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Abstract

The RHIZOME Architecture: A Hybrid Neurobehavioral Control Architecture

for Autonomous Vision-based Indoor Robot Navigation

The work described in this dissertation is a contribution to the problem of autonomous
indoor vision-based mobile robot navigation, which is still a vast ongoing research topic. It
addresses it by trying to conciliate all di�erences found among the state-of-the-art control
architecture paradigms and navigation strategies. Hence, the author proposes the RHIZOME
architecture (Robotic Hybrid Indoor-Zone Operational ModulE): a robotic control archi-
tecture capable of creating a synergy of di�erent approaches by merging them into a neural
system. The interactions of the robot with its environment and the multiple neural connec-
tions allow the whole system to adapt to navigation conditions.

The RHIZOME architecture preserves all the advantages of behavior-based architectures
such as rapid responses to unforeseen problems in dynamic environments while combining
it with the a priori knowledge of the world used in deliberative architectures. However,
this knowledge is used to only corroborate the dynamic visual perception information and
embedded knowledge, instead of directly controlling the actions of the robot as most hybrid
architectures do. The information is represented by a sequence of arti�cial navigation signs
leading to the �nal destination that are expected to be found in the navigation path. Such
sequence is provided to the robot either by means of a program command or by enabling it to
extract itself the sequence from a �oor plan. This latter implies the execution of a �oor plan
analysis process. Consequently, in order to take the right decision during navigation, the robot
processes both set of information, compares them in real time and reacts accordingly. When
navigation signs are not present in the navigation environment as expected, the RHIZOME
architecture builds new reference places from landmark constellations, which are extracted
from these places and learns them. Thus, during navigation, the robot can use this new
information to achieve its �nal destination by overcoming unforeseen situations.

The overall architecture has been implemented on the NAO humanoid robot. Real-time
experimental results during indoor navigation under both, deterministic and stochastic sce-
narios, show the feasibility and robustness of the proposed uni�ed approach.

Keywords: Arti�cial neuronal network-based control architecture, autonomous mobile
robot indoor navigation, visual perception, data merging, �oor plan analysis, pattern recog-
nition, behavior-based hybrid approach.
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Résumé

L'architecture RHIZOME: Une Architecture de Contrôle Neurocomportementale

Hybride pour la Navigation Autonome Indoor des Robots Mobiles Reposant sur

la Perception Visuelle

Les travaux décrits dans cette thèse apportent une contribution au problème de la navi-
gation autonome de robots mobiles dans un contexte de vision indoor. Il s'agit de chercher à
concilier les avantages des di�érents paradigmes d'architecture de contrôle et des stratégies de
navigation. Nous proposons dans ce but l'architecture RHIZOME (Robotic Hybrid Indoor-
Zone Operational ModulE): une architecture de contrôle robotique mettant en synergie ces
di�érentes approches en s'appuyant sur un système neuronale. Les interactions du robot avec
son environnement ainsi que les multiples connexions neuronales permettent à l'ensemble du
système de s'adapter aux conditions de navigation.

L'architecture RHIZOME proposée combine les avantages des approches comportemen-
tales (e.g. rapidité de réaction face à des problèmes imprévus dans un contexte d'environnement
dynamique), et ceux des approches délibératives qui tirent pro�t d'une connaissance a priori

de l'environnement. Cependant, cette connaissance est uniquement exploitée pour corro-
borer les informations perçues visuellement avec celles embarquées. Elle est représentée par
une séquence de symboles arti�ciels de navigation guidant le robot vers sa destination �nale.
Cette séquence est présentée au robot soit sous la forme d'une liste de paramètres, soit sous la
forme d'un plan. Dans ce dernier cas, le robot doit extraire lui-même la séquence de symboles
à suivre grâce à une chaine de traitements d'images. Ainsi, a�n de prendre la bonne déci-
sion lors de sa navigation, le robot traite l'ensemble de l'information perçue, la compare en
temps réel avec l'information a priori apportée ou extraite, et réagit en conséquence. Lorsque
certains symboles de navigation ne sont plus présents dans l'environnement de navigation,
l'architecture RHIZOME construit de nouveaux lieux de référence à partir des panoramas
extraits de ces lieux. Ainsi, le robot, lors de phases exploratoires, peut s'appuyer sur ces
nouvelles informations pour atteindre sa destination �nale, et surmonter des situations im-
prévues.

Nous avons mis en place notre architecture sur le robot humanoïde NAO. Les résultats
expérimentaux obtenus lors d'une navigation indoor, dans des scénarios à la fois déterministes
et stochastiques, montrent la faisabilité et la robustesse de cette approche uni�ée.

Mots clés: Architecture de contrôle neuronale robotique, navigation autonome indoor
de robots mobiles, perception visuelle, fusion de données, analyse d'un plan du bâtiment,
reconnaissance de symboles, approche hybride comportementale.
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1.1 Context

A large extent of research in the last four decades has been focused on the conception of
robust, �exible and reliable autonomous robots capable of traveling from a starting point
to a goal. Robot navigation can be de�ned as the process allowing a mobile robot to move
autonomously from a starting point towards a �nal destination by using sensorial data in an
environment that, in most of the cases, is dynamic and unpredictable.

Mobile robots such as wheeled and bipedal robots are widely being used for a variety of
applications in military, industry, service and domestic environments. There exist di�erent
navigation approaches of achieving mobility in robots, but they all serve the common purpose
of leading the robot to its �nal destination in a safe way.

In order to better understand these approaches, as well as the motivation behind this
work, the requirements of navigation are presented using the analogy to a daily life navigation
scenario below(see �gure 1.1).
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Imagine that you arrive for the �rst time to a large unknown building and you are
required to �nd your way within it to get to a �nal destination. Depending on the
purpose of your visit, the time constraints and the availability of the information
about the building, di�erent strategies can be considered.
Firstly, you can use a map of the building (map-based navigation). With it, you
can plan in advance the path trajectory leading you to the desired destination (o�-
line planning). You can either read the map that is at the entrance of the building,
get it printed in a paper-based form, or, in a rare case, have it on a phone or tablet
in a digital form. In the �rst case, as you can only see it once, it would require
you to �rst memorize the distance to walk as well as the landmarks or places you
might encounter so that they can be looked in the environment while navigating.
This case is similar to as if someone else, already knowing the place, would have
given you some indications (e.g. landmarks and distances) to get there. In the two
latter cases, the memorization task will not be necessary as you can just match the
map information (usually landmarks) continuously with what you perceive while
navigating.
Alternatively, you can build your own map (map-building navigation), as you
navigate the building and learn the path trajectory (on-line path planning) leading
you to the �nal destination. In either case (map-based or map-building navi-

gation), maps can contain either all dimensions of the environment including dis-
tances between places within the building (metric map) or just an arrangement of
the important landmarks and places according to their proximity (topological map).
There is also the option to �nd the destination without the support of a map
(mapless navigation) by exploring the building at your ease. By memorizing
the di�erent landmarks or places seen while walking, you could build your own
path trajectory as you go further (on-line path planning) until �nally arrive to your
destination.

Understandably, any of the above approaches can be used in both indoors and outdoors
environments, but they all have their pros and cons.

For instance, having a map of the building before the navigation activity starts would
allow you to reach the desired destination fast, while knowing at all times your position with
respect to both starting and �nal points. However, it requires that somebody has previously
drawn the map of the building, and it has remained the same since it was drawn.

Instead, building your own map based on what you are currently perceiving would provide
you up-to-date knowledge about the building as well as a certain autonomy compared to the
�rst approach. Thus, in case of any recent change of the environment you could adapt to
it and store the path for the next time the information is needed. However, building your
own map would take you a lot of time and e�ort especially if your own position is not clearly
known with respect to the starting or the �nal point.

Similarly, navigating without any map would allow you to �nd new and di�erent ways of
accessing the desired destination in case that one of them has been blocked for any reason.
However, this task would require you to have su�cient time to explore all possible ways.
Additionally, since there is no recording of the environment, returning to the starting point
or coming back another day would be as time consuming as it is the �rst time. Moreover, if
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Figure 1.1: Exemple of the di�erent navigation strategies

you get lost on the way, it would be di�cult to know where your location is with respect to
the starting point and the �nal destination.

In the context of autonomous robot navigation, many systems attempt to give a solution to
the navigation problem by employing any of the above navigation strategies. The navigation
process usually involves the use of world representation, localization, path planning, in
order to execute the appropriate action according to the perceived environment information
without continuous human guidance.

Each functional module is by itself a vast research �eld and the existing relationships
among them and means of integration are de�ned by a control architecture. For instance, one
or some of them can be omitted in the overall process depending on the control architecture
or the navigation strategy employed. For a general overview or detailed description of these
modules, the reader can refer to the appendix section and chapter 2 respectively.

Control architectures are the core of successful navigation as they impose constraints on
how the system can be controlled. There are considerably many possible ways to program a
robot and currently, not a single control architecture can be said to excel at performing in
all possible applications.

The complexity of control architectures is subject, to a large extent, to the special needs of
robot systems that most of the time must be ful�lled concurrently and asynchronously. How
they succeed at organizing, unifying and monitoring the aforementioned modules to enable
an e�ective navigation strategy is highly determined and limited by both the application
�eld and the robotic platform implementation. Consequently, robotic systems can be divided
according to both application �eld and robotic platform.
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From the application �eld point of view, di�erent scenarios to which robot systems (e.g.
industrial robots, domestic or household robots, service robots, military robots, space robots)
are exposed need to be considered. For instance, in deterministic scenarios where the envi-
ronment remains intact, the navigation task can be simpli�ed to the act of just going from
a starting point to the �nal destination by sensing the environment and/or following the
planned path if a representation of the world is previously provided. On the contrary, in
stochastic and thereby more realistic scenarios such as those found in search and rescue ap-
plications, robots systems must cope with unexpected situations by reacting accordingly and
responding within varying temporal scopes when performing real time navigation. They must
have decision-making capabilities to act in accordance with multiple and di�erent tasks while
still achieving to the �nal destination.

From the robotic platform implementation point of view, robot systems (e.g. wheeled
robots, bipedal (humanoids) robots, marine (underwater) robots, aerial robots), need to
control diverse physical components such as sensors, actuators, processors. in order to interact
with uncertain and often dynamic environments in real time. Additionally, the quick growth
of the embedded power computing requires the architectures to be �exible enough to allow
the replacement of components in the �eld when necessary and easily adaptable to di�erent
platforms in order to perform di�erent missions while still maintaining an autonomy.

All these facts must be taken into account as their impact is substantial for the conception
and development of an autonomous robot navigation system. Hence, in order to manage
such complexity, many architectures have been proposed, along with software and material
components needed to support them.

Most control architectures have shown to excel at performing a successful autonomous
navigation in a speci�c application �eld despite the constraints of the platform employed.
However, they usually fail when a di�erent scenario is presented and the platform require-
ments are no longer adequate for the given task.

1.2 Scope of the thesis

Since a multitude of situations can lead to a diversity of architectural solutions and related
mechanisms, an ideal solution would be to conceive and implement a control architecture as
generic as possible, which can overcome all di�erent sort of constraints. Thus, such archi-
tecture should be �exible enough to allow the addition of new components (hardware and
software) without questioning or modifying the already existing ones at whatever level they
might be; and consequently o�er transparent mechanisms of communication and exchange
of data. It should also be capable of a high-level decision-making capacity to perform the
adequate actions while being able to re�ne and adapt its plans and its behaviors according
to its goals and to the unpredictable environment changes. Moreover, since such architecture
would be capable of performing (sometimes concurrently) multiple actions, it should also be
robust enough to manage the priorities of di�erent tasks, the sudden malfunctions and the
redundancy of the information given by the multiple sensor sources while still guarantying a
safe performance.

The list of these properties is endless and after a certain point, it is impossible to make
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it exhaustive since our capacity of imagining all kind of situations to build an all-purpose
autonomous robot system is quite limited by many reasons (i.e. technological, societal,
ethical, etc). We could conversely, think of an architecture that is not only endowed of the
established properties permitting to respond to di�erent constraints but also and overall, an
architecture capable of transforming itself according to any new unforeseeable parameter.

The author of this work is aware of the fact that succeeding in conceiving and implement-
ing such generic architecture is not an easy task and that it will require a lot of time, e�ort
and resources to get there. Therefore, the work presented in this thesis must be regarded as a
step on the path towards �nding a more general, highly robust and e�cient approach to con-
trol robot architectures that allows autonomous robot navigation in a variety of scenarios. To
this end, this work focus exclusively on the constraints given by the di�erent application �elds.

To summarize, the main goal of this research thesis is to propose a new robotic

control architecture capable of easy adaptation to di�erent scenarios where a robot is

able to navigate towards its �nal destination while coping with possible unexpected

situations. To this end, the work presented in this thesis has been conducted within

the context of an indoor visual-based robot navigation with the application on a

humanoid robot using a camera as the only sensor to perceive the environment.

Two completely di�erent scenarios (from which many others can derive) are here

considered:

1. A deterministic scenario supposing that the environment remains always the

same,

2. A stochastic scenario presenting unforeseen changes in the environment.

The distinction of these two scenarios suggests that they both are de�ned vis-à-

vis a prior knowledge of the environment and the possibility of matching or not

with it. Hence, during navigation, the robot looks for the expected information

in the navigation path; and by performing the respective matching with what it

is currently being perceived, it can corroborate the information analogous to the

map-based navigation strategy.

1. Thus, when the matching along the way to the �nal destination results posi-

tive, it can be deduced that the robot is navigating within a deterministic

scenario.

2. Otherwise, the scenario is assumed to be stochastic and the robot is obliged

in return to �nd a way to get to its �nal destination by following some mapless

navigation techniques.

From its creation through its development and completion, this work has its founda-
tion on two important pillars: the state-of-the-art indoor navigation strategies

based on visual perception and the di�erent paradigms that control architectures
are based on.
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Indoor navigation can be divided into map-based, map-building and mapless navigation.
While map-based navigation provides a model of the environment before the navigation
starts, map-building builds one as the robot navigates the environment. Mapless navi-

gation systems instead, do not employ any representation of the world and the movements
of the robot depend on the elements observed in the environment.

The paradigms of control architectures can be classi�ed according to two di�erent view-
points: functional and design viewpoints. The functional viewpoint classi�es the paradigms
in terms of their internal functionality and thus in terms of their capabilities to act on the
environment when performing a given task. These are deliberative, reactive, hybrid and

behavior-based . The design viewpoint speci�es two paradigms based on how the data in-
formation is processed and propagated through the systems as well as how the knowledge is
ordered: top-down and bottom-up.

For a deeper insight, the reader can refer to the state-of-the-art presented in Chapter 2
and Chapter 3 for vision-based robot navigation and control architectures respectively.

1.3 Proposed Solution

In order to meet the above objective according to the speci�cities given by the di�erent scenar-
ios, the RHIZOME (RoboticHybrid Indoor-ZoneOperationalModulE) control architecture
is here proposed.

The architecture is composed of an arti�cial neural network comprised of interconnected
arti�cial nodes that compute their output values from one or more inputs received, akin to a
biological neural network in the nervous system of an organism. These computational models
have properties such as associative memorization, learning and parallel multi-information pro-
cessing. Their interconnectivity is such that the whole system is capable of self-adapting with
regard to its inputs resulting from the interaction between the robot and the environment.

During the conception and implementation of the RHIZOME architecture, a number of
questions, knowledge gaps and decisions points needed addressing in order to choose the best
solutions among the existing ones. This is given next, via sequential addressing of some of
the most relevant questions, before getting into the details, characteristics and functioning of
the RHIZOME architecture.

1.3.1 Problems addressed and contributions

Conceiving and implementing a control architecture capable of adapting to di�erent scenar-
ios requires satisfying various very di�erent requirements. For that purpose, the problems
addressed in this thesis were reasoned according to the aforementioned working scenarios
(deterministic and stochastic) constraints. A logical approach was used to �ow down from
one question or decision point to the next, gradually �rming up the solution space to the
problem at hand, in the form of the RHIZOME architecture. This logic is presented below
to justify the decisions undertaken by providing the rationale behind them.

1. How can the world (navigation environment) be used in the best way pos-

sible to help a robot to navigate?
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Going back to the daily life analogy described above where three di�erent navigation
strategies can be considered to get to the �nal destination, it should be noted that
there is a common denominator: the use of salient and most of the time stationary
cues serving as references points. Certainly, when using a map, the information (after
having planned the complete path) can be just reduced to the distance to walk and the
di�erent directions to take. However since most environments are prone to unforeseen
changes, perceiving the environment is necessary to corroborate that the information
given by the map has not been modi�ed. Likewise, when no representation whatsoever
of the world is provided in advance, those cues play an important role in the navigation
task.

This can be seen from the early days of sea navigation where reference points were
essential to sailors to localize themselves and navigate in the oceans. Before the ar-
rival of modern navigation techniques, the pole stars were used as reference points for
navigating since they did not disappear in the horizon. Similarly, in our daily life,
cues (referred as navigation signs hereafter) are found all around us to help with our
navigation chores. From tra�c signs on the roads, directional signs in metro stations
and airports to �re safety signs in the buildings, all these signs help in a way or other
to guide us through the destinations we want to achieve (1.2).

Fire safety signs

Traffic signs

Directional signs

Sailor navigation signs

Figure 1.2: Exemple of the di�erent navigation signs found in our daily lifes.

Based on this insight, this work makes use of some navigation signs for reference
purposes in the navigation task of a mobile robot. By detecting and recognizing such
signs while navigating the environment, the robot is guided through to achieve its �nal
destination. Two types of navigation signs are here considered: Arti�cial signs and
natural signs. Arti�cial navigation signs refer to predesigned signs previously placed
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along the navigation path. Conversely, natural navigation signs refer to natural patterns
within the environment su�ciently remarkable to be considered as reference points.

The use of both types of navigations signs can be considered from the point of view
of two completely di�erent paradigms that have their roots in the �eld of arti�cial
intelligence. First, the symbolic paradigm of arti�cial intelligence assumed that the
manipulation of symbols was su�cient to treat many aspects of intelligence such as the
control of complex actions in the machines. This can be true and has proven to be
robust over the years when the output of a machine manipulating symbols are based
on de�nite inputs and when there is certainty (e.g. expert systems, deliberative robotic
control architectures, etc.).

This was a predominant paradigm over almost three decades from the mid-1950s. How-
ever, their lack of robustness under uncertainty led new researches to look into a sub-
symbolic approach: the nouvelle AI paradigm. Contrary to the symbolic paradigm, the
nouvelle AI paradigm does not use a speci�c representation of the world to approach
intelligence, but instead it postulates that intelligence emerges from simple behaviors
resulting from the interaction of the robot with its immediate environment via sensory-
motor links. Rather than using a single centralized planner, the system stores repre-
sentations in a distributed fashion over multiple behaviors, while the overall ensemble
composes an interconnected behavior network. Hence, each behavior, representing a
component of the whole representation, communicates with other representation be-
haviors as well as utilizes other low-level behaviors.

Hence, while the arti�cial navigation signs are used in this work as high-level symbols
that the robot can manipulate under a deterministic scenario, the natural navigation
signs resulting from the interaction of the robot with the environment are used in the
absence of the arti�cial navigation signs under a stochastic scenario. This con�guration
result from the following questions and their converging answers.

2. How can the robot access its �nal destination in the most e�cient and simple

way?

The simplest scenario that can be imagined is one in which the representation of the
world is computed beforehand and it is found as such during the navigation task. Such
con�guration implies that the scenario is deterministic and the representation of the
world is provided to the robot before the navigation activity starts.

From the navigation point of view, a map-based navigation strategy is suitable for
this case since it uses a representation of the world in advance.

From the architectural point of view, a deliberative architecture and top-down

processing seems to be more suited to process the information given by the map
and plan the navigation path. In e�ect, deliberative architectures were the dominant
paradigm for building robots based on a previously given model and process the infor-
mation in a top-down fashion. In our case, the model corresponds to the environment
within which the robot needs to navigate.
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• But what type of map?

Digital �oor plans of buildings (such as hospitals, schools, residential complexes
or factories) are typically not as readily available as digital maps of entire cities,
countries etc. Hence, when trying to navigate an unknown building, one has to
rely on �oor plans available in physical form at the entrance of the building or
on paper to achieve one's �nal destination. Since such a �oor plan provides one
of the fastest way to access comprehensive information about the inside of the
building, it is the type used here to represent the world information (in this case,
arti�cial navigation signs designed on the map according to their placement in
the navigation path). Then, computing a sequence of these signs according
to their order of appearance within the path from the starting point to the �nal
destination and then looking for them in the same order along the navigation path
seems to us to be most suitable option to obtain the information. This implies a
topological con�guration of the map, where the only information needed is the
sequential relationship among the signs.

In the case the sequence of signs is the only thing provided to the robot, there are
some chances to fall into the �symbol grounding problem� [Harnad 1990]. This
problem refers to concerns and issues such as: What is the directional meaning
of each sign? Would it be the same if they were found in another environment?
How can the robot interpret and deduce their meaning? All these questions or
problems can only be answered by allowing a constant interaction between the
robot and the environment

Conversely, if the robot has the autonomy of "reading" the map by itself, it could
compute not only the sign sequence but also the directional meaning each sign
denotes as well as the distance among the signs. To this end, some metrics usually
found in metric maps would also be needed.

Regardless of the information obtained (signs sequence only or signs sequence with
their corresponding directional meaning), the interaction with the environment be-
comes essential in this task as the robot needs to compare the obtained information
to what it perceives in the real environment. The robot should not only be able
to corroborate the information given by the map (sign recognition) but also, it
should know what action to perform among di�erent and multiple other possible
actions resulting from recognizing (or inability to recognize) the sign.

Interacting with the environment is quite challenging, as it is most of the times
dynamic and unpredictable; and even though the use of a priori information might
alleviate the navigation task, a good system should be �exible enough to cope with
any potential unforeseen change in the environment. Therefore, it is necessary to
�nd out the best solution allowing handling the uncertainty problem and thereby
the execution of a given action among many other. This takes us to the next
question.

3. What type of mechanism or model seems to be well suited to handle dynamic

environments?
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In order to tackle the uncertainty problem given by dynamic environments, the best
model one can think of is that of the human brain. In e�ect, humans have shown an
extreme capability to handle unforeseen changes by reacting accordingly, learning by
example and from experience and easily adapting to any given situation. Such successful
performance can be attributed to the thorough work of the brain and its components.

Hence, the properties, behavior and functionality of the neurons composing the brain
have been the inspiration of several models in arti�cial intelligence and they represent
the foundation of the internal components of the proposed architecture.

The neural models of the connectionism formerly known as the Parallel Distributed
Processing or PDP models [McClelland 1986], use simple and often uniform neuron-like
processing units to process the information. The memory is carried locally through the
interaction of a large number of these units via excitatory and inhibitory signals. Each
unit receives input from its neighbors, executes a function according to the received
inputs and computes an output value. The inherently distributed con�guration allows
the computation of several units to be carried out simultaneously which compared to
serial models, allows to hasten the information processing.

The representation of the knowledge in PDP models is not stored in a state or a long-
term memory as it can be found in other conventional models. Conversely, the knowl-
edge is part of the process itself and determines the course of it in the sense that it
is stored in the connections strengths among units as a long-term memory, while the
short-term memory is stored in the states of the units. The units may represent di�er-
ent things depending on the model. For instance, a simple unit can represent a feature,
a symbol or a concept. It can also represent abstract elements, which by assembling it
with many other can represent an entire feature or concept.

An extremely important property of these models is that it is possible to learn through
experience by a using a modulation mechanism allowing to adjust the connection among
the units. There exist di�erent rules for adjusting the connections. Most of them derived
from the learning rule proposed by [Hebb 2005] who stipulated that when two units are
simultaneously excited the connection between them is strengthened.

From the architectural point of view, behavior-based architectures are composed of a
collection of behavioral modules organized in a distributive and parallel fashion alike
the PDP models. They are usually executed concurrently and asynchronously and by
bringing them together under complex environments, emergent behaviors can occur.
Since there is no central control among the behavioral modules, all layers are intercon-
nected allowing an internal communication to decide on the best action or behavior to
be performed [Edelman 1987].

Therefore, a behavior-based architecture with a bottom-up processing seems to
be a good option to tackle the uncertainty of real-time interactions under dynamic and
unpredictable environments, in particular given the great achievement of the subsomp-
tion architecture of Brooks [Brooks 1986] at overcoming such problems.

This work follows the same line of thought of the behavior-based architecture in order
to adapt to new changes and act accordingly. More particularly, the mechanism, prop-
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erties and components of the proposed architecture are based on the PerAc architecture
Inspired mainly by the works of Brooks [Brooks 1986], [Edelman 1987],[Carpenter 1987]
and proposed by Gaussier and Zheren [Gaussier 1995] as an organized neural structure.

The PerAc architecture makes no use of any representation of the world to control
the action of the robot. Conversely, it follows a perception-action mechanism that
constantly evolves because of the dynamic interaction between the robot and its envi-
ronment (see section 3.2.2.4 in chapter 3 for more information).

• What action can be performed in case the expected information is not

seen in the environment?

The absence of the arti�cial navigation signs within a stochastic environment forces
the robot to opt for a new navigation strategy requiring it to �nd new reference
points to follow its way. To this end, �nding natural navigation signs as a result of
the interaction of the robot with the environment as found inmapless navigation

strategies seems to be a good solution.

However, this work goes beyond the detection of natural navigation signs by us-
ing a more robust system based on a biologically inspired approach proposed by
[Gaussier 2002], which allows place recognition. In e�ect, a place can be identi�ed
as a stable reference point that can be learned by keeping in memory the location
of the most relevant perceived patterns within the panoramic visual �eld of the
robot. Returning to this place then consists in navigating until recognizing the
same learned patterns.

The robustness of such approach lies in the fact that even if one or several patterns
characterizing the place are removed or not visibly available anymore, a place can
still be recognized. Additionally, by means of a triangulation process it is possible
to obtain information about the robot's position with respect to the surrounding
environment.

Finally, the fact of knowing the action to perform when the expected information
is not seen in the environment implies that there has been a process allowing
to compare both source of information (the a priori and the perceived real-time
information while navigating) and that there has been a choice of excecuiting an
action according to the result. Thus, a �nal question arises as follows.

4. How to merge both input information and use it to act according to the

resulting comparison?

The solution to this question may be seen as the convergence of all the above questions
and answers into a single and unique structure. How to combine a priori and real-time
dynamic information? how to combine both deliberative and behavior-based architec-
tures? Alternatively, how to combine the use of di�erent techniques from mapless and
map-based strategies?

All such questions can be covered by answering to a more general question: how can a
connectionist model be combined with a symbolic computation model?
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Over the years, both views have been considered opposite to each other. Whereas the
knowledge information is stored in the connection strengths among the network units
of the connectionist approach, the same knowledge is represented by strings of symbols
in the classical symbolic approach.

Despite the di�erences, some connectionists [Sun 2001a],[Sun 2001b] agree that it is
possible to reunite both paradigms into a connectionist architecture. They postulate
that it should be possible to implement a symbolic processing in a neural network given
the ability of humans to perform high-level symbol-manipulations tasks despite the
neural net con�guration of the brain.

Following the same line of though, the architecture proposed in this work

takes advantage of the properties characterizing the neural networks to merge

both information into a neural structure.

Three types of units have been distinguished in classical neural network models: input,
output, and hidden units. In this work, the author has opted for naming internal
units what it could seemingly be the hidden units, in order to avoid any association
to the con�guration of the most commonly known models of neural networks such as
the recurrent Neural networks (RNN) or the Feed-forward Neural Networks. Indeed,
contrary to those models, the presented architecture takes the liberty of connecting the
units and group of units in a distributed fashion di�erent from what one can be used
to see. The reader can refer to chapter 4, which explains in detail the connections of
such units within the context of our work.

As far as the action-selection problem is concerned, the properties of the arti�cial neu-
rons give an inherent solution to it. In his book, the mindful Brain [Edelman 1987],
Edelman develops his theory of neural Darwinism, where he evokes the plasticity in
the neural networks in response to the environment. The interconnection among the
neurons is reinforced through experience and when a external or internal stimulus is
received by the system, di�erent neurons are simultaneously activated sending the in-
formation to their neighbors. The output is then the result of the di�erent activations
stimulated by a given input source.

Arti�cial neural network models have the ability to model any given function. There-
fore, it is possible to set di�erent activation functions along the network in order to
trigger di�erent behaviors.

As a result, the whole system works in parallel and a �competitive mechanism� allows
deciding on the best behavior or action to perform for controlling the robot according
to the stimulus received [Carpenter 1987],[Kohonen 1990].

1.3.2 Summary of the contributions

The fact of analyzing, reorganizing and synthesizing solution areas as presented above, led
the author to understand that the conception of a unique control architecture capable of
responding to di�erent scenarios constraints is only possible by conciliating all di�erences
among the so-far-proposed paradigms. Thus, rather than embracing a single approach or
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following a single path of though, one can think of creating a synergy of multiples approaches
by merging them into a transversal structure.

The whole set of contributions of this work is next summarized. They follow the di�erent
approaches that served to achieve the �nal goal of representing and conceiving such hybrid
con�guration .

Navigation Viewpoint: From the navigation point of view, two navigations strategies
are used.

Map based: The analysis of the �oor plan in real time undertakes a thorough process
permitting the robot to extract the relevant information for its integration into the system. It
consists of (1) an information segmentation process, which identi�es and separates di�erent
types of information; (2) followed by structural analysis where the information is extracted
(walls and navigation signs separately); (3) and �nally a semantic analysis allowing the
extraction of the sign sequence based on the computation of the path and the information of
the signs. While the �oor plan is designed in a topologic fashion, the extracted information
is both topologic and metric.

Mapless: A biological approach for place recognition based on place cells is implemented.
Firstly, the procedure for detecting the landmarks undertakes two-classi�cation process. The
SIFT local descriptor [Lowe 2004] and a visual bag of words model are �rst used in order
to describe distinctly the salient features of all the images. Then the features are clustered
according to their proximity in terms of distance and the resulting group is considered as the
salient landmark. Finally, each landmark is compared to others by computing the norm of
the di�erence between the features describing them. Secondly, the internal computation of
the neural components are modi�ed in order to allow the robot to compare the landmarks
perceived from di�erent places during navigation, by using a vigilance term inspired by the
work of Grossberg [Carpenter 1987] and learn them when not recognized. Consequently, the
system learns incrementally.

The third navigation strategy, Map building, is only presented as a perspective for future
work. At the end of the navigation, the robot is capable of updating the map with the new
information given by the place cells. The map is built by merging both static map information
and recently-changed information. The methodology used correspond to the map-building
training phase. A SLAM technique could also be foreseen.

Architectural Viewpoint: Two points of view can be considered from which all types
are in a way or other used.

Functional Viewpoint: Contrary to the PerAc architecture, the RHIZOME architec-
ture uses an a priori knowledge of the environment in order to corroborate the dynamic visual
information perceived during navigation. Hence, it is composed of both deliberative and
behavior-based modules interconnected by a neural network which makes of it a hybrid
architecture. However, the hybrid sense here opposes to the currently known hybrid archi-
tectures that use an intermediate component to reconcile both representations and to resolve
any con�ict between their outputs. It acts as the coordinator of the system and it plays an
important role in the good performance of the system.

Conversely, the RHIZOME architecture can be considered as being entirely behavior-



14 Chapter 1. General introduction

based capable of combining two opposing approaches without the need of a coordinator
component. Hence, a behavior-based hybrid architecture.

However, it di�ers from the common behavior-based control architectures in the fact that
this architecture does not follow a hierarchical process but instead, each action or behavior is
equally important and the resulting action emerges from the interaction with the environment
and the internal motivation of the robot.

Design Viewpoint: Whereas the information available from the map is obtained by
following a top-down process, the emergence of behaviors and actions of the robot result
from a bottom-up process.

Consequently, such hybrid or multi-hybrid con�guration, if one might say, results in the
conception of a complete architecture imbricating di�erent architectures each suited for a
di�erent scenario.

1.3.3 The RHIZOME architecture

The RHIZOME architecture emerged out of the will to provide an adequate autonomy to mo-
bile robots allowing them to navigate within an environment while being capable of adapting
themselves to unforeseen situations presented in it. It consists of a behavior-based hybrid
architecture that fuses the a priori information and real-time visual information of the world
into a neural structure.

The a priori information of the world is used to only corroborate the real-time visual
information perceived during navigation, contrary to most hybrid architectures that use it
to directly control the actions of the robot. Additionally, instead of using a complete motion
path, the RHIZOME architecture makes use of arti�cial navigation signs and their expected
sequence in the navigation path. Consequently, in order to take the right decision during
navigation, the robot is able to process both set of information, compare them in real time and
react accordingly. When the navigation signs are not present in the navigation environment
as expected, the RHIZOME architecture allows the robot to learn and recognize places based
on natural navigation signs that it perceives in the environment. Thus, the robot is still
able to achieve its �nal destination by overcoming the unforeseen situations. The RHIZOME
architecture is composed of a hybrid behavioral structure that combines a deliberative module
and one or several behavioral modules as illustrated in �gure 1.3.

• On one hand, the deliberative module represented by the top half box of �gure 1.3
corresponds to the a priori knowledge of the navigation environment. In this work, it
is given in the form of navigation signs that are expected to be found in the navigation
path. The sign sequence is computed beforehand according to the order of appearance
of the signs within the path from the starting point to the �nal destination. It is either
integrated into the behavioral modules of the architecture through a command program
or by following a processing chain in charge of extracting it by computing a path plan
from a given map (�oor plan).

• On the other hand, the behavioral modules represented by the lower box of �g-
ure 1.3 are based on the PerAc (Perception-Action)architecture [Gaussier 1995] which
is composed of two levels of data streams corresponding to perception and action �ows.
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Figure 1.3: RHIZOME Architecture

The �rst level, Re�ex behavior box on �gure 1.4, uses a re�ex mechanism that con-
trols directly the robot's actions based on the information extracted from the perceived
input. The second level, Recognition box on �gure 1.4, uses a cognitive mechanism
performing recognition by integrating the aforementioned perceptive �ow and learning
sensory-motor associations. Figure 1.4 shows the PerAc architecture(left) which is used
in the behavioral module of the Rhizome architecture (right).

Thanks to the generic composition of the proposed RHIZOME architecture, it is possible
to develop the architecture further with respect to robustness and completeness by building
new layers and modules separately and simply adding them without modifying the already
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Figure 1.4: PerAc architecture(left) [Gaussier 1995]used in the behavioral module of the
RHIZOME architecture (right).

in-built components or modules. One can certainly go further and further on the construction
of many modules, as long as there are always new scenarios constraints to overcome.

In the context of this work, the RHIZOME architecture was conceived, built and im-
plemented through three di�erent scenarios under which, three interdependent architectures
emerged, each responding to the di�erent scenario constraints.

Deterministic scenario

• Rhizome1: Exploring the world with little information

• Rhizome2: Map-using autonomous navigation

Stochastic scenario

• Rhizome3: Self-learning and adapting according to unforeseen changes

The architectures should not be regarded as if there was a hierarchy among them or
as if they followed an evolution pattern where each architecture is the improvement of the
previous one. Conversely, starting from the simplest scenario imagined, the emergence of the
�rst architecture occurs. Then, its functionality together with its components propels the
functionality of a second one by integrating new components, and thus, the entire ensemble of
both architectures propel the functionality of the third one. Each architecture is as important
as the others are according to its corresponding scenario.
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1.4 Limitations

In order to accomplish a project on autonomous robot navigation, it is necessary to take into
account from the start the requirements that the task involves within the given constraints.
This implies de�ning beforehand the scope and limitations of the project. While the scope
has been presented all along this chapter, some of the most important tasks not considered
in this work are presented below.

Even though, localization is an important module in the achievement of a successful
navigation, it is not explicitly considered within the scope of this work. However, it is
assumed that by the use of a priori information of the world ( arti�cial navigation signs), the
position of each navigation sign within the environment is implicitly known and thereby the
position of the robot can be globally obtained. Likewise, in the absence of arti�cial signs in
the environment, the use of vision techniques used in this work allows the robot to be locally
localized. For a better insight of these techniques the reader can refer to the state-of-the-art
Chapter 2 section 2.4 where each navigation strategy is explained in terms of the techniques
used for localization and planning based on visual perception.

Another important task to consider in any navigation mission is the management of
obstacles (both static and dynamic) which represent a research subject on its own in the
robotics �eld. Obstacles avoidance is usually tackled by employing a variety of ranging
sensors. However, since the primary goal of this work was to use a camera as the only sensor,
the obstacles avoidance task is not considered in this work.

It should be noted that the author is wary that these limitations along with many other
can and must be considered in the development of the architecture for future work. For
instance, the consideration of new scenarios where the signs may be substituted with other
relevant visual or non-visual cues requiring the use of di�erent and multiple types of sensors.

1.5 Outline of the thesis

This thesis has been organized in three parts as follows:

PART I: STATE-OF-THE-ART

Chapter 2 describes the state-of-the art of vision-based robot navigation in terms of
the functional modules: visual perception, world modelling, localization and path planning.
More precisely, it describes their implication in each di�erent type of navigation strategies
by following a transversal structure proposed by the author. Two types of navigation strate-
gies are here distinguished: mapless navigation and map-based navigation composed itself of
map-using and map-building navigation.

Chapter 3 presents a detailed description of the state-of-the-art of the currently exist-
ing control paradigms. The author has chosen to present them according to two di�erent
viewpoints that can, of course, represent a single architecture. On one hand, the functional
viewpoint classi�es the paradigms in terms of their internal functionality and thus in terms
of their capabilities to act on the environment when performing a given task. On the other
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hand, the design viewpoint speci�es two paradigms based on how the data information is
processed and propagated through the systems as well as how the knowledge is ordered. The
common misconceptions found in the literature are here cleared and a summary of the ad-
vantages and disadvantages of all paradigms is given.

PART II : THE RHIZOME ARCHITECTURE

Chapter 4 explains the foundation of the RHIZOME architecture by explaining the
main components of RHIZOME 1. Since the navigation signs sequence is directly given to
the robot through a command program, this chapter focuses mainly on the implementation of
the di�erent layers composing a �rst behavioral module, which integrates the given sequence
and uses it to allow the robot to navigate towards its �nal destination.

Chapter 5 introduces RHIZOME 2 by presenting a thorough document analysis process
of a �oor plan of a building allowing the robot to extract by itself the sequence of signs
together with the corresponding directional meaning each sign denotes. A second behavioral
module is added to the architecture for the integration of the directional meaning into the
system.

Chapter 6 describes in detail the process allowing the robot to learn and recognize a
place based on natural navigation signs (patterns) and their relative positions perceived in
its surrounding. RHIZOME 3, implements the place recognition system in a third behavioral
module that together with the other modules presented in chapter 4 and chapter 5 allows the
robot to navigate autonomously by coping with unforeseen situations.

Each of the above chapters presents a set of experiments and results validating the ad-
vantages and feasibility of the proposed approach. All experiments were carried out within
the same environmental constraints and navigation conditions in order to, not only; evaluate
the functioning of each of the architectures but also to allow the possibility of distinguishing
the functionality of each architecture with respect to the others. A discussion of the results
opening to new perspectives is also given.

PART III : GENERAL CONCLUSION

Chapter 7 concludes the thesis, providing a summary of the presented research and giving
an outlook of the future challenges for autonomous mobile robot navigation. It also discusses
the anatomy of the RHIZOME architecture as a multi-hybrid architecture attempting to
conciliate most so-far used paradigms in the navigation task of mobile robots.
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Chapter 2

Vision-based robot navigation
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2.1 Introduction

Vision-based robot navigation was proposed by Desouza [DeSouza 2002] as being structured
in two main topics regardless the vision sensor used in any system: �outdoor� navigation
and �indoor� navigation.

On one hand, outdoor navigation is classi�ed by the regularity or not of di�erent properties
in the environment: structured and unstructured. While in structured environments, the
navigation task can be performed consistently by detecting and following the lines of the
road, paved paths, or others[Rasmussen 2014], in unstructured environments, the navigation
can be a more complex task to achieve as no regular properties can be tracked. In this case,
the robot needs to either explore the vicinity of its environment in a random way or have
a �xed goal position by using a map of the area and perform a localization algorithm to
execute its mission [Jiang 2013]. However, since outdoor environments can be large in size
and extremely irregular, the computational resources, time and storage capabilities required,
might be fairly huge.
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On the other hand, indoor navigation is subdivided into map-based, map-building and
mapless navigation. While map-based navigation provides a model of the environment be-
fore the navigation starts, map-building builds one as the robot navigates the environment.
Mapless navigation systems instead, do not employ any representation of the world and the
movements of the robot depend on the elements observed in the environment. Following
the same line of this taxonomy,[Güzel 2013] presented a survey of mapless strategies for au-
tonomous vehicle vision-based indoor navigation as illustrated in �gure 2.1.
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Figure 2.1: Vision based indoor mobile robot navigation techniques proposed by [Güzel 2013]

Such indoor and outdoor navigation distinction has been used as a referent in robot
navigation research for several years. However, with the continued progress on sensors as
well as mechanical and control aspect of mobile robots systems, several works hold into both
categories outdoors and indoors, especially those using a map.

Consequently, the state of the art presented in this work makes no distinction on the
type of the environment to build the system, but instead; it focuses on the distinction of the
systems needing a representation of the environment to navigate the working environment
(map-based navigation), and those that do not (mapless navigation). A comparable
classi�cation has been presented in a survey by Bonin-Font [Bonin-Font 2008], which gives a
detailed description of map-based and mapless navigation systems.

Additionally, these types of robot navigation include a combination of the following inter-
connected functional modules:

Perception: Perception provides the input for a successful control, decision-making and
interaction with other agents (robot, humans) in the environment. Perception is the pro-
cess of interpreting and transforming the sensory information of the state of the robot, the
environment and other external entities into a representation that can be used for further
processing or further actions.

World representation: By the use of di�erent sensors, it is possible to represent the
navigation world into a map and directly use it for computing the path trajectory to execute
the navigation task. It can also be possible to post-process it to update new information for
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better accuracy (mapping), and thus, achieve a more precise localization. Such map represen-
tation can either be built in advanced or constructed as the robot discovers its environment.
In either case, the representation can be divided into two categories resorting to either metric
or topological maps.

Localization: The localization of the robot denotes its capacity to establish its own
position and orientation in the environment. Localization techniques need a certain knowledge
of the environment, usually the origin or destination point or a map. Several techniques have
been proposed and their di�erence depends mainly on the nature of the robot's sensors, the
environment and the initial available information.

Path planning: Path planning is an extension of the localization task, in which it is
necessary to determine the starting and �nal goal position of the robot, within the same
reference system, in order to plan an optimal collision-free path amidst obstacles in the
environment (i.e. walls and objects) and thereby navigate towards the �nal destination. The
criterion of optimal performance depends on the application required. It can be chosen in
terms of distance (shortest path), time (fastest) or energy (least energy consuming). Path
planning algorithms are measured by their computational complexity. It can be divided into
two categories based on the availability or absence of a complete representation of the world,
namely o�-line and on-line.

The implication of these functional modules in each type of navigation strategy are de-
scribed in this section by following a transversal structure, which is best understood by the
�gure below (�gure 2.13). Whereas both types of navigation need the perception module to
capture and understand the information of the environment, only the map-based navigation
requires the world-representation module. Similarly, in order to navigate from a starting
point to a �nal destination, they both need to �nd ways of localizing in the environment and
plan a path trajectory.

Hence, this section comprises of three parts describing the �gure 2.13.

• Firstly, an overview of the techniques referring to visual perception is given. It refers
to a branch of machine learning known as pattern recognition that focuses on the recog-
nition of patterns. This latter is used in the di�erent navigation strategies for detection,
matching and recognition of various landmarks in the environment. Additionally, place
recognition, which is mainly used by mapless strategies is also described. A review of
vision-based sensors used in robot navigation is given.

• Secondly, a description of the world representation functional module is given. How-
ever, this section is rather small compared to the other two since most of the techniques
allowing the construction or utilization of it are related to the localization and type of
navigation strategies, which are explained in the third section. Therefore, only the
description of two of the most common type of maps (metric and topological)on which
our work is based is here given.

• Finally, since the localization and path planning functional modules depend mainly
on the availability or absence of information provided in advance such as a map, the
di�erent techniques employed are explained in terms of each type of navigation strate-
gies.
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Figure 2.2: Transversal structure representing the implication of di�erent functional modules
in all types of navigation strategies.
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functional modules in all types of navigation strategies.

Robot navigation based on visual perception systems (such as onboard camera systems)
has been especially prevalent over the last three decades. These systems are robust and
reliable as they provide detailed information about the environment, which may be overlooked
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by other types of sensors.
In the context of robot navigation, the robot needs to be endowed with the capacity

to analyze its surrounding environment.Therefore, the use of pattern recognition algorithms
is essential for either modelling the environment or detecting and recognizing landmarks
(usually used for references purposes) depending on the type of navigation performed by the
robot.

The pattern recognition problem is an essential research topic in computer vision. Most
of visual tasks in applications such as robotics rely fundamentally on the capacity to recog-
nize patterns, which permits to recognize faces, objects, places, complete scenes, etc. The
recognition process can be described as a set composed of two di�erent processes (see �g-
ure 2.4). First, the acquired images undertake a description and representation processes of
di�erent patterns which allow to simplify their learning and distinct recognition at a later
stage. Certainly, before carrying out these processes, it is necessary to perform an image
pre-processing, similarly to most of image processing tasks. Image pre-processing is essential
for removing any problem in the image related to the acquisition of it, such as illumination,
noise, perspective distortion in order to allow improving the quality of the image.

Pattern 
Recognition

Image 
preprocessing

Input image Feature vector Recognized pattern Improved image

Pattern  
Description and 
Representation

Figure 2.4: Pattern Recognition process composed of image processing, followed by a pattern
description and representation process and �nally a pattern learning and recognition process.
Image processing is not detailed in this work

Furthermore, a place can be also identi�ed and used as a more stable reference point to be
recognized by considering a set of patterns placed at di�erent location within the panoramic
visual �eld of the robot. This same mechanism has also been seen in some insects like desert
ants, which make use of a visual spatial memory to return to their nests, foraging stations or
other. For instance, Wehner and Raber [Wehner 1979] showed in an experiment that when
leaving their homes, the ants take snapshots of the patterns around their nests and keep in
memory their location. Then, they look for the same patterns located at the same position
and by means of a correlation method; they are able to return to their nest.

Based on this insight, a robot could learn a place by keeping in memory the location of the
most relevant patterns perceived around itself, and then easily return to it when necessary
by recognizing the same learned patterns as presented in this work.

Hence, this section describes the two processes of pattern recognition allowing visual
recognition with an emphasis on the methods used in the development of the work of this
thesis. Additionally, it presents the place recognition state-of the-art from the robotics point
of view detailing a biological approach. Finally, an overview of di�erent sensors used in
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vision-based robot navigation is given.

2.2.2 Pattern description and representation

Features de�ne the relevant parts that di�er from their immediate neighborhood in an im-
age and the detection of which can give a cue about the possible existence of any pattern
within the image. They can be found as isolated points, continuous lines, or small patches
depending on the model applied. A complete description of each of these features can pro-
vide information about a pattern and thus help to identify it as such. Hence, it is important
to provide a su�ciently detailed description so that the features can be recognized under
di�erent circumstances like changes in images scale, perspective, noise and illumination.

To that end, di�erent features description algorithms, attempting to describe the features
as precisely as possible to be recognizable at a later stage, have been proposed. However,
even though, they have shown to be very robust to any form of variations, most of the local
descriptors are high-dimensional and the computational cost of matching their similarity
within a large database is quite high. Therefore, the bag of visual words has been proposed
as an alternative to mitigate this problem. Thus, instead of directly search the similarity
between the descriptors, it quantizes the feature space of local descriptors into discrete �visual
words� (clusters) and the matching can be easily performed by simply counting the features
assigned to each cluster.

A particular advantage of this representation is that it �xes the dimensionality in all
images, which ease the work required for most machine learning that assume by default a
vectorial space input.

As follows, we give an overview of the most common features detectors and descriptors
proposed over the past years in the literature followed by a detailed explanation of the
SIFT algorithm [Lowe 2004] that is used in the context of this work to detect and describe
local features in images. The choice of the SIFT descriptors over the others was made by
considering its robustness to handle viewpoint variations and its highly distinctive description
for reliable matching while being fast at extracting the local features. We end up with a
detailed description of the bag of visual words.

2.2.2.1 Feature detection

Three categories can be manly distinguished: Edges detectors, corner detectors and blob
detectors.

Edge detectors: This type of detectors aim at detecting a set of points forming curved line
segments in the image, which correspond to a sharp change in the intensity of luminosity in
a grey-level image. It usually designs a boundary between two images regions, which allows
�ltering out the non-relevant information of the image, thus reducing the amount of data to
be processed. Di�erent detectors have been proposed in the past. The canny edge detector
[Canny 1986], is one of the most strictly de�ned methods that provide good and reliable
detection. The Deriche edge detector [Deriche 1987] based its algorithm on Canny's optimal
criteria for edge detection, therefore it is often referred as the Canny-Deriche detector. The
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di�erence, though, lies on the implementation on the �rst two steps out the four proposed
by Canny. In fact, it uses an IR �lter that optimizes the canny criteria given by its facility
to adapt to the characteristics of the processed images using only one parameter. Sobel and
Fedelman [Sobel 1968], proposed a �lter that convolves the original image with a two 3*3
kernels in order to calculate the approximations of the derivatives in horizontal and vertical
directions allowing to reduce costs in terms of computation.

Corner detectors: Corners are regions in the images with large variation in intensity in
all directions. Therefore, these type of methods attempt to detect interest points correspond-
ing to double discontinuity of the intensity function, produced by the intersection of two
edges, the re�ectance discontinuity or depth discontinuity. The best known and most used
corner detectors is the Harris detector, which is an improvement of the method proposed by
[Moravec 1985] that �nds the presence of a corner by computing the similarity of a patch
centered on every pixel in the image with other overlapping patches. Harris and Stephens
proposed to �nd the di�erence in intensity of the corner score with respect to all directions,
instead of using shift patches as Moravec's corner detector did. In an evaluation carried by
Schmid[Schmid 2000], the Harris corner was proved to be the strongest and most informative
detector. Edward Rosten and Tom Drummond [Rosten 2006] proposed the FAST (Features
from Accelerated Segment Test) algorithm as a solution for faster corner detection in real
time applications. Even though, it is much faster than other existing corner detectors, it is
limited by its threshold dependence and by the lack of robustness to high levels of noise.

Blobs/region of interest Blobs can be de�ned as regions of the image that are lighter or
darker than their surroundings. These detectors aim at extracting all the points of interest
that are inside the blobs and which are considered to be similar to each other. Two classes
can be mainly distinguished according to the position on the image: the di�erential methods,
which are based on derivatives of the function with respect to position, and the methods
based on local extrema, which are based on �nding the maxima (lighter regions), and the
minima (darker regions) with respect to their neighborhood. One common blob detector
is based on the Laplacian of the Gaussian (LoG) which convolves the original images with
a Gaussian kernel. Similarly, another approach was proposed and is referred as the di�er-
ence of Gaussians (DoG) approach where blobs can be detected from scale-space extrema
of di�erences of Gaussiens. The di�erence compared to the LoG approach can be found in
[Lindeberg 2012]. Mikolajczyk and Schmid [Mikolajczyk 2004] proposed a hybrid operator
between the Laplacian and the determinant of the Hessian blob detectors, where spatial se-
lection is done by the determinant of the Hessian and scale selection is performed with the
scale-normalized Laplacian.

2.2.2.2 Feature descriptors

A feature descriptor can be de�ned by a set of scalar numbers generated to describe an
object [Erusk 08]. In other words, a signature is built representing the contents of a region
in the image. Mostly all object recognition systems use descriptors to describe the regions of
interest. However, the choice of features is complex and depends on several factors such as the
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class of the object in question, the characteristics sensor, the context and the task to achieve.
The choice is often based on a compromise between the accuracy and the generality of the
features. Indeed, in the �eld of object recognition, it is necessary to �nd a characterization
method, which extracts the most e�ective local descriptors for generic recognition. The
corner detectors described above are usually rotation-variant which means, even if the image
is rotated, the corners can still be detected. However, they do not handle the problem when
the image is zoomed and what it was supposed to be a corner is no longer one but a �at
curve.

Therefore, in order to overcome this problem D. Lowe [Lowe 2004] came up with a new
algorithm called SIFT(Scale-Invariant Feature Transform), that in addition to its partially
invariance to a�ne distortion and illumination changes, it is invariant to scale which allows
to robustly identify objects even among clutter and partial occlusion.

Likewise, the SURF (Speeded-Up Robust Features) algorithm was later proposed by
[Bay 2006] as a speeded-up version of SIFT. They di�er from the fact that SURF �nds
scale-space by approximating LoG with Box Filter whereas SIFT approximates Laplacian of
Gaussian with Di�erence of Gaussian. Additionally, it uses the sign of Laplacian (trace of
Hessian matrix) for underlying interest point, which permits to distinguish bright blobs on
dark backgrounds from the revers situation. Even though, SURF has proven to be at least
3 times faster than SIFT while being good at handling blurred and rotated images, it is not
good at handling illumination and viewpoint changes.

Despite the fact that these two methods are called descriptors, they both also provide a
method to �nd the features, thus, they are also feature detectors.

Later on, the BRIEF (Binary Robust independent Elementary Feature) algorithm was
presented [Calonder 2010] as the �rst binary descriptor. It does not have an elaborate sam-
pling pattern or an orientation compensation mechanism. It does not provide any method
to �nd the features and it proves to be faster for calculation and matching. In 2011, the
ORB algorithm was proposed as good alternative to SIFT and SURF in terms of computa-
tion costs and matching performance [Rublee 2011]. ORB combines a FAST detector and
the BRIEF descriptor with some modi�cations to overcome the poor performance of BRIEF
with rotation.

2.2.2.3 Bag of visual words

The bag of words model was initially developed for text categorization [Lodhi 2002], where
each document is represented by a histogram based on the frequency of appearance of
each word of the vocabulary. Similarly, it was then applied to image categorization by
Csurka [Csurka 2004] in the �eld of object recognition, where the images are represented
by a histogram that counts the number of occurrences of each class of the local repre-
sentation (features) called visual words by analogy. Moreover, [Nister 2006], [Chum 2007]
have shown that this simple but e�ective representation of images is particularly useful
for matching features for speci�c instances of patterns. By the same line, accurate results
were presented in recent object recognition challenges by [Everingham 2008] and [Berg 2010].
Furthermore,[Torii 2013] used the bag of visual words model with a simple modi�cation of
weights over a scalable detection method allowing place recognition with repeated structures.
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The bag of visual words model consists of two steps. First, the construction of a vocab-
ulary allowing to identify the visual words by clustering the whole set of features extracted
according to their similarity. Second, the assignment of features of the new images to the
cluster with the closest centroid, followed by the histogram of the number of occurrences
of the features in the given image. The main advantages of this method is its simplicity,
its computational e�ciency and its invariance to a�ne transformation, occlusion, lighting
and intra-class variation. For a deeper insight, the reader can refer to the appendix toolbox
section.

2.2.3 Pattern recognition

Pattern recognition is the process of recognizing patterns and regularities in data. The
recognition process consists in generating a general function by assigning an output value to
input data based on key features. The function is a result of a learning-by-example algorithm,
which allows predicting reasonable outputs for new unseen data input by taking into account
the statistical variation.

Depending on the given task and the availability of the examples dataset, the assignation
of output values to input data can be done in advance during a training phase. Thus, learning
is performed o�ine and recognition of new data is performed online. This process is called
traditional or batch learning which opposes to incremental learning [Geng 2009] or adaptive
learning [Carpenter 1987] where the learning and recognition process needs to be executed
simultaneously and adapt itself to new input data.

Incremental learning is necessary when the complete input dataset is not available at
once, but instead the dataset appears as the system evolves according to the requirements of
the task. Pattern recognition has applications in computer vision, radar processing, speech
recognition, and text classi�cation. Additionally, it is generally categorized in two types ac-
cording to a learning procedure: supervised and unsupervised learning.

Figure 2.5 presents some state-of-the-art algorithms according to the type of learning
algorithms used in both batch and incremental learning.

Another type of algorithms allowing recognizing input data is also possible by using
pattern matching which is opposed to pattern recognition in the sense that is not considered
as a type of machine learning. Therefore, no learning is performed. However, pattern-
matching algorithms can sometimes perform an output of similar quality as that provided
by pattern recognition algorithms. Thus the common assomption that pattern matching is a
technique of pattern recognition.

2.2.3.1 Batch learning

The batch or traditional learning process is accomplished in a sequential mode by following
two di�erent but correlated phases: the training and the recognition phase. First, a complete
data set is trained in advance (o�-line) by a classi�er and then the recognition takes place
online by taking into account what it has been learnt. The template dataset is considered
su�cient to store all the necessary knowledge to be compared to, at a later stage, to new
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Machine

Learning Description Representation
Supervised

learning 

algorithms

Unsupervised 

learning 

algorithms 

Traditional

learning 

(Batch)

A complete dataset is trained
in advance by a classifier and
is considered sufficient to
store all the necessary
knowledge to be compared to
new input information in
order to perform the
recognition task.

Support Vector Machines
(Cortes, C., & Vapnik, 1995 )

Artificial Neural Networks 
(Riesenhuber et al. 1999)

K-Nearnest Neighbors 
(Zhang,H et al. 2006)

Random forest (L.Breiman
2001)

Deep Networks 
(Ivakhnenko's 1971)

Kmeans (Jurie, F., & 
Triggs, B. 2005)

K-Nearnest Neighbors 
(Ranzato et al. 2007)

Mean Shift ( Fukunaga, 
K., & Hostetler, L. D. 
1975 )

Expectation-
maximization
(Dempster et al. 1977)

Incremental 

Learning 

(adaptive)

Training examples become
available over time.
Therefore, both training and
recognition tasks take place
at the same time. The
recognition system is able to
adapt itself to the new
incoming information.

SVM (Syed et al, 1999)

ARTMAP(Carpenter et al. 
1991)

Fuzzy ARTMAP(Carpenter 
et al. 1991)

ART1 /ART2 
(Grosseberg and 
Carpenter 1987)

training

Recognition

Training / 
Recognition

Figure 2.5: Machine-learning techniques. Supervised and unsupervised algorithms according
to traditional learning and incremental learning

input information in order to perform the recognition task. However, it implies that new data
set expected to be recognized, has already been learned, in which case, the batch learning
techniques generates the best predictor.

2.2.3.2 Incremental learning

Due to the constantly changing and unpredictable environments encountered in many real-
word applications where the chances of emergence of completely new elements over the time
are quite high, it is unconceivable to assume that a �x and a priori training set is su�cient
to store all the necessary knowledge to be compared to any new input.

Therefore, the incremental learning process takes place every time a new input is fed to
the system and it adjusts what it has already been learned accordingly. Several approaches
have been proposed in the literature. For instance, [Syed 1999] stated that the Support
Vector Machines properties, which allow summarizing data by preserving the support vectors,
are a good indicator to extend their use, usually employed for batch learning, to �t in an
incremental learning framework. [Ross 2008] proposed a visual tracking method capable
of adapting to the target appearance changes by incrementally learning a low-dimensional
subspace representation.
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Following the same principle line but employing di�erent terms for the same meaning,
[Schuurmans 2007] proposed an implicit online learning algorithm that can learn from increas-
ing training examples while still updating its parameter vector to minimize a functional risk.
On the other hand, [Huo 1997] refer to an adaptive learning algorithm, which copes with the
time-varying nature of some acoustic and environmental variabilities, including mismatches
caused by changing speakers, channels, and transducer.

Similarly, Grosseberg and Carpenter [Carpenter 1987] introduced an adaptive algorithm
by using neural networks as a solution to the plasticity-stability dilemma that has to be
handled in incremental learning algorithms. The plasticity de�nes the capacity of a sys-
tem to adapt to a changing environment, however, the system can su�er from instability
as it can forget what it has previously learned when learning new information. Therefore,
the plasticity-stability dilemma consists in �nding how a learning system can still learn new
information by preserving its previously learned knowledge. To that end, Grosseberg and
Carpenter proposed the Adaptive Resonance Theory (ART), which is a self-organizing com-
petitive neural network.

The basic ART is based on an unsupervised model and has a self-regulating control
structure that allows a stable autonomous recognition and learning. It is mainly composed
of four components: a comparison vector �eld, a recognition �eld, a vigilance parameter
and a reset module. Both, the comparison and the recognition �elds are composed of a
set of neurons encoding respectively the input vectors and the category to which the input
vectors are classi�ed. The vigilance parameter works as a threshold of similarity between
the input vectors and the categories and the reset module compares the threshold value to
the strength of the recognition match after the input vectors are classi�ed. The value of the
�vigilance parameter� is quite essential on the recognition task. The memory can be re�ned
or generalized depending on the chosen value. Hence, a higher value produce the creation of
many categories whereas a low value results in fewer categories. For a better insight of this
theory the reader can refer to the appendix section A.2.3.

2.2.3.3 Learning procedure types

Pattern recognition is mainly classi�ed into two categories according to the nature of learning
procedure used to produce the output value. In supervised learning, the input dataset is
trained according to a desired output dataset that is provided. It is said that the example
dataset is labeled, whereas in unsupervised learning the example dataset is not labeled since
no desired output dataset is provided. Therefore, the input dataset is clustered into di�erent
groups.

There exist also a combination of both categories known as semi-supervised learning
which usually combines a small set of labeled data with a large amount of unlabeled data.
It starts with labeled examples and then predicts the output of unlabeled data while using
their statistical distribution.

Supervised learning: These algorithms analyze the training data and determine the class
labels of new data. The training data consists of a set of input data properly labeled by hand
with a desired output. Then, the train data is used to produce a function that attempts to
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allow mapping new data while generalizing as accurate as possible to new unseen data. In
other words, it has to provide a correct output when new unlabeled data is given as input.
These methods are usually fast and accurate when new data has already been learned.

Unsupervised learning: During the training phase in unsupervised learning algorithms,
the model or the input dataset is provided without the desired output which means that
the examples are unlabeled. Therefore, it attempts to �nd inherent patterns in the dataset
that can help it to determine the correct output value in new datasets. The input dataset
is clustered into di�erent groups or classes on the basis of their statistical properties. Then
according to some feature similarities, new input data can be associated with one of the
created classes. In some cases, there may be no training data at all; in other words, the data
to be labeled is the training data.

2.2.4 Place recognition

Di�erent approaches of visual place recognition have been used as important tools for solving
mapping and robot localization problems, which are essential in the context of autonomous
robot navigation. They endow the robot the capacity of understanding its surrounding en-
vironment, knowing its position with respect to a reference point and thus creating a spatial
representation of it allowing to ease its navigation task.

A place can be identi�ed as a stable reference point that can be learned by keeping in
memory the location of the most relevant perceived patterns within the panoramic visual �eld
of the robot. Thus, recognizing the place consists in recognizing the same learned patterns.

Therefore, many researchers in computer vision have attempted to tackle the visual place
recognition problem by retrieving images of the scene, train them and compared them to
other images thereafter. The undertaken process for scene recognition can be considered as a
more generalized version of the pattern recognition task. Certainly, an image of a given place
can be described by the various patterns it comprises of. Therefore, the place recognition
task can be solved by using any of the approaches described in the above section, and can be
distinguished in two types of recognition depending on the application: a topological place
recognition and place categorization.

In the context of robot navigation, a topological place recognition consist in endowing the
robot with the capability of recognizing previously observed places in known environments.
State-of-the-art visual Appearance-based SLAM (ASLAM) techniques such as FAB-MAP
[Cummins 2008], [Ho 2007], [Eade 2008] convert the images from a set of local features, into
a bag-of-words representation in order to match the appearance of the current scene to the
trained data. This task is quite challenging as the algorithms attempting to match images
must cope with problems such scalability, illumination conditions, di�erent viewpoints etc.

For instance, [Knopp 2010] present a method that detects and removes automatically
objects that occur at many places and hence they are not representative for any particular
place and moreover can lead to confusion when comparing di�erent images. A similar problem
is found in images with repetitive structures such as building facades, fences or road markings
as highlighted by [Torii 2013]. In their work, they use a robust detection of repeated images
and describe a suitable representation for scalable retrieval allowing a better place recognition
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performance. [Krizhevsky 2012], [Donahue 2014] and [Sharif Razavian 2014], suggest that a
good performance can be achieved by using Convolutional neural networks (CNNs) in the
classi�cation task. However, this approach is limited by the huge quantity of training data
required.

Place categorization instead, allows the robot to give a semantic labeling to the places by
classifying di�erent locations of a new environment into categories such as �o�ce�, �kitchen�,
�corridor� etc. in the context of indoor environments. For instance, [Ramos 2012] consider
the world as a set of places where each of them has a probabilistic representation learned
from images and which are labeled by using a classi�cation procedure. The place recognition
is treated as a Bayesian learning problem and it is performed without the need of a map and
by using only few training images (usually 3 to 10 per place). [Wu 2009] instead , predict
the semantic category of a place from the measurements of the acquired images collected of
the spatial location, as opposed to the geometric or topological characteristics.

In contrast, [Nguyen 2013] employ a topological representation of the environment by
encoding the neighborhood relations. The connections are related by arcs indicating their
spatial relationship. It employs a Fast Learning Arti�cial Neural Network (KFLANN) as the
core unit of the quantization module, which compared to popular clustering methods such
as k-means, produces a consistent number of stable centroids, as it is less sensitive to data
presentation ordering.

Furthermore, other algorithms such those found in [Fazl-Ersi 2012] and [Ullah 2008] at-
tempt to tackle both problems by providing strong discriminative control for place recognition,
while o�ering a substantial level of generalization for place categorization.

2.2.4.1 Biological approach

Biological systems attempt to tackle the place recognition problem by proposing models
which emulate similar behaviors seen in living organisms based on allotethic information when
performing goal-orientated navigation tasks [Burgess 1994], [Brown 1995], [Guazzelli 1998],
[Redish 1997] and [Filliat 2002].

Certainly, many studies on insects like bees, ants and wasps have shown that they use
visual information to return to their nests or to locate a foraging station and then go back
and forth between that source and their home [Cartwright 1983], [Gallistel 1993], [Judd 1998].
After several experiments, it has been observed that they store multiples views of a place
from di�erent positions in order to learn the place. Then, by comparing and matching the
stored images to the newly perceived, they are able to recognize the place.

Similarly, neurobiological studies in mammals like primates and rats have revealed that
they also use surrounding visual cues in order to achieve a particular place comparable to
insects. However, mammals show higher generalization capabilities and more complex pro-
cessing when performing recognition of a scene or a place.

Edward Tolman, studied how animals learn to navigate in the environment. He was
the �rst suggesting, from purely behavioral experiments, that local navigation in rats was
guided by an internal map or �cognitive map� as he called it; resulting from the exploration
of the environment and the relationships between places and events [Tolman 1948]. This
suggestion was later con�rmed when experiments conducted by [O'Keefe 1971] led to the
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discovery of pyramidal neurons in the rat hippocampus (CA3 and CA1 sub regions) that
�re at their maximal activity when the animal is at a particular location in the environment
and decreases as it goes away from it. They are called place cells and the regions at which
they �re at are called place �elds, which are almost similar to the receptive �elds of sensory
neurons.

Hence, O'Keefe and Nadel, inspired by Tolman, proposed years later, the place cells
as the basic elements of a spatial representation and the hippocampus as the locus of the
cognitive map [O'keefe 1978b]. In fact, the �ring activity of the neighboring place cells at
di�erent areas thorough the hippocampus as the rat explored the entire environment was an
eminent indicator that the place cells enable the estimation of the animal's current position
and are related to the construction of the environment spatial representation [O'Keefe 1976],
[Jung 1993]. However, the topology of the environment is not preserved as two place cells
may �re for two far away locations in the environment. Additionally, even though the same
place cells participates to the spatial representation of di�erent environments, the mutual
relationship of the place �elds remains unique for each environment [O'keefe 1978a]. Thus,
since their discovery there is plenty evidence that stablishes nowadays that the hippocampus
plays an important role in the spatial representation of the environment of a great number
of mammalian species [O'keefe 1978a], [Rolls 1999], [Ekstrom 2003], [Ulanovsky 2007].

For instance, in [Arleo 2000], [Arleo 2001],the autors showed how place cells and head-
direction cells �ring enables rat mapping and goal navigation within the arena by estimating
the rat's position as well as its orientation. Later on, based on their previous work, the
same authors presented a more re�ned work by combing allothetic (visual) information and
idiothetic (path integration) signals at the level of the hippocampal representation in order
to remove singularities caused by perceptual aliasing and solve the hidden-state problem
[Arleo 2004]. They employ the Gabor-based decomposition technique as well as the retino-
topic image sampling to process visual information.

In [Gaussier 2002], their hippocampal model cells do not code for places but instead for
transitions between states. They suggest that such transition prediction mechanism may
be signi�cant for novelty detection and merging planning and sensory. The activity of a
place cell is a normalized sum of Pr-Ph cells, which were activated during place learning
[Gaussier 2000]. In their work, they propose a navigation strategy consisting in planning
routes towards the goal in a topological graph (cognitive map) of the environment where the
recognition level depends only on the correct recognition of sub-areas of the image centered
on focal features.

Similarly [Giovannangeli 2006a] improve the above work by compressing the what and
where information in the Pr-Ph and prove e�cient navigation in both indoor and outdoor
environments tested on di�erent robotic platforms (Koala K-Tram,Labo3 AAI,Pioner 3AT
ActivMedia).

Visual cues have shown to be essential in the formation of place �elds as well as other
allothetic cues (auditory, olfactory and tactile). Place �elds are usually una�ected by large
sensory changes like removing a landmark or many from an environment. However, they re-
spond to subtle changes, such as the alteration of the shape or color of the object for instance
[Moser 2008] or even the rotation of remote visual cues in a given environment inducing to the
rotation of the place �elds themselves [Muller 1987], [O'keefe 1978b]. Moreover, Place cells
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activities have shown stable place �elds when the rat is in the dark [Quirk 1990], which sug-
gests that place cells not only rely on allothetic but also on idiothetic information (vestibular)
which is used by rats and other animals for path integration during goal-oriented tasks.

Hence, similar models have also been proposed improving the foundation of the above nav-
igation systems by integrating other types of cells, (grid cells) [Dollé 2010], [Alvernhe 2012],
[Caluwaerts 2012], [Giovannangeli 2008], [Milford 2004], [Milford 2007], [Milford 2010]. Grid
cells were discovered initially in the rat's Medial Entorhinal Cortex (MEC) [Hafting 2005],
[Fyhn 2007] and later on in other mammals [Killian 2012], [Ulanovsky 2007], [Yartsev 2011],
[Yartsev 2013] as well as human entorhinal cortex [Jacobs 2013], [Doeller 2010]. These cells
are called grid cells because of the hexagonal pattern formed by the spatial �ring �elds that
tiled the environment and have been suggested to implement a path integration-based spa-
tial representation [McNaughton 2006]. These kind of models suggest that grid cells and
hippocampal place cells have strong functional interactions allowing a robust navigation ca-
pacity.

For instance, [Jau�ret 2012] present a model that merges visual and proprioceptive prim-
itives. The visual primitives are represented by the place cells which have been developed
previously by the same research team [Gaussier 2000] and [Banquet 2005] whereas the pro-
prioceptive primitives are characterized by the implementation of grid cells from path inte-
gration. In their paper, the authors present a model of grid cells based on various modulo's
operator applied on path integration, which is merged with visual cells information. This
merging mechanism, which combines allothetic and idiothetic information, is based on a
pavlovian conditioning rule. As a result, a robust multimodal place cells is built successfully
overcoming the perception ambiguity problem.

Similarly, [Tejera 2013] presents an extension of the model proposed by [Barrera 2008]
whose place representation module is composed uniquely of place cells. In contrast, Tejera
develop a grid cell neural model, which is added to the original place representation module
in order to generate neural odometry and spatial localization. The experiments are per-
formed with the Kepera III robot and are inspired by Morris' water mazes [Morris 1981],
[Morris 1984] (open arena experiments) and prove feasibility of the model for short runs.

As a result, most biological models, attempting to emulate the navigation task performed
by insects and mammals as the ones presented above, show a great performance when the
robot needs to recognize places and localize itself as it navigates the environment. They also
show to be very robust when it comes to overcome unforeseen situations

Prehippocampal PCs-based neural model A robust visual place recognition algorithm
needs to combine descriptive, discriminative and generalization properties.

Therefore, in order to capture all these properties Gaussier et al. proposed a model of the
prehippocampal systems where �place cells� are learned in the entorhinal cortex (EC) as a re-
sult of the recognition of a particular con�guration merging [Gaussier 1997], [Gaussier 2000],
[Gaussier 2002],[Gaussier 2007], [Giovannangeli 2006a] and [Giovannangeli 2006b]. The model
was tested on di�erent robotic platforms (Koala, Labo3, Pioneer AT), evolving in indoor and
outdoor environments.

In their model, they consider the perirhinal cortex (Pr) and parahippocampus (Ph) as the
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possible places receiving local con�gurations of di�erent kind of information: what and where.
Indeed, two main streams of information have been identi�ed in the cerebral cortex of the
brain of mammals for the visual recognition task [Goodale 1992], [Mishkin 1982]. The tem-
poral regions commonly referred as the � what � pathway and the parietal regions commonly
referred as the � where � pathway. The former is in charge of identifying and recognizing the
features perceived in the visual scene of the place whereas the latter is involved in the analysis
of the spatial location of the same [Burnod 1990], [Gilbert 1983]. These input layers converge
on a merging layer (Pr-Ph) coding a local view constellation, which is directly connected to
the EC-DG where the place cells are learned, the activity of which is a normalized sum of
Pr-Ph cells.

Hence, in order to learn a place by following the two-streams hypothesis, it is necessary
to; on one hand, describe the perceived features in a distinctive way and on the other hand,
�nd their respective location within the scene. Therefore, in order to achieve this task, a
set of group of neurons has been used (see �gure 2.6). The perceived image from the visual
scene is divided in sub groups of local views and each local view is associated to a neuron
from the what group (Pr) which is set as its unique identi�er. Similarly, its relative position
information is associated to a neuron from the where group (Ph). Then, the information
of all local views perceived in the panorama and coming from both groups converge on a
two-dimensional array of neurons, which keeps in memory the resulting value. As a result, a
landmark constellation is formed in the Pr-Ph group leading to the learning of a new place
by recruiting a new neuron in the place cell group(PC).

Where (Ph)

What (Pr) Place Cells (PC)PrPh merging matrix

Image 

(Local 

view)

Figure 2.6: Overall view of the place cells model proposed by [Gaussier 1997]

Local view (landmarks) extraction
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Network input

The �rst layer of the architecture extracts autonomously local views from a panoramic
image.

In early works, the panoramic image was built from a set of classical images [Gaussier 1995],
[Gaussier 2000]. To this end, a servo motor was used to pan the CCD camera which �eld
of vision spanned about 70◦. Then, the construction of the global panoramic view consisted
of merging only the central vertical bands of each image as the camera distorted the images
sides. In total, 24 images were taken per panorama with a 7.5◦ rotation between each image
acquisition resulting in a 250◦ of �eld of view. Even though, it was not a complete 360◦ im-
age, it was enough to prove the robustness of the system in practice. Thereafter, in order to
speed up the experimentation an omni-directional CCD using a conic mirror was introduced
[Giovannangeli 2006a]. Hence, it was possible to capture in one-shot 360◦ panoramic images.

Once the panoramic image is obtained, its gradient is used as the only visual input of the
system. This process allows to eliminate problems induce by luminance variability likely to
appear when performing navigation in real time. The gradient image is then convolved with
a di�erence of gaussiens (DoG) �lter in order to detect robust focal points at a particular
spatial (low) resolution. In this case, the system focuses on corners and/or edges (see �gure
2.7).

Figure 2.7: State-of-the-art local view landmark extraction. Top, the panoramic image taken
by the robot. Middle, the corresponding gradient picture. Circles represent local area centered
on landmark, from which small images are extracted. Bottom, small images after the log-polar
transform,( Image extracted from [Cuperlier 2007]).
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However, in order to reduce the computation time, a simpli�ed process [Gaussier 2000]
averaged and weighted all images columns for the points near the center of a column and the
resulting one-dimensional signal is di�erentiated. Thus, local maxima are used as the focal
points (see �gure 2.8). Finally, a 32*32-pixel area around each of the focal points is extracted
and considered as a local view which undertakes a log-polar transformation so that they can
be invariant to small rotations and scale variation.

Figure 2.8: 16 examples of 32 * 32 local views from the panoramic image (image extracted
from [Gaussier 2000]).

Landmark and azimuth learning and recognition The extracted local views in the
section above, are learned as landmarks when they are seen for the �rst time. Then the recog-
nition phase takes place by comparing the current local views (potential landmarks) together
with their angular positions with the previously learned landmarks.To this end, the what and
where neural groups encode each local view description and azimuth information respectively.

What (Pr) group:

The Pr group is composed of a su�cient number of neurons to encode the total amount
of landmarks that can be found in a given exploration environment. Given the lifetime of any
robot for learning an in�nite number of places in di�erent environments, this number can be
considered in�nite. In this model, the authors suppose that the visual system can di�erentiate
all the landmarks. Hence, a landmark cannot be found twice in the same panoramic view as
it would not succeed in knowing which azimuth is associated to each landmark. Therefore,
the same number of landmarks perceived in a given panorama is needed to recruit the Pr
neurons, and the number increases proportionally to the number of landmarks perceived in
new panoramic images.
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When learning a local view, the robot recruits one k neuron from the Pr group and it
associates it to the local view by performing a one-time learning. All weights of the links
between the input neurons and the Pr neurons are initialized to zero. Then, the synaptic
connection weights of a Pr neuron are modi�ed (and do not change anymore), according to
the following rule:

∆W Im−Pr
ij,k = Iij ∗RPrk (2.1)

With RPrk = 1 when recruited, and RPrk = 0 otherwise. Iij is the value of the ijth pixel from
the local view of the image Im. The recruited neuron is a landmark unit.

The recognition process is performed by computing the norm of the di�erence between
the pixels of the learned landmarks and the current ones. Hence, the activity of the kth
landmark unit xPrk is computed as follows:

xPrk = fRT
(

1

(XIYI)
‖ΣXI ,YI

i,j=1 ∆W Im−Pr
ij,k − Iij‖

)
(2.2)

With XI and YI the number of pixels on x and y coordinates of the corresponding small
local view. ∆W Im−Pr

ij,k , the weight of the link from pixel i, j to the kth landmark unit and

fRT = 1
(1−RT ) [x − RT ]+ an activation function that extends the dynamical range of the

output. RT is a recognition threshold. [x]+ = x if x ≥ 0 and 0 if not.
The interest of using the activation function fRT is to allow multiples interpretations of

the same local view, which may be perceived from di�erent angles when learning di�erent
places. This competition mechanism enhances the built in generalization capability contrary
to a Winner-Take-All (WTA) mechanism which prevents place �elds from overlapping.

Figure 2.9, shows an example of two landmarks learned as di�erent visual patterns for
two di�erent places. Then when placed at an intermediate location place C, both landmark
have two di�erent interpretations (high activity value). Hence, the system allows to choose
both interpretations instead of only one.

Where (ph) group:
The where information corresponds to the absolute direction (azimuth) of the local view

which can be obtained with a compass or any simulation of a vestibular system, such as a
gyroscope of inertial system. The group is composed of a limited amount of neurons that
encode the landmarks position within the 360 degrees of the panorama view. Each neuron
has a preferred direction covering in all the total 360 degrees of the panorama view. Each
neuron expresses how near the landmark is from its preferred direction by calculating their
angular distance. It follows a strictly monotonous function that decreases from 1 to 0.

The activity of the ith Ph neuron is given by the following equation:

θi(t) = gρ1

(∥∥∥∥2.π.
i

Nphθ
− θ(t)

∥∥∥∥) (2.3)
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Figure 2.9: Learning and recognition of the same physical landmark by several neurons. The
physical landmarks M and N have been learned, for two proximal locations (the two north-
ern crosses), as di�erent visual patterns (upper �gures). Hence, in the intermediate location
(place C, lower �gure), the landmarks have two valid interpreta-tions. In location C, the activ-
ity level of �L2 and L4� for the landmark N are rather high and similar as well as the activity
level of �L1 and L3� for the landmark M. (Image extracted from [Giovannangeli 2006a]).

With gρ(∆θ) = [1− ∆θ
ρ.π ]+ and Nphθ the number of neurons in Ph.

The same computation is performed for each neuron in the group with the same θ and
since their preferred direction is di�erent, only the closest neuron to θ results with the max-
imum activity value and consequently gets to encode the landmark position. gρ(∆θ) it is a
simple linear di�usion that computes a lateral di�usion around the neuron which preferred
direction is the direction of the current extracted landmark θ(t). Where [x]+ = x if x ≥ 0 and
0 if not. Other linear di�usion functions can also be used such as a non normalized Gaussian
activity pro�le [Banquet 2005] as in equation 2.4.

θi(t) = exp−
(2.π. i

N
phθ
− θ(t))2

2σ2
(2.4)
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As a result, the visual system provides the azimuth of the focus points of the local views
and the most activated landmark neurons with their activity level as shown in �gure 2.10.

Figure 2.10: Azimuth of the focus points of the state-of-the-art local views. Top, Panorama
taken by the camera. Middle, local views in log-polar coordinates extracted from the gradient
image corresponding to the landmarks. Bottom, Results of the position of the local views
together with the four most activated neurons with their corresponding activity value (Image
extracted from [Giovannangeli 2006a]).

Spatiotemporal merging information In order to learn a place, the robot needs to keep
in mind the information of all landmarks perceived from its point of view. However, as the
analysis of the place which is given by the analysis of the landmarks within the panorama
view can only be done in a sequential mode (the system can not recognized several landmarks
in parallel), it is necessary to keep in memory the overall information.

Thus, in order to suppress the sequential aspect of the scene exploration, a matrix of
neurons stores the information of all landmarks perceived in the panorama view. In fact, the
information coming from both Pr and Ph groups of each landmark converge into the PrPh
matrix allowing a spatio-temporal merging. As a result, a landmark constellation is formed
allowing to learn a new location by encoding a neuron in the Place cells group.

PrPh matrix- landmark constellation build-up:
The number of neurons the PrPh matrix comprises of, correspond to the number of
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neurons allowing to encode as many landmarks as possible within the 360◦ of view for di�erent
learned places. The initial idea was to build a neural matrix of NL ∗ NA neurons in which
each neuron was linked to one of the NL landmarks neurons and one of the NA azimuth
neurons. Then the activity of the ijth neuron in PrPh can be calculated by computing the
product:SPrPhij = SLi ∗ SLj , with SLi the activity of the landmark i and SAj the activity of its
azimuth j.

However, even though coding such information was correct, it uses too many resources
that are not strictly necessary. Indeed, the n̄a average number of di�erent azimuths under
which a landmark can be seen from di�erent places is small and all are within the same ratio
of vicinity.

The ratio between the number of active neurons in the PrPh matrix and the number
of neurons that are really used by EC-DG is globally NL∗n̄a

NL∗NA = n̄a
NA

. In order to get a good
azimuth precision, NA has to be high enough and n̄a can be small as the same landmark does
not need to be encoded for too close azimuths thanks to generalization.

Therefore, it is not necessary for the PrPh matrix to have more columns than the maxi-
mum number of di�erent azimuths under which a landmark can be learned. Thus, the total
number of columns can be correlated to n̄a (for instance, 2 ∗ n̄a ) and the number of rows
remains equivalent to the number of neurons in the Pr group to which they are linked. How-
ever, in order to avoid any loss of place �eld in the azimuthal precision, each neuron of the
matrix is linked to subset of neurons in the azimuth Ph group. Consequently, the neurons
in the neighbourhood of the neuron encoding the position of the current landmark are all
linked to the same unitary position and thus they all encode the same neuron in the PrPh
matrix. In this way, the same landmark will not be encoded on di�erent azimuths unless
these azimuths are signi�cantly di�erent. How far the current landmark position is from the
position of the learned landmark is immediately given by the activity value computed in the
Ph group and directly transmitted to the activity of the corresponding neuron in the PrPh
matrix. The further the current landmark is from the learned position, the smaller the result
value will be.

At the beginning, all connection weights are set to 0. Each landmark perceived in the
panorama is related to a Pr and a Ph neuron, which information is merged in the PrPh
matrix. Therefore, when a couple landmark-azimuth is activated, the corresponding PrPh
neuron is recruited and it triggers the learning of the corresponding synaptic connections.
Thus, learning is performed on the weights between the Ph neuron and its associated neuron
in the PrPh matrix as follows as well as the Pr neuron with the same PrPh neuron:

∆wPr−PrPhik = 1 (2.5)

∆wPh−PrPhjk = 1 (2.6)

wPr−PrPhik and wPh−PrPhjk are the connection weights between the ith landmark and the
jth neuron azimuth respectively to the kth PrPh neuron.
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The PrPh neuron activity results from the product of both inputs and it is calculated
by the following equation:

Iij = maxi(Prai ∗ wPr−PrPhik ) ∗maxj(Phaj ∗ wPh−PrPhjk ) (2.7)

Where, Prai and (Phaj are the activities values previously computed and correspond to
the maximum activities values of the of the Ph and Ph groups respectively. A max operator
allows choosing the maximum value coming out of the product operation.

Thereafter, the time integration process is achieved by repeatedly performing the de-
scribed process (equatio 2.7) and adding the activity values of each neuron to the matrix
xPrPhkl :

xPrPhkl (t+ 1) = xPrPhkl (t) + Iij (2.8)

This activity is reset after each complete exploration of all landmarks of a place (panoramic
image).

Place cell learning Finally, the recognition of a place (panoramic image) is performed by
a global correlation measure between the learned panoramic images and the current one.

The place cells group comprises of a number of neurons encoding di�erent locations in
the environment. Each di�erent location or place is characterized by a unique landmark
constellation formed by all landmarks perceived within the panorama view (process described
above).

The whole group of neurons is connected to all the neurons from the PrPh matrix and
their initial synaptic weights values are set to zero. When learning a new place, a neuron
from the PC group is recruited. Then, for each neurons in the PrPh matrix, if its activity
happens to be superior to 1, its synaptic weights connecting the said PrPh neuron to the
recruited PCneuron is set to one. This can be summarize by the following equation 2.9

∆wprph−pcik,p =

(
1 if Xix > 0

0 otherwise

)
(2.9)

Then, the activity of the Pth neuron of the PC group is calculated as follows:

xpcp =
1

wp

M−1,N−1∑
i,k=0

xprphik (t) ∗ wprph−pcik,p

 (2.10)

With wp =
∑M−1,N−1

i,k=0 wprph−pcik,p

Where M ,N are the rows and columns dimensions of the matrix.
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The resulting activity reaches the maximum value (1) when the robot is at the exact same
location where it has learned the place before, and it decays exponentially with respect to
the distance of the robot's current location to the learned one. This a priori generalization
property allows the system to still activate a place cell when the robot is within the vicinity
of the learned location.

2.2.5 Vision in robot navigation

An important aspect of autonomous navigation is the perception of the environment, since
it provides the input for a successful control. Perception is the process of interpreting and
transforming the sensory information of the state of the robot, the environment and other
external entities into a representation that can be used for further processing or further
actions.

This information can be extracted from di�erent sensors of the robot, which can be
classi�ed according to what they measure into proprioceptive and exteroceptive sensors.

For instance, the information of the internal state of the robot such as orientation, velocity,
position, etc., is calculated by proprioceptive sensors (e.g. encoder, gyroscope, accelerometer),
whereas the information about the external environment such as the distance to an object,
the interaction forces and so forth is calculated by exteroceptive sensors (e.g. laser, sonar,
camera, ultrasound).

Additionally, depending on how they measure such information, sensors can also be clas-
si�ed as active or passive. Active sensors measure properties based on the response of the
signal they emit into the environment such as the laser range �nder, which is the most com-
mon sensor used on mobile robots. In this matter, active sensors exert some control over
the measured signal, which makes them more robust than passive sensors. These latter are
more sensitive to changes in the environment as they only gather data from the environment
without modifying it such as cameras.

In the last three decades, navigation based on visual perception systems (such as on board
camera systems) has been especially prevalent. Although the uncertainty on the measure of
distance from a camera is superior to that obtained by distance sensors, cameras have the
capacity to provide a perception of the environment in a single shot as well as to supply
detailed information about the environment, which may be overlooked by other types of sen-
sors. Moreover, they are lighter, less expensive and have lower power consumption compared
to other sensors that are used for navigation such as infrared sensors, sonar sensors, laser
range �nders, position-sensing devices (PSD) and inertial sensors.

For instance, infrared sensors have limited range and are sensitive to light interference.
Their re�ectance is strongly dependent on the target surface, which makes them unstable
when measuring distances [Benet 2002]. Even though the sonar is not expensive and data
can be easily collected [Tardós 2002], [Ribas 2008], it su�ers problems of big dispersal and
low angular resolution.

The laser range �nder and the radar supply instead a better resolution, which allows acqui-
sition of very dense information of the environment structure [Nüchter 2007], [Thrun 2006].
However, they are more expensive and have di�culty at distinguishing various types of sur-
faces as well as at detecting small or �at objects on the ground. Moreover, due to their heavy
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composition (large pieces of equipment), their use can be limited for aerial and humanoid
robots.

Inertial navigation sensors such as accelerometers and gyroscopes provide an incremental
estimate measurement of the orientation and trajectory of the moving robot. However, due
to their inherent noise, the errors are cumulative and therefore such estimation is not always
accurate. Additionally, they provide no information about the obstacles in the environment
that the robot might encounter.

Global positioning systems (GPS) are very accurate and robust when it concerns global
navigation in outdoors environments [Panzieri 2002], but they may su�er from outages due
to tall buildings or forests that could block the signal, multipath e�ects, interference or
jamming. These kind of problems usually happen in urban canyons, tunnels and indoor
enpervironments as radio signals cannot penetrate solid walls.

Due to the limited range capability and noisy-prone problems presented in almost all
sensors, some researches have proposed the fusion of information from multiple sensors as a
solution to more accurate and robust environment information extraction and robot position
estimation [Castellanos 2001], [Sarkar 2005], [Nützi 2011]. Nonetheless, such fusion implies
more power requirements and may highly increase the cost and the weight of the system.

The information about the surrounding environment that all these sensors can acquire is
relatively less than what a camera can potentially obtain (e.g. color, texture and depth). For
instance, small objects and di�erent kind of surfaces can be easily detectable with a camera,
which is not usually the case with range-based sensors. Furthermore, with the increasing
development of lower priced processors, vision processing is becoming an a�ordable task
that can be performed in real-time and complex applications. Therefore, many vision-based
systems have been the focus of recent research work for robot navigation.

2.2.5.1 Vision sensors

Most visual navigation techniques proposed in the literature use di�erent vision-based sensors
to obtain the environmental information. Traditional cameras have a limited �eld of view
but it is possible to increase it by using more than one camera or by placing the camera on
to a rotating machinery, although this requires movable parts and accurate positioning. The
biggest disadvantage of these systems is the time required to obtain a wide view, which limits
their use in real-time applications.

Many systems are based on monocular systems. Even though the environment scale can-
not be determined from a single camera, monocular systems have the advantage of providing
rich information while being cheap, small, light and low energy-consuming. Furthermore,
they can be used in either small or big open spaces, as their visual range is not intrinsically
limited. [Engel 2014] presents an approach which uses a monocular camera as the main sen-
sor to navigate a quadrocopter and in order to overcome the scale-obtaining problem they
combine the vision sensor with an air pressure sensor.

Other works such that of [Royer 2007] shows that outdoors autonomous navigation can
be possible with the use of a single camera and natural landmarks by presenting a real-time
localization system. With this in mind, they showed that the use of a camera in dense urban
areas could overcome the localization problem when some satellites are masked and the GPS
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localization accuracy is too poor. [Wang 2012] developed an algorithm allowing to detect
moving objects while the robot navigates the environment by using a hand-held monocular
camera. The algorithm is based on the epipolar constraint that is used to distinguish the
moving objects from the stationary landmarks in dynamic environments. In fact, it allows
to know if a set of features points satisfy the epipolar constraint on image plane given an
estimated matrix. However, monocular systems are penalized by the lack of other information
such as depth information. Indeed, since it is not possible to distinguish near objects from
far objects, the risk of collision during navigation can be quite high.

Therefore, in order to obtain richer information, some systems use two cameras instead
of one. This is the case of binocular systems, which are also known as stereo vision systems.
Both cameras are placed at a certain distance from each other allowing to acquire images
from di�erent angles in order to determine the dimensions, shapes and positions of the objects
as well as the depth of the image. In [Engel 2015] for instance, the depth is estimated at the
high contrast pixels, including corners, edges and high textures areas in order to reconstruct a
semi-dense depth map online. Harms [Harms 2015] combines a stereo camera and an inertial
measurement unit in order to detect ascending stairs by estimating concave and convex
line segments from depth data directly, tracking the line segments over time and �tting a
stair model into the tracked line segments. There is, however, a fundamental drawback
known as the correspondence problem, which consists in ascertaining if the observed object
perceived in one image correspond to the same object in another image. To this end, several
stereo correspondence algorithms have been proposed in the literature and [Cabezas 2012]
has conducted a quantitative evaluation methodology of disparity maps, which performs an
exhaustive assessment of the entire set of algorithms.

Another widely used technique is the omni-directional vision, which is rather popular
among researches because of its advantages [Maohai 2013], [Valiente 2015], [Abadi 2015].
It consists of the use of a camera with a 360-degree �eld of view in the horizontal plane
and it is usually mounted on the top of the robot to take a visual �eld that can cover the
entire sphere. With the use of omnidirectional vision sensors, it is easier to �nd and track
features because they remain longer in the �eld of view as they provide a full visibility of
the surrounding environment in a single frame. However, they have a lower resolution than
standard images. An Omnidirectional camera can be obtained by combining a standard
camera and a convex shape mirror, such as hyperbolic, parabolic or sphere mirrors. It is also
possible to combine two omnidirectional cameras in order to obtain 3D coordinates and thus
form an omnistereo vision system. For instance, the system developed in [Zhang 2012], uses a
hyperbolic mirror and projector to form an omnidirectional projector. It is aligned vertically
with the omnidirectional camera so as to cloud-sample dense 3D points via triangulation,
between correspondence pixels around all 360 degree surrounding.

PTZ (Pan-Tilt-Zoom) vision systems instead, use cameras that are usually controlled by
the user with a joystick or other devices. They can be tilt up and down, pan to the left and
right and zoom in and out and can overcome the limited �eld of view of standard cameras.
They have the advantage of allowing the operator to search an entire visual area surrounding
the robot without moving the robot, to track objects and to zoom closer to capture some
information that cannot be seen at a certain distance or angle from the robot position. The
freedom of movement that this kind of systems have, allows a better navigation; principally
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in unstable environments such as urban search and rescue where a given rotation of the robot
may not be allowed or where a lot of movements can cause structural damage. Nevertheless,
since such cameras only records where they are pointing at, some vital information can
be missed if it happens outside of their �eld of view. Additionally, the operator situation
awareness may be a�ected when the camera is o�-center and the operator is navigating the
robot [Nielsen 2005].

2.3 World Representation

In order to achieve a successful performance in applications of some mobile robot systems
requiring the execution of crucial tasks such as a safe and rapid navigation, an accurate
description of the environment can be necessary and sometimes even vital.
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Figure 2.11: World representation.Transversal structure representing the implication of dif-
ferent functional modules in all types of navigation strategies.

Such an environmental description, here referred to as world representation, can be ac-
quired from a plan of the building or designed by a human to be provided to the robot before
the navigation starts (Map-Using). This implies that it has to be built beforehand and con-
sequently, that the navigation environment is static and will remain unchanged. Depending
on the application, this kind of maps can be su�cient for the required task.

However, this is not usually the case for most of the robotic scenarios where dynamic
obstacles are prone to appear. Therefore, in other cases the world representation needs to be
constructed directly by the robot through its sensors (Map-Building). Hence, the robot is
able to consider all changes presented in the environment while navigating it.

The degree of detail of the representation can vary depending on the given task or on the
application. For instance, they can go from a simple graph of interconnected silent features
or objects in the environment to more complex models, such as CAD models.

World representation can be distinguished mainly in two types: metric and topological
maps (�gure 2.12).
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Metric maps are composed of information such as distances or map cell sizes with
respect to a prede�ned coordinate system and can be used for a more precise localization and
obstacle avoidance. However, planning in a large metric map quickly grows unwieldy, as they
are more sensible to sensors. Moreover, it is di�cult to maintain a global consistency when
closing large loops.

Among metrics maps, the most common representations are the grid-based maps and the
feature-based maps. While Feature-based maps represent the environment by a collec-
tion of landmark locations [de la Puente 2014],[Rosen 2016], [Erinc 2014]; grid-based maps

represent the environment in a tessellated way where each evenly spaced cell composing it,
represents an obstacle (feature) or a free-space at the same location in the real environment
[Elfes 2013], [Meyer-Delius 2012], [Joubert 2015], [Jessup 2014].

Topological maps instead, do not use any reference system or absolute distance among
the objects it represents [Li 2015], [Johnson 2012], [Ramaithitima 2016], [Garcia-Fidalgo 2015].
It consist in building a representation of the relationship of the most characteristic features
or areas in the environment based on graphs. Each feature, place, object or area in the en-
vironment is represented by a node, which is itself, connected by edges or links to the other
nodes according to their topological proximity. Therefore, they can easily be used for large
environments. By its simplicity and compactness, topological maps take up less computer
memory, and consequently speed up computational navigation processes.

Recently, some works such as those found in [Zhang 2015], [Qin 2013], [Siagian 2014],
present a hybrid map con�guration by usign a combination of both metric and topological
maps.

METRIC TOPOLOGICAL

TYPES OF MAPS

Grid-based Feature-based

Figure 2.12: Types of maps. Grid-based: collection of discretized obstacle/free-space pixels.
Feature-based: collection of landmark locations and correlated uncertainty. Topological:
collection of nodes and their interconnections. (Images extracted from a work presentation
of [Choset 2005]).

Although metric maps have been more widely studied for robot navigation, several works
have shown the advantages of the use of topological maps. Moreover, other researches have
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shown accurate results when using a variant of these types of maps with less degree of infor-
mation such as �oor plans [Ito 2014], [Schulz 2015], [Fallon 2013], appareanche-based maps
[Erinc 2014], street maps [Hentschel 2010], [Floros 2013], hand drawn maps [Boniardi 2015],
[Behzadian 2015],[Yun 2008], [Kawamura 2002].

In most cases, the representation of the environment is given by a number of landmarks
expected to be found in the environment during navigation, the location and identity of
which is stored in the robot memory. We understand by landmark, a region in the real world
described by its 3D position and its appearance [Frintrop 2008] and we consider the same
distinction presented by [Fuentes-Pacheco 2015] where a salient feature is also a region but
of a given image which is described by its appearance and its 2D position. Hence, while
navigating the environment, the robot searches to match the landmarks that it perceives
through the camera sensor to those already stored in its database. Thereafter, it searches to
relate the camera sensor's measurements of the perceived landmark with the measurements
of the matched landmark to �nd the adequate localization. This is known as the data
association problem and is considered one of the hardest problems in the navigation task
[Neira 2001]. When the identity of the landmarks is unknown, the algorithms provide special
mechanisms for estimating the correspondence of measured features to previously observed
landmarks in the map. Landmarks may be matched incorrectly, as they look di�erent from
di�erent viewpoints. Therefore, this problem also involves determining if the measurements
are spurious or belong to elements not contained in the map (gross outliers). Errors in an
incorrect image matching or data association will rapidly lead to incorrect maps. Therefore,
it is essential to solve this problem for a successful navigation.

Regardless the type of representation, it should be adaptable for the required task while
taking into account the uncertainty inherent to both sensor data and to the robot's state
estimation system. Moreover, they should be compact enough so that other components
such as the path planners can make use of it.

2.4 Localization and Path planning

2.4.1 Introduction

The localization of the robot denotes its capacity to establish its own position and orien-
tation in the environment. Then, once these both are stablished, planning a path leading
the robot from a starting point to a �nal positon becomes an easy task.

Generally, the position and orientation are computed according to the reference system
given by a constructed spatial representation (map-using).

However, when the spatial representation is built as the robot navigates the environment
(map-building), solving the localization problem is a more complex task. In fact, the use of
an accurate map is quite important for the robot to localize itself; however, knowing where
the robot is within the environment is also essential for building the map. This kind of
chicken-and-egg problem is known as the simultaneous localization and mapping (SLAM)
problem and di�erent SLAM algorithms have been proposed to solve it.

In the absence of a world representation (mapless), the estimation of the robot position
and orientation can be obtained directly from the use and/or combination of proprioceptive
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Figure 2.13: Localization and Path planning. Transversal structure representing the impli-
cation of di�erent functional modules in all types of navigation strategies.

and exteroceptives sensors (refer to section 2.2.5 for an depper insight of such sensors).
On one hand, exteroceptive sensors such as the GPS are very robust for localization in
large terrains or outdoor environments as they provide more accurate coordinates than other
sensors. However, they drastically lose accuracy in indoor environments or when the terrain
shrinks.On the other hand, proprioceptive sensors such as gyroscopes, allowing obtaining an
estimation of the robot's position by means of a deadreckoning navigation method, inevitably
diverge from the truth, as they are sensible to error-accumulation due to their inherent noise.

Path planning can be divided according to two categories based on the availability or
absence of a complete representation:

O�-line path planning is performed when a representation of the world is given in advance.
It is also known as the global path planning because of the use of the global information
provided by the world representation. Therefore, an accurate representation of the world is
essential for a successful planning.

In contrast, on-line path planning is performed when no representation of the world is
given. In this case, the robot obtains the information of the environment through sensors and
plan its path locally according to what it encounters (by using some visual clues as reference
points for instance) while navigating the environment. A good robot localization as well as
an accurate obstacle detection is thus crucial.

2.4.2 Map-based navigation

Map-based navigation techniques consist in providing the robot a model of the environment
(map-using) so that it can navigate within the environment according to the given information
or in constructing a representation of the environment (map-building) through the robot
sensors as it navigates the environment.
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2.4.2.1 Map-using navigation

The use of an a priori knowledge of the environment facilitates the navigation process de-
scribed in the introduction above. Hence, the robot can localize itself in the environment
by estimating its current position with respect to the recognized landmark's position from
the databased and plan a trajectory path according to the obtained information to �nally

execute its movements to achieve its �nal destination. That is why it is called map-using
navigation.

The localization problem consists in determining the robot position in the environment.
When using metric maps, the robot position is determined in coordinates with respect to
a coordinate system, whereas when using topological maps, the robot position is de�ned to
be at some place by considering its corresponding node in the topological graph. Regardless
the type of map, the localization problem can be tackled from two di�erent points of view
depending on the knowledge or absence of the initial robot position: local or relative local-

ization and global or absolute localization respectively. Once the localization task is solved,
planning a path becomes an easy task. Although, it can vary according to the application
or desired task. For instance, one application might need to �nd the shortest path because
of time constraints, whereas another application might need to plan a path where the robot
navigates through all places possible in the environment. Topologically, the problem of path
planning is related to the shortest path problem of �nding a route between two nodes in a
graph.

Local or Relative localization techniques know the approximate initial robot position.
Then it is necessary to update the estimate position during navigation. The simplest way
to achieve this is by using an odometer. However, since the accuracy of odometry usually
decreases over time as errors accumulate, external sensors are used to compensate and thus
to update the new pose. More than a decade ago, [DeSouza 2002] introduced in their survey
two completely di�erent approaches to local incremental localization.

On one hand, the FINALE system [Kosaka 1992] used a geometrical representation of
the space and a statistical model of uncertainty in the location of the robot. Whereas, on
the other hand the NEURO-NAV system [Meng 1993a], [Meng 1993b] utilized a topologi-
cal representation of the environment composed of nodes and lines graphs that represented
the most representative places of the environment (central corridor, door, corners, etc.,).
NEURO-NAV has two main modules built up with neural networks: a hallway follower mod-
ule and a landmark detector module. These two modules compute edges, detect walls and
output the proper steering commands to drive the robot at a distance of a wall or centered
in a corridor.

The incremental localization is also known as pose tracking and relative localization tech-
niques attempt to �nd the correspondence between the measurements from the external
sensors (here the vision sensor) and the information given by the map. Looking for the
correspondences with these techniques is relatively easier than using absolute localization
techniques, as it is not necessary to consider the entire environment but rather a small region
around the estimated pose. For instance, [Biswas 2012] tackles the correspondence problem
by assigning correspondences of each point from a depth camera image to lines in a 2D map.
The 2D map represents the environment as a set of line segments (corresponding to the obsta-
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cles in the environment) in a �vector� map and each of the points are the result of a volume
reduction process of the 3D point cloud that uses the Fast Sampling Plane Filtering (FSPF)
algorithm. Hence, the points are sampled and classi�ed by local set of points as belonging to
planes in 3D (the �plane �ltered� points) or points that do not correspond to planes within
a speci�ed error margin (the �outlier� points). Then the localization algorithm, which is,
based on an observation model down-projects the plane �ltered points on to 2D which can
then be compared to the lines in the 2D map.

Likewise, [Irie 2015] present an approach that copes with the problem of matching the
sensor data with a street map by maximizing the statistical dependence between them. Street
maps presents a more challenging e�ort for matching data as they lack of detailed information
about the environment such as height and color. In their work, they employ a computation-
ally e�cient estimator of squared-loss mutual information to estimate the 2D position and
orientation of the robot during navigation.

Global or absolute localization techniques, allow instead the robot to localize itself without
the prior knowledge of the initial position. The robot position is determined with respect to
a global reference frame; for instance using beacons or landmarks. Therefore, they can easily
recover from positioning errors, which make them more robust than relative methods. For
instance, they can handle the kidnapped robot problem, in which the robot is taken from
its current environment to another unknown environment without giving it any information
about the motion. Several approaches have been proposed for this purpose in the past such
as Markov localization [Fox 1999] and multiple hypothesis tracking (MHT) [Jensfelt 2001].
Likewise, the probabilistic Monte Carlo Localization (MCL) method has been widely used
[Thrun 2005].

The MCL uses a particle �lter to estimate the position of the robot. However, even though
it is robust with respect to sensor noise, it fails to estimate the robot's position if an object
is blocking the sensor range of the robot. Moreover, in environments with large ambiguities,
the particle �lter shows slow convergence and it becomes necessary to explore a large part
of the environment to solve the ambiguities and thus converge. This can be a disadvantage
when one of the main requirements of a given application is to �nd the robot location in the
quickest possible way.

Therefore, to overcome this problem [Ito 2014] present a hybrid approach based on Wi�
and RGB-D data to estimate the global position. The Monte Carlo localization approach
remaining the core of the approach and the use of both sensors compensate the weakness of
each of them and allow an accurate and fast global localization.

Following the same line of merging the information of other sensors with that of the map,
[Alonso 2012] present a global positioning solution in real complex environments that fusion
the trajectory information from visual odometry with digital road maps. The motion tra-
jectory of the vehicle is estimated using weighted nonlinear least squares (WNLS) optimiza-
tion and a Gaussian multivariate model to estimate the uncertainties in the measurements
[Sotelo 2007], [Parra 2010]. The outlier removal is performed by a RANSAC algorithm, based
on Mahalanobis distance to better deal with the nature of the input data. This fusion allows
removing the cumulative error and thus estimating accurately the position of the vehicle for
very long GPS outages.

Other approaches allow e�ective global localization by using object recognition [Anati 2012],
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[Atanasov 2014]. For instance, the Global Localization by Soft 3D Object Recognition
(GLSOR-3D ) described in [Ribeiro 2015] uses a soft 3D object recognition to estimate the
pose of the robot with respect to the landmarks in the given map. By learning o�-line the
appearance of di�erent view angles of the objects, it su�ces to partially view any of the ob-
served objects to estimate the robot pose and orientation relative to the objects. GLSOR-3D
achieves this by exploiting the PVHK descriptor and the Modi�ed Hausdor� distance as tools
to recognize and compare the similarity between objects represented by their partial views.

2.4.2.2 Map-building navigation

The construction of maps refers to the process of the creation of geometrically or topologically
coherent 2D or 3D models of the environment by using the robot sensors while navigating the
environment. Two di�erent approaches can be distinguished: The systems that �rst build a
map and then use it for robot localization (o�ine map-building), and the systems that build
the map online and simultaneously localize themselves in the environment (SLAM).

Early approaches in robot navigation considered mapping and localization as two di�er-
ent tasks that were treated separately. Hence, the former standard approaches divided the
navigation task in two phases. In the �rst phase (training phase), the robot acquires some
information of the environment by exploring it and builds a representation of its surround-
ing. Thereafter, in the second phase (operational phase), as the robot navigates the same
environment, it matches the current perceived information to what it was stored before in
order to localize itself in the environment. The localization task is assumed to be computed
once the map has been accomplished. For this matter, most of the localization techniques
referred to the map-using navigation can also be applicable in this case i.e. pose tracking,
for instance by using particle �lter based Monte Carlo localization.

However, after realizing that the combined mapping and localization problem was con-
vergent, some researchers suggested that treating it as a unique problem would provide
means to make a robot truly autonomous [Chatila 1985], [Leonard 1991], [Rencken 1993],
[Durrant-Whyte 1996] based on [Durrant-Whyte 1988], [Smith 1986]. This meant that the
robot should be able to navigate the environment while localizing itself as it navigates. The
technique allowing this type of navigation is called SLAM (Simultaneus Localization and
mapping), also referred as CML (Concurrent Mapping and Localization) by some researches
[Newman 2002] and [Andrade-Cetto 2002]. While most proposed SLAM methods are rather
robust for mapping static, structured and of limited size environments, it is still an enormous
challenge to map unstructured, dynamic and large-scaled environments.

Recently, some researchers have proposed a combination of mapping algorithms with
SLAM approaches in order to overcome the problems related to semi-static or dynamic envi-
ronments where the location of obstacles change over time. This is called lifelong SLAM and
[Einhorn 2015] propose a system that allows lifelong mapping and localization in real world
applications. They combine normal distribution transform (NDT) and occupancy mapping.
Hence, the map is created prior operation and it allows an accurate localization. Thereafter,
when the environment changes, the system is able to update the map with the use of a graph
based SLAM algorithm. Similarly but in a more general fashion, [Frese 2010] present an
overview of the SLAM problem from the perspective of using SLAM for a given application
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instead of giving an overview of the investigation of the SLAM itself.

O�ine map-building Most of initial works back at an early stage in robotics navigation
as well as some current ones perform the construction of the map in two phases. During the
�training phase�, the robot explores the environment and incrementally constructs a map.
Then, with the aid of the built-map, the robot is able to localize itself, compute the path
leading it to its �nal destination and thus navigate during the �operational phase�.

Some approaches build the map o�ine out of the registered images. Therefore, they can
e�ort to use algorithms computationally intensive, which result in accurate and rich maps.
Additionally, localization techniques can greatly bene�t from 3D information especially in
real-world applications where there are still some accuracy issues such as in densely furnished
domestic environments. Therefore, some researchers have focused their work on approaches
to recover 3D environment models and use them to estimate robot motion.

Depth cameras have proven to provide a huge amount of information about the structure
of the environment and [Schmiedel 2015] takes bene�t of these sensors in order to build a
robust representation. To this end, they use compact and highly memory-e�cient type of
map known as Normal Distribution-Transform (NDT) map, and introduce a new keypoint
detector and descriptor called IRON allowing to accurately aligning the 3D depth maps. The
robustness of the descriptor matching and outlier detection allows the system not only to
build an accurate map, but also to perform both local (pose tracking) and global localization
(NDT-one-shot-localization) depending on the availability of the initial pose estimation.

Another example of map-building is that of [Meyer-Delius 2012] which present a general-
ized version of occupancy grids proposed by [Moravec 1985] and which is still one of the most
common mapping approaches in mobile robotics. The generalization consist of modeling the
state changes in the representation, instead of simply considering the state of a grid cell as
static. This version is suited for changing environments. They �rst perform a standard o�ine
learning approach of the environment and then the robot is able to learn from its observa-
tions about the environment changes over time. Hence, the robot is capable of adapting its
representation continuously and it can be used to improve the path planning performance of
the robot. Similarly, but with the help of a human guidance [Kidono 2002] proposed a sys-
tem where the robot is guided around the environment in the �pre-training phase�. During
this phase, it gathers the important information perceived from the environment and records
some images allowing it to construct a 3D map online. Once the map is built, the robot is
able to compute the path leading it to its �nal destination and it tracks the landmarks by
comparing to what it is seeing during the navigation phase to the constructed map. The
robot uses a stereo camera and odometry.

Visual-based Simultaneous Localization and Mapping (VSLAM)

The SLAM problem and its formulation SLAM refers to the process in which a mo-
bile robot seeks to acquire a spatial map of its surrounding environment and simultaneously
deduce its location relative to the same map while navigating the environment. This is a
challenging task, as errors in a robot's position will induce errors when the map is being con-
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structed, and consequently, errors in the robot position estimate [Smith 1990]. Modeling the
correlation between these errors is key to a successful SLAM algorithm, and numerous solu-
tions have been proposed (several of the most popular are reviewed by [Durrant-Whyte 2006]
and [Bailey 2006]).

Any navigation environment may possibly be comprised of landmarks, objects, surfaces,
etc. Therefore, one common setting of SLAM consist in assuming that the environment is
composed of point landmarks such as door posts and corners of rooms, which, when projected
into a 2-D map, are characterized by two coordinate values. The environment is thus, repre-
sented by a vector of size 2N, where N is the number of point landmarks in the environment.

The SLAM problem involves recovering a model of the environment m and the sequence
of robot locations xt from the odometry and measure zt. Therefore, to be able to solve it,
the robot needs to, on one hand, relate odometry measurements ut to robot locations xt−1

and xt and on the other hand, relate measurements zt to the environment m and the robot
location xt.

There exist di�erent ways to address the SLAM problem. For instance, it can be distin-
guished between full SLAM and online SLAM, where the former seeks to recover the entire
path whereas the latter seeks to recover the present robot location. It can also be addressed
according to the type of map whether is metric or topological. Another common distinc-
tion can be done by assuming the environment static or dynamic (changing over time) or
at another level, by assuming weather the identity of the landmarks is known or not. This
a priori knowledge is important to solve the data association problem, which is one of the
most di�cult problems in SLAM. For a detailed taxonomy of these distinctions, the reader
can refer to [Thrun 2008].

In addition to computational complexity and data association problem, another particular
challenge for SLAM is the known �loop closure� problem, which consist of detecting if the
robot has returned to a past location where it has already been after having discovered new
terrain for a while. Recognizing previously mapped locations makes it possible to increase
the precision of the actual pose estimate, to address the global localization problem and to
recover from a kidnapping situation. Such detection is crucial for enhancing the robustness
of SLAM algorithms and thus enabling additional capabilities to mobile robots.

Vision based SLAM Visual SLAM involves the use of camera images information to
tackle the SLAM problem. As omnipresence of cameras has increased in the last recent
years, the interest of the research has become intensi�ed in Visual SLAM [Strasdat 2011],
[Johannsson 2013], [Kerl 2013] and Vision-based SLAM [Se 2005], [Lemaire 2007] or vSLAM
[Sola 2007], which employs mainly cameras as exteroceptive sensors.

Several types of sensors are used to acquire data with statistically independent errors.
The statistical independence is the compulsory condition to overcome the metric movement
and the noise found in the measures. The capability to obtain range information as well as
environment's appearance, color and texture, makes of the camera sensor a key element for
integrating high-level tasks like detection and recognition of places. Such assets enables the
robot to detect loop closure situations and by consequence to accurately position itself in
limited environments. Hence, di�erent systems that use cameras as the only exteroceptive
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sensor to perceive the environment have been proposed in the literature, for instance, vision-
only SLAM [Warren 2014], [Milford 2008b], and monoSLAM [Davison 2007], [Perera 2011].

However, using cameras as the only sensor is a challenging task mainly in dynamic or
featureless environments as the systems can be penalized by the lack of texture in some
structures, lighting changes, insu�cient camera resolution, many or few salient features
recognition, and erratic camera motion among other factors. This may lead to common
problems, for instance, problems such as data association have been addressed in [Ahn 2006],
[Burguera 2014], loop closing in [Williams 2008] and large non-Gaussian error distributions
in reconstructed points depth [Montiel 2006].

Moreover, some real-time systems su�er from error accumulation over time due to the
camera's incapability to measure the environment scale, introducing errors into the robot's
speed and position estimates. Therefore, in order to overcome this problem and to increase
the accuracy and robustness of the systems, some of them use the robot odometry or propri-
oceptive sensors as complement to the visual sensors to extract information. These systems
are known as visual-inertial SLAM [Oleynikova 2015], [Peretroukhin 2015], [Jones 2011].

Di�erent approaches attempting to solve the visual SLAM problem have been proposed
in the literature. They can be classi�ed in mainly three di�erent groups: probabilistic �lters;
bundle adjustment (BA), and �nally the biological inspired techniques.

• Probabilistic Filters:

The probabilistic �lters are the most commonly used techniques in most SLAM systems.
Some of these are the Extended Kalman Filter (EKF), the Rao-Blackwellized �lter,
Factored Solution to SLAM (FastSLAM), Maximum Likelihood (ML) and Expectancy
Maximization (EM) [Thrun 2008].

The Extended Kalman Filter o�ers successful results when minimizing uncertainties on
small scale environments. However, it is limited in large environment as the complexity
of the EKF is quadratic with respect to the number of landmarks on the map, which
makes di�cult to maintain large maps. For instance, although the MonoSLAM sys-
tem proposed by [Davison 2003] proves its feasibility of real-time SLAM with a single
camera, it is restricted to work in narrowed and indoor spaces as it employs the EKF
to estimate data. However, [Clemente 2007] present an alternative approach to the
MonoSLAM system, suitable for large environments and capable of performing large
loops closures. In their approach, they combine a hierarchical mapping technique and
a robust data association algorithm based on Joint Compatibility Branch and Bound
(JCBB), a standard technique for spurious rejection within the EKF framework.

Along the same line, [Civera 2010] combine the Random Sample Consensus (RANSAC)
technique with the Extended Kalman Filter in order to perform a robust estimation from
data containing outliers. The available information coming from the EKF is used in the
RANSAC model thus reducing the sample size, which results in large computational
savings. In their work they show that, their algorithm outperforms both in accuracy
and computational cost the JCBB algorithm.

The FastSLAM method instead, uses a modi�ed particle �lter for estimating the pos-
terior over robot paths and has been proved to be faster than existing EKF-based
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SLAM algorithms [Montemerlo 2002]. Therefore, [Eade 2006] present an e�cient al-
gorithm allowing real-time mapping performance in large environment by applying a
FastSLAM-type particle �lter to a Single-camera SLAM and combining it to a top-
down search. Moreover, they introduce a partial initialization procedure to determine
the depth of new landmarks that avoids linearization errors.

[Cummins 2008] propose a rigorous probabilistic approach to image matching based on
the appearance called FAB-MAP. It calculates the similarity between images from two
locations based on the extracted feature descriptors allowing it to determine whether
an observation comes from a previously visited location or not. These properties make
of it a robust system to perform loop closure detection regardless of accumulated metric
error.

Another big challenge for SLAM algorithms is to work on dynamic environments. For
instance, [Tipaldi 2013] use in their system a variant of the expectation maximization
(EM) algorithm to learn the parameters of the representation of the environment, which
employs hidden Markov models on a dynamical occupancy grid. The use of the dy-
namical occupancy grid allows the system to take into account the dynamics of the
environment. The probability of a grid cell is represented in the analytical part of
the factorization and the information learned from the representation is employed to
estimate the pose of the robot as well as the state of the environment during global
localization and the occupancy. Then, the Rao-Blackwellized particle �lter (RBPF) is
applied and its sample part represents the robot pose. Hence, an accurate and robust
localization is achieved and the map is updated around the current robot location.

Similarly, in order to minimize the e�ects caused by the movement of the landmarks
in dynamic environments [Xiang 2015]propose a graph-based SLAM. They present a
mobility-robusti�ed function to measure how stationary a landmark is in the space. An
EM-based algorithm is used in order to infer the mobility scaling and estimate the pose
trajectory of a robot with respect to the mobility-robusti�ed objective function and the
resulting moving landmarks are treated as outliers.

• Bundle Adjustment:

In vision community, the SLAM problem is referred as the Structure fromMotion (SFM)
problem consisting in detecting and matching di�erent points between successive frames
of a video, estimating the camera position according to the relative movements of the
points, and constructing a 3D model of the environment. Hence, the bundle adjustment
method is used to perform a batch optimization of the global geometry over selected
images. It adjusts iteratively the pose of the camera as well as the pose of the image
points in order to obtain the minimal reprojection error (between the actual and the
predicted image observations), which is expressed as the sum of squares of a large
number of nonlinear, real-valued function.

Initially some the SFM algorithms were carried out o�-line allowing the construction of
3D representation of the environment from small sets of images. Thereafter, in the need
of estimating the motion of a moving robot in real-time and computing incrementally the
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surrounding environment, some real-time algorithms based on the bundle adjustment
were further proposed.

For instance, [Mouragnon 2006] introduce a system that operates in an incremental
way each time a new key-frame and 3D points are added to itself by using a fast and
local bundle adjustment. First, they �nd the position and orientation of the monocular
camera in a global reference frame by using a triplet of images. Then, the pose is
computed by detecting and matching features of each video frame. The output is the
current position of the camera and its uncertainty resulting in a complete trajectory
with the 3D coordinates of matched points.

Likewise, [Eudes 2010] propose an improved version of the SLAM problem by applying
a local Bundle Adjustement (LBA) on selected keyframes of a video. Their system
correct the scale drift estimation of the long monocular video sequences by using infor-
mation provided by the vehicle odometer; thus, the estimated pose of a new key-frame
is replaced by a correct one. Computational complexity depends on several factors,
including the number of images, observed 3D points, and actual image observations.

At present, incremental BA approaches become quickly computationally expensive as
more information is added (camera poses and 3D points) into the optimization. Hence,
large amount of information processed in a reasonable time is the focus of several
BA methods. For instance, [Indelman 2015] introduce an incremental light bundle
adjustment (iLBA) optimization framework that reduces considerably computational
complexity compared to standard incremental bundle adjustment (iLBA is 2-10 times
faster depending on the number of image observation per frame). The method incor-
porates two key components to reduce computational complexity: structureless BA by
reducing the number of variables and incremental smoothing using adaptive partial
calculations each time a new camera is incorporated into the optimization. Recently
[Strasdat 2012] stated that Bundle Adjustment optimization techniques are better than
�ltering techniques as they give the most accuracy per unit of computing time. The
conclusion is made out of a series of Monte Carlo experiments investigating the ac-
curacy, in terms of entropy reduction, and cost of visual SLAM of both �ltering and
bundle adjustment. Moreover, they suggest that in order to increase the accuracy of
visual SLAM it is usually more pro�table to increase the number of features than the
number of frames.

• Biologically Inspired :

Biological models and navigation systems of bees, ants, primates and humans have
been the source of inspiration of several robotic systems over the last decade. They
have been extensively studied and their navigation behavior respond to many of the
properties that robotic navigation systems look for as a solution.

For instance, [Milford 2004], [Milford 2008a] implemented a model capable of perform-
ing SLAM in real time on a real robot based on the hippocampal complex of rodents
which they named RatSLAM. The system integrates odometric information with vision
sensing by modeling the place �elds in rodents. Place �elds are patterns of neural ac-
tivity that correspond to locations in space and are modulated by the visual stimulus
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and the activity of the rodent as it moves in the environment. Experimental results
show that RatSLAM can operate with ambiguous visual inputs and still can recover
from path integration errors. The dynamic of the network allowing multiple hypotheses
to propagate and to compete with each other, helps to strengthen the belief or one of
more pose hypotheses.

An improved version of the RatSLAM was later proposed by [Glover 2010] where
they fusion the probabilistic local feature based data association method of FAB-MAP
[Cummins 2008] with the pose cell �ltering and experience mapping of RatSLAM in
order to overcome to the problem of mapping and localization at di�erent times of the
day. In fact, due to continuous changes of luminosity in outdoors applications, the ap-
pearance of a scene changes constantly and makes di�cult the localization task. Hence,
such fusion gives a good solution to the lifelong SLAM problem.

Along the same line of the appearance problem [Maddern 2012] present a new system
named Continuous Appearance-based Trajectory SLAM (CAT-SLAM), which also uses
the advantages of the appareance-based place recognition of the FAB-MAP by combin-
ing them with the spatial �ltering characteristics of traditional geometric SLAM. This
probabilistic approach tackles the loop closure problem by improving the reliability of
the appearance represented in a continuous way instead of at discrete points along the
trajectory, which traverses all previously visited locations. It uses a Rao-Blcackwellised
particle �lter to develop loop closure hypotheses over a number of observations by
modeling both the likelihood of revisiting previous locations and exploring new ones.

Other extended and modi�ed versions of the RatSLAM systems have also been proposed
in the literature. For instance, [Müller 2014] adapt the RatSLAM system, initially
conceived and tested for wheeled robots, to work on humanoid robots by adjusting the
given constraints. Similarly, Hippo 3D performs SLAM in 3D environments with an
application to a subaquatic scenario through a ROV simulation with four degrees of
freedom [Albring Guth 2013].

2.4.3 Mapless navigation

Contrary to map-based navigation, mapless navigation consists in achieving an autonomous
navigation without using or creating any model of the whole environment neither prior the
navigation task nor online. Hence, in order to navigate the environment and localize itself
the robot needs to consider some elements said landmarks, signi�cant enough to be easily
detectable in the given environment that would serve as guides for motion such as walls,
doors, desks etc. Subsequently, the robot wonders about the environment, observes the
scene, extracts the most relevant features of the landmarks, stores each landmark at a given
position and localize itself by matching them during navigation. Since most mapless visual
methods depend mainly on the vision technique or type of clues used during navigation, they
can be distinguished accordingly. However, we still highlight that most of these techniques
are also used in the map-based approaches for matching the correspondences and constructing
maps and that is where their di�erence lies on.
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2.4.3.1 Optical �ow

When a person moves in the environment, its whole visual scene is transformed. [Gibson 1950]
called this transformation optical �ow and it is due to the modi�cation of the spatial relations
between the observer (person or camera) and the objects in the environment. More precisely,
optical �ow is de�ned as variations of brightness patterns in a sequence of images given by
the apparent motion of the surrounding elements of the observer when the observer himself
is in movement. In an image, each pixel corresponds to the intensity value obtained by the
projection of an object in 3-D space onto the image plane. Thus, when the objects move,
their corresponding projections also change positions in the image plane.

Optical �ow is a vector �eld that shows the direction and magnitude of these intensity
changes from one image to another. Therefore, optical �ow can be used to estimate not only
the motion of the objects and the nature of their structure in the scene but also the motion
of the robot relative to the objects and thus infer the current robot position and velocity.

Several e�cient optical �ow algorithms have emerged and been used for robot navigation
purposes over the last decade or so. For instance, most of them have been used to perform be-
haviors involving continuous motion such as corridor centering [Zingg 2010], visual odometry
and obstacle avoidance, involving di�erent �ow techniques such as Camus' correlation-based
method [Camus 1997], [Lucas 1981], [Horn 1981]and [Nagel 1987].

In [Moya-Albor 2016], the authors proposed an algorithm in real time that improves,
in accuracy and robustness to noise and to intensity, the optical �ow constraint equation
of Horn and Schunck di�erential approach. The technique is combined with the Hermit
transformation: a biological image model that describes signi�cant visual features in digital
images. As a result, the Hermit optical �ow (RT-HOF) method not only is fast enough
to compute an approximate solution of displacements between images but also it allows the
robot to avoid mobile obstacles in two di�erent approaches: braking and steering when mobile
obstacles are close to it.

In [Honegger 2013], the authors compute the optical �ow between two successive frames
by using the sum of absolute di�erences (SAD) block matching algorithm. First, a reference
block of pixels is chosen to compute its SAD value of the current and preceding frame.
Then, the resulting value is compared to the SAD values within the search area and the best
matching is selected as the resulting �ow value. The algorithm is performed in an open source
and open hardware system based on a machine vision CMOS image sensor designed by the
same authors.

Thanks to its low power, low-latency and low-cost, the CMOS sensor-microcontroller
is suitable for micro aerial vehicle applications where the system was tested on and which
perform great results in indoors and outdoors environments. However, since the optical
sensor only provides displacements in the x and y directions, information about the angular
displacement of the robot has to be determined by other method. Therefore, they use an
onboard gyroscope to estimate correctly the translational velocity and an automatic exposure
control that allows usage in outdoor and indoor environments.

A comprehensive investigation of exiting researches on optical-�ow-based robotics naviga-
tion with an emphasis on both the sensor hardware and associated reference motion models
is provided in [Chao 2014].
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2.4.3.2 Feature based

In structured environments, people can self-localize by distinguishing rapidly and accurately
di�erent landmarks from the rest of the scene and then navigate while tracking them. Sim-
ilarly, some computational approaches attempt to solve the robot navigation problem based
on the search of certain relevant landmarks that can allow the robot to minimize uncertainty
in the computed pose estimation to localize itself and �nd its �nal destination.

Feature based methods permit to segment landmarks such as doors, lines, windows as well
as to extract interest point features and to encode an image description of their neighborhood
appearance relevant from the rest of the image in order to use them as landmarks which each
de�ne a particular location in the environment. Since most of the techniques used in this ap-
proach such as Speeded Up Robust Features (SURF) and Scale-Invariant Feature Transform
(SIFT) are invariant to translation, rotation, illumination, reduction and enlargement factors,
the matching correspondence is quite robust, making them ideally suited to landmark-based
navigation. However, some of these techniques are relatively computationally expensive and
di�cult to implement in real time on a resource-constrained robot.

Therefore, in order to reduce the computational expense while still being robust at mem-
orizing and recognizing natural landmarks, [Anderson 2013] introduces a modi�ed but still
consistent version of the SURF algorithm, the one-dimensional SURF (1D SURF). The SURF
algorithm is applied to a single row of grey-scale pixels captured at the robot's horizon, hence
it considers only one dimension. Since the algorithm is used for a robot moving on a planar
horizontal surface, there is no need of taking into account the rotation or vertical movement
of the features provided by the classic SURF algorithm. Hence, the features in the test image
are matched to their nearest features of the stored image to perform landmark recognition.
The robot is then able to estimate its pose location according to the information given by
the matched stored image.

The use of landmarks for navigation has appeared to be a good solution when no prior
information of the environment is given. However, the quantity of landmark models in the
robot's memory can increase exponentially with respect to environment size and sometimes
is can be redundant and costly. Therefore, in [Sala 2006] the authors study the problem of
�nding the optimal size of a subset of landmarks necessary to perform a robust and reliable
navigation. Two views of the most widely visible landmarks are shown to the robot during
a training phase. The robot forms its database, based on these views and the position at
which they were acquired and then it uses it to match the visible features during navigation
to compute its position and orientation. The choice of the widely visible landmarks is done
by partitioning the world into a small number of maximally sized regions such that from
any position within one of the regions the same set of features is visible. As consequence,
the database of features is also partition into a set of smaller databases, each corresponding
to what the robot sees in a spatially coherent region. Hence, the total number of features
(corresponding to the union of all the databases) that need to be retained for localization is
much smaller than that of the single database. Therefore, even without prior knowledge of
the region in which the robot is located, the search is far less costly.
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2.4.3.3 Appearance based

Since e�cient and consistent feature extraction and correspondence is di�cult in cluttered
and unstructured environments, some systems algorithms rather take into account the global
appearance of the image such as the color, shape , edge , texture, etc. A variety of systems
allowing an accurate robot localization and navigation has been proposed in the literature
making use of di�erent holistic approaches.

For instance, [Zhou 2003] present a method that applies a multidimensional histogram
on the image in order to describe its global appearance with respect to color, edge density,
gradient and texture. The extra information given by the multiple histograms other than
only that of the classic color histogram, allows the system to additionally describe the spatial
relationship among pixels provided that a good selection of suitable image features are given
into the histogram. Subsequently, the multidimensional-histogram of the current image is
compared to the multidimensional-histograms of the samples database, which each correspond
to a de�nite location. Hence, the current location of the image is given by the location of the
candidate that corresponds the best according to the matching results.

This same image-matching process has been seen in insects when returning to a goal posi-
tion. It is called the snapshot model [Cartwright 1983] and has been the source of inspiration
of several computer models. However, contrary to most of the early snapshot computational
models that operate on one-dimensional images, [Vardy 2003] introduce the visual homing

model operating on two-dimensional images. Hence, the agent is able to take and store an
image of the goal position surroundings and later it uses it to match it with the current
perceive images. Subsequently the disparity resulting from the matching is used to guide
the agent's return. While in their work, the disparity is computed by comparing images of
vectors resulting from a ring operator, [Guzel 2012] adapted the same visual homing strategy
to a monocular vision based system but instead, extract the key features from the images
by using the SIFT algorithm. As a result, the system estimates accurately the linear and
angular velocity of the mobile vehicle with an a�ordable computational time.

The authors in [Gaussier 1997] developed an appearance-based approach using neural
networks. Inspired by biological place cells, place neurons are created in the model and
each of them de�ne a di�erent location. The robot, in essence, merges visual information of
landmarks and their azimuths to build up a spatial representation which activity provides an
internal measure of localization that serves to estimate the best movement to reach the goal.
[Giovannangeli 2006b] later improve this set of place- action association by achieving sensory
motor tasks in indoor and large outdoors environments. More details of this approach can
be found in section 2.2.4 concerning the place recognition.

Other systems have opted instead, to use arti�cial landmarks whose texture can be easily
recognized on the environment by performing a template matching for example.

[Fernandes 2012] estimates the robot localization by using visual odometry based on ob-
servation of �ducial landmarks that are distributed on the explored environment. The �rst
detected and identi�ed landmarks is de�ned as the reference frame for robot localization and
the landmark pose estimation is re�ned by using the method proposed by [Schweighofer 2006],
which takes into account the two local minima of the estimate error function, explicitly dealing
with both to �nd the optimal pose estimate.
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2.4.3.4 Symbolic-based

This method employs a symbolic navigation approach just as people do most of the time
to locate their positions and reach their destinations in unknown environments. In fact,
by tracking landmarks composed of texts and directions, people are capable of achieving a
successful navigation even if they are not familiar to the place. Therefore, some algorithms
attempt to go beyond the detection of simple landmarks by recognizing and extracting a
semantic meaning out of the landmarks in order to give more comprehensive information
about the surroundings.

For instance, [Shaikh 2013] proposed a method allowing the robot to �nd a path auto-
matically by detecting and reading textual information or signs located on the landmarks.
First, the landmarks are located and tracked and then the semantic information of the texts
and arrows within the landmarks is extracted. The resulting information is used to guide the
robot to the �nal destination. To this end, they implement and optical character recognition
(OCR) by using the Kohonen Neural Network, which allows reducing the computational cost
for real time implementation. In other scenarios such as those where robots play an impor-
tant role in human-robot teams, symbolic navigation not only provides a good solution but
also it is necessary for achieving a successful team operation.

In [Oh 2015], the authors suggest that in order to profoundly understand the environment,
robots need to be able to reason about the given commands for a speci�c task from their
team partners besides having a good communication interaction and other high level required
skills. Hence, they have developed an intelligent architecture that combines di�erent cognitive
components allowing the robot to operate at the same level of their human counterparts. For
instance, in order to cooperate with humans in complex tasks, the robot should be able to
understand and execute a command like �navigate quickly to the back of the building that
is behind the car�. To this end, one of the main components of the proposed architecture
consist of performing a semantic perception to label regions and objects in the environment.
They use a decision-forest classi�er that labels super pixels using SIFT [Lowe 2004], LBP
[Ojala 2002] and texton features [Shotton 2009] in a coarse-to-�ne segmentation hierarchy and
they combine it with a 3D LADAR data to separate the labeled pixels into discrete objects
with coordinates in the world relative to the robot. Outdoor navigation in urban environments
results are presented and they show that their multidisciplinary approach enables the robot
to carry out complex tasks in various real-life scenarios without the need of any map or prior
information.

2.4.4 Summary of the types of navigation

Two types of visual navigation have been presented in this section. Their classi�cation has
been done based on the presence or absence of a global representation of the environment
(a map) on which robot localization and planning is highly dependent. The �rst navigation
strategy, map-based navigation, addresses the strategies using or constructing a map of
the environment, thereby it is divided in two groups.

First, map-using strategies employ topological or geometric models of the environment
before the navigation tasks begins. Since the robot knows previously the global information
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of the environment, this type of navigation provide fast, robust and consistent solutions to
the localization and path-planning problem. However, their highly dependence on a represen-
tation of the working environment, limits the operational capability of the robot. Moreover,
using a map beforehand implies that the environment is static; therefore, it is not suitable
under dynamically changing environments.

Knowing the disadvantages of the �rst type of navigations, the second type, map-

building , attempts to solve the problem of navigation in terms of localization and planning by
constructing a map as it navigates the environment. Contrary to the �rst type where a person
usually provides the map to the robot, this type of navigation employs the robot's sensor as
it navigates in the environment in order for the robot to create itself geometric or topological
models of its world. These strategies overcome the shortcomings presented in the �rst group
of strategies by allowing autonomous robots to navigate through dynamic environments. Two
di�erent ways of tackling this problem have been presented, whereas some algorithms build
the map during the training phase and navigate during the operational phase, other algo-
rithms allow the robot to build the map and localize itself simultaneously while navigating
the environment. This is known as SLAM and it is currently the most common strategy
being used. However, building a robust model of the environment is computationally time
and e�ort consuming. Additionally, map-building navigation based on visual sensors is quite
challenging compared to other algorithms based on other sensors.

The second navigation strategy, mapless navigation, concerns a navigation strategy
where the robot does not require any explicit representation of the working environment.
Basically, these strategies rely on the robot sensors to capture relevant features, landmarks
or objects in the environment that could serve as reference for navigation. There are three
di�erent approaches based on computer vison techniques that allow detecting, matching and
recognizing di�erent visual cues or observation in the environment. Besides, a fourth approach
involving motion estimation techniques is also widely used. The inspiration behind mapless
navigation lies on the behavior found in living organisms and thereby resembles the most the
human behaviors. However, the lack of a global representation of the environment can limit
an optimal localization and can slow down the navigation process.

2.5 Conclusions

This chapter has presented a transversal structure describing the implication of the func-
tional modules in each type of navigation strategies found in the state-of-the-art: mapless
navigation and map-based navigation composed itself of map-using and map-building navi-
gation. While the navigation strategies are described in terms of the localization and path
planning functional modules, the visual perception and the world representation functional
modules are described separately. The visual perception section highlights a biological place
recognition approach our work is inspired on and the world representation section introduces
shortly the two types of maps used in this work.

Robot navigation needs a control unit capable of organizing, unifying and monitoring the
various components of a robotic system. Therefore, the next chapter reviews in detail the
di�erent control paradigms allowing to de�ne the capacities of the robot to plan a line of
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action and execute a variety of intelligent behaviors according to what it senses as well as to
its interactions with the environment.
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3.1 Introduction

In the navigation task as in other robotic tasks, the input information of a robot system
either coming from the robot sensors or from an available representation of the world, needs
to be processed so that the robot can make autonomous decisions on how to act on the
environment and follow their execution. Such process, most of the time complex because of
the application domain, requires a control system capable of monitoring and coordinating all
the robot components as well as their inner interaction respectively.

According to [Mataric 1992] an architecture provides a structure for organizing a control
system. They allow to structure the di�erent levels of development into levels of abstraction
as well as to improve the reusability and modularity of hardware and software components of
the robotics systems. Hence, robot control architectures could be de�ned as control schemas
developed to integrate di�erent functionalities and capabilities endowing the robot with an
autonomy to plan its line of action and produce intelligent behaviors.

A control architecture is required to meet some design properties and behavior speci-
�cations. Here below, we present some of those found in [Alami 1998], [Nakhaeinia 2011],
[Brooks 1986].

Global reasoning: Reasoning in a global way gives a better insight of the past event
mistakes and helps to plan ahead optimal ways of achieving a given task. A high level
decision-making requires of a good understanding of the overall situation.

Reactivity: all di�erent components of the architecture must be capable of appropriately
reacting to the speci�c received stimuli, especially when unforeseen changes appear in the
environment.
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Integration: The software tools that run on the robot are very diverse. Therefore, it
is important to propose good tools for every type of component, and especially to o�er
transparent mechanisms of communication and exchange of the data.

Robustness: The architecture has to allow using the redundancy of information sources,
processing, and the multiplicity of processors. Moreover, it has to be invariant to imperfect
inputs, unexpected events and sudden malfunctions.

Resolving multiple tasks: It is inevitable to �nd situations where con�icting concurrent
actions have to be performed. Therefore, a control architecture should be able to decide on
the priority of each tasks while providing means to ful�ll all the multiple tasks.

Reliability: The use of robots in critical situations (for the robot and its surrounding
environment) requires the use of methods, which guarantee certain safety properties. The
architecture should provide the robot a good performance without failures or degradation of
it.

Programmability: A highly and easily programmable machine (both from the point of
view of the programmer and that of the user) would allow a robot to achieve di�erent tasks
described at some abstraction level, instead of only one precise task. From the functional
level to the decision-making level, it should be possible to program control loops and low-level
processing, functioning constraints and procedures of goal re�nement, among many others.

Flexibility, modularity, expandability: Since the conception, implementation and build-
ing of di�erent architectural components usually takes long time, the architecture should be
�exible enough to add new features without questioning or modifying the already existing
ones at whatever level they might be.

Autonomy, adaptability, coherence: The robot should be able to execute the actions,
re�ne and adapt its plans and its behaviors according to its goals and to the environment as
it perceives. Sometimes if not often, the environment changes unpredictably, therefore, the
robot has to adapt to these changes. Additionally, its behavior and its reactions should be
guided by its goals.

3.2 Control Paradigms

Diverse architectures of control have been proposed in the literature to design and develop
strong, �exible, reliable and high performance control systems. Each of these architectures
of control involves new concepts and solutions to solve the robot navigation problem based
on the use or combination of di�erent paradigms that have emerged since the early days of
autonomous robot conception.

A detailed description of each paradigm is given below according to two di�erent view-
points. On one hand, the functional viewpoint classi�es the paradigms in terms of their
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internal functionality and thus in terms of their capabilities to act on the environment when
performing a given task. On the other hand, the design viewpoint speci�es two paradigms
based on how the data information is processed and propagated through the systems as well
as how the knowledge is ordered.

3.2.1 Design viewpoint

From the design point of view, control architectures can be distinguished according to two
di�erent methodologies that have traditionally been used: top-down and bottom up.

They di�er in the way of how the sensory data is processed and propagated through the
systems as well as how the knowledge is ordered. These two opposed strategies have their
roots in the �eld of Arti�cial intelligence and have been the basis on the design of autonomous
robots in the robotics �eld. Both approaches have their advantages and disadvantages, there
where one excels, the other fails and vice-versa. This trait of both approaches is the root of
a debate among robots designers on how to build autonomous robots.

3.2.1.1 Top-down

The top-down approach was the dominant paradigm in the early days of AI robotics (1960s-
1970s) when researches considered that creating a machine with arti�cial intelligence could
be possible by reducing human intelligence to symbol manipulations. At that time much
of the focus was on robot planning. Therefore, in order to perform high-level tasks, a pre-
programmed global knowledge was �rst given as input to the system. Then, the information
was decomposed into smaller subdivisions and so on until each of them was reduced to
basic elements that could be speci�ed and explained by themselves. Whenever, one of the
subdivisions could not be speci�ed, it was replaced by a �black box� and thus, manipulated by
the system to obtain the desired output. However, the absence of knowledge and speci�cation
of a given subdivision could not give clarity to the comprehension of elemental mechanisms
and sometimes the validation of the complete model.

Since an optimal robot navigation based on this approach relies on prior knowledge in-
formation of the environment, the required amount of information to be stored in the robot's
database as well as the computing complexity can be huge and di�cult to handle. Moreover,
this implies that the global information is not going to change in the middle or after the
process. Therefore, since the information is centralized, whenever there is a modi�cation, the
whole navigation task will collapse [Clancey 1991].

Nonetheless, the systems based on this approach have a good understanding of the envi-
ronment; thereby they have better capacity of reasoning when the environment is to remain
static.

3.2.1.2 Bottom-up

By the mid-1980s the top-down paradigm of symbolic AI was being questioned, thereby giving
popularity to the bottom-up paradigm. The robots were slow and had trouble operating in
complex and dynamically changing environments because they had to plan all of their actions
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based on internal world models. Hence, bottom-up models proposed an alternative to such
shortcomings.

Contrary to the top-down paradigm, the bottom-up paradigm does not require of a cen-
tralized control or high-level organization of the system. Consequently, it allows reacting to
unforeseen situations by quickly controlling the robot's movements without requiring complex
computer programs. In bottom-up models, the design process starts with specifying require-
ments and capabilities of individual components. They are relatively simple processing units
connected in a network that by interacting among themselves and with the environment, pro-
duce complex and more `intelligent' behaviors. The global behavior is said to emerge from
such interactions. Hence, a system based on this approach is able to build its own knowledge
and learn by itself from the interaction with the environment, usually performed with parallel
processing such as neural networks.

Even though, these systems are quite simple, adaptable and �exible, they lack practicality.
For instance, if a robot is needed in a disaster scenario, it has to act as fast as possible.
Therefore, respecting the time constraint is crucial for a successful task achievement and a
robot without the previous knowledge of the navigation environment would badly fail.

3.2.1.3 Summary of the approaches

Even though the bottom-up approach is much younger, it has shown to have a value and
a place in robotics as much as the top-down approach has. Whereas top-down models
allow breaking down the problem into low-level commands helping the robot to plan its
future movements, bottom-up models are suitable systems for navigating in unknown and
dynamic environments. Their parallel processing enables the robot to learn to deal with
unforeseen situations and di�culties. bottom-up models can easily adapt to any changes
and do not require huge computing complexity as top-down models do.

However, they both present individual shortcomings that still need to be overcame. Due
to its sequential process information, the navigation process in top-down models can be
delayed and the huge amount of space required for storing all the preprogrammed knowledge
can exceed the robot space memory. Moreover, the malfunctioning of one of the modules can
cause the failure of the entire system. Likewise, with a bottom-up approach is very hard
to achieve a higher-level complexity and the required time to learn a task or to achieve an
intelligent behavior can be a limitation in time constraint tasks.

A solution instead, would be to combine both, top-down and bottom-up approaches
in a possible way for a control architecture to have a preprogrammed knowledge of the
environment, while being able to adapt to the real world environment thanks to emerging
behaviors resulting from the interaction with the environment.

3.2.2 Functional viewpoint

Four di�erent types of control paradigms allowing the robot to execute an action according
to the perceived information can be distinguished. However, they di�er from one another in
their internal functioning and thus in their capabilities to act on the environment in terms
of a given task.
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In his book �Introduction to AI robotics� [Murphy 2000], Murphy describes and illus-
trates these paradigms in terms of the relationships between three primitives, sense, plan and
act (SPA paradigm). Certainly a point of view with roots in the classic symbolic AI.

Sensing concerns the function of taking information from the robot's sensors and translat-
ing it into an internal world model or an output useful for other functions. Planning instead,
is more complex as it takes the information either from the sensors or from the internal world
knowledge in order to produce one or more tasks for the robot to perform. Finally, acting is
the task of producing output commands to the robot motor actuators

sense plan act

Figure 3.1: Sense, Plan, Act (SPA) Paradigm.

This paradigm has its roots on the symbolic AI paradigm of the 1950's and for several
years it was the dominant paradigm (deliberative) for building robots capable of imitating
human intelligence, contrary to the Reactive paradigm which functioning is based on a simple
stimulus-response mechanism [Wiener 1961] (see �gure 3.2). They are both distinguished
mainly by the speed of reaction, the consideration of the global knowledge of the world, the
usage of perceived data and the computing complexity.

However, as they both presented some shortcomings, the hybrid paradigm was conceived
combining advantages of both deliberative and reactive approaches while diminishing their
individual drawbacks (see �gure 3.3). As a result, hybrid control architectures employing a
hierarchical/sequential division are composed of both components: deliberative and reactive.

Hence, while the deliberative paradigm follows the sense-plan-act process, the reactive
paradigm omits the planning by only sensing and acting directly through the robot actuator
(sense-act); the hybrid plans at one step and the sensing and acting are done together (plan,
sense-act).

However, Brooks rejected the symbolic (deliberative and hybrid) paradigm and focused on
the development of basic process unit that allows robots to move [Brooks 1986]. He considered
that the capacity of reaction of a robot under unforeseen situations was an important quality
to take into account under dynamically changing environments, particularly when they are
unknown and uncertain. The symbolic paradigm did not allow the robot to react accurately
to real time environments. Therefore, he proposed a new architecture based on a behavior-
based paradigm consisting of a collection of simple processing units called behaviors connected
each of them directly to the robot sensors and actuators (see �gure 3.4) allowing to perform
a successful navigation.

Hence, the emergence of the behavior-based control paradigm started to get the attention
of few researches based on the nouvelle AI, as it was possible to enable the robot with learning
capacities while still performing other tasks as good as the other paradigms did. It can be
considered as an extension of the reactive paradigm but with more complex functionalities
where a learning process takes place.
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Sense Plan Act

Sense Act

Deliberative

Reactive

Figure 3.2: Deliberative and Reactive Control paradigms in terms of the relationships between
three primitives, sense, plan and act and in terms of how sensory data is processed and
propagated through the system [Murphy 2000].

3.2.2.1 Deliberative

The deliberative control approach involves the employment of reasoning techniques to decide
on actions to take based on a model of the environment. It has its roots in the traditional
arti�cial intelligence (AI) paradigm, in which a central planner fuses all sensors readings,
builds a model of the environment, �nds a path, plans the next action, and �nally steers
the robot. The robot data processing is realized under a sequential form. Therefore, the
navigation process based on the aforementioned functional modules can be incarnated in a
hierarchical architecture (see �gure 3.5) as presented by Brooks in his work proposal of an
alternative paradigm [Brooks 1986]. The robot acts on the navigation environment according
to the internal environmental representation that has constructed provided by the sensory
data.

This paradigm was the foundation of many robotic control architectures for many years
[Schwartz 1983], [Chatila 1985], [Takahashi 1989], [Latombe 1991].

The Shakey robot was one of the �rst robots which architecture consisted of these three
functional elements [Nilsson 1984]. The sensing module was in charge of building a map of
the environment out of the images taken by the robot's camera. Then, the planning module
used this map and the information of the goal destination in order to plan a path leading to
it from a starting point. Then, the path, represented by a series of actions, was sent to the
robot output by the executor module.

As in most of deliberative architectures, the actions taken by the Shakey robot were
executed directly without needing to reuse the sensors that created the model. However,
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Sense Act

Plan

Hybrid

Figure 3.3: Hybrid control paradigms in terms of the relationships between three primitives,
sense, plan and act and in terms of how sensory data is processed and propagated through
the system [Murphy 2000].

planning required the use of an accurate model of the robot environment and building such
models implied the use of high-precision sensors, which are often expensive.

Although this model allows the robot to reach a speci�ed goal by generating optimal
sequences of actions in a complex environment, unforeseen changes such as new obstacles pose
a major hurdle in task completion. The need to process a complex hierarchy of information
at every step can further slow down the progress through highly dynamic environments since
there is a strong sequential interdependency between modules. The delay caused by one of the
modules will delay the next one and so on. Therefore, since this type of architectures is limited
by the lack of real time reactivity, especially in complex and dynamic environments; purely
deliberative architectures are rarely used in physical like the one presented by [McGann 2008],
who focused on the control of autonomous submarine vehicles.

Alternative architectures have emerged through the course of time modifying and improv-
ing the deliberative ones.

3.2.2.2 Reactive

The reactive control approach uses a stimulus-response model that de�nes the movements
of the robot as a consequence of a stimulus. Such performance is similar to the behavior
observed in living organisms like insects where navigation is exclusively based on the sensory
perception and execution of simple behaviors. It can thus respond robustly and rapidly under
dynamic and unstructured environments.

In order to explain such natural behaviors in an evolutionary way, [Braitenberg 1986]
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Figure 3.4: Behavioral paradigm in terms of the relationships between three primitives,
sense,plan and act and in terms of how sensory data is processed and propagated through
the system [Murphy 2000].

presented a concept of vehicles conceived in a though experiment. The motion of each vehicle
is directly controlled by a group of primitive sensors and depending on how they are connected
to the wheels (each driven by its own motor); the vehicles exhibit di�erent behaviors that may
appear complex or even intelligent. This evolutionary approach inspired many researchers
that subsequently set this concept to practice.

Hence, based on this approach, from the 80s, a new generation of robots designers tried
to build robots without the use of internal maps of the world. With the use of architectures
based upon layers of perception-actions mechanisms, it was possible to explore alternatives
to the approach based on symbolic descriptions that were stored in the robot. This per-
spective is called situated robotics and refers to embodied machines existing in complex and
often dynamically changing environments which behavior is strongly in�uenced by it and the
situation.

One of the �rst known robots examples were invented by Brooks [Brooks 1986] and one
of the purposes of this approach was to develop a spatial learning theory without de�ning
prede�ned categories within the architecture of the robot. More precisely, instead of storing
an internal representation of the world and examine it to perform actions, the robots of
Brooks reacted directly to local sensations while interacting with the environment.

Hence, reactive navigation strategies are local strategies that use actions re�exes. More
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Sensors Actuators

Figure 3.5: Decomposition of a mobile robot control system into functional modules by
following the SPA paradigm (decomposition detailed by Brooks [Brooks 1986]

particularly, they work correctly only in the zone of their goal visibility and the actions
associated with the motor are directly related to the current perception values of their sen-
sors. Therefore, reactive architectures neither need a global model or prior knowledge of
the environment nor rely on complex reasoning processes (usually utilized in deliberative
architectures) to decide what actions to perform. Sensory data is distributed to individual
reactive modules and the information is processed in parallel rather than sequentially. The
information gathered by the sensor is the input of the set of behaviors, which transforms it
into a desired response and only the most appropriate and dominant behavior �nally executes
the action (see �gure 3.6).

Thanks to their simplicity, behaviors are executed very quickly thereby allowing to per-
form low-level tasks such as moving towards a given goal or avoiding unexpected obstacles
in unknown environments.

However, the probability and extent of success of quickly processing the information and
reacting under complex environments with these systems may be a�ected by the lack of an
overview of the environment for reference. Moreover, the complexity of tasks the robot can
address are limited notably because of the inability to have a memory or a capacity to store
enough information and consequently the inability to learn and improve over time.

Braitenberg Vehicles Valentino Braitenberg [Braitenberg 1986] describes in his book the
concept of a �vehicle� as an intelligent agent that can move autonomously within an environ-
ment. This concept is conceived in a though experiment that illustrates in an evolutionary
way, the capacities of simple agents. He uses nature as inspiration in order to compare these
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Figure 3.6: Reactive architecture. The sensors are directly connected to the actuators

extremely simple vehicles with animals by referring to a psychological language to describe
their behaviors. Hence, the evolution of these vehicles re�ects the evolution of the animal
species. They represent the simplest form of arti�cial intelligence based on behaviors or
physical knowledge: for instance, the intelligent behavior that arises from the sensory-motor
interaction between the agent and its environment, without the need of an internal memory,
representation of the environment or inference.

The objective of these experiments was to illustrate some essential aspects of the internal
structure of the animals' brain. Every experiment includes the description of a simple vehicle
provided with a small group of primitive sensors, capable of measuring stimulations and
connected to the motors vehicle which immediate response directly appears from a signal or
a stimulus in the sensor (similarly to the neurological connections in animals).

Hence, he shows how the resultant vehicles are capable of realizing di�erent complex
behavior, according to the interconnection between the sensors and the motor, which can be
described as a fear, an aggression, an attraction, a logic, etc. There exist 14 vehicles and
each of them present the essential characteristics of all the vehicles, which precede it, but it
adds it a stage of evolution to reach a threshold of greater complexity. For instance, vehicle
1, �alive� in �gure 3.7 consists of a single sensor and a motor wheel. The latter accelerates
and moves forward towards the direction at which it points, when the sensor is stimulated
by a source and it slows down as it goes away from the source.

In the case of a source of heat for example, the vehicle will always try to stay near a warm
place and will �ee the cold. Vehicle 2 in �gure 3.7 has two opposing behaviors �timid� and
�aggressive�, that depend on the connection of its sensors with the wheel motors. It consist
of two sensors and two wheel motors. In the �rst case, 2a , each sensor is linked to the wheel
motor of the same side and whenever on of the sensors is stimulated, its associated wheel
accelerates more than the one far from the stimulus. Consequently, the vehicle goes away
from the source (afraid or timid). On the contrary, in the second case, 2b, each sensor is
linked to the wheel motor of the opposite side. Then, when one of the sensors is stimulated
by the source, the associated wheel (from the other side) accelerates, while the other remains
immobile making the robot move towards the source as it was going to attack it (aggressive).
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Figure 3.7: Braitenberg vehicle 1: alive. vehicle 2: afraid(2a) and agressive (2b) vehicles
[Braitenberg 1986].

3.2.2.3 Hybride

Hybrid control approach was conceived in the need of overcoming the limitations exposed by
the reactive and deliberative control approaches. Hence, by merging these two approaches it
is possible not only to mitigate their individual drawbacks but mainly to improve the perfor-
mance of the robot navigation with the advantages of both approaches: the speed of reaction,
global knowledge of the world, usage of perceived data and computing complexity. As a re-
sult, hybrid control architectures contain both components: deliberative and reactive; and
they can be classi�ed mainly in three di�erent styles according to what has been developed
so far:

Managerial Style: The architectures calculate a conventional complete path in the delib-
erative module that controls the behaviors and actions in the reactive modules [Arkin 1989],
[Yavuz 2002]. Then, the reactive modules generate the adequate action by solving any prob-
lem that might appear. If a given module cannot solve the problem, the superior module
takes over. For instance, in the SSS (Servo, Subsumption, Symbolic) architecture, a sym-
bolic planner controls the reactive module [Connell 1992], whereas in the CoCo (Cognitive
Control)architecture , the deliberative module advices the reactive module through a set
of motivational variables [Qureshi 2004]. A small variation of these works can be seen in
[Low 2002] where the planning module produces a sequence of checkpoints that work as
sub-goals leading to the �nal target instead of the entire path.

State Hierarchies style: This style uses the knowledge of the robot's state in past, present
and future in order to generate the robot motion [Peter Bonasso 1997], [Lindström 2000].
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While the deliberative module use the knowledge of the robot's past state in order to predict
the future (path planning), the reactive module functions in the present state (self-awareness)
and follows the deliberative planning instructions to achieve the �nal action.

Model-oriented style: Alike to the deliberative architecture, this style of hybrid architec-
ture concentrates more on the global model of the environment to navigate the environment
[Konolige 1997] but it uses the reactive module to update the model and thus reduce pro-
cessing time that it requires [Davies 2008].

Most common hybrid architectures are composed of three layers usually organized in
parallel as illustrated in �gure 3.8.

Deliberative layer

Reactive layer

Intermediate layer

Sensors Actuators

Figure 3.8: Hybrid paradigme : most common type of architecture composed of three layers

While at the bottom of the architecture the reactive component deals with the most
urgent tasks as fast as possible, at the top of the architecture resides the deliberative module
operating the highly abstract, symbolic and internal representations of the world for achieving
long-term goals.

However, in order that the deliberative module performs a plan for high-level decision-
making and the reactive module accomplishes obstacle avoidance for instance; both modules
have to interact with each other to produce a coherent output accordingly. Therefore, the
third layer is to be placed in the middle of both layers, serving as an intermediate component
to reconcile both representations and to resolve any con�ict between their outputs. It acts
as the coordinator of the system and it plays an important role in the good performance
of the system. For instance, as the top layer is responsible for generating an optimal plan,
the coordinator layer decomposes the task into low-level subtasks (behaviors) and chooses
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the most appropriate one to send it to the reactive layer to generate the robot's action.
Additionally, it maintains temporal constrains between the subtasks allowing producing the
best output according to the situation.

Nonetheless, interfacing these fundamentally di�ering components is a complex issue and
the search for the optimal way to achieve a hybrid solution is still an area of ongoing research.

3.2.2.4 Behavioral

The behavioral approach or behaviorism is a psychological approach based on the proposal
that any action executed by a body, including thoughts and feelings, can and must be seen as
a behavior. According to behaviorism, individual responses to various environmental stimuli
shape our behavior. Behaviorists believe that behaviors can be studied in a methodical and
recognizable way regardless the internal mental states. Thus, any behavior can be clari�ed
without the need to think about mental psychological states; intelligence results from the
interaction among a set of asynchronous behaviors and the environment. The major prin-
ciple of this approach is based on the analysis of human behavior in the stimulus-response
interaction and the association between them.

Thorndike [Thorndike 1913] was the �rst behaviorist to explore the �eld of study that
establishes learning as a set of associations on particular process of behaviors and the conse-
quences thereof. This behaviorist theory of learning by stimulus-response is then developed
by [Skinner 1974], as an operational conditioning which considers all learning as being a base
of resulting habits of a reinforcement and a reward. Most systems are reactive, which means
that they barely use the internal state to model the environment.

Behavior-based control systems do not present the constraints of lacking of a represen-
tation of the world or having little (if any) state as reactive control systems do. On the
contrary, the collection of behaviors composing such systems do have states, which allows to
construct representations, thus enabling reasoning, planning, and learning. Therefore, there
is no need and thereby it is rare that a behavior performs an extensive computation based
on a traditional representation of the world.

Behavior-based control systems were developed for situated robots allowing them to react
and adapt to changing environments by simply coupling perception with action through a
set of behaviors with no centralized world representation as illustrated in �gure 3.9.

Behaviors are a set of distributed and interacting control modules allowing the robot
to achieve and maintain a given goal by taking inputs from the sensors, generating a de-
sirable output and sending it to the actuators. As the system is built, new behaviors can
be implemented incrementally starting from the simplest and often reactive in nature sur-
vival behaviors such as obstacle avoidance and following to the ones providing more complex
capabilities like landmark-�nding or homing.

All behaviors are executed concurrently allowing speed of computation; therefore, sensors
and actuators can be used independently by many or all behaviors. However, this implies
that the system have to choose a particular action or behavior out of the multiple options
that might appear. This process is known as the action selection or behavior coordination
problem and is still one of the biggest challenges in behavior-based control systems. Specially,
in applications that go beyond the navigation task as it is di�cult to ensure a priori the
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Sensors

Behavior 1       (i.e. obstacle avoidance)

Behavior 2     (i.e. wandering around)

Behavior 3              (i.e. picking up)

Behavior (n)                 (i.e. homing)

Actuators

Figure 3.9: Behavioral paradigm, composed of several distributed and interacting control
modules called behaviors

execution stability of the complex enforcement law such as those required for the control
of robotic arms. Several approaches have been developed in order to solve this problem by
providing increase �exibility; however most of them tradeo� on the e�ciency or analyzability
of the resulting control system.

The same functional modules presented above in a hierarchical form are achieved by a com-
bination of di�erent behaviors in a bottom-up approach as proposed by Brooks [Brooks 1986](see
�gure 3.10).

Brooks introduced the term of the subsumption architecture, which become subsequently
the best-known and most in�uential behavior-based architecture in autonomous robotics. For
instance, the DAMN (Distributed Architecture for Mobile Navigation) architecture proposed
by [Rosenblatt 1997] is another variant of Brooks' work. Concurrently, Arkin proposed an-
other technique that came to be known as Motor-Schema architecture [Arkin 1987]. Both of
these methods use behaviors to generate timely response in dynamic and unstructured real
world navigation scenarios. While the output of the Subsumption architecture results from
competitive selection of behaviors, the output of motor Schemas architecture results out of
a co-operative coordination of behaviors. Other developed methods include varieties of mo-
tor schemas [Arkin 1989], command fusion [Payton 1992], spreading of activation through a
behavior network [Maes 1989], [Maes 1990] and fuzzy logic [Sa�otti 1997], [Michaud 1997]
among many others. For a survey of action selection mechanisms, the reader can refer to
[Pirjanian 1999].
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reason about behavior of objects 

Plan changes to the world 

Identify objects 

Monitor changes

build maps 

explore

wander

Avoid objects

Sensors Actuators

Figure 3.10: Decomposition of a mobile robot control system based on task achieving behav-
iors (decomposition detailed by Brooks in [Brooks 1986])

Several forms of distributed representations have been used such as a network of landmarks
as in [Mataric 1991], or a network of parameterized navigations behaviors as in [Nicolescu 2001].
In this latter, a behavior is assigned to each newly discovered landmark. The descriptor in-
formation such as the coordinates, type and orientation of the landmark is stored in the
behavior and whenever the sensory inputs matched the landmark descriptor to the perceived
landmark, the behavior becomes active and the robot can easily localize itself. Subsequently,
planning becomes an easy task since all behaviors encoding a landmark are connected to
each other within the network and by using a message-passing mechanism. This distributed
representation fashion is one of the reasons of �exibility of the control methodology. However,
this does not exclude the fact that a behavior implementing a representation might be added
to the system and others behaviors learning and operating on the same as well. Addition-
ally, some behaviors might not be internally speci�ed by the program as such, but instead,
they might emerge out of the dynamic interaction among all already-existing behaviors and
between the robot and its environment or other robots.

This property is essential in such systems as it can expand itself endlessly according to
the environment and its interactions. Consequently, these architectures stablishes themselves,
generally, on models of massively parallel information processing, as it is the case of arti�cial
neuronal networks. These computational models are suitable for applications where there is
no a priori global knowledge of the world, but rather a set of �rst level inputs is present.
For instance, in order to explain complex behaviors (such as those commonly observed in
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animals in their environment) in simpler terms, Gaussier and Zrehen proposed the PerAc
(perception-Action) architecture, which uses arti�cial neural networks a detail description of
which is given below [Gaussier 1995].

The complexity, robustness and power of behavior-based systems lays on the way how the
behaviors are designed, structured, coordinated and used. Therefore, several and di�erent
architectures have been proposed over the last 20 years. Here below, we give a descrip-
tion of three behavior-based architectures that we consider are the most important for the
comprehension of such systems and thereby our work.

The Subsumption architecture Contrary to the classic arti�cial intelligence, which is
based on the reasoning and on a centralized system, the new arti�cial intelligence proposes
a hierarchical system inspired by natural processes where every module is directly connected
with the system inputs and can generate outputs of the same [Brooks 1990]. Hence, Brooks
developed the architecture known as the subsumption architecture, which decomposes com-
plex intelligent behaviors into several � simple � and parallel modules where each is respon-
sible of a single behavior assuring the execution of a di�erent action (see �gure 3.11).

In order to choose the most convenient action, the modules are organized on hierarchical
layers where each layers has a di�erent priority [Brooks 1986], [Brooks 1991]. The layers are
networks of augmented �nite state machines composed of a number of states and a set of
input and output ports generating each of them a speci�c behavior.

Sensors

Actuators

I

I

IBehavior priority 0   
(i.e. obstacle avoidance)

Behavior priority 1      
(i.e. wandering around)

Behavior priority 2       
(i.e. picking up)

Behavior priority (n)          
(i.e. homing)

Figure 3.11: Subsumption control architecture

The top layers correspond to abstract tasks, which work to reach the global goal and
create viable behaviors by utilizing more concrete and simpler tasks (they subsume lower
layers). The lower layers correspond instead to simpler but more �urgent tasks�, therefore
their priority precedes that of the top layers. Hence, the lower layers working as mechanisms
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of fast adaptation (re�exes) can modify the input of higher layers by means of excitatory and
inhibitory knots. A top module is then said to be subordinated by the lower module.

The coordination between each of the behaviors is based on a Priority-based Arbitration
technique allowing to decide on the activation of the most active behavior layer when multiple
behavior con�icts. For instance, in a case where the lowest layer is �avoid an object� while the
second layer is �wander around�; the higher layer �wander around� utilizes the lower-layer
competencies to emerge. Hence, by avoiding obstacles the robot is able to wonder around
the environment.

Such con�guration and functionality, has allowed subsumption robots (Allen, Herbert,
Genghis) [Brooks 1990] to react to unpredictable environments by performing behaviors sim-
ilar to those seen in animals such as insects.

The subsumption architecture showed great success at overcoming problems related to
real-time interactions with dynamic environments. However, the memory of the architecture
can rapidly be limited by the number of �nite states. Certainly, when a reactive action is
needed, �nite-state machines can be perfect, but when it comes to perform a task requiring
some learning and memory, the �nite-state machines would fail or would not be su�cient.

Motor schema Architecture The motor schema architecture [Arkin 1987] is another
popular example of the �rst reactive control architectures proposed back in the 80's. It
is a biologically inspired approach where motor and perceptual schemas are dynamically
connected to one another [Arbib 1981]. The motor schema architecture was proposed as a
basic unit of behavior speci�cation that produces an output of each behavior in a vector
form. Furthermore, by using a fusion mechanism it merges all the resulting behavior vectors
in a manner similar to the arti�cial potential �eld concept. Hence, the overall response of
the system is achieved by the vector summation of the multiple behaviors as illustrated in
�gure 3.12. For instance, the generated output allowing the robot to move through a maze,
would be a result of the superposition of the behaviors, in this case that of target following
and obstacle avoidance.

From the potential �eld's point of view, the target following task would be represented as
an attractive force while the obstacle avoidance task would be considered as a repulsive force
where the summation of both forces would coordinate the �nal action of the robot. However,
if attractive and repulsive forces cancelled each other out, the resulting output sum would be
null and the robot would remain static. Therefore, in order to overcome this common local
minima problem, various solutions have been proposed [Nattharith 2009]. Additionally, the
architecture has further been improved in order to achieve more complex tasks [Arkin 1990].
Hence, the autonomous robot architecture (AuRA) added a navigation planner and a plan
sequencer, based on �nite-state acceptors (FSAs), to the reactive schemas [Arkin 1997].

PerAc Architecture The PerAc (Perception-Action) architecture inspired by the work
of [Brooks 1986], [Albus 1991], [Burnod 1990], [Carpenter 1987], [Hecht-Nielsen 1987] and
[Edelman 1987] was proposed by [Gaussier 1995] as an organized neural structure that evolves
because of the dynamic interaction between the robot and its environment. It has particular
properties such as associative memorization, learning by example and parallel processing.
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Sensors Actuators

Behavior priority    
(i.e. obstacle avoidance)

Behavior priority   
(i.e. wandering around)

Behavior priority
(i.e. picking up)

Behavior priority    
(i.e. homing)

∑

Figure 3.12: Motor schema architecture

The PerAc architecture is composed of two data streams corresponding to perception and
action �ows(see �gure 3.13). The �rst level uses a re�ex mechanism that controls directly
the robot's action based on the information extracted from the perceived input. The second
level uses a cognitive mechanism performing recognition of the aforementioned perceptive
�ow and allows learning of the associations between the recognition of a particular shape and
the realization of a particular action. Therefore, it is not necessary to have a map or data
resulting from a global model of the environment to decide on the actions to undertake.

3.2.2.5 Summary of the approaches

Each of the presented approaches have emerged out of the necessity of enabling robots to
autonomously perform a variety of tasks in di�erent domains and applications. While one
approach can excel at allowing the robot to perform a given task, the same approach can
fail when a di�erent task or goal is required. Therefore, the selection of a control approach
depends mainly on the situadness properties of the problem, the type of desired task, the
optimality required and the available information. Moreover, it can be tightly linked to the
hardware and software robot constraints.

For instance, deliberative systems provide an optimal reasoning and planning which
is given by an accurate representation of the whole environment. This implies that the
environment remains the same; therefore, these systems are ideal for structured and strongly
predictable environments, especially in domains where the robot performs repeatedly a given
task. Because of the same reason, however, these systems are not suitable for situated
robotics.

On the other hand, reactive systems give a perfect outcome when it comes to changing
environments and where an immediate response and reaction is essential in the performance
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Figure 3.13: PerAc architecture by [Gaussier 1995]

of the task such as obstacle avoidance. Hence, stochastic environments are best dealt with re-
active systems. Furthermore, reactive controllers happen to be very powerful in environments
and tasks that have been previously characterized. However, their lack of representation of
the world and knowledge of the past and future actions, make of these system a problem
when planning, learning or memory storage is necessary.

Hybrid systems have shown to be a good solution as they diminish the drawbacks
that the other two systems present while getting all the advantages that they both o�er.
Therefore, they are suited for environments needing internal models and requiring planning
in long term and which, real time demands are su�ciently independent of the higher-level
reasoning.

Finally, behavior-based systems can be said to comprise almost all the advantages that
the three other approaches o�er plus another related to its behavioral structure: learning and
easily adapting to environments that change signi�cantly. Furthermore, their components
(behaviors) and their interconnections allow the system to plan, avoid past mistakes and use
active representation if necessary. Behaviors are designed at a variety of abstraction levels,
facilitating bottom-up construction of behavior based systems. However, the di�culty to
implement such an architecture can be huge drawback.

Even though, the ideal control architecture has not yet been developed. Several researches
attempt to improve and propose new control architectures by combining, in most of the cases,
the best of all these approaches such as optimally reasoning and planning while at the same
time quickly responding under dynamic changing environments. Combining behavior-based
systems with a global representation of the world can be a good solution. For instance, the
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behavior-based architeture (AuRA) facilitates the planning and reasoning by directly using
a planner to select behaviors [Arkin 1997]. Similarly, the three-level hybrid architecture 3T
uses behaviors in its reactive layer [Bonasso 1995].

Clearing up misconceptions Since describing and implementing behavior-based systems
is not always an easy task, they are often misunderstood specially when being compared to
other systems. Therefore, it is necessary to clear up some confusions:

Behavior-based vs reactive systems:

Considering reactive systems equivalent to behavior-based systems has been, through
the passing of the years, the most common misconception in the robotics literature. Such
misunderstanding may not be surprising if one considers only the basic functionality of both
systems (as it has been the case most of the time). Truly, as it has been said previously, both
systems tightly couple sensing and action into distributed modules. Moreover, they are both
presented as being robust in dynamically changing environment when no representation of
the world is available. In fact, these common properties are normal as the behavior-based
approach has its roots in the reactive approach. However, what strongly di�erentiate them
from each other lays in the fact that contrary to reactive systems, behavior-based systems
can store representations and thereby enable reasoning, planning and learning. Reactive
architectures, oppositely, lack of an internal state, which makes them incapable of learning
and using internal representation.

Behavior-based vs hybrid systems:

Given the use of di�erent modularization strategies by each of these systems, there is often
the misconception of considering that one has better expressive capabilities than the other
does. In most of the cases, hybrid systems have the upper hand. However, such assumption
is erroneous as both of them have the same expressive and computational capabilities of
exploiting representations and looking ahead. What makes the di�erence between both of
them is the way of doing that can be suited according to the application domain. For instance,
while behavior-based systems dominate the multi-robot control �eld because of its collection
of behaviors, hybrids system dominate that of a single-robot. Only when a task in the single-
robot domain is too time demanding, a reactive system is necessary then the behavior-based
system would be more appropriate. The set of behaviors within the behavior-based systems
allows a robust and adaptive group behavior when working with multiple robots.

Another reason why there might be a misconception is due to the fact that both systems
are organized in layers. However, contrary to hybrid approaches, behavior-based do not em-
ploy a hierarchical/sequential division and all layers are similar in terms of time scale and
representation used. Planning, reasoning and each of the other behaviors use the same mech-
anisms as the sensing-and-action-oriented behaviors. They provided both low-level control
and high-level deliberation whereas in the hybrid approach the layers are drastically opposing
to each other (deliberative and reactive).
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3.3 Conclusion

This chapter has presented the currently existing control paradigms for building robust and
�exible control architectures. Two di�erent viewpoints have been here introduced. Firstly, the
functional viewpoint which distinguishes four di�erent paradigms according to the internal
functioning and capabilities to act on the environment: reactive, deliberative, hybrid and
behavior-based. Secondly, the design viewpoint divided in two di�erent methodologies: top-
down and bottom up. They di�er in the way of how the sensory data is processed and
propagated through the systems as well as how the knowledge is ordered.

We explain their advantages, disadvantages in terms of the needs a robot has for achieving
an autonomous navigation.

The RHIZOME architecture we proposed, combines into its neural structure all the above
paradigms as it is presented in the next three chapters of part II.

From the functional viewpoint the RHIZOME architecture uses an a priori knowledge
of the environment in order to corroborate the dynamic visual information perceived during
navigation. Hence, it is composed of both deliberative and behavior-based modules.
Thus, a hybrid architecture. However, the hybrid meaning here, opposes to the currently
known hybrid architectures that use an intermediate component to reconcile both repre-
sentations and to resolve any con�ict between their outputs. Conversely, the RHIZOME
architecture can be considered as being entirely behavior-based capable of combining two
opposing approaches without the need of a coordinator component. Hence, a behavior-based
hybrid architecture.

However, it di�ers from the common behavior-based control architectures in the fact that
this architecture does not follow a hierarchical process but instead, each action or behavior is
equally important and the resulting action emerges from the interaction with the environment
and the internal motivation of the robot.

From the design viewpoint the information available from the map is obtained by
following a top-down process and the action actions of the robot result from a bottom-up

process.
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RHIZOME 1: Exploring the world
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4.1 General description

This chapter introduces Rhizome 1 as the foundation of the Rhizome architecture functioning
in a simple deterministic scenario where no unforeseen situations are expected to happen.
Such scenario implies that the environment remains unchanged and by consequence, the given
a priori information (a sequence of navigation signs leading the robot to the �nal destination)
is expected to be found as such in the navigation path during real-time navigation.

Rhizome1 has been built in order to allow the robot to use the navigation signs as ref-
erence to navigate towards its �nal destination, while inferring the directional meaning each
navigation sign denotes and learning it for future reference.

The sign sequence is computed beforehand according to the order of appearance of the
signs within the path from the starting point to the �nal destination and it is provided to the
robot by means of a command program. All navigation signs used in this work are known by
the robot, which means that the robot has already in its database the information describing
each sign (see section 4.2.2 for more details). Thus, based on this information, the robot
is able to detect one or several signs at a time, as long as they are within the frame of the
robot's �eld of view. Each sign denotes a �directional meaning� (turn right or turn left).

However, in this scenario, the information concerning such directional meaning is not
provided to the robot (see Rhizome 2 described in chapter 5, which provides and uses this
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information).Therefore, the robot is enforced to deduce the directional meaning by considering
the movement leading it to �nd the next sign of the sequence in the environment. Thereafter,
when the same sign appears again, it just follows the implied instruction of the learned sign.

Hence, the robot deduces the directional meaning of a given sign by looking around itself
for the position of the next expected sign with respect to its own position when facing the
current sign as illustrated in �gure 4.1.

Association of sign ‘A’

to the directional 

meaning ‘right’

A

B

Robt facing sign ‘A’

Figure 4.1: Deduction of the directional meaning of the sign �A�. The robot looks for the
location of the next expected sign �B� with respect to its own position when facing the
current sign

Before entering into the details of the implementation and the components of Rhizome 1,
let us �rst have an insight of the overall behavior of the navigation process performed by the
robot in this �rst deterministic scenario (�gure 4.2).

The description below which is represented by �gure 4.2 summarizes the behavior of the
navigation process.

• As explained previously, two sources of information are used as input in the architecture:

a) The visual perception information input, which constantly feeds the system in real-
time while the robot navigates the environment. When one or several navigation
signs appear in the robot's �eld of view, the signs are considered detected.
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Figure 4.2: Functional diagram of the navigation process behavior allowed by Rhizome 1.

b) The sign sequence information input, which provides one sign at a time according
to what it is expected to be found in the environment. When one of the detected
signs matches the current expected sign, the sign is considered recognized. Then,
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the sign sequence is scanned to obtain the next sign and provide it as input. The
same process is repeated until all signs of the sequence have been recognized in
the environment.

c) In order to arrive to its �nal destination, the robot looks for each of the expected signs
from the sequence within the navigation environment. This is possible by comparing
each expected sign to what it sees in real-time.

d) If the sign is not recognized, it performs rotatory movements around itself in order to
look for it until �nding it.

e) Once the sign is recognized (detected sign corresponding to the expected sign), the
distance (dis) between the robot and the recognized sign is computed.

f) If the robot is close enough (dis< threshold), it can turn around to look for the next
expected sign. Otherwise, if the robot is not close yet to the sign, it walks towards the
sign in order to avoid premature turns with respect to the intended point of turn for
that sign.

g) Two di�erent actions are possible in order to look for the next expected sign after
determining if the directional movement associated to the current sign is known or
unknown.

h) The robot knows the directional movement associated to the current sign: then it
simply performs the corresponding movement leading it to the next expected sign.
This case is susceptible to happen after the robot has previously seen and learned the
said association.

i) The robot does not know the directional movement associated to the current sign: then,
it looks for the next expected sign by performing some rotatory movements.

j) In the meantime, the robot stores the current sign for a short while.

k) When the next expected sign is found, it deduces the directional movement out of the
performed movement. Then, it associates it to the stored sign and learns the resulting
association.

The same process is repeated for each sign until the robot arrives to its �nal destination.

4.2 Implementation- Rhizome 1 Architecture

4.2.1 Overall description

The overall architecture integrates the signs sequence into an organized neural structure. It
is composed of two modules as illustrated in �gure 4.3. A deliberative module , corre-
sponding to the sign sequence information and a behavioral module, which integrates the
said sequence information and constantly uses it in order to control online navigation and
allow learning of sensory-motor associations.
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Figure 4.3: Overall view of the Rhizome 1 architecture composed of two modules: Deliberative
and Behavioral

• On one hand, the deliberative module represented by the top box of �gure 4.3 refers
to a basic module that provides some important information about the environment
before the navigation task begins. More precisely, it consist of a succinct information
coding the complete navigation path.

We refer as a basic module in the sense that such a priori information is provided
directly to the architecture without the use of any complex computing process. In other
words, the robot is not entirely autonomous, as it needs to obtain such information by
means of an external source.

In this work, the information is primarily represented by a sequence of navigation signs
that are expected to be seen by the robot in the real world navigation leading it to the
�nal destination. The sign sequence is computed beforehand according to the order of
appearance of the signs within the navigation path from the starting point to the �nal
destination and it is provided to the robot by means of a command program or a voice
system. The complete sequence is then stored in the long term memory unit of the
module to be integrated into the behavioral module.

• On the other hand, the behavioral module represented by the lower box of �gure 4.3
is based on the PerAc (Perception-Action) architecture as previously explained in chap-
ter 1 and illustrated in �gure 4.4.



96 Chapter 4. RHIZOME 1

Dynamic 

Visual 

Perception

Motor 

output

Learning

PerAc

Architecture

Dynamic 

Visual

Perception

(DVP)

Motor 

Output

(MO)

Recognition

Reflex Behavior

1st level

2nd level

1st Behavioral module Learning

Deliberative module 

Reflex Behavior

Recognition

Perception/Action Loop 

Artificial Navigation Signs Sequence

Perception/Action Loop 

1st level

2nd level

Long term memory

Figure 4.4: PerAc architecture (left) used in the behavioral module of Rhizome 1 (right)

However, the behavioral module of Rhizome 1 di�ers from the basic PerAc in having
a nested PerAc module within its own second level. Hence, it is composed of three
layers as illustrated in the behavioral module of �gure 4.5 to the left. For the sake
of presenting a good visibility of the �gures hereafter, the gray arrow indicating the
perception/action loop has been replaced by the some pointed blue arrows indicating
the interaction with the environment following the same perception/action loop.
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Figure 4.5: Behavioral module composed of a nested PerAc module within its second level
(left). As a result, the behavioral module is composed of three layers(Right)

Consequently, by reading from the top to the bottom of the behavioral module of
�gure 4.5 to the right, each layer is explained as follows.
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The �rst layer of the system (SRMA) is in charge of merging the information coming
from the long-term memory and the real-time visual perception of the environment
in order to allow the recognition of the expected signs in the navigation environment.
Moreover, it is in charge of learning the association between the recognized signs and
the movements the robot has performed accordingly.

The other two layers use a re�ex mechanism that controls directly the robot's action
based on the perceived information of the environment. The second layer (DDRB)
determines the direction to be taken by the robot (left or right) by looking for the
location of the next expected sign from the pre-captured sequence, while the third layer
(TARB) directs an approach towards the sign by keeping it in the center of the robot's
vision when the robot is far from it.

The whole system works in parallel and a `competitive mechanism' allows to decide on
the best behavior (among the layers) for controlling the robot according to the stimulus
received. This is possible because the neural interconnection is done by either excitatory
or inhibitory connections allowing or preventing the activation of neurons respectively.
Furthermore, when learning is required, a modulation connection conditioned by a
reinforcement signal is used.

The overall architecture follows a perception-action functioning cycle, which means that
for every input information coming from the dynamic visual perception of the environment,
there is always an action executed which itself alters the perception of the environment for a
new process cycle and so on.

Hence, if we take the functional diagram presented in the introduction, each module in-
tervenes on each of the following actions as illustrated in �gure 4.6.

4.2.2 Deliberative module � Precon�gured sign sequence

This module is in charge of storing the sequence of navigation signs that are expected to be
seen by the robot when navigating the environment.

The navigation signs used in this work consist of arti�cial landmarks designed with a
predetermined contrast, size, and shape, so they can easily be recognized with respect to
more complex objects in the environment.

Since the whole architecture has been implemented and tested in the Aldebaran Robotics'
NAO humanoid robot, we decided to use the landmark detection system already implemented
by the company. Indeed, the �Naoqi� framework that comes with the Nao platform allows
the robot to recognize special landmarks called �Naomarks� which are characterized by white
triangle fans inside black circles. As illustrated in �gure 4.7), each Naomark di�ers from one
another in the size and location of the inner white fans. Moreover, each of them has a unique
tag number �Mark ID � serving as its identi�er.

The recognition system has been built such that it is possible to detect distinctively
each of the Naomarks (�gure 4.8). The detection system is able to obtain some important
information in terms of the camera angles of the robot as follows:
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the architecture layers acting on each functional decision.
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Figure 4.7: Example of some Naomarks used in this work as the navigation signs

• In the case of the dection of N naomarks, the variable structure consists of two �elds.
[[TimeStampField][ Mark_info_0, Mark_info_1, . . . , Mark_info_N−1]] with:

� TimeStampField = [TimeStamp_seconds, Timestamp_microseconds ]. This �eld
is the time stamp of the image that was used to perform the detection.
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� Mark_info = [ ShapeInfo, ExtraInfo ]. For each detected mark, we have one
Mark_info �eld.

∗ ShapeInfo = [ 0, alpha, beta, sizeX, sizeY, heading]. alpha and beta represent
the Naomark's location in terms of camera angles - sizeX and sizeY are the
mark's size in camera angles - the heading angle describes how the Naomark
is oriented about the vertical axis with regards to NAO's head.

∗ ExtraInfo = [ MarkID ] . Mark ID is the number written on the naomark and
which corresponds to its pattern.

• When no naomarks are detected, the variable is empty. More precisely, it is an array
with zero element, (ie, printed as �[ ]� in python).

Therefore, it is possible to keep in memory the information of each Naomark in order to
compare it to what it is currently being perceived by the robot while navigating within the
environment. Additionally, by setting some threshold values according to the desired task, it
is possible to set the distance at which we consider the robot is close enough to the sign.

Figure 4.8: Example of some Naomarks detected in the environment by the Nao Robot [�gure
extracted from Aldebaran's documentation]

4.2.2.1 Performance and Limitations

The following data are directly extracted from Aldebaran's documentation.

Lighting: the landmark detection has been tested under o�ce lighting conditions (i.e.,
under 100 to 500 lux). As the detection itself relies on contrast di�erences, it should actually
behave well as long as the marks in the input images are reasonably well contrasted.

Size range for the detected Marks:
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• Minimum: ∼ 0.035 rad = 2 deg. It corresponds to ∼14 pixels in a QVGA image

• Maximum: ∼0.40 rad = 23 deg. It corresponds to ∼160 pixels in a QVGA image

• Tilt: +/- 60 deg (0 deg corresponds to the mark facing the camera)

• Rotation in image plane: invariant.

In order to illustrate in a simple form the use of these signs through this work, each
sign will be referenced from now and on, by a letter instead of a number as the identi�er
�IDMarker� as shown in �gure 4.9.

A B

Figure 4.9: Exemple of Naomarks referenced by tag letters �A� and �B�

Even though, the robot is able to detect the Naomarks at any moment, it is necessary
to give a recognition directive in the navigation context. Therefore, the actual recognition
task is handled by the behavioral module described just below (section 4.2.3). In fact, only
when the expected landmark from the sequence extracted from the map is detected in the
environment, it can be considered to be recognized (refer to Sign Recognition and Movement
Association (SRMA) layer). Additionally, the location of the landmark with respect to the
camera frame can also be computed (refer to Target Approaching Re�ex Behavior (TARB)
layer).

4.2.3 Behavioral module�Neural structure

The behavioral module is composed of several neural groups, which each one itself, is com-
posed of a certain number of neurons. These neural groups are interconnected according to
two types of links: a one-to-one link, where each neuron in a given group is connected to
only one and unique neuron from another group; and a one-to-all link, where each neuron in
a given group is connected to all neurons from another group (see �gure 4.10).
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When the one-to-one link is used, the information received by a given neuron of the
second group is transmitted by a single neuron of the �rst group independently from the in-
formation of the others neurons of the �rst same group. On the contrary, when the one-to-all
link is used, the information received by a given neuron is obtained from the addition of the
information of all neurons of the �rst group and depending on the task; a learning process
can take place.

One-to-one links

One-to-all links 

=

=

…
…
.

…
…
.

…
…
.

…
…
.

Figure 4.10: Types of links used to interconnect the neurons. The one-to-one link connecting
each neuron in a given group to only one and unique neuron from another group; and the
one-to-all link connecting each neuron in a given group to all neurons from another group.

Each neural group is in charge of encoding a given task and by connecting some of them
in a sequential order; it has been possible to construct each of the three horizontal layers
previously mentioned.

As illustrated in �gure 4.11, both a priori information stored in the Long Term Mem-

ory of the deliberative module and dynamic visual information (DVP) are the input
of the behavioral module. While the a priori information only feeds the SRMA recognition
layer (second level), the dynamic visual information feeds simultaneously both layers: The
TARB re�ex layer (�rst level) and the SRMA recognition layer (second level), which transfers
itself the information to the DDRB re�ex layer (�rst level).

Each of the three layers process the information simultaneously and independently from
the other layers, and they all converge towards the same Motor Output(MO) with a
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resulting movement to be performed. However, only one movement is allowed to be executed
at once. Such decision is made by considering the input information, the internal process of
the neural structure and the activation of the �proximity sensor� neural group which directly
links the dynamic visual information to the Motor Output(MO).
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Figure 4.11: General view of the three layers in the behavioral module

In order to understand the fonctionality of the overall behavioral module and its three
layers, this section has been divided in four parts. First a general description of each of the
three layers is provided, followed by a more detailed description explaining each one of the
neural groups composing them. Thereafter, the layers convergence in the motor output group
is explained, to �nish up with a detailed description of the layers interaction according to a
given exemple.

4.2.3.1 General description of layers

After the complete sequence of signs is given to the robot, it stores it in its long-term memory
to use it. Then, at the start of the exploration, the robot may or may not know the meaning of
each sign in terms of the instruction it represents with respect to way �nding. The architecture
is designed such that if the directional meaning of the sign is unknown, a re�ex exploratory
behavior gradually leads it to the correct direction and then the association between the
sign and the movement performed is learnt (see DDRB). The learning is conditioned by a
reinforcement signal which information is transmitted by a modulation connection to the
SRMA layer. Hence, if the same sign appears again and it has already been associated to
a particular movement, the robot knows which direction to take and it executes the related
movement i.e. turn left or right (see SRMA). Additionally, the architecture also performs a
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target approaching behavior when the robot is far away from a sign in order to be able to
read it (see TARB).

Signs Recognition and Movement Association (SRMA): Once the robot begins ex-
ploration, this level enables the robot to perform a movement based on the combination of the
a priori information stored in the sign sequence group and the dynamic visual information
perceived from the robot's camera stored in the sign detection group. When exploring
the environment two scenarios are possible: the expected sign in the sequence obtained from
the deliberative module is recognized or not. In the former case, if the sign has already been
associated with a particular movement, the robot executes directly the related movement i.e.
turn left or right de�ned by the learned output direction group (see (1) in �gure 4.12).

On the other hand, if the sign has been recognized but not associated with a particular
movement yet or it has not been recognized at all, a re�ex rotatory movement is triggered in
the DDRB layer (see (2) in �gure 4.12) in order to look either for the next expected sign in the
sequence or for the current sign respectively. If the recognized sign has not been associated
with a movement yet, the short term memory group stores the value of the current sign
while the next expected sign is being looked for.
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Figure 4.12: General view of the Sign Recognition and Movement Association (SRMA) layer

Direction Determination Re�ex Behavior (DDBR) This layer is in charge of making
the robot explore the environment by rotating in one place (to its left by design) using small
re�ex movements in order to look for the expected sign in the environment. This occurs in
one of the following cases:
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1. The received visual input from the camera does not correspond to the expected sign.
In this case, the robot continues to search for it using the aforementioned rotational
re�ex movements. If the sign is found, the SRMA level (explained above) and TARB
level (explained below) are activated. This case is likely to happen only at the very
beginning of the exploration to locate the �rst sign of the path.

2. The expected sign is recognized but it has not been associated yet with a speci�c move-
ment. In this case, the robot searches for the next expected sign from the pre-captured
sequence by performing rotational movements. Once this next sign is found, the angle
of rotation undergone is allocated to the current sign as its associated movement in
that direction (left by default). If this angle is greater than 180o, the movement to be
associated is a turn in the opposite direction (right) (see (3) in �gure 4.13). Thereafter,
the reinforcement signal is activated so as to learn the association in the SRMA level
(see (4) in �gure 4.13).
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Figure 4.13: General view of the Direction Determination Re�ex Behavior (DDBR) layer

Target Approaching Re�ex Behavior (TARB) When the robot is far from the sign,
this level allows the robot to direct an approach towards the sign by keeping it in the center
of the robot's �eld of vision. If, for instance, the sign is situated at the left side in the
robot's visual space, the movement to be performed, is some steps ahead towards the left as
illustrated in �gure 4.14. It is important for the robot to approach the target signs to avoid
premature turns with respect to the intended point of turn for that sign.

Since the input of this layer is the visual perception of the environment before being
compared with the sign sequence information, it computes the position of any detected sign
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Sign to the left of the 

robot’s field of view

Robot facing towards the sign 

Figure 4.14: Exemple of the direction towards which, the robot needs to turn to keep the
sign centered while approaching the sign. In this case towards the left since the signs is to
the left side of the robot's �eld of view

regardless if it has been recognized or not (see (5) in �gure 4.15). However, the movement
can only be executed if the sign has been recognized, which event is triggered by the SRMA
layer and connected directly to the target approaching group (see (6) in �gure 4.15).

4.2.3.2 Detailed description of layers

Each of the three layers presented above, is composed of a number of groups of neurons
in charge of performing speci�c tasks according to the input information and activation
threshold. Thus, the section below, presents each of the layers by �rst giving a general
overview of the neural groups composing them and then detailing individually the composing
neural groups.

For a better understanding, the neural groups are presented according to three types of
neural units: The input units in charge of receiving the input information, the internal
units allowing processing the input information and the output units permitting the robot
to execute the motor action according to the processed information.

Be aware that this unit distinction should not be seen similar to the unit distinction
exposed by some of the most commonly known neural models such as RNN or CNN, which
use hidden units as explained in the introduction section 1.3.1.

Signs Recognition and Movement Association (SRMA): This level is composed of
eight neural groups as shown in �gure 4.16 and explained below. Each group (excepting from
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Figure 4.15: General view of the Target Approaching Re�ex Behavior (TARB) layer

the output direction group and the reset group) has as many neurons as the total num-
ber of detectable signs known by the robot, each neuron representing a unique sign. Whereas
the reset group is composed of a single neuron, the output direction group is composed
of two neurons for left and right movements respectively.

Input units

Both, the Sign detection group and the Sign sequence group receive the input in-
formation directly from the visual perception and the deliberative module respectively. In
order to calculate the potential and the activation function of these two groups, two array
database have been created and connected to the neural groups respectively. They both store
the same information concerning the identi�cation tags of all signs known by the robot that
it can detect in the environment. The order of their storage in the arrays correspond to the
order of the corresponding neuron in the neural groups (see �gures 4.17 and 4.18).

Sign detection group: As the robot interacts with its environment, dynamic visual
information is constantly fed into the neural group. However, it is only activated if one or
more signs appear in the robot's view activating to the maximum value `1' their corresponding
neuron.

The potential value of all neurons is zero by default and its value is calculated as follows:
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Figure 4.16: Detailed view Signs Recognition and Movement Association layer (SRMA)

Input: one or several signs in the robot's visual perception
Output: potential of the corresponding detected neurons equals to one
initialization;
for each sign_i in the ArrayDatabase do

if sign_i is equal to the perceived sign in the environment then

Potential value of the corresponding neuron, pi = 1;
end

end
Algorithm 1: Potential value computation of the neurons of the sign detection group

Then, the activation ai of the neurons is de�ned by a linear function.

Sequence sign group: This neural group is fed by the sequence of signs provided by
the deliberative module (Long Term Memory unit). Only one sign from the sequence is
transferred as the expected one at a time and its corresponding neuron becomes activated at
its maximum value `1'. Once the robot is close to the sign, the sequence is scanned so as to
obtain and transfer the next expected sign (see �gure 4.18). This situation is repeated until
the end of the sequence.

The potential value of all neurons is zero by default and their value is calculated as follows:
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Figure 4.17: Activity of the sign detection group. The dynamic visual information is con-
stantly fed into the neural group then when one or more signs appear in the robot's �eld of
view its corresponding neuron gets activated to the maximum value.

Input: one expected sign at a time from the sign sequence
Output: potential of the corresponding neuron equals to one
initialization;
sign_i= �rst sign_i from the Array Database;
sign= �rst sign from the Long-term Memory Sign Sequence;
while there is a sign in the Long-term Memory Sign Sequence do

if sign is equal sign_i then
Potential value of the corresponding neuron, pi = 1

end

if the robot is close to the sign then
Obtain the next sign from the Long-term Memory Sign Sequence;

end

obtain next sign_i from the Array Database
end
Algorithm 2: Potential value computation of the neurons of the sign sequence group

Then, the activation ai of the neurons is de�ned by a linear function.

Internal units

Once both input information have been encoded in the two corresponding neural groups,
it is necessary to corroborate if among all the information coming from the visual perception
of the environment, there is one sign that would correspond to the same expected sign from
the sequence. Consequently, the information should be merged and compared.

This task is performed by the sign merging group that sends the result to the other
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Figure 4.18: Activity of the sequence sign group. The sign sequence provided by the Long
Term Memory in the deliberative module is fed into the neural group. Only one neuron is
activated at a time corresponding to the expected sign.

neural groups in the architecture. When the comparison results positive (a sign is recognized)
the corresponding neurons are activated, allowing the movement, to which it has been associ-
ated with in the WTA group by a learning procedure, to be performed in the output groups.
However, since the movement might not have been learned yet, the robot needs to look for
the next expected sign. This implies that a new comparison of both input information needs
to be done, with the only exception that this time, the sign from the sequence happens to be
another one. However, if the current sign is not stored somewhere in the memory of the ar-
chitecture, the new expected sign will override the activity of the current neuron. Therefore,
a short term memory group placed between the sign merging and WTA group, is
used to store the activity value of the current neuron sign while the next sign is being looked
for.

A explanation of these groups is given as follows.

Sign merging detector group: This neural group fusions and compares both input
information coming from the two input neural groups (see �gure 4.19). Its activation is
de�ned by a Heaviside function whose threshold value allows the activation of the neuron
whose both inputs values are equal to one. Since all the neurons encode a di�erent sign, only
the neuron corresponding to the expected sign will be activated.

Short term memory group: It stores the activation value of the detected current sign.
The value increases as long as the sign is within the robot's �eld of view while the robot
approaches it. The further the robot is from the sign, the higher the value is.

If v is the activity of the recognized sign neuron i, then its corresponding short-term
memorization ui (time constant τ) as illustrated in 4.20 can be computed as in equation 4.4

τ · dui(t)
dt

= αvi(t)− βri(t) (4.1)
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Figure 4.19: Activity of the Sign merged detector group. The neuron whose two input values
are equal to one gets activated de�ned by a Heaviside function
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Figure 4.20: Activity of a neuron ui of the short term memory group de�ned by equation 4.4

Where, ri is the activity of a reset neuron allowing setting the values to 0 when the sign-
movement association has already been learnt. The variables α and β are their associated
weights with α really small and α � β.

The resulting ui(t+ 1) corresponds to the potential value and its activation is computed
by using a ramp function.

WTA group: a competitive mechanism �winner-take-all� enables the neuron with the
highest activation value to stay active whereas all the other neurons are set to zero. The
resulting activated neuron represents the current sign to be associated to a particular action.
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The interconnectivity is made in such a way that it allows the learning of the said association
conditioned by the activation of a reinforcement signal, which is set in the re�ex level (see
DDBR layer). The synaptic connection of the neurons is then modi�ed based on the following
equation 4.2

∆Wij = ε ·∆xi ·∆yj ·R (4.2)

Where, xi is the input neuron, yj is the current neuron, Wij is the weight of connection
between xi and yj , ε is the learning rate and R the reinforcement signal that is only set to
`1' if an association sign-movement needs to be learned, otherwise it is equal to `0'.

However, since the values resulting from the memory group and those of the synaptic
weights are quite small, it is likely that more than one neuron or the wrong neuron would be
activated. This case is susceptible to happen if for instance, the robot is already close to the
sign and it looks around for the next expected sign. Then, the activity value of the neurons
corresponding to current and the next sign will be the same, which would cause an ambiguity
when learning the association.

Therefore, in order to allow a more robust choice by using integers values (1 and 0) in-
stead of directly using the �oat values of the memory group, two WTA groups are here used
as illustrated in �gure 4.21.

WTA

Learned Output

Direction

Reinforcement  signal (RS)

WTA

Learning

Figure 4.21: Activity of the WTA group. Here, two WTA groups are used in order to avoid
causing ambiguity when learning the association.

Reset group: As its name indicates, it resets the values stored in the short-memory
group to zero once the association between the sign and the movement has been learned and
a new sign needs be processed.
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Output unit

Output Direction group: It receives input from both levels (the current one and DDBR
seen in the next section). If the sign has already been associated to a particular movement,
its corresponding neuron is activated and sent directly to the motor output. Otherwise, if
the reinforcement signal is activated in order to learn the association between the movement
triggered by DDBR and the current sign.

Direction Determination Re�ex Behavior (DDBR) This layer is mainly composed
of eight neural groups as illustrated in �gure 4.22. It receives the information coming from
the SRMA layer. Therefore, there are not neural input units.

Sign 

recognition 

Memory 

direction

Trigger reflex

Reflex Output

Direction 

Learned 

Output

Direction

Direction

Direction

result

SRMA

Direction Determination Reflex Behavior (DDRB) Reinforcement signal (RS)  

Reset

Excitatory

Inhibitory

Connections

Modulation

Figure 4.22: Detailed view of the Direction Determination Re�ex Behavior layer (DDRB)

Internal units

When the comparison performed by the sign merging group in the SRMA layer results
negative (sign not recognized), this layer activates its neural groups allowing the robot to
perform rotational movements to compute the directional meaning of the current sign by
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looking for the next expected sign.

Sign sensor recognition : Composed of a single neuron, this group is connected to
all neurons of the merging group from the SRMA layer. It serves as an indicator allowing
knowing if a sign has been recognized or not. Thus, it only takes one activated neuron from
the merging group to stimulate the activation of this group de�ned by a sign function.

Trigger Re�ex group: This single-neuron group triggers or inhibits the re�ex move-
ments. Since the sign sensor recognition group and the output direction group are linked to
this group through an inhibitory connection, the Heaviside function allows to activate it when
no sign has been recognized and when no associated movement is known.

Memory Angle group: In order to calculate the total angle of rotation, each turning-
angle is stored and then added to itself as many times as it is required to �nd the next sign.
Once the sign is found, the total angle is transmitted forward and then reset to zero for the
next calculation. The total angle of rotation is computed by following the same equation 4.4
of the short-term memory group as illustrated in �gure 4.20.

Direction group: The total angle of rotation calculated in the previous group is com-
pared to a threshold value so as to compute the activation of the current neurons by using
the sign function. However, as each neuron represents either a left or a right movement, the
resulting activation output of one neuron excludes that of the other.

Direction Result group: It takes as inputs the results of the direction group and the
sign sensor recognition group. Therefore, only when the next sign has been recognized, the
activity value of the neuron from the direction group triggers the activation of its corre-
sponding neuron in the direction result group. Then, the result (movement to be associated
to the current sign) is sent to the Learned Output Direction group of the SRMA layer and
the reinforcement signal R is set to '1' in the WTA group of the same layer so as to allow
the learning of the association between the current sign and the resulting movement.

Output units

Re�ex Output Direction group: Whenever the trigger re�ex group activates this single
neuron group, it sends the information to the motor output so as to perform small leftwards
rotational re�ex movements.

Learned Output Direction group: This neural group of the SRMA layer receives
as input the resulting values of the Direction result group of the current DDRB layer and
since the reinforcement signal is set to '1', the association between the current sign and the
movement (neuron activated in this group by the Heaviside function is learnt. However, since
the re�ex output rotatory group has already performed the movements leading the robot from
the current sign to the next, a reset group inhibits the movement to be executed in the Motor

Output (MO) (see �gure 4.23).

Target Approaching Re�ex Behavior (TARB) This layer receives as input the infor-
mation coming from the visual perception. Alike the SRMA layer, the TARB layer encodes
the information of the total number of detectable signs known by the robot. However, since
it computes the position of the detected signs within the robot's �eld of view, the number
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Figure 4.23: Activity of the Learned Output Direction group. It receives the input from both
WTA groups of the SRMA layer and Direction result group of the DDRB layer

of neurons in the input layer is increased by three times corresponding to the positions: left,
center and right.

In fact, for each sign, there are three neurons encoding three di�erent positions in the
robot's visual space where the sign might probably be located. Consequently, when one
or several signs are detected, their corresponding positions are calculated regardless if they
correspond to the expected one to be recognized. Thereafter by means of a competitive
mechanism, only the neuron corresponding to the �recognized sign� gets an activity value
superior to one while the rest is set to zero and sends the information to the re�ex output

position group. Consequently, the robot can approach the sign by performing the said
movement: walking to the left, walking to the right or walking straight ahead.

This layer is composed of the following three neural groups as illustrated in �gure 4.24.

Input units

Re�ex sign position group: Per each detectable sign known by the robot, there are
three neurons encoding a preferred position covering in all, the entire robot's visual �eld of
view. Each neuron encodes a position (x,y) calculated in pixels within the image space and
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Figure 4.24: Detailed view of the Target Approaching Re�ex Behavior layer (TARB)

it is compared to the position of the detected sign calculated in pixels with respect to the
referential origin within the same image space. All neurons behave as neural �elds which
activity can be expressed as a non normalized gaussian activity pro�le

aj = exp−(α− µj(t))2

2σ2
(4.3)

Where α represents the position jth of the detected sign and µj the preferred direction of
the neuron j.

Each preferred direction is computed as:
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µj =
dim

4
+
dµi(t)

4
∗ k, k ∈ (0, 1, 2) (4.4)

Where, dim is the dimension of the image given in pixels, and k the corresponding number
of the neuron per sign (here three neurons per sign). Hence, the same computation is per-
formed for each neuron in the group with the same α value and since their preferred direction
is di�erent, only the closest neuron value to α results with the maximum activity value and
consequently gets to encode the sign position.

Internal units

WTA group: The competitive mechanism �winner-take-all� enables the neuron with
the highest activation value to stay active whereas all the other neurons are set to zero (see
equation 4.2). While the re�ex sign position group sends as input the position of the signs
in the robot's visual space, the input coming from the sign merging group allows activating
only one of the three neurons corresponding to the recognized sign and thus send it to the
re�ex output position group for the movement to be performed.

Output unit

Re�ex output position group: It sends the resulting movement of the corresponding
activated neuron to the motor output(MO).

4.2.3.3 Layer Convergence

The three layers described above converge towards the motor output group, which com-
prises of six neurons corresponding respectively to six possible movements: turning left,
turning right, walking left, walking right, walking straight ahead and turning left as a re�ex
movement (�gure 4.25). The activation of one excludes the others' depending on inhibitory
and excitatory signal connections.

Hence, when the proximity sensor (robot close to the sign) is activated, the activation
values of the re�ex output position group are inhibited in the motor output group and
conversely if the robot is far from the sign the direction movements are inhibited.

In the case the movements have been performed by following the re�ex movements from
the re�ex Output Directionwhen looking for the next expected sign,the reset neuron
group allows inhibiting the activation of themotor output group when the Learn Output

Direction has been triggered by the DDRB and not by the SRMA layer.
The complete architecture is depicted in �gure 4.26. For visibility reasons, the names of

the neural groups are not exposed. The reader is invited to see each layer presented above
for the name details.

4.2.3.4 Layer interaction

The interaction between the layers can be explained by considering di�erent situations within
the navigation task. Hence, given a sign sequence, it is necessary to compare it to what it is
currently being perceived in the environment to �nd each expected sign (one after another)
in order for the robot to achieve to its �nal destination.
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Figure 4.25: Layers convergence towards the Motor Output group.
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The interaction of the layers is next given by describing four di�erent situations concerning
a perception and action cycle and covering the whole behavior of the architecture given the
simple sign sequence A,B,A,B.

For each situation, there is a single action resulting from the merging of the perception
and the a priori information and only the neural groups involved by their activation are
illustrated:

1. Situation 1: The expected sign is detected, hence recognized, but the robot

is far away from it (see �gure 4.27).

Initial parameters:

• Sign expected from the sign sequence: A

• Signs detected from the visual perception : A and N

• Locations of the detected signs within the robot's visual �eld : sign A to the right side
and sign N in the middle

• Proximity sensor activation: the robot is far from the sign; therefore, the proximity
sensor is not activated.

Functional beehavior:

Even though two di�erent signs ( "A" and "N" ) have been detected in the Sign detec-

tion group of the SRMA layer, only the neuron corresponding to the expected sign "A" given
by the sequence is activated in the sign merging group. The activation is then propagated
to the short-term memory group for further processing. However at this point, little matters
if the directional meaning of the sign is known or not to be performed or learned respectively.
In fact, since the robot is far away from the sign (proximity sensor not activated) it is
necessary to �rst approach the sign and then decide on what movement to perform. This
is possible by performing the re�ex approaching movements computed by the TARB layer.
However, alike to the SRMA layer even though the positions of both detected signs "A" and
"N" have been computed in the detected sign position group (right and center respec-
tively), only the neural sub-group corresponding to the recognized sign "A" is activated in
the WTA group which propagates the activation value to the re�ex output position group.

Finally, since the proximity sensor is connected via inhibitory links to the neurons
allowing the robot to approach the sign in the Motor Output group, its inactivity allows
to only enable the activation of the neurons corresponding to the movements : some steps
ahead towards the left, the right or straight ahead.

2. Situation 2: The expected sign is detected, thereby recognized. The robot

is close to the sign and the directional meaning is known (see �gure 4.28).

Initial parameters:

• Sign expected from the sign sequence: A
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Figure 4.27: Situation 1: The expected sign is detected, hence recognized, but the robot is
far away from it.

• Signs detected from the visual perception : A

• Next sign expected from the sign sequence after recognizing sign A : B

• Directional meaning of sign A : is known and is to the right

• Proximity sensor activation: activated. The robot is close to the sign.

Functional behavior:

The information stored by the short-term memory group concerning the recognition
of sign "A" is propagated to the output of the SRMA layer in order to activate the neuron
corresponding to its associated movement and thus, execute any of both possible movements
(right movement in this example). Since the proximity sensor indicates that the robot is
close to the sign, the neurons connected by the excitatory links in theMotor Output group

are activated. Therefore, only the left and right movements are enabled.
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Figure 4.28: Situation 2: The expected sign is detected, thereby recognized. The robot is
close to the sign and the directional meaning is known.

Moreover, since there is no longer need of looking for the current sign "A" as it has
already been found and achieved, the activation of the proximity sensor triggers the search of
the next expected sign in the sign sequence to be looked for in the navigation environment.
Thus, the neuron corresponding to sign "B" is activated.

3. Situation 3: The expected sign is detected, thereby recognized. The robot

is close to the sign but the directional meaning is unknown(see �gure 4.29).

Initial parameters:

• Sign expected from the sign sequence: B

• Signs detected from the visual perception : none

• Directional meaning of sign A : unknown

• Proximity sensor activation: No sign has been detected therefore the sensor cannot give
any measurable value.

Functional behavior:

Since the directional meaning of sign "A" is unknown, the robot needs to look in the
environment for the next expected sign whose corresponding neuron is already activated in
the sign sequence group (sign "B"). Hence, the inhibitory connection between the sign
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recognition group and the trigger re�ex group, enables the activation of this latter when
no sign has been recognized. Consequently, the re�ex rotatory movements are performed as
long as the expected sign "B" has not detected in the environment. Meanwhile, the short
term memory group maintains activated the neuron corresponding to sign "A" in order
to associate its corresponding movement when sign "B" will be recognized.
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Figure 4.29: Situation 3: The expected sign is detected, thereby recognized. The robot is
close to the sign but the directional meaning is unknown

4. Situation 4: The next expected sign is detected, thereby recognized. There-

fore, the movement leading the robot form sign A to B has been computed and

can be associated to sign A and be learned (see �gure 4.30).

Initial parameters:

• Sign expected from the sign sequence: B

• Signs detected from the visual perception : B

• Directional meaning of sign A : To be learned

• Proximity sensor activation: the robot is far from the new sign B; therefore, the prox-
imity sensor is not activated.

Functional behavior:
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Once the next expected sign from the sign sequence has been detected, thereby recognized;
the movement resulting from the computation of the memory angle group in the DDRB
layer is learned and associated via a reinforcement signal in the WTA group for the SRMA
layer. However, since the small re�ex rotatory movements have already led the robot to
the new sign, the learned movement is not executed in the Motor Output group. This
movement is prevented by the reset2 neuron that sets to zero the values of the memory

angle group for a new computation. Likewise, the reset1 neuron sets to zero all the values
of the short term memory group so as to allow a new computation concerning the new
current sign "B". Simultaneously to the learning task of the sign and movement association,
the TARB re�ex layer is triggered in order to allow the robot to approach the new current
sign ("B") that has been perceived to the right side of the robot's visual �eld. Situation 1
(previously explained) shows how the robot can approach it.
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Figure 4.30: Situation 4: The next expected sign is detected, thereby recognized. Therefore,
the movement leading the robot form sign A to B has been computed and can be associated
with sign A and be learned.

4.3 Experiments in real environment

The e�cacy of the proposed architecture was tested with the Aldebaran Robotics' NAO
humanoid robot. This platform was found suitable due to its ability to have a rapid visual-
perception interaction within a real environment, which is a necessary element to validate the
performance of the architecture. The test description below is for didactic purposes, detailing,



4.3. Experiments in real environment 123

con�rming and explaining the functioning of the proposed architecture and its salient features
at work.

4.3.1 Procedure

The NAO robot can recognize the signs printed in a A4 size paper form using its camera if
it is within a range of approximately 0.20 meters to 1.50 meters of distance. Therefore, the
navigation environment for the experiment was built so as to always have the next sign to
be read within this range. This range can be extended if the printed sign size is bigger.

Then, by placing just two di�erent signs twice in the environment it was possible to
verify in one go the real-time learning resulting from a re�ex movement, followed by the
actual movement triggered by the learned association. The signs were also placed at a certain
distance relative to the robot position so as to allow veri�cation of the target approaching
re�ex behavior. The sign sequence to be followed as illustrated in �gure 4.31 was : A, B, A,
B.

A B BA

Figure 4.31: Example of signs given in sequence by the user

Thereafter, the robot was placed at the entry of the test environment from which it could
distinctly see the �rst sign that it was expected to recognize, "A". In order to reach the �nal
destination, the robot was supposed to turn right every time it read sign "A" and turn left
every time it read sign "B", even though these associations were not known yet to it.

4.3.2 Results

While navigating the environment (see �gure 4.32), the robot was successfully able to perform
the following intended actions :

• When a sign was detected, it was able to compare it to the corresponding sign from the
extracted sequence

• When the comparison gave a negative result i.e.the detected sign did not match the
expected sign, the robot ignored the detected sign and continued re�ex movements to
locate the correct sign

• When the comparison resulted in a positive i.e. the detected sign was indeed the
expected sign, and the meaning of the sign was yet unknown, it was able to perform
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re�ex movements by rotating in one place to search for the next sign and �gure out the
associated direction and then learnt it

• When the expected sign was not in its visual �eld, it was able to perform a re�ex
behavior to search for it

• When a sign was faraway, it was able to get closer

• When a sign appeared again, it was able to recall the learning and perform the associ-
ated movement

SIGN

B

SIGN 

A

Figure 4.32: Robot navigation within the environment

Figure 4.33 shows a summary of the results obtained in the form of the activation of the
output neural groups corresponding to the six possible movements that can be performed by
the robot (so far), as well as the activation of the reinforcement signal (RS) allowing the
association learning, over time. The movements were a result of either the recognition, the
proximity or the absence of any signs from the extracted sign sequence. The activities are
explained chronologically and refer to the descriptions and �gures of section 4.2.3.2. In each
of the (a, t) plots shown, (a) is the binary activation of each neural group and (t) the time
seconds in terms of a PerAc cycle.

For the sake of simplicity, the plot labeled Cumulative target approaching movements

combines all movements undertaken in one go by the robot to approach a particular sign
using TARB. The three movements are illustrated in �gure 4.34.

t0 − t8 When the robot recognized sign A at time t0, its corresponding neuron in the
SRMA layer got activated and remained like this while it was still in the robot's �eld of view
(Dynamic visual perception plot in �gure 4.33). In the meanwhile, it triggered the activation
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Figure 4.33: Summary of Rhizome 1 results obtained in the form of the activation of the
output neural groups as well as the activation of the reinforcement signal (RS) allowing the
association learning, over time. In each of the (a, t) plots shown, (a)is the binary activation
of each neural group (t) the time seconds in terms of a PerAc cycle.
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of the neurons in the TARB layer allowing the robot to approach the sign( Cumulative target
approaching movements plot in �gure 4.33) until time t8. When the robot was close enough
to the sign the proximity sensor got activated at time t8 .

t8 − t12 Since the robot had not associated the current perceived sign A with any
movement yet, the re�ex exploratory action was triggered in the DDRB layer and so was, its
corresponding neuron ( Re�ex Direction determination Movements plot in �gure 4.33). This
continued until sign B was detected at time t12.

t12−t20 After detection, the total angle of rotation undergone during the re�ex movement
was computed. The equivalent value (bigger than the threshold value) allowed the association
learning of sign A with the right direction movement triggered by the reinforcement signal
RS at time t12 in SRMA layer(Learning Association plot in �gure 4.33). While this was
taking place, the robot was already performing movements to approach the new sign B in
the TARB layer( Cumulative target approaching movements plot in �gure 4.33). The activity
of the proximity sensor got a positive value at time t20, once the robot was close enough to
the sign.

t20 − t23 Alike sign A earlier, current sign B's associated movements were not known
yet. Therefore, the robot used the DDRB layer actions to locate the next sign from the sign
sequence A ( Re�ex Direction determination Movements plot in �gure 4.33) which took place
at time t23.

t23− t29 This time, the computed angle of rotation was smaller than the threshold value,
thereby, resulting in the learning association of sign B with the left direction movement
triggered by the the reinforcement signal RS at time t23 in the SRMA layer ( Learning

Association plot in �gure 4.33). While this was taking place, the robot was already per-
forming movements to approach the new sign A (thrid sign from the sign sequence) in the
TARB layer(Cumulative target approaching movements plot in �gure 4.33). The activity of
the proximity sensor got a positive value at time t29.

t29 − t30 Now that the robot had learned the associated movement of A, the SRMA
layer allowed it directly performed the right direction movement as soon as the proximity
sensor was triggered at time t29. The much shorter execution time of this movement on the
plot is especially notable, showing the advantage of learning associations.

t30 − t36 The robot approached B at time t36 after having performed some target ap-
proaching movement directed by the TARB layer ( Cumulative target approaching movements
plot in �gure 4.33).

t36 − t37 The robot executes the associated learnt movement (left direction.
t37 − t40 The robot got to its �nal destination at time t40 after having performed some

target approaching movements directed by the TARB layer ( Cumulative target approaching
movements plot in �gure 4.33).

As a result, the robot was able to successfully learn the meaning of signs using re�ex
movements until time t0 − t8, and thereafter it was able to apply the learning e�ectively by
recalling the movement in a shorter period of time.

Figure 4.34 illustrates the summary of the movements undertaken by the robot to ap-
proach the two frist signs from the sign sequence by using the TARB layer. It follows the
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same reasoning given in the above overall results.
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Figure 4.34: Summary of the movements undertaken by the robot to approach a particular
sign by using the TARB layer.

4.3.3 Discussion

As in every system, the realization of experiments in real time gives a better insight of the
scope and limitations of the proposed system and rises up unexpected problems that were not
considered before. It allows easily distinguishing the problems related to the robotic platform
from those inherent to the architecture and thus tackle them.

In our case, the overall architecture was conceived by considering in advance the limita-
tions and constrains given by the robotic platform we employed.

For instance, in the absence of a panoramic camera or a camera capable of in-place 360◦
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degrees rotation, the NAO robot had to perform rotational movements around itself to look
for the next sign during its learning phase. Even though speed was not a criterion in the
above test, such movements could be ine�cient, (although not ine�ective). Utilizing head
movements, peripheral vision, additional cameras/sensors, or even using an alternate platform
instead, may increase the speed of task completion if speed is a requirement in the navigation
task.

As for the problems inherent to the architecture, even though the behaviors performed
by the robot within the test environment were as expected during the experimental phase,
an unforeseen problem arose when the same experiments were carried out in di�erent envi-
ronments.

In fact, it was noticed that while the robot was approaching a given sign, it would some-
times lose the track of it by failing to perceive it within its �eld of view. This problem led
the robot to perform the rotational movement triggered by the DDRB layer in order to look
for the same sign. Such re�ex behavior could have been the logic solution to do if it had not
been for the fact that after having found the sign again, the learning signal was activated
and a directional meaning was directly associated to the sign.

However, at that point the problem was not signi�cant and did not cause any trouble for
the robot to continue its way. The actual problem became then noticeable when the same
sign had further appeared and the robot had to recall the associated directional movement
of the current sign. It appeared that the robot had associated two di�erent, and most of the
time, opposite movements to the same sign and when recalling the movement, it performed
one after the other.

The source of the problem happened to be the lighting variation to which, cameras are
usually quite sensitive and to which unfortunately we had failed to considered among the
parameters of the given scenario.

A temporary solution was taken in order to prove the expected behaviors previously
hypothesized and already described in the result section. It consisted of repositioning and
tilting the sign in a way that it would be well lit whenever the robot lost track of it. However,
this problem needed to be taken care of in a more permanent way.

Hence,in order to overcome this problem some neural groups were added to the archi-
tecture. The reader can refer to the appendix section for a detailed description of these
groups.

The complete architecture as illustrated in the introduction is depicted in �gure A.7 with
the new Lost Sign Searching Re�ex layer :

4.4 Conclusion

A hybrid neural-based architecture, Rhizome 1, enabling autonomous navigation based on
both a priori information at the start of the journey, and dynamic information from the
immediate environment during it, has been presented in this chapter as an alternative hy-
brid control architecture for mobile robot navigation. The a priori information is provided
by a program that has computed previously the navigation path and the robot is able to
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integrate it, to compare it to the dynamic visual information and to reach a speci�c place
while performing online learning of sensory-motor associations. Experimental results ob-
tained from the physical implementation of the architecture in an indoor environment have
shown feasibility of this approach.

Furthermore, thanks to its generic composition, the proposed architecture has shown
to be easily adaptable to new behaviors and tasks. Indeed, it is possible to develop the
architecture further with respect to robustness and completeness by simply adding new layers
without modifying the already in-built components or layers. For instance, in the discussion
section it was shown that by adding new neural groups to the di�erent layers, the robot could
overcome a problem that came up while navigating the environment.

Similarly, another layer which, is omitted in this thesis for the sake of brevity in favor of
detailing the more relevant contributions, has also been added to the architecture. This layer
allows the robot to learn the association between the current sign and the movement that
led the robot to it from the previous visited sign. It is called the �retour-au-nid� layer

(nest returning in English) and is based on the biological mechanism used by some insects
like bees, ants and wasps [ Wehner and raber (1979)] , [ Cartwright and Collet, 1983 ] that
allows them to return to their home from wherever position they are at. The reader may
refer to the state-of-the-art section 2.2 and 2.2.4.1 of chapter 2 for a deeper insight of such
mechanism.

As a result, the robot not only is able to navigate towards its �nal destination, but also,
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it is able to come back to any of the visited places as well as the starting point from any
other position.

In the next chapter, we present the Rhizome 2 architecture where the robot is able to
extract the sequence of signs by itself from a paper-based map, instead of actually waiting
for a person or program to provide it the a priori information. Moreover, the additional
information given by the map generates the addition of new neural groups as well as the
modi�cation of some neural links.
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5.1 General Description

Digital �oor plans of buildings (such as hospitals, schools, residential complexes or factories)
are typically not as readily available as digital maps of entire cities, countries etc. Hence,
when trying to navigate an unknown building, one has to rely on �oor plans available in
physical form at the entrance of the building or on paper to achieve one's �nal destination.
Since such a �oor plan provides one of the fastest way to access comprehensive information
about the inside of the building, it can be used as a priori information for reference purposes
in the navigation task of a mobile robot.

Consequently, Rhizome 2 has been conceived in order to combine the information ex-
tracted from a paper-based �oor plan with the dynamic visual information. This is achieved
by having the robot recognize some navigation signs from the �oor plan and then look for
them in their expected sequence in the environment.

The global knowledge of the world is represented by the paper-based �oor plan that is
placed in front of the robot's camera just once, before the navigation activity starts (see
�gure 5.1 (a)). It contains the important information to de�ne a potential navigation trajec-
tory in a deterministic scenario. In this work, this information is represented by navigation
signs used as reference points that are expected to be seen by the robot in the real world
navigation (same black circles with speci�c white patterns drawn within seen in chapter 4,
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but associated with left and right directions as shown in �gure 5.1(b). By means of computer
vision methods the robot �reads� the �oor plan, generates an optimal plan to reach the goal,
recognizes the navigation signs within the path, computes the directional meaning each sign
denotes (turn right or turn left), extracts and stores the sequence of signs arranged from the
closest point to the furthest with respect to the starting point.

The robot then integrates the extracted sequence of signs together with the directional
signs meaning into a neural system and by comparing it with the dynamic visual perception
of the environment in real-time (see �gure 5.1 (c)) it is able to recognize the signs and perform
the movement associated to their directional meaning.

Start 

Destination

a) c)b)

Figure 5.1: (a) Nao robot reading the map. (b) Map with the signs and their corresponding
directional meaning. (c) View of the environment with the navigation signs in real time.

Hence, the same functional behavior of the navigation process explained in chapter 4
applies to the description of the navigation process of Rhizome 2, with the exception that
once the robot is close to the recognized sign it can directly turn towards its corresponding
direction which was previously computed by analysing the map (see �gure 5.2).

5.2 Implementation- Rhizome 2 Architecture

5.2.1 Overall description

The overall architecture integrates the information provided by the �oor plan analysis into
two organized neural structures. Hence, it is composed of three modules as illustrated in
�gure 5.3.

A deliberative module, where a thorough analysis process allowing the extraction of
the �oor plan information takes place and two behavioral modules that integrate the
resulting information and which by the use of a cognitive mechanism, perform recognition of
a particular sign and learning of its association with its corresponding directional meaning.

On one hand, the deliberative module is composed of a �oor plan analysis system.
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Although much more simpli�ed,it follows a similar process undertaken by the system found
in the literature [Ahmed 2011]. In e�ect, their �oor plan analysis work�ow consists of three
main stages. First, the information segmentation process consistd in identifying and sepa-
rating di�erent types of information. Then, the structural analysis where the information is
extracted and �nally, the semantic information used to retrieve the corresponding semantic
information. Figure 5.4 shows the work�ow found in the literature for �oor plan analysis
(left �gure) which is followed in the deliberative module of the Rhizome 2 architecture (right
�gure).

In our work, as illustrated in �gure 5.5 the information segmentation process consists of
�rst identifying the map and separating it from the background in order to properly identify
the navigation signs. Then, during the structural analysis, the navigation signs are extracted
from the �oor plan, which results, on one side, in an image composed of only walls and on
the other side, in a set of images composed of each extracted sign. Finally, the extraction
of the sign sequence and the directional meaning each sign denotes are computed during the
semantic analysis stage by �rst computing a path planning and a sign classi�cation algorithm.

On the other hand, the two behavioral modules integrate the information provided
by the �oor plan analysis as illustrated in �gure 5.6. While the information concerning the
navigation sign sequence is incorporated in the �rst behavioral module as explained in
Rhizome1 (chapter 4), the information corresponding to the �directional meaning� that each
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sign denotes is incorporated in the second behavioral module which is also based on a
perception-action mechanism [Gaussier 1995].

The second behavioral module is directly connected to the learned output direction

group of the �rst behavioral module and by activating a reinforcement signal, the associ-
ation between the expected sign and its directional meaning is learned. Additionally, as this
module is activated, the direction determination re�ex behavior layer of the �rst behav-
ioral module is inhibited by an inhibitory link which connnects both modules. Thus, the
exploratory directional re�ex movement is no longer needed (�gure 5.7).

Hence,if we take the functional diagram presented in the introduction, each module in-
tervenes on every action as illustrated in �gure 5.8.
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5.2.2 Deliberative module � Floor plan analysis

5.2.2.1 Overview

When working in real time situations, reading and analyzing a document from an image
acquired from a mobile device such that of a robot is a challenging task. It not only has to be
accurate but it also has to be fast so that the robot can react accordingly. Image acquisition
of documents under constrained and dynamic conditions may cause not only degradation
but also distortions on the captured image itself due to unpredictable orientation, distance,
lighting conditions etc.

Di�erent scenarios might be possible. For instance in the case of this work, since there is
no use of a planar support when acquiring the image, the map might not be completely or at
all within the image frame. It might also be too small or su�er from perspective distortion
if the image captured is not orthogonal to the plane of the camera. All these circumstances
make it hard to properly identify and retrieve the content of the map. Therefore, a set of
processes after image acquisition has been implemented allowing the analysis of the �oor plan
in order to permit the robot to extract the relevant information for the navigation task. This
process is achieved through three main stages of �oor plan analysis as illustrated in �gure 5.9.

The information segmentation process identi�es and separates di�erent types of
information. First, in order to remove any insigni�cant elements that may cause problems
when analyzing the image a pre-processing is applied. Then, a perspective correction is used
in order to easily distinguish the important information since the acquisition of the images is
not done on a planar surface.

Thereafter, the structural analysis is in charge of extracting the information within
the map separately. After detection of the signs in the last stage, the regions around the
signs are subtracted from the images. As a result, only the walls remain in the image.

Finally, the semantic analysis, which consists of two di�erent process that are simul-
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The resulting information (sign sequence and sign directional meaning) is stored in the long
term memory.

taneously applied to the resulting images from the last step. On one hand, a classi�cation
process allowing to recognize the signs extracted previously and on the other hand, the com-
putation of the path leading to the �nal destination from a starting point.

As a result, the robot is able to compute the path leading towards the �nal destination
and thus extract the sign sequence based on the computation of the path and the information
of the signs

5.2.2.2 Information Segmentation

Image pre-processing As the outcome of the segmentation process directly a�ects the
performance of further processing, it is important to �nd a suitable image pre-processing

algorithm that allows removal of any noise and help to simplify the representation of the
image for better analysis.

A global thresholding has been applied to the images in this work, as it has proven
to be the simplest of image segmentation methods while providing a fast and convenient
way to perform a good result when working in real time situations [Singh 2010]. However,
non-uniform illumination of the document may cause inaccuracies or complete failure of
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segmentation. In order to overcome these e�ects, a black top-hat morphological operator
with square mask is �rst applied on the gray-scale image. This process consists of removing
noise and small objects from the image that are not relevant to the analysis of the image.
Hence, it improves the clarity of the image outcome and consequently, it makes possible the
identi�cation of relevant regions (map) and objects of interest (navigation signs and walls)
in the image.

The identi�cation and then extraction of the map from the image is made possible using
analysis of the connected components. Therefore, after the thresholding process, two �lters
are performed based on the contours of the image components in order to select a clear image
of the map to make extraction of navigation signs possible. The maps used in this work are
considered to be printed in A4 format and all the threshold values are calculated based on
the values retrieved from a potentially good image previously used as reference.

The retrieval of the contours is possible by following the borders of the connected com-
ponents using the algorithm proposed by [Suzuki 1985]. Each contour is stored as a vector of
points and they can be organized by following a hierarchy order. Since the aim of this step
is to separate the map from the background, only the outer contours corresponding to the
boundary map are retrieved and analyzed.

The application of these �lters based on the size of the connected regions permit rejection
of images. Hence, the �rst �lter is based on the length of the contours, more particularly,
on the size of the output vector of points, which is, compared to two thresholds values (one
minimum and one maximum previously calculated). If the size of one contour is inferior to
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the minimum value, it is likely to correspond to irrelevant components outside the convex
hull in the background or to an incomplete map boundary (map outside the camera frame).
If conversely, it is superior to the maximum value, something must probably be intersecting
the contour (i.e. user �ngers holding the map when acquiring the image) and, thus, a part
of the internal contours is also detected. Therefore, only the vectors whose size is between
these two values, has a much higher probability of being the complete map boundary.

Once the image has passed through the �rst �lter and some contours have been selected
as potential map boundary contour, a second �lter takes place. Indeed, a bounding box is
created around the potential map boundary contour and its area is compared to a threshold
value. Only the area value superior to the threshold value is selected and the map edges can
be identi�ed.

Hence, only the images containing the complete and visible map are selected for further
processing.

Perspective map correction Most of the methods proposed in the literature for perspec-
tive distortion removal are based on page layout and document content such as text lines
and vertical paragraph margin (VPM) [[Dance 2001], paragraph formatting [Clark 2003] and
stroke boundaries and tip points [Lu 2005]. The �rst two methods �nd horizontal and verti-
cal vanishing points and the last one uses multiple fuzzy sets and morphological operators.
Nevertheless, textual information such as the name of the rooms (likely to exist in �oor plan
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documents) is not exploited in this work. Hence, all the methods based on text, paragraphs
or characters are here excluded.

On the contrary, a high contrast document boundary (HDB) like method is used in this
work. It �nds the corners of the quadrilateral formed by the boundary between the back-
ground and the document to transform it into a perfect rectangle as proposed by [Clark 2002]
and [Rodríguez-Piñeiro 2011].

Then, detecting the corners directly from the map with a corner detector such as the
Harris corner detector would seem to be the simplest way. However, as it detects all the
possible corners within the map, the computing time required to select only the outer ones
would be high and unnecessary for our task.

Therefore, the method proposed in this work consists of �rst creating a bounding box
around the image, then retrieving the corners coordinates (X,Y) of the bounding box formed
to use them as reference points to �nd the coordinates (x,y) of the corners of the map contour.
By calculating the minimum distance between the coordinates (X,Y) of each corner of the
bounding box and each vector point of the map contour, the closest vector point to each
corner of the bounding box is found.

As a result, the corners (x,y) of the map contour are found. Then the perspective correc-
tion can be performed by using a 3x3 transformation matrix calculated with the coordinates
of quadrilateral vertices of the map and those of the destination image.

Sign detection The navigation signs detection task can be considered as part of a symbol
recognition problem in the area of pattern recognition. In general, symbols can be de�ned
as graphical components which are found in di�erent types of documents and are meaningful
in a speci�c domain. They can be di�erentiated by their visual properties such as their lines
segments, their shape, their gray levels, etc. Even though, the majority of symbol recognition
methods assume that symbols have been previously segmented. Segmentation still remains
a di�cult task as it is not always possible to partition the image into unique constituent
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components. However, few methods base their symbol segmentation on features such as
connected components, loops, color layers, long lines, etc.

The navigation signs are represented in this work by circle-shape symbols containing
speci�c patterns that allow them to be di�erentiated from one another. Hence, in order to
distinguish them from the �oor plan, sign detection is achieved using a feature based approach
by using the Hough circles transform [Ballard 1981].

5.2.2.3 Structural analysis
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Figure 5.11: Structural Analysis process.

Signs and walls extraction In order to �nd the correct sequence of signs for navigation
purposes, it is essential for the robot to take into account the internal walls as they represent
static obstacles that have to be avoided.

Even though this information must be considered all together, information is segmented,
processed separately and then merged together. This segmentation process allows avoidance
of incorrect results as some information, which might not be required for a given step, might
be considered as noise.

The signs/walls segmentation process, analyses the map image and converts it into two
images. The �rst one containing only the navigation signs and the second one containing the
walls.

The problem of wall detection and separation from graphical information has been solved
in [Dosch 2000] by using a morphological �lter that separates the image into two images
i.e. a thick line image containing the walls and a thin line image containing the symbols.
This same method has been enhanced in [Ahmed 2011] by adding a third kind of lines i.e.
medium lines in order to retrieve also the outer walls. In [Macé 2010], the authors proposed
a method that consists of �rst detecting the lines that are likely to be the contour of the walls
(based on the coupling of Hough Transform with image vectorization), and then verifying the
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texture between two aligned lines. Even though these methods seem to be robust, the symbols
considered for the application domain correspond mainly to windows and doors related to
more complex �oor plans.

As previously mentioned, the aim being that of proving a navigation task by means of
navigation signs on simple �oor plans. Therefore, these approaches are not here exploited in
this work. However, the author considers them relevant for future stages of this project.

Hence, the information obtained in the previous step is used in order to extract each
sign from the �oor plan. By considering the parameters referring to the center position and
radius (ycenter, xcenter,r) of the circles, denoting the signs, obtained by using the Hough
circles transform, it is possible to subtract the information within each circle from the �oor
plan and copy each of the signs into a new image.

As a result, a �walls image� composed of only internal and external walls is produced as
well as a set of �navigation sign images� each consisting of a unique sign.

5.2.2.4 Semantic Analysis

In order to extract the correct sequence of signs from the starting point to the �nal destination,
two di�erent process are respectively applied to each of the resulting images from the previous
step i.e. �navigation signs images� and � walls image�: A sign classi�cation process to
the former and a path planning computation to the latter.
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Figure 5.12: Semantic Analysis process.

Signs Classi�cation As part of the �rst process, it is necessary to recognize the sign images
among all possible signs used in this work. In order words, it is necessary to identify the
category to which the sign belongs which is commonly known as the classi�cation problem.
There are two notable methods available for the recognition of signs in maps or paper-
based documents using image processing: keypoints based [Rusiñol 2010], [Rusinol 2013] or
template matching based [Weber 2012]. The former aims to extract some points of interest



5.2. Implementation- Rhizome 2 Architecture 143

(generally the corners) and describe them using some radio-metric features. The latter aims
to �nd small parts of an image that match a template image from existing database. This
latter simpler approach was used in this work since a database of the sign images was already
available and could easily be recognized by the robot in the environment.

Path planning The problem of �nding the optimal path is solved by using a neural imple-
mentation of the resistive grid technique (also known as the Laplacian path planning method
[Connolly 1990]) [Bugmann 1995]. The neural network comprises a neuron-resistive grid in
the upper layer and a spatial memory in the lower layer (see �gure 5.13. The image of the
walls extracted during the image processing step described earlier is used here as the resistive
grid where each pixel in the image (or a �node� in the grid) is represented by a neuron in
the upper layer, which is connected to its m closest neighbors and one neuron from the lower
spatial-memory layer. The spatial memory layer stores the information of the target (�nal
destination) and obstacle positions given by the image, and is used to constrain the activity
of the corresponding node in the resistive grid (upper layer neuron).

Neuro-resistive grid

Spatial Memory

𝐼𝑖

Figure 5.13: Neural implementation of a 5*5 resistive grid and the spatial memory layer
(Figure extracted from [Bugmann 1995])

In order to compute the route while ensuring that the �nal destination is reached in an
environment cluttered with obstacles (walls on the map), two steps are performed:

1. A �potential� value of each node i in the resistive grid is calculated and associated with
each possible �State� ( a � sate� is de�ned in terms of location in the extracted map
at any point, especially with respect to the �nal destination. In this way, each pixel on
the map is a �state�, while the �nal destination is the �target state�). The resulting
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potential value yi decreases as a function of the distance between the corresponding
state and the target state which is calculated as in equation 5.1:

Yi = Tf(Σm
j=1Wij ∗ Yj + Ii) (5.1)

Where, Wij is the weight given to the input from neuron j to i; Yi is the output of
neuron j; Ii is an external input from the spatial memory layer used to constrain the
value of Yi, and Tf is a linear saturating transfer function of the neuron i de�ned as in
equation 5.2:

Tf(x) =


1 if x > 1

0 if x < 0

x otherwise

(5.2)

Hence, the node corresponding to the target state is set to a positive potential by
adding the external input Ii=1 allowing it to act as a current source in the grid. The
saturation for negative inputs allows the neurons potential (corresponding to obstacles)
to be set to 0 by using a negative input Ii=-1. Finally, for all nodes which are not
targets, current positions or obstacles, an input Ii= 0 is de�ned.

All neurons in the network are updated several times before an equilibrium distribution
of the potentials is achieved i.e. the potential values of the resistive grid at time (t) are
similar to those of the resistive grid at time (t−1). However, when using high resolution
grids such as those of a 640x480 pixels image acquired by the robot, the memory
size needed for an instantaneous calculation surpasses that of the robot, resulting in
an increased computation time. Therefore, in this work, a faster solution has been
adopted. It consists of considering that the equilibrium distribution of the potentials
has been achieved when the potential of the current state has any value other than 0.
The resulting number of iteration is considered to be the minimum number of iteration
necessary for reaching a goal state.

2. Once the potential values have been calculated in the resistive grid, �nding the path
becomes an easy task. By continuously searching among the neighboring states the node
with the highest potential, it is possible to perform the transition action to that better
state regardless of what the current state is, then searching again for the next better
state and so on until eventually the target state is found. There must exist, however,
an uninterrupted sequence of permitted states joining the target and the current state.

Sign Sequence extraction Finally, the sequencing of the navigation signs extracted earlier
is possible by calculating the position of the recognized signs with respect to the newly
generated path.

The operation starts from the starting point and ends in the �nal destination. To achieve
this, certain regular intervals of distance, �checkpoints� (in terms of x-y coordinates), are
�rst demarcated along the path. Beginning at the starting point of the extracted path, for
each checkpoint, the distance to all visible signs is calculated. The sign located at the shortest



5.2. Implementation- Rhizome 2 Architecture 145

distance for each checkpoint is stored in a special array. This is done for all checkpoints until
the �nal destination. As a result, the array comprises all the navigation signs visible along
and closest to the path at each checkpoint. Then, it is possible to �nally extract the right
sequence of signs that the robot will encounter on its way. Each sign is stored by following
the order given in the memory vector.

Moreover, in addition to their relative x-y coordinates, each �checkpoint� stores the slope
value with respect to that of the next checkpoint in order to compute the direction leading
from the current checkpoint to the next one. Then, each sign in the memory vector is
associated to the direction value given by its corresponding checkpoint.

As a result, the sequence of signs together with their directional meaning is constantly
used, in the behavioral module once the robot commences exploration. Therefore, there is no
need of recalculating the path or reusing the map once the navigation activity has started.

5.2.3 Behavioral module - Neural structure

Rhizome 2 is composed of two behavioral modules that integrate the information coming
from the �oor plan analysis in the deliberative module as illustrated in �gure 5.14. While
the �rst Behavioral module instegrates the sequence of signs, the second behavioral module
integrates the direction each sign denotes (left or right). The second behavioral module is
connected to the learned output direction group of the SRMA layer in the �rst behavioral
module and sends it directly the associated movement to be performed. Moreover, at the
same time that the movements is being performed, a reinforcement signal is activated and
learn in the WTA group of the SRMA layer the said association.

Since the details of the �rst behavioral module have been described in the Rhizome
1 architecture in section 4.2.3 chapter 4, the following section describes the single layer
composing the second behavioral module: the Map Direction Information Re�ex Behavior
(MDIRB) layer.

5.2.3.1 Direction map information (DMI) layer

This layer is in charge of processing the information referring to the sign direction-meaning
coming from the deliberative module after �oor plan analysis (see �gure 5.15).

Hence, when the robot is just in front of a recognized sign, it is able to directly perform
the associated movement, which is sent by the DMIRB layer. Additionally, as the robot
continues its way towards the next expected sign, it learns the said association in the neural
structure.

It is composed of two neural groups as illustrated in �gure 5.16 and explained below:
Signs Direction group: This group receives the information concerning the directional

meaning of each sign. It is given by two numbers -1, 1 corresponding to the left and right turn
respectively. Each neuron is linked to the corresponding left and turn neurons in the learned
output direction neural group of the SRMA layer, thereby, whenever any of them is activated,
it activates the corresponding neuron and when the robot is close to the sign, it performs
the corresponding movement. In the meantime, the reinforcement signal is activated and the
association of the sign with the movement to be performed is learned in the WTA group of
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Figure 5.14: General view of the layers in the 1st and 2nd behavioral modules connected to
the behavioral module.

the SRMA layer.

Inhibition Re�ex group: Since the information referring to the directional meaning is
directly extracted from the map, the robot does not need to perform rotatory exploratory
movements in order to look for the next expected sign and associate the performed movement
as it was explained in Rhizome 1 (see section 4.3). Therefore, whenever any of the two neurons
in the sign direction group is activated, this single-neuron group is activated and sends an
inhibitory signal to the direction determination re�ex behavior layer of the �rst behavioral
module so that the re�ex movements are prevented to be performed.

Finally, the reset neural group of the SRMA layer, which is connected to the Sign Direction
group, resets the values of the neurons once the corresponding movement has been performed.
Thus, the direction of the next expected sign can be assigned.

5.3 Experiments in real environment

The following tests were carried out within the same environmental constraints and conditions
of the �rst experiments presented in Rhizome 1 (see 4). This, with the aim of having the
possibility of, not only, evaluating the functioning of the proposed approach but also of being
able to distinguish the functionality given by Rhizome 2 with respect to Rhizome 1.
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Figure 5.15: General view of the Map Direction Information Re�ex Behavior(MDIRB) layer.

5.3.1 Procedure

In order to prove the robustness of the �oor plan analysis approach proposed and the e�cacy
of the navigation task by using a map, a series of test were executed. The robot was expected
to compute the path leading to the �nal destination, extract and memorize a sequence of signs
together with the directional meaning assciated to each sign and then use them in order to
achieve its �nal destination (�gure 5.17).

The map used in this work is a modest �oor plan in the simplest way. Only the walls
(external and internal) and the navigation signs are here considered. The representation of
doors is done by blank gaps.

Consequently, the �oor plan of the test environment was �rst shown to the robot before
the navigation process took place so that it could capture some images of the �oor plan with
its camera and then process the acquired information. Thereafter, the robot was placed at
the entrance of the test environment from which it could distinctly see the �rst expected sign,
A.

Di�erent image acquisition con�gurations of the same map were presented to the robot
as illustrated in �gure 5.18 and according to its capacity at extracting the information after
having processed it, the navigation action was expected.
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5.3.2 Results

Deliberative Module
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a) b) c)

d) e) f)

Figure 5.18: Set of raw images of the �oor plan corresponding to di�erent acquisition con�g-
urations of the same map.

By following the di�erent stages of �oor plan analysis explained in section 5.2.2, the
robot was able to �read� the map, generate an optimal plan to reach the goal, extract and
memorize the sequence of signs (arranged from the closest point to the furthest with respect
to the starting point), and the directional meaning each sign denoted.

To begin with, all images of the �oor plan taken by the robot were pre-processed in order
to remove any insigni�cant element that may cause problems in further process. To this
end, a black top-hat morphological operator with a 7*7 square mask was �rst applied on the
gray-scale image followed by a global thresholding process as illustrated in �gure 5.19.

From the �gure above, it is possible to see that four out of the six pictures of the �oor
plan taken by the robot presented some problems. For instance, the �oor plan in images d)
and e) were outside the camera frame. Image c) instead, seem to be good at a �rst glance,
however, if one looks closer, a gap is in the outside contour of the �oor plan. If we go back
to the original picture c) in �gure 5.18, we can see that the user's �nger is the cause of this
gap as it is covering the missing part.

Finally, image b) is almost folded which in further process, would prevent the identi�cation
of some of the signs. The application of some �lters based on the size of the connected regions,
permits rejection these imperfect pictures. Therefore only images a) and f) were accepted on
which the bounding box was computed (see green square around the �oor plan frame of the
top images of �gure 5.20 ). Then, the x-y coordinates of the four corners of both, bounding
box and �oor plan frames were calculated (colorful circles on the corners of both in the same
�gure) and used in order to compute the perspective correction as illustrated in the bottom
part of �gure 5.20.

Thereafter, sign detection is perform and the regions around the signs are subtracted from
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a) b) c)

d) e) f)

Figure 5.19: Global Thresholding applied to di�erent types of images. Before that, a black
top-hat morphological operator with a 7*7 square mask is �rst applied on the gray-scale
image. It removes noise and small object that are not relevant to the analysis in order to
improve the accuracy and robustness of the image outcome.

the images. As a result, only the walls remain in the image (see �gure 5.21).

The extracted signs are then compared to the Nao Marks signs dataset in order to �nd
their identi�er ID letter allowing to distinguish each sign from the others in the environment.
From the �gure 5.22 it is possible to see that the extracted signs refer to A and B signs which
are repeated in the environment.

Finally, the image composed of only walls is used to compute the path that could lead
the robot from its starting point to its �nal one and the sequence of sign is extracted. Figure
5.23 to the left illustrates the checkpoints with the corresponding directions computed on the
resulting path plan (colored diamond-shape).

The sequence of signs is thus computed by �nding the closest sign to each one of the
checkpoints (see middle and right images in �gure 5.23).

A summary of the overall processing chain is illustrated in �gure 5.24.

As a result, when the map was not placed correctly within the frame of the camera, the
robot was able to warn the user to move it. Otherwise, when it was correctly positioned, the
robot was able to compute the path leading towards the �nal destination and thus extract
the sign sequence based on the computation of the path and the information of the signs:
{A(turn right), B (turn left), A(turn right), B (turn left)}.

The average computation time to extract the information was of around 5s.
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Figure 5.20: Perspective correction computation. A bounding box was computed (see green
square around the �oor plan frame of the top images ). Then, the x-y coordinates of the four
corners of both, bounding box and �oor plan frames were calculated (colorful circles on the
corners of both) and used in order to compute the perspective correction(bottom images).

Sign Detection Signs and Wall Extraction

Figure 5.21: Sign detection followed by signs and wall extraction.

Integration into the Behavioral Modules

While navigating the environment ( �gure 5.25), the robot was successfully able to perform
the following intended actions:

• When a sign was detected, it was able to compare it to the corresponding sign from the
extracted sequence

• When the comparison gave a negative result i.e. the detected sign did not match the
expected sign, the robot ignored the detected sign and continued re�ex movements to
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Figure 5.22: Sign classi�cation. The extracted signs are compared to the ensemble of nao
mark signs of the dataset in order to identify them by their unique identi�er ID letter.
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Figure 5.23: left: Path trajectory leading to the �nal destination with the checkpoints.
Middle and right: Sequence of signs computed by �nding the closest sign to each one of the
checkpoints.

locate the correct sign

• When the comparison resulted in a positive i.e. the detected sign was indeed the
expected sign, the robot was able to performed directly the associated movement given
by the map and simultaneously learn the association.

• When the expected sign was not in its visual �eld, it was able to perform a re�ex
behavior to search for it

• When a sign was faraway, it was able to get closer

• When a sign appeared again, it was able to either recall the learning or directly perform
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Figure 5.24: Summary of the overall process chain

the associated movement given by the map.

Figure 5.25 illustrates the robot navigating the environment. While the green line refers
to the path computed during �oor plan analysis, the dotted purple line refers to the actual
navigation path executed by the robot in real time.

Figure 5.26 shows a summary of results obtained in the form of the activation of the
output neural groups corresponding to the six possible movements that can be performed by
the robot (so far), as well as the activation of the reinforcement signal allowing the association
learning, over time. The movements were a result of either the recognition, the proximity
or the absence of any signs from the extracted sign sequence. The activities are explained
chronologically and refer to the descriptions and �gures of section 5.2.3.1 and section 4.2.3.2
of chapter 4. In each of the (a, t) plots shown, (a) is the binary activation of each neural
group or the reinforcement signal and (t) the time seconds in terms of a PerAc cycle. For
the sake of simplicity, the plot labeled Cumulative target approaching movements combines

all movements undertaken in one go by the robot to approach a particular sign using TARB.
For more details of this layer, refer to the result section of chapter 4.

t0 − t8 When the robot recognized sign A at time t0, its corresponding neuron in the
SRMA layer of the �rst behavioral module got activated and remained like this while it
was still in the robot's �eld of view Dynamic visual perception plot in �gure 5.26). In the
meanwhile, it triggered the activation of the neurons in the TARB layer allowing the robot
to approach the sign( see Cumulative target approaching movementsplot in �gure 5.26)until
time t8. When the robot was close enough to the sign the proximity sensor got activated at
time t8 .
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Figure 5.25: Robot navigation. While the green line refers to the path computed during �oor
plan analysis, the dotted purple line refers to the actual navigation path executed by the
robot in real time.

t8−t9 Since the associated movement to perform was already known by the robot: right
directionmovement associated to sign A, the robot turns directly to the right until detecting
sign B at time t9 (see Right turn plot in �gure 5.26). Simultaneously, the reinforcement
signal got activated allowing the robot to learn the said association in the SRMA layer of the
�rst behavioral module (Learning Association plot in �gure 5.26)

t9−t17 After having recognized sign B, the robot performs the corresponding movements
in the TARB layer allowing it to approach the said sign (see Cumulative target approaching
movements plot in �gure 5.26). The activity of the proximity sensor got a positive value at
time t17, once the robot was close enough to the sign.

t17− t18 Alike sign A earlier, current sign B's associated movements was already known
by the robot: left direction movement associated to sign B. Therefore, the robot turned
directly to the left until �nding the next sign in the sequence : A at time t18.

t18 − t24 After having recognized sign A, the robot performs the corresponding move-
ments in the TARB layer allowing it to approach the said sign (see Cumulative target ap-

proaching movements plot in �gure 5.26). When the robot was close enough to the sign,the
activity of the proximity sensor got a positive value at time t24. Simultaneously, the rein-
forcement signal was activated allowing the robot to learn the said association in the SRMA
layer of the �rst behavioral module (see Learning Association plot in �gure 5.26)

t24− t32 From time t24 to time t32 the same movements explained above are performed.
The robot approaches the signs performed by the TARB layer (see Cumulative target ap-
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proaching movements plot in �gure 4.33) and performs directly the right turn (resepctively
left) when close to sign A (respectively sign B) ( Right turn and Left turn plots).

However, as both, sign A and right turn movement and sign B and Left turn

movement associations had already been learned by the SRMA layer, their links are further
reinforced by the reinforcement signal (RS).

t32− t35 Finally, the robot got to its �nal destination at time t35 after having performed
some target approaching movement directed by the TARB layer (see Cumulative target ap-

proaching movements plot in �gure 5.26).

As a result, the robot was able to successfully use the information extracted from the
�oor plan in order to get to the �nal destination.

5.3.3 Discussions

Floor plans of buildings can be a very complex depending on the working context.They
usually contain details of building elements such as windows, elevations, doors, furniture etc.
and text labels referring to information such as the name of the room or the area.

However, in order to prove the concept of robot navigation by integrating a top-down
information as explained above such complexities were not essential for this work, at least, at
this stage. Therefore, they were excluded in the experimental phase. However, it is assumed
that the architecture can be adapted at a later stage to be able to analyze more complex
�oor plans.

When navigating within the environment, several behaviors emerged allowing the robot
to successfully reach its goal. From the results, it can be seen that most of the behaviors
were similar to those performed by the robot in the Rhizome 1 architecture (see chapter
4). However, since Rhizome 2 gives the autonomy to the robot of reading by itself a map
prior navigation, it was possible to extract additional information (the directional meaning
each sign denotes). Therefore, when the robot was closed enough to the signs, it did not
need to perform any regular exploratory movements in order to determine the action to take
as in Rhizome 1, but instead it directly turn to the corresponding direction given by the
computation of the map.

This allowed the robot to arrived at its �nal destination with some time in advance
compared to the navigation performed in Rhizome 1 : t35 in �gure 4.33 and t40 in �gure 5.26.

It should be noted though, that even if Rhizome 2 controlled directly the robot towards
the left or right direction thanks to the use of the map, the association was still learned in
the neuron connections. Similarly, even though the re�ex exploratory movements were not
performed, the layer can still be activated at any moment where the map is missing.

5.4 Conclusion

In this chapter, a robot uses a chain of image processing techniques for the analysis of a �oor
plan in real time. Relevant information is extracted (a sequence signs with their directional
meaning) and later compared with the dynamic visual information perceived during real
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world navigation. Such approach at the same time top-down and bottom-up is merged into
a neural system allowing the robot to reach its goal faster in a deterministic scenario.

The Rhizome 2 architecture is composed of a deliberative module and two behavioral
modules. Whereas the information concerning the navigation sign sequence is integrated in
the �rst behavioral module, the information corresponding to the �directional meaning� each
sign denotes (turn right or turn left) is used in the second behavioral module. The connection
between these two behavioral modules enables learning of the association between the sign
and its corresponding directional meaning.

Experimental results have shown that the use of a �oor plan prior navigation can facilitate
and hasten the task of reaching a speci�c destination inside a building for a mobile robot.
Hence, with the correct sequence of signs already captured by the robot, it is ready to begin
navigating the building and searching for them in the environment.

Documents and their analyses sometimes o�er an indispensable source of information
that can be utilized in the robotics �eld to enhance functionality or substitute other inaccu-
rate/ine�cient sources. In return, the dynamic physical abilities and real-time processing can
contribute to updating documents, which can be thought as future work. Di�erent behaviors
emerging from the interaction between the robot and the environment prove the advantages
of a neural approach emulating human behavior in a deterministic scenario.

An eventual scenario could be one where the expected signs are no longer available or
visible inside the building (non-deterministic or stochastic scenario). Such situation would
force the robot to adapt to the unforeseen changes by reacting accordingly in order to get to
its �nal destination.

Therefore, the next chapter presents Rhizome 3, which was built in order to overcome
such situations. To this end, a new behavioral module is built, and added to the overall
architecture. It consist in allowing the robot to learn natural landmarks in its surroundings
in order to learn places as navigation reference points.
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6.1 General description

When working in dynamic scenarios, unforeseen changes are prone to happen. For instance,
the a priori information (represented in this work by a sequence of navigation signs leading
the robot to the �nal destination) might not be available or visible as it was expected to be
found in the environment during real-time navigation. Therefore, the robot needs to be able
to cope with such changes while still achieving to its �nal destination.

Rhizome 3 has been conceived so that the robot can overcome any problem related to
such unforeseen changes by learning places as new reference points. Moreover, it enables
the robot to perform natural navigation sign recognition when comparing the place to others
previously learned (if any) as it navigates. Thus, if the place is not recognized the robot
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can learn it as a new one. The architecture allows the robot to learn in an incremental way
di�erent places throughout the exploration of the environment whenever it is required.

In this work, a place is characterized by a landmark constellation resulting from a set
of patterns referred as landmarks and their corresponding positions perceived by the robot
within a panoramic view (360◦ around itself). Hence, the robot keeps in memory the re-
sulting landmark constellation and learns it as a new place. Each landmark is considered
unique within each panoramic view and its position is calculated with respect to a north as
represented in �gure 6.1.

Panorama

Global reference 

Landmark L1

Landmark L2

Landmark L3

Figure 6.1: Representation of three landmarks considered as unique within a given panoramic
view. Their position is calculated with respect to a global reference.

Recognizing a landmark consists then in comparing the current landmarks perceived in
the new panorama with those previously learned. If the majority or all of them happened to
be similar enough and located at the same or nearby positions, then the place is likely to be
the same and thereby it is recognized as such. Otherwise, it is learned as a new one. The
decision of knowing if a certain amount of recognized landmarks is enough to state that a
given place has been recognized, is given by a vigilance term similar to the one described in
the ART model.

Before entering into the details of the implementation of Rhizome 3, let us �rst have an
insight of the overall functional behavior of the navigation process performed by the robot
as illustrated in 6.2 and which, is repeated as many times as it is necessary to achieve to the
�nal destination.

It combines the functional behaviors described in Rhizome 1 and that of Rhizome 2 where
the directional meaning of the signs can either be known in advance or not depending on the
use or not of a �oor plan as detailed in chapters 4 and 5. Moreover, the behavior related to
the learning and recognition of places when the navigation signs are not visibly available is
added to it (see 6.2).

In order to alleviate the representation of functional behaviors, those related to the DDRB
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layer from the �rst behavioral module are not here represented (when there is no use of a
�oor plan). However, it is clear that it is also part of the overall architecture and functioning.
For a better understanding the reader can refer to section 4.2.1 in chapter 4.
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Figure 6.2: Functional diagram of the navigation process behavior allowed by Rhizome 3.

The over all behavior illustrated in �gure 6.2 can be explained by following the algorithm:
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Input: Two sources of information are used as input in the architecture:

• The dynamic visual perception information, which constantly feeds the system in
real-time while the robot navigates the environment. The robot can either detect the
arti�cial navigation signs or extract natural landmarks.

• The static visual perception information extracted from which a sign sequence is
extracted. Each sign is given at a time according to what it is expected to be found in
the environment. When one of the detected signs matches the current expected sign,
the sign is considered recognized and the sign sequence is scanned to obtain the next
sign.

Output: a single motor action at a time executed by the robot based on the input
information

initialization;
dim=0;
while the robot has not arrived to its �nal destination do

Compare the expected sign to what it sees in real-time;
if sign is recognized then

Refer to Rhizome 1 and Rhizome 2 for the detailed description;
The directional meaning signal �Dim� is activated (Dim=1) after execution of
the associated sign given by the map;

else

if Place Cell signal is activated( PC==1) then

Extract and detect landmark in the environment;
Learn the place;
PC=0;

else

Calculate angle of robot rotation (α);
if (α > 360◦) or (dim==1) then

if dim==1 then

PC=1;
Perform exploratory re�ex walking movements;

else

Perform re�ex turning direction movement;
end

else

Perform rotatory re�ex movements to look for the next expected sign;
end

end

end

end
Algorithm 3: Functional behavior of the Rhizome 3 architecture
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6.2 Implementation- Rhizome 3 Architecture

6.2.1 Overall description

The overall architecture integrates the a priori information into two organized neural struc-
tures that are themselves connected to a third neural structure. Hence, it is composed of
four modules as illustrated in �gure 6.3. A deliberative module containing the a priori in-
formation provided to the robot and three behavioral modules: two of them integrating and
using the said a priori information and the third one dealing with unforeseen environment
changes.
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Figure 6.3: Overall view of the Rhizome 3 architecture composed of four modules: one
deliberative and three behavioral.

• On one hand, the deliberative module represented by the top box of �gure 6.3 stores
a succinct information about the environment coding the complete navigation path.
It is either provided by means of an external source such as a program command as
explained in Rhizome 1 (refer to section 4.2.2 in Chapter 4) or by the analysis of the
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environment �oor plan as explained in Rhizome 2 (refer to section 5.2.2 in Chapter 5).

• On the other hand, the �rst two behavioral modules use the said a priori information
and compare it to the dynamic visual perception. They allow the recognition of a
particular sign and learning of the association of its corresponding directional meaning,
either by performing rotational re�ex movements as explained in Rhizome 1 (refer to
section 4.2.3 in Chapter 4) or by directly using the information resulting from the �oor
plan analysis as explained in Rhizome 2 (refer to section 5.2.3 in Chapter 5).

The third behavioral module instead deals with the unforeseen environment changes pre-
sented when the a priori information is not available at all or when it does not match to
what it is expected to be found during navigation. This module is composed of two layers
as illustrated in �gure 6.4. It allows the robot explore the environment and learn places
as new reference points based on the same perception-action mechanism that the other two
behavioral modules follow.
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Figure 6.4: Overall view of the third behavioral module composed of a Place Cell Learning
and Recognition (PCLR) layer and World Exploration Re�ex Beahvior (WERB) layer.

The place cell Learning and Recognition layer (PCLR) constantly receives the informa-
tion coming from the real-time visual perception of the environment as the robot navigates.
However, it is only activated when the expected information is not perceived in the environ-
ment.
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In fact, the direction determination re�ex behavior (DDRB) of the �rst behavioral layer,
which connection is done by an inhibitory link to the third behavioral module, triggers the
module if the expected sign has not been detected after the robot has achieved a complete
rotatory movement around it self.

Henceforth, the World Exploration re�ex behavior layer (WERB) allows the robot to
walk a certain distance towards the place it was supposed to �nd the expected sign. Then, a
signal gets activated in the Place Cell Learning and Recognition layer (PCLR) which allows
the robot to learn a place based on its surrounding information.

Since the whole system works in parallel, a competitive mechanism allows deciding on the
best behavior for controlling the robot according to the stimulus received.

Consequently, if we take the general diagram presented in the general description, each
module intervenes on each of the following actions as illustrated in �gure 6.5.
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Figure 6.5: Functional diagram of the navigation process behavior allowed by Rhizome 3 with
the architecture layers acting on each functional decision.

6.2.2 Behavioral module- Neural structure

6.2.2.1 Place cell Learning and Recognition layer (PCLR)

Overall description



166 Chapter 6. RHIZOME 3

A robust visual place recognition algorithm needs to combine descriptive, discriminative
and generalization properties. Therefore, in order to capture all these properties, Gaussier
[Gaussier 2000] has proposed a biologically inspired approach based on the representation
of place cell for recognizing places within the navigation environment. Such model allows
recognizing a place resulting from a particular merging con�guration of two �ows of informa-
tion: what and where [19]. While, the former refers to the identi�cation and recognition of
patterns perceived in the visual scene of the place, the latter refers to the spatial location of
the same.

Hence, it is necessary to, on one hand, describe the perceived patterns in a distinctive
way and on the other hand, �nd their respective location within the scene.

The PCLR layer allows learning and recognizing di�erent places within the environment
by reproducing the same place cell model. However, it addresses the recognition problem in
a manner that di�ers from the model proposed by Gaussier mainly in two points:

• in the procedure used for detecting and extracting the landmarks and;

• in the internal computation of the neural components of the what group and its conse-
quences on the PrPh merging matrix group.

Figure 6.6 illustrates the overall state-of-the-art place cell model (blue frame) and the
contributions made in our model (orange frame).

Where (Ph)

What (Pr)

Local view)

Place Cells (PC)landmark merging matrix (PrPh)

Landmark

detection 

and 

extraction

What (Pr)Landmarks histogram

State-of-the-art model

Modifications made in 

our model

Figure 6.6: Overall state-of-the-art place cell model (blue frame) and the contributions made
in our model (orange frame).



6.2. Implementation- Rhizome 3 Architecture 167

A summary of both models with respect to the two aforementioned points is given below.
For a better understanding of the Gaussier model and the corresponding equations, the reader
can refer to the state-of-the-art section.

1. Local view or landmark extraction process:

• Gaussier model

The gradient of the image is used and convolved with a di�erence of Gaussians
(DoG) �lter in order to detect robust focal points such as corners or edges at a
particular spatial (low) resolution. Then, in order to reduce the computation time,
a simpli�ed process averages and weights all images columns for the points near
the center of a column and the resulting one-dimensional signal is di�erentiated.
Thus, local maxima is used as the focal point.

Finally, a 32*32-pixel area around each of the focal points is extracted and con-
sidered as a local view (landmark), which undertakes a log-polar transformation
so that they can be invariant to small rotations and scale variation.

• Our model

All images undertake two-classi�cation process. First, a visual bag of words model
together with the SIFT local descriptor [Lowe 2004] is built and used in order to
describe distinctly the salient features of all images. Second, the same features
are clustered according to their proximity in terms of their local positon. The
resulting groups are considered as landmarks and each of them is compared to the
others by computing the norm of the di�erence between the clusters center of the
feature describing them. A supplementary neural group is added in the model,
in order to store the information, represented as a histogram, coming from the
created landmarks.

2. Neural computation:

• Gaussier model

This model supposes that a landmark cannot be found twice in the same panoramic
view as it would not succeed in knowing which azimuth is associated to each
landmark.

Therefore, the what group recruits a di�erent neuron for each perceived landmark.
If for instance, a same local view is perceived from two di�erent angles when
learning di�erent places, two di�erent neurons are recruited. Then, in order to
allow multiples interpretations of the same local view, an activation function fRT is
used. This competition mechanism enhances the built-in generalization capability.

All neurons in the what group and the where group are connected to all neurons
in the PrPh matrix. Such connectivity allows learning in the connection weights
linking both, the what neuron and its associated neuron in the PrPh matrix and
the where neuron and its associated neuron in the PrPh matrix.

Since several neurons may be activated in the what group because of the multi-
ple interpretation mechanism, the activity of the neurons in the PrPh matrix is
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computed by searching for the maximal value among the values resulting from the
product between the activated what neurons and their corresponding connection
weight.

• Our model

Contrary to the state-of-the-art model that allows the multiplicity of recruited neu-
rons for each perceived landmark regardless their angle of perception, our model
tackles this problem by allowing the system to learn incrementally the perceived
landmarks.

This is possible by modifying the recruitment of neurons in the what group.

� Every single landmark perceived from the �rst place of the exploration envi-
ronment encode a di�erent what neuron.

� From the second place to the end of the exploration, each perceived land-
mark is compared to the ones previously learned. If after comparison, the
recognition value is superior to a vigilance term :

∗ the corresponding neuron gets activated with the resulting recognition
value;

∗ otherwise, a new what neuron is recruited and learned.

As a result, there is no need to code two or more neurons for the same landmark
even if it is seen from another angle, allowing to reduce to a fair quantity the
number of neurons necessary to be recruited in the what group.

Moreover, while all neurons in the where group are connected to all neurons in the
PrPh matrix as in the state-of-the-art model, the connection between the what
neurons and the PrPh matrix neurons are done in a one-to-one fashion. More
precisely, a single neuron in the what group is connected to its corresponding row
of neurons in the PrPh matrix with an initial weight value of one as illustrated in
the �gure 6.7. By consequence, learning is only performed on the weights between
the where neurons and their associated neurons in the PrPh matrix.

The implementation of how a place cell is constructed and learned is described in the
next section by detailing each of the components of the proposed model.

As illustrated in �gure 6.8 , each place is characterized by a set of landmarks surround-
ing the robot within its panoramic view (360◦) and the information extracted from all

landmarks is used as the input of the network system. Each natural landmark is associated
to a neuron from the what group (Pr) which, is set as its unique identi�er. The relative po-
sition information of each landmark is associated to a neuron from the where group (Ph).
Then, the information coming from both groups converges on a two-dimensional array of
neurons, which keeps in memory the resulting value of all the landmarks perceived in the
same panorama.

As a result, a landmark constellation is formed in the landmark merging matrix group

leading to the learning of a new place by recruiting a new neuron in the Place Cell group.

1. Input information

(a) Natural Landmark detection and extraction
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Figure 6.7: Neural connection between the what group and the PrPh matrix. A single neuron
in the what group is connected to its corresponding row of neurons in the PrPh matrix.
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Figure 6.8: Proposed Place cell model. Composed of �ve neural groups. The information
extracted from all natural landmarks in the panorama view are the input of the layer.

Overall description The information extracted from all natural landmarks in
the panorama view are the input of the network system. It is divided into two
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�ows of information in order to feed the what and the where groups:

• The �rst �ow of information is related to the description of each landmark
given by a vector of key-points it comprises of. It is gathered in the landmark
histogram neural group, which is connected, to the what group.

• The second �ow of information is related to the position of the same. It is
given by the X-coordinate of the landmark within the image with respect to
a reference global point and it is immediately fed into the where group to be
processed.

Hence, in order to obtain such �ows of information, it is necessary to �rst detect
and extract the landmarks out of the images perceived by the robot within its
panoramic view.

In this work, the natural landmarks are considered as patterns described by their
distinguishable features (key-points). Hence, in order to detect these patterns, all
images acquired by the sensor camera are �rst pre-processed and transformed into
gray color space.

For each image, the salient features along with their descriptors are computed.
Since the viewpoint of a pattern can drastically change from one position to an-
other, the SIFT descriptor is here used. As a result, each feature is described as
unique and di�er from one another according to the composition of their visual
characteristics.

Then, the images are converted from the set of features into a bag-of-words rep-
resentation in order to match the appearance of the current scene to the trained
data. To this end, the process is performed for two di�erent sets of images: The
template images to build the vocabulary and the query images to build, detect
and recognize the landmarks during the robot run-time navigation. Such process
is usually used in the literature before sending the information to the classi�er for
learning.

However, since our aim is to search natural landmarks within the images, we need
to go beyond this point to �nd the interest regions that can be considered as
potential landmarks. Therefore, the algorithm is extended by using another type
of cluster (relative to the spatial information distance) over the same descriptors
in the same images: landmark clustering.

As a result, each spatial cluster is considered as a natural landmark, represented
by a certain number of descriptors spatially close to each other and belonging,
each of them, to di�erent clusters from the vocabulary.

Figure 6.9 illustrates the overall process, which is described in detail below.

A. Vocabulary Construction: As previously said, in order to build the vo-
cabulary a set of template images is used in �gure 6.10. In fact, they serve as the
model from which all the new images will be based on.

The set of template images used here depicts the navigation environment used
for the test from di�erent viewpoints from which the robot could perceived the
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Figure 6.9: Overall description of the Natural landmarks Detection and Extraction process.
While a batch of template images is used to build the vocabulary, the query images are used
to learn and recognize the natural landmarks.

environment as well as other places with similar objects. The choice of using a
wide set of images was made in order to improve the quality of recognition.

For each template image, all interest features (key-points) are detected and their
descriptors are computed with the SIFT descriptor. Then the k-means algorithm
is used in order to group all the descriptors into k di�erent clusters according
to their similarity. This whole process is only performed once; therefore, it was
computed before the robot navigation. At the end, the clusters centroids are stored
and used as inputs in the following stage.

Figure 6.10: Exemple of Images serving to construct the vocabulary

B. Image Representation: Once the vocabulary has been built, the extracted
features from the robot's perceived images of the navigation environment (query
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images) are compared and assigned to the clusters centroids of the vocabulary
according to their similarity by computing the k-means algorithm. Thus, for each
new image the following process is performed.

• First, all key-points are detected and their descriptors are computed with the
SIFT descriptor.

• Each key-point is associated with one of the clusters based on their descriptor
similarity (see left image of �gure 6.11) by computing the Euclidean distance
between the 128-element descriptor and the 128-element centroid descriptors
of the vocabulary.

From that point, the image can easily be represented by a histogram(right image
in �gure 6.11 ), which is computed by counting the number of key-points, assigned
to each descriptor class d. The number of classes corresponds to the total number
of clusters in the vocabulary and bins in the histogram.

Histogram of the image according to the 

descriptors

Clusters

Figure 6.11: Left: a query image with the ensemble of extracted key-points, each one as-
signed to the cluster corresponding to the nearest centroid of the vocabulary. Right: Image
represented by a histogram of a total number of clusters in the vocabulary (here 100).

The integer label to which each extracted key-point belongs according to the
descriptor similarity cluster (descrip_label) is stored in a vector � Similar-
ity_vector (Vs)� of size equal to the total number of extracted key-point (m).
This number can vary from image to image.

Vs = {descrip_label1, descrip_label2, descrip_label3, ..., descrip_labelm}

C. Landmark Clustering: The construction of the set of landmarks is achieved
by grouping the extracted key-points from the image into n di�erent clusters, but
this time according to their spatial distance (see �gure 6.12 to the right). This is
done by using the Euclidean distance and the x and y coordinates of each key-
point. The n number of clusters corresponds to the total number of landmarks
in each image composing the panoramic view. Akin to the Similarity_vector, a
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vector �distance_vector (Vd)� is created. It stores the integer label to which
each extracted key-point belongs according to the spatial clusters (dist_label).
The vector's size depends on the number of extracted key-points (m), which can
vary from image to image.

Vd = {dist_label1, dist_label2, dist_label3, ..., dist_labelm}

Then, in order to build each natural landmark according to both information so
that they can be easily recognized among others, the following algorithm 4 was
performed.

It is composed of labeled key-point descriptors belonging to a speci�c spatial clus-
ter (dist_label) based on the proximity to the centroid of the said cluster.

As a result, each spatial cluster considered as a �natural landmark�, comprises of
a certain number of key-point descriptors close to each other and belonging, each
of them, to di�erent clusters of the vocabulary.

The whole image can then be represented by a histogram, but this time, consider-
ing the spatial clusters representing the natural landmarks as illustrated in �gure
6.12.

Input: Vd = {dist_label1, dist_label2, dist_label3, ..., dist_labelm}
Vs = {descrip_label1, descrip_label2, descrip_label3, ..., descrip_labelm}

Output: AllLandmarks = [Ldist_label1 , Ldist_label2 , . . . , Ldist_labeln ]

with, Ldist_label = [descrip_label1, descrip_label2, . . . , descrip_labeli]
initialization;
AllLandmarks=[ ] ;
i=0;
while i < total number of landmark clusters (n) do

for each descriptor integer label (descrip_label ) in the similarity_vector (Vs) do

Ldist_label=[ ];
for each descriptor integer label (dist_label ) in the distance_vector (Vd do

if (dist_label = i) then

Ldist_label = [store descrip_label ];
end

end

end

i=i+1;
AllLandmarks= [Store the Ldist_label_i list]

end

Algorithm 4: Algorithm allowing to compute the construction of natural landmarks based
on their descriptors similarity and spatial distance.

Figure 6.12 to the left, shows that the number of key-points belonging to each
cluster (natural landmark) varies from one another. Such disparity makes it di�-
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cult to perform recognition of landmarks, as the comparison among them cannot
be done by the same standards.

Therefore, a landmark representation process allowing describing all landmark
under the same based needs to be considered.
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Figure 6.12: Left image: Natural landmarks resulting from spatial clusters composed of a
certain number of key-points. The number of key-points varies from one another. Right
image: histogram of the image according to the natural landmarks.

D. Landmark Representation: Based on the process of image representation
explained in the above section, the construction of a histogram representing the
landmark with the same visual bag of words seemed to be the most suitable option
for us.

Therefore, each landmark is represented by a histogram composed of as many
bins as there are words in the SIFT-based vocabulary (k clusters). Then, for each
landmark de�ned by a spatial cluster, each bin (w) counts the total number of
key-points within the landmark that are associated with the cluster corresponding
to that bin.

Ldist_label = [W1,W2,W3, . . . ,Wk]

As a result, the landmarks have the same number of parameters to be compared
to, regardless the number of key-points comprising them. Thus, each landmark is
characterized by three elements in the image space as follows:

• the performance of the histogram translated into a k-sized vector ;

• the x-coordinate corresponding to the relative position of the landmark-cluster
center with respect to the horizontal axis of the image;

• and the y-coordinate corresponding to the relative position of the landmark-
cluster center with respect to the vertical axis of the image.
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Figure 6.13: Left image: Several natural landmarks resulting from spatial clusters composed
of a certain number of key-points. Each key-point has a descriptor label based on the clus-
ters created during the vocabulary construction. Right image: histogram of landmark L1
according to its descriptors.

(b) Landmark histogram group

This group is in charge of storing the landmark histogram extracted above. It
comprises of as many neurons as there are clusters in the vocabulary. Each neuron
acts as a bin (w) and its activity value corresponds to the number of key-point
belonging to the given cluster bin. If for instance, there is no key-point belonging
to a given cluster inside the landmark, the activity value of its corresponding
neuron is zero. Figure 6.14 illustrates the performance of the landmark histogram
expressed in the landmark vector L1 which is injected in the landmark histogram
group by assigning the bin values to the corresponding neurons.

Once the activities of all neurons have been assigned, the resulting vector is then
injected into the what group to be either learned or recognized (see next section
what group) and the activity values are all restarted to zero so that the same
process is repeated for each landmark in the panorama view.

2. Landmark and azimuth learning and recognition

(a) What group

The what group is composed of a su�cient number of neurons to encode the
total amount of landmarks that can be found in a given exploration environment.
Given the lifetime of any robot for learning an in�nite number of places in di�erent
environments, this number can be considered in�nite.1

Two di�erent procedures have been implemented, one for learning and the other
for recognizing. The �rst one consists in recruiting and learning one neuron for

1In the case of this work, the what group is composed of 200 neurons to learn 9 di�erent places in a test

environment. Even though not all of them were used for the exploration of the test environment, it did not

have an impact on the learning performance. On the contrary, it gave itself a leeway in case of need to learn

new landmarks.
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Figure 6.14: Performance of the landmark histogram expressed in the landmark vector L1
which is injected in the landmark histogram group by assigning the bin values to the corre-
sponding neurons.

every landmark perceived in the panoramic view of a given place. The recruited
neuron is thus associated to the landmark by performing a one-shot learning. The
synaptic connection weights Wij between the input neurons and the what neurons
are �rst initialized to zero and then modi�ed according to the following learning
rule.

∆Wij = ai ∗ aj (6.1)

Where, the current neuron activity aj = 1 when the what neuron is recruited and
aj = 0 otherwise; and ai the activity of the landmark input neuron (see �gure
6.15) which value is de�ned by the landmark histogram group. Every time, a new
neuron is recruited, a global variable adds up the number so that the next neuron
from the what group can be recruited and so on.

The second procedure consists in comparing the landmarks of a new place to those
already learned to �nd out if the landmark can be recognized. To this end, all the
neurons activities are computed accordingly to the following equation:

aj = 1−

(∑Li
i=0 |Wij − ai|

Ll

)
(6.2)

Where, the current activity neuron aj gets the maximum value when the Euclidean
distance between the synaptic weights Wij and the input value ai are nil. Ll is
the constructed landmark l.
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Figure 6.15: Activity of the landmark input neuron which value is de�ned by the landmark
histogram group.

The resulting values determine how similar the current landmark is to the previ-
ously learned. In fact, the smaller the Euclidean distance is, the more similar both
landmarks are. Therefore, according to the above equation, the neuron with the
highest activity value among all the what neurons is likely to be the most similar
one.

Then, by verifying if the neuron has already been associated to another landmark
and if its activity value is bigger than a �vigilance term�2, it is possible to conclude
that the landmark has been recognized. If on the contrary, its activity value
is rather small (inferior to the vigilance term) or the neuron has not yet been
associated to any landmark before, it is likely that the current landmark has not
been recognized and by consequence it has to be learned as a new one by following
equation(6.1).

(b) Where group

The where group, is composed of a limited amount of neurons encoding a preferred
direction covering in all the total 360◦ of the panoramic view in order to compute
the angular position of each landmark. As the angular position (azimuth) of
each landmark is given by its distance in pixels along the x-axis with respect
to a reference point, the preferred directions are also given in pixels and along
the x-axis. For every landmark position, the where group is expressed as a non
normalized gaussian activity pro�le:

2Vigilance term = 0 .95 in this work
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aj = exp− (αl − µj)2

2σ2
(6.3)

Where,α represents the azimuth of the Lth landmark and µj the preferred direction
of the neuron j. Each preferred direction is computed as:

µj =
dist

2
+ k ∗ dim, k ∈ {1, 2, 3...dim} (6.4)

Where, dist = xtotal
dim is the distance in pixels between each preferred direction,

xtotal the total number of pixels in a row on the panorama view and dim the
number of neurons in the where group.

The activity of all neurons in the where group is computed with the same αl value
and since their preferred direction di�ers from one another, only the closest neuron
to αL results with the maximum activity value and consequently gets to encode
the landmark position. Moreover, in order to compute the product between the
what and where groups for merging purposes, the �nal activity value of the neuron
encoding the landmark position is set to 1 just as it was done with the activation
value of the winner neuron in the what group. Thus, the next time the robot sees
the same landmark at the same place, the corresponding neurons from both groups
will have the maximum activity value.

Now, assuming that the robot has navigated a given distance from the learned
place, the chances of recognizing the same landmark in a position far away from
the learned one are slim. In fact, as the positions of the landmarks are computed
with respect to a reference point, no matter how much the angle of perception
of the robot varies, that if the landmark happens to be recognized it will most
certainly be perceived within the vicinity of the place where it was learned before.

Therefore, the neurons close to the one encoding the landmark position are also
considered and associated to a certain extent to the same place.

To this end, equation (6.3) is applied to all neurons, but instead of (α − µj), the
equation uses (i0 − in).
Where i0 represents the index of the neuron encoding the landmark position and
in the index of its eight surrounded neurons.

Then, it is possible to set an activity value that decays in function of the distance
of each neuron to the encoding one. All neurons beyond a threshold distance will
be set to zero. Thus, if the landmark is recognized but is seen in another position,
the value of recognition resulting from the product of the what and the where

neuron will be slightly smaller than if the landmark was recognized at the exact
learned position.

In summary, the neuron encoding the landmark position is the one with the max-
imum activity value after applying a Gaussian function and its neighbours are set
to a value that decays in function of their distance to it as illustrated in �gure
6.16.
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Figure 6.16: Activation of the where group. The where neuron encoding the landmark position
is the one with the maximum activity value after applying a Gaussian function and its
neighbours are set to a value that decays in function of their distance to it

Finally, since the analysis is carried out for each landmark in the panorama, two
one-dimensional vectors keep in memory the resulting neurons of each landmark
description and position respectively. Only one neuron from the what group and
one from the where group with their maximum values encode one single land-
mark of the panorama view. Hence, at the end of the panorama analysis, both
one-dimensional vectors contain the overall information necessary to build the
landmarks constellation.

3. Spatio-temporal merging constallation build-up

In order to learn a place, the robot needs to keep in mind the information of all land-
marks perceived from its point of view. However, since the analysis of the place, which
is given by the analysis of the landmarks within the panorama view, can only be done
in a sequential mode (the system cannot recognized several landmarks in parallel), it is
necessary to keep in memory the overall information.

Thus, in order to suppress the sequential aspect of the scene exploration, a matrix
of neurons stores the information of all landmarks perceived in the panorama view.
In fact, the information coming from both what and where groups of each landmark
converges into the landmark merging matrix allowing a spatio-temporal merging. As a
result, a landmark constellation is formed allowing to learn a new location by encoding
a neuron in the Place Cell group.

The Place Cell group is depicted by a neuron con�guration such that it represents
the topology of the environment as illustrated in �gure 6.17. In the example, a test
environment in a square shape suggest a matrix con�guration.

(a) landmark merging matrix (PrPh)

The number of neurons the PrPh landmark matrix comprises of corresponds to the
number of neurons allowing encoding as many landmarks as possible within the
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Figure 6.17: Maximal place cell activation of the winner cell when the robot is at the exact
same location where it has learned the place before. Exponentially decreasing activation of
the others cell with respect to the distance of the robot's current location to the learned one.

360◦ of view for learning many places. Thus, the number of rows is equivalent to
the number of neurons in the what group to which they are linked, and the number
of columns is equivalent to the number of positions necessary to cover the overall
panorama. However, as explained before, the average number of positions under
which a landmark can be seen from di�erent places is slight and all are within the
same ratio of vicinity. Therefore, all neurons in the neighbourhood of the neuron
encoding the position of a given landmark can be linked to a unitary position and
thus, encode the same neuron in the PrPh landmark matrix. Thus, the number of
neuron columns in the PrPh landmark matrix is inferior to the number of neurons
in the where group and only an nth fraction of the total number of where neurons
are associated to one neuron in the PrPh landmark matrix as follows:3

k =
j

n
(6.5)

Where k is the neuron in the PrPh landmark matrix and j represents the jth
neuron in the where group of the nth landmark Ll .

Consequently, by computing the activity value of the neuron in the PrPh landmark
matrix which is transmitted by the activity value in the where group, it is possible

3In this work, ten neurons were considered enough to encode ten di�erent position of a given landmark in

the PrPh matrix group and each neuron was associated to nine neurons in the where group.
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to know how far a perceived landmark is from the learned position. The further
the landmark is from the learned position, the smaller the result value will be.

The weights between the where neuron and its associated neuron in the PrPh

landmark matrix are initialized to 0 and learning is performed as follows:

∆wPh−PrPhjk = 1 (6.6)

Where, wPh−PrPhjk is the connection weights between the jth neuron azimuth to
the kth PrPh neuron.

Each landmark perceived in the panorama is related to a what and a where neuron
which relation is stored in the PrPh landmark matrix. Therefore, The PrPh neuron
activity results from the product of both inputs and it is calculated by the following
equation:

Iij = (Prai ∗ wPr−PrPhik ) ∗maxj(Phaj ∗ wPh−PrPhjk ) (6.7)

Where, Prai and Phaj are the activity values previously computed and correspond
to the maximum activity values of both what (Pr) and where (Ph) groups respec-
tively. The activity value of the where group is stored in a vector and corresponds
to the set of activity values of the encoding neuron and its neighbours. Therefore,
a max operator allows choosing the maximum value coming out of the product
operation of the activities with their corresponding connection weights. wpr−prphik

and wph−prphjk are the connection weights between the ith neuron landmark and the
jth neuron azimuth respectively to the kth PrPh neuron.

Thereafter, the time integration process is achieved by repeatedly performing the
described process and setting the activity of the corresponding neurons to the
resulting product value:

aik = Iij (6.8)

Figure 6.17 illustrates the formed landmark constellation as a result of the product
between the what and the where group. Subsequently, the landmark constellation
activates with the maximum value a neuron in the Place Cell group whereas the
others get a decreasing value with respect to the distance.

From the �gure, it can be seen that even though the neuron with the most active
value in the where group has not been learned, the second neighbor where neuron
to the right, which was learned previously, results activated (see the connection
value).

4. Place location learning

(a) Place Cell group The place cell group comprises of a number of neurons en-
coding di�erent locations in the environment. Each di�erent location or place
is characterized by a unique landmark constellation formed by the all landmarks
perceived within the panorama view (process described above).
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The whole group of neurons is connected to all neurons in the PrPh landmark

matrix and their initial synaptic weights values are set to zero.

When learning a new place, a neuron from the PC group gets to be recruited.
Then, for all neurons in the PrPh landmark matrix, if the activity of each of them
happens to be superior to 1, its synaptic weights connecting the said PrPh neuron
to the recruited PC neuron is set to one. This can be summarized by equation
6.9.

∆wPrPh−PCik,p =

(
1 if aix > 0

0 otherwise

)
(6.9)

Then, the activity of the Pth neuron of the PC group is calculated as follows:

apcp =
1

wp

M−1,N−1∑
i,k=0

aPrPhik ∗ wPrPh−PCik,p

 (6.10)

With wp =
∑M−1,N−1

i,k=0 wPrPh−PCik,p , the sum of all connection weights that are
linked to the place and M ,N are the row and column dimensions of the matrix.

The resulting activity reaches the maximum value 1 when the robot is at the exact
same location where it has learned the place before, and it decays exponentially
with respect to the distance of the robot's current location to the learned one.
This a priori generalization property allows the system to still activate a place
cell when the robot is within the vicinity of the learned location.

6.3 Unitary Experiments in real environment

6.3.1 Procedure

In order to prove the viability and robustness of the place cell model proposed for learning
and recognition, a series of experiments have been conducted according to the two types
of learning presented in the state-of-the-art: traditional (Batch) learning and incremental
learning.

On one hand, batch learning consists in performing learning and recognition in two phases.
Firstly, all the concerning test places are learned o�-line. Thereafter, the robot is positioned
again at the previously learned places and the recognition activity is calculated.

On the other hand, in the incremental learning the robot discovers new places as it navi-
gates the environment. Learning and recognition take place online. This requires, comparing
the currently perceived panorama with those already learned (if any) and based on the re-
sulting recognition rate, learning it as a new place.

The main idea of these experiments is to analyze the recognition rate of several places
that have been learned (both traditionally and incrementally) by the robot. By verifying the
performance when recognizing places, it would be possible to characterize the robustness of
the proposed approach regardless the type of learning. Moreover, the di�erences resulting
from the comparison of both types of learning would allow us to highlight their advantages
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and drawbacks and thus, let us to favor the use of one over the other according to di�erent
scenarios.

However, before executing the above-mentioned tests, some preliminary experiments
needed to �rst be executed in order to �nd the parameters that suited the most to accomplish
a successful recognition.

Throughout the construction of the layer, di�erent decisions had been taken according
to our working context. To this end, a variety of parameters essential to the task needed
to be considered such as the number of snapshots sourrounding the robot, the number of
landmarks per images or even the number of clusters attributed to build de vocabulary,
etc. While, some of them (judged to not have a big impact on the �nal result) were �xed
empirically or by performing some non-relevant tests, other such as the parameters allowing
the SIFT algorithm to detect the key-points in the environment, have undertaken a thorough
series of tests and are explained below.

6.3.2 Set-up

In order to validate the proposed approach, the place cell learning and recognition layer was
implemented in the humanoid robot NAO and tested in a 2.5m x 2.5m room space.

To this end, a simple scenario was created such that a certain number of positions scattered
all over the test environment was chosen to code di�erent places within it.

Figure 6.18 depicts the environment on which di�erent tests were carried out.

1 2 3

4 5 6

7 8 9

Global 

Reference 

PLACES

Figure 6.18: Environment on which di�erent tests were carried out. A certain number of
positions scattered all over the test environment was chosen to code di�erent places within
it.

• There are as many places as it is required to map the overall navigation environment.
In this work, we consider nine di�erent positions representing nine main places within
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the test room (see red circles in �gure 6.18) which are 2 meters away from each other.

• Moreover, additional places among the main ones have also been considered in order
to test the learned places. More particularly, those surrounding the middle place (see
orange squares around place 5 in �gure 6.18). The distance among them is of 50 cm.

• A place is characterized by a set of landmarks perceived by the robot within a 360◦

panorama.

• The 360◦ panorama is obtained by taking snapshots of the environment with the cam-
era's robot while rotating around itself. In overall, twelve overlapping images are con-
sidered enough to complete one panorama and thus represent a place. Figure 6.18
illustrates three of the twelve snapshots of the environment.

Figure 6.19: Exemple of three images out of the twelve used to create the panorama of a
given place.

• Each image is composed of several key-points as illustrated in �gure 6.20, which number
depends on the parameters of the SIFT algorithm. The number varies from image
to image. All key-points have been assigned to di�erent descriptors clusters from the
vocabulary according to their similarity. In total, 100 clusters have been chosen to build
the vocabulary. This number results as the average of the total number of key-points
computed in several images.

Figure 6.20: Image key-points computed by employing the SIFT algorithm.
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• The same key-points are themselves clustered according to their spatial proximity rep-
resenting the natural landmarks (see pink asterisk-shape in �gure 6.21). Ten spatial

clusters were considered good enough to cover a whole image and �xed for all images
regardless the number of key-points detected in the image. This can be optimized at a
later stage if required by adjusting the number of landmarks according to the number
of key-points detected per image. However, the results being quite convincing, we did
not go beyond this point.

Figure 6.21: Representation of the natural landmarks clustering the key-points according to
their spatial proximity.

• However, since each image overlaps with the previous and next images, a �lter cutting
the overlapping borders was used. Therefore, only the landmarks detected within the
60 % of the center of the image were considered (see �gure 6.22).

• As a result, each landmark is characterized by three elements:

1. the performance of the histogram translated into a 100-sized vector;

2. the x-coordinate corresponding to the relative position of the landmark-cluster
center with respect to the horizontal axis of the image;

3. and the y-coordinate corresponding to the relative position of the landmark-cluster
center with respect to the vertical axis of the image.

• The position of the landmarks is calculated with respect to a north (here an arti�cial
landmark has been placed as the global reference point). The computation is performed
by only considering the x-coordinates of both landmarks and reference point as
illustrated in the �gure 6.23. The y-coordinates can be used to improve the system
but this is not considered in this model.

6.3.3 Test and Results

When learning and recognizing a place, di�erent con�gurations can be possible. For instance,
a single place can be learned and then its recognition rate is computed by placing the robot
at di�erent places surrounding it. Additionally, many places can be learned beforehand, and
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Landmarks within the 60% of 

the image are considered

Figure 6.22: Representation of the images considered for the process. Since each image
overlaps with the previous and next images, a �lter cutting the overlapping borders was
used. Therefore, only the landmarks detected within the 60 % of the center of the image
were considered.

Panorama

Global reference
Landmark L1

Landmark L2

Landmark L3

Distance  x1

Distance  x2

Distance  x3

Figure 6.23: Computation of the position of the landmarks. It is calculated with respect
to a global reference point (here an arti�cial landmark has been used). The computation is
performed by only considering the x-coordinates of both landmark and reference point.

their recognition rate can be computed simultaneously by placing the robot at di�erent places
at a time. The learning of the places in both cases is considered to be done in a batch way.

Conversely, each place can be learned and tested it as the robot navigates. We call this,
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incremental learning.
The following tests were performed in order to compute the recognition rate by considering

the two above types of learning and by comparing them. However, before getting into that,
a series of tests were performed in order to �nd the most adequate SIFT parameters allowing
to give a good recognition rate.

We will see that the vigilance term employed in this work to decide if a place has been
recognized or not, varies depending on the prior knowledge. For instance, when a single place
is learned in advance and then tested at di�erent places, the vigilance term is quite low (here
0.35). On the contrary, when many places are learned beforehand and then tested at di�erent
places, the vigilance term would have to increase(here 0.60).

This vigilance term should not be confused to the one used in the what group which is
used to decide if a what neuron has been recognized or not (vigilance term in the what group
set to 0.95 as mentioned in the place cell recognition layer section).

6.3.3.1 Finding the most suitable parameters

The SIFT algorithm presents 5 di�erent parameters. Depending on the setting values, the
description of the image can vary: nfeatures, octaveLayers, contrasthreshold, edgethreshold,
sigma.

In the following tests, we only consider the three last parameters whose description is as
follows.

Contrast Threshold:The contrast threshold is used to �lter out weak features in semi-
uniform (low-contrast) regions. The larger the threshold, the less features are produced by
the detector.

Edge threshold:The edge threshold is used to �lter out edge-like features. Note that
the its meaning is di�erent from the Contrast Threshold, i.e. the larger the edge threshold,
the less features are �ltered out (more features are retained).

Sigma:In short, the parameter σ acts as a scaling parameter. For exemple, in the above
image, gaussian kernel with low σ gives high value for small corner while gaussian kernel with
high σ �ts well for larger corner.

Therefore, by tuning the values of these parameters, it would be easy to �nd the adequate
combination that would lead to a good recognition rate.

To this end, the following tests were all conducted on the same two spots as illustrated
in �gure 6.24 by repeating the same procedure. First, the robot was positioned on place 5
where it could learn the landmark constellation surrounding it as a place. Thereafter, the
robot was positioned 50cm to the left of the learned place and the recognition activity was
computed.

At each iteration, one or several parameters values were modi�ed.
The �rst series of tests consisted in modifying only one parameter at a time and checking

the recognition rate which maximum value is equal to one (see �gure 6.25). The values of
the others parameters were the default values of the SIFT algorithm given by OpenCV and
remained intact.

VSIFT = (nfeatures, octaveLayers, contrastthreshold, edgethreshold, sigma)
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Figure 6.24: Test setting allowing to �nd the most adequate combination of SIFT parameters
that would lead to a good recognition rate. The robot was positioned on place 5 where it
could learn the landmark constellation surrounding it as a place. Thereafter, the robot was
positioned 50 cm to the left of the learned place and the recognition activity was computed.

VSIFT = (0, 3,0.04,10,1.6)

The resulting values showed clearly that the best recognition rates could be attaint with
values di�erent from the default ones. This situation was noted for all three parameters where
the two highest recognition values are highlighted.

Once these values were known, we wanted to see if by combining them, it was possible to
get an even better result. Thus, the recognition rate was computed with the two following
combination of the best values (see �gure 6.26).

From the results of the �rst table, it was possible to note that when both contrast

threshold and sigma values are high, the number of outputted key-points was smaller than
the number of landmark clusters which prevented the algorithm to run correctly. Conversely,
combining one high value (contrast threshold) with a low value (sigma) shows a good
result as it can be seen in the second table. However, it was not better than the results
outputted from the above individual tests. The results being not so promising, we did not
go further in the combination test.

Conversely, the impact generated by the relation between these two parameters lead us to
perform other tests, which would allow us to �nd a suitable contrast threshold-Sigma pair

value . As far as the edge threshold is concerned, we decided to set it to its default value
(10). This decision was based on the fact that the two best recognition rates resulted from
two distant values (2 and 20) whose average is almost 10. However, once the best contrast



6.3. Unitary Experiments in real environment 189

Contrast 

threshold
Recognition Rate %

(𝑎𝑝5 )

0.008 0.024

0.02 0.132

0.04 0.228

0.05 0.246 

0.06 0.223

0.07 0.255 

0.08 0.279 

0.1 0.351 

0.12 0.400 

0.14 0.414 

Edge 

threshold
Recognition Rate % 

(𝑎𝑝5 )

0 0.280 

2 0.28

4 0.230 

6 0.274

8 0.247 

10 0.229 

12 0.231 

14 0.247 

16 0.247 

20 0.278 

Sigma Recognition Rate %

(𝑎𝑝5)

0.6 0.157  

1 0.178 

2 0.262 

2.6 0.273  

3.2 0.341 

4.8 0.366

6.4 0.346 

8 0.341  

9.6 0.391

11.20 0.293 

Figure 6.25: Recognition rate % of place 5 (ap5) when the robot is placed 50 cm away from it.
The values of the SIFT parameters (contrast threshold, edge threshold and sigma) allowing
a good description of images are modi�ed one at a time.

Contrast threshold Edge threshold Sigma Recognition Rate %

(𝑎𝑝5 )

0.12 20 4.8 0.378 

Contrast threshold Edge threshold Sigma Recognition Rate % 

(𝑎𝑝5 )

0.14 2 9.6 NA

NA: Number of keypoints not significant. 
Therefore, both learning and recognition phases cannot be excecuted.

Figure 6.26: Computation of the recognition rate % of place 5 (ap5) by combining the pa-
rameters values that gave the highest recognition rates in the �rst set of results.

threshold-Sigma pair value will be found, we would come back to these two values to perform
a comparison.

Consequently, the sigma parameter was set to the two highest resulting values (9.6 and
4.8) found in the �rst set of tests and for each sigma value; the contrast threshold parameter
was modi�ed and the recognition rate computed as illustrated in �gure (6.27).

From the results, it is possible to con�rm the previously given hypothesis about the
relationship between both parameters. For instance, left table shows a good recognition rate
when the sigma value is high (9.6) and the contrast threshold value (0.07) is average-low.
As for the highest values (0.12 and 0.14), the number of key-points was inferior to the number
of clusters preventing to compute the recognition rate. On the other hand, the right table
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Contrast 

threshold
Recognition Rate % 

(𝑎𝑝5 )

0.02 0.294

0.04 0.391 

0.05 0.363  

0.06 0.439 

0.07 0.471

0.08 0.443 

0.1 0.399 

0.12 NA 

0.14 NA

Contrast 

threshold
Recognition Rate %

(𝑎𝑝5 )

0.02 0.389 

0.04 0.366 

0.05 0.351  

0.06 0.366

0.07 0.355 

0.1 0.362  

0.14 0.432 

0.16 0.445

0.18 0.344 

Sigma= 9.6 Sigma= 4.8

Figure 6.27: Computation of the recognition rate % of place 5 (ap5) by �xing the sigma
parameter to the two values (9.6 and 4.8) giving the highest recognition rate in the �rst
series of tests (6.25 while testing with di�erent contrast threshold values.

shows the best recognition results when a low value of sigma (4.8) is combined with high
contrast threshold values (0.14 and 0.16).

Similarly, the contrast threshold parameter was set to the three resulting best values
(0.07, 0.14 and 0.16) and for each of them, the sigma values were modi�ed and the recognition
rate computed (see �gure 6.28).

As a result, for each contrast threshold value , a di�erent sigma value appeared,
allowing a good recognition rate. While, in the �rst and third table of �gure 6.28, the
contrast threshold-sigma pair value correspond to the same set of pairs previously
found (sigma=9.6, contrast threshold = 0.07 ) and (sigma =4.8, contrast threshold

=0.16 ), the second table shows a new value of sigma resulting in an additional contrast
threshold-sigma pair value (sigma=6.4, contrast threshold = 0.14 ).

These results seemed to be quite convincing. However, in order to ensure the performance
of all these parameters under these values, the remaining edge threshold parameter needed
to be taken into account.

To this end, we decided to compare the recognition rate of each set of contrast threshold-
sigma pair by setting the value of the edge threshold parameter to each of the two values
that gave the best results in the previously presented individual test (see table in �gure 6.25).
Figure 6.28 illustrates such comparison.

From the results, it can be concluded that the default value of the edge threshold (10)

gave the best recognition rate. Consequently, the following test were conducted with this
edge value.

Once the values of the three parameters were set as potentially giving the best recognition
result, a �nal test needed to be done.
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Sigma Recognition Rate % 

(𝑎𝑝5 )

0.6 0.222 

1 0.239 

2 0.279   

3.2 0.318  

4.8 0.355   

6.4 0.397 

8 0.342  

9.6 0.471  

11.2 0.330 

Contrast threshold= 0.07

Sigma Recognition Rate % 

(𝑎𝑝5 )

0.6 0.290

1 0.276  

2 0.417   

3.2 0.410  

4.8 0.432   

6.4 0.503 

8 NA

9.6 NA 

11.2 NA

Contrast threshold= 0.14

Sigma Recognition Rate % 

(𝑎𝑝5 )

0.6 0.247 

1 0.354  

2 0.340   

3.2 0.342   

4.8 0.445    

6.4 NA

8 NA

9.6 NA 

11.2 NA

Contrast threshold= 0.16

Figure 6.28: Computation of the recognition rate % of place 5 (ap5) by �xing the contrast
threshold parameter to the three values giving the highest recognition rates in the previous
tests(0.07, 0.14 and 0.16) while testing with di�erent sigma values.

Edge Recognition Rate % 

(𝑎𝑝5 )

10 0.471

20 0.376

2 NA  

Edge Recognition Rate %

(𝑎𝑝5 )

10 0.503 

20 0.403

2 NA   

Contrast threshold= 0.14 

Sigma=6.4

Edge Recognition Rate % 

(𝑎𝑝5 )

10 0.445

20 0.447   

2 NA   

Contrast threshold= 0.07 

Sigma=9.6

Contrast threshold= 0.16 

Sigma=4.8

Figure 6.29: Comparaison of the recognition rate of each set of contrast threshold-sigma pair
by setting the value of the edge threshold parameter to each of the two values that gave the
best results in the previously presented individual test.

In fact, since the above tests presented so far were conducted by positioning the robot
at only one spot away from the learned place, it is necessary to test several and di�erent
spots surrounding the learned place. This would let us not only to generalize the recognition
system but also to have a wider perspective of the results allowing to choose the best among
the three set of parameters.

To this end, the robot was positioned again at the same place 5 to learn it and then it
was positioned at each of the 12 spots surrounding the place, once at a time.

Figure 6.30 illustrates the learned place and the surrounding spots. SL is a set composing
the position of the learned place, ST is the set composed of the tested places in terms of their
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relative position according to a x,y coordinate system as illustrated in �gure 6.30.

SL = {(0, 0)}
ST1 = {(−1, 1), (0, 1), (1, 1), (−1,−1), (0,−1), (1,−1), (−1, 0), (0, 0), (1, 0)}
ST2 = {(0, 2), (0,−2), (−2, 0), (2, 0)}
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Figure 6.30: Representation of the environment test illustrating the learned place and the
surrounding spots where the robot was placed to test and compute the recognition rate in %
of place �5� corresponding to ap(0,0).

For a better understanding, the results are presented by following the same topology given
by the environment test as shown in the �gure 6.31.

The overall results show a recognition rate similar to the ones found when testing only
one place. This is good news, as it allows us to maintain a stability of recognition around a
given learned place.

The values which have been highlighted are those with the maximum recognition rate
at each place among the three test. It can be noted that the table on the top (Contrast
threshold= 0.14, edge threshold=10, sigma =4.8 ) has the more number of maximum
values than the other tables.

Therefore, this set of values have been chosen in this work to be the most suitable one for
performing learning and recognition of a place. They are thus, the baseline of the following
tests.

Moreover, the resulting values, led us also to set the vigilance term. Since, we want the
surroundings of the learned place (within a ratio of 50 cm) to be considered as the same place,
thevigilance term was set to 0.35 . Thus, any place which recognition value is superior
to such vigilance value should be considered as being the same place.

We are aware that the recognition rate of a same place should be higher than that,
and this can be optimized by tuning other parameters such as the number of clusters in
the vocabulary of the bag-of-words, the number of landmarks per image or even the lateral
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Figure 6.31: Results of the recognition rate in % of place ap(0,0) when placing the robot
at di�erent test places (by following the same topology given by the environment test) com-
puted with three di�erent values of sigma-contrast threshold pair.The values which have been
highlighted are those with the maximum recognition rate at each place among the three test.

di�usion performed in the where group of the neural structure. However, we consider that
these results are rather good and appropriated to continue the rest of the tests (batch learning
and incremental learning) to verify the feasibility of the proposed approach.

6.3.3.2 Batch learning

Learning a single place and recognizing it from di�erent places:

A single place in the environment was chosen to be learned and tested. The goal of this
test consists in proving if an already learned place, could easily be recognized when the robot
was positioned not only at the same place but also at any other place within the environment
test.

To this end, the robot was positioned at a place of the test environment from which it
could obtain the surrounding images and learn the set of landmarks composing the panorama.

Then, the robot was taken away and placed on each of the nine positions of the test
environment including the learned one. At each place, the robot obtained the surrounding
images and compared the set of landmarks composing the panorama to the set of learned
landmarks and the recognition rate was computed.

The test was performed for each of the following places:{2, 4, 5, 6 and 8} as illustrated
in �gure 6.32. The following tables and �gures illustrate the results.
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Figure 6.32: Test environment illustrating the di�erent places at which the robot was placed.
{2, 4, 5, 6 and 8}

SL = {2}
ST2 = {2, 4, 5, 6, 8}
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Figure 6.33: First set of bach learning tests. The robot learned the place 2. Then for each of
the di�erent places {2, 4, 5, 6 and 8} its recognition rate was computed ap2 .

SL = {4}
ST2 = {2, 4, 5, 6, 8}
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Figure 6.34: Second set of bach learning tests. The robot learned the place 4. Then for each
of the di�erent places {2, 4, 5, 6 and 8} its recognition rate was computed ap4 .
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Figure 6.35: Third set of bach learning tests. The robot learned the place 5. Then for each
of the di�erent places {2, 4, 5, 6 and 8} its recognition rate was computed ap5 .

SL = {6}
ST2 = {2, 4, 5, 6, 8}

SL = {8}
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Figure 6.36: Fourth set of bach learning tests. The robot learned the place 6. Then for each
of the di�erent places {2, 4, 5, 6 and 8} its recognition rate was computed ap(6).
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Figure 6.37: Fifth set of bach learning tests. The robot learned the place 8. Then for each
of the di�erent places {2, 4, 5, 6 and 8} its recognition rate was computed ap(8).

When the robot was at the exact same place where it had learned it, the corresponding
place cell was activated at the highest possible value, whereas as it went away from the
place, the recognition value decreased monotonously to the distance, which validates the
test. Moreover, it should be noted that the recognition rate of all test places are inferior
the vigilance term set in the previous test (0.35). This con�rms that each of the di�erent
places needed to be learned since distance among each of them is of 2m.
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Learning all places in the environment and computing their recognition rate by

placing the robot at each of the learned places at a time:

Contrary to the above test, this one aims at verifying simultaneously the recognition
rate of all places after having all been learned. To this end, all places were �rst learned by
positioning the robot at each one of them. For each place, the set of perceived landmarks
together with their relative position was learned. The learning of the landmarks in the what
group is here done incrementally, which means that every time the perceive landmark is
compared to the previously learned. If both happened to be similar, then the landmark
is associated with the corresponding neuron and the recognition activity, otherwise a new
landmark is learned.

Thereafter, after having learned all places, the robot was positioned again at each of the
learned places at a time and the recognition activity of all places was computed simultane-
ously.

The table presented in �gure 6.38 shows the resulting recognition rate of all learned places
when the robot was positioned at each place at a time.
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(𝑎𝑝𝟒)
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rate % 

(𝑎𝑝𝟔)
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rate % 

(𝑎𝑝𝟖)

2 0.96 0.79 0.81 0.74 0.77

4 0.75 0.99 0.83 0.71 0.75

5 0.29 0.50 1 0.73 0.82

6 0.22 0.44 0.61 1 0.72

8 0.24 0.49 0.70 0.66 0.98

Learned
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TEST #6.1

TEST #6.2

TEST #6.3

TEST #6.4

TEST #6.5
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Figure 6.38: Tests performing learning all places in the environment {2, 4, 5, 6 and 8} and
computing their recognition rate by placing the robot at each of the learned places at a time.

Since all places were previously learned, during the test phase all of them where activated
regardless the robot test position. However, while the activity of the place corresponding to
the current robot test position got the maximum value of recognition, all the others were
activated with a smaller recognition value.

Figure 6.39 shows the recognition activity of all places when the robot was positioned at
place 4 (see TEST #6.2.).

It should be noted that when testing a single place previously explained, it was necessary
to test the robot position at each place for every learned place (a total of 25 tests giving each
of them a recognition value).

Conversely, in this test all places were directly activated by only testing one of them (a
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Figure 6.39: Recognition activity of all places when the robot was positioned at place 4 (see
TEST #6.2.).

total of 5 tests giving each of them, 5 recognition values). Additionally, the overall recognition
values are higher than the ones presented in the previous test. For instance, if we look at the
table those resulting when the robot was positioned at place 4, the adjacent values do not fall
below 0.61. This is due to the fact that the system has in its memory more information as it
has learned several places before the testing phase took place. In the �rst test case instead,
the recognition was based on the prior knowledge of only one place.

Therefore, the vigilance term set in the �rst case at 0.35 can be and should be increased
when the prior knowledge increases.

6.3.3.3 Incremental learning

This test consists in verifying if the robot can learn new places as it navigates within the
environment. The idea of it is to learn a place every time the robot sees it for the �rst time
or every time it does not recognize it when it compares it to others previously learned. The
decision of knowing if a certain amount of recognized landmarks is enough to state that the
place is known or not, is given by a vigilance term similar to the one described in the ART
model. After having concluded in the last test that the vigilance term increases with the
quantity of information learned, the vigilance term used in this test should be set to a higher
value. In the meantime, we decided to �x it to 0.61 based on the latest results.

When the robot starts exploring the environment for the �rst time (starting point in a new
environment), it is sure that the very �rst place it encounters will be unknown. Therefore, it
keeps in memory all landmarks and their relative position that it perceives in its surrounded
environment (360◦) and learns the resulting landmark constellation as a new place.

When a place is not recognized, the current perceived landmarks together with their posi-
tions are learned. The recognition process is undertaken by comparing the current perceived
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panorama with those previously learned. If the majority or all of the landmarks happened to
be similar enough and located at the same or nearby positions, then the place is considered
to be recognized and consequently, there is no need to learn. If on the contrary, only few
landmarks or none are recognized, the place needs to be learned.

In order to validate this, the robot was �rst positioned at place 4th (left image in �gure
6.40) and from there, it learned the set of landmarks composing the perceived panorama.
Thereafter, it was positioned along the line in the next place 5th (middle image in �gure
6.40) and the recognition of the �rst learned place 4th was computed. The same process was
done for the 6th place (right image in �gure 6.40), where the recognition of both 4th and 5th

places were computed.

654

Figure 6.40: Three di�erent places at which the robot was placed. It learned each of them
in an incremental way.

The table in �gure 6.41 shows the result of the learning sequence as the robot walks along
the line covering places 4th, 5th and 6th over the time.

4 5 6

t0 t1 t1' t2 t2'

4 1Learned 0.26 0.35 0.23 0.29

5 0 0 1Learned 0.56 0.72

6 0 0 0 0 1Learned

Learned and 

Recognition Place

Test place

TEST #7

Temps

Figure 6.41: Recognition rate results of the learning sequence as the robot walk along the
line covering places 4th, 5th and 6th over the time.

At the beginning, when the robot is at place 4th at time t0, the robot learns the place
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as a new one (maximum value equals to one). Since no other place had been learned before,
the values of the others are nil or not considered.

Then when the robot is at place 5th at time t1, the recognition process is triggered to
compute the value of place 4th. However, since the recognition value is lower than the
vigilance term (0.26 < 0.61), the robot decides to learn it immediately after at t′1. Then,
the same situation is repeated when the robot is place 6th at time t2. Since the recognition
values of both previously learned places are inferior to the vigilance term (0.23 > 0.61 and
0.56 < 0.61), the robot learns the place at time t′2. As the number of places increase, the
recognition rates of the adjacent places also increase.

Figure 6.42 illustrates the activity of the three places over time.

Figure 6.42: Activity of the three learned places over time.

In order to perform the next set of tests requiring the comparison of both type of learning,
it was necessary to perform a test in which the learning was incremental while considering
the same places tested with the batch learning test.

Therefore, the same test was performed, but this time, places 2nd and 8th were additionally
considered.

6.3.3.4 Batch vs Incremental learning

This �nal test consists in seeing the implications of both batch and incremental learning at
the recognition phase and highlight the di�erences.

Consequently, after having learned the ensemble of places: 2, 4, 5, 6, 8 in both, incremen-
tal and batch way as explained in the above corresponding tests, the robot was positioned
between two adjacent places at each time and the recognition activity was computed.

Figure 6.44 illustrates the test environment with the learned places designed in red circles
and the tested places in orange squares. Furthermore, the results table is also designed by
following the same topology given by the environment test. The learned places in pink and
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L&R 

place
2 5 4 8 6

t0 t1 t1' t2 t2' t3 t3' t4 t4'

2 1Learned 0.32 0.55 0.26 0.37 0.25 0.35 0.23 0.27

5 0 0 1Learned 0.49 0.68 0.57 0.79 0.49 0.67

4 0 0 0 0 1Learned 0.45 0.66 0.37 0.43

8 0 0 0 0 0 0 1Learned 0.45 0.60

6 0 0 0 0 0 0 0 0 1Learned

TEST #8

Temps

Test 

Place

Figure 6.43: Recognition rate results of the learning sequence as the robot walks along the
line covering places 2nd, 5th, 4th, 8th and 6th over time.

the places where the robot was positionned to test the recognition rates in blue.

For a better understanding, the next results are presented by following the same topology
given by the environment test as shown in �gure 6.45. The results show the recognition rate
of all learned places when the robot is positionned at each of the di�erent tested places: 11,
12 and 10, 13 respectively (see happy smiley in Figures 6.46, 6.46 illustrates).

The ensemble of results shows, that in overall, the recognition rates of all places which were
learned in the batch way are higher than those of the same places learned incrementally. This
situations was not exactly what we were expecting as result. In fact, the way in which both
were coded, made us think that the results could be similar. We can only assume that this is
due to the fact that the knowledge in the batch learning is all gathered in advance and is not
modi�ed anymore, this gives an stability an accuracy on the recognition task. Conversely,
knowledge gathered incrementally moves constantly by increasing as the experiments are
done. Further tests, should be conducted to prove this hypothesis.

Despite this, tests gave a correct recognition when the robot was placed at places 11th and
12th as illustrated in �gure 6.45. In both cases, the recognition rates of places surrounding
the test places were higher than the rest, implying that the robot could be at any of either
place (see highlighted values, dark for the second highest and even darker for the highest).

However, something unexpected happened when performing the same test on places 10th

and 13th as illustrated in �gure 6.46. In fact, they both gave a completely incorrect recognition
of the place (see highlighted values, dark for the second highest and even darker for the
highest).

Since, such situation was di�cult to explain out of these results, another set of tests
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Learned places

Figure 6.44: Test environment with the learned places designed in red circles and the tested
places in orange squares. The red trace represents the path navigated by the robot when
learning the places in the corresponding order: {2, 5, 4, 8, 6 }. The results table,designed
to the right, follows the same topology given by the environment test. The learned places in
pink and the places where the robot was positionned to test the recognition rates in blue.
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Figure 6.45: Recognition rate of all places learned incrementally and in a batch way when
the robot is positioned at places 11th and 12th.
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needed to be performed.

Recognition rate % after
Incremental Learning 

Recognition rate % after
Batch Learning 

TEST # 11 Place 10

TEST # 12 Place 13
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position
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Figure 6.46: Recognition rate of all places learned incrementally and in a batch way when
the robot is positioned at places 10th and 13th.

Hence, we decided to perform di�erent test by placing the robot at the same test place.
To this end, place 13th was chosen since it gave an incorrect answer in the previous test.
The tests consisted in learning only three places in both ways (batch and incremental)but in
di�erent order every time.

The expected situation would be that regardless the order of places considered, the recog-
nition values should always be the same. The tables in �gure 6.47 show these results.

Unfortunately, the results did not show up as expected. Not only the recognition values
vary from test to test, but also the second highest value was not the expected one (tests #13,
#14, #15 and #16).

Only tests #17 and #18 corresponding to the learning sequence of places 6,4,5 and 6,5,4
gave accurate results which led us to conclude that if the robot test place (here 13th situated
between places 6th and 5th) is closed to the �rst learned place from the sequence, then the
recognition value would be accurate.

After a thorough analysis of this situation, it is assumed that the problem comes from
the fact that as new places are learned by the system, the perceived landmarks are �rst
compared to the previously learned. If both are similar based on the high recognition rate,
the current landmark is associated with the other one. Hence, at the end of the sequence,
most of the places would be rather similar to the very �rst learned place since their description
of landmarks derive from it.

A solution to this problem, would be to avoid the association of two or more landmarks
of a given panorama to the same landmark previously learned. In other words, for each
panorama, each recognized landmark should be unique.
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Figure 6.47: Recogniton rates of di�erent places learned in di�erent order. Only three places
were learned in both ways (batch and incremental)but in di�erent order every time and the
recognition rate of all of them was tested while positionning the robot at place 13th.
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6.3.4 Discussions

In all tests, when the robot was placed at the exact same location of any of the learned
places, the recognition rate was approximately of 98%. Despite this fact, di�erent results
showed that the recognition of the place dropped drastically when the robot's position was
slightly modi�ed with respect to the tested one, specially when performing a single place
batch learning. Since, the recognition of the landmarks was accurate; we supposed that the
limitation comes from the determination of other parameters such as the number of clusters
in the vocabulary of the bag-of-words, the number of landmarks per image or even the lateral
di�usion performed in the where group as explained previously. This problem opens new
perspectives for the improvement of the proposed algorithm.

From the tests, it was possible to see the advantages of recognizing a place when a vast
a priori knowledge is considered. That is the case of the batch learning test which learns
several places before testing in one place. Similarly, the incremental learning test allowed us
to validate the learning as the robot navigated the environment, which is an essential property
for an autonomous navigation in order to allow the robot to adapt itself to the environment.

The robustness of this approach lies in the fact that even if one or several patterns
characterizing the place are removed or not visibly available anymore, a place can still be
recognized. In fact, the ambiguity given by clusters with similar descriptors is dealt by the
additional cluster position information which are employed together to learn new places and
recognize them during robot navigation.

The validation of the Place Cell and recognition layer through these series of tests allowed
us to move forward in the integration of it into the whole system. Therefore, the following
section presents a series of tests where the robot navigates within a stochastic environment
while adapting itself to the unexpected changes.

6.4 Functional Experiments in real environment

6.4.1 Procedure

The following tests were carried out within the same environmental constraints and conditions
of previous experiments presented in Rhizome 1 (see chapter 4) and Rhizome 2 (see chapter
5). This, with the aim of having the possibility of, not only, evaluating the functioning of the
whole architecture but also of being able to distinguish the functionality given by Rhizome 3
with respect to Rhizome 1 and to Rhizome 2.

Rhizome 3 integrates all previously described modules into one structure. Therefore, in
order to test the overall architecture, it is necessary to execute two di�erent tests under
which, the robot navigation performance could be proven while showing a slight di�erence
depending on the use or not of a �oor plan.

1. Signs and directions extracted from the �oor plan

2. Signs given by a command program

In the �rst test, the �oor plan of the test environment was �rst shown to the robot before
the navigation process took place so that it could extract by itself the sequence of signs. In
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the second test, the sequence of sign was directly inserted in the architecture by a command
program. Thereafter, the robot was placed at the entry of the test environment from which
it could distinctly see the �rst sign that it was expected to recognize, �A�.

In both test scenarios, the sign sequence to be followed was: {A,B,C,D}. However, only
the two �rst signs of the sequence were placed in the test environment (see �gure 6.48).

Consequently, the robot was supposed to recognize the signs in the environment and
navigate accordingly; and whenever the signs were no longer visibly available, the robot was
supposed to walk some distance away and learn a new place as a reference point.

In the �rst test, since the directional meaning of each sign was provided by the �oor plan,
the directional movement directing the robot to go far away from the last recognized sign
was supposed to be known by robot. Therefore, it was expected that the robot would know
where to turn even if the expected sign was not visible and then perform the exploratory
movements.

On the contrary, when the directional meaning of the signs was unknown (signs given by a
command program), the robot was supposed to perform the exploratory movements together
with a turning re�ex movement in order to learn the new place some distance away from the
last recognized sign.

Figure 6.48: Test navigation environment. Only two signs from the sign sequence are placed
in the environment.

6.4.2 Results

The results of each test are given separately but presented in a similar way in order to tell
the di�erence given by the use or not of the �oor plan. While navigating the environment,
the robot was successfully able to perform the following intended actions.

They are explained according to two di�erent situations:

• When the signs were perceived as expected in the environment;
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• When the expected signs were not perceived in the environment.

6.4.2.1 Signs and directions extracted from the �oor plan

When the signs were perceived as expected in the environment

• When a sign was detected, it was able to compare it to the corresponding sign from the
extracted sequence;

• When the comparison gave a negative result, i.e. the detected sign did not match the
expected sign, the robot ignored the detected sign and continued re�ex movements

(DDRB layer) to locate the correct sign;

• When the comparison resulted in a positive, i.e. the detected sign was indeed the
expected sign, the robot was able to perform directly the associated movement

given by the map (MDIRB layer) and simultaneously learn the association

(SRMA);

• When a sign was faraway, it was able to get closer (TARB layer);

• When the expected sign was lost from the robot's visual �eld while approaching it, it
was able to perform a re�ex behavior to search for it again (LSSRB layer).

When the expected signs were not perceived in the environment

• When the expected sign was not perceived in the environment, after having performed
the associated movement of the previous sign or a re�ex turning direction

movement, the robot was able to walk some distance away by performing ex-

ploratory movements (WERB)and learn a new place (PCLR) as a reference
point;

• Even though the expected sign was not perceived in the environment, the information
about the direction to take was known by the robot. Therefore, after having learned
the place, it was able to turn towards the expected direction (MDIRB) and
associated it to the new learned place. This case only happened the �rst time an
expected sign was not perceived;

• In the other cases, the robot was able to perform a re�ex turning direction move-

ment (WERB) based on the knowledge of the direction of origin and the previously
performed movements. This knowledge prevented the robot to go back to previous
visited places by directing it towards the exploration of new unvisited ones.

Figure 6.49 shows a summary of the results obtained in the form of the activation of the
output neural groups corresponding to the di�erent behaviors performed by the robot, as well
as the activation of the reinforcement signal allowing the learning association and the place
cell learning behavior, over time. The movements were a result of either the recognition, the
proximity or the absence of any signs from the extracted sign sequence. The activities are
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explained chronologically and refer to the descriptions and �gures of section 4.2.3 in chapter
4, section 5.2.3 in chapter 5 and section 6.2.2 of the present chapter. In each of the (a, t)

plots shown, a is the binary activation of each neural group or the reinforcement signal and
t the time seconds in terms of a PerAc cycle. For the sake of simplicity, the plot labeled
Cumulative target approaching movements combines all movements undertaken in one go by
the robot to approach a particular sign using TARB. For more details of this layer, refer to
the result section of chapter 4.

t0 − t8 When the robot recognized sign A at time t0, its corresponding neuron in the
SRMA layer of the �rst behavioral module got activated and remained like this while it
was still in the robot's �eld of view (Dynamic visual perception plot in �gure 6.49). In the
meanwhile, it triggered the activation of the neurons in the TARB layer allowing the robot
to approach the sign ( Cumulative target approaching movementsplot in �gure 6.49) until
time t8. At that same time the robot was close enough to the sign to activate the proximity
sensor.

t8−t9 Since the associated movement to perform was already known by the robot: right
directionmovement associated to sign A, the robot turns directly to the right until detecting
sign B at time t9 (Right turn plot in �gure 6.49). Simultaneously, the reinforcement signal
got activated allowing the robot to learn the said association in the SRMA layer of the �rst
behavioral module ( Learning Association plot in �gure 6.49)

t9−t17 After having recognized sign B, the robot performs the corresponding movements
in the TARB layer allowing it to approach the said sign (Cumulative target approaching

movements plot in �gure 6.49). The activity of the proximity sensor got a positive value at
time t17, once the robot was close enough to the sign.

t17− t18 Alike sign A earlier, current sign B's associated movements was already known
by the robot: left direction movement associated to sign B. Therefore, the robot turned
directly to the left. Simultaneously, the reinforcement signal got activated allowing the robot
to learn the said association in the SRMA layer of the �rst behavioral module ( Learning
Association plot in �gure 6.49.

t18− t24 After having performed the left turn movement, the robot realizes that the next
sign is not in its �eld of view as expected. Therefore, the PC signal gets activated and the
robot performs the corresponding exploratory movements in the WERB layer allowing it to
walk some distance (until t24) away in order to learn a new place (Exploratory movements

plot in �gure 6.49).
t24−t26 During this time, the robot detects and extracts the natural landmarks perceived

in its surroundings. Then based on their descriptors and relative position, the PCLR layer
allows the robot to learn the place (Place Cell learningplot in �gure 6.49).

t26 − t27 Even though the expected sign was not visible, the direction associated to it
was in the memory of the robot. Therefore, the robot was able to perform the associated
movement to the right (Map Sign Direction plot in �gure 6.49).Moreover, since at the same
time, it learned the association between the performed movement and the already learned
place (Learning Associationplot in �gure 6.49).
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Figure 6.49: Summary of Rhizome 3 results obtained when the signs and directions are ex-
tracted from the �oor plan. They are obtained in the form of the activation of the output
neural groups as well as the activation of the reinforcement signal (RS) allowing the associa-
tion learning, over time. In each of the (a, t) plots shown,(a) is the binary activation of each
neural group and t the (t) time seconds in terms of a PerAc cycle.
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t27 − t31 After having performed the right turn movement, the robot realizes once again
that no sign is in its �eld of view as expected. Therefore, the PC signal gets activated once
again and the robot performs the corresponding exploratory movements in the WERB layer
allowing it to walk some distance (until t31) away in order to learn a new place (Exploratory
movements plot in �gure 6.49).

t31−t33 Alike the learning place during times t24−t26, The robot detects and extracts the
natural landmarks perceived in its surroundings and based on their descriptors and relative
position, the PCLR layer allows the robot to learn the place (Place Cell learning plot in
�gure 6.49).

t33 − t34 Once the place has been learned, the robot needs to turn and continue its way.
However, since at this point it does not have any information of where to turn, it performs
a re�ex directional turning movement (Exploratory Movements plot in �gure 6.49). At that
point, it should also perform the related exploratory movements to walk a distance away.
However, after having turned it sees at time t34 its �nal destination (an arti�cial sign in this
work).

t34− t37 The robot performs the approaching movements directed by the TARB layer of
the �rst behavioral module, in order to get close to the signs referring to the �nal destination
(Cumulated Target Approaching movements plot in �gure 6.49).

As a result, even though the some of the signs were missed within the environment, the
robot was still able to achieve its �nal destination.

6.4.2.2 Signs given by a command program

When the signs were perceived as expected in the environment

• When a sign was detected, it was able to compare it to the corresponding sign from the
extracted sequence;

• When the comparison gave a negative result, i.e. the detected sign did not match the
expected sign, the robot ignored the detected sign and continued re�ex movements

(DDRB layer) to locate the correct sign;

• When the comparison resulted in a positive, i.e. the detected sign was indeed the
expected sign, and the meaning of the sign was yet unknown, it was able to perform

re�ex movements by rotating in one place to search for the next sign and

�gure out the associated direction (DDRB layer). Then learnt it (SRMA layer);

• When a sign was faraway, it was able to get closer (TARB layer);

• When the expected sign was not in its visual �eld, it was able to perform a re�ex

behavior to search for it again (LSSRB layer);

When the expected signs were not perceived in the environment:

• When the robot had achieved a complete turn (α = 360◦) around itself after having per-
formed the rotatory re�ex movement to search for the expected sign (DDRB
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layer), the robot was able to perform a re�ex turning direction and walk some

distance away by performing exploratory movements (WERB layer). Then,
learn a new place as a reference point;

• The robot was able to perform a re�ex turning direction movement (WERB

layer) based on the knowledge of the direction of origin and the previously performed
movements. This knowledge prevented the robot to go back to previous visited places
by directing it towards the exploration of new unvisited ones;

• The robot was able to associate the re�ex turning direction leading to a new

place with the latest perceived sign as well as to the previously learned

places (SRMA layer).

Figure 6.50 shows a summary of the results obtained in the form of the activation of the
output neural groups corresponding to the di�erent behaviors performed by the robot, as
well as the activation of the reinforcement signal allowing the learning association and the
place cell learning behavior, over time.

The movements were a result of either the recognition, the proximity or the absence of
any signs from the extracted sign sequence. The activities are explained chronologically and
refer to the descriptions and �gures of section 4.2.3 in chapter 4, section 5.2.3 in chapter 5
and section 6.2.2 of the present chapter. In each of the (a, t) plots shown, a is the binary
activation of each neural group or the reinforcement signal and t the time seconds in terms
of a PerAc cycle. For the sake of simplicity, the plot labeled Cumulative target approaching
movements combines all movements undertaken in one go by the robot to approach a par-
ticular sign using TARB. For more details of this layer, refer to the result section of chapter 4.

t0 − t8 When the robot recognized sign A at time t0, its corresponding neuron in the
SRMA layer got activated and remained like this while it was still in the robot's �eld of view
(Dynamic visual perception plot in �gure 6.50). In the meanwhile, it triggered the activation
of the neurons in the TARB layer allowing the robot to approach the sign(Cumulative target
approaching movements plot in �gure 6.50)until time t8. When the robot was close enough
to the sign the proximity sensor got activated at time t8 .

t8 − t12 Since the robot had not associated the current perceived sign A with any
movement yet, the re�ex exploratory action was triggered in the DDRB layer and so was, its
corresponding neuron (Re�ex Direction determination Movements plot in �gure 6.50). This
continued until sign B was detected at time t12.

t12−t20 After detection, the total angle of rotation undergone during the re�ex movement
was computed. The equivalent value (bigger than the threshold value) allowed the association
learning of sign A with the right direction movement triggered by the reinforcement signal
RS at time t12 in SRMA layer( Learning Association plot in �gure 6.50). While this was
taking place, the robot was already performing movements to approach the new sign B in
the TARB layer(Cumulative target approaching movements plot in �gure 6.50). The activity
of the proximity sensor got a positive value at time t20, once the robot was close enough to
the sign.
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t20 − t26 Alike sign A earlier, current sign B's associated movements were not known
yet. Therefore, the robot used the DDRB layer actions to locate the next sign from the sign
sequence A ( Re�ex Direction determination Movements plot in �gure 6.50). However, since
the next expected sign was not visible at all, the total angle of rotation undertaken achieved
a complete turn (α = 360◦).

t26− t33 Since the next sign was not visible as expected, the robot was forced to perform
a re�ex directional turning movement and walk some distance away from the last recognized
sign in order to look for a place to learn as a reference point( Exploratory Movements plot
in �gure 6.50). The behavior was triggered by the activation of the PC signal at time t27.
Simultaneously, the robot learns the association of the re�ex turn direction with the previous
sign �B�( Learning Associations plot in �gure 6.50).

t33−t35 During this time, the robot detects and extracts the natural landmarks perceived
in its surroundings. Then based on their descriptors and relative position, the PCLR layer
allows the robot to learn the place (Place Cell learning plot in �gure 6.50).

t35 − t36 Once the place has been learned, the robot needs to turn and continue to ex-
plore the environment to �nd the �nal destination. Since does not have any information of
where to turn, it performs a re�ex directional turning movement followed by some exploratory
movements allowing it to walk a certain distance away (Exploratory Movements plot in �g-
ure 6.49). Simultaneously, the robot learns the association of the re�ex turn direction with
the just learned place.

t36− t... After having walked a certain distance, the robot learns once again a new place.
The same actions should be repeated until the robot achieves to its �nal destination.

6.4.3 Discussions

The main idea of executing two di�erent tests was to prove the e�cacy of the overall Rhizome
3 architecture at allowing the robot to navigate under the two possible scenarios introduced
at the beginning of this dissertation. A deterministic scenario where the a priori information
is perceived as expected in the environment and a stochastic scenario where some of that
prior information is not available any more.

The passage from one scenario to the other was possible to be checked in only one
test. However, since the sign sequence could be provided to the robot in two di�erent
ways(command program and �oor plan analysis), it was necessary to perform two test sepa-
rately.

Whereas in the �rst test, the robot had knowledge of the directional meaning of each of
the expected signs, in the second test, it had to deduce by itself the movement to perform
based on the next expected sign and the learn the resulting association.

In both tests, the robot showed a good performance when the expected sign was not in
its �eld of view. After having realized that the next expected sign was not visibly available,
it performed some exploratory movement allowing it to walk farther away and thus learn a
new place as a reference point. The learning task was performed in an incremental way. At
every point, it learned a new place.

However, both tests di�er in the decision of where to go after not seeing the expected
sign. In fact, this di�erence is caused by the availability of the information of the environment
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before the navigation activity started. For instance in the �rst test, the robot could directly
turn to the left side after perceiving for the last time one of the expected signs, and turn
right after having learned a place towards the same spot where the next expected sign was
supposed to be, all thanks to the information of the map.

Conversely, the robot could only realize that the next expected sign was not in its visual
�eld after having achieved a complete 360 ◦ turn around itself. Thereafter, a re�ex turning
movement was trigger based on the previously performed movements, allowing it to turn and
then walk towards a new possible place that would probably lead it to the �nal destination.

If the sequence of signs is small as the one presented in the above tests, using a �oor
plan in advance, facilitates the accomplishment of the navigation task. The robot can get
to its �nal destinations as illustrated in �gure 6.49. However, if the number of missing signs
is bigger or if the robot does not have the �oor plan in advance, the navigation task can be
more complex. The robot would need to explore di�erent places all over the environment in
order to �nally get to its destination.

In this work, we decided to test until that point, where the robot was able to show a
good performance at walking some distances away and learn a place. Moreover, thanks to
the return-au-nid layer mentioned at the end of chapter 4, the robot was also capable of
returning to the previous learned places and visited signs in order to start a new exploration
towards another direction.

Validating the arrival of the robot to the �nal destination would have required to build
an obstacle detection layer in order to prevent the robot to collapse when some unexpected
obstacles would appear. However, as it was said at the beginning of this dissertation, that
task is out of the scope of this work.

6.5 Conclusion

This chapter presents a hybrid neural-based architecture, Rhizome 3, enabling autonomous
robot navigation in complex environments where unforeseen situations are prone to hap-
pen. For instance, the occlusion or absence of an expected sign serving as reference in the
navigation task.

To this end, a biologically inspired approach for recognizing places within an environment
has been presented. It consists of a place cell model allowing place recognition even if one or
several patterns characterizing the place are removed or not visible anymore. The recognition
process in this work is improved with respect to the state-of-the-art place cell approach.
Additionally, the interconnection of the neural groups composing the model is made such
that the robot is able to learn new places as it navigates and interacts with the environment
to get to its �nal destination.

Experimental results have validated the advantage of the incremental learning allowing
the robot to cope with any unforeseen changes and thus adapting itself to the environment
as it navigates within the environment.

Thanks to its generic composition, the place cell model has been integrated to the overall
architecture without modifying the functionality or design of the already built-in modules
presented in Rhizome 1 and Rhizome 2. Consequently, Rhizome 3 is composed of four
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modules: one deliberative and three behavioral modules.
The deliberative module stores the sequence of signs, which is provided to the robot either

by a command program or by means of a �oor plan analysis allowing the robot to extract it
by itself.

The �rst behavioral module allows the use of the navigation signs as the only a priori

information available (sequence of signs provided by a commande program). Thus, the robot
is able to deduce by itself the movements to perform associated to the signs and learn such
association.

The second behavioral module uses the information resulting from the �oor plan analysis
and directly sends the directional sign meaning to the robot motor output. Therefore, the
robot does not need to deduce the movement to perform. The fourth module allows the
robot to learn new places by detecting and extracting natural landmarks from the environ-
ment. More precisely, it gathers the set of natural landmarks (represented by their unique
characteristics and their relative position) that it perceives around itself.

The interconnection of all modules allows the robot to decide on the action to take depend-
ing on the provided information. Experimental results integrating the modules altogether,
prove the e�cacy and robustness of the architecture and robot behaviors when navigating
under di�erent and unexpected scenarios. Consequently, the robot is able to detect by itself
what it considers to be relevant from the environment as natural landmarks and learns them
as a reference point whenever the expected signs are not visibly available in its �eld of view.
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7.1 Summary and Contributions

The work described in this dissertation has been presented as a contribution to the develop-
ment of autonomous vision-based mobile robot navigation problem, which is a vast ongoing
research topic. Thorough the dissertation, several contributions have been presented; from
the theoretical point of view to the practical proposition of a new control approach.

Firstly, in order to understand the problematic already mentioned, an introduction (see
chapter 1) has been written with the will to guide the reader through the di�erent points,
considered important to the author, to achieve a successful robot navigation.

Thereafter, the state-of-the-art vision-based robot navigation strategies has been pre-
sented by following a transversal structure proposed by the author in chapter 2. In e�ect, it
is presented in terms of the di�erent functional modules (visual perception, world modelling,
localization and path planning) which implication in the navigation task, depends mainly on
two type of navigation strategies: mapless navigation and map-based navigation composed
itself of map-using and map-building navigation.

The existing relationships among the functional modules and means of integration are
de�ned by a control architecture. Currently, there exists di�erent control paradigms, which,
by their applications, characterize the way to solve the robotic navigation problem. In the
context of this work, the state-of-the-art of such paradigms has been presented from two
points of view in chapter 3.

From the functional point of view, four paradigms can be distinguished: the deliberative
approach based on prior knowledge, internal observation of the actions or states of mind.
The reactive approach based on a stimulus-response model allowing the robot to deal with
very dynamic and unpredictable environments. The hybrid approach, which combines the
advantages of both reactive and deliberative approaches, while diminishing their individual
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drawbacks. And, �nally, the behavior-based approach based on behaviors consisting of a
collection of independent behaviors allowing to perform a successful navigation.

From the design point of view, the robotic navigation problem can be tackled by processing
the information either in a top-down fashion or in a bottom-up fashion.

Although most of them have shown to succeed at providing a solution to a speci�c and
particular navigation problem, it seems that there is still a long way to go when it comes to
respond to di�erent constraints given by a more generic navigation problem.

Therefore, after a thorough study of such approaches, the author came to the conclusion
that in order to conceive a control architecture capable of responding to di�erent scenarios
constraints in a generic fashion, it was necessary to conciliate all di�erences found among
the state-of-the-art paradigms. Thus, rather than embracing a single approach or following a
single path of though, the author has presented in this thesis, a complete architecture capable
of creating a synergy of di�erent approaches by merging them into a neural structure, called
Rhizome.

The Rhizome architecture was conceived, built and implemented through three di�erent
scenarios under which, three interdependent architectures emerged, each responding to dif-
ferent scenario constraints and representing a contribution to the navigation problem. Each
architecture has been detailed in the chapters 4 to 6, a summary of which is given below.

RHIZOME 1- Exploring the world with little information

Rhizome 1 is composed of the important modules necessary to allow a robot to reach its
�nal destination with little knowledge of the world in a deterministic scenario. The a priori

global knowledge of the world represented by a sequence of navigations signs is stored in
the deliberative module of the architecture through a command program (see Deliberative
module of �gure 7.1). Rhizome 1 integrates the sequence into a behavioral module in order to
allow the robot to detect and recognize each expected sign during navigation. Moreover, since
the meaning of the associated directional implications of the navigation signs is unknown,
Rhizome 1 allows the robot to denote them and learn them as a result of a stimulus-response
model during navigation. Then, the robot is able to perform movements based on a recall of
similar situations and actions previously learned. As a consequence, the behavioral module
of the Rhizome 1 architecture di�ers from the basic PerAc in having a nested PerAc module
within its own second level. Hence, it is composed of three layers as illustrated in the
behavioral module of �gure 7.1.

RHIZOME 2- Autonomous map-based robot navigation

The environment is considered deterministic as in the previous case. The a priori global
knowledge of the world is gathered by the robot from a paper-based �oor plan just prior
to real world navigation. Consequently, in an attempt to emulate the cognition process of
a human brain when navigating in an unknown building, Rhizome 2 enables the robot to
�read� the �oor plan of the building, to extract and �memorize� a sequence of navigation
signs leading to the �nal destination and to �recognize� the same signs in the environment
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Figure 7.1: Rhizome 1 composed of a basic deliberative module and a behavioral module
composed itself of three layers.

while navigating in real time.
The image of the �oor plan acquired by the robot camera, undertakes a thorough doc-

ument analysis process permitting the robot to extract the relevant information for its in-
tegration into the system: the of the navigation signs together with the corresponding
directional meaning each sign denotes (see Deliberative module of �gure 7.2). Thereafter,
based on the provided information, the neural structure allows sign recognition and learning
of the association between the recognized sign (see 1st Behavioral module of �gure 7.2) and
its directional meaning (2nd Behavioral module of �gure 7.2) while allowing the robot to
perform the corresponding movement directly.

RHIZOME 3- Learning and self-adapting according to unforeseen environment

changes
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Figure 7.2: Rhizome 2 composed of a deliberative module and two behavioral modules. The
deliberative module is in charge of computing a document analysis process on a �oor plan.
The �rst behavioral module correspond to the one presented in Rhizome 1 and the second is
in charge of process the directional meaning each sign denotes extracted from the �oor plan.

The environment is dynamic, stochastic, and thus more realistic. Rhizome 3 is conceived
in order to allow the robot to cope with any unforeseen changes involving the occlusion or
unavailability of the expected signs. To this end, a place recognition system based on a place
cells model is implemented into a third behavioral module. A place is characterized by a
set of patterns with their corresponding positions with respect to a given �north� perceived
by the robot within its surroundings. The robustness of this approach lies in the fact that
even if one or several patterns characterizing the place are removed or not visibly available
anymore, a place can still be recognized.

Hence, while the �rst two behavioral modules are in charge of using the arti�cial navi-
gation sign sequence stored in the deliberative module to control online navigation, a third
behavioral module allows the robot to �nd places, then learn them and recognize them



7.1. Summary and Contributions 223

as new reference points when the expected signs are not visibly available (see �gure 7.3).
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Figure 7.3: Rhizome 3 composed of a deliberative module and three behavioral modules. The
deliberative module stores the navigation sign sequence that is either given by a command
program or extracted from a �oor plan. The Behavioral modules use both a priori and
dynamic visual information allowing the robot to navigate based on the recognition or absence
of the arti�cial navigation signs. In their absence a place recognition system is performed.

The whole system works in parallel and a 'competitive mechanism' allows deciding
on the best behavior (among the layers and modules) for controlling the robot according to
the stimulus received. This is possible because the neural interconnection is done by either
excitatory or inhibitory connections allowing or preventing the activation of neurons respec-
tively. Another connection is also used when learning is required: modulation connection.
The learning of the associations between the recognized sign and a particular action is con-
ditioned by a reinforcement signal, which represents the internal motivations of the robot.

The architectures should not be regarded as if there was a hierarchy among them or
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as if they followed an evolution pattern where each architecture is the improvement of the
previous one. Conversely, starting from the simplest scenario imagined, the emergence of the
�rst architecture occurs. Then, its functionality together with its components propels the
functionality of a second one by integrating new components, and thus, the entire ensemble
of both architectures propel the functionality of the third one.

There is no hierarchy to be considered, each architecture is as important as the others
according to its corresponding scenario.

Such imbrication can be better understood by observing the composition of a hypercube,
which representation (see �gure 7.4) is analogue to the nature of the RHIZOME architecture.
While Rhizome 1 can be considered as a square structure, Rhizome 2 composed of the same
square and other components forms a cube; and Rhizome 3 composed of new elements forms
a hypercube that encompasses Rhizome 2 which itself encompasses Rhizome1.

Rhizome 1 Rhizome 2 Rhizome 3

Figure 7.4: Representation of the imbricated set-up of the RHIZOME architecture. While
Rhizome 1 can be considered as a square structure, Rhizome 2 composed of this same square,
forms a cube and Rhizome 3 a hypercube that encompasses Rhizome 2 which itself encom-
passes Rhizome 1.

Thus, the anatomy of the Rhizome architecture changes according to the new scenario
constrains as the hypercube changes according to its dimension.

7.2 Short-term Perspectives

Allowing a robot to autonomously navigate an environment while being able to switch and
self-adapt within an in�nite number of possible scenarios, means to the author the optimal
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goal.
However, given the limited time that PhD work can encompass, it was necessary to �rst

focus on the construction of the foundation of what, as considered by the author, could further
grow as a new solution model to the vision-based mobile robot navigation problem. Thus,
the lines of work were �rst traced and followed while bearing in mind the imposed limits.

Consequently, the �rst bricks of a whole model were assembled by implementing three
di�erent architectures functioning under di�erent scenarios and by executing the necessary
experiments to validate the proposed approach, as demonstrated in each of the related chap-
ters.

Then, once the e�cacy, genericity, robustness, multiplicity and transversality of the pro-
posed architecture was proven, the possibility of building new modules adaptable for further
scenarios become clearer. In e�ect, as previously stated, the generic composition of the ar-
chitecture allows it to be extended and further developed by adding new modules to the
architecture without altering the already in-built layers and modules.

In the short-term, the following ideas, among many others, can be highlighted as future
work:

• At the end of the environment navigation under a stochastic and realistic scenario,
the robot should be capable of updating the map with the new information given by
the place cells recognition. In this way, the map can be built by merging the prior
information from the static map and the information related to the new changes due
to the emerging behaviors from unforeseen situations. A SLAM technique could be
foreseen for this task.

• The performance of the architecture in terms of time speed was neither tested nor com-
pared to the time performance of other existing architectures. Certainly, the author is
aware of the importance it represents in any control system, especially in applications
where the robot needs to accomplish its task within the given time constraints. There-
fore, future work can be led towards the validation of such performance under search
and rescue scenarios for instance.

• New scenarios where the signs may be substituted with other relevant visual or non-
visual cues requiring the use of di�erent and multiple types of sensors can and should
also be considered.

• Finally, a successful implementation of the Rhizome architecture in diverse robotic
platforms would allow to prove, con�rm, and rea�rm the transversal, generic, hybrid
nature of the proposed architecture.

Nevertheless, several points remain in suspense; new roots and shoots coming out to all
directions from di�erent nodes; random and unexpected behaviors to be discovered, as the
nature of the Rhizome itself dictates it. . . thereby; leaving open doors to new ideas; to new
scenarios, to new passages; to an in�nite number of new solutions and possible con�gurations.
Since it is only, in the impossibility of conception and creation of new con�gurations, solutions,
ideas never thought of before in the creator's mind, that the boundaries are imposed.
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7.3 Long-term Perspectives

7.3.1 Genesis of the Rhizome Architecture

Rhizome is a philosophical concept developed in the book �A Thousand Plateaus� [1980]
by the French authors Gilles Deleuze and Felix Guattari, a philosopher and a psychoanalyst
respectively.

The Rhizome term is extracted because it adapts to the concept that guides this present
work. Even though the word is used by varying its original meaning, it collects from it,
the essential foundation that represents the e�ort of �nding links and relationships among all
those theories that are apparently dissimilar but which viewed in the light of their possibilities,
they can be connected engul�ng themselves within the functioning of a concept.

A comparable orientation can be found in the work of the Austrian-born American physi-
cist Fritjof Capra [1996]. In his book �The Web of Life�, Capra synthesized the systems
thinking literature into three di�erent but interdependent conceptual dimensions. Pattern
of organization, structure, and the life process. The pattern of organization perspective is
related to the �autopoiesis�. A term coined by Humberto Maturana and Francisco Varela
[1980] that refers to a system capable of reproducing and maintaining itself. However, Capra's
perspective of living systems is enriched by the notion of Rhizome since the unity of things,
according to this concept, is due to the fact of �nding roots that unify and link theories
with practices. Finding the structure of hidden passages that are not seen to the naked eye;
that are underground in somehow; that have to be produced and understood from di�erent
theories sometimes related but in most of the cases opposed.

The Rhizome architecture attempts to trace common threads among the di�erent theories
and their application to solve practical problems of modern robotics, without assuming a
trend. On the contrary, it observes and analyzes all of them, to build a unity among them
by appreciating their dissimilarities, their oppositions and by placing them at the service of a
robotic operation. The acquisition of deep bonds existing in the various theories also re�ects
the need to place multiple centers of operation, which in turn, are linked to the general
framework in which it operates towards the periphery, towards the outward forms where the
practicality of the rhizome concept is perceptible.

7.3.2 Anatomy of the Rhizome Architecture

Transversality in the thought is a creative act. If one �nds two ways of seeing things: dissimi-
lar, di�erent, opposite; it would be necessary to plan lines that link them all in order to move
forward. Lines that are transversal, labyrinthine, and oblique. Lines that are passageways,
tunnels, paths that lay bridges among concrete forms, to which, diverse routes of thought,
established as open or close paths, can reach. Lines that seemingly do not have anything to
do with other open or close paths; but if they are deeply thought, hidden links that are not
revealed immediately to the naked eye can be found. Because they are theories that dispute
among themselves the supremacy and the interest of �nding practical possibilities to which,
engineers and researchers attribute importance. Nevertheless, the technical thinker, cannot
enter into these disputes, but instead, accept them as moments or integral parts of a wider



7.3. Long-term Perspectives 227

practical-technical thought: Integral parts of a whole that is being constructed and for which
such disputes do not have any interest.

These links are underground and it is necessary to construct them, reconstruct them,
establish them and re-stablish them, by thoroughly studying what really relates them. By
abandoning a structured and �xed vision in the path itself. By not choosing a path as unique.
By moving from the center to the periphery, from the bottom to the top. By penetrating
in the knowledge of the characteristics of each one, without remaining fascinated with what
has been found; but instead, by taking a step back to be able to see beyond the investigated
path, the studied theory. Consequently, by being able to see other theoretical options and
�nd invisible overlaps that should be established in order to assemble a uni�ed Rhizome

architecture.
The links among dissimilar theories are not usually discernable to the naked eye, since

it is at the surface where the di�erences are accentuated; and sometimes the contradictions
too.

Thus, theorists and researches embrace with fascination one or other current of thought
within their proposed discussions. The limits that technicians and engineers take, follow
di�erent lines that become more and more engrained depending on certain successful results,
which lead them to assume a path that is considered valid above all the others. Thereby,
limiting and closing any other possible paths. Denying other possible passages that can be
part of a whole. Part of a hybridization in the thought of a Rhizome architect who considers
each theory and established trace as a passage itself, as a link. From that, it is said, �Omnis
determinatio est negatio� [Spinoza, 1804]. Every determination and statement of position of
a theory denies the others.

The though, the method and the Rhizome architecture, can neither deny the existence of
the dissimilarity nor the existence of the contradiction, since they hybridize all when looking
for, stablishing or creating links. Because it is precisely human intelligence creating arti�cial
intelligence that it cannot act denying neither the possibilities nor the contingencies to obtain
a whole; an organic and related, dependently and interdependently whole.

It is a thought that does not think the organic as a structure; but instead, as a whole
in itself and in each one of its parts. Spherical in its links and relations and un�nished as a
whole because it leaves doors to new passages, to detours and to possibilities of interweaves,
of union, of growth and of improvement.

Therefore, it is an architecture that could be de�ned as being hybrid. Because it grows
in the extent that it apprehends from what it is given in its linearity as incorruptible, un-
contaminated, as pure theory, as only path, as unique direction, as supreme theory. And
incorporates it into a weave that belays it to a random thought, in which its function persists
in itself; but still plays one more function with respect to the created totality.

In this respect, it breaks the hackneyed notion of cause and e�ect; because there are
di�erent coincident overlapping causes; uneven diverse causes that generate particular ef-
fects around a universal e�ect, without losing their speci�c functionality. A diverse whole,
interwove of passages, viaducts and connections, which move into precise objectives all its
functionality in mathematical terms: an integral that uni�es all for the encounter of a prim-
itive totalizing function.

The anatomy of the Rhizome architecture requires such events causing a collision, linking
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and �nding unions in what it was not meant to be uni�ed and which could have remained
isolated if their deep interweaving was not thought of, to happen. The architecture is the
result of �nding in the unforeseen relationships or links, the reason of a chafe. It is the result
of the ability of �nding the points of collision or of rubbing that have ties among the most
diverse and seemingly distant theories. This unifying thought, requires the rejection of a line
of thought over another, of one technique over another, of one way over another.

Educational and learning theorist establish theories that induce to certain practices, to
certain techniques; but an anatomist of the thought must �nd its applicability beyond the
ideological quarrels that each theory encompasses. It must solve practically what the theorists
propose conceptually.

In the practical-technical solution, an engineer usually does it from a perspective covered
by a certain theory leading to surprising technical results. Although always unilateral. An
engineer is not interested in the general case because it requires special solutions, particulars
to certain problems that have arisen. Then, he must resolve them in the best way. Therefore,
he cannot stick to this or that theory, since each one can take him to solve parts of the
problem instead of random, broad and integrated solutions.

The engineer considers concrete problems about something, which requires an e�ective
technical solution referring to something concrete, for which a �nal position is not needed.
Thus, limiting himself to a particular theory about knowledge, about learning. Because his
problem is not philosophical, is technical.

The solution should cover instead an increasingly wider and complete margin, as a ten-
dency towards an unattainable precise limit, alike the multiplication of the sides of a polygon
towards the circumference. The idea of the limit itself. Consequently, the Rhizome architec-
ture works di�erently because its practical-technical solution cannot be done on a particular
determination of this or that theory as engineers do. On the contrary, it observes the sta-
blished theories as the limits to its action and it tries to link all such theories in a kind
of integrative algebra, to �nd a solution; to �nd multiple functions for a practical solution
because it is not satis�ed (and cannot be) of �nding partial functions. Therefore, it solves
practical problems involving a major number of trends to �nd wider solutions.

As far as the robotics �eld is concerned, the Rhizome architecture proposed in this work
attempts to involve all theories that could have practical success, for a di�erent solution
from the technical point of view. While the theory produces multiple abstract possibilities,
the Rhizome architect, must give e�ective realization to his architecture, at which addresses
the possibility of the accomplishment of every theory altogether. The Rhizome architecture
assumes this challenge of hybridizing the largest number of theoretical accomplishments, so
that the operation is as complete as possible. The Rhizome architect does it by thinking
about the possible models that the theorist proposes while observing with a technical eye
the practical probability that it o�ers him: this theory leads to such functioning, such other
theory does not; this one comes hitherto, such other goes until there.

The Rhizome architecture uni�es into a single project, the possibilities of functioning by
involving them and de�ning practically the scope and limits of one and another. By creating
a combinatorial so that if a certain operation does not reach a proposal, another can do it.
Therefore, they complement each other and each can be explained by itself and by the others;
solving practically what theorists argue on speculation.



Publications

This dissertation has led to the following communications:

Conferences

International

• Dalia Marcela Rojas-Castro, Arnaud Revel, Michel Ménard. "Robotic and Document
Analysis Cross-Fertilization: Improving Place Cells Based Robot Navigation". In the
proceedings of the 14th International Conference on control, Automation, Robotics and
Vision (ICARCV), Phuket, THAILAND, November, 2016.

• Dalia Marcela Rojas-Castro, Arnaud Revel, Michel Ménard. �Artifcial Neural Network-
Based Control Architecture: a Simultaneous Top-down and Bottom-up Approach to
Autonomous Robot Navigation. In the proceedings of the 25th International Conference
on Arti�cial Neural Networks (ICANN),pp 540, Barcelona, SPAIN, September, 2016.

• Dalia Marcela Rojas-Castro, A. Revel, and M. Ménard. "Document image analysis
by a mobile robot for autonomous indoor navigation." In the proceedings of the 13th

International Conference on Document Analysis and Recognition (ICDAR), pp. 156-
160, Nancy, FRANCE, August, 2015.

• Dalia Marcela Rojas-Castro, A. Revel, and M. Ménard. "A Robust Neural Robot
Navigation Using a Combination of Deliberative and Reactive Control Architectures."
In the proceedings of the 23th European Symposium on Arti�cial Neural Networks,
Computational Intelligence and Machine Learning (ESANN), pp. 445-450, Bruges,
BELGIUM, April, 2015.

National

• Dalia Marcela Rojas-Castro, Arnaud Revel, Michel Ménard. �A Hybrid Neural-based
Control Architecture for Autonomous Robot Navigation: Synergetic Interface between
a priori and embedded information. Congrès National sur la Reconnaissance des Formes
et l'intelligence Arti�cielle/Conférence National en Intelligence Arti�cielle (RFIA-CNIA),
Clermont Ferrand, FRANCE, July, 2016.





Bibliography

[Abadi 2015] Mohammad Hossein Bamorovat Abadi et Mohammadreza Asghari Oskoei. Ef-
fects of Mirrors in Mobile Robot Navigation Based on Omnidirectional Vision. In
Intelligent Robotics and Applications, pages 37�48. Springer, 2015. (Cited in page 46.)

[Ahmed 2011] Sheraz Ahmed, Marcus Liwicki, Markus Weber et Andreas Dengel. Improved
automatic analysis of architectural �oor plans. In 2011 International Conference on
Document Analysis and Recognition, pages 864�869. IEEE, 2011. (Cité en pages xx,
133, 139 et 141.)

[Ahn 2006] Sunghwan Ahn, Minyong Choi, Jinwoo Choi et Wan Kyun Chung. Data as-

sociation using visual object recognition for EKF-SLAM in home environment. In
Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pages
2588�2594. IEEE, 2006. (Cited in page 56.)

[Alami 1998] Rachid Alami, Raja Chatila, Sara Fleury, Malik Ghallab et Félix Ingrand. An
architecture for autonomy. The International Journal of Robotics Research, vol. 17,
no. 4, pages 315�337, 1998. (Cited in page 67.)

[Albring Guth 2013] Felipe Albring Guth, Luan Silveira, Marcos Amaral, Silvia Botelho et
Paul Drews. Underwater visual 3D slam using a bio-inspired system. In Computing
and Automation for O�shore Shipbuilding (NAVCOMP), 2013 Symposium on, pages
87�92. IEEE, 2013. (Cited in page 59.)

[Albus 1991] James S Albus. Outline for a theory of intelligence. Systems, Man and Cyber-
netics, IEEE Transactions on, vol. 21, no. 3, pages 473�509, 1991. (Cited in page 83.)

[Alonso 2012] Ignacio Parra Alonso, David Fernández Llorca, Miguel Gavilán, Sergio Ávarez
Pardo, Miguel Ángel García-Garrido, Ljubo Vlacic et Miguel Ángel Sotelo. Accurate
global localization using visual odometry and digital maps on urban environments.
Intelligent Transportation Systems, IEEE Transactions on, vol. 13, no. 4, pages 1535�
1545, 2012. (Cited in page 52.)

[Alvernhe 2012] Alice Alvernhe, Francesca Sargolini et Bruno Poucet. Rats build and update

topological representations through exploration. Animal cognition, vol. 15, no. 3, pages
359�368, 2012. (Cited in page 35.)

[Anati 2012] Roy Anati, Davide Scaramuzza, Konstantinos G Derpanis et Kostas Daniilidis.
Robot localization using soft object detection. In Robotics and Automation (ICRA),
2012 IEEE International Conference on, pages 4992�4999. IEEE, 2012. (Cited in
page 52.)

[Anderson 2013] Peter Anderson, Yongki Yusmanthia, Bernhard Hengst et Arcot Sowmya.
Robot localisation using natural landmarks. In RoboCup 2012: Robot Soccer World
Cup XVI, pages 118�129. Springer, 2013. (Cited in page 61.)



232 Bibliography

[Andrade-Cetto 2002] Juan Andrade-Cetto et Alberto Sanfeliu. Concurrent map building

and localization on indoor dynamic environments. International Journal of Pattern
Recognition and Arti�cial Intelligence, vol. 16, no. 03, pages 361�374, 2002. (Cited in
page 53.)

[Arbib 1981] Michael A Arbib. Perceptual structures and distributed motor control. Compre-
hensive Physiology, 1981. (Cited in page 83.)

[Arkin 1987] Ronald C Arkin. Motor schema based navigation for a mobile robot: An ap-

proach to programming by behavior. In Robotics and Automation. Proceedings. 1987
IEEE International Conference on, volume 4, pages 264�271. IEEE, 1987. (Cité en
pages 80 et 83.)

[Arkin 1989] Ronald C Arkin. Towards the uni�cation of navigational planning and reactive

control. 1989. (Cité en pages 77 et 80.)

[Arkin 1990] Ronald C Arkin. Integrating behavioral, perceptual, and world knowledge in

reactive navigation. Robotics and autonomous systems, vol. 6, no. 1, pages 105�122,
1990. (Cited in page 83.)

[Arkin 1997] Ronald C Arkin et Tucker Balch. AuRA: Principles and practice in review.
Journal of Experimental & Theoretical Arti�cial Intelligence, vol. 9, no. 2-3, pages
175�189, 1997. (Cité en pages 83 et 86.)

[Arleo 2000] Angelo Arleo et Wulfram Gerstner. Modeling rodent head-direction cells and

place cells for spatial learning in bio-mimetic robotics. From Animals to Animats,
vol. 6, pages 236�245, 2000. (Cited in page 34.)

[Arleo 2001] A Arleo et F Smeraldi S Hug W Gerstner. Place Cells and Spatial Navigation

based on Vision, Path Integration, and Reinforcement Learning. In Advances in Neural
Information Processing Systems 13: Proceedings of the 2000 Conference, volume 13,
page 89. MIT Press, 2001. (Cited in page 34.)

[Arleo 2004] Angelo Arleo, Fabrizio Smeraldi et Wulfram Gerstner. Cognitive navigation

based on nonuniform Gabor space sampling, unsupervised growing networks, and re-

inforcement learning. IEEE Transactions on Neural Networks, vol. 15, no. 3, pages
639�652, 2004. (Cited in page 34.)

[Atanasov 2014] Nikolay Atanasov, Menglong Zhu, Kostas Daniilidis et George J Pappas.
Semantic Localization Via the Matrix Permanent. Proc. Robot.: Sci. Syst, 2014.
(Cited in page 53.)

[Bailey 2006] Tim Bailey et Hugh Durrant-Whyte. Simultaneous localization and mapping

(SLAM): Part II. IEEE Robotics & Automation Magazine, vol. 13, no. 3, pages
108�117, 2006. (Cited in page 55.)

[Ballard 1981] Dana H Ballard. Generalizing the Hough transform to detect arbitrary shapes.
Pattern recognition, vol. 13, no. 2, pages 111�122, 1981. (Cited in page 141.)



Bibliography 233

[Banquet 2005] Jean-Paul Banquet, Ph Gaussier, Mathias Quoy, Arnaud Revel et Yves
Burnod. A hierarchy of associations in hippocampo-cortical systems: cognitive maps

and navigation strategies. Neural Computation, vol. 17, no. 6, pages 1339�1384, 2005.
(Cité en pages 35 et 40.)

[Barrera 2008] Alejandra Barrera et Alfredo Weitzenfeld. Biologically-inspired robot spatial

cognition based on rat neurophysiological studies. Autonomous Robots, vol. 25, no. 1-2,
pages 147�169, 2008. (Cited in page 35.)

[Bay 2006] Herbert Bay, Tinne Tuytelaars et Luc Van Gool. Surf: Speeded up robust features.
In European conference on computer vision, pages 404�417. Springer, 2006. (Cited in
page 28.)

[Behzadian 2015] Bahram Behzadian, Pratik Agarwal, Wolfram Burgard et Gian Diego
Tipaldi. Monte Carlo localization in hand-drawn maps. In Intelligent Robots and Sys-
tems (IROS), 2015 IEEE/RSJ International Conference on, pages 4291�4296. IEEE,
2015. (Cited in page 49.)

[Benet 2002] Gines Benet, Francisco Blanes, José E Simó et Pascual Pérez. Using infrared

sensors for distance measurement in mobile robots. Robotics and autonomous systems,
vol. 40, no. 4, pages 255�266, 2002. (Cited in page 44.)

[Berg 2010] Alex Berg, Jia Deng et L Fei-Fei. Large scale visual recognition challenge 2010,
2010. (Cited in page 28.)

[Biswas 2012] Joydeep Biswas et Manuela Veloso. Depth camera based indoor mobile robot

localization and navigation. In Robotics and Automation (ICRA), 2012 IEEE Inter-
national Conference on, pages 1697�1702. IEEE, 2012. (Cited in page 51.)

[Bonasso 1995] R Peter Bonasso, David Kortenkamp, David P Miller et Marc Slack. Expe-
riences with an architecture for intelligent, reactive agents. In Intelligent Agents II
Agent Theories, Architectures, and Languages, pages 187�202. Springer, 1995. (Cited
in page 86.)

[Boniardi 2015] Federico Boniardi, Bahram Behzadian, Wolfram Burgard et Gian Diego
Tipaldi. Robot navigation in hand-drawn sketched maps. In Mobile Robots (ECMR),
2015 European Conference on, pages 1�6. IEEE, 2015. (Cited in page 49.)

[Bonin-Font 2008] Francisco Bonin-Font, Alberto Ortiz et Gabriel Oliver. Visual navigation
for mobile robots: A survey. Journal of intelligent and robotic systems, vol. 53, no. 3,
pages 263�296, 2008. (Cited in page 22.)

[Braitenberg 1986] Valentino Braitenberg. Vehicles: Experiments in synthetic psychology.
MIT press, 1986. (Cité en pages xviii, 73, 75 et 77.)

[Brooks 1986] Rodney A Brooks. A robust layered control system for a mobile robot. Robotics
and Automation, IEEE Journal of, vol. 2, no. 1, pages 14�23, 1986. (Cité en pages xviii,
10, 11, 67, 71, 72, 74, 75, 80, 81, 82 et 83.)



234 Bibliography

[Brooks 1990] Rodney A Brooks. Elephants don't play chess. Robotics and autonomous
systems, vol. 6, no. 1, pages 3�15, 1990. (Cité en pages 82 et 83.)

[Brooks 1991] Rodney A Brooks. Intelligence without representation. Arti�cial intelligence,
vol. 47, no. 1, pages 139�159, 1991. (Cited in page 82.)

[Brown 1995] Michael A Brown et Patricia E Sharp. Simulation of spatial learning in the

Morris water maze by a neural network model of the hippocampal formation and nu-

cleus accumbens. Hippocampus, vol. 5, no. 3, pages 171�188, 1995. (Cited in page 33.)

[Bugmann 1995] Guido Bugmann, John G Taylor et M Denham. Route �nding by neural

nets. Neural networks, pages 217�230, 1995. (Cité en pages xx et 143.)

[Burgess 1994] Neil Burgess, Michael Recce et John O'Keefe. A model of hippocampal func-

tion. Neural networks, vol. 7, no. 6-7, pages 1065�1081, 1994. (Cited in page 33.)

[Burguera 2014] Antoni Burguera, Francisco Bonin-Font et Gabriel Oliver. Towards robust

image registration for underwater visual SLAM. In Computer Vision Theory and
Applications (VISAPP), 2014 International Conference on, volume 3, pages 539�544.
IEEE, 2014. (Cited in page 56.)

[Burnod 1990] Yves Burnod. An adaptive neural network: the cerebral cortex. Masson
editeur, 1990. (Cité en pages 36 et 83.)

[Cabezas 2012] Ivan Cabezas, Maria Trujillo et Margaret Florian. An Evaluation Methodology

for Stereo Correspondence Algorithms. In VISAPP (2), pages 154�163, 2012. (Cited
in page 46.)

[Calonder 2010] Michael Calonder, Vincent Lepetit, Christoph Strecha et Pascal Fua. Brief:
Binary robust independent elementary features. In European conference on computer
vision, pages 778�792. Springer, 2010. (Cited in page 28.)

[Caluwaerts 2012] Ken Caluwaerts, Mariacarla Sta�a, Steve N'Guyen, Christophe Grand,
Laurent Dollé, Antoine Favre-Félix, Beno^�t Girard et Mehdi Khamassi. A biologically

inspired meta-control navigation system for the psikharpax rat robot. Bioinspiration &
biomimetics, vol. 7, no. 2, page 025009, 2012. (Cited in page 35.)

[Camus 1997] Ted Camus. Real-time quantized optical �ow. Real-Time Imaging, vol. 3, no. 2,
pages 71�86, 1997. (Cited in page 60.)

[Canny 1986] John Canny. A computational approach to edge detection. IEEE Transactions
on pattern analysis and machine intelligence, no. 6, pages 679�698, 1986. (Cited in
page 26.)

[Carpenter 1987] Gail A Carpenter et Stephen Grossberg. A massively parallel architecture

for a self-organizing neural pattern recognition machine. Computer vision, graphics,
and image processing, vol. 37, no. 1, pages 54�115, 1987. (Cité en pages 11, 12, 13,
29, 31 et 83.)



Bibliography 235

[Cartwright 1983] BA Cartwright et Thomas S Collett. Landmark learning in bees. Journal
of comparative physiology, vol. 151, no. 4, pages 521�543, 1983. (Cité en pages 33
et 62.)

[Castellanos 2001] José A Castellanos, José Neira et Juan D Tardós. Multisensor fusion

for simultaneous localization and map building. Robotics and Automation, IEEE
Transactions on, vol. 17, no. 6, pages 908�914, 2001. (Cited in page 45.)

[Chao 2014] Haiyang Chao, Yu Gu et Marcello Napolitano. A survey of optical �ow tech-

niques for robotics navigation applications. Journal of Intelligent & Robotic Systems,
vol. 73, no. 1-4, pages 361�372, 2014. (Cited in page 60.)

[Chatila 1985] Raja Chatila et Jean-Paul Laumond. Position referencing and consistent

world modeling for mobile robots. In Robotics and Automation. Proceedings. 1985
IEEE International Conference on, volume 2, pages 138�145. IEEE, 1985. (Cité en
pages 53 et 72.)

[Choset 2005] Howie M Choset. Principles of robot motion: theory, algorithms, and imple-
mentation. MIT press, 2005. (Cité en pages xviii et 48.)

[Chum 2007] Ondrej Chum, James Philbin, Josef Sivic, Michael Isard et Andrew Zisserman.
Total recall: Automatic query expansion with a generative feature model for object

retrieval. In 2007 IEEE 11th International Conference on Computer Vision, pages
1�8. IEEE, 2007. (Cited in page 28.)

[Civera 2010] Javier Civera, Oscar G Grasa, Andrew J Davison et JMM Montiel. 1-Point

RANSAC for extended Kalman �ltering: Application to real-time structure from mo-

tion and visual odometry. Journal of Field Robotics, vol. 27, no. 5, pages 609�631,
2010. (Cited in page 56.)

[Clancey 1991] William J Clancey. The frame of reference problem in the design of intelligent

machines. Architectures for intelligence, pages 357�423, 1991. (Cited in page 69.)

[Clark 2002] Paul Clark et Majid Mirmehdi. Recognising text in real scenes. International
Journal on Document Analysis and Recognition, vol. 4, no. 4, pages 243�257, 2002.
(Cited in page 140.)

[Clark 2003] Paul Clark et Majid Mirmehdi. Rectifying perspective views of text in 3D scenes

using vanishing points. Pattern Recognition, vol. 36, no. 11, pages 2673�2686, 2003.
(Cited in page 138.)

[Clemente 2007] Laura A Clemente, Andrew J Davison, Ian D Reid, José Neira et Juan D
Tardós. Mapping Large Loops with a Single Hand-Held Camera. In Robotics: Science
and Systems, volume 2, page 2, 2007. (Cited in page 56.)

[Connell 1992] Jonathan H Connell. SSS: A hybrid architecture applied to robot navigation.
In Robotics and Automation, 1992. Proceedings., 1992 IEEE International Conference
on, pages 2719�2724. IEEE, 1992. (Cited in page 77.)



236 Bibliography

[Connolly 1990] Christopher I Connolly, John B Burns et R Weiss. Path planning using

Laplace's equation. In Robotics and Automation, 1990. Proceedings., 1990 IEEE
International Conference on, pages 2102�2106. IEEE, 1990. (Cited in page 143.)

[Csurka 2004] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski et Cédric
Bray. Visual categorization with bags of keypoints. In Workshop on statistical learning
in computer vision, ECCV, volume 1, pages 1�2. Prague, 2004. (Cited in page 28.)

[Cummins 2008] Mark Cummins et Paul Newman. FAB-MAP: Probabilistic localization and

mapping in the space of appearance. The International Journal of Robotics Research,
vol. 27, no. 6, pages 647�665, 2008. (Cité en pages 32, 57 et 59.)

[Cuperlier 2007] Nicolas Cuperlier, Mathias Quoy et Philippe Gaussier. Neurobiologically

inspired mobile robot navigation and planning. Frontiers in neurorobotics, vol. 1,
page 3, 2007. (Cité en pages xvii et 37.)

[Dance 2001] Christopher R Dance. Perspective estimation for document images. In Elec-
tronic Imaging 2002, pages 244�254. International Society for Optics and Photonics,
2001. (Cited in page 138.)

[Davies 2008] Trevor Davies et Amor Jnifene. Path planning and trajectory control of collab-
orative mobile robots using hybrid control architecture. Journal of Systemics, Cyber-
netics and Informatics, vol. 6, no. 4, pages 42�48, 2008. (Cited in page 78.)

[Davison 2003] Andrew J Davison. Real-time simultaneous localisation and mapping with

a single camera. In Computer Vision, 2003. Proceedings. Ninth IEEE International
Conference on, pages 1403�1410. IEEE, 2003. (Cited in page 56.)

[Davison 2007] Andrew J Davison, Ian D Reid, Nicholas D Molton et Olivier Stasse.
MonoSLAM: Real-time single camera SLAM. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, vol. 29, no. 6, pages 1052�1067, 2007. (Cited in
page 56.)

[de la Puente 2014] Paloma de la Puente et Diego Rodríguez-Losada. Feature based graph-

SLAM in structured environments. Autonomous Robots, vol. 37, no. 3, pages 243�260,
2014. (Cited in page 48.)

[Deriche 1987] Rachid Deriche. Using Canny's criteria to derive a recursively implemented

optimal edge detector. International journal of computer vision, vol. 1, no. 2, pages
167�187, 1987. (Cited in page 26.)

[DeSouza 2002] Guilherme N DeSouza et Avinash C Kak. Vision for mobile robot navigation:

A survey. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 24,
no. 2, pages 237�267, 2002. (Cité en pages 21 et 51.)

[Doeller 2010] Christian F Doeller, Caswell Barry et Neil Burgess. Evidence for grid cells in

a human memory network. Nature, vol. 463, no. 7281, pages 657�661, 2010. (Cited
in page 35.)



Bibliography 237

[Dollé 2010] Laurent Dollé, Denis Sheynikhovich, Benoît Girard, Ricardo Chavarriaga et
Agnès Guillot. Path planning versus cue responding: a bio-inspired model of switching
between navigation strategies. Biological cybernetics, vol. 103, no. 4, pages 299�317,
2010. (Cited in page 35.)

[Donahue 2014] Je� Donahue, Yangqing Jia, Oriol Vinyals, Judy Ho�man, Ning Zhang,
Eric Tzeng et Trevor Darrell. DeCAF: A Deep Convolutional Activation Feature for

Generic Visual Recognition. In ICML, pages 647�655, 2014. (Cited in page 33.)

[Dosch 2000] Philippe Dosch, Karl Tombre, Christian Ah-Soon et Gérald Masini. A complete

system for the analysis of architectural drawings. International Journal on Document
Analysis and Recognition, vol. 3, no. 2, pages 102�116, 2000. (Cited in page 141.)

[Durrant-Whyte 1988] Hugh F Durrant-Whyte. Uncertain geometry in robotics. Robotics and
Automation, IEEE Journal of, vol. 4, no. 1, pages 23�31, 1988. (Cited in page 53.)

[Durrant-Whyte 1996] Hugh Durrant-Whyte, David Rye et Eduardo Nebot. Localization of

autonomous guided vehicles. In Robotics Research, pages 613�625. Springer, 1996.
(Cited in page 53.)

[Durrant-Whyte 2006] Hugh Durrant-Whyte et Tim Bailey. Simultaneous localization and

mapping: part I. Robotics & Automation Magazine, IEEE, vol. 13, no. 2, pages
99�110, 2006. (Cited in page 55.)

[Eade 2006] Ethan Eade et Tom Drummond. Scalable monocular SLAM. In Computer Vision
and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1,
pages 469�476. IEEE, 2006. (Cited in page 57.)

[Eade 2008] Ethan Eade et Tom Drummond. Uni�ed Loop Closing and Recovery for Real

Time Monocular SLAM. In BMVC, volume 13, page 136, 2008. (Cited in page 32.)

[Edelman 1987] Gerald M Edelman. Neural darwinism: The theory of neuronal group selec-
tion. Basic Books, 1987. (Cité en pages 10, 11, 12 et 83.)

[Einhorn 2015] Erik Einhorn et Horst-Michael Gross. Generic NDT mapping in dynamic en-

vironments and its application for lifelong SLAM. Robotics and Autonomous Systems,
vol. 69, pages 28�39, 2015. (Cited in page 53.)

[Ekstrom 2003] Arne D Ekstrom, Michael J Kahana, Jeremy B Caplan, Tony A Fields, Eve A
Isham, Ehren L Newman et Itzhak Fried. Cellular networks underlying human spatial

navigation. Nature, vol. 425, no. 6954, pages 184�188, 2003. (Cited in page 34.)

[Elfes 2013] Alberto Elfes. Occupancy grids: A stochastic spatial representation for active

robot perception. arXiv preprint arXiv:1304.1098, 2013. (Cited in page 48.)

[Engel 2014] Jakob Engel, Jürgen Sturm et Daniel Cremers. Scale-aware navigation of a

low-cost quadrocopter with a monocular camera. Robotics and Autonomous Systems,
vol. 62, no. 11, pages 1646�1656, 2014. (Cited in page 45.)



238 Bibliography

[Engel 2015] Jakob Engel, Jorg Stuckler et Daniel Cremers. Large-scale direct slam with stereo

cameras. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pages 1935�1942. IEEE, 2015. (Cited in page 46.)

[Erinc 2014] Gorkem Erinc et Stefano Carpin. Anytime merging of appearance-based maps.
Autonomous Robots, vol. 36, no. 3, pages 241�256, 2014. (Cité en pages 48 et 49.)

[Eudes 2010] Alexandre Eudes, Maxime Lhuillier, Sylvie Naudet-Collette et Michel Dhome.
Fast odometry integration in local bundle adjustment-based visual slam. In Pattern
Recognition (ICPR), 2010 20th International Conference on, pages 290�293. IEEE,
2010. (Cited in page 58.)

[Everingham 2008] M Everingham, L Van Gool, CKI Williams, J Winn et A Zisserman. The
pascal visual object classes challenge 2007 (voc 2007) results (2007), 2008. (Cited in
page 28.)

[Fallon 2013] Maurice Fallon, Hordur Johannsson, Michael Kaess et John J Leonard. The

MIT stata center dataset. The International Journal of Robotics Research, vol. 32,
no. 14, pages 1695�1699, 2013. (Cited in page 49.)

[Fazl-Ersi 2012] Ehsan Fazl-Ersi et John K Tsotsos. Histogram of oriented uniform patterns

for robust place recognition and categorization. The International Journal of Robotics
Research, page 0278364911434936, 2012. (Cited in page 33.)

[Fernandes 2012] Cláudio dos S Fernandes, Mario FM Campos et Luiz Chaimowicz. A low-

cost localization system based on Arti�cial Landmarks. In Robotics Symposium and
Latin American Robotics Symposium (SBR-LARS), 2012 Brazilian, pages 109�114.
IEEE, 2012. (Cited in page 62.)

[Filliat 2002] David Filliat, Jean-Arcady Meyeret al. Global localization and topological map-

learning for robot navigation. From animals to animats, vol. 7, pages 131�140, 2002.
(Cited in page 33.)

[Floros 2013] Georgios Floros, Benito van der Zander et Bastian Leibe. Openstreetslam:

Global vehicle localization using openstreetmaps. In Robotics and Automation (ICRA),
2013 IEEE International Conference on, pages 1054�1059. IEEE, 2013. (Cited in
page 49.)

[Fox 1999] Dieter Fox, Wolfram Burgard et Sebastian Thrun. Markov localization for mobile

robots in dynamic environments. Journal of Arti�cial Intelligence Research, pages
391�427, 1999. (Cited in page 52.)

[Frese 2010] Udo Frese, René Wagner et Thomas Röfer. A SLAM Overview from a User's

Perspective. KI-Künstliche Intelligenz, vol. 24, no. 3, pages 191�198, 2010. (Cited in
page 53.)

[Frintrop 2008] Simone Frintrop et Patric Jensfelt. Attentional landmarks and active gaze

control for visual SLAM. Robotics, IEEE Transactions on, vol. 24, no. 5, pages 1054�
1065, 2008. (Cited in page 49.)



Bibliography 239

[Fuentes-Pacheco 2015] Jorge Fuentes-Pacheco, José Ruiz-Ascencio et Juan Manuel Rendón-
Mancha. Visual simultaneous localization and mapping: a survey. Arti�cial Intelli-
gence Review, vol. 43, no. 1, pages 55�81, 2015. (Cited in page 49.)

[Fyhn 2007] Marianne Fyhn, Torkel Hafting, Alessandro Treves, May-Britt Moser et Edvard I
Moser. Hippocampal remapping and grid realignment in entorhinal cortex. Nature,
vol. 446, no. 7132, pages 190�194, 2007. (Cited in page 35.)

[Gallistel 1993] C Randy Gallistel. Organization of learning (learning, development, and
conceptual change). MIT Press, 1993. (Cited in page 33.)

[Garcia-Fidalgo 2015] Emilio Garcia-Fidalgo et Alberto Ortiz. Vision-based topological map-
ping and localization methods: A survey. Robotics and Autonomous Systems, vol. 64,
pages 1�20, 2015. (Cited in page 48.)

[Gaussier 1995] Philippe Gaussier et Stéphane Zrehen. Perac: A neural architecture to control

arti�cial animals. Robotics and Autonomous Systems, vol. 16, no. 2, pages 291�320,
1995. (Cité en pages xvii, xviii, 11, 14, 16, 37, 82, 83, 85 et 134.)

[Gaussier 1997] Philippe Gaussier, Cédric Joulain, Stéphane Zrehen, J-P Banquet et Arnaud
Revel. Visual navigation in an open environment without map. In Intelligent Robots
and Systems, 1997. IROS'97., Proceedings of the 1997 IEEE/RSJ International Con-
ference on, volume 2, pages 545�550. IEEE, 1997. (Cité en pages xvii, 35, 36 et 62.)

[Gaussier 2000] Philippe Gaussier, Cédric Joulain, Jean-Paul Banquet, Sacha Leprêtre et
Arnaud Revel. The visual homing problem: an example of robotics/biology cross fer-

tilization. Robotics and autonomous systems, vol. 30, no. 1, pages 155�180, 2000.
(Cité en pages xvii, 34, 35, 37 et 38.)

[Gaussier 2002] Philippe Gaussier, Arnaud Revel, Jean-Paul Banquet et Vincent Babeau.
From view cells and place cells to cognitive map learning: processing stages of the

hippocampal system. Biological cybernetics, vol. 86, no. 1, pages 15�28, 2002. (Cité
en pages 11, 34 et 35.)

[Gaussier 2007] Ph Gaussier, JP Banquet, F Sargolini, C Giovannangeli, E Save et B Poucet.
A model of grid cells involving extra hippocampal path integration, and the hippocampal

loop. Journal of integrative neuroscience, vol. 6, no. 03, pages 447�476, 2007. (Cited
in page 35.)

[Geng 2009] Xin Geng et Kate Smith-Miles. Facial age estimation by multilinear subspace

analysis. In 2009 IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 865�868. IEEE, 2009. (Cited in page 29.)

[Gibson 1950] James J Gibson. The perception of the visual world. Houghton Mi�in, 1950.
(Cited in page 60.)

[Gilbert 1983] Charles D Gilbert. Microcircuitry of the visual cortex. Annual review of
neuroscience, vol. 6, no. 1, pages 217�247, 1983. (Cited in page 36.)



240 Bibliography

[Giovannangeli 2006a] C Giovannangeli, Ph Gaussier et JP Banquet. Robustness of visual

place cells in dynamic indoor and outdoor environment. International Journal of Ad-
vanced Robotic Systems, vol. 3, no. 2, pages 115�124, 2006. (Cité en pages xvii, 34,
35, 37, 40 et 41.)

[Giovannangeli 2006b] Christophe Giovannangeli, Philippe Gaussier et Gaël Désilles. Ro-

bust mapless outdoor vision-based navigation. In Intelligent Robots and Systems,
2006 IEEE/RSJ International Conference on, pages 3293�3300. IEEE, 2006. (Cité en
pages 35 et 62.)

[Giovannangeli 2008] Christophe Giovannangeli et Philippe Gaussier. Autonomous vision-

based navigation: Goal-oriented action planning by transient states prediction, cog-

nitive map building, and sensory-motor learning. In 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 676�683. IEEE, 2008. (Cited in
page 35.)

[Glover 2010] Arren J Glover, William P Maddern, Michael J Milford et Gordon F Wyeth.
FAB-MAP+ RatSLAM: Appearance-based SLAM for multiple times of day. In
Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages
3507�3512. IEEE, 2010. (Cited in page 59.)

[Goodale 1992] Melvyn A Goodale et A David Milner. Separate visual pathways for perception
and action. Trends in neurosciences, vol. 15, no. 1, pages 20�25, 1992. (Cited in
page 36.)

[Grauman 2011] Kristen Grauman et Bastian Leibe. Visual object recognition. Synthesis
lectures on arti�cial intelligence and machine learning, vol. 5, no. 2, pages 1�181,
2011. (Cited in page 268.)

[Guazzelli 1998] Alex Guazzelli, Mihail Bota, Fernando J Corbacho et Michael A Arbib.
A�ordances. Motivations, and the World Graph Theory. Adaptive Behavior, vol. 6,
no. 3-4, pages 435�471, 1998. (Cited in page 33.)

[Guzel 2012] Mehmet Serdar Guzel et Robert Bicker. A behaviour-based architecture for

mapless navigation using vision. International Journal of Advanced Robotic Systems,
vol. 9, 2012. (Cited in page 62.)

[Güzel 2013] Mehmet Serdar Güzel. Autonomous vehicle navigation using vision and mapless

strategies: a survey. Advances in Mechanical Engineering, vol. 5, page 234747, 2013.
(Cité en pages xvii et 22.)

[Hafting 2005] Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt Moser et Edvard I
Moser. Microstructure of a spatial map in the entorhinal cortex. Nature, vol. 436,
no. 7052, pages 801�806, 2005. (Cited in page 35.)

[Harms 2015] Hannes Harms, Eike Rehder, Tobias Schwarze et Martin Lauer. Detection

of ascending stairs using stereo vision. In Intelligent Robots and Systems (IROS),



Bibliography 241

2015 IEEE/RSJ International Conference on, pages 2496�2502. IEEE, 2015. (Cited
in page 46.)

[Harnad 1990] Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear Phe-
nomena, vol. 42, no. 1-3, pages 335�346, 1990. (Cited in page 9.)

[Hebb 2005] Donald Olding Hebb. The organization of behavior: A neuropsychological the-
ory. Psychology Press, 2005. (Cited in page 10.)

[Hecht-Nielsen 1987] Robert Hecht-Nielsen. Counterpropagation networks. Applied optics,
vol. 26, no. 23, pages 4979�4984, 1987. (Cited in page 83.)

[Hentschel 2010] Matthias Hentschel et Bernardo Wagner. Autonomous robot navigation

based on openstreetmap geodata. In Intelligent Transportation Systems (ITSC), 2010
13th International IEEE Conference on, pages 1645�1650. IEEE, 2010. (Cited in
page 49.)

[Ho 2007] Kin Leong Ho et Paul Newman. Detecting loop closure with scene sequences.
International Journal of Computer Vision, vol. 74, no. 3, pages 261�286, 2007. (Cited
in page 32.)

[Honegger 2013] Dominik Honegger, Lorenz Meier, Petri Tanskanen et Marc Pollefeys. An

open source and open hardware embedded metric optical �ow cmos camera for indoor

and outdoor applications. In Robotics and Automation (ICRA), 2013 IEEE Interna-
tional Conference on, pages 1736�1741. IEEE, 2013. (Cited in page 60.)

[Horn 1981] Berthold K Horn et Brian G Schunck. Determining optical �ow. In 1981 Tech-
nical symposium east, pages 319�331. International Society for Optics and Photonics,
1981. (Cited in page 60.)

[Huo 1997] Qiang Huo et Chin-Hui Lee. On-line adaptive learning of the continuous density
hidden Markov model based on approximate recursive Bayes estimate. IEEE transac-
tions on speech and audio processing, vol. 5, no. 2, pages 161�172, 1997. (Cited in
page 31.)

[Indelman 2015] Vadim Indelman, Richard Roberts et Frank Dellaert. Incremental light bun-
dle adjustment for structure from motion and robotics. Robotics and Autonomous
Systems, vol. 70, pages 63�82, 2015. (Cited in page 58.)

[Irie 2015] Kiyoshi Irie, Masashi Sugiyama et Masahiro Tomono. A dependence maximization

approach towards street map-based localization. In Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on, pages 3721�3728. IEEE, 2015.
(Cited in page 52.)

[Ito 2014] Satoshi Ito, Felix Endres, Markus Kuderer, Gian Diego Tipaldi, Cyrill Stachniss et
Wolfram Burgard. W-rgb-d: �oor-plan-based indoor global localization using a depth

camera and wi�. In Robotics and Automation (ICRA), 2014 IEEE International
Conference on, pages 417�422. IEEE, 2014. (Cité en pages 49 et 52.)



242 Bibliography

[Jacobs 2013] Joshua Jacobs, Christoph T Weidemann, Jonathan F Miller, Alec Solway,
John F Burke, Xue-Xin Wei, Nanthia Suthana, Michael R Sperling, Ashwini D Sharan,
Itzhak Friedet al. Direct recordings of grid-like neuronal activity in human spatial

navigation. Nature neuroscience, vol. 16, no. 9, pages 1188�1190, 2013. (Cited in
page 35.)

[Jau�ret 2012] Adrien Jau�ret, Nicolas Cuperlier, Philippe Gaussier et Philippe Tarroux.
Multimodal integration of visual place cells and grid cells for navigation tasks of a

real robot. In International Conference on Simulation of Adaptive Behavior, pages
136�145. Springer, 2012. (Cited in page 35.)

[Jensfelt 2001] Patric Jensfelt et Steen Kristensen. Active global localization for a mobile robot
using multiple hypothesis tracking. Robotics and Automation, IEEE Transactions on,
vol. 17, no. 5, pages 748�760, 2001. (Cited in page 52.)

[Jessup 2014] J Jessup, Sidney Nascimento Givigi et Alain Beaulieu. Robust and e�cient

multi-robot 3d mapping with octree based occupancy grids. In 2014 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pages 3996�4001. IEEE, 2014.
(Cited in page 48.)

[Jiang 2013] Haibo Jiang, Yilong Xiao, Yunwei Zhang, Xiaojing Wang et Haijiang Tai. Curve
path detection of unstructured roads for the outdoor robot navigation. Mathematical
and Computer Modelling, vol. 58, no. 3, pages 536�544, 2013. (Cited in page 21.)

[Johannsson 2013] Hordur Johannsson, Michael Kaess, Maurice Fallon et John J Leonard.
Temporally scalable visual SLAM using a reduced pose graph. In Robotics and Au-
tomation (ICRA), 2013 IEEE International Conference on, pages 54�61. IEEE, 2013.
(Cited in page 55.)

[Johnson 2012] Collin Johnson et Benjamin Kuipers. E�cient search for correct and useful

topological maps. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5277�5282. IEEE, 2012. (Cited in page 48.)

[Jones 2011] Eagle S Jones et Stefano Soatto. Visual-inertial navigation, mapping and local-

ization: A scalable real-time causal approach. The International Journal of Robotics
Research, vol. 30, no. 4, pages 407�430, 2011. (Cited in page 56.)

[Joubert 2015] Daniek Joubert, Willie Brink et Ben Herbst. Pose uncertainty in occupancy

grids through Monte Carlo integration. Journal of Intelligent & Robotic Systems,
vol. 77, no. 1, pages 5�16, 2015. (Cited in page 48.)

[Judd 1998] SPD Judd et TS Collett. Multiple stored views and landmark guidance in ants.
Nature, vol. 392, no. 6677, pages 710�714, 1998. (Cited in page 33.)

[Jung 1993] MW Jung et BL McNaughton. Spatial selectivity of unit activity in the hip-

pocampal granular layer. Hippocampus, vol. 3, no. 2, pages 165�182, 1993. (Cited in
page 34.)



Bibliography 243

[Kawamura 2002] Kazuhiko Kawamura, AB Koku, D Mitchell Wilkes, Richard Alan Peters
et A Sekmen. Toward egocentric navigation. International Journal of Robotics and
Automation, vol. 17, no. 4, pages 135�145, 2002. (Cited in page 49.)

[Kerl 2013] Christian Kerl, Jurgen Sturm et Daniel Cremers. Dense visual slam for rgb-d

cameras. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on, pages 2100�2106. IEEE, 2013. (Cited in page 55.)

[Kidono 2002] Kiyosumi Kidono, Jun Miura et Yoshiaki Shirai. Autonomous visual naviga-
tion of a mobile robot using a human-guided experience. Robotics and Autonomous
Systems, vol. 40, no. 2, pages 121�130, 2002. (Cited in page 54.)

[Killian 2012] Nathaniel J Killian, Michael J Jutras et Elizabeth A Bu�alo. A map of visual

space in the primate entorhinal cortex. Nature, vol. 491, no. 7426, pages 761�764,
2012. (Cited in page 35.)

[Knopp 2010] Jan Knopp, Josef Sivic et Tomas Pajdla. Avoiding confusing features in place

recognition. In European Conference on Computer Vision, pages 748�761. Springer,
2010. (Cited in page 32.)

[Kohonen 1990] Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, vol. 78,
no. 9, pages 1464�1480, 1990. (Cited in page 12.)

[Konolige 1997] Kurt Konolige, Karen Myers, Enrique Ruspini et Alessandro Sa�otti. The
Saphira architecture: A design for autonomy. Journal of experimental & theoretical
arti�cial intelligence, vol. 9, no. 2-3, pages 215�235, 1997. (Cited in page 78.)

[Kosaka 1992] Akio Kosaka et Avinash C Kak. Fast vision-guided mobile robot navigation

using model-based reasoning and prediction of uncertainties. CVGIP: Image under-
standing, vol. 56, no. 3, pages 271�329, 1992. (Cited in page 51.)

[Krizhevsky 2012] Alex Krizhevsky, Ilya Sutskever et Geo�rey E Hinton. Imagenet classi-

�cation with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097�1105, 2012. (Cited in page 33.)

[Latombe 1991] Jean-Claude Latombe, Anthony Lazanas et Shashank Shekhar. Robot motion
planning with uncertainty in control and sensing. Arti�cial Intelligence, vol. 52, no. 1,
pages 1�47, 1991. (Cited in page 72.)

[Lemaire 2007] Thomas Lemaire, Cyrille Berger, Il-Kyun Jung et Simon Lacroix. Vision-

based slam: Stereo and monocular approaches. International Journal of Computer
Vision, vol. 74, no. 3, pages 343�364, 2007. (Cited in page 55.)

[Leonard 1991] John J Leonard et Hugh F Durrant-Whyte. Simultaneous map building and

localization for an autonomous mobile robot. In Intelligent Robots and Systems'
91.'Intelligence for Mechanical Systems, Proceedings IROS'91. IEEE/RSJ Interna-
tional Workshop on, pages 1442�1447. Ieee, 1991. (Cited in page 53.)



244 Bibliography

[Li 2015] Xiuzhi Li et Huan Qiu. An e�ective laser-based approach to build topological map

of unknown environment. In 2015 IEEE International Conference on Robotics and
Biomimetics (ROBIO), pages 200�205. IEEE, 2015. (Cited in page 48.)

[Lindeberg 2012] Tony Lindeberg. Scale invariant feature transform. Scholarpedia, vol. 7,
no. 5, page 10491, 2012. (Cited in page 27.)

[Lindström 2000] Mattias Lindström, Anders Orebäck et Henrik I Christensen. Berra: A

research architecture for service robots. In Robotics and Automation, 2000. Proceed-
ings. ICRA'00. IEEE International Conference on, volume 4, pages 3278�3283. IEEE,
2000. (Cited in page 77.)

[Lodhi 2002] Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini et Chris
Watkins. Text classi�cation using string kernels. Journal of Machine Learning Re-
search, vol. 2, no. Feb, pages 419�444, 2002. (Cited in page 28.)

[Low 2002] Kian Hsiang Low, Wee Kheng Leow et Marcelo H Ang Jr. A hybrid mobile

robot architecture with integrated planning and control. In Proceedings of the �rst
international joint conference on Autonomous agents and multiagent systems: part 1,
pages 219�226. ACM, 2002. (Cited in page 77.)

[Lowe 2004] David G Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational journal of computer vision, vol. 60, no. 2, pages 91�110, 2004. (Cité en
pages 13, 26, 28, 63, 167 et 263.)

[Lu 2005] Shijian Lu, Ben M Chen et Chi Chung Ko. Perspective recti�cation of document

images using fuzzy set and morphological operations. Image and Vision Computing,
vol. 23, no. 5, pages 541�553, 2005. (Cited in page 138.)

[Lucas 1981] Bruce D Lucas, Takeo Kanadeet al. An iterative image registration technique

with an application to stereo vision. In IJCAI, volume 81, pages 674�679, 1981. (Cited
in page 60.)

[Macé 2010] Sébastien Macé, Hervé Locteau, Ernest Valveny et Salvatore Tabbone. A system

to detect rooms in architectural �oor plan images. In Proceedings of the 9th IAPR
International Workshop on Document Analysis Systems, pages 167�174. ACM, 2010.
(Cited in page 141.)

[Maddern 2012] Will Maddern, Michael Milford et Gordon Wyeth. CAT-SLAM: probabilistic

localisation and mapping using a continuous appearance-based trajectory. The Inter-
national Journal of Robotics Research, vol. 31, no. 4, pages 429�451, 2012. (Cited in
page 59.)

[Maes 1989] Pattie Maes. The dynamics of action selection. Arti�cial Intelligence Laboratory,
Vrije Universiteit Brussel, 1989. (Cited in page 80.)

[Maes 1990] Pattie Maes. Situated agents can have goals. Robotics and autonomous systems,
vol. 6, no. 1, pages 49�70, 1990. (Cited in page 80.)



Bibliography 245

[Maohai 2013] Li Maohai, Wang Han, Sun Lining et Cai Zesu. Robust omnidirectional mobile
robot topological navigation system using omnidirectional vision. Engineering applica-
tions of arti�cial intelligence, vol. 26, no. 8, pages 1942�1952, 2013. (Cited in page 46.)

[Mataric 1991] Maja J Mataric. Navigating with a rat brain: a neurobiologically inspired

model. In From Animals to Animats; Proceedings of the First International Conference
on Simulation of Adaptive Behavior. MIT Press, Cambridge, Mass, 1991. (Cited in
page 81.)

[Mataric 1992] Maja J Mataric. Behavior-based control: Main properties and implications. In
Proceedings, IEEE International Conference on Robotics and Automation, Workshop
on Architectures for Intelligent Control Systems, pages 46�54. Citeseer, 1992. (Cited
in page 67.)

[McClelland 1986] James L McClelland, David E Rumelhart et Geo�rey E Hinton. The appeal
of parallel distributed processing. MIT Press, Cambridge MA, pages 3�44, 1986. (Cited
in page 10.)

[McGann 2008] Conor McGann, Frederic Py, Kanna Rajan, Hans Thomas, Richard Hen-
thorn et Rob McEwen. A deliberative architecture for AUV control. In Robotics and
Automation, 2008. ICRA 2008. IEEE International Conference on, pages 1049�1054.
IEEE, 2008. (Cited in page 73.)

[McNaughton 2006] Bruce L McNaughton, Francesco P Battaglia, Ole Jensen, Edvard I
Moser et May-Britt Moser. Path integration and the neural basis of the'cognitive

map'. Nature Reviews Neuroscience, vol. 7, no. 8, pages 663�678, 2006. (Cited in
page 35.)

[Meng 1993a] Min Meng et Avinash C Kak. Mobile robot navigation using neural networks

and nonmetrical environmental models. Control Systems, IEEE, vol. 13, no. 5, pages
30�39, 1993. (Cited in page 51.)

[Meng 1993b] Min Meng et Avinash C Kak. NEURO-NAV: a neural network based architec-

ture for vision-guided mobile robot navigation using non-metrical models of the envi-

ronment. In Robotics and Automation, 1993. Proceedings., 1993 IEEE International
Conference on, pages 750�757. IEEE, 1993. (Cited in page 51.)

[Meyer-Delius 2012] Daniel Meyer-Delius, Maximilian Beinhofer et Wolfram Burgard. Oc-

cupancy Grid Models for Robot Mapping in Changing Environments. In AAAI, 2012.
(Cité en pages 48 et 54.)

[Michaud 1997] François Michaud. Selecting behaviors using fuzzy logic. In Fuzzy Systems,
1997., Proceedings of the Sixth IEEE International Conference on, volume 1, pages
585�592. IEEE, 1997. (Cited in page 80.)

[Mikolajczyk 2004] Krystian Mikolajczyk et Cordelia Schmid. Scale & a�ne invariant in-

terest point detectors. International journal of computer vision, vol. 60, no. 1, pages
63�86, 2004. (Cited in page 27.)



246 Bibliography

[Milford 2004] Michael J Milford, Gordon F Wyeth et DF Rasser. RatSLAM: a hippocampal

model for simultaneous localization and mapping. In Robotics and Automation, 2004.
Proceedings. ICRA'04. 2004 IEEE International Conference on, volume 1, pages 403�
408. IEEE, 2004. (Cité en pages 35 et 58.)

[Milford 2007] Michael Milford et Gordon Wyeth. Spatial mapping and map exploitation: a

bio-inspired engineering perspective. In International Conference on Spatial Informa-
tion Theory, pages 203�221. Springer, 2007. (Cited in page 35.)

[Milford 2008a] Michael J Milford et Gordon FWyeth. Mapping a suburb with a single camera

using a biologically inspired SLAM system. Robotics, IEEE Transactions on, vol. 24,
no. 5, pages 1038�1053, 2008. (Cited in page 58.)

[Milford 2008b] Michael J Milford et Gordon F Wyeth. Single camera vision-only SLAM

on a suburban road network. In Robotics and Automation, 2008. ICRA 2008. IEEE
International Conference on, pages 3684�3689. IEEE, 2008. (Cited in page 56.)

[Milford 2010] Michael Milford et Gordon Wyeth. Persistent navigation and mapping using

a biologically inspired SLAM system. The International Journal of Robotics Research,
vol. 29, no. 9, pages 1131�1153, 2010. (Cited in page 35.)

[Mishkin 1982] Mortimer Mishkin et Leslie G Ungerleider. Contribution of striate inputs to

the visuospatial functions of parieto-preoccipital cortex in monkeys. Behavioural brain
research, vol. 6, no. 1, pages 57�77, 1982. (Cited in page 36.)

[Montemerlo 2002] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Weg-
breitet al. FastSLAM: A factored solution to the simultaneous localization and mapping

problem. In Aaai/iaai, pages 593�598, 2002. (Cited in page 57.)

[Montiel 2006] JMM Montiel, Javier Civera et Andrew J Davison. Uni�ed inverse depth

parametrization for monocular SLAM. analysis, vol. 9, page 1, 2006. (Cited in
page 56.)

[Moravec 1985] Hans P Moravec et Alberto Elfes. High resolution maps from wide angle

sonar. In Robotics and Automation. Proceedings. 1985 IEEE International Conference
on, volume 2, pages 116�121. IEEE, 1985. (Cité en pages 27 et 54.)

[Morris 1981] Richard GM Morris. Spatial localization does not require the presence of local

cues. Learning and motivation, vol. 12, no. 2, pages 239�260, 1981. (Cited in page 35.)

[Morris 1984] Richard Morris. Developments of a water-maze procedure for studying spatial

learning in the rat. Journal of neuroscience methods, vol. 11, no. 1, pages 47�60, 1984.
(Cited in page 35.)

[Moser 2008] Edvard I Moser, Emilio Krop� et May-Britt Moser. Place cells, grid cells, and

the brain's spatial representation system. Neuroscience, vol. 31, no. 1, page 69, 2008.
(Cited in page 34.)



Bibliography 247

[Mouragnon 2006] Etienne Mouragnon, Maxime Lhuillier, Michel Dhome, Fabien Dekeyser et
Patrick Sayd. Monocular vision based SLAM for mobile robots. In Pattern Recognition,
2006. ICPR 2006. 18th International Conference on, volume 3, pages 1027�1031. IEEE,
2006. (Cited in page 58.)

[Moya-Albor 2016] Ernesto Moya-Albor, Jorge Brieva et Hiram Eredín Ponce Espinosa. Mo-

bile Robot with Movement Detection Controlled by a Real-Time Optical Flow Her-

mite Transform. In Nature-Inspired Computing for Control Systems, pages 231�263.
Springer, 2016. (Cited in page 60.)

[Muller 1987] Robert U Muller et John L Kubie. The e�ects of changes in the environment

on the spatial �ring of hippocampal complex-spike cells. The Journal of Neuroscience,
vol. 7, no. 7, pages 1951�1968, 1987. (Cited in page 34.)

[Müller 2014] Stefan Müller, Cornelius Weber et Stefan Wermter. RatSLAM on Humanoids-

A Bio-Inspired SLAM Model Adapted to a Humanoid Robot. In Arti�cial Neural
Networks and Machine Learning�ICANN 2014, pages 789�796. Springer, 2014. (Cited
in page 59.)

[Murphy 2000] R Murphy. Introduction to AI robots, 2000. (Cité en pages xviii, 71, 72, 73
et 74.)

[Nagel 1987] Hans-Hellmut Nagel. On the estimation of optical �ow: Relations between dif-

ferent approaches and some new results. Arti�cial intelligence, vol. 33, no. 3, pages
299�324, 1987. (Cited in page 60.)

[Nakhaeinia 2011] Danial Nakhaeinia, Sai Hong Tang, SB Mohd Noor et O Motlagh. A review

of control architectures for autonomous navigation of mobile robots. International
Journal of Physical Sciences, vol. 6, no. 2, pages 169�174, 2011. (Cited in page 67.)

[Nattharith 2009] Panus Nattharith et Robert Bicker. Mobile Robot Navigation using a Be-

havioural Strategy. Control and Application (CA 2009). H. Hu. Cambridge, UK, 2009.
(Cited in page 83.)

[Neira 2001] José Neira et Juan D Tardós. Data association in stochastic mapping using the

joint compatibility test. Robotics and Automation, IEEE Transactions on, vol. 17,
no. 6, pages 890�897, 2001. (Cited in page 49.)

[Newman 2002] Paul Newman, John Leonard, JD Tardó et José Neira. Explore and return:

Experimental validation of real-time concurrent mapping and localization. In Robotics
and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on,
volume 2, pages 1802�1809. IEEE, 2002. (Cited in page 53.)

[Nguyen 2013] Vu Anh Nguyen, Janusz A Starzyk et Wooi-Boon Goh. A spatio-temporal

Long-term Memory approach for visual place recognition in mobile robotic navigation.
Robotics and Autonomous Systems, vol. 61, no. 12, pages 1744�1758, 2013. (Cited in
page 33.)



248 Bibliography

[Nicolescu 2001] Monica N Nicolescu et Maja J Matari¢. Experience-based representation

construction: learning from human and robot teachers. In Intelligent Robots and
Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on, volume 2,
pages 740�745. IEEE, 2001. (Cited in page 81.)

[Nielsen 2005] Curtis W Nielsen, Michael Goodrich, Randall J Rupperet al. Towards facili-
tating the use of a pan-tilt camera on a mobile robot. In Robot and Human Interactive
Communication, 2005. ROMAN 2005. IEEE International Workshop on, pages 568�
573. IEEE, 2005. (Cited in page 47.)

[Nilsson 1984] Nils J Nilsson. Shakey the robot. Rapport technique, DTIC Document, 1984.
(Cited in page 72.)

[Nister 2006] David Nister et Henrik Stewenius. Scalable recognition with a vocabulary tree.
In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR'06), volume 2, pages 2161�2168. IEEE, 2006. (Cited in page 28.)

[Nüchter 2007] Andreas Nüchter, Kai Lingemann, Joachim Hertzberg et Hartmut Surmann.
6D SLAM�3D mapping outdoor environments. Journal of Field Robotics, vol. 24,
no. 8-9, pages 699�722, 2007. (Cited in page 44.)

[Nützi 2011] Gabriel Nützi, Stephan Weiss, Davide Scaramuzza et Roland Siegwart. Fusion
of IMU and vision for absolute scale estimation in monocular SLAM. Journal of
intelligent & robotic systems, vol. 61, no. 1-4, pages 287�299, 2011. (Cited in page 45.)

[Oh 2015] Jean H Oh, Arne Suppé, Felix Duvallet, Abdeslam Boularias, Luis E Navarro-
Serment, Martial Hebert, Anthony Stentz, Jerry Vinokurov, Oscar J Romero, Chris-
tian Lebiereet al. Toward Mobile Robots Reasoning Like Humans. In AAAI, pages
1371�1379, 2015. (Cited in page 63.)

[Ojala 2002] Timo Ojala, Matti Pietikäinen et Topi Mäenpää. Multiresolution gray-scale and

rotation invariant texture classi�cation with local binary patterns. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 24, no. 7, pages 971�987, 2002.
(Cited in page 63.)

[O'Keefe 1971] John O'Keefe et Jonathan Dostrovsky. The hippocampus as a spatial map.

Preliminary evidence from unit activity in the freely-moving rat. Brain research,
vol. 34, no. 1, pages 171�175, 1971. (Cited in page 33.)

[O'Keefe 1976] John O'Keefe. Place units in the hippocampus of the freely moving rat. Ex-
perimental neurology, vol. 51, no. 1, pages 78�109, 1976. (Cited in page 34.)

[O'keefe 1978a] J O'keefe et DH Conway. Hippocampal place units in the freely moving rat:

why they �re where they �re. Experimental Brain Research, vol. 31, no. 4, pages
573�590, 1978. (Cited in page 34.)

[O'keefe 1978b] John O'keefe et Lynn Nadel. The hippocampus as a cognitive map. Oxford
University Press, USA, 1978. (Cited in page 34.)



Bibliography 249

[Oleynikova 2015] Helen Oleynikova, Michael Burri, Simon Lynen et Roland Siegwart. Real-
time visual-inertial localization for aerial and ground robots. In Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages 3079�3085.
IEEE, 2015. (Cited in page 56.)

[Panzieri 2002] Stefano Panzieri, Federica Pascucci et Giovanni Ulivi. An outdoor navigation

system using GPS and inertial platform. Mechatronics, IEEE/ASME Transactions
on, vol. 7, no. 2, pages 134�142, 2002. (Cited in page 45.)

[Parra 2010] Ignacio Parra, MA Sotelo, David Fernández Llorca et Manuel Ocaña. Robust

visual odometry for vehicle localization in urban environments. Robotica, vol. 28,
no. 03, pages 441�452, 2010. (Cited in page 52.)

[Payton 1992] David W Payton, David Keirsey, Dan M Kimble, Jimmy Krozel et J Ken-
neth Rosenblatt. Do whatever works: A robust approach to fault-tolerant autonomous

control. Applied Intelligence, vol. 2, no. 3, pages 225�250, 1992. (Cited in page 80.)

[Perera 2011] Samunda Perera et Ajith Pasqual. Towards realtime handheld MonoSLAM in

dynamic environments. In Advances in Visual Computing, pages 313�324. Springer,
2011. (Cited in page 56.)

[Peretroukhin 2015] Valentin Peretroukhin, Lee Clement, Matthew Giamou et Jonathan
Kelly. PROBE: Predictive robust estimation for visual-inertial navigation. In In-
telligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on,
pages 3668�3675. IEEE, 2015. (Cited in page 56.)

[Peter Bonasso 1997] R Peter Bonasso, R James Firby, Erann Gat, David Kortenkamp,
David P Miller et Mark G Slack. Experiences with an architecture for intelligent,

reactive agents. Journal of Experimental & Theoretical Arti�cial Intelligence, vol. 9,
no. 2-3, pages 237�256, 1997. (Cited in page 77.)

[Pirjanian 1999] Paolo Pirjanian. Behavior coordination mechanisms-state-of-the-art. Rap-
port technique, Citeseer, 1999. (Cited in page 80.)

[Qin 2013] Baoxing Qin, Zhuang Jie Chong, Tirthankar Bandyopadhyay et Marcelo H Ang.
Metric mapping and topo-metric graph learning of urban road network. In 2013 6th
IEEE Conference on Robotics, Automation and Mechatronics (RAM), pages 119�123.
IEEE, 2013. (Cited in page 48.)

[Quirk 1990] Gregory J Quirk, Robert U Muller et John L Kubie. The �ring of hippocam-

pal place cells in the dark depends on the rat's recent experience. The Journal of
Neuroscience, vol. 10, no. 6, pages 2008�2017, 1990. (Cited in page 35.)

[Qureshi 2004] Faisal Qureshi, Demetri Terzopoulos et Ross Gillett. The cognitive controller:
a hybrid, deliberative/reactive control architecture for autonomous robots. In Innova-
tions in Applied Arti�cial Intelligence, pages 1102�1111. Springer, 2004. (Cited in
page 77.)



250 Bibliography

[Ramaithitima 2016] Rattanachai Ramaithitima, Michael Whitzer, Subhrajit Bhattacharya
et Vijay Kumar. Automated Creation of Topological Maps in Unknown Environments

Using a Swarm of Resource-Constrained Robots. IEEE Robotics and Automation
Letters, vol. 1, no. 2, pages 746�753, 2016. (Cited in page 48.)

[Ramos 2012] Fabio Ramos, Ben Upcroft, Suresh Kumar et Hugh Durrant-Whyte. A

Bayesian approach for place recognition. Robotics and Autonomous Systems, vol. 60,
no. 4, pages 487�497, 2012. (Cited in page 33.)

[Rasmussen 2014] Christopher Rasmussen, Yan Lu et Mehmet Kocamaz. A trail-following

robot which uses appearance and structural cues. In Field and Service Robotics, pages
265�279. Springer, 2014. (Cited in page 21.)

[Redish 1997] A David Redish et David S Touretzky. Cognitive maps beyond the hippocampus.
Hippocampus, vol. 7, no. 1, pages 15�35, 1997. (Cited in page 33.)

[Rencken 1993] Wolfgang D Rencken. Concurrent localisation and map building for mobile

robots using ultrasonic sensors. In Intelligent Robots and Systems' 93, IROS'93.
Proceedings of the 1993 IEEE/RSJ International Conference on, volume 3, pages
2192�2197. IEEE, 1993. (Cited in page 53.)

[Ribas 2008] David Ribas, Pere Ridao, Juan Domingo Tardós et José Neira. Underwater

SLAM in man-made structured environments. Journal of Field Robotics, vol. 25,
no. 11-12, pages 898�921, 2008. (Cited in page 44.)

[Ribeiro 2015] Fernando Ribeiro, Susana Brandao, Joao P Costeira et Manuela Veloso. Global
localization by soft object recognition from 3D Partial Views. In Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages 3709�3714.
IEEE, 2015. (Cited in page 53.)

[Rodríguez-Piñeiro 2011] José Rodríguez-Piñeiro, Pedro Comesaña-Alfaro, Fernando Pérez-
González et Alberto Malvido-García. A new method for perspective correction of docu-

ment images. In IS&T/SPIE Electronic Imaging, pages 787410�787410. International
Society for Optics and Photonics, 2011. (Cited in page 140.)

[Rolls 1999] Edmund T Rollset al. Spatial view cells and the representation of place in the

primate hippocampus. Hippocampus, vol. 9, no. 4, pages 467�480, 1999. (Cited in
page 34.)

[Rosen 2016] David M Rosen, Julian Mason et John J Leonard. Towards Lifelong Feature-

Based Mapping in Semi-Static Environments. In International Conference on Robotics
and Automation (ICRA). IEEE, 2016. (Cited in page 48.)

[Rosenblatt 1997] Julio K Rosenblatt. DAMN: A distributed architecture for mobile naviga-

tion. Journal of Experimental & Theoretical Arti�cial Intelligence, vol. 9, no. 2-3,
pages 339�360, 1997. (Cited in page 80.)



Bibliography 251

[Ross 2008] David A Ross, Jongwoo Lim, Ruei-Sung Lin et Ming-Hsuan Yang. Incremental
learning for robust visual tracking. International Journal of Computer Vision, vol. 77,
no. 1-3, pages 125�141, 2008. (Cited in page 30.)

[Rosten 2006] Edward Rosten et Tom Drummond. Machine learning for high-speed corner

detection. In European conference on computer vision, pages 430�443. Springer, 2006.
(Cited in page 27.)

[Royer 2007] Eric Royer, Maxime Lhuillier, Michel Dhome et Jean-Marc Lavest. Monocular

vision for mobile robot localization and autonomous navigation. International Journal
of Computer Vision, vol. 74, no. 3, pages 237�260, 2007. (Cited in page 45.)

[Rublee 2011] Ethan Rublee, Vincent Rabaud, Kurt Konolige et Gary Bradski. ORB: An

e�cient alternative to SIFT or SURF. In 2011 International conference on computer
vision, pages 2564�2571. IEEE, 2011. (Cited in page 28.)

[Rusiñol 2010] Marçal Rusiñol et Josep Lladós. Symbol spotting in digital libraries: Focused
retrieval over graphic-rich document collections. Springer Science & Business Media,
2010. (Cited in page 142.)

[Rusinol 2013] Marçal Rusinol, Dimosthenis Karatzas et Josep Lladós. Spotting graphical

symbols in camera-acquired documents in real time. In International Workshop on
Graphics Recognition, pages 3�10. Springer, 2013. (Cited in page 142.)

[Sa�otti 1997] Alessandro Sa�otti. The uses of fuzzy logic in autonomous robot navigation.
Soft Computing, vol. 1, no. 4, pages 180�197, 1997. (Cited in page 80.)

[Sala 2006] Pablo Sala, Robert Sim, Ali Shokoufandeh et Sven Dickinson. Landmark selection
for vision-based navigation. Robotics, IEEE Transactions on, vol. 22, no. 2, pages 334�
349, 2006. (Cited in page 61.)

[Sarkar 2005] Anjan Sarkar, Anjan Banerjee, Nilanjan Banerjee, Siddhartha Brahma, B Kar-
tikeyan, Manab Chakraborty et Kantilal L Majumder. Landcover classi�cation in

MRF context using Dempster-Shafer fusion for multisensor imagery. Image Process-
ing, IEEE Transactions on, vol. 14, no. 5, pages 634�645, 2005. (Cited in page 45.)

[Schmid 2000] Cordelia Schmid, Roger Mohr et Christian Bauckhage. Evaluation of interest

point detectors. International Journal of computer vision, vol. 37, no. 2, pages 151�172,
2000. (Cited in page 27.)

[Schmiedel 2015] Thomas Schmiedel, Erik Einhorn et Horst-Michael Gross. IRON: A fast

interest point descriptor for robust NDT-map matching and its application to robot

localization. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pages 3144�3151. IEEE, 2015. (Cited in page 54.)

[Schulz 2015] Ruth Schulz, Ben Talbot, Obadiah Lam, Feras Dayoub, Peter Corke, Ben Up-
croft et Gordon Wyeth. Robot navigation using human cues: a robot navigation sys-

tem for symbolic goal-directed exploration. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 1100�1105. IEEE, 2015. (Cited in page 49.)



252 Bibliography

[Schuurmans 2007] Li Cheng SVN Schuurmans et SW Caelli. Implicit online learning with

kernels. Advances in neural information processing systems, vol. 19, page 249, 2007.
(Cited in page 31.)

[Schwartz 1983] Jacob T Schwartz et Micha Sharir. On the �piano movers� problem. II.

General techniques for computing topological properties of real algebraic manifolds.
Advances in applied Mathematics, vol. 4, no. 3, pages 298�351, 1983. (Cited in
page 72.)

[Schweighofer 2006] Gerald Schweighofer et Axel Pinz. Robust pose estimation from a planar

target. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 28,
no. 12, pages 2024�2030, 2006. (Cited in page 62.)

[Se 2005] Stephen Se, David G Lowe et James J Little. Vision-based global localization and

mapping for mobile robots. Robotics, IEEE Transactions on, vol. 21, no. 3, pages
364�375, 2005. (Cited in page 55.)

[Shaikh 2013] Sayyan N Shaikh et Neelakantha V Londhe. OCR Based Mapless Navigation

Method of Robot. International Journal of Inventive Engineering and Sciences, vol. 1,
no. 8, pages 6�12, 2013. (Cited in page 63.)

[Sharif Razavian 2014] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan et Ste-
fan Carlsson. CNN features o�-the-shelf: an astounding baseline for recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 806�813, 2014. (Cited in page 33.)

[Shotton 2009] Jamie Shotton, John Winn, Carsten Rother et Antonio Criminisi. Textonboost
for image understanding: Multi-class object recognition and segmentation by jointly

modeling texture, layout, and context. International Journal of Computer Vision,
vol. 81, no. 1, pages 2�23, 2009. (Cited in page 63.)

[Siagian 2014] Christian Siagian, Chin Kai Chang et Laurent Itti. Autonomous mobile robot
localization and navigation using a hierarchical map representation primarily guided

by vision. Journal of Field Robotics, vol. 31, no. 3, pages 408�440, 2014. (Cited in
page 48.)

[Singh 2010] Krishna Kant Singh et Akansha Singh. A study of image segmentation algo-

rithms for di�erent types of images. International Journal of Computer Science, vol. 7,
no. 5, pages 414�417, 2010. (Cited in page 136.)

[Skinner 1974] B. F. Skinner. Behaviorism at �fty. New York,J. Norton Publishers, 1974.
(Cited in page 79.)

[Smith 1986] Randall C Smith et Peter Cheeseman. On the representation and estimation

of spatial uncertainty. The international journal of Robotics Research, vol. 5, no. 4,
pages 56�68, 1986. (Cited in page 53.)



Bibliography 253

[Smith 1990] Randall Smith, Matthew Self et Peter Cheeseman. Estimating uncertain spatial

relationships in robotics. In Autonomous robot vehicles, pages 167�193. Springer, 1990.
(Cited in page 55.)

[Sobel 1968] Irwin Sobel et Gary Feldman. A 3x3 isotropic gradient operator for image pro-

cessing. a talk at the Stanford Arti�cial Project in, pages 271�272, 1968. (Cited in
page 27.)

[Sola 2007] Joan Sola. Multi-camera VSLAM: from former information losses to self-

calibration. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), San Diego, CA, USA. Citeseer, 2007. (Cited in page 55.)

[Sotelo 2007] Miguel-angel Sotelo, Roberto García, Ignacio Parra, David Fernández, Miguel
Gavilán, Sergio Álvarez et José-eugenio Naranjo. Visual odometry for road vehi-

cles�feasibility analysis. Journal of Zhejiang University SCIENCE A, vol. 8, no. 12,
pages 2017�2020, 2007. (Cited in page 52.)

[Strasdat 2011] Hauke Strasdat, Andrew J Davison, JMM Montiel et Kurt Konolig. Double
window optimisation for constant time visual SLAM. In Computer Vision (ICCV),
2011 IEEE International Conference on, pages 2352�2359. IEEE, 2011. (Cited in
page 55.)

[Strasdat 2012] Hauke Strasdat, José MM Montiel et Andrew J Davison. Visual SLAM: why

�lter? Image and Vision Computing, vol. 30, no. 2, pages 65�77, 2012. (Cited in
page 58.)

[Sun 2001a] Ron Sun. Duality of the mind: A bottom-up approach toward cognition. Psy-
chology Press, 2001. (Cited in page 12.)

[Sun 2001b] Ron Sun, Edward Merrill et Todd Peterson. From implicit skills to explicit

knowledge: A bottom-up model of skill learning. Cognitive science, vol. 25, no. 2,
pages 203�244, 2001. (Cited in page 12.)

[Suzuki 1985] Satoshi Suzukiet al. Topological structural analysis of digitized binary images

by border following. Computer Vision, Graphics, and Image Processing, vol. 30, no. 1,
pages 32�46, 1985. (Cited in page 137.)

[Syed 1999] Nadeem Ahmed Syed, Huan Liu et Kah Kay Sung. Handling concept drifts in

incremental learning with support vector machines. In Proceedings of the �fth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
317�321. ACM, 1999. (Cited in page 30.)

[Takahashi 1989] Osamu Takahashi et Robert J Schilling. Motion planning in a plane us-

ing generalized Voronoi diagrams. Robotics and Automation, IEEE Transactions on,
vol. 5, no. 2, pages 143�150, 1989. (Cited in page 72.)

[Tardós 2002] Juan D Tardós, José Neira, Paul M Newman et John J Leonard. Robust

mapping and localization in indoor environments using sonar data. The International
Journal of Robotics Research, vol. 21, no. 4, pages 311�330, 2002. (Cited in page 44.)



254 Bibliography

[Tejera 2013] Gonzalo Tejera, Alejandra Barrera, Martin Llofriu et Alfredo Weitzenfeld. Solv-
ing uncertainty during robot navigation by integrating grid cell and place cell �ring

based on rat spatial cognition studies. In Advanced Robotics (ICAR), 2013 16th In-
ternational Conference on, pages 1�6. IEEE, 2013. (Cited in page 35.)

[Thorndike 1913] Edward L Thorndike. Educational psychology, Vol 2: The psychology of

learning. 1913. (Cited in page 79.)

[Thrun 2005] Sebastian Thrun, Wolfram Burgard et Dieter Fox. Probabilistic robotics. MIT
press, 2005. (Cited in page 52.)

[Thrun 2006] Sebastian Thrun et Michael Montemerlo. The graph SLAM algorithm with

applications to large-scale mapping of urban structures. The International Journal of
Robotics Research, vol. 25, no. 5-6, pages 403�429, 2006. (Cited in page 44.)

[Thrun 2008] Sebastian Thrun et John J Leonard. Simultaneous localization and mapping.
In Springer handbook of robotics, pages 871�889. Springer, 2008. (Cité en pages 55
et 56.)

[Tipaldi 2013] Gian Diego Tipaldi, Daniel Meyer-Delius et Wolfram Burgard. Lifelong local-
ization in changing environments. The International Journal of Robotics Research,
vol. 32, no. 14, pages 1662�1678, 2013. (Cited in page 57.)

[Tolman 1948] Edward C Tolman. Cognitive maps in rats and men. Psychological review,
vol. 55, no. 4, page 189, 1948. (Cited in page 33.)

[Torii 2013] Akihiko Torii, Josef Sivic, Tomas Pajdla et Masatoshi Okutomi. Visual place

recognition with repetitive structures. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 883�890, 2013. (Cité en pages 28 et 32.)

[Ulanovsky 2007] Nachum Ulanovsky et Cynthia F Moss. Hippocampal cellular and network

activity in freely moving echolocating bats. Nature neuroscience, vol. 10, no. 2, pages
224�233, 2007. (Cité en pages 34 et 35.)

[Ullah 2008] Muhammad Muneeb Ullah, Andrzej Pronobis, Barbara Caputo, Jie Luo, Patric
Jensfelt et Henrik I Christensen. Towards robust place recognition for robot localization.
In Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on,
pages 530�537. IEEE, 2008. (Cited in page 33.)

[Valiente 2015] David Valiente, Maani Gha�ari Jadidi, Jaime Valls Miró, Arturo Gil et Oscar
Reinoso. Information-based view initialization in visual SLAM with a single omnidi-

rectional camera. Robotics and Autonomous Systems, 2015. (Cited in page 46.)

[Vardy 2003] Andrew Vardy et Franz Oppacher. Low-level visual homing. In Advances in
Arti�cial Life, pages 875�884. Springer, 2003. (Cited in page 62.)

[Wang 2012] Yin-Tien Wang, Chung-Hsun Sun et Ming-Jang Chiou. Detection of moving

objects in image plane for robot navigation using monocular vision. EURASIP Journal



Bibliography 255

on Advances in Signal Processing, vol. 2012, no. 1, pages 1�22, 2012. (Cited in
page 46.)

[Warren 2014] Michael Warren, David McKinnon, Hu He, Arren Glover, Michael Shiel et
Ben Upcroft. Large scale monocular vision-only mapping from a �xed-wing sUAS. In
Field and Service Robotics, pages 495�509. Springer, 2014. (Cited in page 56.)

[Weber 2012] Jonathan Weber et Salvatore Tabbone. Symbol spotting for technical docu-

ments: An e�cient template-matching approach. In ICPR, pages 669�672, 2012.
(Cited in page 142.)

[Wehner 1979] R Wehner et F Räber. Visual spatial memory in desert ants, Cataglyphis

bicolor (Hymenoptera: Formicidae). Experientia, vol. 35, no. 12, pages 1569�1571,
1979. (Cited in page 25.)

[Wiener 1961] Norbert Wiener. Cybernetics or control and communication in the animal and
the machine, volume 25. MIT press, 1961. (Cited in page 71.)

[Williams 2008] Brian Williams, Mark Cummins, José Neira, Paul Newman, Ian Reid et Juan
Tardós. An image-to-map loop closing method for monocular SLAM. In Intelligent
Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages
2053�2059. IEEE, 2008. (Cited in page 56.)

[Wu 2009] Jianxin Wu, Henrik I Christensen et James M Rehg. Visual place categorization:
Problem, dataset, and algorithm. In 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4763�4770. IEEE, 2009. (Cited in page 33.)

[Xiang 2015] Lingzhu Xiang, Zhile Ren, Mengrui Ni et Odest Chadwicke Jenkins. Robust

graph SLAM in dynamic environments with moving landmarks. In Intelligent Robots
and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages 2543�2549.
IEEE, 2015. (Cited in page 57.)

[Yartsev 2011] Michael M Yartsev, Menno P Witter et Nachum Ulanovsky. Grid cells without
theta oscillations in the entorhinal cortex of bats. Nature, vol. 479, no. 7371, pages
103�107, 2011. (Cited in page 35.)

[Yartsev 2013] Michael M Yartsev et Nachum Ulanovsky. Representation of three-dimensional
space in the hippocampus of �ying bats. Science, vol. 340, no. 6130, pages 367�372,
2013. (Cited in page 35.)

[Yavuz 2002] H Yavuz et A Bradshaw. A new conceptual approach to the design of hybrid

control architecture for autonomous mobile robots. Journal of Intelligent and Robotic
Systems, vol. 34, no. 1, pages 1�26, 2002. (Cited in page 77.)

[Yun 2008] Jooseop Yun et Jun Miura. A quantitative measure for the navigability of a mobile

robot using rough maps. In 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3458�3464. IEEE, 2008. (Cited in page 49.)



256 Bibliography

[Zhang 2012] Chi Zhang, Jing Xu, Ning Xi, Yunyi Jia et Weixian Li. Development of an omni-
directional 3D camera for robot navigation. In Advanced Intelligent Mechatronics
(AIM), 2012 IEEE/ASME International Conference on, pages 262�267. IEEE, 2012.
(Cited in page 46.)

[Zhang 2015] Qiwen Zhang, Ioannis Rekleitis et Gregory Dudek. Uncertainty reduction via

heuristic search planning on hybrid metric/topological map. In Computer and Robot
Vision (CRV), 2015 12th Conference on, pages 222�229. IEEE, 2015. (Cited in
page 48.)

[Zhou 2003] Chao Zhou, Yucheng Wei et Tieniu Tan. Mobile robot self-localization based

on global visual appearance features. In Robotics and Automation, 2003. Proceedings.
ICRA'03. IEEE International Conference on, volume 1, pages 1271�1276. IEEE, 2003.
(Cited in page 62.)

[Zingg 2010] Simon Zingg, Davide Scaramuzza, Stephan Weiss et Roland Siegwart. MAV

navigation through indoor corridors using optical �ow. In Robotics and Automation
(ICRA), 2010 IEEE International Conference on, pages 3361�3368. IEEE, 2010. (Cited
in page 60.)



Appendix A

Appendix

A.1 Rhizome Architecture Optimization

A.1.1 Lost Sign Searching Re�ex Behavior (LSSRB)

In order to overcome the problem related to the loss of sight of the current sign due to lighting
variation or other reason, and additional re�ex behavior layer was integrated to the already
in-built layers of the behavioral module.

The overall layer is composed of seven neural groups which some are connected to some
groups of the three already built-in layers as illustrated in �gure A.9. Therefore, it has not
input units.

The layer is in charge of controlling a re�ex movement of the robot whenever it loses the
sight of the current sign. This case is prone to happen when the robot is approaching the
sign. As explained in the TARB layer, the robot approaches it by performing some left, right
or straight ahead movements allowing it to have the sign centered within its �eld of view.
However, at some point, it is possible that the sign gets out of view after the performance of
any of these movements.

Therefore, in order to look again for the same sign, a logical solution is here considered.
In fact, by performing the exact opposite movement where the robot last saw the sign, there
is a high probability of �nding it again. To this end, it is necessary to keep in memory the
activity of the performed movements at every perception-action cycle. This is done in the
Memory position group.

Additionally, it is necessary to know that the sign has not been recognized at all in order
to start searching for it. Therefore, the layer is connected to the sign recognition detector

group of the DDRB layer whose deactivation (sign not recognized) triggers the activation of
the search movements. However, since the lack of a sign in the environment could also mean
that the robot is looking for the next expected sign (see DDRB layer), it is important for the
robot to be able to distinguish each situation.

This is possible by using the sign lost memory group storing the information of the
current perceived sign until the robot has achieved it trhough the connection of two groups
of the SRMA layer. Hence, if the sign stored in the short memory group and transferred
to the WTA group is the same as the expected sign at the time there is no sign recognized
in the environment, then the sign is considered lost on the way.

Otherwise, if the expected sign is di�erent from the stored, it would simply mean that
the robot is looking for the next expected sign after having attaint the current one.

Internal units

Sign Lost Memory group: It stores the current expected sign that it is being perceived
by the robot. It has two inputs coming from the SRMA layer: on one side, the sign sequence
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Sign Sequence

WTA

Sign Lost Memory

Sign Lost Detector

Trigger Search

Reflex 

Output 

Search Left

Reflex 

Output 

Search Right

SRMA

Reflex Output 

Position 

Sign recognition DDRB

TARB

Trigger Reflex 

No Sign 

Position

Memory 

Position

Lost Sign Searching Reflex Behavior (LSSRB)

Figure A.1: Detailed view of the Lost Sign Searching Re�ex Behavior (LSSRB) layer com-
posed of seven neural groups.

group indicating the expected sign to be found and on the other side the �rst WTA group

indicating the sign neuron that is currently being perceived. By considering a threshold
allowing this group to be activated only when both inputs are activated, it is possible to
know that the robot has lost or not the sign from its �eld of view. If it has indeed lost it, it is
possible to still know which sign it was previously looking for as it has been kept in memory.

Sign Lost Detector group: It consist of a single neuron serving, as its names indicates
it, as a detector of a lost sign regardless the sign. The activation of a single neuron is su�cient
to activate this group.

A zoom view of these two groups in the layer is illustrated in �gure A.2.

Trigger search group:This neural group is essential in the functionality of the whole
layer as it is in charge of triggering the activation of the re�ex output search (left or

right) groups when it is necessary. It receives as input the information coming from the
sign lost detector group and the sign recognition group. This latter is linked by an
inhibitory connection allowing the activation of the trigger search group when no sign has
been recognized which itself inhibits the activation of the re�ex movements of the DDRB
layer through the trigger re�ex group (see �gure A.3).
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WTA Sign Lost Memory

Sign Lost Detector
SRMA

Sign Sequence

Lost Sign Searching Reflex Behavior (LSSRB)

Figure A.2: Activity and connection of the Sign Lost Memory group connected to the Sign
sequence group of the SRMA layer and the Sign Lost detector group connected to the �rst
WTA group of the SRMA layer.

Sign recognition DDRB Trigger Reflex 

Trigger Search

Reflex 

Output 

Search Left

Reflex 

Output 

Search Right

Lost Sign

Searching Reflex 

Behavior (LSSRB)

Sign Lost Detector

Figure A.3: Activity of the trigger search group.When activated, it inhibits the activity of
the re�ex movement performed by the DDRB.

Memory Position group: This group is composed of the same number of neurons as
the re�ex output position of the TARB layer to which it is connected. They correspond to



260 Appendix A. Appendix

the three possible movements allowing the robot to walk while approaching the sign: right,
straight ahead and left. The connection is made such that it keeps in memory the most
recent movement performed by the robot while walking but in the neuron corresponding to
the opposite side (i.e. left neuron in the re�ex output position activates the right neuron
in this memory position group.The straight-ahead movement neuron remains intact (see
�gure A.4).

NoSignPosition group: This group allows triggering the activation of the correspond-
ing neuron in the memory position group only when no sign is recognized at all within the
robot's �eld of view. In fact, since it is connected to all three neurons of the re�ex output

position via an inhibitory link, it is possible to detect whether a sign, wherever it is posi-
tioned within the robot's �eld of view, is recognized or not.

Reflex Output 

Position 
TARB

No Sign Position

Memory 

Position

Trigger Search

Reflex 

Output 

Search Left

Reflex Output 

Search Right

Lost Sign Searching

Reflex Behavior (LSSRB)

Figure A.4: Activity of the Memory Position group and its connection to the output units.
The position is stored according to the last opposed movement. For instance if the robot last
movement was to the right, then the movement to be performed to �nd again the sign would
be to the left and Vice-versa

Output units

Re�ex Output Search Left group: This single-neuron group allows the robot to perform
a rotatory re�ex movement to the left whenever the last performed robot movement was
performed to the opposite side (right).

Re�ex Output Search Right group: This single-neuron group allows the robot to
perform a rotatory re�ex movement to the left whenever the last performed robot movement
was performed to the opposite side (to the left) as well as straight ahead.

Both Re�ex Output search groups are linked to the Motor Output in order to execute
the movements (left or right). The re�ex movement to the left being already encoded in the
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Motor Output, a simple excitatory connection linking the corresponding neuron to the re�ex
output search left is enough. Moreover, a new neuron is added in the Motor Output group
in order to encode the right re�ex movement triggered by the Re�ex Output Search Right
group. Figure A.5 illustrates the convergence of this layer in the Motor Output group holding
an additional neuron movement.

Reset

Learned

Output

Direction

Reflex Output 

Direction 

Reflex Output 

Position

Motor Output

Proximity 

Sensor 

Reflex Output 

Search Left

Reflex Output 

Search Right

Figure A.5: Convergence of both re�exoutput Search groups (left and right) in the Motor
Output (MO) group. A Re�ex movement to the right neuron has been added to the �nal
Motor Output(MO)

Finally, in order to be coherent with the rest of the architecture a new neural group Reset
Memory group was added and the connection of the other reset groups was readjusted as
illustrated in �gure A.6.

The complete architecture as illustrated in the introduction is depicted in �gure A.7 with
the new Lost Sign Searching Re�ex layer :
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Figure A.6: Connectivity of the three reset neuron groups used in the overall architecture.
Here, the third reset Memory has been added
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Figure A.7: General view of the complete Architecture. Rhizome 1 is composed of two
modules, one deliberative and one behavioral. This latter is composed of three re�ex behaviors
leyers and one recognition layer



A.2. TOOLBOX 263

A.2 TOOLBOX

A.2.1 SIFT : Scale-Invariant Feature Transform

The SIFT algorithm detects and computes a description of the interest points or so-called
key points in the SIFT framework. A key point is de�ned by its (x, y) coordinates within the
image and by its characteristic scaling factor (σ). A key point is a circular region of interest
which area radius is proportional to the scale factor.

The complete process follows mainly four steps that can be found in more detailed in
[Lowe 2004]:

A.2.1.1 Scale-space Extrema Detection

First, the problem of image scaling is solved by using a �lter in a discrete space called scale
space of three dimensions (x, y, σ). It uses Di�erence of Gaussians (DOG) in order to �nd
the local maxima across the scale and space. As result, it enhances the precision about the
location of detected key points while eliminating a number considered irrelevant.

To that end, the Gaussien-smooth image L results from the convolution between the
original image I and the Gaussian �lter G of parameter σ as shown in the equation.

L(x, y, σ) = G(x, y, σ) ∗ I(x, y)

After this operation, the image is smooth and all key points with a radius inferior to
sigma are eliminated. Then the detection of key points of dimension approximately equal to
σ is done by studying the image with di�erence of Gaussians with two di�erent σ, let it be
σ and kσ , de�ned as follows:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ)

As a result, only the objects that persist in the scale factors that vary between σ and
kσ are observable. Therefore, a key point candidate (x, y, σ) is de�ned as a point where an
extremum of the DOG is achieved in relation to its immediate neighbors, that is to say the
whole set composed of 26 points. For instance, one pixel in an image is compared with its
eight neighbors pixels of the same scale and the eighteen pixels of the next and previous scale
(nine and nine respectively). Then, if it is a local extrema, it is a potential keypoint, which
is best represented in that scale.

A.2.1.2 Keypoint Localization

In order to have accurate results about the keypoints, another process is applied on the
potential keypoints found in the previous stage. In fact, not all of them are quite stable and
their localization might be not be accurate. Therefore, by using taylor series expansion of
scale space, all low-contrast keypoints and edge keypoints are eliminated.
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A.2.1.3 Orientation Assignment

This step consist of assigning to each remaining keypoint, one or several orientations de-
pending only on the local content of the image in the vicinity of the key point at the given
scale factor. This stage is essential to ensure the invariance of the rotation. Hence, the same
descriptors should be able to be obtained from any image whatever its orientation is. To
that end, the gradient magnitude m(x, y) and direction θ(x, y) is calculated for each pixel in
the neighborhood of a given keypoint (x0, y0, σ0) of the Gaussien-smoothed image L(x, y, σ)

de�ned as follows:
m(x, y) =

√(
L(x+ 1, y)− L(x− 1, y)

)2
+
(
L(x, y + 1)− L(x, y − 1)

)2
θ(x, y) = arctan

(
L(x, y + 1)− L(x, y − 1), L(x+ 1, y)− L(x− 1, y)

)
∀(x, y)in the vecinity of (x0, y0)

Then, an orientation histogram with 36 bins covering 360 degrees is created. The bin
with the highest value in the histogram is considered as the dominant orientation and if any
other of them which value exceeds the 80 % of the dominant one, it is then use to calculate
other interest point with the same position and scale but with a di�erent orientation.

At the end of this stage, the keypoint is de�ned by four parameters:
(x0, y0, σ0, θ).

A.2.1.4 Keypoint Descriptor

Once the keypoint has been detected and its scale and rotation invariance has been ensured,
a unique signature associated to each keypoint is computed. To that end, a whole region
around the keypoint of 4 × 4 zones of 4 × 4 pixels each is considered. Then, for each zone,
an orientation histogram with 8 bins corresponding to 8 directions is computed (A.8). The
values added to each histogram bin are given by the gradient magnitude and orientation.
As a result, the 16 histograms each with 8 bins are stored in a vector to �nally provide the
keypoint SIFT descriptor of 128 dimensions. The high dimensionality describing a keypoint
makes of it a highly distinctive point invariant to the illumination, 3D viewpoint changes and
other minor variations besides the already mentioned scale and rotation variations. Figure
A.8 depicts the orientation histogram over 8 directions for each zone.

A.2.2 Bag of visual words

The bag of visual words model consist of two steps as shown in �gure 9. First, the con-
struction of a vocabulary allowing to identify the visual words by clustering the whole set
of features is extracted (1.a) according to their similarity (1.b). Second, the assignment of
features of the new images to the cluster with the closest centroid (2.a), followed by the
histogram of the number of occurrences of the features in the given image (2.b). The main
advantages of this method is its simplicity, its computational e�ciency and its invariance to
a�ne transformation, occlusion, lighting and intra class variation. Therefore, even though
the complete process converges upon the categorization of images, our method uses the same
process with a slight modi�cation at the end, but instead, to converge upon the creation of
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Figure A.8: SIFT descriptor construction with its corresponding histogram.

natural landmarks characterized by the presence or absence of some visual words, the detailed
description of which is given in the implementation part (section 4.2.2.4).

A.2.2.1 Vocabulary construction

The construction of the vocabulary requires a quantization of the representation space of the
local descriptors. More precisely, it requires the construction of a function of the represen-
tation space (Space in 128 dimensions in our case) towards a discreet space of labels. The
visual words of a vocabulary are created to model the local descriptors from the query images.
Therefore, the vocabulary must be adapted to the images that are to be processed. To this
end, a set of template images is necessary. The most common method to build a vocabulary
consist of extracting the descriptors from the template images and �nd similarity among
them. Then, by means of clustering algorithms, all similar descriptors are grouped into a k
number of clusters. The total number of clusters is the size of the vocabulary and each of
them has a center descriptor, which represents all the descriptors belonging to that cluster.
Even though it is the most representative descriptor, it does not necessarily mean that the
descriptors exists within the cluster, it might just be computed as the closest representation
of all the others descriptors. Most of the methods proposed to quantify the local representa-
tions, use the k-means algorithm applied to local descriptors. Indeed, this combination of the
use of feature detectors and the k- means algorithm for clustering has become very popular
in the representation of bag-of-words.
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Figure A.9: Bag-of-visual words. First, the construction of a vocabulary allowing to identify
the visual words by clustering the whole set of features is extracted (1.a) according to their
similarity (1.b). Second, the assignment of features of the new images to the cluster with the
closest centroid (2.a), followed by the histogram of the number of occurrences of the features
in the given image (2.b).

A.2.2.2 K-means algorithm for clustering

K-means is an unsupervised learning algorithm that classi�es a given set of data into a certain
number of k clusters �xed in advance. It consist of mainly three steps. At �rst, it randomly
chooses k samples(here descriptors) from the given data and assigns each of them to each
created cluster. The clusters are the seed classes and the chosen samples are the centroids.
Once the centroids initialization is over, the two following steps are performed in a loop: First,
the distance between each sample and the centroids is measured and whenever it is minimal,
the sample is assigned to the class comprising the nearest centroid. Then, new centroids are
computed as barycenters of the clusters computed in the previous step by taking the mean
value of all the samples belonging to the corresponding class. As a result, the k centroids
change their positions after repetition of the last two steps. Thereafter, the loop goes on
until the position of the resulting k centroids do not change signi�cantly with respect to the
last computed centroids. Thereafter, the same label is given to represent each class and its
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corresponding elements. The distance is computed as the sum of the squared error:

n∑
i=0

min
(
‖xj − ci‖2

)
xj data samples
ci the centroid
‖xj − ci‖ the distance between a data sample

In our case, since the samples are given by the descriptors in 128 dimensions, the distance
is computed by comparing all 128 values. The k-means algorithm will always converge after
several iterations. However, it might only be a local minimum. The result highly relies on the
initialization of the centroids. Therefore, it usually chooses the initial centroids distant from
each other and the computation is performed many times by using di�erent initializations of
the centroids to �nally choose the best one.

A.2.2.3 Image representation by Histogram

Once the vocabulary has been built, all new images can be described based on the same visual
keypoints. To this end, the query images go under the same process of feature extraction
described above and the Euclidean distance is computed between each descriptor and the �nal
centroids of the vocabulary. Thus, the new descriptors are assigned to the class corresponding
to the nearest centroid. Thereafter, the image can be represented by the histogram, which is
computed by counting the number of descriptors assigned to each class. The number of class
correspond to the total number of clusters in the vocabulary and bins in the histogram.

A.2.3 Adaptive Resonance Theory (ART)

The ART system represents a family of neural networks which uses supervised and unsuper-
vised learning methods that cope with the plasticity-stability dilemma when addressing the
problem of pattern recognition. The theory develops some aspects of the learning process
computed by the human brain. Indeed, the incoming information is stored in clusters or
categories that are constantly modi�ed according to the new input elements. This occurs as
a result of the comparison between the learned prototype and the sensory information. It
is said that the system �resonates� when a category prototype resembles su�ciently to the
current input vector and it is then when the learning takes place. Thus, only when the system
is in a resonant state it can learn.

The basic ART is based on an unsupervised model and has a self-regulating control
structure that allows a stable autonomous recognition and learning. It is mainly composed
of four components: a comparison vector �eld, a recognition �eld, a vigilance parameter
and a reset module as seen in �gure A.10. Both, the comparison and recognition �elds
are composed of a set of neurons encoding respectively the input vectors and the category
to which the input vectors are classi�ed. The vigilance parameter works as a threshold of
similarity between the input vectors and the categories and the reset module compares the
threshold value to the strength of the recognition match after the input vectors are classi�ed.
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The value of the �vigilance parameter� is quite essential on the recognition task. The memory
can be re�ned or generalized depending on the chosen value. Hence, a higher value produce
the creation of many categories whereas a low value results in fewer categories.

Consequently, whenever the comparison �eld receives an input vector, it transfers it to
the neuron in the recognition �eld whose set of weight matches the best to the input. Then, a
lateral inhibition process takes places in the recognition �eld and only one neuron is activated.
Subsequently, its resulting match value is compared to the vigilance term and only if it
is within the normal range, training can take place by adjusting the weights of the �ring
recognition neuron towards the features of the input vector. Otherwise, if the comparison is
below the threshold value, the �ring recognition neuron is inhibited and a new cluster neuron
is created in the recognition �eld and its weights are adjusted to match the input vector.

Since, new categories can be formed when the input vector does not match the information
previously learned without modifying the stored input vectors unless they are su�ciently
similar, the ART network has both plasticity and stability and can be used as model in the
context of our work.

Figure A.10: ART Adaptive Resonance Theory

A.2.4 Object recognition

Depending on the approach or the desired task, di�erent methods can be used allowing object
recognition. Over the past decades, several methods have been proposed in the literature
giving a big variety of choices with respect to the application. For instance, [Grauman 2011]
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introduce in their book �Visual Object recognition� some of the most common algorithms for
object recognition based on the advances in the computer vision literature of the last decade
or so. They structure their lecture according to two types of recognition. The speci�c type,
where the aim is to recognize an instance of a particular object and the generic category, which
aims at recognizing di�erent instances of a category that belongs to the same conceptual class.

Even though this distinction is important, mainly when working with image categoriza-
tion, we have observed that the algorithms used for the speci�c case are usually also used for
the generic one. For further details, the reader can refer to the literature mentioned in �gure
A.11. The list being non-exhaustive the reader can also refer to object recognition outside
references for more details.
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Figure A.11: Object recognition litterature divided into windows-based and part-based object
representation



Appendix B

Traduction française



 Contexte 
 

La navigation robotique peut se définir comme un processus permettant à un robot mobile de 

se déplacer de manière autonome d'un point de départ vers une destination finale en utilisant 

des données sensorielles sur son environnement qui, dans la plupart des cas, peut être qualifié 

de dynamique et d’imprévisible. 

Des robots mobiles, munis de roues ou bipèdes, sont utilisés dans des applications très 

diverses, dans des contextes militaires, civils ou industriels, à vocation de production, d’aide à 

la sécurité ou d’assistance. Il existe différentes approches de la navigation, elles ont toutes 

comme objectif commun de conduire le robot à sa destination finale d’une façon sûre. 

Afin de mieux discerner ces approches, ainsi que la motivation de ce travail, les éléments 

relatifs à la navigation sont présentés ci-dessous à travers un scénario quotidien de navigation. 

Imaginez que vous arriviez pour la première fois devant un grand bâtiment inconnu et 

que vous soyez tenu de trouver votre chemin à l’intérieur de celui-ci jusqu’à une 

destination finale. Selon le but de votre visite, les contraintes de temps et l'information 

dont vous disposez sur le bâtiment, plusieurs stratégies peuvent être envisagées. Vous 

pouvez par exemple utiliser un plan du bâtiment (navigation à partir d’un plan). Grâce 

à celui-ci, vous êtes capable de planifier (planification hors ligne) le chemin qui vous 

conduira à la destination désirée. Il est possible de lire le plan dès l'entrée du bâtiment 

ou bien de l'imprimer ou encore d’en disposer sous format numérique sur un téléphone 

ou une tablette. Dans le premier cas, un effort de mémorisation est nécessaire : 

localisation d’amers susceptibles d’être aperçus dans l’environnement, distance à 

parcourir entre eux...  

 

Si le plan ou une version à jour de celui-ci n’est pas disponible, il est toujours possible 

de le construire (navigation s’appuyant sur la construction d’un plan) simultanément à 

votre navigation et à l’apprentissage de la trajectoire vous conduisant (planification de 

chemin en ligne)  à votre destination finale. 

Dans les cas de navigation à l’aide d’un plan ou en s’appuyant sur la construction 

d’un plan, les plans, ou plus généralement les cartes, peuvent disposer d’une métrique 

(carte métrique) ou montrer simplement une suite de repères et de lieux importants 

localisés par rapport à un point de référence (carte topologique). 

Une option différente serait de trouver la destination sans utiliser de plan (navigation 

sans l’aide d’un plan) en explorant le bâtiment selon diverses heuristiques. En gardant 

en mémoire des points de repère, vous construisez ainsi votre propre trajectoire au fur 

et à mesure de votre avancée (planification de chemin en ligne) jusqu'à arriver 

finalement à votre destination. 

Les approches décrites ci-dessus peuvent être utilisées dans des environnements aussi bien 

intérieur qu’extérieur. Chacun d’eux présente ses avantages et inconvénients. 

Par exemple, bénéficier du plan en amont de la navigation vous permet d'atteindre plus 

rapidement la destination désirée. A tout moment il vous est possible également de connaître 



votre position relativement au plan. Il est cependant nécessaire que ce plan ait été 

préalablement construit et que l’environnement soit resté identique. 

Construire votre propre plan en fonction de ce que vous percevez pendant la navigation vous 

permet de mettre à jour la base de connaissance sur le bâtiment et de transcrire en temps réel 

la trajectoire la plus adéquate compte-tenu des éventuelles modifications rencontrées. 

Toutefois, une construction online nécessite temps et efforts, et peut s’avérer complexe à 

mener si votre propre position n’est pas clairement connue relativement au point de départ ou 

d’arrivée.  

De manière identique à l’approche précédente, naviguer sans carte à l’aide d’heuristique peut 

conduire à découvrir plusieurs options de chemins possibles, dont certaines permettent de  

contourner des obstacles rencontrés. Suivant les heuristiques choisies, cette tâche requiert un 

temps d’exploration plus ou moins conséquent pour découvrir les solutions potentielles. Il est 

également nécessaire de munir ces heuristiques d’effets mémoire afin de diminuer de manière 

conséquente le temps d’exploration lors d’un second parcours ou si vous souhaitez préciser à 

chaque instant le chemin choisi.  

Dans le contexte de la navigation autonome de robots mobiles, de nombreux systèmes 

cherchent à apporter une solution en utilisant une des stratégies décrites ci-dessus. Le 

processus de navigation implique généralement l'utilisation d’une représentation spatiale de 

l’environnement, de la localisation et de la planification des trajectoires afin d'exécuter 

l'action appropriée en fonction des informations perçues de l'environnement sans aide 

continue extérieure.  

 

Chaque module fonctionnel intégrant le système est en lui-même un vaste champ de 

recherche. Les relations entre eux et les moyens d'intégration sont définis par une architecture 

de contrôle. Dans certains cas, dépendant de l'architecture de commande ou de la stratégie de 

navigation choisie, un ou plusieurs modules peuvent être omis dans le processus global. 

 

L’architecture de contrôle représente l’élément essentiel dans la définition du système 

complet de navigation. Elle impose des contraintes fortes sur la façon dont celui-ci peut être 

contrôlé. Sa complexité dépend, dans une large mesure, des spécificités et des capacités des 

systèmes robotiques dont les actions doivent s’exécuter la plupart du temps simultanément et 

de manière asynchrone. La manière dont elle organise, unifie et contrôle les différents 

modules pour une stratégie de navigation efficace est fortement déterminée et limitée par le 

champ applicatif et la mise en œuvre de la plateforme robotique. Par conséquent, les 

systèmes robotiques peuvent être classés en fonction de ces deux facteurs. 

Selon le point de vue du champ applicatif, différents scénarios auxquels sont soumis les 

systèmes robotiques tels que les robots industriels, domestiques ou ménagers, de service, 

militaires ou encore spatiaux, doivent être pris en considération. Par exemple, dans le cas des 

scénarios déterministes où l'environnement reste identique/stationnaire, la tâche planifiée de 

navigation peut être grandement simplifiée si une représentation du monde, un plan par 

exemple, est fournie initialement.  

Au contraire des scénarios stochastiques, et donc plus réalistes, tels que ceux rencontrés lors 

d’opérations de recherche et de sauvetage de victimes de catastrophes, où les systèmes 

robotiques doivent faire face à des situations imprévues et donc réagir en conséquence. Les 

réponses ou temps de navigation peuvent alors être très variables selon les difficultés 



rencontrées. Les robots se doivent donc d’avoir des capacités décisionnelles pour les tâches 

qui leur incombent, notamment celles relatives à la navigation.  

 

Du point de vue de la mise en œuvre de la plateforme robotique, les systèmes robotiques 

(robots munis de roues, robots bipèdes (humanoïdes), robots marins (sous-marins), robots 

aériens, etc.) ont besoin de contrôler des composants physiques tels que des capteurs, des 

actionneurs, des processeurs afin d'interagir en temps réel avec leur environnement incertain 

et souvent dynamique. De plus, les contraintes des systèmes embarqués autonomes exigent 

que les architectures soient suffisamment flexibles pour permettre le remplacement de 

composants sur le terrain, et aisément adaptables à différentes plateformes pour des missions 

variées. 

Pour gérer une telle complexité, de nombreuses architectures et composants logiciels et 

matériels associés ont été proposés. La plupart des architectures de contrôle se sont révélées 

performantes dans le contexte applicatif pour lequel elles avaient été conçues, et ceci 

indépendamment de la plateforme. Cependant, actuellement, aucune de ces architectures de 

contrôle n'excelle sur un large éventail d’applications. Elles échouent généralement lorsqu'un 

scénario différent se présente et que les caractéristiques de la plateforme ne sont plus en 

adéquation avec la tâche donnée.  

 

 Cadre de la thèse 
 

Puisqu’il existe une multitude de situations nécessitant autant de solutions architecturales et 

de mécanismes associés, une solution optimale serait de concevoir et de mettre en œuvre une 

architecture de contrôle aussi générique que possible, capable de répondre à toutes sortes de 

contraintes. Une telle architecture doit être suffisamment souple pour permettre l'intégration 

de nouveaux composants (matériels et logiciels) sans remettre en question ou modifier ceux 

déjà existants quelque soit leur niveau dans l’architecture; par conséquent elle doit offrir des 

mécanismes transparents de communication et d'échange de données ; elle doit apporter aux 

robots une capacité décisionnelle de haut niveau pour effectuer des actions adéquates tout en 

étant capable d'affiner et d'adapter ses comportements en fonction des objectifs assignés et des 

changements soudain de l'environnement.  

 

 

De plus, étant donné qu'une telle architecture exécute (parfois simultanément) des actions 

multiples, elle doit être suffisamment robuste pour gérer les priorités, les dysfonctionnements 

inattendus et la redondance des informations fournies par les sources de capteurs multiples 

tout en garantissant une performance suffisamment fiable et sans danger.  

La liste des propriétés et capacités qu’une telle architecture doit vérifiée est cependant infinie, 

même si nous n’en percevons qu’un nombre limité notamment pour des raisons 

technologiques, sociétales, éthique …  

Nous pourrions, de manière plus générale encore à l’architecture adaptée dotée de propriétés 

établies, réfléchir à une architecture adaptative capable de se transformer en fonction des 

conditions environnementales rencontrées ou de l’évolution des objectifs assignés.  



L'auteure de ces travaux de recherche est consciente que réussir à concevoir et à mettre en 

œuvre une telle architecture générique n'est pas une tâche aisée, et que si celle-ci est possible, 

beaucoup de temps, d’efforts et de ressources seront nécessaires pour y parvenir. Par 

conséquent, les travaux présentés dans cette thèse doivent être considérés comme un pas vers 

cet objectif : définir une architecture de contrôle robuste et efficace pour une navigation 

autonome de robots mobiles dans un contexte de différents scénarios. Pour ce faire, ce travail 

se concentre exclusivement sur les contraintes données par plusieurs domaines d'application. 

 

Le principal objectif de cette recherche est de proposer une nouvelle architecture de 

contrôle robotique capable de s'adapter à différents scénarios de navigation où un 

robot doit faire face à des situations inattendues. A cet effet, le travail présenté dans 

cette thèse a été mené dans un contexte de navigation à l’intérieur d’un bâtiment d’un 

robot humanoïde s’appuyant sur la perception visuelle, via une caméra comme seul 

capteur de perception. 

Deux scénarios très différents (dont beaucoup d'autres peuvent découler) sont ici 

considérés : 

1. Un scénario déterministe qui suppose que l’environnement reste toujours 

identique/stationnaire, 

2. Un scénario stochastique où le robot doit faire face à des imprévus au cours de sa 

navigation. 

La distinction de ces deux scénarios suggère implicitement qu'ils soient tous les deux définis 

par rapport à une connaissance préalable de l'environnement et à sa mise en correspondance 

avec sa perception réelle. Par conséquent lors de la navigation, le robot recherche 

l’information attendue dans son environnement et la compare avec celle perçue. 

1.  Ainsi, quand il y a correspondance, le scénario de navigation est dit déterministe. 

2. Dans le cas contraire, le scénario est supposé être stochastique. Le robot doit rechercher 

par lui-même son chemin pour arriver à destination grâce à des algorithmes et stratégies de 

navigation ne nécessitant aucune connaissance a priori. 

 

Depuis sa création jusqu'à son développement et son achèvement, ce travail a reposé sur 

deux piliers importants : les stratégies de navigation s’appuyant sur la perception visuelle et 

les différents paradigmes sur lesquels reposent les architectures de contrôle. 

 

 

 Etat de l’art 
 

L'état de l'art des stratégies de navigation reposant sur la vision a été présenté dans le chapitre 

2 du manuscrit en suivant une structure transversale proposée par l'auteure. Il est décrit selon 

différents modules fonctionnels (perception visuelle, modélisation de l’environnement, 

localisation et planification des trajectoires), dont leur implication dans la tâche de 



navigation dépend fortement de deux types de stratégies de navigation : la navigation sans 

l’aide d’un plan et la navigation avec plan. Ce dernier comprend aussi la navigation 

s’appuyant sur la construction d’un plan.  

 

Navigation à l’aide d’un plan : cette approche consiste à fournir au robot un modèle de 

l'environnement sur lequel il peut s’appuyer lors de sa navigation ou qu’il pourra enrichir via 

ses capteurs pendant la navigation.  

 

  

Navigation avec plan : l'utilisation d'une connaissance a priori de l'environnement 

facilite grandement le processus de navigation. Le robot peut se localiser lui-même 

dans l'environnement en estimant sa position actuelle par rapport à un référentiel,   

planifier une trajectoire selon les informations extraites, et enfin se déplacer pour 

atteindre sa destination finale. C'est pourquoi on appelle également cette approche 

navigation avec carte. 

 

Navigation s’appuyant sur la construction du plan : la construction d’un plan fait 

référence au processus de création de modèles 2D ou 3D, géométrique ou topologique, 

via l’utilisation de capteurs pendant la navigation. Deux approches peuvent être 

distinguées : les systèmes qui construisent un plan en amont et l'utilisent pour la 

localisation du robot (construction hors ligne) et les systèmes qui construisent la carte 

en ligne et permettent une localisation du robot simultanément dans l'environnement 

(SLAM). 

 

Navigation sans l’aide d’un plan : cette stratégie de navigation consiste à réaliser une 

navigation autonome, sans utiliser, ni créer un modèle de l'environnement, ni avant, ni durant 

la navigation. Par conséquent, afin de naviguer et se localiser, le robot doit appréhender 

visuellement des repères saillants (amers) afin de le guider dans ses déplacements : murs, 

portes, angles, etc.  

 

Le robot se questionne sur l'environnement, observe la scène, extrait les caractéristiques les 

plus pertinentes des amers, sauvegarde leur position et se localise grâce à eux.  

 

Puisque les approches algorithmiques utilisées dépendent principalement des capteurs ou du 

type d’amer, nous les distinguons en conséquence. Nous souhaitons souligner que la plupart 

de ces techniques sont également utilisées dans le contexte cartographique avec cependant un 

objectif de mise en correspondance. 

 

Ces types de navigation intègrent une combinaison de modules fonctionnels interconnectés :  

 

Perception : la perception fournit l'information d’entrée du module de contrôle. Il s’agit du 

processus d'interprétation et de transformation de l'information sensorielle du robot avec son 

environnement et d'autres entités externes vers une représentation qui peut être utilisée pour 

un traitement ultérieur ou pour d'autres actions. 

 

Modélisation de l’environnement : grâce à l'utilisation de différents capteurs, il est possible 

de représenter l’environnement de navigation par un plan et d’utiliser celui-ci directement 

pour calculer le trajet afin d’exécuter la tâche de navigation. Il est également possible de le 

reconsidérer a posteriori pour mettre à jour de nouvelles informations afin d’avoir une 

meilleure précision dans sa construction, et ainsi, obtenir une localisation plus précise. Une 



telle représentation cartographique peut être construite en amont ou lorsque le robot découvre 

son environnement. Dans les deux cas, la représentation peut être scindée selon deux 

catégories via des cartes métriques ou topologiques. 

 

Localisation : cette propriété témoigne de la capacité du robot à établir sa propre position et 

son orientation dans l'environnement. Les techniques de localisation nécessitent de disposer 

de l’information sur l'environnement (point initial ou de destination, plan plus ou moins 

synthétique, …). Plusieurs techniques ont été proposées. Leurs principales différences 

dépendent de la nature des capteurs du robot, de l'environnement et de l'information initiale 

disponible. 

 

Planification de trajectoires : la planification de trajectoires est une extension de la tâche de 

localisation. Elle nécessite de déterminer dans le même référentiel la position initiale et finale 

que le robot doit atteindre, afin d’être en mesure de planifier un chemin optimal qui ne 

présentera pas de collision.  

Le critère de performance optimale dépend des objectifs de l'application. Il peut être choisi en 

termes de distance (chemin le plus court), de temps (le plus rapide) ou d'énergie 

(consommation d'énergie la plus faible). 

Les algorithmes de planification de trajectoires sont évalués selon leur complexité de calcul. 

Les approches peuvent être scindés en deux catégories selon la disponibilité ou l'absence 

d'une représentation complète de l’environnement. 

 

Finalement, le déplacement du robot selon la trajectoire planifiée est contrôlé en permanence 

en jouant sur ces actionneurs afin de s’adapter aux changements de l’environnement comme 

l’apparition d’obstacles. 

 

Les architectures de contrôle des robots définissent comment ces capacités peuvent être 

intégrées et mises en interaction pour construire et développer une navigation autonome. Pour 

cette raison, la complexité de la navigation d'un robot mobile dépend principalement du type 

d'architecture de contrôle choisi. En conséquence, de multiples architectures ont été proposées 

dans la littérature pour concevoir et développer des systèmes de commande robustes, 

flexibles, fiables et performants. Chacune de ces architectures de contrôle sous-tendent de 

nouveaux concepts. 

Dans le contexte de ce travail, l'état de l'art des différents paradigmes a été présenté au 

chapitre 3 à partir de deux points de vue.  

 

Selon le point de vue conceptuel, le problème de la navigation robotisée peut être résolu en 

traitant les informations soit de façon ascendante, soit de façon descendante. 

Même si l'approche botton-up est beaucoup plus récente, elle prend une place aussi 

importante que l'approche top-down. Alors que cette dernière permet de décomposer le 

problème en commandes de bas niveau pour aider le robot à planifier ses mouvements, les 

modèles botton-up sont appropriés pour naviguer dans des environnements inconnus et 

dynamiques. L’utilisation conjointe permet au robot d'apprendre à faire face à des situations et 

des difficultés imprévues. Les modèles bottom-up sont en effet particulièrement adaptés aux 

changements et ne nécessitent pas une énorme complexité informatique contrairement aux 

modèles top-down. 

  

Cependant, chacun d’eux présentent des lacunes, intrinsèques à leur conception, qui doivent 

encore être surmontées. En raison du traitement séquentiel du processus de l’information, le 



processus de navigation dans les modèles top-down peut présenter des délais importants de 

réaction. De plus, la quantité d'espace nécessaire pour sauvegarder toutes les connaissances 

préprogrammées peut dépasser les capacités mémoire du robot. En outre, le 

dysfonctionnement de l'un des modules peut provoquer la défaillance de l'ensemble du 

système. De même, avec une approche bottom-up il est très difficile d'atteindre une 

complexité de niveau supérieur. Le temps requis pour apprendre une tâche ou pour faire 

émerger une certaine intelligence du comportement peut être un frein. 

 

Une solution est de combiner à la fois les approches top-down et botton-up de manière à ce 

que l’architecture de contrôle puisse d’une part bénéficier d’une connaissance préprogrammée 

de l'environnement, et d’autre part, s'adapter aux environnements du monde réel grâce à 

l’émergence de comportements résultant de l'interaction avec l'environnement. 

 

Selon le point de vue fonctionnel, quatre paradigmes peuvent être distingués :  

- l'approche délibérative s’appuyant sur une connaissance préalable et l'observation 

interne des actions ou des états ;  

- l'approche réactive reposant sur un modèle stimulus-réponse apportant la possibilité 

au robot de faire face à des environnements très dynamiques et imprévisibles ; 
- l'approche hybride, qui combine les avantages des approches réactives et 

délibératives tout en diminuant leurs inconvénients ; 
- Enfin, l'approche comportementale composée d'une collection de comportements 

indépendants.  
 

Chacune des approches présentées est construite dans le but de permettre aux robots 

d'effectuer de façon autonome une variété de tâches dans différents domaines applicatifs.  

Une approche peut donner entière satisfaction pour l’exécution d’une tâche donnée, mais peut 

échouer pour une autre tâche où un objectif différent est requis. Par conséquent, le choix d'une 

approche d’architecture de contrôle dépend principalement des propriétés du problème, du 

type de tâche souhaité, de l'optimalité requise et des informations disponibles. De plus, elle 

est étroitement liée aux contraintes matérielles et logicielles du robot. 

 

Par exemple, les systèmes délibératifs fournissent un raisonnement et une planification 

optimaux si la représentation de l’environnement s’avère exacte. Cela implique que 

l'environnement soit statique. Par conséquent, ces systèmes sont très bien adaptés pour des 

environnements structurés et fortement prévisibles, en particulier dans les domaines où le 

robot effectue périodiquement une tâche donnée. Ces systèmes ne conviennent pas en 

robotique située. 

 

Les systèmes réactifs donnent de très bons résultats sur des environnements dynamiques 

pour lesquels une réponse et une réaction immédiates sont essentielles (e.g. évitement 

d’obstacles). Cependant, le fait qu’il ne dispose pas d’une représentation du monde et de 

connaissances des actions passées et futures pose problème lorsque la planification, 

l'apprentissage ou la sauvegarde en mémoire sont nécessaires. 

 

Les systèmes hybrides préservent les avantages des approches précédentes tout en palliant à 

leurs inconvénients. Ils sont adaptés aux environnements nécessitant des modèles internes et 

une planification à long terme dont les besoins d’exécution temps réel ne seraient pas 

contraints par les couches supérieures. 

 



Finalement, il est possible de conclure que les systèmes comportementaux comprennent 

quasiment tous les avantages des trois autres approches, tout en étant capable d’apprendre et 

de s'adapter facilement à des environnements changeants de manière significative. De plus, 

leurs composants (comportements) et leurs interconnexions permettent au système de 

planifier, d'éviter les erreurs passées et d'utiliser une représentation active si nécessaire. Les 

comportements sont conçus à partir d’une variété de niveaux d'abstraction, facilitant la 

construction ascendante des systèmes s’appuyant sur le comportement. Cependant, la 

difficulté de mettre en œuvre une telle architecture peut représenter un inconvénient majeur. 

 

Même si l'architecture de contrôle idéale n'a pas encore été développée, plusieurs travaux de 

recherches tentent d'améliorer et d’en proposer de nouvelles en combinant, le plus souvent, le 

meilleur des approches, tels que, par exemple, le raisonnement et la planification optimale, et 

la capacité de répondre rapidement aux changements dynamiques du milieu. La combinaison 

de systèmes s’appuyant par essence sur le comportement avec ceux construits autour d’une 

représentation globale du monde peut être une bonne solution. Par exemple, l'architecture 

(AuRA) facilite la planification et le raisonnement en utilisant directement un planificateur 

pour sélectionner les comportements \ cite {arkin1997aura}. De même, l'architecture hybride 

à trois niveaux 3T utilise des comportements dans sa couche réactive \ cite 

{bonasso1995experiences}. 
 

 Solution proposée 
 

Afin de répondre aux objectifs présentés précédemment et de prendre en compte les 

spécificités données par les différents scénarios décrits, nous proposons l’architecture de 

contrôle RHIZOME (Robotic Hybrid Indoor-Zone Operationa ModulE en anglais). 

L'architecture est composée d'un réseau de neurones artificiels composé de nœuds 

interconnectés qui calculent des valeurs de sortie à partir d'une ou plusieurs entrées reçues, et 

ceci de manière similaire à un réseau neuronal biologique présent dans le système nerveux 

d'un organisme. Ces modèles de calcul ont des propriétés telles que la mémorisation 

associative, l'apprentissage et le traitement parallèle d’informations multiples. Leur 

interconnectivité est telle que tout le système est capable de s'auto-adapter en fonction de ses 

entrées résultantes de l'interaction entre le robot et l'environnement, développant ainsi de 

nouveaux comportements. 

Lors de la conception et la mise en œuvre de l’architecture RHIZOME, un certain nombre de 

problématiques seront abordés dans le but de positionner les solutions existantes. On trouvera 

ci-après, selon un traitement séquentiel, les questions qui nous paraissent les plus pertinentes, 

puis une description des caractéristiques et du fonctionnement de l’architecture RHIZOME. 

 

4.1 Problèmes abordés et contributions 
 

La conception et la mise en œuvre d’une architecture de contrôle capable de s'adapter à 

différents scénarios nécessite de satisfaire des exigences très différentes. A cet effet, les 

problèmes abordés dans cette thèse ont été motivés par les contraintes des scénarios décrits 

précédemment (déterministe et stochastique). Une approche cohérente que nous tentons de 



justifier ci-dessous a été adoptée. Elle fait état d’une liste de questions ou de points de 

décision et consolide progressivement l'espace des solutions sous la forme de l’architecture 

RHIZOME.  

 

1. Comment l’environnement de navigation peut-il être utilisé au mieux afin d’aider 

la navigation du robot ?  

 

Si l’on reprend l’exemple décrit précédemment tiré d’un scénario de la vie quotidienne 

pour lequel trois stratégies de navigation différentes ont été envisagées pour atteindre une 

destination finale, il convient de noter qu'il existe un dénominateur commun entre ceux-ci: 

l'utilisation comme points de référence de repères saillants, le plus souvent stationnaires.  

 

Certes, lorsque vous utilisez un plan, l'information (après avoir planifié le chemin complet) 

peut être compressée d’une manière ou d’une autre. Cependant, la compression reste 

limitée par le fait qu’il est nécessaire de s’assurer en permanence des éventuels 

changements vis-à-vis du plan, et donc de garder une représentation suffisamment 

complète des connaissances/modèles conjointement aux amers.  

De même, lorsqu'aucune représentation du monde n'est pas disponible, les amers jouent un 

rôle important dans la tâche de navigation : en navigation maritime, avant l'arrivée des 

techniques modernes de navigation, les étoiles polaires servaient de points de référence car 

elles ne disparaissaient pas à l'horizon ;  de même, dans notre vie quotidienne, des repères 

(désignés dorénavant par « symboles de navigation ») nous aident dans nos déplacements ;  

les panneaux de signalétique tels que ceux trouvés sur les routes, dans les stations de métro 

et aéroports, ceux de sécurité incendie dans les bâtiments, nous aident d'une manière ou 

d'une autre à nous guider vers nos destinations. 

 

Deux types de symboles de navigation sont donc considérés dans ce travail: les symboles 

artificiels et les symboles dits « naturels ». Les symboles artificiels de navigation se 

réfèrent à des symboles prédéfinis préalablement placés le long des parcours de navigation. 

Inversement, les symboles naturels de navigation se réfèrent à des motifs naturels 

saillants (i.e., amers) suffisamment remarquables pour être considérés comme des points de 

référence.  

 

L'utilisation de ces deux types de symboles peut être envisagée selon les points de vue de 

deux paradigmes. A l’origine le paradigme symbolique de l'intelligence artificielle 

supposait que la manipulation des symboles était suffisante pour traiter de nombreux 

aspects de l'intelligence tel que celui du contrôle d'actions même complexes dans les 

machines. Cela s’est avéré pertinent lorsque la sortie d'une machine manipulant des 

symboles s’appuie sur des entrées et des règles de décision bien définies (e.g. systèmes 

experts, architectures de commande robotique délibérative, etc.).  

 

Il s'agit d'un paradigme qui a prédominé durant trois décennies. Cependant, le manque de 

robustesse des systèmes de contrôle en présence d’incertitude a conduit des travaux de 

recherche à s’intéresser à l’approche sous-symbolique : le paradigme de la nouvelle IA. 

Contrairement au paradigme symbolique, le paradigme de la nouvelle IA n'utilise pas une 

représentation spécifique du monde pour intégrer l'intelligence, mais pose plutôt 



l'hypothèse que l'intelligence émerge de comportements simples résultant de l'interaction 

du robot avec son environnement immédiat via des liens sensori-moteurs. Plutôt que 

d'utiliser un seul planificateur centralisé, le système intègre la connaissance de manière 

répartie sur plusieurs unités de type comportementale, l'ensemble global constitue donc un 

réseau d’unités interconnectées.  

Par conséquent, tandis que les symboles artificiels de navigation sont utilisés dans ce 

travail comme des symboles de haut niveau pouvant être manipulés par le robot dans un 

scénario déterministe, les symboles naturels de navigation perçus de son environnement 

par le robot permettent de pallier l'absence de symboles artificiels dans le contexte des 

scénarios stochastique. Ce choix est justifié ci-dessous à travers un jeu de questions-

réponses. 

 

2. Comment le robot peut-il accéder à sa destination finale de manière la plus 

efficace et la plus simple ? 

 

Le scénario le plus simple est celui dans lequel la représentation de l’environnement est 

calculée à l'avance et celui-ci reste inchangée pendant la navigation. Une telle 

configuration implique un scénario déterministe. La représentation de l’environnement 

est alors présentée au robot avant le début de l'activité de navigation. 

 

Donc, s’appuyer sur un plan pour effectuer une tâche de navigation nous semble une 

solution optimale, la représentation du monde étant fournie à l'avance. 

Du point de vue architectural, une architecture délibérative et un traitement 

d’information de type top-down semblent être les plus adaptés pour traiter les 

informations extraites du plan et pour planifier le parcours. Les architectures délibératives 

ont représenté le paradigme dominant pendant des années pour la construction de robots. 

Elles s’appuient comme nous l’avons vu sur un modèle donné au préalable et traitent 

l'information de manière descendante. Dans le cas de notre étude, le modèle correspond à 

l'environnement dans lequel le robot doit naviguer. 

 

 Mais quel type de plan ?  

Les plans de bâtiments (tels que les hôpitaux, les écoles, les complexes résidentiels ou les 

usines) ne sont généralement pas aussi facilement disponibles sous format numérique que 

les plans de villes, de pays entiers, etc. Il s’avère souvent que face à un bâtiment inconnu, 

nous soyons obligé de faire appel aux plans sur support matériel disponibles à l'entrée du 

bâtiment ou se présentant sous forme papier. 

Un tel plan de bâtiment représente un moyen des plus rapides pour accéder à une 

information complète sur l'intérieur d’un bâtiment.  Nous utilisons dans nos travaux de 

recherche une telle modalité pour représenter l'information sur l’environnement de 

navigation. Ce plan se présentera de manière très synthétique selon un ensemble de 

symboles artificiels dédiés  à la navigation. 

L’objectif sera d’extraire une séquence de ces symboles relativement à la trajectoire 

souhaitée. L’expression synthétique du plan doit simplement porter l’information 

topologique afin de permettre cette extraction. 



Lorsque seule la séquence de symboles est l’information disponible, nous nous heurtons 

au symbol grounding problem. Celui-fait référence au sens porté par chaque 

symbole (e.g., la signification directionnel du symbole, dépendant ou non du contexte, 

son  interprétabilité sans autre information que le symbole lui-même…), et nécessite une 

interaction constante entre le robot et l'environnement pour sa résolution. 

 

Dans le cas où le robot a la possibilité et les capacités de lire et d’interpréter lui-même le 

plan, il peut non seulement déterminer la séquence de symboles afin de planifier son 

parcours mais également leur signification ainsi que la distance inter-symboles. À cette 

fin, la métrique habituellement indiquée dans certains plans peut être utilisée. 

Indépendamment de l'information obtenue (séquence de symboles uniquement ou 

séquence de symboles et leur signification), l'interaction avec l'environnement demeure 

essentielle, le robot ayant besoin de comparer l'information obtenue avec celle perçue 

dans l'environnement réel. Le robot doit non seulement être en mesure de corroborer les 

informations fournies par le plan (reconnaissance des symboles), mais aussi connaître 

l'action à effectuer parmi plusieurs autres actions possibles résultant de la reconnaissance 

ou non du symbole. 

Interagir avec l'environnement reste une tâche difficile, car celui-ci est la plupart du 

temps dynamique et imprévisible ; et même si l'utilisation d'une information a priori 

permet d’alléger la tâche de navigation, un bon système doit être suffisamment souple 

pour faire face à tout changement imprévu. Par conséquent, il est nécessaire de rechercher 

une solution permettant de gérer ce problème d'incertitude et donc d’exécution d'une 

action donnée parmi beaucoup d'autres, ce qui nous amène à la question suivante.  

 

3. Quel type de mécanisme ou modèle semble être bien adapté pour gérer les 

environnements dynamiques ? 

 

Afin d'aborder la problématique de navigation dans un environnement dynamique, nous 

choisissons de nous appuyer sur un modèle bio-inspiré. En effet, les humains ont une 

capacité incroyable, grâce notamment à leur capacité d’apprentissage, à s’adapter aux 

changements imprévus en réagissant en conséquence. Cette adaptabilité est due aux 

capacités de leur cerveau et de ses composantes. 

Le système neuronal a donc fait l’objet de nombreuses études et a inspiré plusieurs 

modèles dans le domaine de l’intelligence artificielle. L’architecture que nous proposons  

s’appuie sur ces différents modèles.  

Les modèles neuronaux du connexionnisme précédemment connu sous le nom de 

traitement distribué parallèle (Parallel distributed processing en anglais) ou de modèles 

PDP, utilisent des unités de traitement simples et souvent uniformes pour traiter 

l'information. La mémoire est portée localement par l'interaction d'un grand nombre de 

ces unités via des signaux stimulants et inhibiteurs. Chaque unité reçoit une valeur 

d’entrée émanant des unités voisines, exécute une fonction selon les entrées reçues et 

calcule une valeur de sortie. La configuration intrinsèquement distribuée permet de 

réaliser simultanément le calcul de plusieurs unités, ce qui permet d’accélérer le 

traitement de l'information. 



La représentation des connaissances dans les modèles PDP n'est pas présente dans un état 

ou une mémoire à long terme comme dans d'autres modèles conventionnels. Au contraire, 

la connaissance fait partie du processus lui-même et détermine le déroulement de celui-ci 

dans le sens où la mémoire à long terme est sauvegardée dans les liens de renforcement 

des unités, tandis que la mémoire à court terme est enregistrée dans les états des unités. 

Les unités peuvent représenter différentes structures selon le modèle. Par exemple, une 

unité simple peut exprimer une caractéristique, un symbole ou un concept. Elle peut 

également symboliser des éléments abstraits qui, en s'assemblant avec de nombreux 

autres, peuvent représenter une entité entière ou un concept. 

Une propriété extrêmement importante de ces modèles provient du fait qu'il est possible 

d'apprendre par l'expérience en utilisant un mécanisme de modulation permettant 

d'ajuster la connexion entre les unités. Il existe différentes règles pour ajuster les 

connexions. La plupart d'entre elles dérive de la règle d'apprentissage proposée par Hebb 

(1949) qui stipule que lorsque deux unités sont stimulées simultanément, la connexion 

entre elles est renforcée. 

 

Du point de vue architectural, les architectures s’appuyant sur le comportement se 

composent d'une collection de modules comportementaux organisés de façon distributive 

et parallèle, comme les modèles PDP. Ils sont généralement exécutés simultanément et de 

façon asynchrone et, en les rassemblant dans des environnements complexes, des 

comportements émergents peuvent se produire. Puisqu'il n'y a pas de contrôle central 

parmi les modules comportementaux, toutes les couches sont interconnectées permettant 

ainsi une communication interne décidant de la meilleure action ou du meilleur 

comportement à effectuer. 

 

Par conséquent, une architecture comportementale selon un traitement top-down 

semble être une bonne option pour prendre en compte l'incertitude des interactions en 

temps réel dans des environnements dynamiques et imprévisibles. A ce sujet, 

l’architecture de subsomption de Brooks s’est montrée particulièrement efficace pour 

surmonter ce type de problème. 

Notre travail s’inspire donc des architectures comportementales pour une plus grande 

robustesse aux changements. Plus particulièrement, le mécanisme, les propriétés et les 

composants de l'architecture que nous proposons s’appuient sur l'architecture PerAc 

inspirée principalement des travaux de Brooks, Edelman and Grosseberg, et proposée par 

Gaussier et Zheren comme structure neuronale organisée. L'architecture PerAc n’utilise 

pas une représentation du monde pour contrôler l'action du robot. Au contraire, elle suit 

un mécanisme de perception-action qui évolue constamment grâce à l'interaction 

dynamique entre le robot et son environnement (voir chapitre 3 pour plus d'informations). 

 

 Quelle action doit être effectuée lorsque l’information attendue n’est pas 

perçue dans l’environnement de navigation ? 

 

L'absence de symboles artificiels attendus de navigation dans un environnement 

stochastique oblige le robot à opter pour une stratégie différente forçant celui-ci à 

rechercher de nouveaux points de référence pour se repérer. Pour ce faire, la recherche de 



symboles naturels de navigation présents dans l'environnement (telle qu'elle est présentée 

dans les stratégies de navigation sans l’aide de plan) semble être une bonne solution. 

Cependant, notre travail va au-delà de la détection de symboles naturels de navigation, il 

s’inspire en effet de l’approche robuste proposée par [Gaussier 2002] qui permet la 

reconnaissance de lieux.  

En effet, un lieu peut être identifié comme un point de référence stable qui peut être 

appris en mémorisant l'emplacement de formes saillantes perçues dans le champ visuel 

panoramique du robot. La problématique de reconnaissance d’un lieu en cours de 

navigation revient à reconnaître, aux mêmes emplacements, le même ensemble de formes 

apprises. 

La robustesse d'une telle approche réside dans le fait que même si une ou plusieurs 

formes caractérisant l'endroit sont supprimées ou ne sont pas visibles, l’endroit peut 

encore être encore reconnu. De plus, grâce à un procédé de triangulation s’appuyant sur 

ces motifs, il est possible d'obtenir des informations sur la position du robot dans ce lieu. 

L’architecture de contrôle doit en permanence comparer information perçue et 

connaissances afin de décider de l’action à exécuter.  Comment cette comparaison est 

finalement réalisée, c’est l’objet de la dernière question.  

 

4. Comment prendre en compte simultanément les deux sources d’information et 

agir en conséquence? 

Comment combiner en temps réel l’information a priori de l’environnement, connue en 

amont, et l’information dynamique perçue ? Comment combiner architecture délibérative 

et comportementale ? De manière plus générale, comment combiner plusieurs stratégies 

de navigation ?   

De manière plus synthétique, comment un modèle connexionniste peut-il être associé à 

un modèle symbolique ? 

Pendant longtemps, ces deux courants de l’intelligence artificielle ont été considérés 

comme opposés l'un à l'autre. Tandis que pour la première, la connaissance est présente 

dans les liens de renforcement des unités de réseau de l'approche connexionniste, cette 

même connaissance, dans la seconde approche, est représentée par les chaînes de 

symboles. 

Malgré cette différence majeure, certains connexionnistes conviennent qu'il est possible 

de réunir les deux paradigmes en une seule architecture connexionniste. Ils postulent qu'il 

devrait être possible d'implémenter un traitement symbolique dans un réseau de neurones 

compte tenu de la capacité des humains à effectuer des tâches de manipulation de 

symboles de haut niveau en dépit de la configuration neuronale du cerveau. 

Par conséquent, suivant cette même ligne de pensée, l'architecture proposée dans ce 

travail profite des propriétés caractérisant les réseaux neuronaux pour fusionner les 

deux informations dans une structure neuronale. 



On a coutume de distinguer sur les architectures neuronales classiques, tels que les 

réseaux neuronaux récurrents (RNN) ou les réseaux neuronaux Feed-Forward (FNN),  

trois types d’unités neuronales différentes : la couche d’entrée, la couche de sortie et la 

couche cachée. La manière selon laquelle notre architecture relie les unités et les groupes 

d’unités est différente de celle des réseaux classiques, ce qui la démarque profondément 

de ces derniers. Par conséquent, nous introduisons un autre type d’unité, celui de 

« couche interne ». Le lecteur peut se référer au chapitre 4, qui explique en détail les 

connexions entre unités. 

En ce qui concerne le problème de la sélection d'actions, les propriétés des neurones 

artificiels apportent une solution tout à fait pertinente et inhérente à leur structure. Dans 

son livre, The Mindful Brain, Edelman (1978) développe sa théorie du darwinisme 

neuronal, où il évoque la plasticité des réseaux de neurones vis-à-vis de l'environnement. 

L'interconnexion entre les neurones est renforcée par l'expérience : lorsqu'un stimulus 

externe ou interne est reçu par le système, différents neurones sont simultanément activés 

et transmettent l'information aux neurones voisins. La sortie est alors la résultante des 

différentes activations stimulées par une source d'entrée donnée. 

Les réseaux neuronaux artificiels ont la capacité de modéliser n'importe quelle fonction 

donnée. Par conséquent, il est possible de définir différentes fonctions d'activation tout au 

long du réseau afin de déclencher des comportements différents. En conséquence, tout le 

système fonctionne en parallèle et un « mécanisme concurrentiel » permet de décider du 

meilleur comportement ou action à effectuer pour contrôler le robot en fonction du 

stimulus reçu. 

Le fait d'analyser, de réorganiser et de synthétiser les solutions présentées ci-dessus a 

conduit l'auteure à comprendre que la conception d'une architecture de contrôle capable 

de répondre à des contraintes de scénarios différents n'est possible qu'en conciliant les 

différences entre les paradigmes jusqu'ici proposés. Ainsi, au lieu d'aborder la 

problématique en suivant un seul paradigme ou selon un unique chemin de pensée, il est 

possible de créer une synergie en combinant plusieurs approches dans une structure 

transversale : l'architecture RHIZOME. 

 

4.2 L’Architecture RHIZOME 
 

L’architecture RHIZOME a émergé par la volonté de fournir une autonomie suffisante aux 

robots mobiles pour leur permettre, lors de leur navigation dans l’environnement, de s'adapter 

aux situations imprévues. Elle se compose d'une architecture hybride comportementale qui 

fusionne dans une structure neuronale transverse information a priori et information visuelle 

perçue en temps réel dans l’environnement. 

L'information a priori de l’environnement est seulement utilisée ici pour confirmer 

l’information visuelle, contrairement à la plupart des architectures hybrides qui l'utilisent pour 

contrôler directement les actions du robot. En outre, au lieu d'utiliser une trajectoire complète, 

l'architecture utilise, sous la forme d’une séquence codant le chemin de navigation, des 

symboles artificiels. Le robot est muni d’un mécanisme capable d’extraire les deux sources 

d'information, de les comparer en temps réel et de réagir en conséquence. Lorsque les 



symboles de navigation ne sont pas présents ou détectés dans l'environnement, l'architecture 

de contrôle permet au robot d'apprendre et de reconnaître des lieux à partir de formes 

saillantes, appelées symboles naturels de navigation, perçues dans l'environnement.  

Ainsi, grâce à ces points de repère, artificiels ou naturels, le robot est en mesure d'atteindre sa 

destination finale et surmonter des situations imprévues lors de la planification. 

Comme le présente la figure 1, l'architecture est composée d'une structure comportementale 

hybride qui combine un module délibératif et un ou plusieurs modules comportementaux. 

 

 

Le module délibératif, représenté par la partie supérieure de l’architecture (cf. Figure 1) 

intègre la connaissance a priori de l'environnement de navigation. Dans ce travail, cette 

connaissance se présente sous la forme de symboles planifiant le chemin de navigation. La 

séquence est intégrée dans les modules comportementaux de l'architecture, soit directement 

grâce à un programme de commande, soit à partir d’une chaîne de traitement d’images qui  

l’extrait à partir du plan représentant le bâtiment. 

Les modules comportementaux représentés par les parties inférieures de l’architecture (cf. 

Figure 1) s’appuient sur l’architecture PerAc (Perception-Action) et des flux de perception et 

d'action sous-jacents. Le premier niveau, représenté sur la Figure 2 par la couche de 

comportement Réflexe, utilise un mécanisme réflexe qui contrôle directement les actions du 

robot à partir des informations extraites de l'entrée perçue. Le deuxième niveau, représenté 

par la couche de Reconnaissance, propose un mécanisme cognitif permettant la 

reconnaissance en intégrant le flux perceptif précédent et en apprenant les associations 

Figure 1 Architecture RHIZOME 



sensori-motrices. La Figure 2 montre plus précisément l'architecture PerAc (gauche) qui est 

utilisée dans le module comportemental de l'architecture Rhizome (à droite). 

 
Figure 2. Architecture PerAc (gauche) utilisé dans le module comportemental de l’architecture Rhizome (droite) 

 

L'ensemble du système fonctionne en parallèle et un «mécanisme compétitif» permet de 

décider du meilleur contrôle, (parmi les différentes couches) fonction du stimulus reçu. Cela 

est rendu possible grâce aux connexions excitatrices ou inhibitrices, permettant ou empêchant, 

l'activation des neurones. En outre, lorsque l'apprentissage est nécessaire, une connexion de 

type modulation, conditionnée par un signal de renforcement, est utilisée. 

L'architecture globale suit un cycle perception-action qui signifie que pour chaque 

information d'entrée provenant de la perception visuelle, il y a toujours une action qui 

s’exécute, modifiant elle-même la perception de l'environnement pour un nouveau cycle de 

processus. 

Dans le contexte de ces travaux de recherche, l’architecture RHIZOME a été conçue, 

construite et implémentés à travers trois scénarios pour lesquels trois architectures 

interdépendantes ont émergé, chacune répondant aux contraintes spécifiques d’un scénario 

donné. 

Rhizome 1 : Scénario Déterministe - Explorer l’environnement avec peu d’information 

Rhizome 2 : Scénario Déterministe - Naviguer de manière autonome à partir d’un plan de 

bâtiment 

Rhizome 3 : Scénario Stochastique - Apprendre et s’adapter en fonction des changements 

imprévus dans l'environnement 

Les architectures ne doivent pas être considérées selon une hiérarchie ou selon un modèle 

d'évolution ascendant. La première architecture a émergé à partir du scénario le plus simple 

imaginé.  

La seconde s’appuie sur les composants de la première, et parce que celle-ci permet d’intégrer 

de nouveaux composants, fait émerger de nouvelles fonctionnalités répondant ainsi à la 

problématique de second scénario. Il en va de même avec la troisième architecture. Chaque 

architecture s’avère donc essentielle. 



 

Rhizome 1 : Explorer l’environnement avec peu d’information 

Rhizome 1 est composé des modules nécessaires pour que le robot puisse atteindre sa 

destination finale dans un contexte de scénario déterministe tout en ayant peu de 

connaissances sur le monde. Cette dernière,  a priori et globale, est représentée par une 

séquence de symboles de navigation qui est définie dans le module délibératif de l'architecture 

par un programme de commande (voir Module délibératif de la figure 3). Rhizome 1 intègre 

la séquence de symboles dans un module comportemental afin de permettre au robot de 

détecter et de reconnaître durant la navigation chaque symbole attendu. De plus, puisque la 

signification du symbole (sa direction associée) est inconnue, Rhizome 1 permet au robot de 

la déduire et de l’apprendre en suivant un modèle de stimulus-réponse. Le robot est alors 

capable d'effectuer, pour des situations similaires à celles rencontrés, les mouvements appris. 

En conséquence, le module comportemental de l'architecture Rhizome 1 diffère de 

l’architecture classique PerAc par le fait qu’elle possède un module PerAc imbriqué dans son 

second niveau. Par conséquent, l’architecture est composée de trois couches comme cela est 

illustré par la figure 3 dans le module comportemental. 

Ci-dessous, nous explicitons chaque couche en parcourant le module comportemental du haut 

vers le bas de la figure 3. 

La première couche du système (SRMA) est en charge de fusionner les informations 

provenant de la mémoire à long terme et de la perception visuelle pour la phase de 

reconnaissance des symboles attendus dans l'environnement de navigation. En outre, elle en 

charge d'apprendre l'association entre chaque symbole et son mouvement associé. Les deux 

autres couches utilisent un mécanisme réflexe qui contrôle directement l'action du robot à 

partir de l'information perçue de l'environnement. La deuxième couche (DDRB) détermine la 

direction que doit prendre le robot (gauche ou droite) en recherchant l'emplacement du 

Figure 3 RHIZOME 1 composé d’un module délibératif simple et d’un 
module comportementale composé lui-même de trois couches. 



prochain symbole attendu (déduit de la séquence), tandis que la troisième couche (TARB) 

permet au robot de se rapprocher du symbole lorsqu’il en est trop éloigné, tout en lui 

permettant de garder le symbole dans le centre de son champ de vision. 

 

Rhizome 2 : Scénario Déterministe - Naviguer de manière autonome à partir d’un 

plan de bâtiment 

Comme précédemment, l'environnement d’exécution de Rhizome 2 est considéré 

déterministe. La connaissance a priori globale de l’environnement se présente sous la forme 

d'un plan papier présenté au robot au début de sa navigation. De manière similaire au 

processus cognitif d'un cerveau humain mis en œuvre lors d’un déplacement dans un bâtiment 

inconnu, Rhizome2 permet au robot (1) de  «lire» le plan du bâtiment, (2) d'extraire et de 

«mémoriser» une séquence de symboles de navigation lui permettant d’atteindre sa 

destination finale, et enfin (3) de «reconnaître» en temps réel ces mêmes symboles dans 

l'environnement parcouru. 

Un processus complet d'analyse du plan du bâtiment permet au robot d'extraire les 

informations pertinentes, soit ici, la séquence des symboles de navigation et leur signification 

correspondante (cf.  module délibératif de la figure 4). 

La structure neuronale construite autour de deux modules, respectivement, 1er et 2nd module 

comportemental de la figure 2, permet la reconnaissance des symboles et l'apprentissage de 

l'association entre le symbole reconnu et sa signification, tout en donnant la possibilité au 

Figure 4.  RHIZOME 2 composé d’un module délibératif en charge d’effectuer un processus d’analyse d’un plan 
de bâtiment et deux modules comportementaux. Le premier module comportemental correspond à celui 
présenté dans Rhizome1 et le deuxième permet d’obtenir la signification des symboles.  



robot d'effectuer le mouvement associé directement. 

 

Rhizome 3 : Scénario Stochastique - Apprendre et s’adapter en fonction des 

changements imprévus dans l'environnement 

L'environnement d’exécution de Rhizome 3 est considéré comme dynamique, stochastique et 

donc plus réaliste. Rhizome 3 est conçu pour permettre au robot de faire face à tout 

changement non prévisible comme par exemple l'occlusion ou l’absence de symboles attendus 

(cf. Figure 5). Pour atteindre cet objectif, un système de reconnaissance de lieux construit sur 

un modèle de cellules de lieux est implémenté dans un troisième module comportemental. Un 

lieu est caractérisé par un ensemble de motifs, chacun associé à une position déterminée par 

rapport à un «nord» donné a priori. La robustesse de cette approche réside dans le fait que,  

même si un ou plusieurs motifs caractérisant l'endroit sont supprimés ou ne sont plus 

visiblement accessibles, un lieu peut encore être reconnu. 

Par conséquent, alors que les deux premiers modules comportementaux sont en charge 

d'utiliser la séquence de symboles artificiels de navigation sauvegardée dans le module 

délibératif pour contrôler la navigation en ligne, un troisième module comportemental permet 

Figure 5.  RHIZOME 3 est composé d'un module délibératif et de trois modules comportementaux. Le module 
délibératif sauvegarde et présente la séquence de symboles de navigation, apportée soit par un programme de 
commande, soit extraite d'un plan de bâtiment. Pour la navigation du robot, Les modules comportementaux 
utilisent, selon la situation rencontrée (présence ou absence de symboles artificiels), des informations visuelles, soit 
définies a priori, soit extraites dynamiquement. Dans ce dernier cas, un système de reconnaissance de lieux s’appuie 
sur cette information extraite pour définir de nouvelles positions de référence en remplacement des symboles. 



au robot de trouver des lieux, de les apprendre et de les reconnaître comme de nouvelles 

positions de référence en remplacement des symboles. 

L'ensemble du système fonctionne de manière parallèle et un «mécanisme compétitif» permet 

de décider du meilleur comportement (parmi les couches et les modules) pour le contrôle du 

robot en fonction du stimulus reçu. Ce sont les interconnexions neuronales composées de 

connexions excitatrices ou inhibitrices qui permettent ou annihilent l'activation des neurones. 

Lorsque l'apprentissage est nécessaire, un autre type de connexion est également utilisé: la 

connexion de modulation. L'apprentissage des associations entre le symbole reconnu et une 

action particulière est conditionné par un signal de renforcement qui représente les 

motivations internes du robot. 

 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



L’architecture RHIZOME : Une architecture de contrôle neurocomportementale hybride pour la 

navigation autonome indoor de robots mobiles reposant sur la perception visuelle 
 

Résumé : Les travaux décrits dans cette thèse apportent une contribution au problème de la navigation autonome de 

robots mobiles dans un contexte de vision indoor. Il s’agit de chercher à concilier les avantages des différents paradigmes 

d’architecture de contrôle et des stratégies de navigation. Ainsi, nous proposons l’architecture RHIZOME (Robotic 

Hybrid Indoor-Zone Operational ModulE): une architecture unique de contrôle robotique mettant en synergie ces 

différentes approches en s’appuyant sur un système neuronale. Les interactions du robot avec son environnement ainsi 

que les multiples connexions neuronales permettent à l’ensemble du système de s’adapter aux conditions de navigation. 

L’architecture RHIZOME proposée combine les avantages des approches comportementales (e.g. rapidité de réaction 

face à des problèmes imprévus dans un contexte d’environnement dynamique), et ceux des approches délibératives qui 

tirent profit d’une connaissance a priori de l’environnement. Cependant, cette connaissance est uniquement exploitée 

pour corroborer les informations perçues visuellement avec celles embarquées. Elle est représentée par une séquence de 

symboles artificiels de navigation guidant le robot vers sa destination finale. Cette séquence est présentée au robot soit 

sous la forme d’une liste de paramètres, soit sous la forme d’un plan. Dans ce dernier cas, le robot doit extraire lui-même 

la séquence de symboles à suivre grâce à une chaine de traitements d’images. Ainsi, afin de prendre la bonne décision 

lors de sa navigation, le robot traite l’ensemble de l’information perçue, la compare en temps réel avec l’information a 

priori apportée ou extraite, et réagit en conséquence. Lorsque certains symboles de navigation ne sont plus présents 

dans l’environnement de navigation, l’architecture RHIZOME construit de nouveaux lieux de référence à partir des 

panoramas extraits de ces lieux. Ainsi, le robot, lors de phases exploratoires, peut s’appuyer sur ces nouvelles 

informations pour atteindre sa destination finale, et surmonter des situations imprévues. 

Nous avons mis en place notre architecture sur le robot humanoïde NAO. Les résultats expérimentaux obtenus lors 

d’une navigation indoor, dans des scenarios à la fois déterministes et stochastiques, montrent la faisabilité et la 

robustesse de cette approche unifiée. 

Mots clés : Architecture de contrôle neuronale robotique, navigation autonome indoor de robots mobiles, perception 

visuelle, fusion de données, analyse d’un plan du bâtiment, reconnaissance de symboles, approche hybride 

comportementale. 

 

The RHIZOME architecture: A hybrid neurobehavioral control architecture for autonomous vision-

based indoor robot navigation 

 
Abstract: The work described in this dissertation is a contribution to the problem of autonomous indoor vision-based 

mobile robot navigation, which is still a vast ongoing research topic. It addresses it by trying to conciliate all differences 

found among the state-of-the-art control architecture paradigms and navigation strategies. Hence, the author proposes 

the RHIZOME architecture (Robotic Hybrid Indoor-Zone Operational ModulE): a unique robotic control architecture 

capable of creating a synergy of different approaches by merging them into a neural system. The interactions of the 

robot with its environment and the multiple neural connections allow the whole system to adapt to navigation conditions. 

The RHIZOME architecture preserves all the advantages of behavior-based architectures such as rapid responses to 

unforeseen problems in dynamic environments while combining it with the a priori knowledge of the world used in 

deliberative architectures. However, this knowledge is used to only corroborate the dynamic visual perception 

information and embedded knowledge, instead of directly controlling the actions of the robot as most hybrid 

architectures do. The information is represented by a sequence of artificial navigation signs leading to the final 

destination that are expected to be found in the navigation path. Such sequence is provided to the robot either by means 

of a program command or by enabling it to extract itself the sequence from a floor plan. This latter implies the execution 

of a floor plan analysis process. Consequently, in order to take the right decision during navigation, the robot processes 

both set of information, compares them in real time and reacts accordingly. When navigation signs are not present in 

the navigation environment as expected, the RHIZOME architecture builds new reference places from landmark 

constellations, which are extracted from these places and learns the. Thus, during navigation, the robot can use this new 

information to achieve its final destination by overcoming unforeseen situations. 

The overall architecture has been implemented on the NAO humanoid robot. Real-time experimental results during 

indoor navigation under both, deterministic and stochastic scenarios show the feasibility and robustness of the proposed 

unified approach. 

Keywords: Artificial neuronal network-based control architecture, autonomous mobile robot indoor navigation, visual 

perception, data merging, floor plan analysis, pattern recognition, hybrid behavior-based approach. 
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