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Abstract

The RHIZOME Architecture: A Hybrid Neurobehavioral Control Architecture
for Autonomous Vision-based Indoor Robot Navigation

The work described in this dissertation is a contribution to the problem of autonomous
indoor vision-based mobile robot navigation, which is still a vast ongoing research topic. It
addresses it by trying to conciliate all differences found among the state-of-the-art control
architecture paradigms and navigation strategies. Hence, the author proposes the RHIZOME
architecture (Robotic Hybrid Indoor-Zone Operational ModulE): a robotic control archi-
tecture capable of creating a synergy of different approaches by merging them into a neural
system. The interactions of the robot with its environment and the multiple neural connec-
tions allow the whole system to adapt to navigation conditions.

The RHIZOME architecture preserves all the advantages of behavior-based architectures
such as rapid responses to unforeseen problems in dynamic environments while combining
it with the a priori knowledge of the world used in deliberative architectures. However,
this knowledge is used to only corroborate the dynamic visual perception information and
embedded knowledge, instead of directly controlling the actions of the robot as most hybrid
architectures do. The information is represented by a sequence of artificial navigation signs
leading to the final destination that are expected to be found in the navigation path. Such
sequence is provided to the robot either by means of a program command or by enabling it to
extract itself the sequence from a floor plan. This latter implies the execution of a floor plan
analysis process. Consequently, in order to take the right decision during navigation, the robot
processes both set of information, compares them in real time and reacts accordingly. When
navigation signs are not present in the navigation environment as expected, the RHIZOME
architecture builds new reference places from landmark constellations, which are extracted
from these places and learns them. Thus, during navigation, the robot can use this new
information to achieve its final destination by overcoming unforeseen situations.

The overall architecture has been implemented on the NAO humanoid robot. Real-time
experimental results during indoor navigation under both, deterministic and stochastic sce-
narios, show the feasibility and robustness of the proposed unified approach.

Keywords: Artificial neuronal network-based control architecture, autonomous mobile
robot indoor navigation, visual perception, data merging, floor plan analysis, pattern recog-
nition, behavior-based hybrid approach.
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L’architecture RHIZOME: Une Architecture de Contréle Neurocomportementale
Hybride pour la Navigation Autonome Indoor des Robots Mobiles Reposant sur
la Perception Visuelle

Les travaux décrits dans cette thése apportent une contribution au probléme de la navi-
gation autonome de robots mobiles dans un contexte de vision indoor. Il s’agit de chercher a
concilier les avantages des différents paradigmes d’architecture de controle et des stratégies de
navigation. Nous proposons dans ce but architecture RHIZOME (Robotic Hybrid Indoor-
Zone Operational ModulE): une architecture de controle robotique mettant en synergie ces
différentes approches en s’appuyant sur un systéme neuronale. Les interactions du robot avec
son environnement ainsi que les multiples connexions neuronales permettent a ’ensemble du
systéme de s’adapter aux conditions de navigation.

L’architecture RHIZOME proposée combine les avantages des approches comportemen-
tales (e.g. rapidité de réaction face a des problémes imprévus dans un contexte d’environnement
dynamique), et ceux des approches délibératives qui tirent profit d'une connaissance a priori
de I'environnement. Cependant, cette connaissance est uniquement exploitée pour corro-
borer les informations pergues visuellement avec celles embarquées. Elle est représentée par
une séquence de symboles artificiels de navigation guidant le robot vers sa destination finale.
Cette séquence est présentée au robot soit sous la forme d’une liste de paramétres, soit sous la,
forme d’un plan. Dans ce dernier cas, le robot doit extraire lui-méme la séquence de symboles
a suivre grace a une chaine de traitements d’images. Ainsi, afin de prendre la bonne déci-
sion lors de sa navigation, le robot traite ’ensemble de 'information percue, la compare en
temps réel avec 'information a prior: apportée ou extraite, et réagit en conséquence. Lorsque
certains symboles de navigation ne sont plus présents dans l’environnement de navigation,
I’architecture RHIZOME construit de nouveaux lieux de référence a partir des panoramas
extraits de ces lieux. Ainsi, le robot, lors de phases exploratoires, peut s’appuyer sur ces
nouvelles informations pour atteindre sa destination finale, et surmonter des situations im-
prévues.

Nous avons mis en place notre architecture sur le robot humanoide NAO. Les résultats
expérimentaux obtenus lors d’une navigation indoor, dans des scénarios a la fois déterministes
et stochastiques, montrent la faisabilité et la robustesse de cette approche unifiée.

Mots clés: Architecture de contréle neuronale robotique, navigation autonome indoor
de robots mobiles, perception visuelle, fusion de données, analyse d’un plan du béatiment,
reconnaissance de symboles, approche hybride comportementale.
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1.1 Context

A large extent of research in the last four decades has been focused on the conception of
robust, flexible and reliable autonomous robots capable of traveling from a starting point
to a goal. Robot navigation can be defined as the process allowing a mobile robot to move
autonomously from a starting point towards a final destination by using sensorial data in an
environment that, in most of the cases, is dynamic and unpredictable.

Mobile robots such as wheeled and bipedal robots are widely being used for a variety of
applications in military, industry, service and domestic environments. There exist different
navigation approaches of achieving mobility in robots, but they all serve the common purpose
of leading the robot to its final destination in a safe way.

In order to better understand these approaches, as well as the motivation behind this
work, the requirements of navigation are presented using the analogy to a daily life navigation
scenario below(see figure 1.1).
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Imagine that you arrive for the first time to a large unknown building and you are

required to find your way within it to get to a final destination. Depending on the

purpose of your visit, the time constraints and the availability of the information
about the building, different strategies can be considered.

Firstly, you can use a map of the building (map-based navigation). With it, you

can plan in advance the path trajectory leading you to the desired destination (off-

line planning). You can either read the map that is at the entrance of the building,

get it printed in a paper-based form, or, in a rare case, have it on a phone or tablet

in a digital form. In the first case, as you can only see it once, it would require

you to first memorize the distance to walk as well as the landmarks or places you

might encounter so that they can be looked in the environment while navigating.

This case is similar to as if someone else, already knowing the place, would have

given you some indications (e.g. landmarks and distances) to get there. In the two

latter cases, the memorization task will not be necessary as you can just match the

map information (usually landmarks) continuously with what you perceive while

navigating.

Alternatively, you can build your own map (map-building navigation), as you

navigate the building and learn the path trajectory (on-line path planning) leading

you to the final destination. In either case (map-based or map-building navi-

gation), maps can contain either all dimensions of the environment including dis-

tances between places within the building (metric map) or just an arrangement of

the important landmarks and places according to their proximity (topological map).

There is also the option to find the destination without the support of a map

(mapless navigation) by exploring the building at your ease. By memorizing

the different landmarks or places seen while walking, you could build your own

path trajectory as you go further (on-line path planning) until finally arrive to your

destination.

Understandably, any of the above approaches can be used in both indoors and outdoors
environments, but they all have their pros and cons.

For instance, having a map of the building before the navigation activity starts would
allow you to reach the desired destination fast, while knowing at all times your position with
respect to both starting and final points. However, it requires that somebody has previously
drawn the map of the building, and it has remained the same since it was drawn.

Instead, building your own map based on what you are currently perceiving would provide
you up-to-date knowledge about the building as well as a certain autonomy compared to the
first approach. Thus, in case of any recent change of the environment you could adapt to
it and store the path for the next time the information is needed. However, building your
own map would take you a lot of time and effort especially if your own position is not clearly
known with respect to the starting or the final point.

Similarly, navigating without any map would allow you to find new and different ways of
accessing the desired destination in case that one of them has been blocked for any reason.
However, this task would require you to have sufficient time to explore all possible ways.
Additionally, since there is no recording of the environment, returning to the starting point
or coming back another day would be as time consuming as it is the first time. Moreover, if
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Figure 1.1: Exemple of the different navigation strategies

you get lost on the way, it would be difficult to know where your location is with respect to
the starting point and the final destination.

In the context of autonomous robot navigation, many systems attempt to give a solution to
the navigation problem by employing any of the above navigation strategies. The navigation
process usually involves the use of world representation, localization, path planning, in
order to execute the appropriate action according to the perceived environment information
without continuous human guidance.

Each functional module is by itself a vast research field and the existing relationships
among them and means of integration are defined by a control architecture. For instance, one
or some of them can be omitted in the overall process depending on the control architecture
or the navigation strategy employed. For a general overview or detailed description of these
modules, the reader can refer to the appendix section and chapter 2 respectively.

Control architectures are the core of successful navigation as they impose constraints on
how the system can be controlled. There are considerably many possible ways to program a
robot and currently, not a single control architecture can be said to excel at performing in
all possible applications.

The complexity of control architectures is subject, to a large extent, to the special needs of
robot systems that most of the time must be fulfilled concurrently and asynchronously. How
they succeed at organizing, unifying and monitoring the aforementioned modules to enable
an effective navigation strategy is highly determined and limited by both the application
field and the robotic platform implementation. Consequently, robotic systems can be divided
according to both application field and robotic platform.
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From the application field point of view, different scenarios to which robot systems (e.g.
industrial robots, domestic or household robots, service robots, military robots, space robots)
are exposed need to be considered. For instance, in deterministic scenarios where the envi-
ronment remains intact, the navigation task can be simplified to the act of just going from
a starting point to the final destination by sensing the environment and/or following the
planned path if a representation of the world is previously provided. On the contrary, in
stochastic and thereby more realistic scenarios such as those found in search and rescue ap-
plications, robots systems must cope with unexpected situations by reacting accordingly and
responding within varying temporal scopes when performing real time navigation. They must
have decision-making capabilities to act in accordance with multiple and different tasks while
still achieving to the final destination.

From the robotic platform implementation point of view, robot systems (e.g. wheeled
robots, bipedal (humanoids) robots, marine (underwater) robots, aerial robots), need to
control diverse physical components such as sensors, actuators, processors. in order to interact
with uncertain and often dynamic environments in real time. Additionally, the quick growth
of the embedded power computing requires the architectures to be flexible enough to allow
the replacement of components in the field when necessary and easily adaptable to different
platforms in order to perform different missions while still maintaining an autonomy.

All these facts must be taken into account as their impact is substantial for the conception
and development of an autonomous robot navigation system. Hence, in order to manage
such complexity, many architectures have been proposed, along with software and material
components needed to support them.

Most control architectures have shown to excel at performing a successful autonomous
navigation in a specific application field despite the constraints of the platform employed.
However, they usually fail when a different scenario is presented and the platform require-
ments are no longer adequate for the given task.

1.2 Scope of the thesis

Since a multitude of situations can lead to a diversity of architectural solutions and related
mechanisms, an ideal solution would be to conceive and implement a control architecture as
generic as possible, which can overcome all different sort of constraints. Thus, such archi-
tecture should be flexible enough to allow the addition of new components (hardware and
software) without questioning or modifying the already existing ones at whatever level they
might be; and consequently offer transparent mechanisms of communication and exchange
of data. It should also be capable of a high-level decision-making capacity to perform the
adequate actions while being able to refine and adapt its plans and its behaviors according
to its goals and to the unpredictable environment changes. Moreover, since such architecture
would be capable of performing (sometimes concurrently) multiple actions, it should also be
robust enough to manage the priorities of different tasks, the sudden malfunctions and the
redundancy of the information given by the multiple sensor sources while still guarantying a
safe performance.

The list of these properties is endless and after a certain point, it is impossible to make
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it exhaustive since our capacity of imagining all kind of situations to build an all-purpose
autonomous robot system is quite limited by many reasons (i.e. technological, societal,
ethical, etc). We could conversely, think of an architecture that is not only endowed of the
established properties permitting to respond to different constraints but also and overall, an
architecture capable of transforming itself according to any new unforeseeable parameter.
The author of this work is aware of the fact that succeeding in conceiving and implement-
ing such generic architecture is not an easy task and that it will require a lot of time, effort
and resources to get there. Therefore, the work presented in this thesis must be regarded as a
step on the path towards finding a more general, highly robust and efficient approach to con-
trol robot architectures that allows autonomous robot navigation in a variety of scenarios. To
this end, this work focus exclusively on the constraints given by the different application fields.

To summarize, the main goal of this research thesis is to propose a new robotic
control architecture capable of easy adaptation to different scenarios where a robot is
able to navigate towards its final destination while coping with possible unexpected
situations. To this end, the work presented in this thesis has been conducted within
the context of an indoor visual-based robot navigation with the application on a
humanoid robot using a camera as the only sensor to perceive the environment.
Two completely different scenarios (from which many others can derive) are here
considered:

1. A deterministic scenario supposing that the environment remains always the
same,

2. A stochastic scenario presenting unforeseen changes in the environment.

The distinction of these two scenarios suggests that they both are defined vis-a-
vis a prior knowledge of the environment and the possibility of matching or not
with it. Hence, during navigation, the robot looks for the expected information
in the navigation path; and by performing the respective matching with what it
is currently being perceived, it can corroborate the information analogous to the
map-based navigation strategy.

1. Thus, when the matching along the way to the final destination results posi-
tive, it can be deduced that the robot is navigating within a deterministic
scenario.

2. Otherwise, the scenario is assumed to be stochastic and the robot is obliged
in return to find a way to get to its final destination by following some mapless
navigation techniques.

From its creation through its development and completion, this work has its founda-
tion on two important pillars: the state-of-the-art indoor navigation strategies
based on visual perception and the different paradigms that control architectures
are based on.
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Indoor navigation can be divided into map-based, map-building and mapless navigation.
While map-based navigation provides a model of the environment before the navigation
starts, map-building builds one as the robot navigates the environment. Mapless navi-
gation systems instead, do not employ any representation of the world and the movements
of the robot depend on the elements observed in the environment.

The paradigms of control architectures can be classified according to two different view-
points: functional and design viewpoints. The functional viewpoint classifies the paradigms
in terms of their internal functionality and thus in terms of their capabilities to act on the
environment when performing a given task. These are deliberative, reactive, hybrid and
behavior-based. The design viewpoint specifies two paradigms based on how the data in-
formation is processed and propagated through the systems as well as how the knowledge is
ordered: top-down and bottom-up.

For a deeper insight, the reader can refer to the state-of-the-art presented in Chapter 2
and Chapter 3 for vision-based robot navigation and control architectures respectively.

1.3 Proposed Solution

In order to meet the above objective according to the specificities given by the different scenar-
ios, the RHIZOME (Robotic Hybrid Indoor-Zone Operational ModulE) control architecture
is here proposed.

The architecture is composed of an artificial neural network comprised of interconnected
artificial nodes that compute their output values from one or more inputs received, akin to a
biological neural network in the nervous system of an organism. These computational models
have properties such as associative memorization, learning and parallel multi-information pro-
cessing. Their interconnectivity is such that the whole system is capable of self-adapting with
regard to its inputs resulting from the interaction between the robot and the environment.

During the conception and implementation of the RHIZOME architecture, a number of
questions, knowledge gaps and decisions points needed addressing in order to choose the best
solutions among the existing ones. This is given next, via sequential addressing of some of
the most relevant questions, before getting into the details, characteristics and functioning of
the RHIZOME architecture.

1.3.1 Problems addressed and contributions

Conceiving and implementing a control architecture capable of adapting to different scenar-
ios requires satisfying various very different requirements. For that purpose, the problems
addressed in this thesis were reasoned according to the aforementioned working scenarios
(deterministic and stochastic) constraints. A logical approach was used to flow down from
one question or decision point to the next, gradually firming up the solution space to the
problem at hand, in the form of the RHIZOME architecture. This logic is presented below
to justify the decisions undertaken by providing the rationale behind them.

1. How can the world (navigation environment) be used in the best way pos-
sible to help a robot to navigate?
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Going back to the daily life analogy described above where three different navigation
strategies can be considered to get to the final destination, it should be noted that
there is a common denominator: the use of salient and most of the time stationary
cues serving as references points. Certainly, when using a map, the information (after
having planned the complete path) can be just reduced to the distance to walk and the
different directions to take. However since most environments are prone to unforeseen
changes, perceiving the environment is necessary to corroborate that the information
given by the map has not been modified. Likewise, when no representation whatsoever
of the world is provided in advance, those cues play an important role in the navigation
task.

This can be seen from the early days of sea navigation where reference points were
essential to sailors to localize themselves and navigate in the oceans. Before the ar-
rival of modern navigation techniques, the pole stars were used as reference points for
navigating since they did not disappear in the horizon. Similarly, in our daily life,
cues (referred as navigation signs hereafter) are found all around us to help with our
navigation chores. From traffic signs on the roads, directional signs in metro stations
and airports to fire safety signs in the buildings, all these signs help in a way or other
to guide us through the destinations we want to achieve (1.2).

Sailor navigation signs

Fire safety signs
- e oxsians g

m"@."mm

Directional signs

P —
Bienvenue
Welcome
Terminal 2

Figure 1.2: Exemple of the different navigation signs found in our daily lifes.

Based on this insight, this work makes use of some navigation signs for reference
purposes in the navigation task of a mobile robot. By detecting and recognizing such
signs while navigating the environment, the robot is guided through to achieve its final
destination. Two types of navigation signs are here considered: Artificial signs and
natural signs. Artificial navigation signs refer to predesigned signs previously placed
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along the navigation path. Conversely, natural navigation signs refer to natural patterns
within the environment sufficiently remarkable to be considered as reference points.

The use of both types of navigations signs can be considered from the point of view
of two completely different paradigms that have their roots in the field of artificial
intelligence. First, the symbolic paradigm of artificial intelligence assumed that the
manipulation of symbols was sufficient to treat many aspects of intelligence such as the
control of complex actions in the machines. This can be true and has proven to be
robust over the years when the output of a machine manipulating symbols are based
on definite inputs and when there is certainty (e.g. expert systems, deliberative robotic
control architectures, etc.).

This was a predominant paradigm over almost three decades from the mid-1950s. How-
ever, their lack of robustness under uncertainty led new researches to look into a sub-
symbolic approach: the nouvelle AI paradigm. Contrary to the symbolic paradigm, the
nouvelle Al paradigm does not use a specific representation of the world to approach
intelligence, but instead it postulates that intelligence emerges from simple behaviors
resulting from the interaction of the robot with its immediate environment via sensory-
motor links. Rather than using a single centralized planner, the system stores repre-
sentations in a distributed fashion over multiple behaviors, while the overall ensemble
composes an interconnected behavior network. Hence, each behavior, representing a
component of the whole representation, communicates with other representation be-
haviors as well as utilizes other low-level behaviors.

Hence, while the artificial navigation signs are used in this work as high-level symbols
that the robot can manipulate under a deterministic scenario, the natural navigation
signs resulting from the interaction of the robot with the environment are used in the
absence of the artificial navigation signs under a stochastic scenario. This configuration
result from the following questions and their converging answers.

. How can the robot access its final destination in the most efficient and simple
way?

The simplest scenario that can be imagined is one in which the representation of the
world is computed beforehand and it is found as such during the navigation task. Such
configuration implies that the scenario is deterministic and the representation of the
world is provided to the robot before the navigation activity starts.

From the navigation point of view, a map-based navigation strategy is suitable for
this case since it uses a representation of the world in advance.

From the architectural point of view, a deliberative architecture and top-down
processing seems to be more suited to process the information given by the map
and plan the navigation path. In effect, deliberative architectures were the dominant
paradigm for building robots based on a previously given model and process the infor-
mation in a top-down fashion. In our case, the model corresponds to the environment
within which the robot needs to navigate.
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e But what type of map?

Digital floor plans of buildings (such as hospitals, schools, residential complexes
or factories) are typically not as readily available as digital maps of entire cities,
countries etc. Hence, when trying to navigate an unknown building, one has to
rely on floor plans available in physical form at the entrance of the building or
on paper to achieve one’s final destination. Since such a floor plan provides one
of the fastest way to access comprehensive information about the inside of the
building, it is the type used here to represent the world information (in this case,
artificial navigation signs designed on the map according to their placement in
the navigation path). Then, computing a sequence of these signs according
to their order of appearance within the path from the starting point to the final
destination and then looking for them in the same order along the navigation path
seems to us to be most suitable option to obtain the information. This implies a
topological configuration of the map, where the only information needed is the
sequential relationship among the signs.

In the case the sequence of signs is the only thing provided to the robot, there are
some chances to fall into the «symbol grounding problem» |[Harnad 1990]. This
problem refers to concerns and issues such as: What is the directional meaning
of each sign? Would it be the same if they were found in another environment?
How can the robot interpret and deduce their meaning? All these questions or
problems can only be answered by allowing a constant interaction between the
robot and the environment

Conversely, if the robot has the autonomy of "reading" the map by itself, it could
compute not only the sign sequence but also the directional meaning each sign
denotes as well as the distance among the signs. To this end, some metrics usually
found in metric maps would also be needed.

Regardless of the information obtained (signs sequence only or signs sequence with
their corresponding directional meaning), the interaction with the environment be-
comes essential in this task as the robot needs to compare the obtained information
to what it perceives in the real environment. The robot should not only be able
to corroborate the information given by the map (sign recognition) but also, it
should know what action to perform among different and multiple other possible
actions resulting from recognizing (or inability to recognize) the sign.

Interacting with the environment is quite challenging, as it is most of the times
dynamic and unpredictable; and even though the use of a priori information might
alleviate the navigation task, a good system should be flexible enough to cope with
any potential unforeseen change in the environment. Therefore, it is necessary to
find out the best solution allowing handling the uncertainty problem and thereby
the execution of a given action among many other. This takes us to the next
question.

3. What type of mechanism or model seems to be well suited to handle dynamic
environments?
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In order to tackle the uncertainty problem given by dynamic environments, the best
model one can think of is that of the human brain. In effect, humans have shown an
extreme capability to handle unforeseen changes by reacting accordingly, learning by
example and from experience and easily adapting to any given situation. Such successful
performance can be attributed to the thorough work of the brain and its components.

Hence, the properties, behavior and functionality of the neurons composing the brain
have been the inspiration of several models in artificial intelligence and they represent
the foundation of the internal components of the proposed architecture.

The neural models of the connectionism formerly known as the Parallel Distributed
Processing or PDP models [McClelland 1986, use simple and often uniform neuron-like
processing units to process the information. The memory is carried locally through the
interaction of a large number of these units via excitatory and inhibitory signals. Each
unit receives input from its neighbors, executes a function according to the received
inputs and computes an output value. The inherently distributed configuration allows
the computation of several units to be carried out simultaneously which compared to
serial models, allows to hasten the information processing.

The representation of the knowledge in PDP models is not stored in a state or a long-
term memory as it can be found in other conventional models. Conversely, the knowl-
edge is part of the process itself and determines the course of it in the sense that it
is stored in the connections strengths among units as a long-term memory, while the
short-term memory is stored in the states of the units. The units may represent differ-
ent things depending on the model. For instance, a simple unit can represent a feature,
a symbol or a concept. It can also represent abstract elements, which by assembling it
with many other can represent an entire feature or concept.

An extremely important property of these models is that it is possible to learn through
experience by a using a modulation mechanism allowing to adjust the connection among
the units. There exist different rules for adjusting the connections. Most of them derived
from the learning rule proposed by [Hebb 2005] who stipulated that when two units are
simultaneously excited the connection between them is strengthened.

From the architectural point of view, behavior-based architectures are composed of a
collection of behavioral modules organized in a distributive and parallel fashion alike
the PDP models. They are usually executed concurrently and asynchronously and by
bringing them together under complex environments, emergent behaviors can occur.
Since there is no central control among the behavioral modules, all layers are intercon-
nected allowing an internal communication to decide on the best action or behavior to
be performed |Edelman 1987].

Therefore, a behavior-based architecture with a bottom-up processing seems to
be a good option to tackle the uncertainty of real-time interactions under dynamic and
unpredictable environments, in particular given the great achievement of the subsomp-
tion architecture of Brooks [Brooks 1986| at overcoming such problems.

This work follows the same line of thought of the behavior-based architecture in order
to adapt to new changes and act accordingly. More particularly, the mechanism, prop-
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erties and components of the proposed architecture are based on the PerAc architecture
Inspired mainly by the works of Brooks [Brooks 1986], [Edelman 1987],[Carpenter 1987]
and proposed by Gaussier and Zheren |Gaussier 1995] as an organized neural structure.

The PerAc architecture makes no use of any representation of the world to control
the action of the robot. Conversely, it follows a perception-action mechanism that
constantly evolves because of the dynamic interaction between the robot and its envi-
ronment (see section 3.2.2.4 in chapter 3 for more information).

e What action can be performed in case the expected information is not
seen in the environment?

The absence of the artificial navigation signs within a stochastic environment forces
the robot to opt for a new navigation strategy requiring it to find new reference
points to follow its way. To this end, finding natural navigation signs as a result of
the interaction of the robot with the environment as found in mapless navigation
strategies seems to be a good solution.

However, this work goes beyond the detection of natural navigation signs by us-
ing a more robust system based on a biologically inspired approach proposed by
[Gaussier 2002], which allows place recognition. In effect, a place can be identified
as a stable reference point that can be learned by keeping in memory the location
of the most relevant perceived patterns within the panoramic visual field of the
robot. Returning to this place then consists in navigating until recognizing the
same learned patterns.

The robustness of such approach lies in the fact that even if one or several patterns
characterizing the place are removed or not visibly available anymore, a place can
still be recognized. Additionally, by means of a triangulation process it is possible
to obtain information about the robot’s position with respect to the surrounding
environment.

Finally, the fact of knowing the action to perform when the expected information
is not seen in the environment implies that there has been a process allowing
to compare both source of information (the a priori and the perceived real-time
information while navigating) and that there has been a choice of excecuiting an
action according to the result. Thus, a final question arises as follows.

4. How to merge both input information and use it to act according to the
resulting comparison?

The solution to this question may be seen as the convergence of all the above questions
and answers into a single and unique structure. How to combine a priori and real-time
dynamic information? how to combine both deliberative and behavior-based architec-
tures? Alternatively, how to combine the use of different techniques from mapless and
map-based strategies?

All such questions can be covered by answering to a more general question: how can a
connectionist model be combined with a symbolic computation model?
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Over the years, both views have been considered opposite to each other. Whereas the
knowledge information is stored in the connection strengths among the network units
of the connectionist approach, the same knowledge is represented by strings of symbols
in the classical symbolic approach.

Despite the differences, some connectionists [Sun 2001al,|Sun 2001b| agree that it is
possible to reunite both paradigms into a connectionist architecture. They postulate
that it should be possible to implement a symbolic processing in a neural network given
the ability of humans to perform high-level symbol-manipulations tasks despite the
neural net configuration of the brain.

Following the same line of though, the architecture proposed in this work
takes advantage of the properties characterizing the neural networks to merge
both information into a neural structure.

Three types of units have been distinguished in classical neural network models: input,
output, and hidden units. In this work, the author has opted for naming internal
units what it could seemingly be the hidden units, in order to avoid any association
to the configuration of the most commonly known models of neural networks such as
the recurrent Neural networks (RNN) or the Feed-forward Neural Networks. Indeed,
contrary to those models, the presented architecture takes the liberty of connecting the
units and group of units in a distributed fashion different from what one can be used
to see. The reader can refer to chapter 4, which explains in detail the connections of
such units within the context of our work.

As far as the action-selection problem is concerned, the properties of the artificial neu-
rons give an inherent solution to it. In his book, the mindful Brain [Edelman 1987|,
Edelman develops his theory of neural Darwinism, where he evokes the plasticity in
the neural networks in response to the environment. The interconnection among the
neurons is reinforced through experience and when a external or internal stimulus is
received by the system, different neurons are simultaneously activated sending the in-
formation to their neighbors. The output is then the result of the different activations
stimulated by a given input source.

Artificial neural network models have the ability to model any given function. There-
fore, it is possible to set different activation functions along the network in order to
trigger different behaviors.

As a result, the whole system works in parallel and a «competitive mechanism» allows
deciding on the best behavior or action to perform for controlling the robot according
to the stimulus received |[Carpenter 1987|,[Kohonen 1990].

1.3.2 Summary of the contributions

The fact of analyzing, reorganizing and synthesizing solution areas as presented above, led

the author to understand that the conception of a unique control architecture capable of

responding to different scenarios constraints is only possible by conciliating all differences

among the so-far-proposed paradigms. Thus, rather than embracing a single approach or
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following a single path of though, one can think of creating a synergy of multiples approaches
by merging them into a transversal structure.

The whole set of contributions of this work is next summarized. They follow the different
approaches that served to achieve the final goal of representing and conceiving such hybrid
configuration .

Navigation Viewpoint: From the navigation point of view, two navigations strategies
are used.

Map based: The analysis of the floor plan in real time undertakes a thorough process
permitting the robot to extract the relevant information for its integration into the system. It
consists of (1) an information segmentation process, which identifies and separates different
types of information; (2) followed by structural analysis where the information is extracted
(walls and navigation signs separately); (3) and finally a semantic analysis allowing the
extraction of the sign sequence based on the computation of the path and the information of
the signs. While the floor plan is designed in a topologic fashion, the extracted information
is both topologic and metric.

Mapless: A biological approach for place recognition based on place cells is implemented.
Firstly, the procedure for detecting the landmarks undertakes two-classification process. The
SIFT local descriptor [Lowe 2004] and a visual bag of words model are first used in order
to describe distinctly the salient features of all the images. Then the features are clustered
according to their proximity in terms of distance and the resulting group is considered as the
salient landmark. Finally, each landmark is compared to others by computing the norm of
the difference between the features describing them. Secondly, the internal computation of
the neural components are modified in order to allow the robot to compare the landmarks
perceived from different places during navigation, by using a vigilance term inspired by the
work of Grossberg [Carpenter 1987| and learn them when not recognized. Consequently, the
system learns incrementally.

The third navigation strategy, Map building, is only presented as a perspective for future
work. At the end of the navigation, the robot is capable of updating the map with the new
information given by the place cells. The map is built by merging both static map information
and recently-changed information. The methodology used correspond to the map-building
training phase. A SLAM technique could also be foreseen.

Architectural Viewpoint: Two points of view can be considered from which all types
are in a way or other used.

Functional Viewpoint: Contrary to the PerAc architecture, the RHIZOME architec-
ture uses an a priori knowledge of the environment in order to corroborate the dynamic visual
information perceived during navigation. Hence, it is composed of both deliberative and
behavior-based modules interconnected by a neural network which makes of it a hybrid
architecture. However, the hybrid sense here opposes to the currently known hybrid archi-
tectures that use an intermediate component to reconcile both representations and to resolve
any conflict between their outputs. It acts as the coordinator of the system and it plays an
important role in the good performance of the system.

Conversely, the RHIZOME architecture can be considered as being entirely behavior-
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based capable of combining two opposing approaches without the need of a coordinator
component. Hence, a behavior-based hybrid architecture.

However, it differs from the common behavior-based control architectures in the fact that
this architecture does not follow a hierarchical process but instead, each action or behavior is
equally important and the resulting action emerges from the interaction with the environment
and the internal motivation of the robot.

Design Viewpoint: Whereas the information available from the map is obtained by
following a top-down process, the emergence of behaviors and actions of the robot result
from a bottom-up process.

Consequently, such hybrid or multi-hybrid configuration, if one might say, results in the
conception of a complete architecture imbricating different architectures each suited for a
different scenario.

1.3.3 The RHIZOME architecture

The RHIZOME architecture emerged out of the will to provide an adequate autonomy to mo-
bile robots allowing them to navigate within an environment while being capable of adapting
themselves to unforeseen situations presented in it. It consists of a behavior-based hybrid
architecture that fuses the a prior: information and real-time visual information of the world
into a neural structure.

The a priori information of the world is used to only corroborate the real-time visual
information perceived during navigation, contrary to most hybrid architectures that use it
to directly control the actions of the robot. Additionally, instead of using a complete motion
path, the RHIZOME architecture makes use of artificial navigation signs and their expected
sequence in the navigation path. Consequently, in order to take the right decision during
navigation, the robot is able to process both set of information, compare them in real time and
react accordingly. When the navigation signs are not present in the navigation environment
as expected, the RHIZOME architecture allows the robot to learn and recognize places based
on natural navigation signs that it perceives in the environment. Thus, the robot is still
able to achieve its final destination by overcoming the unforeseen situations. The RHIZOME
architecture is composed of a hybrid behavioral structure that combines a deliberative module
and one or several behavioral modules as illustrated in figure 1.3.

e On one hand, the deliberative module represented by the top half box of figure 1.3
corresponds to the a priori knowledge of the navigation environment. In this work, it
is given in the form of navigation signs that are expected to be found in the navigation
path. The sign sequence is computed beforehand according to the order of appearance
of the signs within the path from the starting point to the final destination. It is either
integrated into the behavioral modules of the architecture through a command program
or by following a processing chain in charge of extracting it by computing a path plan
from a given map (floor plan).

e On the other hand, the behavioral modules represented by the lower box of fig-
ure 1.3 are based on the PerAc (Perception-Action)architecture |Gaussier 1995] which
is composed of two levels of data streams corresponding to perception and action flows.
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The first level, Reflex behavior box on figure 1.4, uses a reflex mechanism that con-

trols directly the robot’s actions based on the information extracted from the perceived
input. The second level, Recognition box on figure 1.4, uses a cognitive mechanism
performing recognition by integrating the aforementioned perceptive flow and learning
sensory-motor associations. Figure 1.4 shows the PerAc architecture(left) which is used
in the behavioral module of the Rhizome architecture (right).

Thanks to the generic composition of the proposed RHIZOME architecture, it is possible
to develop the architecture further with respect to robustness and completeness by building
new layers and modules separately and simply adding them without modifying the already
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Figure 1.4: PerAc architecture(left) [Gaussier 1995]used in the behavioral module of the
RHIZOME architecture (right).

in-built components or modules. One can certainly go further and further on the construction
of many modules, as long as there are always new scenarios constraints to overcome.

In the context of this work, the RHIZOME architecture was conceived, built and im-
plemented through three different scenarios under which, three interdependent architectures
emerged, each responding to the different scenario constraints.

Deterministic scenario

e Rhizomel: Exploring the world with little information

e Rhizome2: Map-using autonomous navigation

Stochastic scenario

e Rhizome3: Self-learning and adapting according to unforeseen changes

The architectures should not be regarded as if there was a hierarchy among them or
as if they followed an evolution pattern where each architecture is the improvement of the
previous one. Conversely, starting from the simplest scenario imagined, the emergence of the
first architecture occurs. Then, its functionality together with its components propels the
functionality of a second one by integrating new components, and thus, the entire ensemble of

both architectures propel the functionality of the third one. Each architecture is as important
as the others are according to its corresponding scenario.
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1.4 Limitations

In order to accomplish a project on autonomous robot navigation, it is necessary to take into
account from the start the requirements that the task involves within the given constraints.
This implies defining beforehand the scope and limitations of the project. While the scope
has been presented all along this chapter, some of the most important tasks not considered
in this work are presented below.

Even though, localization is an important module in the achievement of a successful
navigation, it is not explicitly considered within the scope of this work. However, it is
assumed that by the use of a priori information of the world ( artificial navigation signs), the
position of each navigation sign within the environment is implicitly known and thereby the
position of the robot can be globally obtained. Likewise, in the absence of artificial signs in
the environment, the use of vision techniques used in this work allows the robot to be locally
localized. For a better insight of these techniques the reader can refer to the state-of-the-art
Chapter 2 section 2.4 where each navigation strategy is explained in terms of the techniques
used for localization and planning based on visual perception.

Another important task to consider in any navigation mission is the management of
obstacles (both static and dynamic) which represent a research subject on its own in the
robotics field. Obstacles avoidance is usually tackled by employing a variety of ranging
sensors. However, since the primary goal of this work was to use a camera as the only sensor,
the obstacles avoidance task is not considered in this work.

It should be noted that the author is wary that these limitations along with many other
can and must be considered in the development of the architecture for future work. For
instance, the consideration of new scenarios where the signs may be substituted with other
relevant visual or non-visual cues requiring the use of different and multiple types of sensors.

1.5 Outline of the thesis

This thesis has been organized in three parts as follows:
PART I: STATE-OF-THE-ART

Chapter 2 describes the state-of-the art of vision-based robot navigation in terms of
the functional modules: visual perception, world modelling, localization and path planning.
More precisely, it describes their implication in each different type of navigation strategies
by following a transversal structure proposed by the author. Two types of navigation strate-
gies are here distinguished: mapless navigation and map-based navigation composed itself of
map-using and map-building navigation.

Chapter 3 presents a detailed description of the state-of-the-art of the currently exist-
ing control paradigms. The author has chosen to present them according to two different
viewpoints that can, of course, represent a single architecture. On one hand, the functional
viewpoint classifies the paradigms in terms of their internal functionality and thus in terms
of their capabilities to act on the environment when performing a given task. On the other
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hand, the design viewpoint specifies two paradigms based on how the data information is
processed and propagated through the systems as well as how the knowledge is ordered. The
common misconceptions found in the literature are here cleared and a summary of the ad-
vantages and disadvantages of all paradigms is given.

PART II : THE RHIZOME ARCHITECTURE

Chapter 4 explains the foundation of the RHIZOME architecture by explaining the
main components of RHIZOME 1. Since the navigation signs sequence is directly given to
the robot through a command program, this chapter focuses mainly on the implementation of
the different layers composing a first behavioral module, which integrates the given sequence
and uses it to allow the robot to navigate towards its final destination.

Chapter 5 introduces RHIZOME 2 by presenting a thorough document analysis process
of a floor plan of a building allowing the robot to extract by itself the sequence of signs
together with the corresponding directional meaning each sign denotes. A second behavioral
module is added to the architecture for the integration of the directional meaning into the
system.

Chapter 6 describes in detail the process allowing the robot to learn and recognize a
place based on natural navigation signs (patterns) and their relative positions perceived in
its surrounding. RHIZOME 3, implements the place recognition system in a third behavioral
module that together with the other modules presented in chapter 4 and chapter 5 allows the
robot to navigate autonomously by coping with unforeseen situations.

Each of the above chapters presents a set of experiments and results validating the ad-
vantages and feasibility of the proposed approach. All experiments were carried out within
the same environmental constraints and navigation conditions in order to, not only; evaluate
the functioning of each of the architectures but also to allow the possibility of distinguishing
the functionality of each architecture with respect to the others. A discussion of the results
opening to new perspectives is also given.

PART III : GENERAL CONCLUSION

Chapter 7 concludes the thesis, providing a summary of the presented research and giving
an outlook of the future challenges for autonomous mobile robot navigation. It also discusses
the anatomy of the RHIZOME architecture as a multi-hybrid architecture attempting to
conciliate most so-far used paradigms in the navigation task of mobile robots.
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CHAPTER 2

Vision-based robot navigation
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2.1 Introduction

Vision-based robot navigation was proposed by Desouza [DeSouza 2002] as being structured
in two main topics regardless the vision sensor used in any system: «outdoor» navigation
and «indoor» navigation.

On one hand, outdoor navigation is classified by the regularity or not of different properties
in the environment: structured and unstructured. While in structured environments, the
navigation task can be performed consistently by detecting and following the lines of the
road, paved paths, or others|Rasmussen 2014|, in unstructured environments, the navigation
can be a more complex task to achieve as no regular properties can be tracked. In this case,
the robot needs to either explore the vicinity of its environment in a random way or have
a fixed goal position by using a map of the area and perform a localization algorithm to
execute its mission [Jiang 2013|. However, since outdoor environments can be large in size
and extremely irregular, the computational resources, time and storage capabilities required,
might be fairly huge.
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On the other hand, indoor navigation is subdivided into map-based, map-building and
mapless navigation. While map-based navigation provides a model of the environment be-
fore the navigation starts, map-building builds one as the robot navigates the environment.
Mapless navigation systems instead, do not employ any representation of the world and the
movements of the robot depend on the elements observed in the environment. Following
the same line of this taxonomy,[Giizel 2013] presented a survey of mapless strategies for au-
tonomous vehicle vision-based indoor navigation as illustrated in figure 2.1.
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Figure 2.1: Vision based indoor mobile robot navigation techniques proposed by [Giizel 2013]

Such indoor and outdoor navigation distinction has been used as a referent in robot
navigation research for several years. However, with the continued progress on sensors as
well as mechanical and control aspect of mobile robots systems, several works hold into both
categories outdoors and indoors, especially those using a map.

Consequently, the state of the art presented in this work makes no distinction on the
type of the environment to build the system, but instead; it focuses on the distinction of the
systems needing a representation of the environment to navigate the working environment
(map-based navigation), and those that do not (mapless navigation). A comparable
classification has been presented in a survey by Bonin-Font [Bonin-Font 2008|, which gives a
detailed description of map-based and mapless navigation systems.

Additionally, these types of robot navigation include a combination of the following inter-
connected functional modules:

Perception: Perception provides the input for a successful control, decision-making and
interaction with other agents (robot, humans) in the environment. Perception is the pro-
cess of interpreting and transforming the sensory information of the state of the robot, the
environment and other external entities into a representation that can be used for further
processing or further actions.

World representation: By the use of different sensors, it is possible to represent the
navigation world into a map and directly use it for computing the path trajectory to execute
the navigation task. It can also be possible to post-process it to update new information for
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better accuracy (mapping), and thus, achieve a more precise localization. Such map represen-
tation can either be built in advanced or constructed as the robot discovers its environment.
In either case, the representation can be divided into two categories resorting to either metric
or topological maps.

Localization: The localization of the robot denotes its capacity to establish its own
position and orientation in the environment. Localization techniques need a certain knowledge
of the environment, usually the origin or destination point or a map. Several techniques have
been proposed and their difference depends mainly on the nature of the robot’s sensors, the
environment and the initial available information.

Path planning: Path planning is an extension of the localization task, in which it is
necessary to determine the starting and final goal position of the robot, within the same
reference system, in order to plan an optimal collision-free path amidst obstacles in the
environment (i.e. walls and objects) and thereby navigate towards the final destination. The
criterion of optimal performance depends on the application required. It can be chosen in
terms of distance (shortest path), time (fastest) or energy (least energy consuming). Path
planning algorithms are measured by their computational complexity. It can be divided into
two categories based on the availability or absence of a complete representation of the world,
namely off-line and on-line.

The implication of these functional modules in each type of navigation strategy are de-
scribed in this section by following a transversal structure, which is best understood by the
figure below (figure 2.13). Whereas both types of navigation need the perception module to
capture and understand the information of the environment, only the map-based navigation
requires the world-representation module. Similarly, in order to navigate from a starting
point to a final destination, they both need to find ways of localizing in the environment and
plan a path trajectory.

Hence, this section comprises of three parts describing the figure 2.13.

e Firstly, an overview of the techniques referring to visual perception is given. It refers
to a branch of machine learning known as pattern recognition that focuses on the recog-
nition of patterns. This latter is used in the different navigation strategies for detection,
matching and recognition of various landmarks in the environment. Additionally, place
recognition, which is mainly used by mapless strategies is also described. A review of
vision-based sensors used in robot navigation is given.

e Secondly, a description of the world representation functional module is given. How-
ever, this section is rather small compared to the other two since most of the techniques
allowing the construction or utilization of it are related to the localization and type of
navigation strategies, which are explained in the third section. Therefore, only the
description of two of the most common type of maps (metric and topological)on which
our work is based is here given.

e Finally, since the localization and path planning functional modules depend mainly
on the availability or absence of information provided in advance such as a map, the
different techniques employed are explained in terms of each type of navigation strate-
gies.
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Figure 2.2: Transversal structure representing the implication of different functional modules
in all types of navigation strategies.
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Figure 2.3: Visual perception. Transversal structure representing the implication of different
functional modules in all types of navigation strategies.

Robot navigation based on visual perception systems (such as onboard camera systems)
has been especially prevalent over the last three decades. These systems are robust and
reliable as they provide detailed information about the environment, which may be overlooked



2.2. Visual perception 25

by other types of sensors.

In the context of robot navigation, the robot needs to be endowed with the capacity
to analyze its surrounding environment.Therefore, the use of pattern recognition algorithms
is essential for either modelling the environment or detecting and recognizing landmarks
(usually used for references purposes) depending on the type of navigation performed by the
robot.

The pattern recognition problem is an essential research topic in computer vision. Most
of visual tasks in applications such as robotics rely fundamentally on the capacity to recog-
nize patterns, which permits to recognize faces, objects, places, complete scenes, etc. The
recognition process can be described as a set composed of two different processes (see fig-
ure 2.4). First, the acquired images undertake a description and representation processes of
different patterns which allow to simplify their learning and distinct recognition at a later
stage. Certainly, before carrying out these processes, it is necessary to perform an image
pre-processing, similarly to most of image processing tasks. Image pre-processing is essential
for removing any problem in the image related to the acquisition of it, such as illumination,
noise, perspective distortion in order to allow improving the quality of the image.

Pattern

Image o Pattern
':> preprocessing ':> DEEETTe ETi ':> Recognition :>

Representation

Input image Improved image Feature vector Recognized pattern

Figure 2.4: Pattern Recognition process composed of image processing, followed by a pattern
description and representation process and finally a pattern learning and recognition process.
Image processing is not detailed in this work

Furthermore, a place can be also identified and used as a more stable reference point to be
recognized by considering a set of patterns placed at different location within the panoramic
visual field of the robot. This same mechanism has also been seen in some insects like desert
ants, which make use of a visual spatial memory to return to their nests, foraging stations or
other. For instance, Wehner and Raber [Wehner 1979] showed in an experiment that when
leaving their homes, the ants take snapshots of the patterns around their nests and keep in
memory their location. Then, they look for the same patterns located at the same position
and by means of a correlation method; they are able to return to their nest.

Based on this ingsight, a robot could learn a place by keeping in memory the location of the
most relevant patterns perceived around itself, and then easily return to it when necessary
by recognizing the same learned patterns as presented in this work.

Hence, this section describes the two processes of pattern recognition allowing visual
recognition with an emphasis on the methods used in the development of the work of this
thesis. Additionally, it presents the place recognition state-of the-art from the robotics point
of view detailing a biological approach. Finally, an overview of different sensors used in
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vision-based robot navigation is given.

2.2.2 Pattern description and representation

Features define the relevant parts that differ from their immediate neighborhood in an im-
age and the detection of which can give a cue about the possible existence of any pattern
within the image. They can be found as isolated points, continuous lines, or small patches
depending on the model applied. A complete description of each of these features can pro-
vide information about a pattern and thus help to identify it as such. Hence, it is important
to provide a sufficiently detailed description so that the features can be recognized under
different circumstances like changes in images scale, perspective, noise and illumination.

To that end, different features description algorithms, attempting to describe the features
as precisely as possible to be recognizable at a later stage, have been proposed. However,
even though, they have shown to be very robust to any form of variations, most of the local
descriptors are high-dimensional and the computational cost of matching their similarity
within a large database is quite high. Therefore, the bag of visual words has been proposed
as an alternative to mitigate this problem. Thus, instead of directly search the similarity
between the descriptors, it quantizes the feature space of local descriptors into discrete «visual
words» (clusters) and the matching can be easily performed by simply counting the features
assigned to each cluster.

A particular advantage of this representation is that it fixes the dimensionality in all
images, which ease the work required for most machine learning that assume by default a
vectorial space input.

As follows, we give an overview of the most common features detectors and descriptors
proposed over the past years in the literature followed by a detailed explanation of the
SIFT algorithm [Lowe 2004] that is used in the context of this work to detect and describe
local features in images. The choice of the SIFT descriptors over the others was made by
considering its robustness to handle viewpoint variations and its highly distinctive description
for reliable matching while being fast at extracting the local features. We end up with a
detailed description of the bag of visual words.

2.2.2.1 Feature detection

Three categories can be manly distinguished: Edges detectors, corner detectors and blob
detectors.

Edge detectors: This type of detectors aim at detecting a set of points forming curved line
segments in the image, which correspond to a sharp change in the intensity of luminosity in
a grey-level image. It usually designs a boundary between two images regions, which allows
filtering out the non-relevant information of the image, thus reducing the amount of data to
be processed. Different detectors have been proposed in the past. The canny edge detector
[Canny 1986], is one of the most strictly defined methods that provide good and reliable
detection. The Deriche edge detector |Deriche 1987| based its algorithm on Canny’s optimal
criteria for edge detection, therefore it is often referred as the Canny-Deriche detector. The
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difference, though, lies on the implementation on the first two steps out the four proposed
by Canny. In fact, it uses an IR filter that optimizes the canny criteria given by its facility
to adapt to the characteristics of the processed images using only one parameter. Sobel and
Fedelman [Sobel 1968|, proposed a filter that convolves the original image with a two 3*3
kernels in order to calculate the approximations of the derivatives in horizontal and vertical
directions allowing to reduce costs in terms of computation.

Corner detectors: Corners are regions in the images with large variation in intensity in
all directions. Therefore, these type of methods attempt to detect interest points correspond-
ing to double discontinuity of the intensity function, produced by the intersection of two
edges, the reflectance discontinuity or depth discontinuity. The best known and most used
corner detectors is the Harris detector, which is an improvement of the method proposed by
[Moravec 1985] that finds the presence of a corner by computing the similarity of a patch
centered on every pixel in the image with other overlapping patches. Harris and Stephens
proposed to find the difference in intensity of the corner score with respect to all directions,
instead of using shift patches as Moravec’s corner detector did. In an evaluation carried by
Schmid|Schmid 2000|, the Harris corner was proved to be the strongest and most informative
detector. Edward Rosten and Tom Drummond [Rosten 2006] proposed the FAST (Features
from Accelerated Segment Test) algorithm as a solution for faster corner detection in real
time applications. Even though, it is much faster than other existing corner detectors, it is
limited by its threshold dependence and by the lack of robustness to high levels of noise.

Blobs/region of interest Blobs can be defined as regions of the image that are lighter or
darker than their surroundings. These detectors aim at extracting all the points of interest
that are inside the blobs and which are considered to be similar to each other. Two classes
can be mainly distinguished according to the position on the image: the differential methods,
which are based on derivatives of the function with respect to position, and the methods
based on local extrema, which are based on finding the maxima (lighter regions), and the
minima (darker regions) with respect to their neighborhood. One common blob detector
is based on the Laplacian of the Gaussian (LoG) which convolves the original images with
a Gaussian kernel. Similarly, another approach was proposed and is referred as the differ-
ence of Gaussians (DoG) approach where blobs can be detected from scale-space extrema
of differences of Gaussiens. The difference compared to the LoG approach can be found in
[Lindeberg 2012]. Mikolajczyk and Schmid [Mikolajezyk 2004] proposed a hybrid operator
between the Laplacian and the determinant of the Hessian blob detectors, where spatial se-
lection is done by the determinant of the Hessian and scale selection is performed with the
scale-normalized Laplacian.

2.2.2.2 Feature descriptors

A feature descriptor can be defined by a set of scalar numbers generated to describe an
object [Erusk 08]. In other words, a signature is built representing the contents of a region
in the image. Mostly all object recognition systems use descriptors to describe the regions of
interest. However, the choice of features is complex and depends on several factors such as the
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class of the object in question, the characteristics sensor, the context and the task to achieve.
The choice is often based on a compromise between the accuracy and the generality of the
features. Indeed, in the field of object recognition, it is necessary to find a characterization
method, which extracts the most effective local descriptors for generic recognition. The
corner detectors described above are usually rotation-variant which means, even if the image
is rotated, the corners can still be detected. However, they do not handle the problem when
the image is zoomed and what it was supposed to be a corner is no longer one but a flat
curve.

Therefore, in order to overcome this problem D. Lowe [Lowe 2004| came up with a new
algorithm called STFT(Scale-Invariant Feature Transform), that in addition to its partially
invariance to affine distortion and illumination changes, it is invariant to scale which allows
to robustly identify objects even among clutter and partial occlusion.

Likewise, the SURF (Speeded-Up Robust Features) algorithm was later proposed by
[Bay 2006] as a speeded-up version of SIFT. They differ from the fact that SURF finds
scale-space by approximating LoG with Box Filter whereas SIF'T approximates Laplacian of
Gaussian with Difference of Gaussian. Additionally, it uses the sign of Laplacian (trace of
Hessian matrix) for underlying interest point, which permits to distinguish bright blobs on
dark backgrounds from the revers situation. Even though, SURF has proven to be at least
3 times faster than SIFT while being good at handling blurred and rotated images, it is not
good at handling illumination and viewpoint changes.

Despite the fact that these two methods are called descriptors, they both also provide a
method to find the features, thus, they are also feature detectors.

Later on, the BRIEF (Binary Robust independent Elementary Feature) algorithm was
presented [Calonder 2010] as the first binary descriptor. It does not have an elaborate sam-
pling pattern or an orientation compensation mechanism. It does not provide any method
to find the features and it proves to be faster for calculation and matching. In 2011, the
ORB algorithm was proposed as good alternative to SIFT and SURF in terms of computa-
tion costs and matching performance [Rublee 2011]. ORB combines a FAST detector and
the BRIEF descriptor with some modifications to overcome the poor performance of BRIEF
with rotation.

2.2.2.3 Bag of visual words

The bag of words model was initially developed for text categorization [Lodhi 2002, where
each document is represented by a histogram based on the frequency of appearance of
each word of the vocabulary. Similarly, it was then applied to image categorization by
Csurka [Csurka 2004] in the field of object recognition, where the images are represented
by a histogram that counts the number of occurrences of each class of the local repre-
sentation (features) called visual words by analogy. Moreover, [Nister 2006], [Chum 2007]
have shown that this simple but effective representation of images is particularly useful
for matching features for specific instances of patterns. By the same line, accurate results
were presented in recent object recognition challenges by [Everingham 2008] and [Berg 2010].
Furthermore,|Torii 2013] used the bag of visual words model with a simple modification of
weights over a scalable detection method allowing place recognition with repeated structures.
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The bag of visual words model consists of two steps. First, the construction of a vocab-
ulary allowing to identify the visual words by clustering the whole set of features extracted
according to their similarity. Second, the assignment of features of the new images to the
cluster with the closest centroid, followed by the histogram of the number of occurrences
of the features in the given image. The main advantages of this method is its simplicity,
its computational efficiency and its invariance to affine transformation, occlusion, lighting
and intra-class variation. For a deeper insight, the reader can refer to the appendix toolbox
section.

2.2.3 Pattern recognition

Pattern recognition is the process of recognizing patterns and regularities in data. The
recognition process consists in generating a general function by assigning an output value to
input data based on key features. The function is a result of a learning-by-example algorithm,
which allows predicting reasonable outputs for new unseen data input by taking into account
the statistical variation.

Depending on the given task and the availability of the examples dataset, the assignation
of output values to input data can be done in advance during a training phase. Thus, learning
is performed offline and recognition of new data is performed online. This process is called
traditional or batch learning which opposes to incremental learning [Geng 2009] or adaptive
learning [Carpenter 1987] where the learning and recognition process needs to be executed
simultaneously and adapt itself to new input data.

Incremental learning is necessary when the complete input dataset is not available at
once, but instead the dataset appears as the system evolves according to the requirements of
the task. Pattern recognition has applications in computer vision, radar processing, speech
recognition, and text classification. Additionally, it is generally categorized in two types ac-
cording to a learning procedure: supervised and unsupervised learning.

Figure 2.5 presents some state-of-the-art algorithms according to the type of learning
algorithms used in both batch and incremental learning.

Another type of algorithms allowing recognizing input data is also possible by using
pattern matching which is opposed to pattern recognition in the sense that is not considered
as a type of machine learning. Therefore, no learning is performed. However, pattern-
matching algorithms can sometimes perform an output of similar quality as that provided
by pattern recognition algorithms. Thus the common assomption that pattern matching is a
technique of pattern recognition.

2.2.3.1 Batch learning

The batch or traditional learning process is accomplished in a sequential mode by following
two different but correlated phases: the training and the recognition phase. First, a complete
data set is trained in advance (off-line) by a classifier and then the recognition takes place
online by taking into account what it has been learnt. The template dataset is considered
sufficient to store all the necessary knowledge to be compared to, at a later stage, to new
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incoming information. etal. 1991)

Figure 2.5: Machine-learning techniques. Supervised and unsupervised algorithms according
to traditional learning and incremental learning

input information in order to perform the recognition task. However, it implies that new data
set expected to be recognized, has already been learned, in which case, the batch learning
techniques generates the best predictor.

2.2.3.2 Incremental learning

Due to the constantly changing and unpredictable environments encountered in many real-
word applications where the chances of emergence of completely new elements over the time
are quite high, it is unconceivable to assume that a fix and a prior: training set is sufficient
to store all the necessary knowledge to be compared to any new input.

Therefore, the incremental learning process takes place every time a new input is fed to
the system and it adjusts what it has already been learned accordingly. Several approaches
have been proposed in the literature. For instance, [Syed 1999] stated that the Support
Vector Machines properties, which allow summarizing data by preserving the support vectors,
are a good indicator to extend their use, usually employed for batch learning, to fit in an
incremental learning framework. [Ross 2008] proposed a visual tracking method capable
of adapting to the target appearance changes by incrementally learning a low-dimensional
subspace representation.
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Following the same principle line but employing different terms for the same meaning,
[Schuurmans 2007| proposed an implicit online learning algorithm that can learn from increas-
ing training examples while still updating its parameter vector to minimize a functional risk.
On the other hand, [Huo 1997| refer to an adaptive learning algorithm, which copes with the
time-varying nature of some acoustic and environmental variabilities, including mismatches
caused by changing speakers, channels, and transducer.

Similarly, Grosseberg and Carpenter [Carpenter 1987 introduced an adaptive algorithm
by using neural networks as a solution to the plasticity-stability dilemma that has to be
handled in incremental learning algorithms. The plasticity defines the capacity of a sys-
tem to adapt to a changing environment, however, the system can suffer from instability
as it can forget what it has previously learned when learning new information. Therefore,
the plasticity-stability dilemma consists in finding how a learning system can still learn new
information by preserving its previously learned knowledge. To that end, Grosseberg and
Carpenter proposed the Adaptive Resonance Theory (ART), which is a self-organizing com-
petitive neural network.

The basic ART is based on an unsupervised model and has a self-regulating control
structure that allows a stable autonomous recognition and learning. It is mainly composed
of four components: a comparison vector field, a recognition field, a vigilance parameter
and a reset module. Both, the comparison and the recognition fields are composed of a
set of neurons encoding respectively the input vectors and the category to which the input
vectors are classified. The vigilance parameter works as a threshold of similarity between
the input vectors and the categories and the reset module compares the threshold value to
the strength of the recognition match after the input vectors are classified. The value of the
«vigilance parameter» is quite essential on the recognition task. The memory can be refined
or generalized depending on the chosen value. Hence, a higher value produce the creation of
many categories whereas a low value results in fewer categories. For a better insight of this
theory the reader can refer to the appendix section A.2.3.

2.2.3.3 Learning procedure types

Pattern recognition is mainly classified into two categories according to the nature of learning
procedure used to produce the output value. In supervised learning, the input dataset is
trained according to a desired output dataset that is provided. It is said that the example
dataset is labeled, whereas in unsupervised learning the example dataset is not labeled since
no desired output dataset is provided. Therefore, the input dataset is clustered into different
groups.

There exist also a combination of both categories known as semi-supervised learning
which usually combines a small set of labeled data with a large amount of unlabeled data.
It starts with labeled examples and then predicts the output of unlabeled data while using
their statistical distribution.

Supervised learning: These algorithms analyze the training data and determine the class
labels of new data. The training data consists of a set of input data properly labeled by hand
with a desired output. Then, the train data is used to produce a function that attempts to
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allow mapping new data while generalizing as accurate as possible to new unseen data. In
other words, it has to provide a correct output when new unlabeled data is given as input.
These methods are usually fast and accurate when new data has already been learned.

Unsupervised learning: During the training phase in unsupervised learning algorithms,
the model or the input dataset is provided without the desired output which means that
the examples are unlabeled. Therefore, it attempts to find inherent patterns in the dataset
that can help it to determine the correct output value in new datasets. The input dataset
is clustered into different groups or classes on the basis of their statistical properties. Then
according to some feature similarities, new input data can be associated with one of the
created classes. In some cases, there may be no training data at all; in other words, the data
to be labeled is the training data.

2.2.4 Place recognition

Different approaches of visual place recognition have been used as important tools for solving
mapping and robot localization problems, which are essential in the context of autonomous
robot navigation. They endow the robot the capacity of understanding its surrounding en-
vironment, knowing its position with respect to a reference point and thus creating a spatial
representation of it allowing to ease its navigation task.

A place can be identified as a stable reference point that can be learned by keeping in
memory the location of the most relevant perceived patterns within the panoramic visual field
of the robot. Thus, recognizing the place consists in recognizing the same learned patterns.

Therefore, many researchers in computer vision have attempted to tackle the visual place
recognition problem by retrieving images of the scene, train them and compared them to
other images thereafter. The undertaken process for scene recognition can be considered as a
more generalized version of the pattern recognition task. Certainly, an image of a given place
can be described by the various patterns it comprises of. Therefore, the place recognition
task can be solved by using any of the approaches described in the above section, and can be
distinguished in two types of recognition depending on the application: a topological place
recognition and place categorization.

In the context of robot navigation, a topological place recognition consist in endowing the
robot with the capability of recognizing previously observed places in known environments.
State-of-the-art visual Appearance-based SLAM (ASLAM) techniques such as FAB-MAP
[Cummins 2008], [Ho 2007|, [Eade 2008| convert the images from a set of local features, into
a bag-of-words representation in order to match the appearance of the current scene to the
trained data. This task is quite challenging as the algorithms attempting to match images
must cope with problems such scalability, illumination conditions, different viewpoints etc.

For instance, [Knopp 2010] present a method that detects and removes automatically
objects that occur at many places and hence they are not representative for any particular
place and moreover can lead to confusion when comparing different images. A similar problem
is found in images with repetitive structures such as building facades, fences or road markings
as highlighted by |Torii 2013]. In their work, they use a robust detection of repeated images
and describe a suitable representation for scalable retrieval allowing a better place recognition
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performance. |Krizhevsky 2012|, [Donahue 2014| and [Sharif Razavian 2014|, suggest that a
good performance can be achieved by using Convolutional neural networks (CNNs) in the
clagsification task. However, this approach is limited by the huge quantity of training data
required.

Place categorization instead, allows the robot to give a semantic labeling to the places by
classifying different locations of a new environment into categories such as “office”, “kitchen”,
“corridor” etc. in the context of indoor environments. For instance, [Ramos 2012| consider
the world as a set of places where each of them has a probabilistic representation learned
from images and which are labeled by using a classification procedure. The place recognition
is treated as a Bayesian learning problem and it is performed without the need of a map and
by using only few training images (usually 3 to 10 per place). [Wu 2009] instead , predict
the semantic category of a place from the measurements of the acquired images collected of
the spatial location, as opposed to the geometric or topological characteristics.

In contrast, [Nguyen 2013| employ a topological representation of the environment by
encoding the neighborhood relations. The connections are related by arcs indicating their
spatial relationship. It employs a Fast Learning Artificial Neural Network (KFLANN) as the
core unit of the quantization module, which compared to popular clustering methods such
as k-means, produces a consistent number of stable centroids, as it is less sensitive to data
presentation ordering.

Furthermore, other algorithms such those found in |[Fazl-Ersi 2012| and [Ullah 2008 at-
tempt to tackle both problems by providing strong discriminative control for place recognition,
while offering a substantial level of generalization for place categorization.

2.2.4.1 Biological approach

Biological systems attempt to tackle the place recognition problem by proposing models
which emulate similar behaviors seen in living organisms based on allotethic information when
performing goal-orientated navigation tasks [Burgess 1994|, [Brown 1995]|, |Guazzelli 1998],
[Redish 1997| and [Filliat 2002].

Certainly, many studies on insects like bees, ants and wasps have shown that they use
visual information to return to their nests or to locate a foraging station and then go back
and forth between that source and their home [Cartwright 1983, [Gallistel 1993, [Judd 1998].
After several experiments, it has been observed that they store multiples views of a place
from different positions in order to learn the place. Then, by comparing and matching the
stored images to the newly perceived, they are able to recognize the place.

Similarly, neurobiological studies in mammals like primates and rats have revealed that
they also use surrounding visual cues in order to achieve a particular place comparable to
insects. However, mammals show higher generalization capabilities and more complex pro-
cessing when performing recognition of a scene or a place.

Edward Tolman, studied how animals learn to navigate in the environment. He was
the first suggesting, from purely behavioral experiments, that local navigation in rats was
guided by an internal map or «cognitive map» as he called it; resulting from the exploration
of the environment and the relationships between places and events |Tolman 1948]. This
suggestion was later confirmed when experiments conducted by [O’Keefe 1971] led to the
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discovery of pyramidal neurons in the rat hippocampus (CA3 and CA1 sub regions) that
fire at their maximal activity when the animal is at a particular location in the environment
and decreases as it goes away from it. They are called place cells and the regions at which
they fire at are called place fields, which are almost similar to the receptive fields of sensory
neurons.

Hence, O’Keefe and Nadel, inspired by Tolman, proposed years later, the place cells
as the basic elements of a spatial representation and the hippocampus as the locus of the
cognitive map [O’keefe 1978b]|. In fact, the firing activity of the neighboring place cells at
different areas thorough the hippocampus as the rat explored the entire environment was an
eminent indicator that the place cells enable the estimation of the animal’s current position
and are related to the construction of the environment spatial representation [O’Keefe 1976,
[Jung 1993]. However, the topology of the environment is not preserved as two place cells
may fire for two far away locations in the environment. Additionally, even though the same
place cells participates to the spatial representation of different environments, the mutual
relationship of the place fields remains unique for each environment [O’keefe 1978a|. Thus,
since their discovery there is plenty evidence that stablishes nowadays that the hippocampus
plays an important role in the spatial representation of the environment of a great number
of mammalian species [O’keefe 1978a], [Rolls 1999], [Ekstrom 2003], [Ulanovsky 2007].

For instance, in [Arleo 2000], [Arleo 2001],the autors showed how place cells and head-
direction cells firing enables rat mapping and goal navigation within the arena by estimating
the rat’s position as well as its orientation. Later on, based on their previous work, the
same authors presented a more refined work by combing allothetic (visual) information and
idiothetic (path integration) signals at the level of the hippocampal representation in order
to remove singularities caused by perceptual aliasing and solve the hidden-state problem
[Arleo 2004]. They employ the Gabor-based decomposition technique as well as the retino-
topic image sampling to process visual information.

In [Gaussier 2002], their hippocampal model cells do not code for places but instead for
transitions between states. They suggest that such transition prediction mechanism may
be significant for novelty detection and merging planning and sensory. The activity of a
place cell is a normalized sum of Pr-Ph cells, which were activated during place learning
[Gaussier 2000]. In their work, they propose a navigation strategy consisting in planning
routes towards the goal in a topological graph (cognitive map) of the environment where the
recognition level depends only on the correct recognition of sub-areas of the image centered
on focal features.

Similarly [Giovannangeli 2006a] improve the above work by compressing the what and
where information in the Pr-Ph and prove efficient navigation in both indoor and outdoor
environments tested on different robotic platforms (Koala K-Tram,Labo3 AAI Pioner 3AT
ActivMedia).

Visual cues have shown to be essential in the formation of place fields as well as other
allothetic cues (auditory, olfactory and tactile). Place fields are usually unaffected by large
sensory changes like removing a landmark or many from an environment. However, they re-
spond to subtle changes, such as the alteration of the shape or color of the object for instance
[Moser 2008| or even the rotation of remote visual cues in a given environment inducing to the
rotation of the place fields themselves [Muller 1987], [O’keefe 1978b]. Moreover, Place cells
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activities have shown stable place fields when the rat is in the dark [Quirk 1990], which sug-
gests that place cells not only rely on allothetic but also on idiothetic information (vestibular)
which is used by rats and other animals for path integration during goal-oriented tasks.

Hence, similar models have also been proposed improving the foundation of the above nav-
igation systems by integrating other types of cells, (grid cells) [Dollé 2010], [Alvernhe 2012],
[Caluwaerts 2012|, [Giovannangeli 2008|, [Milford 2004|, [Milford 2007], [Milford 2010]. Grid
cells were discovered initially in the rat’s Medial Entorhinal Cortex (MEC) [Hafting 2005],
[Fyhn 2007] and later on in other mammals [Killian 2012], [Ulanovsky 2007], [Yartsev 2011],
[Yartsev 2013] as well as human entorhinal cortex [Jacobs 2013|, [Doeller 2010]. These cells
are called grid cells because of the hexagonal pattern formed by the spatial firing fields that
tiled the environment and have been suggested to implement a path integration-based spa-
tial representation [McNaughton 2006]. These kind of models suggest that grid cells and
hippocampal place cells have strong functional interactions allowing a robust navigation ca-
pacity.

For instance, [Jauffret 2012] present a model that merges visual and proprioceptive prim-
itives. The visual primitives are represented by the place cells which have been developed
previously by the same research team [Gaussier 2000] and [Banquet 2005] whereas the pro-
prioceptive primitives are characterized by the implementation of grid cells from path inte-
gration. In their paper, the authors present a model of grid cells based on various modulo’s
operator applied on path integration, which is merged with visual cells information. This
merging mechanism, which combines allothetic and idiothetic information, is based on a
pavlovian conditioning rule. As a result, a robust multimodal place cells is built successfully
overcoming the perception ambiguity problem.

Similarly, [Tejera 2013| presents an extension of the model proposed by [Barrera 2008]
whose place representation module is composed uniquely of place cells. In contrast, Tejera
develop a grid cell neural model, which is added to the original place representation module
in order to generate neural odometry and spatial localization. The experiments are per-
formed with the Kepera IIT robot and are inspired by Morris’ water mazes [Morris 1981],
|Morris 1984] (open arena experiments) and prove feasibility of the model for short runs.

As a result, most biological models, attempting to emulate the navigation task performed
by insects and mammals as the ones presented above, show a great performance when the
robot needs to recognize places and localize itself as it navigates the environment. They also
show to be very robust when it comes to overcome unforeseen situations

Prehippocampal PCs-based neural model A robust visual place recognition algorithm
needs to combine descriptive, discriminative and generalization properties.

Therefore, in order to capture all these properties Gaussier et al. proposed a model of the
prehippocampal systems where “place cells” are learned in the entorhinal cortex (EC) as a re-
sult of the recognition of a particular configuration merging [Gaussier 1997|, [Gaussier 2000],
[Gaussier 2002|,[Gaussier 2007], [Giovannangeli 2006a] and [Giovannangeli 2006b|. The model
was tested on different robotic platforms (Koala, Labo3, Pioneer AT), evolving in indoor and
outdoor environments.

In their model, they consider the perirhinal cortex (Pr) and parahippocampus (Ph) as the
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possible places receiving local configurations of different kind of information: what and where.
Indeed, two main streams of information have been identified in the cerebral cortex of the
brain of mammals for the visual recognition task [Goodale 1992|, [Mishkin 1982]. The tem-
poral regions commonly referred as the « what » pathway and the parietal regions commonly
referred as the « where » pathway. The former is in charge of identifying and recognizing the
features perceived in the visual scene of the place whereas the latter is involved in the analysis
of the spatial location of the same [Burnod 1990], |Gilbert 1983]. These input layers converge
on a merging layer (Pr-Ph) coding a local view constellation, which is directly connected to
the EC-DG where the place cells are learned, the activity of which is a normalized sum of
Pr-Ph cells.

Hence, in order to learn a place by following the two-streams hypothesis, it is necessary
to; on one hand, describe the perceived features in a distinctive way and on the other hand,
find their respective location within the scene. Therefore, in order to achieve this task, a
set of group of neurons has been used (see figure 2.6). The perceived image from the visual
scene is divided in sub groups of local views and each local view is associated to a neuron
from the what group (Pr) which is set as its unique identifier. Similarly, its relative position
information is associated to a neuron from the where group (Ph). Then, the information
of all local views perceived in the panorama and coming from both groups converge on a
two-dimensional array of neurons, which keeps in memory the resulting value. As a result, a
landmark constellation is formed in the Pr-Ph group leading to the learning of a new place
by recruiting a new neuron in the place cell group(PC).

What (Pr) PrPh merging matrix Place Cells (PC)

Image
(Local 14+ © | D | O Q O

view)

Where (Ph)

Figure 2.6: Overall view of the place cells model proposed by [Gaussier 1997]

Local view (landmarks) extraction



2.2. Visual perception 37

Network input

The first layer of the architecture extracts autonomously local views from a panoramic
image.

In early works, the panoramic image was built from a set of classical images [Gaussier 1995|,
[Gaussier 2000]. To this end, a servo motor was used to pan the CCD camera which field
of vision spanned about 70°. Then, the construction of the global panoramic view consisted
of merging only the central vertical bands of each image as the camera distorted the images
sides. In total, 24 images were taken per panorama with a 7.5° rotation between each image
acquisition resulting in a 250° of field of view. Even though, it was not a complete 360° im-
age, it was enough to prove the robustness of the system in practice. Thereafter, in order to
speed up the experimentation an omni-directional CCD using a conic mirror was introduced
[Giovannangeli 2006a]. Hence, it was possible to capture in one-shot 360° panoramic images.

Once the panoramic image is obtained, its gradient is used as the only visual input of the
system. This process allows to eliminate problems induce by luminance variability likely to
appear when performing navigation in real time. The gradient image is then convolved with
a difference of gaussiens (DoG) filter in order to detect robust focal points at a particular
spatial (low) resolution. In this case, the system focuses on corners and/or edges (see figure
2.7).

Figure 2.7: State-of-the-art local view landmark extraction. Top, the panoramic image taken
by the robot. Middle, the corresponding gradient picture. Circles represent local area centered
on landmark, from which small images are extracted. Bottom, small images after the log-polar
transform,( Image extracted from [Cuperlier 2007]).
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However, in order to reduce the computation time, a simplified process [Gaussier 2000]
averaged and weighted all images columns for the points near the center of a column and the
resulting one-dimensional signal is differentiated. Thus, local maxima are used as the focal
points (see figure 2.8). Finally, a 32*32-pixel area around each of the focal points is extracted
and considered as a local view which undertakes a log-polar transformation so that they can
be invariant to small rotations and scale variation.

Figure 2.8: 16 examples of 32 * 32 local views from the panoramic image (image extracted
from [Gaussier 2000]).

Landmark and azimuth learning and recognition The extracted local views in the
section above, are learned as landmarks when they are seen for the first time. Then the recog-
nition phase takes place by comparing the current local views (potential landmarks) together
with their angular positions with the previously learned landmarks.To this end, the what and
where neural groups encode each local view description and azimuth information respectively.

What (Pr) group:

The Pr group is composed of a sufficient number of neurons to encode the total amount
of landmarks that can be found in a given exploration environment. Given the lifetime of any
robot for learning an infinite number of places in different environments, this number can be
considered infinite. In this model, the authors suppose that the visual system can differentiate
all the landmarks. Hence, a landmark cannot be found twice in the same panoramic view as
it would not succeed in knowing which azimuth is associated to each landmark. Therefore,
the same number of landmarks perceived in a given panorama is needed to recruit the Pr
neurons, and the number increases proportionally to the number of landmarks perceived in
new panoramic images.



2.2. Visual perception 39

When learning a local view, the robot recruits one k neuron from the Pr group and it
associates it to the local view by performing a one-time learning. All weights of the links
between the input neurons and the Pr neurons are initialized to zero. Then, the synaptic
connection weights of a Pr neuron are modified (and do not change anymore), according to
the following rule:

AW/ = Iy« Ry (2.1)

With R,I:T = 1 when recruited, and R}? = 0 otherwise. I;; is the value of the i gt pixel from
the local view of the image I'm. The recruited neuron is a landmark unit.

The recognition process is performed by computing the norm of the difference between
the pixels of the learned landmarks and the current ones. Hence, the activity of the ky,
landmark unit :Cf " is computed as follows:

1
Pr _ ¢RT XY, Im—P,
" = f ((XIY[) Hzi,jlzllAWz‘j?lz - Iij”) (2.2)

With X7 and Y7 the number of pixels on x and y coordinates of the corresponding small

local view. AWZ.?Z_P", the weight of the link from pixel ¢,j to the ky, landmark unit and

R = ﬁ[m — RT]" an activation function that extends the dynamical range of the
output. RT is a recognition threshold. [z]" =z if > 0 and 0 if not.

The interest of using the activation function f%7 is to allow multiples interpretations of
the same local view, which may be perceived from different angles when learning different
places. This competition mechanism enhances the built in generalization capability contrary
to a Winner-Take-All (WTA) mechanism which prevents place fields from overlapping.
Figure 2.9, shows an example of two landmarks learned as different visual patterns for
two different places. Then when placed at an intermediate location place C, both landmark
have two different interpretations (high activity value). Hence, the system allows to choose

both interpretations instead of only one.

Where (ph) group:

The where information corresponds to the absolute direction (azimuth) of the local view
which can be obtained with a compass or any simulation of a vestibular system, such as a
gyroscope of inertial system. The group is composed of a limited amount of neurons that
encode the landmarks position within the 360 degrees of the panorama view. Each neuron
has a preferred direction covering in all the total 360 degrees of the panorama view. Kach
neuron expresses how near the landmark is from its preferred direction by calculating their
angular distance. It follows a strictly monotonous function that decreases from 1 to 0.

The activity of the ith Ph neuron is given by the following equation:

0:(t) = g (HQ.W.N;Q - 9(75)”) (2.3)
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L1:1.000

L2: 1.000

L3: 1.000

L4: 1.000
L1:0.909
L3: 0.893

L2: 0.931
L4: 0.922

Recognition of the landmarks at a place C (intermediate position)

Figure 2.9: Learning and recognition of the same physical landmark by several neurons. The
physical landmarks M and N have been learned, for two proximal locations (the two north-
ern crosses), as different visual patterns (upper figures). Hence, in the intermediate location
(place C, lower figure), the landmarks have two valid interpreta-tions. In location C, the activ-
ity level of «L2 and L4» for the landmark N are rather high and similar as well as the activity
level of «L1 and L3» for the landmark M. (Image extracted from [Giovannangeli 2006a]).

With ¢°(Ag) =1 — %]Jr and N0 the number of neurons in Ph.

The same computation is performed for each neuron in the group with the same 6 and
since their preferred direction is different, only the closest neuron to € results with the max-
imum activity value and consequently gets to encode the landmark position. ¢g”(Ay) it is a
simple linear diffusion that computes a lateral diffusion around the neuron which preferred
direction is the direction of the current extracted landmark 6(¢). Where [z]"7 =z if x > 0 and
0 if not. Other linear diffusion functions can also be used such as a non normalized Gaussian
activity profile [Banquet 2005] as in equation 2.4.

(2.4)
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As a result, the visual system provides the azimuth of the focus points of the local views
and the most activated landmark neurons with their activity level as shown in figure 2.10.

a .

9 =37° 9 =49° 0 =87° 0 =106° 0 =109° 9 =113° 0 =121° 0 =128°
1 :09615 3 :09589 24 0.9096 4 :09130 9 :009358 10: 0.9151 15:09033 0 :0.9382
10:09246 5 :0.9249 17 : 0.9089 21:09114 16 : 0.9304 19:0.9146 0 :0.8934 2 :09166
25:0.9221 6 :0.9190 7 :09073 32:0.9059 29 : 0.9301 25 : 0.9040 26 : 0.8934 22:0.9116
11:09056 2 :0.8937 37:0.8830 13 : 0.9022 14:0.8980 2 :0.9029 12:08912  12:0.9096

Figure 2.10: Azimuth of the focus points of the state-of-the-art local views. Top, Panorama
taken by the camera. Middle, local views in log-polar coordinates extracted from the gradient
image corresponding to the landmarks. Bottom, Results of the position of the local views
together with the four most activated neurons with their corresponding activity value (Image
extracted from [Giovannangeli 2006al).

Spatiotemporal merging information In order to learn a place, the robot needs to keep
in mind the information of all landmarks perceived from its point of view. However, as the
analysis of the place which is given by the analysis of the landmarks within the panorama
view can only be done in a sequential mode (the system can not recognized several landmarks
in parallel), it is necessary to keep in memory the overall information.

Thus, in order to suppress the sequential aspect of the scene exploration, a matrix of
neurons stores the information of all landmarks perceived in the panorama view. In fact, the
information coming from both Pr and Ph groups of each landmark converge into the PrPh
matrix allowing a spatio-temporal merging. As a result, a landmark constellation is formed
allowing to learn a new location by encoding a neuron in the Place cells group.

PrPh matrix- landmark constellation build-up:
The number of neurons the PrPh matrix comprises of, correspond to the number of
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neurons allowing to encode as many landmarks as possible within the 360° of view for different
learned places. The initial idea was to build a neural matrix of Ny * N4 neurons in which
each neuron was linked to one of the Nj landmarks neurons and one of the Ny azimuth
neurons. Then the activity of the ij** neuron in PrPh can be calculated by computing the
product:Sf;”Ph = SiL * S]L , with SZ»L the activity of the landmark ¢ and Sf the activity of its
azimuth j.

However, even though coding such information was correct, it uses too many resources
that are not strictly necessary. Indeed, the n, average number of different azimuths under
which a landmark can be seen from different places is small and all are within the same ratio
of vicinity.

The ratio between the number of active neurons in the PrPh matrix and the number
of neurons that are really used by EC-DG is globally ]]\\,[LL:]@‘; = ]f\}—:. In order to get a good
azimuth precision, N4 has to be high enough and n, can be small as the same landmark does
not need to be encoded for too close azimuths thanks to generalization.

Therefore, it is not necessary for the PrPh matrix to have more columns than the maxi-
mum number of different azimuths under which a landmark can be learned. Thus, the total
number of columns can be correlated to n, (for instance, 2 * n, ) and the number of rows
remains equivalent to the number of neurons in the Pr group to which they are linked. How-
ever, in order to avoid any loss of place field in the azimuthal precision, each neuron of the
matrix is linked to subset of neurons in the azimuth Ph group. Consequently, the neurons
in the neighbourhood of the neuron encoding the position of the current landmark are all
linked to the same unitary position and thus they all encode the same neuron in the PrPh
matrix. In this way, the same landmark will not be encoded on different azimuths unless
these azimuths are significantly different. How far the current landmark position is from the
position of the learned landmark is immediately given by the activity value computed in the
Ph group and directly transmitted to the activity of the corresponding neuron in the PrPh
matrix. The further the current landmark is from the learned position, the smaller the result
value will be.

At the beginning, all connection weights are set to 0. Each landmark perceived in the
panorama is related to a Pr and a Ph neuron, which information is merged in the PrPh
matrix. Therefore, when a couple landmark-azimuth is activated, the corresponding PrPh
neuron is recruited and it triggers the learning of the corresponding synaptic connections.
Thus, learning is performed on the weights between the Ph neuron and its associated neuron
in the PrPh matrix as follows as well as the Pr neuron with the same PrPh neuron:

Awﬁ:r—PrPh -1 (25)
Awfkh—PrPh —1 (2.6)
wf,?”_P "Phand wfkh_P "Ph are the connection weights between the iy, landmark and the

Jn neuron azimuth respectively to the ky, PrPh neuron.
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The PrPh neuron activity results from the product of both inputs and it is calculated
by the following equation:

I;ij = max;(Prg; * wir_PTPh) * maxj(Phgj * wﬁ;h_PTPh) (2.7)

Where, Pr,; and (Phg; are the activities values previously computed and correspond to
the maximum activities values of the of the Ph and Ph groups respectively. A max operator
allows choosing the maximum value coming out of the product operation.

Thereafter, the time integration process is achieved by repeatedly performing the de-

scribed process (equatio 2.7) and adding the activity values of each neuron to the matrix

PrPh .
':Ukl :

el P+ 1) = 2P ) + 1y (2.8)

This activity is reset after each complete exploration of all landmarks of a place (panoramic
image).

Place cell learning Finally, the recognition of a place (panoramic image) is performed by
a global correlation measure between the learned panoramic images and the current one.

The place cells group comprises of a number of neurons encoding different locations in
the environment. Each different location or place is characterized by a unique landmark
constellation formed by all landmarks perceived within the panorama view (process described
above).

The whole group of neurons is connected to all the neurons from the PrPh matrix and
their initial synaptic weights values are set to zero. When learning a new place, a neuron
from the PC group is recruited. Then, for each neurons in the PrPh matrix, if its activity
happens to be superior to 1, its synaptic weights connecting the said PrPh neuron to the
recruited PCneuron is set to one. This can be summarize by the following equation 2.9

Awprph—pc _ <1 Zf Xig > 0) (29)

ik.p 0 otherwise

Then, the activity of the Py, neuron of the PC group is calculated as follows:

M—-1,N—1
pc prph prph—pc
T = E Ty () * wy ) (2.10)
p i,k=0

. . M—-1,N—1 prph—pc
With w, = Zi,k:@ Wi

Where M ,N are the rows and columns dimensions of the matrix.
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The resulting activity reaches the maximum value (1) when the robot is at the exact same
location where it has learned the place before, and it decays exponentially with respect to
the distance of the robot’s current location to the learned one. This a priori generalization
property allows the system to still activate a place cell when the robot is within the vicinity
of the learned location.

2.2.5 Vision in robot navigation

An important aspect of autonomous navigation is the perception of the environment, since
it provides the input for a successful control. Perception is the process of interpreting and
transforming the sensory information of the state of the robot, the environment and other
external entities into a representation that can be used for further processing or further
actions.

This information can be extracted from different sensors of the robot, which can be
classified according to what they measure into proprioceptive and exteroceptive sensors.

For instance, the information of the internal state of the robot such as orientation, velocity,
position, etc., is calculated by proprioceptive sensors (e.g. encoder, gyroscope, accelerometer),
whereas the information about the external environment such as the distance to an object,
the interaction forces and so forth is calculated by exteroceptive sensors (e.g. laser, sonar,
camera, ultrasound).

Additionally, depending on how they measure such information, sensors can also be clas-
sified as active or passive. Active sensors measure properties based on the response of the
signal they emit into the environment such as the laser range finder, which is the most com-
mon sensor used on mobile robots. In this matter, active sensors exert some control over
the measured signal, which makes them more robust than passive sensors. These latter are
more sensitive to changes in the environment as they only gather data from the environment
without modifying it such as cameras.

In the last three decades, navigation based on visual perception systems (such as on board
camera systems) has been especially prevalent. Although the uncertainty on the measure of
distance from a camera is superior to that obtained by distance sensors, cameras have the
capacity to provide a perception of the environment in a single shot as well as to supply
detailed information about the environment, which may be overlooked by other types of sen-
sors. Moreover, they are lighter, less expensive and have lower power consumption compared
to other sensors that are used for navigation such as infrared sensors, sonar sensors, laser
range finders, position-sensing devices (PSD) and inertial sensors.

For instance, infrared sensors have limited range and are sensitive to light interference.
Their reflectance is strongly dependent on the target surface, which makes them unstable
when measuring distances [Benet 2002]. Even though the sonar is not expensive and data
can be easily collected [Tardos 2002|, [Ribas 2008], it suffers problems of big dispersal and
low angular resolution.

The laser range finder and the radar supply instead a better resolution, which allows acqui-
sition of very dense information of the environment structure [Niichter 2007, [Thrun 2006].
However, they are more expensive and have difficulty at distinguishing various types of sur-
faces as well as at detecting small or flat objects on the ground. Moreover, due to their heavy
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composition (large pieces of equipment), their use can be limited for aerial and humanoid
robots.

Inertial navigation sensors such as accelerometers and gyroscopes provide an incremental
estimate measurement of the orientation and trajectory of the moving robot. However, due
to their inherent noise, the errors are cumulative and therefore such estimation is not always
accurate. Additionally, they provide no information about the obstacles in the environment
that the robot might encounter.

Global positioning systems (GPS) are very accurate and robust when it concerns global
navigation in outdoors environments [Panzieri 2002|, but they may suffer from outages due
to tall buildings or forests that could block the signal, multipath effects, interference or
jamming. These kind of problems usually happen in urban canyons, tunnels and indoor
enpervironments as radio signals cannot penetrate solid walls.

Due to the limited range capability and noisy-prone problems presented in almost all
sensors, some researches have proposed the fusion of information from multiple sensors as a
solution to more accurate and robust environment information extraction and robot position
estimation [Castellanos 2001], [Sarkar 2005], [Niitz 2011]. Nonetheless, such fusion implies
more power requirements and may highly increase the cost and the weight of the system.

The information about the surrounding environment that all these sensors can acquire is
relatively less than what a camera can potentially obtain (e.g. color, texture and depth). For
instance, small objects and different kind of surfaces can be easily detectable with a camera,
which is not usually the case with range-based sensors. Furthermore, with the increasing
development of lower priced processors, vision processing is becoming an affordable task
that can be performed in real-time and complex applications. Therefore, many vision-based
systems have been the focus of recent research work for robot navigation.

2.2.5.1 Vision sensors

Most visual navigation techniques proposed in the literature use different vision-based sensors
to obtain the environmental information. Traditional cameras have a limited field of view
but it is possible to increase it by using more than one camera or by placing the camera on
to a rotating machinery, although this requires movable parts and accurate positioning. The
biggest disadvantage of these systems is the time required to obtain a wide view, which limits
their use in real-time applications.

Many systems are based on monocular systems. Even though the environment scale can-
not be determined from a single camera, monocular systems have the advantage of providing
rich information while being cheap, small, light and low energy-consuming. Furthermore,
they can be used in either small or big open spaces, as their visual range is not intrinsically
limited. [Engel 2014] presents an approach which uses a monocular camera as the main sen-
sor to navigate a quadrocopter and in order to overcome the scale-obtaining problem they
combine the vision sensor with an air pressure sensor.

Other works such that of [Royer 2007] shows that outdoors autonomous navigation can
be possible with the use of a single camera and natural landmarks by presenting a real-time
localization system. With this in mind, they showed that the use of a camera in dense urban
areas could overcome the localization problem when some satellites are masked and the GPS
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localization accuracy is too poor. |[Wang 2012] developed an algorithm allowing to detect
moving objects while the robot navigates the environment by using a hand-held monocular
camera. The algorithm is based on the epipolar constraint that is used to distinguish the
moving objects from the stationary landmarks in dynamic environments. In fact, it allows
to know if a set of features points satisfy the epipolar constraint on image plane given an
estimated matrix. However, monocular systems are penalized by the lack of other information
such as depth information. Indeed, since it is not possible to distinguish near objects from
far objects, the risk of collision during navigation can be quite high.

Therefore, in order to obtain richer information, some systems use two cameras instead
of one. This is the case of binocular systems, which are also known as stereo vision systems.
Both cameras are placed at a certain distance from each other allowing to acquire images
from different angles in order to determine the dimensions, shapes and positions of the objects
as well as the depth of the image. In [Engel 2015| for instance, the depth is estimated at the
high contrast pixels, including corners, edges and high textures areas in order to reconstruct a
semi-dense depth map online. Harms [Harms 2015] combines a stereo camera and an inertial
measurement unit in order to detect ascending stairs by estimating concave and convex
line segments from depth data directly, tracking the line segments over time and fitting a
stair model into the tracked line segments. There is, however, a fundamental drawback
known as the correspondence problem, which consists in ascertaining if the observed object
perceived in one image correspond to the same object in another image. To this end, several
stereo correspondence algorithms have been proposed in the literature and [Cabezas 2012]
has conducted a quantitative evaluation methodology of disparity maps, which performs an
exhaustive assessment of the entire set of algorithms.

Another widely used technique is the omni-directional vision, which is rather popular
among researches because of its advantages [Maohai 2013], [Valiente 2015], [Abadi 2015].
It consists of the use of a camera with a 360-degree field of view in the horizontal plane
and it is usually mounted on the top of the robot to take a visual field that can cover the
entire sphere. With the use of omnidirectional vision sensors, it is easier to find and track
features because they remain longer in the field of view as they provide a full visibility of
the surrounding environment in a single frame. However, they have a lower resolution than
standard images. An Omnidirectional camera can be obtained by combining a standard
camera and a convex shape mirror, such as hyperbolic, parabolic or sphere mirrors. It is also
possible to combine two omnidirectional cameras in order to obtain 3D coordinates and thus
form an omnistereo vision system. For instance, the system developed in [Zhang 2012], uses a
hyperbolic mirror and projector to form an omnidirectional projector. It is aligned vertically
with the omnidirectional camera so as to cloud-sample dense 3D points via triangulation,
between correspondence pixels around all 360 degree surrounding.

PTZ (Pan-Tilt-Zoom) vision systems instead, use cameras that are usually controlled by
the user with a joystick or other devices. They can be tilt up and down, pan to the left and
right and zoom in and out and can overcome the limited field of view of standard cameras.
They have the advantage of allowing the operator to search an entire visual area surrounding
the robot without moving the robot, to track objects and to zoom closer to capture some
information that cannot be seen at a certain distance or angle from the robot position. The
freedom of movement that this kind of systems have, allows a better navigation; principally
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in unstable environments such as urban search and rescue where a given rotation of the robot
may not be allowed or where a lot of movements can cause structural damage. Nevertheless,
since such cameras only records where they are pointing at, some vital information can
be missed if it happens outside of their field of view. Additionally, the operator situation
awareness may be affected when the camera is off-center and the operator is navigating the
robot [Nielsen 2005].

2.3 World Representation

In order to achieve a successful performance in applications of some mobile robot systems
requiring the execution of crucial tasks such as a safe and rapid navigation, an accurate
description of the environment can be necessary and sometimes even vital.
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Figure 2.11: World representation.Transversal structure representing the implication of dif-
ferent functional modules in all types of navigation strategies.

Such an environmental description, here referred to as world representation, can be ac-
quired from a plan of the building or designed by a human to be provided to the robot before
the navigation starts (Map-Using). This implies that it has to be built beforehand and con-
sequently, that the navigation environment is static and will remain unchanged. Depending
on the application, this kind of maps can be sufficient for the required task.

However, this is not usually the case for most of the robotic scenarios where dynamic
obstacles are prone to appear. Therefore, in other cases the world representation needs to be
constructed directly by the robot through its sensors (Map-Building). Hence, the robot is
able to consider all changes presented in the environment while navigating it.

The degree of detail of the representation can vary depending on the given task or on the
application. For instance, they can go from a simple graph of interconnected silent features
or objects in the environment to more complex models, such as CAD models.

World representation can be distinguished mainly in two types: metric and topological
maps (figure 2.12).



48 Chapter 2. Vision-based robot navigation

Metric maps are composed of information such as distances or map cell sizes with
respect to a predefined coordinate system and can be used for a more precise localization and
obstacle avoidance. However, planning in a large metric map quickly grows unwieldy, as they
are more sensible to sensors. Moreover, it is difficult to maintain a global consistency when
closing large loops.

Among metrics maps, the most common representations are the grid-based maps and the
feature-based maps. While Feature-based maps represent the environment by a collec-
tion of landmark locations [de la Puente 2014|,[Rosen 2016|, [Erinc 2014]; grid-based maps
represent the environment in a tessellated way where each evenly spaced cell composing it,
represents an obstacle (feature) or a free-space at the same location in the real environment
|[Elfes 2013], [Meyer-Delius 2012], [Joubert 2015], [Jessup 2014].

Topological maps instead, do not use any reference system or absolute distance among
the objects it represents [Li 2015], [Johnson 2012|, [Ramaithitima 2016|, |Garcia-Fidalgo 2015].
It consist in building a representation of the relationship of the most characteristic features
or areas in the environment based on graphs. Each feature, place, object or area in the en-
vironment, is represented by a node, which is itself, connected by edges or links to the other
nodes according to their topological proximity. Therefore, they can easily be used for large
environments. By its simplicity and compactness, topological maps take up less computer
memory, and consequently speed up computational navigation processes.

Recently, some works such as those found in [Zhang 2015], [Qin 2013], [Siagian 2014],
present a hybrid map configuration by usign a combination of both metric and topological
maps.
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Figure 2.12: Types of maps. Grid-based: collection of discretized obstacle/free-space pixels.

Feature-based: collection of landmark locations and correlated uncertainty. Topological:

collection of nodes and their interconnections. (Images extracted from a work presentation
of [Choset 2005]).

Although metric maps have been more widely studied for robot navigation, several works
have shown the advantages of the use of topological maps. Moreover, other researches have
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shown accurate results when using a variant of these types of maps with less degree of infor-
mation such as floor plans [Ito 2014], [Schulz 2015], [Fallon 2013], appareanche-based maps
[Erinc 2014, street maps [Hentschel 2010], [Floros 2013], hand drawn maps [Boniardi 2015],
[Behzadian 2015],[Yun 2008], [Kawamura 2002].

In most cases, the representation of the environment is given by a number of landmarks
expected to be found in the environment during navigation, the location and identity of
which is stored in the robot memory. We understand by landmark, a region in the real world
described by its 3D position and its appearance [Frintrop 2008| and we consider the same
distinction presented by [Fuentes-Pacheco 2015] where a salient feature is also a region but
of a given image which is described by its appearance and its 2D position. Hence, while
navigating the environment, the robot searches to match the landmarks that it perceives
through the camera sensor to those already stored in its database. Thereafter, it searches to
relate the camera sensor’s measurements of the perceived landmark with the measurements
of the matched landmark to find the adequate localization. This is known as the data
association problem and is considered one of the hardest problems in the navigation task
[Neira 2001]. When the identity of the landmarks is unknown, the algorithms provide special
mechanisms for estimating the correspondence of measured features to previously observed
landmarks in the map. Landmarks may be matched incorrectly, as they look different from
different viewpoints. Therefore, this problem also involves determining if the measurements
are spurious or belong to elements not contained in the map (gross outliers). Errors in an
incorrect image matching or data association will rapidly lead to incorrect maps. Therefore,
it is essential to solve this problem for a successful navigation.

Regardless the type of representation, it should be adaptable for the required task while
taking into account the uncertainty inherent to both sensor data and to the robot’s state
estimation system. Moreover, they should be compact enough so that other components
such as the path planners can make use of it.

2.4 Localization and Path planning

2.4.1 Introduction

The localization of the robot denotes its capacity to establish its own position and orien-
tation in the environment. Then, once these both are stablished, planning a path leading
the robot from a starting point to a final positon becomes an easy task.

Generally, the position and orientation are computed according to the reference system
given by a constructed spatial representation (map-using).

However, when the spatial representation is built as the robot navigates the environment
(map-building), solving the localization problem is a more complex task. In fact, the use of
an accurate map is quite important for the robot to localize itself; however, knowing where
the robot is within the environment is also essential for building the map. This kind of
chicken-and-egg problem is known as the simultaneous localization and mapping (SLAM)
problem and different SLAM algorithms have been proposed to solve it.

In the absence of a world representation (mapless), the estimation of the robot position
and orientation can be obtained directly from the use and/or combination of proprioceptive



50 Chapter 2. Vision-based robot navigation

ROBOT VISUAL NAVIGATION ‘

Types of navigation strategies

|
242 243
MAP BASED MAPLESS

1%

&

p=}

©

g 2421 2422
= ‘ Mag-BuiIding‘ ‘ Map-Using ‘
c

(=}

=1

o

c

>

T

| visual SLAM | | offine |

24
LOCALIZATION and PATH PLANNING ) ‘
Probabilistic Filters Global Localization Optical flow
mellhg ALEnG Relative Localization Rez e (e
Biological inspired Appareance based

Figure 2.13: Localization and Path planning. Transversal structure representing the impli-
cation of different functional modules in all types of navigation strategies.

and exteroceptives sensors (refer to section 2.2.5 for an depper insight of such sensors).
On one hand, exteroceptive sensors such as the GPS are very robust for localization in
large terrains or outdoor environments as they provide more accurate coordinates than other
sensors. However, they drastically lose accuracy in indoor environments or when the terrain
shrinks.On the other hand, proprioceptive sensors such as gyroscopes, allowing obtaining an
estimation of the robot’s position by means of a deadreckoning navigation method, inevitably
diverge from the truth, as they are sensible to error-accumulation due to their inherent noise.

Path planning can be divided according to two categories based on the availability or
absence of a complete representation:

Off-line path planning is performed when a representation of the world is given in advance.
It is also known as the global path planning because of the use of the global information
provided by the world representation. Therefore, an accurate representation of the world is
essential for a successful planning.

In contrast, on-line path planning is performed when no representation of the world is
given. In this case, the robot obtains the information of the environment through sensors and
plan its path locally according to what it encounters (by using some visual clues as reference
points for instance) while navigating the environment. A good robot localization as well as
an accurate obstacle detection is thus crucial.

2.4.2 Map-based navigation

Map-based navigation techniques consist in providing the robot a model of the environment
(map-using) so that it can navigate within the environment according to the given information
or in constructing a representation of the environment (map-building) through the robot
sensors as it navigates the environment.
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2.4.2.1 Map-using navigation

The use of an a priori knowledge of the environment facilitates the navigation process de-
scribed in the introduction above. Hence, the robot can localize itself in the environment
by estimating its current position with respect to the recognized landmark’s position from
the databased and plan a trajectory path according to the obtained information to finally
execute its movements to achieve its final destination. That is why it is called map-using
navigation.

The localization problem consists in determining the robot position in the environment.
When using metric maps, the robot position is determined in coordinates with respect to
a coordinate system, whereas when using topological maps, the robot position is defined to
be at some place by considering its corresponding node in the topological graph. Regardless
the type of map, the localization problem can be tackled from two different points of view
depending on the knowledge or absence of the initial robot position: local or relative local-
wzation and global or absolute localization respectively. Once the localization task is solved,
planning a path becomes an easy task. Although, it can vary according to the application
or desired task. For instance, one application might need to find the shortest path because
of time constraints, whereas another application might need to plan a path where the robot
navigates through all places possible in the environment. Topologically, the problem of path
planning is related to the shortest path problem of finding a route between two nodes in a
graph.

Local or Relative localization techniques know the approximate initial robot position.
Then it is necessary to update the estimate position during navigation. The simplest way
to achieve this is by using an odometer. However, since the accuracy of odometry usually
decreases over time as errors accumulate, external sensors are used to compensate and thus
to update the new pose. More than a decade ago, [DeSouza 2002| introduced in their survey
two completely different approaches to local incremental localization.

On one hand, the FINALE system [Kosaka 1992] used a geometrical representation of
the space and a statistical model of uncertainty in the location of the robot. Whereas, on
the other hand the NEURO-NAV system [Meng 1993a], [Meng 1993b] utilized a topologi-
cal representation of the environment composed of nodes and lines graphs that represented
the most representative places of the environment (central corridor, door, corners, etc.,).
NEURO-NAYV has two main modules built up with neural networks: a hallway follower mod-
ule and a landmark detector module. These two modules compute edges, detect walls and
output the proper steering commands to drive the robot at a distance of a wall or centered
in a corridor.

The incremental localization is also known as pose tracking and relative localization tech-
niques attempt to find the correspondence between the measurements from the external
sensors (here the vision sensor) and the information given by the map. Looking for the
correspondences with these techniques is relatively easier than using absolute localization
techniques, as it is not necessary to consider the entire environment but rather a small region
around the estimated pose. For instance, [Biswas 2012| tackles the correspondence problem
by assigning correspondences of each point from a depth camera image to lines in a 2D map.
The 2D map represents the environment as a set of line segments (corresponding to the obsta-
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cles in the environment) in a «vector» map and each of the points are the result of a volume
reduction process of the 3D point cloud that uses the Fast Sampling Plane Filtering (FSPF)
algorithm. Hence, the points are sampled and classified by local set of points as belonging to
planes in 3D (the «plane filtered» points) or points that do not correspond to planes within
a specified error margin (the «outlier» points). Then the localization algorithm, which is,
based on an observation model down-projects the plane filtered points on to 2D which can
then be compared to the lines in the 2D map.

Likewise, |Irie 2015] present an approach that copes with the problem of matching the
sensor data with a street map by maximizing the statistical dependence between them. Street
maps presents a more challenging effort for matching data as they lack of detailed information
about the environment such as height and color. In their work, they employ a computation-
ally efficient estimator of squared-loss mutual information to estimate the 2D position and
orientation of the robot during navigation.

Global or absolute localization techniques, allow instead the robot to localize itself without
the prior knowledge of the initial position. The robot position is determined with respect to
a global reference frame; for instance using beacons or landmarks. Therefore, they can easily
recover from positioning errors, which make them more robust than relative methods. For
instance, they can handle the kidnapped robot problem, in which the robot is taken from
its current environment to another unknown environment without giving it any information
about the motion. Several approaches have been proposed for this purpose in the past such
as Markov localization [Fox 1999] and multiple hypothesis tracking (MHT) [Jensfelt 2001].
Likewise, the probabilistic Monte Carlo Localization (MCL) method has been widely used
[Thrun 2005].

The MCL uses a particle filter to estimate the position of the robot. However, even though
it is robust with respect to sensor noise, it fails to estimate the robot’s position if an object
is blocking the sensor range of the robot. Moreover, in environments with large ambiguities,
the particle filter shows slow convergence and it becomes necessary to explore a large part
of the environment to solve the ambiguities and thus converge. This can be a disadvantage
when one of the main requirements of a given application is to find the robot location in the
quickest possible way.

Therefore, to overcome this problem [Ito 2014] present a hybrid approach based on Wifi
and RGB-D data to estimate the global position. The Monte Carlo localization approach
remaining the core of the approach and the use of both sensors compensate the weakness of
each of them and allow an accurate and fast global localization.

Following the same line of merging the information of other sensors with that of the map,
[Alonso 2012 present a global positioning solution in real complex environments that fusion
the trajectory information from visual odometry with digital road maps. The motion tra-
jectory of the vehicle is estimated using weighted nonlinear least squares (WNLS) optimiza-
tion and a Gaussian multivariate model to estimate the uncertainties in the measurements
[Sotelo 2007], [Parra 2010]. The outlier removal is performed by a RANSAC algorithm, based
on Mahalanobis distance to better deal with the nature of the input data. This fusion allows
removing the cumulative error and thus estimating accurately the position of the vehicle for
very long GPS outages.

Other approaches allow effective global localization by using object recognition [Anati 2012],
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|[Atanasov 2014]. For instance, the Global Localization by Soft 3D Object Recognition
(GLSOR-3D ) described in [Ribeiro 2015] uses a soft 3D object recognition to estimate the
pose of the robot with respect to the landmarks in the given map. By learning off-line the
appearance of different view angles of the objects, it suffices to partially view any of the ob-
served objects to estimate the robot pose and orientation relative to the objects. GLSOR-3D
achieves this by exploiting the PVHK descriptor and the Modified Hausdorff distance as tools
to recognize and compare the similarity between objects represented by their partial views.

2.4.2.2 Map-building navigation

The construction of maps refers to the process of the creation of geometrically or topologically
coherent 2D or 3D models of the environment by using the robot sensors while navigating the
environment. Two different approaches can be distinguished: The systems that first build a
map and then use it for robot localization (offline map-building), and the systems that build
the map online and simultaneously localize themselves in the environment (SLAM).

Early approaches in robot navigation considered mapping and localization as two differ-
ent tasks that were treated separately. Hence, the former standard approaches divided the
navigation task in two phases. In the first phase (training phase), the robot acquires some
information of the environment by exploring it and builds a representation of its surround-
ing. Thereafter, in the second phase (operational phase), as the robot navigates the same
environment, it matches the current perceived information to what it was stored before in
order to localize itself in the environment. The localization task is assumed to be computed
once the map has been accomplished. For this matter, most of the localization techniques
referred to the map-using navigation can also be applicable in this case i.e. pose tracking,
for instance by using particle filter based Monte Carlo localization.

However, after realizing that the combined mapping and localization problem was con-
vergent, some researchers suggested that treating it as a unique problem would provide
means to make a robot truly autonomous |[Chatila 1985|, [Leonard 1991]|, [Rencken 1993],
[Durrant-Whyte 1996] based on [Durrant-Whyte 1988|, [Smith 1986]. This meant that the
robot should be able to navigate the environment while localizing itself as it navigates. The
technique allowing this type of navigation is called SLAM (Simultaneus Localization and
mapping), also referred as CML (Concurrent Mapping and Localization) by some researches
[Newman 2002] and [Andrade-Cetto 2002]. While most proposed SLAM methods are rather
robust for mapping static, structured and of limited size environments, it is still an enormous
challenge to map unstructured, dynamic and large-scaled environments.

Recently, some researchers have proposed a combination of mapping algorithms with
SLAM approaches in order to overcome the problems related to semi-static or dynamic envi-
ronments where the location of obstacles change over time. This is called lifelong SLAM and
[Einhorn 2015] propose a system that allows lifelong mapping and localization in real world
applications. They combine normal distribution transform (NDT) and occupancy mapping.
Hence, the map is created prior operation and it allows an accurate localization. Thereafter,
when the environment changes, the system is able to update the map with the use of a graph
based SLAM algorithm. Similarly but in a more general fashion, |Frese 2010| present an
overview of the SLAM problem from the perspective of using SLAM for a given application
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instead of giving an overview of the investigation of the SLAM itself.

Offline map-building Most of initial works back at an early stage in robotics navigation
as well as some current ones perform the construction of the map in two phases. During the
«training phase», the robot explores the environment and incrementally constructs a map.
Then, with the aid of the built-map, the robot is able to localize itself, compute the path
leading it to its final destination and thus navigate during the «operational phase».

Some approaches build the map offline out of the registered images. Therefore, they can
effort to use algorithms computationally intensive, which result in accurate and rich maps.
Additionally, localization techniques can greatly benefit from 3D information especially in
real-world applications where there are still some accuracy issues such as in densely furnished
domestic environments. Therefore, some researchers have focused their work on approaches
to recover 3D environment models and use them to estimate robot motion.

Depth cameras have proven to provide a huge amount of information about the structure
of the environment and [Schmiedel 2015] takes benefit of these sensors in order to build a
robust representation. To this end, they use compact and highly memory-efficient type of
map known as Normal Distribution-Transform (NDT) map, and introduce a new keypoint
detector and descriptor called IRON allowing to accurately aligning the 3D depth maps. The
robustness of the descriptor matching and outlier detection allows the system not only to
build an accurate map, but also to perform both local (pose tracking) and global localization
(NDT-one-shot-localization) depending on the availability of the initial pose estimation.

Another example of map-building is that of [Meyer-Delius 2012| which present a general-
ized version of occupancy grids proposed by [Moravec 1985] and which is still one of the most
comion mapping approaches in mobile robotics. The generalization consist of modeling the
state changes in the representation, instead of simply considering the state of a grid cell as
static. This version is suited for changing environments. They first perform a standard offline
learning approach of the environment and then the robot is able to learn from its observa-
tions about the environment changes over time. Hence, the robot is capable of adapting its
representation continuously and it can be used to improve the path planning performance of
the robot. Similarly, but with the help of a human guidance [Kidono 2002| proposed a sys-
tem where the robot is guided around the environment in the «pre-training phase». During
this phase, it gathers the important information perceived from the environment and records
some images allowing it to construct a 3D map online. Once the map is built, the robot is
able to compute the path leading it to its final destination and it tracks the landmarks by
comparing to what it is seeing during the navigation phase to the constructed map. The
robot uses a stereo camera and odometry.

Visual-based Simultaneous Localization and Mapping (VSLAM)

The SLAM problem and its formulation SLAM refers to the process in which a mo-
bile robot seeks to acquire a spatial map of its surrounding environment and simultaneously
deduce its location relative to the same map while navigating the environment. This is a
challenging task, as errors in a robot’s position will induce errors when the map is being con-
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structed, and consequently, errors in the robot position estimate [Smith 1990]. Modeling the
correlation between these errors is key to a successful SLAM algorithm, and numerous solu-
tions have been proposed (several of the most popular are reviewed by [Durrant-Whyte 2006]
and [Bailey 2006]).

Any navigation environment may possibly be comprised of landmarks, objects, surfaces,
etc. Therefore, one common setting of SLAM consist in assuming that the environment is
composed of point landmarks such as door posts and corners of rooms, which, when projected
into a 2-D map, are characterized by two coordinate values. The environment is thus, repre-
sented by a vector of size 2N, where N is the number of point landmarks in the environment.

The SLAM problem involves recovering a model of the environment m and the sequence
of robot locations x; from the odometry and measure z;. Therefore, to be able to solve it,
the robot needs to, on one hand, relate odometry measurements u; to robot locations z;_1
and x; and on the other hand, relate measurements z; to the environment m and the robot
location zy.

There exist different ways to address the SLAM problem. For instance, it can be distin-
guished between full SLAM and online SLAM, where the former seeks to recover the entire
path whereas the latter seeks to recover the present robot location. It can also be addressed
according to the type of map whether is metric or topological. Another common distinc-
tion can be done by assuming the environment static or dynamic (changing over time) or
at another level, by assuming weather the identity of the landmarks is known or not. This
a priori knowledge is important to solve the data association problem, which is one of the
most difficult problems in SLAM. For a detailed taxonomy of these distinctions, the reader
can refer to [Thrun 2008].

In addition to computational complexity and data association problem, another particular
challenge for SLAM is the known «loop closure» problem, which consist of detecting if the
robot has returned to a past location where it has already been after having discovered new
terrain for a while. Recognizing previously mapped locations makes it possible to increase
the precision of the actual pose estimate, to address the global localization problem and to
recover from a kidnapping situation. Such detection is crucial for enhancing the robustness
of SLAM algorithms and thus enabling additional capabilities to mobile robots.

Vision based SLAM Visual SLAM involves the use of camera images information to
tackle the SLAM problem. As omnipresence of cameras has increased in the last recent
years, the interest of the research has become intensified in Visual SLAM [Strasdat 2011],
[Johannsson 2013], [Kerl 2013] and Vision-based SLAM [Se 2005], [Lemaire 2007] or vSLAM
[Sola 2007], which employs mainly cameras as exteroceptive sensors.

Several types of sensors are used to acquire data with statistically independent errors.
The statistical independence is the compulsory condition to overcome the metric movement
and the noise found in the measures. The capability to obtain range information as well as
environment’s appearance, color and texture, makes of the camera sensor a key element for
integrating high-level tasks like detection and recognition of places. Such assets enables the
robot to detect loop closure situations and by consequence to accurately position itself in
limited environments. Hence, different systems that use cameras as the only exteroceptive
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sensor to perceive the environment have been proposed in the literature, for instance, vision-
only SLAM [Warren 2014|, [Milford 2008b|, and monoSLAM [Davison 2007|, [Perera 2011].

However, using cameras as the only sensor is a challenging task mainly in dynamic or
featureless environments as the systems can be penalized by the lack of texture in some
structures, lighting changes, insufficient camera resolution, many or few salient features
recognition, and erratic camera motion among other factors. This may lead to common
problems, for instance, problems such as data association have been addressed in [Ahn 2006,
[Burguera 2014], loop closing in [Williams 2008] and large non-Gaussian error distributions
in reconstructed points depth [Montiel 2006].

Moreover, some real-time systems suffer from error accumulation over time due to the
camera’s incapability to measure the environment scale, introducing errors into the robot’s
speed and position estimates. Therefore, in order to overcome this problem and to increase
the accuracy and robustness of the systems, some of them use the robot odometry or propri-
oceptive sensors as complement to the visual sensors to extract information. These systems
are known as visual-inertial SLAM [Oleynikova 2015|, [Peretroukhin 2015, [Jones 2011].

Different approaches attempting to solve the visual SLAM problem have been proposed
in the literature. They can be classified in mainly three different groups: probabilistic filters;
bundle adjustment (BA), and finally the biological inspired techniques.

e Probabilistic Filters:

The probabilistic filters are the most commonly used techniques in most SLAM systems.
Some of these are the Extended Kalman Filter (EKF), the Rao-Blackwellized filter,
Factored Solution to SLAM (FastSLAM), Maximum Likelihood (ML) and Expectancy
Maximization (EM) [Thrun 2008].

The Extended Kalman Filter offers successful results when minimizing uncertainties on
small scale environments. However, it is limited in large environment as the complexity
of the EKF is quadratic with respect to the number of landmarks on the map, which
makes difficult to maintain large maps. For instance, although the MonoSLAM sys-
tem proposed by [Davison 2003| proves its feasibility of real-time SLAM with a single
camera, it is restricted to work in narrowed and indoor spaces as it employs the EKF
to estimate data. However, [Clemente 2007| present an alternative approach to the
MonoSLAM system, suitable for large environments and capable of performing large
loops closures. In their approach, they combine a hierarchical mapping technique and
a robust data association algorithm based on Joint Compatibility Branch and Bound
(JCBB), a standard technique for spurious rejection within the EKF framework.

Along the same line, [Civera 2010] combine the Random Sample Consensus (RANSAC)
technique with the Extended Kalman Filter in order to perform a robust estimation from
data containing outliers. The available information coming from the EKF is used in the
RANSAC model thus reducing the sample size, which results in large computational
savings. In their work they show that, their algorithm outperforms both in accuracy
and computational cost the JCBB algorithm.

The FastSLAM method instead, uses a modified particle filter for estimating the pos-
terior over robot paths and has been proved to be faster than existing EKF-based
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SLAM algorithms [Montemerlo 2002]. Therefore, [Eade 2006] present an efficient al-
gorithm allowing real-time mapping performance in large environment by applying a
FastSLAM-type particle filter to a Single-camera SLAM and combining it to a top-
down search. Moreover, they introduce a partial initialization procedure to determine
the depth of new landmarks that avoids linearization errors.

[Cummins 2008] propose a rigorous probabilistic approach to image matching based on
the appearance called FAB-MAP. It calculates the similarity between images from two
locations based on the extracted feature descriptors allowing it to determine whether
an observation comes from a previously visited location or not. These properties make
of it a robust system to performn loop closure detection regardless of accumulated metric
error.

Another big challenge for SLAM algorithms is to work on dynamic environments. For
instance, |Tipaldi 2013] use in their system a variant of the expectation maximization
(EM) algorithm to learn the parameters of the representation of the environment, which
employs hidden Markov models on a dynamical occupancy grid. The use of the dy-
namical occupancy grid allows the system to take into account the dynamics of the
environment. The probability of a grid cell is represented in the analytical part of
the factorization and the information learned from the representation is employed to
estimate the pose of the robot as well as the state of the environment during global
localization and the occupancy. Then, the Rao-Blackwellized particle filter (RBPF) is
applied and its sample part represents the robot pose. Hence, an accurate and robust
localization is achieved and the map is updated around the current robot location.

Similarly, in order to minimize the effects caused by the movement of the landmarks
in dynamic environments [Xiang 2015|propose a graph-based SLAM. They present a
mobility-robustified function to measure how stationary a landmark is in the space. An
EM-based algorithm is used in order to infer the mobility scaling and estimate the pose
trajectory of a robot with respect to the mobility-robustified objective function and the
resulting moving landmarks are treated as outliers.

e Bundle Adjustment:

In vision community, the SLAM problem is referred as the Structure from Motion (SFM)
problem consisting in detecting and matching different points between successive frames
of a video, estimating the camera position according to the relative movements of the
points, and constructing a 3D model of the environment. Hence, the bundle adjustment
method is used to perform a batch optimization of the global geometry over selected
images. It adjusts iteratively the pose of the camera as well as the pose of the image
points in order to obtain the minimal reprojection error (between the actual and the
predicted image observations), which is expressed as the sum of squares of a large
number of nonlinear, real-valued function.

Initially some the SFM algorithms were carried out off-line allowing the construction of
3D representation of the environment from small sets of images. Thereafter, in the need
of estimating the motion of a moving robot in real-time and computing incrementally the
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surrounding environment, some real-time algorithms based on the bundle adjustment
were further proposed.

For instance, [Mouragnon 2006 introduce a system that operates in an incremental
way each time a new key-frame and 3D points are added to itself by using a fast and
local bundle adjustment. First, they find the position and orientation of the monocular
camera in a global reference frame by using a triplet of images. Then, the pose is
computed by detecting and matching features of each video frame. The output is the
current position of the camera and its uncertainty resulting in a complete trajectory
with the 3D coordinates of matched points.

Likewise, [Eudes 2010] propose an improved version of the SLAM problem by applying
a local Bundle Adjustement (LBA) on selected keyframes of a video. Their system
correct the scale drift estimation of the long monocular video sequences by using infor-
mation provided by the vehicle odometer; thus, the estimated pose of a new key-frame
is replaced by a correct one. Computational complexity depends on several factors,
including the number of images, observed 3D points, and actual image observations.

At present, incremental BA approaches become quickly computationally expensive as
more information is added (camera poses and 3D points) into the optimization. Hence,
large amount of information processed in a reasonable time is the focus of several
BA methods. For instance, [Indelman 2015| introduce an incremental light bundle
adjustment (iLBA) optimization framework that reduces considerably computational
complexity compared to standard incremental bundle adjustment (iLBA is 2-10 times
faster depending on the number of image observation per frame). The method incor-
porates two key components to reduce computational complexity: structureless BA by
reducing the number of variables and incremental smoothing using adaptive partial
calculations each time a new camera is incorporated into the optimization. Recently
[Strasdat 2012 stated that Bundle Adjustment optimization techniques are better than
filtering techniques as they give the most accuracy per unit of computing time. The
conclusion is made out of a series of Monte Carlo experiments investigating the ac-
curacy, in terms of entropy reduction, and cost of visual SLAM of both filtering and
bundle adjustment. Moreover, they suggest that in order to increase the accuracy of
visual SLAM it is usually more profitable to increase the number of features than the
number of frames.

Biologically Inspired :

Biological models and navigation systems of bees, ants, primates and humans have
been the source of inspiration of several robotic systems over the last decade. They
have been extensively studied and their navigation behavior respond to many of the
properties that robotic navigation systems look for as a solution.

For instance, [Milford 2004], [Milford 2008a] implemented a model capable of perform-
ing SLAM in real time on a real robot based on the hippocampal complex of rodents
which they named RatSLAM. The system integrates odometric information with vision
sensing by modeling the place fields in rodents. Place fields are patterns of neural ac-
tivity that correspond to locations in space and are modulated by the visual stimulus
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and the activity of the rodent as it moves in the environment. Experimental results
show that RatSLAM can operate with ambiguous visual inputs and still can recover
from path integration errors. The dynamic of the network allowing multiple hypotheses
to propagate and to compete with each other, helps to strengthen the belief or one of
more pose hypotheses.

An improved version of the RatSLAM was later proposed by [Glover 2010] where
they fusion the probabilistic local feature based data association method of FAB-MAP
[Cummins 2008] with the pose cell filtering and experience mapping of RatSLAM in
order to overcome to the problem of mapping and localization at different times of the
day. In fact, due to continuous changes of luminosity in outdoors applications, the ap-
pearance of a scene changes constantly and makes difficult the localization task. Hence,
such fusion gives a good solution to the lifelong SLAM problem.

Along the same line of the appearance problem [Maddern 2012] present a new system
named Continuous Appearance-based Trajectory SLAM (CAT-SLAM), which also uses
the advantages of the appareance-based place recognition of the FAB-MAP by combin-
ing them with the spatial filtering characteristics of traditional geometric SLAM. This
probabilistic approach tackles the loop closure problem by improving the reliability of
the appearance represented in a continuous way instead of at discrete points along the
trajectory, which traverses all previously visited locations. It uses a Rao-Blcackwellised
particle filter to develop loop closure hypotheses over a number of observations by
modeling both the likelihood of revisiting previous locations and exploring new ones.

Other extended and modified versions of the RatSLAM systems have also been proposed
in the literature. For instance, [Miiller 2014] adapt the RatSLAM system, initially
conceived and tested for wheeled robots, to work on humanoid robots by adjusting the
given constraints. Similarly, Hippo 3D performs SLAM in 3D environments with an
application to a subaquatic scenario through a ROV simulation with four degrees of
freedom [Albring Guth 2013|.

2.4.3 DMapless navigation

Contrary to map-based navigation, mapless navigation consists in achieving an autonomous
navigation without using or creating any model of the whole environment neither prior the
navigation task nor online. Hence, in order to navigate the environment and localize itself
the robot needs to consider some elements said landmarks, significant enough to be easily
detectable in the given environment that would serve as guides for motion such as walls,
doors, desks etc. Subsequently, the robot wonders about the environment, observes the
scene, extracts the most relevant features of the landmarks, stores each landmark at a given
position and localize itself by matching them during navigation. Since most mapless visual
methods depend mainly on the vision technique or type of clues used during navigation, they
can be distinguished accordingly. However, we still highlight that most of these techniques
are also used in the map-based approaches for matching the correspondences and constructing
maps and that is where their difference lies on.
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2.4.3.1 Optical flow

When a person moves in the environment, its whole visual scene is transformed. [Gibson 1950]
called this transformation optical flow and it is due to the modification of the spatial relations
between the observer (person or camera) and the objects in the environment. More precisely,
optical flow is defined as variations of brightness patterns in a sequence of images given by
the apparent motion of the surrounding elements of the observer when the observer himself
is in movement. In an image, each pixel corresponds to the intensity value obtained by the
projection of an object in 3-D space onto the image plane. Thus, when the objects move,
their corresponding projections also change positions in the image plane.

Optical flow is a vector field that shows the direction and magnitude of these intensity
changes from one image to another. Therefore, optical flow can be used to estimate not only
the motion of the objects and the nature of their structure in the scene but also the motion
of the robot relative to the objects and thus infer the current robot position and velocity.

Several efficient optical flow algorithms have emerged and been used for robot navigation
purposes over the last decade or so. For instance, most of them have been used to perform be-
haviors involving continuous motion such as corridor centering |Zingg 2010], visual odometry
and obstacle avoidance, involving different flow techniques such as Camus’ correlation-based
method [Camus 1997, [Lucas 1981], [Horn 1981]and [Nagel 1987].

In [Moya-Albor 2016|, the authors proposed an algorithm in real time that improves,
in accuracy and robustness to noise and to intensity, the optical flow constraint equation
of Horn and Schunck differential approach. The technique is combined with the Hermit
transformation: a biological image model that describes significant visual features in digital
images. As a result, the Hermit optical flow (RT-HOF) method not only is fast enough
to compute an approximate solution of displacements between images but also it allows the
robot to avoid mobile obstacles in two different approaches: braking and steering when mobile
obstacles are close to it.

In [Honegger 2013|, the authors compute the optical flow between two successive frames
by using the sum of absolute differences (SAD) block matching algorithm. First, a reference
block of pixels is chosen to compute its SAD value of the current and preceding frame.
Then, the resulting value is compared to the SAD values within the search area and the best
matching is selected as the resulting flow value. The algorithm is performed in an open source
and open hardware system based on a machine vision CMOS image sensor designed by the
same authors.

Thanks to its low power, low-latency and low-cost, the CMOS sensor-microcontroller
is suitable for micro aerial vehicle applications where the system was tested on and which
perform great results in indoors and outdoors environments. However, since the optical
sensor only provides displacements in the x and y directions, information about the angular
displacement of the robot has to be determined by other method. Therefore, they use an
onboard gyroscope to estimate correctly the translational velocity and an automatic exposure
control that allows usage in outdoor and indoor environments.

A comprehensive investigation of exiting researches on optical-flow-based robotics naviga-
tion with an emphasis on both the sensor hardware and associated reference motion models
is provided in [Chao 2014].
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2.4.3.2 Feature based

In structured environments, people can self-localize by distinguishing rapidly and accurately
different landmarks from the rest of the scene and then navigate while tracking them. Sim-
ilarly, some computational approaches attempt to solve the robot navigation problem based
on the search of certain relevant landmarks that can allow the robot to minimize uncertainty
in the computed pose estimation to localize itself and find its final destination.

Feature based methods permit to segment landmarks such as doors, lines, windows as well
as to extract interest point features and to encode an image description of their neighborhood
appearance relevant from the rest of the image in order to use them as landmarks which each
define a particular location in the environment. Since most of the techniques used in this ap-
proach such as Speeded Up Robust Features (SURF) and Scale-Invariant Feature Transform
(SIFT) are invariant to translation, rotation, illumination, reduction and enlargement factors,
the matching correspondence is quite robust, making them ideally suited to landmark-based
navigation. However, some of these techniques are relatively computationally expensive and
difficult to implement in real time on a resource-constrained robot.

Therefore, in order to reduce the computational expense while still being robust at mem-
orizing and recognizing natural landmarks, [Anderson 2013| introduces a modified but still
consistent version of the SURF algorithm, the one-dimensional SURF (1D SURF). The SURF
algorithm is applied to a single row of grey-scale pixels captured at the robot’s horizon, hence
it considers only one dimension. Since the algorithm is used for a robot moving on a planar
horizontal surface, there is no need of taking into account the rotation or vertical movement
of the features provided by the classic SURF algorithm. Hence, the features in the test image
are matched to their nearest features of the stored image to perform landmark recognition.
The robot is then able to estimate its pose location according to the information given by
the matched stored image.

The use of landmarks for navigation has appeared to be a good solution when no prior
information of the environment is given. However, the quantity of landmark models in the
robot’s memory can increase exponentially with respect to environment size and sometimes
is can be redundant and costly. Therefore, in [Sala 2006| the authors study the problem of
finding the optimal size of a subset of landmarks necessary to perform a robust and reliable
navigation. Two views of the most widely visible landmarks are shown to the robot during
a training phase. The robot forms its database, based on these views and the position at
which they were acquired and then it uses it to match the visible features during navigation
to compute its position and orientation. The choice of the widely visible landmarks is done
by partitioning the world into a small number of maximally sized regions such that from
any position within one of the regions the same set of features is visible. As consequence,
the database of features is also partition into a set of smaller databases, each corresponding
to what the robot sees in a spatially coherent region. Hence, the total number of features
(corresponding to the union of all the databases) that need to be retained for localization is
much smaller than that of the single database. Therefore, even without prior knowledge of
the region in which the robot is located, the search is far less costly.
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2.4.3.3 Appearance based

Since efficient and consistent feature extraction and correspondence is difficult in cluttered
and unstructured environments, some systems algorithms rather take into account the global
appearance of the image such as the color, shape , edge , texture, etc. A variety of systems
allowing an accurate robot localization and navigation has been proposed in the literature
making use of different holistic approaches.

For instance, [Zhou 2003| present a method that applies a multidimensional histogram
on the image in order to describe its global appearance with respect to color, edge density,
gradient and texture. The extra information given by the multiple histograms other than
only that of the classic color histogram, allows the system to additionally describe the spatial
relationship among pixels provided that a good selection of suitable image features are given
into the histogram. Subsequently, the multidimensional-histogram of the current image is
compared to the multidimensional-histograms of the samples database, which each correspond
to a definite location. Hence, the current location of the image is given by the location of the
candidate that corresponds the best according to the matching results.

This same image-matching process has been seen in insects when returning to a goal posi-
tion. It is called the snapshot model |Cartwright 1983] and has been the source of inspiration
of several computer models. However, contrary to most of the early snapshot computational
models that operate on one-dimensional images, [Vardy 2003| introduce the visual homing
model operating on two-dimensional images. Hence, the agent is able to take and store an
image of the goal position surroundings and later it uses it to match it with the current
perceive images. Subsequently the disparity resulting from the matching is used to guide
the agent’s return. While in their work, the disparity is computed by comparing images of
vectors resulting from a ring operator, |Guzel 2012| adapted the same visual homing strategy
to a monocular vision based system but instead, extract the key features from the images
by using the SIFT algorithm. As a result, the system estimates accurately the linear and
angular velocity of the mobile vehicle with an affordable computational time.

The authors in [Gaussier 1997| developed an appearance-based approach using neural
networks. Inspired by biological place cells, place neurons are created in the model and
each of them define a different location. The robot, in essence, merges visual information of
landmarks and their azimuths to build up a spatial representation which activity provides an
internal measure of localization that serves to estimate the best movement to reach the goal.
[Giovannangeli 2006b| later improve this set of place- action association by achieving sensory
motor tasks in indoor and large outdoors environments. More details of this approach can
be found in section 2.2.4 concerning the place recognition.

Other systems have opted instead, to use artificial landmarks whose texture can be easily
recognized on the environment by performing a template matching for example.

[Fernandes 2012] estimates the robot localization by using visual odometry based on ob-
servation of fiducial landmarks that are distributed on the explored environment. The first
detected and identified landmarks is defined as the reference frame for robot localization and
the landmark pose estimation is refined by using the method proposed by [Schweighofer 2006],
which takes into account the two local minima of the estimate error function, explicitly dealing
with both to find the optimal pose estimate.
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2.4.3.4 Symbolic-based

This method employs a symbolic navigation approach just as people do most of the time
to locate their positions and reach their destinations in unknown environments. In fact,
by tracking landmarks composed of texts and directions, people are capable of achieving a
successful navigation even if they are not familiar to the place. Therefore, some algorithms
attempt to go beyond the detection of simple landmarks by recognizing and extracting a
semantic meaning out of the landmarks in order to give more comprehensive information
about the surroundings.

For instance, [Shaikh 2013] proposed a method allowing the robot to find a path auto-
matically by detecting and reading textual information or signs located on the landmarks.
First, the landmarks are located and tracked and then the semantic information of the texts
and arrows within the landmarks is extracted. The resulting information is used to guide the
robot to the final destination. To this end, they implement and optical character recognition
(OCR) by using the Kohonen Neural Network, which allows reducing the computational cost
for real time implementation. In other scenarios such as those where robots play an impor-
tant role in human-robot teams, symbolic navigation not only provides a good solution but
also it is necessary for achieving a successful team operation.

In [Oh 2015], the authors suggest that in order to profoundly understand the environment,
robots need to be able to reason about the given commands for a specific task from their
team partners besides having a good communication interaction and other high level required
skills. Hence, they have developed an intelligent architecture that combines different cognitive
components allowing the robot to operate at the same level of their human counterparts. For
instance, in order to cooperate with humans in complex tasks, the robot should be able to
understand and execute a command like «navigate quickly to the back of the building that
is behind the car». To this end, one of the main components of the proposed architecture
consist of performing a semantic perception to label regions and objects in the environment.
They use a decision-forest classifier that labels super pixels using SIFT [Lowe 2004|, LBP
[Ojala 2002] and texton features [Shotton 2009] in a coarse-to-fine segmentation hierarchy and
they combine it with a 3D LADAR data to separate the labeled pixels into discrete objects
with coordinates in the world relative to the robot. Outdoor navigation in urban environments
results are presented and they show that their multidisciplinary approach enables the robot
to carry out complex tasks in various real-life scenarios without the need of any map or prior
information.

2.4.4 Summary of the types of navigation

Two types of visual navigation have been presented in this section. Their classification has
been done based on the presence or absence of a global representation of the environment
(a map) on which robot localization and planning is highly dependent. The first navigation
strategy, map-based navigation, addresses the strategies using or constructing a map of
the environment, thereby it is divided in two groups.

First, map-using strategies employ topological or geometric models of the environment
before the navigation tasks begins. Since the robot knows previously the global information
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of the environment, this type of navigation provide fast, robust and consistent solutions to
the localization and path-planning problem. However, their highly dependence on a represen-
tation of the working environment, limits the operational capability of the robot. Moreover,
using a map beforehand implies that the environment is static; therefore, it is not suitable
under dynamically changing environments.

Knowing the disadvantages of the first type of navigations, the second type, map-
building, attempts to solve the problem of navigation in terms of localization and planning by
constructing a map as it navigates the environment. Contrary to the first type where a person
usually provides the map to the robot, this type of navigation employs the robot’s sensor as
it navigates in the environment in order for the robot to create itself geometric or topological
models of its world. These strategies overcome the shortcomings presented in the first group
of strategies by allowing autonomous robots to navigate through dynamic environments. Two
different ways of tackling this problem have been presented, whereas some algorithms build
the map during the training phase and navigate during the operational phase, other algo-
rithms allow the robot to build the map and localize itself simultaneously while navigating
the environment. This is known as SLAM and it is currently the most common strategy
being used. However, building a robust model of the environment is computationally time
and effort consuming. Additionally, map-building navigation based on visual sensors is quite
challenging compared to other algorithms based on other sensors.

The second navigation strategy, mapless navigation, concerns a navigation strategy
where the robot does not require any explicit representation of the working environment.
Basically, these strategies rely on the robot sensors to capture relevant features, landmarks
or objects in the environment that could serve as reference for navigation. There are three
different approaches based on computer vison techniques that allow detecting, matching and
recognizing different visual cues or observation in the environment. Besides, a fourth approach
involving motion estimation techniques is also widely used. The inspiration behind mapless
navigation lies on the behavior found in living organisms and thereby resembles the most the
human behaviors. However, the lack of a global representation of the environment can limit
an optimal localization and can slow down the navigation process.

2.5 Conclusions

This chapter has presented a transversal structure describing the implication of the func-
tional modules in each type of navigation strategies found in the state-of-the-art: mapless
navigation and map-based navigation composed itself of map-using and map-building navi-
gation. While the navigation strategies are described in terms of the localization and path
planning functional modules, the visual perception and the world representation functional
modules are described separately. The visual perception section highlights a biological place
recognition approach our work is inspired on and the world representation section introduces
shortly the two types of maps used in this work.

Robot navigation needs a control unit capable of organizing, unifying and monitoring the
various components of a robotic system. Therefore, the next chapter reviews in detail the
different control paradigms allowing to define the capacities of the robot to plan a line of
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action and execute a variety of intelligent behaviors according to what it senses as well as to
its interactions with the environment.
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3.1 Introduction

In the navigation task as in other robotic tasks, the input information of a robot system
either coming from the robot sensors or from an available representation of the world, needs
to be processed so that the robot can make autonomous decisions on how to act on the
environment and follow their execution. Such process, most of the time complex because of
the application domain, requires a control system capable of monitoring and coordinating all
the robot components as well as their inner interaction respectively.

According to [Mataric 1992| an architecture provides a structure for organizing a control
system. They allow to structure the different levels of development into levels of abstraction
as well as to improve the reusability and modularity of hardware and software components of
the robotics systems. Hence, robot control architectures could be defined as control schemas
developed to integrate different functionalities and capabilities endowing the robot with an
autonomy to plan its line of action and produce intelligent behaviors.

A control architecture is required to meet some design properties and behavior speci-
fications. Here below, we present some of those found in [Alami 1998|, [Nakhaeinia 2011],
[Brooks 1986].

Global reasoning: Reasoning in a global way gives a better insight of the past event
mistakes and helps to plan ahead optimal ways of achieving a given task. A high level
decision-making requires of a good understanding of the overall situation.

Reactivity: all different components of the architecture must be capable of appropriately
reacting to the specific received stimuli, especially when unforeseen changes appear in the
environment.
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Integration: The software tools that run on the robot are very diverse. Therefore, it
is important to propose good tools for every type of component, and especially to offer
transparent mechanisms of communication and exchange of the data.

Robustness: The architecture has to allow using the redundancy of information sources,
processing, and the multiplicity of processors. Moreover, it has to be invariant to imperfect
inputs, unexpected events and sudden malfunctions.

Resolving multiple tasks: It is inevitable to find situations where conflicting concurrent
actions have to be performed. Therefore, a control architecture should be able to decide on
the priority of each tasks while providing means to fulfill all the multiple tasks.

Reliability: The use of robots in critical situations (for the robot and its surrounding
environment) requires the use of methods, which guarantee certain safety properties. The
architecture should provide the robot a good performance without failures or degradation of
it.

Programmability: A highly and easily programmable machine (both from the point of
view of the programmer and that of the user) would allow a robot to achieve different tasks
described at some abstraction level, instead of only one precise task. From the functional
level to the decision-making level, it should be possible to program control loops and low-level
processing, functioning constraints and procedures of goal refinement, among many others.

Flexibility, modularity, expandability: Since the conception, implementation and build-
ing of different architectural components usually takes long time, the architecture should be
flexible enough to add new features without questioning or modifying the already existing
ones at whatever level they might be.

Autonomy, adaptability, coherence: The robot should be able to execute the actions,
refine and adapt its plans and its behaviors according to its goals and to the environment as
it perceives. Sometimes if not often, the environment changes unpredictably, therefore, the
robot has to adapt to these changes. Additionally, its behavior and its reactions should be
guided by its goals.

3.2 Control Paradigms

Diverse architectures of control have been proposed in the literature to design and develop
strong, flexible, reliable and high performance control systems. Each of these architectures
of control involves new concepts and solutions to solve the robot navigation problem based
on the use or combination of different paradigms that have emerged since the early days of
autonomous robot conception.

A detailed description of each paradigm is given below according to two different view-
points. On one hand, the functional viewpoint classifies the paradigms in terms of their
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internal functionality and thus in terms of their capabilities to act on the environment when
performing a given task. On the other hand, the design viewpoint specifies two paradigms
based on how the data information is processed and propagated through the systems as well
as how the knowledge is ordered.

3.2.1 Design viewpoint

From the design point of view, control architectures can be distinguished according to two
different methodologies that have traditionally been used: top-down and bottom up.

They differ in the way of how the sensory data is processed and propagated through the
systems as well as how the knowledge is ordered. These two opposed strategies have their
roots in the field of Artificial intelligence and have been the basis on the design of autonomous
robots in the robotics field. Both approaches have their advantages and disadvantages, there
where one excels, the other fails and vice-versa. This trait of both approaches is the root of
a debate among robots designers on how to build autonomous robots.

3.2.1.1 Top-down

The top-down approach was the dominant paradigm in the early days of AT robotics (1960s-
1970s) when researches considered that creating a machine with artificial intelligence could
be possible by reducing human intelligence to symbol manipulations. At that time much
of the focus was on robot planning. Therefore, in order to perform high-level tasks, a pre-
programmed global knowledge was first given as input to the system. Then, the information
was decomposed into smaller subdivisions and so on until each of them was reduced to
basic elements that could be specified and explained by themselves. Whenever, one of the
subdivisions could not be specified, it was replaced by a «black box» and thus, manipulated by
the system to obtain the desired output. However, the absence of knowledge and specification
of a given subdivision could not give clarity to the comprehension of elemental mechanisms
and sometimes the validation of the complete model.

Since an optimal robot navigation based on this approach relies on prior knowledge in-
formation of the environment, the required amount of information to be stored in the robot’s
database as well as the computing complexity can be huge and difficult to handle. Moreover,
this implies that the global information is not going to change in the middle or after the
process. Therefore, since the information is centralized, whenever there is a modification, the
whole navigation task will collapse [Clancey 1991].

Nonetheless, the systems based on this approach have a good understanding of the envi-
ronment; thereby they have better capacity of reasoning when the environment is to remain
static.

3.2.1.2 Bottom-up

By the mid-1980s the top-down paradigm of symbolic Al was being questioned, thereby giving
popularity to the bottom-up paradigmm. The robots were slow and had trouble operating in
complex and dynamically changing environments because they had to plan all of their actions



70 Chapter 3. Control architectures

based on internal world models. Hence, bottom-up models proposed an alternative to such
shortcomings.

Contrary to the top-down paradigm, the bottom-up paradigm does not require of a cen-
tralized control or high-level organization of the system. Consequently, it allows reacting to
unforeseen situations by quickly controlling the robot’s movements without requiring complex
computer programs. In bottom-up models, the design process starts with specifying require-
ments and capabilities of individual components. They are relatively simple processing units
connected in a network that by interacting among themselves and with the environment, pro-
duce complex and more ‘intelligent’ behaviors. The global behavior is said to emerge from
such interactions. Hence, a system based on this approach is able to build its own knowledge
and learn by itself from the interaction with the environment, usually performed with parallel
processing such as neural networks.

Even though, these systems are quite simple, adaptable and flexible, they lack practicality.
For instance, if a robot is needed in a disaster scenario, it has to act as fast as possible.
Therefore, respecting the time constraint is crucial for a successful task achievement and a
robot without the previous knowledge of the navigation environment would badly fail.

3.2.1.3 Summary of the approaches

FEven though the bottom-up approach is much younger, it has shown to have a value and
a place in robotics as much as the top-down approach has. Whereas top-down models
allow breaking down the problem into low-level commands helping the robot to plan its
future movements, bottom-up models are suitable systems for navigating in unknown and
dynamic environments. Their parallel processing enables the robot to learn to deal with
unforeseen situations and difficulties. bottom-up models can easily adapt to any changes
and do not require huge computing complexity as top-down models do.

However, they both present individual shortcomings that still need to be overcame. Due
to its sequential process information, the navigation process in top-down models can be
delayed and the huge amount of space required for storing all the preprogrammed knowledge
can exceed the robot space memory. Moreover, the malfunctioning of one of the modules can
cause the failure of the entire system. Likewise, with a bottom-up approach is very hard
to achieve a higher-level complexity and the required time to learn a task or to achieve an
intelligent behavior can be a limitation in time constraint tasks.

A solution instead, would be to combine both, top-down and bottom-up approaches
in a possible way for a control architecture to have a preprogrammed knowledge of the
environment, while being able to adapt to the real world environment thanks to emerging
behaviors resulting from the interaction with the environment.

3.2.2 Functional viewpoint

Four different types of control paradigms allowing the robot to execute an action according
to the perceived information can be distinguished. However, they differ from one another in
their internal functioning and thus in their capabilities to act on the environment in terms
of a given task.
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In his book «Introduction to Al robotics» [Murphy 2000], Murphy describes and illus-
trates these paradigms in terms of the relationships between three primitives, sense, plan and
act (SPA paradigm). Certainly a point of view with roots in the classic symbolic Al

Sensing concerns the function of taking information from the robot’s sensors and translat-
ing it into an internal world model or an output useful for other functions. Planning instead,
is more complex as it takes the information either from the sensors or from the internal world
knowledge in order to produce one or more tasks for the robot to perform. Finally, acting is
the task of producing output commands to the robot motor actuators

N
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Figure 3.1: Sense, Plan, Act (SPA) Paradigm.
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This paradigm has its roots on the symbolic AT paradigm of the 1950’s and for several
years it was the dominant paradigm (deliberative) for building robots capable of imitating
human intelligence, contrary to the Reactive paradigm which functioning is based on a simple
stimulus-response mechanism |[Wiener 1961| (see figure 3.2). They are both distinguished
mainly by the speed of reaction, the consideration of the global knowledge of the world, the
usage of perceived data and the computing complexity.

However, as they both presented some shortcomings, the hybrid paradigm was conceived
combining advantages of both deliberative and reactive approaches while diminishing their
individual drawbacks (see figure 3.3). As a result, hybrid control architectures employing a
hierarchical /sequential division are composed of both components: deliberative and reactive.

Hence, while the deliberative paradigm follows the sense-plan-act process, the reactive
paradigm omits the planning by only sensing and acting directly through the robot actuator
(sense-act); the hybrid plans at one step and the sensing and acting are done together (plan,
sense-act).

However, Brooks rejected the symbolic (deliberative and hybrid) paradigm and focused on
the development of basic process unit that allows robots to move [Brooks 1986|. He considered
that the capacity of reaction of a robot under unforeseen situations was an important quality
to take into account under dynamically changing environments, particularly when they are
unknown and uncertain. The symbolic paradigm did not allow the robot to react accurately
to real time environments. Therefore, he proposed a new architecture based on a behavior-
based paradigm consisting of a collection of simple processing units called behaviors connected
each of them directly to the robot sensors and actuators (see figure 3.4) allowing to perform
a successful navigation.

Hence, the emergence of the behavior-based control paradigm started to get the attention
of few researches based on the nouvelle Al as it was possible to enable the robot with learning
capacities while still performing other tasks as good as the other paradigms did. It can be
considered as an extension of the reactive paradigm but with more complex functionalities
where a learning process takes place.
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Figure 3.2: Deliberative and Reactive Control paradigms in terms of the relationships between
three primitives, sense, plan and act and in terms of how sensory data is processed and
propagated through the system [Murphy 2000].

3.2.2.1 Deliberative

The deliberative control approach involves the employment of reasoning techniques to decide
on actions to take based on a model of the environment. It has its roots in the traditional
artificial intelligence (AI) paradigm, in which a central planner fuses all sensors readings,
builds a model of the environment, finds a path, plans the next action, and finally steers
the robot. The robot data processing is realized under a sequential form. Therefore, the
navigation process based on the aforementioned functional modules can be incarnated in a
hierarchical architecture (see figure 3.5) as presented by Brooks in his work proposal of an
alternative paradigm [Brooks 1986]. The robot acts on the navigation environment according
to the internal environmental representation that has constructed provided by the sensory
data.

This paradigm was the foundation of many robotic control architectures for many years
[Schwartz 1983], [Chatila 1985], [Takahashi 1989], [Latombe 1991].

The Shakey robot was one of the first robots which architecture consisted of these three
functional elements [Nilsson 1984]|. The sensing module was in charge of building a map of
the environment out of the images taken by the robot’s camera. Then, the planning module
used this map and the information of the goal destination in order to plan a path leading to
it from a starting point. Then, the path, represented by a series of actions, was sent to the
robot output by the executor module.

As in most of deliberative architectures, the actions taken by the Shakey robot were
executed directly without needing to reuse the sensors that created the model. However,
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Figure 3.3: Hybrid control paradigms in terms of the relationships between three primitives,
sense, plan and act and in terms of how sensory data is processed and propagated through
the system [Murphy 2000].

planning required the use of an accurate model of the robot environment and building such
models implied the use of high-precision sensors, which are often expensive.

Although this model allows the robot to reach a specified goal by generating optimal
sequences of actions in a complex environment, unforeseen changes such as new obstacles pose
a major hurdle in task completion. The need to process a complex hierarchy of information
at every step can further slow down the progress through highly dynamic environments since
there is a strong sequential interdependency between modules. The delay caused by one of the
modules will delay the next one and so on. Therefore, since this type of architectures is limited
by the lack of real time reactivity, especially in complex and dynamic environments; purely
deliberative architectures are rarely used in physical like the one presented by [McGann 2008],
who focused on the control of autonomous subimarine vehicles.

Alternative architectures have emerged through the course of time modifying and improv-
ing the deliberative ones.

3.2.2.2 Reactive

The reactive control approach uses a stimulus-response model that defines the movements
of the robot as a consequence of a stimulus. Such performance is similar to the behavior
observed in living organisms like insects where navigation is exclusively based on the sensory
perception and execution of simple behaviors. It can thus respond robustly and rapidly under
dynamic and unstructured environments.

In order to explain such natural behaviors in an evolutionary way, [Braitenberg 1986]
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Figure 3.4: Behavioral paradigm in terms of the relationships between three primitives,
sense,plan and act and in terms of how sensory data is processed and propagated through
the system [Murphy 2000].

presented a concept of vehicles conceived in a though experiment. The motion of each vehicle
is directly controlled by a group of primitive sensors and depending on how they are connected
to the wheels (each driven by its own motor); the vehicles exhibit different behaviors that may
appear complex or even intelligent. This evolutionary approach inspired many researchers
that subsequently set this concept to practice.

Hence, based on this approach, from the 80s, a new generation of robots designers tried
to build robots without the use of internal maps of the world. With the use of architectures
based upon layers of perception-actions mechanisms, it was possible to explore alternatives
to the approach based on symbolic descriptions that were stored in the robot. This per-
spective is called situated robotics and refers to embodied machines existing in complex and
often dynamically changing environments which behavior is strongly influenced by it and the
situation.

One of the first known robots examples were invented by Brooks [Brooks 1986] and one
of the purposes of this approach was to develop a spatial learning theory without defining
predefined categories within the architecture of the robot. More precisely, instead of storing
an internal representation of the world and examine it to perform actions, the robots of
Brooks reacted directly to local sensations while interacting with the environment.

Hence, reactive navigation strategies are local strategies that use actions reflexes. More
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Figure 3.5: Decomposition of a mobile robot control system into functional modules by
following the SPA paradigm (decomposition detailed by Brooks [Brooks 1986|

particularly, they work correctly only in the zone of their goal visibility and the actions
associated with the motor are directly related to the current perception values of their sen-
sors. Therefore, reactive architectures neither need a global model or prior knowledge of
the environment nor rely on complex reasoning processes (usually utilized in deliberative
architectures) to decide what actions to perform. Sensory data is distributed to individual
reactive modules and the information is processed in parallel rather than sequentially. The
information gathered by the sensor is the input of the set of behaviors, which transforms it
into a desired response and only the most appropriate and dominant behavior finally executes
the action (see figure 3.6).

Thanks to their simplicity, behaviors are executed very quickly thereby allowing to per-
form low-level tasks such as moving towards a given goal or avoiding unexpected obstacles
in unknown environments.

However, the probability and extent of success of quickly processing the information and
reacting under complex environments with these systems may be affected by the lack of an
overview of the environment for reference. Moreover, the complexity of tasks the robot can
address are limited notably because of the inability to have a memory or a capacity to store
enough information and consequently the inability to learn and improve over time.

Braitenberg Vehicles Valentino Braitenberg [Braitenberg 1986] describes in his book the
concept of a «vehicley as an intelligent agent that can move autonomously within an environ-
ment. This concept is conceived in a though experiment that illustrates in an evolutionary
way, the capacities of simple agents. He uses nature as inspiration in order to compare these
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Figure 3.6: Reactive architecture. The sensors are directly connected to the actuators

extremely simple vehicles with animals by referring to a psychological language to describe
their behaviors. Hence, the evolution of these vehicles reflects the evolution of the animal
species. They represent the simplest form of artificial intelligence based on behaviors or
physical knowledge: for instance, the intelligent behavior that arises from the sensory-motor
interaction between the agent and its environment, without the need of an internal memory,
representation of the environment or inference.

The objective of these experiments was to illustrate some essential aspects of the internal
structure of the animals’ brain. Every experiment includes the description of a simple vehicle
provided with a small group of primitive sensors, capable of measuring stimulations and
connected to the motors vehicle which immediate response directly appears from a signal or
a stimulus in the sensor (similarly to the neurological connections in animals).

Hence, he shows how the resultant vehicles are capable of realizing different complex
behavior, according to the interconnection between the sensors and the motor, which can be
described as a fear, an aggression, an attraction, a logic, etc. There exist 14 vehicles and
each of them present the essential characteristics of all the vehicles, which precede it, but it
adds it a stage of evolution to reach a threshold of greater complexity. For instance, vehicle
1, «alive» in figure 3.7 consists of a single sensor and a motor wheel. The latter accelerates
and moves forward towards the direction at which it points, when the sensor is stimulated
by a source and it slows down as it goes away from the source.

In the case of a source of heat for example, the vehicle will always try to stay near a warm
place and will flee the cold. Vehicle 2 in figure 3.7 has two opposing behaviors «timid» and
«aggressive», that depend on the connection of its sensors with the wheel motors. It consist
of two sensors and two wheel motors. In the first case, 2a , each sensor is linked to the wheel
motor of the same side and whenever on of the sensors is stimulated, its associated wheel
accelerates more than the one far from the stimulus. Consequently, the vehicle goes away
from the source (afraid or timid). On the contrary, in the second case, 2b, each sensor is
linked to the wheel motor of the opposite side. Then, when one of the sensors is stimulated
by the source, the associated wheel (from the other side) accelerates, while the other remains
immobile making the robot move towards the source as it was going to attack it (aggressive).
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Figure 3.7: Braitenberg vehicle 1: alive. vehicle 2: afraid(2a) and agressive (2b) vehicles
[Braitenberg 1986].

3.2.2.3 Hybride

Hybrid control approach was conceived in the need of overcoming the limitations exposed by
the reactive and deliberative control approaches. Hence, by merging these two approaches it
is possible not only to mitigate their individual drawbacks but mainly to improve the perfor-
marnce of the robot navigation with the advantages of both approaches: the speed of reaction,
global knowledge of the world, usage of perceived data and computing complexity. As a re-
sult, hybrid control architectures contain both components: deliberative and reactive; and
they can be classified mainly in three different styles according to what has been developed
so far:

Managerial Style: The architectures calculate a conventional complete path in the delib-
erative module that controls the behaviors and actions in the reactive modules [Arkin 1989,
[Yavuz 2002]. Then, the reactive modules generate the adequate action by solving any prob-
lem that might appear. If a given module cannot solve the problem, the superior module
takes over. For instance, in the SSS (Servo, Subsumption, Symbolic) architecture, a sym-
bolic planner controls the reactive module [Connell 1992], whereas in the CoCo (Cognitive
Control)architecture , the deliberative module advices the reactive module through a set
of motivational variables [Qureshi 2004]. A small variation of these works can be seen in
[Low 2002] where the planning module produces a sequence of checkpoints that work as
sub-goals leading to the final target instead of the entire path.

State Hierarchies style: This style uses the knowledge of the robot’s state in past, present
and future in order to generate the robot motion [Peter Bonasso 1997|, [Lindstrém 2000].



78 Chapter 3. Control architectures

While the deliberative module use the knowledge of the robot’s past state in order to predict
the future (path planning), the reactive module functions in the present state (self-awareness)
and follows the deliberative planning instructions to achieve the final action.

Model-oriented style: Alike to the deliberative architecture, this style of hybrid architec-
ture concentrates more on the global model of the environment to navigate the environment
|[Konolige 1997] but it uses the reactive module to update the model and thus reduce pro-
cessing time that it requires [Davies 2008].

Most common hybrid architectures are composed of three layers usually organized in
parallel as illustrated in figure 3.8.

Deliberative layer

Intermediate layer

Sensors ) Reactive layer ma)  Actuators

Figure 3.8: Hybrid paradigme : most common type of architecture composed of three layers

While at the bottom of the architecture the reactive component deals with the most
urgent tasks as fast as possible, at the top of the architecture resides the deliberative module
operating the highly abstract, symbolic and internal representations of the world for achieving
long-term goals.

However, in order that the deliberative module performs a plan for high-level decision-
making and the reactive module accomplishes obstacle avoidance for instance; both modules
have to interact with each other to produce a coherent output accordingly. Therefore, the
third layer is to be placed in the middle of both layers, serving as an intermediate component
to reconcile both representations and to resolve any conflict between their outputs. It acts
as the coordinator of the system and it plays an important role in the good performance
of the system. For instance, as the top layer is responsible for generating an optimal plan,
the coordinator layer decomposes the task into low-level subtasks (behaviors) and chooses
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the most appropriate one to send it to the reactive layer to generate the robot’s action.
Additionally, it maintains temporal constrains between the subtasks allowing producing the
best output according to the situation.

Nonetheless, interfacing these fundamentally differing components is a complex issue and
the search for the optimal way to achieve a hybrid solution is still an area of ongoing research.

3.2.2.4 Behavioral

The behavioral approach or behaviorism is a psychological approach based on the proposal
that any action executed by a body, including thoughts and feelings, can and must be seen as
a behavior. According to behaviorism, individual responses to various environmental stimuli
shape our behavior. Behaviorists believe that behaviors can be studied in a methodical and
recognizable way regardless the internal mental states. Thus, any behavior can be clarified
without the need to think about mental psychological states; intelligence results from the
interaction among a set of asynchronous behaviors and the environment. The major prin-
ciple of this approach is based on the analysis of human behavior in the stimulus-response
interaction and the association between them.

Thorndike |[Thorndike 1913] was the first behaviorist to explore the field of study that
establishes learning as a set of associations on particular process of behaviors and the conse-
quences thereof. This behaviorist theory of learning by stimulus-response is then developed
by [Skinner 1974], as an operational conditioning which considers all learning as being a base
of resulting habits of a reinforcement and a reward. Most systems are reactive, which means
that they barely use the internal state to model the environment.

Behavior-based control systems do not present the constraints of lacking of a represen-
tation of the world or having little (if any) state as reactive control systems do. On the
contrary, the collection of behaviors composing such systems do have states, which allows to
construct representations, thus enabling reasoning, planning, and learning. Therefore, there
is no need and thereby it is rare that a behavior performs an extensive computation based
on a traditional representation of the world.

Behavior-based control systems were developed for situated robots allowing them to react
and adapt to changing environments by simply coupling perception with action through a
set of behaviors with no centralized world representation as illustrated in figure 3.9.

Behaviors are a set of distributed and interacting control modules allowing the robot
to achieve and maintain a given goal by taking inputs from the sensors, generating a de-
sirable output and sending it to the actuators. As the system is built, new behaviors can
be implemented incrementally starting from the simplest and often reactive in nature sur-
vival behaviors such as obstacle avoidance and following to the ones providing more complex
capabilities like landmark-finding or homing.

All behaviors are executed concurrently allowing speed of computation; therefore, sensors
and actuators can be used independently by many or all behaviors. However, this implies
that the system have to choose a particular action or behavior out of the multiple options
that might appear. This process is known as the action selection or behavior coordination
problem and is still one of the biggest challenges in behavior-based control systems. Specially,
in applications that go beyond the navigation task as it is difficult to ensure a priori the
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Figure 3.9: Behavioral paradigm, composed of several distributed and interacting control
modules called behaviors

execution stability of the complex enforcement law such as those required for the control
of robotic arms. Several approaches have been developed in order to solve this problem by
providing increase flexibility; however most of them tradeoff on the efficiency or analyzability
of the resulting control system.

The same functional modules presented above in a hierarchical form are achieved by a com-
bination of different behaviors in a bottom-up approach as proposed by Brooks |Brooks 1986](see
figure 3.10).

Brooks introduced the term of the subsumption architecture, which become subsequently
the best-known and most influential behavior-based architecture in autonomous robotics. For
instance, the DAMN (Distributed Architecture for Mobile Navigation) architecture proposed
by [Rosenblatt 1997] is another variant of Brooks’ work. Concurrently, Arkin proposed an-
other technique that came to be known as Motor-Schema architecture [Arkin 1987|. Both of
these methods use behaviors to generate timely response in dynamic and unstructured real
world navigation scenarios. While the output of the Subsumption architecture results from
competitive selection of behaviors, the output of motor Schemas architecture results out of
a co-operative coordination of behaviors. Other developed methods include varieties of mo-
tor schemas [Arkin 1989|, command fusion [Payton 1992], spreading of activation through a
behavior network [Maes 1989], [Maes 1990] and fuzzy logic [Saffiotti 1997], [Michaud 1997]
among many others. For a survey of action selection mechanisms, the reader can refer to
[Pirjanian 1999].
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Figure 3.10: Decomposition of a mobile robot control system based on task achieving behav-
iors (decomposition detailed by Brooks in [Brooks 1986])

Several forms of distributed representations have been used such as a network of landmarks
as in [Mataric 1991], or a network of parameterized navigations behaviors as in [Nicolescu 2001].
In this latter, a behavior is assigned to each newly discovered landmark. The descriptor in-
formation such as the coordinates, type and orientation of the landmark is stored in the
behavior and whenever the sensory inputs matched the landmark descriptor to the perceived
landmark, the behavior becomes active and the robot can easily localize itself. Subsequently,
planning becomes an easy task since all behaviors encoding a landmark are connected to
each other within the network and by using a message-passing mechanism. This distributed
representation fashion is one of the reasons of flexibility of the control methodology. However,
this does not exclude the fact that a behavior implementing a representation might be added
to the system and others behaviors learning and operating on the same as well. Addition-
ally, some behaviors might not be internally specified by the program as such, but instead,
they might emerge out of the dynamic interaction among all already-existing behaviors and
between the robot and its environment or other robots.

This property is essential in such systems as it can expand itself endlessly according to
the environment and its interactions. Consequently, these architectures stablishes themselves,
generally, on models of massively parallel information processing, as it is the case of artificial
neuronal networks. These computational models are suitable for applications where there is
no a priori global knowledge of the world, but rather a set of first level inputs is present.
For instance, in order to explain complex behaviors (such as those commonly observed in
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animals in their environment) in simpler terms, Gaussier and Zrehen proposed the PerAc
(perception-Action) architecture, which uses artificial neural networks a detail description of
which is given below |Gaussier 1995].

The complexity, robustness and power of behavior-based systems lays on the way how the
behaviors are designed, structured, coordinated and used. Therefore, several and different
architectures have been proposed over the last 20 years. Here below, we give a descrip-
tion of three behavior-based architectures that we consider are the most important for the
comprehension of such systems and thereby our work.

The Subsumption architecture Contrary to the classic artificial intelligence, which is
based on the reasoning and on a centralized system, the new artificial intelligence proposes
a hierarchical system inspired by natural processes where every module is directly connected
with the system inputs and can generate outputs of the same [Brooks 1990]. Hence, Brooks
developed the architecture known as the subsumption architecture, which decomposes com-
plex intelligent behaviors into several « simple » and parallel modules where each is respon-
sible of a single behavior assuring the execution of a different action (see figure 3.11).

In order to choose the most convenient action, the modules are organized on hierarchical
layers where each layers has a different priority [Brooks 1986], [Brooks 1991]. The layers are
networks of augmented finite state machines composed of a number of states and a set of
input and output ports generating each of them a specific behavior.

:> Behavior priority (n) TL

Sensors :> Behavior priority 2

:> Behavior priority 1 ®j L
:> Behavior priority 0 >@} >ACtU ators

Figure 3.11: Subsumption control architecture

The top layers correspond to abstract tasks, which work to reach the global goal and
create viable behaviors by utilizing more concrete and simpler tasks (they subsume lower
layers). The lower layers correspond instead to simpler but more “urgent tasks”, therefore
their priority precedes that of the top layers. Hence, the lower layers working as mechanisms



3.2. Control Paradigms 83

of fast adaptation (reflexes) can modify the input of higher layers by means of excitatory and
inhibitory knots. A top module is then said to be subordinated by the lower module.

The coordination between each of the behaviors is based on a Priority-based Arbitration
technique allowing to decide on the activation of the most active behavior layer when multiple
behavior conflicts. For instance, in a case where the lowest layer is «avoid an object» while the
second layer is «wander around»; the higher layer «wander around» utilizes the lower-layer
competencies to emerge. Hence, by avoiding obstacles the robot is able to wonder around
the environment.

Such configuration and functionality, has allowed subsumption robots (Allen, Herbert,
Genghis) [Brooks 1990] to react to unpredictable environments by performing behaviors sim-
ilar to those seen in animals such as insects.

The subsumption architecture showed great success at overcoming problems related to
real-time interactions with dynamic environments. However, the memory of the architecture
can rapidly be limited by the number of finite states. Certainly, when a reactive action is
needed, finite-state machines can be perfect, but when it comes to perform a task requiring
some learning and memory, the finite-state machines would fail or would not be sufficient.

Motor schema Architecture The motor schema architecture [Arkin 1987] is another
popular example of the first reactive control architectures proposed back in the 80’s. It
is a biologically inspired approach where motor and perceptual schemas are dynamically
connected to one another [Arbib 1981]. The motor schema architecture was proposed as a
basic unit of behavior specification that produces an output of each behavior in a vector
form. Furthermore, by using a fusion mechanism it merges all the resulting behavior vectors
in a manner similar to the artificial potential field concept. Hence, the overall response of
the system is achieved by the vector summation of the multiple behaviors as illustrated in
figure 3.12. For instance, the generated output allowing the robot to move through a maze,
would be a result of the superposition of the behaviors, in this case that of target following
and obstacle avoidance.

From the potential field’s point of view, the target following task would be represented as
an attractive force while the obstacle avoidance task would be considered as a repulsive force
where the summation of both forces would coordinate the final action of the robot. However,
if attractive and repulsive forces cancelled each other out, the resulting output sum would be
null and the robot would remain static. Therefore, in order to overcome this common local
minima problem, various solutions have been proposed [Nattharith 2009]. Additionally, the
architecture has further been improved in order to achieve more complex tasks [Arkin 1990].
Hence, the autonomous robot architecture (AuRA) added a navigation planner and a plan
sequencer, based on finite-state acceptors (FSAs), to the reactive schemas [Arkin 1997].

PerAc Architecture The PerAc (Perception-Action) architecture inspired by the work
of [Brooks 1986], [Albus 1991], [Burnod 1990|, [Carpenter 1987|, [Hecht-Nielsen 1987| and
[Edelman 1987| was proposed by [Gaussier 1995] as an organized neural structure that evolves
because of the dynamic interaction between the robot and its environment. It has particular
properties such as associative memorization, learning by example and parallel processing.
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Figure 3.12: Motor schema architecture

The PerAc architecture is composed of two data streams corresponding to perception and
action flows(see figure 3.13). The first level uses a reflex mechanism that controls directly
the robot’s action based on the information extracted from the perceived input. The second
level uses a cognitive mechanism performing recognition of the aforementioned perceptive
flow and allows learning of the associations between the recognition of a particular shape and
the realization of a particular action. Therefore, it is not necessary to have a map or data
resulting from a global model of the environment to decide on the actions to undertake.

3.2.2.5 Summary of the approaches

Each of the presented approaches have emerged out of the necessity of enabling robots to
autonomously perform a variety of tasks in different domains and applications. While one
approach can excel at allowing the robot to perform a given task, the same approach can
fail when a different task or goal is required. Therefore, the selection of a control approach
depends mainly on the situadness properties of the problem, the type of desired task, the
optimality required and the available information. Moreover, it can be tightly linked to the
hardware and software robot constraints.

For instance, deliberative systems provide an optimal reasoning and planning which
is given by an accurate representation of the whole environment. This implies that the
environment remains the same; therefore, these systems are ideal for structured and strongly
predictable environments, especially in domains where the robot performs repeatedly a given
task. Because of the same reason, however, these systems are not suitable for situated
robotics.

On the other hand, reactive systems give a perfect outcome when it comes to changing
environments and where an immediate response and reaction is essential in the performance
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Figure 3.13: PerAc architecture by [Gaussier 1995]

of the task such as obstacle avoidance. Hence, stochastic environments are best dealt with re-
active systems. Furthermore, reactive controllers happen to be very powerful in environments
and tasks that have been previously characterized. However, their lack of representation of
the world and knowledge of the past and future actions, make of these system a problem
when planning, learning or memory storage is necessary.

Hybrid systems have shown to be a good solution as they diminish the drawbacks
that the other two systems present while getting all the advantages that they both offer.
Therefore, they are suited for environments needing internal models and requiring planning
in long term and which, real time demands are sufficiently independent of the higher-level
reasoning.

Finally, behavior-based systems can be said to comprise almost all the advantages that
the three other approaches offer plus another related to its behavioral structure: learning and
easily adapting to environments that change significantly. Furthermore, their components
(behaviors) and their interconnections allow the system to plan, avoid past mistakes and use
active representation if necessary. Behaviors are designed at a variety of abstraction levels,
facilitating bottom-up construction of behavior based systems. However, the difficulty to
implement such an architecture can be huge drawback.

Even though, the ideal control architecture has not yet been developed. Several researches
attempt to improve and propose new control architectures by combining, in most of the cases,
the best of all these approaches such as optimally reasoning and planning while at the same
time quickly responding under dynamic changing environments. Combining behavior-based
systems with a global representation of the world can be a good solution. For instance, the
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behavior-based architeture (AuRA) facilitates the planning and reasoning by directly using
a planner to select behaviors [Arkin 1997|. Similarly, the three-level hybrid architecture 3T
uses behaviors in its reactive layer [Bonasso 1995.

Clearing up misconceptions Since describing and implementing behavior-based systems
is not always an easy task, they are often misunderstood specially when being compared to
other systems. Therefore, it is necessary to clear up some confusions:

Behavior-based vs reactive systems:

Considering reactive systems equivalent to behavior-based systems has been, through
the passing of the years, the most common misconception in the robotics literature. Such
misunderstanding may not be surprising if one considers only the basic functionality of both
systems (as it has been the case most of the time). Truly, as it has been said previously, both
systems tightly couple sensing and action into distributed modules. Moreover, they are both
presented as being robust in dynamically changing environment when no representation of
the world is available. In fact, these common properties are normal as the behavior-based
approach has its roots in the reactive approach. However, what strongly differentiate them
from each other lays in the fact that contrary to reactive systems, behavior-based systems
can store representations and thereby enable reasoning, planning and learning. Reactive
architectures, oppositely, lack of an internal state, which makes them incapable of learning
and using internal representation.

Behavior-based vs hybrid systems:

Given the use of different modularization strategies by each of these systems, there is often
the misconception of considering that one has better expressive capabilities than the other
does. In most of the cases, hybrid systems have the upper hand. However, such assumption
is erroneous as both of them have the same expressive and computational capabilities of
exploiting representations and looking ahead. What makes the difference between both of
them is the way of doing that can be suited according to the application domain. For instance,
while behavior-based systems dominate the multi-robot control field because of its collection
of behaviors, hybrids system dominate that of a single-robot. Only when a task in the single-
robot domain is too time demanding, a reactive system is necessary then the behavior-based
system would be more appropriate. The set of behaviors within the behavior-based systems
allows a robust and adaptive group behavior when working with multiple robots.

Another reason why there might be a misconception is due to the fact that both systems
are organized in layers. However, contrary to hybrid approaches, behavior-based do not em-
ploy a hierarchical/sequential division and all layers are similar in terms of time scale and
representation used. Planning, reasoning and each of the other behaviors use the same mech-
anisms as the sensing-and-action-oriented behaviors. They provided both low-level control
and high-level deliberation whereas in the hybrid approach the layers are drastically opposing
to each other (deliberative and reactive).
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3.3 Conclusion

This chapter has presented the currently existing control paradigms for building robust and
flexible control architectures. Two different viewpoints have been here introduced. Firstly, the
functional viewpoint which distinguishes four different paradigms according to the internal
functioning and capabilities to act on the environment: reactive, deliberative, hybrid and
behavior-based. Secondly, the design viewpoint divided in two different methodologies: top-
down and bottom up. They differ in the way of how the sensory data is processed and
propagated through the systems as well as how the knowledge is ordered.

We explain their advantages, disadvantages in terms of the needs a robot has for achieving
an autonomous navigation.

The RHIZOME architecture we proposed, combines into its neural structure all the above
paradigms as it is presented in the next three chapters of part II.

From the functional viewpoint the RHIZOME architecture uses an a priori knowledge
of the environment in order to corroborate the dynamic visual information perceived during
navigation. Hence, it is composed of both deliberative and behavior-based modules.
Thus, a hybrid architecture. However, the hybrid meaning here, opposes to the currently
known hybrid architectures that use an intermediate component to reconcile both repre-
sentations and to resolve any conflict between their outputs. Conversely, the RHIZOME
architecture can be considered as being entirely behavior-based capable of combining two
opposing approaches without the need of a coordinator component. Hence, a behavior-based
hybrid architecture.

However, it differs from the common behavior-based control architectures in the fact that
this architecture does not follow a hierarchical process but instead, each action or behavior is
equally important and the resulting action emerges from the interaction with the environment
and the internal motivation of the robot.

From the design viewpoint the information available from the map is obtained by
following a top-down process and the action actions of the robot result from a bottom-up
process.
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RHIZOME 1: Exploring the world
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4.1 General description

This chapter introduces Rhizome 1 as the foundation of the Rhizome architecture functioning
in a simple deterministic scenario where no unforeseen situations are expected to happen.
Such scenario implies that the environment remains unchanged and by consequence, the given
a priori information (a sequence of navigation signs leading the robot to the final destination)
is expected to be found as such in the navigation path during real-time navigation.

Rhizomel has been built in order to allow the robot to use the navigation signs as ref-
erence to navigate towards its final destination, while inferring the directional meaning each
navigation sign denotes and learning it for future reference.

The sign sequence is computed beforehand according to the order of appearance of the
signs within the path from the starting point to the final destination and it is provided to the
robot by means of a command program. All navigation signs used in this work are known by
the robot, which means that the robot has already in its database the information describing
each sign (see section 4.2.2 for more details). Thus, based on this information, the robot
is able to detect one or several signs at a time, as long as they are within the frame of the
robot’s field of view. Each sign denotes a «directional meaning» (turn right or turn left).

However, in this scenario, the information concerning such directional meaning is not
provided to the robot (see Rhizome 2 described in chapter 5, which provides and uses this
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information).Therefore, the robot is enforced to deduce the directional meaning by considering
the movement leading it to find the next sign of the sequence in the environment. Thereafter,
when the same sign appears again, it just follows the implied instruction of the learned sign.

Hence, the robot deduces the directional meaning of a given sign by looking around itself
for the position of the next expected sign with respect to its own position when facing the
current sign as illustrated in figure 4.1.

A

Association of sign ‘A’
to the directional
meaning ‘right’

v

Figure 4.1: Deduction of the directional meaning of the sign «A». The robot looks for the
location of the next expected sign «B» with respect to its own position when facing the

Robt facing sign ‘A’

current sign

Before entering into the details of the implementation and the components of Rhizome 1,
let us first have an insight of the overall behavior of the navigation process performed by the
robot in this first deterministic scenario (figure 4.2).

The description below which is represented by figure 4.2 summarizes the behavior of the
navigation process.

o Agexplained previously, two sources of information are used as input in the architecture:

a) The visual perception information input, which constantly feeds the system in real-
time while the robot navigates the environment. When one or several navigation
signs appear in the robot’s field of view, the signs are considered detected.
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Figure 4.2: Functional diagram of the navigation process behavior allowed by Rhizome 1.

b) The sign sequence information input, which provides one sign at a time according

to what it is expected to be found in the environment. When one of the detected
signs matches the current expected sign, the sign is considered recognized. Then,
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the sign sequence is scanned to obtain the next sign and provide it as input. The
same process is repeated until all signs of the sequence have been recognized in
the environment.

In order to arrive to its final destination, the robot looks for each of the expected signs
from the sequence within the navigation environment. This is possible by comparing
each expected sign to what it sees in real-time.

If the sign is not recognized, it performs rotatory movements around itself in order to
look for it until finding it.

Once the sign is recognized (detected sign corresponding to the expected sign), the
distance (dis) between the robot and the recognized sign is computed.

If the robot is close enough (dis< threshold), it can turn around to look for the next
expected sign. Otherwise, if the robot is not close yet to the sign, it walks towards the
sign in order to avoid premature turns with respect to the intended point of turn for
that sign.

Two different actions are possible in order to look for the next expected sign after
determining if the directional movement associated to the current sign is known or
unknown.

The robot knows the directional movement associated to the current sign: then it
simply performs the corresponding movement leading it to the next expected sign.
This case is susceptible to happen after the robot has previously seen and learned the
said association.

The robot does not know the directional movement associated to the current sign: then,
it looks for the next expected sign by performing some rotatory movements.

In the meantime, the robot stores the current sign for a short while.

When the next expected sign is found, it deduces the directional movement out of the
performed movement. Then, it associates it to the stored sign and learns the resulting
association.

The same process is repeated for each sign until the robot arrives to its final destination.

4.2

4.2.1

Implementation- Rhizome 1 Architecture

Overall description

The overall architecture integrates the signs sequence into an organized neural structure. It

is composed of two modules as illustrated in figure 4.3. A deliberative module , corre-

sponding to the sign sequence information and a behavioral module, which integrates the

said sequence information and constantly uses it in order to control online navigation and

allow learning of sensory-motor associations.
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Deliberative module

Artificial Navigation Signs Sequence
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Figure 4.3: Overall view of the Rhizome 1 architecture composed of two modules: Deliberative
and Behavioral

e On one hand, the deliberative module represented by the top box of figure 4.3 refers
to a basic module that provides some important information about the environment
before the navigation task begins. More precisely, it consist of a succinct information
coding the complete navigation path.

We refer as a basic module in the sense that such a priori information is provided
directly to the architecture without the use of any complex computing process. In other
words, the robot is not entirely autonomous, as it needs to obtain such information by
means of an external source.

In this work, the information is primarily represented by a sequence of navigation signs
that are expected to be seen by the robot in the real world navigation leading it to the
final destination. The sign sequence is computed beforehand according to the order of
appearance of the signs within the navigation path from the starting point to the final
destination and it is provided to the robot by means of a command program or a voice
system. The complete sequence is then stored in the long term memory unit of the
module to be integrated into the behavioral module.

e On the other hand, the behavioral module represented by the lower box of figure 4.3
is based on the PerAc (Perception-Action) architecture as previously explained in chap-
ter 1 and illustrated in figure 4.4.
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PerAc
Architecture 15t Behavioral module Learning
Learning J\
Recognition _ Recognition 5
20 Jevel [Dyiune Motor
) | Vil || /fo eve Outp
Perception \ (MO)
(DVP)
Dypamic . Motor
Vistal Reflex Behavior |— iy Reflex Behavior
Perception 1 Jevel 15t level

Figure 4.4: PerAc architecture (left) used in the behavioral module of Rhizome 1 (right)

However, the behavioral module of Rhizome 1 differs from the basic PerAc in having
a nested PerAc module within its own second level. Hence, it is composed of three
layers as illustrated in the behavioral module of figure 4.5 to the left. For the sake
of presenting a good visibility of the figures hereafter, the gray arrow indicating the
perception/action loop has been replaced by the some pointed blue arrows indicating
the interaction with the environment following the same perception/action loop.

—

15t Behavioral module Learning 1% Behavioral module _ _ Learnin
e e
- L ﬁl
e RECOQNItiON || izt SRMA_ 2 ;
Dynamic 2 Motor Dynamic 1 ' e : \ Motor
Visual A Output Visual : H Output
Perception (MO) Perception| | /0 ilxlevel..... DDRB. A | (MO)
(DVP) 209 evel (DVP) 2dlevel L !
) N e L =N
1 . - 1 3 :
. Reflex Behavior - i TARB : |
1 1¢t level -1 SETIRVEL .
. - 1
R = Environment <« =« = == == LR R = Environment <« = = = m = -

Figure 4.5: Behavioral module composed of a nested PerAc module within its second level
(left). As a result, the behavioral module is composed of three layers(Right)

Consequently, by reading from the top to the bottom of the behavioral module of
figure 4.5 to the right, each layer is explained as follows.
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The first layer of the system (SRMA) is in charge of merging the information coming
from the long-term memory and the real-time visual perception of the environment
in order to allow the recognition of the expected signs in the navigation environment.
Moreover, it is in charge of learning the association between the recognized signs and
the movements the robot has performed accordingly.

The other two layers use a reflex mechanism that controls directly the robot’s action
based on the perceived information of the environment. The second layer (DDRB)
determines the direction to be taken by the robot (left or right) by looking for the
location of the next expected sign from the pre-captured sequence, while the third layer
(TARB) directs an approach towards the sign by keeping it in the center of the robot’s
vision when the robot is far from it.

The whole system works in parallel and a ‘competitive mechanism’ allows to decide on
the best behavior (among the layers) for controlling the robot according to the stimulus
received. This is possible because the neural interconnection is done by either excitatory
or inhibitory connections allowing or preventing the activation of neurons respectively.
Furthermore, when learning is required, a modulation connection conditioned by a
reinforcement signal is used.

The overall architecture follows a perception-action functioning cycle, which means that
for every input information coming from the dynamic visual perception of the environment,
there is always an action executed which itself alters the perception of the environment for a
new process cycle and so on.

Hence, if we take the functional diagram presented in the introduction, each module in-
tervenes on each of the following actions as illustrated in figure 4.6.

4.2.2 Deliberative module — Preconfigured sign sequence

This module is in charge of storing the sequence of navigation signs that are expected to be
seen by the robot when navigating the environment.

The navigation signs used in this work consist of artificial landmarks designed with a
predetermined contrast, size, and shape, so they can easily be recognized with respect to
more complex objects in the environment.

Since the whole architecture has been implemented and tested in the Aldebaran Robotics’
NAO humanoid robot, we decided to use the landmark detection system already implemented
by the company. Indeed, the «Naoqi» framework that comes with the Nao platform allows
the robot to recognize special landmarks called «Naomarks» which are characterized by white
triangle fans inside black circles. As illustrated in figure 4.7), each Naomark differs from one
another in the size and location of the inner white fans. Moreover, each of them has a unique
tag number «Mark ID » serving as its identifier.

The recognition system has been built such that it is possible to detect distinctively
each of the Naomarks (figure 4.8). The detection system is able to obtain some important
information in terms of the camera angles of the robot as follows:
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Figure 4.6: Functional diagram of the navigation process behavior allowed by Rhizome 1 with
the architecture layers acting on each functional decision.

DO

Figure 4.7: Example of some Naomarks used in this work as the navigation signs

e In the case of the dection of N naomarks, the variable structure consists of two fields.
[[TimeStampField]| Mark_info o, Mark_info 1, .

— TimeStampField = [TimeStamp seconds, Timestamp microseconds |. This field

., Mark_info n_1]] with:

is the time stamp of the image that was used to perform the detection.
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— Mark info = | Shapelnfo, Extralnfo |. For each detected mark, we have one
Mark info field.

« Shapelnfo = | 0, alpha, beta, sizeX, sizeY, heading]. alpha and beta represent
the Naomark’s location in terms of camera angles - sizeX and sizeY are the
mark’s size in camera angles - the heading angle describes how the Naomark
is oriented about the vertical axis with regards to NAO’s head.

« Extralnfo = [ MarkID | . Mark ID is the number written on the naomark and
which corresponds to its pattern.

e When no naomarks are detected, the variable is empty. More precisely, it is an array
with zero element, (ie, printed as «[ |» in python).

Therefore, it is possible to keep in memory the information of each Naomark in order to
compare it to what it is currently being perceived by the robot while navigating within the
environment. Additionally, by setting some threshold values according to the desired task, it
is possible to set the distance at which we consider the robot is close enough to the sign.

Figure 4.8: Example of some Naomarks detected in the environment by the Nao Robot [figure
extracted from Aldebaran’s documentation)|

4.2.2.1 Performance and Limitations

The following data are directly extracted from Aldebaran’s documentation.

Lighting: the landmark detection has been tested under office lighting conditions (i.e.,
under 100 to 500 lux). As the detection itself relies on contrast differences, it should actually
behave well as long as the marks in the input images are reasonably well contrasted.

Size range for the detected Marks:
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e Minimum: ~ 0.035 rad = 2 deg. It corresponds to ~14 pixels in a QVGA image
e Maximum: ~0.40 rad = 23 deg. It corresponds to ~160 pixels in a QVGA image
e Tilt: +/- 60 deg (0 deg corresponds to the mark facing the camera)

e Rotation in image plane: invariant.

In order to illustrate in a simple form the use of these signs through this work, each
sign will be referenced from now and on, by a letter instead of a number as the identifier

«IDMarkery as shown in figure 4.9.

A B

Figure 4.9: Exemple of Naomarks referenced by tag letters «A» and «B»

Even though, the robot is able to detect the Naomarks at any moment, it is necessary
to give a recognition directive in the navigation context. Therefore, the actual recognition
task is handled by the behavioral module described just below (section 4.2.3). In fact, only
when the expected landmark from the sequence extracted from the map is detected in the
environment, it can be considered to be recognized (refer to Sign Recognition and Movement
Association (SRMA) layer). Additionally, the location of the landmark with respect to the
camera frame can also be computed (refer to Target Approaching Reflex Behavior (TARB)
layer).

4.2.3 Behavioral module—Neural structure

The behavioral module is composed of several neural groups, which each one itself, is com-
posed of a certain number of neurons. These neural groups are interconnected according to
two types of links: a one-to-one link, where each neuron in a given group is connected to
only one and unique neuron from another group; and a one-to-all link, where each neuron in
a given group is connected to all neurons from another group (see figure 4.10).
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When the one-to-one link is used, the information received by a given neuron of the
second group is transmitted by a single neuron of the first group independently from the in-
formation of the others neurons of the first same group. On the contrary, when the one-to-all
link is used, the information received by a given neuron is obtained from the addition of the
information of all neurons of the first group and depending on the task; a learning process
can take place.

One-to-one links

e 00O

One-to-all links

// —_
7 -

O
G
©
:
Ox
&

Figure 4.10: Types of links used to interconnect the neurons. The one-to-one link connecting
each neuron in a given group to only one and unique neuron from another group; and the
one-to-all link connecting each neuron in a given group to all neurons from another group.

Each neural group is in charge of encoding a given task and by connecting some of them
in a sequential order; it has been possible to construct each of the three horizontal layers
previously mentioned.

As illustrated in figure 4.11, both a priori information stored in the Long Term Mem-
ory of the deliberative module and dynamic visual information (DVP) are the input
of the behavioral module. While the a priori information only feeds the SRMA recognition
layer (second level), the dynamic visual information feeds simultaneously both layers: The
TARB reflex layer (first level) and the SRMA recognition layer (second level), which transfers
itself the information to the DDRB reflex layer (first level).

Each of the three layers process the information simultaneously and independently from
the other layers, and they all converge towards the same Motor Output(MO) with a
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resulting movement to be performed. However, only one movement is allowed to be executed
at once. Such decision is made by considering the input information, the internal process of
the neural structure and the activation of the «proximity sensor» neural group which directly
links the dynamic visual information to the Motor Output(MO).

Deliberative module

Long Term Memory

Behavioral module
Signs Recognition & Movement Association (&8RMA)
. . Short Sign and Learned L
Sign Sign
detection mergin Term movement output
8ing memory association direction \
| 2nlevel
Dynamic Proximity Reinforce%\sig al (RS) ™\
Visual Sensor prenssenn \} ......................................... : |~ Motor
Perception i Direction Determination Reflex\Behavior (DDRB) : / Output S
- q : 1
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1 : movement .
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Figure 4.11: General view of the three layers in the behavioral module

In order to understand the fonctionality of the overall behavioral module and its three
layers, this section has been divided in four parts. First a general description of each of the
three layers is provided, followed by a more detailed description explaining each one of the
neural groups composing them. Thereafter, the layers convergence in the motor output group
is explained, to finish up with a detailed description of the layers interaction according to a
given exemple.

4.2.3.1 General description of layers

After the complete sequence of signs is given to the robot, it stores it in its long-term memory
to use it. Then, at the start of the exploration, the robot may or may not know the meaning of
each sign in terms of the instruction it represents with respect to way finding. The architecture
is designed such that if the directional meaning of the sign is unknown, a reflex exploratory
behavior gradually leads it to the correct direction and then the association between the
sign and the movement performed is learnt (see DDRB). The learning is conditioned by a
reinforcement signal which information is transmitted by a modulation connection to the
SRMA layer. Hence, if the same sign appears again and it has already been associated to
a particular movement, the robot knows which direction to take and it executes the related
movement i.e. turn left or right (see SRMA). Additionally, the architecture also performs a
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target approaching behavior when the robot is far away from a sign in order to be able to
read it (see TARB).

Signs Recognition and Movement Association (SRMA): Once the robot begins ex-
ploration, this level enables the robot to perform a movement based on the combination of the
a priori information stored in the sign sequence group and the dynamic visual information
perceived from the robot’s camera stored in the sign detection group. When exploring
the environment two scenarios are possible: the expected sign in the sequence obtained from
the deliberative module is recognized or not. In the former case, if the sign has already been
associated with a particular movement, the robot executes directly the related movement i.e.
turn left or right defined by the learned output direction group (see (1) in figure 4.12).

On the other hand, if the sign has been recognized but not associated with a particular
movement yet or it has not been recognized at all, a reflex rotatory movement is triggered in
the DDRB layer (see (2) in figure 4.12) in order to look either for the next expected sign in the
sequence or for the current sign respectively. If the recognized sign has not been associated
with a movement yet, the short term memory group stores the value of the current sign
while the next expected sign is being looked for.

Behavioral module
1]
Signs Recognition & Movement AssociatiggrfoSRMA) %
learning @

Sign sequence

Short Sign and Learned
Term movement output
memory association direction

Sign Sign
detection merging

@

2ndlevel

2nd Jevel

- . - - . - Environment  «— . — . -

Figure 4.12: General view of the Sign Recognition and Movement Association (SRMA) layer

Direction Determination Reflex Behavior (DDBR) This layer is in charge of making
the robot explore the environment by rotating in one place (to its left by design) using small
reflex movements in order to look for the expected sign in the environment. This occurs in
one of the following cases:
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1. The received visual input from the camera does not correspond to the expected sign.
In this case, the robot continues to search for it using the aforementioned rotational
reflex movements. If the sign is found, the SRMA level (explained above) and TARB
level (explained below) are activated. This case is likely to happen only at the very
beginning of the exploration to locate the first sign of the path.

2. The expected sign is recognized but it has not been associated yet with a specific move-
ment. In this case, the robot searches for the next expected sign from the pre-captured
sequence by performing rotational movements. Once this next sign is found, the angle
of rotation undergone is allocated to the current sign as its associated movement in
that direction (left by default). If this angle is greater than 180°, the movement to be
associated is a turn in the opposite direction (right) (see (3) in figure 4.13). Thereafter,
the reinforcement signal is activated so as to learn the association in the SRMA level
(see (4) in figure 4.13).

Behavioral module
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/ Reinforcement\sitqal @ @ |
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Figure 4.13: General view of the Direction Determination Reflex Behavior (DDBR) layer

Target Approaching Reflex Behavior (TARB) When the robot is far from the sign,
this level allows the robot to direct an approach towards the sign by keeping it in the center
of the robot’s field of vision. If, for instance, the sign is situated at the left side in the
robot’s visual space, the movement to be performed, is some steps ahead towards the left as
illustrated in figure 4.14. It is important for the robot to approach the target signs to avoid
premature turns with respect to the intended point of turn for that sign.

Since the input of this layer is the visual perception of the environment before being
compared with the sign sequence information, it computes the position of any detected sign
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Sign to the left of the

/ robot’s field of view

Robot facing towards the sign

Figure 4.14: Exemple of the direction towards which, the robot needs to turn to keep the
sign centered while approaching the sign. In this case towards the left since the signs is to
the left side of the robot’s field of view

regardless if it has been recognized or not (see (5) in figure 4.15). However, the movement
can only be executed if the sign has been recognized, which event is triggered by the SRMA
layer and connected directly to the target approaching group (see (6) in figure 4.15).

4.2.3.2 Detailed description of layers

Each of the three layers presented above, is composed of a number of groups of neurons
in charge of performing specific tasks according to the input information and activation
threshold. Thus, the section below, presents each of the layers by first giving a general
overview of the neural groups composing them and then detailing individually the composing
neural groups.

For a better understanding, the neural groups are presented according to three types of
neural units: The input units in charge of receiving the input information, the internal
units allowing processing the input information and the output units permitting the robot
to execute the motor action according to the processed information.

Be aware that this unit distinction should not be seen similar to the unit distinction
exposed by some of the most commonly known neural models such as RNN or CNN,; which
use hidden units as explained in the introduction section 1.3.1.

Signs Recognition and Movement Association (SRMA): This level is composed of
eight neural groups as shown in figure 4.16 and explained below. Each group (excepting from
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Figure 4.15: General view of the Target Approaching Reflex Behavior (TARB) layer

the output direction group and the reset group) has as many neurons as the total num-
ber of detectable signs known by the robot, each neuron representing a unique sign. Whereas
the reset group is composed of a single neuron, the output direction group is composed
of two neurons for left and right movements respectively.

Input units

Both, the Sign detection group and the Sign sequence group receive the input in-
formation directly from the visual perception and the deliberative module respectively. In
order to calculate the potential and the activation function of these two groups, two array
database have been created and connected to the neural groups respectively. They both store
the same information concerning the identification tags of all signs known by the robot that
it can detect in the environment. The order of their storage in the arrays correspond to the
order of the corresponding neuron in the neural groups (see figures 4.17 and 4.18).

Sign detection group: As the robot interacts with its environment, dynamic visual
information is constantly fed into the neural group. However, it is only activated if one or
more signs appear in the robot’s view activating to the maximum value ‘1’ their corresponding
neuron.

The potential value of all neurons is zero by default and its value is calculated as follows:
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Figure 4.16: Detailed view Signs Recognition and Movement Association layer (SRMA)

Input: one or several signs in the robot’s visual perception
Output: potential of the corresponding detected neurons equals to one
initialization;
for each sign_ i in the ArrayDatabase do

if sign_ 1 is equal to the perceived sign in the environment then

Potential value of the corresponding neuron, p; = 1;

end

end
Algorithm 1: Potential value computation of the neurons of the sign detection group

Then, the activation a; of the neurons is defined by a linear function.

Sequence sign group: This neural group is fed by the sequence of signs provided by
the deliberative module (Long Term Memory unit). Only one sign from the sequence is
transferred as the expected one at a time and its corresponding neuron becomes activated at
its maximum value ‘1. Once the robot is close to the sign, the sequence is scanned so as to
obtain and transfer the next expected sign (see figure 4.18). This situation is repeated until
the end of the sequence.

The potential value of all neurons is zero by default and their value is calculated as follows:
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Figure 4.17: Activity of the sign detection group. The dynamic visual information is con-
stantly fed into the neural group then when one or more signs appear in the robot’s field of
view its corresponding neuron gets activated to the maximum value.

Input: one expected sign at a time from the sign sequence
Output: potential of the corresponding neuron equals to one
initialization;
sign_i= first sign i from the Array Database;
sign= first sign from the Long-term Memory Sign Sequence;
while there is a sign in the Long-term Memory Sign Sequence do
if sign is equal sign_ i then

| Potential value of the corresponding neuron, p; =1
end

if the robot is close to the sign then
| Obtain the next sign from the Long-term Memory Sign Sequence;

end
obtain next sign i from the Array Database
end
Algorithm 2: Potential value computation of the neurons of the sign sequence group

Then, the activation a; of the neurons is defined by a linear function.

Internal units

Once both input information have been encoded in the two corresponding neural groups,
it is necessary to corroborate if among all the information coming from the visual perception
of the environment, there is one sign that would correspond to the same expected sign from
the sequence. Consequently, the information should be merged and compared.

This task is performed by the sign merging group that sends the result to the other
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Figure 4.18: Activity of the sequence sign group. The sign sequence provided by the Long
Term Memory in the deliberative module is fed into the neural group. Only one neuron is
activated at a time corresponding to the expected sign.

neural groups in the architecture. When the comparison results positive (a sign is recognized)
the corresponding neurons are activated, allowing the movement, to which it has been associ-
ated with in the WTA group by a learning procedure, to be performed in the output groups.
However, since the movement might not have been learned yet, the robot needs to look for
the next expected sign. This implies that a new comparison of both input information needs
to be done, with the only exception that this time, the sign from the sequence happens to be
another one. However, if the current sign is not stored somewhere in the memory of the ar-
chitecture, the new expected sign will override the activity of the current neuron. Therefore,
a short term memory group placed between the sign merging and WTA group, is
used to store the activity value of the current neuron sign while the next sign is being looked
for.

A explanation of these groups is given as follows.

Sign merging detector group: This neural group fusions and compares both input
information coming from the two input neural groups (see figure 4.19). Its activation is
defined by a Heaviside function whose threshold value allows the activation of the neuron
whose both inputs values are equal to one. Since all the neurons encode a different sign, only
the neuron corresponding to the expected sign will be activated.

Short term memory group: It stores the activation value of the detected current sign.
The value increases as long as the sign is within the robot’s field of view while the robot
approaches it. The further the robot is from the sign, the higher the value is.

If v is the activity of the recognized sign neuron ¢, then its corresponding short-term
memorization u; (time constant 7) as illustrated in 4.20 can be computed as in equation 4.4

dui (t)
dt

T

= aw;(t) — pri(t) (4.1)



110 Chapter 4. RHIZOME 1

Sign
Sequence Q , ........
Sign
detection l

O___.

Sign
Merging o

Figure 4.19: Activity of the Sign merged detector group. The neuron whose two input values
are equal to one gets activated defined by a Heaviside function

Uit+1)

Figure 4.20: Activity of a neuron u; of the short term memory group defined by equation 4.4

Where, r; is the activity of a reset neuron allowing setting the values to 0 when the sign-
movement association has already been learnt. The variables o and S are their associated
weights with a really small and o < .

The resulting u;(t 4+ 1) corresponds to the potential value and its activation is computed
by using a ramp function.

WTA group: a competitive mechanism «winner-take-all» enables the neuron with the
highest activation value to stay active whereas all the other neurons are set to zero. The
resulting activated neuron represents the current sign to be associated to a particular action.
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The interconnectivity is made in such a way that it allows the learning of the said association
conditioned by the activation of a reinforcement signal, which is set in the reflex level (see
DDBR layer). The synaptic connection of the neurons is then modified based on the following
equation 4.2

AWij =& Al’z . ij ‘R (4.2)

Where, x; is the input neuron, y; is the current neuron, Wj; is the weight of connection
between x; and y;, € is the learning rate and R the reinforcement signal that is only set to
‘17 if an association sign-movement needs to be learned, otherwise it is equal to ‘0’.

However, since the values resulting from the memory group and those of the synaptic
weights are quite small, it is likely that more than one neuron or the wrong neuron would be
activated. This case is susceptible to happen if for instance, the robot is already close to the
sign and it looks around for the next expected sign. Then, the activity value of the neurons
corresponding to current and the next sign will be the same, which would cause an ambiguity
when learning the association.

Therefore, in order to allow a more robust choice by using integers values (1 and 0) in-
stead of directly using the float values of the memory group, two WTA groups are here used
as illustrated in figure 4.21.

Learning

WTA WTA

Learned Output
Direction

g

ke
]

Reinforcement signal (RS)

Figure 4.21: Activity of the WTA group. Here, two WTA groups are used in order to avoid
causing ambiguity when learning the association.

Reset group: As its name indicates, it resets the values stored in the short-memory
group to zero once the association between the sign and the movement has been learned and
a new sign needs be processed.
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Output unit

Output Direction group: It receives input from both levels (the current one and DDBR
seen in the next section). If the sign has already been associated to a particular movement,
its corresponding neuron is activated and sent directly to the motor output. Otherwise, if
the reinforcement signal is activated in order to learn the association between the movement
triggered by DDBR and the current sign.

Direction Determination Reflex Behavior (DDBR) This layer is mainly composed
of eight neural groups as illustrated in figure 4.22. It receives the information coming from
the SRMA layer. Therefore, there are not neural input units.

| Learned
| Output

Direction

Direction Determination Reflex Behavior (DDRB

Connections

/\/ Modulation

———@ Excitatory

Direction

———( Inhibitory

Reflex Output
Direction

-0 |2

Sign
recognition

Figure 4.22: Detailed view of the Direction Determination Reflex Behavior layer (DDRB)

Internal units

When the comparison performed by the sign merging group in the SRMA layer results
negative (sign not recognized), this layer activates its neural groups allowing the robot to
perform rotational movements to compute the directional meaning of the current sign by
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looking for the next expected sign.

Sign sensor recognition: Composed of a single neuron, this group is connected to
all neurons of the merging group from the SRMA layer. It serves as an indicator allowing
knowing if a sign has been recognized or not. Thus, it only takes one activated neuron from
the merging group to stimulate the activation of this group defined by a sign function.

Trigger Reflex group: This single-neuron group triggers or inhibits the reflex move-
ments. Since the sign sensor recognition group and the output direction group are linked to
this group through an inhibitory connection, the Heaviside function allows to activate it when
no sign has been recognized and when no associated movement is known.

Memory Angle group: In order to calculate the total angle of rotation, each turning-
angle is stored and then added to itself as many times as it is required to find the next sign.
Once the sign is found, the total angle is transmitted forward and then reset to zero for the
next calculation. The total angle of rotation is computed by following the same equation 4.4
of the short-term memory group as illustrated in figure 4.20.

Direction group: The total angle of rotation calculated in the previous group is com-
pared to a threshold value so as to compute the activation of the current neurons by using
the sign function. However, as each neuron represents either a left or a right movement, the
resulting activation output of one neuron excludes that of the other.

Darection Result group: 1t takes as inputs the results of the direction group and the
sign sensor recognition group. Therefore, only when the next sign has been recognized, the
activity value of the neuron from the direction group triggers the activation of its corre-
sponding neuron in the direction result group. Then, the result (movement to be associated
to the current sign) is sent to the Learned Output Direction group of the SRMA layer and
the reinforcement signal R is set to 1’ in the WTA group of the same layer so as to allow
the learning of the association between the current sign and the resulting movement.

Output units

Reflex Output Direction group: Whenever the trigger reflex group activates this single
neuron group, it sends the information to the motor output so as to perform small leftwards
rotational reflex movements.

Learned Output Direction group: This neural group of the SRMA layer receives
as input the resulting values of the Direction result group of the current DDRB layer and
since the reinforcement signal is set to "1’, the association between the current sign and the
movement (neuron activated in this group by the Heaviside function is learnt. However, since
the reflex output rotatory group has already performed the movements leading the robot from
the current sign to the next, a reset group inhibits the movement to be executed in the Motor
Output (MO) (see figure 4.23).

Target Approaching Reflex Behavior (TARB) This layer receives as input the infor-
mation coming from the visual perception. Alike the SRMA layer, the TARB layer encodes
the information of the total number of detectable signs known by the robot. However, since
it computes the position of the detected signs within the robot’s field of view, the number
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Figure 4.23: Activity of the Learned Output Direction group. It receives the input from both
WTA groups of the SRMA layer and Direction result group of the DDRB layer

of neurons in the input layer is increased by three times corresponding to the positions: left,
center and right.

In fact, for each sign, there are three neurons encoding three different positions in the
robot’s visual space where the sign might probably be located. Consequently, when one
or several signs are detected, their corresponding positions are calculated regardless if they
correspond to the expected one to be recognized. Thereafter by means of a competitive
mechanism, only the neuron corresponding to the «recognized sign» gets an activity value
superior to one while the rest is set to zero and sends the information to the reflex output
position group. Consequently, the robot can approach the sign by performing the said
movement: walking to the left, walking to the right or walking straight ahead.

This layer is composed of the following three neural groups as illustrated in figure 4.24.

Input units

Reflex sign position group: Per each detectable sign known by the robot, there are
three neurons encoding a preferred position covering in all, the entire robot’s visual field of
view. Each neuron encodes a position (z,y) calculated in pixels within the image space and
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Figure 4.24: Detailed view of the Target Approaching Reflex Behavior layer (TARB)

it is compared to the position of the detected sign calculated in pixels with respect to the
referential origin within the same image space. All neurons behave as neural fields which
activity can be expressed as a non normalized gaussian activity profile

(= p(1))?
202

Where « represents the position jy, of the detected sign and p; the preferred direction of

(4.3)

aj = exp —

the neuron j.
Each preferred direction is computed as:
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dim  dp;(t
ﬂj:4+"zl()*k,ke(o,1,2) (4.4)
Where, dim is the dimension of the image given in pixels, and k the corresponding number
of the neuron per sign (here three neurons per sign). Hence, the same computation is per-
formed for each neuron in the group with the same « value and since their preferred direction
is different, only the closest neuron value to « results with the maximum activity value and

consequently gets to encode the sign position.

Internal units

WTA group: The competitive mechanism «winner-take-all» enables the neuron with
the highest activation value to stay active whereas all the other neurons are set to zero (see
equation 4.2). While the reflex sign position group sends as input the position of the signs
in the robot’s visual space, the input coming from the sign merging group allows activating
only one of the three neurons corresponding to the recognized sign and thus send it to the
reflex output position group for the movement to be performed.

Output unit
Reflex output position group: It sends the resulting movement of the corresponding
activated neuron to the motor output(MO).

4.2.3.3 Layer Convergence

The three layers described above converge towards the motor output group, which com-
prises of six neurons corresponding respectively to six possible movements: turning left,
turning right, walking left, walking right, walking straight ahead and turning left as a reflex
movement (figure 4.25). The activation of one excludes the others’ depending on inhibitory
and excitatory signal connections.

Hence, when the proximity sensor (robot close to the sign) is activated, the activation
values of the reflex output position group are inhibited in the motor output group and
conversely if the robot is far from the sign the direction movements are inhibited.

In the case the movements have been performed by following the reflex movements from
the reflex Output Directionwhen looking for the next expected sign,the reset neuron
group allows inhibiting the activation of the motor output group when the Learn Output
Direction has been triggered by the DDRB and not by the SRMA layer.

The complete architecture is depicted in figure 4.26. For visibility reasons, the names of
the neural groups are not exposed. The reader is invited to see each layer presented above
for the name details.

4.2.3.4 Layer interaction

The interaction between the layers can be explained by considering different situations within
the navigation task. Hence, given a sign sequence, it is necessary to compare it to what it is
currently being perceived in the environment to find each expected sign (one after another)
in order for the robot to achieve to its final destination.
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Figure 4.25: Layers convergence towards the Motor Qutput group.
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Figure 4.26: Detailed view of the three layers in the behavioral module
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The interaction of the layers is next given by describing four different situations concerning
a perception and action cycle and covering the whole behavior of the architecture given the
simple sign sequence A, B, A, B.

For each situation, there is a single action resulting from the merging of the perception
and the a priori information and only the neural groups involved by their activation are
illustrated:

1. Situation 1: The expected sign is detected, hence recognized, but the robot
is far away from it (see figure 4.27).

Initial parameters:
e Sign expected from the sign sequence: A
e Signs detected from the visual perception : A and N

e Locations of the detected signs within the robot’s visual field : sign A to the right side
and sign N in the middle

e Proximity sensor activation: the robot is far from the sign; therefore, the proximity
sensor is not activated.

Functional beehavior:

Even though two different signs ( "A" and "N" ) have been detected in the Sign detec-
tion group of the SRMA layer, only the neuron corresponding to the expected sign "A" given
by the sequence is activated in the sign merging group. The activation is then propagated
to the short-term memory group for further processing. However at this point, little matters
if the directional meaning of the sign is known or not to be performed or learned respectively.
In fact, since the robot is far away from the sign (proxzimity semsor not activated) it is
necessary to first approach the sign and then decide on what movement to perform. This
is possible by performing the reflex approaching movements computed by the TARB layer.
However, alike to the SRMA layer even though the positions of both detected signs "A" and
"N" have been computed in the detected sign position group (right and center respec-
tively), only the neural sub-group corresponding to the recognized sign "A" is activated in
the WTA group which propagates the activation value to the reflex output position group.

Finally, since the proximity sensor is connected via inhibitory links to the neurons
allowing the robot to approach the sign in the Motor Output group, its inactivity allows
to only enable the activation of the neurons corresponding to the movements : some steps
ahead towards the left, the right or straight ahead.

2. Situation 2: The expected sign is detected, thereby recognized. The robot
is close to the sign and the directional meaning is known (see figure 4.28).

Initial parameters:

e Sign expected from the sign sequence: A
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Figure 4.27: Situation 1: The expected sign is detected, hence recognized, but the robot is

far away from it.

e Signs detected from the visual perception : A

e Next sign expected from the sign sequence after recognizing sign A : B

e Directional meaning of sign A : is known and is to the right

e Proximity sensor activation: activated. The robot is close to the sign.

Functional behavior:

The information stored by the short-term memory group concerning the recognition
of sign "A" is propagated to the output of the SRMA layer in order to activate the neuron
corresponding to its associated movement and thus, execute any of both possible movements
(right movement in this example). Since the proximity sensor indicates that the robot is
close to the sign, the neurons connected by the excitatory links in the Motor Output group
are activated. Therefore, only the left and right movements are enabled.
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Figure 4.28: Situation 2: The expected sign is detected, thereby recognized. The robot is
close to the sign and the directional meaning is known.

Moreover, since there is no longer need of looking for the current sign "A" as it has
already been found and achieved, the activation of the proximity sensor triggers the search of
the next expected sign in the sign sequence to be looked for in the navigation environment.
Thus, the neuron corresponding to sign "B" is activated.

3. Situation 3: The expected sign is detected, thereby recognized. The robot
is close to the sign but the directional meaning is unknown(see figure 4.29).

Initial parameters:

e Sign expected from the sign sequence: B

Signs detected from the visual perception : none

Directional meaning of sign A : unknown

Proximity sensor activation: No sign has been detected therefore the sensor cannot give
any measurable value.

Functional behavior:
Since the directional meaning of sign "A" is unknown, the robot needs to look in the

environment for the next expected sign whose corresponding neuron is already activated in
the sign sequence group (sign "B"). Hence, the inhibitory connection between the sign
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recognition group and the trigger reflex group, enables the activation of this latter when
no sign has been recognized. Consequently, the reflex rotatory movements are performed as
long as the expected sign "B" has not detected in the environment. Meanwhile, the short
term memory group maintains activated the neuron corresponding to sign "A" in order
to associate its corresponding movement when sign "B" will be recognized.
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Figure 4.29: Situation 3: The expected sign is detected, thereby recognized. The robot is
close to the sign but the directional meaning is unknown

4. Situation 4: The next expected sign is detected, thereby recognized. There-
fore, the movement leading the robot form sign A to B has been computed and
can be associated to sign A and be learned (see figure 4.30).

Initial parameters:

e Sign expected from the sign sequence: B

e Signs detected from the visual perception : B
e Directional meaning of sign A : To be learned

e Proximity sensor activation: the robot is far from the new sign B; therefore, the prox-
imity sensor is not activated.

Functional behavior:
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Once the next expected sign from the sign sequence has been detected, thereby recognized;
the movement resulting from the computation of the memory angle group in the DDRB
layer is learned and associated via a reinforcement signal in the WTA group for the SRMA
layer. However, since the small reflex rotatory movements have already led the robot to
the new sign, the learned movement is not executed in the Motor QOutput group. This
movement is prevented by the reset2 neuron that sets to zero the values of the memory
angle group for a new computation. Likewise, the resetl neuron sets to zero all the values
of the short term memory group so as to allow a new computation concerning the new
current sign "B". Simultaneously to the learning task of the sign and movement association,
the TARB reflex layer is triggered in order to allow the robot to approach the new current
sign ("B") that has been perceived to the right side of the robot’s visual field. Situation 1
(previously explained) shows how the robot can approach it.
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Figure 4.30: Situation 4: The next expected sign is detected, thereby recognized. Therefore,
the movement leading the robot form sign A to B has been computed and can be associated
with sign A and be learned.

4.3 Experiments in real environment

The efficacy of the proposed architecture was tested with the Aldebaran Robotics” NAO
humanoid robot. This platform was found suitable due to its ability to have a rapid visual-
perception interaction within a real environment, which is a necessary element to validate the
performance of the architecture. The test description below is for didactic purposes, detailing,
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confirming and explaining the functioning of the proposed architecture and its salient features
at work.

4.3.1 Procedure

The NAO robot can recognize the signs printed in a A4 size paper form using its camera if
it is within a range of approximately 0.20 meters to 1.50 meters of distance. Therefore, the
navigation environment for the experiment was built so as to always have the next sign to
be read within this range. This range can be extended if the printed sign size is bigger.
Then, by placing just two different signs twice in the environment it was possible to
verify in 