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Computational Surgery is a new science that aims to intersect surgery and computational sciences in order to bring significant improvements in both fields. With the evolution of new surgical techniques, a close collaboration between surgeons and computational scientists became unavoidable and also essential to optimize surgical care.

A large usage of mathematical models is the cornerstone in this new field. The present thesis shows how a systematic approach to a clinical problem brought us to answer open questions in the field of surgery by using mathematical models on a large scale.

In general, our approach includes (i) an overview of the problem, (ii) the individuation of which physiological system/s is/are to be studied to address the question, and (iii) a mathematical modeling effort, which has been always driven by the pursue of a compromise between system complexity and closeness to the physiological reality.

In the first part, we focused on the optimization of the boundary conditions to be applied to a bioreactor used to re-populate lung tissue from donor. A geometrical model of tracheobronchial tree combined with a solute deposition model allowed us to retrieve the set of pressures to be applied to the pumps serving the bioreactor in order to reach an optimal distribution of nourishment across the lung scaffold.

In the second part, we focused on the issue of post-surgical restenosis of vein grafts used to bypass arterial occlusions. We replicated the event of restenosis with several mathematical models that allow us to study the clinical evidences and to test hypothesis with an escalating level of complexity and accuracy.

Finally, we developed a solid framework to test the effect of gene therapies aimed to limit the restenosis. Interestingly, we found that by controlling a specific group of genes, the lumen patency is double after a month of follow-up.

With the results achieved, we proved how mathematical modeling can be used as a powerful tool for surgical innovation.
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Modèles mathématiques en chirurgie informatisée

Résumé

La chirurgie informatisée est une science nouvelle dont le but est de croiser la chirurgie avec les sciences de l'informatique afin d'aboutir à des améliorations significatives dans les deux domaines. Avec l'évolution des nouvelles techniques chirurgicales, une collaboration étroite entre chirurgiens et chercheurs est devenue à la fois inévitable et essentielle à l'optimisation des soins chirurgicaux.

L'utilisation de modèles mathématiques est la pierre angulaire de ce nouveau domaine. Cette thèse demontre comment une approche systématique d'un problème clinique nous a amenés à répondre à des questions ouvertes dans le domaine chirurgical en utilisant des modèles mathématiques à grande échelle.

De manière générale, notre approche inclut (i) une vision générale du problème, (ii) le ciblage du/des système(s) physiologique(s) à étudier pour y répondre, et (iii) un effort de modélisation mathématique, qui a toujours été poussé par la recherche d'un compromis entre complexité du système étudié et réalité physiologique.

Nous avons consacré la première partie de cette thèse à l'optimisation des conditions limites à appliquer à un bio-réacteur utilisé pour démultiplier le tissu pulmonaire provenant d'un doneur. Un modèle géométrique de l'arbre trachéo-bronchique couplé à un modèle de depôt de soluté nous a permis de déterminer l'ensemble des pressions à appliquer aux pompes servant le bio-réacteur afin d'obtenir une distribution optimale des nutriments à travers les cultures de tissus.

Nous avons consacré la seconde partie de cette thèse au problème de resténose des greffes de veines utilisées pour contourner une occlusion artérielle. Nous avons reproduit l'apparition de resténose grâce a plusieurs modèles mathématiques qui permettent d'étudier les preuves cliniques et de tester des hypothèses cliniques avec un niveau croissant de complexité et de précision.

Pour finir, nous avons développé un cadre de travail robuste pour tester les effets des thérapies géniques afin de limiter la resténose. Une découverte intéressante a été de constater qu'en contrôlant un groupe de gènes spécifique, la perméabilité à la lumière double après un mois de suivi.

Grace aux résultats obtenus, nous avons démontré que la modélisation mathématique peut servir de puissant outil pour l'innovation chirurgicale. 

General Introduction and Motivation

Mathematical modeling in computational surgery

Computational surgery can be defined as a new science aimed to modernize surgery by using computational science combined with new technologies [1]. At today, many advances in surgery have been reached thanks to the advent of new technologies and the use of computational methods.

For example, let us think about how medical imaging and robotics improved the diagnosis efficiency [2], or about how the study of pivotal fields that impact surgical interventions' outcomes, like genetic and physiology, strongly relies on computational methods.

An accurate digression on computational surgery has been outlined by Garbey M. et al. [3],

where surgery is stated of having been transformed mainly by three categories of technical advances:

1. Augmented visualization: medical imaging, virtual reality, and mathematical modeling 2. Augmented manipulation and robotics: smart devices for minimally invasive procedures, stereotactic intervention technologies, real-time tracking, biomarkers, and biosensors 3. Reconstructive procedures and prostheses: customized prostheses, regenerative tissues, regenerative medicine, and gene therapy This thesis wants to focus on the mathematical modeling approach applied to surgery in order to give an answer to an open question in a simple but at the same time effective way.

Surgery, and also more in general Medicine are the perfect target of a research based on a mathematical modeling approach. All the current biggest challenges of modern Medicine are based on the deep understanding of the biological processes that regulate them [4][5][6]. The understanding of the biological systems that are at the base of the events that Medicine wants to cure or to control or even just to improve, is the real key for a successful final outcome.

Medicine is largely based on biological systems, which are certainly complex [7,8] and also more complex is to reach a deep knowledge of them, especially because they often are the result of the interplay between different sub-components [7][8][9][10][11]. To make things even more complex, there is the fact that biological systems are often regulated by non-linear processes [12,13], which are more difficult to be finely replicated. Finally, the intrinsic complexity of the fundamental "bricks" the biological systems are built of does not facilitate the comprehension of the systems themselves. It is sufficient to think how intricate the structure of a cell is and to try to project its complexity to a higher level, such a tissue, an organ, or an entire apparatus [14].

The introduction of mathematical models in Bioscience and Medicine significantly improved the general knowledge and boosted medical research [15,16]. A mathematical model that is able to replicate a specific event taking in consideration the complexity of the different factors that regulate it, allows researchers to better understand how the system might be influenced by external stimuli or perturbations. Also, as already said, mathematical models are suitable for computer simulations. Thanks to this, the response of a biological system under different conditions can be easily simulated in silico and, on a larger scale, the long-term follow up of a certain procedure can be predicted in advance. To demonstrate these important features, it is relevant to cite the works by Garbey M et al. [22] and Salmon R et al. [23], who replicated with a mathematical model the re-shaping of the breast after lumpectomy surgery being so able predict the cosmetic long-term outcome of the procedure.

The ability to study and to predict in advance a clinical or an experimental outcome is a relevant advantage for modern Medicine. In fact, biological experiments are expensive and timeconsuming, and being able to simulate in advance the effect of several alterations of a system, allows to place a filter in front of the biological experimentation in order to reduce costs and time.

In general, the mathematical modeling approach clashes with the need for a correlation between predicted results and experimental observations. This results in the systematic need of a validation of the model at various levels. This is true for all the disciplines, and especially for Medicine. Any discrepancy between the predicted results and the experimental observations needs to be fixed by improving the model, or at least justified on the base of the level of complexity of the model itself.

A mathematical model approach applied to Medicine carries with it several benefits:  The presence of a discrepancy between the predicted results and the actual experimental observations is not necessarily a mistake. It can actually lead to the discovery of components that are still missing in the model and that are mandatory to be able to design the right outcome. On the other hand, it can also be an indicator that a better experimental setup design is needed.

 Mathematical models easily investigate the effects of perturbations applied to the system. In the field of Medicine, a perturbation is seen as a drug, a specific surgical procedure, the application of a prosthesis, etc. The challenge of the researchers is to associate each perturbation to a bunch of parameters that drive the system toward a certain outcome. As previously mentioned, being able to do that, means to be able to foresee the effect of different perturbations on the long-term outcome of any procedure.

 Mathematical models are based on computers simulations, which are not constrained a priori. On the other hand, an experiment performed in a laboratory undergoes certain biological constraints that limit the range of possibilities that might be explored. The "no constraints" property of mathematical modeling allows to study new scenarios and to develop new hypothesis to drive the design of new experiments.

 Mathematical modeling can individuate the degree of relevance of a specific element within a complex system. For example, something that will be assessed in this thesis will be the elaboration of a network of genes in order to study the impact of the genetic level on a clinical event. One of the most challenging part was exactly to individuate the element that had the biggest impact on the clinical event of interest.

There are a lot of examples of use of mathematical models in Medicine and they cover a very big range of different fields of interest thanks to their property to be either descriptive or predictive, or both.

The cardiovascular field gives us a complete round up as works both descriptive and predictive have been conducted. An example of description of a clinical phenomenon with a mathematical model is given by the work of Migliavacca F et al. [17], where the hemodynamic in the aortic arc after Norwood shunt operation in response to hypoplastic left heart syndrome is studied with a mathematical model and with the use of Computational Fluid Dynamic (CFD) software. Another example of a mathematical model for descriptive purposes is the dynamical system used by Garbey M et al. [18] that replicate the phenomenon of a vein graft's arterialization post saphenous arterial bypass. On the other hand, an example of predictive application is the development of a mathematical model implemented to predict the valve prosthesis-patient mismatch [19], or to remain in theme of heart valve, to predict the operative mortality after valve replacement surgery [20]. A predictive application of a mathematical model for vascular surgery will also be largely address in the current work.

Way more clinical areas are interested by the large use of mathematical models, such as cancer research, improvement of machines for the assisted respiration, improvement of dialysis machines.

However, a deep study of their usage across all the clinical disciplines lies outside the purposes of this thesis.

The properties of mathematical models, as they have been described, are perfect to adapt the mathematical modeling to a wide range of applications.

Mathematical models can be used in order to improve the design of already existing and commercialized medical devices, like stents. It is the case of the work by Garbey M et al [21],

where the mechanical properties of an esophageal stent were replicated with a simple spring model that allowed the researchers to predict how different designs of the stent affect the stability of the stent itself in the esophageal tract.

At the same way, the use of mathematical models can also drive the design of medical devices.

The mathematical model developed by Huiskes R et al. [24] predicts how different shapes and materials of the femoral head of a hip prosthesis can impact the level of stress at the interface with the acetabular component. This ability drastically improved the design of hip prosthesis being the unbalanced level of stress at the joint the major cause of short-term failure for hip prosthesis [29].

However, the potentialities of mathematical modeling is not confined only to medical devices.

It can be extended to drugs too, and again both from a design and an improvement perspective. It is the case of the works by Lin Chien-Chi et al. that developed a series of mathematical models to improve the drug-delivery property of some hydrogels [25] and Liu HY et al. [26] that engineered hydrogels for drug-release with the mediated action of targeted enzymes.

Mathematical models were also used in order to improve surgery. Nguyen TB et al. [27] developed a mechanical model based on pre-operative CT scans for localizing the position of a liver and a tumor within the tissue during a minimally invasive liver operation. Thanks to it, a surgeon can track in real time the position of the tumor within the liver during surgery.

Finally, on a larger view, mathematical models can be used to improve the clinical operations maximizing the efficiency and minimizing the time-wasting. In the work of Garbey M et al. [28] the authors developed a theoretical multiscale model of surgical flow of operations that allows to test how specific factors before, during, and after the surgery affect the efficiency of the whole operation.

Systems Biology

Within the mathematical modeling, an approach that further revolutionized the world of medical research is systems biology, which will be the base philosophy of the works presented in this thesis.

The concept of systems biology is inspired by the Gestalt principles, for which the whole was different than the sum of the parts [30]. Systems biology amplifies this concept and it is based on the understanding that whole is greater, not only different, than the sum of the parts. With reference to living organisms, the fundamental principle is that in order to understand the complexity of a system is not sufficient just to know the functioning of its single components, but it is equally important to study how the various sub-components are connected in an organized network [31].

Accordingly, a systems biology approach cannot exclude a collaborative research approach.

Many scientific fields must be involved to explore all the levels of complexity that come along with an approach of this type. In this thesis, the mutual collaboration between mathematicians, surgeons, and biomedical engineers has been the cornerstone of the research and allowed us to study specific apparatuses and events with a deep level of accuracy.

A systems biology approach naturally translates in a multiscale modeling approach. Generally, multiscale modeling refers to a style of modeling in which multiple models at different scales are used simultaneously to describe a system and the different models usually focus on different scales of resolution [32]. This approach adapts itself perfectly to the human body that is a machine made of separate compartments that work together at different scales to perform specific tasks. Also, this approach adapted itself perfectly to the purposes of our thesis, in which, as it will be seen, subcomponents at different scales concur to influence a specific event of interest.

The multiscale modeling approach not only allowed us to study the processes at the base of the problem we wanted to assess, but also it allowed us to make specific predictions on the final outcome, adding an enormous value to our research.

Model order reduction

A mathematical model can be generally seen as black box [33]. Accordingly, the perturbation employed by a certain input stimulates the model to produce an output driven by the characteristic parameters of the model, which are constant values in their simplest definition [START_REF] Klein | Hemodynamic Influence on Smooth Muscle Cell Kinetics and Phenotype During Early Vein Graft Adaptation[END_REF]. As the output of a model is mediated by the sub-events that describe the dynamic of the model, these characteristic parameters are representative of these events. The values of these parameters are typically evaluated heuristically, i.e. starting from the observation of experimental data.

As we have already mentioned, a mathematical model should include more than just one single sub-component or in parallel sub-event in order to satisfyingly describe a biological system.

Assuming for simplicity that within a certain model a single event is driven by one and one only parameter (this is generally not true, but for let us assume it just for this example), the complexity of the model grows proportionally with the complexity of the system that it replicates. This means that if a biological system is influenced by N different events, we need a N-degree complex system in order to create an accurate model. However, the greatest challenge of mathematical modeling is to create a model both accurate, but also simple and feasible, especially from a computational point of view. Indeed, if it is true that mathematical models are suitable for computer simulations, it is also true that average computers have memory and performances that might be not enough for models resulting to be too complex. Also, in order to face a specific problem, or in order to answer one specific question, not necessarily a model that faces all the aspects of a system is necessary.

In the already cited work by dr. Garbey et al. [21], the mechanical properties of a stent were replicated with a simple spring model, which is well known to be a 1 degree of complexity model in its stiffness constant k [START_REF] Klein | Hemodynamic Influence on Smooth Muscle Cell Kinetics and Phenotype During Early Vein Graft Adaptation[END_REF]. Certainly the whole stent system cannot be replicated with just one constant parameter and be considered accurate. Already if someone thinks to the properties of the material can understand how complex the modeling of a device such as can be. However, the research presented in their work was only oriented in understanding how the stiffness of the stent influences its stability in the esophageal tract and, to reply to this question, a 1 degree of complexity model was sufficient. More, it would have been a non-smart modeling choice to design a more complicated model, because the computation would have been more complex and basically for no reasons.

Accordingly, the real question should be the following: "Within a certain system, and considering the problem I want to face, which are the aspects of the system that must be taken in account? On the other hand, which are the aspects that can be disregard?". This is why mathematical modeling has to be a matter of compromise between closeness to the physiological reality and complexity.

In the present thesis various biological events belonging to different fields have been studied always starting from this simple question. The rational has always been to translate a biological problem into a mathematical one, but keeping in mind that the more complexity is added, the more difficult it would have been to find a unique solution. The main concern was to individuate the minimum number of parameters that were able to give us a model accurate enough for the problem we were facing, but also feasible from a computational point of view.

Structure of the thesis

This thesis wants to address clinical topics of high relevance by following the principles described in this general introduction. Every work that will be presented aims to solve or at least to improve the current status of a pressing issue involving a certain clinical procedure, or a clinical machinery.

The general scheme followed for each project can be summarized in 5 points:

1. Overview of the problem: within a certain clinical procedure, there is an open question that we want to give an effective answer to.

2. Individuation of the system that has to be replicated: what is the physiological system that drive the specific event related to the open question? 3. Mathematical modeling approach: Which kind of mathematical construct is suitable to replicate the physiological system? 4. Systems Biology: is the system driven by interconnected sub-compartments? If yes, how does their mutual interconnectivity impact the final outcome? 5. Complexity reduction: which simplifications can we make in order to end up with a model both simple and accurate enough?

The first project, presented in chapter 2, is about the improvement of a machinery used for a clinical application. Lung transplants efficacy has been largely improved with the advent of tissue engineering [36], and in particular with the advent of bioreactors able to repopulate lung scaffolds from donors with stem cells of the receiving patient [START_REF] Nichols | Production and assessment of decellularized pig and human lung scaffolds[END_REF]. The stem cells, along with the nourishment medium, are injected in the scaffold through the TracheoBronchial Tree (TBT) [START_REF] Nichols | Production and assessment of decellularized pig and human lung scaffolds[END_REF], which serves as conveying structure. After a review of the state of the art, which will be presented in the chapter, it was clear how one of the key for a successful cells adhesion and repopulation is to optimally set the pressures that have to be applied to the pumps serving the bioreactor. We developed a mathematical model of transport of solute across the TBT in order to be able to know in advance which set of pressures have to be applied to the bioreactor in order to obtain an optimal cells repopulation.

In the second project, presented in chapter 3, the arterialization of a vein graft post bypass surgery is largely studied. From literature, intimal hyperplasia and wall remodeling were individuated as the events that mainly lead the process of graft adaptation to the new environmental conditions imposed by the surgery [START_REF] Liu | Restenosis after coronary angioplasty. Potential biologic determinants and role of intimal hyperplasia[END_REF]39].

In the first part, the graft's adaptation was replicated, with special attention to the two events cited, both with a dynamical system [18], and with an agent based model, implemented starting from the framework developed by Garbey M et al. [40]. Studying the pattern formation of intimal hyperplasia and wall remodeling with both the models, it resulted how the dynamical system was more user friendly than accurate, while the agent based model was closer to the physiological reality than user friendly. This fostered us to cross-validate the two models in order to keep the pros and to discard the cons of both of them.

The second part of chapter 3 offers an example of how to increase the level of complexity of a model in order to get closer to the physiological reality. Starting from the agent based model of graft adaptation, the structure of the Extra Cellular Matrix (ECM) has been deeply described from a mechanical point of view, and the membranes separating the various layers assume a behavior closer to the physiological reality.

Finally, the third part of the chapter focuses on the importance of the correspondence between model's outcome and experimental observations. The right setup of the parameters driving the model is the key to obtain an output acceptably close to the physiological reality. This is true for the specific model under study, but also in general. To develop a rational for the setup of the parameters, a large consideration has to start right from the experimental observations. A systematic method in order to test which is the minimum number of biological measures at experimental level that are necessary to retrieve the right value of the model's parameters was developed. The method was applied to the parameters leading cellular events of major importance in the ambit of vascular adaptation, such as cells proliferation and cells motility.

The third project, presented in chapter 4, is possibly the most challenging. From considerations based on literature (presented inside the chapter), it emerges how the rate of failure of Coronary Artery Bypass Graft (CABG) surgery is unacceptably high. Despite years of improvement in surgical techniques [41,42] and in therapies administered to the patient (mainly drug therapies like antiplatelet [43]), a 10-12% rate of graft failure within the first month is recorded [44,45]. An efficient post-surgical therapy might be found at the genetic level. Accordingly, a multiscale model of graft arterialization is proposed. The model not only replicates the process of adaptation of the vein to the new environmental conditions, but also details the level of impact that specific groups of genes employ on the arterialization itself. A key feature of the model is its capability of linking the genetic, cellular and tissue levels with feedback bridges in such a way that every single variation from an equilibrium point is reflected on all the other elements. This aspects perfectly reflects the principle of systems biology introduce earlier and creates a highly organized loop that, once validated on experimental data, offers us the possibility to test in advance several gene therapies aimed to improve the current long-term follow up outcome of CABG.

Finally, the conclusions will summarize the main points assessed and will point out the results obtained, opening also a window on the future perspectives and future steps of our research. 

Mathematical modeling to improve clinical machines setup

The present chapter debates the use of mathematical modeling to improve the efficiency of the setup of a machine used for the clinic. Furthermore, it studies the setup of a bioreactor used in order to repopulate a lung scaffold obtained from donor in order to make it suitable for transplant.

At today, lung diseases are a plague that largely affects our Society. Statistics show how the average incidence of deaths due to lung diseases is of 235,000/year [1,2]. Among them, Chronic Lower Respiratory Disease (CLRD), Chronic Obstructive Pulmonary Disease (COPD), and lung cancer hold the highest incidence [1][2][3].

Management of lung diseases often includes inhaled medications [4] and ventilator therapies [5] (this latter also for severe injuries), which are widely accepted as being the optimal route of administration of first-line therapy for most of the pulmonary diseases. A series of mathematical models have been realized with the aim of improving the efficiency of these therapies, especially the ones involving mechanical ventilation. A one-compartment and a two-compartments models of the dynamic of the respiratory system have been developed respectively by Marini et al. [6] and by Crooke et al. [7] in order to predict the effect of different waveforms applied to the ventilator and to optimize the setup of the ventilator machine. Works with a higher level of complexity have also been presented. Hancao et al. [8], with their multi-compartment model, designed an optimal airflow to be obtained across the airways in order to optimize the mechanical ventilation therapy. This will be also the philosophy followed in this chapter: to create a model equipped with a feedback loop that allows us to predict the optimal setup of the clinical machine in order to obtain an optimal flow across the airways.

Despite years of improvements of clinical machines and therapies administered, some chronic pathologies can only be slowed down, and not totally cured. After the lung has reached an incurable stage, it is necessary to think in terms of organ replacement and basically resort to a lung transplant.

Considering the large incidence of severe lung diseases, it is easy to imagine how the demand for lung transplants is increasingly high, while the availability of donors is severely limited [9][10][11].

As result, the average waiting time for a lung transplant in US is 1 year [11].

In order to cope with this problem, tissue engineering is heading today towards the creation of "ex novo" engineered organs in order to replace the damaged lung [12][13][14]. The engineering of an organ from donor implies the decellularization of the donated organ in order to obtain a scaffold to be repopulated by stem cells of the receiving patient [15,16]. The generation of lung tissue through tissue engineering raises the possibility for treatment of lung diseases/disorders by providing an answer to the current organ shortages.

In addition, many patient who had have access to the transplant, face many issues related to the transplant itself, like antibiotics intolerance [17], incidence of collateral pathologies [18], or even worse organ rejection [19]. By engineering lungs from donor, the risk of rejection is sensibly reduced.

It is following this principle that works such as the one by Nichols JE et al. [20] have been developed. (SDM) strongly dependent on fluid velocity across the tree itself. With it, it has been possible to design a mathematical framework for tracking and driving the concentration of a generic solute across the airways, looking for its optimal distribution. By coupling the two models, a feedback system is created that allows to derive the optimal pattern of solute. This, combined with the fact that the TBT model is invertible, allows the retrieval of the optimal set of pressures to be applied to the bioreactor in order to obtain an optimal distribution of solute across the lung structure that is crucial for survival and proliferation of the recipient's cells.

All the modeling principles described in the introduction are applied in the approach followed in this chapter. A physiological structure, such as the TBT, is individuated as decisive in order to give an answer to a specific clinical question. Indeed, the optimal final outcome of the recellularization process is a matter of transport and diffusion of nourishment to the stem cells previously injected in the airside compartment, and they both happen through the TBT. The model is made of two sub-components and takes in account separately both the geometry of the biological structure, and the diffusion/transport of a solute across it. The two subcomponents are coupled and a feedback bridge allows the prediction of the effect that a specific input has on the final outcome.

The most interesting part is that the model is a good compromise between complexity and computational feasibility, and it fully respects the principle of model order reduction previously described. The simplifications of the model are summarized below:

 Only the first 15 generations of the TBT are considered. After all, further expanding the analysis would have resulted in a useless CPU memory consumption as the distal part of TBT is not involved in any transport phenomena.

 The model explores only the longitudinal direction of solute transport, transferring the description of solute's spreading along the remaining two directions to the diffusive term. It is so a 1D model, which guarantees the realization of a solid mathematical framework although it is not physiologically accurate.

 The losses of pressures at each branching point of the tree have been systematically ignored. Once again, by considering them, the analysis would have needed to add level of complexity that would have been unnecessary for the purpose of the study.

 Only one specific solute (oxygen) has been investigated. However, the semi-lumped parameters character of the model allows to easily increase the complexity of the medium mixture in order to explore the distribution of more nourishment solutes.

Summarizing, the method presented in this chapter, provides a solid mathematical framework that is able to predict in advance the optimal setup of a clinical machine, like a bioreactor used for lung re-engineering. The model can be easily improved in order to add degree of complexity and accuracy to the problem, with specific reference to a 3D structure of the TBT, and a more complete medium mixture composition.

Introduction

The increasing demand for lung transplants is due to the growing occurrence of severe lung pathologies, such as chronic obstructive pulmonary disorders and restrictive diseases [1,2]. In 2012, there were 3,700 recorded lung transplants worldwide [3].

One of the limits to the widespread need for lung transplantation is the scarcity of suitable donor lungs for implant. It is estimated that organs are retrieved from only 20% to 25% of potential donors because of religious, social, or other reasons [4]. Furthermore, more than 80% of potential donor lungs are injured during brain death and other complications experienced in the intensive care unit, and thus cannot be used for transplantation. Less than 10% of the available donors have lungs with a preserved alveolar-capillary barrier that can be considered acceptable for transplantation [4]. According to Cypel et al. [5], this percentage can be increased using gene therapy with an adenoviral vector encoding human interleukin-10 (AdhhlL-10). Using this technique, the authors showed that lungs excised from donors could be repaired ex vivo before transplantation.

An alternative option to the use of lungs from deceased donors is the development of tissueengineered lungs. A typical approach consists in the use of donated lungs as supporting scaffolds to be repopulated by stem cells of the receiving patient. The scaffold is prepared and treated inside a bioreactor using a slow liquid perfusion regime. The benefits of this approach consist both in limiting the side effects, such as organ rejection, and dramatically improving the metabolic performance of the scaffold. The success of lung engineering relies on achieving homogeneous distribution of nutrient to nourish the stem cells in the scaffold, which is a challenging problem. A possible tool to help improve the growth process of the engineered lung is the mathematical simulation of the medium perfusion flow in the airways.

Several works have addressed the problem of simulating flow in the lungs by means of numerical simulations for the computation of the flow distribution inside the airways [6][7][8][9][10].

However, most of the simulations assumed a fast regime of perfusion, which is not the typical situation of a bioreactor for engineered organs. Total Liquid Ventilation (TLV) and Partial Liquid Ventilation (PLV) were studied thoroughly in [11][12][13][14]. Both techniques have been used in patients in order to restore the lung functionality by injection of a liquid oxygenating mixture in the airways, however neither accurately reflects the typical conditions of a bioreactor either.

In this paper, we present a mathematical model of slow liquid flow in the TBT, based on the description of air ventilation introduced by Florens et al. [15] and Florens [16]. Our goal is to set a criterion to determine the optimum boundary flow conditions to be applied to a bioreactor used for the ex vivo treatment of lungs from donors. Our work has been focused on the pure transport region of the TBT, i.e. the upper portion of it. In this context, an accurate study of both the flow, and above all of the solute transport in the upper airways is of paramount importance. The study of the transport phenomena enables precise tracking of the concentration of a generic solute along the tree. In this way, an optimal distribution of the solute can be targeted, and the flow conditions necessary to achieve it can be determined.

Materials and methods "The Methodist Hospital Research Institute" bioreactor: properties and mathematical modeling principles

A new approach in lung engineering is represented by the bioreactor developed by the Houston Methodist Research Institute. It deviates from other common techniques, such as drug therapy, oxygen therapy, surgery and pulmonary rehabilitation. Its design follows the principles described in [17], applying them directly to the human lung case.

The procedure is explained in detail in [18]. A donated lung is completely decellularized in order to remove all immunogenic cellular constituents. After the decellularization process, the tissue retains its architecture and its common functions. To enhance the deposition, the survival, and the differentiation of lung epithelium, the matrix is cultured in a bioreactor designed to mimic the features of the human lung, including vascular perfusion and airways ventilation. The excised lung is mounted inside the chamber of the bioreactor and it is connected to the external circuit by a three syringe-pump loop system. The left syringe drives the liquid breathing cycle, the central one performs the culture medium exchange, and the right one the vascular perfusion. Repopulation of the scaffold is performed by injection of the receiving patient's stem cell mixture via the TBT.

Cells are later fed by slow liquid ventilation via TBT.

The goal of this approach is to reach a physiological structural level and to demonstrate in-vitro functional capability. Knowing the optimal boundary conditions to optimize the flow of solute (i.e. the culture medium) is instrumental to reach the desired target.

The boundary conditions (BCs) are directly related to the flow inside the tree. In order to be able to optimize the BCs, it is necessary to identify a target flow distribution to be imposed through the TBT. This prompted us to develop a fluid-dynamic model that simulates the flow inside the tree.

Fluid-dynamic modeling can be tackled by different approaches considering an increasing level of complexity: 0D (lumped parameters model), 1D, and 3D. Models of each class can greatly vary according to the number of details added. A 3D approach of the whole lung structure entails a significant computational burden. A lumped (0D) model is not adequate to account for the interactions between the particulate and the airway walls. The 1D modeling was determined to be a good compromise for our purposes. The complexity of a 1D model is given by 3 key factors: i) the bronchial mechanical properties; ii) the number of generations and the geometrical details at each level; and iii) the boundary conditions.

Geometrical model of TBT: anatomical description, simplification and mathematical implementation

The TBT is a portion of the bronchial airways consisting of a tree-like structure. Starting from generation 0 (corresponding to the trachea), any duct generates two (or more) daughter branches.

The total number of generations is commonly considered to be 24, divided in three main portions according with their specific function: i) a region of pure transport from generation 0 up to generation 15 (terminal bronchioles); ii) a transition region between generation 16 and 17; iii) a gas exchange region, which involves the remaining generations [19].

This work focuses only on the first region of the tree, since our interest revolves around the transport phenomena inside the TBT. Also, we based the analysis on a 2D structure in order to simplify the computational frame.

The model chosen to describe the TBT structure influences its own complexity, mainly the total number of pipes belonging to the tree. Several models have been proposed in the literature. They range from statistical models (e.g. the models presented by Weibel et al. [20,21]), to patient specific models relying on thorax radiography, scintigraphy [22], Eco-Doppler [23], bronchoscopy [24], and CT scan [25].

The geometrical features of our model were determined as follows: i) Patient specific parameters for the upper airways (generations 0-5). Parameters such as length, diameters, and spatial orientation of bronchi were taken from Choi et al. [26], who used CT lung images to extract the geometric values;

ii) Weibel's model based parameters [20,21] for the lower airways (generation 6-15): each parent bronchus always originates two daughters with the same geometric properties. In this way, all the bronchi belonging to the same generation share the same geometric properties.

At each branching point, the spatial coordinates of the daughter branches are determined starting from the end point coordinates of the parent branch, (x0, y0) and its spatial orientation (ϑ0).

Using L1 and L2 as the lengths of the 2 daughters, and ϑ1 and ϑ2 as the corresponding branching angles, the spatial coordinates of the right daughter (x1, y1) and of the left daughter (x2, y2) end point were determined with (1) and (2), respectively.

{ x 1 = x 0 + L 1 cos(ϑ 0 -ϑ 1 ) y 1 = y 0 + L 1 sin(ϑ 0 -ϑ 1 ) (1) 
{ y 2 = y 0 + L 2 sin (( π 2 -ϑ 0 ) -ϑ 2 )

y 2 = y 0 + L 2 cos (( π 2 -ϑ 0 ) -ϑ 2 ) (2) 
We repeated the process iteratively for each branching point in order to build the entire tree.

The resulting 2D geometrical model is displayed in Fig 2 .2.

A realistic fluid-dynamic description required accounting for bronchial elasticity, thus switching from a rigid model to a compliant one. According to Lambert et al. [27], the local rigid diameter D of each bronchus is modified by the action of the local transmural pressure, defined with (3).

P tm = P int -P env (3) 
Pint is the internal pressure of the single bronchus and Penv is the pressure surrounding each bronchus. The diameter of the flexible bronchus D (Ptm) was retrieved from its size as rigid (Dmax) through parameters that fully describe the compliance of the structure. Their values were derived from the work of Lambert et al. [27] (See Appendix 1). 

Numerical implementation of the flow in the compliant TBT

In order to compute the liquid flow distribution inside the tree, we first reproduced the approach followed in Ref. [16], which is referred to the case of air. Then we switched to the liquid case to get the slow liquid distribution in each bronchus of the tree. We derived (4) that links the flow in a single bronchus to the inlet/outlet pressures of the latter (See Appendix II and III for details) from [16]:

h(P tm,B ) -h(P tm,A ) - 32ρϕ 2 π 2 ln ( D B D A ) = - 128ηϕ π [a + bLRe(x)]. (4) 
We assumed a constant flow across the bronchus. The single bronchus case was extended to the complete tree by simply applying the Kirchhoff's laws of mass conservation, for which: i) In each branching point, the value of the flow in the parent pipe is equal to the sum of the flows in the daughters pipes (5):

ϕ parent = ϕ daughter1 + ϕ daughter2 ; (5) 
ii) The loss of pressure in each branching point is null (6):

∆P branching point = 0. (6) 
With this last assumption we intrinsically accepts an overestimation of the flow in each branching point. Indeed, by neglecting the loss of pressure at the ramification of the mother pipe, a higher pressure than the physiological one is recorded at the entrance of each daughter pipe, thus implying a higher flow. However, the assumption is coherent with the degree of accuracy necessary for the primary purpose of this work. We built a non-linear system of equations and applied (4) N times, where N is the total number of bronchi, and Kirchhoff's laws (( 5) and ( 6)) M times, where M is the number of branching points. We obtained a N+M equations system in N+M unknowns. The system has the following form once completed by imposition of the boundary conditions: The inlet pressure was set equal to the atmospheric one. Alveolar pressure and intrapleural pressure relations were derived respectively from Refs. [28,29]. The alveolar pressure equation has been derived from the analysis of forced expiration maneuvers. The power of the expiratory muscles decreases exponentially during the expiration. In addition, the pressure developed by the expiratory muscles is dissipated from the tissue resistance. The intrapleural pressure has been approximated as the difference between the alveolar pressure and the pressure of elastic retraction (detailed formulas in Appendix II).

{ 𝑁 𝑠𝑖𝑛𝑔𝑙𝑒 𝑏𝑟𝑜𝑛𝑐ℎ𝑢𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (𝑒𝑞. ( 4 
We computed the static flow distribution by solving the non-linear system, represented as a function F(x), by a Newton-Raphson method of optimization implemented using Matlab® Optimization Toolbox. The goal of this approach was to minimize the function F(x). The output was a vector of N elements, each of them corresponding to the flow inside a single bronchus of the TBT.

The accuracy of the solution was evaluated by considering the condition number of the Jacobian matrix of function F. The condition number of a matrix is the ratio of the largest singular value of that matrix to the smallest singular value. This was used as an indicator to measure how sensitive the function was with respect to changes or errors in the input.

Generally, a problem with a low condition number is considered well-conditioned, whereas a problem with a high condition number is ill-conditioned. Having worked in double precision, a condition number equal to 10 9 has been considered to be good enough to obtain an accurate solution. We have normalized (4) in order to keep the condition number as low as possible.

Validation

The model was validated in the air case as done in Ref. [16], by simulating a forced expiration maneuver. Data of reference were taken from Armstrong et al. [30]. We performed a 12-time steps semi-dynamic simulation in order to replicate the flow/volume loop described in Ref. [30]. At each step, the lung volumes and the pulmonary pressures change. The pressure variation leads to a change in boundary conditions and to a variation of flow distribution.

Liquid Ventilation

We carried out the simulation of liquid ventilation of the TBT model by properly changing the fluid parameters, and by adding the contribution of gravity to (4). Water properties were assumed as characteristic of the fluid: ρwater=10 3 

Solute Deposition Model (SDM)

The transport of a generic solute (oxygen) carried by a generic solvent (water) via liquid ventilation was studied in order to verify the supply to the stem cells and the developing tissues inside the engineered lung. The inclusion of the SDM increased the complexity of the system, by means of additional equations.

Two approaches were followed to address:

i) The gradual decrease of oxygen concentration along the TBT with a steady state flow;

ii) An alternate flow, imposed with a sinusoidal regime. This second option is more realistic, as the TBT is fully invested by airflow during the inspiratory phase, and the inspiratory volume is fully exchanged during expiration.

We derived the equation that describes the concentration of a generic solute per unit of diameter in a fluid solution. Then, we adjusted the equation to our specific case by defining the characteristic parameters of the solute and of the fluid. This enabled us to track the concentration of the solute carried by a solvent.

We concentrated on the transport of solute along a single bronchus of the bronchial tree. We assumed radial symmetry and denoted with z the longitudinal direction of the flow and with r the radial direction. The resulting discrete (8), describes the oxygen concentration at each time step of the simulation and at each space step of the single bronchus. The derivation of ( 8) is specified in Appendix IV.

S O2 n+1 -S O2 n ∆T = -v(z) S O2 m -S O2 m-1 ∆Z + D O2 * k * 2πR(z)S O2 n (8) 
𝑆 𝑂 2 stands for the oxygen concentration per unit of diameter. ΔT and ΔZ are respectively the time and space step. 𝐷 𝑂 2 is the diffusivity coefficient of oxygen. v(z) is the flow velocity along the longitudinal coordinate z. k is the absorption coefficient of the bronchial wall in respect to the solute, and R(z) the radius of the bronchus at coordinate z.

Equation ( 8) is valid for each bronchus of the tree, when imposing a steady waveform at the inlet of the tree. The distribution in the whole tree was obtained similarly to the air case. We extended the analysis to the entire tree as done previously, i.e. by applying the conservation of mass at each branching point.

We tracked the concentration of oxygen, bronchus by bronchus. For each generation the maximum, the mean and the minimum solute concentrations were computed. In order to investigate the solute deposition under a pulsatile flow, we sampled a sinusoidal pressure waveform in a discrete number NFL of phases. We chose an NFL=8 to exploit sinusoid symmetries and to save computational memory. A sinusoidal inlet pressure was applied to the system in each discrete interval, starting from the value at the end of the previous step. The process was repeated 10*T times with T = period of the sinusoid. We chose this period of the sinusoid in order to get a periodic solution and to get the transient's influence exhausted. Flow velocity is time dependent, and the vector vj(t) obtained from the TBT model is strongly dependent on the waveform P(t). A coarse discretization of the sinusoidal period T was considered for the fluid dynamic computation and defined by ΔTFL = T/NFL. The fluid dynamic problem was solved only at the multiples of ΔTFL indicated by T i , where the instantaneous velocities vj i were computed given the instantaneous input pressure P i .

The values at the running time t were obtained via linear interpolation, giving (9):

v j i (z, t) = α(t)v j i+1 + (1 -α(t))v j i ( 9 
)
vj i is the fluid velocity in the j-th bronchus evaluated in the i-th instant of a single sinusoidal cycle of feeding. The time dependent variables for the linear interpolation α(t) and 1-α(t) were defined with (10):

α(t) = t -T i+1 ΔT FL 1 -α(t) = T i + t ΔT FL (10) 
We replaced ( 9) in ( 8), and then replicated the analysis made for each bronchus in a static regime for NFL times. Equation ( 11) represents the semi-dynamic analysis for an oscillatory pressure imposition in a single bronchus.

S 02 n+1 -S 02 n ∆T = -v j i (z, t) S O2 m -S O2 m-1 ∆Z + D O2,H20 * k * 2πR(z)S O2 n . ( 11 
)
As done for the steady-state case, the analysis was extended to the whole tree by application of the mass conservation laws.

Boundary conditions optimization

We set the following criterion for determining the actual velocity un(z) in order to have a correct oxygen supply in the whole TBT.

After a first simulation at nominal flow level, we determined a scaling factor ε to be multiplied by the nominal velocity vn(z) in each bronchus in order to obtain the actual flow velocity un(z) = ε*vn(z). ε must be constant for all the TBT and satisfy the oxygen concentration constraints for all bronchi. The actual flow ϕ was multiplied by the same factor and compared to nominal flow ϕ= ε* ϕ(0). The solute distribution model of a single bronchus was applied to its specific vn to obtain the local [O2]n. An overall control condition compared local concentrations to the required minimal and maximal ones, and computed the scaling factor ε assuming linearity between transported oxygen and velocity. Finally the correct driving pressure to be applied as tracheal boundary conditions was determined.

Results

The validation of the model in the air case was performed through comparison with physiological data.

We compared the flow/volume curve calculated by our semi-dynamic simulation with the curve related to the expiratory phase from Armstrong et al. [27]. the upper airways, where it is at its maximum, to the lower airways, where it is at its minimum.

We tracked the distribution of solute along the tree down to the 10 th generation. This limit was chosen in order to avoid an excessive computational complexity. We computed the maximum, the mean and the minimum concentration of solute for each of the 11 generations investigated (Fig

2.6

). The target was to retrieve the minimum and the maximum value for each generation, since they are critical for the control of the levels of hyperoxia and hypoxia, both lethal conditions for organs and tissues.

The imposition of an oscillatory flow regime was simulated in order to mimic the real operating conditions of a bioreactor. We focused our analysis on the Left Main Bronchus. A comparison between oscillatory flow and steady flow imposition is reported in Fig 2 .7. Even if a steady flow is clearly the most suitable to reach an optimum concentration of solute, it is not a realistic option for a lung treated in a bioreactor. However, the goal of this work was to assess the appropriate boundary conditions of the bioreactor itself and it was possible to reach an acceptable solute distribution with a more realistic oscillatory flow.

Discussion

The work presented in this manuscript extended the study from Florens' et al. [15,16], which introduced a quasi 1D flow mathematical model of the TBT. In Refs. [15,16] the authors centered their study on air breathing for modeling purposes and demonstrated the importance of taking into account the compliance of the bronchial wall.

We applied Florens' model to a different flow regime, a slow liquid flow, typical of the bioreactor used for treatment of donor lungs. We used the flow model to express the transport of solute in the TBT, i.e. the real unknown of the bioreactor design. The localized losses of pressure in a 3D structure are surely bigger than the ones recorded in a 2D structure. For this reason, the choice of a 2D model concurred to the overestimation of the flow across the tree, which, as already stated, affected the goodness of the validation of the model.

However, the model represents an efficient compromise between a fully lumped parameter model and a patient specific model. However, we dealt with a 10% relative error that brought us to the conclusion that the model can be improved upon. A 1D approximation does not reflect the physiological reality. In particular, the assumption that the flow is constant along the single branch affected the accuracy of the simulation. For this reason, a loss of detail was inevitable.

Moreover, the fundamental parameters of the system, like radius, length and compliance of the bronchi were taken from literature. Accordingly, the mathematical model is not "patient specific".

However it` is flexible enough to be easily adopted for a specific patient, and this is true especially for the upper airways, where specific measurements are easily accessible.

We were able to track the solute distribution for 11 generations. This allowed us to test our feedback loop for the boundary conditions imposition. However, only a single solute of interest (oxygen) has been evaluated. The feeding mixture for a lung in the bioreactor is more complex.

Nonetheless, oxygen represents the most important supply to be verified in this preliminary study, and future developments of the current model can include a more complex solute composition.

Figure 2.7 -Solute distribution in Left Main Bronchus (LMB). Comparison between open lung regime (a)

and wash-in-wash-out (b) feeding flow.

One last limit regards the CPU memory exhaustion we faced. The computation of the static distribution in the first 16 generations of the tree took 4 days with a full usage of the CPU memory (4 Core, 3.4 GHz frequency, 32 Gb RAM). The memory usage and the required computational time became critical in the simulation of solute deposition, as cited above, and even more in the oscillatory analysis where the number of equations drastically increased.

The boundary conditions imposition scheme that we developed can effortlessly determine the optimal set of pressures to be applied to the bioreactor once the flow of solute needed to reach down the tree is known. Further, the model is easily invertible. It can be driven by pressure giving as output the flow distribution, or by flow giving as output the correspondent boundary conditions.

Conclusions

The work presented in this paper provides significant modeling evidence of the usefulness of a mathematical model for a tissue-engineering problem of the utmost complexity such as the in vitro re-cellularization and growth of an engineered lung. There are still some aspects to be improved in order for the model to be applicable systematically to the treatment of decellularized donors' TBTs as scaffolds for lung tissue growth.

Future developments are possible in order to enhance the accuracy of the model. For instance, the model can be improved by adding patient specific information for the upper airways. So far we have used a 2D model for the whole structure. We will switch to a heterogeneous model, where the upper airways will be detailed through a three-dimensional implementation and the lower airways will continue as a lumped parameters model.

The data for the upper airways portion (from generation 0 to generation 5) will be extracted directly from patients using imaging techniques. The lower part of the airways will remain a 2D model, due to the lack of imaging techniques able to precisely retrieve geometrical data at that level of depth. The two distinct parts will be coupled through an algorithm developed by Quarteroni et al. [31]. Originally, this algorithm was applied to hemodynamic simulation, but the adaptation to the airway case will be immediate, given the similar tree-like structures of the arterial tree and of the TBT. Thus, our model will be cost-effective and patient specific.

So far the presence of cells has been neglected because of the 2D assumption the model has been developed on. However, switching to a more accurate 3D geometry will bring the needing to study how the presence of cells will locally modify the flow pattern along every conduit of the TBT. Likely, we will observed localized loss of pressure and turbulences that will alter the flow pattern recorded on a 2D model.

The simulation time could be reduced. In this way, it will be possible to increase the number of generations studied, above all in SDM. A viable solution can be the implementation of the model in different programming environments. For instance, an option will be the adoption of a compiled language as C++.

Finally, the SDM needs to be completed through inclusion of all the elements constituting a cell culture medium. No particular difficulties are foreseen unless the interference mechanism between different solute is introduced and the transport and absorption cannot be separately described.

Appendix I

The basic equations that define the bronchial compliance correspond to two hyperbolas, defined according to whether the transmural pressure in positive (pressure inside the bronchus greater than that of environment) or negative, according with Lambert et al. [27].

D(P tm ) = { D max * √α 0 * (1 - P tm P 1 ) -n 1 , P tm < 0 D max * √1 -(1 -α 0 ) * (1 - P tm P 2 ) -n 2 , P tm ≥ 0 (12) 

Appendix II

The equation of alveolar pressure and intrapleural pressure were defined as follow:

P alv (t) = P m (1 -e -t τ ) ( V L (t) -V R C V ) -R t * ϕ 0 (t), (13) 
P pl = P alv -P st .

Last term of ( 14) writes

P st (V L ) = V max -V min C L0 ln ( V max -V min V max -V L ) . (15) 
Pm is the maximum respiratory pressure, t time of respiratory cycle, τ the constant of time referred to the dissipation of Pm, VR the residual volume, CV the vital capacity, VL(t) the instantaneous lung volume, Rt the resistance offered by lung tissues, Φ0(t) is the flow in trachea, Vmax and Vmin are the maximum and the minimum lung volume, and CL0 the global compliance value if Ptm is null.

Appendix III

Bernoulli's law was applied between the inlet of the bronchus and a generic point x of it, giving

:

𝑃 𝐴 + 1 2 𝜌𝑣 𝐴 2 + 𝜌𝑔𝑧 𝐴 = 𝑃(𝑥) + 1 2 𝜌𝑣(𝑥) 2 + 𝜌𝑔𝑧(𝑥) + 𝛥𝑃 (𝐴-𝑥) . (16) 
PA, vA, zA are respectively the pressure, the velocity of the fluid, and the geodesic share at the inlet point of the bronchus. The same quantities P(x), v(x), and z(x) are referred to the current point x of the bronchus; ρ is the density of the fluid, g is the gravity acceleration constant and finally ΔP(A-

x) is the loss of pressure between the inlet and point x.

According with the assumptions made, ( 16) can be rewritten in the form shown with (17):

𝑃(𝑥) = 𝑃 𝐴 + 1 2 𝜌𝑣 𝐴 2 - 1 2 𝜌𝑣(𝑥) 2 -∫ 𝑓(𝑥)𝑑𝑥 𝑥 0 . (17) 
f(x) represents the loss of pressure per unit of length and it has the following form:

𝑓(𝑥) = 128𝜂𝛷 𝜋𝐷(𝑥) 4 (𝑎 + 𝑏𝑅𝑒(𝑥)) -𝜌𝑔 cos 𝜗. (18) 
η is the viscosity of the fluid, a and b are phenomenological constants, Re(x) is the Reynolds number in the x point of the bronchus, D(x) the hydrodynamic equivalent diameter of the bronchus in point x and finally ϑ the longitudinal angle of the bronchus.

Equation ( 17) was derived respect the transmural pressure, leading to ( 19):

(1 - 𝑣(𝑥) 2 𝑐(𝑥) 2 ) 𝐷(𝑥) 4 𝑑 𝑑𝑥 𝑃 𝑡𝑚 = -128𝜂𝜙 𝜋 [𝑎 + 𝑏𝑅𝑒(𝑥)]. (19) 
c(x) is the local velocity wave form. Contribute of gravity was not considered replacing (18) in (17), because gravity does not impact the flow distribution in air case.

We integrated (19) between both ends of the single pipe in order to obtain a scalar nonlinear equation describing the flow inside the single bronchus.

ℎ(𝑃 𝑡𝑚,𝐵 ) -ℎ(𝑃 𝑡𝑚,𝐴 ) - 32𝜌𝜙 2 𝜋 2 𝑙𝑛 ( 𝐷 𝐵 𝐷 𝐴 ) = - 128𝜂𝜙 𝜋 [𝑎 + 𝑏𝐿𝑅𝑒(𝑥)]. (20) 
Without considering flow and diameter variability along the bronchus, an average value of Reynolds number valid for all the length is assumed according with [16]:

𝑅𝑒(𝑥) = 4𝜌𝜙 𝜂𝜋 ( 𝐷 𝐵 + 𝐷 𝐴 2 ) . (21) 
The generic function h(P) describes the variation of the bronchus diameter respect to the transmural pressure value. Its definition takes in account the sign of Ptm, giving the following forms:

ℎ(𝑃 𝑡𝑚 ) = { 𝐷 𝑚𝑎𝑥 4 𝛼 0 2 (1 - 𝑃 𝑡𝑚 ′ 𝑃 1 ) -2𝑛 1 𝑑𝑃 𝑡𝑚 ′ , 𝑃 𝑡𝑚 < 0 ∫ 𝐷 𝑚𝑎𝑥 4 𝑃 𝑡𝑚 0 [1 -2(1 -𝛼 0 ) (1 - 𝑃 𝑡𝑚 ′ 𝑃 2 ) -𝑛 2 ] 𝑑𝑃 𝑡𝑚 ′ + ∫ 𝐷 𝑚𝑎𝑥 4 𝑃 𝑡𝑚 0 [(1 -𝛼 0 ) 2 (1 - 𝑃 𝑡𝑚 ′ 𝑃 2 ) -2𝑛 2 ] 𝑑𝑃 𝑡𝑚 ′ , 𝑃 𝑡𝑚 ≥ 0 . ( 22 
)

Appendix IV

We are going to derive a simplified model of transport of solute starting from the flow distribution across the bronchial tree described earlier. The relevant mass balance writes

𝜕 𝜕𝑡 𝐶 𝐴 = -∇𝐽 𝐴 . (23) 
CA represents the concentration of a generic solute A, and JA the flow per unit of area.

Combining (23) with the first Fick law, we obtained

𝜕 𝜕𝑡 𝐶 𝐴 = ∇(𝐷 𝐴 ∇𝐶 𝐴 ) -𝑣∇𝐶 𝐴 . (24) 
Equation ( 24) describes the phenomenon of propagation of a generic solute transported inside a liquid component. DA stands for the diffusivity of the solute in the carrying solvent and v is the velocity of the fluid. Equation (25) writes

𝜕 𝜕𝑡 𝐶 𝐴 = -𝑣∇𝐶 𝐴 + 𝐷 𝐴 ∇ 2 𝐶 𝐴 . ( 25 
)
The velocity along the longitudinal direction of the bronchus is constant as assumed in section 2.3. We chose a radial symmetric cylindrical approximation for the diffusion. Accordingly, (25) turned into

𝜕 𝜕𝑡 𝐶 𝐴 = -𝑣∇𝐶 𝐴 + 𝐷 𝐴 * { 1 𝑟 𝜕 𝜕𝑟 (𝑟 𝜕 𝜕𝑟 𝐶 𝐴 ) + 𝜕 2 𝜕𝑧 2 𝐶 𝐴 } (26) 
z is the longitudinal coordinate and r the radial coordinate. Since DA is small, the transport of solute along the z direction is dominated by the convective term only. Our simplified model writes

𝜕 𝜕𝑡 𝐶 𝐴 = -𝑣 𝜕 𝜕𝑧 𝐶 𝐴 + 𝐷 𝐴 1 𝑟 𝜕 𝜕𝑟 𝐶 𝐴 + 𝐷 𝐴 𝜕 2 𝜕𝑟 2 𝐶 𝐴 (27) 
Let R be the radius and L the length of the generic bronchus, we assumed R<<L and wrote 𝜕 𝜕𝑟 𝐶 𝐴 (𝑟) using a Taylor expansion with r ∈ [0,R]:

𝜕 𝜕𝑟 𝐶 𝐴 (𝑟) = 𝜕 𝜕𝑟 𝐶 𝐴 (0) + 𝑟 𝜕 2 𝜕𝑟 2 𝐶 𝐴 (0) + 𝑜(𝑟 2 ) (28) 
From the radial symmetry assumption, 𝜕 𝜕𝑟 𝐶 𝐴 (0) = 0. We replaced (28) 

We imposed the following equivalence:

𝜕 𝜕𝑟 𝐶 𝐴 = 𝑘 * 𝑆 𝐴 (32) 
k is the absorption coefficient of the bronchial wall in respect to the solute carried by the liquid flow.

Finally, the finite difference approximation of (32) writes 

ΔT stands for time step and ΔZ for the discrete spatial step. Equation (33) allows us to track the concentration of solute in each bronchus both at each time step and at each space step.

Mathematical modeling to replicate clinical evidences

The aim of this chapter is to show how mathematical models can be used in order to replicate and study clinical events of interest. As mentioned in the introduction, one of the biggest challenge of modern Medicine is the understanding of the events that trigger or drive certain pathologies that Medicine wants to cure. For example, one of the biggest discovers in cancer research was related to the role that the peptidic complex p53 employs on the DNA. According to the work of Whibley C et al. [1] and Steels E et al. [2], a malfunctioning of this peptide undermines the regulation of the cellular mitotic cycle, causing an uncontrolled cell growth that initiates the tumor formation.

In this chapter, a large use of mathematical modeling is made in order to study the phenomenon of the restenosis of a vein graft used in order to bypass an arterial occlusion. A particular focus has been posed in the evaluation of the complex interplay between biomechanics and cell/matrix kinetics, and in the understanding of the multiple feedback mechanisms that lead to a variety of non-linear responses.

Cardiovascular disease is the leading cause of death worldwide, accounting for about 34% of total deaths and one death out of three in the United States [3]. This is a non-improving trend that causes, at today, a direct and indirect costs of more than $316 billion, accounting for both health expenditures and loss of productivity [4]. Among them, coronary diseases hold the highest percentage of incidence [5]. Revascularization using a vein graft (typically autologous saphenous) is one of the most frequent treatment options [4,6,7] and it implies the bypass of the occlusion in order to restore the physiological circulation.

Unfortunately, the medium and long-term durability of this procedure is unsatisfactory, with an incidence or re-occlusion of the graft, also known as restenosis, between 25 and 35% within just 6 months from initial intervention [8]. This percentage rumps up to 50% after a year [8]. After decades of studies, it is well accepted that the adaptation of the graft following surgical injury is mostly the result of the combination of a thickening of the tunica intima, also known as intimal hyperplasia, and a remodeling of the graft's wall [9]. The balance between the two phenomena determines the occurrence of the restenosis.

The key for the development of future, and possibly better therapies, is a better knowledge of the biology of the vein graft response to the postsurgical healing process. Until today, researchers have focused their attention in the development of mathematical models that separately describe the components concurring to the revascularization process [10][11][12], but without understanding that the real key resides in how the several sub-components are liked each other.

It is with this attitude that, in the first part of this chapter ("Vascular Adaptation: Pattern

Formation and Cross Validation between an Agent Based Model and a Dynamical System" by

Garbey M, et al.) an extensive study of the restenosis is proposed by implementing two mathematical models whose frameworks have been already developed in previous works from our group: a Dynamical System (DS) [13], and a stochastic Agent Based Model (ABM) [14].

Both the models are based on the correlation between environment and cell/matrix kinetics that regulates the changes in the graft's architecture and both of them are regulated by a feedback mechanism between environmental conditions and tissue plasticity.

On one hand, the DS is based on an Ordinary Differential Equations (ODEs) system and it tracks the variation of the area of the tunica intima and the tunica media in response to the environmental conditions alteration. Being regulated by constant parameters heuristically retrieved from experimental data, it is a user friendly and easy to setup tool. However, it describes more an average trajectory of the events of interest than a precise physiological reality.

On the other hand, the ABM is built on a hexagonal grid where every site belonging to the graft's wall is either a Smoot Muscle Cell (SMC), or a piece of Extra Cellular Matrix (ECM), which is seen as a uniform entity for the current formulation of the model. The ABM is regulated by cellular automata principles and, as it details the level of interaction cell/cell and cell/matrix, it results to be closer to the physiological reality. However, being based on stochastic rules, its setup is more complicate, it might require to get access to biological data of difficult retrieval in order to be patient specific, and above all the computational effort is higher than the simpler DS.

In this section the goals were to:

1. Simulate the restenosis phenomenon by retrieving the cellular pattern formation with both the models.

2. Cross-validate the two models by creating an accurate matching procedure in order to keep the pros and discard the cons of both the models. In this way, the degree of accuracy given by the ABM has been added to a simplified model such as the DS that can serve as powerful tool for the clinic.

3. Reach a deeper understanding of the lumen invasion through modifications of the initial radial symmetry hypothesis applied to the ABM. This is just an anticipation of a principle that will be largely discussed in the second section of this chapter: how to modify the ABM in order to bring new levels of understanding that are not reachable with the DS. This approach is pivotal in order to get the ABM closer to the physiological reality.

In the second part of the chapter ("A Versatile Hybrid Agent Base, Particle and PDE Method to Analyze Vascular Adaptation" by Garbey M, et al.) the methodology used to add several degrees of accuracy to the previously described Agent Based Model is described and some preliminary results are presented.

The Extra Cellular Matrix (ECM) is not seen any more as a uniform entity, but it is differentiated in its main components, such as collagen, elastin, connective tissue, etc. Every sub-component of the ECM carries different structural properties to the matrix, an aspect that has been taken care of by modifying the stochastic rules that regulate the dynamic of the ABM.

In addition, a more realistic implementation of the membranes separating the various layers of the vein has been provided. In particular, the Internal Elastic Lamina (IEL), which is the membrane separating the tunica intima from the tunica media, does not act anymore as a simple passive barrier, but it carries active properties of homeostasis regulation through chemotaxis, osmosis and other signals.

These new features were implemented on the base of Partial Differential Equations (PDEs). The biggest challenge was to implement a mathematical method designed to combine the best features of the ABM and partial differential methods in order to cope with the different scales from cellular level to continuum mechanic while keeping the implementation simple at the same time.

In the third part of the chapter, a future perspective for the ABM is introduced. The future of the ABM is certainly to be patient specific in order to be able to predict the surgical outcome just by instructing the model with data taken directly from the patient.

The ABM is regulated by stochastic rules, which are triggered by specific constant parameters.

Consequently, in order to turn the model to be patient specific, the very first step is to understand which is the minimum number (and of course the entity) of the biological measures to be retrieved from the patient in order to tune the driving parameters of the model to fit the ABM on the patient itself.

Once again, the predictive nature of the model is the key to accelerate the Research. The idea is to use the current implementation of the ABM in order to generate a virtual set of experimental data, from which several biological measures can be retrieved. The virtual dataset will serve as a sort of virtual patient on which to calibrate the ABM. Thanks to a series of perturbation analysis, a preliminary understanding of the feasibleness of the ABM calibration is provided. Indeed, by understanding the entity of the biological measures needed for the patient specificity of the model, the level of complexity for the retrieval of the biological measures will be fully understood and this will provide a key insight for the calibration of the model in the case of patients from clinic.

In general the chapter offers a broad spectrum of the potentialities of mathematical modeling on the vascular adaptation phenomena. It ranges from simple to more accurate formulations of the same problem, with a window opened on the possibilities to improve the model in order to be suitable for clinical applications of interest.

secondary intervention even within one year after the initial surgery [4].

We propose an extensive study of the restenosis phenomenon by implementing two mathematical models previously developed: a heuristic Dynamical System (DS) [5], and a stochastic Agent Based Model (ABM) [6].

We simulated the re-stenosis of the graft by retrieving the cellular pattern formations using the ABM. A deep understanding of the elements at the base of the restenosis is indeed crucial in order to improve the final outcome of the procedure.

The ABM was originally based on a circumferential symmetry assumption. We improved the ABM by abating this hypothesis, and consequently, we obtained a model closer to the physiological realty. Furthermore, we were able to finely replicate the trigger event of the restenosis, the loss of the endothelium in the early stage of the post-surgical follow up [7].

activation causes a highlighted division of Smooth Muscle Cells (SMC) in the intimal layer, with subsequent synthesis of ExtraCellular Matrix (ECM). These two events combined lead the tunica intima to thicken and to narrow the lumen. Even though a moderate intimal hyperplasia formation is necessary for proper arterialization and long-term graft patency [14][15][16], the patency rates of vein grafts diminish immediately after surgery from 98% to 88% within the first month postsurgery owing to acute thrombosis [17].

On the other hand, the increase in wall tension promotes SMC division in the tunica media with relative ECM deposition, resulting in a thickening of the graft wall.

The balance between intimal hyperplasia and outward remodeling determines the success or the failure of the bypass procedure.

In the present work we extensively used two mathematical models that replicate the phenomenon of restenosis and predict the graft adaptation outcome: a Dynamical System (DS) [5] and an Agent Based Model (ABM) [6].

There are several advantages of having a tool able to anticipate the final outcome of the procedure: i) to better understand the key events of restenosis; ii) to test in advance clinical hypotheses; iii) to anticipate the outcome of targeted therapies aimed to improve the durability of the graft.

The DS is a heuristic model and it was derived fundamentally from a conceptual diagram based on experimental observations, while the ABM is a stochastic model that starts from a bottom-up approach and implements biological knowledge at the level of the cells by using a cellular automaton principle.

Cellular automata are used as mathematical models in order to investigate the self-organization of mechanical systems [18]. A cellular automaton consists in a regular grid of cells, each of them in a specific state and each of them evolving according to defined rules [19]. The behavior of each cell is influenced by the particular states of its surrounding neighbors.

In this work, our goal was to:

1. Replicate the clinical evidences with the ABM (Fig 3 .1), and retrieve the pattern formation related to intimal hyperplasia and outward remodeling.

2. Define a matching procedure between the two models. This has a strong clinical interest.

The DS can serve as a fast and user friendly predictive tool for the graft outcome, while the ABM is closer to the physiological realty, but it demands a high computational time and its setup is not simple. It is also easier to obtain patient specific data to set the DS than the ABM, which requires extensive biologic laboratory data.

3. Post cross-validation, verify that ABM and DS may lead to the same conclusions.

4. Distinguish and discuss where the ABM can bring understandings that are not retrievable from the DS. As described by Garbey and Berceli [5], the graft is composed of a thin intimal layer, and a thick medial layer. The first serves as blood-tissue interface, while the second provides structural support for the wall. The intimal layer is separated from the medial layer by a sheet of connective tissue, called Internal Elastic Lamina (IEL). A similar sheet separates the media from the external surface, the External Elastic Lamina (EEL). The mechanical parameters, being 𝜏 𝑤𝑎𝑙𝑙 the shear stress at the wall and 𝜎 𝑤𝑎𝑙𝑙 the wall tension, are defined according to the geometrical model chosen.

Overview

Anatomy of a vein graft

Dynamical System (DS)

The wall shear stress is given by the formula:

𝜏 𝑤𝑎𝑙𝑙 = 𝜇 2𝑈 𝑅 1 (1) 
U is the maximum velocity of the blood (recorded at the centerline), and 𝜇 is the dynamic viscosity of blood.

The wall tension is given by the formula: 𝜎 𝑤𝑎𝑙𝑙 (𝑟) = √𝜎 𝑟 (𝑟) 2 + 𝜎 𝜃 (𝜃) 2 (2)

𝜎 𝑟 (𝑟) is the radial tension, where

𝜎 𝑟 (𝑟) = 𝑃 1 𝑅 1 2 𝑅 2 2 -𝑅 1 2 (1 - 𝑅 2 2 𝑅 2 ) - 𝑃 2 𝑅 2 2 𝑅 2 2 -𝑅 1 2 (1 - 𝑅 1 2 𝑅 2 ) (3) 
and 𝜎 𝜃 (𝑟) is the circumferential tension (or hoop stress), where

𝜎 𝜃 (𝑟) = 𝑃 1 𝑅 1 2 𝑅 2 2 -𝑅 1 2 (1 + 𝑅 2 2 𝑅 2 ) - 𝑃 2 𝑅 2 2 𝑅 2 2 -𝑅 1 2 (1 + 𝑅 1 2 𝑅 2 ) (4) 
For simplicity, we will abandon the subscript notation 𝜏 𝑤𝑎𝑙𝑙 and 𝜎 𝑤𝑎𝑙𝑙 in favor of 𝜏 and 𝜎.

The dynamic of the cellular events, fully described in our previous publication [5], directly impacts the radius and thickness of each compartment and is provided by the following expressions 2. Basic solution generation: wall shear stress/wall tension baseline values are assigned such as the system is stable at an initial equilibrium point. With 𝜸 ⃗ ⃗ = 0, the basic solution represents the healthy vein graft at the time of implantation.

3. Perturbation of the system: shear/tensile forces and 𝜸 ⃗ ⃗ are modified in order to simulate the arterialization of the vein during the post-surgical follow up.

4. Evolution of the system: the system evolves according to the cellular events activated by the correspondent parameters. The result of the evolution corresponds to the vein graft harvested at the end of the post-surgical follow up.

Agent Based Model (ABM)

An ABM is defined in a way similar to cellular automata [20]. An ABM is a computational model that simulates the actions and the interactions of single and autonomous agents aiming to investigate their action on the whole system. Each element, also called agent, individually assesses its own status and makes decisions on the basis of a set of pre-defined rules [21,22].

The ABM implemented in this work lies on a cellular automata principle and studies the temporal evolution of the same variables tracked with the DS, such as thickness and radius of the wall compartments. Given the initial lumen radius, wall thickness, intimal thickness, and SMC/ECM ratio, a random initial cellular pattern is generated. The model is built such that every site belonging to the graft wall is either part of the intimal layer or part of the medial layer and it is either occupied by an SCM or by an ECM chunk. It is valid by the hypothesis of circumferential symmetry. Indeed, as for the DS, the geometrical model chosen to describe the vein graft is a straight thick cylindrical pipe.

Methods

Basic Solution

Both intimal hyperplasia and outward remodeling share the same setup for the generation of the basic solution.

A fundamental step is the initialization of the system. We chose an initial lumen radius 𝑅 𝑙 = 30 The parameters to generate the basic solution were chosen in order to compensate the different time scales of the cellular events. An SMC undergoes a potential mitotic/apoptotic event every 12 All the parameters driving other cellular events are set to a null value in order to generate the basic solution.

Since the simulation is stochastic, a single result cannot be considered as a robust nor a reliable one. For this reason, the output of the model is systematically evaluated on the mean of 15 independent simulations run with the same conditions. This is valid both for the basic solution generation and for the post-surgical evaluation.

Perturbation and evolution of the system

Both intimal hyperplasia and outward remodeling are based on a feedback mechanism. Intimal thickness is caused by an initial reduction in shear stress. This latter promotes the division of SMC in intimal layer, which gives intimal thickening. However, the thickening of the intima increases blood flow and shear stress, saturating the driving force of the hyperplasia and driving the system to a stable plateau.

On the other hand, outward remodeling is caused by an increase in wall tension, which promotes SMC division in the medial layer, resulting in a thickening of the media. An increase in wall thickness lowers the tension saturating the driving force generating the outward remodeling and stabilizing the system to an equilibrium.

Intimal hyperplasia

The cellular event we used in order to replicate the hyperplasia of the tunica intima was the SMC mitosis in intimal layer. Its correspondent density of probability, with reference to Table 3.1, writes

𝑃 𝑑𝑖𝑣 𝑖𝑛𝑡 = 𝛼 1 (1 + 𝛼 3 𝛥𝜏 𝐴𝐵𝑀 (𝑡) 𝜏̅ ), (7) 
𝛥𝜏 𝐴𝐵𝑀 (𝑡) = 𝛥𝜏 𝑤𝑎𝑙𝑙 𝐴𝐵𝑀 (𝑡) * 𝑒𝑥𝑝 {-( (𝑦 -𝑅 𝑙𝑢𝑚𝑒𝑛 ) 𝛼 7 𝑑 𝑆𝑀𝐶 )}, (8) 
𝛥𝜏 𝑤𝑎𝑙𝑙 𝐴𝐵𝑀 (𝑡) = 𝜏 𝑤𝑎𝑙𝑙 𝐴𝐵𝑀 (𝑡) -𝜏 0 𝐴𝐵𝑀 * (1 + 𝜀). (9) 
𝛥𝜏 𝐴𝐵𝑀 (𝑡) represents the biologic effect of shear stress in intima and it is assumed to decay exponentially with a time constant 𝛼 7 =20. y is the distance of the current ABM site from the center of the grid. 𝑑 𝑆𝑀𝐶 is the standard dimension of an ABM site, assumed to be 0.01 cm. 𝛥𝜏 𝑤𝑎𝑙𝑙 𝐴𝐵𝑀 (𝑡) is the difference between the shear stress recorded at time step t and the baseline 𝜏 0 . In order to provide a global reduction of shear stress, the initial value 𝜏 0 has been perturbed by a constant  = 0.5, representing a 50% increase respect to its initial value. 𝜏̅ = 0.25 is the normalization constant and finally 𝛼 3 = 0.2 is the constant parameter that drives the proliferation of SMC in intima.

Since the model is driven by stochastic laws, the output of a singular simulation cannot be considered significant nor robust enough to represent a trustable result. In order to have a robust output, we run the model with the same conditions for 15 times, recording the state variables every month. The final output was the mean trend of the 15 simulations.

Outward remodeling

We replicated the outward remodeling by tuning the parameter leading the division of SMCs in the medial layer. The correspondent density of probability, with reference to Table 3.1, writes

𝑃 𝑑𝑖𝑣 𝑚𝑒𝑑 = 𝛼 1 (1 + 𝛼 4 ∆𝜎 𝑤𝑎𝑙𝑙 𝐴𝐵𝑀 (𝑡) 𝜎 ̅ ) ( 10 
)
∆𝜎 𝑤𝑎𝑙𝑙 𝐴𝐵𝑀 (𝑡) = 𝜎 𝑤𝑎𝑙𝑙 𝐴𝐵𝑀 (𝑡) -𝜎 0 𝐴𝐵𝑀 * (1 + 𝜒) (11) 
∆𝜎 𝑤𝑎𝑙𝑙 𝐴𝐵𝑀 (𝑡) is the difference between the wall tension recorded at time step t and the baseline 𝜎 0 𝐴𝐵𝑀 . We used the superscript notation "ABM" in order to distinguish the parameters of the ABM from the DS.

In order to provide a global increase of wall tension, the initial value has been perturbed by a constant  = -0.005, i.e. a decrease of 0.5%. 𝜎 ̅ = 40 is a normalization constant. Finally 4 is the constant parameter driving the mitosis in the medial layer and it was set to 0.3.

The output of the system has been evaluated on the mean of 15 simulations, the same as for the intimal hyperplasia case.

Cross validation

We based the cross validation between the DS and the ABM on 3 points:

1. Calibration of DS on the output of ABM run in intimal hyperplasia regime, i.e. evaluation of 1 from ABM output. Generally, a model calibration is the task of adjusting an already existing model to a reference system, and specifically referring to our case, we want to adjust the DS to the ABM output, by retrieving the value of the unknown variable of the DS.

We set both models to activate at the same time SMC mitosis and ECM degradation in the medial layer. The output of the models that we tracked was the medial area. This resulted to be the most suitable variable to appreciate a competitive trend; the SMC mitosis enhances the thickness of the tunica media, while the ECM degradation prevents it.

Regarding the ABM, the initial conditions are the same already used to generate the intimal hyperplasia and the outward remodeling. The SMC mitosis in medial layer has already been studied by simulating the outward remodeling. The setup used to generate the competitive trend didn't change (( 5) and ( 6)).

With reference to Table 3.1, the density of probability of ECM degradation in the medial layer writes

𝑃 𝑑𝑒𝑔 𝑚𝑒𝑑 = 𝛼 2 (1 + 𝛼 6 ∆𝜎 𝑤𝑎𝑙𝑙 𝐴𝐵𝑀 (𝑡) 𝜎 ̅ ) (13) 
𝜎 ̅ = 200 and 𝛼 6 = 0.25 is the constant parameter driving the ECM degradation.

On the other hand, the DS was set up with following parameters:

 𝛾 3 = -0.07; constant parameter 𝛾 3 drives the ECM deposition in medial layer. Obviously a negative value indicates a degradation of ECM, instead of a deposition.

 𝛾 4 = 0.05; constant parameter 𝛾 4 drives the SMC mitosis in medial layer.

Generalization of the ABM

As mentioned in section 2, the DS is based on the assumption of circumferential symmetry, and for calibration purposes, the ABM has been used with the same assumption.

With the thickening of the intima we assist to an invasion of the lumen by the intima itself. With a circumferential symmetry assumption, this invasion is symmetric as well. We used the circumferential symmetry condition in order to keep the structure of the graft intact. Indeed, we were more interested in the time dependent evolution of targeted events than in the specific SMC/ECM distribution within the various graft compartments.

Although, by abating this hypothesis, we were able to study the occlusion of the lumen in a way closer to the physiological realty. More important, in this way we were able to add a certain degree of accuracy to our analysis using the ABM, something that was not possible to achieve with the DS.

Results and Discussions

Using the ABM, we retrieved the known patterns of intimal hyperplasia and outward remodeling, and depending on the event, we tracked the temporal evolution of different biological variables. However, we saw in the previous section how we need to establish first the basic solution, in order to replicate the condition of the healthy vein at the implantation before being able to simulate the surgical follow up.

Basic Solution generation

The aim of the generation of a basic solution is to stabilize the system around an equilibrium point that does not differ too much from the initialization of the system itself.

To verify it, we tracked the number of SMCs and ECMs in the wall for a time t = 2 months, starting from t = 0 and recording the status of the variables every month. A separate consideration has to be done for the SMC activity within the 2 layers of the wall: it is clear how an accentuated division of SMC has led the intima to grow, augmenting sensibly its size. While this event was to be expected, it looks like an accentuated cellular activity (SMC division again) has been recorded in the tunica media too, even without apparently modify the thickness of the media itself.

This can be due either to the stochastic nature of the simulation ( All the trends have been normalized on their initial values and the post-surgical follow up time is 6 months as mentioned when we described the principles of the ABM. of them present an initial exponential growth (or a decrease, depending on the variable studied), followed by an inflection point, and finally by a plateau, that represents the new equilibrium of the system after having recovered the perturbation.

Both figures well represent the feedback mechanism governing the whole system. At the time of implant, ∆𝜏 𝐴𝐵𝑀 (𝑡) has its maximum value and it drives the SMC division in intimal layer to make the intimal area grow exponentially. This is well appreciable in Fig 3 .7b between month 0 and month 4. In parallel, as the intima thickens, it starts to invade the lumen, diminishing the lumen area. This is clear from Fig 3.7a between month 0 and month 4. However, the encroachment of the lumen causes a progressive shear stress reduce, which in turn causes a reduce of ∆𝜏 𝐴𝐵𝑀 (𝑡) .

Consequently, the rate of SMC division starts to slow down and the thickening of the intima diminishes as well. The latter is clearly appreciable between months 4 and 5. The plateau is reached once the difference of shear stress has been completely saturated, SMC division ceases, and the solution stabilizes to an equilibrium point at month 6.

Finally, we can see from 

Outward remodeling pattern formation

The setup of the parameters to generate the outward remodeling is also listed in Table 3.2.

Specifically, the parameter regulating the SMC division in medial layer (𝛼 4 ) was set to 0.3 and𝜒 = -0.005, that corresponds to an increase in wall tension of the 0.5% of its initial value. The expected outcome of the outward remodeling is well represented. Comparing the 2 different stages, it appears how an augmented SMC activity in the medial layer brought the media to thicken, while no significant SMC activity is appreciable in the intimal layer, which maintain the thickness recorded at the basic solution state.

It has to be noticed that the relative variation of medial area is much lower than the relative intimal area variation recorded in the intimal hyperplasia regime. This is only due to the limited grid size chosen for the simulation. Indeed, acting on a grid of 121x121 size, an Intel(R) Xeon(R) CPU E3-1270 V2 @ 3.50GHz machine takes 23 hours in order to simulate 8 months of, comprehensive of 2 months of basic solution generation and 6 months of post-surgical follow up.

With a bigger grid, the computational time is forecasted to grow accordingly. It is interesting to appreciate how the feedback mechanism is visible even in outward remodeling and almost within the same time frame recorded in intimal hyperplasia regime. Also, the three phases appreciated in intimal hyperplasia are still well appreciable even for medial hyperplasia: an initial exponential growth, followed by an inflection point, and finally by the plateau. The driving force of the outward remodeling is the difference of wall tension, 𝜎 𝑤𝑎𝑙𝑙 𝐴𝐵𝑀 (𝑡), which is maximum at the time of implantation. Tensile forces enhance division of SMC in the medial layer, which causes the medial area to increase exponentially. This is visible from month 0 and month 4 from The increase of medial area decreases the current wall tension, reducing the driving force 𝜎 𝑤𝑎𝑙𝑙 𝐴𝐵𝑀 (𝑡). As for the intimal hyperplasia, the system starts to stabilize around month 4, until the difference of wall tension is totally saturated (month 6). Here SMC division arrests, medial and graft area stops growing and the system reaches equilibrium.

Cross validation and calibration Calibration

The principle of the calibration of the DS on the output of the ABM was detailed in previous sections and summarized in Table 3.2. The ABM was initially perturbed by an increment of wall tension of the 0.5% of its basic solution condition value in order to activate the cellular events that depend from wall tensile forces, and the parameters leading the SMC mitosis and the ECM degradation in medial layer were respectively triggered to the value of 0.3 and 0.25. On the other hand, we set the correspondent parameters of the DS to be -0.07 for the ECM degradation (the negative sign simply reverses the effect of ECM deposition) and 0.05 for the SMC mitosis.

In both the analysis we took as reference the average of 15 independent simulations run with the ABM. Specifically, the lumen area and the graft area are the most suitable variable to calibrate the DS on the ABM output respectively in intimal hyperplasia and in outward remodeling regime. For each of them, the outputs were normalized on their initial values. The goal of the calibration was to retrieve the value of the parameters 𝛾 1 and 𝛾 4 , respectively for SMC division in intima and media, able to drive the DS to produce an output reasonably close to the one given by the ABM.

From our analysis 𝛾 1 = 2.82 and 𝛾 4 = 3.14.

We evaluated the goodness of the calibration by calculating the relative percentile error with the Percentile Root Mean Square (PRMS) deviation: A wide consideration out of Fig 3 .11 allows us to deeply study the nature of the oscillations recorded. In the early stage of vascular adaptation, the ECM degradation prevails on the rates of SMC division, where the negative slope of ECM dynamic is higher than the positive slope of the SMC dynamic, and leads to a decrease in the medial area (Fig 3 .11c). After 1 month, the ECM degradation has saturated its effect. The sign of the slope inverts, turning positive, while the SMC dynamic curve maintains its positive slope. Now both of the cellular events enhance the medial area growth at the same time. After an additional month, the medial area has returned to its initial size. The remaining trend is rather similar to the one appreciated for the outward remodeling simulation. The increase in medial area causes a decrease of wall tension, which saturates the driving forces of the remodeling. A plateau is again reached at the 5 th month of follow up. 

𝑃𝑅𝑀𝑆 = √ 1 𝑁 ∑(𝑥 𝑖 𝐷𝑆 -𝑥 𝑖 𝐴𝐵𝑀 ) 2 𝑁 𝑖=1 * 100 (14) 

Details on the endothelium dynamic

Finally, we focused on the encroachment of the lumen during hyperplasia of the intima, by adding a certain level of detail to the process and by getting closer to the experimental observations on the vascular endothelium structure at the harvesting of the vein graft.

The vascular endothelium is a thin layer that serves as functional barrel between the circulating blood and the vessel wall. Its integrity is essential for the maintenance of the homeostasis, and consequently it is directly implicated in the development of vascular pathologies.

Indeed, according with the work of Cox JL et al. [23], in the early stages of adaptation the leading mechanism is graft thrombosis, which includes disruption of the endothelium. This results to be one of the key events for the enhancement of intimal hyperplasia. According with Nick Roubos et al. [7], it is the endothelial loss that denudes the surface of intima, causing the deposition of fibrin and platelets and increasing the intimal hyperplasia rate.

This thesis was confirmed in the work of Davies MG et al. [24]. Experiments conducted on rabbit models showed how, in order not to experience an accentuated neointimal hyperplasia, a post-surgical therapy should be aimed to mitigate the endothelial injury and its consequences during the first 5 days following the implantation. Other works confirmed the importance to preserve the endothelial integrity not to incur in an uncontrolled cellular growth within the intimal layer, such as the one of LoGerfo et al. [25], where it is shown that endothelial morphology is best preserved when the vein grafts were pretreated with papaverine before excision, thesis consolidated in a later work of the same team [26]. It is interesting to notice how they proved that veins, voluntarily injured to stimulate hyperplasia, showed an accentuated loss of endothelial integrity that can be certainly considered as one of the main trigger events of the restenosis phenomenon.

To model this, we run the ABM in intimal hyperplasia regime neglecting the hypothesis of circumferential symmetry. Again 2 months of basic solution generation were followed by 6 months of hyperplasia. We compared experimental evidences of vein graft narrowing with the results of our computation. Our goal was to modify the original model in order to obtain an output as close as possible to the physiological realty. Our hypothesis is that some evidences are only retrievable with the usage of the ABM, while they do not result from the DS. Even though both the simulations show an evident invasion of the lumen by the intimal layer, the irregular injury of the endothelium appreciated from histologic analysis in the works previously cited [24][25][26] is retrieved only in Fig 3 .12b, that so represents a closer similarity to the experimental evidences. Therefore, through a very simple modification of our ABM, we were able to finely simulate one of the trigger events of the restenosis, making our model closer to the physiological vascularization of the graft. 

Conclusions

With the extensive usage of an ABM we were able to replicate the clinical evidences of the two main events leading to the coronary vein graft restenosis phenomenon.

With our cross validation we proved that a simplified model, the Dynamical System, can be easily calibrated in order to be patient specific and in order to give an output close enough to the realty. In this way it will better serve as a powerful predictive tool for the clinic.

We also proved to be able to get closer to the physiological reality with the ABM by abandoning the initial hypothesis of circumferential symmetry of the graft. As shown in the previous section, one of the main cause of the accentuated is the loss of regularity in the endothelium structure, a feature that we were able to finely replicate with a simple modification of our model.

As future developments, we will add an additional level of complexity to the ABM by better discerning the entity of the elements of the wall. So far, the wall has been made either by SMC or ECM. We are interested in how the presence of collagen and elastin modifies the dynamic of the system and how it influences the progression of the restenosis.

The impact of macrophage activity will be considered in future developments of the ABM. The intrinsic SMC and ECM activities will be weighted by a time factor in order to simulate the augmentation of biologic activity occurring right after the injury caused by surgical operation [5].

In real-life application of cellular automata, the traditional definition is considered too restrictive, and there have been many relaxations [20,27]. In our specific case a future development will consist in abating the hypothesis of hexagonal grid initially assumed and in choosing a more suitable unstructured representation.

Haudenschild CC (1981). An improved technique for preservation of endothelial morphology in vein grafts. Surgery 2001; 90(6): 1015-24 to fully understand this process, we need a versatile computational model able to capture the feedback interaction loop between tissue described at the cellular level and mechanical environmental conditions. An example of this concept is the development of a model that can describe the balance between intimal hyperplasia and outward remodeling. The current study generalizes our previous work based on an Agent Based Model (ABM) that lays on a hexagonal structured grid. This new hybrid method allows a more realistic simulation of cell biology and a more realistic description of the properties of the membranes separating the various layers of the vein.

Our implementation is modular and it can be adaptively fine-tuned as a function of the degree of complexity on accessible biological data.

Clinical observations show that such failures are difficult to predict. Our hypothesis is that the causes of restenosis are multifactorial and multiscale, and accordingly it cannot be resumed into some basic explanation related to local shear stress conditions alteration only.

We refer to [9] for a recent view on multiscale modeling of cardiovascular system. As illustrated in Fig 3 .13, tissue adaptation is modulated by gene expression that are triggered by mechanical stress. As the tissue morphology changes, the mechanical conditions evolve and may result into further tissue remodeling. This phenomenon is extremely complex and cannot be addressed with an approach that separates the physical and biological component of the disease.

The scheme of 
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With the new computational model presented in this work, our goal is to provide a virtual experimental framework that can be used to test new hypothesis and rank the influence of many factors that may promote restenosis. Our team has done extensive work on vascular adaptation, ranging from clinical data to molecular analysis. The new model introduced here is focused on bridging the scales between the mechanical and the cellular level with a computational method that is relatively simple to be implemented. However, despite its simplicity, our new model also takes in account important biological elements such as cell motility, cell-cell interactions and dynamics of the membranes, which would be very difficult to be described with standard discrete agent based method on fixed grid.

In this paper, we present a proof of concept that will be restricted to two dimensional cross sections of a vein graft. Histology data are available in the format of two space dimensional slices, and our main goal is to match some of these available biological data. However, there are no major technical obstacles to extend our simulation to a full three dimensional structure, except that it would require a fairly large investment in software development.

In this paper the new method is presented in the next section, where it will be shown how tissue plasticity and remodeling can be handled in an optimal way with two complementary methods. Some numerical results on intimal hyperplasia, chosen as a descriptive event of vascular adaptation mechanisms, will be provide in the results section, and finally a discussion about the new methodology will be provided followed by the conclusions.

Concept and Methods

The domain of simulation is decomposed into four sub-domains that are lumen, intima, media, and external surrounding tissue. As shown in Fig 3 .15, the intima is separated from the media by a so-called Internal Elastic Lamina (IEL).

The numerical methods can be decomposed into three modules:  Mechanical Model (MM) that computes the mechanical quantities of interest such as blood flow velocity in the lumen, strain energy inside the wall, shear stress at the wall, trans-mural pressure as well as diffusion growth factors in the wall.

 Tissue Plasticity (TP) that counts for SMC mitosis/apoptosis and ECM deposition/degeneration by SMC.

 Tissue Remodeling (TR) that counts for cell migration and matrix reorganization. This step is indeed pivotal to get the inward/outward remodeling right. The logic of our approach is that CM is best described by the well-known PDEs of continuous mechanic, TP by an ABM that describes individual cells behavior, and TR by particles moving in a highly viscous incompressible media. Cells crawl through the extra cellular material and motion is computed in a continuum space.

The hybrid representation encompasses multiple scale in time and in space as described in Table 3.3. 

Mechanical Model (MM)

The flow in the lumen is described as a steady incompressible flow with a flux that remains constant despite the inward or outward remodeling of the lumen. The idea is that the vascular system has a global controlled mechanism to maintain blood flow delivery [11]. This mechanism is responsible for the fact that often stenosis are diagnosed only when the occlusion of the vessel is so severe that this control failed. Our simulation is setup to stop when stenosis reaches a 50% rate of occlusion. We used the standard set of equations for a fully developed duct flow assuming a no slip condition at the wall [12]. For a given lumen wall, we computed the flow distribution and the wall shear stress at the wall, 𝜏 𝑤𝑎𝑙𝑙 . This flow distribution gets updated when the lumen geometry changes due to the TP and TR phases described below. We used a simple scheme such as if

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝜕Ω 𝑙𝑢𝑚𝑒𝑛 𝑛𝑒𝑤 , 𝜕Ω 𝑙𝑢𝑚𝑒𝑛 𝑜𝑙𝑑 ) > 𝑡𝑜𝑙 (1)
then we updated the flow. Here the distance is the Euclidian distance between two consecutive positions in time of the lumen and tol is of the order of 10 -4 m, i.e. a SMC diameter. It takes indeed a number of cell divisions before this test gets passed. In general, the flow must be updated only every few hours, which somehow justifies why a steady flow might be a good approximation.

The wall deformation is computed either through a thick cylinder approximation that can be computed analytically or through a Neo-Hookean hyperelastic model, depending if the wall shape is close to a cylinder or if it is not. In the second case, we used the finite element FEBio [13] to solve this model. FEBio is specifically focused on solving nonlinear large deformation problems in bio-solid mechanics [14]. We refer to [10] and [15] for a precise description of this tissue mechanical model. The displacement of the wall is relatively negligible, but the spatial distribution of the strain energy in the wall, denoted with σ, will be influencing SMCs metabolism in the media.

Finally we computed the diffusion of a generic growth factor 𝐺(𝜏) inside the wall with a standard diffusion problem as follows:

𝜕𝐺 𝜕𝑡 = ∆𝐺 𝑖𝑛 Ω, 𝐺 |𝜕Ω 𝑙𝑢𝑚𝑒𝑛 = 𝐹(𝜏 𝑤𝑎𝑙𝑙 ), 𝜕𝐺 𝜕𝑛 |𝜕Ω = 0 (2)
The underlining biological assumption is that a generic growth factor of SMC division is triggered at the wall by shear stress value. To ensure a simple implementation, both the flow solver and the diffusion operator were implemented with finite differences on a regular Cartesian grids with space step slightly less than a SMC diameter. Dirichlet boundary conditions at the lumen wall are imposed by a L2 penalty method as in [16]. We had to couple the mechanical environment of the tissue to the description of the biological process itself. As an example, SMC division/apoptosis is sensitive to local mechanical stresses and tissue wall thickening changes in return those mechanical variables.

Tissue Plasticity (TP)

A probabilistic model of SMC division as well as apoptosis, and ECM either produced or degenerated by SMCs is provided in this section. We provided an axiomatic description of this set of probabilistic rules that described how these cellular events depend on local concentrations of growth factors or strain energy. The fundamental principle is that we started from a so-called basic solution where, under normal environmental conditions, the system results to be stable, i.e. the rate of SMC division equals the rate of SMC apoptosis, and ECM mass balance remains averagely constant.

We will use a 12 hours cycle to update SMC dynamic and a 2 hours cycle to update ECM dynamic.

Vascular adaptation starts from this stable solution that represents the state of a healthy vein before implantation, and all the probability rules will be expressed as a function of a deviation from an "ideal" target on shear stress and transmural pressure.

According to a number of experimental results, the dynamic of SMC in intima is dominated by the shear stress effect relayed by the generic growth factor, while SMC in media are most sensitive to local strain energy variation [17].

The complete set of rules is summarized in Table 3.4 and this model of tissue plasticity is essentially the same as the one detailed in [15].

In the works conducted from our team, an ABM that can track cell proliferation and matrix mass balance has been used [18]. In previous work, we represented each individual SMC and each chunk of ECM as a single site of a hexagonal grid. Cell migration and reorganization of the matrix are constrained by the gird itself. In our previous works, we also defined a concept of shortest path that minimizes the amount of energy needed to reorganize the matrix in response to changes in cells population. We used a simple principle to minimize such energy spent by the cells during this process.

Tissue Remodeling (TR)

In our new model, SMCs are described as particle that crawl in a highly viscous flow representing the matrix. For the cell-cell interaction and cell division, we assumed that for each particle, one can associate a specific volume to the cell, imagined as a simple disc of radius r. The fact that SMC can generate or degenerate ECM gives a source or respectively a sink term in the Navier-Stokes equation used to approximate the viscous flow. each layer of tissue, i.e.

intima and media, are bounded by an elastic membrane, as previously shown in Fig 3 .15. All these elements suggest that using the Immersed Boundary (IB) technique originally developed by Peskin [5] to simulate the remodeling is an elegant solution.

The two phases of tissue remodeling will be described below, which are:

 The IB algorithm and its volume correction to take into account the dynamic of SMCs  The algorithm that constructs the trajectories of SMC motion One important outcome is that inward versus outward remodeling at each time step will be chosen to minimize the mechanical energy of the wall. Let us recall the IBM formulation and present the spatial and temporal discretization that we have chosen. The primitive variables are V and P, respectively the velocity and the pressure of the fluid, which physical parameters are the uniform viscosity 𝜇 and the uniform density 𝜌. The fluid domain Ω = (0,1) 2 ⊂ ℛ 2 is a square described by the Cartesian coordinate vector x. We will denote Γ ⊂ Ω a generic immersed elastic boundary, which curvilinear dimension is m (m ≤ d). X is the Lagrangian position vector of Γ, expressed in the Cartesian referential. f is projected onto Ω to get the Eulerian vector field F, which is itself the fluid force applied by the immersed elastic boundary.

For simplicity, we restricted the presentation to one immersed elastic boundary. However, in order to fit the anatomy of the vein graft (Fig 3 .15), we used three separate immersed boundaries: one for the lumen wall, 𝛤 𝑤𝑎𝑙𝑙 , one for the IEL, 𝛤 𝐼𝐸𝐿 , and one for the External Elastic Lamina (EEL),

𝛤 𝐸𝐸𝐿 .
If we denote 𝑠 ∈ (0,1) 𝑚 as the curvilinear coordinates of any point along Γ, and 𝑡 ∈ [0, 𝑡 𝑚𝑎𝑥 ]

as the time variable, we can summarize the different mappings as follows:

𝑉: (𝑥, 𝑡) ∈ Ω x [0, 𝑡 𝑚𝑎𝑥 ] → ℛ 2 𝑃: (𝑥, 𝑡) ∈ Ω x [0, 𝑡 𝑚𝑎𝑥 ] → ℛ 𝑋: (𝑠, 𝑡) ∈ (0,1) 𝑚 x [0, 𝑡 𝑚𝑎𝑥 ] → Ω 𝑓: (𝑠, 𝑡) ∈ (0,1) 𝑚 x [0, 𝑡 𝑚𝑎𝑥 ] → ℛ 2 𝐹(𝑥, 𝑡) ∈ Ω x [0, 𝑡 𝑚𝑎𝑥 ] → ℛ 2
A complete and accurate introduction to the IB method can be found in [19]. A brief description of the fluid/elastic interface model unified into a set of coupled PDEs is provided here. The incompressible Navier-Stokes system writes:

𝜌 [ 𝜕𝑉 𝜕𝑡 + (𝑉. ∇)𝑉] = -∇𝑃 + 𝜇∆𝑉 + 𝐹 (3) 
∇. 𝑉 = 0 (4)

The IB method requires the extrapolation of the Lagrangian vector f into the Eulerian vector field F from the RHS of (3). In the IBM of Peskin, we used a distribution of Dirac delta functions 

𝛿
The IBs obey to a linear elastic model. We used the Hooke's law of elasticity, for which the tension 𝒯of the immersed boundary is a linear function of the strain. For a one-dimensional boundary, we have:

𝒯(𝑠, 𝑡) = 𝜎 | 𝜕𝑋(𝑠, 𝑡) 𝜕𝑠 | ( 7 
)
where 𝜎 is the boundary elasticity coefficient. The local elastic density force f is defined as:

𝑓(𝑠, 𝑡) = 𝜕(𝒯(𝑠, 𝑡)𝜏(𝑠, 𝑡)) 𝜕𝑠 , 𝜏(𝑠, 𝑡) = 𝜕𝑋(𝑠, 𝑡)/𝜕𝑠 |𝜕𝑋(𝑠, 𝑡)/𝜕𝑠| . ( 8 
)
𝜏 is the vector tangent to 𝒯. Finally, by replacing ( 7) into ( 8), we get:

𝑓(𝑠, 𝑡) = 𝜎 𝜕 2 𝑋(𝑠, 𝑡) 𝜕𝑠 2 (9) 
It is to be noticed the fact that this tension is never negative. In addition, many other physical settings are equally feasible. We referred to [20] for a review of them.

The practical implementation of the IBM of Peskin offers several different possibilities regarding the choice of the temporal scheme, the space discretization, the discrete approximation of the Dirac function, and other settings. It has to be noticed the need of a compromise between the stability of the scheme that suffers from the sharp numerical interface in the pressure field, theoretically continuous, and the accuracy required by this numerical feature. We referred to the thesis of Francois Pacull [9] and its bibliography for an extensive comparison between possible implementations against standard benchmark problems such as the oscillation/relaxation of a stretched elastic "bubble" toward its equilibrium, or the motion of an elastic "bubble" immersed in a cavity flow.

We used then a standard projection scheme for the Navier Stokes equations discretized with finite differences on a staggered grid. The momentum equation was discretized with central second order finite differences for the diffusion term and a method of characteristic for the convective term.

The time stepping is semi-implicit and first order in time to compute a prediction of the velocity field V * at time t n+1 .

The correction step to ensure mass conservation uses the Hodge decomposition that write as it follows:

𝑉 * = 𝑉 𝑛+1 + ∆𝑡 𝜌 ∇Π (10) 
∇. 𝑉 𝑛+1 = 0, 𝑉 |𝜕Ω 𝑛+1 = 0 (11) 
The divergence of ( 10) leads to the pressure correction solution of the Poisson problem:

ΔΠ = 𝜌 Δ𝑡 ∇. 𝑉 * (12) 
V n+1 is the divergence-free exact projection of V * and the corresponding projection operator is defined by:

[𝐼 -∇∆ -1 ∇. ] (13) 
We modified the right hand side term of (11) to take in account the local source or sink of mass corresponding to SMC mitosis or ECM production, respectively SMC apoptosis or ECM degeneration.

We advanced this IB flow solver for few time steps, and the final step of this tissue remodeling will be taken as initial condition for the next cycle of the ABM cycle of tissue plasticity described in the previous section. More precisely, the time step of the ABM is one hour, and within it tissue remodeling is achieved by time marching the immersed boundary algorithm for a period of time δt that corresponds supposedly to a relaxation time of the tissue. δt is an unknown parameter of the model, for which the larger δt is, the more cylindrical we can expect the vein graft to be.

The second phase of tissue remodeling consists in the computing of the SMC motility. The algorithm to compute the trajectories is split in two steps.

First, SMCs move passively and follows the media according to the local velocity field of the highly viscous flow computed by the immersed boundary method. The scheme followed is the same of the one applied to the discrete point of the immersed boundary.

Second, SMCs move actively too and some examples are reported below:

 SMCs interact each other. This interaction can be described with a Lennard-Jones potential. Under these circumstances, once a cell has divided (mitosis), it can remain stick to its daughter or it can maintain a distance that is about the diameter of the cell.

The two parameters of the potential might be cell size dependent.

 Further motion of SMCs depends additionally from a gradient of molecule density that are the result of a system that considers reaction, diffusion and convection. In order to describe this feature, we used a generic growth factor, defined with (2), and we introduced a set of parameters that specify how fast SMCs follow this gradient.

 Cell motility has a random component that participates to the diffusion of SMCs through the tissue.

 SMCs may infiltrate areas that are free of cells to preserve tissue integrity and to maintain a local balance between SMC and ECM distribution.

Our new method allows us to implement the features described that are known to play a significant role in biology, and to test many combinations of those.

Finally, we observed that without modifications, this algorithm will always promote outward remodeling since the medium in the lumen is incompressible. A positive source or a negative source term at the center of the lumen needs to be added in the correction step as we did for SMC and ECM production in order to reduce or augment the lumen area. This source/sink term equals the mass balance of SMC and ECM after each cycle of AMB. The criteria to choose the sign of this new source term is simple: we computed the mechanical potential energy of the wall in the mechanical model that predicts its deformation and we chose the option that minimize that energy.

Few additional observations are retrievable to make the model even closer to the common knowledge of the biology of vein graft:

 Macrophage in the wall can be treated with the same particle mathematical framework, but with different parameters concerning size, motility (or drag forces), etc. Their access point is either the lumen or the vasa vasorum.

 Thanks to the method of Peskin, the IEL has a certain porosity that allows SMC to go through it according to the local mechanical stress of the membrane.

 The volume of the daughter cell post mitosis may ramp up in time to reach an average value. These cells' characteristics are simplified by the potential representation of the cell-cell interaction, i.e. one parameter for the diameter and one for the strength of interaction.

The level of detail achievable with the model considering these additional elements depends on what can be measured or quantified from histology data or anyway from an experimental source. Tracking macrophage or measuring cells dimensions are indeed a difficult task from an experimental point of view.

Finally, because the flow is highly viscous and the membrane has relatively low tension in the immersed boundary calculation, most of the tissue related to numerical stability and mass conservation were not encountered. There was no need to correct the scheme to preserve mass as in [21] or to use a nonlinear Newton scheme to fully implicit the time stepping.

Preliminary Results and Discussions

The preliminary results shown in this section describe the phenomenon of the graft restenosis as result of the combined action of intimal hyperplasia (or inward remodeling) and medial hyperplasia (or outward remodeling).

The model has been set such as a particular emphasis has been put on the phenomenon of intimal hyperplasia, which is chosen here as the most representative one for the restenosis.

As mentioned in the previous section, the model is driven by shear and tensile forces (mainly respectively within the intima and the media) and it evolves from an initial condition that simulates the healthy vein at the time of implant toward a new equilibrium point, which can either represents a successful follow-up or a critical failure (restenosis indeed). 

Graft at implantation Hyperplasia of the intima

This is due to the fact that intima has invaded the lumen by favoring an inward remodeling to an outward remodeling. This consideration is also appreciable from the fact that the radius of the diameter has not significantly changed from its initial condition.

The prevalence of the inward remodeling on the outward remodeling is also retrievable from the study of Fig 3 .17 that shows the temporal dynamic of three biological measures of interest for our analysis: lumen area, intimal area, and medial area. The diminishing trend of lumen area confirms the occurrence of restenosis for the current simulation. In addition, the intrinsic increasing in intimal area is recorded to be bigger than the intrinsic growth in medial area and this can be considered as a clear sign of the prevalence of inward remodeling on the outward remodeling.

Also, an analysis restricted to the first month of post-surgical follow up can show how critically the intimal hyperplasia drives the whole arterialization process in the very first post-operation time. for a smaller time window, specifically a month. It is interesting to notice that not only the intrinsic variation of intimal area is bigger than the intrinsic variation of medial area, but also the difference between inward and outward remodeling is way more remarkable than the one appreciated in a follow up of 3 months, and specifically it is much bigger. This result perfectly corresponds to the well-known clinical evidence for which it is the hyperplasia of the intima, driven by shear forces within the tunica intima, which mostly drives the adaptation of the vein to the new environmental conditions the graft it is exposed to once it is used as an artery [8].

Finally, it is useful the show a comparison between the output of the ABM that has been developed in the first part of this chapter and the same output obtained with the new version of such model that has been described in this second part of chapter. whole site of the hexagonal grid. Furthermore, cells are now driven by specific stimuli like chemotaxis and differences of potential driven by growth factors, while in our previous formulation, the cellular dynamic was purely stochastic. The most interesting new contribute is certainly the level of detail that has been added to the membranes that separate the various layers. In the original ABM both IEL and EEL were passive boundaries (typically with a depth of a single ABM site) regulating by a radial symmetry assumption.

This hypothesis was clearly in contrast with the physiological reality that sees an active role played by the membranes which also do not necessarily respect the radial symmetry property.

Conclusions

The new version of the ABM of vascular adaptation adds several degrees of accuracy to the previous formulation and it has a bigger improving potential.

The preliminary results that have been presented prove how specific pattern formations corresponding to well-known biological events can be easily achievable and replicated with our model.

Several goals to be achieved are foreseen starting from this version of the vascular adaptation model. First, the pattern formations of medial hyperplasia, intimal hyperplasia combined with cell migration, and inside remodeling vs. outside remodeling will be studied and replicated. Second, 

Introduction

The future of the ABM is clearly the patient specificity. By adding several levels of complexity to the ABM (following what it has been already done in the second part of this chapter), the model is turned to be suitable to be an excellent predictor of the final outcome of the surgical procedure.

It is clear how a tool with such feature can drastically improve the current surgical technique and enhance the development of new therapies.

As previously seen, the ABM is driven by stochastic laws associated to specific cellular events like SMC proliferation, ECM deposition/degradation, etc. Each of these events concurs to the phenomenon of restenosis. In turn, each stochastic law is tuned by a constant parameter, which also drives the level of impact of the event on the restenosis.

To turn the ABM patient specific means to fit the model on the patient, and in order to do that, the right values of the constant parameters driving the cellular events of interest have to be precisely retrieved from the patient. Fig 3.20 shows how, for the purpose of this section, the ABM can be seen as a grey box. An input, the alteration of the graft's environmental conditions, triggers the ABM, regulated by a vector 𝛼 of constant parameters, to generate a certain output, which is represented by biological measures like lumen area, intimal and wall thickness, etc.

In a global view, the patient specificity is guaranteed by the identification of the system, i.e. by the retrieval of vector 𝛼 once the inputs are known and the outputs are measured. Consequently, the first big challenge is to identify the minimum set of biological measures to be retrieved from the patient in order to make the ABM patient specific.

This section wants to provide a method that helps to individuate the minimum set of biological measures that is necessary in order to be able to fit the ABM on the patient. In first approximation, the events of intimal thickness, uniquely generated by SMC mitosis within the intima, and wall remodeling, uniquely generated by SMC mitosis within the media, will be analyzed separately in this section in order to describe the general rational.

Methods

The main idea is to verify a priori if an identification of the model is feasible at mathematical level. This method can be seen as a filter to be posed before any kind of experiment on animal model. If the identification of the model is not accurate at mathematical level, it will not be accurate at experimental level either.

To do that, the ABM is used in two different ways. On one hand, it is set in order to generate a virtual dataset (like a virtual patient) that will serve as reference for the identification. For this purpose the value of 𝛼 is set to be constant and peculiar biological variables are measured as output of the model. Just to give a simplified idea, with reference to On the other hand, a set of virtual measures is generated by perturbing 𝛼 around its constant value used for the virtual dataset generation. Typically 𝛼 was perturbed in a range belonging to the interval [𝛼 -0.5 * 𝛼 ; 𝛼 + 0.5 * 𝛼], with a step of increment equal to 0.125* 𝛼. For each perturbation applied, the relative output 𝑀 1 𝑖 is measured with i=1,…,N, where N = number of perturbation applied to 𝛼. Given i, the single 𝑀 1 𝑖 is a measure of the same entity of 𝑆 1 obtained with a certain level of perturbation of 𝛼.

The comparison between the set of virtual measures 𝑀 1 𝑖 and the output of the virtual patient 𝑆 1 determines if the entity of the biological measure is suitable for the identification of the parameter.

The rational is to define an objective function that assumes the following form:

𝑓 𝑅𝑀𝑆 = √ 1 𝑁 ∑(𝑆 1 -𝑀 1 𝑖 ) 2 𝑁 𝑖=1 (1) 
Figure 3.21 -Virtual dataset and virtual measures generation with the ABM. The virtual dataset is generated by setting 𝛼 to be constant in order to measure 𝑆 1 as system's output. The virtual measures are generated by arbitrarily perturbing 𝛼 around the constant value used for the virtual dataset in order to obtain a set of measure 𝑀 1 𝑖 , where i=1,…,N with N = number of perturbations applied. Having set the ABM with a constant value of 𝛼 in order to generate the virtual patient, the value of 𝛼 to be retrieved is known a priori. The entity of the biological measure is considered as suitable for future model identification only if the objective function, described with (1), is minimized around the constant value assigned to 𝛼 in order to generate the virtual patient. The details for each event of interest are described in the correspondent section.

Intimal hyperplasia

For the current analysis, the hyperplasia of the intima is uniquely generated by the proliferation of SMC within the tunica intima triggered by a reduction of shear stress that is the consequence of switching from an arterial to a venous flow regime. represents the input of the ABM. In turn, the ABM is set in order to replicate the phenomenon of intimal hyperplasia. The parameter driving the proliferation of SMC within intima is 𝛼 3 and it assumes the value of 0.2 in order to simulate the desired event. The analysis was focused on verifying if the lumen area was a measure suitable for the model identification. For this reason lumen area is the output of the model. 

Input Agent Based Model

Output

Lumen area

According to the methodology introduced at the beginning of this section, 𝑆 1 is the lumen area evaluated as output of the ABM where 𝛼 3 = 0.2. Again, it has to be reminded that the ABM has a stochastic nature. For this reason one single simulation cannot be considered as a solid representation of the event of interest. Accordingly, 𝑆 1 was retrieved as the mean of 100 simulations run with the ABM.

The virtual measures were obtained by perturbing 𝛼 3 as previously described. As consequence 𝛼 3 𝜖 [0.1; 0.3] and 𝑀 1 𝑖 is the lumen area recorded with the ABM in correspondence of a perturbation i of 𝛼 3 .

The objective function, described with ( 1) is plotted against 𝛼 3 in order to verify if it is minimized in correspondence of 𝛼 3 = 0.2.

Wall remodeling

For the current analysis, the hyperplasia of the media is uniquely generated by the proliferation of SMC within the tunica media triggered by an increase of wall tension. 

Input Agent Based Model

Output

Medial area -

In this case, 𝑆 1 is the medial area evaluated as output of the ABM that has been again run for 100 times in order to ensure the robustness of the simulation.

The virtual measures were obtained by perturbing 𝛼 4 as previously described. 𝑀 1 𝑖 is the medial area recorded with the ABM in correspondence of a perturbation i of 𝛼 4 .

The objective function, described with (1) is plotted against 𝛼 4 in order to verify if it is minimized in correspondence of 𝛼 4 = 0.3. 

Results and Discussions

Mathematical modeling to predict therapies outcome

This final chapter will focus on the improvement of therapies administered to face the restenosis issue. Chapter 3 has described the phenomenon of vein grafts' restenosis following arterial occlusion bypass and it has focused on the development of mathematical models, with different level of complexity, that allow to deeply study the events that trigger the re-occlusion. As already mentioned, a deep understanding of the events that lead the restenosis is pivotal for the development of therapies aimed to avoid the restenosis and consequently to prolong the life expectancy of the graft, and this is true not only for vein grafts, but more in general for all Medicine.

In the past, many works have focused on improving the current bypass procedure in order to better the final outcome. The range of aspects covered is particularly wide, and it goes from surgical techniques, mainly focused on the graft configuration [1][2][3], on the site of distal anastomosis, and on the length of the graft used [4] to methods of harvesting the graft [5][6][7][8][9][10][11][12][13][14][15], and to the preservation of the graft itself [16][17][18].

Many other works tested the efficacy of post-surgical therapies (typically pharmacological), among which antiplatelet therapies [19][20][21][22][23], oral anticoagulants [24], lipid-lowering drugs [25][26][27],

and insulin sensitizing agents [28] have been largely studied.

However, despite years of research, the current statistics remain rather discouraging. As already seen in the previous chapter, a 40% rate of graft failure is recorded after 1 years following implantation [29,30]. For this reason, in this chapter we suggest that a molecular mechanism to control hyperplasia can be found and effectively influenced at the genetic level. This idea derives from the ascertained fact that changes in hemodynamics environment within blood vessel are perceived at the genomic level [31,32].

With our work, "Linking gene dynamics to vascular hyperplasiatoward a predictive model of vein graft adaptation" by Casarin S et al., we present a multiscale model that is able to replicate the phenomenon of the hyperplasia of the intima, to detail the impact of targeted genes on the cellular events that drive the hyperplasia, and finally to predict the outcome of various gene therapies that aim to limit the hyperplasia and to prolong the final lumen patency of the graft, improving in this way the post-surgical outcome.

The model was validated on experimental data and it offers the possibility to test the efficacy of several virtual gene therapies in silico creating a filter to be placed before the animal experimentation stage. The rationale is to offer a general mathematical construct that, being able to simulate the outcome of targeted gene therapies, can reduce the complexity from millions of possible gene alterations combinations to few hundred of potential ones.

Several therapies have been tested in silico and our analysis led to the evidence that, by controlling a specific group of genes, the patency of the lumen is improved and, at the same time, the structural changes that enhance the graft's arterialization are maintained.

In general, being able to systematically test gene therapies in advance, is a powerful tool that will allow us to narrow the broad spectrum of potential therapies, reducing time and costs of research aimed to prolong the long-term patency of vein graft bypasses.

the system to shift the adaptation to a more beneficial phenotype, where the hyperplastic response is mitigated and the risk of thrombosis reduced. Utilizing our previously published rabbit vein graft genomic data, where grafts were harvested at time points ranging from 2 hours to 28 days and under differential flow conditions, and a customized clustering algorithm, five gene clusters that differentiated the low flow (i.e. pro-hyperplastic) from high flow (i.e. anti-hyperplastic) response were identified. The current analysis advances these general associations to create of a model that identifies those genes sets most likely be of therapeutic benefit. Using this approach,

we examine the range of potential opportunities for intervention via gene cluster over-expression or inhibition, delivered in isolation or combination, at the time of vein graft implantation.

Introduction

While endovascular interventions via angioplasty and/or stent placement have defined roles in the treatment of arterial occlusive pathologies, bypass grafting remains the most effective therapy to re-establish flow in the setting of advanced coronary and peripheral lesions [1][2][3][4].

Providing a pathway to shunt blood around these segmental regions of high-grade stenosis or occlusion, the long-term success of these interventions is implicitly linked to the durability of these conduits to provide an unobstructed pathway for flow. While a variety of biomaterials has been developed for this purpose, autologous vein remains the conduit of choice for these procedures.

Although conceptually the ideal conduit, failure rates remains unacceptably high, approaching 40% within one year following implantation [5,6].

Implicit in the creation of a vein graft is the transposition of this conduit from a low pressure/continuous flow regime to a high pressure/pulsatile flow environment. This initiates a series of adaptation and repair mechanisms that are critical in maintaining structural stability in the face of these more extreme hemodynamics [4,7,8]. While this arterialization process, characterized by thickening of the wall and expansion of the lumen, provides a normalization of the biomechanical forces to a more physiologic level, the biologic processes that regulate this adaptation can overcompensate, leading to an aggressive hyperplastic response and narrowing of the lumen. This maladaptive phenotype, and the resulting stenotic lesion, results in a significant reduction in blood flow through the graft and failure secondary to in situ thrombosis [9][10][11][12][13].

Attempts to develop targeted pharmacologic therapies to mitigate this aggressive hyperplastic response and improve vein graft outcomes have been unsuccessful [5,6]. Our group and others [14][15][16] have postulated that the redundancy among the pathways that regulate this maladaptive response undermines the success of a "single-bulleted" approach, and multiple targeted therapies at critical stages in the disease process are required for a successful outcome. The challenge remains to identify those cornerstone elements that can be manipulated to alter the trajectory of this response.

Investigations has previously shown that changes in the hemodynamics environment within blood vessel are perceived at the genomic level [17,18]. Levering this concept, the current manuscript details the methodology to utilize high-throughput genomic data to create a multiscale model of vein graft adaptation. The rationale is to offer a general mathematical construct that can simulate the outcome of targeted gene therapies and reduce the complexity from millions of possible combinations to few hundred of potential ones. Within the proposed framework, unique temporal patterns of gene expression are quantitatively linked to their effect on cell and matrix kinetics, and ultimate their impact on graft architecture. The resulting predictive model provides a tool for the in silico exploration of the connection between gene regulatory networks and the adaptive response of grafts, identifying key gene sets that can be manipulated to mitigate the maladaptive remodeling response following vein graft implantation.

Materials and Methods

Multiscale model

In order to understand the complex interplay of all the elements influencing the vascularization of the graft, we chose a system biology approach that puts an emphasis on understanding the intervening components and on providing predictive models to anticipate the final outcome [19,20]. Fundamental to the system biology approach is the understanding of the existence of a critical link between the system, in our case the vein graft, and the environment. Perturbations of the environment influence the structure and the function of the system, which impacts the environment itself creating a feedback loop between system and environment.

This interaction may lead to a relative homeostasis, where variations in the environment and in the system converge to a stable phenotype, but also it may result in a dynamic instability if one side of the loop is not properly balanced by the other. Early vein graft remodeling is the perfect example of how the balance between system and environment may drive the surgical outcome toward a stable phenotype, or toward a critical failure. The current model is based on the concept of a direct link between hemodynamics and transcriptional regulation as illustrated in Our multiscale model is made up of 2 distinct parts: i) a subset of a Dynamical System (DS) already developed in our previous work [21], and ii) a gene Cluster Network (CN). The first is a heuristic model derived from a conceptual diagram based on experimental observation, with the feature to be able to predict the final outcome of the vein graft arterialization, while the second is implemented as a system of Ordinary Differential Equations (ODE) that replicates both the expression and the level of mutual interconnectedness of targeted cluster of genes. The two parts are combined to form a hybrid model able to cover both the macro and the micro scale aspect of hyperplasia. 

Experimental setup

Our multiscale model was calibrated at various levels through non-linear fitting on experimental data, which were retrieved from a rabbit vein graft model, which included shear-modulation in order to examine the influence of hemodynamics on graft remodeling [22][23][24][25]. Specifically, jugular veins were inserted into both the left and right common carotid arteries of the rabbit and coupled with unilateral ligation of the internal carotid. This causes a 90% reduction in flow on the ligated vein graft side, which enhances the hyperplasic response and narrows the lumen [26][27][28][29][30].

Grafts were harvested at multiple time points, ranging from 2 hours to 28 days, to facilitate microarray, cell and matrix kinetic, and graft morphology measurements that are needed to calibrate the model.

All data needed for the calibration and the validation of the multiscale model were retrieved from our rabbit model and they will be presented in detail at the beginning of each corresponding section.

Dynamical System (DS)

Hyperplasia is the dominant event in the first month of graft's adaptation [4,7] and it is primarily driven by alterations in shear stress [8,26,27,30,31]. Accordingly, in order to study the temporal 

Finally 𝛼 1 and 𝛼 2 are the constant parameters that regulate the cellular events responsible for the hyperplasia, namely cell proliferation, here intended as an average between mitosis and apoptosis, and ECM synthesis.

Critical in the coupling of the DS with the CN will be to replace the constant character of 𝛼 1 and 𝛼 2 in favor of a time dependent trend derived from the gene dynamic.

Cluster Network (CN)

With our rabbit model, we explored the complexity of shear-mediated vein graft remodeling through a transcriptional profiling. Using a rabbit-specific microarray probe [32], we examined the temporal variation in gene expression within the vein graft wall at 2 hours, 1, 3, 7, 14 and 28 days following the original implantation. We used our customized statistical algorithm [22] in order to organize the genes in 29 different clusters of expression. Using an analysis of variance (p<0.05), minimum effect size (>0.5) and minimum fold change (>0.5) criteria, 13 clusters out of the original 29 were found to have a pattern significantly different once exposed to a different flow condition and for this reason the remaining 16 have not been considered as significant for the purposes of our analysis. Cell proliferation and matrix dynamic are recognized to be the cellular events that mainly drive the hyperplasia. Accordingly, by focusing only on the clusters that are highly populated by genes impacting these cellular events, we further reduced the number of significant clusters to five, which are identified as the primary elements that control the accelerated response to low shear conditions. In each graph, the dynamic of each gene is represented with a light gray solid line, while the cluster expression, intended as the mean of the genes expression, is represented with a black solid line.

We replicated both the expression of each single cluster, and the level of interconnectedness between them. Two main properties of the genes clusters drove our modeling approach: i) their mutual interconnectedness, and ii) their impact on the main cellular events leading the restenosis (i.e. SMCs proliferation and death, and ECM synthesis).

The different clusters have a certain level of mutual interconnectedness that can be expressed by organizing them in a highly integrated network, so that a variation of expression in one single node leads to adaptive changes in the other interconnected components. The choice of a mutual interconnected network allowed us to replicate the property for which a variation of expression in one single cluster influences the level of expression of all the others that are connected to it. This feature is fundamental in order to study the effect of a gene therapy, as it is to be expected that the alteration of one element brings a certain level of activity modifications in other components too, potentially causing secondary effects on the outcome, which must be taking in consideration.

To reduce the problem to one this is sufficiently powered to support a discrete solution, the model will be constructed around gene clusters, which are composed of a set of genes with a unique temporal expression pattern and similar biologic function. Potential interventional strategies can then be contemplated for key elements or upstream regulators within the most influential clusters.

In order to build the skeleton of the CN, we started from a system of Ordinary Differential Equations (ODE), where each cluster's dynamic is described with one equation, for a total of 5 as the number of clusters identified by the clustering algorithm. 

Indeed, starting from it, we can define a matrix associated to the cluster network, which precisely defines the level of mutual incidence between the various clusters (Supplemental Table 4.1).

Basing on this matrix, a network that respects the different level of interconnectedness between clusters can be defined.

Using curated ontology information, genes can be linked to specific biologic processes, i.e.

genes belonging to a specific cluster can impact one or more cellular activities. With respect to vein graft adaptation, we have already mentioned in the introduction how the leading cellular events are cell proliferation and death, and ECM synthesis. Within the construct of the clustering model, individual gene sets in each cluster can be mapped to each of the three processes, and these subsets of clustered genes can be assumed to form an integrated network by themselves.

Consequently, we deal now with three different network of clusters, one per cellular activity. Each of these distinct networks will be labeled CN1, CN2, and CN3, respectively mapping to the biologic activities of cell mitosis, cell apoptosis and ECM deposition.

In each network, the pattern of expression for each cluster is known from experimental data and this allowed us to retrieve the precise level of interconnectedness among clusters belonging to the same network (Ajk), along with the other unknown variables (Bi, and Cn). For each network, to retrieve the unknown parameters is equivalent to calibrate the general mathematical model described with (4) on the correspondent experimental data, that are different between SMCs proliferation and death, and ECM synthesis. Indeed, generally speaking, the calibration of a model is the task of adjusting an already existing model to a reference system, typically by minimizing an objective function defined ad hoc. In our case, we want to adjust the general cluster network to each experimental dataset by retrieving the value of the unknowns. Supplemental 

N = 5 is the number of clusters belonging to the network, while M = 6 is the number of time points at which the vein graft has been harvested. 𝑥 𝑟𝑡 𝑅𝑒𝑓 is the expression of the r-th cluster at the t-th time point retrieved from the experimental data (reference of the calibration), while 𝑥 𝑟𝑡 𝑀𝑜𝑑 still stands for the expression of the r-th cluster at the t-th time point, but referred to the general network model to be fitted. The objective function has been minimized using a Genetic Algorithm (GA) from the Matlab® Optimization Toolbox. A GA is a method for solving optimization problems based on a natural selection process that mimics the biological evolution [START_REF] Nichols | Production and assessment of decellularized pig and human lung scaffolds[END_REF]. The algorithm repeatedly modifies an initial population of individuals (randomly selected within a pre-defined range), each of them representing a potential solution, by promoting the best and discarding the worst.

system remains stable knocking the cluster down, the current solution is kept and the algorithm can proceed to the next generation, otherwise the solution is discarded and the algorithm picks another best.

The calibration of the general model on the three series of experimental data allowed us to associate to each biologic event a matrix like the one described with Supplemental Table 4.1 and a network reflecting the matrix itself.

Sub-models coupling

The hybrid model was obtained by linking the DS and the three CNs, and specifically by replacing the constant parameter 𝛼 1 and 𝛼 2 of the DS with the time-dependent cluster expression derived from the CNs and associated to the same cellular event, as shown in Fig 4 .5.

By linking the two sub-models, we detailed the genetic impact on the biologic events that lead the hyperplasia. Indeed the CNs link the dynamic of clusters to the relative activity of the biologic process, while through the DS, the aggregate change in biologic processes can be tracked to predict the net influence on the final vein graft morphology.

In the DS previously introduced, 𝛼 1 was designated to control cell proliferation and its constant value was comprehensive of both mitosis and apoptosis. These cell processes are assumed to be directly controlled at the genetic level and accordingly retrieved from their respective CNs, each of them represented by the average of the expressions of the five clusters belonging to the single network.

With respect to Fig 4 .5, 𝛼 1 is now both cluster and time dependent, and can be written as:

𝛼 1 (𝑡) = ∑ 𝛽 1𝑖 𝑁 𝑖=1 * 𝐺 𝑖 𝑀𝑖𝑡 (𝑡) 5 - ∑ 𝛽 2𝑖 𝑁 𝑖=1 * 𝐺 𝑖 𝐴𝑝𝑜𝑝 (𝑡) 5 , (7) 
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where N is again equal to 5, that is the number of clusters belonging to a single network, 𝐺 𝑖 𝑀𝑖𝑡 (𝑡)

is the time-dependent expression of the i-th cluster belonging to CN1, while 𝐺 𝑖 𝐴𝑝𝑜𝑝 (𝑡) is the timedependent expression of the i-th cluster belonging to CN2. 𝛽 1𝑖 is the scaling factor that adapts the unit of measure of the i-th cluster expression belonging to CN1 ([mRNA]) into the hybrid model, and at the same way, 𝛽 2𝑖 takes care of CN2.

In an analogous manner, 𝛼 2 was designated in the DS to dictate ECM deposition kinetics within the wall, and was re-defined via the following expression:

𝛼 2 (𝑡) = ∑ 𝛽 3𝑖 𝑁 𝑖=1 * 𝐺 𝑖 𝐸𝐶𝑀 (𝑡) 5 . (8) 
Again, 𝐺 𝑖 𝐸𝐶𝑀 (𝑡) is the time-dependent expression of the i-th cluster belonging to CN3, and 𝛽 3𝑖

is the relative scaling factor for the i-th cluster into the hybrid model. The current stage of the hybrid model still represents a basic structure characterized by unknown parameters, such as 𝛽 1𝑖 , 𝛽 2𝑖 , and 𝛽 3𝑖 , for a total of 15 unknowns. These latter are retrieved by calibrating the hybrid model on experimental cell mitosis, cell apoptosis, and ECM deposition data from obtained from our rabbit model [START_REF] Klein | Hemodynamic Influence on Smooth Muscle Cell Kinetics and Phenotype During Early Vein Graft Adaptation[END_REF].

Clusters weights

Within the same network, each cluster has a different impact on the biologic process to which it is mapped. In order to determine how each network influences its respective cellular event, the relative weight that each cluster employs on the relative cellular event must be defined. This also means that it is necessary to re-visit the definition of 𝛼 1 (𝑡) and 𝛼 2 (𝑡), originally introduced with the DS. Assuming each cluster within a network has a different relative impact on a cellular event, 𝛼 1 (𝑡) and 𝛼 2 (𝑡) can be defined as:

𝛼 1 (𝑡) = ∑ 𝛽 1𝑖 𝑁 𝑖=1 * 𝑤 1𝑖 * 𝐺 𝑖 𝑀𝑖𝑡 (𝑡) 5 - ∑ 𝛽 2𝑖 𝑁 𝑖=1 * 𝑤 2𝑖 * 𝐺 𝑖 𝐴𝑝𝑜𝑝 (𝑡) 5 , (9) 
and The temporal evolutions of the three cellular events were retrieved from our rabbit model previously described. For each event, a characteristic variable was recorded at time 0 and after 2 hours, 1, 3, 7, 14, and 28 days from the implant. The temporal dynamic of the cellular events served as reference for the calibration of the clusters' weights and they were labeled as M(t), A(t), and E(t) respectively for cell mitosis, cell apoptosis, and finally ECM synthesis. where the reference is the temporal dynamic of the cellular event, known for experimental data, and the model to be fitted is the linear combination of clusters dynamics mediated by the unknown weights.

𝛼 2 (𝑡) = ∑ 𝛽 3𝑖 𝑁 𝑖=1 * 𝑤 3𝑖 * 𝐺 𝑖 𝐸𝐶𝑀 (𝑡) 5 . (10) 
Going from a general example to our precise case, the three linear combinations, one per cellular event, were defined as follows: 

𝜑 𝑀𝑖𝑡 (𝑡) = ∑ 𝑤 1𝑖 * 𝐺 1𝑖 (𝑡) 𝑁 𝑖=1 (11) 
𝜑 𝐴𝑝𝑜𝑝 (𝑡) = ∑ 𝑤 2𝑖 * 𝐺 2𝑖 (𝑡) 𝑁 𝑖=1 (12) 
𝜑 𝐸𝐶𝑀 (𝑡) = ∑ 𝑤 3𝑖 * 𝐺 3𝑖 (𝑡) 𝑁 𝑖=1 (13) 
𝐼 𝑖 𝑅𝑒𝑓 is the temporal dynamic of the wall thickness recorded from the experimental data, while 𝐼 𝑖 𝑀𝑜𝑑 is the intimal thickness dynamic as output of the hybrid model parameterized in 𝛽 1𝑖 , 𝛽 2𝑖 , 𝛽 3𝑖 . M = 6 is the number of time points in correspondence of which the grafts were harvested and the intimal thickness was recorded, and i=1,…,5 identifies again the single cluster inside the network.

The goodness of the calibration was evaluated both qualitatively, by plotting in the same graphic both the experimental evidences and the hybrid model output, and quantitatively through the Percentile Root Mean Square (PRMS) deviation calculated between reference and hybrid model:

𝑃𝑅𝑀𝑆 = √∑(𝐼 𝑖 𝑅𝑒𝑓 -𝐼 𝑖 𝑀𝑜𝑑 ) 𝑀 𝑗=1 * 100 (19) 
Finally, after having integrated the DS with the networks dynamic, i.e. after having replaced (9) and ( 10) in ( 2), the hybrid model assumes its final form fully described by:

{ 𝐴 ̇𝑆𝑀𝐶 = -[ ∑ 𝛽 1𝑖 5 𝑖=1 𝑤 1𝑖 𝐺 𝑖 𝑀𝑖𝑡 (𝑡) 5 - ∑ 𝛽 2𝑖 5 𝑖=1 𝑤 2𝑖 𝐺 𝑖 𝐴𝑝𝑜𝑝 (𝑡) 5 ] ∆𝜏 -𝐴 𝑆𝑀𝐶 𝐴 ̇𝐸𝐶𝑀 = -[ ∑ 𝛽 3𝑖 5 𝑖=1 𝑤 3𝑖 𝐺 𝑖 𝐸𝐶𝑀 (𝑡) 5 ] ∆𝜏 -𝐴 𝑆𝑀𝐶 , 𝑖𝑓𝐴 𝐸𝐶𝑀 > 0, 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (20) 
where all the variables have been already fully described in the previous sections.

We examined three different kinds of perturbation: The common feature to the three different approaches is that once perturbed the initial condition, the cluster expression is maintained to a constant level for the entire postsurgical period. The figure shows, for each single cluster, the morphology outcome in case of constant modulation both with complete inhibition (solid line) and maximum overexpression, set at 3-fold over baseline (dashed line). Keeping in mind that the golden standard is to minimize as much as possible the thickness of the graft wall, it is clear how some clusters might provide good therapeutic potential if over-expressed at their maximum value, like cluster B and D, while some others might be efficient if modulated to their lowest value, like cluster A and cluster E. Also the intrinsic outcome variation among different clusters has to be taken in consideration. It is clear how some clusters bring with them a wider range of outcome variation than others, like cluster B compared with cluster A.

 Inhibition (example in

Coupled clusters modulation:

Stemming from the concept that there is significant redundancy within the interconnected gene network and multiple targets might be required to achieve notable improvements in the outcome morphology, an analysis involving the simultaneous manipulation of two clusters was performed. Two clusters were modulate within the same range described for the single modulation at the start of the simulation, leaving the other three unvaried, leading to the investigation of 10 new gene therapies. 

where 𝐴 𝑖 𝑝𝑟𝑒 is the area of the intima recorded after 28 days of follow up in pre-therapy conditions, while 𝐴 𝑖 𝑝𝑜𝑠𝑡 represents the same morphologic variable, recorded at the same time, but post-therapy. To constrain the path of the remodeling to biologically plausible solutions, a penalty factor was added to the GA in order to maintain cell mitosis and apoptosis must remained positive throughout the 28-day simulation. Solution not conforming to this standard were discarded and the algorithm reinitiated at the last viable solution. Simulating the outcome of a single cluster intervention required an approximately 10 minutes using an Intel(R) Xeon(R) CPU E3-1270 V2 @ 3.50GHz machine run in parallel computing regime.

Sensitivity analysis

A minimization algorithm, such a GA, is similar to dynamics of peptide folding, where a protein in its secondary structure will randomly and stochastically explore different conformations in order to reach a minimum energy state [35]. Analogous to a folded a protein being locked in a local minimum energy state is the potential that the GA identifies a local minimum as the optimum solution. A sensitivity analysis to explore the parameter space around the solution is an effective approach to test the validity of the minimum solution. As such, for each optimum single-and dual-Notable variability in the relationships among clusters is evident, with some clusters demonstrating a strong impact within one network while these the same clusters show little to no connectedness within a different network. Not surprisingly, other clusters maintain their mutual influence across all the networks, as was noted with cluster D-B interaction where cluster B maintains a maximum influence on cluster B independent of the biologic function. It is important to note that the relationships among clusters was assumed to be independent of time, to enforce the concept that the biologic pathways that define interconnectedness are fixed by the intrinsic biology of the organism.

Clusters weights

Critical in our formulation is the linkage between gene cluster interconnectedness and biologic function. As such, each network much be calibrated to the experimental data that describes the time-dependent changes of each biologic event. For each network, we defined a vector 𝑤 ⃗⃗ = {𝑤 1 , 𝑤 2 , … , 𝑤 5 }, where 𝑤 𝑖 represents the relative impact that the i-th cluster has on the biologic event associated to the network (Fig 4.11).

Note that a cluster can have either a positive or a negative influence on an events, indicating that a cluster can either enhance or prevent that biologic activity. At this stage, interesting patterns that may have important implications for gene therapy opportunities begin to emerge. For example, manipulation of cluster B may be a promising given that it employs a high impact on all the cellular events. More complex manipulations also begin to emerge where the differential patterns of activation can be leveraged. This is seen in the clusters B and E, where cluster B inhibits all events while cluster E inhibits all events except for ECM synthesis, where it has no notable biologic impact. With the goal to reduce wall thickening by inhibiting cell proliferation/ECM synthesis and increasing cell death, Cluster D presents an interesting opportunity. Although its effect on biologic activity is generally less than other biologic clusters, it has a different effect on mitosis/apoptosis and ECM synthesis. Whereas clusters B and E maintain a similar influence across all the biologic processes, cluster D differentially enhances apoptosis greater than mitosis, while negatively impacting the rate of ECM synthesis.

Calibration of the hybrid model

The integration of the DS with the CNs not only links the gene level to the cellular and tissue By integrating the sub-models, we changed the time-invariant character of its driving parameters, providing a mechanism for time-dependence that drives the hybrid model according to the dynamic gene expression pattern.

From a qualitative perspective, we were able to replicate the experimental evidences with a high degree of accuracy. Also, through the evaluation of the PRMS between experimental data and hybrid model, defined with (20), we were able to quantitatively describe the goodness of our approximation, which is confirmed to be very accurate with a PMRS less than 1%.

Gene therapy

We previously described how we simulated several gene therapies by directly minimizing the intimal thickness, that was function of the variable 𝛿, representing the level of initial alteration imposed to the cluster dynamic. Using this structure, a therapy was considered effective when the predicted cross-sectional area of the wall following the manipulation was less than baseline (i.e.

the non-interventional area) 28 days after graft implantation. We examined both single and coupled cluster modulations, integrating a sensitivity analysis with each prediction in order to test the robustness of the solution.

Single cluster modulation

Single gene therapy cluster modulation was performed, where the optimum magnitude of inhibition or overexpression (𝛿) ranged from zero to 3.0. Two clusters (C and D) were identified as promising candidates (Fig 4 .13). These quantitative results confirm some of the initial observations put forth from our qualitative analysis of the cluster weighting observations. Cluster C is the most promising, where inhibition to 60% of its initial value (𝛿 𝐶 = 0.6) and fixing the expression at this level resulted in a 98% reduction in wall area at 28 days. Cluster D modulation also resulted in notable improvements, with a 300% augmentation of the initial expression (𝛿 𝐷 =

3) leading to 33% reduction in the 28 day wall area.

The sensitivity analysis for cluster C (Fig 4 .13b) demonstrates a relatively sharp peak around 0.6, with more potent over-or under-expression leading to a sharp reduction in effectiveness. In contrast, the solution for cluster D does not represent a local maximum, but was returned as the optimum solution due to the imposed on maximum over-expression. While this 3-fold limit was enforced to model the physical reality that there is finite increase in gene over-expression that can be achieved, it is admittedly arbitrary and will undoubtedly vary for individual genes or sets of genes, However, from a systems point of view, an unbounded solution may induce marked instability and lead to a final morphology that cannot be achieved in physical reality. Further experimentation and the integration of an expression limit that is tailored to the biology of cluster D would be required to further define the potential therapeutic utility of this cluster.

Coupled cluster modulation

Several underlying philosophies guided us in performing dual cluster modulations: i) single target approaches have universally failed as effective clinical therapies, in large part secondary to inherent redundancies in the system; ii) by altering two clusters simultaneously, a wider range of potential therapies (from 5 possibilities to 10) could be explored; and iii) such an approach can leverage cluster-specific differences in their biologic effect, resulting in a potential synergy that cannot be achieved by single cluster modulation.

Among the potential emergent behaviors that can be observed with dual-cluster modulation are an improve stability of the optimum solution. This can be seen with clusters C and D, which individually were identified as the promising solutions. While the dual cluster modulation result paralleled the reduction in wall thickness that was observed with One coupled clusters modulation resulted as promising to reduce the restenosis phenomenon, i.e. the simultaneous modulation of cluster C (through a new constant 𝛿 𝐶 ) and cluster D (through a new constant 𝛿 𝐷 )), that not surprisingly are the clusters that generated a positive impact if modulated singularly. Fig 4.14a again shows the comparison between the intimal area dynamic recorded in absence of therapy and post therapy. Qualitatively the reduction of intimal area at t = 28 days is evident, something that it is confirmed also quantitatively, indeed we estimated a gain% = 94%, which is a value very close to the single modulation of cluster C case. The therapy performed considers not anymore a single perturbation, but a couple identified by (𝛿 𝐶 , 𝛿 𝐷 ), that describes the level of initial perturbation to be applied to cluster C and D respectively. From our analysis, 𝛿 𝐶 = 0.97, which means that the initial expression of cluster C has been almost left unvaried, and 𝛿 𝐷 = 2.64. Again, both the clusters' dynamics have been modified at time t = 0 and then constantly expressed during all the follow-up.

An interesting consideration is retrievable from constant for all the follow up. In this way we were able both to retrieve the best gain% and to obtain a robust solution.

Conclusions

Our model offers the possibility to preventively scan the wide range of possible gene therapies.

Being able to anticipate the outcome of a specific combination of alteration of genes can reduce the number of potential gene therapies from millions to just few hundreds.

Further, by halving the expression of a single gene cluster, our model allowed us to greatly improve the lumen patency after 1 month of postsurgical follow up that is recognized to be the most crucial part of the whole adaptation process [4,7].

However, to control an entire cluster of genes is a challenging hypothesis from an experimental point of view. Accordingly, immediate future work will be to reconstruct the network of upstream genes that regulate the activity of the cluster identified as suitable for the successful gene therapy.

Among them, we will individuate which gene regulates the previously cited cluster and how it has to be modified in order to drive the cluster toward the outcome retrieved with this work. 

Conclusions and Future Perspectives

The work presented has offered a broad spectrum of applications of mathematical modeling for several clinical applications, from the improvement of machines setup to clinical hypothesis testing and therapy predictions.

In chapter 2, a model able to predict the optimal setup of a bioreactor for lung tissue repopulation has been developed. With a simple 2D model of flow through the airways coupled with a transport of solute model, a complete feedback system able to link the pressures applied to the syringes serving the machines and the distribution of nutrient across the scaffold was created.

Future developments of this model will be voted to the patient specificity. The model will include the use of patient specific data, at least for the upper airways where they are easily accessible. Indeed, all the data the model was calibrated on were retrieved from literature in the current version of this work. Also, the upper airways will be studied from a 3D perspective, abandoning the 2D simplification. This will be the very first step in order to move from a generic model to a patient specific one. Switching to a 3D model will rise the need to study how the presence of cells will locally modify the flow pattern along every branch of the tree.

Chapter 3 addressed the phenomenon of the post-surgical restenosis of vein grafts used to bypass occluded arteries with an escalating level of complexity. Our analysis started from the development of a simple Dynamical System, built on a basis of heuristic observations, and a more complete Agent Based Model, that was suitable to include in it cell-cell and cell-environment interactions for a treatise closer to the physiological reality. The cross validation between the two model allowed us to keep the pros and discard the cons of both models. In particular, we obtained an integrated model that is at the same time easy to implement and fast to run, but also accurate enough to simulate the physiological arterialization of a graft with a high level of confidence. A further improve of the model saw has been brought by specifying the behavior of the membranes that separate the various layers of the graft, as done in the second part of the chapter. What it is
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Fig 2 . 1

 21 Fig 2.1 shows the main steps of the procedure applied to the case of a lung scaffold obtained from rat. The same principle of decellularization followed by scaffold repopulation has been applied from the same group of researchers at the "Houston Methodist Hospital Research Institute" in Houston, Texas at the human case.

Figure 2 . 1 -

 21 Figure 2.1 -Engineering of a lung scaffold from donor. (A) Native adult rat lung canulated in the pulmonary artery and trachea for infusion of decellularization solutions. (B) Acellular lung matrix devoid of cells after 2 to 3 hours of treatment. (C) Acellular matrix mounted inside a bioreactor that allows seeding of vascular endothelium into the pulmonary artery and pulmonary endothelium into trachea. (D) Engineered lung removed from the bioreactor and suitable for implantation in (E) recipient rat [18].

Figure 2 . 2 -

 22 Figure 2.2 -2D geometrical model of TBT. The first ramification point (end of trachea) is arbitrarily set in the origin of the axes and an arbitrary inclination of 45 degrees has been assigned to trachea

  )) 𝑀 𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡𝑠 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (𝑒𝑞. (5)𝑎𝑛𝑑 𝑒𝑞. (6))𝑃 𝑖𝑛𝑙𝑒𝑡 = 𝑃 𝑎𝑡𝑚 = 𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝐵𝐶1) 𝑃 𝑜𝑢𝑡𝑙𝑒𝑡 = 𝑃 𝑎𝑙𝑣 = 𝑎𝑙𝑣𝑒𝑜𝑙𝑎𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝐵𝐶2) 𝑃 𝑒𝑛𝑣 = 𝑃 𝑝𝑙 = 𝑖𝑛𝑡𝑟𝑎𝑝𝑙𝑒𝑢𝑟𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝐵𝐶3).

  Kg/m 3 (at Temperature = 37°C) and ηwater=10 -3 Pa*s. The result was again a vector representing the entire distribution of liquid flow inside the TBT. The vector of N flow values for the N bronchi in liquid ventilation was plotted and coupled to the 2D plot of the TBT shown in Fig 2.2.

Fig 2 . 3

 23 Fig 2.3 shows the feedback loop approach applied to the optimization of the boundary conditions: the TBT model is driven by a nominal pressure P(0), which gives ϕ(0) and the vector of nominal velocities in each bronchus n = 0,…,N.
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 23 Figure 2.3 -Feedback loop scheme

Figure 1 -Figure 2 . 4 -

 124 Figure 1 -Feedback loop scheme used for the systematic determination of the optimal boundary conditions

Figure 2 . 5 -

 25 Figure 2.5 -Semi-logarithmic 3D representation of a tidal liquid ventilation applied to the TBT model

Figure 2 -Figure 2 . 6 -

 226 Figure 2 -Semi-logarithmic 3D representation of a tidal liquid ventilation applied to the TBT modelFigure 2.6 -Solute distribution. Oxygen distribution in the first 11 generations of the tree under steady flow feeding waveform: in blue the trend referred to the maximum concentration of the solute for each generation, in red the mean and in green the minimum.
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 31 Figure 3.1 -Clinical observations. Vein graft success and failure 6 months after surgery (left) replicated with the ABM (right). The black portion represents the lumen, the pink one the tunica intima, and the beige one the tunica media.

Fig 3 . 2

 32 Fig 3.2 shows the anatomy of a vein graft at the time of implantation.

Fig 3 . 3

 33 Fig 3.3 shows the conceptual diagram the DS lays on. The aim of the model is to study the temporal dynamic of radius and thickness of the two innermost layers of the graft: the tunica intima and tunica media.Graft plasticity is described as a function of local biological mechanism and of the dynamic of SMCs. The driven mechanical stimuli are wall shear stress and intramural wall tension. Each of them promotes or prevents specific cellular activities. Shear forces impact events occurring in the intimal layer, while tensile forces impact events within the medial layer. The geometrical model used to describe the vein is a straight, thick, and circumferential symmetric cylinder with internal radius 𝑅 1 and external radius 𝑅 2 , and internal pressure 𝑃 1 and external pressure 𝑃 2 .

Figure 3 . 2 -

 32 Figure 3.2 -Vein histology at the time of graft implantation[5].

Figure 3 . 3 -

 33 Figure 3.3 -Conceptual scheme of the Dynamical System. Primary interacting elements in vein graft adaptation are linked through a feedback system [5].

  the general variable 𝐴 𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 represents the area of a wall compartment (I = intima, M = media) due to a specific cellular element density (SMC or ECM).

  Fig 3.4 shows the conceptual flow chart. The ABM evolves similarly to the DS, as previously described. As initial setup, a hexagonal grid of 121x121 dimension is created. The fundamental unit of the grid is represented in Fig 3.5. Every site of the ABM (in Fig 3.5 labeled with letter i) is surrounded by six neighbors (labeled with letter j1, j2, … ,j6), which influence the state of the said site.

  cells (~ 0.3 cm), an initial wall thickness 𝑡ℎ 𝑊 = 20 cells (~ 0.2 cm), an initial intimal thickness 𝑡ℎ 𝐼 = 3 cells (~ 0.03 cm), and finally an initial ratio 𝜗 =

2 .

 2 Calibration of DS on the output of ABM run in outward remodeling regime, i.e. evaluation of 4 from ABM output. 3. Qualitative comparison of competitive cellular events. Supplemental Fig 3.1 shows the conceptual diagram followed to calibrate the DS.

Supplemental Fig 3 . 2

 32 shows how, with the parameters chosen to generate the basic solution (stated in section 3.1), we were able to obtain a stable trend for both SMCs (Supplemental Fig 3.2a) and ECMs (Supplemental Fig 3.2b). Furthermore, Supplemental Fig 3.2 proves that t = 2 months is indeed a suitable time window in order to generate a stable system. The hyperplasia of the intima is well represented after 6 months. Fig 3.6 compares the cellular pattern at the time of the implant (Fig 3.6a) with the pattern recorded after a follow up of 6 months (Fig 3.6b) obtained from a single run of the ABM. As expected, the tunica intima has thickened and the lumen has narrowed.

Fig 3 . 6

 36 represents the output of one single ideal simulation), or to the presence of a secondary/indirect activity in the media.To clarify this point, we studied the temporal evolution of lumen area, intimal area, and medial area on the average of 15 runs of the ABM with reference toFig 3.7. 

Fig 3 .

 3 Fig 3.7a and 3.7b confirm our observation on lumen and intimal area retrieved from the comparison of cellular pattern seen in Fig 3.6. Fig 3.7b shows a quasi-logistic growing trend for the intimal area, while Fig 3.7a shows a quasi-logistic decrease for the lumen area. Indeed, both
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 36 Figure 3.6 -Intimal hyperplasia cellular pattern. (a) Cellular pattern recorded at the time of graft implant and (b) after a follow up of 6 months. Lumen is represented in black, intima in red, and media in beige. Within intima and media, the darker dots represent the SMCs, while the remaining area represents the ECM.

Fig 3 .

 3 7c how, on an average of 15 simulations, the medial thickness substantially didn't change. Basing on this, we can state that the increase of SMC activity recorded in medial thickness (Fig 3.6b) was only due to the stochastic nature of the model, and it doesn't cause any significant variation to the thickness of the media.
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 37 Figure 3.7 -Temporal dynamic of intimal hyperplasia. Temporal evolution of (a) lumen area, (b) intimal area, (c) medial area in intimal hyperplasia regime. Trends are normalized to their equilibrium point value (basic solution). In color the 15 stochastic simulations of the ABM, in black the mean trend.

  As done for the intimal hyperplasia case, we studied the cellular pattern formation for the outward remodeling, represented in Fig 3.8. The principle is the same seen in Fig 3.6 for intimal hyperplasia, i.e. Fig 3.8a shows the cellular pattern at the time of implant, while Fig 3.8b details the pattern after a follow up of 6 months. Also for the outward remodeling the analysis is based on a single ideal run of the ABM.
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 38 Figure 3.8 -Outward remodeling cellular pattern. (a) Cellular pattern recorded at the time of graft implant and (b) after a follow up of 6 months. Lumen is represented in black, intima in red, and media in beige. Within intima and media, the darker dots represent the SMCs, while the remaining area represents the ECM.

  The observations deduced fromFig 3.8 were confirmed by studying the trends of the average of 15 independent simulations of the ABM run in outward remodeling regime(Fig 3.9) Similarly to what done for the intimal hyperplasia case,Fig 3.9a shows the mean trend of intimal area, 3.9b the mean trend of medial area, and finally 3.9c the mean trend of graft area.
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 39 Figure 3.9 -Temporal dynamic of outward remodeling. Temporal evolution of a lumen area, b intimal area, c medial area in outward remodeling regime. Trends are normalized to their equilibrium point value (basic solution). In color the 15 stochastic simulations of the ABM, in black the mean trend.

Fig 3 .

 3 9b. Consequently, the same trend is recorded for the graft area (Fig 3.9c), which increases linearly with the medial area. It is not surprising that the intrinsic growth of medial area is bigger than the one of the entire wall, considering that the intimal area remains substantially unvaried during outward remodeling, and this latter trend is finely appreciable in Fig 3.9a, which also confirmed our previous considerations on Fig3.8. 

Fig 3 .

 3 Fig 3.10 shows the results of both intimal hyperplasia and outward remodeling.

Figure 3 . 10 -Figs 3 .

 3103 Figure 3.10 -Calibration of the DS on the output of the ABM. (a) Intimal hyperplasia; (b) Outward remodeling. In both the figures, the solid line represents the output of the ABM, while the dashed line represents the output of the DS.
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 311 Figure 3.11 -Qualitative ABM vs. DS cross validation. Time dependent dynamic of (a) SMC division rate, and (b) ECM degradation rate in tunica media (15 independent runs represented in colors and the mean trend in black); dynamic of medial area as output of (c) Agent Based Model (15 independent runs in color and mean trend in black), and (d) Dynamical System.

Fig 3 .

 3 Fig 3.12 shows a comparison between the output of the ABM run in the same conditions, but with (Fig 3.12a) and without (Fig 3.12b) circumferential symmetry assumption.

Figure 3 . 12 -

 312 Figure 3.12 -Radial vs. Non-radial symmetry assumption. Example of lumen encroachment simulated (a) with and (b) without circumferential symmetry hypothesis

Fig 3 .

 3 14 zooms into more detail on the multiple potential feedback loops associating shear stress and wall variation and transmural pressure to changes in anatomy induced by cell and extracellular matrix dynamic [10]. Several feedback cycles can be observed in this conceptual diagram and they either promote the same outcome or compete in opposite adaptive mechanism. A simple dynamical system built upon the conceptual diagram of Fig 3.14 helps to demonstrate that inward and outward remodeling are led by multiple paths. However, such study is phenomenological by nature and lacks of a level of understanding needed to analyze spacetemporal behavior of SMCs shown by histological data.
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 313 Figure3.13 -Graft arterialization. The process is described by a loop of interdependent events, where the dynamic interplay between physical forces and genes regulates the early graft remodeling.

Figure 3 . 14 -

 314 Figure 3.14 -Conceptual diagram of restenosis. The diagram examines the complex feedback mechanisms between the various dynamical components of the system.

Figure 3 . 15 -

 315 Figure 3.15 -Morphological structure of vein graft. Between the intima and the media is the internal elastic lamina and the external elastic lamina is between the media and the adventitia.

  for the specific purpose: 𝐹(𝑥, 𝑡) = ∫ 𝑓(𝑠, 𝑡)𝛿(𝑥 -𝑋(𝑠, 𝑡)The motion of the immersed boundary should match the motion of the neighboring fluid particles thanks to a no-slip boundary condition. Equation (6) approximates the said condition using the Dirac function as an interpolating tool for V, from Ω to Γ: 𝜕𝑋(𝑠, 𝑡) 𝜕𝑡 = ∫ 𝑉(𝑥, 𝑡)𝛿(𝑥 -𝑋(𝑠, 𝑡))𝑑𝑥 = { 𝑉(𝑋(𝑠, 𝑡), 𝑡), 𝑖𝑓 𝑥 = 𝑋(𝑠, 𝑡) 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝛺

Fig 3 .

 3 Fig 3.16 shows a post-surgical follow up of 3 months replicated with our model that has been set in order to favor the hyperplasia of the tunica intima. The cross section of the graft is represented in both panels, where lumen membrane and EEL are represented by a bold black line, while the IEL is individuated with a green line. Finally, the SMCs occupying the graft wall are represented with white circles. Fig 3.16a represents the initial condition of our model and corresponds to the graft at the time of implant, while Fig 3.16b represents the output of the model after 3 months of follow up, where SMCs present within the intima are colored in red. Clearly the one shown in Fig 3.16b corresponds to a graft that suffered from the restenosis phenomenon. A very first consideration involves the evaluation of the lumen area that has significantly reduced in just 3 months.
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 316 Figure 3.16 -Intimal hyperplasia generation. The hyperplasia of the intima is simulated with our model starting from the replication of the graft at the time of implantation (a) and letting the model evolve toward a new condition, in this case toward intimal hyperplasia (b).

Fig 3 .

 3 Fig 3.18 shows the temporal dynamics of the same biological measures reported in Fig 3.17but

17

 17 Fig 3.18 shows the temporal dynamics of the same biological measures reported in Fig 3.17but

  Fig 3.18 shows the temporal dynamics of the same biological measures reported in Fig 3.17but
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 317 Figure 3.17 -Intimal hyperplasia after 3 months. Temporal dynamic of lumen area, intimal area and medial area.

Fig 3 .

 3 19 shows the restenosis of a vein graft replicated both with the original ABM (Fig 3.19a), and with the new ABM-PDE-Particle model (Fig 3.19b). The objective of this new implementation was to get closer to the physiological reality and it is clear how the goal has been amply achieved. With our new implementation we added the feature of cellular spatiality that has been ignored in the previous version. Cells have indeed now a specific volume, while in the previous ABM they occupied a

Figure 3 . 18 -

 318 Figure 3.18 -Intimal hyperplasia after a month. Temporal dynamic of lumen area, intimal area and medial area.

Figure 3 . 19 -

 319 Figure 3.19 -Vein graft restenosis. The restenosis of a vein graft is replicated during a follow-up of 3 months with the original ABM (a) and with the lastly developed ABM-PDE-Particle model (b).

3 . 3 A

 33 future perspective: toward the patient-specificity of the Agent Based Model

Fig 3 .

 3 21, let us assume that the ABM is driven by a single parameter 𝛼. The variable recorded as output of the model is 𝑆 1 and it represents a specific biological variable like lumen area, intimal thickness, SMC density, etc.
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 320 Figure 3.20 -Grey Block model of the ABM. A perturbation of shear stress and wall tension triggers the ABM, regulated by constant parameters, to impact specific biological measures.

Fig 3 .

 3 Fig 3.22 shows the grey block model. The setup of the ABM is the same of the one already used for the pattern formation and the cross-validation in the first part of the chapter. The reduction of shear stress is represent by the constant 𝜀 = 0.5 and by the normalization constant 𝜏̅ = 0.25 and it

Figure 3 . 22 -

 322 Figure 3.22 -Grey Block model of intimal hyperplasia. A reduction of shear stress (𝜀 = 0.5) represents the input of the ABM, that is driven by a certain setup of vector 𝛼. Lumen area is recorded as output.

Fig 3 .

 3 Fig 3.23 shows the grey block model for medial hyperplasia. Again, the setup of the ABM is the same of the one already used for the pattern formation and the cross-validation in the first part of the chapter. The increase of wall tension is represent by the constant  = -0.005 and by the normalization constant 𝜎 ̅ = 40. The parameter driving the proliferation of SMC within media is 𝛼 4 = 0.3.

Figure 3 . 23 -

 323 Figure 3.23 -Grey Block model of medial hyperplasia. A reduction of shear stress ( = -0.005) represents the input of the ABM, that is driven by a certain setup of vector α. Medial area is recorded as output.

Fig 3 .

 3 Fig 3.24 shows the minimization of the objective functions defined for intimal hyperplasia and medial hyperplasia. In both cases the function is well minimized in correspondence of the desired parameter 𝛼. Indeed from Fig 3.24a is clear how the objective function is minimized for 𝛼 3 = 0.2, while from Fig 3.24b the objective function is minimized for 𝛼 4 = 0.3.
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 324 Figure 3.24 -Parameters identification. Minimization of the objective function for a Intimal Hyperplasia and b Wall Remodeling.

Fig 4. 1 .

 1 The result is a highly interdependent system where local perturbations provide feedback to other elements leading the system either to a new set point, which represents the arterialized vein, or to instability with critical failure, which represents the restenosis phenomenon.The environmental condition (shear stress) directs the initial working point of the gene network, which dictates the cellular and the matrix-based remodeling response of the vein. Changes at the cellular level define the local graft architecture, which directly impact the shear stress, determine a new set point for the gene network, and consequently a new biological response of the graft.

Figure 4 . 1 -

 41 Figure 4.1 -System biology approach. The vein graft arterialization process is described by a loop of interdependent events, where the dynamic interplay between physical forces and gene network regulates the early graft remodeling.

Fig 4 . 2 2 .

 422 Fig 4.2 details the general construct of the hybrid model, which can be summarized in five fundamental steps:

Figure 4 . 2 -

 42 Figure 4.2 -Hybrid model development step-by-step diagram. Significant clusters of expression (𝐺 𝑖 (𝑡)) are organized in Cluster Network (CN) through an Ordinary Differential Equations (ODE) system, which unknowns (highlighted in bold red) are retrieved fitting the ODE system on experimental data from gene microprobes (dashed red line box). The CN is plugged into a Dynamical System (DS) that simulate the long-term vein graft healing, to create a hybrid model, characterized by 2 kinds of unknowns: in bold green the weights of each cluster on a specific cellular event, that are retrieved on the base of experimental data (dashed green line box); in bold blue the scaling factors that adjust the unite of measure of each cluster expression into the hybrid model, also retrieved on the base of experimental data (dashed blue line box). In general, a large use of heterogenic experimental data (highlighted in bold purple) has been made at various levels through the development of the model for validation and calibration purposes.

Figure 4 . 3 -

 43 Figure 4.3 -Dynamical System (DS). Conceptual scheme of the subset of DS that replicates hyperplasia during the first month of postsurgical follow up [21].

Fig 4 . 4

 44 shows the expression of the five significant clusters, labeled from A to E along with the expression of the genes belonging to each specific cluster.Gene ontology analysis shows a common behavior for the five clusters. An initial response during the first week following implantation corresponds to the inflammatory state that follows the implantation. The excitation lowers starting from the Day 7, when the expression starts to stabilize around an asymptote.

Figure 4 . 4 -

 44 Figure 4.4 -Genes dynamic retrieved from microarray probe for the five significant clusters.In each graph, the dynamic of each gene is represented with a light gray solid line, while the cluster expression, intended as the mean of the genes expression, is represented with a black solid line.

Fig 4. 1

 1 shows the conceptual diagram followed in order to calibrate the model and to retrieve the unknowns. It corresponds to the red dashed box already seen in Fig 4.2 and now further described step-by-step in Supplemental Fig 4.1. The calibration was performed by minimizing the distance between the output of the general cluster network, which is parameterized in Ajk, Bi and Cn, and the correspondent experimental data. The distance is evaluated using the Root Mean Square (RMS) deviation, which is also function of Ajk, Bi and Cn, and that describes the objective function that has to be minimized. It writes 𝑅𝑀𝑆 = √∑ ∑(𝑥 𝑟𝑡 𝑅𝑒𝑓 -𝐴 𝑗𝑘 , 𝐵 𝑖 , 𝐶 𝑛 )

Figure 4 . 5 -

 45 Figure 4.5 -Sub-models coupling. Constant parameters 𝛼 1 and 𝛼 2 are replaced by the time dependent cluster dynamics mapped to the correspondent biologic event.

  Within these expressions, three new sets of variables have been introduced: 𝑤 1𝑖 is the weight of the i-th cluster belonging to C1 carried out on cell mitosis, 𝑤 2𝑖 the weight of the i-th cluster belonging to C2 carried out on cell apoptosis, and finally 𝑤 3𝑖 the weight of the i-th cluster belonging to C3 carried out on ECM synthesis. 𝑤 1𝑖 , 𝑤 2𝑖 , and 𝑤 3𝑖 are unknowns and their values were retrieved following the general principle described in Fig 4.6, which shows a simplified threecluster version of the calibration. The weighting of the calibration is based on the concept of representing the dynamic of the biologic process (Fig 4.6b), which is known from experimental data, through a linear combination of clusters' dynamics (Fig 4.6a), which are mediated by the different weights that the clusters have on the cellular event.

Fig 4 . 7

 47 shows the temporal dynamic of the three cellular events. Cell mitosis and apoptosis were studied by measuring the SMC concentration within the cross section of the graft as shown respectively in Fig 4.7a and 4.7b, while the ECM dynamic was studied by measuring the rate of change of ECM area within the graft cross section as shown in Fig 4.7c.
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 46 Figure 4.6 -Calibration of the clusters' weights.The temporal dynamic of a generic cellular event (b) is described with a linear combination of the clusters of expression ontologically related to it (a). The level of impact that a generic cluster (Gi(t)) employs on the cellular event (φ(t)) is mediated through its relative weight (wi).

Figure 4 . 7 -

 47 Figure 4.7 -Cellular events dynamic from rabbit model. Cell mitosis rate (a), cell apoptosis rate (b) and ECM synthesis rate (c) are recorded on a postsurgical follow-up of 28 days and harvested at time of implant, and after 2 hours, 1, 3, 7, 14, 28 days.

Fig 4 .

 4 8b), for which the initial level of cluster expression is reduce (to a minimum value of zero , which corresponds to complete silencing) and maintained constant for the duration of the simulation; Simple modulation (Fig 4.8c), where the initial level of cluster expression is fixed at its initial value;  Overexpression (Fig 4.8d), that enhanced the cluster expression is enhanced up to 3-fold greater than its initial value and maintained constant for the duration of the simulation.

  Fig 4.8eg illustrate the potential trajectory of the hyperplastic response that results from the change in cell and ECM kinetics associated with each virtual gene therapy.

Figure 4 . 8 -

 48 Figure 4.8 -Gene therapy general concept. With the current analysis, a cluster dynamic (a), is modulated from its initial condition in three distinct ways: complete inhibition of cluster expression (b), freezing cluster expression at the initial (baseline) condition (c), and fixed overexpression of the cluster expression (d). The modification in cluster expression alters the cell or ECM kinetics, leading a new trajectory for hyperplastic growth of the wall (e)-(g). Dashed line represents the dynamic in absence of therapy and the solid line, the dynamic post-therapy.

Figure 4 . 9 - 4 .

 494 Figure 4.9 -Gene therapy principle. Comparison between thicknesses of the wall dynamic altered with cluster set at maximum overexpression (dashed line) and complete inhibition (solid line).

Fig 4 . 11 -

 411 Fig 4.11 -Clusters weights. Relative weights of the five clusters on each of the 3 biological processes. Positive weights are mapped in red and negative weight in blue, with tonality from light (low impact) to dark (high impact).

  level, but also moves the entire model closer to the experimental reality. The result of the hybrid model calibration (Fig 4.12) illustrates how the exponential growth of the wall thickness, recorded as output of the DS, is only partially representative of the real progression appreciated from the experimental data.

Figure 4 . 12 -

 412 Figure 4.12 -Calibration of the hybrid model. The temporal dynamic of intimal thickness is recorded as output of the DS (dotted line), from experimental data (dashed line), and as output of the integrated model (solid line).

Figure 4 . 13 -

 413 Figure 4.13 -Gene therapy: single cluster modulation. Reduction of intimal area recorded by singularly modulating cluster C (panel A) and cluster D (panel C). The corresponding sensitivity analyses are clusters C and D provided (panel B and D, respectively).

Fig 4 .

 4 14b and 4.14c that show respectively the sensitivity analysis conducted on 𝛿 𝐶 and on 𝛿 𝐷 . Cluster C certainly maintains its robustness as in the single modulation case, but this time even cluster D shows the same property, with a histogram qualitatively very similar to the one appreciated for cluster C in Fig 4.13b. This confirms our second hypothesis, for which the simultaneous modulation of cluster C and D makes also the perturbation of D as robust as C. However, being the gain% associated with the simultaneous modulation of C and D lower than the one retrieved with the single modulation of C, the most promising gene therapy still consists in halving the initial expression of cluster C maintaining it

Figure 4 . 15 -

 415 Figure 4.15 -Structural properties test. Vein graft arterialization in absence (solid line) and in presence (dashed line) of gene therapy. Temporal dynamic of (a) intimal thickness, (b) lumen radius, and (c) wall thickness.

  

  

  

  

  

  

  

  in(27):

	𝜕 𝜕𝑡	𝐶 𝐴 = -𝑣(𝑧)	𝜕 𝜕𝑧	𝐶 𝐴 + 𝐷 𝐴	𝜕 2 𝜕𝑟 2 𝐶 𝐴 (0) + 𝑜(𝑟 2 ) + 𝐷 𝐴	𝜕 2 𝜕𝑟 2 𝐶 𝐴	(29)
	We observed that						
		∫ (𝐷 𝐴 𝑅 -𝑅	𝜕 2 𝜕𝑟 2 𝐶 𝐴 (0) + 𝑜(𝑟 2 ))	𝑑𝑟 = 𝐷 𝐴 * 𝑜(𝑅).
		𝜕 𝜕𝑡	𝑆 𝐴 = -𝑣(𝑧)	𝜕 𝜕𝑧	𝑆 𝐴 + 𝐷 𝐴 [	𝜕 𝜕𝑟	𝑅 -𝑅 𝐶 𝐴 ]	.

(30) 

For the R<<L assumption, DA*o(R) is negligible. Let us introduce the concentration of solute per unit of radius 𝑆 𝐴 = ∫ 𝐶 𝐴 𝑑𝑟 𝑅 -𝑅 . Consequently, (

27

) can be reduced as the following simplified form:

Table 3 .1 -Axiomatic rules that drive the dynamics of SMC and ECM

 3 

	Axiomatic rules	Comments
		SMC mitosis/apoptosis rate for basic solution generation
		ECM synthesis/degradation rate for basic solution generation
		SMC mitosis rate in intimal layer -driven by shear forces
		SMC mitosis rate in medial layer -driven by tensile forces
		SMC apoptosis rate in intimal/medial layer -independent
		from mechanical forces
		ECM synthesis rate in intimal/medial layer -independent from
		mechanical forces
		ECM degradation rate in intimal layer -driven by shear forces
		ECM degradation rate in medial layer -driven by tensile
		forces

Table 3 .2 -Parameters set up for virtual experiments

 3 

	Virtual experiment	Parameters setup
	Intimal hyperplasia -SMC proliferation in tunica intima	
	Outward remodeling -SMC proliferation in tunica media	
		ABM
	Cross validation -SMC proliferation vs. ECM degradation in	
	tunica media (ABM and DS)	
		Dynamical System

Table 3 .3 -Multiscale description of the model Space scale vs. time scale

 3 

		seconds	hours	days
	10 -4 m		TR	TP
	10 -3 m	CM	TR
	10 -2 m	CM	

Let us describe the numerical discretization and the algorithm of each module and the coupling mechanism.

Table 3 .4 -Axiomatic description of the set of rules that regulate the ABM

 3 

		Axiomatic rule			Variable	Function
	𝒑 𝒅𝒊𝒗𝒊𝒔𝒊𝒐𝒏 = 𝒑 𝒂𝒑𝒐𝒑𝒕𝒐𝒔𝒊𝒔 = 𝜶 𝟏		SMC	SMC equilibrium in Basic Solution
	𝒑 𝒅𝒆𝒈𝒓𝒂𝒅𝒂𝒕𝒊𝒐𝒏 = 𝒑 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒐𝒏 = 𝜶 𝟐		ECM	ECM balance in Basic Solution
	𝑨(𝒕) = 𝒆𝒙𝒑 -	𝒕-𝑻 𝜹𝑻	; 𝑻 = 𝜶 𝟑 , 𝜹𝑻 = 𝜶 𝟒	all	Macrophage activity mediates all cellular events
							Time scale of macrophage
		𝑻 𝒂𝒏𝒅 𝜹𝑻			Macrophage	peak of activity and
							relaxation time
	𝒑 𝒅𝒊𝒗𝒊𝒔𝒊𝒐𝒏 𝑰	= 𝜶 𝟏 𝑨(𝒕) (𝟏 + 𝜶 𝟓	𝑮(∆𝝉) 𝝉 ̅	)	SMC	SMC division in intima
	𝒑 𝒂𝒑𝒐𝒑𝒕𝒐𝒔𝒊𝒔 𝑰	= 𝜶 𝟏 𝑨(𝒕)			SMC	SMC apoptosis in intima

Finally, we cross-validated the two models by creating an accurate matching procedure. In this way we added the degree of accuracy given by the ABM to a simplified model (DS) that can serve as powerful predictive tool for the clinic. Keywordsrestenosis; adaptation; vein graft; model; cross validation; pattern formation

Introduction

Cardiovascular disease is the leading global cause of mortality and morbidity [1,8], accounting for more than 17.3 million deaths per year that represents the 31% of all global deaths [9].

In 2013, nearly 801,000 people died in US from heart disease, stroke, or other heart related diseases [9]. The direct and indirect costs of cardiovascular diseases and stroke total more than $316.6 billion [9].

Coronary occlusion is the most common type of heart disease [10], and it prevents the blood from bringing nourishment to a portion of the myocardium, causing the heart attack [11].

Coronary Artery Bypass Graft (CABG) surgery using an autologous vein graft (typically saphenous), is the most performed procedure in order to bypass the occlusion and to restore the physiological circulation [12].

Despite improvements in surgical techniques, the medium and long term efficacy of the procedure is far from satisfying, considering that between 3% and 12% of saphenous grafts occlude within 1 month of surgery [13], a percentage that increases to 10-15% on a follow-up time of 1 year [4].

The occlusion of the graft is due to a series of adaptation events that takes place in the postsurgical period. Due to changes in the environmental conditions, the graft faces two simultaneous processes: intimal hyperplasia and outward remodeling.

Intimal hyperplasia is the universal response of a vessel to injury, for which the reduction of shear stress stimulates specific grow factors to switch their status from quiescent to active. Their ∆𝜏 and ∆𝜎 are respectively the deviation of shear stress and tension from their baseline values.

The model is formulated in such a way that the perturbations of shear stress and tension are the driving forces for the adaptation. If we let 𝜏 0 be the shear stress and 𝜎 0 be the tension at time t = 0, the growth rates can be expressed as a function of the difference between the mechanical condition at time t and a baseline setting:

𝑅 𝐼𝐸𝐿 is the radius of the Internal Elastic Lamina, the layer of tissue that separates the intima from the media, and 𝑅 𝑒𝑥𝑡 is the radius of the graft. Finally 𝜸 ⃗ ⃗ = 𝛾 The dynamical system described by ( 5) is non-linear because of the dependence of ∆𝜏 and ∆𝜎 on the areas of the lumen and of the two wall compartments, intima and media.

In order to accurately simulate the clinical evidences, the model implements systematically the following steps:

1. Initial setup: geometrical properties of the vein graft are assigned.

A basic solution is generated within 2 months of simulated follow-up, a time that ensures a stabilization of the initial conditions. The system is then perturbed and it evolves simulating the adaptation of the graft for the next 6 months of follow up.

The time stepping loop explores every single site of ABM. The dynamic of SMCs and ECMs is regulated by probability laws defined in Table 3.1.

The deviation of shear stress and wall tension from their baseline is again the key for the vascular adaptation exactly as for the DS. In our implementation, we only considered the mitosis/apoptosis rate for SMCs and the deposition/degradation rate for ECM elements, ignoring any other additional cellular event that may affects the graft morphology. The same approach was followed in the implementation of the dynamical system. Our goal was to be able to replicate the two main phenomena responsible of restenosis by using a minimum set of cellular events and for each cellular event, by using a minimum set of parameters. The reference is the output of the ABM, and it varies depending on the event we are calibrating (intimal thickness or outward remodeling). The model to be adjusted is the DS, and its output is function of the unknown , the parameter driving the cellular event. For our scope, it is mandatory to run both models with the same initial conditions.

The calibration is performed by minimizing the distance between the output obtained from the ABM and the same output obtained from the DS.

The distance is evaluated using the Root Mean Square (RMS) deviation, which is also function of . N is the number of time points, typically one every month. 𝑥 𝑖 𝐷𝑆 is the output of the dynamical system at the i-th time point, while 𝑥 𝑖 𝐴𝐵𝑀 is the output of the ABM at the same time point.

We minimized the RMS using a genetic algorithm from Matlab® Optimization Toolbox. Once the value of  was retrieved, the DS was calibrated with a certain degree of error, and it shows the same output of the ABM.

The conceptual scheme is valid both for the calibration of intimal hyperplasia and of outward remodeling. The distinguishing factors are the output chosen as reference, and the unknown parameter to retrieve from the dynamical system.

Calibration of intimal hyperplasia

As said, the intimal hyperplasia is generated by SMC division within the intimal layer.

Consequently, the parameter to be retrieved from the dynamical system is 1.

The reference output is the time dependent dynamic of lumen area obtained from the mean of 15 simulations of the ABM.

Calibration of outward remodeling

On the other hand, outward remodeling is the result of SMC division within the medial layer.

Accordingly, the parameter of the DS to be calibrated is 4.

In this case the reference is the time dependent dynamic of the graft area, again obtained from the mean of 15 simulations of the ABM.

Competitive cellular events

We calibrated the DS on the ABM output both in intimal hyperplasia and outward remodeling regime by using one single cellular event at a time.

The last stage of the cross validation was to compare qualitatively the output of the two models letting two competitive cellular events act simultaneously.

Once stabilized around an equilibrium point, the flexibility of the ABM allows us to conduct several virtual experiments by simply tuning the parameters that regulates the cellular event to be replicated. Table 3.2 shows the complete list of all the simulated events with the correspondent parameters setup.

Intimal Hyperplasia pattern formation

As reported in Table 3.2, the intimal hyperplasia was simulated by setting the parameter regulating the SMC proliferation in intima (𝛼 3 ) to 0.2 and by choosing a global reduction of shear stress equal to the 50% of its initial value (𝜀 = 0.5). All the other parameters were held to the basic solution configuration. All the variables of ( 14) have been already defined with (12). From a qualitative evaluation of the plots it is clear how we were able to match the two models with a high level of accuracy. This is confirmed by the percentile errors recorded. For the intimal hyperplasia, PRMS = 0.58%, and for the outward remodeling, PRMS = 0.47%.

Qualitative cross validation

Through an examination of competitive cellular events, we evaluated the flexibility and complex dynamics within the ABM that have previously been observed in the DS.

We run the ABM plugging in both the SMC division and the ECM degradation at the same time. We chose to run our analysis in the medial layer and not in the intimal layer because an initial loss of mass was possible during the simulation. While the medial layer is originally thick enough to handle a negative oscillation of mass, the intimal layer is too thin at the time of implant (~ 0.03 cm, approximately the thickness of 3 sites of ABM), and in presence of an early loss of mass, there would have been the risk to totally make the intimal layer disappearing, losing in this way the integrity of the graft wall.

The results are reported in Fig 3 .11a and 3.11b, which show the dynamic of the two biologic processes separately. Again, having to deal with a stochastic simulation, a robust output is given only considering the mean trend of 15 independent simulations.

From a direct comparison between the two cellular, we can state that both the cellular events have their own influence on the medial area. As detailed in the method section, we chose these two events for their opposite effect on the area of the media. This is a conclusion easily retrievable from biologic processes lead to an oscillatory response of the models; ii) we are in effect able to retrieve the same outputs from both models, proving the idea of the cross validation.

We present a numerical method designed to combine the best features of agent based method and partial differential method to cope with the multiscales from cellular level to continuum mechanic keeping at the same time the implementation both simple and general.

Keywordsvascular adaptation; restenosis; model; PDE; Agent Based; Particle

Introduction and Motivation

The work presented addresses the modeling and simulation of the recovery and/or healing that follows vascular surgical interventions. Such interventions usually target sections of vessel that suffer from a local stenosis, which may limit the blood flow to the point that it causes organ failures or tissue necrosis [1,2]. Such disorder is either treated with the insertion of a stent [3], which opensup the occlusion and provides structural support to the vein in order to maintain lumen patency, or bypassed with a vein graft [4,5]. Both procedures have benefits and limitations but they share the same fundamental mecano-biology processes during the post-surgical follow-up.

The field of application of the model presented in this work is the vein graft bypass, however the same methodology can be easily applied to the case of a stent insertion.

The plasticity of the biologic system is responsible for the adaptation of the vein to its new environment. Vein graft adaptation encompasses two distinct processes: intimal hyperplasia and wall remodeling (inward/outward). On one hand, intimal hyperplasia is characterized by migration of Smooth Muscular Cells (SMC) into the intima with subsequent proliferation and deposition of Extra Cellular Matrix (ECM). This sequence of events results in narrowing the graft lumen. On the other hand, remodeling is characterized by preservation, or loss, of lumen area through the reorganization of the cellular and extracellular components within the media [5][6][7].

Following the implantation of the graft, both forms of adaptation are initiated and the balance between the two processes dictates the degree of luminal narrowing and ultimately the success or the failure of the revascularization. Current statistics show how a 40% rate of graft failure is recorded within just a year from original intervention [8].

the model will be calibrated on experimental data from histology starting first from animal model, but with a window on the patient specificity too. Third, the new method is easy to be generalized in 3D, so a 3D extension of the model will be implemented in order to add one more level of accuracy.

Accordingly lumen area and medial are respectively suitable in order to identify the parameters that drive intimal hyperplasia and wall remodeling.

Conclusions

A methodology to systematically test the feasibility of the ABM identification has been provided in this short section.

The complete identification of the model implies a higher level of complexity and not only because the ABM is driven by many different parameters to be identified, but also because different cellular events act simultaneously, generating in this way non-linear behaviors and perturbations more challenging to be handled.

Future steps for this research will include the individuation of the minimum set of biological measures for all the known cellular events concurring to the restenosis phenomenon. They will be study separately in first approximation, and combined later. The combination of more cellular events will need the development of more complex objective functions that have to take in account how a cellular event can impact positively or negatively another event happening at the same time.

dynamic of the hyperplastic response, we used an adapted subset of a previously developed DS [21]. The latter is a system of Ordinary Differential Equations (ODEs) designed to model and replicate the interconnectedness between shear/tensile forces, biologic processes, and morphology changes within the vein graft following the implantation. The model approximates the geometry of the graft as a straight, thick, and circumferential symmetric cylinder with internal radius R1 and external radius R2, and internal pressure P1 and external pressure P2. Accordingly, assuming a

Poiseulle flow across the cylinder, the dynamic of the intima is solely led by shear stress, given by the formula:

where U is the maximum velocity of the blood at the centerline, and 𝜇 is the dynamic viscosity of the blood.

For the purpose of this work, we extracted a new conceptual scheme, reported in Fig 4 .3, and we based our version of the DS on it. Our sub-model of graft adaptation is fully described by the following system of ODEs:

In (2), ASMC is the cross-sectional area occupied by cellular density and AECM the area occupied by the extracellular matrix (ECM) density. ∆𝜏 -= min (∆𝜏, 0), is the deviation of the shear stress from its baseline, which is imposed to be negative in order to enhance cellular mitosis.

The model is indeed formulated such that a reduction in shear is the driving force for augmented hyperplasia. Letting 𝜏 0 be the shear stress at time t = 0 (assumed to be the time of implantation of the graft), the intimal growth rate can be expressed as a function of the difference between the mechanical condition at time t and the baseline setting (recorded at t = 0):

where Gi = 1,…,5 represents the expression of the i-th cluster, while Bi = 1, …, 5 is the parameter driving the asymptotic trend of the i-th cluster. 𝜆(𝑡) is a third order polynomial function that serves as time modulation used to drive the dynamic of the cluster expression toward its reference trend described by the experimental data. The output of the basic model expressed with ( 4) is indeed a linear combination of exponential functions, and the solution of it can either converge to an asymptote, diverge toward infinite, or result in high frequency oscillations trend. On the other hand, from the analysis of the experimental data shown in Fig 4, we observed a common trend for the dynamic of all the clusters, which share a non-monotonic dynamic characterized by one inflection point that perfectly mimics the inflammatory phase the vein faces in the early postsurgical follow up, and a final asymptotic trend that mimics the post-inflammation relaxation. To be able to catch the non-linearity of the clusters' dynamic, we applied a modulation mask described by the following:

Finally Ajk, j = 1,…,5; k = 1,…,5 describes the level of incidence that the j-th cluster carries out on the k-th cluster. It is necessary to highlight how Ajk, Bi and Cn (n=1,2,3) are unknown parameters that have to be retrieved from experimental data. Among the unknowns, Ajk certainly carries the most valuable information.

Supplemental Table 4.1 -Extended matrix Ajk. Mutual level of interconnectedness among clusters.

The right setup of the GA is the key to handle all the potential issues that may occur during the minimization of the objective function.

For each network, the high number of unknowns (33), arranges that the algorithm was prone to become stuck in a local minimum instead of a global one. In order to cope with it, the population size of the GA was increased from its Matlab® default value of 50 to 100 time the number of unknowns (330). Even though in this way the algorithm can explore a wider range of solutions, a too wide initial range can certainly affect the accuracy of the minimization. This issue has been resolved by running the GA recursively, i.e. running the same algorithm several times and setting as initial range of the n-th run an interval defined inside the proximal surrounding of the solution of the (n-1)-th run. Finally, a penalty factor was added to the objective function in order to maintain the system stable even upon manipulation of the cluster expression that is after all, the spirit of a potential gene therapy. In fact, a loss of stability has been observed a posteriori upon manipulation of the network, and in particular by singularly knocking down the expression of most of the cluster.

During the minimization process, we systematically tested the best solution found by the algorithm at each step in case of singularly silencing of each single cluster belonging to the network. If the 

Thanks to the limited number of unknowns for each minimization ( 5), the Matlab default setup for the GA was already appropriate to reach a reasonable objective function minimization. In addition, two constraints, described with (17), have been applied to the GA: in each network, the value of a cluster weight is included in the interval [-1;1], and the sum of the absolute value of the weights does not exceed a unitary value. The set of constraints writes:

With these constraints, we allowed a cluster to affect a biologic process both positively and negatively, founded on the concept that a gene can either enhance or inhibit a defined cellular event.

Hybrid model calibration

The hybrid model was calibrated on experimental data in order to retrieve the unknowns previously introduced (𝛽 1𝑖 ,𝛽 2𝑖 and 𝛽 3𝑖 ). The calibration scheme is illustrated in Supplemental Fig In silico gene therapy

Gene therapy as a tool to minimize hyperplastic growth of the wall

In general, our hybrid model offers us the possibility to modify the profile of clusters expression to generate an impact on the vein graft morphology. The primary goal is to identify a potential modifier of gene expression (termed gene therapy) that optimally alters the cluster expression such that there is a reduction in wall cross-sectional area at one month following implantation. A theoretical example of these potential scenarios is outlined in We simulated computationally the gene therapy by directly acting on the CNs, which general form was described in (4). Following the concept illustrated in Fig 4 .8, we examined various genomic manipulations using the following strategy:

1. Gene therapy model: We applied a specified perturbation on the initial condition of the cluster dynamic maintaining then the level of expression constant for the entire follow-up.

Assuming a collapsed form of (4), the therapy principle translates into the following:

As already seen in ( 4), 𝐺 𝑖 (𝑡) stands for the expression of the i-th cluster. The set of constants 𝛿 𝑖 defines the entity of the perturbation applied to the initial cluster dynamic, which remains then constant as the variation of cluster expression is null. Furthermore, 𝛿 < 1 indicates a reduction of cluster activity, 𝛿 > 1 an increase of cluster activity, and finally 𝛿 = 1 a cluster activity unvaried.

2. Single cluster modulation: we initially studied the minimization of thickness of the wall in case of single cluster alteration, where each cluster has been modified singularly, leaving all the others unvaried (a total of five gene therapies simulated, one per cluster). cluster solutions (𝛿 𝑚𝑖𝑛 , defined by the fixed cluster activity between zero and 3-fold that yielded the maximum reduction in wall area) a sensitivity analysis was conducted. Solutions were examine through a 50% parameter space.

Results and Discussion

Clusters interconnectedness

The general model of CN, defined by ( 3), was calibrated on the experimental data obtained by simultaneously with the genomic data and describes for cell mitosis (obtaining CN1), cell apoptosis (CN2), and ECM synthesis (CN3). For each network, by minimizing the associated objective function ( 5), we retrieved the unknowns of the system. As the network interconnectedness is assumed to be unique for each of the three biologic events, we an independent solution for each of the three matrices. The network maps for mitosis, apoptosis, and For illustration purposes the level of interconnectedness between networks was divided in a range from 0 (dashed line for the cluster self-enhancement and no line for different clusters interconnectedness representing no impact) to 5 (thick solid line representing the maximum impact).

Structural properties test

The gene therapy individuated as the best for our purposed was tested a posteriori on intimal thickness, lumen radius and wall thickness for structural purposes as shown in Fig 4 .15. As mentioned, a postsurgical therapy has both to improve the lumen patency and to ensure the proper thickening of the graft wall [12,36]. Overall, this result is very valuable, because it shows how, by controlling a specific cluster of genes, we are able to positively impact the graft's arterialization but avoiding a potential side effect that would affect the structural integrity of the graft itself. A second future development will be the validation at various level of the work presented.

Starting with the validation of the CNs retrieved, we are currently building an experimental setup in order to demonstrate that we are able to reproduce the CNs measured with an intermediate shear stress condition starting from a simply linear interpolation between low and high shear stress condition.

Finally, the gene therapy individuated as successful in the presented work will be validated on our rabbit model to verify its outcome and to explore potential side effects.

In conclusion, our multiscale model provides a cost-effective and efficient framework that is able to test the outcome of a gene therapy aimed to prolong the life expectancy of aortocoronary vein grafts in silico.

absolutely remarkable was our capability to add several levels of complexity to the model remaining however able to replicate well-known biological patterns that have been validated from previous works present in literature.

The future of this model will be again the patient specificity. The framework presented in the third part of chapter 3 offered a general idea of how it is possible to retrieve in advance the biological measures needed to precisely calibrate the model of vascular adaptation on a single patient. Extensive future work will be conducted in order to be able to predict the long-term postsurgical outcome of the vein graft bypass procedure on the single patient. In parallel, further improvements of the vascular adaptation model will take it closer and closer to the physiological reality (a 3D model will be a first step for this point).

The general framework has been developed for vein graft bypasses. However, its adaptation to other interventions like the deployment of a stent to treat aneurysms will not pose critical problems.

Finally, in chapter 4 a multiscale model of vascular adaptation has been presented. It has already been remarked how the most innovative aspect of it was the highly interdependent loop that is based on. The use of systems biology within this new approach allowed us to include the genetic impact on the revascularization of a vein graft. This has been a pivotal step to be able to predict the effect of several gene therapies to be administered to the patient during the first period of follow up. With our research, a group of genes that, if properly modified, reduce the phenomenon of restenosis have been found. This must serve as starting point for further experimental validation.

Once the veracity of these results will be proved, our analysis will move on looking for the single gene that regulates the activity of the cluster identified as therapeutic.

To conclude, with our work it has been certainly proved how mathematical models applied to Computational Surgery are powerful tools that can give a huge contribute to surgery and medicine by designing and analyzing experiments and by narrowing the infinitely big window of research aimed to improve therapies and clinical machines to cure specific diseases. 
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