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Universitat Autònoma de Barcelona (Spain)

European Pr. Lyudmila Mihaylova

evaluators Department of Automatic Control and Systems Engineering

University of de Sheffield (UK)

Pr. Marc Van Droogenbroeck

Department of Electrical Engineering and Computer Science
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drews Sobral for his inspiring support and for being my best companion in this challenging

journey.

Last but not least, I would also like to thank my friends and colleagues in the University

of La Rochelle, especially those from the Laboratoire MIA, Mathématiques, Image et Appli-

cations. Their support has been invaluable throughout my Ph.D. study, making my time both

memorable and enjoyable.

i





Abstract

In recent years, background subtraction has been one of the most active research topics in

computer vision due to many potential applications including surveillance devices in pub-

lic spaces, traffic monitoring and industrial machine vision. Background modeling methods

have increased its efficiency for robust modeling of the background enabling the detection of

moving objects in any visual scene. Despite several background subtraction and foreground

detection approaches have been proposed recently, no traditional algorithm today still seem

to be able to simultaneously address all the key challenges of illumination variation, dynamic

camera motion, cluttered background and occlusion. This limitation can be attributed to the

lack of systematic investigation concerning the role and importance of features within back-

ground modeling and foreground detection. In this thesis, we address this issue by proposing

a novel and effective method to deal with the background subtraction problems focused on

visual features.

Firstly, a comprehensive survey of the main features used in the context of background

subtraction is introduced. In addition, the traditional approaches for feature selection in-

cluding the recent works in this domain are discussed. Secondly, a robust descriptor for

background subtraction which is able to describe texture from an image sequence is pro-

posed. The descriptor is less sensitive to noisy pixels and produces a short histogram, while

preserving robustness to illumination changes. Moreover, a descriptor for dynamic texture

recognition is also proposed. This descriptor extracts not only color information, but also a

more detailed information from video sequences.

Finally, we present an ensemble for feature selection approach that is able to select suit-

able features for each pixel to distinguish the foreground objects from the background ones.

Our proposal uses a mechanism to update the relative importance of each feature over time.

For this purpose, a heuristic approach is used to reduce the complexity of the background

model maintenance while maintaining the robustness of the background model. However,

this method only reaches the highest accuracy when the number of features is huge. In addi-

tion, each base classifier learns a feature set instead of individual features. To overcome these

limitations, we extended our previous approach by proposing a novel methodology for se-

lecting features based on wagging. We also adopted a superpixel-based approach instead of a

pixel-level approach. This does not only increases the efficiency in terms of time and memory

consumption, but also can improves the segmentation performance of moving objects.
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Résumé

Durant ces dernières années, la soustraction de l’arrière-plan a été l’un des sujets de recherche

les plus actifs dans la vision par ordinateur en raison des nombreuses applications comme

les dispositifs de surveillance dans les espaces publics, la surveillance du trafic et la vision

industrielle. Les méthodes de modélisation du fond ont augmenté leur efficacité pour la

modélisation robuste de l’arrière-plan permettant la détection d’objets mobiles dans n’importe

quelle scène visuelle. Bien que plusieurs approches de soustraction du fond aient été pro-

posées récemment, aucun algorithme traditionnel n’est aujourd’hui capable d’aborder si-

multanément tous les défis clés du domaine comme les variations lumineuses, les mouve-

ments dynamiques de la caméra, du fond encombré et de l’occlusion. Cette limitation peut

être attribuée à l’absence d’une recherche systématique sur le rôle et l’importance des car-

actéristiques dans la modélisa-tion de l’arrière-plan et la détection de premier plan. Dans

cette thèse, nous abordons cette question en proposant une méthode nouvelle et efficace pour

traiter les problèmes de soustraction du fond centrés sur les caractéristiques visuelles.

Tout d’abord, une étude exhaustive des principales caractéristiques utilisées dans le con-

texte de soustraction du fond est présentée. En outre, les approches traditionnelles pour la

sélection des caractéristiques, y compris les travaux récents dans ce domaine, sont analysées.

Deuxièmement, un descripteur robuste pour la soustraction d’arrière-plan qui est capable de

décrire la texture à partir d’une séquence d’images est proposé. Ce descripteur est moins

sensible aux bruits et produit un histogramme court, tout en préservant la robustesse aux

changements d’éclairage. Un autre descripteur pour la reconnaissance dynamique des tex-

tures est également proposé. Le descripteur permet d’extraire non seulement des informations

de couleur, mais aussi des informations plus détaillées provenant des séquences vidéo.

Enfin, nous présentons une approche de sélection de caractéristiques basée sur le principe

d’apprentissage par ensemble qui est capable de sélectionner les caractéristiques appropriées

pour chaque pixel afin de distinguer les objets de premier plan de l’arrière-plan. En outre,

notre proposition utilise un mécanisme pour mettre à jour l’importance relative de chaque

caractéristique au cours du temps. De plus, une approche heuristique est utilisée pour réduire

la complexité de la maintenance du modèle d’arrière-plan et aussi sa robustesse. Par contre,

cette méthode nécessite un grand nombre de caractéristiques pour avoir une bonne précision.

De plus, chaque classificateur de base apprend un ensemble de caractéristiques au lieu de

chaque caractéristique individuellement. Pour compenser ces limitations, nous avons amélioré

cette approche en proposant une nouvelle méthodologie pour sélectionner des caractéristiques

basées sur le principe du ≪ wagging ≫. Nous avons également adopté une approche basée sur

le concept de ≪ superpixel ≫ au lieu de traiter chaque pixel individuellement. Cela augmente

non seulement l’efficacité en termes de temps de calcul et de consommation de mémoire,

v
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mais aussi la qualité de la détection des objets mobiles.
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Chapter 1

Introduction

This chapter presents an introduction about the background subtraction (BS) task, describes

its perspectives and challenges in scene modeling, and then we also detailed the main steps

in a background subtraction algorithm. Moreover, an outline of the thesis is included in this

chapter as well as a list of the main contributions.

1.1 Challenges in scene modeling

Background subtraction is an attractive research field in computer vision. It concerns a set

of methods that aim to differentiates the moving objects (the foreground) in the scene from

a robust model of the static environment (the background). BS has been fueled by many

academic scientists and developers over the last twenty years. This is rooted in its numerous

potential applications and the availability of surveillance cameras installed in security sensi-

tive areas such as banks, train stations, highways, and borders. Background subtraction can

be used for surveillance devices in public spaces (such as football stadiums, and big trade cen-

ters), in traffic monitoring (counting vehicles, detecting and tracking vehicles) and industrial

machine vision (inspection and identification products and robot guidance). There are three

main conditions which assure a good functioning of the background subtraction methods: the

camera is fixed, the illumination is constant and the background is static, that is pixels have a

unimodal distribution and no background objects are moved or inserted in the scene. In these

ideal conditions, background subtraction gives good results. In practice, the appearance of an

outdoor or indoor scene depends on a variety of changes that can occur over time. Usually,

it is challenging to design a good background model able to tolerate these changes. There

are various situations that may affect scene appearance, thus reducing the accuracy of the BS

algorithms. To the best of our knowledge, the typical challenges of background subtraction

are [25, 100, 172]:

• Camera jitter: Usually, the camera jitter occurs in outdoor scenes. For instance, strong

winds may cause a fixed camera to sway back and forth, causing nominal motion in

the video sequence. This nominal motion is usually indistinguishable from the motion

of foreground objects, and this leads to undesirable detection results.

1
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• Camera automatic adjustments: Automatic exposure (means the amount of light that

falls onto the sensor in a digital camera) is a setting available on most cameras today.

The camera captures the light reflected by objects with homogeneous characteristics

(e.g. intensity, texture) in the environment making the task of segmentation difficult.

The foreground aperture occurs when parts of large moving homogeneous regions

become part of the background instead of being considered as moving pixels.

• Pan-Tilt-Zoom (PTZ): The most research in background subtraction has been on sta-

tionary cameras, whereas PTZ cameras have become increasingly popular because of

their ability to cover a wide field of view. Existing BS algorithms fail in the case of

moving cameras as neither foreground objects nor background pixels are stationary.

• Video noise: Normally, a video signal is covered with noise caused by acquisition,

coding, processing steps and transmission. This noise appearance disturbs the original

information producing undesirable effects on the background scene, such as artifacts,

unrealistic edges, unseen lines, and corners.

• Intermittent object motion: The intermittent motion happens when a moving object

stops for a long period of time or a background object starts moving. This situa-

tion results in a “ghost” or “hole” in the background that is interpreted as part of the

foreground. Some examples include objects that suddenly start moving (e.g. parked

vehicle driving away, and abandoned objects). How to manage this situation depends

on the context. Indeed in some applications, motionless foreground objects must be

incorporated to the background model, and in others not.

• Dynamic backgrounds: In a dynamic environment, the state of the scene can changes

continually. In other words, the transformation from one temporal stable to another

is generally the outcome of an external event, or a chain of events (i.e. flowing wa-

ter, moving leaves or shrubs). In such environment, it is challenging to have a good

representation of the background model since even some part of the scene containing

moving elements may be regarded as foreground.

• Presence of shadows: The detection of cast shadows as moving object is very com-

mon, producing undesirable results. For example, the shadows are so different from

background that may mistakenly be detected as foreground.

• Illumination changes: In indoor or outdoor environment, illumination changes often

occur over time and may cause false detections. For instance, in outdoor environments

the gradual changes in appearance can be caused by a wide range of illumination

conditions, in particular those encountered during a typical 24-hour day-night cycle.

Moreover, sudden illuminations can occur due to turning on/off the light switch in an

indoor scene. It is important that the background model be invariant or adaptable to

these kind of changes.

• Bootstrapping: The initial video data without moving objects is not always available,

then the representative background model cannot be produced. Thus, an initialization

process is necessary to learn the correct background model over time.

• Camouflage: Some moving object can looks like the background, or some portion of

it is camouflaged with the background (the so-called camouflage effect). This leads to

an erroneous distinguish between foreground and background.
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(a) Large shadows. (b) Variations lighting. (c) Large reflections.

Figure 1.1: Scenes from the same avenue under different conditions.

• Foreground aperture: The presence of moving objects can have the same motion

features. Consequently, shadows usually make the geometrical shape of the moving

objects distorted, and sometimes causing the fusion of moving objects.

• Night scenes: The videos captured at night are still a challenging task. Night scenes

usually cause high false detections due to dramatic lighting change and low contrast

between foreground and background.

• Challenging weather: In some cases, the background subtraction algorithm should

adapt to adverse weather condition such as air turbulence or snow storm that modifies

the background scene.

To address the above challenges, several researchers have proposed diversified methods

and its evaluation results have often been available by Change Detection web site1. Recent

experimental results have shown that the biggest problem is the distinction between the back-

ground and the foreground when the scene comes from night videos and videos captured

by PTZ cameras [100]. Another great challenge is when different challenges occur in the

same scene. Figure 1.1 shows three situations at the same avenue. While Figures 1.1a and

1.1b show shadows and different light variations, the Figure 1.1c displays large reflections.

Despite all these situations are handled quietly nowadays [20,58,150,185,205], they still dis-

turb the foreground detection process. Note that Figure 1.1 shows different situations, such

as large shadows, light variations, and also large reflections. It is important to note that, until

now, there is no background subtraction algorithm that is able to solve all of these challenges

at the same time, making the BS field even more challenging.

1.2 Background subtraction steps

This section discusses the different steps related to background subtraction. Figure 1.2 shows

an overview of these steps. In essence, background subtraction consists to output a binary

segmentation map by initializing and updating a model of the static scene, which is named the

background (BG) model, and comparing this model with the input image. Pixels or regions

with a noticeable difference are assumed to belong to moving objects (they constitute the

1http://wordpress jodoin.dmi.usherb.ca/results2014/
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ability than a single model. The hot wave of research on ensemble learning began in 1990,

however its efficiency has been proven until the current days. In the contest held in last year

by ImageNet Large Scale Visual Recognition Challenge (ILSVRC), software programs com-

pete to correctly classify and detect objects and scenes. The best performance was achieved

by algorithms that used an ensemble of deep neural networks (see the results in 2.) Ensemble

for feature selection extends the traditional feature selection methods by looking for a set of

feature subsets that will favour disagreement among the ensemble members [186]. Surpris-

ingly, little BS works have been done to date based on feature selection approaches, becoming

this subject an interesting research topic in the BS context.

1.4 Contributions of the thesis

Given the above importance of the features in background subtraction, we present below the

contributions of the thesis. The list of publications concerning the thesis can be found in

Appendix C.

1. A novel texture-based descriptor, namely eXtended Center-Symmetric Local Binary

Pattern (XCS-LBP). The descriptor is less sensitive to noisy pixels and produces a

short histogram, while preserving robustness to illumination changes.

2. A new pixel-based ensemble for feature selection in background subtraction to deal

with the challenges enumerated in the Section 1.1. The proposed approach selects

automatically the best features for different pixels of the image, and the most relevant

features are used for foreground segmentation. In our framework, the background is

modeled by different features including our proposed XCS-LBP descriptor.

3. Our pixel-based ensemble for feature selection only reaches the highest accuracy when

the number of features is huge. Furthermore, each base classifier learns a feature set

instead of individual features. To overcome these limitations, we extend our previous

approach by proposing a novel methodology for selecting features based on wagging.

This approach is more efficient in terms of time and memory consumption. We also

added an ensemble pruning technique to eliminate the importances with very low val-

ues over time.

4. A robust 3D joint color-texture descriptor, called OCLBP-TOP developed in conjunc-

tion with the Computer Vision Center (CVC) at Autonomous University of Barcelona

(UAB). This descriptor allows to extract not only color information, but also a more

detailed information from video sequences.

2http://image-net.org/challenges/LSVRC/2016/results
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1.5 Thesis outline

The rest of the thesis is organized as follows.

• Chapter 2: conducts a literature review of the main features used in the context of

background subtraction. In addition, the traditional approaches for feature selection

including the recent works in this domain are also discussed.

• Chapter 3: presents a novel eXtended Center-Symmetric Local Binary Pattern (XCS-

LBP) descriptor for background modeling and subtraction in videos. The experiments

conducted on both synthetic and real videos (from the Background Models Challenge)

show that the proposed XCS-LBP outperforms its direct competitors for the back-

ground subtraction task.

• Chapter 4: describes an online weighted pixel-based ensemble learning method able

to select suitable features for each pixel to distinguish the foreground objects from the

background. In addition, our proposal uses a mechanism to update the importance of

each feature over time. Moreover, a heuristic approach is used to reduce the com-

plexity of the background model maintenance while maintaining the robustness of this

one. Experimental results on two datasets have shown the pertinence of the proposed

approach.

• Chapter 5: extends our approach proposed in Chapter 4 by a novel methodology for

selecting features based on wagging. Furthermore, we also adopted a superpixel-based

approach instead of a pixel-level approach. This does not only increased the efficiency

in terms of time and memory consumption, but also improved the segmentation per-

formance.

• Chapter 6: presents a particular work realized in conjunction with Computer Vision

Center (CVC) at Autonomous University of Barcelona (UAB). This chapter describes

a novel Opponent Color Local Binary Pattern from Three Orthogonal Planes (OCLBP-

TOP) descriptor for applications in the field of dynamic texture recognition. The

OCLBP-TOP fuses both, the texture and color information. As such, it allows to

extract not only color information, but also a more detailed information from video

sequences. The experiments conducted on real videos have shown that the proposed

OCLBP-TOP outperforms other state-of-the-art descriptors.

• Chapter 7: summarises the thesis with remarks, advantages, and limitations of the

proposed approaches. It also discuss the open issues and future works.



Chapter 2

Literature review

Features play an essential role for various computer vision applications and it is not different

for background subtraction. In the long history of BS, various features have been used, im-

proved or even proposed to address BS challenges in background modeling. Another way to

deal with the BS challenges is to select a subset of highly discriminant features for each pixel,

region or cluster in a image sequence. This can be done automatically by using feature selec-

tion approaches. This chapter begins with a review of the main features used in the context of

BS, then we discuss the traditional and recent approaches for feature selection including the

important BS works in this domain. This chapter corresponds to a concise version of our re-

cent survey submitted to Computer Science Review, 2016 [26]. Furthermore, an open source

library, called LBPLibrary1, was developed to provide a collection of local binary patterns

variants. The library was designed for the problem of background-foreground separation in

videos.

2.1 Features for background modeling

Background modeling is an important step in detecting moving objects in video sequence.

A very important factor in background modeling is the choice of the transformation that is

applied to the original data in order to obtain the features that are used. Features (descriptors

or attributes) is a set of measurements describing an object such as points, edges or corners.

In background subtraction, the features characterize a picture element captured in the current

frame of a video sequence and are compared against a known background model to classify it

as either foreground or background. Feature representations can take multiple forms and can

be computed for and from: a pixel, a region or a cluster. Practically, there are several types

of features which can be computed either in the spatial, temporal, spatio-temporal or depth

transform domain. Some of the features commonly used within the background modeling

literature includes: color features, edge features, stereo features, motion features and texture

1https://github.com/carolinepacheco/lbplibrary

9
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features. These features can be classified from different view points such as: by level, by type

in a specific domain and by intrinsic properties. In the following sections, these view points

are discussed in more details.

2.1.1 Classification by level

The size of the picture element chosen for interpreting necessary features that faithfully rep-

resent its characteristics plays a crucial role in background modeling. The size of the picture

element that is used to model the background and hence for comparing the current image

frame to the background model, can either be a pixel [70], a region [70] or a cluster [17] with

a feature value.

• Pixel-level: Most approaches for background subtraction are based on pixel-level

modeling which assumes adjacent pixels are independent. These approaches build

a separate model for each pixel, such as Gaussian Mixture Model (GMM) [187, 244,

246], Kernel Density Estimation (KDE) [58], and non-parametric approaches based

on sample consensus (Pixel-based Adaptive Segmenter (PBAS) [88] and ViBe [12]).

The pixel-level approaches are usually effective, but they cannot discriminate well the

variations of the pixel’s value caused by the presence of foreground objects and natural

illumination changes, since each model knows only history of the corresponding pixel.

In fact, such illumination changes is learnt in the background model over a period of

time, it is practically impossible to adapt it for sudden illumination changes [139].

• Region-level: Many studies have adopted a region-level background modeling by

splitting an image into blocks and calculating the block-specific features. In this ap-

proach, instead of dealing with one pixel at time, the relationship among neighboring

pixels is modeled [236]. Compared with pixel-level modeling, the region-level one

gives richer features, and it is more robust in the case of illumination changes. Another

important advantages is their robustness to noise and the movement in the background.

However, the disadvantage is that the detection is less precise because only foreground

regions are segmented, making them unsuitable for applications that require a detailed

shape information of the foreground object.

• Cluster-level: A recent trend in background modeling is to consider region sizes

that are non-uniform across the image sequence. First, pixels in an image frame

are grouped using an application-specific homogeneity criteria, typically exploiting

clustering mechanisms as discussed in [17–19]. For example in Bhaskar et al. [17],

each cluster contains pixels that have similar features in the color space. Then, the

background model is applied on these clusters to obtain cluster of pixels classified as

background or foreground. This cluster-level approach gives less false alarms than

block-level approaches. Just like the region-level modeling, the cluster-level ones

boost efficiency in terms of both required memory and computation time, since fewer

models have to be kept in memory and updated at every frame.
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2.1.2 Classification by intrinsic properties

In this thesis, we define the features can be classified by their intrinsic properties into the

following categories:

• Spatial domain: At the beginning of the research in BS, most of the features were rep-

resented in the spatial domain. Basically, the spatial domain refers to the image plane

itself, and they assume that the scenes to be modeled are often static structures with a

little perturbation. Spatial features can cope well with the slight illumination changes,

but cannot usually handle either large (or sudden) changes or multiple moving objects

in the scene [95].

• Temporal domain: The temporal information can be an alternative choice to improve

the detection of non-stationary objects. The motion information can be exploited to

improve the discriminative power of the objects by including its temporal evolution.

The key idea of the temporal domain methods lie in the fact that different object’s

motion produces a defined motion pattern. The temporal domain can be used to dis-

criminate one object from another by analyzing its temporal motion patterns, thereby

playing a crucial role in moving object detection.

• Spatio-temporal domain: The spatio-temporal domain is usually suitable to deal with

dynamic background by modeling the spatial and temporal relationship and variations

simultaneously. For example, in an outdoor scene containing waving trees caused

by the presence of a strong wind, the regions occupied by the trees will be unstable

(random motion patterns) for a some period of time. The temporal domain methods

consider only the temporal variations and ignore the spatial variances which is useful

for a correct modeling of the background.

• Depth domain: The recent advances on distance image sensors enabled the use of the

depth information for many computer vision applications, specially in the BS field.

The depth information is an attractive element for the segmentation of moving objects

due to its robustness to deal with common BS problems such as shadows and camou-

flage (e.g. the similarity of the color and texture features of the moving object and the

scene background).

Various features for the above domains have been proposed and improved for background

subtraction. Figure 2.1 shows a brief overview of the features classified by its intrinsic prop-

erties.

2.1.3 Classification by type

Now, we present and analyze the different features mostly used in background modeling and

foreground detection in terms of robustness against the challenges in videos taken by fixed

cameras.
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shadows in a relatively static indoor scene. Using the MOG model, Harville et al. [82]

defined a chroma validity test based on the luminance Y as the chroma (U and V)

components become unstable when the luminance is low. When the test is not verified,

the chroma components of the current observation are not used and so are its current

Gaussian distributions. Furthermore, the detection in luminance was combined with

the detection in depth, improving its robustness to color camouflage.

• HSV color space: The HSV color space is used to improve the discrimination between

shadows and objects, classifying shadows as those pixels having the approximately the

same hue and saturation values compared to the background, but lower luminosity. For

example, Sun et al. [190] used the Hue-Saturation-Value (HSV) color space, because

the likelihood term in the MOG model shows stronger contrast in HSV space rather

than the RGB space, especially for objects that share similar appearance to the back-

ground (camouflage in color).

• HSI color space: HSI color space is closer to human interpretation of colors in the

sense that brightness, or intensity, is separated from the base color. HSI uses polar

coordinates. In the original MOG model, shadows are extracted as part of the object

mask when using the RGB color space. To address this problem, Wang and Wu [210]

used the HSI color space which tends to be shadow-removable. However, the obtained

results are not satisfactory due to the fragmented segmentation results by using hue and

saturation. In order to achieve both “shadow-rejection” and “segmentation stability

over time”, Wang and Wu [210] employed the MOG on chroma (hue and saturation)

and luma (intensity) separately. The fused results obtained by combining chroma and

luma is prepared using two criteria. This scheme reserves the advantage of using

chroma (i.e. avoiding shadow) and that of luma (i.e. stability of segmentation).

• Luv color space: Yang and Hsu [228] used the Luv components assuming indepen-

dence in the computation of covariance matrix required in the MOG model. Then,

Yang and Hsu [228] built an hybrid feature space with spatial and color features to

obtain a 6-dimensional hybrid feature vector for each pixel. A mean-shift procedure

classified each hybrid feature vector to its corresponding local maximum along the

gradient direction. Thus, a set of neighboring pixels associated with the same lo-

cal maximum (i.e. mode) is highly similar in this hybrid feature space. Yang and

Hsu [228] then assign pixel-level background likelihood for each pixel using the MOG

likelihood, and further obtain a smoothed version of MOG in terms of spatial and color

coherency.

• Improved HLS color space: Setiawan et al. [171] proposed to use the IHLS color

space which has the following advantage against the RGB color space. That is to

identify shadows region from an object by using luminance and saturation-weighted

hue information directly, without any calculation of chrominance and luminance. By

exploiting this color space in the MOG model, Setiawan et al. [171] obtained good

sensitivity to color changes and shadow.

• Ohta color space: The axes of the Ohta space are the three largest eigenvectors of

the RGB space, found from the principal components analysis of a large selection

of natural images. This color space is a linear transformation of RGB. Using the

mean model, Zhang and Xu [235] applied the Ohta color space. The three orthogonal



2.1. Features for background modeling 15

color features of the Ohta color space are important components for representing color

information. Good results in the case of illumination changes and shadows in outdoor

scenes are achieved by using only the first two components which are combined with

a texture feature.

• YCrCb color space: YCbCr uses Cartesian coordinates. El Baf et al. [8] used the

YCrCb color space combined with the texture feature to be robust to illumination

changes and shadows. Experimental results in [8] showed that YCrCb color space is

more robust in these cases than the Ohta and HSV color spaces.

• Lab/Lab2000HL color space: Lab color space is a color space which indicates proper

changes in the direction of human color perception. Its components are the lightness

of the color and two color opponent dimensions. Lab2000HL color space, which is

an improved version of Lab color space, was introduced and is thought to perform a

better modeling of the human perception. Particularly, Lab2000HL color space have

linear hue band. So, Balcilar et al. [9] investigated the performance of the Lab2000HL

color space. The average precision value of Lab2000HL is the greatest in all videos

in comparison to all other color spaces. The Lab2000HL globally gives the best per-

formance on all the video sequences, but not mandatory on each sequence. In terms

of the computational costs for each color space (YCrCb, Luv, Lab,Lab2000HL), RGB

color space leads to the lowest. The reason is that it does not require any transfor-

mation since the information gathered from the camera sensors is directly in RGB.

Lab2000HL color space, on the other hand, has the most computational cost, since a

computationally intensive procedure is required to apply first the Lab transformation,

and then the computation of transformation value with respect to the transition map

using interpolation.

Edge features

Edge features are based usually on intensity features given from spatial information, and

they are computed using a gradient approach such as Canny [37], Sobel [108] or Prewitt

[154]. The gradients can be calculated from the gray level image or in each component

of the color space. Edge detectors operate on the difference between neighboring pixels,

hence an edge detector should be reasonably insensitive to global shifts in the mean level, i.e.

global illumination changes. Therefore it would be interesting to run background-foreground

separation algorithms on the output from edge detectors, hopefully reducing the effects of

rapid illumination changes. So, the edge could handle the local illumination changes, but

also the ghost leaved when waking foreground objects begin to move. The edge features are

generally used alone or jointly with other features as follows:

• Edge alone: First, Kim and Hwang [104] proposed to use only edges to model the

background. This approach used a binarized information for the existence of an edge

for a given pixel. But, regions in consecutive frames may not have exactly the same

edge position, and have shape and length changes due to presence of noise. This strat-

egy may generate many false alarms in the foreground mask due to edge distortion
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Features Acronym of papers Authors - Dates

Color features

RGB Stauffer and Grimson (1999) [187]

Normalized RGB Xu et Ellis (2001) [220]

Normalized RGB Xu et Ellis (2001) [220]

YUV Wren et al. (1997) [216], Harville et al. (2001) [82]

HSV Sun et al. (2006) [190]

HSI Wang and Wu (2006) [210]

Luv Yang and Hsu (2006) [228]

Improved HLS Setiawan et al. (2006) [171]

Ohta Zhang and Xu (2006) [235]

YCrCb Baf et al. (2008) [8]

Lab/Lab2000HL Balcilar et al. (2013) [9]

Edge features

Edge alone

Jabri et al. (2000) [95], Kim and Hwang (2002) [104]

Li et al. (2004) [118], Lindström et al. (2006) [123]

Kim and Hwang (2002) [104], Murshed and Chae (2010) [141]

Ramirez-Rivera et al. (2011) [157], Kim et al. (2013) [105]

Mousse et al. (2014) [140], Lopez-Rubio and Lopez-Rubio (2014) [131]

Wang and Wan (2014) [211]

Jointly with other features

Jabri et al. (2000) [95], Lindström et al. (2006) [123]

Kim et al. (2015) [106]

Depth features

Depth from Stereo-Cameras

Eveland et al. (1998) [59], Gordon et al. (1999) [68]

Ivanov et al. (2000) [94] , Harville et al. (2001) [82]

Braham et al. (2014) [27], Harville (2002) [81]

Depth from Time-of-Flight Cameras

Tombari et al. (2008) [197], Leens et al. (2009) [117]

Stormer et al. (2010) [189], Hu et al. (2014) [91]

Braham et al. (2014) [27]

Depth from RGB-D Cameras

Greff et al. (2012) [73], Gallego and Pardas (2013) [66]

Camplani et al. (2013) [35], Fernandez-Sanchez et al. (2013) [62]

Spampinato et al (2014) [183], Fernandez-Sanchez et al. (2013) [62]

Liang et al (2016) [119]

Motion features
Optical Flow Huang et al. (2006) [92], Zhong et al. (2008) [241]

Huang et al. (2009) [93],Chen et al.(2014) [45]

Table 2.1: Features: An Overview (Part 1).
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from consecutive frames. To solve the edge-distortion problem, edge-segment-based

methods have emerged to take advantage of the edge existence and its shape informa-

tion [89]. An edge-segment approach consists of the concatenation of adjacent edges,

and it inherits the problems of edges: shape and position changes. Thus, basic com-

parison of edge-segments produces similar results as edge-pixel-based approaches.

To solve this problem, statistical edge-segment-based methods extract movement of

edge-segments including edge distortion [105, 141, 157]. Thus, these methods solve

the edge-variation problem by accumulating edge existence from a training set [106].

Practically, each accumulated region represents an edge-segment distribution. Each

region refines their statistical properties after each frame to provide a stable back-

ground model. Since edge-based and edge-segment-based methods detect foreground

as edges, these methods depend of a post-processing step to extract the regions de-

fined by the detected edges. Moreover, these methods have problems updating their

background model to adapt the background.

• Jointly with other features: Jabri et al. [95] used in addition of the intensity features

the intensity gradient obtained by the Sobel edge detector. Large changes in either in-

tensity or in edges are fused. However, the involvement of the intensity model retains

the sensitivity to sudden changes in illumination. Lindström et al. [123] proposed to

use a Prewitt edge detector without the thresholding independently to each color com-

ponent followed by a log-transformation gives a color edge image with pixel values

that can be modeled using Gaussian mixtures. Experimental results [123] showed bet-

ter performance against illumination changes for the log-transformed detection using

the Prewitt edge detector. In another work, Kim et al. [106] used edge and texture

features in a hybrid scheme to generate the background model. Thus, theses features

are encoded into a coding scheme called Local Hybrid Pattern (LHP). LHP selectively

models edges and texture features of each pixel. Then, each pixel is modeled with

an adaptive code dictionary to take into account the background dynamism. In the

background maintenance, stable codes are added in the model while unstable ones are

discarded. The incoming codes that deviate from the dictionary are classified as edge

or inner region. Experimental results [106] on the ChangeDetection (CDnet 2012)

dataset [69] showed that this Adaptive Dictionary Model (ADM) with LHP features

outperforms the original MOG [220], the ordinary LBP [84] and SALBP [144].

Texture features

Texture features are extracted from spatial information or on spatio-temporal information.

The texture features have been very investigated in the BS field as can be seen in Table

2.2. Generally speaking, texture can be defined to surface characteristics and appearance

of an object given by the shape, size, density, arrangement, proportion of its elementary

parts. By contrast with the color features, the texture features are more appropriate to cope

with illumination changes and shadows. In the following, different texture descriptors are

discussed following the same categorization given in [198].

• Statistical Texture: Statistical texture descriptors are useful qualities for the spatial

distribution of the intensity values. This technique is one of the first methods sug-
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gested in the literature of texture descriptors. In BS, some statistical texture descriptors

have been proposed mainly to deal with the problem of illumination variations. For

instance, Satoh et al. [165] proposed Peripheral Increment Sign Correlation (PISC)

feature that encodes a value of 1 or 0 according to whether the increment near the

considered pixel is positive or negative. The resulting logical code representing the

trend of brightness change. However, this leads to increase false positives because the

code is reversed easily with slight intensity changes in regions with small intensity dif-

ferences, for example in plain regions. Plain regions often occupy large spatial region

within images, which makes stabilizing on them very important. Yokoi [230] proposed

a Probabilistic Bi-polar Radial Reach Correlation (PrBPRRC). It encodes the intensity

difference by −1/0/1 ternary codes to enhance the robustness against illumination

changes and background movements. In Satoh et al. [166] a novel statistical measure

for robust event detection, called Radial Reach filter (RRF) is proposed. It evaluates

a local texture to handle with brightness distributions of the events and the influence

of shadows, etc. RRF searches for a point with the brightness difference more than a

threshold from the interest pixel. This procedure is repeated about eight directions in

the shape of radiation resulting in 8 sets of the “RRF pairs”. At the end a binary code

is given by the sign of brightness difference of each pairs.

• Structural texture: These type of descriptors are constituted by the texture elements

named as texels or texton. Texels are the smallest element that creates the impression

of a texture surface. Usually, structural descriptors are invariant to illuminations, how-

ever heavily depend upon the definition of texels. To the best of our knowledge, the

structural texture descriptor has been less explored for moving object detection. Re-

cently, Spampinato [184] presented a kernel density estimation method which models

background and foreground by exploiting textons to describe textures within small

and low contrasted regions. According to the authors, the proposed method is robust

to illumination changes, but it can not be applied for real-time purposes due to com-

putational cost.

• Model based texture: Model based texture is commonly learned for a specific texture

analysis task and used as features. The most popular technique from this category for

background modeling is Markov Random Fields (MRFs) [107]. They are based on the

contextual information of the image. In Schick et al. [169], a novel post-processing

framework to improve foreground segmentation with the use of Probabilistic Super-

pixel Markov Random Fields is proposed. First, they converted a given pixel-based

segmentation into a probabilistic superpixel representation. Based on these proba-

bilistic superpixels, a Markov random field exploits structural information and simi-

larities to improve the segmentation. Xu et al. [222] also introduced a new background

modeling algorithm based on MRFs. The pyramid structure is introduced and the

background modeling/labeling are processed at different resolution levels. The exper-

iments showed this algorithm segment the foreground objects accurately from scene

with sharp lighting changes and background movements. Other works using MRF

technique can be found in [33, 137].

• Filtering based texture: Filtering based descriptors represent an image in a space

whose co-ordinate system has an interpretation that is closely related to the charac-

teristics of a texture. For instance, the frequency masks are more common and ef-
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fective in texture description. Usually, the frequency features are obtained by con-

verting the image into the frequency space normally using Fast Fourier Transform

(FFT) [41]. Fourier transform features encapsulate spatial information which are suit-

able for scenes that contain periodic motions. That is, scene having a significant cor-

relation between structures and observations across time (e.g. a tree swaying in the

wind or a wave lapping on a beach). In this context, Wren and Porikli [217] esti-

mated the background model that captures spectral signatures of multi-modal back-

grounds using FFT features through a method called Waviz. Here, FFT features are

then used to detect changes in the scene that are inconsistent over time. Results [217]

showed robustness to low-contrast foreground objects in dynamic scenes. Some others

works based on frequency methods are found in the state-of-the-art: Discrete Cosinus

Transform Features ( [160, 209, 245]) and Hadamard Transform (also known as the

Walsh–Hadamard Transform ( [10]). Latterly, wavelet transformation [135] is one of

the most famous of the time-frequency-transformations. Considering that static back-

grounds correspond to the low-frequency components, Han et al. [79] removed the

static backgrounds indirectly in the 3D wavelet domain. Additionally, they made use

of wavelet shrinkage to remove disturbance and introduce an adaptive threshold based

on the entropy of the histogram to obtainur optimal detection results. See other works

using the wavelet transformation at: ( [6, 50, 90, 138]). Another popular descriptor

based on filtering is the Gabor Transform [65]. Some Gabor Transform works in BS

can be found in [214, 227].

• Local Binary Patterns: Local binary patterns (LBP) proposed in [85] is the simple

yet powerful gray scale invariant texture descriptor. The computation of the ordinary

LBP for a neighborhood of size P = 8 is illustrated in Figure 2.3. It combines the

characteristic of statistical and structural texture analysis, describing the texture with

micro-primitives and their statistical placement rules. To the authors’ best knowl-

edge, the first work using LBP histograms for background modeling was proposed by

Heikkilä et al. [85]. The authors showed that LBP features are tolerant against illu-

mination variations. Therefore, they found that moving shadows could not be handled

very well. The other major LBP problem in background modeling is that it cannot

cope with local image noise when neighboring pixels are similar. In addition, the or-

dinary LBP cannot usually work well in dynamic scenes since it does not taken into

account the temporal information. Consequently, several LBP variants have been pro-

posed in the recent literature to tackle these problems. In this thesis, we grouped these

variants into five categories. We describe below the main LBP variants for each cate-

gory. The interested reader will find a full list of the main LBP variants in Table 2.2

and its relative equations in the Appendix B.

– Ordinary LBP-based: The first category consists of the variants with small math-

ematical changes from ordinary LBP. Few years after using ordinary LBP in

background modeling, Heikkilä et al. [84] proposed a small change in its thresh-

olding scheme. They improved the ordinary LBP in image areas where the gray

values of the neighboring pixels are very close to the center pixel, e.g. sky,

grass, etc. The LBP-based algorithms are often invariant to local illumination

changes, but they are unable to detect uniform foreground objects in large uni-

form background except at the objects’ edges. To solve this problem, Chua et
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Textures Acronym of papers Authors - Dates

Statistical texture

Radial Reach filter (RRF) Satoh et al. (2002) [166]

Peripheral Increment Sign Correlation (PISC) Satoh et al. (2004) [165]

Probabilistic Bi-Polar Radial Reach Correlation (PrBP-RCC) Yokoi (2009) [230]

Structural texture Texton Spampinato et al. (2014) [184]

Model based texture
Markov Random Fields (MRFs) Xu et al. (2005) [222], Bugeau and Pérez (2007 ) [33]

McHugh et al. (2009) [137], Schick et al. (2012) [169]

Filtering based texture

Frequency features

Wren and Porikli (2005) [217], Zhu et al. (2005) [245]

Wren and Porikli (2005) [217], Wang et al. (2005) [209]

Reddy et al. (2010) [160]

Wavelet transformation

Antic et al. (2009) [6], Crnojevic, et al. (2009) [50]

Mendizabal and Salgado (2011) [138], Hsia and Guo (2014) [90]

Han et al. (2016) [79]

Gabor transform

Wei et a. (2008) [214], Xue et al. (2012) [227]

Local Binary Patterns

(1) Ordinary LBP-based

Local Binary Pattern (LBP) Heikkilä et al. (2004) [85]

Opponent Color Local Binary Patterns (OCLBP) Maenpaa and Pietikainen (2004) [133]

Modified LBP Heikkilä et al. (2006) [84]

εLBP Wang and Pan (2010) [206]

Adaptive εLBP Wang et al. (2010) [207]

Uniform Local Binary Patterns (ULBP) Yuan et al. (2012) [231]

Local Color Pattern (LCP) Chua et al. (2012) [47]

Local Binary Similarity Patterns (LBSP) Bilodeau et al. (2013) [22]

Local SVD Binary Pattern (LSBP) Guo et al. (2016) [76]

(2) Center-Symmetric LBP-based

Center-Symmetric Local Binary Patterns (CS-LBP) Heikkilä et al. (2009) [86]

Center-Symmetric Local Derivative Pattern (CS-LDP) Xue et al. (2011) [225]

eXtended Center-Symmetric Local Binary Pattern (XCS-LBP) Silva et al. (2015) [176]

BackGround Local Binary Patterns (BG-LBP) Davarpanah et al. (2016) [51]

(3) Ternary LBP-based

Local Ternary Pattern (LTP) Tan and Triggs (2010) [191]

Scale Invariant Local Ternary Pattern (SILTP) Liao et al. (2010) [120]

Scale Invariant Local States (SILS) Yuk and Wong (2011) [232]

Scene Adaptive Local Binary Pattern (SALBP) Yin et al. (2013) [229]

Multi-Channel Scale Invariant Local Ternary Pattern (MC-SILTP) Ma and Sang (2013) [132]

(4) Spatio-Temporal LBP-based

Spatio-temporal Local Binary Patterns (STLBP) Shengping et al. (2008) [174]

Spatial-Temporal Local Binary Pattern (STLBP) Shimada and Taniguchi (2009) [175]

Stereo Local Binary Pattern based on Appearance and Motion (SLBP-AM) Yin et al. (2013) [229]

(5) Hybrid LBP-based

Spatial Extended Center-Symmetric Local Binary Pattern (SCS-LBP) Xue et al. (2010) [226]

Center Symmetric Spatio-temporal Local Ternary Pattern (CS-STLTP) Xu (2012) [223]

Center Symmetric Spatio-temporal Local Ternary Pattern (CS-STLTP) Wu (2013) [218]

Spatiotemporal Scale Invariant Ternary Pattern (ST-SILTP) Ji et al. (2014) [100]

Table 2.2: Texture Features: An Overview (Part 2).
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Derivative Pattern descriptor (CS-LDP) is described in [225]. It extracts more

detailed local information while preserving the same feature lengths than the

CS-LBP, but with a slightly lower precision than the ordinary LBP.

– Ternary LBP-based: This category represent the descriptors which inherit the

characteristics from Local Ternary Pattern (LTP) introduced by Tan and Triggs

[191]. This descriptor is more robust for local noises by introducing a small

tolerative range. The intensity scale invariant property of a local comparison

descriptor is very useful, because illumination variations, either global or lo-

cal, usually cause sudden changes of gray scale intensities of neighboring pixels

simultaneously. Nevertheless, Liao et al. [120] demonstrated that the LTP de-

scriptor can not keep its invariance against scale transform when all local pixel

values are multiplied by a constant. Therefore, to deal with these problems Liao

et al. [120] presented a Scale Invariant Local Ternary Pattern (SILTP) descrip-

tor. More recently, Ma and Sang [132] proposed to extend the SILTP to feature

space and to operate on the three channels of RGB images rather than only one

channel present in gray images to get the texture patterns. This texture descrip-

tor is called Multi-Channel Scale Invariant Local Ternary Pattern (MC-SILTP).

The MC-SILTP demonstrated all the properties that SILTP owns, and it can deal

especially in flat areas.

– Spatio-Temporal LBP-based: The spatio-temporal category include the vari-

ants that extend the ordinary LBP from spatial domain to spatio-temporal do-

main. However, these variants can deal with dynamic scenes. In Shengping et

al., [174], a novel spatio-temporal local binary patterns (STLBP) is presented.

The experimental results indicate that the proposed method can adapt quickly to

changes in the dynamic background. Yin et al. [229] proposed a Stereo Local

Binary Pattern based on Appearance and Motion (SLBP-AM) descriptor. The

motion of pixels is represented as dynamic texture in ellipsoidal domain. Then,

Yin et al. [229] combined texture histograms in the XY,XT and Y T planes in the

ellipsoid. SLBP-AM is more robust to slight disturbance, but also adapts quickly

to the large-scale and sudden changes. Shimada and Taniguchi [175] proposed

an invariant feature using both spatial invariance and temporal invariance also

called Spatio-Temporal LBP (STLBP) suitable for outdoor scene in which the

illumination condition can change gradually.

– Hybrid LBP-based: These variants combine two or more characteristics of the

above categories, which usually results in a descriptor even more powerful. Xue

et al. [226] proposed to use a Spatial Center-Symmetric Local Binary Pattern

(SCS-LBP) which not only has the property of illumination invariance, but also

produces short histograms and be more robust to noise. So, Xue et al. [226] ex-

tended the CS-LBP operator from spatial domain to spatial-temporal domain and

proposed a texture operator named SCS-LBP which extracts spatial and tempo-

ral information simultaneously. Then, combining the SCS-LBP operator with an

improved temporal information estimation scheme, Xue et al. [226] obtained a

background modeling approach which reach high accurate detection in dynamic

scenes while reducing the computational complexity compared to the ordinary

LBP. Wu et al. [218] extended the SILTP descriptor for handling some challeng-
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ing scenes by introducing the Center-Symmetric Scale Invariant Local Ternary

Pattern (CS-SILTP) descriptor. This texture descriptor explores the spatial and

temporal relationships of neighborhood pixels.

Depth features

Depth features encapsulate the depth information and they have become very attractive for

BS, especially, in indoor environments. The main advantage of the depth features is that it

does not suffer the limitations of color features (e.g. camouflage). Depth-based detection

results in a more compact silhouettes. However, using exclusive depth features still present

some issues such as: depth sensors frequently raise noises at object boundaries; measure-

ments of depth are not always available for all image pixels. Therefore, usually many BS

works propose to combine both color and depth features to improve the detection results.

Depth information can be obtained in real-time by different technologies. We describe below

three technologies to acquire depth information.

• Depth from Stereo-Cameras: Traditional stereo cameras consist of a single device

integrating two or more monocular cameras with small baseline (i.e., the distance be-

tween focal center of the cameras). The disparity map obtained that correlates the

two views of a stereo camera can be used as input for a disparity-based BS algo-

rithm. To accurately perform the background modeling, it is necessary that a dense

disparity map be calculated. However, to obtain an accurated dense map of corre-

lations between two stereo images, usually time-consuming stereo vision algorithms

are employed [31, 121]. Moreover, the correlation between left and right images may

not be reliable, and the disparity map can present holes due to “invalid” pixels (i.e.,

points with invalid depth values). Ivanov et al. [94] were among the first authors

who proposed a BS method based on disparity maps to address some of these issues.

By cross-verifying each pixel across three camera views, the authors were able to

distinguish the foreground objects from occlusion/shadows. Practically, this method

required the offline construction of disparity fields mapping the background images

that contained no foreground objects. At runtime, foreground detection was made by

checking background image to each of the additional auxiliary color intensity values

at corresponding pixels. This algorithm could be implemented in real-time on con-

ventional hardware. In Gordon et al. [?], the background model was modeled using a

multidimensional mixture of Gaussians model with the (R,G,B,D) features. A signif-

icant advantage of incorporating both color and depth features within the background

model is that, Gordon et al. [?] could correctly estimate depth and color of the back-

ground when the background is available in a fewer number of initialization frames.

The authors used a disjunction of the results coming from each feature to obtain the

final foreground detection. A pixel is classified as foreground based on either color

or depth is taken to be foreground in the final foreground detection. Other related BS

works can be found in [59, 81, 82].

• Depth from Time-of-Flight (ToF) Cameras: The ToF cameras produce a depth image,

each pixel encodes the distance to the corresponding point in the scene. Apart from

their advantages of high frame rates and ability to capture the scene all at once, ToF
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based cameras have generally the disadvantage of low resolution. In Leens et al. [117],

color and depth features were obtained with a low resolution from ToF camera. The

ViBe algorithm [12] is applied independently to the color and the depth features. Then,

the obtained foreground masks are then combined with logical operations and then

post processed with morphological operations. Stormer et al. [189] used a MoG model

[187], where depth and infrared features are combined to detect foreground objects in

the case of close or overlapping objects. Two independent background models are

built. Each pixel is classified as background or foreground only if the two models

matching conditions agree. But a failure of one of the models affects the final pixel

classification. In Tombari et al. [197], an algorithm for automatic graffiti detection

is presented. The algorithm compares the current intensity information with a model

of the background to detect the scene changes. Next, the depth information was used

for distinguishing between changes occurring in the space between the background

and the ToF camera (e.g. intrusion). It presented low rate of false positives, and it

can operate in a real-time manner. As the authors used a basic BS for the intensity

data, the proposed method may fail by the presence of both slow and sudden changes

in the scene’s illumination. Hu et al. [91] realized the foreground detection by using

a weighted average on the probabilities obtained from the MOG model [187]. The

different weights are updated adaptively for each output of the classifier by considering

foreground detections in the previous frames and the depth feature. Experimental

results [91] showed that the proposed approach can effectively solve the limitations of

color-based or depth-based detection.

• Depth from RGB-D Cameras: Recently, low cost RGB-D cameras such as the Mi-

crosoft’s Kinect or the Asus’s Xtion Pro are widely used to improve background mod-

eling. However, the RGB-D cameras based on structured light scanner (i.e., Microsoft

Kinect) are not usually suitable for outdoor environments, due to the range limita-

tion and errors introduced by interference with the sunlight. Several BS work using

Microsoft Kinect are found in the literature. For example, Camplani et al. [35] used

a multiple region-based classifiers in a mixture of experts fashion to improve the fi-

nal foreground detection. It is based on multiple background models that provide a

description at region and pixel level by considering the color and depth features. In

Camplani et Salgado [36], the combination of the four models (pixel-color, region-

color, pixel-depth, region-depth) was based on a weighted average to efficiently adapt

the contribution of each classifier to the final classification. Another BS algorithm

based on RGB-D camera to make the background and foreground models more robust

to effects such as camouflage and illumination changes was proposed by Spampinato

et al. [62] and Fernandez-Sanchez [183]. The authors modeled the background and

foreground scenes with a Kernel Density Estimation (KDE) [58] in a quantized x-y-

hue-saturation-depth space after a preprocessing stage for aligning color and depth

data and for filtering/filling noisy depth measurements. Experimental results in three

different indoor environments, with different lighting conditions, showed that this ap-

proach achieved an accuracy in foreground segmentation over 90% that the combina-

tion of depth data and illumination-independent color space proved to be very robust

against noise and illumination changes. More works can be seen in: [66, 73, 119].
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Motion features

The motion features provide temporal information and they are useful to handle dynamic

scenes, containing natural elements such as fountains, swaying trees or ocean ripples [24,

149]. The motion features are usually obtained via optical flow to deal with irrelevant motions

in the background. The majority of the optical flow algorithms are computationally slow.

Three alternative approaches are then used to introduce temporal attributes: 1) the ones based

only on the difference between consecutive frames. Then, the background model is only

computed on stationary regions of the scene, 2) optical flow (computed on all pixels) which

is used to detect moving areas. The background model is only computed in stationary areas,

and 3) optical flow is only computed on moving areas after foreground detection. In this

case, optical flow allows the algorithm to distinguish the unimportant moving areas from the

moving objects. Different approaches have been proposed to extract motion features. We

review in the following paragraphs the main existing ones.

Huang et al. [92] presented a dense optical flow for describing motion vectors. Regions

with coherent motion are then extracted as initial motion markers. Pixels not assigned to any

region are labeled uncertain ones. Finally, a watershed algorithm based on motion and color is

used to associate uncertain pixels to the nearest similar mark. Further, Markov Random Fields

(MRFs) [107] are used to formulate the foreground detection as a labeling problem. The op-

timization over the MRF model is then performed. The posterior probabilities initialized with

the ones computed with the MOG model [208] are maximized to obtain the final classification

result. Finally, regions which have the same classification label and similar colors are merged

to derive a more consistent foreground mask. Experimental results [92] on gradual illumina-

tion changes and shadows demonstrated the robustness of this method, but the computational

complexity of this technique has not been mentioned. In similar studies, Huang et al. [93]

used motion information captured through the difference of consecutive frames to model the

background in stationary areas. Using the EPPM [11], Chen et al. [45] ensured temporally-

consistent background subtraction with optical flow estimation by tracking the foreground

pixels. Here, motion information is integrated with a temporal M-smoother. A similarity

measurement is obtained directly from optical flow estimation with the assumption that the

background estimate for the same object appearing in the difference video frames should be

identical. As the direct implementation of EPPM [11] is extremely slow as optical flow es-

timation is required between any two video frames, Chen et al. [242] developed a recursive

implementation so that optical flow estimation is required only between every two succes-

sive frames. As described in previous approaches, the background model is initially obtained

using the MOG model [187]. Then, a spatial and a temporal M-smoother are employed to

obtain a spatially-temporally-consistent foreground mask. Experimental results [45] on the

ChangeDetection.net dataset [69] and SABS dataset [32] showed this algorithm outperforms

most of state-of-the-art algorithms. Using multiple features, Zhong et al. [241] proposed to

fuse texture (εLBP [206]) and motion patterns. For each pixel, its probability to be either a

background or foreground is computed from the histogram of each feature. Then, the results

are combined using a weighted average mechanism. Experimental results [241] showed that

the combination of εLBP and motion pattern outperforms the ordinary LBP in presence of

dynamic backgrounds.
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2.2 Feature selection in background modeling

Most of background subtraction methods use a uniform feature map for all pixels of the scene,

disregarding the non-uniformity of the distribution of the background properties [181]. More-

over, the importance of different features on particular regions of the image is still ignored. In

practice, however, for a complex scene comprising of several elements such as waving trees,

sky, soil and car, the most discriminant features for these elements are probably different, and

therefore a single-feature background subtraction algorithm may not be appropriate. Despite

the choice of the best features for each region is not an easy task as it requires a deep knowl-

edge of the scene, it is possible to automatically select the most relevant features, and this

process is commonly defined as feature selection [28]. Feature selection (known as subset

selection, attribute selection or variable selection) is the task of selecting a small subset of

features that is enough to predict the target labels well. Three key benefits of performing

feature selection on the data are [167]:

1. Reduced computational complexity: Feature selection helps to reduce the computa-

tional complexity of learning algorithms improving its prediction performance. Some

learning algorithms can becoming computationally intractable when there a large num-

ber of features either in the training step as in the prediction step. When we find a small

set of features that allows a good prediction of the labels, we can exclude the rest of

irrelevant features. Therefore, in the prediction step we only have to measure a small

set of features for each instance.

2. Improved accuracy: It is possible to improve the prediction accuracy by applying

initially a feature selection method. Many of the state-of-the-art learning algorithms

can given predictions greatly skewed by the presence of a big number of irrelevant or

weakly relevant features. In contrast, even the simple learning algorithms may yield

good performance if a a small set of good features has been previously selected.

3. Problem understanding: Normally, the key of solving an specific problem is by un-

derstanding it better. Feature selection methods can contribute to better understanding

the problem at hand by selected the most useful information from a feature set.

In the background subtraction field, the use of feature selection methods have been less

studied so far. Nevertheless, the feature selection can be used to improve the detection of the

foreground objects [149]. This is possible due to its capability to select a subset of highly

discriminant features removing the irrelevant and redundant ones. Traditionally, feature se-

lection methods can be categorized into three main groups: filter, wrapper and embedded

-based methods. Recent works have also proposed the use of ensemble-based approaches

for feature selection [23, 163]. Following this, we discuss later each of these approaches and

their main BS works.

2.2.1 Traditional approaches for feature selection

There are three general state-of-the-art approaches for feature selection: filter-based, wrapper-

based and embedded-based [128, 186]. Figure 2.4 shows a brief overview these approaches.
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Filter-based The filter-based methods were the early approaches for feature selection. The

filter-based methods evaluate the relevance of the features based on a statistical measure es-

timated directly from the data to assign a score to each feature without involving any clas-

sification algorithm [48, 127, 199]. The filter methods are generally much computationally

efficient and practical than wrapper methods (discussed later), especially for using it on high

dimensional data. Nonetheless, it tends to select subsets with a high number of features (even

all the features) and so a threshold is required for the choosing of a subset. The representa-

tion of the filter-based is shown in Figure 2.4a. A general filter-based algorithm is presented

Algorithm 1 [128].

Given a training set X = {x1,x2, ...,xN} where each x j ( j = 1, ...,N) ∈ R
p, the algorithm

can start with one of the subsequent subsets of S0 such as S0 = {φ} or S0 = {NULL} or S0 ⊂
X . An independent measure ϑ evaluates each created subset S and compares it to the previous

best subset. The search iterates until a predefined stopping criterion ϒ is reached. Some

commonly used stopping criteria are described by Liu and Yu [128]. Lastly, the algorithm

outputs the last current best subset Sbest as the final result. Note that by changing the search

strategies and evaluation measures used in Steps 5 and 6 in the Algorithm 1, we can design

diversified filter-based algorithms.

Algorithm 1 A generalized filter-based approach

1: Require: A training set X , a feature subset S0, a stopping criterion ϒ, an independent measure ϑ
2: Sbest = S0

3: ϕbest = eval(S0,ϑ) {evaluate S0 by using an independent measure ϑ}
4: repeat
5: S = generate(X) {generate a subset for evaluation}
6: ϕ = eval(S,ϑ) {evaluate the current subset S by ϑ}
7: if (ϕ > ϕbest) then
8: ϕbest = ϕ
9: Sbest = S

10: end if
11: until (ϒ is reached)

12: Output: An optimal subset Sbest

Wrapper-based The wrapper-based methods employ a learning algorithm as a “black

box” for selecting a set of relevant features. Commonly, in this approach a learning al-

gorithm is run over the entire training set and then measured against the testing set, or a

cross-validation method can be used. This approach tends to give superior performance than

the filter ones, but it is also more computationally expensive since we have to re-train the

learning algorithm in each step. A representation of the wrapper-based method is shown in

Figure 2.4b. The general wrapper approach (see Algorithm 2 [128]) is very similar to the

general filter one except that it uses a predefined learning algorithm A instead of an indepen-

dent measure ϑ for the subset evaluation. In a wrapper-based algorithm, for each created

subset S, it evaluates its kindness by using the learning algorithm to the data with feature sub-

set S and evaluating the quality of mined results. Nonetheless, different learning algorithms

will provide different feature selection results. Note that it is possible to propose different

wrapper-based algorithms by changing the function generate() and learning algorithms A.
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Algorithm 2 A generalized wrapper-based approach

1: Require: A training set X , a feature subset S0, a stopping criterion ϒ, a learning algorithm A

2: Sbest = S0

3: ϕbest = eval(S0,A) {evaluate S0 by using a learning algorithm A}
4: repeat
5: S = generate(X) {generate a subset for evaluation}
6: ϕ = eval(S,A) {evaluate the current subset S by A}
7: if (ϕ > ϕbest) then
8: ϕbest = ϕ
9: Sbest = S

10: end if
11: until (ϒ is reached)

12: Output: An optimal subset Sbest

Embedded-based The embedded methods is normally used to describe selection which

is done automatically by the learning algorithm. Decision trees [155], the artificial neural

networks with pruning of input neurons [114] and L1-SVM [143] are examples of methods in

this category. The embedded-based approach interact to the learning algorithm with a lower

computational cost than the wrapper-based. An illustration of the embedded-based approach

is shown in Figure 2.4c. This approach employs the independent criteria to determine the

best subsets for a known cardinality, and then uses the learning algorithm to choose the final

best subset among the best subsets across distinct cardinality (number of elements of the set).

An embedded algorithm usually initiates with an empty set S0 by using sequential forward

selection (start with an empty set of features and add features one at a time). For the best

subset of cardinality c, it is searching all suitable subsets of cardinality c+1 adding a feature

from the leftover subsets. A subset created at cardinality c+ 1 is evaluated by independent

criterion ϑ and compared with the previous best subset. Next, the learning algorithm A is used

to the current best subset, and performance Π is compared with the performance of the best

subset at cardinality c. The algorithm continue looking for the best subset until S′best is better;

otherwise, it stops and return the current best subset as the final best subset. A generalized

embedded procedure is shown in Algorithm 3 [128].

2.2.2 Ensemble learning for feature selection

Ensemble learning is a powerful tool in the field of machine learning and its efficiency has

been demonstrated in several studies [125, 126, 159]. The main idea of ensemble learning

is to combine a set of models, where each of them solves the same task in order to obtain a

better global model with more robustness and the generalization ability than a single model.

In the same way as in the classification tasks, ensemble learning might be employed to im-

prove the robustness of feature selection approaches. Traditional feature selection approaches

has concentrated on finding the suitable subset of significant features to be used for learning

an inference model through classification or regression. In recent decades, a new kind of

feature selection that uses ensemble learning to select features, called ensemble for feature

selection has been introduced [3, 163, 173]. This approach extends the traditional feature se-

lection methods by looking for a set of feature subsets that will favour disagreement among
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Algorithm 3 A generalized embedded-based approach

1: Require: A training set X , a feature subset S0, a learning algorithm A, an independent measure ϑ
2: Sbest = S0

3: ϕbest = eval(S0,ϑ) {evaluate S0 by using an independent measure ϑ}
4: Πbest = eval(S0,A) {evaluate S0 by using a learning algorithm A}
5: C0 =card(S0) {cardinality calculation of S0}
6: for c = C0 +1 : N do
7: for t = 0 : N− c do
8: S = Sbest ∪{xt} {subset generation for evaluation with cardinality t, where xt ∈ X}
9: ϕ = eval(S,ϑ) {evaluation the current subset S by ϑ}

10: if (ϕ > ϕbest) then
11: ϕbest = ϕ
12: S′best = S

13: end if
14: Π = eval

(

S′best ,A
)

{evaluating subset S′best by A}
15: if (Π > Πbest) then
16: Sbest = S′best

17: Πbest = Π
18: else
19: break and return Sbest

20: end if
21: end for
22: end for
23: Output: An optimal subset Sbest
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Figure 2.5: Combining an ensemble of classifiers with different features for reduc-

ing classification error.
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the ensemble members. The ensemble for feature selection may increase the probability of

choosing a stable feature subset, i.e once the goal of feature selection process is fixed, the

meaningful features should not change for different samples of the data. For instance, in real

applications are usually required that the algorithms to select features are always consistent

even if new samples are added to the data. The ensemble for feature selection can also pro-

vide a better approximation to the appropriate subset or ranking of features avoiding feature

subsets which can be regarded local appropriate in the space of feature subsets. Lastly, the

ensemble for feature selection can expands the search space by aggregating the outputs of

many classifiers allowing that optimal subsets can be achieved [163]. Note that not all en-

semble methods can be considered as a feature selector. We regard that an ensemble is a

feature selector when different subsets of features are used for different base classifiers in an

ensemble. In this context, each ensemble member is associated with its own feature or fea-

ture subset, which can, for example, be selected by a particular feature selection algorithm or

randomly sampled from the original pool of features [87]. Figure 2.5 graphically shows this

concept, where each classifier is trained with different feature(s) to differentiate two classes.

The combination of the (three) classifiers provide the best decision boundary. We will discuss

in more detail each of ensemble for feature selection steps below.

Building an ensemble for feature selection algorithm

An ensemble for feature selection should be composed of mutually complementary individ-

ual classifiers which are characterized by the high diversity and accuracy. Otherwise, there

may be a risk of the increasing the computational complexity, in addition, combining similar

classifiers must not contribute much to the combined classifier under construction [215,233].

There are usually three strategies necessary for building a successful ensemble feature selec-

tion algorithm: 1) creating a set of diversified base/weak classifiers; 2) ensemble pruning;

and 3) combining classifiers.

1) Creating a set of diversified base/weak classifiers The diversity of the classifier

outputs is considered a key requirement for the great success of an ensemble algorithm [20,

234]. Whenever all base classifiers produce the same output, there is nothing to be acquired

by their combination. Therefore, it is necessary that the decisions of ensemble members are

diversified, especially when they are making error. Random subspace methods [87] and the

Boosting for feature selection [203] are two very popular strategies to generate a diverse set

of classifiers in an ensemble feature selection. Each of these approaches are described below.

• Random Subspace: The random subspace approach is be able to handle issues with

a huge number of features. It employs different feature subsets to train the ensemble

members. Random subspace method generate each classifier in the ensemble from a

randomly chosen subset of predefined features [87]. Therefore, the diversity is ensured

by providing the base classifier different views (or projections) of the data. Like such

views are generated randomly from a big feature set, it is very possible that every

base classifier gets a different prospective of the data, which takes to the discovery of

diverse and complementary structures in the data. Finally, the M classifiers are usually
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combined by simple majority voting in the final decision rule [102]. The random

subspace procedure is presented in the Algorithm 4 [243].

Algorithm 4 The random subspace algorithm

1: Require: Classifier training procedure, training set X , subspace dimension p∗, number of iterations

M

2: k← 1

3: repeat
4: Sk← SelectRandomSubspace(X ,p∗)
5: Train k-th classifiers on Sk

6: k← k+1

7: until k > M

8: Output: Combine outputs of M trained base classifiers usually according the Eq. (2.2).

• Boosting for feature selection: Boosting refers to a set of algorithms that allow to

convert weak learners to strong ones. The AdaBoost (Adaptive Boosting) is a pop-

ular implementation of boosting proposed for the first time by Freund and Schapire

(1996) [63]. It works by repeatedly running a weak learner on various distributed

training set, then, the weak learning are combined into a single strong classifier. The

aim is to find a final classifier with a low prediction error rate. A few years later,

the AdaBoost version to select a number of relevant features from a high number of

potential features was proposed in [129, 203, 204]. The AdaBoost for feature selec-

tion is a simple modification of the standard AdaBoost procedure: the weak learner is

constrained so that each weak classifier returned can depend on only a single feature.

When the classifiers are combined, a much better performance can be achieved than

what can be achieved by a single classifier. The key idea behind this algorithm is con-

centrate on the samples which are harder to classify, increasing their representation in

successive training sets. In the AdaBoost for feature selection, M features and weak

classifiers are chosen to compose the final strong classifier over a number of M rounds.

In each of the iterations, the space of all possible features is searched extensively to

find the optimal weak classifier with the smaller weighted classification error. The er-

ror is then employed to update the weights such that the wrongly classified samples get

weights increased. The final strong classifier is a weighted linear combination of all M

selected weak classifiers. Details of the AdaBoost for feature selection is presented in

Algorithm 5 [203, 204]. In addition to AdaBoost, some others boosting variants, such

as RealBoost [149] and XGBoost [46] have also been proposed for feature selection.

2) Ensemble pruning An important issue in an ensemble method is to decide how many

base classifiers should be used. Ensemble pruning, also known as ensemble selection (or

selective ensemble) aims to select a subset of individual base classifiers to form the whole

ensemble. Many ensemble algorithms do not include this additional intermediate phase into

prior to combination of the base classifiers. Nonetheless, some authors have demonstrated

both theoretical and empirical that ensemble selection can improve the generalization perfor-

mance of ensemble, therefore, the ensemble selection phase may reach better performance

than the original ensemble [13, 136]. Furthermore, a great number of base classifiers in an
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Algorithm 5 The AdaBoost for feature selection

1: Require: Training set (x1,y1), ...,(xN ,yN) where xi ∈ X , yi ∈ Y = 0,1 for negative and positive

examples respectively, number of iterations M

2: k← 1

3: Initialize weights w1,i =
1
2b ,

1
2l for yi = 0,1 respectively, where b and l are the number of negative

ans positive examples respectively.

4: repeat
5: Normalize the weights wk,i← wk,i

∑N
j=1 wk, j

so that wk is a probability distribution.

6: For each, ρ j, train a classifier Ψ j which is restricted to using a single feature. The error is

evaluated with respect to wk, error j = ∑i wi |Ψ j(xi)− yi |.
7: Choose the classifier Ψk, with the lowest errork

8: Update the weights: wk+1,i = wk,iν
1−ei

k

9: where ei = 0 if example xi is classified correctly, ei = 1 otherwise, and νk =
ek

1−ek

10: k← k+1

11: until k > M

12: Output: The strong classifier is:

H(x) =

{

1 if ∑M
k=1 βkΨk(x)≥ 1

2 ∑M
k=1 βk

0 otherwise.
(2.1)

13: where βk = log 1
νk

ensemble demand large memory and computational overhead. Consequently, this will re-

sult in an increase of the training cost, storage demands, and prediction time. According to

Rokach and Maimon [162], there are four factors that may determine the size of an ensemble:

1) suitable number of base classifier should be chosen to achieve the desired accuracy in an

ensemble. A study conducted by Hansen and Salamon [80] showed that ten classifiers are

usually sufficient to reduce the error rate; 2) the size limit of ensemble should be predefined

to preventing from increasing computational cost and the decreasing comprehensibility be-

tween the base classifiers; 3) the nature of the classification problem can be responsible by

the number of base classifiers in an ensemble; and 4) the quantity of processors available for

parallel learning can also be used as parameter to define the number of base classifiers in an

ensemble. There are three approaches for determining the ensemble size [161, 162]:

• Pre-selection of the ensemble size: In this category, the user can define the ensemble

size by “number of iterations”, (such as in the Random Subspace, Bagging, etc.) or by

the nature of the classification problem (such as in the Error-Correcting Output Coding

(ECOC) [110]).

• Selection of the ensemble size while training: The algorithms belonging to this cate-

gory attempt to define the best ensemble size during the training. Normally, while new

classifiers are introduced to the ensemble, these algorithms verify if the contribution

of the last classifier to the ensemble performance is still meaningful. Otherwise, the

ensemble algorithm stops. These algorithms often also have a controlling parameter

that limits the size of ensemble as in the previous category.

• Pruning-post selection of the ensemble size: This category allows the ensemble grow
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freely and thereafter prune the ensemble to obtain small and efficient ones. Post se-

lection of the ensemble typically uses performance metrics, such as accuracy, cross

entropy, mean, precision, etc. This approach can be separated into two categories:

pre-combining and post-combining approaches. Pre-combining pruning is realized

before combining the base classifiers whereas in post-combining, the base classifiers

are eliminated based on their contribution with others.

3) Combining classifiers The last stage for any ensemble feature selection algorithm is

the combination of the outputs of several base classifiers. There different methods to com-

bine classifiers, however the scheme for combining which is going to be utilized, in part,

depends on the type of classifiers used as ensemble member. For instance, the majority

voting is typically used for classifiers that give discrete-valued label outputs. Nonetheless,

there is a variety of scheme for combining classifiers that give continuous outputs, such as

arithmetic (sum, product, mean, etc.), voting-based methods, etc. A detailed review of the

different kinds of combiners can be found in [112, 161, 243]. In this thesis, only some of the

most common methods for combining classifiers will be explained. Given the output of each

classifier k is a i-long vector qk,1, ...,qk,i. The value qk, j corresponds to the support that the

sample x belongs to the class j according to the classifier k. For simplicity, it is also defined

that ∑i
j=1 qk, j = 1. If we are dealing with a crisp classifier k, which attributes the sample x

to a determined class l, therefore it can still be transformed to i-long vector qk,1, ...,qk,i such

that qk,l = 1 and qk, j = 0,∀ j 6= l [161].

• Majority voting: Majority voting is a simple and most intuitive method for combining

classifier outputs. A comprehensive analysis of the majority voting approach can be

found in [112]. Basically, the combining scheme classify an unlabeled sample by

counts the votes for each class over the input classifiers and choose the majority class.

Mathematically, majority voting can be expressed as follows:

H(x) = arg max
ωk∈Y

M

∑
i=1

I(hi(x),ωk) (2.2)

where hk(x) is the classification of the k-th classifier and I(h,ω) is an indicator function

defined as:

I(h,ω) =







1 if h = ω

0 if h 6= ω

• Weighted majority voting: This approach consists in combining the base classifiers

assigning weights for each of them. The more competent classifiers will have great-

est power in the final decision. Normally, the classifiers’ weight can be determined

either upon preliminary information or based on their performance for a certain vali-

dation set. More details on weighted majority voting can also be found in [124]. In

mathematical terms, the weighted voting can be given as:

H(x) = sign(
M

∑
i=1

βi(hi(x),ωk)) (2.3)
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where βi is the weight of each classifiers.

• Bayesian combination: In the Bayesian combination approach the classifiers’ weight

is a posterior probability of the classifier given the training set [34].

H(x) = arg max
ωk∈Y

M

∑
i=1

P(Ψi|X)P̂Ψi
(Y = ωk|x) (2.4)

where P(Ψi|X) indicates the probability that the classifier Ψi is correct given the train-

ing set X . The estimation of P(Ψi|X) depends on the classifier’s representation.

• Näıve bayes: Considering that the classifiers are mutually independent given a class

label (conditional independence), the Bayes’ rule can be used for combining various

classifiers.

H(x) = argmax
ω j∈Y

P̂(Y=ω j)>0

P̂(Y = ω j)∏
i=1

P̂Ψi
(Y = ω j|x)

P̂(Y = ω j)
(2.5)

2.2.3 Feature selection in background subtraction

Surprisingly, a little BS works based on feature selection have been done to date. Some works

based on the traditional feature selection methods are presented below. For instance, Li et

al. [118] presented one of the first works based on this category. The authors introduced a

novel method to detect changes based into static and dynamic pixels in accordance with inter

frame changes. The Bayes decision theory is used for classification of a certain pixel in static

or dynamic class. The static pixels belong to stationary objects, and they are described by

color and gradient statistics whereas dynamic pixels belong to non-stationary, and the are rep-

resented by color co-occurrence statistics. According to Li et al. [118], the proposed method

can be affected by the problem of intermittent object motion, since the statistics are associated

to each individual pixel without considering its neighborhood. Furthermore, the method can

mistakenly learn the features of non-stationary objects as stationary if crowded foreground

objects are frequently showed in the scenes. In Javed et al. [98], a simple dynamic feature se-

lection scheme for background scenes is proposed. An Online Robust Principal Component

Analysis (OR-PCA) with dynamic feature selection provides a framework to select multiple

features frame by frame. The means and variances are used as a criterion for selecting the

best features. The authors mentioned that the potential problem of the proposed approach is

the time computation, since features are extracted from every incoming video block. Most

recently, Braham and Van Droogenbroeck [28] presented a generic feature selection method

for background subtraction. The authors proposed a strategy for selecting the best features by

comparing the current input feature values with local background ones. Initially, local fea-

ture background models are created from a set of features. Then it checks, if the each model

predicts the correct class of input samples. Finally, the best feature/threshold combination is

selected by a performance metric computed from a confusion matrix. Experiments conducted

on the ViBe algorithm [12] showed that the proposed feature selection method improves the

segmentation results.
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Authors/Date Strategy Level Features

Traditional methods

Li et al. (2004) [118] Bayes decision rule Pixel RGB, gradient, and color co-occurrence

Javed et al. (2015) [98] Means and variances criterion Region RGB, gray, LBP, gradients, and HOG

Braham and Van Droogenbroeck (2015) [28] Performance metric Pixel RGB, HSV, and YCbCr

Ensemble-based

Grabner and Bischof (2006) [70, 72] AdaBoost Region Haar-like features, orientation histograms and LBP

Parag et al. (2006) [149] RealBoost Pixel RGB, gray, and gradients

Grabner et al. (2008) [71] AdaBoost Region Haar-like features

Klare and Sarkar (2009) [109] Ensemble of Mixture of Gaussians Pixel RGB, gradients, and Haar-like features.

Table 2.3: The main BS works based on features selection approaches.

In the last decades, some papers have been published addressing the ensemble for fea-

ture selection for the BS context. Most ensemble for feature selection algorithms for BS use

widely the boosting and its variants. In Grabner and Bischof [70, 72], a feature selection

framework using the online AdaBoost [64] is introduced for the BS task. In the learning step

a weak classifier is created for all image patches supposing that all input images are positive

samples. For this purpose, the gray value of each pixel is given as uniformly distributed, the

Haar features are computed by standard statistics the parameters of the negative distribution

and, the orientation histogram features consists of equally distributed orientations. After-

wards, the new input images are analyzed, and the background model is updated. According

to the authors, this method is robust to illumination changes and dynamic backgrounds since

the classifiers are consistently updated. However, this approach has many restrictions con-

cerning robust adaptiveness. To overcome this limitation, Grabner et al. [71] introduced a

controllable time dependency into online boosting. The algorithm used an exponential for-

getting of the samples over time and a simple sum-rule is used in the method to adjusting

its temporal behavior to the underlying scene by using a control system that regulates the

model parameters (e.g. errors, and importance). Parag et al. [149] proposed a generic model

that is capable of automatically selecting the features that obtain the best invariance to the

background changes while maintaining a high detection rate for the foreground detection. In

this study, the authors proposed the use of a RealBoost algorithm [168]. Unlike AdaBoost al-

gorithm which combines weak hypotheses having outputs in {−1,+1}, RealBoost algorithm

computes real-valued weak classifiers given real numbered feature values, and generates a

linear combination of these weak classifiers that minimizes the training error. To generate

the background model, Parag et al. [149] used the Kernel Density estimation (KDE) [58] into

RealBoost algorithm to select the most appropriate features for each pixel. The authors used

9 types of features, such as three color values R, G, B and spatial derivatives for each of

these color channels in both x and y directions for each pixel of a color image. According

to authors, once trained, the algorithm is able to adequately detect the moving objects unless

there are some structural changes in the scene. In Klare and Sarkar [109], an ensemble of

13 Mixture of Gaussians (MoG) classifiers is presented. Each classifier uses exclusively one

of the 13 (e.g. RGB, gradients, and Haar-like) features from the feature set, then they are

fused using equally weighted hypotheses, resulting in a single hypothesis. The experimental

results showed an evident improvement compared to the original MoG algorithm that uses

only color intensities. The main BS works based on feature selection reported here as well as

its principal differences are shown in Table 2.3.
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2.3 Conclusion

As discussed in this chapter, numerous approaches for background subtraction have been

proposed until the present date. However, there still exist open research questions to be

investigated, as for example no traditional algorithm today still seem to be able to simul-

taneously address all the key challenges of illumination variation, dynamic camera motion,

cluttered background and occlusion. We believe that an way of solving this issue is by the

systematic investigation concerning the role and importance of features within background

modeling and foreground detection. In the next chapters of this thesis, we tackle the prob-

lem by starting proposing a new descriptor that produces a short histogram while preserving

robustness to illumination changes. Moreover, this novel descriptor is less sensitive to noisy

pixels too. Furthermore, we present a feature selection approach to select automatically the

best features for different pixels/regions of the image, and the more relevant ones are used for

foreground segmentation.



38 LITERATURE REVIEW



Chapter 3

A novel texture descriptor for
background subtraction in videos

In this chapter, we propose an eXtended Center-Symmetric Local Binary Pattern (XCS-LBP)

descriptor for background modeling and subtraction in videos. By combining the strengths

of the ordinary LBP and the similar Center-Symmetric (CS) ones, it is robust to illumination

changes and noise, and produces short histograms, too. The experiments conducted on both

synthetic and real videos (from the Background Models Challenge) of outdoor urban scenes

under various conditions showed that the proposed XCS-LBP outperforms its direct com-

petitors for the background subtraction task. The work presented here was published at the

International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory

and Applications (VISAPP), Berlin, Germany (oral presentation) [176]. The reader can find

the related source code on Matlab at1.

3.1 Motivation

Recently, a variety of local texture descriptors have been attracted great attention for back-

ground modeling, especially the Local Binary Pattern (LBP) because it is simple and fast to

compute. Figure 3.1 (top) shows how a (center) pixel is encoded by a series of bits, accord-

ingly to the relative gray levels of its circular neighboring pixels. It shows great invariance

to monotonic illumination changes, do not require many parameters to be set, and have a

high discriminative power. However, the ordinary LBP descriptor in [146] is not efficient for

background modeling because of its sensitivity to noise, see Figure 3.1 (bottom) where a little

change of the central value greatly affects the resulting code.

The LBP feature of an image consists in building a histogram based on the codes of all

the pixels within the image. As it only adopts first-order gradient information between the

1https://fr.mathworks.com/matlabcentral/fileexchange/49815-xcs-lbp-descriptor-for-background-

modeling-and-subtraction-in-videos

39
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Figure 3.1: Examples of LBP encoding

center pixel and its neighbors, see [225], the produced histogram can be rather long. We

have mentioned in the literature review (Chapter 2) that the Center-Symmetric LBP variants

have been proposed to address this problem. It generates more compact binary patterns by

working only with the center-symmetric pairs of pixels. In this chapter, we propose a Center-

Symmetric LBP variant by introducing a new neighboring pixels comparison strategy that

allows the descriptor to be less sensitive to noisy pixels and to produce a short histogram,

while preserving robustness to illumination changes and slightly gaining in time consumption

when compared to its direct competitors.

The rest of this chapter is organized as follows. The new descriptor that we propose is

described in Section 3.2. Comparative results obtained on both synthetic and real videos are

given in Section 3.3. Finally, the conclusion drawn at the last section closed the Chapter 3.

3.2 Proposed XCS-LBP descriptor

The ordinary LBP descriptor introduced by [146] has proved to be a powerful local image

descriptor. It labels the pixels of an image block by thresholding the neighborhood of each

pixel with the center value and considering the result as a binary number. The LBP encodes

local primitives such as curved edges, spots, flat areas, etc. In the context of BS, both the

current image and the image representing the background model are encoded such that they

become a texture-based representation of the scene.

Let a pixel at a certain location, considered as the center pixel c = (xc,yc) of a local neigh-

borhood composed of P equally spaced pixels on a circle of radius R. The LBP descriptor

applied to c can be expressed as:

LBPP,R(c) =
P−1

∑
i=0

s(gi−gc) 2i (3.1)

where gc is the gray value of the center pixel c and gi is the gray value of each neighboring

pixel, and s is a thresholding function defined as:

s(x) =

{

1 if x≥ 0

0 otherwise.
(3.2)
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Table 3.1: Comparison of LBP and variants.

Descriptor
Robust to

noise

Robust to

illumination

changes

Uses

color

information

Uses

temporal

information

Histogram

size with 8

neighbors

Ordinary LBP [146] • 256

Modified LBP [84] • • 256

CS-LBP [86] • 16

STLBP [175] • • 256

εLBP [206] • 256

Adaptive εLBP [207] • 256

SCS-LBP [226] • • 16

SILTP [120] • 256

CS-LDP [225] • 16

SCBP [225] • 64

OCLBP [116] • 1536

Uniform LBP [231] • 59

SALBP [144] • 128

SLBP-AM [229] • • 256

LBSP [22] • • 256

CS-SILTP [218] • • 16

XCS-LBP [176] (in this thesis) • • 16

We choose these the CS-LBP and CS-LDP descriptors for fair comparison purpose. In-

deed, among those who rely on the same construction principle, i.e. Center Symmetric (CS),

they are the only ones that use neither color nor temporal information, see Table 3.1. For all

descriptors, the neighborhood size is empirically selected so that P = 8 and R = 1.

3.3.2 The BS methods used in this work

We evaluate the performance with two popular background subtraction methods: Adaptive

Background Learning (ABL) and Gaussian Mixture Models (GMM). A summary of these

approaches are presented below:

• Adaptive Background Learning (ABL): This method consists to compute the ab-

solute difference between the current frame and the static representation of the back-

ground model. Initially, the background is modeled using an average, a median or an

histogram analysis over time then it is updated via running average. Once the model

is computed, pixels of the current image are classified as foreground by thresholding

the difference between the background image and the current frame [24].

• Gaussian Mixture Models (GMM): In this algorithm, each pixel is represented by

a sum of weighted Gaussian distributions defined for a given color space. These dis-

tributions are generally updated using an online expectation-minimization algorithm.
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Table 3.3: Performance of the different descriptors on synthetic videos of the BMC

using the ABL method.
Scenes Descriptor Recall Precision F-score

Rotary

122

LBP 0.682 0.564 0.618

CS-LBP 0.832 0.520 0.640

CS-LDP 0.809 0.523 0.635

XCS-LBP 0.850 0.784 0.816

Rotary

222

LBP 0.611 0.505 0.553

CS-LBP 0.673 0.504 0.577

CS-LDP 0.753 0.510 0.608

XCS-LBP 0.852 0.782 0.815

Rotary

322

LBP 0.603 0.505 0.550

CS-LBP 0.647 0.504 0.566

CS-LDP 0.733 0.507 0.600

XCS-LBP 0.829 0.793 0.810

Rotary

422

LBP 0.573 0.502 0.535

CS-LBP 0.609 0.503 0.550

CS-LDP 0.733 0.508 0.600

XCS-LBP 0.751 0.780 0.765

Rotary

522

LBP 0.610 0.505 0.553

CS-LBP 0.663 0.504 0.573

CS-LDP 0.745 0.509 0.605

XCS-LBP 0.852 0.732 0.787

Street 112

LBP 0.702 0.530 0.604

CS-LBP 0.839 0.512 0.636

CS-LDP 0.826 0.525 0.642

XCS-LBP 0.803 0.793 0.798

Street 212

LBP 0.636 0.504 0.562

CS-LBP 0.716 0.503 0.591

CS-LDP 0.798 0.513 0.624

XCS-LBP 0.808 0.790 0.799

Street 312

LBP 0.627 0.504 0.558

CS-LBP 0.699 0.503 0.585

CS-LDP 0.801 0.511 0.624

XCS-LBP 0.800 0.796 0.798

Street 412

LBP 0.580 0.501 0.558

CS-LBP 0.599 0.501 0.546

CS-LDP 0.754 0.507 0.607

XCS-LBP 0.748 0.781 0.764

Street 512

LBP 0.628 0.503 0.559

CS-LBP 0.677 0.503 0.577

CS-LDP 0.771 0.508 0.612

XCS-LBP 0.800 0.575 0.669

Average

scores

LBP 0.625 0.512 0.565

CS-LBP 0.695 0.506 0.584

CS-LDP 0.772 0.512 0.616

XCS-LBP 0.809 0.761 0.782
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Table 3.4: Performance of the different descriptors on synthetic videos of the BMC

using the GMM method.
Scenes Descriptor Recall Precision F-score

Rotary

122

LBP 0.817 0.701 0.755

CS-LBP 0.830 0.705 0.763

CS-LDP 0.819 0.677 0.741

XCS-LBP 0.831 0.800 0.815

Rotary

222

LBP 0.636 0.653 0.644

CS-LBP 0.741 0.687 0.713

CS-LDP 0.651 0.616 0.633

XCS-LBP 0.825 0.794 0.809

Rotary

322

LBP 0.661 0.646 0.653

CS-LBP 0.741 0.656 0.696

CS-LDP 0.674 0.613 0.642

XCS-LBP 0.821 0.767 0.793

Rotary

422

LBP 0.611 0.585 0.598

CS-LBP 0.673 0.575 0.620

CS-LDP 0.611 0.548 0.578

XCS-LBP 0.748 0.702 0.724

Rotary

522

LBP 0.636 0.627 0.631

CS-LBP 0.743 0.672 0.706

CS-LDP 0.605 0.650 0.627

XCS-LBP 0.825 0.760 0.791

Street 112

LBP 0.940 0.674 0.785

CS-LBP 0.924 0.675 0.780

CS-LDP 0.938 0.656 0.772

XCS-LBP 0.844 0.755 0.808

Street 212

LBP 0.676 0.642 0.659

CS-LBP 0.752 0.658 0.702

CS-LDP 0.694 0.577 0.630

XCS-LBP 0.833 0.760 0.795

Street 312

LBP 0.684 0.633 0.657

CS-LBP 0.742 0.627 0.680

CS-LDP 0.729 0.581 0.647

XCS-LBP 0.821 0.713 0.763

Street 412

LBP 0.619 0.566 0.591

CS-LBP 0.705 0.567 0.628

CS-LDP 0.659 0.539 0.593

XCS-LBP 0.751 0.619 0.679

Street 512

LBP 0.662 0.566 0.610

CS-LBP 0.727 0.568 0.638

CS-LDP 0.689 0.551 0.612

XCS-LBP 0.828 0.629 0.715

Average

scores

LBP 0.694 0.629 0.658

CS-LBP 0.758 0.639 0.693

CS-LDP 0.707 0.601 0.648

XCS-LBP 0.813 0.730 0.769
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Table 3.5: Performance of the different descriptors on real-world videos of the BMC

using the ABL method
Videos Descriptor Recall Precision F-score

Boring

parking,

active

bkbg

LBP 0.555 0.512 0.533

CS-LBP 0.663 0.539 0.595

CS-LDP 0.712 0.556 0.624

XCS-LBP 0.673 0.628 0.650

Big

trucks

LBP 0.456 0.490 0.473

CS-LBP 0.664 0.583 0.621

CS-LDP 0.675 0.673 0.674

XCS-LBP 0.623 0.788 0.696

Wandering

students

LBP 0.500 0.500 0.500

CS-LBP 0.632 0.525 0.573

CS-LDP 0.691 0.566 0.622

XCS-LBP 0.854 0.714 0.778

Rabbit in

the night

LBP 0.562 0.515 0.537

CS-LBP 0.657 0.515 0.577

CS-LDP 0.742 0.561 0.639

XCS-LBP 0.818 0.706 0.758

Snowy

christmas

LBP 0.568 0.516 0.541

CS-LBP 0.640 0.508 0.567

CS-LDP 0.684 0.513 0.586

XCS-LBP 0.719 0.557 0.628

Beware of

the trains

LBP 0.542 0.511 0.526

CS-LBP 0.608 0.556 0.581

CS-LDP 0.711 0.618 0.662

XCS-LBP 0.780 0.674 0.723

Train in

the tunnel

LBP 0.524 0.505 0.514

CS-LBP 0.636 0.640 0.638

CS-LDP 0.668 0.659 0.663

XCS-LBP 0.655 0.688 0.672
Traffic

during

windy

day

LBP 0.491 0.497 0.494

CS-LBP 0.597 0.528 0.560
CS-LDP 0.589 0.515 0.550

XCS-LBP 0.572 0.529 0.550

One rainy

hour

LBP 0.536 0.508 0.521

CS-LBP 0.563 0.504 0.532

CS-LDP 0.658 0.520 0.581

XCS-LBP 0.694 0.649 0.671

Average

scores

LBP 0.526 0.506 0.515

CS-LBP 0.629 0.544 0.583

CS-LDP 0.681 0.576 0.558

XCS-LBP 0.710 0.659 0.681
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Table 3.6: Performance of the different descriptors on real-world videos of the BMC

using the GMM method
Videos Descriptor Recall Precision F-score

Boring

parking,

active

bkbg

LBP 0.684 0.587 0.632

CS-LBP 0.716 0.593 0.649
CS-LDP 0.674 0.579 0/623

XCS-LBP 0.680 0.607 0.641

Big

trucks

LBP 0.695 0.778 0.734
CS-LBP 0.698 0.773 0.733

CS-LDP 0.649 0.758 0.699

XCS-LBP 0.630 0.792 0.702

Wandering

students

LBP 0.704 0.667 0.685

CS-LBP 0.700 0.640 0.668

CS-LDP 0.654 0.634 0.643

XCS-LBP 0.826 0.742 0.782

Rabbit in

the night

LBP 0.767 0.659 0.709

CS-LBP 0.826 0.626 0.712

CS-LDP 0.706 0.619 0.659

XCS-LBP 0.805 0.684 0.740

Snowy

christmas

LBP 0.750 0.519 0.614

CS-LBP 0.734 0.516 0.606

CS-LDP 0.625 0.510 0.562

XCS-LBP 0.726 0.538 0.618

Beware of

the trains

LBP 0.657 0.685 0.671

CS-LBP 0.699 0.664 0.681

CS-LDP 0.641 0.642 0.642

XCS-LBP 0.759 0.731 0.744

Train in

the tunnel

LBP 0.724 0.711 0.717
CS-LBP 0.710 0.675 0.692

CS-LDP 0.679 0.697 0.688

XCS-LBP 0.695 0.680 0.687

Traffic

during

windy

day

LBP 0.523 0.509 0.516

CS-LBP 0.553 0.520 0.536
CS-LDP 0.527 0.510 0.518

XCS-LBP 0.532 0.518 0.525

One rainy

hour

LBP 0.867 0.574 0.691
CS-LBP 0.774 0.589 0.669

CS-LDP 0.797 0.556 0.655

XCS-LBP 0.761 0.628 0.688

Average

scores

LBP 0.708 0.632 0.663

CS-LBP 0.712 0.622 0.661

CS-LDP 0.661 0.612 0.632

XCS-LBP 0.713 0.658 0.681
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3.4 Conclusion

In summary, a new texture descriptor for background modeling is proposed. It combines the

strengths of the ordinary Local Binary Pattern (LBP) and the Center-Symmetric (CS) ones.

Thus, the new variant XCS-LBP (eXtended CS-LBP) produces a shorter histogram than LBP,

by its CS-construction. It is also tolerant to illumination changes as LBP and CS-LBP are

whereas CS-LDP is not, and robust to noise as CS-LDP is whereas LBP and CS-LBP are not.

We compared the XCS-LBP to the ordinary LBP and to its two direct competitors on both

synthetic and real videos of the Background Modeling Challenge (BMC) using two popular

background subtraction methods. The experimental results have shown that the proposed

descriptor qualitatively and quantitatively outperforms the mentioned descriptors, making it

a serious candidate for the background subtraction task in computer vision applications.

In the next chapter, we present an ensemble pixel-based for feature selection in BS to deal

with the challenges enumerated in the Section 1.1. The proposed approach selects automati-

cally the best features for different pixels of the image, and the more relevant ones are used

for the foreground segmentation task. In this framework, the background model is modeled

by different features including our XCS-LBP descriptor presented in this chapter.
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Chapter 4

A pixel-based ensemble for feature
selection in background subtraction

This chapter presents an Online Weighted Ensemble of One-Class SVMs (Support Vector

Machines) able to select suitable features for each pixel to distinguish the foreground ob-

jects from the background. In addition, our proposal uses a mechanism to update the relative

importance of each feature over time. Moreover, a heuristic approach is used to reduce the

complexity of the background model maintenance while maintaining the robustness of the

background model. Results on two datasets show the pertinence of the approach. This chap-

ter is based on our recent publication presented at the International Conference on Pattern

Recognition (ICPR), Cancun, Mexico (oral presentation) [177].

4.1 Motivation

A single-feature background subtraction algorithm may not be appropriate in a complex scene

because the most discriminant features for each element are probably different. A complex

scene comprising of several elements such as waving trees, sky, soil and cars is shown in

Figure. 4.1. We have argued in the Chapter 2 that the ensemble feature selection technique

as a great way to able select automatically the most relevant features in a scene. Relatively

little approach based on ensemble for feature selection has been proposed for BS task. Most

of these approaches use a multi-class boosting approach and its variants to select the best fea-

tures (see Table 4.1). However, the BS can be considered an one-class classification (OCC)

problem, therefore usually only exemplars of one-class elements are available (i.e. the back-

ground component is always present), whereas the other classes are unknown (i.e. foreground

objects can appear/disappear several times in the scene). To overcome this problem, most of

BS approaches have been used statistical distributions to generate the unrealistic foreground

samples. In this chapter, we propose an online weighted ensemble of one-class SVMs (Sup-

port Vector Machines) for feature weighting and selection for foreground-background sepa-

ration. The main BS works based on ensemble for feature selection as well as its principal
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where 〈., .〉 stands for the inner product that can be replaced by any kernel function K(., .),
and αi are the associated Lagrangian multipliers subject to:

0≤ αi ≤ wi C, (4.6)

N

∑
i=1

αi = 1. (4.7)

The solution of this quadratic programming problem is twofold. On one hand, the center a is

a linear combination of the data points:

a =
N

∑
i=1

αi xi. (4.8)

On the other hand, the radius R is subject to the following Karush-Kuhn-Tucker (KKT) con-

ditions that correspond to inliers, the so-called support vector (SV) points and outliers, re-

spectively:

inliers : αi = 0⇒ ||xi−a||2< R2 (4.9)

SV : 0 < αi <C⇒ ||xi−a||2= R2 (4.10)

outliers : αi =C⇒ ||xi−a||2> R2 (4.11)

and can be computed from SV points given by (4.10). The classification of an incoming point

x is straightforward: it is assigned to ω if it falls inside the class boundary (positive case),

otherwise it is associated to an outlier class ωo (negative case).

Traditional WOC-SVM is an offline or batch process, so that classification boundaries

are not updated. This can limit its use for many machine learning applications. For the BS

task, it is required to adjust the learned model to the scene variations over time. We pro-

pose an Incremental Weighted One-Class Support Vector Machine (IWOC-SVM) to handle

this issue which is closely related to the procedure proposed by Tax and Laskov [194]. In

the IWOC-SVM algorithm, SV set and non-SV set in previous training set Z0 may be con-

verted into SV. Samples which violate KKT conditions in new samples are chosen as training

set and the other useless samples are eliminated in the training process. Given new samples

Z1 = {z1,z2, ...,zs} and its respective weights not learned by the IWOC-SVM, first we defined

the corresponding αi = 0, and then we calculated the distance to center of the hypersphere.

There are no new SVs in the new samples Z1 when the distance is smaller than the radius. In

addition, some non-SVs in the old samples may be transformed into SVs along with incre-

mental learning of the new samples. Note that non-SVs can be transformed into new SVs if

they always exist nearby the hypersphere. The mathematical model can be defined as:

R−θ≤ ||x−a||≤ R (4.12)

where θ ∈ [0,R] is relative to the distribution of previous training set, and the loose distribu-

tion will make the value of θ be high. In addition, with the incremental learning, the value

of θ will be low for more and more samples located near the previous SV set. The resulting

IWOC-SVM is summarized in Algorithm 6.
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Algorithm 6 Incremental Weighted One-Class SVM

1: Require: Previous training set Z0, newly added training set Z1 and its respective weights

2: Train IWOC-SVM classifier on Z0, then split Z0 = SV0∪NSV0

3: Input new samples Z1. Put samples that violate KKT conditions in ZV
1 . If ZV

1 = /0, then goto 2.

4: Put samples from NSV0 that satisfy Eq. (4.12) into NSV S
0 .

5: Set Z0 = SV0∪NSV S
0 ∪ZV

1 and train IWOC-SVM classifier on Z0.

6: Output: IWOC-SVM classifier Ω and the new training set Z0.

4.3 Online weighted one-class random subspace ensemble
for feature selection (OWOC-RS)

For the background subtraction task, diversity models are initially learned for each pixel con-

tained in the first N images, say training set X = {x1,x2, ...,xN} where each x j ( j = 1, ...,N)

∈ R
p is a certain pixel over time N described by p original features.

4.3.1 Generating multiple base models

For each classifier, p∗< p features are randomly selected so that x reduces to Sk (k = 1, ...,M),

where M is the user-defined number of base classifiers. Then, for each reduced object x∗j
( j = 1, ...,N) of Sk, weights are assigned to the features in accordance to an exponential dis-

tribution. We opted for a Poisson distribution because it is usually employed in re-sampling

ensemble methods such as bagging and wagging [147]. In this work, we used the version

of the Poisson distribution that describes the process in which events occur continuously and

independently at a constant average rate. The weights drawn from the Poisson distribution

are used to generate the IWOC-SVM base classifier [111]. Thus, a hybridization between

random subspace and incremental one-class learning is done. The above approach increases

the diversity of base classifiers since different weights of each random subspace are taken to

distinguish the decision boundaries computed by the classifiers. Indeed, these base classifiers

represent a set of diverse base background models Ψ = {Ψ1,Ψ2, ...,ΨM}. The pseudo-code

of the proposed approach for multiple base background models generation is given in Algo-

rithm 7.

Algorithm 7 Generate multiple base background models

1: Require: IWOC-SVM training procedure, training set X , subspace dimension p∗, number of base

classifiers M, weight distribution δ(x)
2: k← 1

3: repeat
4: Sk← SelectRandomSubspace(X ,p∗)
5: Train k-th IWOC-SVM on Sk with respect to weights w∼ δ(x)
6: k← k+1

7: until k > M

8: Output: Trained IWOC-SVM base classifiers Ψ = {Ψ1,Ψ2, ...,ΨM}
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4.3.2 Adaptive Importance (AI)

Along time, the selected feature set may become inadequate if any major change in the scene

occurs. Since the objective is to use the more useful models, namely the best features from

the pool of p features, an adaptive importance taking values in [0,1] can be introduced as pro-

posed in [215] for each base model to weight the class labeling (see Eq. 4.15) of the incoming

pixels. The higher the importance which lies in [0,1], the more the classifier influences the

decision. Let λcorrect
k (respectively λ

wrong
k ) be the number of times a pixel was correctly (re-

spectively incorrectly) classified by the k-th (k = 1, ...,M) base classifier from given ground

truth data. Then, the corresponding error is given by:

errork =
λ

wrong
k

λcorrect
k +λ

wrong
k

(4.13)

Note that only the base classifiers that have the smallest errors are combined and used to

differentiate the moving objects from the background model in the scene. The computation

of the adaptive importance of each best base classifier is given in Algorithm 8.

Algorithm 8 Adaptive Importance (AI) computation

1: Require: Final classifier H, validation set (t1,y1), ...,(tN ,yN) where ti ∈ T , yi ∈ Y = 0,1 for back-

ground and foreground examples respectively, set of L best base classifiers Ψ = {Ψ1,Ψ2, ...,ΨL},
learning rate parameter γ

2: Initialize all L best classifiers with importance: βl = 1

3: repeat
4: Classify ti using the final classifier H according to Eq. (4.16)

5: for l = 1 : L do
6: Checks response of Ψl and calculates their errorl according to Eq. (4.13)

7: For each best classifier, Ψl , update the importance βl = βl(i−1)+
Pa(Ψl)−Pa(H(i−1))

(N+γ)

8: where Pa(Ψl) = 1− errorl according to Eq.(4.13).

9: end for
10: until i < N

11: Normalize the importance β of each L best classifier.

12: Output: New importance assigned to the best classifiers β = {β1,β2, ...,βL}

4.3.3 Background detection

Given an incoming pixel x to be classified, one can define a support function associated to the

class ω for each of the L best base classifiers: ∀l = 1, ...,L

Fl(x,ω) =
1

s1
exp(−d(x,a)/s2) (4.14)

where d(x,a) is a distance metric from x to the center a of the target class ω, s1 is a normal-

ization factor and s2 is a scale parameter. Each Fl(x,ω) is then compared to a threshold t1 to

obtain the positive or negative class labels: ∀l = 1, ...,L
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cl(x,ω) =

{

1 if Fl(x,ω)> t1

−1 otherwise
(4.15)

Comparing the weighted sum of theses L class labels as in [193] to another threshold t2
allows to define the final classifier for x as follows:

H(x) =

{

1 if 1
L ∑L

l=1 βl cl(x,ω)> t2

0 otherwise
(4.16)

A pixel x is classified as a background pixel if H(x) = 0.

4.3.4 Heuristic approach for background model maintenance

The background maintenance relies on the mechanism used for adapting the learned model

to the scene over time. For this step, we propose to suitably update the learned model by our

IWOC-SVM using a new ensemble margin-based data selection approach called Small Votes

Instance Selection (SVIS) introduced by Guo and Boukir [75]. The SVIS relies on a simple

and efficient heuristic approach to provide SV candidates: selecting lowest margin samples.

This heuristic significantly reduces the IWOC-SVM training task complexity while main-

taining the accuracy of the IWOC-SVM classification. Once only support vector candidate

samples are used to update the IWOC-SVM’s models. The SVIS consists of an unsupervised

ensemble margin that combines the first c(1) and second most voted class c(2) labels under

the learned model. Let vc(1)
and vc(2)

denote the relative number of votes. Then the margin,

taking value in [0,1] is:

m(x) =
vc(1)
− vc(2)

L
(4.17)

where L represents the number of best base classifiers in the ensemble. The first smallest

margin samples are selected as support vector candidates. The final model is updated by the

first smallest margin samples. This procedure is presented in the Algorithm 9.

4.4 Experimental results

The experiments were conducted to show both the qualitative and quantitative performances

of the proposed method. We used the MSVS dataset 1 [16] which consists of a set of 5 video

sequences containing 7 multispectral bands and color video sequence (RGB). We also present

the results on the ChangeDetection (CDnet 2014) dataset 2 [212]. Three video sequences

categorized into baseline scenes, intermittent object motion and dynamic scenes are used.

1http://www.fluxdata.com/articles/universit%C3%A9-de-bourgogne-uses-fluxdata-fd-1665-

create-dataset-background-subtraction
2http://changedetection.net/
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Algorithm 9 Heuristic approach for model maintenance

1: Require: Final classifier H, test set Z = {z1,z2, ...,zt}, weight distribution δ(z), user defined pa-

rameter time, user defined parameter η.

2: i← 1

3: repeat
4: if H(zi) = 1 (background) then
5: Compute the margin m(zi) by Eq. (4.17).

6: end if
7: if time is reached then
8: Order all the test samples according to their margin values, in ascending order.

9: The η smallest margin samples are selected as support vectors.

10: H(x) is updated using Z1 and its weight w∼ δ(x).
11: end if
12: i← i+1

13: until i > t

Figure 4.4: Results using the MSVS dataset [16] – (a) original frame, (b) ground

truth and (c) proposed method.

The baseline scenes include pets2006 while dynamic scenes include canoe and intermittent

object motion scenes include sofa.

In the training step, we used kernalized IWOC-SVM as a base classifier with C = 1, with

the same RBF (Radial Basis Function) kernel K(., .) [192]. The main advantage of RBF ker-

nel is its good performance on non-linearly separable data. The pool of classifiers was homo-

geneous and consisted of 10 base classifiers of the same type. The classification threshold t1
was set to 0.9 and t2 to 0.5 for combining the best one-class classifiers. The video sequences

was resized to 160× 120 pixels in our experiments due computational cost. We set p* =

5 for the random subspace dimension from the original p = 26-dimensional features space

on the MSVS dataset while p = 19-dimensional features space on the CDnet 2014 dataset.

These features were chosen to have at least one feature in the five type of features commonly

used in BS: color feature (R,G,B, H,S,V and gray-scale), texture feature (XCS-LBP [176]),
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features to perform BS. Table 4.5 shows the score of the Mahalanobis distance and Pool-

ing methods evaluated on five scenes. The best scores are in bold. The proposed approach

presented the best scores for Scene 01, Scene 03, Scene 04 and Scene 05. In these scenes,

the most frequent challenges for BS are color saturation, dynamic background, illumination

changes, camouflage effects and intermittent object motion. In the Scene 02, the framework’s

performance was impacted due to gradual illumination changes. The best score for Scene

02 was presented for Mahalanobis distance. Table 4.6 also shows the score of our method

from CDnet 2014 dataset. Note that for this dataset the best score was presented for the sofa

scene. It contains abandoned objects and objects stopping for a short while and then moving

away. A suggestion to further improve our method score for both datasets is adding new

feature descriptors and/or its variants can be added to deal with specific background subtrac-

tion challenges. In general, we can see that the ensemble feature selection is a suitable and

efficient approach for BS.

Figure 4.6 and 4.7 illustrate the importance of each feature through video scenes from

MSVS and CDnet 2014 datasets. For each pixel, certain features are ignored or receive rela-

tively low importance in favor of other more informative features. Then, a global histogram

was then normalized to obtain scores from 0-1, where higher scores meant highly informative

features. Unlike traditional methods that the same feature (or set of features) is used globally

for the whole video scene (and usually with the same level of importance), we present the

potential of the proposed approach and its effectiveness to select the best features for back-

ground subtraction task. As can be seen on the MSVS dataset, the most important features for

overall scenes were OCLBP and gradients with high or medium contribution of some features

such as multispectral. It is important to note several BS algorithms uses color as main fea-

ture, whereas in our experiments the color feature is the one with lowest importance except

for Scene 02. Notice that on CDnet 2014 dataset, all features are important for PETS2006

and canoe scenes while in the sofa scene only OCLBP-GG is less important. Table 4.3 and

4.4 show the most and less significant features for both datasets used in this work. The ex-

perimental were made in Matlab R2013a a MacBook Pro with 2.2 GHz Intel Core i7. We

collected the elapsed CPU time for training/validation and foreground detection. For train-

ing/validation the elapsed time is 5.44 sec/frame, while in foreground detection the elapsed

time is 1.05 sec/frame.

Table 4.3: The most (+) and less (-) significant features from MSVS scenes [16].

Videos
Importance

most (+) less (-)

Scene 01

Gradient Direction with

medium contrib. multispectral

features

OCLBP-GB

Scene 02
MS1,MS2 and MS6 with

Color, Gradient X features
XCS-LBP and MS4

Scene 03

OCLBP-GG,RR with medium

contrib. of other OCLBP

channels and gradient features

Hue, Optical flow and

multispectral features

Scene 04

OCLBP-BB,RR,RG and GG

with medium contrib. of

gradient features

Multispectral and color

features

Scene 05

OCLBP-RR with high contrib.

of other OCLBP channels and

multispectral features

Gradient Magnitude
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Table 4.4: The most (+) and less (-) significant features from CDnet 2014 dataset

[212].

Videos
Importance

most (+) less (-)

PETS2006

Relatively a high contribution of most

of the features except for a high

contribution of the saturation,

OCLBP-RB and Y gradient features,

respectively

none

canoe High contribution of all features none

sofa

High contribution of most of the

features except for a medium

contribution of the saturation,

OCLBP-RG, and Y gradient features,

respectively

OCLBP-GG

Table 4.5: Performance of the different methods using the MSVS dataset [16].

Videos Method Precision Recall F-score

Scene 01

MD (RGB) [16] 0.6536 0.6376 0.6536

MD (MSB) [16] 0.7850 0.8377 0.8105

Pooling (MSB) [16] 0.7475 0.8568 0.7984

OWOC-RS [in this chapter] 0.8500 0.9580 0.9008

Scene 02

MD (RGB) [16] 0.8346 0.9100 0.8707

MD (MSB) [16] 0.8549 0.9281 0.8900
Pooling (MSB) [16] 0.8639 0.8997 0.8815

OWOC-RS [in this chapter] 0.8277 0.8245 0.8727

Scene 03

MD (RGB) [16] 0.7494 0.5967 0.6644

MD (MSB) [16] 0.7533 0.6332 0.6889

Pooling (MSB) [16] 0.8809 0.5134 0.6487

OWOC-RS [in this chapter] 0.9326 0.9965 0.9635

Scene 04

MD(RGB) [16] 0.8402 0.7929 0.8158

MD (MSB) [16] 0.8430 0.8226 0.8327

Pooling (MSB) [16] 0.8146 0.8654 0.8392

OWOC-RS [in this chapter] 0.9534 0.8374 0.8997

Scene 05

MD (RGB) [16] 0.7359 0.7626 0.7490

MD (MSB) [16] 0.7341 0.8149 0.7724

Pooling (MSB) [16] 0.7373 0.8066 0.8066

OWOC-RS [in this chapter] 0.7316 0.8392 0.8400
*MD = Mahalanobis distance

Table 4.6: Performance of our method using the CDnet 2014 dataset [212].
Videos Precision Recall F-score

PETS2006 0.8555 0.9395 0.8955

canoe 0.9034 0.9216 0.9124

sofa 0.9682 0.9160 0.9414
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4.5 Conclusion

Online Weighted Ensemble of One-Class SVMs is able to select suitable features for each

pixel to distinguish the foreground objects from the background. In addition, an Online and

Weighted version of the Random Subspace (OW-RS) is used to assign a degree of importance

to each feature set, and these weights are used directly in the training step of our IWOC-

SVM. Moreover, a heuristic approach is used to reduce the complexity of the background

model maintenance while maintaining the robustness of the background model. Experimen-

tal results on different video sequences show the potential of the proposed approach and its

effectiveness to select the best features for distinct regions in a video sequence. However, the

ensemble pixel-based for feature selection described in this chapter only reaches the highest

accuracy when the number of features is huge. In summary, each base classified learns a fea-

ture set instead of individual features. To overcome these limitations, in the next chapter we

extend the approach proposed here by developing a novel methodology for selecting features

based on wagging.
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Chapter 5

A superpixel-based ensemble for feature
selection in background subtraction

In this chapter, we present a novel superpixel based one-class ensemble to select the best

features based on wagging. Our proposal is able to select suitable features to each region

of a certain scene to distinguish the foreground objects from the background. In addition,

we propose a mechanism to update the importance of each feature discarding insignificant

features over time. Results on two challenging datasets show the pertinence of the proposed

approach. The work presented here was recently submitted to Pattern Recognition Letters

Journal [178].

5.1 Motivation

In Chapter 4, we presented an online weighted one-class random subspace ensemble pixel-

based able to select automatically the best features for different pixels of the image, and the

most relevant features are used for foreground segmentation. The main drawback is that this

method only reaches the highest accuracy when the number of features is huge. Furthermore,

each base classifier learns a feature set instead of individual features. To overcome these lim-

itations, in this chapter we extend our previous approach by proposing a novel methodology

for selecting features based on wagging. It is important to note that the ensemble learning

methods usually require high computation time and memory consumption. In order to cir-

cumvent this issue, an alternative way is to use efficient strategies that not further increase

the computational cost of the ensemble. So, In this chapter, we adopted a superpixel-based

approach instead of pixel-level approach used in our previous work (Chapter 4). This does

not only increases the efficiency in terms of time and memory consumption, but also can

improves the segmentation performance. We propose further a mechanism called Adaptive

Importance Computation and Ensemble Pruning (AIC-EP). Chapter 4 also propose a mech-

anism to select the features over time, however, in this chapter we have added an ensemble

pruning to eliminate the features that will not have impact on the ensemble’s final decision.

71
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Authors/Date Strategy Level Type

Boosting-based

Grabner and Bischof (2006) [70, 72] AdaBoost Region multi-class

Parag et al. (2006) [149] RealBoost Pixel multi-class

Grabner et al. (2008) [71] AdaBoost Region multi-class

Other approaches

Klare and Sarkar (2009) [109] Ensemble of Mixture of Gaussians Pixel one-class

OWOC-RS [177] Weighted Random Subspace Pixel one-class

Superpixel-OWAOC [in this chapter] [178] Wagging for feature selection Cluster one-class

Table 5.1: The main BS works based on ensemble for features selection approaches.

Authors/Date Intensity Color Edge Texture Depth Motion Multispectral

Grabner and Bischof (2006) [70, 72] • •
Parag et al. (2006) [149] • • •
Grabner et al. (2008) [71] •
Klare and Sarkar (2009) [109] • • •
OWOC-RS [177] • • • • • •
Superpixel-OWAOC [in this chapter] [178] • • • •

Table 5.2: Comparison of the main BS works based on ensemble for features selec-

tion approaches and its features.

5.2 Superpixel-based Online WAgging One-Class Ensem-
ble for Feature Selection (Superpixel-OWAOC)

Wagging is a variant of Bagging algorithm [15]. It trains each base classifier on the entire

training, since for each sample is assigned a weight. Therefore, each sample has a level of

influence on the classifier’s training process. The standard wagging is a powerful strategy

to generate a diverse set of base classifiers, but it is not designed for feature selection. We

propose to extend the standard wagging for feature selection restricting the base learner so

that each base classifier can focus only on a single feature. An overview of our wagging for

feature selection is presented in Alg. 10.

For the background subtraction task, we initially computed the superpixel by SLIC (Sim-

ple Linear Iterative Clustering) [16], which is an adaptation of k-means in the labxy image

space for robust superpixel creation. Next, diversity models are learned from a training set

X = {x1,x2, ...,xN}where each x j ( j = 1, ...,N) ∈ R
p is a certain superpixel (maximum value)

over time N described by p features.

5.2.1 Generate multiple base models

Our wagging for feature selection assign weights for each sample of a given features ρ ac-

cording to an exponential distribution. We opted to use the version of the Poisson distribution
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Algorithm 10 The wagging for feature selection

1: Require: IWOC-SVM training procedure, training set X , weight distribution δ(x), number of base

classifier M, user defined parameter ε
2: j← 1

3: repeat
4: for k = 1 : M do
5: Ψk ← train an IWOC-SVM classifier for each, ρ j feature according to random weights drawn

from δ(x).
6: Calculate the error of Ψk according to Eq. (5.1)

7: if errork ≥ ε then
8: Choose the classifier Ψk

9: break
10: else
11: continue
12: end if
13: end for
14: j← j+1

15: until j > N

16: // choose base classifiers with the best importances to according the Algorithm (11)

17: Output: Combine outputs the best base classifiers to according the Eq. (5.4).

that describes the process in which events occur continuously and independently at a constant

average rate [111]. Therefore, these weights together with the samples are used as input to

generate the Incremental Weighted One-Class Support Vector Machine (IWOC-SVM) base

classifiers. The reader can find details of the IWOC-SVM in Chapter 4. The search iterates

until an IWOC-SVM with the smallest error (defined by the user) is found or M rounds is

reached. Let λcorrect
k (respectively λ

wrong
k ) be the number of times a region was correctly (re-

spectively incorrectly) classified by the k-th (k = 1, ...,M) base classifier from given ground

truth data. Then, the corresponding error is given by:

errork =
λ

wrong
k

λcorrect
k +λ

wrong
k

(5.1)

The Algorithm 10 (lines 1-16) is responsible by created many base classifiers with small

error representing a set of diverse base background models Ψ = {Ψ1,Ψ2, , ..ΨM}.

5.2.2 Adaptive Importance Computation and Ensemble Pruning (AIC-
EP)

Along time, the selected feature set may become inadequate if any major change in the scene

occurs. Since the objective is to use the more useful models, namely the best features from the

p features set, an adaptive importance taking values in [0,1] can be introduced as proposed

in [215] for each base model to weight the class labeling (see Eq. 5.4) of the incoming

regions. The higher the importance which lies in [0,1], the more the classifier influences

the decision. Note that the difference of Algorithm 11 for the Algorithm 8, proposed in
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the Chapter 4, is just that we have added an ensemble pruning to eliminate the importances

with very low values over time. This can can improve the generalization performance of the

ensemble. Furthermore, it can prevent the increase of the training cost, storage demands, and

prediction time since it allows to eliminate classifiers with very low importance that will not

have impact on the ensemble’s final decision. Note that only the base classifiers that have

the highest importance are combined and used to differentiate the moving objects from the

background model in the scene.

Algorithm 11 Adaptive Importance Computation and Ensemble Pruning (AIC-EP)

1: Require: Final classifier H, validation set (t1,y1), ...,(tN ,yN) where ti ∈ T , yi ∈ Y = 0,1 for back-

ground and foreground examples respectively, set of L base classifiers Ψ = {Ψ1,Ψ2, ...,ΨL}, learn-

ing rate parameter γ, user defined parameter ς
2: Initialize all L classifiers with importance: βl = 1/L and estimate their Pa(Ψl)
3: where Pa(Ψl) = 1− errorl according to Eq.(5.1).

4: i← 1

5: repeat
6: Classify ti using the final classifier H according to Eq. (5.4)

7: for l = 1 : L do
8: Checks response of Ψl and calculates their errorl according to Eq. (5.1)

9: For each best classifier, Ψl , update the importance βl = βl(i−1)+
Pa(Ψl)−Pa(H(i−1))

(N+γ)

10: end for
11: i← i+1

12: until i < N

13: Normalize the importance βl of each l classifier

14: for l = 1 : L do
15: if Bl ≤ ς then
16: discard the l-th classifier

17: end if
18: end for
19: Output: The best classifier(s) and its/their β which could be used in Eq. (5.4)

5.2.3 Background detection

The procedure for background detection is the same as used in Chapter 4. However, we

recover some of the principal definitions as follows. Given an incoming regions x to be

classified, one can define a support function associated to the class ω for each of the L best

base classifiers: ∀l = 1, ...,L

Fl(x,ω) =
1

s1
exp(−d(x,a)/s2) (5.2)

where d(x,a) is a distance metric from x to the center a of the target class ω, s1 is a normal-

ization factor and s2 is a scale parameter. Each Fl(x,ω) is then compared to a threshold t1 to

obtain the positive or negative class labels: ∀l = 1, ...,L
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cl(x,ω) =

{

1 if Fl(x,ω)> t1

−1 otherwise
(5.3)

Comparing the weighted sum of theses L class labels as in [193] to another threshold t2
allows to define the strong classifier for x as follows:

H(x) =

{

1 if 1
L ∑L

l=1 βl cl(x,ω)> t2

0 otherwise
(5.4)

A region x is classified as a background region if H(x) = 0.

5.2.4 Heuristic approach for background model maintenance

The procedure for background model maintenance is the same as that used in Chapter 4. In

order to facilitate the reading, we recover some of the principal definitions as follows. The

background maintenance relies on the mechanism used for adapting the learned model to

the scene over time. For this step, we propose to suitably update the learned model by our

IWOC-SVM using a new ensemble margin-based data selection approach called Small Votes

Instance Selection (SVIS) introduced by Guo and Boukir [75]. The SVIS relies on a simple

and efficient heuristic approach to provide SV candidates: selecting lowest margin samples.

This heuristic significantly reduces the IWOC-SVM training task complexity while main-

taining the accuracy of the IWOC-SVM classification. Once only support vector candidate

samples are used to update the IWOC-SVM’s models. The SVIS consists of an unsupervised

ensemble margin that combines the first c(1) and second most voted class c(2) labels under

the learned model. Let vc(1)
and vc(2)

denote the relative number of votes. Then the margin,

taking value in [0,1] is:

m(x) =
vc(1)
− vc(2)

L
(5.5)

where L represents the number of best base classifiers in the ensemble. The first smallest

margin samples are selected as support vector candidates. The final model is updated by the

first smallest margin samples. This procedure is presented in the Algorithm 12.

5.3 Experimental results

The experiments were conducted in two recent public datasets: MSVS dataset [16] and RGB-

D object detection dataset [36]. These datasets were chosen because they provide two types

of informations so far been little explored in BS: multispectral and depth, respectively. The

MSVS dataset consists of a set of 5 video sequences containing 7 multispectral bands and

color video sequence (RGB) with different challenges such as gradual illumination changes,
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Algorithm 12 Heuristic approach for model maintenance

1: Require: Final classifier H, test set Z = {z1,z2, ...,zt}, weight distribution δ(z), user defined pa-

rameter time, user defined parameter η.

2: i← 1

3: repeat
4: if H(zi) = 1 (background) then
5: Compute the margin m(zi) by Eq. (5.5).

6: end if
7: if time is reached then
8: Order all the test samples according to their margin values, in ascending order.

9: The η smallest margin samples are selected as support vectors.

10: H(x) is updated using Z1 and its weight w∼ δ(x).
11: end if
12: i← i+1

13: until i > t

shadows, camouflage effects (color similarity of object and background) and intermittent ob-

ject motion. While the RGB-D dataset includes four different sequences of indoor environ-

ments, acquired with the Microsoft Kinect RGB-D camera, that contain different situations

such as cast shadows, color and depth camouflage.

In the training step, we used kernalized IWOC-SVM as a base classifier with C = 1,

with the same RBF (Radial Basis Function) kernel K(., .) [192]. The main advantage of RBF

kernel is its good performance on non-linearly separable data. The pool of classifiers was

homogeneous and consisted of 10 base classifiers of the same type. The pool of classifiers

consisting of a maximum of 10 base classifiers. The classification threshold t1 was set to 0.9
and t2 to 0.5 for combining the best one-class classifiers. We divided the training set into three

parts - first, we generate the base BS, next we calculate the adaptive importance for each BS

model and finally, the base BS models with high importance are selected. In addition, we used

a set of images to test our framework (detection step without ground truth for testing). All

tests were done by a 10-fold cross validation. The video sequences was resized to 160×120

pixels in our experiments due computational cost. We used 9-dimensional features space for

the MSVS dataset and 4-dimensional features space for the RGB-D dataset. In both datasets

were used the grayscale and XCS-LBP [176] features. However, 7 multispectral bands and 1

depth information were adding for MSVS and RGB-D datasets, respectively.

5.3.1 Background detection on the MSVS and RGB-D datasets

We present the visual results on individual frame for Scene 05 (frame #413) from MSVS

dataset and GenSeq (frame #996) from RGB-D dataset. Figure 5.2 shows the foreground

detection results using our approach were displayed without any post-processing technique.

The true positives (TP) regions are in white, true negatives (TN) regions in black, false pos-

itives (FP) regions in red and false negatives (FN) regions in green. Our method is able to

detect the moving objects with fewer number of false detection for both datasets. Next, the

performance of the BS is evaluated at region-level. Given the ground truth data, the correct-
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Table 5.3: Performance using the MSVS dataset [16].

Videos Method Precision Recall F-score

Scene 01

IWOC-SVM 0.9814 0.3378 0.5027

OWOC-RS [177] (Chapter 4) 0.8500 0.9580 0.9008

Superpixel-OWAOC [in this chapter] 0.9498 0.8799 0.9135

Scene 02

IWOC-SVM 0.7671 0.9410 0.8452

OWOC-RS [177] (Chapter 4) 0.8277 0.8245 0.8727

Superpixel-OWAOC [in this chapter] 0.9627 0.9555 0.9591

Scene 03

IWOC-SVM 0.8945 0.6123 0.7270

OWOC-RS [177] (Chapter 4) 0.9326 0.9965 0.9635
Superpixel-OWAOC [in this chapter] 0.9787 0.8999 0.9376

Scene 04

IWOC-SVM 0.9279 0.4287 0.5865

OWOC-RS [177] (Chapter 4) 0.9534 0.8374 0.8997
Superpixel-OWAOC [in this chapter] 0.8236 0.9509 0.8827

Scene 05

IWOC-SVM 0.0331 0.5430 0.0624

OWOC-RS [177] (Chapter 4) 0.7316 0.8392 0.8400

Superpixel-OWAOC [in this chapter] 0.8691 0.8695 0.8693

feature presented also the highest contribution from RGB-D dataset. Nonetheless, note that

for ColCamSeq scene the XCS-LBP was the most important. It is important to note several

state-of-the-art BS algorithms use grayscale feature for the whole image sequence, however,

it is possible to observe from the feature map in the Figures 5.3 and 5.4 that different features

were used for different regions of the image.

5.3.2 Computational costs

The key of success of the BS is due to its simplicity and also the low cost computational

usually required by most of its methods. Ensemble for feature selection has proven to be an

effective tool for BS, but usually it demands an high availability of computational resources.

Therefore strategies to improve the computational time could prove interesting, for instance

in our previous framework we proposed a weighted random subspace ensemble that require a

large quantity of features to guarantee a good performance. Yet there is very little BS datasets

that provide a lot of features, in addition, a huge feature set required also a high computa-

tional power. In our previous work, we used 26-dimensional features space while in this

work only 9 (MSVS dataset) and 3 (RGB-D dataset) dimensional feature space were enough

to achieve a good result. In this chapter, to further improve the computational costs we pro-

pose to use the superpixel approach instead pixel approach. The superpixel approach allow

us to measure the feature statistics on a semantically meaningful atomic regions instead of

individual pixels which can be provide redundant information. The experiments were made

in Matlab R2013 a MacBook Pro with 2.2 GHz Intel Core i7. We collected the elapsed CPU

time for training/validation and foreground detection. OWOC-RS has presented for train-

ing/validation the elapsed time is 5.44 sec/frame, while in foreground detection the elapsed

time is 1.05 sec/frame. In this chapter, we define approximately 4000 superpixels for each

scene instead of 19200 pixels from OWOC-RS. Note that the proposed approach can be up
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Table 5.4: Performance using the RGB-D dataset [36].
Videos Method Precision Recall F-score

ColCamSeq

IWOC-SVM 0.9898 0.6706 0.7995

OWOC-RS [177] 0.8887 0.7555 0.8167

Superpixel-OWAOC [in this chapter] 0.9859 0.8041 0.8858

DCamSeq

IWOC-SVM 0.9255 0.8172 0.8680

OWOC-RS [177] 0.9774 1.0000 0.9885
Superpixel-OWAOC [in this chapter] 0.9245 0.9488 0.9365

GenSeq

IWOC-SVM 0.7427 0.7513 0.7470

OWOC-RS [177] 0.7029 0.9239 0.7984

Superpixel-OWAOC [in this chapter] 0.8427 0.9513 0.8937

ShSeq

IWOC-SVM 0.6024 0.6385 0.6199

OWOC-RS [177] 0.7316 0.7392 0.7354

Superpixel-OWAOC [in this chapter] 0.7325 0.8389 0.7821

to 4 times faster than OWOC-RS. The computational cost can be reduced by increasing the

number of superpixels. However, this may lead to less accurate segmentations.
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Figure 5.3: Results on RGB-D dataset [36] – (a) original frame, (b) features map

and (c) its respective histogram of features importance.
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Figure 5.4: Results on MSVS dataset [16] – (a) original frame, (b) map feature and

(c) its respective histogram of features importance.



82 AN ENSEMBLE FOR FEATURE SELECTION

5.4 Conclusion

In summary, we proposed a novel methodology to select the best features based on wagging.

Our proposal is able to select suitable features for each region to distinguish the foreground

objects from the background ones. In addition, it uses a superpixel approach that not only

increases the efficiency in terms of time and memory consumption, but also can improves the

segmentation performance. Our framework also uses a mechanism to update the importance

of each feature discarding insignificant features over time. Experimental results on two chal-

lenging datasets have shown the potential of the proposed approach and its effectiveness to

select the best features for distinct regions in a video sequence. A future work may address

how to update the importance of each feature, discarding insignificantly features over time

without ground-truth data.

In the next chapter we present a novel Opponent Color Local Binary Pattern from Three

Orthogonal Planes (OCLBP-TOP) descriptor for applications in the field of dynamic texture

recognition.



Chapter 6

A novel joint color-texture descriptor for
dynamic texture recognition

In this chapter, we propose a novel Opponent Color Local Binary Pattern from Three Orthog-

onal Planes (OCLBP-TOP) descriptor for applications in the field of dynamic texture recog-

nition. The OCLBP-TOP fuses the texture and color information, combining the Opponent

Color Local Binary Patterns (OCLBP) with LBP on Three Orthogonal Planes (LBP-TOP).

As such, it allows to extract not only color information, but also a more detailed informa-

tion from video sequences. The experiments conducted on real videos from the Dyntex++

and YUPENN Dynamic Scenes show that the proposed OCLBP-TOP outperforms not only

LBP-TOP and OCLBP as expected, but also three state-of-the-art descriptors, in particular its

direct recent competitor, called Local Gabor Binary Patterns from Three Orthogonal Planes

(LGBP-TOP). These descriptors were especially designed for the dynamic texture recog-

nition. This chapter presents a particular work realized in conjunction with the Computer

Vision Center (CVC) at Autonomous University of Barcelona (UAB). The work presented

here is currently under revision for publication in the IET Computer Vision Journal [179].

6.1 Motivation

Dynamic (or temporal) texture analysis attracts growing attention in the computer vision com-

munity for applications such as automatic environment surveillance, synthesis, segmentation

and recognition. Unlike static textures which are patterns describing pixel intensity variations

that repeat spatially in an image, dynamic textures are motion patterns, i.e. image sequences

of moving scenes that present certain stationarity properties not only in space but also in their

dynamics over time [56,224]. Dynamic textures are then of prime importance when the video

sequence at hand continuously changes in shape and appearance. Some examples of dynamic

textures in the real world are shown in Figure 6.1. From left to right and top to bottom: forest

fire, waterfall, flock of birds in flight, vegetation in the wind, water, vehicle traffic, crowd

of people running and insect swarms. Given such a video sequence, the recognition of dy-
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ter, we propose to extend the spatial color-texture OCLBP descriptor to the spatio-temporal

domain by combining it with the LBP-TOP one. By fusing color and dynamics textures,

the derived OCLBP-TOP extracts more detailed information from the video sequence to be

analyzed. Our contributions can be summarized as follows:

• A robust combination of the descriptor OCLBP with the descriptor LBP-TOP, that

allow us to be more robust on the dynamic texture recognition in presence of the main

challenges such as illumination changes.

• A detailed comparative evaluation of our descriptor OCLBP-TOP against other five

state-of-the art descriptors on two large scale dataset that are Dyntex++ and YUPENN.

The rest of this chapter is organized as follows. The construction of the new 3D joint

color-based texture descriptor is presented in Section 6.2. In Section 6.3, we give experimen-

tal results obtained on real videos that compare the proposed OCLBP-TOP descriptor to its

direct competitors. Finally, the conclusion is shown in Section 6.4.

6.2 3D joint color-texture descriptor

It is challenging to find joint color-texture descriptors based on local binary patterns for dy-

namics texture tasks. To address this issue, we have developed an Opponent Color Local

Binary Pattern from Three Orthogonal Planes (OCLBP-TOP). Given a finite color video se-

quence of a texture in motion and considering the cooccurrences statistics on the three planes

(XYk plane, XTk plane and Y Tk plane), we extract six-opponent-color video on these three

orthogonal planes, where k is the opponent color space. The opponent color space can be

computed as [96, 202]:

red−green : O1 = (r−g)/
√

2,

yellow−blue : O2 = ((r+g)−2b)/
√

6

luminance : O3 = (r+g+b)/
√

3.

The intensity is represented in channel O3 and the color information is in the channels

O1 and O2. In addition to the perception correlation properties of the opponent color space,

one important advantage of this space is that the O3 axis, can be more closely sampled than

O1 and O2, thereby decreasing the sensitivity of color matching to a difference in the global

brightness of the video. Then the LBP is computed on three orthogonal planes XYk, XTk and

Y Tk on the six new opponent color video. Note that in the following, we will remind the LBP

equation already defined in the Chapter 3. Given a pixel at a certain location, considered as

the center pixel c = (xc,yc) of a local neighborhood composed of P equally spaced pixels on

a circle of radius R, the LBP descriptor applied to can be expressed as:

LBPP,R(c) =
P−1

∑
i=0

s(gi−gc) 2i (6.1)
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in our case gc is an opponent color value of the center pixel c, gi is an opponent color of each

neighboring pixel, and s is a thresholding function defined as:

s(x) =

{

1 if x≥ 0

0 otherwise.
(6.2)

The resulting binary number is of length P, and there are 2P possible different labels to

be obtained from an LBP-image which histogram can be used as a texture descriptor. The

computation of the ordinary LBP for a neighborhood of size P = 8 on a circle of radius R = 1,

resulting in an histogram of size 28 = 256, is illustrated in Figure 2.3 (see Chapter 2).

The opponent color local patterns are extracted from the XYk, XTk and Y Tk. The XYk

plane contain information about the appearance, while the co-occurrence statistics of motion

in horizontal and vertical directions are included in the labels from the XTk and Y Tk planes.

In the OCLBP-TOP descriptor, the three planes intersect in the center pixel and six distinct

patterns are extracted in function of that central pixel for each XYk, XTk and Y Tk. For each

pixel in opponent-color images from XYk, XTk and Y Tk planes, a six binary code is built by

thresholding its neighborhood in a circle from these three planes separately with the value

of the center pixel. Three inter-channel (RG, RB, GB) and three intra-channel (RR, GG, BB)

histograms for each individual XYk, XTk and Y Tk are created to collect the occurrences of dif-

ferent binary patterns, which are denoted as RG-LBP, RB-LBP, GB-LBP, RR-LBP, GG-LBP

and BB-LBP. This results in 3×6×2P dimensional histograms, which are then concatenated

into a single histogram to create a global description of the dynamics texture with the spatial-

temporal and joint color-texture features. The final histogram can be expressed as:

Hi = ∑
x,y,t

I
(

f jk(x,y, t) = i
)

i = 0,1, ...,n j; j = 1,2,3; k = 1, ...,6 (6.3)

where n j is the number of different labels produced by the OCLBP-TOP descriptor in the jth

plane, k is the number of opponent colors, f j is the central pixel at coordinates (x,y, t) in the

jth plane and I(A) is 1 if A is true and 0 otherwise.

In the OCLBP-TOP, the dynamic texture is encoded by the LBP, while the appearance

and the motion in two directions of the joint dynamic color-texture are taken, incorporat-

ing spatial-domain information and two spatio-temporal co-occurrence statistics together. In

the OCLBP-TOP descriptor, the Rk is applied in the axes Xk, Yk and Tk and the Pk num-

ber in the XYk, XTk, and Y Tk. The planes can be also different, which can be indicated as

RXk
, RYk

, RTk
, PXYk

, PXTk
and PY Tk

. The corresponding OCLBP-TOP is called as OCLBP-

TOPPXYk
,PXTk

,PY Tk
,RXk

,RYk
,RTk

planes, that is, Pk= PXYk
=PXTk

=PY Tk
and R = RXk

= RYk
=RTk

. At

times, the Rk in three planes are the same and the Pk in XYk, XTk and Y Tk axis. In that case,

we denote OCLBP-TOPPk,Rk
.

The OCLBP-TOP descriptor may be useful for dynamic-texture analysis, mainly because

of the large quantity of richer information that it can extract from the video. It is because our

descriptor describes joint color texture in spatio-temporal domain. The OCLBP-TOP extracts

six times greater than LBP-TOP. The LBP-TOP considers only grayscale information in the
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(P=8, R=1) (P=8, R=2) (P=8, R=3)

Figure 6.3: Circularly symmetric neighbor sets for different R and P = 8 in the LBP

space.

spatio-temporal domain. We show in the next section that the proposed approach allows to

improve the performance of a dynamic texture classification method, as compared to other

local binary pattern based approaches and two popular methods in the filed of video sequence

recognition.

6.3 Experiments

6.3.1 Datasets

The performance of our proposed descriptor was evaluated on two public large and diverse

datasets dedicated to the color dynamic-texture recognition. We give a brief introduction of

these datasets as follows.

• the Dyntex++ [67] which is a selected version of the Dyntex dataset [151], composed

of 3 600 video sequences grouped in 36 classes, each of which containing 100 se-

quences of a fixed size 50× 50× 50 (width×height×# of frames). Various kinds of

dynamic texture are present, ranging from struggling flames to whelming waves, from

sparse curling smoke to dense swaying branches.

• the YUPENN dataset [52] that contains 420 videos of dynamic scene categories grouped

in 14 classes, each class containing 30 videos. The sequences in YUPENN have impor-

tant variations such as frame rate, scene appearance, scale, illumination, and camera

viewpoint.

There is a limited number of dynamic-texture datasets in the literature because of the

difficulties in collecting DT sequences. Results of many existing approaches have been re-

ported based on the UCLA dynamic texture dataset [164]. But this dataset presents only

gray-scale images and our descriptor needs color features making its application impossible

on this dataset. Figures 6.4 and 6.5 show examples frames of some scenes of Dyntex++ and

YUPENN datasets used in this chapter, respectively.
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Table 6.1: Overall classification results (%) for evaluation different values of P, R

in the OCLBP-TOP space.

R Our Descriptor YUPENN Dynamic Scenes (%)

OCLBP-TOP2,1 45.00

1 OCLBP-TOP4,1 76.90

OCLBP-TOP8,1 86.90
OCLBP-TOP2,2 26.19

2 OCLBP-TOP4,2 72.85

OCLBP-TOP8,2 82.85

OCLBP-TOP2,3 24.04

3 OCLBP-TOP4,3 73.57

OCLBP-TOP8,3 85.47

6.3.2 Parameter settings

The selection of appropriate parameters is always a key issue. The OCLBP-TOP has only

few parameters to optimize, making this task much easier. The P and R parameters of our

OCLBP must be carefully selected not to affect the descriptor performance. In addition,

small changes in P may cause big differences in the length of the feature vector. According

to previous studies on LBP [146, 240], the best R are normally smaller than 3 and P is 2i

(i = 1,2,3...). In our proposed descriptor, when the number of neighboring points increases,

the number of patterns OCLBP-TOP will become large: 3×6×2P. Thus only the results for

P = 2,4 and 8 are given in Table 6.1. In all our experiments, we used a leave-one-out-cross-

validation strategy [54] with linear SVM (Support Vector Machine) to evaluate our descriptor.

The Dyntex++ dataset was used to evaluate different values of P and R in the OCLBP-TOP.

Table 6.1 presents the overall recognition rate. It can be seen that the OCLBP-TOP performs

very well for P = 8 and R = 1. For the influence of P, we can obtain a shorter feature

vector, however a small P loses more information. Nonetheless, the large P value improves

the recognition accuracy, but it generates a long histogram and therefore a high memory

consumption. For the influence of R, we can see that for a fixed P the best performance is

obtained for R = 1. Figure 6.3 shows the case among different values of R and P = 1. We

note there is a loss of information as the R value is higher because neighboring pixels are

not considered in the calculation of the LBP. Therefore, we opted to use of the P = 8 and

R = 1 for all the experiments in this chapter. Table 6.1 shows that an accuracy of 86.90% is

obtained for OCLBP-TOP using P = 8 with a feature vector length of 4608 bits.

6.3.3 Comparison with state-of-the-art

A brief summary of all the descriptors we compared can be found in Table 6.2. First, we

compare our descriptor to some LBP-based descriptors with P = 8 neighbors on a circle of

radius R = 1:
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ferent scales and orientations in the spatio-temporal frequency domain, s is a number

of non-overlaping sub-volumes of user-defined size (width× height× # f rames) and

k is a number of key-clips (by default, the authors define a key-clip as a video block

of 64 frames). We used g = 68, s = 512 and k = 1, resulting in 34816 features. The

local video descriptors may require the background subtraction or tracking, whereas

the GIST3D does not need these steps and represents each video with a single feature

vector. The global descriptors are in general not invariant to viewpoint changes and

camera motion.

6.3.4 Results and discussions

The classification results (correct classification rate in %) of the tested methods are reported

in Table 6.2 for both datasets. Highest scores are shown in bold. As it can be seen, the pro-

posed descriptor gives the highest accuracy for both datasets. Without PCA dimensionality

reduction, it outperforms all the others (including the two video sequences recognizers), in

particular on the larger and more diverse Dyntex++ dataset for which it appears to be approx-

imatively 10% better. The same increase of performance (10%) can be noticed as compared

to the ordinary OCLBP it extends to the spatio-temporal domain, for both datasets. The per-

formance of OCLBP-TOP is not necessarily related to the feature size when compared to

LGBP-TOP and HOG/HOF whose produced histograms are respectively 11 and 7 times big-

ger. Even if the dimensionality reduction by PCA affects the performance of the proposed

OCLBP-TOP as one could expect, especially for the Dyntex++ dataset, it is worthy of note

that it gives quite similar results to LBP-TOP, but significantly better results than LGBP-TOP.

Table 6.2: Overall classification results (%)

YUPENN Feature

Descriptors Dyntex++ (%) Dynamic Scenes (%) Size

OCLBP (2004) [133] 70.14 77.85 1 536

LBP-TOP (2007) [240] 71.88 85.37 768

OCLBP-TOP [this thesis] 80.58 86.90 4 608

LGBP-TOP (2013) [5] 68.69 84.47 50 976

LGBP-TOP + PCA 52.08 63.57 768

OCLBP-TOP + PCA [this thesis] 73.04 84.76 768

HOG/HOF (2008) [113] 72.75 78.80 288

GIST3D (2012) [182] 70.43 63.33 34 816

To go a little bit further in the analysis, Tables 6.4 and 6.5 show some popular class

performance measures (Precision, Recall and F-score in %) obtained on the Dyntex++ and

YUPENN dataset using the tested local binary pattern on Three Orthogonal Planes (TOP)

descriptors. We analyze the descriptors studied in this work in various cases:

Case 1. Performance of descriptors close to 100%: For the former dataset, both

the color and the texture are very important in some scenes such as: blossoming tree in the
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wind, escalator stairs in motion, waves on beach, underwater life (soft texture), underwater

life (pulsating jellyfish), underwater life (flowers swaying with current), waterfall, branches

swaying in wind and smoke. This explains the much better precision, recall and F-score

measures obtained with our OCLBP-TOP on these particular classes. However, in the scenes

boiling water and wash cycle that are known to present more structured texture, the texture

information alone is sufficient, so that LBP-TOP reaches better scores while LGPB-TOP fails

and OCLBP-TOP is in the middle. On the opposite, for scenes where the color information is

crucial such as: river water and rain on water, LGBP-TOP is much more efficient thanks to

the Gabor filtering and the huge feature size, but our OCLBP-TOP is most of times between

the two. Same remarks hold for the latter dataset, where the color and texture appeared

to be very relevant in scenes like: beach, lightning storm and rushing river, whereas the

texture information is sufficient in some other scenes such as: forest fire, highway, ocean

and snowing. Although the proposed descriptor gives the highest average class performance

measures for both datasets (see Table 6.6), the errors in classification may occur if the color

and texture are similar as situations shown in the Figure 6.6.

In the case in which only one descriptor performs better than others: There

are some classes from Dyntex++ dataset that only LBP-TOP and OCLBP-TOP are able to

classify correctly, such as grass swaying in wind, evaporating water/fumes, underwater life

(soft texture) and water in sink. This is due to the fact that color and texture components are

more discriminative in these classes. However, the same descriptors cannot classify properly

some scenes such as artificial hair, ants and birds flying in sky. This implies that all measures

(precision, recall F-score) had a performance of 0%. For example, the artificial hair class

was misclassified as underw. life (more structured) class. This can be explained by color and

texture similarities in these classes. On the other hand, the LBP-TOP classified artificial hair

scene as water fountain due to its high texture similarities. It’s important to note that only

LGBP-TOP was able to classify the artificial hair, ants and birds flying in sky, possibly due

to color similarities in these scenes.

Case 3: In the case in which each descriptors reach 100%: In some cases preci-

sion, recall F-score measures had 100% of success. The OCLBP-TOP was also as successful

for textures as: underw. life (pulsating jellyfish), underwat. life (flowers swaying with cur-

rent) and lamp globes swaying.. In these scenes the texture and color are very significant.

The LGBP-TOP also had 100% of success in some scenes in which color is very predomi-

nant such as: such as: artificial hair, rain on water and water fountain. Meanwhile in scenes

as the evaporating water/fumes the OCLBP-TOP had 100% of accuracy. In these scenes only

the texture feature is more significant.

Case 4. In which descriptors have bad performance (near 0%): We noted also

that any descriptor evaluated in this study was able to classify correctly the scene Faucet

water, please see Table 6.4. This may be explained by the fact that only one sequence is

available for this class in the Dyntex++ dataset, combined to a leave-one-out strategy. Note

however that the OCLBP-TOP classified textured cloth scene as blossoming tree in the wind,
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and LBP-TOP classified the same scene as water fountain. In addition, the LBPG-TOP clas-

sified textured cloth scene as Faucet water scene.

Figure 6.6: Similar images of different classes. From left to right: flag, and water

fountain classes from Dyntex++ dataset, fountain, and waterfall classes from YU-

PENN dataset.

6.3.5 Computational costs

The final result we give is about the computational time which may be important for some

application. Table 6.3 shows the average computational time (in seconds) to process a video

block of 256×256×64 (width×height×# of frames). Not surprisingly, the proposed OCLBP-

TOP needs much more time than the others local binary pattern based descriptors, because

of both the TOP extension (as compared to OCLBP), and the six separate channels computa-

tion (as compared to LBP-TOP). This is the price to be paid for combining color information

together with the texture so that the classification performance of dynamic textures increase.

Note that the times obtained using HOG/HOF and GIST3D are not achievable using local

binary patterns.

Table 6.3: Average computational time results

Descriptors Computational Time (s)

OCLBP (2004) [133] 39.94

LBP-TOP (2007) [240] 47.88

OCLBP-TOP [this thesis] 357.87

LGBP-TOP (2013) [5] 19.03

HOG/HOF (2008) [113] 5.41

GIST3D (2012) [182] 4.93
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Table 6.4: Class performance measures (%) of the local binary patterns on Three

Orthogonal Planes (TOP) for the Dyntex++ dataset

LBP-TOP LGBP-TOP OCLBP-TOP

Class Prec. Rec. F Prec. Rec. F Prec. Rec. F

Textured cloth 0 0 0 0 0 0 0 0 0

Artificial hair 0 0 0 100 100 100 0 0 0

Blossoming tree in the wind 80.0 100 88.9 83.3 62.5 71.4 88.9 100 94.1
Escalator stairs in motion 80.0 57.1 66.7 71.4 45.5 55.6 100 57.1 72.7
Waves on beach 85.7 82.8 84.2 66.7 50.0 57.1 93.3 96.6 94.9
Grass swaying in wind 70.8 68.0 69.4 0 0 0 87.5 84.0 85.7
Boiling water 80.0 100 88.9 66.7 100 80.0 50.0 100 66.7

Evaporating water/fumes 100 100 100 0 0 0 80.0 80.0 80.0

River water 66.7 64.0 65.3 87.5 87.5 87.5 83.3 80.0 81.6

Faucet water 100 33.3 50.0 70.0 77.8 73.7 75.0 100 85.7
Fish swimming 66.7 100 80.0 100 25.0 40.0 60.0 75.0 66.7

Underwater life (soft texture) 63.6 63.6 63.6 0 0 0 80.0 72.7 76.2
Underw. life (more structured) 40.0 50.0 44.4 66.7 40.0 50.0 28.6 50.0 36.4

Underw. life (pulsating jellyfish) 66.7 66.7 66.7 83.3 100 90.9 100 100 100
Underwat. life (flowers swaying with current) 66.7 100 80.0 100 66.7 80.0 100 100 100
Ants 0 0 0 66.7 57.1 61.5 0 0 0

Waterfall 57.1 50.0 53.3 50.0 28.6 36.4 88.9 100 94.1
Candles 85.7 66.7 75.0 100 66.7 80.0 70.0 77.8 73.7

Rain on water 75.0 75.0 75.0 100 100 100 75.0 75.0 75.0

Flushing water 75.0 60.0 66.7 56.5 81.3 66.7 100 60.0 75.0
Water in sink 83.3 100 90.9 0 0 0 83.3 100 90.9
CD in CD player 66.7 66.7 66.7 35.7 29.4 32.3 66.7 66.7 66.7
Wash cycle 87.5 100 93.3 83.3 62.5 71.4 85.7 85.7 85.7

Water pouring into sink 71.4 71.4 71.4 72.7 88.9 80.0 83.3 71.4 76.9

Lamp globes swaying 100 66.7 80.0 100 44.4 61.5 100 100 100
Lights blinking 100 33.3 50.0 69.7 76.7 73.0 50.0 66.7 57.1

Leaves on branches swaying with wind 76.5 81.3 78.8 54.5 60.0 57.1 93.3 87.5 90.3
Birds flying in sky 0 0 0 53.2 67.6 59.5 0 0 0

Pond water 64.3 52.9 58.1 77.8 77.8 77.8 75.0 70.6 72.7

Rotating wind ornament 69.2 100 81.8 75.0 75.0 75.0 77.8 77.8 77.8

Vehicle traffic on road 72.7 88.9 80.0 100 28.6 44.4 81.8 100 90.0
Flag 75.9 73.3 74.6 72.2 89.7 80.0 81.5 73.3 77.2

Branches swaying in wind 61.5 80.0 69.6 77.8 84.0 80.8 90.0 90.0 90.0
Water fountain 58.1 67.6 62.5 100 100 100 73.2 81.1 76.9

Clouds 100 66.7 80.0 71.4 100 83.3 85.7 66.7 75.0

Smoke 90.9 62.5 74.1 70.4 76.0 73.1 92.3 75.0 82.8
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Table 6.5: Class performance measures (%) of the local binary patterns on Three

Orthogonal Planes (TOP) for the YUPENN dataset

LBP-TOP LGBP-TOP OCLBP-TOP

Class Prec. Rec. F Prec. Rec. F Prec. Rec. F

Beach 89.3 83.3 86.2 81.3 86.7 83.9 93.3 93.3 93.3
Elevator 90.6 96.7 93.5 96.8 100 98.4 93.5 96.7 95.1

Forest Fire 90.0 90.0 90.0 72.2 86.7 78.8 86.7 86.7 86.7

Fountain 65.4 56.7 60.7 83.3 66.7 74.1 74.1 66.7 70.2

Highway 80.6 83.3 82.0 79.3 76.7 78.0 80.0 80.0 80.0

Lightning Storm 89.3 83.3 86.2 86.7 86.7 86.7 93.5 96.7 95.1
Ocean 100 100 100 96.7 96.7 96.7 96.8 100 98.4

Railway 84.4 90.0 87.1 96.0 80.0 87.3 86.2 83.3 84.7

Rushing River 84.8 93.3 88.9 80.6 83.3 82.0 93.5 96.7 95.1
Sky-Clouds 96.3 86.7 91.2 84.8 93.3 88.9 92.6 83.3 87.7

Snowing 96.3 86.7 91.2 78.8 86.7 82.5 86.7 86.7 86.7

Street 92.9 86.7 89.7 87.1 90.0 88.5 85.3 96.7 90.6
Waterfall 62.2 76.7 68.7 88.0 73.3 80.0 75.0 70.0 72.4

Windmill Farm 80.6 83.3 82.0 90.0 90.0 90.0 77.4 80.0 78.7

Table 6.6: Average measures (%) of the local binary patterns on Three Orthogonal

Planes (TOP) for the Dyntex++ and YUPENN datasets

LBP-TOP LGBP-TOP OCLBP-TOP

Data set Prec. Rec. F Prec. Rec. F Prec. Rec. F

Dyntex++ 67.7 65.2 64.7 66.2 59.7 60.6 71.7 72.8 71.3
YUPENN 85.9 85.5 85.5 85.8 85.5 85.4 86.8 86.9 86.8

6.4 Conclusion

In summary, a new 3-dimensional joint color-texture descriptor for dynamic texture analysis

is proposed. It combines the strengths of local binary patterns and it describes joint color-

texture in a spatio-temporal domain. Then, we compared the OCLBP-TOP with its direct

competitors LBP-TOP and LGBP-TOP on real videos of Dyntex++ and YUPENN Dynamic

Scenes datasets. The experimental results have shown that OCLBP-TOP outperforms the

LBP-TOP, LGBP-TOP descriptors, and other three traditional methods. In addition, our de-

scriptor can be applied in various type of applications including facial expression analysis,

human activity recognition, among others.



Chapter 7

Conclusions

In this thesis we set out to improve background subtraction by focusing on visual features.

Background subtraction is a crucial task in many computer vision applications including

surveillance devices in public spaces, traffic monitoring and industrial machine vision. We

focused on developing robust texture descriptor to deal with illumination changes, noise,

and produces short histograms. In addition, we present two efficient approaches able to

select suitable features for each pixel/region to distinguish the foreground objects from the

background. The key contributions of the thesis are as follows.

• An eXtended Center-Symmetric Local Binary Pattern (XCS-LBP) Descriptor.

The XCS-LBP descriptor is introduced in this thesis. It combines the strengths of the

ordinary Local Binary Pattern (LBP) and the Center-Symmetric (CS) LBPs. Thus, the

new variant XCS-LBP produces a shorter histogram than LBP, by its CS-construction.

It is also tolerant to illumination changes as LBP and CS-LBP are whereas CS-LDP

is not, and robust to noise as CS-LDP is whereas LBP and CS-LBP are not. Despite

our descriptor have been proposed recently, it has been widely improved and used in

different applications by some authors. For instance, Du and Qin (2016) [57] presented

a uniform pattern version of our descriptor (called UXCS-LBP). The authors combined

the histograms extracted by UXCS-LBP and CS-LDP. The experimental results show

that this combination is robust under scenes ranging from dynamic background to

changing illuminations. Nagananthini and Yogameena (2017) [142] used the XCS-

LBP for crowd count application. Firstly, the authors extracted XCS-LBP features of

the images under sudden illumination changes. Then, these features are trained using

deep Convolutional Neural Network (CNN). The proposed approach display a warning

message if the people count overcome a threshold by avoiding crowd disaster.

• An Ensemble Pixel-based for Feature Selection in Background Subtraction. We

proposed an online weighted one-class random subspace ensemble for feature selec-

tion (OWOC-RS). The proposed method is designed to automatically select the best

features for different pixels of the image, and the more relevant features are used for

foreground segmentation. In addition, a mechanism to update these importances fea-
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tures over time is presented.

• An Ensemble Superpixel-based for Feature Selection in Background Subtraction.

We extended our OWOC-RS approach by proposing a novel methodology for selecting

features based on wagging. Our proposal is able to select suitable features for each

region to distinguish the foreground objects from the background. In addition, it uses

superpixel approach that not only increases the efficiency in terms of time and memory

consumption, but also can improves the segmentation performance. The experiments

conducted on challenging videos have show that this approach is more efficient in

terms of time and memory consumption than our previous approach.

• An 3D Joint Color-Texture Descriptor for Dynamic Texture Recognition. The last

contribution of this thesis is the proposed 3-dimensional joint color-texture descriptor

for dynamic texture analysis. We extended the spatial color-texture OCLBP descriptor

to the spatio-temporal domain by combining it with the LBP-TOP one. By fusing color

and dynamics textures, the derived OCLBP-TOP extracts more detailed information

from the video sequence to be analyzed.

7.1 Limitations

The benefits of the contributions introduced in this thesis have been demonstrated in the

several evaluative experiments. Nonetheless, there are limitations which could open oppor-

tunities for further investigations or new lines of thought.

• As the proposed XCS-LBP descriptor does not include temporal relationships between

neighboring pixels, it is not very suitable to deal with dynamic scenes. However, the

temporal domain can be used to discriminate one object from another by analyzing its

temporal motion patterns, thereby playing a crucial role in moving object detection.

• Our proposed online weighted ensemble of one-class SVMs (Support Vector Ma-

chines) pixel-based for feature selection is designed to automatically select the best

features for different regions of the image. The main drawback is that this method only

reaches the highest accuracy when the number of features is huge. Furthermore, each

base classifier learns a feature set instead of individual features. To overcome these

limitations, in this thesis we extended our approach by proposing a novel methodology

for selecting features based on wagging. In addition, we also adopted a superpixel-

based approach instead of pixel-level approach. This does not only increases the ef-

ficiency in terms of time and memory consumption, but also can improves the seg-

mentation performance. Both approaches proposed to select the best feature use a

mechanism to update the relative importance of each feature, discarding insignificant

features over time. This mechanism requires ground-truth data, but usually ground

truth data is not available for BS in real environments.

• Not surprisingly, the proposed OCLBP-TOP needs much more time than the others lo-

cal binary pattern based descriptors, because of both the TOP extension (as compared

to OCLBP), and the six separate channels computation (as compared to LBP-TOP).
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This is the price that must be paid for combining color information together with the

texture, so that the classification performance of dynamic textures increase. In order

to solve this problem, feature selection methods can be used for selecting the best

channels before of the dynamic texture classification.

7.2 Future works

• Developing local binary patterns features. Local binary pattern features are im-

portant to describe different scenes in many computer vision applications. In this

thesis, we proposed a robust local binary patterns descriptor for background subtrac-

tion called XCS-LBP as well as a second descriptor named OCLBP-TOP for dynamic

texture recognition. A future work will be the extension of XCS-LBP to include tem-

poral properties. We also intend to reduce the computation time of our OCLBP-TOP

by proposing to use only the best channels instead of all the channels to recognize

dynamic textures.

• Feature selection in background subtraction. In the BS field, the use of feature se-

lection methods is less studied so far. Nevertheless, the feature selection can be used

to improve the detection of foreground objects [149] in complex scenes thanks to their

capability to select a subset of highly discriminant features removing irrelevant and

redundant ones, e.g. in [149]. Therefore, the feature selection approaches provide op-

portunity for future research. A possible future work is hte extension of our proposed

approaches in this thesis by developing a mechanism to suitably update the importance

of each feature discarding insignificantly features over time without ground-truth data.
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Appendix A

Notations and Symbols

P number of neighboring pixels

R radius of neighboring pixels; radius of a hypersphere

gi gray value of a pixel in a neighborhood

gc gray value of the center of a neighborhood

x universal variable used with many functions

xc x coordinate of the center of a neighborhood

yc y coordinate of the center of a neighborhood

T, t1, t2, time,η a user-defined threshold; number of iterations

X training set

ξ slack variables

a center of a hypersphere

C user parameter that controls the trade-off of a hypersphere

w weight samples

Z0 previous training set

Z1 newly added training set

θ distribution of a previous training set

p original features

N number images/samples

M user-defined number of base classifier

Ψ set of diverse base classifier/background models

δ weight distribution

λcorrect number of times a pixel was correctly classified

λwrong number of times a pixel was incorrectly classified

γ learning rate parameter

L number of best base classifiers

Pa accuracy of a base classifier

d distance metric

s1 normalization factor

s2 scale parameter
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F support function

H(x) final/strong classifier

m(x) margin samples

vc(1) number the first voted class

vc(2) number the second voted class

T P true positive

FP false positive

FN false negative

FN false negative

k number of base classifiers

ω class

E normalization factor

r rank of a class

ϒ stopping criterion

ϕbest variable of evaluation

ϑ independent measure

S subset of features

A learning algorithm

ν,β importance feature/classifier

b1 number of negative examples

b2 number of positive examples



Appendix B

Local Binary Patterns Descriptors

The standardized formulas of the main LBPs are presented in the Tables below.
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Table B.1: Local Binary Patterns and its variants
Ordinary Local Binary Pattern (LBP) [85]

LBPP,R (xc,yc) =
P−1

∑
p=0

s(gp−gc)2p
s(x) =

{

1 if x≥ 0

0 otherwise.

The T is a threshold value.

Modified LBP [84]

LBPP,R (xc,yc) =
P−1

∑
p=0

s(gp−gc +a)2p
s(x) =

{

1 if x≥ 0

0 otherwise.

Uniform Local Binary Patterns (ULBP) [231]

LBPriu
P,R(xc,yc) =











P−1

∑
p=0

s(gp−gc)2p if UP,R ≤ 2

P+1 otherwise.

where UP,R = ∑P−2
p=0(s(gp−gc)

⊕
s(gp+1−gc)) +

s(gP−1−gc)
⊕

s(g0−gc)

s(x) =

{

1 if x≥ T

0 if x < T

A relatively small value for T should

be used, for example, 2≤ T ≤ 5.
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Opponent Color Local Binary Patterns (OCLBP) [116, 133]

LBPPRR
,RRR

(xc,yc) =
P−1

∑
p=0

s(gR,p−gR,c)

LBPPGG
,RGG

(xc,yc) =
P−1

∑
p=0

s(gG,p−gG,c)

LBPPBB
,RBB

(xc,yc) =
P−1

∑
p=0

s(gB,p−gB,c)

LBPPRG
,RRG

(xc,yc) =
P−1

∑
p=0

s(gR,p−gG,c)

LBPPRB
,RRB

(xc,yc) =
P−1

∑
p=0

s(gR,p−gB,c)

LBPPGB
,RGB

(xc,yc) =
P−1

∑
p=0

s(gG,p−gB,c)

OC−LBPPoc ,Roc (xc,yc) = LBPPRR
,RRR

(xc,yc)
⊕

LBPPGG
,RGG

(xc,yc)
⊕

LBPPBB
,RBB

(xc,yc)
⊕

LBPPRG
,RRG

(xc,yc)
⊕

LBPPRB
,RRB

(xc,yc)
⊕

LBPPGB
,RGB

(xc,yc)

where gR,c,gG,c,gB,c correspond to the opponent color values of the center

pixel, respectively; gR,p,gG,p, gB,p correspond to the opponent color values

of the neighborhoods on the circles of radius Roc in the opponent color

channels and
⊕

denotes concatenation descriptor.

s(x) =

{

1 if x≥ 0

0 otherwise.
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εLBP [206]

εLBPP,R (xc,yc) =
P−1

∑
p=0

s

(

ĝp− ğp

gc
− ε

)

2p

where ĝp and ğp denote the gray value of the clockwise and counter-clockwise neighborhood of gp. The ε
is a noise parameter.

s(x) =

{

1 if x≥ 0

0 otherwise.

Adaptive εLBP [207]

εLBPP,R (xc,yc) =
P−1

∑
p=0

s

(

ĝp− ğp

gc
− εp

c

)

2p

when |µB|> α ·σp(µF ), the threshold ε
p
c is calculated:

εc =



















max

(

η,
µB− γ ·σB

gc

)

if µB > α ·σp(µF )

min

(

−η,
µB− γ ·σB

gc

)

if µB <−α ·σp(µF )

when |µB|≤ α ·σp(µF ), the threshold ε
p
c is calculated:

εc =

{

−η if µB ≤ α ·σp(µF ) & µB ≥ 0

η if µB ≥−α ·σp(µF ) & µB < 0

where µB is the first obtained from the start N frames, the σp(µF ) is the mean distribution of the N other

frames. The γ, α and η are the constants, gc corresponds to the gray value of the center pixel, and the

max(·) and min(·) operators are used to restrict the threshold.

s(x) =

{

1 if x≥ 0

0 otherwise.
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Local Color Pattern (LCP) [47]

LBPP,R (xc,yc) =
P−1

∑
p=0

s(gp−gc +a)2p

The mapping from LBP to uniform LBP is as follows:

LBPriu
P,R(xc,yc) =











P−1

∑
p=0

B(LBPP,R ) if UP,R ≤ 2

P+1 otherwise.

Finally, the uniform LBP histogram is obtained as follows:

HLBP,i = ∑
(xc ,yc)∈R

I {LBP(xc,yc) = i} |i = 0,1, ...,2P−1

Finally, local color pattern (LCP) histogram is formed by concatenating

the quantized hue, luminance, and saturation histograms, summed over

the structuring element as follows:

HLCP = [Hhue Hlum Hsat ]

I(A) =

{

1 if A is true,

0 otherwise.
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Local Binary Similarity Patterns (LBSP) [22]

LBSPP,R (xc,yc) =
P−1

∑
p=0

s(gp−gc)2p

where gc corresponds to the central pixel (whether from the current im-

age for intra-LBSP or from a reference frame for inter-LBSP), and gp

corresponds to the neighbor pixel ( always in the current image).

s(x) =

{

1 if |x|≤ T

0 otherwise.

The T is a similarity threshold.

Local SVD Binary Pattern ( LSBP) [76]

LBSPP,R (xc,yc) =
P−1

∑
p=0

s(gp,gc)2p

where gc and gp are obtained as follow:

g(xc,yc) =
M

∑
q=2

λ̃q, and λ̃q,= λq/λ1

where λq indicates the jth singular value.

s(x) =

{

0 if |x− y|≤ T

1 otherwise.
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Table B.2: Center-Symmetric Local Binary Patterns and its variants
Center-Symmetric Local Binary Patterns (CS-LBP) [86]

CS−LBPP,R(xc,yc) =
(P/2)−1

∑
p=0

s(gp−gp+(P/2))2p

where gi and gi+(P/2) are the gray values of center-symmetric pairs of

pixels.

s(x) =

{

1 if x > T

0 otherwise

Center-Symmetric Local Derivative Pattern (CS-LDP)

[225]

CS−LDPP,R (xc,yc) =
(P/2)−1

∑
p=0

s
[

[(gp−gc)
(

gc−gc+(P/2)

)]

2p s(x,y) =

{

1 if x · y≤ 0

0 otherwise.
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eXtended Center-Symmetric Local Bi-

nary Pattern (XCS-LBP) [176]

XCS−LBPP,R (xc,yc) =
(P/2)−1

∑
p=0

s(g1(p,c)+g2(p,c))2p

where g1 and g2 are defined by:

g1(p,c) =
(

gp−gp+(P/2))
)

+gc

g2(p,c) = (gp−gc)
(

gp+(P/2)−gc

)

s(x,y)=

{

1 if (x+ y)≥ 0

0 otherwise.

BackGround Local Binary Patterns (BG-

LBP) [51]

BGLBPP,R(xc,yc) =















(P/2)−1

∑
p=0

s(gp,m,gp+(P/2))2p U
(

LB P
2 P,R

)

≤ 2

PP
2 otherwise.

m =
1

P

(

gc +
P−1

∑
p=0

gp

)

s(x) =











1 i f (((gp ≥ m≥ gp+(P/2)) || (gp < m < gp+(P/2)))&&

((abs(gp−m)+abs(gp+(P/2)−m))≥ T ))

0 otherwise.
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Table B.3: Local Ternary Pattern and its variants
Local Ternary Pattern (LTP) [191]

LT Pτ
P,R(xc,yc) =

P−1

∑
p=0

sτ (gp−gc)2p

where τ is scale factor indicating the comparing range.

sτ(x) =











1 if x≥ τ,

0 if −τ < x < τ,

−1 if x <−τ.

Scale Invariant Local Ternary Pattern (SILTP) [120]

SILT Pτ
P,R(xc,yc) =

P−1⊕

p=0

sτ (gc,gp)

where
⊕

denotes concatenation operator of binary strings.

sτ(x,y) =











01 if x > (1+ τ)y,

10 if x < (1− τ)y,

00 otherwise.

Scale Invariant Local States (SILS) [232]

SILSτ
P,R

(xc,yc) = sτ (gc,gp)

.
sτ(x,y) =











01 if x > (1+ τ)y,

10 if x < (1− τ)y,

00 otherwise.
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Scene Adaptive Local Binary Pattern

(SALBP) [229]
SALBPτ

P,R(xc,yc) =
6

∑
p=1

sτ (di f f ,CB)2p

where di f f is defined as subtraction of an gray value of a center pixel from that of

p−neighborhood pixel, CB(xc,yc) = {c1|1≤ l ≤ L(xc,yc)} implies the corresponding code-

book composed of L(xc,yc)number of codewords.

sτ(x,y) =

{

1 if x is matched to CB

0 otherwise.

Multi-Channel Scale Invariant Local

Ternary Pattern (MC-SILTP) [132]
SILT Pτ

P,R(xc,yc) =
P−1⊕

p=0

sτ (gR,c,gB,p)

SILT Pτ
PG
,RG

(xc,yc) =
P−1⊕

p=0

sτ (gG,c,gR,p)

SILT Pτ
PB
,RB

(xc,yc) =
P−1⊕

p=0

sτ

(

gB,c,gG,p

)

MC−SILT Pτ
PRGB

,RRGB
(xc,yc) = SILT Pτ

PR
,R (xc,yc)

⊕
SILT Pτ

PG
,R (xc,yc)

⊕
SILT Pτ

PB
,R (xc,yc)

where gR,c,gG,c,gB,c correspond to the RGB values of the center pixel, respectively; gR,p,gG,p,

gB,p to the RGB values of the neighborhoods on the circles of radius RRGB in the RGB channels

and
⊕

indicates concatenation operator of binary strings.

sτ(x,y) =











01 if x > (1+ τ)y,

10 if x < (1− τ)y,

00 otherwise.
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Table B.4: Spatial-Temporal Pattern and its variants
Spatio-temporal Local Binary Patterns (STLBP) [174]

LBPt
P,R(xt,c,yt,c) =

P−1

∑
p=0

s(gt,p−gt,c)2p,

LBPt−1
P,R (xt,c,yt,c) =

P−1

∑
p=0

s(gt−1,p−gt−1,c)2p,

Ht,i = ∑
(xc ,yc)∈R

I
{

LBPt
P,R(xt,c,yt,c) = i

}

|i = 0,1, ...,2P−1

Ht−1,i = ∑
(xc ,yc)∈R

I
{

LBPt−1
P,R (xt,c,yt,c) = i

}

|i = 0,1, ...,2P−1

where t corresponds to the time, Ht,i and Ht−1,i are the histogram values at

ith bin of Ht and Ht−1, respectively.

ST LBPt = ωHt−1,i +(1−ω)Ht,i |i = 0,1, ...,2P−1

I(A) =

{

1 if A is true,

0 otherwise.
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Spatial-Temporal Local Binary Pattern (STLBP)

[175]
ST LBPP,R(xc,yc) =

P−1

∑
p=0

s(gp−gc)2p +
P−1

∑
p=0

u(gp−gz)2P+p

where gz corresponds to the predictive values of the P.

u(x) =

{

1 |x|≥ T

0 otherwise.

Stereo Local Binary Pattern based on Appearance

and Motion (SLBP-AM) [229]
LBPj =

P−1

∑
p=0

s(gp−gc)2p,

where j denotes the corresponding plane: 0 for the XY plane, 1 for the XT

plane and 2 for the Y T plane.

Hi, j = ∑
(xc ,yc)∈R

I
{

LBPj(gp−gc) = p
}

|i = 0,1, ...,2P−1

where Hi, j is the histogram value.

SLBP−AM = ∑
j=0,1,2

ω jHi, j |i = 0,1, ...,2P−1

I(A) =

{

1 if A is true,

0 otherwise.
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Table B.5: Hybrid Local Binary Pattern and its variants

Spatial Extended Center-Symmetric Local

Binary Pattern (SCS-LBP) [226]
SCS−LBPP,R (xc,yc, t) =

(P/2)−1

∑
p=0

s
(

g(p,t)−g(p+(P/2),t)

)

2p+

f
(

g(xc ,yc ,t)− µ̄(xc ,yc ,t−1)

)

2P/2

where µ̄(xc ,yc ,t−1) and σ̄(xc ,yc ,t−1) are estimated mean value and standard devia-

tion respectively corresponding to pixel g(xc,yc).

f (t) =

{

0 if |g(xc ,yc ,t−1)− µ̄(xc ,yc ,t−1)|< 2.5σ̄(xc ,yc ,t−1),

1 otherwise.

Center Symmetric Spatio-temporal Local

Ternary Pattern (CS-STLTP) [223]
CS−ST LT P j(xc,yc,zc) =

(P/2)−1⊎

p=0

sτ

(

g(p),g(p+(P/2))

)

where sign
⊎

indicates stretching elements into a vector and j denotes the

planes: XY,XT , and Y T .

sτ(x,y) =











1 if x > (1+ τ)y,

0 if x < (1− τ)y,

−1 otherwise.
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Center Symmetric Scale Invariant Local Ternary Patterns (CS-

SILTP) [218]
CS−SILT Pτ

P,R(xc,yc) =
R⊕

r=−R

P/2−1⊕

p=0

sτ

(

gt+r
p ,gt−r

p+P/2

)

where gt denotes the scene image captured at the time instant t, gt+r
p and gt−r

p+P/2

are the center-symmetric pixel locations lying on the cubic surface.

sτ(x,y) =











01 if x > (1+ τ)y,

10 if x < (1− τ)y,

00 otherwise.

Spatiotemporal Scale Invariant Ternary Pattern (ST-SILTP)

[100]
ST −SILT Pτ

P,R(xc,yc) =
P−1⊕

p=0

sτ (gc,gz)

where gz denote the gray values of neighboring pixels in the spatiotemporal neigh-

borhood.

sτ(x,y) =











01 if x > (1+ τ)y,

10 if x < (1− τ)y,

00 otherwise.



Appendix C

List of Publications

This dissertation has led to the following communications:

Journal Papers

• Bouwmans, T. and Silva, C. and Marghes, C. and Zitouni, S. and Bhaskar, H. and
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[43] J. Chen, G. Zhao, and M. Pietikäinen. Unsupervised dynamic texture segmentation

using local spatiotemporal descriptors. In International Conference on Pattern Recog-

nition (ICPR), pages 1–4, 2008. 84

[44] J. Chen, G. Zhao, and M. Pietikainen. An improved local descriptor and threshold

learning for unsupervised dynamic texture segmentation. In International Conference

on Computer Vision Workshops, pages 460–467, 2009. 84

[45] M. Chen, Q. Yang, Q. Li, G. Wang, and M. Yang. Spatiotemporal background subtrac-

tion using minimum spanning tree and optical flow. European Conference on Com-

puter Vision (ECCV), 2014. 16, 25

[46] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In International

Conference on Knowledge Discovery and Data Mining (KDD), pages 785–794, 2016.

32

[47] T. Chua, Y. Wang, and K. Leman. Adaptive texture-color based background subtrac-

tion for video surveillance. In IEEE International Conference on Image Processing

(ICIP), pages 49–52, 2012. 6, 20, 21, 107

[48] M. Cord and P. Cunningham. Machine Learning Techniques for Multimedia: Case

Studies on Organization and Retrieval (Cognitive Technologies). Springer-Verlag,

2008. 28

[49] M. Cristani, M. Bicego, and V. Murino. Multi-level background initialization using

hidden markov models. In ACM SIGMM International Workshop on Video Surveil-

lance, pages 11–20, 2003. 4

[50] V. Crnojevic, B. Antic, and D. Culibrk. Optimal wavelet differencing method for ro-

bust motion detection. In IEEE International Conference on Image Processing (ICIP),

pages 645–648, 2009. 19, 20

[51] S. Davarpanah, F. Khalid, Abdullah L. N., and M. Golchin. A texture descriptor:

Background local binary pattern (BGLBP). Multimedia Tools and Applications (MTA),

pages 6549–6568, 2016. 20, 110

[52] K. Derpanis, M. Lecce, K. Daniilidis, and R. Wildes. Dynamic scene understanding:

The role of orientation features in space and time in scene classification. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 1306–1313,

2012. 84, 88

[53] K. Derpanis and R. Wildes. Dynamic texture recognition based on distributions of

spacetime oriented structure. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 191–198, 2010. 84



BIBLIOGRAPHY 123

[54] P. Devyver and J. Kittler. Pattern recognition: a statistical approach. Prentice-Hall,

1982. 89

[55] B. Dey and M. K. Kundu. Robust background subtraction for network surveillance in

h.264 streaming video. IEEE Transactions on Circuits and Systems for Video Technol-

ogy (TCSVT), pages 1695–1703, 2013. 4

[56] G. Doretto, A. Chiuso, Y. Wu, and S. Soatto. Dynamic textures. In International

Journal of Computer Vision (IJCV), pages 91–109, 2003. 83, 84

[57] X. Du and G. Qin. Foreground and detection in surveillance videos via a hybrid lo-

cal texture based method. In International Journal on Smart Sensing and Intelligent

Systems, 2016. 97

[58] A. Elgammal, D. Harwood, and L. Davis. Non-parametric model for background

subtraction. In European Conference on Computer Vision (ECCV), pages 751–767,

2000. 3, 10, 24, 36

[59] C. Eveland, K. Konolige, and R. Bolles. Background modeling for segmentation of

video-rate stereo sequences. IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 266–271, 1998. 16, 23

[60] C. Feichtenhofer, A. Pinz, and R. Wildes. Spacetime forests with complementary

features for dynamic scene recognition. In Proceedings of the British Machine Vision

Conference (BMVC), 2013. 84

[61] C. Feichtenhofer, A. Pinz, and R. Wildes. Bags of spacetime energies for dynamic

scene recognition. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2681–2688, 2014. 84

[62] E. Fernandez-Sanchez, J. Diaz, and E. Ros. Background subtraction based on color

and depth using active sensors. Sensors, pages 8895–8915, 2013. 16, 24

[63] Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In Interna-

tional Conference on Machine Learning (ICML), pages 148–156, 1996. 32

[64] Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and

an application to boosting. Journal of Computer and System Sciences, pages 119–139,

1997. 36

[65] D. Gabor. Theory of communication. Institution of Electrical Engineering, pages

429–457, 1946. 19

[66] J. Gallego and M. Pardas. Region based foreground segmentation combining color

and depth sensors via logarithmic opinion pool decisions. Journal of Visual Commu-

nication and Image Representation (JVCIR), 2013. 16, 24

[67] B. Ghanem and N. Ahuja. Maximum margin distance learning for dynamic texture

recognition. In Proceedings of the European Conference on Computer Vision: Part II,

pages 223–236, 2010. 88

[68] G. Gordon, T. Darrell, M. Harville, and J. Woodfill. Background estimation and re-

moval based on range and color. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 459–464, 1999. 16



124 BIBLIOGRAPHY

[69] N. Goyette, P. Jodoin, P. Porikli, J. Konrad, and P. Ishwar. Changedetection.net: A new

change detection benchmark dataset. IEEE Workshop on Change Detection (CDW) at

CVPR, 2012. 17, 25

[70] H. Grabner and H. Bischof. On-line boosting and vision. IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2006. 10, 36, 57, 73

[71] H. Grabner, C. Leistner, and H. Bischof. Time dependent on-line boosting for robust

background modeling. International Joint Conference on Computer Vision, Imaging

and Computer Graphics Theory and Applications (VISAPP), 2008. 36, 57, 73

[72] H. Grabner, P. Roth, M. Grabner, and H. Bischof. Autonomous learning a robust back-

ground model for change detection. IEEE International Workshop on Performance

Evaluation of Tracking and Surveillance (PETS), 2006. 36, 57, 73

[73] K. Greff, A. Brandao, S. Krauss, D. Stricker, and E. Clua. A comparison between

background subtraction algorithms using a consumer depth camera. International

Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and

Applications (VISAPP), 2012. 16, 24

[74] J.-M. Guo, C.-H. Hsia, Y.-F. Liu, M.-H. Shih, C.-H. Chang, and J.-Y. Wu. Fast back-

ground subtraction based on a multilayer codebook model for moving object detec-

tion. IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), pages

1809–1821, 2013. 4

[75] L. Guo and S. Boukir. Fast data selection for svm training using ensemble margin.

Pattern Recognition Letters (PRL), 2015. 62, 76

[76] L. Guo, D. Xu, and Z. Qiang. Background subtraction using local svd binary pat-

tern. In IEEE Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), 2016. 20, 108

[77] D. Gutchess, M. Trajkovic, E. Cohen-Solal, D. M. Lyons, and A. K. Jain. A back-

ground model initialization algorithm for video surveillance. In International Confer-

ence on Computer Vision (ICCV), pages 733–740, 2001. 4

[78] B. Han and L. Davis. Density-based multifeature background subtraction with support

vector machine. IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), pages 1017–1023, 2012. 5

[79] G. Han, J. Wang, and X. Cai. Background subtraction based on three-dimensional

discrete wavelet transform. Sensors (Basel, Switzerland), 2016. 19, 20

[80] L. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), pages 993–1001, 1990. 33

[81] M. Harville. A framework for high-level feedback to adaptive, per-pixel, mixture-

of-gaussian background models. European Conference on Computer Vision (ECCV),

2002. 16, 23

[82] M. Harville, G. Gordon, and J. Woodfill. Foreground segmentation using adaptive

mixture models in color and depth. International Workshop on Detection and Recog-

nition of Events in Video, 2001. 14, 16, 23



BIBLIOGRAPHY 125

[83] S. He, J. Soraghan, B. O’Reilly, and D. Xing. Quantitative analysis of facial paralysis

using local binary patterns in biomedical videos. IEEE Transactions on Biomedical

Engineering, pages 1864–1870, 2009. 84
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ble pruning techniques based on ordered aggregation. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), pages 245–259, 2009. 32

[137] J. McHugh, J. Konrad, V. Saligrama, and P.-M. Jodoin. Foreground-adaptive back-

ground subtraction. In IEEE Signal Processing Letters, pages 390–393, 2009. 18,

20

[138] A. Mendizabal and L. Salgado. A region based approach to background modeling in a

wavelet multi-resolution framework. In IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), pages 929–932, 2011. 19, 20

[139] I. Mitsugami, H. Fukui, and M. Minoh. Extraction of potential sunny region for back-

ground subtraction under sudden illumination changes. In International Journal of

Computer Vision (IJCV), 2014. 10



BIBLIOGRAPHY 129

[140] M. Mousse, E. Ezin, and C. Motamed. Foreground-background segmentation based

on codebook and edge detector. Computing Research Repository (CoRR), 2014. 16

[141] M. Murshed and O. Chae. Statistical background modeling: an edge segment based

moving object detection approach. International Conference on Advanced Video and

Signal-Based Surveillance (AVSS), 2010. 16, 17

[142] C. Nagananthini and B. Yogameena. Crowd Disaster Avoidance System (CDAS) by

Deep Learning Using eXtended Center Symmetric Local Binary Pattern (XCS-LBP)

Texture Features. International Conference on Computer Vision and Image Processing

(CVIP), 2017. 97

[143] A.Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance. In

International Conference on Machine Learning (ICML), 2004. 29

[144] S. Noh and M. Jeon. A new framework for background subtraction using multiple

cues. In Asian Conference on Computer Vision (ACCV), pages 493–506, 2012. 17, 44
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