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Abstract

In recent years, background subtraction has been one of the most active research topics in computer vision due to many potential applications including surveillance devices in public spaces, traffic monitoring and industrial machine vision. Background modeling methods have increased its efficiency for robust modeling of the background enabling the detection of moving objects in any visual scene. Despite several background subtraction and foreground detection approaches have been proposed recently, no traditional algorithm today still seem to be able to simultaneously address all the key challenges of illumination variation, dynamic camera motion, cluttered background and occlusion. This limitation can be attributed to the lack of systematic investigation concerning the role and importance of features within background modeling and foreground detection. In this thesis, we address this issue by proposing a novel and effective method to deal with the background subtraction problems focused on visual features.

Firstly, a comprehensive survey of the main features used in the context of background subtraction is introduced. In addition, the traditional approaches for feature selection including the recent works in this domain are discussed. Secondly, a robust descriptor for background subtraction which is able to describe texture from an image sequence is proposed. The descriptor is less sensitive to noisy pixels and produces a short histogram, while preserving robustness to illumination changes. Moreover, a descriptor for dynamic texture recognition is also proposed. This descriptor extracts not only color information, but also a more detailed information from video sequences.

Finally, we present an ensemble for feature selection approach that is able to select suitable features for each pixel to distinguish the foreground objects from the background ones. Our proposal uses a mechanism to update the relative importance of each feature over time. For this purpose, a heuristic approach is used to reduce the complexity of the background model maintenance while maintaining the robustness of the background model. However, this method only reaches the highest accuracy when the number of features is huge. In addition, each base classifier learns a feature set instead of individual features. To overcome these limitations, we extended our previous approach by proposing a novel methodology for selecting features based on wagging. We also adopted a superpixel-based approach instead of a pixel-level approach. This does not only increases the efficiency in terms of time and memory consumption, but also can improves the segmentation performance of moving objects.
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Résumé

Durant ces dernières années, la soustraction de l'arrière-plan a été l'un des sujets de recherche les plus actifs dans la vision par ordinateur en raison des nombreuses applications comme les dispositifs de surveillance dans les espaces publics, la surveillance du trafic et la vision industrielle. Les méthodes de modélisation du fond ont augmenté leur efficacité pour la modélisation robuste de l'arrière-plan permettant la détection d'objets mobiles dans n'importe quelle scène visuelle. Bien que plusieurs approches de soustraction du fond aient été proposées récemment, aucun algorithme traditionnel n'est aujourd'hui capable d'aborder simultanément tous les défis clés du domaine comme les variations lumineuses, les mouvements dynamiques de la caméra, du fond encombré et de l'occlusion. Cette limitation peut être attribuée à l'absence d'une recherche systématique sur le rôle et l'importance des caractéristiques dans la modélisa-tion de l'arrière-plan et la détection de premier plan. Dans cette thèse, nous abordons cette question en proposant une méthode nouvelle et efficace pour traiter les problèmes de soustraction du fond centrés sur les caractéristiques visuelles.

Tout d'abord, une étude exhaustive des principales caractéristiques utilisées dans le contexte de soustraction du fond est présentée. En outre, les approches traditionnelles pour la sélection des caractéristiques, y compris les travaux récents dans ce domaine, sont analysées. Deuxièmement, un descripteur robuste pour la soustraction d'arrière-plan qui est capable de décrire la texture à partir d'une séquence d'images est proposé. Ce descripteur est moins sensible aux bruits et produit un histogramme court, tout en préservant la robustesse aux changements d'éclairage. Un autre descripteur pour la reconnaissance dynamique des textures est également proposé. Le descripteur permet d'extraire non seulement des informations de couleur, mais aussi des informations plus détaillées provenant des séquences vidéo.

Enfin, nous présentons une approche de sélection de caractéristiques basée sur le principe d'apprentissage par ensemble qui est capable de sélectionner les caractéristiques appropriées pour chaque pixel afin de distinguer les objets de premier plan de l'arrière-plan. En outre, notre proposition utilise un mécanisme pour mettre à jour l'importance relative de chaque caractéristique au cours du temps. De plus, une approche heuristique est utilisée pour réduire la complexité de la maintenance du modèle d'arrière-plan et aussi sa robustesse. Par contre, cette méthode nécessite un grand nombre de caractéristiques pour avoir une bonne précision. De plus, chaque classificateur de base apprend un ensemble de caractéristiques au lieu de chaque caractéristique individuellement. Pour compenser ces limitations, nous avons amélioré cette approche en proposant une nouvelle méthodologie pour sélectionner des caractéristiques basées sur le principe du ≪ wagging ≫. Nous avons également adopté une approche basée sur le concept de ≪ superpixel ≫ au lieu de traiter chaque pixel individuellement. Cela augmente non seulement l'efficacité en termes de temps de calcul et de consommation de mémoire, v 3 The most (+) and less (-) significant features from MSVS scenes [START_REF] Benezeth | Background subtraction with multispectral video sequences[END_REF]. . . . . 4. 4 The most (+) and less (-) significant features from CDnet 2014 dataset [START_REF] Wang | CDnet 2014: An expanded change detection benchmark dataset[END_REF]. 4.5 Performance of the different methods using the MSVS dataset [START_REF] Benezeth | Background subtraction with multispectral video sequences[END_REF]. . . . . . 4.6 Performance of our method using the CDnet 2014 dataset [START_REF] Wang | CDnet 2014: An expanded change detection benchmark dataset[END_REF]. . . . . . . . 

Introduction

This chapter presents an introduction about the background subtraction (BS) task, describes its perspectives and challenges in scene modeling, and then we also detailed the main steps in a background subtraction algorithm. Moreover, an outline of the thesis is included in this chapter as well as a list of the main contributions.

Challenges in scene modeling

Background subtraction is an attractive research field in computer vision. It concerns a set of methods that aim to differentiates the moving objects (the foreground) in the scene from a robust model of the static environment (the background). BS has been fueled by many academic scientists and developers over the last twenty years. This is rooted in its numerous potential applications and the availability of surveillance cameras installed in security sensitive areas such as banks, train stations, highways, and borders. Background subtraction can be used for surveillance devices in public spaces (such as football stadiums, and big trade centers), in traffic monitoring (counting vehicles, detecting and tracking vehicles) and industrial machine vision (inspection and identification products and robot guidance). There are three main conditions which assure a good functioning of the background subtraction methods: the camera is fixed, the illumination is constant and the background is static, that is pixels have a unimodal distribution and no background objects are moved or inserted in the scene. In these ideal conditions, background subtraction gives good results. In practice, the appearance of an outdoor or indoor scene depends on a variety of changes that can occur over time. Usually, it is challenging to design a good background model able to tolerate these changes. There are various situations that may affect scene appearance, thus reducing the accuracy of the BS algorithms. To the best of our knowledge, the typical challenges of background subtraction are [START_REF] Bouwmans | Background modeling and foreground detection for video surveillance[END_REF][START_REF] Ji | Detect foreground objects via adaptive fusing model in a hybrid feature space[END_REF][START_REF] Shaikh | Moving Object Detection Using Background Subtraction[END_REF]:
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• Camera automatic adjustments: Automatic exposure (means the amount of light that falls onto the sensor in a digital camera) is a setting available on most cameras today. The camera captures the light reflected by objects with homogeneous characteristics (e.g. intensity, texture) in the environment making the task of segmentation difficult. The foreground aperture occurs when parts of large moving homogeneous regions become part of the background instead of being considered as moving pixels.

• Pan-Tilt-Zoom (PTZ): The most research in background subtraction has been on stationary cameras, whereas PTZ cameras have become increasingly popular because of their ability to cover a wide field of view. Existing BS algorithms fail in the case of moving cameras as neither foreground objects nor background pixels are stationary.

• Video noise: Normally, a video signal is covered with noise caused by acquisition, coding, processing steps and transmission. This noise appearance disturbs the original information producing undesirable effects on the background scene, such as artifacts, unrealistic edges, unseen lines, and corners.

• Intermittent object motion: The intermittent motion happens when a moving object stops for a long period of time or a background object starts moving. This situation results in a "ghost" or "hole" in the background that is interpreted as part of the foreground. Some examples include objects that suddenly start moving (e.g. parked vehicle driving away, and abandoned objects). How to manage this situation depends on the context. Indeed in some applications, motionless foreground objects must be incorporated to the background model, and in others not.

• Dynamic backgrounds: In a dynamic environment, the state of the scene can changes continually. In other words, the transformation from one temporal stable to another is generally the outcome of an external event, or a chain of events (i.e. flowing water, moving leaves or shrubs). In such environment, it is challenging to have a good representation of the background model since even some part of the scene containing moving elements may be regarded as foreground.

• Presence of shadows: The detection of cast shadows as moving object is very common, producing undesirable results. For example, the shadows are so different from background that may mistakenly be detected as foreground.

• Illumination changes: In indoor or outdoor environment, illumination changes often occur over time and may cause false detections. For instance, in outdoor environments the gradual changes in appearance can be caused by a wide range of illumination conditions, in particular those encountered during a typical 24-hour day-night cycle. Moreover, sudden illuminations can occur due to turning on/off the light switch in an indoor scene. It is important that the background model be invariant or adaptable to these kind of changes.

• Bootstrapping: The initial video data without moving objects is not always available, then the representative background model cannot be produced. Thus, an initialization process is necessary to learn the correct background model over time.

• Camouflage: Some moving object can looks like the background, or some portion of it is camouflaged with the background (the so-called camouflage effect). This leads to an erroneous distinguish between foreground and background. • Foreground aperture: The presence of moving objects can have the same motion features. Consequently, shadows usually make the geometrical shape of the moving objects distorted, and sometimes causing the fusion of moving objects.

• Night scenes: The videos captured at night are still a challenging task. Night scenes usually cause high false detections due to dramatic lighting change and low contrast between foreground and background.

• Challenging weather: In some cases, the background subtraction algorithm should adapt to adverse weather condition such as air turbulence or snow storm that modifies the background scene.

To address the above challenges, several researchers have proposed diversified methods and its evaluation results have often been available by Change Detection web site 1 . Recent experimental results have shown that the biggest problem is the distinction between the background and the foreground when the scene comes from night videos and videos captured by PTZ cameras [START_REF] Ji | Detect foreground objects via adaptive fusing model in a hybrid feature space[END_REF]. Another great challenge is when different challenges occur in the same scene. Figure 1.1 shows three situations at the same avenue. While Figures 1.1a and 1.1b show shadows and different light variations, the Figure 1.1c displays large reflections. Despite all these situations are handled quietly nowadays [START_REF] Bianco | How far can you get by combining change detection algorithms? Computing Research Repository[END_REF][START_REF] Elgammal | Non-parametric model for background subtraction[END_REF][START_REF] Paruchuri | Spatially adaptive illumination modeling for background subtraction[END_REF][START_REF] St-Charles | SuBSENSE: A universal change detection method with local adaptive sensitivity[END_REF][START_REF] Vosters | Real-time robust background subtraction under rapidly changing illumination conditions[END_REF], they still disturb the foreground detection process. Note that Figure 1.1 shows different situations, such as large shadows, light variations, and also large reflections. It is important to note that, until now, there is no background subtraction algorithm that is able to solve all of these challenges at the same time, making the BS field even more challenging.

Background subtraction steps

This section discusses the different steps related to background subtraction. Figure 1.2 shows an overview of these steps. In essence, background subtraction consists to output a binary segmentation map by initializing and updating a model of the static scene, which is named the background (BG) model, and comparing this model with the input image. Pixels or regions with a noticeable difference are assumed to belong to moving objects (they constitute the ability than a single model. The hot wave of research on ensemble learning began in 1990, however its efficiency has been proven until the current days. In the contest held in last year by ImageNet Large Scale Visual Recognition Challenge (ILSVRC), software programs compete to correctly classify and detect objects and scenes. The best performance was achieved by algorithms that used an ensemble of deep neural networks (see the results in 2 .) Ensemble for feature selection extends the traditional feature selection methods by looking for a set of feature subsets that will favour disagreement among the ensemble members [START_REF] Stanczyk | Feature selection for data and pattern recognition[END_REF]. Surprisingly, little BS works have been done to date based on feature selection approaches, becoming this subject an interesting research topic in the BS context.

Contributions of the thesis

Given the above importance of the features in background subtraction, we present below the contributions of the thesis. The list of publications concerning the thesis can be found in Appendix C.

A novel texture-based descriptor, namely eXtended Center-Symmetric Local Binary

Pattern (XCS-LBP). The descriptor is less sensitive to noisy pixels and produces a short histogram, while preserving robustness to illumination changes.

2. A new pixel-based ensemble for feature selection in background subtraction to deal with the challenges enumerated in the Section 1.1. The proposed approach selects automatically the best features for different pixels of the image, and the most relevant features are used for foreground segmentation. In our framework, the background is modeled by different features including our proposed XCS-LBP descriptor.

3. Our pixel-based ensemble for feature selection only reaches the highest accuracy when the number of features is huge. Furthermore, each base classifier learns a feature set instead of individual features. To overcome these limitations, we extend our previous approach by proposing a novel methodology for selecting features based on wagging. This approach is more efficient in terms of time and memory consumption. We also added an ensemble pruning technique to eliminate the importances with very low values over time.
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Thesis outline

The rest of the thesis is organized as follows.

• Chapter 2: conducts a literature review of the main features used in the context of background subtraction. In addition, the traditional approaches for feature selection including the recent works in this domain are also discussed.

• Chapter 3: presents a novel eXtended Center-Symmetric Local Binary Pattern (XCS-LBP) descriptor for background modeling and subtraction in videos. The experiments conducted on both synthetic and real videos (from the Background Models Challenge) show that the proposed XCS-LBP outperforms its direct competitors for the background subtraction task.

• Chapter 4: describes an online weighted pixel-based ensemble learning method able to select suitable features for each pixel to distinguish the foreground objects from the background. In addition, our proposal uses a mechanism to update the importance of each feature over time. Moreover, a heuristic approach is used to reduce the complexity of the background model maintenance while maintaining the robustness of this one. Experimental results on two datasets have shown the pertinence of the proposed approach.

• Chapter 5: extends our approach proposed in Chapter 4 by a novel methodology for selecting features based on wagging. Furthermore, we also adopted a superpixel-based approach instead of a pixel-level approach. This does not only increased the efficiency in terms of time and memory consumption, but also improved the segmentation performance.

• Chapter 6: presents a particular work realized in conjunction with Computer Vision Center (CVC) at Autonomous University of Barcelona (UAB). This chapter describes a novel Opponent Color Local Binary Pattern from Three Orthogonal Planes (OCLBP-TOP) descriptor for applications in the field of dynamic texture recognition. The OCLBP-TOP fuses both, the texture and color information. As such, it allows to extract not only color information, but also a more detailed information from video sequences. The experiments conducted on real videos have shown that the proposed OCLBP-TOP outperforms other state-of-the-art descriptors.

• Chapter 7: summarises the thesis with remarks, advantages, and limitations of the proposed approaches. It also discuss the open issues and future works.

Chapter 2

Literature review

Features play an essential role for various computer vision applications and it is not different for background subtraction. In the long history of BS, various features have been used, improved or even proposed to address BS challenges in background modeling. Another way to deal with the BS challenges is to select a subset of highly discriminant features for each pixel, region or cluster in a image sequence. This can be done automatically by using feature selection approaches. This chapter begins with a review of the main features used in the context of BS, then we discuss the traditional and recent approaches for feature selection including the important BS works in this domain. This chapter corresponds to a concise version of our recent survey submitted to Computer Science Review, 2016 [START_REF] Bouwmans | On the role and the importance of features for background modeling and foreground detection[END_REF]. Furthermore, an open source library, called LBPLibrary 1 , was developed to provide a collection of local binary patterns variants. The library was designed for the problem of background-foreground separation in videos.

Features for background modeling

Background modeling is an important step in detecting moving objects in video sequence.

A very important factor in background modeling is the choice of the transformation that is applied to the original data in order to obtain the features that are used. Features (descriptors or attributes) is a set of measurements describing an object such as points, edges or corners. In background subtraction, the features characterize a picture element captured in the current frame of a video sequence and are compared against a known background model to classify it as either foreground or background. Feature representations can take multiple forms and can be computed for and from: a pixel, a region or a cluster. Practically, there are several types of features which can be computed either in the spatial, temporal, spatio-temporal or depth transform domain. Some of the features commonly used within the background modeling literature includes: color features, edge features, stereo features, motion features and texture features. These features can be classified from different view points such as: by level, by type in a specific domain and by intrinsic properties. In the following sections, these view points are discussed in more details.

Classification by level

The size of the picture element chosen for interpreting necessary features that faithfully represent its characteristics plays a crucial role in background modeling. The size of the picture element that is used to model the background and hence for comparing the current image frame to the background model, can either be a pixel [START_REF] Grabner | On-line boosting and vision[END_REF], a region [START_REF] Grabner | On-line boosting and vision[END_REF] or a cluster [START_REF] Bhaskar | Video foreground detection based on symmetric alpha-stable mixture models[END_REF] with a feature value.

• Pixel-level: Most approaches for background subtraction are based on pixel-level modeling which assumes adjacent pixels are independent. These approaches build a separate model for each pixel, such as Gaussian Mixture Model (GMM) [START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF][START_REF] Zhu | Multi-scale color local binary patterns for visual object classes recognition[END_REF][START_REF] Zivkovic | Improved adaptive gaussian mixture model for background subtraction[END_REF], Kernel Density Estimation (KDE) [START_REF] Elgammal | Non-parametric model for background subtraction[END_REF], and non-parametric approaches based on sample consensus (Pixel-based Adaptive Segmenter (PBAS) [START_REF] Hofmann | Background segmentation with feedback: The pixel-based adaptive segmenter[END_REF] and ViBe [START_REF] Barnich | Vibe: a powerful random technique to estimate the background in video sequences[END_REF]). The pixel-level approaches are usually effective, but they cannot discriminate well the variations of the pixel's value caused by the presence of foreground objects and natural illumination changes, since each model knows only history of the corresponding pixel.

In fact, such illumination changes is learnt in the background model over a period of time, it is practically impossible to adapt it for sudden illumination changes [START_REF] Mitsugami | Extraction of potential sunny region for background subtraction under sudden illumination changes[END_REF].

• Region-level: Many studies have adopted a region-level background modeling by splitting an image into blocks and calculating the block-specific features. In this approach, instead of dealing with one pixel at time, the relationship among neighboring pixels is modeled [START_REF] Zhang | A covariance-based method for dynamic background subtraction[END_REF]. Compared with pixel-level modeling, the region-level one gives richer features, and it is more robust in the case of illumination changes. Another important advantages is their robustness to noise and the movement in the background. However, the disadvantage is that the detection is less precise because only foreground regions are segmented, making them unsuitable for applications that require a detailed shape information of the foreground object.

• Cluster-level: A recent trend in background modeling is to consider region sizes that are non-uniform across the image sequence. First, pixels in an image frame are grouped using an application-specific homogeneity criteria, typically exploiting clustering mechanisms as discussed in [START_REF] Bhaskar | Video foreground detection based on symmetric alpha-stable mixture models[END_REF][START_REF] Bhaskar | Background modeling using adaptive cluster density estimation for automatic human detection[END_REF][START_REF] Bhaskar | Automatic object detection based on adaptive background subtraction using symmetric alpha stable distribution[END_REF]. For example in Bhaskar et al. [START_REF] Bhaskar | Video foreground detection based on symmetric alpha-stable mixture models[END_REF], each cluster contains pixels that have similar features in the color space. Then, the background model is applied on these clusters to obtain cluster of pixels classified as background or foreground. This cluster-level approach gives less false alarms than block-level approaches. Just like the region-level modeling, the cluster-level ones boost efficiency in terms of both required memory and computation time, since fewer models have to be kept in memory and updated at every frame.

Classification by intrinsic properties

In this thesis, we define the features can be classified by their intrinsic properties into the following categories:

• Spatial domain: At the beginning of the research in BS, most of the features were represented in the spatial domain. Basically, the spatial domain refers to the image plane itself, and they assume that the scenes to be modeled are often static structures with a little perturbation. Spatial features can cope well with the slight illumination changes, but cannot usually handle either large (or sudden) changes or multiple moving objects in the scene [START_REF] Jabri | Detection and location of people in video images using adaptive fusion of color and edge information[END_REF].

• Temporal domain: The temporal information can be an alternative choice to improve the detection of non-stationary objects. The motion information can be exploited to improve the discriminative power of the objects by including its temporal evolution.

The key idea of the temporal domain methods lie in the fact that different object's motion produces a defined motion pattern. The temporal domain can be used to discriminate one object from another by analyzing its temporal motion patterns, thereby playing a crucial role in moving object detection.

• Spatio-temporal domain: The spatio-temporal domain is usually suitable to deal with dynamic background by modeling the spatial and temporal relationship and variations simultaneously. For example, in an outdoor scene containing waving trees caused by the presence of a strong wind, the regions occupied by the trees will be unstable (random motion patterns) for a some period of time. The temporal domain methods consider only the temporal variations and ignore the spatial variances which is useful for a correct modeling of the background.

• Depth domain: The recent advances on distance image sensors enabled the use of the depth information for many computer vision applications, specially in the BS field. The depth information is an attractive element for the segmentation of moving objects due to its robustness to deal with common BS problems such as shadows and camouflage (e.g. the similarity of the color and texture features of the moving object and the scene background).

Various features for the above domains have been proposed and improved for background subtraction. Figure 2.1 shows a brief overview of the features classified by its intrinsic properties.

Classification by type

Now, we present and analyze the different features mostly used in background modeling and foreground detection in terms of robustness against the challenges in videos taken by fixed cameras.

shadows in a relatively static indoor scene. Using the MOG model, Harville et al. [START_REF] Harville | Foreground segmentation using adaptive mixture models in color and depth[END_REF] defined a chroma validity test based on the luminance Y as the chroma (U and V) components become unstable when the luminance is low. When the test is not verified, the chroma components of the current observation are not used and so are its current Gaussian distributions. Furthermore, the detection in luminance was combined with the detection in depth, improving its robustness to color camouflage.

• HSV color space: The HSV color space is used to improve the discrimination between shadows and objects, classifying shadows as those pixels having the approximately the same hue and saturation values compared to the background, but lower luminosity. For example, Sun et al. [START_REF] Sun | Better foreground segmentation for static cameras via new energy form and dynamic graph-cut[END_REF] used the Hue-Saturation-Value (HSV) color space, because the likelihood term in the MOG model shows stronger contrast in HSV space rather than the RGB space, especially for objects that share similar appearance to the background (camouflage in color).

• HSI color space: HSI color space is closer to human interpretation of colors in the sense that brightness, or intensity, is separated from the base color. HSI uses polar coordinates. In the original MOG model, shadows are extracted as part of the object mask when using the RGB color space. To address this problem, Wang and Wu [START_REF] Wang | Fusion of luma and chroma gmms for hmm-based object detection[END_REF] used the HSI color space which tends to be shadow-removable. However, the obtained results are not satisfactory due to the fragmented segmentation results by using hue and saturation. In order to achieve both "shadow-rejection" and "segmentation stability over time", Wang and Wu [START_REF] Wang | Fusion of luma and chroma gmms for hmm-based object detection[END_REF] employed the MOG on chroma (hue and saturation) and luma (intensity) separately. The fused results obtained by combining chroma and luma is prepared using two criteria. This scheme reserves the advantage of using chroma (i.e. avoiding shadow) and that of luma (i.e. stability of segmentation).

• Luv color space: Yang and Hsu [START_REF] Yang | Background modeling from GMM likelihood combined with spatial and color coherency[END_REF] used the Luv components assuming independence in the computation of covariance matrix required in the MOG model. Then, Yang and Hsu [START_REF] Yang | Background modeling from GMM likelihood combined with spatial and color coherency[END_REF] built an hybrid feature space with spatial and color features to obtain a 6-dimensional hybrid feature vector for each pixel. A mean-shift procedure classified each hybrid feature vector to its corresponding local maximum along the gradient direction. Thus, a set of neighboring pixels associated with the same local maximum (i.e. mode) is highly similar in this hybrid feature space. Yang and Hsu [START_REF] Yang | Background modeling from GMM likelihood combined with spatial and color coherency[END_REF] then assign pixel-level background likelihood for each pixel using the MOG likelihood, and further obtain a smoothed version of MOG in terms of spatial and color coherency.

• Improved HLS color space: Setiawan et al. [START_REF] Setiawan | Gaussian mixture model in improved ihls color space for human silhouette extraction[END_REF] proposed to use the IHLS color space which has the following advantage against the RGB color space. That is to identify shadows region from an object by using luminance and saturation-weighted hue information directly, without any calculation of chrominance and luminance. By exploiting this color space in the MOG model, Setiawan et al. [START_REF] Setiawan | Gaussian mixture model in improved ihls color space for human silhouette extraction[END_REF] obtained good sensitivity to color changes and shadow.

• Ohta color space: The axes of the Ohta space are the three largest eigenvectors of the RGB space, found from the principal components analysis of a large selection of natural images. This color space is a linear transformation of RGB. Using the mean model, Zhang and Xu [START_REF] Zhang | Fusing color and gradient features for background model[END_REF] applied the Ohta color space. The three orthogonal color features of the Ohta color space are important components for representing color information. Good results in the case of illumination changes and shadows in outdoor scenes are achieved by using only the first two components which are combined with a texture feature.

• YCrCb color space: YCbCr uses Cartesian coordinates. El Baf et al.

[8] used the YCrCb color space combined with the texture feature to be robust to illumination changes and shadows. Experimental results in [8] showed that YCrCb color space is more robust in these cases than the Ohta and HSV color spaces.

• Lab/Lab2000HL color space: Lab color space is a color space which indicates proper changes in the direction of human color perception. Its components are the lightness of the color and two color opponent dimensions. Lab2000HL color space, which is an improved version of Lab color space, was introduced and is thought to perform a better modeling of the human perception. Particularly, Lab2000HL color space have linear hue band. So, Balcilar et al. [START_REF] Balcilar | Performance analysis of Lab2000HL color space for background subtraction[END_REF] investigated the performance of the Lab2000HL color space. The average precision value of Lab2000HL is the greatest in all videos in comparison to all other color spaces. The Lab2000HL globally gives the best performance on all the video sequences, but not mandatory on each sequence. In terms of the computational costs for each color space (YCrCb, Luv, Lab,Lab2000HL), RGB color space leads to the lowest. The reason is that it does not require any transformation since the information gathered from the camera sensors is directly in RGB. Lab2000HL color space, on the other hand, has the most computational cost, since a computationally intensive procedure is required to apply first the Lab transformation, and then the computation of transformation value with respect to the transition map using interpolation.

Edge features

Edge features are based usually on intensity features given from spatial information, and they are computed using a gradient approach such as Canny [START_REF] Canny | A computational approach to edge detection[END_REF], Sobel [START_REF] Kittler | On the accuracy of the Sobel edge detector[END_REF] or Prewitt [START_REF] Prewitt | Object enhancement and extraction[END_REF]. The gradients can be calculated from the gray level image or in each component of the color space. Edge detectors operate on the difference between neighboring pixels, hence an edge detector should be reasonably insensitive to global shifts in the mean level, i.e. global illumination changes. Therefore it would be interesting to run background-foreground separation algorithms on the output from edge detectors, hopefully reducing the effects of rapid illumination changes. So, the edge could handle the local illumination changes, but also the ghost leaved when waking foreground objects begin to move. The edge features are generally used alone or jointly with other features as follows:

• Edge alone: First, Kim and Hwang [START_REF] Kim | Fast and automatic video object segmentation and tracking for content-based applications[END_REF] proposed to use only edges to model the background. This approach used a binarized information for the existence of an edge for a given pixel. But, regions in consecutive frames may not have exactly the same edge position, and have shape and length changes due to presence of noise. This strategy may generate many false alarms in the foreground mask due to edge distortion from consecutive frames. To solve the edge-distortion problem, edge-segment-based methods have emerged to take advantage of the edge existence and its shape information [START_REF] Hossain | Moving object detection for real time video surveillance: An edge based approach[END_REF]. An edge-segment approach consists of the concatenation of adjacent edges, and it inherits the problems of edges: shape and position changes. Thus, basic comparison of edge-segments produces similar results as edge-pixel-based approaches.

To solve this problem, statistical edge-segment-based methods extract movement of edge-segments including edge distortion [START_REF] Kim | Edge-segment-based background modeling: Non-parametric online background update[END_REF][START_REF] Murshed | Statistical background modeling: an edge segment based moving object detection approach[END_REF][START_REF] Ramirez-Rivera | Object detection through edge behavior modeling[END_REF]. Thus, these methods solve the edge-variation problem by accumulating edge existence from a training set [START_REF] Kim | Simultaneous foreground detection and classification with hybrid features[END_REF].

Practically, each accumulated region represents an edge-segment distribution. Each region refines their statistical properties after each frame to provide a stable background model. Since edge-based and edge-segment-based methods detect foreground as edges, these methods depend of a post-processing step to extract the regions defined by the detected edges. Moreover, these methods have problems updating their background model to adapt the background.

• Jointly with other features: Jabri et al. [START_REF] Jabri | Detection and location of people in video images using adaptive fusion of color and edge information[END_REF] used in addition of the intensity features the intensity gradient obtained by the Sobel edge detector. Large changes in either intensity or in edges are fused. However, the involvement of the intensity model retains the sensitivity to sudden changes in illumination. Lindström et al. [START_REF] Lindström | Background and foreground modeling using an online em algorithm[END_REF] proposed to use a Prewitt edge detector without the thresholding independently to each color component followed by a log-transformation gives a color edge image with pixel values that can be modeled using Gaussian mixtures. Experimental results [START_REF] Lindström | Background and foreground modeling using an online em algorithm[END_REF] showed better performance against illumination changes for the log-transformed detection using the Prewitt edge detector. In another work, Kim et al. [START_REF] Kim | Simultaneous foreground detection and classification with hybrid features[END_REF] used edge and texture features in a hybrid scheme to generate the background model. Thus, theses features are encoded into a coding scheme called Local Hybrid Pattern (LHP). LHP selectively models edges and texture features of each pixel. Then, each pixel is modeled with an adaptive code dictionary to take into account the background dynamism. In the background maintenance, stable codes are added in the model while unstable ones are discarded. The incoming codes that deviate from the dictionary are classified as edge or inner region. Experimental results [START_REF] Kim | Simultaneous foreground detection and classification with hybrid features[END_REF] on the ChangeDetection (CDnet 2012) dataset [START_REF] Goyette | Changedetection.net: A new change detection benchmark dataset[END_REF] showed that this Adaptive Dictionary Model (ADM) with LHP features outperforms the original MOG [START_REF] Xu | Illumination-invariant motion detection using color mixture models[END_REF], the ordinary LBP [84] and SALBP [START_REF] Noh | A new framework for background subtraction using multiple cues[END_REF].

Texture features

Texture features are extracted from spatial information or on spatio-temporal information.

The texture features have been very investigated in the BS field as can be seen in Table 2.2. Generally speaking, texture can be defined to surface characteristics and appearance of an object given by the shape, size, density, arrangement, proportion of its elementary parts. By contrast with the color features, the texture features are more appropriate to cope with illumination changes and shadows. In the following, different texture descriptors are discussed following the same categorization given in [START_REF] Tuceryan | Texture Analysis. Handbook of Pattern Recognition and Computer Vision[END_REF].

• Statistical Texture: Statistical texture descriptors are useful qualities for the spatial distribution of the intensity values. This technique is one of the first methods sug-gested in the literature of texture descriptors. In BS, some statistical texture descriptors have been proposed mainly to deal with the problem of illumination variations. For instance, Satoh et al. [START_REF] Satoh | Robust object detection and segmentation by peripheral increment sign correlation image[END_REF] proposed Peripheral Increment Sign Correlation (PISC) feature that encodes a value of 1 or 0 according to whether the increment near the considered pixel is positive or negative. The resulting logical code representing the trend of brightness change. However, this leads to increase false positives because the code is reversed easily with slight intensity changes in regions with small intensity differences, for example in plain regions. Plain regions often occupy large spatial region within images, which makes stabilizing on them very important. Yokoi [START_REF] Yokoi | Probabilistic BPRRC: Robust change detection against illumination changes and background movements[END_REF] proposed a Probabilistic Bi-polar Radial Reach Correlation (PrBPRRC). It encodes the intensity difference by -1/0/1 ternary codes to enhance the robustness against illumination changes and background movements. In Satoh et al. [START_REF] Satoh | Robust event detection by radial reach filter (RRF)[END_REF] a novel statistical measure for robust event detection, called Radial Reach filter (RRF) is proposed. It evaluates a local texture to handle with brightness distributions of the events and the influence of shadows, etc. RRF searches for a point with the brightness difference more than a threshold from the interest pixel. This procedure is repeated about eight directions in the shape of radiation resulting in 8 sets of the "RRF pairs". At the end a binary code is given by the sign of brightness difference of each pairs.

• Structural texture: These type of descriptors are constituted by the texture elements named as texels or texton. Texels are the smallest element that creates the impression of a texture surface. Usually, structural descriptors are invariant to illuminations, however heavily depend upon the definition of texels. To the best of our knowledge, the structural texture descriptor has been less explored for moving object detection. Recently, Spampinato [START_REF] Spampinato | A texton-based kernel density estimation approach for background modeling under extreme conditions[END_REF] presented a kernel density estimation method which models background and foreground by exploiting textons to describe textures within small and low contrasted regions. According to the authors, the proposed method is robust to illumination changes, but it can not be applied for real-time purposes due to computational cost.

• Model based texture: Model based texture is commonly learned for a specific texture analysis task and used as features. The most popular technique from this category for background modeling is Markov Random Fields (MRFs) [START_REF] Kindermann | Markov Random Fields and Their Applications[END_REF]. They are based on the contextual information of the image. In Schick et al. [START_REF] Schick | Improving foreground segmentations with probabilistic superpixel markov random fields[END_REF], a novel post-processing framework to improve foreground segmentation with the use of Probabilistic Superpixel Markov Random Fields is proposed. First, they converted a given pixel-based segmentation into a probabilistic superpixel representation. Based on these probabilistic superpixels, a Markov random field exploits structural information and similarities to improve the segmentation. Xu et al. [START_REF] Xu | Background modeling using time dependent markov random field with image pyramid[END_REF] also introduced a new background modeling algorithm based on MRFs. The pyramid structure is introduced and the background modeling/labeling are processed at different resolution levels. The experiments showed this algorithm segment the foreground objects accurately from scene with sharp lighting changes and background movements. Other works using MRF technique can be found in [33,[START_REF] Mchugh | Foreground-adaptive background subtraction[END_REF].

• Filtering based texture: Filtering based descriptors represent an image in a space whose co-ordinate system has an interpretation that is closely related to the characteristics of a texture. For instance, the frequency masks are more common and ef-fective in texture description. Usually, the frequency features are obtained by converting the image into the frequency space normally using Fast Fourier Transform (FFT) [START_REF] Charles | Computational Frameworks for the Fast Fourier Transform[END_REF]. Fourier transform features encapsulate spatial information which are suitable for scenes that contain periodic motions. That is, scene having a significant correlation between structures and observations across time (e.g. a tree swaying in the wind or a wave lapping on a beach). In this context, Wren and Porikli [START_REF] Wren | Waviz: Spectral similarity for object detection[END_REF] estimated the background model that captures spectral signatures of multi-modal backgrounds using FFT features through a method called Waviz. Here, FFT features are then used to detect changes in the scene that are inconsistent over time. Results [START_REF] Wren | Waviz: Spectral similarity for object detection[END_REF] showed robustness to low-contrast foreground objects in dynamic scenes. Some others works based on frequency methods are found in the state-of-the-art: Discrete Cosinus Transform Features ( [START_REF] Reddy | Robust foreground object segmentation via adaptive region-based background modelling[END_REF][START_REF] Wang | Modeling background from compressed video[END_REF][START_REF] Zhu | A transform domain approach to real-time foreground segmentation in video sequences[END_REF]) and Hadamard Transform (also known as the Walsh-Hadamard Transform ( [START_REF] Baltieri | Fast background initialization with recursive Hadamard transform[END_REF]). Latterly, wavelet transformation [START_REF] Manjunath | Texture features for browsing and retrieval of image data[END_REF] is one of the most famous of the time-frequency-transformations. Considering that static backgrounds correspond to the low-frequency components, Han et al. [START_REF] Gabor | Local Binary Patterns (1) Ordinary LBP-based Local Binary Pattern (LBP)[END_REF] removed the static backgrounds indirectly in the 3D wavelet domain. Additionally, they made use of wavelet shrinkage to remove disturbance and introduce an adaptive threshold based on the entropy of the histogram to obtainur optimal detection results. See other works using the wavelet transformation at: ( [6,50,90,[START_REF] Mendizabal | A region based approach to background modeling in a wavelet multi-resolution framework[END_REF]). Another popular descriptor based on filtering is the Gabor Transform [START_REF] Gabor | Theory of communication[END_REF]. Some Gabor Transform works in BS can be found in [START_REF] Wei | A pixel-wise local information-based background subtraction approach[END_REF][START_REF] Xue | Background subtraction based on phase feature and distance transform[END_REF].

• Local Binary Patterns: Local binary patterns (LBP) proposed in [85] is the simple yet powerful gray scale invariant texture descriptor. The computation of the ordinary LBP for a neighborhood of size P = 8 is illustrated in Figure 2.3. It combines the characteristic of statistical and structural texture analysis, describing the texture with micro-primitives and their statistical placement rules. To the authors' best knowledge, the first work using LBP histograms for background modeling was proposed by Heikkilä et al. [85]. The authors showed that LBP features are tolerant against illumination variations. Therefore, they found that moving shadows could not be handled very well. The other major LBP problem in background modeling is that it cannot cope with local image noise when neighboring pixels are similar. In addition, the ordinary LBP cannot usually work well in dynamic scenes since it does not taken into account the temporal information. Consequently, several LBP variants have been proposed in the recent literature to tackle these problems. In this thesis, we grouped these variants into five categories. We describe below the main LBP variants for each category. The interested reader will find a full list of the main LBP variants in Table 2.2 and its relative equations in the Appendix B.

-Ordinary LBP-based: The first category consists of the variants with small mathematical changes from ordinary LBP. Few years after using ordinary LBP in background modeling, Heikkilä et al. [84] proposed a small change in its thresholding scheme. They improved the ordinary LBP in image areas where the gray values of the neighboring pixels are very close to the center pixel, e.g. sky, grass, etc. The LBP-based algorithms are often invariant to local illumination changes, but they are unable to detect uniform foreground objects in large uniform background except at the objects' edges. To solve this problem, Chua et Derivative Pattern descriptor (CS-LDP) is described in [START_REF] Xue | Hybrid center-symmetric local pattern for dynamic background subtraction[END_REF]. It extracts more detailed local information while preserving the same feature lengths than the CS-LBP, but with a slightly lower precision than the ordinary LBP.

-Ternary LBP-based: This category represent the descriptors which inherit the characteristics from Local Ternary Pattern (LTP) introduced by Tan and Triggs [START_REF] Tan | Enhanced local texture feature sets for face recognition under difficult lighting conditions[END_REF]. This descriptor is more robust for local noises by introducing a small tolerative range. The intensity scale invariant property of a local comparison descriptor is very useful, because illumination variations, either global or local, usually cause sudden changes of gray scale intensities of neighboring pixels simultaneously. Nevertheless, Liao et al. [START_REF] Liao | Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes[END_REF] demonstrated that the LTP descriptor can not keep its invariance against scale transform when all local pixel values are multiplied by a constant. Therefore, to deal with these problems Liao et al. [START_REF] Liao | Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes[END_REF] presented a Scale Invariant Local Ternary Pattern (SILTP) descriptor. More recently, Ma and Sang [START_REF] Ma | Background subtraction based on multi-channel siltp[END_REF] proposed to extend the SILTP to feature space and to operate on the three channels of RGB images rather than only one channel present in gray images to get the texture patterns. This texture descriptor is called Multi-Channel Scale Invariant Local Ternary Pattern (MC-SILTP).

The MC-SILTP demonstrated all the properties that SILTP owns, and it can deal especially in flat areas.

-Spatio-Temporal LBP-based: The spatio-temporal category include the variants that extend the ordinary LBP from spatial domain to spatio-temporal domain. However, these variants can deal with dynamic scenes. In Shengping et al., [START_REF] Shengping | Dynamic background modeling and subtraction using spatio-temporal local binary patterns[END_REF], a novel spatio-temporal local binary patterns (STLBP) is presented.

The experimental results indicate that the proposed method can adapt quickly to changes in the dynamic background. Yin et al. [START_REF] Yin | Dynamic background subtraction based on appearance and motion pattern[END_REF] proposed a Stereo Local Binary Pattern based on Appearance and Motion (SLBP-AM) descriptor. The motion of pixels is represented as dynamic texture in ellipsoidal domain. Then, Yin et al. [START_REF] Yin | Dynamic background subtraction based on appearance and motion pattern[END_REF] combined texture histograms in the XY, XT and Y T planes in the ellipsoid. SLBP-AM is more robust to slight disturbance, but also adapts quickly to the large-scale and sudden changes. Shimada and Taniguchi [START_REF] Shimada | Hybrid background model using spatial-temporal lbp[END_REF] proposed an invariant feature using both spatial invariance and temporal invariance also called Spatio-Temporal LBP (STLBP) suitable for outdoor scene in which the illumination condition can change gradually.

-Hybrid LBP-based: These variants combine two or more characteristics of the above categories, which usually results in a descriptor even more powerful. Xue et al. [START_REF] Xue | Dynamic background subtraction based on spatial extended center-symmetric local binary pattern[END_REF] proposed to use a Spatial Center-Symmetric Local Binary Pattern (SCS-LBP) which not only has the property of illumination invariance, but also produces short histograms and be more robust to noise. So, Xue et al. [START_REF] Xue | Dynamic background subtraction based on spatial extended center-symmetric local binary pattern[END_REF] extended the CS-LBP operator from spatial domain to spatial-temporal domain and proposed a texture operator named SCS-LBP which extracts spatial and temporal information simultaneously. Then, combining the SCS-LBP operator with an improved temporal information estimation scheme, Xue et al. [START_REF] Xue | Dynamic background subtraction based on spatial extended center-symmetric local binary pattern[END_REF] obtained a background modeling approach which reach high accurate detection in dynamic scenes while reducing the computational complexity compared to the ordinary LBP. Wu et al. [START_REF] Wu | Real-time background subtraction-based video surveillance of people by integrating local texture patterns[END_REF] extended the SILTP descriptor for handling some challeng-ing scenes by introducing the Center-Symmetric Scale Invariant Local Ternary Pattern (CS-SILTP) descriptor. This texture descriptor explores the spatial and temporal relationships of neighborhood pixels.

Depth features

Depth features encapsulate the depth information and they have become very attractive for BS, especially, in indoor environments. The main advantage of the depth features is that it does not suffer the limitations of color features (e.g. camouflage). Depth-based detection results in a more compact silhouettes. However, using exclusive depth features still present some issues such as: depth sensors frequently raise noises at object boundaries; measurements of depth are not always available for all image pixels. Therefore, usually many BS works propose to combine both color and depth features to improve the detection results. Depth information can be obtained in real-time by different technologies. We describe below three technologies to acquire depth information.

• Depth from Stereo-Cameras: Traditional stereo cameras consist of a single device integrating two or more monocular cameras with small baseline (i.e., the distance between focal center of the cameras). The disparity map obtained that correlates the two views of a stereo camera can be used as input for a disparity-based BS algorithm. To accurately perform the background modeling, it is necessary that a dense disparity map be calculated. However, to obtain an accurated dense map of correlations between two stereo images, usually time-consuming stereo vision algorithms are employed [START_REF] Brown | Advances in computational stereo[END_REF][START_REF] Lim | Fast illumination-invariant background subtraction using two views: Error analysis, sensor placement and applications[END_REF]. Moreover, the correlation between left and right images may not be reliable, and the disparity map can present holes due to "invalid" pixels (i.e., points with invalid depth values). Ivanov et al. [START_REF] Ivanov | Fast lighting independent background subtraction[END_REF] were among the first authors who proposed a BS method based on disparity maps to address some of these issues. By cross-verifying each pixel across three camera views, the authors were able to distinguish the foreground objects from occlusion/shadows. Practically, this method required the offline construction of disparity fields mapping the background images that contained no foreground objects. At runtime, foreground detection was made by checking background image to each of the additional auxiliary color intensity values at corresponding pixels. This algorithm could be implemented in real-time on conventional hardware. In Gordon et al.

[?], the background model was modeled using a multidimensional mixture of Gaussians model with the (R,G,B,D) features. A significant advantage of incorporating both color and depth features within the background model is that, Gordon et al.

[?] could correctly estimate depth and color of the background when the background is available in a fewer number of initialization frames. The authors used a disjunction of the results coming from each feature to obtain the final foreground detection. A pixel is classified as foreground based on either color or depth is taken to be foreground in the final foreground detection. Other related BS works can be found in [START_REF] Eveland | Background modeling for segmentation of video-rate stereo sequences[END_REF][START_REF] Harville | A framework for high-level feedback to adaptive, per-pixel, mixtureof-gaussian background models[END_REF][START_REF] Harville | Foreground segmentation using adaptive mixture models in color and depth[END_REF].

• Depth from Time-of-Flight (ToF) Cameras: The ToF cameras produce a depth image, each pixel encodes the distance to the corresponding point in the scene. Apart from their advantages of high frame rates and ability to capture the scene all at once, ToF based cameras have generally the disadvantage of low resolution. In Leens et al. [START_REF] Leens | Combining color, depth, and motion for video segmentation[END_REF], color and depth features were obtained with a low resolution from ToF camera. The ViBe algorithm [START_REF] Barnich | Vibe: a powerful random technique to estimate the background in video sequences[END_REF] is applied independently to the color and the depth features. Then, the obtained foreground masks are then combined with logical operations and then post processed with morphological operations. Stormer et al. [START_REF] Stormer | Depth gradient based segmentation of overlapping foreground objects in range images[END_REF] used a MoG model [START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF], where depth and infrared features are combined to detect foreground objects in the case of close or overlapping objects. Two independent background models are built. Each pixel is classified as background or foreground only if the two models matching conditions agree. But a failure of one of the models affects the final pixel classification. In Tombari et al. [START_REF] Tombari | Graffiti Detection Using a Time-Of-Flight Camera[END_REF], an algorithm for automatic graffiti detection is presented. The algorithm compares the current intensity information with a model of the background to detect the scene changes. Next, the depth information was used for distinguishing between changes occurring in the space between the background and the ToF camera (e.g. intrusion). It presented low rate of false positives, and it can operate in a real-time manner. As the authors used a basic BS for the intensity data, the proposed method may fail by the presence of both slow and sudden changes in the scene's illumination. Hu et al. [START_REF] Hu | Moving object detection based on the fusion of color and depth information[END_REF] realized the foreground detection by using a weighted average on the probabilities obtained from the MOG model [START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF]. The different weights are updated adaptively for each output of the classifier by considering foreground detections in the previous frames and the depth feature. Experimental results [START_REF] Hu | Moving object detection based on the fusion of color and depth information[END_REF] showed that the proposed approach can effectively solve the limitations of color-based or depth-based detection.

• Depth from RGB-D Cameras: Recently, low cost RGB-D cameras such as the Microsoft's Kinect or the Asus's Xtion Pro are widely used to improve background modeling. However, the RGB-D cameras based on structured light scanner (i.e., Microsoft Kinect) are not usually suitable for outdoor environments, due to the range limitation and errors introduced by interference with the sunlight. Several BS work using Microsoft Kinect are found in the literature. For example, Camplani et al. [START_REF] Camplani | Multi-sensor background subtraction by fusing multiple region-based probabilistic classifiers[END_REF] used a multiple region-based classifiers in a mixture of experts fashion to improve the final foreground detection. It is based on multiple background models that provide a description at region and pixel level by considering the color and depth features. In Camplani et Salgado [START_REF] Camplani | Background foreground segmentation with RGB-D kinect data: an efficient combination of classifiers[END_REF], the combination of the four models (pixel-color, regioncolor, pixel-depth, region-depth) was based on a weighted average to efficiently adapt the contribution of each classifier to the final classification. Another BS algorithm based on RGB-D camera to make the background and foreground models more robust to effects such as camouflage and illumination changes was proposed by Spampinato et al. [START_REF] Fernandez-Sanchez | Background subtraction based on color and depth using active sensors[END_REF] and Fernandez-Sanchez [START_REF] Spampinato | Kernel density estimation using joint spatial-color-depth data for background modeling[END_REF]. The authors modeled the background and foreground scenes with a Kernel Density Estimation (KDE) [START_REF] Elgammal | Non-parametric model for background subtraction[END_REF] in a quantized x-yhue-saturation-depth space after a preprocessing stage for aligning color and depth data and for filtering/filling noisy depth measurements. Experimental results in three different indoor environments, with different lighting conditions, showed that this approach achieved an accuracy in foreground segmentation over 90% that the combination of depth data and illumination-independent color space proved to be very robust against noise and illumination changes. More works can be seen in: [START_REF] Gallego | Region based foreground segmentation combining color and depth sensors via logarithmic opinion pool decisions[END_REF][START_REF] Greff | A comparison between background subtraction algorithms using a consumer depth camera[END_REF][START_REF] Liang | A refinement framework for background subtraction based on color and depth data[END_REF].

Motion features

The motion features provide temporal information and they are useful to handle dynamic scenes, containing natural elements such as fountains, swaying trees or ocean ripples [START_REF] Bouwmans | Traditional and recent approaches in background modeling for foreground detection: An overview[END_REF][START_REF] Parag | A framework for feature selection for background subtraction[END_REF]. The motion features are usually obtained via optical flow to deal with irrelevant motions in the background. The majority of the optical flow algorithms are computationally slow. Three alternative approaches are then used to introduce temporal attributes: 1) the ones based only on the difference between consecutive frames. Then, the background model is only computed on stationary regions of the scene, 2) optical flow (computed on all pixels) which is used to detect moving areas. The background model is only computed in stationary areas, and 3) optical flow is only computed on moving areas after foreground detection. In this case, optical flow allows the algorithm to distinguish the unimportant moving areas from the moving objects. Different approaches have been proposed to extract motion features. We review in the following paragraphs the main existing ones.

Huang et al. [START_REF] Huang | Region-level motion-based foreground detection with shadow removal using mrfs[END_REF] presented a dense optical flow for describing motion vectors. Regions with coherent motion are then extracted as initial motion markers. Pixels not assigned to any region are labeled uncertain ones. Finally, a watershed algorithm based on motion and color is used to associate uncertain pixels to the nearest similar mark. Further, Markov Random Fields (MRFs) [START_REF] Kindermann | Markov Random Fields and Their Applications[END_REF] are used to formulate the foreground detection as a labeling problem. The optimization over the MRF model is then performed. The posterior probabilities initialized with the ones computed with the MOG model [START_REF] Wang | Static and moving object detection using flux tensor with split gaussian models[END_REF] are maximized to obtain the final classification result. Finally, regions which have the same classification label and similar colors are merged to derive a more consistent foreground mask. Experimental results [START_REF] Huang | Region-level motion-based foreground detection with shadow removal using mrfs[END_REF] on gradual illumination changes and shadows demonstrated the robustness of this method, but the computational complexity of this technique has not been mentioned. In similar studies, Huang et al. [START_REF] Huang | Region-level motion-based foreground segmentation under a bayesian network[END_REF] used motion information captured through the difference of consecutive frames to model the background in stationary areas. Using the EPPM [START_REF] Bao | Fast edge-preserving patch match for large displacementoptical flow[END_REF], Chen et al. [START_REF] Chen | Spatiotemporal background subtraction using minimum spanning tree and optical flow[END_REF] ensured temporallyconsistent background subtraction with optical flow estimation by tracking the foreground pixels. Here, motion information is integrated with a temporal M-smoother. A similarity measurement is obtained directly from optical flow estimation with the assumption that the background estimate for the same object appearing in the difference video frames should be identical. As the direct implementation of EPPM [START_REF] Bao | Fast edge-preserving patch match for large displacementoptical flow[END_REF] is extremely slow as optical flow estimation is required between any two video frames, Chen et al. [START_REF] Zhou | Modified GMM background modeling and optical flow for detection of moving objects[END_REF] developed a recursive implementation so that optical flow estimation is required only between every two successive frames. As described in previous approaches, the background model is initially obtained using the MOG model [START_REF] Stauffer | Adaptive background mixture models for real-time tracking[END_REF]. Then, a spatial and a temporal M-smoother are employed to obtain a spatially-temporally-consistent foreground mask. Experimental results [START_REF] Chen | Spatiotemporal background subtraction using minimum spanning tree and optical flow[END_REF] on the ChangeDetection.net dataset [START_REF] Goyette | Changedetection.net: A new change detection benchmark dataset[END_REF] and SABS dataset [START_REF] Brutzer | Evaluation of background subtraction techniques for video surveillance[END_REF] showed this algorithm outperforms most of state-of-the-art algorithms. Using multiple features, Zhong et al. [START_REF] Zhong | Texture and motion pattern fusion for background subtraction[END_REF] proposed to fuse texture (εLBP [START_REF] Wang | Fast and effective background subtraction based on εLBP[END_REF]) and motion patterns. For each pixel, its probability to be either a background or foreground is computed from the histogram of each feature. Then, the results are combined using a weighted average mechanism. Experimental results [START_REF] Zhong | Texture and motion pattern fusion for background subtraction[END_REF] showed that the combination of εLBP and motion pattern outperforms the ordinary LBP in presence of dynamic backgrounds.

Feature selection in background modeling

Most of background subtraction methods use a uniform feature map for all pixels of the scene, disregarding the non-uniformity of the distribution of the background properties [START_REF] Sobral | A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos[END_REF]. Moreover, the importance of different features on particular regions of the image is still ignored. In practice, however, for a complex scene comprising of several elements such as waving trees, sky, soil and car, the most discriminant features for these elements are probably different, and therefore a single-feature background subtraction algorithm may not be appropriate. Despite the choice of the best features for each region is not an easy task as it requires a deep knowledge of the scene, it is possible to automatically select the most relevant features, and this process is commonly defined as feature selection [START_REF] Braham | A generic feature selection method for background subtraction using global foreground models[END_REF]. Feature selection (known as subset selection, attribute selection or variable selection) is the task of selecting a small subset of features that is enough to predict the target labels well. Three key benefits of performing feature selection on the data are [START_REF] Saunders | Subspace, Latent Structure and Feature Selection[END_REF]:

1. Reduced computational complexity: Feature selection helps to reduce the computational complexity of learning algorithms improving its prediction performance. Some learning algorithms can becoming computationally intractable when there a large number of features either in the training step as in the prediction step. When we find a small set of features that allows a good prediction of the labels, we can exclude the rest of irrelevant features. Therefore, in the prediction step we only have to measure a small set of features for each instance.

2. Improved accuracy: It is possible to improve the prediction accuracy by applying initially a feature selection method. Many of the state-of-the-art learning algorithms can given predictions greatly skewed by the presence of a big number of irrelevant or weakly relevant features. In contrast, even the simple learning algorithms may yield good performance if a a small set of good features has been previously selected.

3. Problem understanding: Normally, the key of solving an specific problem is by understanding it better. Feature selection methods can contribute to better understanding the problem at hand by selected the most useful information from a feature set.

In the background subtraction field, the use of feature selection methods have been less studied so far. Nevertheless, the feature selection can be used to improve the detection of the foreground objects [START_REF] Parag | A framework for feature selection for background subtraction[END_REF]. This is possible due to its capability to select a subset of highly discriminant features removing the irrelevant and redundant ones. Traditionally, feature selection methods can be categorized into three main groups: filter, wrapper and embedded -based methods. Recent works have also proposed the use of ensemble-based approaches for feature selection [START_REF] Bolón-Canedo | A review of microarray datasets and applied feature selection methods[END_REF][START_REF] Saeys | Robust feature selection using ensemble feature selection techniques[END_REF]. Following this, we discuss later each of these approaches and their main BS works.

Traditional approaches for feature selection

There are three general state-of-the-art approaches for feature selection: filter-based, wrapperbased and embedded-based [START_REF] Liu | Toward integrating feature selection algorithms for classification and clustering[END_REF][START_REF] Stanczyk | Feature selection for data and pattern recognition[END_REF]. Figure 2.4 shows a brief overview these approaches.

LITERATURE REVIEW

Filter-based The filter-based methods were the early approaches for feature selection. The filter-based methods evaluate the relevance of the features based on a statistical measure estimated directly from the data to assign a score to each feature without involving any classification algorithm [48,[START_REF] Liu | Computational methods of feature selection[END_REF][START_REF] Tuv | Feature selection with ensembles, artificial variables, and redundancy elimination[END_REF]. The filter methods are generally much computationally efficient and practical than wrapper methods (discussed later), especially for using it on high dimensional data. Nonetheless, it tends to select subsets with a high number of features (even all the features) and so a threshold is required for the choosing of a subset. The representation of the filter-based is shown in Figure 2.4a. A general filter-based algorithm is presented Algorithm 1 [START_REF] Liu | Toward integrating feature selection algorithms for classification and clustering[END_REF].

Given a training set X = {x 1 , x 2 , ..., x N } where each x j ( j = 1, ..., N) ∈ R p , the algorithm can start with one of the subsequent subsets of S 0 such as S 0 = {φ} or S 0 = {NULL} or S 0 ⊂ X. An independent measure ϑ evaluates each created subset S and compares it to the previous best subset. The search iterates until a predefined stopping criterion ϒ is reached. Some commonly used stopping criteria are described by Liu and Yu [START_REF] Liu | Toward integrating feature selection algorithms for classification and clustering[END_REF]. Lastly, the algorithm outputs the last current best subset S best as the final result. Note that by changing the search strategies and evaluation measures used in Steps 5 and 6 in the Algorithm 1, we can design diversified filter-based algorithms.

Algorithm 1 A generalized filter-based approach 1: Require: A training set X, a feature subset S 0 , a stopping criterion ϒ, an independent measure ϑ 2: S best = S 0 3: ϕ best = eval(S 0 , ϑ) {evaluate S 0 by using an independent measure ϑ} 4: repeat 5: S = generate(X) {generate a subset for evaluation} 6: ϕ = eval(S, ϑ) {evaluate the current subset S by ϑ} 7:

if (ϕ > ϕ best ) then 8:

ϕ best = ϕ 9:

S best = S 10:

end if 11: until (ϒ is reached) 12: Output: An optimal subset S best Wrapper-based The wrapper-based methods employ a learning algorithm as a "black box" for selecting a set of relevant features. Commonly, in this approach a learning algorithm is run over the entire training set and then measured against the testing set, or a cross-validation method can be used. This approach tends to give superior performance than the filter ones, but it is also more computationally expensive since we have to re-train the learning algorithm in each step. A representation of the wrapper-based method is shown in Figure 2.4b. The general wrapper approach (see Algorithm 2 [START_REF] Liu | Toward integrating feature selection algorithms for classification and clustering[END_REF]) is very similar to the general filter one except that it uses a predefined learning algorithm A instead of an independent measure ϑ for the subset evaluation. In a wrapper-based algorithm, for each created subset S, it evaluates its kindness by using the learning algorithm to the data with feature subset S and evaluating the quality of mined results. Nonetheless, different learning algorithms will provide different feature selection results. Note that it is possible to propose different wrapper-based algorithms by changing the function generate() and learning algorithms A.

Algorithm 2 A generalized wrapper-based approach 1: Require: A training set X, a feature subset S 0 , a stopping criterion ϒ, a learning algorithm A 2: S best = S 0 3: ϕ best = eval(S 0 , A) {evaluate S 0 by using a learning algorithm A} 4: repeat 5: S = generate(X) {generate a subset for evaluation} 6: ϕ = eval(S, A) {evaluate the current subset S by A} 7:

if (ϕ > ϕ best ) then 8:

ϕ best = ϕ 9:

S best = S 10:

end if 11: until (ϒ is reached) 12: Output: An optimal subset S best Embedded-based The embedded methods is normally used to describe selection which is done automatically by the learning algorithm. Decision trees [START_REF] Quinlan | Improved use of continuous attributes in c4.5[END_REF], the artificial neural networks with pruning of input neurons [START_REF] Le Cun | Optimal brain damage[END_REF] and L1-SVM [START_REF] Ng | Feature selection, l1 vs. l2 regularization, and rotational invariance[END_REF] are examples of methods in this category. The embedded-based approach interact to the learning algorithm with a lower computational cost than the wrapper-based. An illustration of the embedded-based approach is shown in Figure 2.4c. This approach employs the independent criteria to determine the best subsets for a known cardinality, and then uses the learning algorithm to choose the final best subset among the best subsets across distinct cardinality (number of elements of the set). An embedded algorithm usually initiates with an empty set S 0 by using sequential forward selection (start with an empty set of features and add features one at a time). For the best subset of cardinality c, it is searching all suitable subsets of cardinality c + 1 adding a feature from the leftover subsets. A subset created at cardinality c + 1 is evaluated by independent criterion ϑ and compared with the previous best subset. Next, the learning algorithm A is used to the current best subset, and performance Π is compared with the performance of the best subset at cardinality c. The algorithm continue looking for the best subset until S ′ best is better; otherwise, it stops and return the current best subset as the final best subset. A generalized embedded procedure is shown in Algorithm 3 [START_REF] Liu | Toward integrating feature selection algorithms for classification and clustering[END_REF].

Ensemble learning for feature selection

Ensemble learning is a powerful tool in the field of machine learning and its efficiency has been demonstrated in several studies [START_REF] Liu | A combinational feature selection and ensemble neural network method for classification of gene expression data[END_REF][START_REF] Liu | Ensemble gene selection by grouping for microarray data classification[END_REF][START_REF] Re | Integration of heterogeneous data sources for gene function prediction using decision templates and ensembles of learning machines[END_REF]. The main idea of ensemble learning is to combine a set of models, where each of them solves the same task in order to obtain a better global model with more robustness and the generalization ability than a single model. In the same way as in the classification tasks, ensemble learning might be employed to improve the robustness of feature selection approaches. Traditional feature selection approaches has concentrated on finding the suitable subset of significant features to be used for learning an inference model through classification or regression. In recent decades, a new kind of feature selection that uses ensemble learning to select features, called ensemble for feature selection has been introduced [3, [START_REF] Saeys | Robust feature selection using ensemble feature selection techniques[END_REF][START_REF] Shen | Feature selection ensemble[END_REF]. This approach extends the traditional feature selection methods by looking for a set of feature subsets that will favour disagreement among
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Algorithm 3 A generalized embedded-based approach 1: Require: A training set X, a feature subset S 0 , a learning algorithm A, an independent measure ϑ 2: S best = S 0 3: ϕ best = eval(S 0 , ϑ) {evaluate S 0 by using an independent measure ϑ} 4: Π best = eval(S 0 , A) {evaluate S 0 by using a learning algorithm A} 5: C 0 =card(S 0 ) {cardinality calculation of S 0 } 6: for c = C 0 + 1 : N do

7:

for t = 0 : Nc do 8: the ensemble members. The ensemble for feature selection may increase the probability of choosing a stable feature subset, i.e once the goal of feature selection process is fixed, the meaningful features should not change for different samples of the data. For instance, in real applications are usually required that the algorithms to select features are always consistent even if new samples are added to the data. The ensemble for feature selection can also provide a better approximation to the appropriate subset or ranking of features avoiding feature subsets which can be regarded local appropriate in the space of feature subsets. Lastly, the ensemble for feature selection can expands the search space by aggregating the outputs of many classifiers allowing that optimal subsets can be achieved [START_REF] Saeys | Robust feature selection using ensemble feature selection techniques[END_REF]. Note that not all ensemble methods can be considered as a feature selector. We regard that an ensemble is a feature selector when different subsets of features are used for different base classifiers in an ensemble. In this context, each ensemble member is associated with its own feature or feature subset, which can, for example, be selected by a particular feature selection algorithm or randomly sampled from the original pool of features [START_REF] Ho | The random subspace method for constructing decision forests[END_REF]. Figure 2.5 graphically shows this concept, where each classifier is trained with different feature(s) to differentiate two classes.

S =
The combination of the (three) classifiers provide the best decision boundary. We will discuss in more detail each of ensemble for feature selection steps below.

Building an ensemble for feature selection algorithm

An ensemble for feature selection should be composed of mutually complementary individual classifiers which are characterized by the high diversity and accuracy. Otherwise, there may be a risk of the increasing the computational complexity, in addition, combining similar classifiers must not contribute much to the combined classifier under construction [START_REF] Wozniak | Hybrid Classifiers: Methods of Data, Knowledge, and Classifier Combination[END_REF][START_REF] Zenobi | Using Diversity in Preparing Ensembles of Classifiers Based on Different Feature Subsets to Minimize Generalization Error[END_REF].

There are usually three strategies necessary for building a successful ensemble feature selection algorithm: 1) creating a set of diversified base/weak classifiers; 2) ensemble pruning; and 3) combining classifiers.

1) Creating a set of diversified base/weak classifiers The diversity of the classifier outputs is considered a key requirement for the great success of an ensemble algorithm [START_REF] Bianco | How far can you get by combining change detection algorithms? Computing Research Repository[END_REF][START_REF] Zhang | Ensemble Machine Learning: Methods and Applications[END_REF]. Whenever all base classifiers produce the same output, there is nothing to be acquired by their combination. Therefore, it is necessary that the decisions of ensemble members are diversified, especially when they are making error. Random subspace methods [START_REF] Ho | The random subspace method for constructing decision forests[END_REF] and the Boosting for feature selection [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF] are two very popular strategies to generate a diverse set of classifiers in an ensemble feature selection. Each of these approaches are described below.

• Random Subspace: The random subspace approach is be able to handle issues with a huge number of features. It employs different feature subsets to train the ensemble members. Random subspace method generate each classifier in the ensemble from a randomly chosen subset of predefined features [START_REF] Ho | The random subspace method for constructing decision forests[END_REF]. Therefore, the diversity is ensured by providing the base classifier different views (or projections) of the data. Like such views are generated randomly from a big feature set, it is very possible that every base classifier gets a different prospective of the data, which takes to the discovery of diverse and complementary structures in the data. Finally, the M classifiers are usually combined by simple majority voting in the final decision rule [START_REF] Jodoin | Overview and Benchmarking of Motion Detection Methods[END_REF]. The random subspace procedure is presented in the Algorithm 4 [START_REF] Zhou | Ensemble Methods: Foundations and Algorithms[END_REF].

Algorithm 4 The random subspace algorithm S k ← SelectRandomSubspace(X,p * ) 5:

Train k-th classifiers on S k 6:

k ← k+1 7: until k > M 8: Output: Combine outputs of M trained base classifiers usually according the Eq. (2.2).

• Boosting for feature selection: Boosting refers to a set of algorithms that allow to convert weak learners to strong ones. The AdaBoost (Adaptive Boosting) is a popular implementation of boosting proposed for the first time by Freund and Schapire (1996) [START_REF] Freund | Experiments with a new boosting algorithm[END_REF]. It works by repeatedly running a weak learner on various distributed training set, then, the weak learning are combined into a single strong classifier. The aim is to find a final classifier with a low prediction error rate. A few years later, the AdaBoost version to select a number of relevant features from a high number of potential features was proposed in [START_REF] Long | Boosting and microarray data[END_REF][START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF][START_REF] Viola | Robust real-time face detection[END_REF]. The AdaBoost for feature selection is a simple modification of the standard AdaBoost procedure: the weak learner is constrained so that each weak classifier returned can depend on only a single feature.

When the classifiers are combined, a much better performance can be achieved than what can be achieved by a single classifier. The key idea behind this algorithm is concentrate on the samples which are harder to classify, increasing their representation in successive training sets. In the AdaBoost for feature selection, M features and weak classifiers are chosen to compose the final strong classifier over a number of M rounds.

In each of the iterations, the space of all possible features is searched extensively to find the optimal weak classifier with the smaller weighted classification error. The error is then employed to update the weights such that the wrongly classified samples get weights increased. The final strong classifier is a weighted linear combination of all M selected weak classifiers. Details of the AdaBoost for feature selection is presented in Algorithm 5 [START_REF] Viola | Rapid object detection using a boosted cascade of simple features[END_REF][START_REF] Viola | Robust real-time face detection[END_REF]. In addition to AdaBoost, some others boosting variants, such as RealBoost [START_REF] Parag | A framework for feature selection for background subtraction[END_REF] and XGBoost [START_REF] Chen | XGBoost: A scalable tree boosting system[END_REF] have also been proposed for feature selection.

2) Ensemble pruning An important issue in an ensemble method is to decide how many base classifiers should be used. Ensemble pruning, also known as ensemble selection (or selective ensemble) aims to select a subset of individual base classifiers to form the whole ensemble. Many ensemble algorithms do not include this additional intermediate phase into prior to combination of the base classifiers. Nonetheless, some authors have demonstrated both theoretical and empirical that ensemble selection can improve the generalization performance of ensemble, therefore, the ensemble selection phase may reach better performance than the original ensemble [START_REF] Bartlett | The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network[END_REF][START_REF] Martínez-Muñoz | An analysis of ensemble pruning techniques based on ordered aggregation[END_REF]. Furthermore, a great number of base classifiers in an Normalize the weights w k,i ←

w k,i ∑ N j=1 w k, j
so that w k is a probability distribution.

6:

For each, ρ j , train a classifier Ψ j which is restricted to using a single feature. The error is evaluated with respect to w k ,

error j = ∑ i w i | Ψ j (x i ) -y i |. 7:
Choose the classifier Ψ k , with the lowest error k 8:

Update the weights:

w k+1,i = w k,i ν 1-e i k 9
:

where e i = 0 if example x i is classified correctly, e i = 1 otherwise, and

ν k = e k
1-e k 10: k ← k+1 11: until k > M 12: Output: The strong classifier is:

H(x) = 1 if ∑ M k=1 β k Ψ k (x) ≥ 1 2 ∑ M k=1 β k 0 otherwise.
(2.1)

13: where

β k = log 1 ν k
ensemble demand large memory and computational overhead. Consequently, this will result in an increase of the training cost, storage demands, and prediction time. According to Rokach and Maimon [START_REF] Rokach | Data Mining with Decision Trees -Theory and Applications[END_REF], there are four factors that may determine the size of an ensemble: 1) suitable number of base classifier should be chosen to achieve the desired accuracy in an ensemble. A study conducted by Hansen and Salamon [START_REF] Hansen | Neural network ensembles[END_REF] showed that ten classifiers are usually sufficient to reduce the error rate; 2) the size limit of ensemble should be predefined to preventing from increasing computational cost and the decreasing comprehensibility between the base classifiers; 3) the nature of the classification problem can be responsible by the number of base classifiers in an ensemble; and 4) the quantity of processors available for parallel learning can also be used as parameter to define the number of base classifiers in an ensemble. There are three approaches for determining the ensemble size [START_REF] Rokach | Pattern Classification Using Ensemble Methods[END_REF][START_REF] Rokach | Data Mining with Decision Trees -Theory and Applications[END_REF]:

• Pre-selection of the ensemble size: In this category, the user can define the ensemble size by "number of iterations", (such as in the Random Subspace, Bagging, etc.) or by the nature of the classification problem (such as in the Error-Correcting Output Coding (ECOC) [START_REF] Kong | Error-correcting output coding corrects bias and variance[END_REF]).

• Selection of the ensemble size while training: The algorithms belonging to this category attempt to define the best ensemble size during the training. Normally, while new classifiers are introduced to the ensemble, these algorithms verify if the contribution of the last classifier to the ensemble performance is still meaningful. Otherwise, the ensemble algorithm stops. These algorithms often also have a controlling parameter that limits the size of ensemble as in the previous category.

• Pruning-post selection of the ensemble size: This category allows the ensemble grow freely and thereafter prune the ensemble to obtain small and efficient ones. Post selection of the ensemble typically uses performance metrics, such as accuracy, cross entropy, mean, precision, etc. This approach can be separated into two categories: pre-combining and post-combining approaches. Pre-combining pruning is realized before combining the base classifiers whereas in post-combining, the base classifiers are eliminated based on their contribution with others.

3) Combining classifiers The last stage for any ensemble feature selection algorithm is the combination of the outputs of several base classifiers. There different methods to combine classifiers, however the scheme for combining which is going to be utilized, in part, depends on the type of classifiers used as ensemble member. For instance, the majority voting is typically used for classifiers that give discrete-valued label outputs. Nonetheless, there is a variety of scheme for combining classifiers that give continuous outputs, such as arithmetic (sum, product, mean, etc.), voting-based methods, etc. A detailed review of the different kinds of combiners can be found in [START_REF] Kuncheva | Combining Pattern Classifiers: Methods and Algorithms, Second Edition[END_REF][START_REF] Rokach | Pattern Classification Using Ensemble Methods[END_REF][START_REF] Zhou | Ensemble Methods: Foundations and Algorithms[END_REF]. In this thesis, only some of the most common methods for combining classifiers will be explained. Given the output of each classifier k is a i-long vector q k,1 , ..., q k,i . The value q k, j corresponds to the support that the sample x belongs to the class j according to the classifier k. For simplicity, it is also defined that ∑ i j=1 q k, j = 1. If we are dealing with a crisp classifier k, which attributes the sample x to a determined class l, therefore it can still be transformed to i-long vector q k,1 , ..., q k,i such that q k,l = 1 and q k, j = 0, ∀ j = l [START_REF] Rokach | Pattern Classification Using Ensemble Methods[END_REF].

• Majority voting: Majority voting is a simple and most intuitive method for combining classifier outputs. A comprehensive analysis of the majority voting approach can be found in [START_REF] Kuncheva | Combining Pattern Classifiers: Methods and Algorithms, Second Edition[END_REF]. Basically, the combining scheme classify an unlabeled sample by counts the votes for each class over the input classifiers and choose the majority class. Mathematically, majority voting can be expressed as follows:

H(x) = arg max ω k ∈Y M ∑ i=1 I(h i (x), ω k ) (2.2)
where h k (x) is the classification of the k-th classifier and I(h, ω) is an indicator function defined as:

I(h, ω) =    1 if h = ω 0 if h = ω
• Weighted majority voting: This approach consists in combining the base classifiers assigning weights for each of them. The more competent classifiers will have greatest power in the final decision. Normally, the classifiers' weight can be determined either upon preliminary information or based on their performance for a certain validation set. More details on weighted majority voting can also be found in [START_REF] Littlestone | The weighted majority algorithm[END_REF]. In mathematical terms, the weighted voting can be given as:

H(x) = sign( M ∑ i=1 β i (h i (x), ω k )) (2.3)
where β i is the weight of each classifiers.

• Bayesian combination: In the Bayesian combination approach the classifiers' weight is a posterior probability of the classifier given the training set [START_REF] Buntine | A theory of learning classification rules[END_REF].

H(x) = arg max ω k ∈Y M ∑ i=1 P(Ψ i |X) PΨ i (Y = ω k |x) (2.4) 
where P(Ψ i |X) indicates the probability that the classifier Ψ i is correct given the training set X. The estimation of P(Ψ i |X) depends on the classifier's representation.

• Näıve bayes: Considering that the classifiers are mutually independent given a class label (conditional independence), the Bayes' rule can be used for combining various classifiers.

H(x) = arg max ω j ∈Y P(Y =ω j )>0 P(Y = ω j ) ∏ i=1 PΨ i (Y = ω j |x) P(Y = ω j ) (2.5)

Feature selection in background subtraction

Surprisingly, a little BS works based on feature selection have been done to date. Some works based on the traditional feature selection methods are presented below. For instance, Li et al. [START_REF] Li | Statistical modeling of complex backgrounds for foreground object detection[END_REF] presented one of the first works based on this category. The authors introduced a novel method to detect changes based into static and dynamic pixels in accordance with inter frame changes. The Bayes decision theory is used for classification of a certain pixel in static or dynamic class. The static pixels belong to stationary objects, and they are described by color and gradient statistics whereas dynamic pixels belong to non-stationary, and the are represented by color co-occurrence statistics. According to Li et al. [START_REF] Li | Statistical modeling of complex backgrounds for foreground object detection[END_REF], the proposed method can be affected by the problem of intermittent object motion, since the statistics are associated to each individual pixel without considering its neighborhood. Furthermore, the method can mistakenly learn the features of non-stationary objects as stationary if crowded foreground objects are frequently showed in the scenes. In Javed et al. [START_REF] Javed | OR-PCA with dynamic feature selection for robust background subtraction[END_REF], a simple dynamic feature selection scheme for background scenes is proposed. An Online Robust Principal Component Analysis (OR-PCA) with dynamic feature selection provides a framework to select multiple features frame by frame. The means and variances are used as a criterion for selecting the best features. The authors mentioned that the potential problem of the proposed approach is the time computation, since features are extracted from every incoming video block. Most recently, Braham and Van Droogenbroeck [START_REF] Braham | A generic feature selection method for background subtraction using global foreground models[END_REF] presented a generic feature selection method for background subtraction. The authors proposed a strategy for selecting the best features by comparing the current input feature values with local background ones. Initially, local feature background models are created from a set of features. Then it checks, if the each model predicts the correct class of input samples. Finally, the best feature/threshold combination is selected by a performance metric computed from a confusion matrix. Experiments conducted on the ViBe algorithm [START_REF] Barnich | Vibe: a powerful random technique to estimate the background in video sequences[END_REF] showed that the proposed feature selection method improves the segmentation results. In the last decades, some papers have been published addressing the ensemble for feature selection for the BS context. Most ensemble for feature selection algorithms for BS use widely the boosting and its variants. In Grabner and Bischof [START_REF] Grabner | On-line boosting and vision[END_REF][START_REF] Grabner | Autonomous learning a robust background model for change detection[END_REF], a feature selection framework using the online AdaBoost [START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF] is introduced for the BS task. In the learning step a weak classifier is created for all image patches supposing that all input images are positive samples. For this purpose, the gray value of each pixel is given as uniformly distributed, the Haar features are computed by standard statistics the parameters of the negative distribution and, the orientation histogram features consists of equally distributed orientations. Afterwards, the new input images are analyzed, and the background model is updated. According to the authors, this method is robust to illumination changes and dynamic backgrounds since the classifiers are consistently updated. However, this approach has many restrictions concerning robust adaptiveness. To overcome this limitation, Grabner et al. [START_REF] Grabner | Time dependent on-line boosting for robust background modeling[END_REF] introduced a controllable time dependency into online boosting. The algorithm used an exponential forgetting of the samples over time and a simple sum-rule is used in the method to adjusting its temporal behavior to the underlying scene by using a control system that regulates the model parameters (e.g. errors, and importance). Parag et al. [START_REF] Parag | A framework for feature selection for background subtraction[END_REF] proposed a generic model that is capable of automatically selecting the features that obtain the best invariance to the background changes while maintaining a high detection rate for the foreground detection. In this study, the authors proposed the use of a RealBoost algorithm [START_REF] Schapire | Improved boosting algorithms using confidence-rated predictions[END_REF]. Unlike AdaBoost algorithm which combines weak hypotheses having outputs in {-1, +1}, RealBoost algorithm computes real-valued weak classifiers given real numbered feature values, and generates a linear combination of these weak classifiers that minimizes the training error. To generate the background model, Parag et al. [START_REF] Parag | A framework for feature selection for background subtraction[END_REF] used the Kernel Density estimation (KDE) [START_REF] Elgammal | Non-parametric model for background subtraction[END_REF] into RealBoost algorithm to select the most appropriate features for each pixel. The authors used 9 types of features, such as three color values R, G, B and spatial derivatives for each of these color channels in both x and y directions for each pixel of a color image. According to authors, once trained, the algorithm is able to adequately detect the moving objects unless there are some structural changes in the scene. In Klare and Sarkar [START_REF] Klare | Background subtraction in varying illuminations using an ensemble based on an enlarged feature set[END_REF], an ensemble of 13 Mixture of Gaussians (MoG) classifiers is presented. Each classifier uses exclusively one of the 13 (e.g. RGB, gradients, and Haar-like) features from the feature set, then they are fused using equally weighted hypotheses, resulting in a single hypothesis. The experimental results showed an evident improvement compared to the original MoG algorithm that uses only color intensities. The main BS works based on feature selection reported here as well as its principal differences are shown in Table 2.3.

Conclusion

As discussed in this chapter, numerous approaches for background subtraction have been proposed until the present date. However, there still exist open research questions to be investigated, as for example no traditional algorithm today still seem to be able to simultaneously address all the key challenges of illumination variation, dynamic camera motion, cluttered background and occlusion. We believe that an way of solving this issue is by the systematic investigation concerning the role and importance of features within background modeling and foreground detection. In the next chapters of this thesis, we tackle the problem by starting proposing a new descriptor that produces a short histogram while preserving robustness to illumination changes. Moreover, this novel descriptor is less sensitive to noisy pixels too. Furthermore, we present a feature selection approach to select automatically the best features for different pixels/regions of the image, and the more relevant ones are used for foreground segmentation.

Chapter 3 A novel texture descriptor for background subtraction in videos

In this chapter, we propose an eXtended Center-Symmetric Local Binary Pattern (XCS-LBP) descriptor for background modeling and subtraction in videos. By combining the strengths of the ordinary LBP and the similar Center-Symmetric (CS) ones, it is robust to illumination changes and noise, and produces short histograms, too. The experiments conducted on both synthetic and real videos (from the Background Models Challenge) of outdoor urban scenes under various conditions showed that the proposed XCS-LBP outperforms its direct competitors for the background subtraction task. The work presented here was published at the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP), Berlin, Germany (oral presentation) [START_REF] Silva | An extended center-symmetric local binary pattern for background modeling and subtraction in videos[END_REF]. The reader can find the related source code on Matlab at1 .

Motivation

Recently, a variety of local texture descriptors have been attracted great attention for background modeling, especially the Local Binary Pattern (LBP) because it is simple and fast to compute. Figure 3.1 (top) shows how a (center) pixel is encoded by a series of bits, accordingly to the relative gray levels of its circular neighboring pixels. It shows great invariance to monotonic illumination changes, do not require many parameters to be set, and have a high discriminative power. However, the ordinary LBP descriptor in [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF] is not efficient for background modeling because of its sensitivity to noise, see Figure 3.1 (bottom) where a little change of the central value greatly affects the resulting code.

The LBP feature of an image consists in building a histogram based on the codes of all the pixels within the image. As it only adopts first-order gradient information between the center pixel and its neighbors, see [START_REF] Xue | Hybrid center-symmetric local pattern for dynamic background subtraction[END_REF], the produced histogram can be rather long. We have mentioned in the literature review (Chapter 2) that the Center-Symmetric LBP variants have been proposed to address this problem. It generates more compact binary patterns by working only with the center-symmetric pairs of pixels. In this chapter, we propose a Center-Symmetric LBP variant by introducing a new neighboring pixels comparison strategy that allows the descriptor to be less sensitive to noisy pixels and to produce a short histogram, while preserving robustness to illumination changes and slightly gaining in time consumption when compared to its direct competitors.

The rest of this chapter is organized as follows. The new descriptor that we propose is described in Section 3.2. Comparative results obtained on both synthetic and real videos are given in Section 3.3. Finally, the conclusion drawn at the last section closed the Chapter 3.

Proposed XCS-LBP descriptor

The ordinary LBP descriptor introduced by [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF] has proved to be a powerful local image descriptor. It labels the pixels of an image block by thresholding the neighborhood of each pixel with the center value and considering the result as a binary number. The LBP encodes local primitives such as curved edges, spots, flat areas, etc. In the context of BS, both the current image and the image representing the background model are encoded such that they become a texture-based representation of the scene. Let a pixel at a certain location, considered as the center pixel c = (x c , y c ) of a local neighborhood composed of P equally spaced pixels on a circle of radius R. The LBP descriptor applied to c can be expressed as:

LBP P,R (c) = P-1 ∑ i=0 s (g i -g c ) 2 i (3.1)
where g c is the gray value of the center pixel c and g i is the gray value of each neighboring pixel, and s is a thresholding function defined as: • 256 SCS-LBP [START_REF] Xue | Dynamic background subtraction based on spatial extended center-symmetric local binary pattern[END_REF] • • 16 SILTP [START_REF] Liao | Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes[END_REF] • 256 CS-LDP [START_REF] Xue | Hybrid center-symmetric local pattern for dynamic background subtraction[END_REF] • 16 SCBP [START_REF] Xue | Hybrid center-symmetric local pattern for dynamic background subtraction[END_REF] • 64 OCLBP [START_REF] Lee | Hierarchical on-line boosting based background subtraction[END_REF] • 1536 Uniform LBP [START_REF] Yuan | A new background subtraction method using texture and color information[END_REF] • 59 SALBP [START_REF] Noh | A new framework for background subtraction using multiple cues[END_REF] • 128 SLBP-AM [START_REF] Yin | Dynamic background subtraction based on appearance and motion pattern[END_REF] • • 256 LBSP [22] • • 256 CS-SILTP [START_REF] Wu | Real-time background subtraction-based video surveillance of people by integrating local texture patterns[END_REF] • • 16 XCS-LBP [START_REF] Silva | An extended center-symmetric local binary pattern for background modeling and subtraction in videos[END_REF] (in this thesis)

s(x) = 1 if x ≥ 0 0 otherwise. (3.2)

• • 16

We choose these the CS-LBP and CS-LDP descriptors for fair comparison purpose. Indeed, among those who rely on the same construction principle, i.e. Center Symmetric (CS), they are the only ones that use neither color nor temporal information, see Table 3.1. For all descriptors, the neighborhood size is empirically selected so that P = 8 and R = 1.

The BS methods used in this work

We evaluate the performance with two popular background subtraction methods: Adaptive Background Learning (ABL) and Gaussian Mixture Models (GMM). A summary of these approaches are presented below:

• Adaptive Background Learning (ABL): This method consists to compute the absolute difference between the current frame and the static representation of the background model. Initially, the background is modeled using an average, a median or an histogram analysis over time then it is updated via running average. Once the model is computed, pixels of the current image are classified as foreground by thresholding the difference between the background image and the current frame [START_REF] Bouwmans | Traditional and recent approaches in background modeling for foreground detection: An overview[END_REF].

• Gaussian Mixture Models (GMM): In this algorithm, each pixel is represented by a sum of weighted Gaussian distributions defined for a given color space. These distributions are generally updated using an online expectation-minimization algorithm. 

Conclusion

In summary, a new texture descriptor for background modeling is proposed. It combines the strengths of the ordinary Local Binary Pattern (LBP) and the Center-Symmetric (CS) ones. Thus, the new variant XCS-LBP (eXtended CS-LBP) produces a shorter histogram than LBP, by its CS-construction. It is also tolerant to illumination changes as LBP and CS-LBP are whereas CS-LDP is not, and robust to noise as CS-LDP is whereas LBP and CS-LBP are not. We compared the XCS-LBP to the ordinary LBP and to its two direct competitors on both synthetic and real videos of the Background Modeling Challenge (BMC) using two popular background subtraction methods. The experimental results have shown that the proposed descriptor qualitatively and quantitatively outperforms the mentioned descriptors, making it a serious candidate for the background subtraction task in computer vision applications.

In the next chapter, we present an ensemble pixel-based for feature selection in BS to deal with the challenges enumerated in the Section 1.1. The proposed approach selects automatically the best features for different pixels of the image, and the more relevant ones are used for the foreground segmentation task. In this framework, the background model is modeled by different features including our XCS-LBP descriptor presented in this chapter.

Chapter 4 A pixel-based ensemble for feature selection in background subtraction

This chapter presents an Online Weighted Ensemble of One-Class SVMs (Support Vector Machines) able to select suitable features for each pixel to distinguish the foreground objects from the background. In addition, our proposal uses a mechanism to update the relative importance of each feature over time. Moreover, a heuristic approach is used to reduce the complexity of the background model maintenance while maintaining the robustness of the background model. Results on two datasets show the pertinence of the approach. This chapter is based on our recent publication presented at the International Conference on Pattern Recognition (ICPR), Cancun, Mexico (oral presentation) [START_REF] Silva | Online weighted one-class ensemble for feature selection in background/foreground separation[END_REF].

Motivation

A single-feature background subtraction algorithm may not be appropriate in a complex scene because the most discriminant features for each element are probably different. A complex scene comprising of several elements such as waving trees, sky, soil and cars is shown in Figure . 4.1. We have argued in the Chapter 2 that the ensemble feature selection technique as a great way to able select automatically the most relevant features in a scene. Relatively little approach based on ensemble for feature selection has been proposed for BS task. Most of these approaches use a multi-class boosting approach and its variants to select the best features (see Table 4.1). However, the BS can be considered an one-class classification (OCC) problem, therefore usually only exemplars of one-class elements are available (i.e. the background component is always present), whereas the other classes are unknown (i.e. foreground objects can appear/disappear several times in the scene). To overcome this problem, most of BS approaches have been used statistical distributions to generate the unrealistic foreground samples. In this chapter, we propose an online weighted ensemble of one-class SVMs (Support Vector Machines) for feature weighting and selection for foreground-background separation. The main BS works based on ensemble for feature selection as well as its principal where ., . stands for the inner product that can be replaced by any kernel function K(., .), and α i are the associated Lagrangian multipliers subject to:

0 ≤ α i ≤ w i C, (4.6) N ∑ i=1 α i = 1. (4.7)
The solution of this quadratic programming problem is twofold. On one hand, the center a is a linear combination of the data points:

a = N ∑ i=1 α i x i . (4.8)
On the other hand, the radius R is subject to the following Karush-Kuhn-Tucker (KKT) conditions that correspond to inliers, the so-called support vector (SV) points and outliers, respectively:

inliers : α i = 0 ⇒ ||x i -a|| 2 < R 2 (4.9) SV : 0 < α i < C ⇒ ||x i -a|| 2 = R 2 (4.10) outliers : α i = C ⇒ ||x i -a|| 2 > R 2 (4.11)
and can be computed from SV points given by (4.10). The classification of an incoming point x is straightforward: it is assigned to ω if it falls inside the class boundary (positive case), otherwise it is associated to an outlier class ω o (negative case).

Traditional WOC-SVM is an offline or batch process, so that classification boundaries are not updated. This can limit its use for many machine learning applications. For the BS task, it is required to adjust the learned model to the scene variations over time. We propose an Incremental Weighted One-Class Support Vector Machine (IWOC-SVM) to handle this issue which is closely related to the procedure proposed by Tax and Laskov [START_REF] Tax | Online SVM learning: from classification to data description and back[END_REF]. In the IWOC-SVM algorithm, SV set and non-SV set in previous training set Z 0 may be converted into SV. Samples which violate KKT conditions in new samples are chosen as training set and the other useless samples are eliminated in the training process. Given new samples Z 1 = {z 1 , z 2 , ..., z s } and its respective weights not learned by the IWOC-SVM, first we defined the corresponding α i = 0, and then we calculated the distance to center of the hypersphere. There are no new SVs in the new samples Z 1 when the distance is smaller than the radius. In addition, some non-SVs in the old samples may be transformed into SVs along with incremental learning of the new samples. Note that non-SVs can be transformed into new SVs if they always exist nearby the hypersphere. The mathematical model can be defined as:

R -θ ≤ ||x -a||≤ R (4.12)
where θ ∈ [0, R] is relative to the distribution of previous training set, and the loose distribution will make the value of θ be high. In addition, with the incremental learning, the value of θ will be low for more and more samples located near the previous SV set. The resulting IWOC-SVM is summarized in Algorithm 6.

Algorithm 6 Incremental Weighted One-Class SVM 1: Require: Previous training set Z 0 , newly added training set Z 1 and its respective weights 2: Train IWOC-SVM classifier on Z 0 , then split Z 0 = SV 0 ∪ NSV 0 3: Input new samples Z 1 . Put samples that violate KKT conditions in

Z V 1 . If Z V 1 = / 0,
then goto 2. 4: Put samples from NSV 0 that satisfy Eq. (4.12) into NSV S 0 . 5: Set Z 0 = SV 0 ∪ NSV S 0 ∪ Z V 1 and train IWOC-SVM classifier on Z 0 . 6: Output: IWOC-SVM classifier Ω and the new training set Z 0 .

Online weighted one-class random subspace ensemble for feature selection (OWOC-RS)

For the background subtraction task, diversity models are initially learned for each pixel contained in the first N images, say training set X = {x 1 , x 2 , ..., x N } where each x j ( j = 1, ..., N) ∈ R p is a certain pixel over time N described by p original features.

Generating multiple base models

For each classifier, p * < p features are randomly selected so that x reduces to S k (k = 1, ..., M), where M is the user-defined number of base classifiers. Then, for each reduced object x * j ( j = 1, ..., N) of S k , weights are assigned to the features in accordance to an exponential distribution. We opted for a Poisson distribution because it is usually employed in re-sampling ensemble methods such as bagging and wagging [START_REF] Okun | Feature selection and ensemble methods for bioinformatics: algorithmic classification and implementations[END_REF]. In this work, we used the version of the Poisson distribution that describes the process in which events occur continuously and independently at a constant average rate. The weights drawn from the Poisson distribution are used to generate the IWOC-SVM base classifier [START_REF] Krawczyk | Wagging for combining weighted one-class support vector machines[END_REF]. Thus, a hybridization between random subspace and incremental one-class learning is done. The above approach increases the diversity of base classifiers since different weights of each random subspace are taken to distinguish the decision boundaries computed by the classifiers. Indeed, these base classifiers represent a set of diverse base background models Ψ = {Ψ 1 , Ψ 2 , ..., Ψ M }. The pseudo-code of the proposed approach for multiple base background models generation is given in Algorithm 7.

Algorithm 7 Generate multiple base background models 

Adaptive Importance (AI)

Along time, the selected feature set may become inadequate if any major change in the scene occurs. Since the objective is to use the more useful models, namely the best features from the pool of p features, an adaptive importance taking values in [0,1] can be introduced as proposed in [START_REF] Wozniak | Hybrid Classifiers: Methods of Data, Knowledge, and Classifier Combination[END_REF] for each base model to weight the class labeling (see Eq. 4.15) of the incoming pixels. The higher the importance which lies in [0,1], the more the classifier influences the decision. Let λ correct k (respectively λ wrong k

) be the number of times a pixel was correctly (respectively incorrectly) classified by the k-th (k = 1, ..., M) base classifier from given ground truth data. Then, the corresponding error is given by: for l = 1 : L do 6:

error k = λ wrong k λ correct k + λ wrong k (4.
Checks response of Ψ l and calculates their error l according to Eq. (4.13) 7:

For each best classifier, Ψ l , update the importance β l = β l (i -1) + P a (Ψ l )-P a (H(i-1)) (N+γ)

8:

where P a (Ψ l ) = 1error l according to Eq.(4.13). 9: end for 10: until i < N 11: Normalize the importance β of each L best classifier. 12: Output: New importance assigned to the best classifiers β = {β 1 , β 2 , ..., β L }

Background detection

Given an incoming pixel x to be classified, one can define a support function associated to the class ω for each of the L best base classifiers: ∀l = 1, ..., L

F l (x, ω) = 1 s 1 exp(-d(x, a)/s 2 ) (4.14) 
where d(x, a) is a distance metric from x to the center a of the target class ω, s 1 is a normalization factor and s 2 is a scale parameter. Each F l (x, ω) is then compared to a threshold t 1 to obtain the positive or negative class labels:

∀l = 1, ..., L c l (x, ω) = 1 if F l (x, ω) t 1 -1 otherwise (4.15)
Comparing the weighted sum of theses L class labels as in [START_REF] Tax | Combining one-class classifiers[END_REF] to another threshold t 2 allows to define the final classifier for x as follows:

H(x) = 1 if 1 L ∑ L l=1 β l c l (x, ω) t 2 0 otherwise (4.16) 
A pixel x is classified as a background pixel if H(x) = 0.

Heuristic approach for background model maintenance

The background maintenance relies on the mechanism used for adapting the learned model to the scene over time. For this step, we propose to suitably update the learned model by our IWOC-SVM using a new ensemble margin-based data selection approach called Small Votes Instance Selection (SVIS) introduced by Guo and Boukir [START_REF] Guo | Fast data selection for svm training using ensemble margin[END_REF]. The SVIS relies on a simple and efficient heuristic approach to provide SV candidates: selecting lowest margin samples. This heuristic significantly reduces the IWOC-SVM training task complexity while maintaining the accuracy of the IWOC-SVM classification. Once only support vector candidate samples are used to update the IWOC-SVM's models. The SVIS consists of an unsupervised ensemble margin that combines the first c (1) and second most voted class c (2) labels under the learned model. Let v c (1) and v c (2) denote the relative number of votes. Then the margin, taking value in [0,1] is:

m(x) = v c (1) -v c (2) L (4.17) 
where L represents the number of best base classifiers in the ensemble. The first smallest margin samples are selected as support vector candidates. The final model is updated by the first smallest margin samples. This procedure is presented in the Algorithm 9.

Experimental results

The experiments were conducted to show both the qualitative and quantitative performances of the proposed method. We used the MSVS dataset1 [START_REF] Benezeth | Background subtraction with multispectral video sequences[END_REF] which consists of a set of 5 video sequences containing 7 multispectral bands and color video sequence (RGB). We also present the results on the ChangeDetection (CDnet 2014) dataset2 [START_REF] Wang | CDnet 2014: An expanded change detection benchmark dataset[END_REF]. Three video sequences categorized into baseline scenes, intermittent object motion and dynamic scenes are used.

Algorithm 9 Heuristic approach for model maintenance 1: Require: Final classifier H, test set Z = {z 1 , z 2 , ..., z t }, weight distribution δ(z), user defined parameter time, user defined parameter η.

2: i ← 1 3: repeat 4: if H(z i ) = 1 (background) then 5:
Compute the margin m(z i ) by Eq. (4.17). 6:

end if 7:
if time is reached then 8:

Order all the test samples according to their margin values, in ascending order. 9:

The η smallest margin samples are selected as support vectors. 10:

H(x) is updated using Z 1 and its weight w ∼ δ(x). 11:

end if 12:

i ← i + 1 13: until i > t The baseline scenes include pets2006 while dynamic scenes include canoe and intermittent object motion scenes include sofa.

In the training step, we used kernalized IWOC-SVM as a base classifier with C = 1, with the same RBF (Radial Basis Function) kernel K(., .) [START_REF] Tax | Support vector domain description[END_REF]. The main advantage of RBF kernel is its good performance on non-linearly separable data. The pool of classifiers was homogeneous and consisted of 10 base classifiers of the same type. The classification threshold t 1 was set to 0.9 and t 2 to 0.5 for combining the best one-class classifiers. The video sequences was resized to 160 × 120 pixels in our experiments due computational cost. We set p* = 5 for the random subspace dimension from the original p = 26-dimensional features space on the MSVS dataset while p = 19-dimensional features space on the CDnet 2014 dataset. These features were chosen to have at least one feature in the five type of features commonly used in BS: color feature (R,G,B, H,S,V and gray-scale), texture feature (XCS-LBP [START_REF] Silva | An extended center-symmetric local binary pattern for background modeling and subtraction in videos[END_REF]), features to perform BS. Table 4.5 shows the score of the Mahalanobis distance and Pooling methods evaluated on five scenes. The best scores are in bold. The proposed approach presented the best scores for Scene 01, Scene 03, Scene 04 and Scene 05. In these scenes, the most frequent challenges for BS are color saturation, dynamic background, illumination changes, camouflage effects and intermittent object motion. In the Scene 02, the framework's performance was impacted due to gradual illumination changes. The best score for Scene 02 was presented for Mahalanobis distance. Table 4.6 also shows the score of our method from CDnet 2014 dataset. Note that for this dataset the best score was presented for the sofa scene. It contains abandoned objects and objects stopping for a short while and then moving away. A suggestion to further improve our method score for both datasets is adding new feature descriptors and/or its variants can be added to deal with specific background subtraction challenges. In general, we can see that the ensemble feature selection is a suitable and efficient approach for BS. Figure 4.6 and 4.7 illustrate the importance of each feature through video scenes from MSVS and CDnet 2014 datasets. For each pixel, certain features are ignored or receive relatively low importance in favor of other more informative features. Then, a global histogram was then normalized to obtain scores from 0-1, where higher scores meant highly informative features. Unlike traditional methods that the same feature (or set of features) is used globally for the whole video scene (and usually with the same level of importance), we present the potential of the proposed approach and its effectiveness to select the best features for background subtraction task. As can be seen on the MSVS dataset, the most important features for overall scenes were OCLBP and gradients with high or medium contribution of some features such as multispectral. It is important to note several BS algorithms uses color as main feature, whereas in our experiments the color feature is the one with lowest importance except for Scene 02. Notice that on CDnet 2014 dataset, all features are important for PETS2006 and canoe scenes while in the sofa scene only OCLBP-GG is less important. Table 4.3 and 4.4 show the most and less significant features for both datasets used in this work. The experimental were made in Matlab R2013a a MacBook Pro with 2.2 GHz Intel Core i7. We collected the elapsed CPU time for training/validation and foreground detection. For training/validation the elapsed time is 5.44 sec/frame, while in foreground detection the elapsed time is 1.05 sec/frame. 

Conclusion

Online Weighted Ensemble of One-Class SVMs is able to select suitable features for each pixel to distinguish the foreground objects from the background. In addition, an Online and Weighted version of the Random Subspace (OW-RS) is used to assign a degree of importance to each feature set, and these weights are used directly in the training step of our IWOC-SVM. Moreover, a heuristic approach is used to reduce the complexity of the background model maintenance while maintaining the robustness of the background model. Experimental results on different video sequences show the potential of the proposed approach and its effectiveness to select the best features for distinct regions in a video sequence. However, the ensemble pixel-based for feature selection described in this chapter only reaches the highest accuracy when the number of features is huge. In summary, each base classified learns a feature set instead of individual features. To overcome these limitations, in the next chapter we extend the approach proposed here by developing a novel methodology for selecting features based on wagging.

Chapter 5 A superpixel-based ensemble for feature selection in background subtraction

In this chapter, we present a novel superpixel based one-class ensemble to select the best features based on wagging. Our proposal is able to select suitable features to each region of a certain scene to distinguish the foreground objects from the background. In addition, we propose a mechanism to update the importance of each feature discarding insignificant features over time. Results on two challenging datasets show the pertinence of the proposed approach. The work presented here was recently submitted to Pattern Recognition Letters Journal [START_REF] Silva | Superpixel-based incremental wagging oneclass ensemble for feature selection in foreground/background separation[END_REF].

Motivation

In Chapter 4, we presented an online weighted one-class random subspace ensemble pixelbased able to select automatically the best features for different pixels of the image, and the most relevant features are used for foreground segmentation. The main drawback is that this method only reaches the highest accuracy when the number of features is huge. Furthermore, each base classifier learns a feature set instead of individual features. To overcome these limitations, in this chapter we extend our previous approach by proposing a novel methodology for selecting features based on wagging. It is important to note that the ensemble learning methods usually require high computation time and memory consumption. In order to circumvent this issue, an alternative way is to use efficient strategies that not further increase the computational cost of the ensemble. So, In this chapter, we adopted a superpixel-based approach instead of pixel-level approach used in our previous work (Chapter 4). This does not only increases the efficiency in terms of time and memory consumption, but also can improves the segmentation performance. We propose further a mechanism called Adaptive Importance Computation and Ensemble Pruning (AIC-EP). Chapter 4 also propose a mechanism to select the features over time, however, in this chapter we have added an ensemble pruning to eliminate the features that will not have impact on the ensemble's final decision. Ψ k ← train an IWOC-SVM classifier for each, ρ j feature according to random weights drawn from δ(x).

6:

Calculate the error of Ψ k according to Eq. (5.1) 7:

if error k ≥ ε then 8:

Choose the classifier Ψ k 9: break 10: else 11: continue 12:

end if 13: end for 14: j ← j+1 15: until j > N 16: // choose base classifiers with the best importances to according the Algorithm (11) 17: Output: Combine outputs the best base classifiers to according the Eq. (5.4). that describes the process in which events occur continuously and independently at a constant average rate [START_REF] Krawczyk | Wagging for combining weighted one-class support vector machines[END_REF]. Therefore, these weights together with the samples are used as input to generate the Incremental Weighted One-Class Support Vector Machine (IWOC-SVM) base classifiers. The reader can find details of the IWOC-SVM in Chapter 4. The search iterates until an IWOC-SVM with the smallest error (defined by the user) is found or M rounds is reached. Let λ correct k (respectively λ wrong k

) be the number of times a region was correctly (respectively incorrectly) classified by the k-th (k = 1, ..., M) base classifier from given ground truth data. Then, the corresponding error is given by:

error k = λ wrong k λ correct k + λ wrong k (5.1)
The Algorithm 10 (lines 1-16) is responsible by created many base classifiers with small error representing a set of diverse base background models Ψ = {Ψ 1 , Ψ 2 , , ..Ψ M }.

Adaptive Importance Computation and Ensemble Pruning (AIC-EP)

Along time, the selected feature set may become inadequate if any major change in the scene occurs. Since the objective is to use the more useful models, namely the best features from the p features set, an adaptive importance taking values in [0,1] can be introduced as proposed in [START_REF] Wozniak | Hybrid Classifiers: Methods of Data, Knowledge, and Classifier Combination[END_REF] for each base model to weight the class labeling (see Eq. 5.4) of the incoming regions. The higher the importance which lies in [0,1], the more the classifier influences the decision. Note that the difference of Algorithm Initialize all L classifiers with importance: β l = 1/L and estimate their P a (Ψ l ) 3: where P a (Ψ l ) = 1error l according to Eq.(5.1). 4: i ← 1 5: repeat 6:

Classify t i using the final classifier H according to Eq. (5.4) 7:

for l = 1 : L do 8:

Checks response of Ψ l and calculates their error l according to Eq. (5.1) 9:

For each best classifier, Ψ l , update the importance β l = β l (i -1)

+ P a (Ψ l )-P a (H(i-1)) (N+γ)
10: end for 11:

i ← i+1 12: until i < N 13: Normalize the importance β l of each l classifier 14: for l = 1 : L do 15:

if B l ≤ ς then 16:

discard the l-th classifier 17:

end if 18: end for 19: Output: The best classifier(s) and its/their β which could be used in Eq. (5.4)

Background detection

The procedure for background detection is the same as used in Chapter 4. However, we recover some of the principal definitions as follows. Given an incoming regions x to be classified, one can define a support function associated to the class ω for each of the L best base classifiers: ∀l = 1, ..., L

F l (x, ω) = 1 s 1 exp(-d(x, a)/s 2 ) (5.2)
where d(x, a) is a distance metric from x to the center a of the target class ω, s 1 is a normalization factor and s 2 is a scale parameter. Each F l (x, ω) is then compared to a threshold t 1 to obtain the positive or negative class labels:

∀l = 1, ..., L c l (x, ω) = 1 if F l (x, ω) t 1 -1 otherwise (5.3)
Comparing the weighted sum of theses L class labels as in [START_REF] Tax | Combining one-class classifiers[END_REF] to another threshold t 2 allows to define the strong classifier for x as follows:

H(x) = 1 if 1 L ∑ L l=1 β l c l (x, ω) t 2 0 otherwise (5.4)
A region x is classified as a background region if H(x) = 0.

Heuristic approach for background model maintenance

The procedure for background model maintenance is the same as that used in Chapter 4. In order to facilitate the reading, we recover some of the principal definitions as follows. The background maintenance relies on the mechanism used for adapting the learned model to the scene over time. For this step, we propose to suitably update the learned model by our IWOC-SVM using a new ensemble margin-based data selection approach called Small Votes Instance Selection (SVIS) introduced by Guo and Boukir [START_REF] Guo | Fast data selection for svm training using ensemble margin[END_REF]. The SVIS relies on a simple and efficient heuristic approach to provide SV candidates: selecting lowest margin samples. This heuristic significantly reduces the IWOC-SVM training task complexity while maintaining the accuracy of the IWOC-SVM classification. Once only support vector candidate samples are used to update the IWOC-SVM's models. The SVIS consists of an unsupervised ensemble margin that combines the first c (1) and second most voted class c (2) labels under the learned model. Let v c (1) and v c (2) denote the relative number of votes. Then the margin, taking value in [0,1] is:

m(x) = v c (1) -v c (2) L (5.5)
where L represents the number of best base classifiers in the ensemble. The first smallest margin samples are selected as support vector candidates. The final model is updated by the first smallest margin samples. This procedure is presented in the Algorithm 12.

Experimental results

The experiments were conducted in two recent public datasets: MSVS dataset [START_REF] Benezeth | Background subtraction with multispectral video sequences[END_REF] and RGB-D object detection dataset [START_REF] Camplani | Background foreground segmentation with RGB-D kinect data: an efficient combination of classifiers[END_REF]. These datasets were chosen because they provide two types of informations so far been little explored in BS: multispectral and depth, respectively. The MSVS dataset consists of a set of 5 video sequences containing 7 multispectral bands and color video sequence (RGB) with different challenges such as gradual illumination changes, Algorithm 12 Heuristic approach for model maintenance 1: Require: Final classifier H, test set Z = {z 1 , z 2 , ..., z t }, weight distribution δ(z), user defined parameter time, user defined parameter η.

2: i ← 1 3: repeat 4:
if H(z i ) = 1 (background) then 5:

Compute the margin m(z i ) by Eq. (5.5). 6: end if 7:

if time is reached then 8:

Order all the test samples according to their margin values, in ascending order. 9:

The η smallest margin samples are selected as support vectors. 10:

H(x) is updated using Z 1 and its weight w ∼ δ(x). 11:

end if 12:

i ← i + 1 13: until i > t shadows, camouflage effects (color similarity of object and background) and intermittent object motion. While the RGB-D dataset includes four different sequences of indoor environments, acquired with the Microsoft Kinect RGB-D camera, that contain different situations such as cast shadows, color and depth camouflage.

In the training step, we used kernalized IWOC-SVM as a base classifier with C = 1, with the same RBF (Radial Basis Function) kernel K(., .) [START_REF] Tax | Support vector domain description[END_REF]. The main advantage of RBF kernel is its good performance on non-linearly separable data. The pool of classifiers was homogeneous and consisted of 10 base classifiers of the same type. The pool of classifiers consisting of a maximum of 10 base classifiers. The classification threshold t 1 was set to 0.9 and t 2 to 0.5 for combining the best one-class classifiers. We divided the training set into three parts -first, we generate the base BS, next we calculate the adaptive importance for each BS model and finally, the base BS models with high importance are selected. In addition, we used a set of images to test our framework (detection step without ground truth for testing). All tests were done by a 10-fold cross validation. The video sequences was resized to 160 × 120 pixels in our experiments due computational cost. We used 9-dimensional features space for the MSVS dataset and 4-dimensional features space for the RGB-D dataset. In both datasets were used the grayscale and XCS-LBP [START_REF] Silva | An extended center-symmetric local binary pattern for background modeling and subtraction in videos[END_REF] features. However, 7 multispectral bands and 1 depth information were adding for MSVS and RGB-D datasets, respectively.

Background detection on the MSVS and RGB-D datasets

We present the visual results on individual frame for Scene 05 (frame #413) from MSVS dataset and GenSeq (frame #996) from RGB-D dataset. Figure 5.2 shows the foreground detection results using our approach were displayed without any post-processing technique. The true positives (TP) regions are in white, true negatives (TN) regions in black, false positives (FP) regions in red and false negatives (FN) regions in green. Our method is able to detect the moving objects with fewer number of false detection for both datasets. Next, the performance of the BS is evaluated at region-level. Given the ground truth data, the correct- 

Computational costs

The key of success of the BS is due to its simplicity and also the low cost computational usually required by most of its methods. Ensemble for feature selection has proven to be an effective tool for BS, but usually it demands an high availability of computational resources. Therefore strategies to improve the computational time could prove interesting, for instance in our previous framework we proposed a weighted random subspace ensemble that require a large quantity of features to guarantee a good performance. Yet there is very little BS datasets that provide a lot of features, in addition, a huge feature set required also a high computational power. In our previous work, we used 26-dimensional features space while in this work only 9 (MSVS dataset) and 3 (RGB-D dataset) dimensional feature space were enough to achieve a good result. In this chapter, to further improve the computational costs we propose to use the superpixel approach instead pixel approach. The superpixel approach allow us to measure the feature statistics on a semantically meaningful atomic regions instead of individual pixels which can be provide redundant information. The experiments were made in Matlab R2013 a MacBook Pro with 2.2 GHz Intel Core i7. We collected the elapsed CPU time for training/validation and foreground detection. OWOC-RS has presented for training/validation the elapsed time is 5.44 sec/frame, while in foreground detection the elapsed time is 1.05 sec/frame. In this chapter, we define approximately 4000 superpixels for each scene instead of 19200 pixels from OWOC-RS. Note that the proposed approach can be up to 4 times faster than OWOC-RS. The computational cost can be reduced by increasing the number of superpixels. However, this may lead to less accurate segmentations. 

GenSeq

Conclusion

In summary, we proposed a novel methodology to select the best features based on wagging.

Our proposal is able to select suitable features for each region to distinguish the foreground objects from the background ones. In addition, it uses a superpixel approach that not only increases the efficiency in terms of time and memory consumption, but also can improves the segmentation performance. Our framework also uses a mechanism to update the importance of each feature discarding insignificant features over time. Experimental results on two challenging datasets have shown the potential of the proposed approach and its effectiveness to select the best features for distinct regions in a video sequence. A future work may address how to update the importance of each feature, discarding insignificantly features over time without ground-truth data.

In the next chapter we present a novel Opponent Color Local Binary Pattern from Three Orthogonal Planes (OCLBP-TOP) descriptor for applications in the field of dynamic texture recognition.

Chapter 6

A novel joint color-texture descriptor for dynamic texture recognition

In this chapter, we propose a novel Opponent Color Local Binary Pattern from Three Orthogonal Planes (OCLBP-TOP) descriptor for applications in the field of dynamic texture recognition. The OCLBP-TOP fuses the texture and color information, combining the Opponent Color Local Binary Patterns (OCLBP) with LBP on Three Orthogonal Planes (LBP-TOP). As such, it allows to extract not only color information, but also a more detailed information from video sequences. The experiments conducted on real videos from the Dyntex++ and YUPENN Dynamic Scenes show that the proposed OCLBP-TOP outperforms not only LBP-TOP and OCLBP as expected, but also three state-of-the-art descriptors, in particular its direct recent competitor, called Local Gabor Binary Patterns from Three Orthogonal Planes (LGBP-TOP). These descriptors were especially designed for the dynamic texture recognition. This chapter presents a particular work realized in conjunction with the Computer Vision Center (CVC) at Autonomous University of Barcelona (UAB). The work presented here is currently under revision for publication in the IET Computer Vision Journal [START_REF] Silva | 3d joint color-texture descriptor for dynamic texture recognition[END_REF].

Motivation

Dynamic (or temporal) texture analysis attracts growing attention in the computer vision community for applications such as automatic environment surveillance, synthesis, segmentation and recognition. Unlike static textures which are patterns describing pixel intensity variations that repeat spatially in an image, dynamic textures are motion patterns, i.e. image sequences of moving scenes that present certain stationarity properties not only in space but also in their dynamics over time [56,[START_REF] Xu | Dynamic texture classification using dynamic fractal analysis[END_REF]. Dynamic textures are then of prime importance when the video sequence at hand continuously changes in shape and appearance. Some examples of dynamic textures in the real world are shown in Figure 6.1. From left to right and top to bottom: forest fire, waterfall, flock of birds in flight, vegetation in the wind, water, vehicle traffic, crowd of people running and insect swarms. Given such a video sequence, the recognition of dy-ter, we propose to extend the spatial color-texture OCLBP descriptor to the spatio-temporal domain by combining it with the LBP-TOP one. By fusing color and dynamics textures, the derived OCLBP-TOP extracts more detailed information from the video sequence to be analyzed. Our contributions can be summarized as follows:

• A robust combination of the descriptor OCLBP with the descriptor LBP-TOP, that allow us to be more robust on the dynamic texture recognition in presence of the main challenges such as illumination changes.

• A detailed comparative evaluation of our descriptor OCLBP-TOP against other five state-of-the art descriptors on two large scale dataset that are Dyntex++ and YUPENN.

The rest of this chapter is organized as follows. The construction of the new 3D joint color-based texture descriptor is presented in Section 6.2. In Section 6.3, we give experimental results obtained on real videos that compare the proposed OCLBP-TOP descriptor to its direct competitors. Finally, the conclusion is shown in Section 6.4.

3D joint color-texture descriptor

It is challenging to find joint color-texture descriptors based on local binary patterns for dynamics texture tasks. To address this issue, we have developed an Opponent Color Local Binary Pattern from Three Orthogonal Planes (OCLBP-TOP). Given a finite color video sequence of a texture in motion and considering the cooccurrences statistics on the three planes (XY k plane, XT k plane and Y T k plane), we extract six-opponent-color video on these three orthogonal planes, where k is the opponent color space. The opponent color space can be computed as [START_REF] Jain | A multiscale representation including opponent color features for texture recognition[END_REF][START_REF] Van De Sande | Evaluating color descriptors for object and scene recognition[END_REF]:

red -green : O 1 = (r -g)/ √ 2, yellow -blue : O 2 = ((r + g) -2b)/ √ 6 luminance : O 3 = (r + g + b)/ √ 3.
The intensity is represented in channel O 3 and the color information is in the channels O 1 and O 2 . In addition to the perception correlation properties of the opponent color space, one important advantage of this space is that the O 3 axis, can be more closely sampled than O 1 and O 2 , thereby decreasing the sensitivity of color matching to a difference in the global brightness of the video. Then the LBP is computed on three orthogonal planes XY k , XT k and Y T k on the six new opponent color video. Note that in the following, we will remind the LBP equation already defined in the Chapter 3. Given a pixel at a certain location, considered as the center pixel c = (x c , y c ) of a local neighborhood composed of P equally spaced pixels on a circle of radius R, the LBP descriptor applied to can be expressed as:

LBP P,R (c) = P-1 ∑ i=0 s (g i -g c ) 2 i (6.1)
in our case g c is an opponent color value of the center pixel c, g i is an opponent color of each neighboring pixel, and s is a thresholding function defined as:

s(x) = 1 if x ≥ 0 0 otherwise. (6.2)
The resulting binary number is of length P, and there are 2 P possible different labels to be obtained from an LBP-image which histogram can be used as a texture descriptor. The computation of the ordinary LBP for a neighborhood of size P = 8 on a circle of radius R = 1, resulting in an histogram of size 2 8 = 256, is illustrated in Figure 2.3 (see Chapter 2).

The opponent color local patterns are extracted from the XY k , XT k and Y T k . The XY k plane contain information about the appearance, while the co-occurrence statistics of motion in horizontal and vertical directions are included in the labels from the XT k and Y T k planes. In the OCLBP-TOP descriptor, the three planes intersect in the center pixel and six distinct patterns are extracted in function of that central pixel for each XY k , XT k and Y T k . For each pixel in opponent-color images from XY k , XT k and Y T k planes, a six binary code is built by thresholding its neighborhood in a circle from these three planes separately with the value of the center pixel. Three inter-channel (RG, RB, GB) and three intra-channel (RR, GG, BB) histograms for each individual XY k , XT k and Y T k are created to collect the occurrences of different binary patterns, which are denoted as RG-LBP, RB-LBP, GB-LBP, RR-LBP, GG-LBP and BB-LBP. This results in 3 × 6 × 2 P dimensional histograms, which are then concatenated into a single histogram to create a global description of the dynamics texture with the spatialtemporal and joint color-texture features. The final histogram can be expressed as:

H i = ∑ x,y,t I f j k (x, y,t) = i i = 0, 1, ..., n j ; j = 1, 2, 3; k = 1, ..., 6 (6.3) 
where n j is the number of different labels produced by the OCLBP-TOP descriptor in the jth plane, k is the number of opponent colors, f j is the central pixel at coordinates (x, y,t) in the jth plane and I(A) is 1 if A is true and 0 otherwise.

In the OCLBP-TOP, the dynamic texture is encoded by the LBP, while the appearance and the motion in two directions of the joint dynamic color-texture are taken, incorporating spatial-domain information and two spatio-temporal co-occurrence statistics together. In the OCLBP-TOP descriptor, the R k is applied in the axes X k , Y k and T k and the P k number in the XY k , XT k , and Y T k . The planes can be also different, which can be indicated as

R X k , R Y k , R T k , P XY k , P XT k and P Y T k . The corresponding OCLBP-TOP is called as OCLBP- TOP P XY k ,P XT k ,P Y T k ,R X k ,R Y k ,R T k planes, that is, P k = P XY k =P XT k =P Y T k and R = R X k = R Y k =R T k .
At times, the R k in three planes are the same and the P k in XY k , XT k and Y T k axis. In that case, we denote OCLBP-TOP P k ,R k .

The OCLBP-TOP descriptor may be useful for dynamic-texture analysis, mainly because of the large quantity of richer information that it can extract from the video. It is because our descriptor describes joint color texture in spatio-temporal domain. The OCLBP-TOP extracts six times greater than LBP-TOP. The LBP-TOP considers only grayscale information in the spatio-temporal domain. We show in the next section that the proposed approach allows to improve the performance of a dynamic texture classification method, as compared to other local binary pattern based approaches and two popular methods in the filed of video sequence recognition.

Experiments 6.3.1 Datasets

The performance of our proposed descriptor was evaluated on two public large and diverse datasets dedicated to the color dynamic-texture recognition. We give a brief introduction of these datasets as follows.

• the Dyntex++ [START_REF] Ghanem | Maximum margin distance learning for dynamic texture recognition[END_REF] which is a selected version of the Dyntex dataset [START_REF] Péteri | DynTex: A comprehensive database of dynamic textures[END_REF], composed of 3 600 video sequences grouped in 36 classes, each of which containing 100 sequences of a fixed size 50 × 50 × 50 (width×height×# of frames). Various kinds of dynamic texture are present, ranging from struggling flames to whelming waves, from sparse curling smoke to dense swaying branches.

• the YUPENN dataset [52] that contains 420 videos of dynamic scene categories grouped in 14 classes, each class containing 30 videos. The sequences in YUPENN have important variations such as frame rate, scene appearance, scale, illumination, and camera viewpoint.

There is a limited number of dynamic-texture datasets in the literature because of the difficulties in collecting DT sequences. Results of many existing approaches have been reported based on the UCLA dynamic texture dataset [START_REF] Saisan | Dynamic texture recognition[END_REF]. But this dataset presents only gray-scale images and our descriptor needs color features making its application impossible on this dataset. Figures 6.4 85.47

Parameter settings

The selection of appropriate parameters is always a key issue. The OCLBP-TOP has only few parameters to optimize, making this task much easier. The P and R parameters of our OCLBP must be carefully selected not to affect the descriptor performance. In addition, small changes in P may cause big differences in the length of the feature vector. According to previous studies on LBP [START_REF] Ojala | Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[END_REF][START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF], the best R are normally smaller than 3 and P is 2 i (i = 1, 2, 3...). In our proposed descriptor, when the number of neighboring points increases, the number of patterns OCLBP-TOP will become large: 3 × 6 × 2 P . Thus only the results for P = 2, 4 and 8 are given in Table 6.1. In all our experiments, we used a leave-one-out-crossvalidation strategy [START_REF] Devyver | Pattern recognition: a statistical approach[END_REF] with linear SVM (Support Vector Machine) to evaluate our descriptor.

The Dyntex++ dataset was used to evaluate different values of P and R in the OCLBP-TOP. Table 6.1 presents the overall recognition rate. It can be seen that the OCLBP-TOP performs very well for P = 8 and R = 1. For the influence of P, we can obtain a shorter feature vector, however a small P loses more information. Nonetheless, the large P value improves the recognition accuracy, but it generates a long histogram and therefore a high memory consumption. For the influence of R, we can see that for a fixed P the best performance is obtained for R = 1. Figure 6.3 shows the case among different values of R and P = 1. We note there is a loss of information as the R value is higher because neighboring pixels are not considered in the calculation of the LBP. Therefore, we opted to use of the P = 8 and R = 1 for all the experiments in this chapter. Table 6.1 shows that an accuracy of 86.90% is obtained for OCLBP-TOP using P = 8 with a feature vector length of 4608 bits.

Comparison with state-of-the-art

A brief summary of all the descriptors we compared can be found in Table 6.2. First, we compare our descriptor to some LBP-based descriptors with P = 8 neighbors on a circle of radius R = 1: ferent scales and orientations in the spatio-temporal frequency domain, s is a number of non-overlaping sub-volumes of user-defined size (width × height × # f rames) and k is a number of key-clips (by default, the authors define a key-clip as a video block of 64 frames). We used g = 68, s = 512 and k = 1, resulting in 34 816 features. The local video descriptors may require the background subtraction or tracking, whereas the GIST3D does not need these steps and represents each video with a single feature vector. The global descriptors are in general not invariant to viewpoint changes and camera motion.

Results and discussions

The classification results (correct classification rate in %) of the tested methods are reported in Table 6.2 for both datasets. Highest scores are shown in bold. As it can be seen, the proposed descriptor gives the highest accuracy for both datasets. Without PCA dimensionality reduction, it outperforms all the others (including the two video sequences recognizers), in particular on the larger and more diverse Dyntex++ dataset for which it appears to be approximatively 10% better. The same increase of performance (10%) can be noticed as compared to the ordinary OCLBP it extends to the spatio-temporal domain, for both datasets. The performance of OCLBP-TOP is not necessarily related to the feature size when compared to

LGBP-TOP and HOG/HOF whose produced histograms are respectively 11 and 7 times bigger. Even if the dimensionality reduction by PCA affects the performance of the proposed OCLBP-TOP as one could expect, especially for the Dyntex++ dataset, it is worthy of note that it gives quite similar results to LBP-TOP, but significantly better results than LGBP-TOP. To go a little bit further in the analysis, Tables 6.4 and 6.5 show some popular class performance measures (Precision, Recall and F-score in %) obtained on the Dyntex++ and YUPENN dataset using the tested local binary pattern on Three Orthogonal Planes (TOP) descriptors. We analyze the descriptors studied in this work in various cases: Case 1. Performance of descriptors close to 100%: For the former dataset, both the color and the texture are very important in some scenes such as: blossoming tree in the wind, escalator stairs in motion, waves on beach, underwater life (soft texture), underwater life (pulsating jellyfish), underwater life (flowers swaying with current), waterfall, branches swaying in wind and smoke. This explains the much better precision, recall and F-score measures obtained with our OCLBP-TOP on these particular classes. However, in the scenes boiling water and wash cycle that are known to present more structured texture, the texture information alone is sufficient, so that LBP-TOP reaches better scores while LGPB-TOP fails and OCLBP-TOP is in the middle. On the opposite, for scenes where the color information is crucial such as: river water and rain on water, LGBP-TOP is much more efficient thanks to the Gabor filtering and the huge feature size, but our OCLBP-TOP is most of times between the two. Same remarks hold for the latter dataset, where the color and texture appeared to be very relevant in scenes like: beach, lightning storm and rushing river, whereas the texture information is sufficient in some other scenes such as: forest fire, highway, ocean and snowing. Although the proposed descriptor gives the highest average class performance measures for both datasets (see Table 6.6), the errors in classification may occur if the color and texture are similar as situations shown in the Figure 6.6.

In the case in which only one descriptor performs better than others: There are some classes from Dyntex++ dataset that only LBP-TOP and OCLBP-TOP are able to classify correctly, such as grass swaying in wind, evaporating water/fumes, underwater life (soft texture) and water in sink. This is due to the fact that color and texture components are more discriminative in these classes. However, the same descriptors cannot classify properly some scenes such as artificial hair, ants and birds flying in sky. This implies that all measures (precision, recall F-score) had a performance of 0%. For example, the artificial hair class was misclassified as underw. life (more structured) class. This can be explained by color and texture similarities in these classes. On the other hand, the LBP-TOP classified artificial hair scene as water fountain due to its high texture similarities. It's important to note that only LGBP-TOP was able to classify the artificial hair, ants and birds flying in sky, possibly due to color similarities in these scenes.

Case 3: In the case in which each descriptors reach 100%: In some cases precision, recall F-score measures had 100% of success. The OCLBP-TOP was also as successful for textures as: underw. life (pulsating jellyfish), underwat. life (flowers swaying with current) and lamp globes swaying.. In these scenes the texture and color are very significant. The LGBP-TOP also had 100% of success in some scenes in which color is very predominant such as: such as: artificial hair, rain on water and water fountain. Meanwhile in scenes as the evaporating water/fumes the OCLBP-TOP had 100% of accuracy. In these scenes only the texture feature is more significant.

Case 4. In which descriptors have bad performance (near 0%): We noted also that any descriptor evaluated in this study was able to classify correctly the scene Faucet water, please see Table 6.4. This may be explained by the fact that only one sequence is available for this class in the Dyntex++ dataset, combined to a leave-one-out strategy. Note however that the OCLBP-TOP classified textured cloth scene as blossoming tree in the wind, and LBP-TOP classified the same scene as water fountain. In addition, the LBPG-TOP classified textured cloth scene as Faucet water scene. 

Computational costs

The final result we give is about the computational time which may be important for some application. Table 6.3 shows the average computational time (in seconds) to process a video block of 256×256×64 (width×height×# of frames). Not surprisingly, the proposed OCLBP-TOP needs much more time than the others local binary pattern based descriptors, because of both the TOP extension (as compared to OCLBP), and the six separate channels computation (as compared to LBP-TOP). This is the price to be paid for combining color information together with the texture so that the classification performance of dynamic textures increase. Note that the times obtained using HOG/HOF and GIST3D are not achievable using local binary patterns. 

Descriptors

Computational Time (s) OCLBP (2004) [START_REF] Mäenpää | Classification with color and texture: jointly or separately? Pattern Recognition[END_REF] 39.94 LBP-TOP (2007) [START_REF] Zhao | Dynamic texture recognition using local binary patterns with an application to facial expressions[END_REF] 47.88 OCLBP-TOP [this thesis] 357.87 LGBP-TOP (2013) [5] 19.03 HOG/HOF (2008) [START_REF] Laptev | Learning realistic human actions from movies[END_REF] 5.41 GIST3D (2012) [START_REF] Solmaz | Classifying web videos using a global video descriptor[END_REF] 4.93 

Conclusion

In summary, a new 3-dimensional joint color-texture descriptor for dynamic texture analysis is proposed. It combines the strengths of local binary patterns and it describes joint colortexture in a spatio-temporal domain. Then, we compared the OCLBP-TOP with its direct competitors LBP-TOP and LGBP-TOP on real videos of Dyntex++ and YUPENN Dynamic Scenes datasets. The experimental results have shown that OCLBP-TOP outperforms the LBP-TOP, LGBP-TOP descriptors, and other three traditional methods. In addition, our descriptor can be applied in various type of applications including facial expression analysis, human activity recognition, among others.

Chapter 7 Conclusions

In this thesis we set out to improve background subtraction by focusing on visual features. Background subtraction is a crucial task in many computer vision applications including surveillance devices in public spaces, traffic monitoring and industrial machine vision. We focused on developing robust texture descriptor to deal with illumination changes, noise, and produces short histograms. In addition, we present two efficient approaches able to select suitable features for each pixel/region to distinguish the foreground objects from the background. The key contributions of the thesis are as follows.

• An eXtended Center-Symmetric Local Binary Pattern (XCS-LBP) Descriptor.

The XCS-LBP descriptor is introduced in this thesis. It combines the strengths of the ordinary Local Binary Pattern (LBP) and the Center-Symmetric (CS) LBPs. Thus, the new variant XCS-LBP produces a shorter histogram than LBP, by its CS-construction. It is also tolerant to illumination changes as LBP and CS-LBP are whereas CS-LDP is not, and robust to noise as CS-LDP is whereas LBP and CS-LBP are not. Despite our descriptor have been proposed recently, it has been widely improved and used in different applications by some authors. For instance, Du and Qin (2016) [START_REF] Du | Foreground and detection in surveillance videos via a hybrid local texture based method[END_REF] presented a uniform pattern version of our descriptor (called UXCS-LBP). The authors combined the histograms extracted by UXCS-LBP and CS-LDP. The experimental results show that this combination is robust under scenes ranging from dynamic background to changing illuminations. Nagananthini and Yogameena (2017) [START_REF] Nagananthini | Crowd Disaster Avoidance System (CDAS) by Deep Learning Using eXtended Center Symmetric Local Binary Pattern (XCS-LBP) Texture Features[END_REF] used the XCS-LBP for crowd count application. Firstly, the authors extracted XCS-LBP features of the images under sudden illumination changes. Then, these features are trained using deep Convolutional Neural Network (CNN). The proposed approach display a warning message if the people count overcome a threshold by avoiding crowd disaster.

• An Ensemble Pixel-based for Feature Selection in Background Subtraction. We proposed an online weighted one-class random subspace ensemble for feature selection (OWOC-RS). The proposed method is designed to automatically select the best features for different pixels of the image, and the more relevant features are used for foreground segmentation. In addition, a mechanism to update these importances fea-97 tures over time is presented.

• An Ensemble Superpixel-based for Feature Selection in Background Subtraction. We extended our OWOC-RS approach by proposing a novel methodology for selecting features based on wagging. Our proposal is able to select suitable features for each region to distinguish the foreground objects from the background. In addition, it uses superpixel approach that not only increases the efficiency in terms of time and memory consumption, but also can improves the segmentation performance. The experiments conducted on challenging videos have show that this approach is more efficient in terms of time and memory consumption than our previous approach.

• An 3D Joint Color-Texture Descriptor for Dynamic Texture Recognition. The last contribution of this thesis is the proposed 3-dimensional joint color-texture descriptor for dynamic texture analysis. We extended the spatial color-texture OCLBP descriptor to the spatio-temporal domain by combining it with the LBP-TOP one. By fusing color and dynamics textures, the derived OCLBP-TOP extracts more detailed information from the video sequence to be analyzed.

Limitations

The benefits of the contributions introduced in this thesis have been demonstrated in the several evaluative experiments. Nonetheless, there are limitations which could open opportunities for further investigations or new lines of thought.

• As the proposed XCS-LBP descriptor does not include temporal relationships between neighboring pixels, it is not very suitable to deal with dynamic scenes. However, the temporal domain can be used to discriminate one object from another by analyzing its temporal motion patterns, thereby playing a crucial role in moving object detection.

• Our proposed online weighted ensemble of one-class SVMs (Support Vector Machines) pixel-based for feature selection is designed to automatically select the best features for different regions of the image. The main drawback is that this method only reaches the highest accuracy when the number of features is huge. Furthermore, each base classifier learns a feature set instead of individual features. To overcome these limitations, in this thesis we extended our approach by proposing a novel methodology for selecting features based on wagging. In addition, we also adopted a superpixelbased approach instead of pixel-level approach. This does not only increases the efficiency in terms of time and memory consumption, but also can improves the segmentation performance. Both approaches proposed to select the best feature use a mechanism to update the relative importance of each feature, discarding insignificant features over time. This mechanism requires ground-truth data, but usually ground truth data is not available for BS in real environments.

• Not surprisingly, the proposed OCLBP-TOP needs much more time than the others local binary pattern based descriptors, because of both the TOP extension (as compared to OCLBP), and the six separate channels computation (as compared to LBP-TOP). This is the price that must be paid for combining color information together with the texture, so that the classification performance of dynamic textures increase. In order to solve this problem, feature selection methods can be used for selecting the best channels before of the dynamic texture classification.

Future works

• Developing local binary patterns features. Local binary pattern features are important to describe different scenes in many computer vision applications. In this thesis, we proposed a robust local binary patterns descriptor for background subtraction called XCS-LBP as well as a second descriptor named OCLBP-TOP for dynamic texture recognition. A future work will be the extension of XCS-LBP to include temporal properties. We also intend to reduce the computation time of our OCLBP-TOP by proposing to use only the best channels instead of all the channels to recognize dynamic textures.

• Feature selection in background subtraction. In the BS field, the use of feature selection methods is less studied so far. Nevertheless, the feature selection can be used to improve the detection of foreground objects [START_REF] Parag | A framework for feature selection for background subtraction[END_REF] in complex scenes thanks to their capability to select a subset of highly discriminant features removing irrelevant and redundant ones, e.g. in [START_REF] Parag | A framework for feature selection for background subtraction[END_REF]. Therefore, the feature selection approaches provide opportunity for future research. A possible future work is hte extension of our proposed approaches in this thesis by developing a mechanism to suitably update the importance of each feature discarding insignificantly features over time without ground-truth data.

Appendix A The mapping from LBP to uniform LBP is as follows: where Hi, j is the histogram value.

SLBP -AM = ∑ j=0,1,2 ω j Hi, j |i = 0, 1, ..., 2 P-1 where sign indicates stretching elements into a vector and j denotes the planes: XY, XT , and Y T . 

I(A) = if A is true, otherwise.
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 11 Figure 1.1: Scenes from the same avenue under different conditions.
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 25 Figure 2.5: Combining an ensemble of classifiers with different features for reducing classification error.

Algorithm 5 The AdaBoost for feature selection 1 :

 51 Require: Training set (x 1 , y 1 ), ..., (x N , y N ) where x i ∈ X, y i ∈ Y = 0, 1 for negative and positive examples respectively, number of iterations M 2: k ← 1 3: Initialize weights w 1,i = 1 2b , 1 2l for y i = 0, 1 respectively, where b and l are the number of negative ans positive examples respectively. 4: repeat 5:
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 31 Figure 3.1: Examples of LBP encoding

1 :

 1 Require: IWOC-SVM training procedure, training set X, subspace dimension p * , number of base classifiers M, weight distribution δ(x) 2: k ← 1 3: repeat 4: S k ← SelectRandomSubspace(X,p * ) 5: Train k-th IWOC-SVM on S k with respect to weights w ∼ δ(x) 6: k ← k+1 7: until k > M 8: Output: Trained IWOC-SVM base classifiers Ψ = {Ψ 1 , Ψ 2 , ..., Ψ M } 4.3. Online weighted one-class random subspace ensemble for feature selection (OWOC-RS)61

Figure 4 . 4 :

 44 Figure 4.4: Results using the MSVS dataset [16] -(a) original frame, (b) ground truth and (c) proposed method.
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 46 Figure 4.6: The visual features importance through video scenes from the MSVS dataset [16].

Algorithm 10

 10 The wagging for feature selection 1: Require: IWOC-SVM training procedure, training set X, weight distribution δ(x), number of base classifier M, user defined parameter ε 2: j ← 1 3: repeat 4: for k = 1 : M do 5:

Figure 5 . 3 :

 53 Figure 5.3: Results on RGB-D dataset [36] -(a) original frame, (b) features map and (c) its respective histogram of features importance.

Figure 6 . 3 :

 63 Figure 6.3: Circularly symmetric neighbor sets for different R and P = 8 in the LBP space.

  and 6.5 show examples frames of some scenes of Dyntex++ and YUPENN datasets used in this chapter, respectively.

Figure 6 . 6 :

 66 Figure 6.6: Similar images of different classes. From left to right: flag, and water fountain classes from Dyntex++ dataset, fountain, and waterfall classes from YU-PENN dataset.
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 11121 uniform LBP histogram is obtained as follows: HLBP,i = ∑ (xc,yc)∈R I {LBP(xc, yc) = i} |i = 0, 1, ..., 2 P-1Finally, local color pattern (LCP) histogram is formed by concatenating the quantized hue, luminance, and saturation histograms, summed over the structuring element as follows:HLCP = [H hue H lum Hsat ] I(A) = 1 if A is true, 0 otherwise.Table B.4: Spatial-Temporal Pattern and its variants Spatio-temporal Local Binary Patterns (STLBP) [174]LBP t P,R (xt,c, yt,c) = P-p=0 s (gt,pgt,c) 2 p , LBP t-1 P,R (xt,c, yt,c) = P-p=0 (gt-1,pgt-1,c)2 p , Ht,i = ∑ (xc,yc)∈R I LBP t P,R (xt,c, yt,c) = i |i = 0, 1, ..., 2 P-1 Ht-1,i = ∑ (xc,yc)∈R I LBP t-1 P,R (xt,c, yt,c) = i |i = 0, 1, ..., 2 P-1 where t corresponds to the time, Ht,i and Ht-1,i are the histogram values at i th bin of Ht and Ht-1, respectively. ST LBPt = ωHt-1,i + (1 -ω)Ht,i |i = 0, 1, ..., 2 P-P+p where gz corresponds to the predictive values of the P. u(x) = |x|≥ T otherwise. Stereo Local Binary Pattern based on Appearance and Motion (SLBP-AM) [229] LBPj = P-p=0 s (gpgc) 2 p , where j denotes the corresponding plane: 0 for the XY plane, 1 for the XT plane and 2 for the Y T plane. Hi, j = ∑ (xc,yc)∈R I LBPj(gpgc) = p |i = 0, 1, ..., 2 P-1

  (1 + τ)y, 0 if x < (1 -τ)y, -1 otherwise.
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Table 2

 2 

	.1: Features: An Overview (Part 1).

  S best ∪ {x t } {subset generation for evaluation with cardinality t, where x t ∈ X} 9:ϕ = eval(S, ϑ) {evaluation the current subset S by ϑ}

	10:	if (ϕ > ϕ best ) then
	11: 12: 13:	ϕ best = ϕ S ′ best = S end if
	14: 15: 16: 17: 18:	Π = eval S ′ best , A {evaluating subset S ′ best by A} if (Π > Π best ) then S best = S ′ best Π best = Π else
	19: 20:	break and return S best end if
	21:	end for
	22: end for
	23: Output: An optimal subset S best

Table 2 .

 2 3:The main BS works based on features selection approaches.

Table 3 . 1 :

 31 Comparison of LBP and variants.

	Descriptor	Robust to noise	Robust to illumination changes	Uses color information	Uses temporal information	Histogram size with 8 neighbors
	Ordinary LBP [146] Modified LBP [84] CS-LBP [86] STLBP [175] εLBP [206] Adaptive εLBP [207]	•	• • • • •		•	256 256 16 256 256

Table 3 .

 3 3: Performance of the different descriptors on synthetic videos of the BMC using the ABL method.

	Scenes	Descriptor Recall Precision F-score
		LBP	0.682	0.564	0.618
	Rotary	CS-LBP	0.832	0.520	0.640
	122	CS-LDP	0.809	0.523	0.635
		XCS-LBP 0.850	0.784	0.816
		LBP	0.611	0.505	0.553
	Rotary	CS-LBP	0.673	0.504	0.577
	222	CS-LDP	0.753	0.510	0.608
		XCS-LBP 0.852	0.782	0.815
		LBP	0.603	0.505	0.550
	Rotary	CS-LBP	0.647	0.504	0.566
	322	CS-LDP	0.733	0.507	0.600
		XCS-LBP 0.829	0.793	0.810
		LBP	0.573	0.502	0.535
	Rotary	CS-LBP	0.609	0.503	0.550
	422	CS-LDP	0.733	0.508	0.600
		XCS-LBP 0.751	0.780	0.765
		LBP	0.610	0.505	0.553
	Rotary	CS-LBP	0.663	0.504	0.573
	522	CS-LDP	0.745	0.509	0.605
		XCS-LBP 0.852	0.732	0.787
		LBP	0.702	0.530	0.604
	Street 112	CS-LBP CS-LDP	0.839 0.826	0.512 0.525	0.636 0.642
		XCS-LBP 0.803	0.793	0.798
		LBP	0.636	0.504	0.562
	Street 212	CS-LBP CS-LDP	0.716 0.798	0.503 0.513	0.591 0.624
		XCS-LBP 0.808	0.790	0.799
		LBP	0.627	0.504	0.558
	Street 312	CS-LBP CS-LDP	0.699 0.801	0.503 0.511	0.585 0.624
		XCS-LBP 0.800	0.796	0.798
		LBP	0.580	0.501	0.558
	Street 412	CS-LBP CS-LDP	0.599 0.754	0.501 0.507	0.546 0.607
		XCS-LBP 0.748	0.781	0.764
		LBP	0.628	0.503	0.559
	Street 512	CS-LBP CS-LDP	0.677 0.771	0.503 0.508	0.577 0.612
		XCS-LBP 0.800	0.575	0.669
		LBP	0.625	0.512	0.565
	Average	CS-LBP	0.695	0.506	0.584
	scores	CS-LDP	0.772	0.512	0.616
		XCS-LBP 0.809	0.761	0.782

Table 3 . 4 :

 34 Performance of the different descriptors on synthetic videos of the BMC using the GMM method.

	Scenes	Descriptor Recall Precision F-score
		LBP	0.817	0.701	0.755
	Rotary	CS-LBP	0.830	0.705	0.763
	122	CS-LDP	0.819	0.677	0.741
		XCS-LBP 0.831	0.800	0.815
		LBP	0.636	0.653	0.644
	Rotary	CS-LBP	0.741	0.687	0.713
	222	CS-LDP	0.651	0.616	0.633
		XCS-LBP 0.825	0.794	0.809
		LBP	0.661	0.646	0.653
	Rotary	CS-LBP	0.741	0.656	0.696
	322	CS-LDP	0.674	0.613	0.642
		XCS-LBP 0.821	0.767	0.793
		LBP	0.611	0.585	0.598
	Rotary	CS-LBP	0.673	0.575	0.620
	422	CS-LDP	0.611	0.548	0.578
		XCS-LBP 0.748	0.702	0.724
		LBP	0.636	0.627	0.631
	Rotary	CS-LBP	0.743	0.672	0.706
	522	CS-LDP	0.605	0.650	0.627
		XCS-LBP 0.825	0.760	0.791
		LBP	0.940	0.674	0.785
	Street 112	CS-LBP CS-LDP	0.924 0.938	0.675 0.656	0.780 0.772
		XCS-LBP 0.844	0.755	0.808
		LBP	0.676	0.642	0.659
	Street 212	CS-LBP CS-LDP	0.752 0.694	0.658 0.577	0.702 0.630
		XCS-LBP 0.833	0.760	0.795
		LBP	0.684	0.633	0.657
	Street 312	CS-LBP CS-LDP	0.742 0.729	0.627 0.581	0.680 0.647
		XCS-LBP 0.821	0.713	0.763
		LBP	0.619	0.566	0.591
	Street 412	CS-LBP CS-LDP	0.705 0.659	0.567 0.539	0.628 0.593
		XCS-LBP 0.751	0.619	0.679
		LBP	0.662	0.566	0.610
	Street 512	CS-LBP CS-LDP	0.727 0.689	0.568 0.551	0.638 0.612
		XCS-LBP 0.828	0.629	0.715
		LBP	0.694	0.629	0.658
	Average	CS-LBP	0.758	0.639	0.693
	scores	CS-LDP	0.707	0.601	0.648
		XCS-LBP 0.813	0.730	0.769

Table 3 . 5 :

 35 Performance of the different descriptors on real-world videos of the BMC using the ABL method

	Videos Descriptor Recall Precision F-score
	Boring	LBP	0.555	0.512	0.533
	parking,	CS-LBP	0.663	0.539	0.595
	active	CS-LDP	0.712	0.556	0.624
	bkbg	XCS-LBP 0.673	0.628	0.650
		LBP	0.456	0.490	0.473
	Big	CS-LBP	0.664	0.583	0.621
	trucks	CS-LDP	0.675	0.673	0.674
		XCS-LBP 0.623	0.788	0.696
		LBP	0.500	0.500	0.500
	Wandering	CS-LBP	0.632	0.525	0.573
	students	CS-LDP	0.691	0.566	0.622
		XCS-LBP 0.854	0.714	0.778
		LBP	0.562	0.515	0.537
	Rabbit in	CS-LBP	0.657	0.515	0.577
	the night	CS-LDP	0.742	0.561	0.639
		XCS-LBP 0.818	0.706	0.758
		LBP	0.568	0.516	0.541
	Snowy	CS-LBP	0.640	0.508	0.567
	christmas	CS-LDP	0.684	0.513	0.586
		XCS-LBP 0.719	0.557	0.628
		LBP	0.542	0.511	0.526
	Beware of	CS-LBP	0.608	0.556	0.581
	the trains	CS-LDP	0.711	0.618	0.662
		XCS-LBP 0.780	0.674	0.723
		LBP	0.524	0.505	0.514
	Train in	CS-LBP	0.636	0.640	0.638
	the tunnel	CS-LDP	0.668	0.659	0.663
		XCS-LBP 0.655	0.688	0.672
	Traffic	LBP	0.491	0.497	0.494
	during	CS-LBP	0.597	0.528	0.560
	windy	CS-LDP	0.589	0.515	0.550
	day	XCS-LBP 0.572	0.529	0.550
		LBP	0.536	0.508	0.521
	One rainy	CS-LBP	0.563	0.504	0.532
	hour	CS-LDP	0.658	0.520	0.581
		XCS-LBP 0.694	0.649	0.671
		LBP	0.526	0.506	0.515
	Average	CS-LBP	0.629	0.544	0.583
	scores	CS-LDP	0.681	0.576	0.558
		XCS-LBP 0.710	0.659	0.681

Table 3 . 6 :

 36 Performance of the different descriptors on real-world videos of the BMC using the GMM method

	Videos	Descriptor Recall Precision F-score
	Boring	LBP	0.684	0.587	0.632
	parking,	CS-LBP	0.716	0.593	0.649
	active	CS-LDP	0.674	0.579	0/623
	bkbg	XCS-LBP	0.680	0.607	0.641
		LBP	0.695	0.778	0.734
	Big	CS-LBP	0.698	0.773	0.733
	trucks	CS-LDP	0.649	0.758	0.699
		XCS-LBP	0.630	0.792	0.702
		LBP	0.704	0.667	0.685
	Wandering	CS-LBP	0.700	0.640	0.668
	students	CS-LDP	0.654	0.634	0.643
		XCS-LBP	0.826	0.742	0.782
		LBP	0.767	0.659	0.709
	Rabbit in	CS-LBP	0.826	0.626	0.712
	the night	CS-LDP	0.706	0.619	0.659
		XCS-LBP	0.805	0.684	0.740
		LBP	0.750	0.519	0.614
	Snowy	CS-LBP	0.734	0.516	0.606
	christmas	CS-LDP	0.625	0.510	0.562
		XCS-LBP	0.726	0.538	0.618
		LBP	0.657	0.685	0.671
	Beware of	CS-LBP	0.699	0.664	0.681
	the trains	CS-LDP	0.641	0.642	0.642
		XCS-LBP	0.759	0.731	0.744
		LBP	0.724	0.711	0.717
	Train in	CS-LBP	0.710	0.675	0.692
	the tunnel	CS-LDP	0.679	0.697	0.688
		XCS-LBP	0.695	0.680	0.687
	Traffic	LBP	0.523	0.509	0.516
	during	CS-LBP	0.553	0.520	0.536
	windy	CS-LDP	0.527	0.510	0.518
	day	XCS-LBP	0.532	0.518	0.525
		LBP	0.867	0.574	0.691
	One rainy	CS-LBP	0.774	0.589	0.669
	hour	CS-LDP	0.797	0.556	0.655
		XCS-LBP	0.761	0.628	0.688
		LBP	0.708	0.632	0.663
	Average	CS-LBP	0.712	0.622	0.661
	scores	CS-LDP	0.661	0.612	0.632
		XCS-LBP	0.713	0.658	0.681

  [START_REF] Bartlett | The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network[END_REF] Note that only the base classifiers that have the smallest errors are combined and used to differentiate the moving objects from the background model in the scene. The computation of the adaptive importance of each best base classifier is given in Algorithm 8.

		learning rate parameter γ
	2: Initialize all L best classifiers with importance: β l = 1 3: repeat
	4:	Classify t i using the final classifier H according to Eq. (4.16)
	5:	

Algorithm 8 Adaptive Importance (AI) computation 1: Require: Final classifier H, validation set (t 1 , y 1 ), ..., (t N , y N ) where t i ∈ T , y i ∈ Y = 0, 1 for background and foreground examples respectively, set of L best base classifiers Ψ = {Ψ 1 , Ψ 2 , ..., Ψ L },

Table 4 . 3 :

 43 The most (+) and less (-) significant features from MSVS scenes[START_REF] Benezeth | Background subtraction with multispectral video sequences[END_REF].

	Videos	most (+)	Importance	less (-)
		Gradient Direction with	
	Scene 01	medium contrib. multispectral	OCLBP-GB
		features		
	Scene 02	MS1,MS2 and MS6 with Color, Gradient X features	XCS-LBP and MS4
	Scene 03	OCLBP-GG,RR with medium contrib. of other OCLBP channels and gradient features	Hue, Optical flow and multispectral features
	Scene 04	OCLBP-BB,RR,RG and GG with medium contrib. of gradient features	Multispectral and color features
		OCLBP-RR with high contrib.	
	Scene 05	of other OCLBP channels and	Gradient Magnitude
		multispectral features		

Table 4 . 4 :

 44 The most (+) and less (-) significant features from CDnet 2014 dataset[START_REF] Wang | CDnet 2014: An expanded change detection benchmark dataset[END_REF].

	Videos	most (+)	Importance	less (-)
		Relatively a high contribution of most	
		of the features except for a high	
	PETS2006	contribution of the saturation,	none
		OCLBP-RB and Y gradient features,	
		respectively		
	canoe	High contribution of all features	none
		High contribution of most of the	
		features except for a medium	
	sofa	contribution of the saturation,	OCLBP-GG
		OCLBP-RG, and Y gradient features,	
		respectively		

Table 4 . 5 :

 45 Performance of the different methods using the MSVS dataset[START_REF] Benezeth | Background subtraction with multispectral video sequences[END_REF].

	Videos	Method	Precision Recall F-score
		MD (RGB) [16]	0.6536	0.6376 0.6536
	Scene 01	MD (MSB) [16] Pooling (MSB) [16]	0.7850 0.7475	0.8377 0.8105 0.8568 0.7984
		OWOC-RS [in this chapter]	0.8500	0.9580 0.9008
		MD (RGB) [16]	0.8346	0.9100 0.8707
	Scene 02	MD (MSB) [16] Pooling (MSB) [16]	0.8549 0.8639	0.9281 0.8900 0.8997 0.8815
		OWOC-RS [in this chapter]	0.8277	0.8245 0.8727
		MD (RGB) [16]	0.7494	0.5967 0.6644
	Scene 03	MD (MSB) [16] Pooling (MSB) [16]	0.7533 0.8809	0.6332 0.6889 0.5134 0.6487
		OWOC-RS [in this chapter]	0.9326	0.9965 0.9635
		MD(RGB) [16]	0.8402	0.7929 0.8158
	Scene 04	MD (MSB) [16] Pooling (MSB) [16]	0.8430 0.8146	0.8226 0.8327 0.8654 0.8392
		OWOC-RS [in this chapter]	0.9534	0.8374 0.8997
		MD (RGB) [16]	0.7359	0.7626 0.7490
	Scene 05	MD (MSB) [16] Pooling (MSB) [16]	0.7341 0.7373	0.8149 0.7724 0.8066 0.8066
		OWOC-RS [in this chapter]	0.7316	0.8392 0.8400
	*MD = Mahalanobis distance		

Table 4 . 6 :

 46 Performance of our method using the CDnet 2014 dataset[START_REF] Wang | CDnet 2014: An expanded change detection benchmark dataset[END_REF].

	Videos	Precision Recall F-score
	PETS2006	0.8555	0.9395 0.8955
	canoe	0.9034	0.9216 0.9124
	sofa	0.9682	0.9160 0.9414

  [START_REF] Bao | Fast edge-preserving patch match for large displacementoptical flow[END_REF] for the Algorithm 8, proposed in the Chapter 4, is just that we have added an ensemble pruning to eliminate the importances with very low values over time. This can can improve the generalization performance of the ensemble. Furthermore, it can prevent the increase of the training cost, storage demands, and prediction time since it allows to eliminate classifiers with very low importance that will not have impact on the ensemble's final decision. Note that only the base classifiers that have the highest importance are combined and used to differentiate the moving objects from the background model in the scene. Final classifier H, validation set (t 1 , y 1 ), ..., (t N , y N ) where t i ∈ T , y i ∈ Y = 0, 1 for background and foreground examples respectively, set of L base classifiers Ψ = {Ψ 1 , Ψ 2 , ..., Ψ L }, learning rate parameter γ, user defined parameter ς 2:

	Algorithm 11 Adaptive Importance Computation and Ensemble Pruning (AIC-EP)
	1: Require:

Table 5 . 3 :

 53 Performance using the MSVS dataset[START_REF] Benezeth | Background subtraction with multispectral video sequences[END_REF]. feature presented also the highest contribution from RGB-D dataset. Nonetheless, note that for ColCamSeq scene the XCS-LBP was the most important. It is important to note several state-of-the-art BS algorithms use grayscale feature for the whole image sequence, however, it is possible to observe from the feature map in the Figures 5.3 and 5.4 that different features were used for different regions of the image.

	Videos	Method	Precision Recall F-score
		IWOC-SVM	0.9814	0.3378 0.5027
	Scene 01	OWOC-RS [177] (Chapter 4)	0.8500	0.9580 0.9008
		Superpixel-OWAOC [in this chapter]	0.9498	0.8799 0.9135
		IWOC-SVM	0.7671	0.9410 0.8452
	Scene 02	OWOC-RS [177] (Chapter 4)	0.8277	0.8245 0.8727
		Superpixel-OWAOC [in this chapter]	0.9627	0.9555 0.9591
		IWOC-SVM	0.8945	0.6123 0.7270
	Scene 03	OWOC-RS [177] (Chapter 4)	0.9326	0.9965 0.9635
		Superpixel-OWAOC [in this chapter]	0.9787	0.8999 0.9376
		IWOC-SVM	0.9279	0.4287 0.5865
	Scene 04	OWOC-RS [177] (Chapter 4)	0.9534	0.8374 0.8997
		Superpixel-OWAOC [in this chapter]	0.8236	0.9509 0.8827
		IWOC-SVM	0.0331	0.5430 0.0624
	Scene 05	OWOC-RS [177] (Chapter 4)	0.7316	0.8392 0.8400
		Superpixel-OWAOC [in this chapter]	0.8691	0.8695 0.8693

Table 5 . 4 :

 54 Performance using the RGB-D dataset[START_REF] Camplani | Background foreground segmentation with RGB-D kinect data: an efficient combination of classifiers[END_REF].

	Videos	Method	Precision	Recall	F-score
		IWOC-SVM	0.9898	0.6706	0.7995
	ColCamSeq	OWOC-RS [177]	0.8887	0.7555	0.8167
		Superpixel-OWAOC [in this chapter]	0.9859	0.8041	0.8858
		IWOC-SVM	0.9255	0.8172	0.8680
	DCamSeq	OWOC-RS [177]	0.9774	1.0000	0.9885
		Superpixel-OWAOC [in this chapter]	0.9245	0.9488	0.9365
		IWOC-SVM	0.7427	0.7513	0.7470
	GenSeq	OWOC-RS [177]	0.7029	0.9239	0.7984
		Superpixel-OWAOC [in this chapter]	0.8427	0.9513	0.8937
		IWOC-SVM	0.6024	0.6385	0.6199
	ShSeq	OWOC-RS [177]	0.7316	0.7392	0.7354
		Superpixel-OWAOC [in this chapter]	0.7325	0.8389	0.7821

Table 6 . 1 :

 61 Overall classification results (%) for evaluation different values of P, R in the OCLBP-TOP space.

	R	Our Descriptor	YUPENN Dynamic Scenes (%)
		OCLBP-TOP 2,1	45.00
	1	OCLBP-TOP 4,1	76.90
		OCLBP-TOP 8,1	86.90
		OCLBP-TOP 2,2	26.19
	2	OCLBP-TOP 4,2	72.85
		OCLBP-TOP 8,2	82.85
		OCLBP-TOP 2,3	24.04
	3	OCLBP-TOP 4,3	73.57
		OCLBP-TOP 8,3	

Table 6 .

 6 

		2: Overall classification results (%)	
			YUPENN	Feature
	Descriptors	Dyntex++ (%)	Dynamic Scenes (%)	Size
	OCLBP (2004) [133]	70.14	77.85	1 536
	LBP-TOP (2007) [240]	71.88	85.37	768
	OCLBP-TOP [this thesis]	80.58	86.90	4 608
	LGBP-TOP (2013) [5]	68.69	84.47	50 976
	LGBP-TOP + PCA	52.08	63.57	768
	OCLBP-TOP + PCA [this thesis]	73.04	84.76	768
	HOG/HOF (2008) [113]	72.75	78.80	288
	GIST3D (2012) [182]	70.43	63.33	34 816

Table 6 .

 6 3: Average computational time results

Table 6 . 5 :

 65 Class performance measures (%) of the local binary patterns on Three Orthogonal Planes (TOP) for the YUPENN dataset Elevator 90.6 96.7 93.5 96.8 100 98.4 93.5 96.7 95.1 Forest Fire 90.0 90.0 90.0 72.2 86.7 78.8 86.7 86.7 86.7 Fountain 65.4 56.7 60.7 83.3 66.7 74.1 74.1 66.7 70.2 Highway 80.6 83.3 82.0 79.3 76.7 78.0 80.0 80.0 80.0 Lightning Storm 89.3 83.3 86.2 86.7 86.7 86.7 93.5 96.7 95.1 Ocean 100 100 100 96.7 96.7 96.7 96.8 100 98.4 Railway 84.4 90.0 87.1 96.0 80.0 87.3 86.2 83.3 84.7 Rushing River 84.8 93.3 88.9 80.6 83.3 82.0 93.5 96.7 95.1 Sky-Clouds 96.3 86.7 91.2 84.8 93.3 88.9 92.6 83.3 87.7 Snowing 96.3 86.7 91.2 78.8 86.7 82.5 86.7 86.7 86.7 Street 92.9 86.7 89.7 87.1 90.0 88.5 85.3 96.7 90.6 Waterfall 62.2 76.7 68.7 88.0 73.3 80.0 75.0 70.0 72.4 Windmill Farm 80.6 83.3 82.0 90.0 90.0 90.0 77.4 80.0 78.7

		LBP-TOP	LGBP-TOP	OCLBP-TOP
	Class	Prec. Rec.	F Prec. Rec.	F Prec. Rec.	F
	Beach	89.3 83.3 86.2 81.3 86.7 83.9 93.3 93.3 93.3

Table 6 . 6 :

 66 Average measures (%) of the local binary patterns on Three Orthogonal Planes (TOP) for the Dyntex++ and YUPENN datasets Data set Prec. Rec. F Prec. Rec. F Prec. Rec. F Dyntex++ 67.7 65.2 64.7 66.2 59.7 60.6 71.7 72.8 71.3 YUPENN 85.9 85.5 85.5 85.8 85.5 85.4 86.8 86.9 86.8

	LBP-TOP	LGBP-TOP	OCLBP-TOP

Table B . 5 :

 B5 Hybrid Local Binary Pattern and its variants

Spatial Extended Center-Symmetric Local

Binary Pattern (SCS-LBP)

[START_REF] Xue | Dynamic background subtraction based on spatial extended center-symmetric local binary pattern[END_REF] 

SCS -LBPP,R (xc, yc,t)

= (P/2)-1 ∑ p=0 s g (p,t)g (p+(P/2),t) 2 p + f g (xc,yc,t)μ(xc,yc,t-1) 2 P/2

where μ(xc,yc,t-1) and σ(xc,yc,t-1) are estimated mean value and standard deviation respectively corresponding to pixel g ( xc, yc).

f (t) = 0 if |g (xc,yc,t-1)μ(xc,yc,t-1) |< 2.5 σ(xc,yc,t

-1) , 1 otherwise.

Center Symmetric Spatio-temporal Local Ternary Pattern (CS-STLTP)

[START_REF] Xu | Moving object segmentation by pursuing local spatio-temporal manifolds[END_REF] 

CS -ST LT P j (xc, yc, zc) = (P/2)-1 p=0 sτ g (p) , g (p+(P/2))

• Camera jitter: Usually, the camera jitter occurs in outdoor scenes. For instance, strong winds may cause a fixed camera to sway back and forth, causing nominal motion in the video sequence. This nominal motion is usually indistinguishable from the motion of foreground objects, and this leads to undesirable detection results.

http://wordpress jodoin.dmi.usherb.ca/results2014/

A robust 3D joint color-texture descriptor, called OCLBP-TOP developed in conjunction with the Computer Vision Center (CVC) at Autonomous University of Barcelona (UAB). This descriptor allows to extract not only color information, but also a more detailed information from video sequences.2 http://image-net.org/challenges/LSVRC/2016/results

https://fr.mathworks.com/matlabcentral/fileexchange/49815-xcs-lbp-descriptor-for-backgroundmodeling-and-subtraction-in-videos

http://www.fluxdata.com/articles/universit%C3%A9-de-bourgogne-uses-fluxdata-fd-1665create-dataset-background-subtraction

2 http://changedetection.net/
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Other approaches

Klare and Sarkar (2009) [START_REF] Klare | Background subtraction in varying illuminations using an ensemble based on an enlarged feature set[END_REF] Ensemble of Mixture of Gaussians Pixel one-class OWOC-RS [START_REF] Silva | Online weighted one-class ensemble for feature selection in background/foreground separation[END_REF] Weighted Random Subspace Pixel one-class Superpixel-OWAOC [in this chapter] [START_REF] Silva | Superpixel-based incremental wagging oneclass ensemble for feature selection in foreground/background separation[END_REF] Wagging for feature selection Cluster one-class 

Comparison of the main BS works based on ensemble for features selection approaches and its features.

5.2 Superpixel-based Online WAgging One-Class Ensemble for Feature Selection (Superpixel-OWAOC)

Wagging is a variant of Bagging algorithm [START_REF] Bauer | An empirical comparison of voting classification algorithms: Bagging, boosting, and variants[END_REF]. It trains each base classifier on the entire training, since for each sample is assigned a weight. Therefore, each sample has a level of influence on the classifier's training process. The standard wagging is a powerful strategy to generate a diverse set of base classifiers, but it is not designed for feature selection. We propose to extend the standard wagging for feature selection restricting the base learner so that each base classifier can focus only on a single feature. An overview of our wagging for feature selection is presented in Alg. 10.

For the background subtraction task, we initially computed the superpixel by SLIC (Simple Linear Iterative Clustering) [START_REF] Benezeth | Background subtraction with multispectral video sequences[END_REF], which is an adaptation of k-means in the labxy image space for robust superpixel creation. Next, diversity models are learned from a training set X = {x 1 , x 2 , ..., x N } where each x j ( j = 1, ..., N) ∈ R p is a certain superpixel (maximum value) over time N described by p features.

Generate multiple base models

Our wagging for feature selection assign weights for each sample of a given features ρ according to an exponential distribution. We opted to use the version of the Poisson distribution 

Local Binary Patterns Descriptors

The standardized formulas of the main LBPs are presented in the Tables below.
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where

A relatively small value for T should be used, for example, 2 ≤ T ≤ 5.

Opponent Color Local Binary Patterns (OCLBP) [START_REF] Lee | Hierarchical on-line boosting based background subtraction[END_REF][START_REF] Mäenpää | Classification with color and texture: jointly or separately? Pattern Recognition[END_REF] LBPP RR ,R RR (xc, yc) =

where gR,c, gG,c, gB,c correspond to the opponent color values of the center pixel, respectively; gR,p, gG,p, gB,p correspond to the opponent color values of the neighborhoods on the circles of radius Roc in the opponent color channels and denotes concatenation descriptor.

LOCAL BINARY PATTERNS DESCRIPTORS

εLBP [START_REF] Wang | Fast and effective background subtraction based on εLBP[END_REF] εLBPP,R (xc, yc) =

where ĝp and gp denote the gray value of the clockwise and counter-clockwise neighborhood of gp. The ε is a noise parameter.

Adaptive εLBP [START_REF] Wang | Adaptive εLBP for background subtraction[END_REF] εLBPP,R (xc, yc) =

where µ B is the first obtained from the start N frames, the σ p(µ F ) is the mean distribution of the N other frames. The γ, α and η are the constants, gc corresponds to the gray value of the center pixel, and the max(•) and min(•) operators are used to restrict the threshold.

Local Binary Similarity Patterns (LBSP) [22] LBSP P , R (x c , y c ) =

where gc corresponds to the central pixel (whether from the current image for intra-LBSP or from a reference frame for inter-LBSP), and gp corresponds to the neighbor pixel ( always in the current image).

The T is a similarity threshold.

Local SVD Binary Pattern ( LSBP) [76] LBSP P , R (x c , y c ) =

where gc and gp are obtained as follow:

λq, and λq, = λq/λ1

where λq indicates the jth singular value. where gi and g i+(P/2) are the gray values of center-symmetric pairs of pixels. 

Table B.3: Local Ternary Pattern and its variants

Local Ternary Pattern (LTP) [START_REF] Tan | Enhanced local texture feature sets for face recognition under difficult lighting conditions[END_REF] LT P τ P,R (xc, yc)

where τ is scale factor indicating the comparing range.

Scale Invariant Local Ternary Pattern (SILTP) [START_REF] Liao | Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes[END_REF] SILT P τ P,R (xc, yc) =

where denotes concatenation operator of binary strings.

where di f f is defined as subtraction of an gray value of a center pixel from that of p-neighborhood pixel, CB(xc, yc) = {c1|1 ≤ l ≤ L(xc, yc)} implies the corresponding codebook composed of L(xc, yc)number of codewords. are the center-symmetric pixel locations lying on the cubic surface. where gz denote the gray values of neighboring pixels in the spatiotemporal neighborhood.

sτ(x, y)
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