

Figure 5.6: Kernel estimators of the intensity of the spot spikes as a function the wind penetration.

Estimating the speed of mean reversion of Y . Note that Chapter 3 presents a method for
estimating the speed of mean reversion of the spikes given by � = �n, assuming that �n is large
enough. The parameter �n is estimated using the slope of the process after a jump, which is of
order K

�

1� e��
n

�

n

�

with K being the size of the jump. We need to introduce some notation
before we are able to define the estimator of �n: Let us denote by

In (1) < In (2) < ... < In
⇣

ˆ�n
⌘

the index in {1, ..., n � 1} satisfying |�n
i S| > 5�̂�0.49

n and �

n
i S�

n
i+1

S < 0, corresponding to the
estimator of the time index of the jumps, and by ˆ�n an estimator of NT . The estimator of �n is
given by

˜�n =

�1

�n
log

0

@

0

@

1 +

Pb�
n

q=1

sgn(�n
I
n

(q)S)
⇣

�

n
I
n

(q)+1

S + 2�n

Pq�1

j=1

�

n
I
n

(q)S
⌘

Pb�
n

q=1

|�n
I
n

(q)S|
1b�

n

>0

1

A _�n

1

A .

The term 2�n

Pq�1

j=1

�

n
I
n

(q)S is a bias correction. Under the assumption that �n
p
�nln ! 1 and

some other technical assumptions given in Chapter 3, our estimator is consistent:

˜�n � �n
�n

p! 0.
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As �n is large, we consider the relative error ˜�
n

��
n

�
n

instead of ˜�n � �n. We find ˜�n =

0.88
�

n

. As
for the jump detection, we note that while the results of Chapter 3 consider a constant �, the
proofs of the consistency of the estimator (and possibly also of the central limit theorem) can
be generalised to the case of a stochastic intensity, provided the stochastic intensity is bounded
below and above. An estimator of the size of the jth jump �ST

j

is given by �

n
I
n

(j)S. However,
as �n is large, this estimator is biased: indeed, as noticed in Chapter 3, �

n
I
n

(j)S is equivalent

to e
��

n

⇣
b T

j

�
n

c�
n

+�

n

�T
j

⌘

�ST
j

when �n is small. In the case when �n�n is not small, the term
before the jump size is then not closed to one: as Tj can not be estimated because of the discrete
observations, we can not estimate this bias term to deduce the exact jump size �ST

j

. Nevertheless,
as the number of jumps is low, we do not consider a model for the jump sizes and keep the empirical
one, knowing that there is a bias.

Modelling the seasonality function �

1

The seasonality �

1

is assumed to be of the form

�

1,t = c
0,1 + c

1,1t+ c
2,1t

2

+ c
3,1 cos

✓

⌧
0,1 + 2⇡t

365⇥ 24

◆

+ c
4,1 cos

✓

⌧
1,1 + 2⇡t

7⇥ 24

◆

+ c
5,1 cos

✓

⌧
2,1 + 2⇡t

24

◆

.

(5.2)
In order to estimate the seasonality function, we start by removing spot values corresponding to
spikes and jumps. Values such that |�n

i S| � 5�̄�0.49
n , which are not always spikes, are removed; they

correspond to extreme value returns. We also remove ten values following an extreme value, that
insures for a spike to have reverted to low value. After this filtering, a least square minimisation
is done. Parameters and standard errors are provided in Table 5.1. The function �

1

and the
deseasonalised and filtered spot are depicted in Figures 5.7a and 5.7b, respectively.

c
0,1 c

1,1 c
2,1 c

3,1 c
4,1 c

5,1

Estimate 45.94 �8.2⇥ 10

�4

1.0⇥ 10

�8 �3.85 �6.00 �6.10
Standard error 0.16 1.7⇥ 10

�5

3.8⇥ 10

�10

7.6⇥ 10

�2

7.5⇥ 10

�2

7.6⇥ 10

�2

⌧
0,1 ⌧

1,1 ⌧
2,1

Estimate 36744.54 1032.51 132.97
Standard error 172.85 2.12 0.30

Table 5.1: Estimated parameters of �
1

.

Modelling the continuous stochastic part X
1

In a discrete time framework, X
1

is often modelled by an ARMA process. As for the deseasonalis-
ing, we remove the extreme values and ten values thereafter. The autocorrelation and the partial
autocorrelation of the deseasonalised spot process without the extreme values are given in Figure
5.8a and Figure 5.8b. In a first instance, we choose to model X in a discrete-time framework by a
autoregressive process of order 24:

X
1,t = Q

1

(D)X
1,t + ✏

1,t,
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(a) Seasonality function of the spot price. (b) Deseasonalised and filtered spot price.

Figure 5.7: Seasonality function and deseasonalised spot price.

where D is the lag operator DX
1,t = X

1,t�1

and Q
1

(D) =

P

24

i=1

ai,1Di is a polynomial of degree
24 and ✏

1,t is a normal random variable with mean 0 and variance �2

1

.

(a) Autocorrelation function of the desea-
sonalized and filtered spot price.

(b) Partial autocorrelation function of the
deseasonalised and filtered spot price.

Figure 5.8: Autocorrelation and partial autocorrelation of the deseasonalised and filtered spot price.

The parameters estimated by exact likelihood maximisation are given in Table 5.2 together with
their standard errors. The autocorrelation function and the partial autocorrelation function of the
residuals are given in Figures 5.9a and 5.9b, respectively. The parameters corresponding to the
lags 3, 5, 6, 10, 15, 19, 20 and 22 are not significant at level 95% but fixing these parameters to 0
leads to non-convergence of the maximisation of the likelihood. Hence all the parameters are then
considered. One observes that there remains a significant autocorrelation at lags 24 and 48, due to
a seasonal (diurnal) effect. This seasonal effect is considered in [7] where a seasonal autoregressive
process is used to model the spot price and fits better to the data. However, considering a seasonal
autoregressive process does not allow to have an equivalent stationary model in continuous time.
Furthermore, contrarily to [7], we choose to not consider the fractional integrated part correspond-
ing to a long term memory; indeed, it would consist in considering a fractional Brownian motion
in an equivalent continuous-time setting and then to leave the semi-martingale framework.
In a continuous-time framework, an equivalent model is a continuous autoregressive process (CAR),
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Parameter Value Standard error CAR parameter (↵i,1)
a
1,1 1.19 0.004 1.95

a
2,1 -0.35 0.006 38.77

a
3,1 -0.0098 0.007 67.71

a
4,1 0.027 0.007 631.48

a
5,1 -0.013 0.008 983.30

a
6,1 0.0074 0.008 5649.48

a
7,1 0.035 0.008 7804.14

a
8,1 -0.040 0.007 30499.38

a
9,1 0.048 0.007 37143.97

a
10,1 -0.0013 0.007 102868.84

a
11,1 0.081 0.007 109599.10

a
12,1 -0.080 0.007 217258.32

a
13,1 0.078 0.007 200565.84

a
14,1 -0.080 0.007 280634.70

a
15,1 -0.0084 0.007 221774.15

a
16,1 -0.030 0.008 210406.08

a
17,1 0.034 0.008 140047.42

a
18,1 -0.038 0.008 83291.14

a
19,1 0.0035 0.008 45551.82

a
20,1 0.0019 0.008 14618.89

a
21,1 -0.030 0.008 6246.01

a
22,1 0.0082 0.007 789.80

a
23,1 0.27 0.007 200.64

a
24,1 -0.14 0.004 2.71
�2

1

13.35 0.057 13.35

Table 5.2: Estimated parameters of autoregressive process with order 24 and equivalent CAR pa-
rameters on the filtered deseasonalised spot price time series.
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(a) Autocorrelation function of the spot
price residuals.

(b) Partial autocorrelation function of the
spot price residuals.

Figure 5.9: Autocorrelation and partial autocorrelation of the spot price residuals.

see for instance Chapter 4 in [4]. The dynamics of X
1
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In order to obtain the parameters of the CAR process, one can infer them from the parameters
of the discrete AR process using the exact discretisation of the CAR process. More details about
the equivalence between those parameters are given in [4, Chapter 4]. The vector (↵i,1)

1i24

corresponding to the CAR parameters is given in Table 5.2.

3.2 Model for the wind penetration index
As we have seen in Section 2.1, the wind penetration index takes values between 0 and 1, except
for a small number of values exceeding 1. As the wind penetration take values between 0 and 1,
we write it in the form

WPt = expit (�
2,t +X

2,t) ,

with expit (x) = 1

1+e�x

, for x 2 R. The function �

2

is a seasonality function and X
2

a stochastic

process with mean 0. The process X
2

+ �

2

is equal to logit (WPt) with logit (x) = log

⇣

x
1�x

⌘

, for
x 2 (0, 1) and is observable. As for the spot price, the seasonality function is assumed to be of the
form

�

2,t = c
0,2 + c

1,2t+ c
2,2t

2

+ c
3,2 cos

✓

⌧
0,2 + 2⇡t

365⇥ 24

◆

+ c
4,2 cos

✓

⌧
1,2 + 2⇡t

7⇥ 24

◆

+ c
5,2 cos

✓

⌧
2,2 + 2⇡t

24

◆

,

(5.3)
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and the parameters are estimated by a least square minimisation. The parameter estimates are
given in Table 5.3. The seasonality function and the deseasonalised time series X

2

are shown in
Figures 5.10a and 5.10b, respectively.

c
0,2 c

1,2 c
2,2 c

3,2 c
4,2 c

5,2

Estimate �1.73 �1.06⇥ 10

�5

8.82⇥ 10

�10

0.52 0.10 0.31
Standard error 0.015 1.5⇥ 10

�6

3.4⇥ 10

�11

6.9⇥ 10

�3

6.9⇥ 10

�3

6.9⇥ 10

�3

⌧
0,2 ⌧

1,2 ⌧
2,2

Estimate �2203.66 0.18 �94.62
Standard error 118.37 11.18 0.54

Table 5.3: Estimated parameters of �
2

.

(a) Seasonality function of the logit wind
penetration. (b) Deseasonalised logit wind penetration.

Figure 5.10: Seasonality function and deseasonalised logit wind penetration.

As for the spot price, let us first consider a discrete-time modelling setting. The autocorrelation
function and the partial autocorrelation function, see Figures 5.11a and 5.11b, respectively, suggest
that one suitable model in a discrete-time framework is an autoregressive process of the form:

X
2,t = Q

2

(D)X
2,t + ✏

2,t,

where Q
2

(D) =

P

24

i=1

ai,2Di is a polynomial of degree 24 and ✏
2,t a normal random variable with

mean 0 and variance �2

2

. The parameters estimated with exact likelihood maximisation are given
in Table 5.4. The parameters corresponding to lags 8, 15, 16, 17 and 18 are not significant, but as
for the spot modelling, fixing them to 0 leads to non-convergence of the likelihood maximisation.
The autocorrelation function and the partial autocorrelation function of the residuals are given in
Figures 5.12a and 5.12b, respectively. We note that a significant autocorrelation at lag 24 remains
due to a seasonal component, but we do not take this issue further for the same reasons as in the
spot price model.
As for the spot modelling, the deseasonalised logit wind penetration X

2

is modelled by a CAR
process of order 24. The dynamics of X

2

is modelled by

X
2

= bTX2,
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Parameter Value Standard error CAR parameter (↵i,1)
a
1,2 1.49 0.001 1.86

a
2,2 -0.54 0.002 38.97

a
3,2 -0.025 0.004 63.16

a
4,2 0.023 0.004 636.17

a
5,2 -0.031 0.003 894.05

a
6,2 0.036 0.003 5687.46

a
7,2 -0.017 0.004 6869.22

a
8,2 0.0028 0.006 30590.17

a
9,2 -0.017 0.005 31372.93

a
10,2 0.044 0.002 102444.15

a
11,2 -0.0162 0.002 87798.34

a
12,2 -0.084 0.004 213952.50

a
13,2 0.097 0.005 149955.10

a
14,2 -0.025 0.006 271808.63

a
15,2 -0.0090 0.007 151212.31

a
16,2 -0.0063 0.008 198823.20

a
17,2 0.034 0.008 84071.24

a
18,2 -0.010 0.008 75735.70

a
19,2 -0.018 0.008 22726.15

a
20,2 0.018 0.008 12434.60

a
21,2 -0.031 0.007 2319.68

a
22,2 0.031 0.006 570.60

a
23,2 0.16 0.004 45.37

a
24,2 -0.16 0.002 1.33
�2

2

0.020 0.000032 0.020

Table 5.4: Estimated parameters of autoregressive process with order 24 and equivalent CAR pa-
rameters on the deseasonalised logit wind penetration time series.
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(a) Autocorrelation function of the desea-
sonalised logit wind penetration.

(b) Partial autocorrelation function of the
deseasonalised logit wind penetration.

Figure 5.11: Autocorrelation and partial autocorrelation of the deseasonalised logit wind penetration.

(a) Autocorrelation function of the logit
wind penetration residuals.

(b) Partial autocorrelation function of the
logit wind penetration residuals.

dX2,t = A2X2,tdt+ e�
2

dW
2,t,
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The parameters (↵i,2)
1i24

are given in Table 5.4 using the discretisation of the CAR process.

3.3 Dependence modelling
In order to make the joint model between the spot electricity price and the wind penetration index
complete, we need to specify the dependence between the two components. Here we proceed by
modelling the dependence between the spot price and the wind penetration by four parameters.
The first parameter ⇢ models a linear dependence between the continuous part of the spot and the
wind penetration which is (mildly) observed in Section 2.2. The three other parameters are used
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to model the intensity of the spike process as a two-valued function. This modelling is motivated
by the kernel estimator computed in Section 3.1, where the test investigating whether or not the
intensity of negative spikes is a constant function of the wind penetration was rejected. In the
following, we will now assume that the spike process Y consists in fact of the sum of two (possibly
doubly stochastic) independent Poisson-type processes: one for the negative spikes and one for the
positive ones, both having the same mean reversion parameter �. Concerning the negative spikes,
we observe that the intensity of negative spikes increases with the wind penetration. One simple
way to take this dependence into account is to consider a regime-switching intensity function taking
two different values depending on the value of the wind penetration, that is by a function of the
form � : t 7! ��,min1WP

t

WP
thre

+ ��,max1WP
t

>WP
thre

. There are two states: one state with a
low intensity if the wind penetration is under a certain threshold WPthre, a second state where
the intensity is higher. This modelling is similar in spirit to the one proposed by [18], where two
states were considered for the driven Lévy process: one for low wind penetration values and one for
high wind penetration, where the distribution of the driving Lévy process in the regime with high
wind penetration featured larger skewness and fatter tails than the one in the low wind penetration
setting. Concerning the positive jumps, we choose to model the intensity by a constant function
� : t 7! �

+

, corresponding to a simple Poisson process.

The parameters ⇢ are estimated by the empirical correlation between the spot residuals and the
wind residuals. To estimate the parameters ��,min, ��,max, and WPthre, we minimise the L

2

distance on I between the function � : t 7! ��,min1WP
t

WP
thre

+ ��,max1WP
t

>WP
thre

and the
kernel estimator given in Figure 5.13. The parametric intensity function as a function of the wind
penetration is given in Figure 5.13. An estimator of the intensity of the positive spikes is given by
the number of positive jumps, which is equal to 84. The parameters for the dependence are given
in Table 5.5.

Parameters ⇢ ��,min ��,max WPthre �
+

Estimate -0.082 44.10 305.10 0.6773 84

Table 5.5: Parameters for the dependence between the electricity spot price and the wind penetration
index.

4 Application: Impact of the dependence between electric-
ity spot prices and wind penetration on the income of an
electricity distributor

In order to round off this article we consider an application where a joint model for electricity spot
prices and wind penetration is needed. To this end, let us take the point of view of an electricity
distributor. This distributor settles a contract with a wind farm that produces Q% of the German
and Austrian wind production, assuming that the wind in the location considered resembles the one
described by the aggregated wind data which is available to us. The distributor buys the electricity
from the wind farm at a fixed price K, say. Its income on this contract over a time period [0, T ] is
then equal to

P = Q

Z T

0

(St �K)WPtCtdt,
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Figure 5.13: Parametric estimator of the intensity of the negative spot spikes as a function the
wind penetration.

where Ct is the German and Austrian load at each time t. As we want to study the impact of the
wind penetration on the spot prices, let us assume that the load Ct is deterministic, knowing this
assumption is rather strong. Indeed, the spot price and the load are in fact dependent, but only
the dependence arising through the seasonality is considered in the following.

We are interested in the extreme values in the prices and their impact on the distributor’s income.
We shall consider two risk measures which are widely used in practice: the value at risk (VaR)
and the expected shortfall (ES). The value at risk at level ↵ 2 (0, 1), denoted by V aR↵ (P )

corresponds to the maximal loss given the confidence level 1�↵, that is the quantile of order ↵ of
the distribution of P . The expected shortfall at level ↵ 2 (0, 1) corresponds to the expected loss
in the tail distribution and is defined by E (P |P  V aR↵ (P )). We choose to work with the levels
↵ = 95% and ↵ = 99% that are often considered in finance.

In order to study the impact of the dependencies between electricity spot prices and wind penetra-
tion, we consider two models: The first one is the one considered in Section 3 where the intensity
of the negative electricity spot spikes can take two values depending on the wind penetration level.
It is referred to as the two-state model in the following. The second one differs by considering a
constant intensity function for the negative electricity spot prices and is referred to as the one-state
model. The value of the estimated intensity in the second model is equal to 30.

Let us assume that the initial time is the 1

st of January 2017 and that the maturity T is equal
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to the 31

st of December 2017. The consumption is chosen as its seasonality during the year 2017:
this seasonality is estimated using German hourly load data between the 1st of January 2012 and
the 31st December 2016 using the same parametric form as �

1

and �

2

. The spot and the wind
are simulated using the two different models. Q is chosen as 1% and the strike to be 30. Results
for the different risk measures are given in Table 5.6. These values are computed with the Monte
Carlo method using N = 100, 000 simulated paths. The confidence interval for the different risk
measures is given at level 95%. The confidence intervals for the value at risk and the expected
shortfall are computed using bootstrap, with M = 100, 000 new samples. The bootstrap method
consists of randomly drawing M new samples of size N from the simulated one, using the empirical
distribution function as the probability measure, and to compute the different quantities we are
interested in, here the risk measures, for each sample. We then obtain M values for these quantities
and the confidence interval for these quantities at level 95% is defined by the values between the
quantile of order 2.5% and the quantile of order 97.5% of these M values. The reader can refer to
[16], see Chapter 23, p. 326, for more details about the bootstrap method.

Model One-state Two-states
Expectation [742451.32, 754842.31] [642085.23, 654479.20]
VaR 95% [�906630.39,�880902.99] [�1009660.00,�978858.45]
VaR 99% [�1596797.78,�1553512.84] [�1697907.39,�1647565.64]
ES 95% [�1323982.81,�1293678.85] [�1426258.31,�1395788.60]
ES 99% [�1932779.14,�1876820.83] [�2036072.86,�1979485.25]

Table 5.6: Different risk measures for the portfolio with strike equal to 30.

We observe that modelling the intensity of the negative spikes as a function of wind penetration
has an impact on the expectation of P , the values at risk at levels 95% and 99% and the expected
shortfalls at levels 95% and 99% of the portfolio: they are lower than in the case when the intensity
is constant. Indeed, the portfolio is a function of WPtSt, and negative spikes for St appear more
often when WPt is high.

Our intuition gained from the above application is that if one were to use a more complex parametric
model than the two-state model for the intensity function considered above, then the impact of
the dependence modelling could potentially increase which could lead to more extreme values in
the corresponding electricity spot prices. It will be worth exploring this aspect in more detail in
future research.
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Résumé 

Mots Clés 

Abstract 

Keywords 

Cette thèse traite de problèmes de dépendance
entre processus stochastiques en temps continu.
Ces résultats sont appliqués à la modélisation et
à la gestion des risques des marchés de
l'électricité.

Dans une première partie, de nouvelles copules
sont établies pour modéliser la dépendance
entre deux mouvements Browniens et contrôler
la distribution de leur différence. On montre que
la classe des copules admissibles pour les
Browniens contient des copules asymétriques.
Avec ces copules, la fonction de survie de la
différence des deux Browniens est plus élevée
dans sa partie positive qu'avec une dépendance
gaussienne. Les résultats sont appliqués à la
modélisation jointe des prix de l'électricité et
d'autres commodités énergétiques.

Dans une seconde partie, nous considérons un
processus stochastique observé de manière
discrète et défini par la somme d'une
semimartingale continue et d'un processus de
Poisson composé avec retour à la moyenne.
Une procédure d'estimation pour le paramètre
de retour à la moyenne est proposée lorsque
celui-ci est élevé dans un cadre de statistique
haute fréquence en horizon fini. Ces résultats
sont utilisés pour la modélisation des pics dans
les prix de l'électricité.

Dans une troisième partie, on considère un
processus de Poisson doublement stochastique
dont l'intensité stochastique est une fonction
d'une semimartingale continue. Pour estimer
cette fonction, un estimateur à polynômes locaux
est utilisé et une méthode de sélection de la
fenêtre est proposée menant à une inégalité
oracle. Un test est proposé pour déterminer si la
fonction d'intensité appartient à une certaine
famille paramétrique. Grâce à ces résultats, on
modélise la dépendance entre l'intensité des
pics de prix de l'électricité et de facteurs
exogènes tels que la production éolienne.

In this thesis, we study some dependence
modeling problems between continuous time
stochastic processes. These results are applied
to the modeling and risk management of
electricity markets.

In a first part, we propose new copulae to model
the dependence between two Brownian motions
and to control the distribution of their difference.
We show that the class of admissible copulae
for the Brownian motions contains asymmetric
copulae. These copulae allow for the survival
function of the difference between two Brownian
motions to have higher value in the right tail
than in the Gaussian copula case.
Results are applied to the joint modeling of
electricity and other energy commodity prices.

In a second part, we consider a stochastic
process which is a sum of a continuous
semimartingale and a mean reverting
compound Poisson process and which is
discretely observed. An estimation procedure is
proposed for the mean reversion parameter of
the Poisson process in a high frequency
framework with finite time horizon, assuming
this parameter is large. Results are applied to
the modeling of the spikes in electricity prices
time series.

In a third part, we consider a doubly stochastic
Poisson process with stochastic intensity
function of a continuous semimartingale. A local
polynomial estimator is considered in order to
infer the intensity function and a method is
given to select the optimal bandwidth. An oracle
inequality is derived. Furthermore, a test is
proposed in order to determine if the intensity
function belongs to some parametrical family.
Using these results, we model the dependence
between the intensity of electricity spikes and
exogenous factors such as the wind production.

Dépendance, Copule, Mouvement Brownien,
Statistique haute fréquence, Semimartingale,
Processus de Poisson, Intensité stochastique,
Estimation non paramétrique, Estimateur à
polynômes locaux, Sélection de fenêtre,
Inégalité oracle, Marchés de l'électricité, Pics,
Production éolienne, Gestion des risques,
Finance mathématique.

Dependence, Copula, Brownian motion, High
frequency statistics, Semimartingale, Poisson
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Bandwidth selection, Oracle inequality,
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