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Abstract

In recent years, background subtraction has been one of the most active research topics in
computer vision due to many potential applications including surveillance devices in pub-
lic spaces, traffic monitoring and industrial machine vision. Background modeling methods
have increased its efficiency for robust modeling of the background enabling the detection of
moving objects in any visual scene. Despite several background subtraction and foreground
detection approaches have been proposed recently, no traditional algorithm today still seem
to be able to simultaneously address all the key challenges of illumination variation, dynamic
camera motion, cluttered background and occlusion. This limitation can be attributed to the
lack of systematic investigation concerning the role and importance of features within back-
ground modeling and foreground detection. In this thesis, we address this issue by proposing
a novel and effective method to deal with the background subtraction problems focused on
visual features.

Firstly, a comprehensive survey of the main features used in the context of background
subtraction is introduced. In addition, the traditional approaches for feature selection in-
cluding the recent works in this domain are discussed. Secondly, a robust descriptor for
background subtraction which is able to describe texture from an image sequence is pro-
posed. The descriptor is less sensitive to noisy pixels and produces a short histogram, while
preserving robustness to illumination changes. Moreover, a descriptor for dynamic texture
recognition is also proposed. This descriptor extracts not only color information, but also a
more detailed information from video sequences.

Finally, we present an ensemble for feature selection approach that is able to select suit-
able features for each pixel to distinguish the foreground objects from the background ones.
Our proposal uses a mechanism to update the relative importance of each feature over time.
For this purpose, a heuristic approach is used to reduce the complexity of the background
model maintenance while maintaining the robustness of the background model. However,
this method only reaches the highest accuracy when the number of features is huge. In addi-
tion, each base classifier learns a feature set instead of individual features. To overcome these
limitations, we extended our previous approach by proposing a novel methodology for se-
lecting features based on wagging. We also adopted a superpixel-based approach instead of a
pixel-level approach. This does not only increases the efficiency in terms of time and memory
consumption, but also can improves the segmentation performance of moving objects.
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Résumeé

Durant ces dernieres années, la soustraction de I’arriere-plan a été I’un des sujets de recherche
les plus actifs dans la vision par ordinateur en raison des nombreuses applications comme
les dispositifs de surveillance dans les espaces publics, la surveillance du trafic et la vision
industrielle. Les méthodes de modélisation du fond ont augmenté leur efficacité pour la
modélisation robuste de I’arriere-plan permettant la détection d’objets mobiles dans n’importe
quelle scéne visuelle. Bien que plusieurs approches de soustraction du fond aient été pro-
posées récemment, aucun algorithme traditionnel n’est aujourd’hui capable d’aborder si-
multanément tous les défis clés du domaine comme les variations lumineuses, les mouve-
ments dynamiques de la caméra, du fond encombré et de 1’occlusion. Cette limitation peut
étre attribuée a I’absence d’une recherche systématique sur le rdle et I’'importance des car-
actéristiques dans la modélisa-tion de I’arriere-plan et la détection de premier plan. Dans
cette these, nous abordons cette question en proposant une méthode nouvelle et efficace pour
traiter les problémes de soustraction du fond centrés sur les caractéristiques visuelles.

Tout d’abord, une étude exhaustive des principales caractéristiques utilisées dans le con-
texte de soustraction du fond est présentée. En outre, les approches traditionnelles pour la
sélection des caractéristiques, y compris les travaux récents dans ce domaine, sont analysées.
Deuxieémement, un descripteur robuste pour la soustraction d’arriere-plan qui est capable de
décrire la texture a partir d’une séquence d’images est proposé. Ce descripteur est moins
sensible aux bruits et produit un histogramme court, tout en préservant la robustesse aux
changements d’éclairage. Un autre descripteur pour la reconnaissance dynamique des tex-
tures est également proposé. Le descripteur permet d’extraire non seulement des informations
de couleur, mais aussi des informations plus détaillées provenant des séquences vidéo.

Enfin, nous présentons une approche de sélection de caractéristiques basée sur le principe
d’apprentissage par ensemble qui est capable de sélectionner les caractéristiques appropriées
pour chaque pixel afin de distinguer les objets de premier plan de I’arriere-plan. En outre,
notre proposition utilise un mécanisme pour mettre a jour I’importance relative de chaque
caractéristique au cours du temps. De plus, une approche heuristique est utilisée pour réduire
la complexité de la maintenance du modele d’arriere-plan et aussi sa robustesse. Par contre,
cette méthode nécessite un grand nombre de caractéristiques pour avoir une bonne précision.
De plus, chaque classificateur de base apprend un ensemble de caractéristiques au lieu de
chaque caractéristique individuellement. Pour compenser ces limitations, nous avons amélioré
cette approche en proposant une nouvelle méthodologie pour sélectionner des caractéristiques
basées sur le principe du « wagging ». Nous avons également adopté une approche basée sur
le concept de < superpixel > au lieu de traiter chaque pixel individuellement. Cela augmente
non seulement 1’efficacité en termes de temps de calcul et de consommation de mémoire,

\%



vi RESUME

mais aussi la qualité de la détection des objets mobiles.
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Chapter 1

Introduction

This chapter presents an introduction about the background subtraction (BS) task, describes
its perspectives and challenges in scene modeling, and then we also detailed the main steps
in a background subtraction algorithm. Moreover, an outline of the thesis is included in this
chapter as well as a list of the main contributions.

1.1 Challenges in scene modeling

Background subtraction is an attractive research field in computer vision. It concerns a set
of methods that aim to differentiates the moving objects (the foreground) in the scene from
a robust model of the static environment (the background). BS has been fueled by many
academic scientists and developers over the last twenty years. This is rooted in its numerous
potential applications and the availability of surveillance cameras installed in security sensi-
tive areas such as banks, train stations, highways, and borders. Background subtraction can
be used for surveillance devices in public spaces (such as football stadiums, and big trade cen-
ters), in traffic monitoring (counting vehicles, detecting and tracking vehicles) and industrial
machine vision (inspection and identification products and robot guidance). There are three
main conditions which assure a good functioning of the background subtraction methods: the
camera is fixed, the illumination is constant and the background is static, that is pixels have a
unimodal distribution and no background objects are moved or inserted in the scene. In these
ideal conditions, background subtraction gives good results. In practice, the appearance of an
outdoor or indoor scene depends on a variety of changes that can occur over time. Usually,
it is challenging to design a good background model able to tolerate these changes. There
are various situations that may affect scene appearance, thus reducing the accuracy of the BS
algorithms. To the best of our knowledge, the typical challenges of background subtraction
are [25,100,172]:

e Camerajitter: Usually, the camera jitter occurs in outdoor scenes. For instance, strong
winds may cause a fixed camera to sway back and forth, causing nominal motion in
the video sequence. This nominal motion is usually indistinguishable from the motion
of foreground objects, and this leads to undesirable detection results.
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Camera automatic adjustments: Automatic exposure (means the amount of light that
falls onto the sensor in a digital camera) is a setting available on most cameras today.
The camera captures the light reflected by objects with homogeneous characteristics
(e.g. intensity, texture) in the environment making the task of segmentation difficult.
The foreground aperture occurs when parts of large moving homogeneous regions
become part of the background instead of being considered as moving pixels.

Pan-Tilt-Zoom (PTZ): The most research in background subtraction has been on sta-
tionary cameras, whereas PTZ cameras have become increasingly popular because of
their ability to cover a wide field of view. Existing BS algorithms fail in the case of
moving cameras as neither foreground objects nor background pixels are stationary.

Video noise: Normally, a video signal is covered with noise caused by acquisition,
coding, processing steps and transmission. This noise appearance disturbs the original
information producing undesirable effects on the background scene, such as artifacts,
unrealistic edges, unseen lines, and corners.

Intermittent object motion: The intermittent motion happens when a moving object
stops for a long period of time or a background object starts moving. This situa-
tion results in a “ghost” or “hole” in the background that is interpreted as part of the
foreground. Some examples include objects that suddenly start moving (e.g. parked
vehicle driving away, and abandoned objects). How to manage this situation depends
on the context. Indeed in some applications, motionless foreground objects must be
incorporated to the background model, and in others not.

Dynamic backgrounds: In a dynamic environment, the state of the scene can changes
continually. In other words, the transformation from one temporal stable to another
is generally the outcome of an external event, or a chain of events (i.e. flowing wa-
ter, moving leaves or shrubs). In such environment, it is challenging to have a good
representation of the background model since even some part of the scene containing
moving elements may be regarded as foreground.

Presence of shadows: The detection of cast shadows as moving object is very com-
mon, producing undesirable results. For example, the shadows are so different from
background that may mistakenly be detected as foreground.

Illumination changes: In indoor or outdoor environment, illumination changes often
occur over time and may cause false detections. For instance, in outdoor environments
the gradual changes in appearance can be caused by a wide range of illumination
conditions, in particular those encountered during a typical 24-hour day-night cycle.
Moreover, sudden illuminations can occur due to turning on/off the light switch in an
indoor scene. It is important that the background model be invariant or adaptable to
these kind of changes.

Bootstrapping: The initial video data without moving objects is not always available,
then the representative background model cannot be produced. Thus, an initialization
process is necessary to learn the correct background model over time.

Camouflage: Some moving object can looks like the background, or some portion of
it is camouflaged with the background (the so-called camouflage effect). This leads to
an erroneous distinguish between foreground and background.
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(a) Large shadows. (b) Variations lighting. (c) Large reflections.

Figure 1.1: Scenes from the same avenue under different conditions.

» Foreground aperture: The presence of moving objects can have the same motion
features. Consequently, shadows usually make the geometrical shape of the moving
objects distorted, and sometimes causing the fusion of moving objects.

* Night scenes: The videos captured at night are still a challenging task. Night scenes
usually cause high false detections due to dramatic lighting change and low contrast
between foreground and background.

e Challenging weather: In some cases, the background subtraction algorithm should
adapt to adverse weather condition such as air turbulence or snow storm that modifies
the background scene.

To address the above challenges, several researchers have proposed diversified methods
and its evaluation results have often been available by Change Detection web site!. Recent
experimental results have shown that the biggest problem is the distinction between the back-
ground and the foreground when the scene comes from night videos and videos captured
by PTZ cameras [100]. Another great challenge is when different challenges occur in the
same scene. Figure 1.1 shows three situations at the same avenue. While Figures 1.1a and
1.1b show shadows and different light variations, the Figure 1.1c displays large reflections.
Despite all these situations are handled quietly nowadays [20,58, 150, 185,205], they still dis-
turb the foreground detection process. Note that Figure 1.1 shows different situations, such
as large shadows, light variations, and also large reflections. It is important to note that, until
now, there is no background subtraction algorithm that is able to solve all of these challenges
at the same time, making the BS field even more challenging.

1.2 Background subtraction steps

This section discusses the different steps related to background subtraction. Figure 1.2 shows
an overview of these steps. In essence, background subtraction consists to output a binary
segmentation map by initializing and updating a model of the static scene, which is named the
background (BG) model, and comparing this model with the input image. Pixels or regions
with a noticeable difference are assumed to belong to moving objects (they constitute the

Uhttp://wordpress jodoin.dmi.usherb.ca/results2014/



4 INTRODUCTION

Initialize
Backgrounwd Model
4

Input Stream Output Masks

N Background Model
i Maintenance

Figure 1.2: An overview of the background subtraction process.

foreground FG). A traditional background subtraction technique consists of four elements: a
background model, a background initialization process, an updating mechanism, and a fore-
ground detection operation. BS is often the first step in many computer vision applications
as shown in Figure 1.3.

The background model (or representation) is the core of any BS algorithm. The key idea
behind such step is to create a representation of the static scene which is robust against en-
vironmental changes in the background and also sensitive to identify all moving objects of
interests. In the last decades, researchers have proposed a number of methodologies for mod-
eling and subtracting the background, e.g. statistical methods [39, 88, 187, 188], multilayer
codebook based methods [74], compressive methods for streaming videos [55], etc. Another
important step is the background initialization process that consists to its generation, extrac-
tion or construction. In contrast to background modeling, the initialization of the background
model was only slightly investigated (e.g. [49, 77, 130]). The main reason is that often the
assumption made is that initialization can be achieved by exploiting some clean frames at
the beginning of the sequence. Naturally, this assumption is rarely met in real scenarios, be-
cause of continuous clutter presence. Generally, the model is initialized using the first frame
or a preliminary background model estimated over a set of training frames, which contains
(or not) foreground objects. The third step consists to the background model updating (or
maintenance) that relies on the mechanism used for adapting the background model when a
scene changes over time. It is important that the background maintenance be incremental (an
online algorithm), since new data is streamed and so dynamically provided. Robust updating
mechanisms used in flexible models aim to overcome different challenges, such noisy, cam-
era automatic adjustments and background illumination changes. Furthermore, it is in this
stage where the updating mechanism that defines whether inserted objects are incorporated
to the model, and whether ghosts are updated or removed. To solve these issues, various
approaches have been developed [7, 115, 123, 134]. Finally, the last step is the foreground
detection operation, which compares the background model with the current image to label
pixels (or regions) as background or foreground. This task is a classification one, that can be
achieved by crisp [115, 156], statistical [2, 180] or fuzzy [38] methods.
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Figure 1.3: Moving object tracking results.

1.3 Why features are important in the BS context!

Researchers have been working for decades to develop BS methods to handle the differ-
ent type of challenges in BS (described in Section 1.1). However, at the present time, no
algorithm seems to be able to simultaneously address all the key challenges found in real
environments. This limitation may occurs due to the majority of BS methods are focused on
sophisticated learning models, while visual features have been received relatively little atten-
tion. The suitable choice of features in background modeling can improve the segmentation
of moving objects, however, certain factors must be taken into consideration. For instance,
color and intensity features are very discriminative, but they have several limitations in the
presence of illumination changes, camouflage and shadows. Nevertheless, the texture and
edge features are less sensitive to illumination variations that might occur in outdoor scenes
due to the sun, clouds or light changes, while stereo features can differentiate moving objects
from shadows avoiding some problems such as: object shape distortion, ghost objects and
camouflage. Whereas, the motion features might be useful to handle dynamic scenes, con-
taining common elements such as fountains, swaying trees or ocean ripples [24, 149]. Other
type of feature that has become accessible is the multispectral-based images [16]. Its main
advantage is the possibility to take into account the spatial (or spatio-temporal) relationships
among the different spectra in a neighborhood, allowing more elaborate spectral-spatial (and
-temporal) models for a more accurate segmentation. However, its primary drawback are the
computational cost and complexity due to its massive and multidimensional characteristics.
In this thesis we will focus on the importance of features in the background subtraction tak-
ing into account two main factors: study of new features and selection of the best features
for background modeling. The development of new features and the selection of the best
features can improve the foreground segmentation, mainly if the features are complementary
and uncorrelated [78].

Recent advances in deep convolutional neural networks (ConvNet) have enabled a new
way to extract features from images and videos. The ConvNet have a great performance in
many computer vision applications including background subtraction [29,221]. In addition,
it is commonly easy to set up using modern libraries (Caffe [101], Theano [14], Torch [1],
etc.) with built-in architectures. On the other hand, the ConvNets are not suitable for ap-
plications whose few images are available — training a deep ConvNet usually require a large
amount of images for a better model generalization. Furthermore, the computational cost for
training of ConvNets is high in term of time and memory requirements. For these reasons, the
study of new features computationally simple is crucial in many real-life applications. Color
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Figure 1.4: Given a complex scene with different regions X1, X2, X3, X4 and X5,
these can be characterized by different features such as: texture, color, texture-color,
motion and edge.

and intensity are probably the most popular features for background modeling. However, a
variety of local texture descriptors recently proposed have attracted great attention for back-
ground modeling, especially the Local Binary Pattern (LBP) [146] because of its simplicity
and speedy to compute. In addition, it does not require a large amount of data for feature
extraction. Although LBP features are tolerable against illumination variations, they cannot
deal with the presence of moving shadows. The other major problem of LBP in background
modeling is that it cannot cope with local image noises when neighboring pixels are similar.
Moreover, the ordinary LBP usually does not work well in dynamic scenes since it does not
take into consideration the temporal information. Some researchers have put extensive effort
to solve these problems by proposing new variants of local binary patterns. Nevertheless,
there are still limitations to be addressed giving opportunities for further investigations.

In addition to the difficulties faced by researchers in the conception of robust features for
background subtraction, a second major challenge is the definition of the best combination
of features that would improve the accuracy and robustness in foreground detection. Com-
monly, the BS methods do not take into account the properties of each features, and they use
the same feature for the whole scene [181]. Figure 1.4 shows a complex scene comprising of
several elements such as waving trees, sky, soil and cars. The most discriminant features for
these elements are probably different, and therefore a single-feature BS algorithm may not be
appropriate. Some authors have proposed to combine two (or more) features to take advan-
tage from both [47,97,122,235]. However, the fusion of features can be helpful to a limited
range, because the features chosen may not be mutually complementary, and frequently they
have conflict. Despite the choice of the best features for each region is not an easy task as it
requires a deep knowledge of the scene. However, it is possible to automatically select the
most relevant features, and this process is commonly defined as feature selection. It can im-
prove the detection of foreground objects thanks to its capability to select a subset of highly
discriminant features removing irrelevant and redundant ones. Traditionally, feature selec-
tion methods can be categorized into three main groups: filter, wrapper and embedded -based
methods. Over recent years, a new kind of feature selection that use ensemble learning to
select features, called ensemble for feature selection have been proposed [23]. Ensemble
learning is a powerful tool to combining a set of models, where each of them solves the same
task in order to obtain a better global model with more robustness and the generalization
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ability than a single model. The hot wave of research on ensemble learning began in 1990,
however its efficiency has been proven until the current days. In the contest held in last year
by ImageNet Large Scale Visual Recognition Challenge (ILSVRC), software programs com-
pete to correctly classify and detect objects and scenes. The best performance was achieved
by algorithms that used an ensemble of deep neural networks (see the results in 2.) Ensemble
for feature selection extends the traditional feature selection methods by looking for a set of
feature subsets that will favour disagreement among the ensemble members [186]. Surpris-
ingly, little BS works have been done to date based on feature selection approaches, becoming
this subject an interesting research topic in the BS context.

1.4 Contributions of the thesis

Given the above importance of the features in background subtraction, we present below the
contributions of the thesis. The list of publications concerning the thesis can be found in
Appendix C.

1. A novel texture-based descriptor, namely eXtended Center-Symmetric Local Binary
Pattern (XCS-LBP). The descriptor is less sensitive to noisy pixels and produces a
short histogram, while preserving robustness to illumination changes.

2. A new pixel-based ensemble for feature selection in background subtraction to deal
with the challenges enumerated in the Section 1.1. The proposed approach selects
automatically the best features for different pixels of the image, and the most relevant
features are used for foreground segmentation. In our framework, the background is
modeled by different features including our proposed XCS-LBP descriptor.

3. Our pixel-based ensemble for feature selection only reaches the highest accuracy when
the number of features is huge. Furthermore, each base classifier learns a feature set
instead of individual features. To overcome these limitations, we extend our previous
approach by proposing a novel methodology for selecting features based on wagging.
This approach is more efficient in terms of time and memory consumption. We also
added an ensemble pruning technique to eliminate the importances with very low val-
ues over time.

4. A robust 3D joint color-texture descriptor, called OCLBP-TOP developed in conjunc-
tion with the Computer Vision Center (CVC) at Autonomous University of Barcelona
(UAB). This descriptor allows to extract not only color information, but also a more
detailed information from video sequences.

Zhttp://image-net.org/challenges/LSVRC/2016/results
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1.5 Thesis outline

The rest of the thesis is organized as follows.

e Chapter 2: conducts a literature review of the main features used in the context of
background subtraction. In addition, the traditional approaches for feature selection
including the recent works in this domain are also discussed.

* Chapter 3: presents a novel eXtended Center-Symmetric Local Binary Pattern (XCS-
LBP) descriptor for background modeling and subtraction in videos. The experiments
conducted on both synthetic and real videos (from the Background Models Challenge)
show that the proposed XCS-LBP outperforms its direct competitors for the back-
ground subtraction task.

* Chapter 4: describes an online weighted pixel-based ensemble learning method able
to select suitable features for each pixel to distinguish the foreground objects from the
background. In addition, our proposal uses a mechanism to update the importance of
each feature over time. Moreover, a heuristic approach is used to reduce the com-
plexity of the background model maintenance while maintaining the robustness of this
one. Experimental results on two datasets have shown the pertinence of the proposed
approach.

e Chapter 5: extends our approach proposed in Chapter 4 by a novel methodology for
selecting features based on wagging. Furthermore, we also adopted a superpixel-based
approach instead of a pixel-level approach. This does not only increased the efficiency
in terms of time and memory consumption, but also improved the segmentation per-
formance.

e Chapter 6: presents a particular work realized in conjunction with Computer Vision
Center (CVC) at Autonomous University of Barcelona (UAB). This chapter describes
anovel Opponent Color Local Binary Pattern from Three Orthogonal Planes (OCLBP-
TOP) descriptor for applications in the field of dynamic texture recognition. The
OCLBP-TOP fuses both, the texture and color information. As such, it allows to
extract not only color information, but also a more detailed information from video
sequences. The experiments conducted on real videos have shown that the proposed
OCLBP-TOP outperforms other state-of-the-art descriptors.

* Chapter 7: summarises the thesis with remarks, advantages, and limitations of the
proposed approaches. It also discuss the open issues and future works.



Chapter 2

Literature review

Features play an essential role for various computer vision applications and it is not different
for background subtraction. In the long history of BS, various features have been used, im-
proved or even proposed to address BS challenges in background modeling. Another way to
deal with the BS challenges is to select a subset of highly discriminant features for each pixel,
region or cluster in a image sequence. This can be done automatically by using feature selec-
tion approaches. This chapter begins with a review of the main features used in the context of
BS, then we discuss the traditional and recent approaches for feature selection including the
important BS works in this domain. This chapter corresponds to a concise version of our re-
cent survey submitted to Computer Science Review, 2016 [26]. Furthermore, an open source
library, called LBPLibrary!, was developed to provide a collection of local binary patterns
variants. The library was designed for the problem of background-foreground separation in
videos.

2.1 Features for background modeling

Background modeling is an important step in detecting moving objects in video sequence.
A very important factor in background modeling is the choice of the transformation that is
applied to the original data in order to obtain the features that are used. Features (descriptors
or attributes) is a set of measurements describing an object such as points, edges or corners.
In background subtraction, the features characterize a picture element captured in the current
frame of a video sequence and are compared against a known background model to classify it
as either foreground or background. Feature representations can take multiple forms and can
be computed for and from: a pixel, a region or a cluster. Practically, there are several types
of features which can be computed either in the spatial, temporal, spatio-temporal or depth
transform domain. Some of the features commonly used within the background modeling
literature includes: color features, edge features, stereo features, motion features and texture

"https://github.com/carolinepacheco/lbplibrary
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features. These features can be classified from different view points such as: by level, by type
in a specific domain and by intrinsic properties. In the following sections, these view points
are discussed in more details.

2.1.1 Classification by level

The size of the picture element chosen for interpreting necessary features that faithfully rep-
resent its characteristics plays a crucial role in background modeling. The size of the picture
element that is used to model the background and hence for comparing the current image
frame to the background model, can either be a pixel [70], a region [70] or a cluster [17] with
a feature value.

* Pixel-level: Most approaches for background subtraction are based on pixel-level
modeling which assumes adjacent pixels are independent. These approaches build
a separate model for each pixel, such as Gaussian Mixture Model (GMM) [187,244,
246], Kernel Density Estimation (KDE) [58], and non-parametric approaches based
on sample consensus (Pixel-based Adaptive Segmenter (PBAS) [88] and ViBe [12]).
The pixel-level approaches are usually effective, but they cannot discriminate well the
variations of the pixel’s value caused by the presence of foreground objects and natural
illumination changes, since each model knows only history of the corresponding pixel.
In fact, such illumination changes is learnt in the background model over a period of
time, it is practically impossible to adapt it for sudden illumination changes [139].

* Region-level: Many studies have adopted a region-level background modeling by
splitting an image into blocks and calculating the block-specific features. In this ap-
proach, instead of dealing with one pixel at time, the relationship among neighboring
pixels is modeled [236]. Compared with pixel-level modeling, the region-level one
gives richer features, and it is more robust in the case of illumination changes. Another
important advantages is their robustness to noise and the movement in the background.
However, the disadvantage is that the detection is less precise because only foreground
regions are segmented, making them unsuitable for applications that require a detailed
shape information of the foreground object.

* Cluster-level: A recent trend in background modeling is to consider region sizes
that are non-uniform across the image sequence. First, pixels in an image frame
are grouped using an application-specific homogeneity criteria, typically exploiting
clustering mechanisms as discussed in [17-19]. For example in Bhaskar et al. [17],
each cluster contains pixels that have similar features in the color space. Then, the
background model is applied on these clusters to obtain cluster of pixels classified as
background or foreground. This cluster-level approach gives less false alarms than
block-level approaches. Just like the region-level modeling, the cluster-level ones
boost efficiency in terms of both required memory and computation time, since fewer
models have to be kept in memory and updated at every frame.
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2.1.2 Classification by intrinsic properties

In this thesis, we define the features can be classified by their intrinsic properties into the
following categories:

* Spatial domain: At the beginning of the research in BS, most of the features were rep-
resented in the spatial domain. Basically, the spatial domain refers to the image plane
itself, and they assume that the scenes to be modeled are often static structures with a
little perturbation. Spatial features can cope well with the slight illumination changes,
but cannot usually handle either large (or sudden) changes or multiple moving objects
in the scene [95].

» Temporal domain: The temporal information can be an alternative choice to improve
the detection of non-stationary objects. The motion information can be exploited to
improve the discriminative power of the objects by including its temporal evolution.
The key idea of the temporal domain methods lie in the fact that different object’s
motion produces a defined motion pattern. The temporal domain can be used to dis-
criminate one object from another by analyzing its temporal motion patterns, thereby
playing a crucial role in moving object detection.

e Spatio-temporal domain: The spatio-temporal domain is usually suitable to deal with
dynamic background by modeling the spatial and temporal relationship and variations
simultaneously. For example, in an outdoor scene containing waving trees caused
by the presence of a strong wind, the regions occupied by the trees will be unstable
(random motion patterns) for a some period of time. The temporal domain methods
consider only the temporal variations and ignore the spatial variances which is useful
for a correct modeling of the background.

* Depth domain: The recent advances on distance image sensors enabled the use of the
depth information for many computer vision applications, specially in the BS field.
The depth information is an attractive element for the segmentation of moving objects
due to its robustness to deal with common BS problems such as shadows and camou-
flage (e.g. the similarity of the color and texture features of the moving object and the
scene background).

Various features for the above domains have been proposed and improved for background
subtraction. Figure 2.1 shows a brief overview of the features classified by its intrinsic prop-
erties.

2.1.3 Classification by type

Now, we present and analyze the different features mostly used in background modeling and
foreground detection in terms of robustness against the challenges in videos taken by fixed
cameras.
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Figure 2.2: RGB channels of the image showed separately.

Color features

Color features have been widely used for background modeling. They provide a spatial
information from captured by sensors or cameras. In spite of the color features have been
largely used for an easy discrimination between the background and the foreground, the color
features are generally not robust against illumination changes and shadow cast caused by
moving objects. Furthermore, similar colors between background and foreground lead to the
well-known problem of camouflage. In the literature, several color features in different color
spaces have been proposed, and they are described as follows:

* RGB color space: The RGB color space is the most popularly used due to their di-
rect availability from sensors or cameras. Red, Green, and Blue channels (see Fig.
2.2) of each pixel are usually measured with 8-bits resolution, where 0 is no intesity
(black color) and 255 is the maximum intensity (white color), therefore, a total of 24-
bit true color definition. But the RGB color space has several limitations: 1) it is well
known that the RGB color space does not reflect the true similarities among colors,
2) depending on the scene, one color component could be more informative than oth-
ers, so it should be given more importance than others, 3) the three components are
dependent on each other which increase its sensitivity to illumination changes. For
example, global illumination changes shift the mean level of the entire RGB image,
possibly with shifts of different magnitude for each color component, and 4) as the
three channel components are correlated, there is a need to compute inter-correlation
terms in the covariance matrix which shall be incorporated into existing background
models such as in the Mixtures of Gaussian (MOG) model [187]. Stauffer and Grim-
son [187] demonstrated that by not computing these inter-correlations terms, compu-
tational speed improves, however with increased false detections.

* Normalized RGB color space: The normalized RGB space is derived from the tra-
ditional RGB color space to be illumination invariant. Xu and Ellis [220] used the
normalized RGB to allow the MOG to be robust to fast illumination changes in an
outdoor environment lit by sunlight and shadowed by clouds.

* YUYV color space: The YUV space separates luminance and chroma and so it is more
suitable for improving the robustness of the model against illumination changes. For
example, Wren et al. [216] used the normalised components, U/Y and V/Y to remove
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shadows in a relatively static indoor scene. Using the MOG model, Harville et al. [82]
defined a chroma validity test based on the luminance Y as the chroma (U and V)
components become unstable when the luminance is low. When the test is not verified,
the chroma components of the current observation are not used and so are its current
Gaussian distributions. Furthermore, the detection in luminance was combined with
the detection in depth, improving its robustness to color camouflage.

e HSYV color space: The HSV color space is used to improve the discrimination between
shadows and objects, classifying shadows as those pixels having the approximately the
same hue and saturation values compared to the background, but lower luminosity. For
example, Sun et al. [190] used the Hue-Saturation-Value (HSV) color space, because
the likelihood term in the MOG model shows stronger contrast in HSV space rather
than the RGB space, especially for objects that share similar appearance to the back-
ground (camouflage in color).

* HSI color space: HSI color space is closer to human interpretation of colors in the
sense that brightness, or intensity, is separated from the base color. HSI uses polar
coordinates. In the original MOG model, shadows are extracted as part of the object
mask when using the RGB color space. To address this problem, Wang and Wu [210]
used the HSI color space which tends to be shadow-removable. However, the obtained
results are not satisfactory due to the fragmented segmentation results by using hue and
saturation. In order to achieve both “shadow-rejection” and “segmentation stability
over time”, Wang and Wu [210] employed the MOG on chroma (hue and saturation)
and luma (intensity) separately. The fused results obtained by combining chroma and
luma is prepared using two criteria. This scheme reserves the advantage of using
chroma (i.e. avoiding shadow) and that of luma (i.e. stability of segmentation).

e Luv color space: Yang and Hsu [228] used the Luv components assuming indepen-
dence in the computation of covariance matrix required in the MOG model. Then,
Yang and Hsu [228] built an hybrid feature space with spatial and color features to
obtain a 6-dimensional hybrid feature vector for each pixel. A mean-shift procedure
classified each hybrid feature vector to its corresponding local maximum along the
gradient direction. Thus, a set of neighboring pixels associated with the same lo-
cal maximum (i.e. mode) is highly similar in this hybrid feature space. Yang and
Hsu [228] then assign pixel-level background likelihood for each pixel using the MOG
likelihood, and further obtain a smoothed version of MOG in terms of spatial and color
coherency.

e Improved HLS color space: Setiawan et al. [171] proposed to use the IHLS color
space which has the following advantage against the RGB color space. That is to
identify shadows region from an object by using luminance and saturation-weighted
hue information directly, without any calculation of chrominance and luminance. By
exploiting this color space in the MOG model, Setiawan et al. [171] obtained good
sensitivity to color changes and shadow.

e Ohta color space: The axes of the Ohta space are the three largest eigenvectors of
the RGB space, found from the principal components analysis of a large selection
of natural images. This color space is a linear transformation of RGB. Using the
mean model, Zhang and Xu [235] applied the Ohta color space. The three orthogonal
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color features of the Ohta color space are important components for representing color
information. Good results in the case of illumination changes and shadows in outdoor
scenes are achieved by using only the first two components which are combined with
a texture feature.

e YCrCb color space: YCbCr uses Cartesian coordinates. El Baf et al. [8] used the
YCrCb color space combined with the texture feature to be robust to illumination
changes and shadows. Experimental results in [8] showed that YCrCb color space is
more robust in these cases than the Ohta and HSV color spaces.

e Lab/Lab2000HL color space: Lab color space is a color space which indicates proper
changes in the direction of human color perception. Its components are the lightness
of the color and two color opponent dimensions. Lab2000HL color space, which is
an improved version of Lab color space, was introduced and is thought to perform a
better modeling of the human perception. Particularly, Lab2000HL color space have
linear hue band. So, Balcilar et al. [9] investigated the performance of the Lab2000HL
color space. The average precision value of Lab2000HL is the greatest in all videos
in comparison to all other color spaces. The Lab2000HL globally gives the best per-
formance on all the video sequences, but not mandatory on each sequence. In terms
of the computational costs for each color space (YCrCb, Luv, Lab,Lab2000HL), RGB
color space leads to the lowest. The reason is that it does not require any transfor-
mation since the information gathered from the camera sensors is directly in RGB.
Lab2000HL color space, on the other hand, has the most computational cost, since a
computationally intensive procedure is required to apply first the Lab transformation,
and then the computation of transformation value with respect to the transition map
using interpolation.

Edge features

Edge features are based usually on intensity features given from spatial information, and
they are computed using a gradient approach such as Canny [37], Sobel [108] or Prewitt
[154]. The gradients can be calculated from the gray level image or in each component
of the color space. Edge detectors operate on the difference between neighboring pixels,
hence an edge detector should be reasonably insensitive to global shifts in the mean level, i.e.
global illumination changes. Therefore it would be interesting to run background-foreground
separation algorithms on the output from edge detectors, hopefully reducing the effects of
rapid illumination changes. So, the edge could handle the local illumination changes, but
also the ghost leaved when waking foreground objects begin to move. The edge features are
generally used alone or jointly with other features as follows:

* Edge alone: First, Kim and Hwang [104] proposed to use only edges to model the
background. This approach used a binarized information for the existence of an edge
for a given pixel. But, regions in consecutive frames may not have exactly the same
edge position, and have shape and length changes due to presence of noise. This strat-
egy may generate many false alarms in the foreground mask due to edge distortion
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Features Acronym of papers Authors - Dates
RGB Stauffer and Grimson (1999) [187]
Normalized RGB Xu et Ellis (2001) [220]
Normalized RGB Xu et Ellis (2001) [220]
YUV Wren et al. (1997) [216], Harville et al. (2001) [82]
HSV Sun et al. (2006) [190]

Color features HSI ‘Wang and Wu (2006) [210]
Luv Yang and Hsu (2006) [228]
Improved HLS Setiawan et al. (2006) [171]
Ohta Zhang and Xu (2006) [235]
YCrCb Baf et al. (2008) [8]
Lab/Lab2000HL Balcilar et al. (2013) [9]
Edge alone

Edge features

Jointly with other features

Jabri et al. (2000) [95], Kim and Hwang (2002) [104]

Li et al. (2004) [118], Lindstrém et al. (2006) [123]

Kim and Hwang (2002) [104], Murshed and Chae (2010) [141]
Ramirez-Rivera et al. (2011) [157], Kim et al. (2013) [105]

Mousse et al. (2014) [140], Lopez-Rubio and Lopez-Rubio (2014) [131]
Wang and Wan (2014) [211]

Jabri et al. (2000) [95], Lindstrom et al. (2006) [123]
Kim et al. (2015) [106]

Depth features

Depth from Stereo-Cameras

Depth from Time-of-Flight Cameras

Depth from RGB-D Cameras

Eveland et al. (1998) [59], Gordon et al. (1999) [68]
Ivanov et al. (2000) [94] , Harville et al. (2001) [82]
Braham et al. (2014) [27], Harville (2002) [81]

Tombari et al. (2008) [197], Leens et al. (2009) [117]
Stormer et al. (2010) [189], Hu et al. (2014) [91]
Braham et al. (2014) [27]

Greftf et al. (2012) [73], Gallego and Pardas (2013) [66]

Camplani et al. (2013) [35], Fernandez-Sanchez et al. (2013) [62]
Spampinato et al (2014) [183], Fernandez-Sanchez et al. (2013) [62]
Liang et al (2016) [119]

Motion features

Optical Flow

Huang et al. (2006) [92], Zhong et al. (2008) [241]
Huang et al. (2009) [93],Chen et al.(2014) [45]

Table 2.1: Features: An Overview (Part 1).




2.1. Features for background modeling 17

from consecutive frames. To solve the edge-distortion problem, edge-segment-based
methods have emerged to take advantage of the edge existence and its shape informa-
tion [89]. An edge-segment approach consists of the concatenation of adjacent edges,
and it inherits the problems of edges: shape and position changes. Thus, basic com-
parison of edge-segments produces similar results as edge-pixel-based approaches.
To solve this problem, statistical edge-segment-based methods extract movement of
edge-segments including edge distortion [105, 141, 157]. Thus, these methods solve
the edge-variation problem by accumulating edge existence from a training set [106].
Practically, each accumulated region represents an edge-segment distribution. Each
region refines their statistical properties after each frame to provide a stable back-
ground model. Since edge-based and edge-segment-based methods detect foreground
as edges, these methods depend of a post-processing step to extract the regions de-
fined by the detected edges. Moreover, these methods have problems updating their
background model to adapt the background.

* Jointly with other features: Jabri et al. [95] used in addition of the intensity features
the intensity gradient obtained by the Sobel edge detector. Large changes in either in-
tensity or in edges are fused. However, the involvement of the intensity model retains
the sensitivity to sudden changes in illumination. Lindstrom et al. [123] proposed to
use a Prewitt edge detector without the thresholding independently to each color com-
ponent followed by a log-transformation gives a color edge image with pixel values
that can be modeled using Gaussian mixtures. Experimental results [123] showed bet-
ter performance against illumination changes for the log-transformed detection using
the Prewitt edge detector. In another work, Kim et al. [106] used edge and texture
features in a hybrid scheme to generate the background model. Thus, theses features
are encoded into a coding scheme called Local Hybrid Pattern (LHP). LHP selectively
models edges and texture features of each pixel. Then, each pixel is modeled with
an adaptive code dictionary to take into account the background dynamism. In the
background maintenance, stable codes are added in the model while unstable ones are
discarded. The incoming codes that deviate from the dictionary are classified as edge
or inner region. Experimental results [106] on the ChangeDetection (CDnet 2012)
dataset [69] showed that this Adaptive Dictionary Model (ADM) with LHP features
outperforms the original MOG [220], the ordinary LBP [84] and SALBP [144].

Texture features

Texture features are extracted from spatial information or on spatio-temporal information.
The texture features have been very investigated in the BS field as can be seen in Table
2.2. Generally speaking, texture can be defined to surface characteristics and appearance
of an object given by the shape, size, density, arrangement, proportion of its elementary
parts. By contrast with the color features, the texture features are more appropriate to cope
with illumination changes and shadows. In the following, different texture descriptors are
discussed following the same categorization given in [198].

* Statistical Texture: Statistical texture descriptors are useful qualities for the spatial
distribution of the intensity values. This technique is one of the first methods sug-
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gested in the literature of texture descriptors. In BS, some statistical texture descriptors
have been proposed mainly to deal with the problem of illumination variations. For
instance, Satoh et al. [165] proposed Peripheral Increment Sign Correlation (PISC)
feature that encodes a value of 1 or 0 according to whether the increment near the
considered pixel is positive or negative. The resulting logical code representing the
trend of brightness change. However, this leads to increase false positives because the
code is reversed easily with slight intensity changes in regions with small intensity dif-
ferences, for example in plain regions. Plain regions often occupy large spatial region
within images, which makes stabilizing on them very important. Yokoi [230] proposed
a Probabilistic Bi-polar Radial Reach Correlation (PrBPRRC). It encodes the intensity
difference by —1/0/1 ternary codes to enhance the robustness against illumination
changes and background movements. In Satoh et al. [166] a novel statistical measure
for robust event detection, called Radial Reach filter (RRF) is proposed. It evaluates
a local texture to handle with brightness distributions of the events and the influence
of shadows, etc. RRF searches for a point with the brightness difference more than a
threshold from the interest pixel. This procedure is repeated about eight directions in
the shape of radiation resulting in 8 sets of the “RRF pairs”. At the end a binary code
is given by the sign of brightness difference of each pairs.

 Structural texture: These type of descriptors are constituted by the texture elements
named as texels or texton. Texels are the smallest element that creates the impression
of a texture surface. Usually, structural descriptors are invariant to illuminations, how-
ever heavily depend upon the definition of texels. To the best of our knowledge, the
structural texture descriptor has been less explored for moving object detection. Re-
cently, Spampinato [184] presented a kernel density estimation method which models
background and foreground by exploiting textons to describe textures within small
and low contrasted regions. According to the authors, the proposed method is robust
to illumination changes, but it can not be applied for real-time purposes due to com-
putational cost.

* Model based texture: Model based texture is commonly learned for a specific texture
analysis task and used as features. The most popular technique from this category for
background modeling is Markov Random Fields (MRFs) [107]. They are based on the
contextual information of the image. In Schick et al. [169], a novel post-processing
framework to improve foreground segmentation with the use of Probabilistic Super-
pixel Markov Random Fields is proposed. First, they converted a given pixel-based
segmentation into a probabilistic superpixel representation. Based on these proba-
bilistic superpixels, a Markov random field exploits structural information and simi-
larities to improve the segmentation. Xu et al. [222] also introduced a new background
modeling algorithm based on MRFs. The pyramid structure is introduced and the
background modeling/labeling are processed at different resolution levels. The exper-
iments showed this algorithm segment the foreground objects accurately from scene
with sharp lighting changes and background movements. Other works using MRF
technique can be found in [33, 137].

* Filtering based texture: Filtering based descriptors represent an image in a space
whose co-ordinate system has an interpretation that is closely related to the charac-
teristics of a texture. For instance, the frequency masks are more common and ef-
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fective in texture description. Usually, the frequency features are obtained by con-
verting the image into the frequency space normally using Fast Fourier Transform
(FFT) [41]. Fourier transform features encapsulate spatial information which are suit-
able for scenes that contain periodic motions. That is, scene having a significant cor-
relation between structures and observations across time (e.g. a tree swaying in the
wind or a wave lapping on a beach). In this context, Wren and Porikli [217] esti-
mated the background model that captures spectral signatures of multi-modal back-
grounds using FFT features through a method called Waviz. Here, FFT features are
then used to detect changes in the scene that are inconsistent over time. Results [217]
showed robustness to low-contrast foreground objects in dynamic scenes. Some others
works based on frequency methods are found in the state-of-the-art: Discrete Cosinus
Transform Features ( [160, 209, 245]) and Hadamard Transform (also known as the
Walsh—Hadamard Transform ( [10]). Latterly, wavelet transformation [135] is one of
the most famous of the time-frequency-transformations. Considering that static back-
grounds correspond to the low-frequency components, Han et al. [79] removed the
static backgrounds indirectly in the 3D wavelet domain. Additionally, they made use
of wavelet shrinkage to remove disturbance and introduce an adaptive threshold based
on the entropy of the histogram to obtainur optimal detection results. See other works
using the wavelet transformation at: ( [6, 50, 90, 138]). Another popular descriptor
based on filtering is the Gabor Transform [65]. Some Gabor Transform works in BS
can be found in [214,227].

* Local Binary Patterns: Local binary patterns (LBP) proposed in [85] is the simple
yet powerful gray scale invariant texture descriptor. The computation of the ordinary
LBP for a neighborhood of size P = § is illustrated in Figure 2.3. It combines the
characteristic of statistical and structural texture analysis, describing the texture with
micro-primitives and their statistical placement rules. To the authors’ best knowl-
edge, the first work using LBP histograms for background modeling was proposed by
Heikkild et al. [85]. The authors showed that LBP features are tolerant against illu-
mination variations. Therefore, they found that moving shadows could not be handled
very well. The other major LBP problem in background modeling is that it cannot
cope with local image noise when neighboring pixels are similar. In addition, the or-
dinary LBP cannot usually work well in dynamic scenes since it does not taken into
account the temporal information. Consequently, several LBP variants have been pro-
posed in the recent literature to tackle these problems. In this thesis, we grouped these
variants into five categories. We describe below the main LBP variants for each cate-
gory. The interested reader will find a full list of the main LBP variants in Table 2.2
and its relative equations in the Appendix B.

— Ordinary LBP-based: The first category consists of the variants with small math-
ematical changes from ordinary LBP. Few years after using ordinary LBP in
background modeling, Heikkil4 et al. [84] proposed a small change in its thresh-
olding scheme. They improved the ordinary LBP in image areas where the gray
values of the neighboring pixels are very close to the center pixel, e.g. sky,
grass, etc. The LBP-based algorithms are often invariant to local illumination
changes, but they are unable to detect uniform foreground objects in large uni-
form background except at the objects’ edges. To solve this problem, Chua et
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Textures

Acronym of papers

Authors - Dates

Statistical texture

Radial Reach filter (RRF)
Peripheral Increment Sign Correlation (PISC)
Probabilistic Bi-Polar Radial Reach Correlation (PrBP-RCC)

Satoh et al. (2002) [166]
Satoh et al. (2004) [165]
Yokoi (2009) [230]

Structural texture

Texton

Spampinato et al. (2014) [184] ‘

Model based texture

Markov Random Fields (MRFs)

Xu et al. (2005) [222], Bugeau and Pérez (2007 ) [33]
McHugh et al. (2009) [137], Schick et al. (2012) [169]

Filtering based texture

Frequency features

Wavelet transformation

Gabor transform

Wren and Porikli (2005) [217], Zhu et al. (2005) [245]
Wren and Porikli (2005) [217], Wang et al. (2005) [209]
Reddy et al. (2010) [160]

Antic et al. (2009) [6], Crnojevic, et al. (2009) [50]
Mendizabal and Salgado (2011) [138], Hsia and Guo (2014) [90]

Han et al. (2016) [79]

Wei et a. (2008) [214], Xue et al. (2012) [227]

Local Binary Patterns

(1) Ordinary LBP-based

Local Binary Pattern (LBP)

Opponent Color Local Binary Patterns (OCLBP)

Modified LBP

€eLBP

Adaptive eELBP

Uniform Local Binary Patterns (ULBP)

Local Color Pattern (LCP)

Local Binary Similarity Patterns (LBSP)

Local SVD Binary Pattern (LSBP)

(2) Center-Symmetric LBP-based

Center-Symmetric Local Binary Patterns (CS-LBP)
Center-Symmetric Local Derivative Pattern (CS-LDP)

eXtended Center-Symmetric Local Binary Pattern (XCS-LBP)
BackGround Local Binary Patterns (BG-LBP)

(3) Ternary LBP-based

Local Ternary Pattern (LTP)

Scale Invariant Local Ternary Pattern (SILTP)

Scale Invariant Local States (SILS)

Scene Adaptive Local Binary Pattern (SALBP)

Multi-Channel Scale Invariant Local Ternary Pattern (MC-SILTP)

(4) Spatio-Temporal LBP-based

Spatio-temporal Local Binary Patterns (STLBP)

Spatial-Temporal Local Binary Pattern (STLBP)

Stereo Local Binary Pattern based on Appearance and Motion (SLBP-AM)
(5) Hybrid LBP-based

Spatial Extended Center-Symmetric Local Binary Pattern (SCS-LBP)
Center Symmetric Spatio-temporal Local Ternary Pattern (CS-STLTP)
Center Symmetric Spatio-temporal Local Ternary Pattern (CS-STLTP)
Spatiotemporal Scale Invariant Ternary Pattern (ST-SILTP)

Heikkili et al. (2004) [85]

Maenpaa and Pietikainen (2004) [133]
Heikkili et al. (2006) [84]

Wang and Pan (2010) [206]

‘Wang et al. (2010) [207]

Yuan et al. (2012) [231]

Chua et al. (2012) [47]

Bilodeau et al. (2013) [22]

Guo et al. (2016) [76]

Heikkili et al. (2009) [86]
Xue et al. (2011) [225]

Silva et al. (2015) [176]
Davarpanah et al. (2016) [51]

Tan and Triggs (2010) [191]
Liao et al. (2010) [120]
Yuk and Wong (2011) [232]
Yin et al. (2013) [229]

Ma and Sang (2013) [132]

Shengping et al. (2008) [174]
Shimada and Taniguchi (2009) [175]
Yin et al. (2013) [229]

Xue et al. (2010) [226]
Xu (2012) [223]

‘Wu (2013) [218]
Jietal. (2014) [100]

Table 2.2: Texture Features: An Overview (Part 2).
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Figure 2.3: The LBP descriptor. From the original image to the histogram of its
LBP image.

al. [47] proposed a robust texture-color based background modeling. Two vari-
ants of LBP, called eLBP and Adaptive eLBP, are developed in [206,207]. They
are fast to compute and less sensitive to the illumination variation or some color
similarity between foreground and background.

— Center-Symmetric LBP-based: The computational complexity is very useful
normally in background modeling which requires real-time processing. The
center-symmetric LBP are based on descriptions which generates more com-
pact binary patterns by working only with the center-symmetric pairs of the
pixels. The variants of this category are extensions of the Center Symmetric
Local Binary Pattern (CS-LBP) descriptor proposed by Heikkilé et al. [86]. The
CS-LBP descriptor is less sensitive to noisy pixels and produces a short his-
togram while preserving robustness to illumination changes and slightly gaining
in time consumption. Due to its performance, many other works based on CS-
LBP have been proposed. For instance, in Xue et al [226], a Spatial Extended
Center-Symmetric (SCS-LBP) is presented. It improves the CS-LBP by better
capturing the gradient information and hence, making it more discriminative.
The authors explained that their SCS-LBP produces a relatively short feature
histogram with low computationally complexity. The Center-Symmetric Local
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Derivative Pattern descriptor (CS-LDP) is described in [225]. It extracts more
detailed local information while preserving the same feature lengths than the
CS-LBP, but with a slightly lower precision than the ordinary LBP.

Ternary LBP-based: This category represent the descriptors which inherit the
characteristics from Local Ternary Pattern (LTP) introduced by Tan and Triggs
[191]. This descriptor is more robust for local noises by introducing a small
tolerative range. The intensity scale invariant property of a local comparison
descriptor is very useful, because illumination variations, either global or lo-
cal, usually cause sudden changes of gray scale intensities of neighboring pixels
simultaneously. Nevertheless, Liao et al. [120] demonstrated that the LTP de-
scriptor can not keep its invariance against scale transform when all local pixel
values are multiplied by a constant. Therefore, to deal with these problems Liao
et al. [120] presented a Scale Invariant Local Ternary Pattern (SILTP) descrip-
tor. More recently, Ma and Sang [132] proposed to extend the SILTP to feature
space and to operate on the three channels of RGB images rather than only one
channel present in gray images to get the texture patterns. This texture descrip-
tor is called Multi-Channel Scale Invariant Local Ternary Pattern (MC-SILTP).
The MC-SILTP demonstrated all the properties that SILTP owns, and it can deal
especially in flat areas.

Spatio-Temporal LBP-based: The spatio-temporal category include the vari-
ants that extend the ordinary LBP from spatial domain to spatio-temporal do-
main. However, these variants can deal with dynamic scenes. In Shengping et
al., [174], a novel spatio-temporal local binary patterns (STLBP) is presented.
The experimental results indicate that the proposed method can adapt quickly to
changes in the dynamic background. Yin et al. [229] proposed a Stereo Local
Binary Pattern based on Appearance and Motion (SLBP-AM) descriptor. The
motion of pixels is represented as dynamic texture in ellipsoidal domain. Then,
Yin et al. [229] combined texture histograms in the XY, X7 and YT planes in the
ellipsoid. SLBP-AM is more robust to slight disturbance, but also adapts quickly
to the large-scale and sudden changes. Shimada and Taniguchi [175] proposed
an invariant feature using both spatial invariance and temporal invariance also
called Spatio-Temporal LBP (STLBP) suitable for outdoor scene in which the
illumination condition can change gradually.

Hybrid LBP-based: These variants combine two or more characteristics of the
above categories, which usually results in a descriptor even more powerful. Xue
et al. [226] proposed to use a Spatial Center-Symmetric Local Binary Pattern
(SCS-LBP) which not only has the property of illumination invariance, but also
produces short histograms and be more robust to noise. So, Xue et al. [226] ex-
tended the CS-LBP operator from spatial domain to spatial-temporal domain and
proposed a texture operator named SCS-LBP which extracts spatial and tempo-
ral information simultaneously. Then, combining the SCS-LBP operator with an
improved temporal information estimation scheme, Xue et al. [226] obtained a
background modeling approach which reach high accurate detection in dynamic
scenes while reducing the computational complexity compared to the ordinary
LBP. Wu et al. [218] extended the SILTP descriptor for handling some challeng-
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ing scenes by introducing the Center-Symmetric Scale Invariant Local Ternary
Pattern (CS-SILTP) descriptor. This texture descriptor explores the spatial and
temporal relationships of neighborhood pixels.

Depth features

Depth features encapsulate the depth information and they have become very attractive for
BS, especially, in indoor environments. The main advantage of the depth features is that it
does not suffer the limitations of color features (e.g. camouflage). Depth-based detection
results in a more compact silhouettes. However, using exclusive depth features still present
some issues such as: depth sensors frequently raise noises at object boundaries; measure-
ments of depth are not always available for all image pixels. Therefore, usually many BS
works propose to combine both color and depth features to improve the detection results.
Depth information can be obtained in real-time by different technologies. We describe below
three technologies to acquire depth information.

* Depth from Stereo-Cameras: Traditional stereo cameras consist of a single device
integrating two or more monocular cameras with small baseline (i.e., the distance be-
tween focal center of the cameras). The disparity map obtained that correlates the
two views of a stereo camera can be used as input for a disparity-based BS algo-
rithm. To accurately perform the background modeling, it is necessary that a dense
disparity map be calculated. However, to obtain an accurated dense map of corre-
lations between two stereo images, usually time-consuming stereo vision algorithms
are employed [31, 121]. Moreover, the correlation between left and right images may
not be reliable, and the disparity map can present holes due to “invalid” pixels (i.e.,
points with invalid depth values). Ivanov et al. [94] were among the first authors
who proposed a BS method based on disparity maps to address some of these issues.
By cross-verifying each pixel across three camera views, the authors were able to
distinguish the foreground objects from occlusion/shadows. Practically, this method
required the offline construction of disparity fields mapping the background images
that contained no foreground objects. At runtime, foreground detection was made by
checking background image to each of the additional auxiliary color intensity values
at corresponding pixels. This algorithm could be implemented in real-time on con-
ventional hardware. In Gordon et al. [?], the background model was modeled using a
multidimensional mixture of Gaussians model with the (R,G,B,D) features. A signif-
icant advantage of incorporating both color and depth features within the background
model is that, Gordon et al. [?] could correctly estimate depth and color of the back-
ground when the background is available in a fewer number of initialization frames.
The authors used a disjunction of the results coming from each feature to obtain the
final foreground detection. A pixel is classified as foreground based on either color
or depth is taken to be foreground in the final foreground detection. Other related BS
works can be found in [59,81, 82].

* Depth from Time-of-Flight (ToF) Cameras: The ToF cameras produce a depth image,
each pixel encodes the distance to the corresponding point in the scene. Apart from
their advantages of high frame rates and ability to capture the scene all at once, ToF
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based cameras have generally the disadvantage of low resolution. In Leens et al. [117],
color and depth features were obtained with a low resolution from ToF camera. The
ViBe algorithm [12] is applied independently to the color and the depth features. Then,
the obtained foreground masks are then combined with logical operations and then
post processed with morphological operations. Stormer et al. [189] used a MoG model
[187], where depth and infrared features are combined to detect foreground objects in
the case of close or overlapping objects. Two independent background models are
built. Each pixel is classified as background or foreground only if the two models
matching conditions agree. But a failure of one of the models affects the final pixel
classification. In Tombari et al. [197], an algorithm for automatic graffiti detection
is presented. The algorithm compares the current intensity information with a model
of the background to detect the scene changes. Next, the depth information was used
for distinguishing between changes occurring in the space between the background
and the ToF camera (e.g. intrusion). It presented low rate of false positives, and it
can operate in a real-time manner. As the authors used a basic BS for the intensity
data, the proposed method may fail by the presence of both slow and sudden changes
in the scene’s illumination. Hu et al. [91] realized the foreground detection by using
a weighted average on the probabilities obtained from the MOG model [187]. The
different weights are updated adaptively for each output of the classifier by considering
foreground detections in the previous frames and the depth feature. Experimental
results [91] showed that the proposed approach can effectively solve the limitations of
color-based or depth-based detection.

* Depth from RGB-D Cameras: Recently, low cost RGB-D cameras such as the Mi-

crosoft’s Kinect or the Asus’s Xtion Pro are widely used to improve background mod-
eling. However, the RGB-D cameras based on structured light scanner (i.e., Microsoft
Kinect) are not usually suitable for outdoor environments, due to the range limita-
tion and errors introduced by interference with the sunlight. Several BS work using
Microsoft Kinect are found in the literature. For example, Camplani et al. [35] used
a multiple region-based classifiers in a mixture of experts fashion to improve the fi-
nal foreground detection. It is based on multiple background models that provide a
description at region and pixel level by considering the color and depth features. In
Camplani et Salgado [36], the combination of the four models (pixel-color, region-
color, pixel-depth, region-depth) was based on a weighted average to efficiently adapt
the contribution of each classifier to the final classification. Another BS algorithm
based on RGB-D camera to make the background and foreground models more robust
to effects such as camouflage and illumination changes was proposed by Spampinato
et al. [62] and Fernandez-Sanchez [183]. The authors modeled the background and
foreground scenes with a Kernel Density Estimation (KDE) [58] in a quantized x-y-
hue-saturation-depth space after a preprocessing stage for aligning color and depth
data and for filtering/filling noisy depth measurements. Experimental results in three
different indoor environments, with different lighting conditions, showed that this ap-
proach achieved an accuracy in foreground segmentation over 90% that the combina-
tion of depth data and illumination-independent color space proved to be very robust
against noise and illumination changes. More works can be seen in: [66,73,119].
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Motion features

The motion features provide temporal information and they are useful to handle dynamic
scenes, containing natural elements such as fountains, swaying trees or ocean ripples [24,
149]. The motion features are usually obtained via optical flow to deal with irrelevant motions
in the background. The majority of the optical flow algorithms are computationally slow.
Three alternative approaches are then used to introduce temporal attributes: 1) the ones based
only on the difference between consecutive frames. Then, the background model is only
computed on stationary regions of the scene, 2) optical flow (computed on all pixels) which
is used to detect moving areas. The background model is only computed in stationary areas,
and 3) optical flow is only computed on moving areas after foreground detection. In this
case, optical flow allows the algorithm to distinguish the unimportant moving areas from the
moving objects. Different approaches have been proposed to extract motion features. We
review in the following paragraphs the main existing ones.

Huang et al. [92] presented a dense optical flow for describing motion vectors. Regions
with coherent motion are then extracted as initial motion markers. Pixels not assigned to any
region are labeled uncertain ones. Finally, a watershed algorithm based on motion and color is
used to associate uncertain pixels to the nearest similar mark. Further, Markov Random Fields
(MRFs) [107] are used to formulate the foreground detection as a labeling problem. The op-
timization over the MRF model is then performed. The posterior probabilities initialized with
the ones computed with the MOG model [208] are maximized to obtain the final classification
result. Finally, regions which have the same classification label and similar colors are merged
to derive a more consistent foreground mask. Experimental results [92] on gradual illumina-
tion changes and shadows demonstrated the robustness of this method, but the computational
complexity of this technique has not been mentioned. In similar studies, Huang et al. [93]
used motion information captured through the difference of consecutive frames to model the
background in stationary areas. Using the EPPM [11], Chen et al. [45] ensured temporally-
consistent background subtraction with optical flow estimation by tracking the foreground
pixels. Here, motion information is integrated with a temporal M-smoother. A similarity
measurement is obtained directly from optical flow estimation with the assumption that the
background estimate for the same object appearing in the difference video frames should be
identical. As the direct implementation of EPPM [11] is extremely slow as optical flow es-
timation is required between any two video frames, Chen et al. [242] developed a recursive
implementation so that optical flow estimation is required only between every two succes-
sive frames. As described in previous approaches, the background model is initially obtained
using the MOG model [187]. Then, a spatial and a temporal M-smoother are employed to
obtain a spatially-temporally-consistent foreground mask. Experimental results [45] on the
ChangeDetection.net dataset [69] and SABS dataset [32] showed this algorithm outperforms
most of state-of-the-art algorithms. Using multiple features, Zhong et al. [241] proposed to
fuse texture (eLBP [206]) and motion patterns. For each pixel, its probability to be either a
background or foreground is computed from the histogram of each feature. Then, the results
are combined using a weighted average mechanism. Experimental results [241] showed that
the combination of eLBP and motion pattern outperforms the ordinary LBP in presence of
dynamic backgrounds.
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2.2 Feature selection in background modeling

Most of background subtraction methods use a uniform feature map for all pixels of the scene,
disregarding the non-uniformity of the distribution of the background properties [181]. More-
over, the importance of different features on particular regions of the image is still ignored. In
practice, however, for a complex scene comprising of several elements such as waving trees,
sky, soil and car, the most discriminant features for these elements are probably different, and
therefore a single-feature background subtraction algorithm may not be appropriate. Despite
the choice of the best features for each region is not an easy task as it requires a deep knowl-
edge of the scene, it is possible to automatically select the most relevant features, and this
process is commonly defined as feature selection [28]. Feature selection (known as subset
selection, attribute selection or variable selection) is the task of selecting a small subset of
features that is enough to predict the target labels well. Three key benefits of performing
feature selection on the data are [167]:

1. Reduced computational complexity: Feature selection helps to reduce the computa-
tional complexity of learning algorithms improving its prediction performance. Some
learning algorithms can becoming computationally intractable when there a large num-
ber of features either in the training step as in the prediction step. When we find a small
set of features that allows a good prediction of the labels, we can exclude the rest of
irrelevant features. Therefore, in the prediction step we only have to measure a small
set of features for each instance.

2. Improved accuracy: 1t is possible to improve the prediction accuracy by applying
initially a feature selection method. Many of the state-of-the-art learning algorithms
can given predictions greatly skewed by the presence of a big number of irrelevant or
weakly relevant features. In contrast, even the simple learning algorithms may yield
good performance if a a small set of good features has been previously selected.

3. Problem understanding: Normally, the key of solving an specific problem is by un-
derstanding it better. Feature selection methods can contribute to better understanding
the problem at hand by selected the most useful information from a feature set.

In the background subtraction field, the use of feature selection methods have been less
studied so far. Nevertheless, the feature selection can be used to improve the detection of the
foreground objects [149]. This is possible due to its capability to select a subset of highly
discriminant features removing the irrelevant and redundant ones. Traditionally, feature se-
lection methods can be categorized into three main groups: filter, wrapper and embedded
-based methods. Recent works have also proposed the use of ensemble-based approaches
for feature selection [23, 163]. Following this, we discuss later each of these approaches and
their main BS works.

2.2.1 Traditional approaches for feature selection

There are three general state-of-the-art approaches for feature selection: filter-based, wrapper-
based and embedded-based [128, 186]. Figure 2.4 shows a brief overview these approaches.
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Filter-based The filter-based methods were the early approaches for feature selection. The
filter-based methods evaluate the relevance of the features based on a statistical measure es-
timated directly from the data to assign a score to each feature without involving any clas-
sification algorithm [48, 127, 199]. The filter methods are generally much computationally
efficient and practical than wrapper methods (discussed later), especially for using it on high
dimensional data. Nonetheless, it tends to select subsets with a high number of features (even
all the features) and so a threshold is required for the choosing of a subset. The representa-
tion of the filter-based is shown in Figure 2.4a. A general filter-based algorithm is presented
Algorithm 1 [128].

Given a training set X = {x1,x2,...,xy} where each x; (j = 1,...,N) € R?, the algorithm
can start with one of the subsequent subsets of Sy such as Sy = {¢} or Sy = {NULL} or Sy C
X. An independent measure O evaluates each created subset S and compares it to the previous
best subset. The search iterates until a predefined stopping criterion Y is reached. Some
commonly used stopping criteria are described by Liu and Yu [128]. Lastly, the algorithm
outputs the last current best subset Sp.s as the final result. Note that by changing the search
strategies and evaluation measures used in Steps 5 and 6 in the Algorithm 1, we can design
diversified filter-based algorithms.

Algorithm 1 A generalized filter-based approach

1: Require: A training set X, a feature subset Sy, a stopping criterion Y, an independent measure ¥
2: Spest = S0

3: Qpesr = eval(Sp,9) {evaluate Sy by using an independent measure 9}

4: repeat

5: S =generate(X) {generate a subset for evaluation}

6 @ = eval(S,0) {evaluate the current subset S by 8}

7: if (> Qpey) then

8

. Ppest = @
9: Shest =S
10: end if

11: until (Y is reached)
12: Qutput: An optimal subset Sy

Wrapper-based The wrapper-based methods employ a learning algorithm as a “black
box” for selecting a set of relevant features. Commonly, in this approach a learning al-
gorithm is run over the entire training set and then measured against the testing set, or a
cross-validation method can be used. This approach tends to give superior performance than
the filter ones, but it is also more computationally expensive since we have to re-train the
learning algorithm in each step. A representation of the wrapper-based method is shown in
Figure 2.4b. The general wrapper approach (see Algorithm 2 [128]) is very similar to the
general filter one except that it uses a predefined learning algorithm A instead of an indepen-
dent measure ¥ for the subset evaluation. In a wrapper-based algorithm, for each created
subset S, it evaluates its kindness by using the learning algorithm to the data with feature sub-
set S and evaluating the quality of mined results. Nonetheless, different learning algorithms
will provide different feature selection results. Note that it is possible to propose different
wrapper-based algorithms by changing the function generate() and learning algorithms A.
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Algorithm 2 A generalized wrapper-based approach

: Require: A training set X, a feature subset Sy, a stopping criterion Y, a learning algorithm A
* Shest = S0
D Qpest = eval(Sp,A) {evaluate Sy by using a learning algorithm A}
: repeat
S = generate(X) {generate a subset for evaluation }
© = eval(S,A) {evaluate the current subset S by A}
if ((P > (pbest) then
Ppest = @
Shest =S
end if
. until (Y is reached)
: Output: An optimal subset Sp

PRI AR

—_— =

Embedded-based The embedded methods is normally used to describe selection which
is done automatically by the learning algorithm. Decision trees [155], the artificial neural
networks with pruning of input neurons [114] and L1-SVM [143] are examples of methods in
this category. The embedded-based approach interact to the learning algorithm with a lower
computational cost than the wrapper-based. An illustration of the embedded-based approach
is shown in Figure 2.4c. This approach employs the independent criteria to determine the
best subsets for a known cardinality, and then uses the learning algorithm to choose the final
best subset among the best subsets across distinct cardinality (number of elements of the set).
An embedded algorithm usually initiates with an empty set Sp by using sequential forward
selection (start with an empty set of features and add features one at a time). For the best
subset of cardinality c, it is searching all suitable subsets of cardinality ¢ + 1 adding a feature
from the leftover subsets. A subset created at cardinality ¢ + 1 is evaluated by independent
criterion ¥ and compared with the previous best subset. Next, the learning algorithm A is used
to the current best subset, and performance IT is compared with the performance of the best
subset at cardinality c. The algorithm continue looking for the best subset until S}, is better;
otherwise, it stops and return the current best subset as the final best subset. A generalized
embedded procedure is shown in Algorithm 3 [128].

2.2.2 Ensemble learning for feature selection

Ensemble learning is a powerful tool in the field of machine learning and its efficiency has
been demonstrated in several studies [125, 126, 159]. The main idea of ensemble learning
is to combine a set of models, where each of them solves the same task in order to obtain a
better global model with more robustness and the generalization ability than a single model.
In the same way as in the classification tasks, ensemble learning might be employed to im-
prove the robustness of feature selection approaches. Traditional feature selection approaches
has concentrated on finding the suitable subset of significant features to be used for learning
an inference model through classification or regression. In recent decades, a new kind of
feature selection that uses ensemble learning to select features, called ensemble for feature
selection has been introduced [3, 163, 173]. This approach extends the traditional feature se-
lection methods by looking for a set of feature subsets that will favour disagreement among
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Algorithm 3 A generalized embedded-based approach

1: Require: A training set X, a feature subset Sy, a learning algorithm A, an independent measure ¥
2: Spest = So

3: Qpest = eval(Sp, V) {evaluate Sy by using an independent measure 9}

4: Tpes = eval(Sp,A) {evaluate Sy by using a learning algorithm A}

5: (p =card(Sp) {cardinality calculation of Sy}

6: forc=(C+1:Ndo

7 fort=0:N—-cdo

8 S = Spest U{x;} {subset generation for evaluation with cardinality 7, where x; € X}

9: © = eval(S,0) {evaluation the current subset S by 9}
10: if (@ > Qpesr) then
11: Ppest = @
12: Sz ost =5
13: end if
14: 1= eval(S},,,,A) {evaluating subset S}, by A}
15: if (IT > Iy ) then
16: Shest = Shoo;
17: My =11
18: else
19: break and return S,
20: end if
21:  end for
22: end for

23: Output: An optimal subset Sp,
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Figure 2.5: Combining an ensemble of classifiers with different features for reduc-
ing classification error.
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the ensemble members. The ensemble for feature selection may increase the probability of
choosing a stable feature subset, i.e once the goal of feature selection process is fixed, the
meaningful features should not change for different samples of the data. For instance, in real
applications are usually required that the algorithms to select features are always consistent
even if new samples are added to the data. The ensemble for feature selection can also pro-
vide a better approximation to the appropriate subset or ranking of features avoiding feature
subsets which can be regarded local appropriate in the space of feature subsets. Lastly, the
ensemble for feature selection can expands the search space by aggregating the outputs of
many classifiers allowing that optimal subsets can be achieved [163]. Note that not all en-
semble methods can be considered as a feature selector. We regard that an ensemble is a
feature selector when different subsets of features are used for different base classifiers in an
ensemble. In this context, each ensemble member is associated with its own feature or fea-
ture subset, which can, for example, be selected by a particular feature selection algorithm or
randomly sampled from the original pool of features [87]. Figure 2.5 graphically shows this
concept, where each classifier is trained with different feature(s) to differentiate two classes.
The combination of the (three) classifiers provide the best decision boundary. We will discuss
in more detail each of ensemble for feature selection steps below.

Building an ensemble for feature selection algorithin

An ensemble for feature selection should be composed of mutually complementary individ-
ual classifiers which are characterized by the high diversity and accuracy. Otherwise, there
may be a risk of the increasing the computational complexity, in addition, combining similar
classifiers must not contribute much to the combined classifier under construction [215,233].
There are usually three strategies necessary for building a successful ensemble feature selec-
tion algorithm: 1) creating a set of diversified base/weak classifiers; 2) ensemble pruning;
and 3) combining classifiers.

1) Creating a set of diversified base/weak classifiers The diversity of the classifier
outputs is considered a key requirement for the great success of an ensemble algorithm [20,
234]. Whenever all base classifiers produce the same output, there is nothing to be acquired
by their combination. Therefore, it is necessary that the decisions of ensemble members are
diversified, especially when they are making error. Random subspace methods [87] and the
Boosting for feature selection [203] are two very popular strategies to generate a diverse set
of classifiers in an ensemble feature selection. Each of these approaches are described below.

* Random Subspace: The random subspace approach is be able to handle issues with
a huge number of features. It employs different feature subsets to train the ensemble
members. Random subspace method generate each classifier in the ensemble from a
randomly chosen subset of predefined features [87]. Therefore, the diversity is ensured
by providing the base classifier different views (or projections) of the data. Like such
views are generated randomly from a big feature set, it is very possible that every
base classifier gets a different prospective of the data, which takes to the discovery of
diverse and complementary structures in the data. Finally, the M classifiers are usually
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combined by simple majority voting in the final decision rule [102]. The random
subspace procedure is presented in the Algorithm 4 [243].

Algorithm 4 The random subspace algorithm

1: Require: Classifier training procedure, training set X, subspace dimension p*, number of iterations
M
k<1
repeat
Si < SelectRandomSubspace(X,p*)
Train k-th classifiers on Sy
k+— k+1
until £ > M
Output: Combine outputs of M trained base classifiers usually according the Eq. (2.2).

A ol

* Boosting for feature selection: Boosting refers to a set of algorithms that allow to
convert weak learners to strong ones. The AdaBoost (Adaptive Boosting) is a pop-
ular implementation of boosting proposed for the first time by Freund and Schapire
(1996) [63]. It works by repeatedly running a weak learner on various distributed
training set, then, the weak learning are combined into a single strong classifier. The
aim is to find a final classifier with a low prediction error rate. A few years later,
the AdaBoost version to select a number of relevant features from a high number of
potential features was proposed in [129,203, 204]. The AdaBoost for feature selec-
tion is a simple modification of the standard AdaBoost procedure: the weak learner is
constrained so that each weak classifier returned can depend on only a single feature.
When the classifiers are combined, a much better performance can be achieved than
what can be achieved by a single classifier. The key idea behind this algorithm is con-
centrate on the samples which are harder to classify, increasing their representation in
successive training sets. In the AdaBoost for feature selection, M features and weak
classifiers are chosen to compose the final strong classifier over a number of M rounds.
In each of the iterations, the space of all possible features is searched extensively to
find the optimal weak classifier with the smaller weighted classification error. The er-
ror is then employed to update the weights such that the wrongly classified samples get
weights increased. The final strong classifier is a weighted linear combination of all M
selected weak classifiers. Details of the AdaBoost for feature selection is presented in
Algorithm 5 [203,204]. In addition to AdaBoost, some others boosting variants, such
as RealBoost [149] and XGBoost [46] have also been proposed for feature selection.

2) Ensemble pruning An important issue in an ensemble method is to decide how many
base classifiers should be used. Ensemble pruning, also known as ensemble selection (or
selective ensemble) aims to select a subset of individual base classifiers to form the whole
ensemble. Many ensemble algorithms do not include this additional intermediate phase into
prior to combination of the base classifiers. Nonetheless, some authors have demonstrated
both theoretical and empirical that ensemble selection can improve the generalization perfor-
mance of ensemble, therefore, the ensemble selection phase may reach better performance
than the original ensemble [13, 136]. Furthermore, a great number of base classifiers in an
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Algorithm 5 The AdaBoost for feature selection

1: Require: Training set (x1,y1),..., (xn,yn) Where x; € X, y; € Y = 0,1 for negative and positive
examples respectively, number of iterations M
2 k1
3: Initialize weights wy ; = lev 2Lz for y; = 0,1 respectively, where b and [ are the number of negative
ans positive examples respectively.
4: repeat
: Normalize the weights wy ; < ZNWU so that wy is a probability distribution.

j=1Wk,j

6:  For each, pj, train a classifier ¥; which is restricted to using a single feature. The error is
evaluated with respect to wy, errorj =Y, w; | W;(x;) —yi |.

7: Choose the classifier ¥y, with the lowest errory

8:  Update the weights: wyy1; = wkyiv,ifg"

9: where e; = 0 if example x; is classified correctly, e; = 1 otherwise, and v, = %

10: k< k+1

11: until k > M
12: Output: The strong classifier is:

H(x) = {1 if ):y:l BrPi(x) > %22/1:1 B

2.1
0 otherwise. @1

13: where By = log %

ensemble demand large memory and computational overhead. Consequently, this will re-
sult in an increase of the training cost, storage demands, and prediction time. According to
Rokach and Maimon [162], there are four factors that may determine the size of an ensemble:
1) suitable number of base classifier should be chosen to achieve the desired accuracy in an
ensemble. A study conducted by Hansen and Salamon [80] showed that ten classifiers are
usually sufficient to reduce the error rate; 2) the size limit of ensemble should be predefined
to preventing from increasing computational cost and the decreasing comprehensibility be-
tween the base classifiers; 3) the nature of the classification problem can be responsible by
the number of base classifiers in an ensemble; and 4) the quantity of processors available for
parallel learning can also be used as parameter to define the number of base classifiers in an
ensemble. There are three approaches for determining the ensemble size [161, 162]:

* Pre-selection of the ensemble size: In this category, the user can define the ensemble
size by “number of iterations”, (such as in the Random Subspace, Bagging, etc.) or by
the nature of the classification problem (such as in the Error-Correcting Output Coding
(ECOC) [110D).

* Selection of the ensemble size while training: The algorithms belonging to this cate-
gory attempt to define the best ensemble size during the training. Normally, while new
classifiers are introduced to the ensemble, these algorithms verify if the contribution
of the last classifier to the ensemble performance is still meaningful. Otherwise, the
ensemble algorithm stops. These algorithms often also have a controlling parameter
that limits the size of ensemble as in the previous category.

* Pruning-post selection of the ensemble size: This category allows the ensemble grow
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freely and thereafter prune the ensemble to obtain small and efficient ones. Post se-
lection of the ensemble typically uses performance metrics, such as accuracy, cross
entropy, mean, precision, etc. This approach can be separated into two categories:
pre-combining and post-combining approaches. Pre-combining pruning is realized
before combining the base classifiers whereas in post-combining, the base classifiers
are eliminated based on their contribution with others.

3) Combining classifiers The last stage for any ensemble feature selection algorithm is
the combination of the outputs of several base classifiers. There different methods to com-
bine classifiers, however the scheme for combining which is going to be utilized, in part,
depends on the type of classifiers used as ensemble member. For instance, the majority
voting is typically used for classifiers that give discrete-valued label outputs. Nonetheless,
there is a variety of scheme for combining classifiers that give continuous outputs, such as
arithmetic (sum, product, mean, etc.), voting-based methods, etc. A detailed review of the
different kinds of combiners can be found in [112, 161,243]. In this thesis, only some of the
most common methods for combining classifiers will be explained. Given the output of each
classifier k is a i-long vector gy 1,...,qk,. The value g ; corresponds to the support that the
sample x belongs to the class j according to the classifier k. For simplicity, it is also defined
that ):;‘:1 qr,j = 1. If we are dealing with a crisp classifier k, which attributes the sample x
to a determined class /, therefore it can still be transformed to i-long vector g 1, ...,qx,; such
that Gk, = 1 and qk,j = 0,vj 75 [[161].

* Majority voting: Majority voting is a simple and most intuitive method for combining
classifier outputs. A comprehensive analysis of the majority voting approach can be
found in [112]. Basically, the combining scheme classify an unlabeled sample by
counts the votes for each class over the input classifiers and choose the majority class.
Mathematically, majority voting can be expressed as follows:

M
H(x) = arg 01;12261); ; I(hi(x), o) (2.2)
where hy(x) is the classification of the k-th classifier and I(4, ®) is an indicator function
defined as:
1 ifh=w
I(h,m) = .
0 ifh#®

o Weighted majority voting: This approach consists in combining the base classifiers
assigning weights for each of them. The more competent classifiers will have great-
est power in the final decision. Normally, the classifiers’ weight can be determined
either upon preliminary information or based on their performance for a certain vali-
dation set. More details on weighted majority voting can also be found in [124]. In
mathematical terms, the weighted voting can be given as:

M=

H(x) = sign( ) Bi(hi(x), o)) (2.3)

l

I
-
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where [3; is the weight of each classifiers.

* Bayesian combination: In the Bayesian combination approach the classifiers’ weight
is a posterior probability of the classifier given the training set [34].

M
H(x) = argmax Y P(W;|X)Py, (Y = oy |x) (2.4)
Y i=1
where P(¥;|X) indicates the probability that the classifier ¥; is correct given the train-
ing set X. The estimation of P(\¥;|X) depends on the classifier’s representation.

¢ Nawe bayes: Considering that the classifiers are mutually independent given a class
label (conditional independence), the Bayes’ rule can be used for combining various
classifiers.

H(x)= argmax P(Y =0, [ ———L2
w;eY ’ =1 P(Y =0))
P(Y=0;)>0

2.5)

2.2.3 Feature selection in background subtraction

Surprisingly, a little BS works based on feature selection have been done to date. Some works
based on the traditional feature selection methods are presented below. For instance, Li et
al. [118] presented one of the first works based on this category. The authors introduced a
novel method to detect changes based into static and dynamic pixels in accordance with inter
frame changes. The Bayes decision theory is used for classification of a certain pixel in static
or dynamic class. The static pixels belong to stationary objects, and they are described by
color and gradient statistics whereas dynamic pixels belong to non-stationary, and the are rep-
resented by color co-occurrence statistics. According to Li et al. [118], the proposed method
can be affected by the problem of intermittent object motion, since the statistics are associated
to each individual pixel without considering its neighborhood. Furthermore, the method can
mistakenly learn the features of non-stationary objects as stationary if crowded foreground
objects are frequently showed in the scenes. In Javed et al. [98], a simple dynamic feature se-
lection scheme for background scenes is proposed. An Online Robust Principal Component
Analysis (OR-PCA) with dynamic feature selection provides a framework to select multiple
features frame by frame. The means and variances are used as a criterion for selecting the
best features. The authors mentioned that the potential problem of the proposed approach is
the time computation, since features are extracted from every incoming video block. Most
recently, Braham and Van Droogenbroeck [28] presented a generic feature selection method
for background subtraction. The authors proposed a strategy for selecting the best features by
comparing the current input feature values with local background ones. Initially, local fea-
ture background models are created from a set of features. Then it checks, if the each model
predicts the correct class of input samples. Finally, the best feature/threshold combination is
selected by a performance metric computed from a confusion matrix. Experiments conducted
on the ViBe algorithm [12] showed that the proposed feature selection method improves the
segmentation results.
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‘ Authors/Date Strategy ‘ Level ‘ Features
‘ Traditional methods
Lietal. (2004) [118] Bayes decision rule Pixel RGB, gradient, and color co-occurrence
Javed et al. (2015) [98] Means and variances criterion Region | RGB, gray, LBP, gradients, and HOG
Braham and Van Droogenbroeck (2015) [28] | Performance metric Pixel RGB, HSV, and YCbCr
Ensemble-based
Grabner and Bischof (2006) [70,72] AdaBoost Region | Haar-like features, orientation histograms and LBP
Parag et al. (2006) [149] RealBoost Pixel RGB, gray, and gradients
Grabner et al. (2008) [71] AdaBoost Region | Haar-like features
Klare and Sarkar (2009) [109] Ensemble of Mixture of Gaussians | Pixel RGB, gradients, and Haar-like features.

Table 2.3: The main BS works based on features selection approaches.

In the last decades, some papers have been published addressing the ensemble for fea-
ture selection for the BS context. Most ensemble for feature selection algorithms for BS use
widely the boosting and its variants. In Grabner and Bischof [70, 72], a feature selection
framework using the online AdaBoost [64] is introduced for the BS task. In the learning step
a weak classifier is created for all image patches supposing that all input images are positive
samples. For this purpose, the gray value of each pixel is given as uniformly distributed, the
Haar features are computed by standard statistics the parameters of the negative distribution
and, the orientation histogram features consists of equally distributed orientations. After-
wards, the new input images are analyzed, and the background model is updated. According
to the authors, this method is robust to illumination changes and dynamic backgrounds since
the classifiers are consistently updated. However, this approach has many restrictions con-
cerning robust adaptiveness. To overcome this limitation, Grabner et al. [71] introduced a
controllable time dependency into online boosting. The algorithm used an exponential for-
getting of the samples over time and a simple sum-rule is used in the method to adjusting
its temporal behavior to the underlying scene by using a control system that regulates the
model parameters (e.g. errors, and importance). Parag et al. [149] proposed a generic model
that is capable of automatically selecting the features that obtain the best invariance to the
background changes while maintaining a high detection rate for the foreground detection. In
this study, the authors proposed the use of a RealBoost algorithm [168]. Unlike AdaBoost al-
gorithm which combines weak hypotheses having outputs in {—1,+1}, RealBoost algorithm
computes real-valued weak classifiers given real numbered feature values, and generates a
linear combination of these weak classifiers that minimizes the training error. To generate
the background model, Parag et al. [149] used the Kernel Density estimation (KDE) [58] into
RealBoost algorithm to select the most appropriate features for each pixel. The authors used
9 types of features, such as three color values R, G, B and spatial derivatives for each of
these color channels in both x and y directions for each pixel of a color image. According
to authors, once trained, the algorithm is able to adequately detect the moving objects unless
there are some structural changes in the scene. In Klare and Sarkar [109], an ensemble of
13 Mixture of Gaussians (MoG) classifiers is presented. Each classifier uses exclusively one
of the 13 (e.g. RGB, gradients, and Haar-like) features from the feature set, then they are
fused using equally weighted hypotheses, resulting in a single hypothesis. The experimental
results showed an evident improvement compared to the original MoG algorithm that uses
only color intensities. The main BS works based on feature selection reported here as well as
its principal differences are shown in Table 2.3.
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2.3 Conclusion

As discussed in this chapter, numerous approaches for background subtraction have been
proposed until the present date. However, there still exist open research questions to be
investigated, as for example no traditional algorithm today still seem to be able to simul-
taneously address all the key challenges of illumination variation, dynamic camera motion,
cluttered background and occlusion. We believe that an way of solving this issue is by the
systematic investigation concerning the role and importance of features within background
modeling and foreground detection. In the next chapters of this thesis, we tackle the prob-
lem by starting proposing a new descriptor that produces a short histogram while preserving
robustness to illumination changes. Moreover, this novel descriptor is less sensitive to noisy
pixels too. Furthermore, we present a feature selection approach to select automatically the
best features for different pixels/regions of the image, and the more relevant ones are used for
foreground segmentation.
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Chapter 3

A novel texture descriptor for
background subtraction in videos

In this chapter, we propose an eXtended Center-Symmetric Local Binary Pattern (XCS-LBP)
descriptor for background modeling and subtraction in videos. By combining the strengths
of the ordinary LBP and the similar Center-Symmetric (CS) ones, it is robust to illumination
changes and noise, and produces short histograms, too. The experiments conducted on both
synthetic and real videos (from the Background Models Challenge) of outdoor urban scenes
under various conditions showed that the proposed XCS-LBP outperforms its direct com-
petitors for the background subtraction task. The work presented here was published at the
International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications (VISAPP), Berlin, Germany (oral presentation) [176]. The reader can find
the related source code on Matlab at'.

3.1 Motivation

Recently, a variety of local texture descriptors have been attracted great attention for back-
ground modeling, especially the Local Binary Pattern (LBP) because it is simple and fast to
compute. Figure 3.1 (fop) shows how a (center) pixel is encoded by a series of bits, accord-
ingly to the relative gray levels of its circular neighboring pixels. It shows great invariance
to monotonic illumination changes, do not require many parameters to be set, and have a
high discriminative power. However, the ordinary LBP descriptor in [146] is not efficient for
background modeling because of its sensitivity to noise, see Figure 3.1 (bottom) where a little
change of the central value greatly affects the resulting code.

The LBP feature of an image consists in building a histogram based on the codes of all
the pixels within the image. As it only adopts first-order gradient information between the

Uhttps://fr.mathworks.com/matlabcentral/fileexchange/49815-xcs-1bp-descriptor-for-background-
modeling-and-subtraction-in-videos
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Figure 3.1: Examples of LBP encoding

center pixel and its neighbors, see [225], the produced histogram can be rather long. We
have mentioned in the literature review (Chapter 2) that the Center-Symmetric LBP variants
have been proposed to address this problem. It generates more compact binary patterns by
working only with the center-symmetric pairs of pixels. In this chapter, we propose a Center-
Symmetric LBP variant by introducing a new neighboring pixels comparison strategy that
allows the descriptor to be less sensitive to noisy pixels and to produce a short histogram,
while preserving robustness to illumination changes and slightly gaining in time consumption
when compared to its direct competitors.

The rest of this chapter is organized as follows. The new descriptor that we propose is
described in Section 3.2. Comparative results obtained on both synthetic and real videos are
given in Section 3.3. Finally, the conclusion drawn at the last section closed the Chapter 3.

3.2 Proposed XCS-LBP descriptor

The ordinary LBP descriptor introduced by [146] has proved to be a powerful local image
descriptor. It labels the pixels of an image block by thresholding the neighborhood of each
pixel with the center value and considering the result as a binary number. The LBP encodes
local primitives such as curved edges, spots, flat areas, etc. In the context of BS, both the
current image and the image representing the background model are encoded such that they
become a texture-based representation of the scene.

Let a pixel at a certain location, considered as the center pixel ¢ = (x.,y.) of a local neigh-
borhood composed of P equally spaced pixels on a circle of radius R. The LBP descriptor
applied to ¢ can be expressed as:

P—-1 )
LBPpg(c) =Y s(gi—gc) 2 (3.1)
=0

where g. is the gray value of the center pixel ¢ and g; is the gray value of each neighboring
pixel, and s is a thresholding function defined as:

o) = {1 if x>0 32)

0 otherwise.



3.2. Proposed XCS-LBP descriptor 41

1
1
: g s(g0 —90)2%+
1 L4
v /' s(gr —ge)2'+
» s(g2 - 9¢)2%+
----- > QP <« P |@w
4
’1 A \\ s(g4 —gc)2" +
o H ‘\ s(g5 —gc)2%+
g : S s(g6 — 9c)28+
i
1

/* s(g7 —gc)2’

Figure 3.2: The LBP descriptor.

From (3.1), it is easy to show that the number of binary terms to be summed is ):fz_ol 2 =
2P — 1, so that the length of the resulting histogram (including the bin-0 location) is 2”. An
illustration of the LBP descriptor t is shown in Figure 3.2. The underlying idea of CS-LBP
in [86] is to compare the gray levels of pairs of pixels in centered symmetric directions instead
of comparing the central pixel to its neighbors. Assuming an even number P of neighboring
pixels, the CS-LBP descriptor is given by:

(P/2)-1 ,
CS—LBPpr(c)= Y. s(gi—8ir(p/2))2 (3.3)
i=0
where g; and g;, (p2) are the gray values of center-symmetric pairs of pixels, and s is the
thresholding function defined as:

o [1 T o)
=30 otherwise '

where T is a user-defined threshold. Since the gray levels are normalized in [0, 1], the authors
recommend to use of a small value. We will set it to 0.01 in the experiments presented in
Section 3.3. By construction, the length of the histogram resulting from the CS-LBP descrip-
tor falls down to 1+ Zf:/é_l 21 = 2P/2_ For BS, the CS-LBP encodes the two images to be
compared as texture-based images with a lower quantization that slightly favors robustness.

We propose to extend the CS-LBP descriptor by comparing the gray values of pairs of
center-symmetric pixels so that the produced histogram are short as well, but considering the
central pixel also. This combination makes the resulting descriptor less sensitive to noise for
the BS application. The new LBP variant, called XCS-LBP (eXtended CS-LBP), expresses
as:
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Figure 3.3: The CS-LBP descriptor.
(P/2)-1 ,
XCS—LBPpg(c) = Y. s(gi1(i,c)+g2(i,c))2' (3.5)
i=0

where the threshold function s, which is used to determine the types of local pattern transition,
is defined as a characteristic function:

s +x) = {1 if (v +x2) 20 (3.6)

0 otherwise.

and where g; (i,¢) and g (i,c) are defined by:

{ 81(6,¢) = (8 — gir(p/2)) + & 3.7

g2(i,¢) = (8i — &) (8i+(p/2) — 8¢c)

with the same notation conventions than in equations (3.1) and (3.3). It is worth noting that
the threshold function does not need a user-defined threshold value, contrary to CS-LBP.

The computation of the ordinary LBP for a neighborhood of size P = 8 is illustrated in
Figure 3.2 and the computation of the proposed XCS-LBP is shown in Figure 3.4 in order to
make the comparison more understandable for the reader. Note the respective code lengths
of 8 and 4 that lead to respective image compressions.

The proposed XCS-LBP produces a shorter histogram than LBP, as short as CS-LBP, but
it extracts more image details than CS-LBP because (i) it takes into account the gray value of
the central pixel, and (ii) it relies on a new strategy for neighboring pixels comparison. Since
it is also more robust to noisy images than both LBP and CS-LBP, the proposed descriptor
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Figure 3.4: The XCS-LBP descriptor.

appears to more efficient for background modeling and subtraction. The main characteris-
tics of different LBP variants, including those we will compare our new descriptor to, are
summarized in Table 3.1.

3.3 Experimental results and discussions

Several experiments were conducted to illustrate both the qualitative and quantitative perfor-
mances of the proposed descriptor XCS-LBP. We use datasets from the BMC (Background
Models Challenge) which comprises synthetic and real videos of outdoor situations (urban
scenes) acquired with a static camera, under different weather variations such as: wind, sun
or rain [201].

3.3.1 Comparing direct competitor descriptors

We compare XCS-LBP with three other texture descriptors among the reviewed ones, namely:
ordinary LBP, CS-LBP, and CS-LDP.

A description of the ordinary LBP as well as CS-LBP [86] are presented in the Sec-
tion 3.2.

e CS-LDP [225]: The Center-Symmetric Local Derivative Pattern descriptor (CS-LDP)
proposed by Xue et al. [225] is an effective variant to CS-LBP. Like our XCS-LBP,
it extracts more detailed local information while preserving the same feature lengths
than the CS-LBP. This descriptor is given by:

(P/2)—1
CS—LDPpg (xc,ye) = Y, s[[(gp—8c) (8= get(p/2)] 2" (3.8)
p=0
1 ifx-y<0
K = - 3.9
,x2) {0 otherwise. (3-9)

The CS-LDP descriptor is illustrated in Figure 3.5.
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Table 3.1: Comparison of LBP and variants.

Robust to Uses Uses Histogram
Descriptor RObQSt to illumination color temporal | size with 8
hotse changes |information | information | neighbors
[Ordinary LBP [146] [ ° 256
Modified LBP [84] ° ° 256
CS-LBP [86] ° 16
STLBP [175] o ° 256
eLBP [206] ° 256
Adaptive eLBP [207] ° 256
SCS-LBP [226] ° ° 16
SILTP [120] ° 256
CS-LDP [225] ° 16
SCBP [225] ° 64
OCLBP [116] ° 1536
Uniform LBP [231] ° 59
SALBP [144] ° 128
SLBP-AM [229] ° ° 256
LBSP [22] ° ° 256
CS-SILTP [218] ° ° 16
[XCS-LBP [176] (in this thesis)]] ° ° 16

We choose these the CS-LBP and CS-LDP descriptors for fair comparison purpose. In-
deed, among those who rely on the same construction principle, i.e. Center Symmetric (CS),
they are the only ones that use neither color nor temporal information, see Table 3.1. For all
descriptors, the neighborhood size is empirically selected so that P =8 and R = 1.

3.3.2 The BS methods used in this work

We evaluate the performance with two popular background subtraction methods: Adaptive
Background Learning (ABL) and Gaussian Mixture Models (GMM). A summary of these
approaches are presented below:

¢ Adaptive Background Learning (ABL): This method consists to compute the ab-
solute difference between the current frame and the static representation of the back-
ground model. Initially, the background is modeled using an average, a median or an
histogram analysis over time then it is updated via running average. Once the model
is computed, pixels of the current image are classified as foreground by thresholding
the difference between the background image and the current frame [24].

¢ Gaussian Mixture Models (GMM): In this algorithm, each pixel is represented by
a sum of weighted Gaussian distributions defined for a given color space. These dis-
tributions are generally updated using an online expectation-minimization algorithm.
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Figure 3.5: The CS-LBP descriptor.

Rotary (fmme #1140) — scenes 122, 222, 322, 422 and 522

®
Figure 3.6: Background subtraction results using the ABL method on synthetic
scenes — (a) original frame, (b) ground truth, (c) LBP, (d) CS-LBP, (e) CS-LDP
and (f) proposed XCS-LBP.

More precisely, as a new image is processed, the GMM parameters for each pixel are
updated to explain the colors variations over time [24].
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Street (frame #301) — scenes 112, 212, 312, 412 and 512

(a)

Figure 3.7: Background subtraction results using the ABL method on synthetic
scenes — (a) original frame, (b) ground truth, (c) LBP, (d) CS-LBP, (¢) CS-LDP
and (f) proposed XCS-LBP.

First, we present results of background subtraction on individual frames of five different
scenes from two video sequences: Rotary (frame #1140) and Street (frame #301). Figures
3.6, 3.7, 3.8 and 3.9 show the foreground detection results using the ABL and the GMM
methods, respectively. Our descriptor clearly appears to be less sensitive to the background
subtraction method, whereas the three others are very useless in detecting the moving objects
when using the ABL method, unless a strong post-processing procedure.

Next, we give quantitative results on the same data. We use three classical measures
based on the numbers of true positive 7 P pixels (correctly detected foreground pixels), false
positive F P pixels (background pixels detected as foreground ones), false negative pixels FN
(foreground pixels detected as background ones), and true negative pixels (correctly detected
background pixels):

Recall = re
= TP LN
TP
e Precision = ———, and
TP+FP

Recall x Precision

o F—score =2 X —.
Recall + Precision
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Rotary (frame #1 140) —scenes 122, 222, 322, 422 and 522

(b)

(©

©

®
Figure 3.8: Background subtraction results using the GMM method on synthetic
scenes — (a) original frame, (b) ground truth, (c) LBP, (d) CS-LBP, (e) CS-LDP and
(f) proposed XCS-LBP.

Tables 3.3 and 3.4 shows the scores of the different descriptors obtained on the Rotary and
Street entire scenes when using the ABL and the GMM method, respectively. Best scores are
in bold. The proposed XCS-LBP gives the highest value for each score on almost all scenes,
except for scene Street-[112, 312,412], for which CS-LBP and CS-LDP has achieved the best
Recall using ABL, and scene Street-112 for which LBP gives the best Recall using GMM.

Note that both CS-LBP and CS-LDP gives lower scores (Precision and F-score) than LBP
for some scenes, while our XCS-LBP descriptor takes always the advantage on the others, as
shown by the average scores reported at the bottom of each Table.

Finally, we evaluate the proposed descriptor on nine long duration (about one hour) real
outdoor video scenes from BMC. Each video sequence shows different challenging situations
of real world: moving trees, casted shadows, the presence of a continuous car flow near
to the surveillance zone, general climatic conditions (sunny, rainy and snowy conditions),
fast light changes and the presence of big objects. The scores obtained using the ABL and
the GMM methods are given in Table 3.5 and 3.6, respectively. Once again, our descriptor
achieved the best scores on almost all the scenes, even when using the simple ABL method
whereas it dramatically affect the other descriptors. The average scores reported at the bottom
of each Table show that our XCS-LBP outperforms the ordinary LBP and both the similar
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Table 3.2: Elapsed CPU times (averaged on the nine real-world videos of the BMC)
over LBP times

Descriptor | CS-LBP | CS-LDP | XCS-LBP |

ABL 1.10 1.12 1.09
GMM 1.06 1.07 1.05

Street (frame #301) — scenes 112, 212, 312, 412 and 512

(a)

(b)

_ (@)

(d)

Figure 3.9: Background subtraction results using the GMM method on synthetic
scenes — (a) original frame, (b) ground truth, (c) LBP, (d) CS-LBP, (e) CS-LDP and
(f) proposed XCS-LBP.

construction-based CS-LBP and CS-LDP descriptors, the latter one being less performant
than the LBP using GMM method. We use Matlab R2013a on a MacBook Pro (OS X 10.9.4)
equipped with 2.2 GHz Intel Core i7 and 8 GB - 1333 MHz DDR3.

We collected the elapsed CPU times needed to segment the foregrounds using the ABL
and the GMM methods, averaged over the nine real videos of BMC. Since the reference
is the (fastest) LBP descriptor, the times are divided by LBP ones. Table 3.2 reports the
resulting ratios for the compared CS descriptors. Our XCS-LBP shows slightly better time
performance than both CS-LBP and CS-LDP.
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Table 3.3: Performance of the different descriptors on synthetic videos of the BMC
using the ABL method.
‘ Scenes ‘ Descriptor ‘ Recall ‘ Precision ‘ F-score ‘

LBP 0.682 | 0.564 0.618
Rotary |CS-LBP 0.832 | 0.520 0.640
122 CS-LDP 0.809 | 0.523 0.635
XCS-LBP | 0.850 | 0.784 0.816
LBP 0.611 | 0.505 0.553
Rotary |CS-LBP 0.673 | 0.504 0.577
222 CS-LDP 0.753 | 0.510 0.608
XCS-LBP | 0.852 | 0.782 0.815
LBP 0.603 | 0.505 0.550
Rotary |CS-LBP 0.647 | 0.504 0.566
322 CS-LDP 0.733 | 0.507 0.600
XCS-LBP | 0.829 | 0.793 0.810
LBP 0.573 | 0.502 0.535
Rotary |CS-LBP 0.609 | 0.503 0.550
422 CS-LDP 0.733 | 0.508 0.600
XCS-LBP | 0.751 | 0.780 0.765
LBP 0.610 | 0.505 0.553
Rotary |CS-LBP 0.663 | 0.504 0.573
522 CS-LDP 0.745 | 0.509 0.605
XCS-LBP | 0.852 | 0.732 0.787

LBP 0.702 | 0.530 0.604
CS-LBP 0.839 | 0512 0.636
CS-LDP 0.826 | 0.525 0.642
XCS-LBP | 0.803 | 0.793 0.798
LBP 0.636 | 0.504 0.562
CS-LBP 0.716 | 0.503 0.591
CS-LDP 0.798 | 0.513 0.624
XCS-LBP | 0.808 | 0.790 0.799
LBP 0.627 | 0.504 0.558
CS-LBP 0.699 | 0.503 0.585
CS-LDP 0.801 | 0.511 0.624
XCS-LBP | 0.800 | 0.796 0.798
LBP 0.580 | 0.501 0.558
CS-LBP 0.599 | 0.501 0.546
CS-LDP 0.754 | 0.507 0.607
XCS-LBP | 0.748 | 0.781 0.764
LBP 0.628 | 0.503 0.559
CS-LBP 0.677 | 0.503 0.577
CS-LDP 0.771 | 0.508 0.612
XCS-LBP | 0.800 | 0.575 0.669

LBP 0.625 | 0.512 0.565
Average |CS-LBP 0.695 | 0.506 0.584

scores | CS-LDP 0.772 | 0.512 0.616
XCS-LBP | 0.809 | 0.761 0.782

Street 112

Street 212

Street 312

Street 412

Street 512
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Table 3.4: Performance of the different descriptors on synthetic videos of the BMC
using the GMM method.
[Scenes  [Descriptor | Recall | Precision | F-score |

LBP 0.817 | 0.701 0.755
Rotary |CS-LBP 0.830 | 0.705 0.763
122 CS-LDP 0.819 | 0.677 0.741
XCS-LBP | 0.831 | 0.800 0.815
LBP 0.636 | 0.653 0.644
Rotary |CS-LBP 0.741 | 0.687 0.713
222 CS-LDP 0.651 | 0.616 0.633
XCS-LBP | 0.825 | 0.794 0.809
LBP 0.661 | 0.646 0.653
Rotary |CS-LBP 0.741 | 0.656 0.696
322 CS-LDP 0.674 | 0.613 0.642
XCS-LBP | 0.821 | 0.767 0.793
LBP 0.611 | 0.585 0.598
Rotary |CS-LBP 0.673 | 0.575 0.620
422 CS-LDP 0.611 | 0.548 0.578
XCS-LBP | 0.748 | 0.702 0.724
LBP 0.636 | 0.627 0.631
Rotary |CS-LBP 0.743 | 0.672 0.706
522 CS-LDP 0.605 | 0.650 0.627
XCS-LBP | 0.825 | 0.760 0.791

LBP 0.940 | 0.674 0.785
CS-LBP 0.924 | 0.675 0.780

Street 1121 s 1 pp 0938 | 0.656 | 0772
XCS-LBP | 0.844 | 0755 | 0.808
LBP 0676 | 0.642 | 0.659
Gireet 212 CS-LBP | 0752 | 0,658 | 0.702
CS-LDP | 0.694 | 0577 | 0.630
XCS-LBP | 0.833 | 0.760 | 0.795
LBP 0684 | 0.633 | 0.657
Greet 72| CS-LBP | 0742 0.627 | 0.680
CS-LDP | 0.729 | 0581 | 0.647
XCS-LBP | 0.821| 0713 | 0.763
LBP 0619 | 0566 | 0.591
Gooerajs|CSTBP | 0705 | 0567 | 0628
CS-LDP | 0.659 | 0539 | 0.593
XCS-LBP | 0.751| 0.619 | 0.679
LBP 0.662 | 0.566 | 0.610
oo sgo|CSLBP | 0727|0568 | 0638

CS-LDP 0.689 | 0.551 0.612
XCS-LBP | 0.828 | 0.629 0.715

LBP 0.694 | 0.629 0.658
Average |CS-LBP 0.758 | 0.639 0.693

scores |CS-LDP 0.707 | 0.601 0.648
XCS-LBP | 0.813 | 0.730 0.769
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Table 3.5: Performance of the different descriptors on real-world videos of the BMC

using the ABL method
| Videos |Descriptor [Recall | Precision | F-score |
Boring |LBP 0.555 0.512 0.533

parking, | CS-LBP 0.663 | 0.539 0.595
active | CS-LDP 0.712 | 0.556 0.624
bkbg | XCS-LBP | 0.673 | 0.628 0.650

LBP 0.456 | 0.490 0.473
Big CS-LBP 0.664 | 0.583 0.621

trucks | CS-LDP 0.675 | 0.673 0.674

XCS-LBP | 0.623 | 0.788 0.696

LBP 0.500 | 0.500 0.500

Wandering CS-LBP 0.632 | 0.525 0.573
students | CS-LDP 0.691 | 0.566 0.622

XCS-LBP | 0.854 | 0.714 0.778

LBP 0.562 | 0.515 0.537

Rabbit in | CS-LBP 0.657 | 0.515 0.577

the night | CS-LDP 0.742 | 0.561 0.639

XCS-LBP | 0.818 | 0.706 0.758

LBP 0.568 | 0.516 0.541
Snowy | CS-LBP 0.640 | 0.508 0.567

christmas | CS-LDP 0.684 | 0.513 0.586

XCS-LBP | 0.719 | 0.557 0.628

LBP 0.542 | 0.511 0.526

Beware of| CS-LBP 0.608 | 0.556 0.581

the trains | CS-LDP 0.711 | 0.618 0.662

XCS-LBP | 0.780 | 0.674 0.723

LBP 0.524 | 0.505 0.514
Train in | CS-LBP 0.636 | 0.640 0.638

the tunnel | CS-LDP 0.668 | 0.659 0.663

XCS-LBP | 0.655 | 0.688 0.672

Traffic |LBP 0.491 | 0.497 0.494

during |CS-LBP 0.597 | 0.528 0.560

windy | CS-LDP 0.589 | 0.515 0.550
day XCS-LBP | 0.572 | 0.529 0.550

LBP 0.536 | 0.508 0.521

One rainy | CS-LBP 0.563 | 0.504 0.532
hour |CS-LDP 0.658 | 0.520 0.581

XCS-LBP | 0.694 | 0.649 0.671

LBP 0.526 | 0.506 0.515
Average |CS-LBP 0.629 | 0.544 0.583
scores | CS-LDP 0.681 0.576 0.558
XCS-LBP | 0.710 | 0.659 0.681
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Table 3.6: Performance of the different descriptors on real-world videos of the BMC

using the GMM method
| Videos | Descriptor | Recall | Precision | F-score |
Boring | LBP 0.684 0.587 0.632

parking, | CS-LBP 0.716 0.593 0.649
active CS-LDP 0.674 0.579 0/623
bkbg XCS-LBP | 0.680 0.607 0.641
LBP 0.695 0.778 0.734
Big CS-LBP 0.698 0.773 0.733
trucks CS-LDP 0.649 0.758 0.699
XCS-LBP | 0.630 0.792 0.702
LBP 0.704 0.667 0.685
Wandering| CS-LBP 0.700 0.640 0.668
students | CS-LDP 0.654 0.634 0.643
XCS-LBP | 0.826 0.742 0.782
LBP 0.767 0.659 0.709
Rabbit in | CS-LBP 0.826 0.626 0.712
the night | CS-LDP 0.706 0.619 0.659
XCS-LBP | 0.805 0.684 0.740
LBP 0.750 0.519 0.614
Snowy | CS-LBP 0.734 0.516 0.606
christmas | CS-LDP 0.625 0.510 0.562
XCS-LBP | 0.726 0.538 0.618
LBP 0.657 0.685 0.671
Beware of | CS-LBP 0.699 0.664 0.681
the trains | CS-LDP 0.641 0.642 0.642
XCS-LBP | 0.759 0.731 0.744
LBP 0.724 0.711 0.717
Train in | CS-LBP 0.710 0.675 0.692
the tunnel | CS-LDP 0.679 0.697 0.688
XCS-LBP | 0.695 0.680 0.687
Traffic | LBP 0.523 0.509 0.516
during | CS-LBP 0.553 0.520 0.536
windy CS-LDP 0.527 0.510 0.518
day XCS-LBP | 0.532 0.518 0.525
LBP 0.867 0.574 0.691
One rainy | CS-LBP 0.774 0.589 0.669
hour CS-LDP 0.797 0.556 0.655
XCS-LBP | 0.761 0.628 0.688

LBP 0.708 0.632 0.663
Average | CS-LBP 0.712 0.622 0.661

scores CS-LDP 0.661 0.612 0.632
XCS-LBP | 0.713 0.658 0.681
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3.4 Conclusion

In summary, a new texture descriptor for background modeling is proposed. It combines the
strengths of the ordinary Local Binary Pattern (LBP) and the Center-Symmetric (CS) ones.
Thus, the new variant XCS-LBP (eXtended CS-LBP) produces a shorter histogram than LBP,
by its CS-construction. It is also tolerant to illumination changes as LBP and CS-LBP are
whereas CS-LDP is not, and robust to noise as CS-LDP is whereas LBP and CS-LBP are not.
We compared the XCS-LBP to the ordinary LBP and to its two direct competitors on both
synthetic and real videos of the Background Modeling Challenge (BMC) using two popular
background subtraction methods. The experimental results have shown that the proposed
descriptor qualitatively and quantitatively outperforms the mentioned descriptors, making it
a serious candidate for the background subtraction task in computer vision applications.

In the next chapter, we present an ensemble pixel-based for feature selection in BS to deal
with the challenges enumerated in the Section 1.1. The proposed approach selects automati-
cally the best features for different pixels of the image, and the more relevant ones are used
for the foreground segmentation task. In this framework, the background model is modeled
by different features including our XCS-LBP descriptor presented in this chapter.
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Chapter 4

A pixel-based ensemble for feature
selection in background subtraction

This chapter presents an Online Weighted Ensemble of One-Class SVMs (Support Vector
Machines) able to select suitable features for each pixel to distinguish the foreground ob-
jects from the background. In addition, our proposal uses a mechanism to update the relative
importance of each feature over time. Moreover, a heuristic approach is used to reduce the
complexity of the background model maintenance while maintaining the robustness of the
background model. Results on two datasets show the pertinence of the approach. This chap-
ter is based on our recent publication presented at the International Conference on Pattern
Recognition (ICPR), Cancun, Mexico (oral presentation) [177].

4.1 Motivation

A single-feature background subtraction algorithm may not be appropriate in a complex scene
because the most discriminant features for each element are probably different. A complex
scene comprising of several elements such as waving trees, sky, soil and cars is shown in
Figure. 4.1. We have argued in the Chapter 2 that the ensemble feature selection technique
as a great way to able select automatically the most relevant features in a scene. Relatively
little approach based on ensemble for feature selection has been proposed for BS task. Most
of these approaches use a multi-class boosting approach and its variants to select the best fea-
tures (see Table 4.1). However, the BS can be considered an one-class classification (OCC)
problem, therefore usually only exemplars of one-class elements are available (i.e. the back-
ground component is always present), whereas the other classes are unknown (i.e. foreground
objects can appear/disappear several times in the scene). To overcome this problem, most of
BS approaches have been used statistical distributions to generate the unrealistic foreground
samples. In this chapter, we propose an online weighted ensemble of one-class SVMs (Sup-
port Vector Machines) for feature weighting and selection for foreground-background sepa-
ration. The main BS works based on ensemble for feature selection as well as its principal

55
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Texture
Color+Textur
Gradient

Features Frames

Figure 4.1: A conceptual illustration of a complex scene (left) and its features im-
portance over time. The bar-graph (right) shows the feature importance variations
for a certain region of the scene along time.

differences, including our proposal are shown in Table 4.1 and Table 4.2. A brief overview of
the proposed framework given is illustrated in Figure 4.2. Firstly, a set of multispectral fea-
tures jointly with well-known features (ie. color, texture, etc.) are extracted from the training
image sequence. Next, a weighted version of random subspace creates a diversity of classi-
fiers pool, each classifier represented by a incremental weighted version of one-class SVM. A
heuristic approach called Small Votes Instance Selection (SVIS) is used in the IWOC-SVM
model updating step. Only the best week classifiers are selected and combined to form a
final classifier. Finally, we use a mechanism called Adaptive Importance (Al) computation to
update the importance of the classifiers pool over time. The whole framework described here
works as online manner. The main contributions of this work are:

1. An incremental version of the WOC-SVM algorithm, called Incremental Weighted
One-Class Support Vector Machine (IWOC-SVM).

2. An online weighted version of random subspace (OW-RS) to increase the diversity of
the classifiers pool.

3. A mechanism called Adaptive Importance Calculation (AIC) to suitably update the
relative importance of each feature over time.

4. A heuristic approach for IWOC-SVM model updating to improve speed.

The rest of this chapter is as follows. In Section 4.2, we remind the offline WOC-SVM
and show how we extend it for incremental learning. Then, we present an overview of the
proposed method in Section 4.3. Experimental results are presented in Section 4.4, and con-
cluding remarks are given in Section 4.5.
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Figure 4.2: A brief overview of the proposed framework.

‘ Authors/Date Strategy ‘ Level ‘ Type ‘
‘ Boosting-based ‘
Grabner and Bischof (2006) [70,72] | AdaBoost Region | multi-class
Parag et al. (20006) [149] RealBoost Pixel multi-class
Grabner et al. (2008) [71] AdaBoost Region | multi-class
Other approaches
Klare and Sarkar (2009) [109] Ensemble of Mixture of Gaussians | Pixel one-class
OWOC-RS [in this chapter [177] Weighted Random Subspace Pixel one-class

Table 4.1: The main BS works based on ensemble for features selection approaches.

[ Authors/Date [[ Intensity | Color [ Edge [ Texture [ Depth [ Motion [ Multispectral|
Grabner and Bischof (2006) [70,72] o °
Parag et al. (2006) [149] ° ° °
Grabner et al. (2008) [71] °
Klare and Sarkar (2009) [109] ° ° °
OWOC-RS [in this chapter] [177] ° ° ° ° ° °

Table 4.2: Comparison of the main BS works based on ensemble for features selec-
tion approaches and its features.

4.2 Incremental weighted one-class SVM

The One-Class Support Vector Machine (OC-SVM) [192] is considered as one of the most ef-
ficient one-class based non linear classifier. Given a labeled training data set X = {x1,...,xy }
in R”, it consists in learning for each target class @7 the minimum volume contour that en-
close all the data in X whose label is w7, using a one class against all scheme. It is well
adapted to BS for which there is only one target class: the background pixels class ®z. The
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outlier

targei

Figure 4.3: Data of a single class is covered by the hypersphere with center a and
radius R.

volume can be defined as an hypersphere of radius R centered on a, both to be learned from X.
Minimizing the hypersphere volume implies the minimization of R?. To prevent the classifier
from over-fitting with noisy data, slack variables &; are introduced to allow some target points
(respectively outliers) outside (respectively inside) the hypersphere. Therefore the problem
is to minimize the objective function ®(a,R) [192]:

N
®(a,R) =R +CY &, CHY
i=1
where a and R are the center and the radius of the hypersphere, subject to: V1 <i <N,
&>0 4.2)
b alP< R+, +3)

In Eq. (4.1), C is a user-defined parameter that controls the trade-oft between the volume and
the number of target points rejected. The larger C, the less outliers in the hypersphere. Bicego
and Figueiredo [21] proposed a Weighted version (WOC-SVM) that allows to use weights
W = {wi,...,wy} comprised in [0,1] for the data. The objective function ®(a,R) becomes:

N
O(a,R) =R*+CY w&;, (4.4)

i=1
subject to (4.2-4.3). The smaller w;, the smaller penalty, the smaller the influence points far
from center of the hypersphere on a and R. Figure 4.3 illustrates the data of a single class is
covered by the hypersphere with center a and radius R. The hypersphere defines a boundary
separating the target and outlier samples. Incorporating the constraints in (4.4) allows to

construct the Lagrangian and the dual problem is to minimize:

N N

N
L@(a,R) = Z(xi<x,',x,') — Z Z (Xi(lj<x,',xj'> (45)
i=1

i=1j=1
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where (.,.) stands for the inner product that can be replaced by any kernel function K(.,.),
and o; are the associated Lagrangian multipliers subject to:

0<o; <wC, (4.6)

N
i=1

The solution of this quadratic programming problem is twofold. On one hand, the center a is
a linear combination of the data points:

N
a=Y 0;x. 4.8)
i=1

On the other hand, the radius R is subject to the following Karush-Kuhn-Tucker (KKT) con-
ditions that correspond to inliers, the so-called support vector (SV) points and outliers, re-
spectively:

inliers : o;=0= ||x; —al||’< R? 4.9)
SV 1 0<o;<C=|xi—al’=R? (4.10)
outliers : o; =C = ||x; —a||*> R 4.11)

and can be computed from SV points given by (4.10). The classification of an incoming point
x is straightforward: it is assigned to o if it falls inside the class boundary (positive case),
otherwise it is associated to an outlier class ®, (negative case).

Traditional WOC-SVM is an offline or batch process, so that classification boundaries
are not updated. This can limit its use for many machine learning applications. For the BS
task, it is required to adjust the learned model to the scene variations over time. We pro-
pose an Incremental Weighted One-Class Support Vector Machine (IWOC-SVM) to handle
this issue which is closely related to the procedure proposed by Tax and Laskov [194]. In
the IWOC-SVM algorithm, SV set and non-SV set in previous training set Zp may be con-
verted into SV. Samples which violate KKT conditions in new samples are chosen as training
set and the other useless samples are eliminated in the training process. Given new samples
Z1={z1,22,...,2s } and its respective weights not learned by the IWOC-SVM, first we defined
the corresponding o; = 0, and then we calculated the distance to center of the hypersphere.
There are no new SVs in the new samples Z; when the distance is smaller than the radius. In
addition, some non-SVs in the old samples may be transformed into SVs along with incre-
mental learning of the new samples. Note that non-SVs can be transformed into new SVs if
they always exist nearby the hypersphere. The mathematical model can be defined as:

R—-6<|[x—dal[<R (4.12)

where 6 € [0, R] is relative to the distribution of previous training set, and the loose distribu-
tion will make the value of 0 be high. In addition, with the incremental learning, the value
of 6 will be low for more and more samples located near the previous SV set. The resulting
IWOC-SVM is summarized in Algorithm 6.
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Algorithm 6 Incremental Weighted One-Class SVM

Require: Previous training set Zy, newly added training set Z; and its respective weights
Train IWOC-SVM classifier on Zy, then split Zy = SVo UNSVy

Input new samples Z;. Put samples that violate KKT conditions in ZY. It ZY =0, then goto 2.
Put samples from NSV that satisfy Eq. (4.12) into NSVOS .

Set Zo = SVy UNSV; UZY and train IWOC-SVM classifier on Z.

Output: IWOC-SVM classifier Q and the new training set Zy.

A AN A

4.3 Online weighted one-class random subspace ensemble
for feature selection (OWOC-RS)

For the background subtraction task, diversity models are initially learned for each pixel con-
tained in the first N images, say training set X = {x1,x,...,xy} where each x; (j =1,...,N)
€ R? is a certain pixel over time N described by p original features.

4.3.1 Generating multiple base models

For each classifier, p* < p features are randomly selected so that x reduces to Sy (k=1,...,M),
where M is the user-defined number of base classifiers. Then, for each reduced object x}f
(j=1,...,N) of Sk, weights are assigned to the features in accordance to an exponential dis-
tribution. We opted for a Poisson distribution because it is usually employed in re-sampling
ensemble methods such as bagging and wagging [147]. In this work, we used the version
of the Poisson distribution that describes the process in which events occur continuously and
independently at a constant average rate. The weights drawn from the Poisson distribution
are used to generate the IWOC-SVM base classifier [111]. Thus, a hybridization between
random subspace and incremental one-class learning is done. The above approach increases
the diversity of base classifiers since different weights of each random subspace are taken to
distinguish the decision boundaries computed by the classifiers. Indeed, these base classifiers
represent a set of diverse base background models ¥ = {¥;, ¥, ..., ¥y }. The pseudo-code
of the proposed approach for multiple base background models generation is given in Algo-
rithm 7.

Algorithm 7 Generate multiple base background models

1: Require: IWOC-SVM training procedure, training set X, subspace dimension p*, number of base
classifiers M, weight distribution 3(x)
k+1
repeat
Sk < SelectRandomSubspace(X,p*)
Train k-th INOC-SVM on S with respect to weights w ~ 3(x)
k <+ k+1
until £ > M
Output: Trained IWOC-SVM base classifiers ¥ = {¥, ¥, ..., ¥u}
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4.3.2 Adaptive Importance (Al)

Along time, the selected feature set may become inadequate if any major change in the scene
occurs. Since the objective is to use the more useful models, namely the best features from
the pool of p features, an adaptive importance taking values in [0,1] can be introduced as pro-
posed in [215] for each base model to weight the class labeling (see Eq. 4.15) of the incoming
pixels. The higher the importance which lies in [0,1], the more the classifier influences the
decision. Let A{”""*“" (respectively hz’mng ) be the number of times a pixel was correctly (re-
spectively incorrectly) classified by the k-th (k = 1,..., M) base classifier from given ground
truth data. Then, the corresponding error is given by:

pvrong
k

errory = }\lcorrect + }\IW”U”&’
k k

(4.13)
Note that only the base classifiers that have the smallest errors are combined and used to
differentiate the moving objects from the background model in the scene. The computation
of the adaptive importance of each best base classifier is given in Algorithm 8.

Algorithm 8 Adaptive Importance (Al) computation

1: Require: Final classifier H, validation set (¢,y1), ..., (fy,yn) Where t; € T, y; € Y = 0,1 for back-
ground and foreground examples respectively, set of L best base classifiers ¥ = {¥,¥,,..., WL},
learning rate parameter y

. Initialize all L best classifiers with importance: 3; = 1

: repeat

Classify #; using the final classifier H according to Eq. (4.16)

for/=1:Ldo

Checks response of W, and calculates their error; according to Eq. (4.13)
Py(W)—Py(H(i—1))

For each best classifier, ¥;, update the importance 3; = f;(i — 1) + )

where P,(¥;) = 1 — error; according to Eq.(4.13).
9:  end for
10: untili <N
11: Normalize the importance  of each L best classifier.
12: Output: New importance assigned to the best classifiers B = {B1,B2,....Br}

i A Al

4.3.3 Background detection

Given an incoming pixel x to be classified, one can define a support function associated to the
class o for each of the L best base classifiers: VI =1,...,L

1
F(x,0) = o exp(—d(x,a)/s?) (4.14)

where d(x,a) is a distance metric from x to the center a of the target class ®, s; is a normal-
ization factor and s, is a scale parameter. Each Fj(x, ®) is then compared to a threshold #; to
obtain the positive or negative class labels: VI =1,...,L
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(,®) = 1 ifFx,0) > 4.15)
o —1 otherwise ’

Comparing the weighted sum of theses L class labels as in [193] to another threshold #,
allows to define the final classifier for x as follows:

(4.16)

o1 vl
H()C) = ! lff):lz.l BICI(X,G)) 2[2
0 otherwise

A pixel x is classified as a background pixel if H(x) = 0.

4.3.4 Heuristic approach for background model maintenance

The background maintenance relies on the mechanism used for adapting the learned model
to the scene over time. For this step, we propose to suitably update the learned model by our
IWOC-SVM using a new ensemble margin-based data selection approach called Small Votes
Instance Selection (SVIS) introduced by Guo and Boukir [75]. The SVIS relies on a simple
and efficient heuristic approach to provide SV candidates: selecting lowest margin samples.
This heuristic significantly reduces the IWOC-SVM training task complexity while main-
taining the accuracy of the IWOC-SVM classification. Once only support vector candidate
samples are used to update the IWOC-SVM'’s models. The SVIS consists of an unsupervised
ensemble margin that combines the first ¢(;) and second most voted class c(,) labels under
the learned model. Let Ve and Ve denote the relative number of votes. Then the margin,
taking value in [0,1] is:

_ Yep) Ve
L
where L represents the number of best base classifiers in the ensemble. The first smallest
margin samples are selected as support vector candidates. The final model is updated by the
first smallest margin samples. This procedure is presented in the Algorithm 9.

m(x) (4.17)

4.4 Experimental results

The experiments were conducted to show both the qualitative and quantitative performances
of the proposed method. We used the MSV'S dataset ! [16] which consists of a set of 5 video
sequences containing 7 multispectral bands and color video sequence (RGB). We also present
the results on the ChangeDetection (CDnet 2014) dataset > [212]. Three video sequences
categorized into baseline scenes, intermittent object motion and dynamic scenes are used.

Thttp://www.fluxdata.com/articles/universit%C3%A9-de-bourgogne-uses-fluxdata-fd-1665-
create-dataset-background-subtraction
Zhttp://changedetection.net/
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Algorithm 9 Heuristic approach for model maintenance

1: Require: Final classifier H, test set Z = {z;,z2, ...,2 }, weight distribution §(z), user defined pa-
rameter time, user defined parameter 1.

2: i1
3: repeat
4:  if H(z) = 1 (background) then
5: Compute the margin m(z;) by Eq. (4.17).
6:  endif
7:  if time is reached then
8: Order all the test samples according to their margin values, in ascending order.
9: The n smallest margin samples are selected as support vectors.
10: H (x) is updated using Z; and its weight w ~ &(x).
11: end if
12: i+i+1

13: until i > ¢

Scene 03

Figure 4.4: Results using the MSVS dataset [16] — (a) original frame, (b) ground
truth and (c) proposed method.

The baseline scenes include pets2006 while dynamic scenes include canoe and intermittent
object motion scenes include sofa.

In the training step, we used kernalized IWOC-SVM as a base classifier with C = 1, with
the same RBF (Radial Basis Function) kernel K(.,.) [192]. The main advantage of RBF ker-
nel is its good performance on non-linearly separable data. The pool of classifiers was homo-
geneous and consisted of 10 base classifiers of the same type. The classification threshold #;
was set to 0.9 and #, to 0.5 for combining the best one-class classifiers. The video sequences
was resized to 160 x 120 pixels in our experiments due computational cost. We set p* =
5 for the random subspace dimension from the original p = 26-dimensional features space
on the MSVS dataset while p = 19-dimensional features space on the CDnet 2014 dataset.
These features were chosen to have at least one feature in the five type of features commonly
used in BS: color feature (R,G,B, H,S,V and gray-scale), texture feature (XCS-LBP [176]),
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PETS2006

canoe

SOfa --

Figure 4.5: Results using the CDnet 2014 dataset [16]— (a) original frame, (b)
ground truth and (c) proposed method.

color-texture (OC-LBP [133]), edge feature (gradient orientation and magnitude), and mo-
tion feature (optical flow). In addition, we used also the multispectral bands included in the
MSVS dataset (a total of 7 spectral narrow bands).

We present the visual results on individual frames of two different scenes: Scene 02
(frame #51) and Scene 03 (frame #75) from MSVS dataset and three scenes: PETS2006
(frame #345), canoe (frame #980) and sofa (frame #630) from CDnet 2014 dataset. Figure
4.4 and 4.5 show the foreground detection results using our approach were displayed without
any post-processing technique. The true positives (TP) pixels are in white, true negatives
(TN) pixels in black, false positives (FP) pixels in red and false negatives (FN) pixels in
green. Our method is able to detect the moving objects with fewer number of false detection.
Next, the performance of the BS is evaluated at pixel-level. Given the ground truth data, the
correctness of foreground segmentation is measured using three classical measures: recall,
precision and F-score. We divided the training set into three parts - first, we generate the base
BS, next we select the best base BS models and finally, the adaptive importance are calculated
for each best BS model. In addition, we used a set of images to test our framework (detection
step without ground truth for testing). All tests were done by a 10-fold cross validation.

We compare the results obtained by our method from MSVS dataset with two other ap-
proaches proposed by Benezeth et. al [16]: 1) BS with the Mahalanobis distance using color
video sequence (RGB) and multispectral video sequence (7B), and 2) Pooling using multi-
spectral video sequence (7B). We use these two approaches because they use multispectral
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features to perform BS. Table 4.5 shows the score of the Mahalanobis distance and Pool-
ing methods evaluated on five scenes. The best scores are in bold. The proposed approach
presented the best scores for Scene 01, Scene 03, Scene 04 and Scene 05. In these scenes,
the most frequent challenges for BS are color saturation, dynamic background, illumination
changes, camouflage effects and intermittent object motion. In the Scene 02, the framework’s
performance was impacted due to gradual illumination changes. The best score for Scene
02 was presented for Mahalanobis distance. Table 4.6 also shows the score of our method
from CDnet 2014 dataset. Note that for this dataset the best score was presented for the sofa
scene. It contains abandoned objects and objects stopping for a short while and then moving
away. A suggestion to further improve our method score for both datasets is adding new
feature descriptors and/or its variants can be added to deal with specific background subtrac-
tion challenges. In general, we can see that the ensemble feature selection is a suitable and
efficient approach for BS.

Figure 4.6 and 4.7 illustrate the importance of each feature through video scenes from
MSVS and CDnet 2014 datasets. For each pixel, certain features are ignored or receive rela-
tively low importance in favor of other more informative features. Then, a global histogram
was then normalized to obtain scores from 0-1, where higher scores meant highly informative
features. Unlike traditional methods that the same feature (or set of features) is used globally
for the whole video scene (and usually with the same level of importance), we present the
potential of the proposed approach and its effectiveness to select the best features for back-
ground subtraction task. As can be seen on the MSVS dataset, the most important features for
overall scenes were OCLBP and gradients with high or medium contribution of some features
such as multispectral. It is important to note several BS algorithms uses color as main fea-
ture, whereas in our experiments the color feature is the one with lowest importance except
for Scene 02. Notice that on CDnet 2014 dataset, all features are important for PETS2006
and canoe scenes while in the sofa scene only OCLBP-GG is less important. Table 4.3 and
4.4 show the most and less significant features for both datasets used in this work. The ex-
perimental were made in Matlab R2013a a MacBook Pro with 2.2 GHz Intel Core i7. We
collected the elapsed CPU time for training/validation and foreground detection. For train-
ing/validation the elapsed time is 5.44 sec/frame, while in foreground detection the elapsed
time is 1.05 sec/frame.

Table 4.3: The most (+) and less (-) significant features from MSVS scenes [16].
Importance

Videos most (+) | less (-)
Gradient Direction with
Scene 01 | medium contrib. multispectral | OCLBP-GB
features

MS1,MS2 and MS6 with
Color, Gradient X features
OCLBP-GG,RR with medium
Scene 03 | contrib. of other OCLBP
channels and gradient features
OCLBP-BB,RR,RG and GG
Scene 04 | with medium contrib. of
gradient features

OCLBP-RR with high contrib.
Scene 05 | of other OCLBP channels and | Gradient Magnitude
multispectral features

Scene 02 XCS-LBP and MS4

Hue, Optical flow and
multispectral features

Multispectral and color
features
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Table 4.4: The most (+) and less (-) significant features from CDnet 2014 dataset
[212].

Importance
Videos most (+) H less (-)
Relatively a high contribution of most
of the features except for a high
PETS2006 | contribution of the saturation, none
OCLBP-RB and Y gradient features,
respectively

canoe High contribution of all features none
High contribution of most of the
features except for a medium
sofa contribution of the saturation, OCLBP-GG
OCLBP-RG, and Y gradient features,
respectively

Table 4.5: Performance of the different methods using the MSVS dataset [16].

| Videos [ Method | Precision | Recall | F-score |
MD (RGB) [16] 0.6536 | 0.6376 | 0.6536
Scene 01 MD (MSB) [16] 0.7850 | 0.8377 | 0.8105
Pooling (MSB) [16] 0.7475 | 0.8568 | 0.7984
OWOC-RS [in this chapter] | 0.8500 | 0.9580 | 0.9008
MD (RGB) [16] 0.8346 | 0.9100 | 0.8707
Scene 02 MD (MSB) [16] 0.8549 0.9281 | 0.8900
Pooling (MSB) [16] 0.8639 | 0.8997 | 0.8815
OWOC-RS [in this chapter] | 0.8277 | 0.8245 | 0.8727
MD (RGB) [16] 0.7494 0.5967 | 0.6644
MD (MSB) [16] 0.7533 | 0.6332 | 0.6889
Scene 03 .
Pooling (MSB) [16] 0.8809 | 0.5134 | 0.6487
OWOC-RS [in this chapter] | 0.9326 | 0.9965 | 0.9635
MD(RGB) [16] 0.8402 | 0.7929 | 0.8158
MD (MSB) [16] 0.8430 | 0.8226 | 0.8327
Scene 04 .
Pooling (MSB) [16] 0.8146 | 0.8654 | 0.8392
OWOC-RS [in this chapter] | 0.9534 | 0.8374 | 0.8997
MD (RGB) [16] 0.7359 | 0.7626 | 0.7490
MD (MSB) [16] 0.7341 0.8149 | 0.7724
Scene 05 .
Pooling (MSB) [16] 0.7373 | 0.8066 | 0.8066
OWOC-RS [in this chapter] | 0.7316 | 0.8392 | 0.8400

*MD = Mahalanobis distance

Table 4.6: Performance of our method using the CDnet 2014 dataset [212].

‘ Videos ‘ Precision ‘ Recall ‘ F-score ‘
PETS2006 0.8555 | 0.9395 | 0.8955
canoe 09034 | 0.9216 | 09124

sofa 0.9682 | 0.9160 | 0.9414
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Figure 4.7: The visual features importance through video scenes from the CDnet
2014 dataset [212].
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4.5 Conclusion

Online Weighted Ensemble of One-Class SVMs is able to select suitable features for each
pixel to distinguish the foreground objects from the background. In addition, an Online and
Weighted version of the Random Subspace (OW-RS) is used to assign a degree of importance
to each feature set, and these weights are used directly in the training step of our IWOC-
SVM. Moreover, a heuristic approach is used to reduce the complexity of the background
model maintenance while maintaining the robustness of the background model. Experimen-
tal results on different video sequences show the potential of the proposed approach and its
effectiveness to select the best features for distinct regions in a video sequence. However, the
ensemble pixel-based for feature selection described in this chapter only reaches the highest
accuracy when the number of features is huge. In summary, each base classified learns a fea-
ture set instead of individual features. To overcome these limitations, in the next chapter we
extend the approach proposed here by developing a novel methodology for selecting features
based on wagging.
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Chapter 5

A superpixel-based ensemble for feature
selection in background subtraction

In this chapter, we present a novel superpixel based one-class ensemble to select the best
features based on wagging. Our proposal is able to select suitable features to each region
of a certain scene to distinguish the foreground objects from the background. In addition,
we propose a mechanism to update the importance of each feature discarding insignificant
features over time. Results on two challenging datasets show the pertinence of the proposed
approach. The work presented here was recently submitted to Pattern Recognition Letters
Journal [178].

5.1 Motivation

In Chapter 4, we presented an online weighted one-class random subspace ensemble pixel-
based able to select automatically the best features for different pixels of the image, and the
most relevant features are used for foreground segmentation. The main drawback is that this
method only reaches the highest accuracy when the number of features is huge. Furthermore,
each base classifier learns a feature set instead of individual features. To overcome these lim-
itations, in this chapter we extend our previous approach by proposing a novel methodology
for selecting features based on wagging. It is important to note that the ensemble learning
methods usually require high computation time and memory consumption. In order to cir-
cumvent this issue, an alternative way is to use efficient strategies that not further increase
the computational cost of the ensemble. So, In this chapter, we adopted a superpixel-based
approach instead of pixel-level approach used in our previous work (Chapter 4). This does
not only increases the efficiency in terms of time and memory consumption, but also can
improves the segmentation performance. We propose further a mechanism called Adaptive
Importance Computation and Ensemble Pruning (AIC-EP). Chapter 4 also propose a mech-
anism to select the features over time, however, in this chapter we have added an ensemble
pruning to eliminate the features that will not have impact on the ensemble’s final decision.

71
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Figure 5.1: A brief overview of the proposed framework

This can improve the generalization performance of the ensemble, furthermore, it prevents
the increase of the training cost, storage demands, and prediction time. Table 5.1 and Table
5.2 show the main differences of the present work compared to the work presented in the pre-
vious chapter including other state of the art works. The main contributions of this chapter
can be summarized as follows:

1. A novel methodology to select the best features based on wagging.

2. A superpixel segmentation strategy to improve the segmentation performance, increas-
ing the computational efficiency of our ensemble.

3. A mechanism called Adaptive Importance Computation and Ensemble Pruning (AIC-
EP) to suitably update the importance of each feature discarding insignificant features
over time.

A brief overview of the proposed framework in Figure 5.1. Firstly, a set of features
are extracted from the training image sequence. Next, our wagging version creates different
pools of IWOC-SVM classifiers from a certain feature. A heuristic approach called Small
Votes Instance Selection (SVIS) is used in the IWOC-SVM model updating step. Finally, we
use a mechanism called Adaptive Importance and Ensemble Pruning (AIC-EP) to update the
importance of the classifiers discarding insignificant classifiers over time. Only the classi-
fiers with high importance are selected and combined to form a strong classifier. The whole
framework described here works as incremental manner.

The rest of this chapter is as follows. We present an overview of the proposed method in
Section 5.2. Experimental results are presented in Section 5.3, and concluding remarks are
given in Section 5.4.
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’ Authors/Date Strategy ‘ Level ‘ Type ‘
’ Boosting-based ‘
Grabner and Bischof (2006) [70,72] AdaBoost Region | multi-class
Parag et al. (2006) [149] RealBoost Pixel multi-class
Grabner et al. (2008) [71] AdaBoost Region | multi-class
Other approaches
Klare and Sarkar (2009) [109] Ensemble of Mixture of Gaussians | Pixel one-class
OWOC-RS [177] Weighted Random Subspace Pixel one-class
Superpixel-OWAOC [in this chapter] [178] | Wagging for feature selection Cluster | one-class

Table 5.1: The main BS works based on ensemble for features selection approaches.

‘ Authors/Date H Intensity ‘ Color ‘ Edge ‘ Texture ‘ Depth ‘ Motion ‘ Multispectral‘
Grabner and Bischof (2006) [70,72] ] o
Parag et al. (2006) [149] ° ° °
Grabner et al. (2008) [71] °
Klare and Sarkar (2009) [109] [ ° °
OWOC-RS [177] ] ] ] [ ° °
Superpixel-OWAOC [in this chapter] [178] o ° ° °

Table 5.2: Comparison of the main BS works based on ensemble for features selec-
tion approaches and its features.

5.2 Superpixel-based Online WAgging One-Class Ensem-
ble for Feature Selection (Superpixel-OWAOC)

Wagging is a variant of Bagging algorithm [15]. It trains each base classifier on the entire
training, since for each sample is assigned a weight. Therefore, each sample has a level of
influence on the classifier’s training process. The standard wagging is a powerful strategy
to generate a diverse set of base classifiers, but it is not designed for feature selection. We
propose to extend the standard wagging for feature selection restricting the base learner so
that each base classifier can focus only on a single feature. An overview of our wagging for
feature selection is presented in Alg. 10.

For the background subtraction task, we initially computed the superpixel by SLIC (Sim-
ple Linear Iterative Clustering) [16], which is an adaptation of k-means in the /abxy image
space for robust superpixel creation. Next, diversity models are learned from a training set
X ={x1,x2,...,xn} where each x; (j=1,...,N) € R? is a certain superpixel (maximum value)
over time N described by p features.

5.2.1 Generate multiple base models

Our wagging for feature selection assign weights for each sample of a given features p ac-
cording to an exponential distribution. We opted to use the version of the Poisson distribution
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Algorithm 10 The wagging for feature selection

1: Require: IWOC-SVM training procedure, training set X, weight distribution 8(x), number of base
classifier M, user defined parameter €

2: j+1

3: repeat

4: fork=1:Mdo

5: Wi <+ train an INOC-SVM classifier for each, p; feature according to random weights drawn

from 3(x).

6 Calculate the error of W, according to Eq. (5.1)

7 if errory > € then

8: Choose the classifier ¥y

9: break

10: else

11: continue
12: end if

13: end for

14: j+ j+1

15: until j > N
16: // choose base classifiers with the best importances to according the Algorithm (11)
17: Output: Combine outputs the best base classifiers to according the Eq. (5.4).

that describes the process in which events occur continuously and independently at a constant
average rate [111]. Therefore, these weights together with the samples are used as input to
generate the Incremental Weighted One-Class Support Vector Machine IWOC-SVM) base
classifiers. The reader can find details of the IWOC-SVM in Chapter 4. The search iterates
until an IWOC-SVM with the smallest error (defined by the user) is found or M rounds is
reached. Let A{”"* (respectively A, ”"®) be the number of times a region was correctly (re-
spectively incorrectly) classified by the k-th (k = 1,...,M) base classifier from given ground
truth data. Then, the corresponding error is given by:

)\ \vrong
k

AL +A,

5.1

errory =

The Algorithm 10 (lines 1-16) is responsible by created many base classifiers with small
error representing a set of diverse base background models ¥ = {¥|,¥,,,.. Wy }.

5.2.2 Adaptive Importance Computation and Ensemble Pruning (AIC-
EP)

Along time, the selected feature set may become inadequate if any major change in the scene
occurs. Since the objective is to use the more useful models, namely the best features from the
p features set, an adaptive importance taking values in [0,1] can be introduced as proposed
in [215] for each base model to weight the class labeling (see Eq. 5.4) of the incoming
regions. The higher the importance which lies in [0,1], the more the classifier influences
the decision. Note that the difference of Algorithm 11 for the Algorithm 8, proposed in
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the Chapter 4, is just that we have added an ensemble pruning to eliminate the importances
with very low values over time. This can can improve the generalization performance of the
ensemble. Furthermore, it can prevent the increase of the training cost, storage demands, and
prediction time since it allows to eliminate classifiers with very low importance that will not
have impact on the ensemble’s final decision. Note that only the base classifiers that have
the highest importance are combined and used to differentiate the moving objects from the
background model in the scene.

Algorithm 11 Adaptive Importance Computation and Ensemble Pruning (AIC-EP)

1: Require: Final classifier H, validation set (¢,y1),..., (fy,yn) Where t; € T, y; € Y = 0,1 for back-
ground and foreground examples respectively, set of L base classifiers ¥ = {¥,¥,, ..., L}, learn-
ing rate parameter 7, user defined parameter ¢

2: Initialize all L classifiers with importance: B; = 1/L and estimate their P, (¥;)

3: where P,(¥;) = 1 — error; according to Eq.(5.1).

4: i1

5: repeat

6:  Classify #; using the final classifier H according to Eq. (5.4)

7 for/=1:Ldo

8 Checks response of W; and calculates their error; according to Eq. (5.1)

9: For each best classifier, ¥, update the importance ; = p;(i —1) + W
10:  end for
11: i+ i+1

12: untili <N

13: Normalize the importance B; of each [ classifier
14: for [ =1:Ldo

15: if B; < ¢ then

16: discard the [-th classifier
17: end if
18: end for

19: Output: The best classifier(s) and its/their § which could be used in Eq. (5.4)

5.2.3 Background detection

The procedure for background detection is the same as used in Chapter 4. However, we
recover some of the principal definitions as follows. Given an incoming regions x to be
classified, one can define a support function associated to the class ® for each of the L best
base classifiers: VI =1,...,L

1
Fi(x,0) = gexp(—d(x,a)/sz) (5.2)

where d(x,a) is a distance metric from x to the center a of the target class ®, s; is a normal-
ization factor and s, is a scale parameter. Each Fj(x, ®) is then compared to a threshold #; to
obtain the positive or negative class labels: VI =1,...,L
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1 ifF(x,0) >4
, M) = 5.3
ci(x, 0) { —1 otherwise (5-3)

Comparing the weighted sum of theses L class labels as in [193] to another threshold 7,
allows to define the strong classifier for x as follows:

H(x){ Lif X B o) > 54

0 otherwise

A region x is classified as a background region if H(x) = 0.

5.2.4 Heuristic approach for background model maintenance

The procedure for background model maintenance is the same as that used in Chapter 4. In
order to facilitate the reading, we recover some of the principal definitions as follows. The
background maintenance relies on the mechanism used for adapting the learned model to
the scene over time. For this step, we propose to suitably update the learned model by our
IWOC-SVM using a new ensemble margin-based data selection approach called Small Votes
Instance Selection (SVIS) introduced by Guo and Boukir [75]. The SVIS relies on a simple
and efficient heuristic approach to provide SV candidates: selecting lowest margin samples.
This heuristic significantly reduces the IWOC-SVM training task complexity while main-
taining the accuracy of the IWOC-SVM classification. Once only support vector candidate
samples are used to update the IWOC-SVM’s models. The SVIS consists of an unsupervised
ensemble margin that combines the first ¢(;) and second most voted class c(,) labels under
the learned model. Let v, and Ve denote the relative number of votes. Then the margin,
taking value in [0,1] is:

_ ey Ve

7 (5.5)

m(x)

where L represents the number of best base classifiers in the ensemble. The first smallest
margin samples are selected as support vector candidates. The final model is updated by the
first smallest margin samples. This procedure is presented in the Algorithm 12.

5.3 [Experimental results

The experiments were conducted in two recent public datasets: MSVS dataset [16] and RGB-
D object detection dataset [36]. These datasets were chosen because they provide two types
of informations so far been little explored in BS: multispectral and depth, respectively. The
MSVS dataset consists of a set of 5 video sequences containing 7 multispectral bands and
color video sequence (RGB) with different challenges such as gradual illumination changes,



5.3. Experimental results 77

Algorithm 12 Heuristic approach for model maintenance

1: Require: Final classifier H, test set Z = {z1,z2p, ...,z }, weight distribution 3(z), user defined pa-
rameter time, user defined parameter 1.

2: i1

3: repeat

4:  if H(z) = 1 (background) then

5 Compute the margin m(z;) by Eq. (5.5).

6:  endif

7:  if time is reached then

8: Order all the test samples according to their margin values, in ascending order.
9: The 1 smallest margin samples are selected as support vectors.
10: H (x) is updated using Z; and its weight w ~ &(x).
11: end if

12: i+i+1

13: until i > ¢

shadows, camouflage effects (color similarity of object and background) and intermittent ob-
ject motion. While the RGB-D dataset includes four different sequences of indoor environ-
ments, acquired with the Microsoft Kinect RGB-D camera, that contain different situations
such as cast shadows, color and depth camouflage.

In the training step, we used kernalized IWOC-SVM as a base classifier with C = 1,
with the same RBF (Radial Basis Function) kernel K(.,.) [192]. The main advantage of RBF
kernel is its good performance on non-linearly separable data. The pool of classifiers was
homogeneous and consisted of 10 base classifiers of the same type. The pool of classifiers
consisting of a maximum of 10 base classifiers. The classification threshold #; was set to 0.9
and 1, to 0.5 for combining the best one-class classifiers. We divided the training set into three
parts - first, we generate the base BS, next we calculate the adaptive importance for each BS
model and finally, the base BS models with high importance are selected. In addition, we used
a set of images to test our framework (detection step without ground truth for testing). All
tests were done by a 10-fold cross validation. The video sequences was resized to 160 x 120
pixels in our experiments due computational cost. We used 9-dimensional features space for
the MSVS dataset and 4-dimensional features space for the RGB-D dataset. In both datasets
were used the grayscale and XCS-LBP [176] features. However, 7 multispectral bands and 1
depth information were adding for MSVS and RGB-D datasets, respectively.

5.3.1 Background detection on the MSVS and RGB-D datasets

We present the visual results on individual frame for Scene 05 (frame #413) from MSVS
dataset and GenSeq (frame #996) from RGB-D dataset. Figure 5.2 shows the foreground
detection results using our approach were displayed without any post-processing technique.
The true positives (TP) regions are in white, true negatives (TN) regions in black, false pos-
itives (FP) regions in red and false negatives (FN) regions in green. Our method is able to
detect the moving objects with fewer number of false detection for both datasets. Next, the
performance of the BS is evaluated at region-level. Given the ground truth data, the correct-
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Scene 05

Figure 5.2: Results using the MSVS [16] (top row) and RGB-D [36] (bottom row)
datasets — (a) original frame, (b) ground truth and (c) proposed method.

ness of foreground segmentation is measured using three classical measures: recall, precision
and F-score. We compare the proposed method with OWOC RS [177](Chapter 4) and with
the traditional classification approach for both datasets. This last one has the same setting of
our ensemble, however, it uses only one IWOC-SVM classifier and grayscale feature. Table
5.3 shows the score of these methods evaluated on five scenes from MSVS dataset. The best
scores are in bold. The proposed approach presented the best scores for Scene 01, Scene 02
and Scene 05. In these scenes, the most frequent challenges for BS are color saturation, dy-
namic background, illumination changes, camouflage effects and intermittent object motion.
In the Scene 03 and Scene 04, the best score was presented for OWOC-RS approach. For the
RGB-D dataset, as can be seen from Table 5.4 our approach presented the best score for all
scenes, except for scene DCamSeq. Note that both the OWOC-RS and the proposed approach
presented better performance than traditional classifications using only one classifier for both
datasets. This prove the efficiency of the ensemble for feature selection in the BS task. An
alternative that may further improve the score of our approach is the use of other features,
however, as we can see in Tables 5.3 and 5.4, using only three types of resources were suf-
ficient to achieve good results. More robust methods of superpixel as proposed in [213] can
also be used to further improve the results of our approach.

Figures 5.3 and 5.4 illustrate the importance of each feature through its respective map
features showing most important feature for each region and histogram for five video scenes
from MSVS dataset and four scenes from RGB-D dataset. For each region, certain features
are ignored or receive relatively low importance in favor of other more informative features.
Then, a global histogram was normalized to obtain scores from 0-1, where higher scores
meant highly informative features. Unlike traditional methods that the same feature (or set
of features) is used globally for the whole video scene (and usually with the same level
of importance), we present the potential of the proposed approach and its effectiveness to
select the best features for BS task. As can be seen, the most important features for overall
scenes were grayscale with high contribution, then XCS-LBP with medium contribution and
multispectral features that presented low contribution from MSVS dataset. The grayscale
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Table 5.3: Performance using the MSVS dataset [16].

Videos [ Method | Precision | Recall | F-score |
IWOC-SVM 0.9814 | 0.3378 | 0.5027
Scene 01 | OWOC-RS [177] (Chapter 4) 0.8500 | 0.9580 | 0.9008
Superpixel-OWAQC [in this chapter] | 0.9498 | 0.8799 | 0.9135
IWOC-SVM 0.7671 | 0.9410 | 0.8452
Scene 02 | OWOC-RS [177] (Chapter 4) 0.8277 | 0.8245| 0.8727
Superpixel-OWAQOC [in this chapter] | 0.9627 | 0.9555 | 0.9591
IWOC-SVM 0.8945 | 0.6123 | 0.7270
Scene 03 | OWOC-RS [177] (Chapter 4) 0.9326 | 0.9965 | 0.9635
Superpixel-OWAOC [in this chapter] | 0.9787 | 0.8999 | 0.9376
IWOC-SVM 0.9279 | 0.4287 | 0.5865
Scene 04 | OWOC-RS [177] (Chapter 4) 0.9534 | 0.8374 | 0.8997
Superpixel-OWAOC [in this chapter] | 0.8236 | 0.9509 | 0.8827
IWOC-SVM 0.0331 | 0.5430 | 0.0624
Scene 05 | OWOC-RS [177] (Chapter 4) 0.7316 | 0.8392 | 0.8400
Superpixel-OWAOC [in this chapter] | 0.8691 | 0.8695 | 0.8693

feature presented also the highest contribution from RGB-D dataset. Nonetheless, note that
for ColCamSeq scene the XCS-LBP was the most important. It is important to note several
state-of-the-art BS algorithms use grayscale feature for the whole image sequence, however,
it is possible to observe from the feature map in the Figures 5.3 and 5.4 that different features
were used for different regions of the image.

5.3.2 Computational costs

The key of success of the BS is due to its simplicity and also the low cost computational
usually required by most of its methods. Ensemble for feature selection has proven to be an
effective tool for BS, but usually it demands an high availability of computational resources.
Therefore strategies to improve the computational time could prove interesting, for instance
in our previous framework we proposed a weighted random subspace ensemble that require a
large quantity of features to guarantee a good performance. Yet there is very little BS datasets
that provide a lot of features, in addition, a huge feature set required also a high computa-
tional power. In our previous work, we used 26-dimensional features space while in this
work only 9 (MSVS dataset) and 3 (RGB-D dataset) dimensional feature space were enough
to achieve a good result. In this chapter, to further improve the computational costs we pro-
pose to use the superpixel approach instead pixel approach. The superpixel approach allow
us to measure the feature statistics on a semantically meaningful atomic regions instead of
individual pixels which can be provide redundant information. The experiments were made
in Matlab R2013 a MacBook Pro with 2.2 GHz Intel Core i7. We collected the elapsed CPU
time for training/validation and foreground detection. OWOC-RS has presented for train-
ing/validation the elapsed time is 5.44 sec/frame, while in foreground detection the elapsed
time is 1.05 sec/frame. In this chapter, we define approximately 4000 superpixels for each
scene instead of 19200 pixels from OWOC-RS. Note that the proposed approach can be up
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Table 5.4: Performance using the RGB-D dataset [36].

Videos | Method | Precision | Recall F-score
IWOC-SVM 0.9898 0.6706 0.7995

ColCamSeq OWOC-RS [177] 0.8887 0.7555 0.8167
Superpixel-OWAOC [in this chapter] 0.9859 0.8041 0.8858

IWOC-SVM 0.9255 0.8172 0.8680

DCamSeq OWOC-RS [177] 0.9774 1.0000 0.9885
Superpixel-OWAOC [in this chapter] 0.9245 0.9488 0.9365

IWOC-SVM 0.7427 0.7513 0.7470

GenSeq OWOC-RS [177] 0.7029 0.9239 0.7984
Superpixel-OWAOC [in this chapter] 0.8427 0.9513 0.8937

IWOC-SVM 0.6024 0.6385 0.6199

ShSeq OWOC-RS [177] 0.7316 0.7392 0.7354
Superpixel-OWAOC [in this chapter] 0.7325 0.8389 0.7821

to 4 times faster than OWOC-RS. The computational cost can be reduced by increasing the
number of superpixels. However, this may lead to less accurate segmentations.

DCamSeq

GenSeq

ShSeq

Figure 5.3: Results on RGB-D dataset [36] — (a) original frame, (b) features map
and (c) its respective histogram of features importance.
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Scene 01

Scene 02

Scene 03

Scene 04

Scene 05

B Gray [ XCs-LBP Multispectral

Figure 5.4: Results on MSVS dataset [16] — (a) original frame, (b) map feature and
(c) its respective histogram of features importance.
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5.4 Conclusion

In summary, we proposed a novel methodology to select the best features based on wagging.
Our proposal is able to select suitable features for each region to distinguish the foreground
objects from the background ones. In addition, it uses a superpixel approach that not only
increases the efficiency in terms of time and memory consumption, but also can improves the
segmentation performance. Our framework also uses a mechanism to update the importance
of each feature discarding insignificant features over time. Experimental results on two chal-
lenging datasets have shown the potential of the proposed approach and its effectiveness to
select the best features for distinct regions in a video sequence. A future work may address
how to update the importance of each feature, discarding insignificantly features over time
without ground-truth data.

In the next chapter we present a novel Opponent Color Local Binary Pattern from Three
Orthogonal Planes (OCLBP-TOP) descriptor for applications in the field of dynamic texture
recognition.



Chapter 6

A novel joint color-texture descriptor for
dynamic texture recognition

In this chapter, we propose a novel Opponent Color Local Binary Pattern from Three Orthog-
onal Planes (OCLBP-TOP) descriptor for applications in the field of dynamic texture recog-
nition. The OCLBP-TOP fuses the texture and color information, combining the Opponent
Color Local Binary Patterns (OCLBP) with LBP on Three Orthogonal Planes (LBP-TOP).
As such, it allows to extract not only color information, but also a more detailed informa-
tion from video sequences. The experiments conducted on real videos from the Dyntex++
and YUPENN Dynamic Scenes show that the proposed OCLBP-TOP outperforms not only
LBP-TOP and OCLBP as expected, but also three state-of-the-art descriptors, in particular its
direct recent competitor, called Local Gabor Binary Patterns from Three Orthogonal Planes
(LGBP-TOP). These descriptors were especially designed for the dynamic texture recog-
nition. This chapter presents a particular work realized in conjunction with the Computer
Vision Center (CVC) at Autonomous University of Barcelona (UAB). The work presented
here is currently under revision for publication in the IET Computer Vision Journal [179].

6.1 Motivation

Dynamic (or temporal) texture analysis attracts growing attention in the computer vision com-
munity for applications such as automatic environment surveillance, synthesis, segmentation
and recognition. Unlike static textures which are patterns describing pixel intensity variations
that repeat spatially in an image, dynamic textures are motion patterns, i.e. image sequences
of moving scenes that present certain stationarity properties not only in space but also in their
dynamics over time [56,224]. Dynamic textures are then of prime importance when the video
sequence at hand continuously changes in shape and appearance. Some examples of dynamic
textures in the real world are shown in Figure 6.1. From left to right and top to bottom: forest
fire, waterfall, flock of birds in flight, vegetation in the wind, water, vehicle traffic, crowd
of people running and insect swarms. Given such a video sequence, the recognition of dy-
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Figure 6.1: Examples of dynamic textures in the real world.

namic textures consists in identifying to which class (e.g. water, vehicle traffic, fire, etc.)
it belongs to. Many approaches have been proposed for that purpose, e.g. Linear Dynamic
System (LDS) [4,42, 56, 158], GIST [148, 182] Wavelets-based methods [53, 61, 99, 224],
Spatiotemporal Oriented Energies (SOE) [52], Slow Feature Analysis (SFA) [195,196,237],
Local Space-Time (HOG/HOF) [113] and Complementary Spacetime Orientation descriptor
(CSO) [60] descriptor. However, the descriptors based on local binary patterns have also
attracted the attention of the image processing and pattern recognition community for other
tasks. The Local Binary Pattern histograms from Three Orthogonal Planes (LBP-TOP) is the
best known descriptor based on local binary pattern that combines motion and appearance
for describing dynamic textures. It is based on the differences between neighboring pixels on
three orthogonal planes: the space plane XY, the space-time transitions planes X7 and YT
The LBP-TOP has been successfully used in various applications such as dynamics facial ex-
pression recognition [240], action recognition [103], segmentation [43] and analysis of facial
paralysis [83]. Note that very recent variants and modifications have been proposed to further
increase its robustness and its discriminative power [30, 153]. They have been successfully
used in various applications, such as: background subtraction (see Chapter 2), human activity
recognition [191], speaker identification [40,239], facial actions [5,152,219,238] and texture
segmentation [44].

Until recently, to our best knowledge, there have been no previous descriptors based on
local binary patterns which processed altogether color-texture information for the dynamic
texture problem. State-of-the-art dynamic texture descriptors operate on gray-scale level
scene, ignoring color information. The color and texture are two of the most significant
low level visual cues for visual recognition. In the past decades, the combination of color and
texture concerning the static texture problem in joint descriptors has been debated [133]. The
research indicates that joint color-texture descriptors and combined color and texture features
are outperformed by either color or gray-scale texture. In the last few years, Médenpdd and
Pietikdinen [133] introduced an Opponent Color Local Binary Pattern (OCLBP) descriptor to
describe color-texture joint. It extracts more detailed information and it has a state-of-art per-
formance for the static texture problem. However it is not suitable for dynamic texture as it
does not capture the motion information. We believe the joint color-texture information may
provide useful scene and motion information for dynamic texture recognition. In this chap-



6.2. 3D joint color-texture descriptor 85

ter, we propose to extend the spatial color-texture OCLBP descriptor to the spatio-temporal
domain by combining it with the LBP-TOP one. By fusing color and dynamics textures,
the derived OCLBP-TOP extracts more detailed information from the video sequence to be
analyzed. Our contributions can be summarized as follows:

* A robust combination of the descriptor OCLBP with the descriptor LBP-TOP, that
allow us to be more robust on the dynamic texture recognition in presence of the main
challenges such as illumination changes.

¢ A detailed comparative evaluation of our descriptor OCLBP-TOP against other five
state-of-the art descriptors on two large scale dataset that are Dyntex++ and YUPENN.

The rest of this chapter is organized as follows. The construction of the new 3D joint
color-based texture descriptor is presented in Section 6.2. In Section 6.3, we give experimen-
tal results obtained on real videos that compare the proposed OCLBP-TOP descriptor to its
direct competitors. Finally, the conclusion is shown in Section 6.4.

6.2 3D joint color-texture descriptor

It is challenging to find joint color-texture descriptors based on local binary patterns for dy-
namics texture tasks. To address this issue, we have developed an Opponent Color Local
Binary Pattern from Three Orthogonal Planes (OCLBP-TOP). Given a finite color video se-
quence of a texture in motion and considering the cooccurrences statistics on the three planes
(XYx plane, X7y plane and Y7 plane), we extract six-opponent-color video on these three
orthogonal planes, where k is the opponent color space. The opponent color space can be
computed as [96,202]:

red —green : O =(r—g)/V2,
((r+g)—2b)/V6
luminance : O3z = (r+g+b)/V3.

yellow —blue : O

The intensity is represented in channel O3 and the color information is in the channels
0O; and O;. In addition to the perception correlation properties of the opponent color space,
one important advantage of this space is that the O3 axis, can be more closely sampled than
0, and O, thereby decreasing the sensitivity of color matching to a difference in the global
brightness of the video. Then the LBP is computed on three orthogonal planes XY;, X7; and
YT on the six new opponent color video. Note that in the following, we will remind the LBP
equation already defined in the Chapter 3. Given a pixel at a certain location, considered as
the center pixel ¢ = (x.,y.) of a local neighborhood composed of P equally spaced pixels on
a circle of radius R, the LBP descriptor applied to can be expressed as:

P

LBPpg(c) =Y s(gi—gc)2' (6.1)
i=0

|
—
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in our case g, is an opponent color value of the center pixel c, g; is an opponent color of each
neighboring pixel, and s is a thresholding function defined as:

(x) = 1 if x>0 62)
S = 0 otherwise. ’

The resulting binary number is of length P, and there are 27 possible different labels to
be obtained from an LBP-image which histogram can be used as a texture descriptor. The
computation of the ordinary LBP for a neighborhood of size P = 8 on a circle of radius R =1,
resulting in an histogram of size 2% = 256, is illustrated in Figure 2.3 (see Chapter 2).

The opponent color local patterns are extracted from the XY;, X7y and Y7;. The XY,
plane contain information about the appearance, while the co-occurrence statistics of motion
in horizontal and vertical directions are included in the labels from the X7} and Y T} planes.
In the OCLBP-TOP descriptor, the three planes intersect in the center pixel and six distinct
patterns are extracted in function of that central pixel for each XYy, XT; and Y 7. For each
pixel in opponent-color images from XY, XT; and Y T} planes, a six binary code is built by
thresholding its neighborhood in a circle from these three planes separately with the value
of the center pixel. Three inter-channel (RG, RB, GB) and three intra-channel (RR, GG, BB)
histograms for each individual XY, X7} and Y T} are created to collect the occurrences of dif-
ferent binary patterns, which are denoted as RG-LBP, RB-LBP, GB-LBP, RR-LBP, GG-LBP
and BB-LBP. This results in 3 x 6 x 2 dimensional histograms, which are then concatenated
into a single histogram to create a global description of the dynamics texture with the spatial-
temporal and joint color-texture features. The final histogram can be expressed as:

H,-:Zl(fjk(x,y,t):i) i=0,1,..,nj; j=1,2,3; k=1,..,6 (6.3)

Xyt

where 7 is the number of different labels produced by the OCLBP-TOP descriptor in the jth
plane, k is the number of opponent colors, f; is the central pixel at coordinates (x,y,#) in the
Jjth plane and I(A) is 1 if A is true and O otherwise.

In the OCLBP-TOP, the dynamic texture is encoded by the LBP, while the appearance
and the motion in two directions of the joint dynamic color-texture are taken, incorporat-
ing spatial-domain information and two spatio-temporal co-occurrence statistics together. In
the OCLBP-TOP descriptor, the Ry is applied in the axes Xj, Y; and 7; and the P; num-
ber in the XY, XT;, and YT;. The planes can be also different, which can be indicated as
Rx,. Ry,, Ry, Pxy,, Pxr, and Pyr,. The corresponding OCLBP-TOP is called as OCLBP-
TOPPXYkaPXTk¢PYTk>RXk~,RYk7RTk planes, that is, P,= PXYk=PXTk=PYTk and R = ka= Ryk=RTk. At
times, the Ry in three planes are the same and the Py in XYy, X7} and YT axis. In that case,
we denote OCLBP-TOPp, , .

The OCLBP-TOP descriptor may be useful for dynamic-texture analysis, mainly because
of the large quantity of richer information that it can extract from the video. It is because our
descriptor describes joint color texture in spatio-temporal domain. The OCLBP-TOP extracts
six times greater than LBP-TOP. The LBP-TOP considers only grayscale information in the
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(P=8,R=1) (P=8,R=2) (P=8,R=3)

Figure 6.3: Circularly symmetric neighbor sets for different R and P = 8§ in the LBP
space.

spatio-temporal domain. We show in the next section that the proposed approach allows to
improve the performance of a dynamic texture classification method, as compared to other
local binary pattern based approaches and two popular methods in the filed of video sequence
recognition.

6.3 Experiments

6.3.1 Datasets

The performance of our proposed descriptor was evaluated on two public large and diverse
datasets dedicated to the color dynamic-texture recognition. We give a brief introduction of
these datasets as follows.

* the Dyntex++ [67] which is a selected version of the Dyntex dataset [151], composed
of 3600 video sequences grouped in 36 classes, each of which containing 100 se-
quences of a fixed size 50 x 50 x 50 (widthxheightx# of frames). Various kinds of
dynamic texture are present, ranging from struggling flames to whelming waves, from
sparse curling smoke to dense swaying branches.

» the YUPENN dataset [52] that contains 420 videos of dynamic scene categories grouped
in 14 classes, each class containing 30 videos. The sequences in YUPENN have impor-
tant variations such as frame rate, scene appearance, scale, illumination, and camera
viewpoint.

There is a limited number of dynamic-texture datasets in the literature because of the
difficulties in collecting DT sequences. Results of many existing approaches have been re-
ported based on the UCLA dynamic texture dataset [164]. But this dataset presents only
gray-scale images and our descriptor needs color features making its application impossible
on this dataset. Figures 6.4 and 6.5 show examples frames of some scenes of Dyntex++ and
YUPENN datasets used in this chapter, respectively.



6.3. Experiments 89

Table 6.1: Overall classification results (%) for evaluation different values of P, R
in the OCLBP-TOP space.

R Our Descriptor YUPENN Dynamic Scenes (%)
OCLBP-TOP, 45.00

1 OCLBP-TOP4 76.90
OCLBP-TOPg | 86.90
OCLBP-TOP; » 26.19

2 OCLBP-TOP; > 72.85
OCLBP-TOPg > 82.85
OCLBP-TOP, 3 24.04

3 OCLBP-TOP, 3 73.57
OCLBP-TOPg 3 85.47

6.3.2 Parameter settings

The selection of appropriate parameters is always a key issue. The OCLBP-TOP has only
few parameters to optimize, making this task much easier. The P and R parameters of our
OCLBP must be carefully selected not to affect the descriptor performance. In addition,
small changes in P may cause big differences in the length of the feature vector. According
to previous studies on LBP [146, 240], the best R are normally smaller than 3 and P is i
(i=1,2,3...). In our proposed descriptor, when the number of neighboring points increases,
the number of patterns OCLBP-TOP will become large: 3 x 6 x 2F. Thus only the results for
P = 2,4 and 8 are given in Table 6.1. In all our experiments, we used a leave-one-out-cross-
validation strategy [54] with linear SVM (Support Vector Machine) to evaluate our descriptor.
The Dyntex++ dataset was used to evaluate different values of P and R in the OCLBP-TOP.
Table 6.1 presents the overall recognition rate. It can be seen that the OCLBP-TOP performs
very well for P = 8 and R = 1. For the influence of P, we can obtain a shorter feature
vector, however a small P loses more information. Nonetheless, the large P value improves
the recognition accuracy, but it generates a long histogram and therefore a high memory
consumption. For the influence of R, we can see that for a fixed P the best performance is
obtained for R = 1. Figure 6.3 shows the case among different values of R and P = 1. We
note there is a loss of information as the R value is higher because neighboring pixels are
not considered in the calculation of the LBP. Therefore, we opted to use of the P = 8 and
R =1 for all the experiments in this chapter. Table 6.1 shows that an accuracy of 86.90% is
obtained for OCLBP-TOP using P = 8§ with a feature vector length of 4608 bits.

6.3.3 Comparison with state-of-the-art

A brief summary of all the descriptors we compared can be found in Table 6.2. First, we
compare our descriptor to some LBP-based descriptors with P = 8 neighbors on a circle of
radius R = 1:
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B

escalator stairs in boiling water evaporating underwater life
maotion water/fumes (soft texture)

J

ants water in sink {going
down drain)

rotating wind
ornament)

vehicle traffic on flag (with occlusion water fountain textured cloth
road + zoom levels) {zoomed)

Figure 6.4: Sample frames of classes from the Dyntex++ dataset.

* OCLBP [133],
e LBP-TOP [240] as the reference local binary pattern spatio-temporal extension,

e LGBP-TOP [5], which extends the Local Gabor Binary Pattern [170] to the temporal
domain. LGBP consists of applying a set of g Gabor filters at different scales and ori-
entations to a number of s non-overlapping sub-images, then describing each resulting
filtered sub-image using Uniform LBP [145, 146], and concatenating the correspond-
ing histograms. A local binary pattern is called uniform if the number of bitwise
transitions from O to 1 or vice versa, considering the pattern circular, is at most 2. For
a P-dimensional pattern, there are only P x (P — 1) + 3 different labels, so that the
LGBP-based feature size is g X s X (P x (P — 1)+ 3), and its TOP extension is obvi-
ously 3 times larger. In the experiments, we used g = 18 and s = 16 (4 x 4 grid).
Combining spatial and dynamic texture analysis with Gabor filtering allows to achieve
unprecedented levels of recognition accuracy in real-time. While LBP-TOP features
risk being sensitive to misalignment of consecutive images, a rigorous analysis of the
descriptor shows the relative robustness of LGBP-TOP to image registration errors
caused by errors in rotational alignment.

e our proposed OCLBP-TOP.

Since the two last descriptors produce high dimensional features, respectively 3 x 18 x
16 x (8(8 — 1) +3) = 50976 and 6 x 3 x 28 = 4608, a post-processing step was also tested.
It consisted of applying Principal Component Analysis (PCA) to reduce the dimensionality,
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beach elevator forest fire

highway ocean railway

sky-clouds snowing city street waterfall
Figure 6.5: Sample frames of scenes from the YUPENN Dynamic Scenes dataset.

keeping the first 3 x 2” = 768 principal components which equals the smallest feature size of
the local binary pattern competitors (LBP-TOP).

We also used two other methods among those most popular in recognizing video sequences,
namely:

* fast and dense HOG/HOF [200] is a local space-time descriptor derived from the origi-
nal one in [113] which consists in using a bag of spatio-temporal features that identify
3D interest points with high variations in appearance captured by the Histogram of
Oriented Gradients (HOG) and motion captured by the Histogram of Optical Flow
(HOF). Gradients magnitude responses and flow displacements vectors are computed
on a number n, X ny X n; of blocks in space and time, each orientation is quantized
on a single scale sampling into b, and by bins respectively for HOG and HOF. The
descriptor is then of size ny x ny X n; X (bg+by). We used ny = 3, ny = 3, n, = 2 and
by = by = 8 so that the feature space was 3 X 3 x 2 x (8 4 8) = 288 dimensional, as
in [200]. The dense HOG/HOF is a local descriptor, thus it is less sensitive to noise
or occlusion, but it requires the detection of sufficient and relevant interest points. In
addition, the HOG/HOF requires the quantization of large amount of data, because of
the bag-of-features model.

e GIST3D [182] is a global video descriptor which is computed by applying a bank of
3-D spatio-temporal Gabor filters on the frequency spectrum of a video sequence, so
it integrates information about both the motion and the scene structure. The GIST3D
feature space is g X s X k dimensional, where g is the number of Gabor filters at dif-
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ferent scales and orientations in the spatio-temporal frequency domain, s is a number
of non-overlaping sub-volumes of user-defined size (width x height x #frames) and
k is a number of key-clips (by default, the authors define a key-clip as a video block
of 64 frames). We used g = 68, s = 512 and k = 1, resulting in 34816 features. The
local video descriptors may require the background subtraction or tracking, whereas
the GIST3D does not need these steps and represents each video with a single feature
vector. The global descriptors are in general not invariant to viewpoint changes and
camera motion.

6.3.4 Results and discussions

The classification results (correct classification rate in %) of the tested methods are reported
in Table 6.2 for both datasets. Highest scores are shown in bold. As it can be seen, the pro-
posed descriptor gives the highest accuracy for both datasets. Without PCA dimensionality
reduction, it outperforms all the others (including the two video sequences recognizers), in
particular on the larger and more diverse Dyntex++ dataset for which it appears to be approx-
imatively 10% better. The same increase of performance (10%) can be noticed as compared
to the ordinary OCLBP it extends to the spatio-temporal domain, for both datasets. The per-
formance of OCLBP-TOP is not necessarily related to the feature size when compared to
LGBP-TOP and HOG/HOF whose produced histograms are respectively 11 and 7 times big-
ger. Even if the dimensionality reduction by PCA affects the performance of the proposed
OCLBP-TOP as one could expect, especially for the Dyntex++ dataset, it is worthy of note
that it gives quite similar results to LBP-TOP, but significantly better results than LGBP-TOP.

Table 6.2: Overall classification results (%)

YUPENN Feature
Descriptors Dyntex++ (%) Dynamic Scenes (%) Size
OCLBP (2004) [133] 70.14 77.85 1536
LBP-TOP (2007) [240] 71.88 85.37 768
OCLBP-TOP [this thesis] 80.58 86.90 4608
LGBP-TOP (2013) [5] 68.69 84.47 50976
LGBP-TOP + PCA 52.08 63.57 768
OCLBP-TOP + PCA [this thesis] 73.04 84.76 768
HOG/HOF (2008) [113] 72.75 78.80 288
GIST3D (2012) [182] 70.43 63.33 34816

To go a little bit further in the analysis, Tables 6.4 and 6.5 show some popular class
performance measures (Precision, Recall and F-score in %) obtained on the Dyntex++ and
YUPENN dataset using the tested local binary pattern on Three Orthogonal Planes (TOP)
descriptors. We analyze the descriptors studied in this work in various cases:

Case 1. Performance of descriptors close to 100%: For the former dataset, both
the color and the texture are very important in some scenes such as: blossoming tree in the
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wind, escalator stairs in motion, waves on beach, underwater life (soft texture), underwater
life (pulsating jellyfish), underwater life (flowers swaying with current), waterfall, branches
swaying in wind and smoke. This explains the much better precision, recall and F-score
measures obtained with our OCLBP-TOP on these particular classes. However, in the scenes
boiling water and wash cycle that are known to present more structured texture, the texture
information alone is sufficient, so that LBP-TOP reaches better scores while LGPB-TOP fails
and OCLBP-TOP is in the middle. On the opposite, for scenes where the color information is
crucial such as: river water and rain on water, LGBP-TOP is much more efficient thanks to
the Gabor filtering and the huge feature size, but our OCLBP-TOP is most of times between
the two. Same remarks hold for the latter dataset, where the color and texture appeared
to be very relevant in scenes like: beach, lightning storm and rushing river, whereas the
texture information is sufficient in some other scenes such as: forest fire, highway, ocean
and snowing. Although the proposed descriptor gives the highest average class performance
measures for both datasets (see Table 6.6), the errors in classification may occur if the color
and texture are similar as situations shown in the Figure 6.6.

In the case in which only one descriptor performs better than others: There
are some classes from Dyntex++ dataset that only LBP-TOP and OCLBP-TOP are able to
classify correctly, such as grass swaying in wind, evaporating water/fumes, underwater life
(soft texture) and water in sink. This is due to the fact that color and texture components are
more discriminative in these classes. However, the same descriptors cannot classify properly
some scenes such as artificial hair, ants and birds flying in sky. This implies that all measures
(precision, recall F-score) had a performance of 0%. For example, the artificial hair class
was misclassified as underw. life (more structured) class. This can be explained by color and
texture similarities in these classes. On the other hand, the LBP-TOP classified artificial hair
scene as water fountain due to its high texture similarities. It’s important to note that only
LGBP-TOP was able to classify the artificial hair, ants and birds flying in sky, possibly due
to color similarities in these scenes.

Case 3: In the case in which each descriptors reach 100%: In some cases preci-
sion, recall F-score measures had 100% of success. The OCLBP-TOP was also as successful
for textures as: underw. life (pulsating jellyfish), underwat. life (flowers swaying with cur-
rent) and lamp globes swaying.. In these scenes the texture and color are very significant.
The LGBP-TOP also had 100% of success in some scenes in which color is very predomi-
nant such as: such as: artificial hair, rain on water and water fountain. Meanwhile in scenes
as the evaporating water/fumes the OCLBP-TOP had 100% of accuracy. In these scenes only
the texture feature is more significant.

Case 4. In which descriptors have bad performance (near 0%): We noted also
that any descriptor evaluated in this study was able to classify correctly the scene Faucet
water, please see Table 6.4. This may be explained by the fact that only one sequence is
available for this class in the Dyntex++ dataset, combined to a leave-one-out strategy. Note
however that the OCLBP-TOP classified fextured cloth scene as blossoming tree in the wind,
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and LBP-TOP classified the same scene as water fountain. In addition, the LBPG-TOP clas-
sified rextured cloth scene as Faucet water scene.

Figure 6.6: Similar images of different classes. From left to right: flag, and water
fountain classes from Dyntex++ dataset, fountain, and waterfall classes from YU-
PENN dataset.

6.3.5 Computational costs

The final result we give is about the computational time which may be important for some
application. Table 6.3 shows the average computational time (in seconds) to process a video
block of 256 x 256 x 64 (widthxheight x# of frames). Not surprisingly, the proposed OCLBP-
TOP needs much more time than the others local binary pattern based descriptors, because
of both the TOP extension (as compared to OCLBP), and the six separate channels computa-
tion (as compared to LBP-TOP). This is the price to be paid for combining color information
together with the texture so that the classification performance of dynamic textures increase.
Note that the times obtained using HOG/HOF and GIST3D are not achievable using local
binary patterns.

Table 6.3: Average computational time results

Descriptors Computational Time (s)
OCLBP (2004) [133] 39.94
LBP-TOP (2007) [240] 47.88
OCLBP-TOP [this thesis] 357.87
LGBP-TOP (2013) [5] 19.03
HOG/HOF (2008) [113] 541

GIST3D (2012) [182] 4.93
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Table 6.4: Class performance measures (%) of the local binary patterns on Three
Orthogonal Planes (TOP) for the Dyntex++ dataset

LBP-TOP LGBP-TOP  OCLBP-TOP

Class Prec. Rec. F Prec. Rec. F Prec. Rec. F
Textured cloth 0 0o 0 0 0 0 0 0 0
Artificial hair 0O 0 O 100 100 100 O O O
Blossoming tree in the wind 80.0 100 88.9 83.3 62.5 71.4 88.9 100 94.1
Escalator stairs in motion 80.0 57.1 66.7 71.4 45.5 55.6 100 57.1 72.7
Waves on beach 85.7 82.8 84.2 66.7 50.0 57.1 93.3 96.6 94.9
Grass swaying in wind 70.8 68.0694 0 0 0 87.5 84.0 85.7
Boiling water 80.0 100 88.9 66.7 100 80.0 50.0 100 66.7
Evaporating water/fumes 100 100 100 O 0 0 80.0 80.0 80.0
River water 66.7 64.0 65.3 87.5 87.5 87.5 83.3 80.0 81.6
Faucet water 100 33.3 50.0 70.0 77.8 73.7 75.0 100 85.7
Fish swimming 66.7 100 80.0 100 25.0 40.0 60.0 75.0 66.7
Underwater life (soft texture) 63.6 63.6 636 0 0 0 80.0 72.7 76.2
Underw. life (more structured) 40.0 50.0 44.4 66.7 40.0 50.0 28.6 50.0 36.4
Underw. life (pulsating jellyfish) 66.7 66.7 66.7 83.3 100 90.9 100 100 100
Underwat. life (flowers swaying with current) 66.7 100 80.0 100 66.7 80.0 100 100 100
Ants 0 0 O 667571615 0 0 O
Waterfall 57.1 50.0 53.3 50.0 28.6 36.4 88.9 100 94.1
Candles 85.7 66.7 75.0 100 66.7 80.0 70.0 77.8 73.7
Rain on water 75.0 75.0 75.0 100 100 100 75.0 75.0 75.0
Flushing water 75.0 60.0 66.7 56.5 81.3 66.7 100 60.0 75.0
Water in sink 833 100 909 0 O 0 833 100 90.9
CD in CD player 66.7 66.7 66.7 35.7 29.4 32.3 66.7 66.7 66.7
Wash cycle 87.5 100 93.3 83.3 62.5 71.4 85.7 85.7 85.7
Water pouring into sink 714 714 71.4 72.7 88.9 80.0 83.3 71.4 76.9
Lamp globes swaying 100 66.7 80.0 100 44.4 61.5 100 100 100
Lights blinking 100 33.3 50.0 69.7 76.7 73.0 50.0 66.7 57.1
Leaves on branches swaying with wind 76.5 81.3 78.8 54.5 60.0 57.1 93.3 87.5 90.3
Birds flying in sky 0 0 0 532676595 0 0 O
Pond water 64.3 52.9 58.1 77.8 77.8 77.8 75.0 70.6 72.7
Rotating wind ornament 69.2 100 81.8 75.0 75.0 75.0 77.8 77.8 77.8
Vehicle traffic on road 72.7 88.9 80.0 100 28.6 44.4 81.8 100 90.0
Flag 75.9 73.3 74.6 72.2 89.7 80.0 81.5 733 77.2
Branches swaying in wind 61.5 80.0 69.6 77.8 84.0 80.8 90.0 90.0 90.0
Water fountain 58.1 67.6 62.5 100 100 100 73.2 81.1 76.9
Clouds 100 66.7 80.0 71.4 100 83.3 85.7 66.7 75.0

Smoke 90.9 62.5 74.1 704 76.0 73.1 92.3 75.0 82.8
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Table 6.5: Class performance measures (%) of the local binary patterns on Three
Orthogonal Planes (TOP) for the YUPENN dataset

LBP-TOP LGBP-TOP OCLBP-TOP
Class Prec. Rec.c. F Prec. Rec.c. F Prec. Rec. F
Beach 89.3 833 86.2 813 86.7 839 933 933 933
Elevator 90.6 96.7 935 968 100 984 935 96.7 95.1
Forest Fire 90.0 90.0 90.0 722 86.7 78.8 86.7 86.7 86.7
Fountain 654 567 60.7 833 66.7 741 741 66.7 70.2
Highway 80.6 83.3 82.0 793 76.7 78.0 80.0 80.0 80.0
Lightning Storm 89.3 83.3 86.2 86.7 86.7 86.7 93.5 96.7 95.1
Ocean 100 100 100 96.7 96.7 96.7 96.8 100 98.4
Railway 844 90.0 87.1 96.0 80.0 87.3 86.2 83.3 84.7

Rushing River  84.8 933 88.9 80.6 833 82.0 93.5 96.7 95.1
Sky-Clouds 96.3 86.7 91.2 84.8 933 889 92.6 833 §7.7

Snowing 96.3 86.7 91.2 788 86.7 825 86.7 86.7 86.7
Street 929 86.7 89.7 87.1 90.0 885 853 96.7 90.6
Waterfall 622 76.7 68.7 88.0 733 80.0 75.0 700 724

Windmill Farm 80.6 83.3 82.0 90.0 90.0 90.0 77.4 80.0 78.7

Table 6.6: Average measures (%) of the local binary patterns on Three Orthogonal
Planes (TOP) for the Dyntex++ and YUPENN datasets

LBP-TOP LGBP-TOP  OCLBP-TOP
Data set Prec. Rec. F Prec. Rec. F Prec. Rec. F
Dyntex++ 67.7 65.2 64.7 66.2 59.7 60.6 71.7 72.8 71.3
YUPENN 85.9 85.5 85.5 85.8 85.5 85.4 86.8 86.9 86.8

6.4 Conclusion

In summary, a new 3-dimensional joint color-texture descriptor for dynamic texture analysis
is proposed. It combines the strengths of local binary patterns and it describes joint color-
texture in a spatio-temporal domain. Then, we compared the OCLBP-TOP with its direct
competitors LBP-TOP and LGBP-TOP on real videos of Dyntex++ and YUPENN Dynamic
Scenes datasets. The experimental results have shown that OCLBP-TOP outperforms the
LBP-TOP, LGBP-TOP descriptors, and other three traditional methods. In addition, our de-
scriptor can be applied in various type of applications including facial expression analysis,
human activity recognition, among others.



Chapter 7

Conclusions

In this thesis we set out to improve background subtraction by focusing on visual features.
Background subtraction is a crucial task in many computer vision applications including
surveillance devices in public spaces, traffic monitoring and industrial machine vision. We
focused on developing robust texture descriptor to deal with illumination changes, noise,
and produces short histograms. In addition, we present two efficient approaches able to
select suitable features for each pixel/region to distinguish the foreground objects from the
background. The key contributions of the thesis are as follows.

¢ An eXtended Center-Symmetric Local Binary Pattern (XCS-LBP) Descriptor.
The XCS-LBP descriptor is introduced in this thesis. It combines the strengths of the
ordinary Local Binary Pattern (LBP) and the Center-Symmetric (CS) LBPs. Thus, the
new variant XCS-LBP produces a shorter histogram than LBP, by its CS-construction.
It is also tolerant to illumination changes as LBP and CS-LBP are whereas CS-LDP
is not, and robust to noise as CS-LDP is whereas LBP and CS-LBP are not. Despite
our descriptor have been proposed recently, it has been widely improved and used in
different applications by some authors. For instance, Du and Qin (2016) [57] presented
auniform pattern version of our descriptor (called UXCS-LBP). The authors combined
the histograms extracted by UXCS-LBP and CS-LDP. The experimental results show
that this combination is robust under scenes ranging from dynamic background to
changing illuminations. Nagananthini and Yogameena (2017) [142] used the XCS-
LBP for crowd count application. Firstly, the authors extracted XCS-LBP features of
the images under sudden illumination changes. Then, these features are trained using
deep Convolutional Neural Network (CNN). The proposed approach display a warning
message if the people count overcome a threshold by avoiding crowd disaster.

¢ An Ensemble Pixel-based for Feature Selection in Background Subtraction. We
proposed an online weighted one-class random subspace ensemble for feature selec-
tion (OWOC-RS). The proposed method is designed to automatically select the best
features for different pixels of the image, and the more relevant features are used for
foreground segmentation. In addition, a mechanism to update these importances fea-
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tures over time is presented.

* An Ensemble Superpixel-based for Feature Selection in Background Subtraction.
We extended our OWOC-RS approach by proposing a novel methodology for selecting
features based on wagging. Our proposal is able to select suitable features for each
region to distinguish the foreground objects from the background. In addition, it uses
superpixel approach that not only increases the efficiency in terms of time and memory
consumption, but also can improves the segmentation performance. The experiments
conducted on challenging videos have show that this approach is more efficient in
terms of time and memory consumption than our previous approach.

* An 3D Joint Color-Texture Descriptor for Dynamic Texture Recognition. The last
contribution of this thesis is the proposed 3-dimensional joint color-texture descriptor
for dynamic texture analysis. We extended the spatial color-texture OCLBP descriptor
to the spatio-temporal domain by combining it with the LBP-TOP one. By fusing color
and dynamics textures, the derived OCLBP-TOP extracts more detailed information
from the video sequence to be analyzed.

7.1 Limitations

The benefits of the contributions introduced in this thesis have been demonstrated in the
several evaluative experiments. Nonetheless, there are limitations which could open oppor-
tunities for further investigations or new lines of thought.

* As the proposed XCS-LBP descriptor does not include temporal relationships between
neighboring pixels, it is not very suitable to deal with dynamic scenes. However, the
temporal domain can be used to discriminate one object from another by analyzing its
temporal motion patterns, thereby playing a crucial role in moving object detection.

e Our proposed online weighted ensemble of one-class SVMs (Support Vector Ma-
chines) pixel-based for feature selection is designed to automatically select the best
features for different regions of the image. The main drawback is that this method only
reaches the highest accuracy when the number of features is huge. Furthermore, each
base classifier learns a feature set instead of individual features. To overcome these
limitations, in this thesis we extended our approach by proposing a novel methodology
for selecting features based on wagging. In addition, we also adopted a superpixel-
based approach instead of pixel-level approach. This does not only increases the ef-
ficiency in terms of time and memory consumption, but also can improves the seg-
mentation performance. Both approaches proposed to select the best feature use a
mechanism to update the relative importance of each feature, discarding insignificant
features over time. This mechanism requires ground-truth data, but usually ground
truth data is not available for BS in real environments.

* Not surprisingly, the proposed OCLBP-TOP needs much more time than the others lo-
cal binary pattern based descriptors, because of both the TOP extension (as compared
to OCLBP), and the six separate channels computation (as compared to LBP-TOP).
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7.2

This is the price that must be paid for combining color information together with the
texture, so that the classification performance of dynamic textures increase. In order
to solve this problem, feature selection methods can be used for selecting the best
channels before of the dynamic texture classification.

Future works

Developing local binary patterns features. Local binary pattern features are im-
portant to describe different scenes in many computer vision applications. In this
thesis, we proposed a robust local binary patterns descriptor for background subtrac-
tion called XCS-LBP as well as a second descriptor named OCLBP-TOP for dynamic
texture recognition. A future work will be the extension of XCS-LBP to include tem-
poral properties. We also intend to reduce the computation time of our OCLBP-TOP
by proposing to use only the best channels instead of all the channels to recognize
dynamic textures.

Feature selection in background subtraction. In the BS field, the use of feature se-
lection methods is less studied so far. Nevertheless, the feature selection can be used
to improve the detection of foreground objects [149] in complex scenes thanks to their
capability to select a subset of highly discriminant features removing irrelevant and
redundant ones, e.g. in [149]. Therefore, the feature selection approaches provide op-
portunity for future research. A possible future work is hte extension of our proposed
approaches in this thesis by developing a mechanism to suitably update the importance
of each feature discarding insignificantly features over time without ground-truth data.
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Appendix A

Notations and Symbols

Xc

Ve
T,t1,t2,time,M

number of neighboring pixels

radius of neighboring pixels; radius of a hypersphere
gray value of a pixel in a neighborhood

gray value of the center of a neighborhood
universal variable used with many functions

x coordinate of the center of a neighborhood

y coordinate of the center of a neighborhood

a user-defined threshold; number of iterations
training set

slack variables

center of a hypersphere

user parameter that controls the trade-off of a hypersphere
weight samples

previous training set

newly added training set

distribution of a previous training set

original features

number images/samples

user-defined number of base classifier

set of diverse base classifier/background models
weight distribution

number of times a pixel was correctly classified
number of times a pixel was incorrectly classified
learning rate parameter

number of best base classifiers

accuracy of a base classifier

distance metric

normalization factor

scale parameter
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F support function

H(x) final/strong classifier

m(x) margin samples

Ve(1) number the first voted class
Ve(2) number the second voted class
TP true positive

FP false positive

FN false negative

FN false negative

k number of base classifiers

0 class

E normalization factor

r rank of a class

T stopping criterion

Pbest variable of evaluation

0 independent measure

S subset of features

A learning algorithm

v,B importance feature/classifier
bl number of negative examples
b2 number of positive examples



Appendix B

Local Binary Patterns Descriptors

The standardized formulas of the main LBPs are presented in the Tables below.

103



Table B.1: Local Binary Patterns and its variants

Ordinary Local Binary Pattern (LBP) [85]

P-1
LBPp.g (xe:ye) = Y, 5(gp —8c)2"
p=0

0 otherwise.

{1 ifx>0
s(x) =

The 7 is a threshold value.

Modified LBP [84]

P-1
LBPp.g (xe:ye) = ), s(8p — g +a)2”
p=0

{1 ifx>0
s(x) =

0 otherwise.

Uniform Local Binary Patterns (ULBP) [231]

where

P-1
. Y s(gp—g)2” ifUpr<2
LBPpR(xe,yc) = 4 p=0

P+1 otherwise.

Upr = L 3(s(sp—8)Ds(gpr1 —8) +

s(gp—1—gc)Ds (g0 —8c)

1 ifx>T
=4
0 ifx<T

A relatively small value for 7' should
be used, for example, 2 < T < 5.

!
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Opponent Color Local Binary Patterns (OCLBP) [116, 133]

P-1

LBPpy rep (Xe,ye) = Z S(gR_,, —&Re)
p=0
P-1

LBPp;;:Re6 (Xe,ye) = Z 5(§G.p —8G.c)
=0
Pl

LBPpyy rpp (Xe:Ve) = Z s(gB,p —8B.c)
=0
P-1

LBPpygsRp (Xe,ye) = Z S(ER.,IJ —8G.c)
=0

P-1
LBPpy g (Xe:Ve) = Z s(8rp — 8B.c)

=0

P-1

LBPpgy R (Xe,¥e) = Z S(B’G.p —8B.c)
p=0

OC — LBPp,, R, (¥e;¥e) = LBPpyg e (¥e5ve) ED
LBPpgg Rg (X Ye) @LBPPHE R (X, Ye) @
LBPpyg Ry (Xes Ye) @LBPPRB R (X, Ye) @

LBPpqy:Rap (Xe,Ye)

where gr ¢,86.c,8B,c correspond to the opponent color values of the center
pixel, respectively; gr.p,2G.p» &8,p correspond to the opponent color values
of the neighborhoods on the circles of radius R,. in the opponent color
channels and € denotes concatenation descriptor.

s(x) = {

1 ifx>0

0 otherwise.

co1



€LBP [206]
Pi &8 »
€LBPp g (Xc,ye) = ) 8 < - s) 2 )
= g s(0) ifx>0
- . . . . otherwise.
where g, and g), denote the gray value of the clockwise and counter-clockwise neighborhood of g;,. The €
is a noise parameter.
Adaptive eLBP [207]
P-1 N
8p—8&p p
€LBPp g (xc,yc) = ) s (7 - 8”.) 27 .
,;) 8c ¢ 5(x) ifx>0
otherwise.

when [¢8|> - G)y(,r), the threshold €” is calculated:

ub—y-oF -
e (n’ 2c if 1 > 00, )

8
g =

I
min (41, u) i 1 < — 06, )

8¢

when [if|< -Gy, the threshold € is calculated:

- ifpf <a-o,ur) &pf >0
e =
‘ N it > 06, &P <0
where i is the first obtained from the start N frames, the G, (,r) is the mean distribution of the N other

frames. The 7y, o and 1 are the constants, g. corresponds to the gray value of the center pixel, and the
max(+) and min(-) operators are used to restrict the threshold.
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Local Color Pattern (LCP) [47]

P-1
LBPp g (xc,yc) = Y, s(8p — & +a)2”
p=0

The mapping from LBP to uniform LBP is as follows:

P-1
Y B(LBPpg) ifUpg<2
LBPR#(xe,ye) = 4 p=0

P+1 otherwise.

Finally, the uniform LBP histogram is obtained as follows:

Hpgpi= Y. I{LBP(x.y) =i} [i=0,1,..2""
(xe.ye)ER

Finally, local color pattern (LCP) histogram is formed by concatenating
the quantized hue, luminance, and saturation histograms, summed over

the structuring element as follows:

Hicp = [Hpe Hium Hyar]

1(4) = {

1 if Ais true,
0 otherwise.

LO1



Local Binary Similarity Patterns (LBSP) [22]

LBSPP»R mec Z s 21)

where g, corresponds to the central pixel (whether from the current im-
age for intra-LBSP or from a reference frame for inter-LBSP), and g,
corresponds to the neighbor pixel (always in the current image).

Local SVD Binary Pattern ( LSBP) [76]

LBSPp g (xc,Yc) Zs 8p18c)2

where g. and g, are obtained as follow:
g(xe,ye) Z A and iq»: Ag/M

where A, indicates the jth singular value.

801
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Table B.2: Center-Symmetric Local Binary Patterns and its variants
Center-Symmetric Local Binary Patterns (CS-LBP) [86] o
P/2)—1
CS—LBPpr(xc,ye) = Y, s(gp—&prp2)2”
p=0

Center-Symmetric Local Derivative Pattern (CS-LDP)

where g; and g;, (p2) are the gray values of center-symmetric pairs of
pixels.

0 otherwise

{1 if x>T
s(x) =

[225]

(P/2)-1
CS — LDPp g (Xc,yc) =

s[[(gp—8e) (8 — ger(p2))] 27
p=0

1 ifx-y<0
s(x,y) =

0 otherwise.

601



eXtended Center-Symmetric Local Bi-
nary Pattern (XCS-LBP) [176]

(P/2)-1
XCS—LBPpg(xeiye) = ), s(g1(pc)+&2(p,c))2”
p=0
where g; and g; are defined by:
21(p.) = (8p — &pa(p/2) + 8

22(p,c) = (gp— &) (8p(p/2) —&c)

0 otherwise.

BackGround Local Binary Patterns (BG-
LBP) [51]

(P/2)-1
s(gp.m,gpip/))2" U (LBE ) <2
BGLBPpg(xc,y) = pz:;) P p+(P/2) 2 PR
Py otherwise.

1 P-1
m=5( et L e
=)
P

s(x)

Lif(((gp =m=gpip/a) Il (8p <m < gpi(p2))&&
= ((abs(gp —m) +abs(g,1(pj2y —m)) 2 T))

0 otherwise.

Ol
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Table B.3: Local Ternary Pattern and its variants

Local Ternary Pattern (LTP) [191]

LTPS = op 1 ifx>1,
(e e) 7,;631(&”7&‘) st(x) =¢0 if-t<x<r,
. N Lo . -1 ifx<—t
where T is scale factor indicating the comparing range.
Scale Invariant Local Ternary Pattern (SILTP) [120]
i P-1 01 ifx> (1+1)y,
SILTPEp(xc,ye) = p@j)& (8c-8p) se(xy) =410 ifx< (1—1)y,
00 otherwise.
where @ denotes concatenation operator of binary strings.
Scale Invariant Local States (SILS) [232] R
SILSp, (xc,ye) = st (8e,8p) 01 if x> (1+71)y,
st(x,y) =410 ifx < (1—1)y,
00 otherwise.

IT1



Scene Adaptive Local Binary Pattern

(SALBP) [229]

6
SALBPEg(%c,ye) = Y 52 (dif f,CB)2”
p=1

where diff is defined as subtraction of an gray value of a center pixel from that of
p—neighborhood pixel, CB(xc,y.) = {ci|1 <1< L(xc,y.)} implies the corresponding code-
book composed of L(x,y.)number of codewords.

se(x,y) = {

1 if x is matched to CB

0 otherwise.

Multi-Channel ~ Scale Invariant
Ternary Pattern (MC-SILTP) [132]

Local

P-1
SILTPEg(xe,ye) = @D s (gre-88.p)
=0

P-1
SILT P} kg (X, ¥e) = €D 52 (8G.c-8R p)
p=0

P-1
SILTP;R sRp (Xe,ye) = @Sr (gB.r«,gG.p)
p=0
MC = SILT P, Rug (%er¥e) = SILT PR R (%, ye) ED SILT P ok (¥, Ye)
@ SILTPE, & (xc,yc)

where gr ¢,86.c,88,c correspond to the RGB values of the center pixel, respectively; gr . 86.p
8B,p to the RGB values of the neighborhoods on the circles of radius Rggp in the RGB channels
and @ indicates concatenation operator of binary strings.

se(x,y) =

01 ifx> (1+1)y,
10 ifx<(1—1)y,

00 otherwise.

41!
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Table B.4: Spatial-Temporal Pattern and its variants

Spatio-temporal Local Binary Patterns (STLBP) [174]

P-1
LBPpg(X1,c,V1,c) = Z s(8p—81c)27,
=0
P-1
LBP;:}‘ (xl.z-~y1.c) = Z s (gl—l.p *gl—l.u) 27,
=0

Hi= Y I{LBPpp(xic,yic) =i} |i=0,1,..,2"""
(¥e,ye)ER

Hoi= ¥ H{LBP (o) =i} i=0,1,..,27!

(xe,ye)ER

where ¢ corresponds to the time, H, ; and H;_ ; are the histogram values at
i bin of H, and H,_,, respectively.

STLBP, = ®H,—1;+ (1 —w)H,; [i=0,1,...,2"7!

1(A) = {

1 if Ais true,

0 otherwise.

€l



Spatial-Temporal Local Binary Pattern (STLBP)
[175]

P-1 P-1
STLBPpg(xc,ye) = Z s(gp —g:)2" + Z u(gp 7gz)2p+/’
=0 =0

where g corresponds to the predictive values of the P.

[x[=T

otherwise.

Stereo Local Binary Pattern based on Appearance
and Motion (SLBP-AM) [229]

P-1
LBP; =Y s(gp—g)2",
=0

where j denotes the corresponding plane: O for the XY plane, 1 for the XT'
plane and 2 for the YT plane.

Hij= Y [I{LBP(g,—g.)=p} |i=0,1,..2"""
(e.ve)eR

where H; ; is the histogram value.

SLBP — AM = H;; |i=0,1,..,257!
j=0,12

if A is true,

otherwise.

144!
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Table B.5: Hybrid Local Binary Pattern and its variants

Spatial Extended Center-Symmetric Local
Binary Pattern (SCS-LBP) [226] (P/2)-1 , 0 if |8 (e yer—1) — Al yed—1) 1< 256 (g, yet 1)
SCS—LBPp.g (xc,yest) = Y. s(8(pn) — &pp/2)0) 20+ f=

=i 1 otherwise.

I (8emes) = Bxeyer—1)) 2P/

where fi(y, y. 1) and 6, ., 1) are estimated mean value and standard devia-
tion respectively corresponding to pixel g(xc, ye)-

Center Symmetric Spatio-temporal Local

Ternary Pattern (CS-STLTP) [223] ; (P/2)-1 1 ifx> (1+1)y,
CS—STLTP!(xe.ye.20) = 1) 5¢ (8(0):8(p+(p12))) st =40 ifx<(1-T)y,
p=0
—1 otherwise.

where sign |# indicates stretching elements into a vector and ;j denotes the
planes: XY, XT,and YT.

GLl



Center Symmetric Scale Invariant Local Ternary Patterns (CS-

SILTP) [218] R P/2-1 -
CS—SILTPig(xe,ve) = D P s (g'; -,gj,wz) 01 ifx> (1+1)y,
=—R p=0
" r st(x,y) 10 ifx<(1—1)y,
where g’ denotes the scene image captured at the time instant 7, g;,*’ and g’p:,,/z 00 otherwise.
are the center-symmetric pixel locations lying on the cubic surface.
Spatiotemporal Scale Invariant Ternary Pattern (ST-SILTP)
[100] A
ST —SILTPE g(xe,e) = D st (ge-82) 01 ifx> (1+1)y,
p=0
st(x,y) 10 ifx<(1—1)y,
where g. denote the gray values of neighboring pixels in the spatiotemporal neigh- 00 otherwise

borhood.
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Appendix C

List of Publications

This dissertation has led to the following communications:

Journal Papers

* Bouwmans, T. and Silva, C. and Marghes, C. and Zitouni, S. and Bhaskar, H. and
Frélicot, C. “On the Role and the Importance of Features for Background Modeling
and Foreground Detection”. Computer Science Review, 2016 (submitted).

* Silva, C. and Gonzalez, J. and Bouwmans, T. and Frélicot, C. “3D joint color-texture
descriptor for dynamic texture recognition”. IET Computer Vision, 2017 (in revision).

¢ Silva, C. and Bouwmans, T. and Frélicot, C. “Superpixel-based incremental wagging
one-class ensemble for feature selection in foreground/background separation”. Pat-
tern Recognition Letters (PRL), 2017 (submitted).

Book chapters

* Silva, C. and Bouwmans, T. and Frélicot, C. “Features and Strategies Issues”. Chapter
on the handbook “Background Subtraction for Moving Object Detection: Theory and
Practices”, 2017 (in progress)

117



118 LIST OF PUBLICATIONS

Conferences

e Silva, C. and Bouwmans, T. and Frélicot, C. “An eXtened Center-Symmetric Local
Binary Pattern for Background Modeling and Subtraction in Videos”. In the Pro-
ceedings of the 10th International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications (VISAPP), Berlin, Germany (oral pre-
sentation), March, 2015.

¢ Silva, C. and Bouwmans, T. and Frélicot, C. “Online Weighted One-Class Ensemble
for Feature Selection in Background/Foreground Separation”. In the Proceedings of
the 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico
(oral presentation), December, 2016.

Websites

* Behance.net project: https://www.behance.net/carolinepacheco
e LBPLibrary: https://github.com/carolinepacheco/lbplibrary

* Caroline Silva’s homepage: http://lolynepacheco.wixsite.com/carolinesilva

Social networks

e ResearchGate: http://https://www.researchgate.net/profile/Caroline_Silva6
e Linkedin: https://www.linkedin.com/in/carolinepes

* Academia: https://univ-larochelle.academia.edu/CarolineSilva


https://www.behance.net/carolinepacheco
https://github.com/carolinepacheco/lbplibrary
http://lolynepacheco.wixsite.com/carolinesilva
http://https://www.researchgate.net/profile/Caroline_Silva6
https://www.linkedin.com/in/carolinepes
https://univ-larochelle.academia.edu/CarolineSilva
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Extraction et sélection de caractéristiques pour la détection d’objets mobiles dans
des vidéos

Résumé :

Dans ce manuscrit de thése, nous présentons un descripteur robuste pour la soustraction d’arriere-plan qui
est capable de décrire la texture a partir d’une séquence d’images est proposé. Ce descripteur est moins
sensible aux bruits et produit un histogramme court, tout en préservant la robustesse aux changements
d’éclairage. Un autre descripteur pour la reconnaissance dynamique des textures est également proposé.
Le descripteur permet d’extraire non seulement des informations de couleur, mais aussi des informations
plus détaillées provenant des séquences vidéo. Enfin, nous présentons une approche de sélection de
caractéristiques basée sur le principe d ?apprentissage par ensemble qui est capable de sélectionner les
caractéristiques appropriées pour chaque pixel afin de distinguer les objets de premier plan de I’arriere-
plan. En outre, notre proposition utilise un mécanisme pour mettre a jour I’importance relative de chaque
caractéristique au cours du temps. De plus, une approche heuristique est utilisée pour réduire la complexité
de la maintenance du modele d’arriere-plan et aussi sa robustesse. Par contre, cette méthode nécessite
un grand nombre de caractéristiques pour avoir une bonne précision. De plus, chaque classificateur de
base apprend un ensemble de caractéristiques au lieu de chaque caractéristique individuellement. Pour
compenser ces limitations, nous avons amélioré cette approche en proposant une nouvelle méthodologie
pour sélectionner des caractéristiques basées sur le principe du « wagging ». Nous avons également adopté
une approche basée sur le concept de « superpixel » au lieu de traiter chaque pixel individuellement. Cela
augmente non seulement I’efficacité en termes de temps de calcul et de consommation de mémoire, mais
aussi la qualité de la détection des objets mobiles.

Mots clés : détection d’objets mobiles, soustraction de I’arriere-plan, apprentissage par ensemble, sélection
de caractéristique, extraction de caractéristique.

Feature extraction and selection for background modeling and foreground detection

Summary:

In this thesis, we present a robust descriptor for background subtraction which is able to describe texture
from an image sequence is proposed. The descriptor is less sensitive to noisy pixels and produces a short
histogram, while preserving robustness to illumination changes. Moreover, a descriptor for dynamic texture
recognition is also proposed. This descriptor extracts not only color information, but also a more detailed
information from video sequences. Finally, we present an ensemble for feature selection approach that is
able to select suitable features for each pixel to distinguish the foreground objects from the background
ones. Our proposal uses a mechanism to update the relative importance of each feature over time. For
this purpose, a heuristic approach is used to reduce the complexity of the background model maintenance
while maintaining the robustness of the background model. However, this method only reaches the highest
accuracy when the number of features is huge. In addition, each base classifier learns a feature set instead
of individual features. To overcome these limitations, we extended our previous approach by proposing a
novel methodology for selecting features based on wagging. We also adopted a superpixel-based approach
instead of a pixel-level approach. This does not only increases the efficiency in terms of time and memory
consumption, but also can improves the segmentation performance of moving objects.

Keywords: moving object detection, background/foreground separation, ensemble learning, feature selec-
tion, feature extraction.
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