
HAL Id: tel-01753810
https://theses.hal.science/tel-01753810

Submitted on 29 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Links between Probabilistic Graphical Models
and Submodular Optimisation

Senanayak Sesh Kumar Karri

To cite this version:
Senanayak Sesh Kumar Karri. On the Links between Probabilistic Graphical Models and Submodular
Optimisation. Machine Learning [cs.LG]. Université Paris sciences et lettres, 2016. English. �NNT :
2016PSLEE047�. �tel-01753810�

https://theses.hal.science/tel-01753810
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences Lettres

PSL Research University

Préparée à l’École normale supérieure

On the Links between Probabilistic Graphical Models and
Submodular Optimisation
Liens entre modèles graphiques probabilistes et optimisation sous-modulaire

École doctorale n◦386

ÉCOLE DOCTORALE DE SCIENCES MATHÉMATIQUES DE PARIS CENTRE

Spécialité INFORMATIQUE

COMPOSITION DU JURY :

M Andreas Krause
ETH Zurich, Rapporteur

M Nikos Komodakis
ENPC Paris, Rapporteur

M Francis Bach
Inria Paris, Directeur de thèse

M Josef Sivic
ENS Paris, Membre du Jury

M Antonin Chambolle
CMAP EP Paris, Membre du Jury

M Guillaume Obozinski
ENPC Paris, Membre du Jury

Soutenue par Senanayak Sesh Kumar KARRI
le 27.09.2016

Dirigée par Francis BACH

ÉCOLE NORMALE

S U P É R I E U R E

RESEARCH UNIVERSITY PARIS

What is the purpose of life?

Proof and Conjecture,

Paul Erdős

Dedicated to my family

Abstract

A probabilistic graphical model encodes conditional independences among random
variables, which is related to factorisable distributions. Moreover, the entropy of a
probability distribution on a set of discrete random variables is always bounded by the
entropy of its factorisable counterpart. This is due to the submodularity of entropy on
the set of discrete random variables. Submodular functions are also generalisation of
matroid rank function; therefore, linear functions may be optimised on the associated
polytopes exactly using a greedy algorithm.

In this manuscript, we exploit these links between the structures of graphical mod-
els and submodular functions: we use greedy algorithms to optimise linear functions
on the polytopes related to graphic and hypergraphic matroids for learning the struc-
tures of graphical models, while we use inference algorithms on graphs to optimise
submodular functions.

The irst main contribution of the thesis aims at approximating a probabilistic
distribution with a factorisable tractable distribution under the maximum likelihood
framework. Since the tractability of exact inference is exponential in the treewidth
of the decomposable graph, our goal is to learn bounded treewidth decomposable
graphs, which is known to be NP-hard. We pose this as a combinatorial optimisation
problem and provide convex relaxations based on graphic and hypergraphic matroids.
This leads to an approximate solution with good empirical performance.

In the second main contribution, we use the fact that the entropy of a probability
distribution is always bounded by the entropy of its factorisable counterpart mainly
as a consequence of submodularity. This property of entropy is generalised to all
submodular functions and bounds based on graphical models are proposed. We refer
to them as graph-based bounds. An algorithm is developped to maximise submodular
functions, which is NP-hard, by maximising the graph-based bound using variational
inference algorithms on graphs.

The third main contribution of the thesis deals with minimising submodular func-
tions that can be written as sum of “simple” submodular functions. It is broadly
subdivided into two parts. The irst part deals with reviewing algorithms that min-
imise sum of “simple” submodular functions using minimisation oracles of the “simple”
functions. Here, we speciically deal with cut functions in large scale problems and
the minimisation oracles of the “simple” functions are graph inference algorithms.
The second part proposes algorithms to minimise sum of general submodular func-
tions using the structure of the polytopes related to individual “simple” submodular
functions.

vii

Keywords : Probabilistic graphical models, maximum likelihood trees, discrete
optimisation, submodular optimisation, total variation, convex optimisation.

viii

Résumé

Un modèle graphique probabiliste représente les relations d’indépendances condi-
tionnelles parmi des variables aléatoires, qui sont liées à la factorisation de la densité.
De plus, l’entropie d’une distribution sur un ensemble de variables aléatoires discrètes
est toujours bornée par l’entropie de la distribution factorisée correspondante. Cette
propriété est due à la sous-modularité de l’entropie. Par ailleurs, les fonctions sous-
modulaires sont une généralisation des fonctions de rang des matroides ; ainsi, les
fonctions linéaires sur les polytopes associés peuvent être minimisées exactement par
un algorithme glouton.

Dans ce manuscrit, nous exploitons ces liens entre les structures des modèles
graphiques et les fonctions sous-modulaires. Nous utilisons des algorithmes gloutons
pour optimiser des fonctions linéaires sur des polytopes liés aux matroides graphiques
et hypergraphiques pour apprendre la structure de modèles graphiques, tandis que
nous utilisons des algorithmes d’inférence sur les graphes pour optimiser des fonctions
sous-modulaires.

La première contribution de cette thèse consiste à approcher par maximum de
vraisemblance une distribution de probabilité par une distribution factorisable et de
complexité algorithmique contrôlée. Comme cette complexité est exponentielle dans
la largeur arborescente du graphe, notre but est d’apprendre un graphe décomposable
avec une largeur arborescente bornée, ce qui est connu pour être NP-diicile. Nous
posons ce problème comme un problème d’optimisation combinatoire et nous pro-
posons une relaxation convexe basée sur les matroides graphiques et hypergraphiques.
Ceci donne lieu à une solution approchée avec une bonne performance pratique.

Pour la seconde contribution principale, nous utilisons le fait que l’entropie d’une
distribution est toujours bornée par l’entropie de sa distribution factorisée associée,
comme conséquence principale de la sous-modularité, permettant une généralisation
à toutes les fonctions sous-modulaires de bornes basées sur les concepts de mod-
èles graphiques. Un algorithme est développé pour maximiser les fonctions sous-
modulaires, un autre problème NP-diicile, en maximisant ces bornes en utilisant des
algorithmes d’inférence vibrationnels sur les graphes.

La troisième contribution principale de la thèse cherche à minimiser les fonctions
sous-modulaires qui peuvent s’écrire comme la somme de fonctions sous-modulaires
“simples”, et est divisée en deux parties : la première propose une rappel sur les
algorithmes permettant de minimiser de telles fonctions en utilisant des oracles de
minimisation précis pour les fonctions simples. Nous nous focalisons principalement
sur les fonctions de coupes dans les graphes où ces oracles correspondent à des al-

ix

gorithmes d’inférence dans les modèles graphiques. La deuxième partie propose des
algorithmes ces sommes de fonctions simples en utilisant la structure des polytopes
associés.

Mots-clés : Modèles graphiques probabilistes, arbres de maximum de vraisem-
blance, optimisation discrète, optimisation sous-modulaire, variation totale, optimi-
sation convexe.

x

Acknowledgements

I am eternally thankful to my thesis advisor Prof. Francis Bach for giving me an
opportunity to work in the area of my interest. His passion for research and problem
solving has always inspired me. His knowledge and vast experience has always helped
me overcome the stumbling blocks during various phases of my doctoral studies. A
simple discussion with him ensured that I am not stuck or demotivated, which I
believe is very important for any doctoral student. Overall, Francis has been an
excellent advisor and mentor. I could not have asked for a better person as a guide
for my PhD. On a personal front too, he has been very accommodating on several
occasions, very helpful when required and a great support. Overall Francis has been a
great friend and an excellent advisor. This thesis was impossible without his support.

I would like to thank Andreas Krause and Nikos Komodakis for accepting to
review the manuscript. I am grateful to Andreas Krause, Nikos Komodakis, Antonin
Chambolle, Josef Sivic and Guillaume Obozinski for accepting to be part of the jury
committee. It is a great honor to have such esteemed researchers in the jury.

I would like to extend my gratitude towards my collaborators Stefanie Jegelka,
Alvaro Barbero and Suvrit Sra, working with whom I gained a lot of experience both
theoretical and pratical.

I would like to thank Manoj Kumar Rajagopal for being my irst guide to Paris.
I would like to thank Gonzague Pichelin and Virginie Guarnerio for being the friends
you are and creating a home away from home during my irst years of stay in Paris.
I would also like to thank Maison de l’Inde for providing me accommodation in Paris
during my doctoral studies and ensuring a vibrant environment. I would like to thank
everyone I came across in Maison de l’Inde for being a part of my life in Paris, impor-
tantly Emmanuel Stephen Victor. I am very grateful to Mr. Chris for organizing the
hikes, which helped me explore the nature around Paris. Ofcourse, these explorations
would not be the same without the fantastic and wonderful company of Anthony
Gauci, Anja Fricke and Dominique Haleva. Nino Shervashidze and Anja Fricke have
been a great company in exploring various cuisines in Paris as food exploration has
been a major part of my PhD life.

A special thanks to Josef Sivic and Ivan Laptev who were kind enough to re-
cruit me for the research engineer roles in their lab. I am very grateful to them for
this. I should mention that the company of Marina Vinyes, Christophe Dupuy, Igor
Colin, Maxime Oquab and Nicolas Flammarion during my masters at ENS Cachan
a memorable experience. I would like to specially mention Piotr Bojanowski, Au-
gustin Lefevre, Aymeric Dieuleveut and Gauthier Gidel for being amazing people

xi

who I shared my oice with during my PhD. Thanks for putting up with all my
weirdness. Thanks to Remi Lajugie, Guillaume Seguin, Amande Ine, Damien Gar-
reau, Christophe Dupuy and Francis Bach for always being around when I had trou-
bles with the french language on numerous occasions. I would like to thank Simon
Lacoste-Julien for presenting my ICML-2013 paper, which I could not attend. I would
like to thank other members of WILLOW and SIERRA that I came across during
my PhD like Vincent Roulet, Damien Scieur, Anastasia Podosinnikova, Jean-Baptiste
Alayrac, Loïc Landrieu, Minsu Cho, Vadim Kantarov, Julia Peyre, Guilhem Cheron,
Gul Varol, Anton Osokin, Mathieu Aubry, Armand Joulin, Vincent Delaitre, Edouard
Grave, Olivier Duchenne, Mark Schmidt and others. I have thoroughly enjoyed all
the discussions both technical and non-technical ones. I apologise to those who I have
not named. I hope you understand that it is not on purpose but merely due to my
bad memory.

I would like to thank Kiran Varanasi and Visesh Chari for the intellectually simu-
lating philosophical discussions. I would like to thank OSK Chaitanya and Madhuri
Vaidya, who were always ready with valuable advises when I was lost and confused.
Thank you Sudhir for introducing me to “good” cofee. It has been an invaluable
partner in this journey.

My parents: Rama Krishna and Krishna Veni have been amazing pillars of support
all my life and they certainly played an important part in this achievement too. My
brother Venu has always been one of the understanding and accommodating person
without which this journey was not possible. My wife Sravani has played the most
important role in this journey. Infact, she has walked every step with me since we got
married 2 years ago through all the ups and downs. She has sacriiced several things
to ensure, I reach this milestone. I would like to thank my family for the unending
support in spite of who I am. I dedicated this thesis to them.

xii

Contents

Contributions and thesis outline 1

1 Introduction 3

1.1 Probabilistic graphical models . 3
1.2 Submodular set functions . 9
1.3 Matroids . 16
1.4 Convex optimisation . 17

2 Learning Bounded Treewidth Decomposable Graphs 23

2.1 Goal . 23
2.2 Maximum likelihood decomposable graphs 25
2.3 Combinatorial optimisation problem 26
2.4 Convex relaxation . 28
2.5 Solving the dual problem . 31
2.6 Experiments and results . 35
2.7 Conclusion . 39

3 Maximising Submodular Functions using Probabilistic Graphical Mod-
els 41

3.1 Goal . 41
3.2 Directed graphical models . 43
3.3 Decomposable graphs . 47
3.4 Variational submodular function maximization 49
3.5 Extensions . 53
3.6 Experiments . 53
3.7 Conclusion . 54

4 Convex Relaxations for Parallel Energy Minimisation 55

4.1 Goal . 55
4.2 Decomposition of graphs . 57
4.3 Optimisation for decomposable problems 60
4.4 Implementation details . 62
4.5 Experiments . 63
4.6 Conclusion . 67

xiii

5 Active-Set Methods for Submodular Minimisation Problems 69
5.1 Goal . 69
5.2 Ordered Partitions and Isotonic Regression 71
5.3 Decomposable Problems . 78
5.4 Experiments . 89
5.5 Conclusion . 92

Appendix 93
5.A Algorithms for coalescing partitions 93
5.B Optimality of algorithm for decomposable problems 93
5.C Decoupled problems. 95
5.D Choice of � . 96

6 Conclusion and Future Work 97
6.1 Summary of the thesis . 97
6.2 Perspectives . 98

xiv

Contributions and thesis outline

Chapter 1: This chapter introduces probabilistic graphical models, submodular
functions, matroids and convex optimisation, which are the main topics related to
the manuscript. We recap the basics and some classical results, which we use as part
of our work.

Chapter 2: This chapter considers the problem of learning undirected graphs with
tractable inference under the maximum likelihood framework. This is equivalent to
estimating a bounded treewidth decomposable graph that has a probabilistic distri-
bution with least Kullback-Leibler divergence from the empirical distribution, which
is known to be NP-hard. We pose this as a combinatorial optimisation problem
and propose convex relaxations based on optimising linear functions on graphic and
hypergraphic matroids that lead to an approximate solution. We show that our al-
gorithm recovers the original graph structure for some graphs that have chain or star
structured junction trees. We also compare the performance of our algorithm with
state-of-art methods on standard datasets.

Chapter 3: This chapter considers the problem of maximising submodular func-
tions. Mutual information, cover functions, etc., are interesting submodular functions,
which model diversity and exhibit diminishing returns property. Although NP-hard,
these class of problems admit constant factor approximation algorithms. In this work,
directed acyclic graph (DAG) based bounds to submodular functions are proposed,
which are further extended to decomposable graphs. It is shown that submodu-
lar functions can be maximised by maximising the bounds based on decomposable
graphs using variational inference on underlying graph polytope. We compare the
performance of our algorithm to solve max-cut on two toy graphs of diferent topolo-
gies with some standard greedy algorithms.

Chapter 4: This chapter considers the problem of minimising submodular func-
tions, which can be decomposed into “simple” submodular functions. It speciically
deals with minimising submodular energies on grid structures, often used in computer
vision applications. These are cut functions, which are a subclass of submodular func-
tions. The Lovász extension of a cut function is its total variation. The total variation
oracles of the “simple” functions, i.e., lines in our case, are used to minimise the cut
on grids. Proximal splitting methods like Douglas-Rachford, alternating projection,

1

block coordinate descent and FISTA are used to solve this problem. The perfor-
mance of these algorithms is compared with the state-of-art combinatorial algorithms
on some standard maxlow datasets with 2D and 3D grid structures. Our insights
from this work has motivated us to work in the direction of the next chapter.

Chapter 5: This chapter extends the work of previous chapter to general submod-
ular functions, which can be written as sum of “simple” submodular functions with
no assumption on the type of submodular function. The goal is to be able to use
submodular function minimisation (SFM) oracles of “simple” submodular functions
to the minimise their sums. In general, SFM oracles are much less complex when
compared to the total variation oracles that are used in the previous chapter. Ini-
tially, an active-set method is proposed to solve the total variation problem from
the SFM oracles with warmstart, which would enable us to solve the total variation
oracles of the “simple” functions quickly and enhance the performance of methods
from the previous chapter to minimise the sum of the submodular functions. This is
followed by use of local search techniques on active-sets only using SFM oracles and
minimising the sum of submodular functions. Eventually, the algorithm is compared
favorably with existing algorithms on standard datasets.

Chapter 6: This chapter concludes the thesis by highlighting our contributions and
suggesting possible future research directions.

We list the publications related to this manuscript:
(a) Chapter 2 is based on the article: Convex Relaxations for Learning Bounded

Treewidth Decomposable Graphs, K. S. Sesh Kumar, F. Bach, In proceedings
of International Conference on Machine Learning, 2013 [Sesh Kumar and Bach,
2013b].

(b) Chapter 3 is based on the article: Maximizing Submodular Functions using
Probabilistic Graphical Models, K. S. Sesh Kumar, F. Bach, In Workshop on
Discrete and Combinatorial Problems in Machine Learning (DISCML), NIPS
2013: Theory and applications [Sesh Kumar and Bach, 2013a].

(c) Chapter 4 is based on our preprint: Convex Optimization for Parallel En-
ergy Minimization, K. S. Sesh Kumar, A. Barbero, S. Jegelka, S. Sra and F.
Bach [Sesh Kumar et al., 2015].

(d) Chapter 5 is based on our preprint: Active-set Methods for Submodular Op-
timization, K. S. Sesh Kumar, F. Bach [Sesh Kumar and Bach, 2015] and a
journal: Active-set Methods for Submodular Minimisation Problems, K. S.
Sesh Kumar, F. Bach under submission to International Journal of Computer
Vision.

2

Chapter 1

Introduction

In this chapter, we introduce the four main topics related to the manuscript: prob-
abilistic graphical models, submodular functions, matroids and convex optimisation.
We also state some of the basic results from literature that we use. Probabilistic
graphical models is more relevant to the Chapter 2 and Chapter 3 of the manuscript.
Submodular functions are related to Chapter 3, Chapter 4 and Chapter 5 as they deal
with submodular optimisation. We use concepts of greedy algorithms on polytopes
related to matroids in Chapter 2. And convex optimisation has its presence in all the
chapters of the manuscript.

1.1 Probabilistic graphical models

Probabilistic distributions on a set of discrete random variables represent a con-
idence measure with which the random variables take a particular value. The cor-
responding probability mass function is often a table with all possible outcomes and
their conidences respectively. Such representations of general probabilistic distri-
butions without any assumptions of interdependence between random variables is
exponentially large in the number of variables. This leads to intractable inference
tasks with complexity exponential in the number of variables.

This complexity may be considerably reduced by using knowledge such as con-
ditional independence between random variables, which factorises the probability
distribution into conditional probability distributions or potential functions. These
are also represented by individual tables but are compact when compared to the huge
table of general probability distributions.

Graphical models provide a versatile set of tools to encode the local interactions
between interdependent random variables leading to well-deined probability distri-
butions [Murphy, 2012, Studeny, 2010, Koller and Friedman, 2009]. There are two
basic classes of graphical models. They are:

1. Directed acyclic graphs, also known as Bayesian networks [Pearl, 2000],

2. Undirected graphs, also known as Markov random ields [Lauritzen, 1996].

Directed acyclic graphs factorise probability distributions into conditional prob-
abilities while undirected graphs factorise them into product of potential functions.

3

In general, each of these graphical models encode diferent types of conditional inde-
pendences among random variables [Studeny, 2010]. However, there are a subclass of
conditional independences, which can be encoded by both directed acyclic graphs and
undirected graphical models. Such undirected graphical models have a characteristic
called decomposability and are referred to as decomposable graphs. 1 See Figure 1-1.

Note that the factorisation of probability distributions based on conditional inde-
pendences also extends to continuous random variables. However, the representation
in this case is in the form of parameters that represent the corresponding probability
density function. As we mostly deal with discrete random variables in the manuscript,
we use them to explain the concepts.

Directed Acyclic Graphs Undirected Graphs

Graphical Models

Figure 1-1 – Conditional independences of which some can be represented by directed
acyclic graphs or undirected graphs. Decomposable graphs are undirected graphs,
which can represent the conditional independences that can also be represented by
directed acyclic graphs.

1.1.1 Graphical models and factorisation

In this section, we review the concepts of factorisability of probability distributions
for a given graphical model. We also introduce notation, which we consistently use
through out the manuscript.

Notations. We assume that a graphical model � is deined on a set of vertices
� = {1, 2, . . . , �}. Note that � is used to represent both directed acyclic graphs and
undirected graphs. The nature of the graph is either mentioned explicitly or can be

1. Also called chordal or triangulated graphs.

4

understood from context. We consider � random variables �1, . . . , �� (referred to as
�), associated with each vertex indexed by � .

We represent any general joint probability distribution on � as �(�), where � is
an instance in the domain of �, denoted by � . Let ��(�) denote the projection of
�(�) onto a class of probability distributions that satisfy the conditional independence
properties encoded by the graph �. We refer to �� also as graph-represented proba-
bility distribution or factorisable distribution in this manuscript. As commonly done
in graphical models literature, we overload the notation. We represent the marginal
distribution of the set of random variables �, which is a subset of � by �(��) instead
of ��(��) for brevity. We also represent the conditional distribution of �1|�2, also
read as “�1 given �2” by �(�1|�2). The Shannon entropy of a probability distribution
�(�) on a set of random variables associated � is called �(�) and is deined as [Cover
and Thomas, 2006]:

�(�) = −
︁

�C∈�C

�(��) log �(��).

Similarly, we use ��(�) to represent the Shannon entropy calculated based on
the graph-represented probability distribution ��(�).

Directed acyclic graphs

Given a directed acyclic graph � deined on the set of vertices � , let ��(�) denote
the parents of the node � in the graph �. The probability distribution �� based on
the directed acyclic graph � thus factorises as

��(�)
def
=

�︁

�=1

�(��|��i(�)) (1.1)

Therefore, the entropy based on the factorisable probability distribution ��(�) also
decomposes as follows

��(�) = −E�G(�) log ��(�)

= −E�G(�) log
�︁

�=1

�(��|��i(�)) = −E�G(�) log
�︁

�=1

�(��, ��i(�))

�(��i(�))

= −
�︁

�=1

︀
E�G(�) log �(��, ��i(�))− E�G(�) log �(��i(�))

︀

=
︀�

�=1

︀
�(� ∪ ��(�))−�(��(�))

︀
. (1.2)

Given a directed acyclic graph in Figure 1-2-(a), the probability distribution based
on the graph � factorises as

��(�) = �(�1)�(�2|�1)�(�3|�1)�(�4|�2, �3).

5

1

2 3

4

1

2 3

4

(a) (b)

Figure 1-2 – (a) Directed acyclic graph and (b) Undirected graph on a a set of random
variables associated to � = {1, 2, 3, 4}.

Undirected graphs

Let � now represent an undirected graph deined on the set of vertices � and
let �(�) denote the maximal cliques of �. A clique is a subset of vertices that are
completely connected in � and maximal cliques are cliques that lose their clique
property if any adjacent vertex is added to the clique. The probability distribution
�� based on � now factorises as

��(�)
def
=

1

�

︁

�∈�(�)

��C
(��), (1.3)

where ��C
(��) is a potential function on the possible realisations �� of the random

variables �� and � is the normalization factor given by � =
︀

�

︀
�∈�(�) ��C

(��),
also known as the partition function. The potential functions are assumed to be non-
negative, real-valued functions, but are otherwise arbitrary and need not necessarily
be probability distributions. Given an undirected graph in Figure 1-2-(b), the joint
probability distribution factorises as

��(�) =
1

�
��1,�2(�1, �2)��2,�3(�2, �3)��3,�4(�3, �4)��1,�4(�1, �4).

Decomposable graphs

An undirected graph � deined on the set � is decomposable when the set � can
be partitioned into non-empty subsets (�,�, �) such that

1. � is the minimal set that separates the sets � and �, i.e., all paths from each
node of the set � to each node of set � passes through at least one of the
nodes that belong to �,

2. � is complete, i.e., all nodes of � are connected to each other, and

3. this decomposition induces subgraphs on the sets � ∪ � and � ∪ � that are
decomposable.

6

For instance, any tree is a decomposable graph where any node of the graph is a
minimal separator. When we remove a node from the graph, we partition the tree
into two disjoint subgraphs, which are trees. Infact, all decomposable graphs have
tree like characteristics that we will see now.

Every decomposable graph � can be represented by a junction tree [Wainwright
and Jordan, 2008], i.e., a clique tree whose vertices are the maximal cliques �(�) and
the unique path between any two maximal cliques � and � of the clique tree always
contains � ∩�. This is called the running intersection property.

Let � (�) denote the edges of the junction tree over the set of cliques �(�). The
probability distribution �� of the random variables based on the decomposable graph
� factorises [Lauritzen, 1996] as

��(�)
def
=

︀
�∈�(�) �(��)︀

(�,�)∈� (�) �(��∩�)
. (1.4)

Similar to directed acyclic graphs, the entropy of the probability distribution ��(�)
decomposes as follows:

��(�) = −E�G(�) log ��(�)

= −E�G(�) log

︀
�∈�(�) �(��)︀

(�,�)∈� (�) �(��∩�)

= −
︁

�∈�(�)

E�G(�) log �(��)−
︁

(�,�)∈� (�)

E�G(�) log �(��∩�)

=
︀

�∈�(�)�(�)−︀
(�,�)∈� (�)�(� ∩�). (1.5)

The treewidth of � is the maximal size of the cliques in �, minus one. For more
details, see [Bishop et al., 2006, Wainwright and Jordan, 2008, Koller and Friedman,
2009, Lauritzen, 1996].

Let us consider a directed acyclic graph which encodes the same conditional in-
dependences as the decomposable graph with treewidth �. Therefore, the maximum
neighbors for any node in the decomposable graph is �, which implies that the number
of parents in the directed acyclic graph for any node � ∈ � is at most �. Thus, the
conditional probability distributions �(��|��i(�)) is a table of length that is atmost
exponential in � as the entries of the table are all possible values (��, ��i(�)) can take,
which is given by their domain (��,��i(�)). Depending on the inference task we devise
an elimination of nodes from the graph, which can be done using perfect elimination
ordering by removing “nodes without children” for a directed acyclic graph. This
is equivalent to performing a summation (“sum-product message passing” algorithm
for inference task of marginalisation) or inding a maximum (“max-product message
passing” algorithm for inference task of estimating the mode) among the rows of the
tables. This process only reduces the number of the entries in the table. Therefore,
the maximum size of the table we deal with is at most exponential in �, which is
the treewidth of the decomposable graph or equivalently the number of parents in a
directed acylic graph. Thus, performing inference on a decomposable graph is always

7

exponential in treewidth of the graph.

2
5

4

7 9

86 1 3

2
5

4

7 9

86 1 3

1, 2, 3

1, 2, 4

1, 4, 6 2, 4, 7

2, 3, 5

1, 2 2, 3

2, 41, 4

3, 5, 82, 5, 9

2, 5 3, 5

(a) (b) (c)

Figure 1-3 – (a) A decomposable graph on the set of vertices � = {1, 2, 3, 4, 5, 6, 7, 8, 9}
having treewidth 2.(b) A junction tree embedded on the decomposable graph repre-
senting the maximal cliques by blue dots and the separator sets by blue lines. (c)
The corresponding junction tree representation of the decomposable graph with ovals
representing the maximal cliques and the rectangles representing the corresponding
separator set.

Given a decomposable graph � in Figure 1-3, the treewidth of the graph is 2. The
corresponding joint distribution factorises as

��(�) =
�(�1, �2, �3)�(�1, �2, �4)�(�2, �3, �5)�(�1, �4, �6)�(�2, �4, �7)�(�2, �4, �9)�(�3, �5, �8)

�(�1, �2)�(�2, �3)�(�1, �4)�(�2, �4)�(�2, �5)�(�3, �5)
,

Note that a separator set may occur more than once. For instance, if we consider
a decomposable graph with maximal cliques: {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}} then the
corresponding probability distribution factorises as

��(�) =
�(�1, �2, �3)�(�1, �2, �4)�(�1, �2, �5)

�(�1, �2)2
.

Remarks.

Any general joint probability distribution can be represented by a complete di-
rected acyclic graph or a completely connected undirected graph, i.e., when � is
a complete graph then ��(�) = �(�). Note that both directed acyclic graphs and
undirected graphs represent diferent classes of conditional independences among the
random variables. See [Koller and Friedman, 2009, Studeny, 2010] for in depth study
of the diferences in the conditional independences for both these models. For in-
stance, there is no undirected graphical model that can represent the conditional
independences encoded by the directed acyclic graph in Figure 1-2-(a). Similarly,
there is no directed acyclic graph that can represent the conditional independences
encoded by the undirected graph in Figure 1-2-(b). The Shannon entropy of any joint
probability distribution is a submodular function. In Chapter 3, we use the property
that entropy of a factorisable distribution represented by a graph over a set of random
variables always bounds the entropy of any general distribution and generalise it to
general submodular functions.

8

1.2 Submodular set functions

Submodular functions have been an important class of set functions in various ar-
eas of research such as economics, operations research and game theory. Most recently
it has found applications in computer vision [Kolmogorov, 2006, Komodakis et al.,
2011] and machine learning [Krause and Guestrin, 2005, Lin and Bilmes, 2011] as
well. They are a class of discrete functions that can be minimised exactly in polyno-
mial time. Maximising general submodular functions is NP-hard but admit constant
factor approximation algorithms. In this section, we introduce the notations and ba-
sics related to submodular functions. We review the main properties of submodular
functions. For a more complete treatment see [Bach, 2013, Fujishige, 2005].

Notations. Let us consider a set function � deined on a any subset of the groundset
� with � elements , i.e., � = {1, . . . , �} and � : 2� → R. Let us consider a unit
hypercube in � dimensional space, {0, 1}�. Each vertex of the hypercube is in bijection
with a subset of � and represents its indicator vector as shown in Figure 1-4-(a).
Therefore, the domain of � can also be represented by the vertices of the hypercube,
i.e., � : {0, 1}� → R.

(0, 1, 1)~{2, 3}

(0, 1, 0)~{2}

(1, 0, 1)~{1, 3} (1, 1, 1)~{1, 2, 3}

(1, 1, 0)~{1, 2}

(0, 0, 1)~{3}

(0, 0, 0)~{ }

(1, 0, 0)~{1}

w3

w
1

w
2

w >w >w
3 2 1

w >w >w
2 1 3

w >w >w
2 3 1

w >w >w
1 2 3

w >w >w
1 3 2

w >w >w
1 23

(a) (b)

Figure 1-4 – (a) The bijection between vertices of the hypercube and subsets of
� = {1, 2, 3}. (b) Division of the hypercube into simplices based on the ordering of
the components of � ∈ {0, 1}3. Figures are by courtesy of Bach [2013].

Lovász extension of a set function. Let � be the Lovász extension of � , which
is deined on the complete hypercube, [0, 1]�. The hypercube can be divided into �!
simplices based on the order of the components of any vector � in the hypercube,
i.e, � ∈ [0, 1]� as shown in Figure 1-4-(b). Note that each vertex of each simplex
coincides with a vertex of the hypercube, which belongs to the domain of � . The
value of the Lovász extension at �, i.e. �(�) can be estimated by interpolating the
values of the set function � at the vertices of selected simplex as follows:

Deinition 1. Given any set function � and � ∈ [0, 1]� such that ��1 > · · · > ��n,

9

we deine its Lovász extension � : [0, 1]� → R as

�(�) =
�−1︁

�=1

(��k − ��k+1
)� ({�1, . . . , ��}) + ��n� ({�1, . . . , ��})

Note that (�1, . . . , ��) gives the order of the components of � that determines the
simplex. Extreme points of the simplex are indicator vectors of {�1}, {�1, �2}, . . .,
{�1, . . . , ��} in Figure 1-4-(b). At the vertices of the hypercube, both the set function
and its Lovász extension have the same values, i.e. �(1�) = � (1�), ∀� ⊆ � , where
1� represents the indicator vector of the set �. The Lovász extensions of any set
functions is piecewise aine and positively homogeneous. Therefore, this can also be
extended from the hypercube [0, 1]� to a real subspace R�. See [Bach, 2013, Murota,
2003].

Submodular function. We now deine submodular functions.

Deinition 2. A set function � is submodular if ∀�,� ⊆ �

� (�) + � (�) ≥ � (� ∪ �) + � (� ∩ �).

An equivalent deinition, which uses the diminishing returns property is given by:

Deinition 3. A set function � is submodular if ∀� ⊆ � ⊆ � and � /∈ �

� (� ∪ {�})− � (�) ≥ � (� ∪ {�})− � (�).

Both theses deinitions are equivalent by choosing � = � ∪ {�} and � = � and
rearranging the terms. In this manuscript, we consider only normalized submodular
functions, i.e., � (∅) = 0. The subclass of submodular functions that satisfy equality
in the deinitions are called modular functions. They are of the form � ∈ R

� and
�(�) = �⊤1�. Note that even −� is a modular function and hence submodular.

Submodular functions are intimately linked to convexity through their Lovász
extensions. This is established by the following propositions due to Lovász [1982].

Proposition 1. A set function, � is submodular if and only if its Lovász extension,
� is convex.

Proposition 2. Let � be a submodular function and � its Lovász extension; then

min
�⊆�

� (�) = min
�∈{0,1}n

�(�) = min
�∈[0,1]n

�(�). (1.6)

Convex duality. The Lovász extension �(�) is convex and absolutely homoge-
neous, that is, for any � ∈ R

� and � ∈ R, �(��) = |�|�(�). For all such func-
tions, there exists a centrally symmetric convex body � ⊂ R

� such that for all
� ∈ R

� [Rockafellar, 1997, §13],

�(�) = max
�∈�

�⊤�.

10

Note that when �(�) happens to be equal to zero only for � = 0, then � is a norm
and the set � is simply the unit ball of the dual norm.

Since � is piecewise aine, the set � is a polytope (i.e., the convex hull of initely
many points). The set� may be described precisely for general submodular functions
and is the base polytope of the submodular function [Fujishige, 2005, Bach, 2013].

Submodular and base polyhedra. Let us now introduce polyhedra associated
to submodular functions that further help us understand the links between submod-
ularity and convexity.

2s

s 1

B(F)

P(F)

3s

s2

s1

P(F)

B(F)

(a) (b)

Figure 1-5 – Submodular polyhedron, � (�) and Base polyhedron, �(�) for (a) � =
{1, 2} and (b) � = {1, 2, 3}. Figures are by courtesy of Bach [2013].

Deinition 4. Given a submodular function � , the corresponding submodular poly-
hedron, � (�) and the base polyhedron, �(�) are deined as

� (�) =
︀
� ∈ R

�, ∀� ⊆ �, �(�) 6 � (�)
︀
,

�(�) =
︀
� ∈ R

�, ∀� ⊂ �, �(�) 6 � (�), �(�) = � (�)
︀
.

Maximising linear functions on these polyhedra may be done using a greedy al-
gorithm. We formally state this from Bach [2013] but the result is due to Edmonds
[2003].

Proposition 3. Let � be a normalized submodular function, i.e., � (∅) = 0. Let
� ∈ R

�, with components ordered in decreasing order, i.e. ��1 > · · · > ��n and deine
��k = � ({�1, . . . , ��})− � ({�1, . . . , ��−1}). Then � ∈ �(�) and

1. if � ∈ R
�
+, s is a maximizer of max�∈� (�)�

⊤� and max�∈� (�)�
⊤� = �(�).

2. s is a maximizer of max�∈�(�)�
⊤� and max�∈�(�)�

⊤� = �(�).

11

It can be seen that the Lovász extension �(�), is the support function of the base
polytope, �(�). We use these results extensively in this manuscript.

�(�) = max
�∈�(�)

�⊤� (1.7)

Operations that preserve submodularity. The set of submodular functions is
a cone. Therefore, submodularity is preserved under addition and multiplication
with positive scalars. There are other operations such as contraction, restriction and
extension, which preserve submodularity. For more details please refer to [Bach,
2013, Fujishige, 2005] and references therein.

1.2.1 Maximising submodular functions

Let us consider a normalized submodular function, � : 2� → R with � (∅) = 0.
We consider the problem of maximising submodular functions of the form

max
�⊂�

� (�), (1.8)

which we consider in Chapter 3 and only use deinition of submodular set func-
tions.

1.2.2 Submodular minimisation

Any general submodular function can be decomposed into a normalised submod-
ular functions, i.e., � : 2� → R with � (∅) = 0 and a modular function, � ∈ R

�.
Therefore, any general submodular function can be denoted by � − � : 2� → R.
In the context of submodular minimisation, as we shall see, we deal with projections
onto a base polytope. Note that �(� −�) has the exact same structure as �(�), geo-
metrically, but translated by �. For instance, projecting 0 onto �(�−�) is equivalent
to projecting � onto �(�). Therefore, using � − � to represent general submodular
functions does not deal with operations such as translations of the base polytopes
and gives us better understanding of the algorithms.

In Chapter 4 and Chapter 5, we consider solving a general submodular minimisa-
tion of the form:

min
�⊂�

� (�)− �(�). (1.9)

Using the Lovász extension the corresponding continuous optimisation problem is

min
�∈[0,1]n

�(�)− �⊤�, (1.10)

and Eq. (1.9), Eq. (1.10) have the same optimal solution. The dual optimisation
problem can be derived as

min
�⊆�

� (�)− �(�) = min
�∈{0,1}n

�(�)− �⊤�

12

= min
�∈[0,1]n

�(�)− �⊤�

= min
�∈[0,1]n

max
�∈�(�)

�⊤� − �⊤� using Eq. (1.7)

= max
�∈�(�)

min
�∈[0,1]n

�⊤� − �⊤�

= max
�∈�(�)

�︁

�=1

min{�� − ��, 0}. (1.11)

This dual problem allows to obtain certiicates of optimality for the primal-dual pairs
� ∈ [0, 1]� and � ∈ �(�) using the quantity,

gap(�, �) := �(�)− �⊤� −
�

min
�=1
{�� − ��, 0},

which is always non-negative. It is equal to zero only at optimal and the correspond-
ing (�, �) form the optimal primal-dual pairs. Note that the convex optimisation
problems in Eq. (1.10) and Eq. (1.11) are convex but non-smooth.

Smooth minimisation problem. Here, we consider the optimisation problem in
Eq. (1.10) and get rid of the box constraints, i.e., [0, 1]� and add a quadratic penalty
to the cost function, i.e.,

min
�∈Rn

�(�)− �⊤� +
1

2
‖�‖22. (1.12)

As a consequence of the representation of � as a support function leads to the
following primal/dual pair [Bach, 2013, Sec. 8]:

min
�∈Rn

�(�)− �⊤� + 1
2
‖�‖22

= min
�∈Rn

max
�∈�(�)

�⊤� − �⊤� + 1
2
‖�‖22 using Eq. (1.7),

= max
�∈�(�)

min
�∈Rn

�⊤� − �⊤� + 1
2
‖�‖22,

= max
�∈�(�)

−1
2
‖�− �‖22, (1.13)

with � = � − � at optimal. The primal in Eq. (1.12) is strongly convex and hence
the dual in Eq. (1.13) is smooth.

The non-smooth optimisation problem in Eq. (1.10) and the smooth optimisation
problem in Eq. (1.12) are tightly connected. Indeed, given the unique solution � of
the Eq. (1.12), then we obtain a solution of min�⊆� � (�)−�(�) by thresholding � at
0, i.e., by taking � = {� ∈ �, �� > 0} [Fujishige, 1980, Chambolle and Darbon, 2009].
Solving the dual problem in Eq. (1.13) is of clear interest in approximate Bayesian
inference in log-supermodular models [Djolonga and Krause, 2014, 2015].

Conversely, one may solve the smooth problem in Eq. (1.12) by assuming oracles
that solve the non-smooth problems of the form Eq. (1.10). The original divide-and-
conquer algorithm may involve �(�) oracle calls [Groenevelt, 1991]. The extended

13

algorithm of [Jegelka et al., 2013] can reach a precision � in �(log 1
�
) but can only

get the exact solution after �(�) oracle calls. We provide another extended iterative
algorithm to optimise the smooth problem assuming oracles of non-smooth problems
in Chapter 5.

In the next section, we consider a speciic class of submodular functions known as
cut functions. We show that all the above optimisation problems are related in the
context of cut functions to provide intuition. Note that the links between diferent
optimisation problems holds for all submodular functions.

1.2.3 Cut functions and total variation denoising.

In Chapter 4, we focus on a subclass of submodular minimisation problems also
referred to as energy minimization problems with pairwise potentials,

�(�) = −
︁�

�=1
���� +

︁�

�,�=1
���(��, ��), (1.14)

where the variables �� take values in a set of discrete labels. For simplicity, we
here focus on binary labels, �� ∈ {0, 1}. We assume the pairwise potentials to be
submodular, i.e., ���(0, 1)+���(1, 0) ≥ ���(0, 0)+���(1, 1). (One may extend to non-
submodular potentials via roof duality [Rother et al., 2007]). It is well known that
all such submodular energy functions may be written as graph cut functions with
nonnegative “edge weights” ���, up to a constant [Picard and Ratlif, 1975]:

�(�) = −
︁�

�=1
���� +

︁�

�,�=1
���|�� − ��|+ const. (1.15)

This function consists of two parts: (1) a sum of unary potentials −︀�
�=1 ���� =

−�⊤�; and (2) the sum of pairwise potentials, which is equivalent to a weighted graph
cut between the set of indices � in {1, . . . , �} for which �� = 1, and its complement.
For � ∈ R

�, this sum is the total variation function

�(�)
def
=

�︁

�,�=1

���|�� − ��|.

Note that this is a case of anisotropic weighted total variation. Since the weights ���
are non-negative, the function � is convex. We refer to the graph cut problem as the
discrete problem:

min
�∈{0,1}n

�(�)− �⊤�, (D)

which is precisely the submodular minimisation problem in Eq. (1.9).

We obtain a relaxation to the combinatorial problem in Eq. (D) by replacing
{0, 1}� by its convex hull [0, 1]�:

min
�∈[0,1]n

�(�)− �⊤�. (C)

14

We refer to Eq. (C) as the continuous problem. This relaxation is exact : since the
continuous convex problem in (C) is a minimization problem over a larger set than
the discrete problem, its minimal value has to be lower than (D). However, as a
consequence of properties of the total variation and its relation to submodular graph
cut functions (see, e.g., [Bach, 2013, Sec. 3.3] or [Hochbaum, 2001, Chambolle and
Darbon, 2009] for a proof dedicated to cut functions), the two optimal values are
equal and a solution to (D) may be obtained from a solution � ∈ [0, 1]� of (C) by
looking at all “level sets” of �, that is by rounding the values of � to zero or one by
thresholding at a given level in [0, 1] (there are at most � possible thresholds, which
can be obtained by irst sorting the components of �).

The corresponding dual optimisation problem is given by Eq. (1.11). It is given
by

max
�∈�

�︁

�=1

min{�� − ��, 0}.

While the cut problem is now reformulated as a convex optimization problem, it
is still hard to minimize because neither the primal nor the corresponding dual are
smooth, and thus iterative methods are typically slow (see detailed comparisons by
Jegelka et al. [2013]). We now reformulate the problem so that the dual problem
becomes smooth and potentially easier to optimize.

Equivalence to total-variation denoising

Following [Fujishige, 2005, Chambolle and Darbon, 2009, Bach, 2013, Nagano
et al., 2011, Jegelka et al., 2013], we consider the total variation denoising problem:

min
�∈Rn

�(�) +
1

2
‖�− �‖2. (TV)

By expanding 1
2
‖� − �‖2 into 1

2
‖�‖2 − �⊤� + 1

2
‖�‖2, we see that going from the

continuous problem (C) to (TV) means replacing the constraint � ∈ [0, 1]� by the
penalty 1

2
‖�‖2 = 1

2

︀�
�=1�

2
� . This has a number of important consequences:

1. It makes the optimization problem strongly convex and thus the dual problem
will be smooth.

2. A solution to (D) and hence (C) may be obtained by thresholding the unique
solution � of (TV) at zero, that is, by deining �̂� = 1 if �� > 0 and �̂� = 0
otherwise. This is usually not true for arbitrary convex functions � (even
absolutely homogeneous) and is a direct consequence of submodularity.

Importantly, we need not solve the TV problem (TV) exactly to obtain a solution
to (C), we only need to know which of the components are positive (resp. negative).

Let us recall the dual of the TV problem from Eq. (1.13)

max
�∈�
−1

2
‖�− �‖22.

The primal and dual solutions � and � have a simple correspondence � = �− �,

15

as can be seen from the dual derivation. We have now obtained a dual problem
which may be simply interpreted as the orthogonal projection of the vector � onto
the polytope �. The total variation relaxation (TV) can be solved by solving a series
of discrete energy minimization problems (D). However, if we have a (TV) solved by
solving the equivalent problem of projection onto �, then thresholding the solution
at 0 solves the discrete problem (D). Therefore, any fast subroutine for any of these
problems implies a fast subroutines for the other two.

While the reformulation is intuitive, orthogonal projections onto the polytope �
are not fast to compute in general. Many special cases, however, are fast, including
graphs that have fast cut subroutines (which may be combinatorial, e.g., max-low or
message passing). In Chapter 4, we solve this projection problem for cut functions
using several optimisation algorithms and compare their performance with state-of-
art discrete algorithms. In Chapter 5, we propose an iterative algorithm to solve the
projection problem for general submodular functions. Solving the discrete optimisa-
tion problem (D) by solving (TV) allows us to use tools from convex optimisation,
which naturally lead to algorithms that are easy to parallelise.

1.3 Matroids

In this section, we introduce matroids and related concepts that we use in Chap-
ter 2. They were introduced by Whitney [1935] to characterise an abstract concept
of independent sets of a ground set. We will deine this formally now.

Deinition 5. Let � be a inite set. If a family ℐ of subsets of � satisies:

1. ∅ ∈ ℐ,
2. “hereditary property” : �1 ⊆ �2 ∈ ℐ =⇒ �1 ∈ ℐ,
3. “exchange property” : �1, �2 ∈ ℐ, |�1| < |�2| =⇒ ∃� ∈ �2 ∖ �1 : �1 ∪ {�} ∈ ℐ,

then the pair (�, ℐ) is a matroid.

Each � ∈ ℐ is called an independent set of the matroid (�, ℐ) and ℐ is the family
of independent sets of the matroid (�, ℐ).

Graphic matroid. We use graphic matroid as a running example to explain the
concepts in this section. A graphic matroid is given by a pair (�, ℐ), where � is the
set of edges of a graph � = (�,�) and ℐ is the family of subsets of the edges in �
that do not form a loop. See Figure 1-6 for an example. It may be quickly veriied
that ℐ satisies all the conditions in Deinition 5.

Any independent set which is maximal in family of subsets ℐ with respect to
set inclusion, i.e., it is not included in any other independent set is called a base.
In the example of graphic matroid, all the spanning trees, i.e. the middle row in
Figure 1-6-(b) form the bases as they are not included in any other independent set.

The submodular polyhedron of a graphic matroid is convex hull of indicator func-
tions of the family of independent sets ℐ and its base polyhedron is the convex hull
of indicator function of all possible spanning trees. Using Proposition 3, optimising

16

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

(a) (b)

Figure 1-6 – Graphic Matroid is given by (a) the ground set is the set of edges � of
the graph �(�,�), i.e., � = {(1, 2), (2, 3), (1, 3)} and (b) the family of independent
sets ℐ, i.e., the subsets of the edges � that do not form a loop.

linear functions on these polyhedra may be done using a greedy algorithm [Edmonds,
2003]. For a graphic matroid, Kruskal [1956] proposed a non-polyhedral version of
the greedy algorithm, which we use in Section 2.4.

1.4 Convex optimisation

In this section, we introduce basics of convex optimisation that we use in this
manuscript.

Convex set. A subset � of R� is said to be convex if:

∀�, � ∈ �, ∀� ∈ [0, 1], (1− �)�+ �� ∈ �. (1.16)

Convex cone. A subset � of R� is said to be a convex cone if:

∀�, � ∈ �,�, � > 0, ��+ �� ∈ �.

Convex functions. Let us consider a function � deined on a convex set � ⊆ R
�,

i.e. the function is deined on elements of the convex set �. If we plot the function
in R

�+1 with (�, �(�)) for all � in the set � and (�,+∞) for all � that are not in �,
then we get a curve. All the space that lies above this curve, is called its epigraph.
Intuitively, the function � is convex if a line joining any two points on this curve
always lies over the curve. Formally, this can be written as

∀�, � ∈ �, ∀� ∈ [0, 1], �(��+ (1− �)�) ≤ ��(�) + (1− �)�(�).

17

The function is said to be strictly convex if

∀�, � ∈ �, ∀� ∈ [0, 1], �(��+ (1− �)�) < ��(�) + (1− �)�(�).

In other words, a function � is convex if and only if its epigraph is a convex set.
Note also that a function � is said to be concave if −� is convex. In the process of
plotting the function, it is important to note that we extended the function from a
convex set� to a real subspace R�. Therefore, we can assume � is deined everywhere
in R

�. This is called an extended function. We will assume a extended function of �
from now on to explain other concepts of convex functions.

Subgradients and gradients. Let � ∈ R
� be a vector. It is called the subgradient

to the convex function � at �, if

∀� ∈ R
�, �(�)− �(�) ≥ �⊤(� − �)

All the subgradients of � at � are denoted by ��(�). A convex function always admits
a non-empty subgradient set [Rockafellar, 1997].

If � is diferentiable in the R
�, then it is called a smooth function.. We denote

the gradient of � at � by ∇�(�), which is composed of partial derivatives ��(�)
��i

of �
at � along the �-th vector of the canonical basis. When � is diferentiable the partial
derivative and the gradient are identical.

Minimum of convex functions. One of the basic facts of convex functions is that
the local minimum is the global minimum [Rockafellar, 1997, Boyd and Vandenberghe,
2004]. And if the function � obtains at minimum at � then 0 ∈ ��(�).

Fenchel conjugate. For a function � , its Fenchel conjugate � * [Fenchel, 1949] is
given by:

� *(�) = sup
�∈Rn

�⊤�− �(�) (1.17)

We also refer to this as conjugate of � . The biconjugate, i.e., conjugate of the conju-
gate of a continuous convex function gives the original function, i.e., � **(�) = �(�).
Intuitively, the conjugate of a convex function encodes its epigraph, which is a convex
set using its supporting hyperplanes. Let us consider the following functions related
to a closed convex set �.

1. �(�) = max�∈� �⊤�, then � is called the support function of �.

2. �(�) =

︃
0 � ∈ �,
∞ otherwise,

then � is called the indicator function of �.

� and � are conjugate to each other, i.e., � * = � and �* = � . We use this in several
places through Chapter 4 and Chapter 5.

18

Convex optimisation problems. A problem is said to be a convex, if the goals
is to minimise a convex function � on a convex set � of the form

min
�∈�

�(�) (1.18)

If � is an aine function of the form �⊤�+� and � is a polytope, then the problem
in Eq. (1.18) is a linear program(LP). If � is a quadratic function then it is a quadratic
program(QP). Maximising a concave function is equivalent to minimising a convex
function and is also referred to as a convex optimisation problem.

Orthogonal projection onto a convex set. The operation of orthogonal pro-
jection of a point � ∈ R

� onto a convex set is denoted by Π� , which is deined
as

Π�(�) = argmin
�∈�

1

2
‖�− �‖22. (1.19)

However, the complexity of the orthogonal projection depends on the complexity of
the convex set.

1.4.1 Projected gradient method.

In this section we briely describe the projected gradient method to optimise prob-
lems of the form Eq. (1.18) with a stopping criteria of maximum number of iterations
� .

Algorithm 1 Generic projected gradient method to optimise min�∈� �(�)

Input: �1 ∈ �, stepsize:�(�)
for � = 1 to � do
��+1 = Π�(�� − �(�)∇�(��))

end for

When � is non-diferentiable, then we use subgradients instead of gradients. This
is called projected subgradient method, a variant of which we use in Section 2.5.

1.4.2 Best approximation problems.

In this manuscript, we come across a class of optimisation problems called best
approximation problems [Deutsch, 2001]. We briely introduce the problems in their
standard form. Given two polytopes �1 and �2, the best approximation problem is
deined as

min
�∈�1
�∈�2

1

2
‖�− �‖22. (1.20)

Note that the orthogonal projection in Eq. (1.19) is a variant of the best approx-
imation problems. In this manuscript, we encounter best approximation problems

19

K1

K2

x∗

y∗

K1

K2

x∗

K1

K2
x∗

y

(a) (b) (c)

Figure 1-7 – (a) Best approximation problem in Eq. (1.21) when �1 ∩�2 = ∅. (b)
Convex feasibility problem in Eq. (1.21). (c) Dykstra problem in Eq. (1.22).

where �1 an �2 are non-intersecting, i.e., �1 ∩�2 = ∅ in Chapter 4. See Figure 1-
7-(a).

However, when �1 and �2 are intersecting polytopes, then � = �. This problem
is referred to as the convex feasibility problem in literature [Bauschke and Borwein,
1996], which has the following canonical form,

Find � such that � ∈ �1 ∩�2, (1.21)

which is also shown in Figure 1-7-(b).
A variant of the convex feasibility problem is inding the nearest point to a point,

� ∈ R
� in the intersection of convex polytopes. This is given by,

min
�∈�1∩�2

1

2
‖�− �‖2. (1.22)

To be best of our knowledge, there is no speciic name for Eq. (1.22) in literature.
Therefore, we refer to this as the Dykstra problem in this manuscript to distinguish it
from the other problems in Eq. (1.21) and Eq. (1.20). This is because these class of
problems are often solved using Dykstra’s alternating projection algorithms [Bauschke
and Borwein, 1994]. See Figure 1-7-(c).

We now briely describe the methods used to solve Eq. (1.20) in both cases of
intersecting and non-intersecting convex polytopes.

Alternating projections (AP). The alternating projection algorithm [Bauschke
and Borwein, 1996] was proposed to solve the convex feasibility problem, i.e., to
obtain a feasible point in the intersection of the two polytopes. It is also used to
solve the best approximation problem in the case of non-intersecting polytopes. Let
�0 be an arbitrary starting point. The update rule for �� for each iteration � using the
algorithm is given by

�� = Π�1Π�2(��−1), (1.23)

20

until �� = ��−1. In the case of non-intersecting polytopes, the pair (��,Π�2(��)) gives
the points on the polytopes �1 and �2 respectively. We use variations of this in
Chapter 4, which we describe there. This is equivalent to performing block coordinate
descent in the dual.

Averaged Alternating relections (AAR). The averaged alternating relection
algorithm [Bauschke and Luke, 2004], which is also known as Douglas-Rachford split-
ting is used to solve convex feasibility problem and the best approximation problem.
We now introduce a relection operator for the polytope � as �� , i.e., �� = 2Π�−�,
where � is an identity operator. Therefore, relection of � on a polytope � is given
by ��(�) = 2Π�(�)− �. Let �0 be an arbitrary starting point. The update rule for ��
for each iteration � using the algorithm is given by

�� =
1

2
(� +�2�1)(��−1). (1.24)

In case of intersecting polytopes, �� converges to a point in the intersection. However,
in the non-intersecting case, �� is a diverging sequence. However, the projection of ��
onto the polytopes, i.e., (Π�1(��),Π�2(��)) gives the nearest points on the polytopes.

Dykstra’s alternating projection. This alternating projection algorithm is mainly
used to solve convex feasibility problems of the form Eq. (1.22) for a given � ∈ R

�.
However, this could also be used to solve the best approximation problem in Eq. (1.20)
and convex feasibility problem in Eq. (1.21) by letting � to be an arbitrary point.
It uses an auxiliary sequence (��, ��). The updates are as follows after initializing
�0 = �0 = 0 and �0 = �.

�� = Π�1(��−1 + ��−1)

�� = ��−1 + ��−1 − ��
�� = Π�2(�� + ��−1)

�� = �� + ��−1 − �� (1.25)

The sequence (��, ��) converge to a point in the intersecting case and they converge
to the nearest points on �1 and �2 in the non-intersecting case. This algorithm has
a primal descent interpretation, i.e, as coordinate descent of a well formulated primal
problem [Gafke and Mathar, 1989]. One of the important variants of this is the
accelerated Dykstra’s alternating projection [Chambolle and Pock, 2015]. We derive
these updates for speciic problem in Chapter 5.

We will revisit these algorithms, sometimes with variations in Chapter 4 and
Chapter 5 of this manuscript.

21

22

Chapter 2

Learning Bounded Treewidth

Decomposable Graphs

Abstract

We consider the problem of learning the structure of undirected graphical models
with bounded treewidth, within the maximum likelihood framework. This is an NP-
hard problem and most approaches consider local search techniques. In this chapter,
we pose it as a combinatorial optimization problem, which is then relaxed to a convex
optimization problem that involves optimising linear functions over the graphic and
hypergraphic matroids. A supergradient method is used to solve the dual problem,
with a run-time complexity of �(�3��+2 log �) for each iteration, where � is the num-
ber of variables and � is a bound on the treewidth. We compare our approach to
state-of-the-art methods on synthetic datasets and classical benchmarks, showing the
gains of the novel convex approach.

This chapter is based on our work “Convex Relaxations for Learning Bounded
Treewidth Decomposable Graphs”, K. S. Sesh Kumar and F.Bach, published in pro-
ceedings of International Conference on Machine Learning (ICML), 2013.

2.1 Goal

Goal. In this chapter, we consider the problem of learning the structure of undi-
rected graphical models with bounded treewidth, under the maximum likelihood
framework.

In many domains such as computer vision, natural language processing or bioin-
formatics, the structure of the graph follows naturally from the constraints of the
problem at hand. In other situations, it might be desirable to estimate this structure
from a set of observations. It allows

1. a statistical it of rich probability distributions that can be considered for
further use, and

2. discovery of structural relationship between diferent variables.

23

In the former case, distributions with tractable inference are often desirable, i.e.,
inference with run-time complexity that does not scale exponentially in the number
of variables in the model. The simplest constraint to ensure tractability is to impose
tree-structured graphs [Chow and Liu, 1968]. However, these distributions are not
rich enough, and following earlier work [Malvestuto, 1991, Bach and Jordan, 2002,
Narasimhan and Bilmes, 2004, Chechetka and Guestrin, 2007, Gogate et al., 2010,
Szántai and Kovács, 2011], we consider models with bounded treewidth, not simply
by one (i.e., trees), but by a small constant � as inference on decomposable graphs is
�(���), where � is the number of values each random variable can take.

Motivation. Beyond the possibility of itting tractable distributions (for which
probabilistic inference has linear complexity in the number of variables), learning
bounded-treewidth graphical models is a key to design approximate inference algo-
rithms for graphs with higher treewidth. Indeed, as shown by [Saul and Jordan, 1995,
Wainwright and Jordan, 2008, Kolmogorov and Schoenemann, 2012], approximating
general distributions by tractable distributions is a common tool in variational in-
ference. However, in practice, the complexity of variational distributions is often
limited to trees (i.e., � = 1), since these are the only ones with exact polynomial-time
structure learning algorithms. The convex relaxation designed in this work enables
us to augment the applicability of variational inference, by allowing a iner trade-of
between run-time complexity and approximation quality.

Related work. Learning the structure of a directed or undirected graphical model
is often posed as an optimisation problem with model selection [Höling and Tibshi-
rani, 2009, Schmidt et al., 2007, Ravikumar et al., 2010, Koller and Friedman, 2009].
In this chapter, we consider learning the structure of a bounded treewidth graph,
which naturally acts as a regulariser as there is bound in the number of parame-
ters. Two types of algorithms have emerged using this criteria, based on the two
equivalent deinitions of graphical models: (a) by testing conditional independence
relationships [Spirtes et al., 2001] or (b) by maximizing the log-likelihood of the data
using the factorised form of the distribution [Friedman and Koller, 2003].

In the speciic context of learning bounded-treewidth graphical models, the latter
approach has been shown to be NP-hard [Srebro, 2002] and led to various approximate
algorithms based on local search techniques [Malvestuto, 1991, Deshpande et al., 2001,
Karger and Srebro, 2001, Bach and Jordan, 2002, Shahaf et al., 2009, Szántai and
Kovács, 2011] while the former approach led to algorithms based on independence
tests [Narasimhan and Bilmes, 2004, Chechetka and Guestrin, 2007, Gogate et al.,
2010], which have recovery guarantees when the data-generating distribution has low
treewidth. Malvestuto [1991] proposed a greedy heuristic of hyperedge selection with
least incremental entropy. Deshpande et al. [2001] proposed a simple edge selection
technique that maintains decomposability of the graph while minimizing the KL-
divergence to the original distribution. Karger and Srebro [2001] proposed the irst
convex optimisation approach to learn the maximum weighted �-windmill, a sub-
class of the decomposable graph. Bach and Jordan [2002] gave an approach which

24

iteratively reines the hyperedge selection based on KL-divergence using iterative
scaling. Shahaf et al. [2009] proposed another convex optimisation approach with
Bethe approximation of the likelihood using graph-cuts. Szántai and Kovács [2011]
proposed a hyperedge selection criteria based on high mutual information within a
hyperedge. Narasimhan and Bilmes [2004] performs independence tests by solving
submodular optimisation problems and derives a decomposable graph using dynamic
programming. Chechetka and Guestrin [2007] used the weaker notion of conditional
mutual information instead of conditional independence to learn approximate junction
trees. Finally, Gogate et al. [2010] uses low mutual information criteria to recursively
split the state space to smaller subsets until no further splits are possible.

Organisation. This chapter is organised as follows:
— We pose the problem of learning bounded-treewidth decomposable graphical

models from data as a combinatorial optimisation problem in Section 2.2,
which is relaxed to a convex optimisation problem that involves the graphic
and hypergraphic matroids, as shown in Section 2.4.

— We show in Section 2.5 how a supergradient ascent method may be used to
solve the dual optimisation problem, using greedy algorithms as inner loops on
the two matroids. Each iteration has a run-time complexity of �(�3��+2 log �),
where � is the number of variables. We also show how to round the obtained
fractional solution.

— We compare our approach to state-of-the-art methods on synthetic datasets
and classical benchmarks in Section 2.6, showing the gains of the novel convex
approach.

2.2 Maximum likelihood decomposable graphs

Given � observations �1, . . . , �� of �, we denote the corresponding empirical
distribution of � by �̂(�) = 1

�

︀�
�=1 �(� = ��). Given the structure of a decomposable

graph �, the maximum likelihood distribution that factorises in � may be obtained
by combining the marginal empirical distributions on all maximum cliques and their
separators as deined earlier in Section 1.1.1.

Let �̂(�) denote the empirical distribution and �̂�(�) denotes the projected distri-
bution on a decomposable graph �. Estimating the maximum likelihood decompos-
able graph which best approximates �̂ is equivalent to inding the graph, �, which
minimises the KL-divergence between the target distribution and the projected dis-
tribution, �̂�, deined by �(�̂||�̂�) =.

=
︁

�∈�
�̂(�) log

�̂(�)

�̂�(�)

∝
︁

�∈�
−�̂(�) log �̂�(�) as �̂(�) is independent of �

25

1, 2, 3

1, 2, 4

1, 2, 5

1, 3, 4

1, 4, 5
1, 3, 5

2, 3, 4

2, 3, 5

2, 4, 5

3, 4, 5 1, 2, 3

1, 2, 4 2, 3, 5

1, 3, 4 1, 4, 52, 3, 4

1, 3, 4

1, 2, 3

1, 2, 4

3, 4, 5

1, 3, 4 2, 3, 4

2, 4, 5

1, 4, 5

1, 2, 4

Figure 2-1 – Space of cliques � denoted by ovals and the space of feasible edges ℰ
denoted by lines for � = {1, 2, 3, 4, 5} and treewidth 2(in Black). Clique and edge
selections in blue represent decomposable graphs while those in red denote graphs
that are not decomposable (best seen in color).

=
︁

�∈�
−�̂(�) log

︀
�∈�(�) �̂(��)︀

(�,�)∈� (�) �̂(��∩�)
from Eq. (1.4)

=
︁

�∈�

︂
− �̂(�) log

︁

�∈�(�)

�̂(��)

︂
−

︁

�∈�

︂
− �̂(�) log

︁

(�,�)∈� (�)

�̂(��∩�)

︂

=
︁

�∈�(�)

︁

�∈�
−�̂(�) log �̂(��)−

︁

(�,�)∈� (�)

︁

�∈�
−�̂(�) log �̂(��∩�)

=
︁

�∈�(�)

︁

�C∈�C

−�̂(��) log �̂(��)−
︁

(�,�)∈� (�)

︁

�C∩D∈�C∩D

−�̂(��∩�) log �̂(��∩�)

=
︁

�∈�(�)

�̂(�)−
︁

(�,�)∈� (�)

�̂(� ∩�) , (2.1)

where �̂(�) is the empirical entropy of the random variables indexed by the set
� ⊆ � , deined by �̂(�) =

︀
�S
{−�̂(��) log �̂(��)}, and where the sum is taken over

all possible values of ��.

2.3 Combinatorial optimisation problem

We now consider the problem of learning a decomposable graph of treewidth less
than �. We assume that we are given all entropies �̂(�) for subsets � of � of
cardinality less than � + 1.

Since we do not add any model selection term, without loss of generality [Szántai
and Kovács, 2012], we restrict the search space to the space of maximal junction trees,
i.e., junction trees with �− � maximal cliques of size � + 1 and �− � − 1 separator

26

sets of size � between two cliques of size � + 1. Our natural search spaces are thus
characterised by �, the set of all subsets of size � + 1 of � , of cardinality

︀
�

�+1

︀
, and

ℰ , the set of all potential edges in a junction tree, i.e., ℰ = {(�,�) ∈ �×�, � ∩� ̸=
∅, |� ∩�| = �}. The cardinality of ℰ is

︀
�

�+2

︀
.
︀
�+2
2

︀
(number of subsets of size � + 2

times the number of possibility of excluding two elements to obtain a separator).
A decomposable graph will be represented by a clique selection function � : � →

{0, 1} and an edge selection function � : ℰ → {0, 1} so that �(�) = 1 if � is a maximal
clique of the graph and �(�,�) = 1 if (�,�) is an edge in the junction tree. Both
� and � will be referred to as incidence functions or incidence vectors, when seen as
elements of {0, 1}� and {0, 1}ℰ .

Thus, minimizing the problem deined in Eq. (2.1) is equivalent to minimizing,

�(�, �)=
︁

�∈�
�̂(�)�(�)−

︁

(�,�)∈ℰ
�̂(� ∩�)�(�,�), (2.2)

with the constraint that (�, �) forms a decomposable graph.
At this time, we have merely reparameterised the problem with the clique and

edge selection functions. We now consider a set of necessary and suicient conditions
for the pair to form a decomposable graph. Some are convex in (�, �), while some are
not. The latter ones will be relaxed in Section 2.4. From now on, we denote by 1�∈�
the indicator function for � ∈ � (i.e., it is equal to 1 if � ∈ � and zero otherwise).

— Covering � : Each vertex in � must be covered by at least one of the selected
cliques,

∀� ∈ �,
︁

�∈�
1�∈��(�) ≥ 1. (2.3)

— Number of edges: Exactly �− � − 1 edges from ℰ must be selected,
︁

(�,�)∈ℰ
�(�,�) = �− � − 1. (2.4)

— Number of cliques: Exactly �− � cliques from � must be selected,
︁

�∈�
�(�) = �− �. (2.5)

— Running intersection property: Every vertex, � ∈ � must induce a tree, i.e.,
the number of selected edges containing the vertex, �, must be equal to the
number of selected cliques containing the vertex, � , minus one.

∀� ∈ �,
︁

(�,�)∈ℰ
1�∈(�∩�)�(�,�)−

︁

�∈�
1�∈��(�) + 1 = 0. (2.6)

— Edges between selected cliques: An edge in ℰ is selected by � only if the cliques
it is incident on is selected by � .

∀� ∈ �, �(�) = max
�∈�, (�,�)∈ℰ

�(�,�). (2.7)

27

— Acyclicity of �: � selects edges in ℰ such that they do not have loops, e.g., the
blue lines in Figure 1-3-(b) cannot form loops,

� represents a subforest of the graph (�, ℰ). (2.8)

— Acyclicity of � : � selects the hyperedges of � in � such that they are acyclic,
i.e.,

� represents an acyclic hypergraph of (�,�). (2.9)

The above constraints encode the classical deinition of junction trees. Thus our
combinatorial problem is exactly equivalent to minimizing � (�, �) deined in Eq. (2.2),
subject to the constraints in Eq. (2.3), Eq. (2.4), Eq. (2.5), Eq. (2.6), Eq. (2.7),
Eq. (2.8) and Eq. (2.9). Note that the constraint Eq. (2.9) that � represents an
acyclic hypergraph is implied by the other constraints.

Figure 2-1 shows clique and edge selections in blue which satisfy all these con-
straints and hence represent a decomposable graph. The clique and edge selections
in red violates at least one of these constraints.

2.4 Convex relaxation

We now provide a convex relaxation of the combinatorial problem deined in Sec-
tion 2.3. The covering constraint in Eq. (2.3), the number of edges and the number of
cliques constraints in Eq. (2.4) and Eq. (2.5) respectively, and the running intersection
property in Eq. (2.6) are already convex in (�, �).

The constraint in Eq. (2.7) that ∀� ∈ �, �(�) = max�∈�, (�,�)∈ℰ �(�,�) may
be relaxed into:

— Edge constraint: selection of edges only if the both the incident cliques are
selected, i.e.,

∀� ∈ �, ∀(�,�) ∈ ℰ , �(�,�) ≤ �(�). (2.10)

— Clique constraint: selection of a clique if at least an edge incident on it is
selected, i.e.,

∀� ∈ �, �(�) ≤
︁

(�,�)∈ℰ
�(�,�). (2.11)

We now consider the two acyclicity constraints in Eq. (2.8) and Eq. (2.9).

2.4.1 Forest polytope

Given the graph (�, ℰ), the forest polytope is the convex hull of all incidence
vectors � of subforests of (�, ℰ). Thus, it is exactly the convex hull of all � : ℰ → {0, 1}
such that � satisies the constraint in Eq. (2.8). We may thus relax it into:

— Tree constraint:
� ∈ forest polytope of (�, ℰ). (2.12)

While the new constraint in Eq. (2.12) forms a convex constraint, it is crucial
that it may be dealt with empirically in polynomial time. This is made possible by

28

the fact that one may maximise any linear function over that polytope. Indeed, for
a weight function � : ℰ × ℰ → R, maximizing

︀
(�,�)∈ℰ �(�,�)�(�,�) is exactly a

maximum weight spanning forest problem, and its solution may along with algorithms
be obtained by Kruskal’s algorithm, i.e., (a) order all (potentially negative) weights
�(�,�) and (b) greedily select edges (�,�), i.e., set �(�,�) = 1, with higher weights
irst, as long as they form a forest and as long as the weights are positive. When we
add the restriction that the number of edges is ixed (in our case �− �− 1), then the
algorithm is stopped when exactly the desired number of edges is selected (whether
the corresponding weights are positive or not). See, e.g., [Schrijver, 2003].

The polytope deined above may also be deined as the independence polytope
of the graphic matroid, which is the traditional reason why the greedy algorithm is
exact [Schrijver, 2003]. In the next section, we show how this can be extended to
hypergraphs.

2.4.2 Hypergraphic matroid

Given the set of potential cliques � over � , we consider functions � : � → {0, 1}
that are equal to one when a clique is selected, and zero otherwise. Ideally, we would
like to treat the acyclicity of the associated hypergraph in a similar way than for
regular graphs. However, the set of acyclic subgraphs of the hypergraph deined from
� does not form a matroid, and thus the polytope deined as the convex hull of all
incidence vectors/functions of acyclic hypergraphs may be deined, but the greedy
algorithm is not applicable. In order to deine what is referred to as the hypergraphic
matroid, one needs to relax the notion of acyclicity.

We now follow [Lorea, 1975, Frank et al., 2003, Fukunaga, 2010] and deine a
diferent notion of acyclicity for hypergraphs. An hypergraph (�,ℱ) is an hyperforest
if and only if for all � ⊂ � , the number of hyperedges in ℱ contained in � is less
than |�| − 1. A non-trivially equivalent deinition is that we can select two elements
in each hyperedge so that the graph with vertex set � and with edge set composed
of these pairs is a forest.

Given an hypergraph with hyperedge set �, the set of sub-hypergraphs which are
hyperforests forms a matroid. This implies that given a weight function on �, one
may ind the maximum weight hyperforest with a greedy algorithm that ranks all
hyperedges and select them as long as they do not violate acyclicity (with the notion
of acyclicity just deined and for which we exhibit a test below).

Checking acyclicity of an hypergraph (�,ℱ) (which is needed for the greedy algo-
rithm above) may be done by minimizing with respect to � ⊂ �

|�| −
︁

�∈ℱ
1�⊂�.

The hypergraph is an hyperforest if and only if the minimum is greater or equal to one.
The minimisation of the above problem may be cast a min-cut/max-low problem as
follows [Fukunaga, 2010]:

— single source, single sink, one node per hyperedge in ℱ , one node per vertex

29

in � ,
— the source points towards each hyperedge with unit capacity,
— each hyperedge points towards the vertices it contains, with ininite capacity,
— each vertex points towards the sink, with unit capacity.
The runtime complexity of this test is �(�2). The hypergraph obtained from the

maximal cliques of a decomposable graph can easily be seen to be an hyperforest.
But the converse is not true. We can now naturally deine the hyperforest polytope
as the convex hull of all incidence vectors of hyperforests. Thus the constraint in
Eq. (2.9) may be relaxed into:

— Hyperforest constraint:

� ∈ hyperforest polytope of (�,�). (2.13)

In case of trees, where � = 1, the hyperforest polytope becomes the forest polytope.

2.4.3 Relaxed optimisation problem

We can now formulate our combinatorial problem from the constraints in Eq. (2.3),
Eq. (2.4), Eq. (2.5), Eq. (2.6), Eq. (2.10), Eq. (2.11), Eq. (2.12) and Eq. (2.13) as
follows

min�(�, �) subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� ∈ {0, 1}�,
� ∈ {0, 1}ℰ ,
∀� ∈ �,︀�∈� 1�∈��(�) ≥ 1,︀

(�,�)∈ℰ �(�,�) = �− � − 1,︀
�∈� �(�) = �− �,

∀� ∈ �,︀(�,�)∈ℰ 1�∈(�∩�)�(�,�)−︀
�∈� 1�∈��(�) + 1 = 0,

∀� ∈ �, ∀(�,�) ∈ ℰ , �(�,�) ≤ �(�),
∀� ∈ �, �(�) ≤︀

(�,�)∈ℰ �(�,�),

� ∈ forest polytope of (�, ℰ),
� ∈ hyperforest polytope of (�,�).

(2.14)
All constraints except the integrality constraints are convex. Let � -relaxed primal

be the partially relaxed primal optimisation problem formed by relaxing only the
integral constraint on � in Eq. (2.14), i.e., replacing � ∈ {0, 1}� by � ∈ [0, 1]�. Note
that this is not a convex problem due to the remaining integral constraint on �, but
it remains equivalent to the original problem as the following proposition shows.

Proposition 4. The combinatorial problem in Eq. (2.14) and the � -relaxed primal
problem are equivalent.

Proof. Let us assume (� *, �*) be a feasible solution for the relaxed primal with
0 < � *(�) < 1 for some � ∈ �. The edge constraint in Eq. (2.10) ensures that
there are no incident edges on � selected by �* (as �* is integral). This violates the
clique constraint in Eq. (2.11). Therefore, the feasible solutions of relaxed primal
are integral. Hence the optimal solutions of the primal and the relaxed primal are
identical.

30

The convex relaxation for the primal optimisation problem formed by relaxing the
integral constraint on both � and � can now be deined as

min�(�, �) subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� ∈ [0, 1]�,
� ∈ [0, 1]ℰ ,
∀� ∈ �,︀�∈� 1�∈��(�) ≥ 1,︀

(�,�)∈ℰ �(�,�) = �− � − 1,︀
�∈� �(�) = �− �,

∀� ∈ �,︀(�,�)∈ℰ 1�∈(�∩�)�(�,�)−︀
�∈� 1�∈��(�) + 1 = 0,

∀� ∈ �, ∀(�,�) ∈ ℰ , �(�,�) ≤ �(�),
∀� ∈ �, �(�) ≤︀

(�,�)∈ℰ �(�,�),

� ∈ forest polytope of (�, ℰ),
� ∈ hyperforest polytope of (�,�).

(2.15)

2.5 Solving the dual problem

We now show how the convex problem may be minimised in polynomial time.
Among the constraints of our convex problem in Eq. (2.14), some are simple linear
constraints, some are complex constraints depending on the forest and hyperforest
polytopes deined in Section 2.4. We will deine a dual optimisation problem by
introducing the least possible number of Lagrange multipliers (a.k.a. dual variables)
[Bertsekas, 1999] so that the dual function (and a supergradient) may be computed
and maximised eiciently. We introduce the following dual variables:

— Set cover constraints in Eq. (2.3): � ∈ R
�
+.

— Running intersection property in Eq. (2.6): � ∈ R
� .

— Edge constraints in Eq. (2.10): � ∈ R
2ℰ
+ .

— Clique constraints in Eq. (2.11): � ∈ R
�
+.

Therefore, the dual variables are (�, �, �, �). Let ℒ(�, �, �, �, �, �) be the Lagrangian
relating the primal and dual variables. It is derived from the primal cost function
deined in Eq. (2.2) along with the covering constraint, running intersection property,
the edge and the clique constraints deined in Eq. (2.3), Eq. (2.6), Eq. (2.10) and
Eq. (2.11) respectively. The Lagrangian can be computed from the dual variables
(�, �, �, �) as follows:

ℒ(�, �, �, �, �, �)
=

︁

�∈�
�̂(�)�(�)−

︁

(�,�)∈ℰ
�̂(� ∩�)�(�,�)

+
︁

�∈�

︁

(�,�)∈ℰ
���

︂
�(�,�)− �(�)

︂
+

︁

�∈�
��

︂
�(�)−

︁

(�,�)∈ℰ
�(�,�)

︂

+
︁

�∈�
��

︂ ︁

(�,�)∈ℰ
1�∈(�∩�)�(�,�)−

︁

�∈�
1�∈��(�) + 1

︂

31

+
︁

�∈�
��

︂
1−

︁

�∈�
1�∈��(�)

︂

=
︁

�∈�

︂
�̂(�)−

︁

�∈�
(�� + ��)−

︁

(�,�)∈ℰ
��� + ��

︂
�(�)

−
︁

(�,�)∈ℰ

︂
�̂(� ∩�)−

︁

�∈(�∩�)

�� − ��� − ��� + �� + ��

︂
�(�,�)

+
︁

�∈�
(�� + ��), (2.16)

with the following dual constraints on the Lagrange multipliers

∀� ∈ �, �� ≥ 0,

∀� ∈ �, ∀(�,�) ∈ ℰ , ��� ≥ 0,

∀� ∈ �, �� ≥ 0. (2.17)

We can now derive a dual optimisation problem with �(�, �, �, �) represent the
dual cost function, which can be derived from the Lagrangian in Eq. (2.16). We use
the the number of edges constraint, the number of cliques constraint, tree constraint
and hyperforest constraint given by Eq. (2.4), Eq. (2.5), Eq. (2.12) and Eq. (2.13)
respectively in deriving the dual cost function, �(�, �, �, �):

= inf
�(�)∈[0,1]�︀
C∈�

�(�)=�−�

�∈ hyperforest polytope of (�,�)

︂
�̂(�)−

︁

�∈�
(�� + ��)−

︁

(�,�)∈ℰ
��� + ��

︂
�(�)

− sup
�∈[0,1]ℰ︀

(C,D)∈ℰ
�(�,�)=�−�−1

�∈forest polytope of (�,ℰ)

︁

(�,�)∈ℰ

︂
�̂(� ∩�)−

︁

�∈(�∩�)

�� − ��� − ��� + �� + ��

︂
�(�,�)

+
︁

�∈�
(�� + ��). (2.18)

It is decomposed in three parts deined in Eq. (2.20), Eq. (2.21) and Eq. (2.22)
respectively :

�(�, �, �, �) = �1(�, �, �, �) + �2(�, �, �, �) + �3(�, �, �, �), (2.19)

where

�1(�, �, �, �)= inf
�(�)∈[0,1]�︀
C∈�

�(�)=�−�
�∈ hyperforest polytope

of (�,�)

︁

�∈�

︂
�̂(�)−

︁

�∈�
(�� + ��)−

︁

(�,�)∈ℰ
��� + ��

︂
�(�). (2.20)

32

�2(�, �, �, �)= − sup
�∈[0,1]ℰ︀

(C,D)∈ℰ
�(�,�)=�−�−1

�∈ forest polytope
of (�,ℰ)

︁

(�,�)∈ℰ

︂
�̂(� ∩�)−

︁

�∈(�∩�)

�� − ��� − ��� + �� + ��

︂
�(�,�).

(2.21)

�3(�, �, �, �)=
︁

�∈�
(�� + ��). (2.22)

Therefore, the dual optimisation problem using the dual cost function deined in
Eq. (2.18) and the dual constraints deined in Eq. (2.17) is given by

max�(�, �, �, �) subject to

⎧
⎨
⎩
∀� ∈ �, �� ≥ 0,
∀� ∈ �, ∀(�,�) ∈ ℰ , ��� ≥ 0,
∀� ∈ �, �� ≥ 0.

(2.23)

The dual functions �1(�, �, �, �) and �2(�, �, �, �) may be computed using the
greedy algorithms deined in Section 2.4.1 and Section 2.4.2; �1 can be evaluated in
�(� log(�)), where � is the cardinality of the space of cliques, �, i.e.,

︀
�

�+1

︀
and �2

can be evaluated in �(� log(�)), where � is the cardinality of feasible edges, ℰ , i.e.,︀
�

�+2

︀
.
︀
�+2
2

︀
. This complexity is due to sorting the edges and hyperedges based on

their weights. This leads to an overall complexity of �(�3��+2 log �) per iteration of
the projected supergradient method which we now present.

Algorithm 2 Projected Supergradient

Input: clique and edge entropies H, step-size constant � and number of iterations
T
Output: sequence of clique and edge selections over iterations (� �, ��)
Initialise �0 = 0, �0 = 0, �0 = 0, �0 = 0
for � = 0 to � do
solve Eq. (2.20) and evaluate �1(��, ��, ��, ��) to obtain � �

solve Eq. (2.21) and evaluate �2(��, ��, ��, ��) to obtain ��

update dual variables, (��+1, ��+1, ��+1, ��+1) using supergradients and stepsize:
�� =

�√
�

��+1
� =

︁
��� + ��

︁
1−︀

�∈� 1�∈�� �(�)
︁︁+

��+1
� = ��

� + ��

︁︀
(�,�)∈ℰ 1�∈(�∩�)�

�(�,�)−︀
�∈� 1�∈�� �(�) + 1

︁

��+1
�� =

︁
���� + ��

︁
� �(�)− ��(�,�)

︁︁+

��+1
� =

︁
��� + ��

︁︀
(�,�)∈ℰ �

�(�,�)− � �(�)
︁︁+

end for

Projected supergradient ascent. The dual optimisation problem deined by
maximizing �(�, �, �, �) can be solved using the projected supergradient method. In

33

each iteration � of the algorithm, the dual cost function, �(��, ��, ��, ��), is evaluated
through estimation of �1 and �2 by solving Eq. (2.20) and Eq. (2.21) respectively. In
the process of solving these equations, the corresponding primal variables (� �, ��) are
also estimated and allows the computations of the supergradients of � (i.e., opposites
of subgradients of −�) [Bertsekas, 1999]. As shown in Algorithm 2, a step is made
toward the direction of the supergradient and projection onto the positive orthant
is performed for dual variables that are constrained to be nonnegative. With step
sizes �� proportional to 1/

√
�, this algorithm is known to converge to a dual optimal

solution at rate 1/
√
�. Moreover, the average of all visited primal variables, i.e., after

� steps, (�̂�, �̂�) = 1
�

︀�
�=0(�

�, ��) is known to be approximately primal-feasible (i.e.,
it satisies all the linear constraints that were dualised up to a small constant that is
also going to zero at rate 1/

√
�) [Nedic and Ozdaglar, 2009].

Proposition 5. If � = 1, the convex relaxation in Eq. (2.15) is equivalent to Eq. (2.14).

Proof. If � = 1, all the cliques in the clique space contain only 2 vertices, i.e., ∀� ∈
�, |�| = 2 and the number of elements in the feasible edges is only 1, i.e., ∀(�,�) ∈
ℰ , |� ∩�| = 1.

Solving the convex relaxation deined in Eq. (2.15) is equivalent to solving the
dual deined in Eq. (2.23). On solving the dual variables, the optimal dual solution
is given by

∀� ∈ �, �� = �̂({�}),
∀� ∈ �, �� = 0,
∀� ∈ �, ∀(�,�) ∈ ℰ , ��� = 0,
∀� ∈ �, �� = 0,

(2.24)

where �̂({�}) = −�̂�(��) log(�̂�(��)).
The optimal solution to the dual problem is given by

�*(�, �, �, �) = inf
�(�)∈[0,1]�︀
C∈�

�(�)=�−�

�∈ hyperforest of (�,�)

︁

�∈�

︂
�̂(�)−

︁

�∈�
�̂({�})

︂
�(�) +

︁

�∈�
�̂({�})

= inf
�(�)∈[0,1]�︀
C∈�

�(�)=�−�

�∈ hyperforest of (�,�)

−�(�).�(�) +
︁

�∈�
�̂({�}), (2.25)

where ∀� ∈ �, �(�) = ︀
�∈� �̂({�}) − �̂(�), which deines the mutual informa-

tion of the elements in the clique, i.e., an edge if � = 1. The constraints in Eq. (2.25)
deine a spanning tree polytope [Schrijver, 2003] and the optimal solution is a max-
imal information spanning tree, which is given by Chow-Liu trees [Chow and Liu,
1968]. They also form the optimal solution to the non-convex primal optimisation
deined in Eq. (2.14).

Approximate Greedy Primal Solution. We describe an algorithm to project
from the average of a sequence of fractional primary infeasible solutions, estimated

34

Algorithm 3 Approximate Greedy Primal Solution

Input: primal infeasible sequence � � for Algorithm 2, treewidth �, number of
Vertices �, set of cliques � and integer � such that 0 < � ≤ �
Output: approximate discrete primal feasible solution �� after � iterations of
Algorithm 2
Initialise Adjacency Matrix ��� = �����(�, �), �̂� = 1

�

︀�
�=0 �

� and �� =
�����(�����ℎ(�̂�))
����� = Sorted indices in the descending order �̂�
repeat
Initialise ������������ = �����, ��������ℎ = 0, ���������������������� =
0, � = 1
update ������� = AddClique(���, �(�����(�)))
update [������������, ��������ℎ] = checkGraphDecomposability(�������)
if ������������ = true and ��������ℎ ≤ � then
update ��� = �������
update ��(�����(�)) = 1

end if
[����������������������] = getNumberConnectedComponents(�������)
update � = �+ 1

until ������������ = ����, ��������ℎ = �, ���������������������� = 1, � =
length(�����)

during the iterations of projective supergradient, to an integral primary feasible so-
lution. “AddClique" adds all the edges of a clique to the adjacency matrix. “check-
GraphDecomposability" checks if the maximal cardinality search is a perfect elimi-
nation ordering. For decomposable graphs the maximal cardinality search yields a
perfect elimination ordering [Golumbic, 2004]. We refer to this as decomposability
test. “getNumberConnectedComponents" gives the number of connected components
in the graph using breadth-irst search. Note that the projection only uses the average
clique selection function, �̂�, to obtain the primary feasible solutions, ��. The corre-
sponding edge selection, ��, can be estimated from clique selection, ��, by selecting
the edges between consecutive cliques of the perfect sequence of selected cliques [Lau-
ritzen, 1996]. The time complexity of the projection algorithm is �(��+2). This is
due to decomposability test with run time complexity �(��+1), that is performed on
adding �(�) cliques.

2.6 Experiments and results

In this section, we show the performance of the proposed algorithm on synthetic
datasets and classical benchmarks.

Decomposable covariance matrices. In order to easily generate controllable dis-
tributions with entropies which are easy to compute, we use several decomposable

35

graphs and we consider a Gaussian vector 1 with covariance matrix Σ, generated as
follows:

— sample a matrix � of dimensions � × �′ with entries uniform in [0, 1] and
consider the matrix

Σ′ =
�

�′
��⊤ + (1− �

�′
)�, (2.26)

where � is a random matrix of dimensions �×�′, � is the �-dimensional identity
matrix and � is a parameter to determine the correlations between the nodes
of the graph, which takes values in {0, �′}. In our experiments, we choose �′ to
be 128. We have tight correlations between the nodes with higher values of �.

— normalise Σ′ to unit diagonal,
— The normalised random positive deinite covariance matrix, Σ′, is projected

onto a decomposable graph � as follows:

(Σ)−1 =
︁

�∈�(�)

[(Σ′
�)

−1]� −
︁

(�,�)∈� (�)

[(Σ′
�∩�)

−1]�, (2.27)

where the operator [(Σ′
�)

−1]� gives an �× � matrix whose columns and rows
representing the set � ⊆ � are illed by (Σ′

�)
−1 and the rest of the elements

of the matrix are illed with zeroes. The matrix, Σ, thus generated represents
the covariance matrix of a multivariate Gaussian on a decomposable graph, �.

The projection ensures the following relationship between the random positive
deinite matrix, Σ′ and the projected covariance matrix Σ:

Σ(�, �) = Σ′(�, �) if �(�, �) = 1 or � = �,

Σ−1(�, �) = 0 if �(�, �) = 0. (2.28)

where � is the adjacency matrix of the decomposable graph � onto which Σ′ was
projected.

The entropy of a multivariate Gaussian with a covariance matrix, Σ, is given by
1
2
log(2��)�|Σ|, where |Σ| denotes the determinant of the covariance matrix. However,

for Gaussian distribution that is factored in � ∈ �:

|Σ| =
︀

�∈�(�) |Σ� |︀
((�,�)∈� (�) |Σ�∩�|

, (2.29)

where Σ� is the sub-matrix of the covariance matrix whose rows and columns belong
to the set � ⊆ � . Therefore, for any multivariate decomposable Gaussian graphical
model, �:

�̂(�) =
1

2
log((2��)�|Σ|)

1. Note that Gaussian vector is a continuous random variable but entropy decomposition in
Chapter 1 also holds for diferential entropies

36

=
1

2
(
︁

�∈�(�)

log((2��)�|Σ� |)−
︁

(�,�)∈� (�)

log((2��)�|Σ�∩�|))

=
︁

�∈�(�)

�̂(�)−
︁

(�,�)∈� (�)

�̂(� ∩�). (2.30)

Note that the entropy of any graph, G, is independent of the mean of the normal
distribution, hence we consider only the covariance matrix.

8, 9, 10

7, 8, 10

6, 7, 10

5, 6, 10

4, 5, 10

3, 4, 10

2, 3, 10

1, 2, 10

9

10

8

7 6

5

4

3

21

1, 2, 4

1, 3, 9

2, 3, 6

1, 2, 3

1, 3, 8

2, 3, 71, 2, 5

1

4

5 6

7

3

89

2

(a) (b)

Figure 2-2 – Graph representing (a) chain junction tree, (b) star junction tree, with
an embedded junction tree in green and its junction tree representation in blue.

We use the graph structures representing a chain junction tree as in Figure 2-2-
(a) and a star junction tree as in Figure 2-2-(b) to analyse the performance of our
algorithm for decomposable covariance matrices generated with diferent correlations.

Table 2.1 shows the performance of our algorithm on both chain and star graphs.
Decomposable covariance matrices are generated as above with diferent values of the
correlation parameter � (all averaged over ten diferent random covariance matrices).
We show the suboptimality of the retrieved structure and the optimal structure by
showing the diferent between the cost function in Eq. (2.2) of the retrieved structure
and the optimal structure, i.e., the actual structure represented by the covariance
matrices. Note that the suboptimality in the table is multiplied by 103 for brevity.

All represents the structure retrieved by solving the proposed convex relaxation
and estimating the primal feasible solution using all the constraints proposed in this
work. The column under Without clique acyclicity uses the same approach but
does not use the constraint that the clique selection lies in a hyperforest. TheGreedy
algorithm learns a structure by sorting the mutual information and keeps adding the
cliques with largest mutual information as long as decomposability is maintained.
From the table it can be observed that the hyperforest constraints, i.e., the acyclicity
on cliques constraint is key to obtain tighter relaxations. Empirically we have been
able to get the optimal solution when the correlations are strong enough (i.e., large
values of �) and outperforms the simple greedy algorithm.

Figure 2-3 represents the empirical integrality gaps of the retrieved structures with
and without the acyclicity constraint on the cliques. It reinforces our observation that
the acyclicity on cliques is important to achieve a tight relaxation.

37

1 2 4 8 16 32
0

10

20

30

40

50

60

Lower the better Strength of edges

In
te

g
ra

li
ty

 G
a

p
 x

 1
0

3

All constraints

Without acyclicity on cliques

1 2 4 8 16 32
0

10

20

30

40

50

60

Lower the better Strength of edges

In
te

g
ra

li
ty

 G
a

p
 x

 1
0

3

All constraints

Without acyclicity on cliques

(a) (b)

Figure 2-3 – Empirical integrality gaps of the learnt structures with and without the
acyclicity constraint on cliques in the (a) chain junction tree, (b) star junction tree.

Performance Comparison. We compare the quality of the graph structures learned
by the proposed algorithm with the ones produced by Ordering Based Search (OBS)
[Teyssier and Koller, 2001], the combinatorial optimisation algorithm proposed by
Karger and Srebro (Karger+Srebro) [Karger and Srebro, 2001], the Chow-Liu trees
(Chow-Liu) [Chow and Liu, 1968] and diferent variations of PAC-learning based
algorithms (PAC-JT, PAC-JT+local) [Chechetka and Guestrin, 2007]. We use a
real-world dataset, TRAFFIC [Krause and Guestrin, 2005] and an artiicial dataset,
ALARM [Beinlich et al., 1989] to compare the performances of these algorithms.

This ALARM dataset was sampled from a known Bayesian network [Beinlich et al.,
1989] of 37 nodes, which has a treewidth equal to 4. We learn an approximate decom-
posable graph of treewidth 3. The TRAFFIC dataset is the traic low information

d All Without clique acyclicity Greedy
chain star chain star chain star

1 0.2±0.1 0.2±0.1 0.4±0.1 0.5±0.1 0.2±0.1 0.9±0.1
2 0 0 0.3±0.2 0.4±0.1 0.5±0.2 0.4±0.3
4 0 0 0.3±0.1 0.2±0.1 1.9±0.3 1.7±0.2
8 0 0 0.2±0.1 0 7.9±0.3 6.9±0.3
16 0 0 0 0 25.6±1.2 26.3±1.5

Table 2.1 – Comparison of suboptimality for learnt structure vs true structure ×103,
where All represents the structures learnt by solving the proposed convex relaxation
with all the constraints including the hyperforest constraint on cliques, Without
clique acyclicity represents the structures learnt by solving the proposed convex
relaxation with all constraints excluding hyperforest constraint on cliques and the
structure learnt using an approximate greedy algorithm.

38

100 200 500 1000 2000
−90

−80

−70

−60

−50

−40

−30

−20

−10

0
Higher the better

Number of Samples

L
o

g
 L

ik
e

li
h

o
o

d

Chow−Liu

Karger+Srebro

OBS

PAC−JT

PAC−JT+Local

Our

100 200 500 1000 2000 5000 10000 20000
−70

−60

−50

−40

−30

−20

−10

0
Higher the better

Number of Samples

L
o

g
 L

ik
e

li
h

o
o

d

Chow−Liu

Karger+Srebro

OBS

PAC−JT

PAC−JT+Local

Our

(a) (b)

Figure 2-4 – Log likelihood of the structures learnt using various algorithms on (a)
TRAFFIC and (b) ALARM datasets with � = 3 except Chow-Liu (� = 1).

every 5 minutes for a month at 8000 locations in California [Krause and Guestrin,
2005]. The traic low information is collected at 32 locations in San Francisco Bay
area and the values are discretised into 4 bins. We learn an approximate decompos-
able graph of treewidth 3 using our approach. Empirical entropies are computed from
the generated samples of each data set and we infer the underlying structure from
them using our algorithm. Figure 2-4(b) and Figure 2-4(c) show the log-likelihoods of
structures learnt using various algorithms on Traic and Alarm datasets respectively.
Note that the performance is better with higher values as we compare log-likelihoods.
These igures illustrate the gains of the convex approach over non-convex approaches.

2.7 Conclusion

In this chapter, we have provided a convex relaxation to the problem of inding
the maximum likelihood decomposable graph with bounded treewidth. The convex
relaxation relies on optimising linear functions on polytopes of graphic and hyper-
graphic matroids. It is a polynomial-time optimization algorithm, which empirically
outperforms previously proposed algorithms.

39

40

Chapter 3

Maximising Submodular Functions

using Probabilistic Graphical Models

Abstract

We consider the problem of maximizing submodular functions; while this prob-
lem is known to be NP-hard, several numerically eicient local search techniques
with approximation guarantees are available. In this chapter, we propose a novel
convex relaxation which is based on the relationship between submodular functions,
entropies and probabilistic graphical models. In a graphical model, the entropy of the
joint distribution decomposes as a sum of marginal entropies of subsets of variables;
moreover, for any distribution, the entropy of the closest distribution factorizing in
the graphical model provides an bound on the entropy. For directed graphical mod-
els, this last property turns out to be a direct consequence of the submodularity of
the entropy function, and allows the generalization of graphical-model-based upper
bounds to any submodular functions. These upper bounds may then be jointly max-
imized with respect to a set, while minimized with respect to the graph, leading to
a convex variational inference scheme for maximizing submodular functions, based
on outer approximations of the marginal polytope and maximum likelihood bounded
treewidth structures. By considering graphs of increasing treewidths, we may then ex-
plore the trade-of between computational complexity and tightness of the relaxation.
We also present extensions to constrained problems and maximizing the diference of
submodular functions, which include all possible set functions.

This chapter is based on our work “Maximizing Submodular Functions using Prob-
abilistic Graphical Models”, K. S. Sesh Kumar, F. Bach, presented in workshop on
Discrete and Combinatorial Problems in Machine Learning (DISCML), NIPS 2013.

3.1 Goal

Goal. In this chapter, our goal is to provide the irst (to the best of our knowledge)
generic convex relaxation of submodular function maximization, with a hierarchy of
complexities related to known combinatorial hierarchies such as the Sherali-Adams

41

hierarchy [Sherali and Adams, 1990]. Our aim is to characterise the subclass of
submodular functions that can be optimised exactly when compared to traditional
approach of submodular maximisation algorithms, which aim at constant-factor ap-
proximation guarantees.

Beyond the graphical model tools that we are going to develop, having convex
relaxations may be interesting for several reasons:

1. they may lead to better solutions,

2. they provide online bounds that may be used within branch-and-bound opti-
mization and

3. they ease the use of such combinatorial optimization problems within struc-
tured prediction framework [Tsochantaridis et al., 2004].

Motivation. The relationship between submodularity and entropies has classi-
cally been useful in various probabilistic modeling tasks involving entropies, e.g.,
for proposing approximate algorithms for learning bounded treewidth graphical mod-
els [Narasimhan and Bilmes, 2004, Chechetka and Guestrin, 2007], for learning naive
Bayes models [Krause and Guestrin, 2005] or for discriminative structure learn-
ing [Narasimhan and Bilmes, 2005]. In this chapter, we consider transfers in the
opposite direction and will extend notions which are usually linked with entropies
to all submodular functions. This will be achieved through probabilistic graphical
models.

Discrete entropies are known to be non-decreasing submodular set functions–
the submodularity being a consequence of the data-processing inequality [Cover and
Thomas, 2006]. They are also known to be a strict subset of non-decreasing submod-
ular set functions, i.e., when � > 4, there exist set functions which are non-decreasing
and submodular but not entropies [Zhang and Yeung, 1998].

Related work. We deviate from the classical approach of proposing constant-factor
guarentee algorithms. In our approach, we aim at characterising a subclass of sub-
modular functions that can be maximised exactly. To the best of our knowledge,
� ♮-concave functions [Murota, 2003] is the only other work in literature in this di-
rection.

Feige et al. [2011] proposed constant factor approximation algorithms for maxi-
mizing non-monotone submodular functions. They provide a randomized local search
technique which optimizes a multi linear auxiliary function with some approximation
guarantees. Buchbinder et al. [2012] proposed a ramdomized 1/2-approximation algo-
rithm to maximize non-monotone submodular functions. They also use a randomized
local search to remove or add an element for the existing set under consideration in
each iteration of the algorithm. Maximising submodular functions over integer lattices
has also gathered interest, recently. Gottschalk and Peis [2015] proposed an algorithm
to maximise submodular functions on bounded integer lattice and Ward and Zivny
[2014] proposed an algorithm to maximise �-submodular functions. However, these
methods only consider unconstrained submodular maximization.

42

Recent works also consider maximization of non-monotone submodular functions [Von-
drák et al., 2011] with packing-type constraints such as knapsack constraints, matroid
constraints and their intersections with 0.309-approximation guarantee with respect
to the best integer solution on the matroid polytope. They consider an extreme point
of the polytope and provide a technique to replace an element of the extreme point
fractionally using linear optimization. Iyer et al. [2013] proposed semi-diferentials,
discrete equivalent of gradients, to deine linear bounds on submodular functions. The
approximations thus obtained are optimized using CCCP-like [Yuille and Rangarajan,
2003] procedures.

Relationship to Chapter 2. In this chapter, we use the algorithm proposed in
Chapter 2 to learn bounded treewidth decomposable graphs. We will use inner ap-
proximation of the polytope representing bounded treewidth decomposable graphs in
contrast to outer approximation proposed in the previous chapter.

Notations. Throughout this chapter, we consider a normalised submodular func-
tion � deined on the set � = {1, 2, . . . , �} such that � (∅) = 0.

Organisation. This chapter is organised as follows:
— For any directed acyclic graph � and a submodular function � , we deine in

Section 3.2 a bound ��(�) and study its properties (monotonicity, tightness).
It is specialized to decomposable graphs in Section 3.3.

— In Section 3.4, we propose an algorithm to maximize submodular functions
by maximizing the bound ��(�) with respect to � while minimizing with
respect to the graph �, leading to a convex variational method based on outer
approximation of the marginal polytope [Wainwright and Jordan, 2008] and
inner approximation of the hypertree polytope. This is in contrast with our
previous work in Chapter 2 where we propose a convex relaxation that gives
outer approximation of the hypertree polytope.

— In Section 3.5, we propose extensions to constrained problems and maximizing
the diference of submodular functions, which include all possible set functions.

— We illustrate our results on small-scale experiments in Section 3.6.

3.2 Directed graphical models

Let us consider a directed acyclic graph (DAG) � on the set of random variables
associated with the groundset � . Let � denote a probability distribution on the
random variables and let �� denote the corresponding factorisable distribution with
respect to � as deined in Eq. (1.1).

The KL-divergence between these probability distributions is always non-negative.
From the deinition of the KL-divergence,

�(�||��) = �(�)−��(�),

43

is always non-negative, where �� is the entropy of the factorisable distribution ��
and is deined by −E�G(�) log ��(�), which decomposes as shown in Eq. (1.2) and � is
the entropy of a general probability distribution � given by −E�(�) log �(�). Therefore
entropy based on a graph based distribution always bound the entropy based on any
general distribution. This bound is tight, i.e., KL-divergence is zero when � factorises
in �.

Marginalisation. Given a DAG � = (�,�), let �� denote the induced subgraph
of � by � ⊂ � given by �� = (�,� ∩ � × �). Let ��A

be the graph-represented
probability distribution encoding the conditional independences of �� on the random
variables associated with �. It is important to note that probability distribution
��A

(��) is in general not equal to the marginal distribution ��(��). This is equal
only if � is an ancestral set of � [Edwards, 2000], i.e., all parents of all elements of
� are in � (in other words, we may recursively remove leaf nodes and preserves the
factorization).

In the following, we denote by ��A
(�) the entropy of the projection ��A

(��) of
�(��) onto ��. We have

��A
(�) =

︁

�∈�

︀
�(� ∩ (� ∪ ��(�))−�(� ∩ ��(�))

︀
. (3.1)

Note that ��A
(�) is diferent from ��(�). From properties of entropies and

graphical models, we have �(�) 6 ��A
(�) for any DAG � and set � ⊆ � as ��

is also a DAG. We show in the next section that this property turns out to be a
consequence of submodularity and thus applies to all submodular functions and not
just entropies.

Structure learning. Although we will not use structure learning in this chap-
ter, it is worth noting that several entropy-based approaches have been considered
for inding the best possible graph (with some constraints) given a probability dis-
tribution. They are based on the decomposition of entropies and local search (see,
e.g., [Chickering, 2002] and references therein).

3.2.1 Bounds on submodular functions

Given a submodular function � : 2� → R such that � (∅) = 0, following Eq. (3.1),
we deine �� as

��(�) =
︁

�∈�

︁
�
︀
� ∩ (��(�) ∪ {�})

︀
− �

︀
� ∩ ��(�)

︀︁
. (3.2)

When � is an entropy function, ��(�) is the entropy of the distribution closest to the
distribution of �� that factorises in �� (which is not equal to the marginal entropy
on � of the closest distribution that factorises in �). We now show that �� bounds
� and that the bound is tight for some subsets of � .

Proposition 6 (Upper bound). Let � be a submodular function and � a directed
acyclic graph. The function �� deined in Eq. (3.2) bounds � , i.e., for all � ⊆ � ,

44

� (�) 6 ��(�).

Proof. Without loss of generality, we assume that {1, . . . , �} is the topological order-
ing (i.e., � ∈ ��(�)⇒ � > �), without loss of generality. For all � ⊆ � , � (�) =

�︁

�=1

� (� ∩ {1, . . . , �})− � (� ∩ {1, . . . , �− 1}) by telescoping the sums,

6
︁

�∈�
�
︀
� ∩ (��(�) ∪ {�})

︀
− �

︀
� ∩ ��(�)

︀

by submodularity, since ��(�) ⊂ {1, . . . , �− 1},
= ��(�).

Proposition 7 (Tightness of the bound). For any element, � ∈ � , and any subset �
of ��(�), i.e., � ⊆ ��(�), ��(� ∪ {�})− ��(�) = � (� ∪ {�})− � (�).

Proof. We have ��(� ∪ {�})− ��(�) =

︁

�∈�∪{�}

︂
� ((� ∪ {�}) ∩ (��(�) ∪ {�}))− � ((� ∪ {�}) ∩ ��(�))

−� (� ∩ (��(�) ∪ {�})) + � (� ∩ ��(�))
︂

=
︁

�∈�∪{�}

︂
�
︀
(� ∩ ��(�)) ∪ ({�} ∩ ��(�)) ∪ {�}

︀
− �

︀
(� ∩ ��(�)) ∪ ({�} ∩ ��(�))

︀

−�
︀
(� ∩ ��(�)) ∪ (� ∩ {�})

︀
+ � (� ∩ ��(�))

︂

=
︁

�∈�

︂
�
︀
(� ∩ ��(�)) ∪∅ ∪ {�}

︀
− �

︀
(� ∩ ��(�)) ∪∅

︀

−�
︀
(� ∩ ��(�)) ∪ {�}

︀
+ � (� ∩ ��(�))

︂

+

︂
�
︀
� ∪∅ ∪ {�}

︀
− �

︀
� ∪∅

︀
− �

︀
� ∪∅

︀
+ � (�)

︂

= � (� ∪ {�})− � (�),

where we have used acyclicity to ensure that for � ∈ �, {�} ∩ ��(�) = ∅.

Note that a corollary of Proposition 7 is that the bound is tight on all single-
tons (by considering � = ∅). This implies that any modular properties of � are
preserved and this notably implies that without loss of generality, we may consider
only non-decreasing functions. This is because any general submodular function can
be decomposed into a non-decreasing function and a modular function. See Bach
[2013] for more details on ways to decompose. The bound also has other interesting
monotonicity properties, which we now show.

45

Proposition 8 (Monotonicity of bounds - I). If �′ is a subgraph of the DAG �, then
��′ > �� > � , i.e., for all � ⊆ � , ��′(�) > ��(�) > � (�).

Proof. Let � = (�,�) and �′ = (�,� ′). If �′ is a subgraph of �, then � ′ ⊆ � and
hence for all the vertices, � ∈ � , ��(�′) ⊆ ��(�). Therefore, due to submodularity of
� ,

��(�) =
︁

�∈�
� (� ∩ (��(�) ∪ {�}))− � (� ∩ ��(�))

6
︁

�∈�
� (� ∩ (��(�

′) ∪ {�}))− � (� ∩ ��(�′)) by submodularity,

= � ′
�(�).

The following proposition shows that the diference between ��(�) and � (�)
(i.e., approximation for the full set) dominates the error for a speciic class of subsets
�, namely ancestral sets. These sets are also the sets � for which ��(��) factorised
in �� [Lauritzen, 1996].

Proposition 9 (Monotonicity of bounds - II). If � ⊂ � is an ancestral set of the
DAG �, then 0 6 ��(�)− � (�) 6 ��(�)− � (�).

Proof. Assuming, without loss of generality, that {1, . . . , �} is a topological ordering
where � = {1, . . . , �}, we have

��(�)− � (�) =

�︁

�=1

︀︀
� ({1, . . . , �})− � ({1, . . . , �− 1}

︀
−

︀
� ({�} ∪ ��(�))− � (��(�))

︀︀

>

�︁

�=1

︀︀
� ({1, . . . , �})− � ({1, . . . , �− 1}

︀
−

︀
� ({�} ∪ ��(�))− � (��(�))

︀︀

= ��(�)− � (�),

since all terms are non-negative.

Note that the bound in Proposition 9, does not hold if � is any subset of � . A
simple counter-example may be obtained from the entropy of discrete distributions
that factorize in the graphical model deined by �: in this case, ��(�) = � (�), but,
for two leaf nodes {�, �}, ��({�, �}) = ��({�}) + ��({�}) = � ({�}) + � ({�}), which
can only be equal to zero (i.e., between zero and ��(�)−� (�) = 0), if the variables
indexed by � and � are independent, which is not the case in general if the DAG has
a single connected component.

Proposition 10 (Submodularity). If the DAG is a directed tree (at most one parent
per node), then the bound ��(�) deines a submodular set function.

46

Proof. For a directed tree the bound ��(�) is in fact a quadratic function of the
indicator function 1�, with quadratic terms equal to � ({�, �}) − � ({�}) − � ({�})
which are negative by submodularity of � . The function �� is then a cut function
and is submodular.

Finally, when two DAGs are Markov equivalent, i.e., they entail the same condi-
tional independeces among the random variables [Koller and Friedman, 2009], then
the two bounds are equal:

Proposition 11 (Markov equivalence). If � = (�,�) and �′ = (�,� ′) are two
Markov equivalent graphs, then for all � ⊂ � , ��(�) = ��′(�).

Proof. Two Markov equivalent graphs may be obtained by reversing orders of edges
that are not involved in a “v-structure” [Koller and Friedman, 2009]. The result is
then straightforward.

3.3 Decomposable graphs

Triangulated graphs. A graph � = (�,�) is said to be triangulated if it
contains no chordless cycles of length greater than 3 and all triangulated graphs
are decomposable graphs [Koller and Friedman, 2009]. A vertex is simplicial if its
neighbors in the graph form a clique. A graph is recursively simplicial if it contains a
simplicial vertex � ∈ � and when � is removed, the subgraph that remains is recursively
simplicial. A graph is triangulated if and only if it is recursively simplicial [Lauritzen,
1996]. A perfect elimination ordering is the order in which simplicial vertices can
be removed from the graph. The neighbors of the vertex � ∈ � that are removed
after the vertex � is eliminated is denoted by ��(�) [Golumbic, 2004]. This naturally
deines a directed acyclic graph �.

Let us consider a decomposable graph � with maximal cliques �(�) and the edges
in its junction tree represented by � (�).

3.3.1 Bounds on submodular functions

We now deine the bound of the submodular function � by projection onto a de-
composable graph � = (�,�). Using recursive simpliciality, we deine the projection
function ��, similar to that of Eq. (3.2) as:

��(�) =
︁

�∈�

︁
� (� ∩ (��(�) ∪ {�}))− � (� ∩ ��(�))

︁
, (3.3)

where ��(�) denotes the neighbors of the simplicial vertex � during its elimination. We
also deine an equivalent bound with the junction tree representation; the projection
function ��, similar to Eq. (3.2), is then given by

��(�) =
︁

�∈�(�)

� (� ∩ �)−
︁

(�,�)∈� (�)

� (� ∩� ∩ �). (3.4)

47

We can now show that the two deinitions are equivalent and derive corollaries of
Proposition 7, Proposition 8, Proposition 9, for decomposable graphs.

Proposition 12 (Bounds for decomposable graphs). Let � be a submodular function.
Let � be a decomposable graph. The set function deined in Eq. (3.5) and Eq. (3.6)
are equal and are bounds on the set function � . Moreover,

(a) the bounds are tight on all cliques of the graph �,
(b) any decomposable subgraph of � will lead to a looser bound,
(c) if � is obtained by recursively removing simplicial vertices of the graph �, then

we have 0 6 ��(�)− � (�) 6 ��(�)− � (�).

Proof. We irst recall the two deinitions.

��(�) =
︁

�∈�

︂
� (� ∩ (��(�) ∪ {�}))− � (� ∩ ��(�))

︂
, (3.5)

��(�) =
︁

�∈�(�)

� (� ∩ �)−
︁

(�,�)∈� (�)

� (� ∩� ∩ �). (3.6)

Equivalence between Eq. (3.5) and Eq. (3.6) is a standard result in probabilistic
graphical models [Lauritzen, 1996], which states that if �(�) is a discrete distribution
with strictly positive probability mass function that factorises in �, i.e.,

�(�) =

︀
�∈�(�) ��(��)︀

(�,�)∈� (�) ��∩�(��∩�)
=

︁

�∈�

�(��i(�)∪{�})

�(��i(�))
. (3.7)

To show tightness of bounds on all cliques, we can always choose an elimination
ordering where a given maximal clique is eliminated irst, and we then obtain the
tightness as a consequence of Proposition 7.

In order to show the monotonicity, notice that if �′ is a subgraph of �, then there
is a sequence of decomposable graphs between �′ and � so that a single edge is added
between two graphs in the sequence [Giudici and Green, 1999]. We can then show
that at every forward step, the bound has to increase.

Finally, if a set � is obtained by removing simplicial vertices of the graph, � the
relationship between DAGs and decomposable graphs and Proposition 9 leads to the
desired result.

3.3.2 Decomposable graph structure learning

We have shown that a submodular function � , when projected onto a decompos-
able graph �, gives an bound �� with interesting monotonic properties. In the next
section, we will try to optimize the graph. Maximum likelihood structure learning
happens to be equivalent to minimizing ��(�) − � (�) with respect to the graph.
Typically, the set of decomposable graphs is restricted to have cliques of size � + 1,
which leads to a treewidth bounded by � (the treewidth of a decomposable graph is
exactly the maximal size of a clique minus one [Lauritzen, 1996]). These graphs are

48

usually considered because inference in these graphs may be performed in polynomial
time, with a degree that grows linearly in �.

Some properties of maximum likelihood structures may be transferred to the gen-
eral submodular case. For example, the best approximation is always given by max-
imal junction trees [Szántai and Kovács, 2012], i.e., decomposable graphs with max-
imal cliques of size � + 1 and separators of size �. Therefore, as in the Chapter 2,
we consider only the space of maximal junction trees with treewidth �. For these
decomposable graphs, denoting �� the set of subsets of � with cardinality less than
� + 1, we have

��(�) =
︁

�∈�k

��� (� ∩ �) (3.8)

for a certain � ∈ R
�k , with �� being zero for |�| 6 �−1. We denote by �� ⊂ R

�k the
convex hull of all such vectors � that correspond to a maximal decomposable graphical
model with treewidth equal to �. We denote the subsets of � with cardinality � + 1
as ����

� , which we use in Section 3.4.
Given � ⊂ � , the problem of learning the structure of the graph is to minimize

��(�) with respect to � in the extreme points of ��, and since the objective is linear,
this is equivalent to optimizing over the entire set ��. While the problem is NP-
hard [Srebro, 2002], several algorithms have been designed, based on local search tech-
niques [Szántai and Kovács, 2012], submodular function minimization [Narasimhan
and Bilmes, 2004] or convex relaxations in Chapter 2.

We can build the vector � from (�, �) of Chapter 2. For all cliques � of size �+1,
which represent the maximal cliques, �(�) = �(�). For all cliques � of size �, which
represent the separators, �(�) = −︀

�=(�∩�) �(�,�).
Special case of trees. When � = 1, maximal decomposable graphs with

treewidth equal to � are simple trees, and the problem of inding the best graph
is equivalent to a maximum weight spanning tree problem [Chow and Liu, 1968],
which can thus be found in polynomial time.

3.4 Variational submodular function maximization

We now show how the bounds described in Section 3.3 may be used for submodular
function maximization. Given our graphical model framework, we follow the tree-
reweighted framework of [Wainwright and Jordan, 2008]. Given a vertex � of �� (i.e.,
the incidence vector of a decomposable graph), from Proposition 12 and Eq. (3.8),
we have the bound

∀� ⊂ �, � (�) 6
︁

�∈�k

��� (� ∩ �) =
︁

�∈�k

� (�)��1�⊂�.

For best approximation we have, for all � ⊂ � ,

� (�) 6 min
�∈�k

︁

�∈�k

� (�)��1�⊂�.

49

We may thus obtain a bound on max�⊂� � (�) as

max
�⊂�

� (�) 6 max
�⊂�

min
�∈�k

︁

�∈�k

� (�)��1�⊂�.

Using weak duality, i.e., swapping min and max with an inequality, we obtain:

max
�⊂�

� (�) 6 min
�∈�k

max
�⊂�

︁

�∈�k

� (�)��1�⊂�.

We may equivalently parameterize � ⊂ � as � ∈ {0, 1}� through the bijection
� ↦→ 1�. This leads to the bound

max
�⊂�

� (�) 6 min
�∈�k

max
�∈{0,1}n

︁

�∈�k

� (�)��
︁

�∈�
��.

The maximization problem max�∈{0,1}n
︀

�∈�k
��� (�)

︀
�∈� �� is typically NP-

hard (however, it is not NP-hard when � is an extreme point of ��) [Wainwright and
Jordan, 2004]. We may relax it by irst introducing the set

ℳ� =
︁
� ∈ {0, 1}�k , ∃� ∈ {0, 1}�, �� =

︁

�∈�
��

︁
.

The maximization problem may then be reformulated as max�∈ℳk

︀
�∈�k

��� (�)�� ,
and thus on the convex hull of ℳ�. This convex hull is usually referred to as the
marginal polytope [Wainwright et al., 2005, Wainwright and Jordan, 2008] and has
exponentially many vertices and faces. A common outer relaxation is based on con-
sidering only the local consistencies between probabilities deined by �� , � ∈ �. This
leads to [Wainwright and Jordan, 2004]

�� =

︂
� ∈ [0, 1]�k , ∀� ∈ ����

� , ∀� ⊂ �,
︁

�:�⊆�⊆�

(−1)|�∖�|�� > 0

︂
.

We may now state the main proposition of this section:

Proposition 13. Let � be a submodular function. Then

max
�⊂�

� (�) 6 min
�∈�k

max
�∈�k

︁

�∈�k

� (�)���� = max
�∈�k

min
�∈�k

︁

�∈�k

� (�)���� .

If there exists a �-bounded treewidth decomposable graph � such that for all � ⊂ � ,
��(�) = � (�), then the bound is tight.

Proof. If �� =
︀

�∈� �� for all cliques in ��, then for all � ∈ ����
� and � ⊂ �

0 ≤
︁

�∈�
��

︁

�∈�∖�
(1− ��) =

︁

�⊂�∖�
(−1)|�|

︁

�∪�
��,

50

which implies thatℳ� ⊆ ��.
In the context of probabilistic graphical models, this is equivalent to deining

pseudo-marginals �� on the cliques and ensuring that the pseudo-marginals satisfy
the local constraints of the marginal polytope. These are the ��ℎ order relaxations.
The outer relaxation consists of all the extreme points of the marginal polytope as
extreme points. However, it also consists of other additional extreme points with
fractional elements. In the case of decomposable graph models, which are also known
as hypertrees, these relaxations are shown to be tight and yield the same optimal
solution [Wainwright and Jordan, 2004, 2008]. Therefore,

max
�⊂�

� (�) ≤ min
�∈�k

max
�∈ℳ
�(�, �) ≤ min

�∈�k

max
�∈�
�(�, �) (3.9)

To prove the tightness, let us assume that there exists a decomposable graph, �
denoted by a vertex �� ∈ �� such that � (�) = ��(�). Therefore,

max
�⊂�

� (�) = max
�⊂�

��(�)

= max
�∈ℳ
�(��, �) by deinition of the marginal polytope

= max
�∈�
�(��, �) as � is a decomposable graph

≥ max
�∈�

min
�∈�k

�(�, �) (3.10)

Eq. (3.9) and Eq. (3.10) show that they are tight.

The last proposition shows that a convex-concave saddle point problem may be
considered to provide an bound for max�⊂� � (�) and that it is tight for certain
submodular functions. Note that the tightness result is still valid if we restrict �� to
a subclass of graphical models that includes the graph �. The proof of the previous
proposition is a consequence of the exactness of the relaxation of inference in graphical
models, based on outer relaxations of the marginal polytope and its relationship
to the Sherali-Adams hierarchy [Wainwright and Jordan, 2004]. By increasing the
treewidth �, we can get tighter relaxations for growing sets of submodular functions,
thus replacing set functions which are low-order polynomials of the indicator vectors
by submodular functions. Note that these two sets are not included in one another
(see also diferences of submodular functions in Section 3.5).

Rounding. Given optimal vectors � and �, following [Sontag et al., 2011], a set
may be obtained by thresholding the values of �{�} for all singletons.

3.4.1 Optimization algorithm

In this section, we propose an algorithm to optimize the variational bound for max-
imizing submodular functions in Proposition 13. We denote by�(�, �) = ︀

�∈�k
� (�)����

51

the bilinear cost function, and the goal is to perform the following optimization

min
�∈�k

max
�∈�k

�(�, �), (3.11)

where the two domains are polytopes. We are going to use a simplicial method [Bert-
sekas and Yu, 2011], which operates as follows.

We denote by ℛ(�) the convex function max�∈�k
�(�, �). Our problem is to

minimize ℛ(�) on ��. Given a set of extreme points �1, . . . , �� of ��, we will minimize
ℛ(�) not on ��, but only on the convex hull � �

� of all points �1, . . . , ��, thus obtaining
a point �̄� and the corresponding optimal vector �� at �̄�. This point �̄� is optimal if
and only if min�∈�k

�(�, ��) = �(�̄�, ��). If the equality above is met, we have the
optimal solution; if not, then any minimizer ��+1 of min�∈�k

�(�, ��) may be added to
the list of extreme points and the algorithm iterates.

This algorithm converges in initely many iterations [Bertsekas and Yu, 2011] for
polytopes. However, the number of iterations is not known a priori (much like the
simplex method). Given the algorithm described above, there are still two algorithmic
pieces that are missing: obtaining min�∈� t

k
max�∈�k

�(�, �), i.e., the optimization
problem on the convex hull, and computing min�∈�k

�(�, ��), i.e., inding the next
graph to add.

Optimization on the convex hull. Since �� is deined by polynomially many
linear inequalities, we may introduce Lagrange multipliers ��� for each of the con-
straints

︀
�:�⊆�⊆�(−1)|�∖�|�� > 0, for � ∈ �max

� and each subset � of �. This
leads to

max
�∈�k

�(�, �) = min
�>0

max
�∈[0,1]�k

︂ ︁

�∈�k

� (�)���� +
︁

(�,�)

���

︂ ︁

�:�⊆�⊆�

(−1)|�∖�|��

︂︂

def
= min

�>0
�(�, �),

with �(�, �) a function which may be computed in closed form (as the maximum of
an aine function with respect to � ∈ [0, 1]�k), and which is jointly convex in (�, �).
Our optimization problem is then equivalent to

min
�>0,�⊤1=0

min
�>0
�
︁ �︁

�=1

����, �
︁
,

which can be solved by projected subgradient descent techniques, that can obtain both
approximate primal variables (�, �), but also dual variables � [Nedic and Ozdaglar,
2009].

Finding optimal graphs. When � = 1, maximizing linear functions over �� is
a maximum-weight spanning tree problem. However, as mentioned in Section 3.3.2,
it is NP-hard as soon as � > 1. There are two ways of dealing with the impossibility
of maximizing linear functions: (a) using a reduced convex hull by generating a large
number of random graphs–a strategy often used in variational inference in graphical
models, or (b) approximate minimization [Narasimhan and Bilmes, 2004] and the

52

1 2 3 4 5 6 7 8 9 10 11
400

450

500

550

600

650

700

Number of Iterations

C
o

s
t

o
f

M
a

x
−

C
u

t

Feige et al 2011

Buchbinder et al 2012

Primal Cost
Dual Cost

Rounding

1 1.5 2 2.5 3 3.5 4 4.5 5
500

1000

1500

2000

2500

3000

Number of Iterations

C
o
s
t
o
f
M

a
x
−

C
u
t

Feige et al 2011

Buchbinder et al 2012

Primal Cost
Dual Cost

Rounding

(a) (b)

Figure 3-1 – Performance on max-cut for (a) 2D-grid and (b) a random graph; the
primal cost is min�∈�k

�(�, ��) and the dual cost is min�∈� t
k
ℛ(�) in our algorithm.

algorithm proposed in Chapter 2. In this situation, the algorithm still provides an
bound on the submodular maximization problems, but the algorithm may stop too
early.

3.5 Extensions

In this section, we provide possible extensions of this framework to optimise difer-
ence of submodular functions and constrained submodular maximisation. Diference
of submodular functions. As shown by [Narasimhan and Bilmes, 2005], any set
function may be written as the diference of two submodular functions � and �. In
order to maximize � (�) − �(�), we can use the variational formulation �(�) =
max�∈�(�) �

⊤1�, where �(�) = {� ∈ R
�, ∀� ⊂ �, �⊤1� 6 �(�), �⊤1� = �(�)}

(see, e.g., [Bach, 2013, Fujishige, 2005]). We then have, for all � ⊂ � , � ∈ �� and
� ∈ �(�), � (�)−�(�) 6 ��(�)− �⊤1�. This leads to the convex relaxation:

max
�⊂�

� (�) 6 max
�∈�k

min
�∈�k,�∈�(�)

︁

�∈�k

� (�)���� −
︁

�∈�
���{�}.

Constrained problems. One common practical beneit of having convex re-
laxations is their lexibility: it is easy to add constraints on the problem. In our
variational framework, any constraints that can be expressed as convex constraints
on � ∈ℳ� may be added. For instance, it includes the cardinality constraint.

3.6 Experiments

In this section, we show the results of our algorithm to solve max-cut on graphs
with diferent conigurations: trees, 2D-grid and random graphs. In all our exper-

53

iments we restrict ourselves to � = 1, i.e., simple spanning trees. Given a set of
weights in an undirected graph, � : � × � → R+, a cut is deined as � (�) =
�(�, � ∖ �) =

︀
�∈�,�∈� ∖� �(�, �). The function � is known to be a non-monotone

submodular function. To illustrate our algorithm, we generated synthetic graphs of
diferent conigurations with |� | = 100 nodes and random positive edge weights. In
the case of a tree-based cut functions, the algorithm converges to an optimal solution
in the irst iteration. In the case of 2D grid (10 × 10), the algorithm converges to
an optimal solution as shown Figure 3-1-(a). We also show the performance of other
constant factor approximation algorithm proposed by Buchbinder et al. [Buchbinder
et al., 2012] and Feige et al. [Feige et al., 2011] on this coniguration. For generating
random graphs, we considered |� | = 100 nodes with random edge incident on each
vertex with probability 0.9. It can be observed in Figure 3-1-(b) that our algorithm
solves a convex optimization problem but with a larger integrality gap. This gap
could be reduced by using higher treewidth graphs, i.e., � > 1 instead of trees.

3.7 Conclusion

In this chapter, we have developed a novel approximation framework for submod-
ular functions, which enables us to provide convex relaxations of submodular function
maximization and related problems. While we have considered only trees in our ex-
periments, it is of clear interest to consider higher treewidths and explore empirically
the trade-ofs between computational complexity and tightness of our relaxations.

54

Chapter 4

Convex Relaxations for Parallel

Energy Minimisation

Abstract

Energy minimization has been an intensely studied core problem in computer vi-
sion. With growing image sizes (2D and 3D), it is now highly desirable to run energy
minimization algorithms in parallel. But many existing algorithms, in particular,
some eicient combinatorial algorithms, are diicult to parallelize. By exploiting
results from convex and submodular theory, we reformulate the quadratic energy
minimization problem as a total variation denoising problem, which, when viewed
geometrically, enables the use of projection and relection based convex methods.
The resulting min-cut algorithm is conceptually very simple, and solves a sequence
of TV denoising problems. We perform an extensive empirical evaluation comparing
state-of-the-art combinatorial algorithms and convex optimization techniques. On
small problems the iterative convex methods match the combinatorial max-low al-
gorithms, while on larger problems they ofer other lexibility and important gains:
(a) their memory footprint is small; (b) their straightforward parallelizability its
multi-core platforms; (c) they can easily be warm-started; and (d) they quickly reach
approximately good solutions, thereby enabling faster “inexact” solutions. A key con-
sequence of our approach based on submodularity and convexity is that it is allows to
combine any arbitrary combinatorial or convex methods as subroutines, which allows
one to obtain hybrid combinatorial and convex optimization algorithms that beneit
from the strengths of both.

This chapter is based on our preprint “Convex Optimization for Parallel Energy
Minimization”, K. S. Sesh Kumar, A. Barbero, S. Jegelka, S. Sra and F. Bach [Sesh Ku-
mar et al., 2015].

4.1 Goal

Goal. In this chapter, we explore and compare methods for energy minimisation
problems typical to computer vision setting that allow combining convex and com-

55

binatorial optimisation, and thereby ofer a way to parallelise recent successful com-
binatorial methods [Boykov and Kolmogorov, 2004, Chandran and Hochbaum, 2009,
Goldberg et al., 2011]. Our algorithms can run on large datasets while using only
limited memory, and are lexible enough to be ported to diferent hardware architec-
tures.

Motivation. Energy minimisation has become a key element in many low-level to
mid-level tasks in computer vision, such as segmentation or stereo correspondence (see
[Blake et al., 2011] for a survey). Many minimisation problems in computer vision
can be solved using graph cuts that have eicient codes available [Boykov et al., 2001].
These can be used to solve submodular quadratic penalties and can also be extended
to higher-order and non-submodular potentials too. However, when applying widely
used graph-cut code to huge problems in 3D or video, running time and memory
usage becomes problematic. Ideally, we would wish to have algorithmic lexibility
to decompose the problem into arbitrary subproblems that can be solved in parallel
and adapt to new architectures such as GPU clusters. These latter needs can be met
through convex optimisation.

Energy minimisation problems reformulated as min-cut problems as shown in Sec-
tion 1.2.3 and its relaxed form of total variation minimisation lead to tight relaxations.
This enabled Komodakis et al. [2011], Komodakis et al. [2008] and Savchynskyy et al.
[2011] to propose iterative convex optimisation methods for solving such problems.
However, the lack of smoothness (in the primal and dual problems) poses some dii-
culties in solving the problem eiciently.

Hence, they can be reformulated into total variation denoising outlined by [Hochbaum,
2001, Jegelka et al., 2013]. The gist of this approach is to replace the non-smooth
relaxation by the total variation (TV) denoising problem

min�∈Rn �(�) +
1

2
‖�− �‖2, (TV)

from which one may obtain an optimal solution of the energy minimisation problem
by thresholding. The beneit of this formulation is its smooth dual problem, which
has a natural geometric interpretation: it reduces to computing the distance between
two convex sets. Moreover, via the equivalence between energy minimisation and
projections we obtain fast projection subroutines, which in turn enable the use of
classical, popular projection methods [Jegelka et al., 2013].

Organisation. This chapter is organised as follows.
— We assume that the total variation � can be decomposed into sum of � total

variation functions, which can be solved in parallel. We derive the optimisation
problem to optimising the original total variation problem in Section 4.2.

— We show how algorithms proposed to solve the best approximation problem
introduced in Chapter 1 can be used to solve the total variation minimisation
in the decomposable setting in Section 4.3.

— In Section 4.4 and Section 4.5, we give implementation details and a thorough

56

setting �� to be an entire 2D grid sheet or 3D tensor.

4.2.2 Eicient 1D TV

As chains are the building blocks of our decomposition, performance of the overall
method is heavily inluenced by the speed at which 1D-TV can be solved. Being a
classic regulariser for image denoising, literature on solvers for diferent variations
of 1D and 2D TV abounds, though only recently fast direct methods for chains
have been proposed. A notable example is the dynamic programming method of
Johnson [Johnson, 2013], which guarantees linear complexity. Another outstanding
method is that of Condat [Condat, 2012]; it is based on a thorough analysis of the
KKT conditions and manages to achieve faster running times in practice, despite a
pathological quadratic cost worst-case. These TV solvers, however, only apply to
chains with constant weights.

To permit varying weights we use a recent method of [Barbero and Sra, 2014] that
obtains Condat’s method through a taut-string viewpoint [Grasmair, 2007], in a way
that allows weights along the chain. Experiments [Barbero and Sra, 2014] indicate
that this method shares the same performance as the original procedure, therefore
rapidly solving TV chains in linear time in practice.

We also point out that the choice of the 1D-TV solver is independent of the over-
lying topologies and optimisers. This allows us to localise complexity to highly tuned
TV chain solvers for the architecture under use (multicore, GPUs, etc.), thus provid-
ing overall modularity and adaption to the underlying hardware. In this chapter, we
use a general implementation for CPUs.

Message passing. Alternatively to the method that we have used, we may also use
message passing techniques, which could be more eicient on certain architectures.
These are directly adapted to solve the min-cut problem on a chain or a tree, not the
total variation problem. However, it is known that by a sequence of at most � min-cut
problems, one may obtain the exact TV solution [Hochbaum and Hong, 1995].

4.2.3 Decomposed dual problems

By their form (total variation or Lovász extensions of submodular functions),
the functions �� may be represented as a maximum of linear functions, that is,
��(�) = max�j∈�j

�⊤� �, for �� a certain polytope, � ∈ {1, . . . , �}. This form as
well as the decomposability of the total variation may be used to obtain a decom-
posed dual problem for the continuous Problem (C) that is described in Chapter 1.
The dual splits in the same way as the primal, and admits parallel optimisation
algorithms [Strandmark and Kahl, 2010, Komodakis et al., 2011, Kolmogorov, 2012,
Savchynskyy et al., 2011]. It however has a non-smooth objective function that makes
optimisation harder.

We hence next describe two dual problems for the (TV) problem [Jegelka et al.,
2013] that extends the dual formulation in Eq. (1.13) to sums of submodular functions.

58

First dual problem. We use a standard reformulation for dual decomposition:
we introduce a variable w = (�1, . . . , ��) ∈ R

� × · · · × R
� composed of � copies of

the input variable �, with the constraint that �� = � for each � ∈ {1, . . . , �} (see,
e.g., [Boyd et al., 2011]). We then add Lagrange multipliers �� ∈ R

� for each of
these constraints. Writing �� as a maximum of linear functions introduces a dual
variable vector �� ∈ ��. We collect those variables in a vector s = (�1, . . . , ��) ∈
K = �1 × · · · × ��. Overall, we obtain the following traditional formulation for
minimisation of sum of functions [Boyd et al., 2011].

min
�∈Rn

�︁

�=1

��(�) +
1

2
‖�− �‖2

= max
λ∈Rn×r, s∈K

min
�∈Rn, w∈Rn×r

�︁

�=1

�⊤
� �� +

1

2
‖�‖2 − �⊤�+

1

2�

�︁

�=1

‖��‖2 +
�︁

�=1

�⊤� (� − ��)

= max
λ∈L, s∈K

1

2
‖�‖22 −

�

2

�︁

�=1

‖�� − ��‖2

= max
λ∈L, s∈K

1

2
‖�‖22 −

�

2
‖s− λ‖2, (4.1)

where L denotes the set of λ ∈ R
�×� such that

︁�

�=1
�� = �. We are thus faced with

the problem of inding the closest point between two convex sets, which we explore
in Sections 4.3.2 and 4.3.3.

Note that if the function �� only depends on a subset of variables of �, then
we may restrict the corresponding variable �� to be zero on the complement of that
subset in order to have faster convergence for the iterative methods presented below.

Second dual problem. Given s ∈ K in Eq. (4.1), the optimal λ ∈ L may be
obtained in closed form:

�� =
�

�
+ �� −

1

�

�︁

�=1

��. (4.2)

This leads to another dual problem, where the variables λ ∈ L are maximised out:

max
s∈K

1

2
‖�‖22 −

1

2

⃦⃦︁�

�=1
�� − �

⃦⃦2
. (4.3)

The problem above has separable constraints �� ∈ ��, � ∈ {1, . . . , �} and a smooth
objective function. We will discuss optimisation procedures in Section 4.3.1.

Special case � = 2. When the function � is split into two functions, then the
problem in Eq. (4.3) is equivalent to inding the distance between the convex set �1

and the set {� − �2 | �2 ∈ �2}, for which methods presented in Sections 4.3.2
and 4.3.3 may be used.

59

AP, iter 1 AP, sequence AAR, iter 1 AAR, sequence

y1

λ1 = ΠL(y
1)

K

L

z0 ...

y1y2y3

K

L

z0

RK(z0)

RL(RK(z0))

K

Lz1

z0

K

L

y1

y2

y3

z1

z2

z3

z0

Figure 4-2 – Illustration of alternating projections (AP) and averaged alternating
relections (AAR) for Problem (4.1), the problem of inding the closest points between
a polytope K and a subspace L. The iterations start at the black point �0. AP
alternatingly projects onto K and then L. AAR relects at K and then at L; the
next iterate ��+1 (magenta) is the midpoint between �� and �L�K(�

�). For AAR, the
sequence �� diverges, but the projected shadow sequence of �� = ΠK(�

�) converges
(red). Here, AAR takes larger steps than AP and hence converges more quickly.

4.3 Optimisation for decomposable problems

Next, we describe optimisation procedures that exploit the decomposable struc-
ture of the dual problems Eq. (4.1) and Eq. (4.3), where in particular the Cartesian
decomposition K = �1 × · · · ×�� of the constraint sets plays an important role. In
particular, we exploit that the projection ontoK consists of � independent projections
onto the sets ��. By the above derivations, each of those projections can be done
quickly via a TV subroutine for each ��.

4.3.1 Cyclic projections

The irst method we consider for problem Eq. (4.3) is block coordinate descent
(BCD), a classic method [Bertsekas, 1999] that has recently witnessed a huge resur-
gence of interest in large-scale optimisation [Richtárik and Takáč, 2012, Beck and
Tetruashvili, 2013]. Since the cost function is a separable quadratic, BCD assumes
a form that is more commonly known as cyclic projections (more precisely, this is
so if we go through the constraint blocks in a cyclic order). Speciically, we update
coordinate blocks � = 1, . . . , � as follows:

�� ← argmax
�∈�i

−1

2

⃦⃦
� − �+

︁

� ̸=�

��
⃦⃦2

= Π�i

︀
�−

︁

� ̸=�

��
︀
,

where Π�i
denotes orthogonal projection onto set ��. This projection is solved by

solving a (fast) TV problem with ��. Notice that the variable �� is overwritten after
the update, so that when updating ��+1, the latest values �1, . . . , �� are used in the
projection.

In addition to cyclic projections, one could solve the smooth dual Eq. (4.3) using
a gradient-based method like FISTA [Beck and Teboulle, 2009]. Such a method is
also easy to implement because the Lipschitz constant of the gradient is easily seen

60

to be � and the required projections decompose due to the structure of K.

4.3.2 Alternating projections in product space

The method of cyclic projections ofers a practical choice. However, it is inherently
serial. To solve the problem in parallel, the irst dual formulation Eq. (4.1) turns out
to be more suited (note that this provides a second source of parallelisation, beyond
the fact that each polytope �� is itself a product of polytopes corresponding to
individual lines).

The key idea is to exploit the “product space” �1× · · · ×��. Since � is constant,
as previously mentioned, Eq. (4.1) is nothing but the problem of inding the closest
point between two convex sets [Jegelka et al., 2013]. Applying BCD, except this time
with just two coordinate blocks, we obtain the classic alternating projections (AP)
(cast in a product space setting), which performs for � = 0, 1, . . . , the iteration:

s
�+1 ← argmax

s∈K
−�
2
‖s− λ

�‖2 = ΠK(λ
�),

λ
�+1 ← argmax

λ∈L
−�
2
‖λ− s

�+1‖ = ΠL(s
�+1).

The key point here is that the projection ΠK decomposes

ΠK(λ) = (Π�1(�1), . . . ,Π�r
(��)),

so that each of the coordinate blocks may be computed in parallel (our implementation
exploits this fact), while the projection ΠL is merely an averaging step detailed in
Eq. (4.2).

4.3.3 Alternating relections in product space

The recent work [Jegelka et al., 2013] provided strong experimental evidence that
for projection problems of the form Eq. (4.1), AP is often outperformed by a more
reined method of [Bauschke and Luke, 2004], namely, averaged alternating relections
(AAR). Here, instead of alternating between the projection operations ΠK and ΠL,
one uses relection operators

�K := 2ΠK − �, �L := 2ΠL − �, (4.4)

while averaging them to ensure irm nonexpansivity, a property that greatly simpliies
convergence analysis [Bauschke and Luke, 2004]. To apply the AAR method, one irst
introduces the auxiliary vector z, which represents s−λ. Then, AAR takes the form

z
�+1 = 1

2
(�L�K + �)z�. (4.5)

However since usually K ∩ L = ∅, the sequence (z�) generated by Eq. (4.5) diverges
to ininity! The remarkable fact is that from this diverging sequence, we can ex-
tract a solution by maintaining a “shadow sequence” s

� ≡ ΠK(z
�). See Figure 4-2

61

for an illustration, and Theorem 3.13 in [Bauschke and Luke, 2004] for a proof of
convergence.

4.3.4 Extensions

Above, we outlined lexible, parallelizable convex optimisation algorithms for en-
ergy minimisation with pairwise submodular potentials. These algorithms straight-
forwardly generalise from binary labels to the multi-label case, to submodular higher-
order potentials, and to related problems. The reasons are two-fold: (1) the above
algorithms solve a minimum cut problem, and any methodological machinery that
builds on graph cuts as a subroutine will work with the above algorithms too; (2) the
decomposition theory and tightness of the relaxations hold generically for submodular
functions, not only graph cuts.

For multi-label energy minimisation, one may use move-making algorithms [Boykov
et al., 2001] that reduce the multi-label problem to a series of binary submodular en-
ergy minimisation problems. The methods above solve those binary problems. For
combinatorial algorithms, it has proved useful to reuse existing solutions and data
structures [Kohli and Torr, 2005]. “Warm-starting” is possible for the convex case too:
we simply use the �� vectors of the previous problem to initialise the new problem.
If the geometry of the polytopes � has not changed too much, this can save many
iterations (see Figure 4-3(b)).

Second, the convex approach directly generalises to submodular potentials that
involve more than two nodes at a time (following [Jegelka et al., 2013]); such poten-
tials include [Chambolle and Darbon, 2009, Stobbe and Krause, 2010, Kohli et al.,
2009a,b, Hein et al., 2013]. Many of those potentials correspond to suiciently sim-
ple submodular functions, often with small support, such that the relaxation (the
equivalent to total variation for graph cuts) can be solved fast. Moreover, the same
methods may even generalise to be used with roof duality [Rother et al., 2007].

Finally, since the above methods also solve the parametric version of the discrete
problem (by thresholding the solution of Eq. (TV) at diferent levels) as a byprod-
uct, they are also applicable to the numerous applications of parametric graph cuts
[Kolmogorov et al., 2007, Hochbaum, 2013].

4.4 Implementation details

The algorithms are inherently parallel by design as each projection/relection onto
a chain graph is independent of the other. Our implementation assumes decomposed
functions and the decomposition depends on the problem at hand. In Section 4.2.1,
we described some possible decompositions of grid-like graph structures on 2D and
3D graphs. However, this extends to many other decompositions. Empirically and
theoretically [Nishihara et al., 2014], longer connected structures lead to faster con-
vergence than decomposition e.g. into single edges.

62

4.4.1 Parallelisation

We use the eicient 1D-TV implementation of [Barbero and Sra, 2014] to solve the
projection/relection on chains in parallel. Our implementation is in C++ and uses
OpenMP; it ensures that the memory access pattern across threads is streamlined,
since bad memory access patterns can lead to considerable slowdowns. While the 1D-
TV solver is not optimised for GPUs, as explained in Section 4.2.2, it can be replaced
by message passing based subroutines, which are inherently parallel and also friendly
to GPU architectures.

4.4.2 Memory footprint

In our implementation every decomposable function must maintain states of dual
variables for each node in the graph. Thus, the memory requirement of our meth-
ods increases bilinearly in the number of decomposed functions and the number of
nodes. Our experiments suggest that the projection-based algorithms require less
memory than standard combinatorial algorithms—see Table 4.1. Unlike the 32 bit in-
tegers used in many other implementations, we use (64 bit) double precision numbers.
Reducing those to 32 bit would reduce the memory requirements of the projection
methods even further.

Algorithm Memory(GB)
AAR 26.82
BK [Boykov and Kolmogorov, 2004] 42.83
IBFS [Goldberg et al., 2011] 44.16
HPF [Chandran and Hochbaum, 2009] 55.46

Table 4.1 – Memory footprint for Abdomen dataset (512× 512× 551)

4.4.3 Running time

With the TV subroutine we use, each projection/relection step scales in the worst
case quadratically in the length of the chain (the chain length is typically equal to√
� or 3

√
�, where � is the total number of nodes in the 2D or 3D graphs), but is in

practice usually linear [Barbero and Sra, 2014]. In fact, it did not scale quadratically
for any of our data. Hence, empirically, the cost of each iteration grows bilinearly
with the number � of functions ��, and with the number of nodes in the graph.

4.5 Experiments

Our experiments study the performance of the projection algorithms on 2D and
3D-maxlow datasets [max], exploiting in particular the parallel nature of the al-
gorithms. We compare the algorithms to standard, popular maxlow implementa-

63

2^0 2^1 2^2 2^3 2^4
−4

−3

−2

−1

0

Number of Cores

lo
g

2
(t

im
e

)

Large

Medium

Small

2 4 6 8 10 12 14
0

200

400

600

800

1000

1200

1400

Frames of VideoSegA

N
u

m
b

e
r

o
f

It
e

ra
ti

o
n

s

Normal

Warm−start

(a) (b)

Figure 4-3 – Speedup of the AAR algorithm with parallelisation and warm starts.
(a) Normalised scale of performance with increasing number of cores on Bunny
datasets [max] of diferent resolutions. (b) Number of iterations taken by each from
of a video with "normal" initialisation and "warm start" from the dual variables of
the previous frame.

tions such as BK [Boykov and Kolmogorov, 2004], IBFS [Goldberg et al., 2011], and
HPF [Chandran and Hochbaum, 2009]. For other algorithms [Strandmark and Kahl,
2010, Komodakis et al., 2011], we have not been able to ind implementations that
were easily portable to 3D datasets.

Table 4.2 shows running time and the number of iterations for the projection
algorithms and others on a multicore machine 1. The timings are recorded using
the gettimeofday command. All the timings are for the optimisation phase only and
exclude data I/O (which is common to all methods).

4.5.1 2D problems

As a 2D example, we use the tsukuba data [max], a multi-label task on 2D images
corresponding to 4-neighborhood grids. To cope with multiple labels, we use alpha
expansion [Boykov et al., 2001]. Notably, the decomposition for 2D 4-connected grids
uses only two functions (vertical and horizontal), and therefore corresponds to the
special dual for � = 2 in Section 4.2.3. For this formulation, AAR converges remark-
ably faster than other iterative algorithms, and even outperforms the combinatorial
methods. The time comparisons at the bottom of Table 4.2 show that in general, the
running times of our methods are comparable to standard combinatorial algorithms
on images of size 384× 288.

Warm starts. Figure 4-3(b) shows the number of iterations required for the algo-
rithm to converge on each frame of size 480 × 360 of the VideoSegA [max] dataset.

1. 20 core, Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz with 100Gigabytes of memory. We
only use up to 16 cores of the machine to ensure accurate timings.

64

These are the consecutive frames of a video, which are 2D images with 8-neighborhood
grids (see Figure 4-1). We use the dual variables at the convergence of the previous
frame to warm-start the projection/relection process. This makes the method con-
verge to the optimal solution substantially quicker than with other initialisations.

4.5.2 3D problems

On the 3D data, the running times of the algorithms difers more widely. In
particular, the number of iterations for the algorithms to converge appears to depend
on two important characteristics: (i) number of nodes in the graph (dimensionality)
(ii) the edge weights in the graph (weights of the TV term). The latter afects the size
of the polytopes �, i.e., the diameter of the domain of the dual problem, a parameter
that commonly inluences the convergence of convex optimisation methods (see also
[Nishihara et al., 2014]).

Efect of edge weights. Table 4.2 shows results for larger edge weights, as well as
weights scaled by a factor of 0.1. The iterative methods become faster with smaller
weights, while the combinatorial methods robustly perform well with large weights
too. On many instances, AAR converges faster than the cyclic BCD, while on others
BCD is faster.

Approximate solutions. Since we can obtain a feasible solution (discrete cut)
from any iterate of the projection methods by thresholding the continuous vector,
Table 4.2 also shows the time taken to obtain an approximate solution with limited
error (10% and 2%, measured by Jaccard distance). The results suggest that, while
a complete dual certiicate of convergence for the discrete problem takes a bit longer,
a reasonable approximate solution can be obtained fairly quickly.

Parallel speedup. Figure 4-3-(a) shows the speedup of AAR achievable with an
increasing number of cores. This igure reports the running time on the Bunny dataset
(3D) with diferent resolutions: Large (401× 396× 312), Medium (202× 199× 157),
and Small (102×100×79). It is evident that more cores can improve the performance
of the algorithm considerably. When using GPUs, it is important to consider their
limited video memory, and hence the algorithms need to have a low memory footprint
to perform well.

Memory. Apart from running time, we also investigate the memory footprint of the
algorithms. Table 4.1 shows the memory footprint of all algorithms on the Abdomen
data [max], which is 512× 512× 551. AAR uses considerably less memory than the
standard algorithms.

65

Dataset
Time in seconds Iterations

AAR AAR AAR-JD AAR-JD AAR BK IBFS HPF AAR AAR AP BCD FISTA
(< 10%) (< 2%) (< 0.1) (< 0.02) (0.1x)

(3D) bone-100 4.2 7.4 3.9 10.9 14.4 8.5 6.3 1.0 105 73 846 146 422
(3D) bone-10 4.5 7.4 4.7 9.6 18.5 5.6 3.4 0.9 134 25 1183 206 592
(3D) bone_x-100 0.08 0.08 0.08 0.08 3.90 2.42 1.02 1.08 45 34 42 9 25
(3D) bone_x-10 0.09 0.09 0.09 0.09 3.70 1.86 0.93 0.75 45 23 44 10 26
(3D) bone_xy-100 0.01 0.01 0.02 0.02 1.25 0.79 0.68 0.40 44 36 26 6 16
(3D) bone_xy-10 0.01 0.01 0.03 0.03 1.18 0.64 0.53 0.29 36 21 27 7 17
(3D) bone_xyz-100 0.39 0.54 0.51 0.51 0.91 0.47 0.32 0.16 57 43 185 36 98
(3D) bone_xyz-10 0.34 0.57 0.46 0.48 0.82 0.36 0.33 0.11 57 21 185 37 98
(3D) bone_xyz_x-100 0.42 0.43 0.42 0.43 0.53 0.14 0.09 0.06 53 48 618 88 256
(3D) bone_xyz_x-10 0.43 0.47 0.39 0.39 0.48 0.12 0.03 0.05 50 23 615 97 290
(3D) bone_xyz_xy-c100 0.24 0.24 0.21 0.21 0.26 0.05 0.03 0.03 29 28 117 25 63
(3D) bone_xyz_xy-c10 0.18 0.22 0.18 0.22 0.24 0.04 0.02 0.02 30 23 120 25 64
(3D) babyface-100 3.6 8.2 9.2 32 33.5 25.7 12.3 9.4 509 346 873 550 1360
(3D) babyface-10 6.2 9.4 7.5 13.9 35.2 14.3 7.9 7.6 543 223 793 420 1162
(3D) bunny-lrg 16.7 28.3 1.28 1.28 186.6 9.5 6.3 41.2 145 52 796 133 406
(3D) bunny-med 1.72 2.72 0.14 0.14 7.47 1.07 1.27 2.27 52 25 94 17 52
(3D) bunny-sml 0.12 0.19 0.11 0.11 0.38 0.11 0.17 0.23 35 16 111 18 58
(3D) liver-100 10.3 15.0 4.88 4.88 38.5 7.3 4.7 4.7 654 503 1682 1444 2873
(3D) liver-10 10.4 15.8 5.06 5.06 33.1 3.4 3.2 3.3 523 407 1586 1290 2754
(3D) abdomen_long 525 701 441 1445 1445 212 110 68 468 349 2532 939 1432
(3D) abdomen_short 578 772 468 1540 1593 119 60 29 485 231 2373 953 1428
(3D) adhead-100 9.5 27.2 0.2 8.5 42.2 10.1 8.1 13.6 208 176 453 104 148
(3D) adhead-10 9.1 25.4 0.2 4.5 42.3 6.3 8.4 10.5 208 105 395 111 176
(2D) BVZ-tsukuba 0.15 0.18 0.02 0.01 0.21 0.31 0.20 0.24 30 25 110 79 50

Table 4.2 – Performance comparison of AAR with BK [Boykov and Kolmogorov, 2004], IBFS [Goldberg et al., 2011], and
HPF [Goldberg et al., 2011] on 3D datasets with 6 connectivity. AAR(< �%) denotes the time taken for the algorithm to ind
a cut whose diference to the optimal cut is �% of the diference between the cut in the irst iteration and the optimal cut.
AAR-JD(< �) denotes time taken by the algorithm to reduce Jaccard Distance to �. AAR(0.1x) is the number of iterations
taken by AAR after scaling the pairwise weights by 0.1.

66

4.6 Conclusion

We have proposed parallel iterative algorithms for binary energy minimisation
problems. The algorithms rely on a fast projection subroutine. For binary submodular
potentials (graph cuts), this subroutine is simply a total variation problem, which can
be eiciently solved on sub-graphs with special structure. In other examples, these
subroutines could be fast algorithms for solving cuts on arbitrary subgraphs, or for
simpler submodular energies. Hence, while the experiments here concentrate on cuts
and decompositions into line graphs, the same methods apply to decompositions into
2D sheets, 3D cubes or any other subgraphs, and to sums of simple higher-order
potentials.

We observed that the iterative methods perform similarly to combinatorial meth-
ods on 2D grid graphs, and require less memory than other, popular implementations
of maximum low algorithms. The tradeofs between convex and combinatorial meth-
ods illustrated here have some interesting implications, and suggest a wider study
of integrating combinatorial and convex methods via diferent decompositions. For
example, instead of TV oracles for line graphs, one may use discrete oracles such as
BK [Boykov and Kolmogorov, 2004] for larger specialised subgraphs. A 3D tensor
can then be easily decomposed into two components: grids and lines.

We propose an algorithm which enables us use to these discrete oracles instead of
total variation oracles for solving the Problem (TV) in Chapter 5.

67

68

Chapter 5

Active-Set Methods for Submodular

Minimisation Problems

Abstract

We consider submodular optimization problems such as submodular function min-
imization, referred to as SFM and quadratic problems regularized by the Lovász exten-
sion; for cut functions, this corresponds respectively to graph cuts and total variation
(TV) denoising. Given a submodular function with an SFM oracle, we propose a new
active-set algorithm for total variation denoising, which is more lexible than existing
ones; the algorithm may be seen as a local descent algorithm over ordered partitions
with explicit convergence guarantees. For functions that decompose into the sum of
two functions �1 and �2 with eicient SFM oracles, we propose a new active-set algo-
rithm for total variation denoising (and hence for SFM by thresholding the solution
at zero). This algorithm also optimizes over ordered partitions and improves over
existing ones based on TV or SFM oracles for �1 and �2.

This chapter is based on our preprint “Active-set Methods for Submodular Op-
timization”, K. S. Sesh Kumar, F. Bach [Sesh Kumar and Bach, 2015] and another
article “Active-set Methods for Submodular Minimisation Problems”, K. S. Sesh Ku-
mar, F. Bach under submission to International Journal on Computer Vision.

5.1 Goal

Goal. In this chapter, we consider a normalised submodular function � deined on
� = {1, . . . , �}, i.e., � : 2� → R such that � (∅) = 0 and a modular function �, i.e.,
� ∈ R

�. We aim at minimizing with respect to � ∈ R
�:

�(�)− �⊤� + 1
2
‖�‖22, (5.1)

where � is the Lovász extension of � . If � is a cut function in a weighted undirected
graph, then � is its total variation, hence the denomination of total variation denoising
problem, which we use in this chapter—since it is equivalent to minimizing 1

2
‖� −

�‖22 + �(�).

69

We also consider the general submodular function minimisation (SFM) problem:

min
�∈[0,1]n

�(�)− �⊤� = min
�⊆�

� (�)− �(�), (5.2)

where we use the convention �(�) = �⊤1�, with 1� ∈ {0, 1}� is the indicator vector
of the set �.

In this chapter, we assume that � can be decomposed into “simple” submodular
functions such that � =

︀�
�=1 �� and we have SFM oracles that solve,

min
�⊆�

��(�)− ��(�), (5.3)

where �� is a modular function. Our goal is to propose iterative algorithms to solve
these two problems given in Eq. (5.1) and Eq. (5.2) using SFM oracles of “simple”
functions that solve Eq. (5.3). Note that our algorithms minimise general submodular
functions as any submodular function can be decomposed into a normalised submod-
ular function, � , i.e., � (∅) = 0 and a modular function, � [Bach, 2013].

Motivation. Generic algorithms to optimise SFM in Eq. (5.2) or TV in Eq. (5.1)
problems which only access � through function values (e.g., subgradient descent or
min-norm-point algorithm) are too slow without any assumptions [Bach, 2013], as
for signal processing applications, high precision is typically required (and often the
exact solution).

For decomposable problems, i.e., when � = �1+· · ·+��, where each �� is “simple”.
when algorithms use more powerful oracles than function evaluations, the running
times improve. When only SFM oracles are used for each function �� [Stobbe and
Krause, 2010], they remain signiicantly slower than existing algorithms. However,
when total variation oracles for each �� are used, they become competitive as shown
in Chapter 4 and [Jegelka et al., 2013]. Note that, in general, the exact total variation
oracles are at most �(�) times expensive than their SFM oracles. However, there are
a subclass of submodular functions (cut functions and other submodular functions
that can be written in form of cuts) whose total variation oracles are only �(1) times
expensive than the corresponding SFM oracles but are still more expensive than their
total variation oracles. Therefore, the goal is to design fast optimisation strategies
using eicient SFM oracles for each function �� rather than their expensive TV oracles
in Chapter 4 and [Jegelka et al., 2013] to solve the SFM and TV denoising problems
of � given by Eq. (5.2) and Eq. (5.1) respectively. An algorithm was proposed by
[Landrieu and Obozinski, 2016] to search over partition space for solving more generic
problems of the form Eq. (5.1) with the unary terms (−�⊤�) replaced by a convex
diferentiable function. Probabilistic graphical models provide a classical example of
functions with eicient SFM oracles.

Organisation. This chapter is organised as follows.
— We exploit the polytope structure of these non-smooth optimisation problems,

where each face is indexed by a partition of the underlying ground set � =

70

{1, . . . , �}. The main insight of this chapter is that once given a face of the
main polytope associated with the submodular function and its tangent cone,
orthogonal projections may be done in linear time by isotonic regressions. We
will only need SFM oracles, i.e., the minimisation of � (�)− �(�) with respect
to � ⊆ � for all possible � ∈ R

�, to check optimality of this partition and/or
generate a new partition.

— Given a submodular function � with an SFM oracle, we propose a new active-
set algorithm for total variation denoising in Section 5.2, which is more eicient
and lexible than existing ones (i.e., it allows warm restarts). This algorithm
may be seen as a local descent algorithm over ordered partitions.

— Given a decomposition of � = �1+�2, with available SFM oracles for each ��,
we propose an active-set algorithm for total variation denoising in Section 5.3
(and hence for SFM by thresholding the solution at zero). These algorithms
optimises over ordered partitions (one per function ��). Following [Jegelka
et al., 2013], they are also naturally parallelizable. Given that only SFM
oracles are needed, it is much more lexible, and allow more applications as
shown in Section 5.4.

5.2 Ordered Partitions and Isotonic Regression

The main insight of this chapter is

(a) to consider the detailed face structure of the base polytope �(�) and

(b) to notice that for the outer approximation of �(�) based on the tangent cone
to a certain face, the orthogonal projection problem (which is equivalent to
constrained TV denoising) may be solved eiciently in �(�) using a simple
algorithm used to solve isotonic regression. This allows an explicit eicient
local search over ordered partitions.

�1 + �2 = � ({1, 2})

s1 + s3 = F ({1, 3})
s2 + s3 = F ({2, 3})

s2 = F ({2})s1 = F ({1})

s3 = F ({3})

s1
s2

s3

0
B(F)

({3}, {1,2})

({2}, {1,3})({1}, {2,3})

({1,3}, {2})

({1,2}, {3})

({2,3}, {1})

({3}, {2}, {1})({3}, {1}, {2})

({2}, {3}, {1})

({2}, {1}, {3})

({1}, {3}, {2})

({1}, {2}, {3})

(a) (b)

Figure 5-1 – Base polytope for �=3. (a) Deinition from its supporting hyperplanes
{�(�) = � (�)}. (b) Each face (point or segment) of �(�) is associated with an
ordered partition.

71

5.2.1 Outer approximations of �(�)

In this section, we use ordered partitions to deine outer approximations of the
base polytope and derive the support function of the outer approximation.

Supporting hyperplanes. The base polytope is deined as the intersection of half-
spaces {�(�) 6 � (�)}, for � ⊆ � . Therefore, faces of �(�) are indexed by subsets
of the power set. As a consequence of submodularity [Bach, 2013, Fujishige, 2005],
the faces of the base polytope �(�) are characterised by “ordered partitions” � =
(�1, . . . , ��) with � = �1∪· · ·∪��. Then, a face of �(�) is such that �(��) = � (��)
for all �� = �1 ∪ · · · ∪ ��, � = 1, . . . ,�. See the Figure 5-1-(b) for the enumeration
of faces for � = 3 based on an enumeration of all ordered partitions. Such ordered
partitions are associated to vectors � =

︀�
�=1 ��1�i

with �1 > . . . > �� with all
solutions of max�∈�(�)�

⊤� being on the corresponding face.
From a face of �(�) deined by the ordered partition �, we may deine its tangent

cone �︀�(�) at this face as the set

�︀�(�) =

︂
� ∈ R

�, �(�) = � (�), ∀� ∈ {1, . . . ,�− 1}, �(��) 6 � (��)

︂
. (5.4)

These are outer approximations of �(�), as illustrated in Figure 5-2 for two ordered
partitions.

�

̂
�({2,3},{1})(F)

B̂1(F)

�

̂
�({2},{3},{1})(F)

(a) (b)

Figure 5-2 – Projection algorithm for a single polytope: projecting on the outer
approximation (a) �︀({2,3},{1})(�), with a projected element which is not in �(�)

(blue), then on (b) �︀({2},{3},{1})(�), with a projected element being the projection of
� onto �(�) (red).

Support function. We may compute the support function of �︀�(�), which should
be an upper bound on �(�) since this set is an outer approximation of �(�).

sup
�∈�︀�(�)

�⊤� = sup
�∈Rn

inf
�∈Rm−1

+ ×R

�⊤�−
�︁

�=1

��(�(��)− � (��))

72

(using Lagrangian duality),

= inf
�∈Rm−1

+ ×R

sup
�∈Rn

�⊤
︁
� −

�︁

�=1

(�� + · · ·+ ��)1�i

︁

+
�︁

�=1

(�� + · · ·+ ��)
︀
� (��)− � (��−1)

︀
,

= inf
�∈Rm−1

+ ×R

�︁

�=1

(�� + · · ·+ ��)
︀
� (��)− � (��−1)

︀

such that � =
�︁

�=1

(�� + · · ·+ ��)1�i
.

Thus, by deining �� = �� + · · · + ��, which are decreasing, the support function is
inite for � having ordered level sets corresponding to the ordered partition � (we
then say that � is compatible with �), i.e., � =

︀�
�=1 ��1�i

; then it is then equal to
the Lovász extension �(�). Otherwise, when � is not compatible with �, the support
function is ininite.

Let us now denote �� as a set of all weight vectors � that are compatible with
the ordered partition �. This can be deined as

�� = {� ∈ R
� | ∃� ∈ R

�, � =
�︁

�=1

��1�i
, �1 ≥ . . . ≥ ��}.

Therefore,

sup
�∈�︀�(�)

�⊤� =

︃
�(�) if � ∈ ��,

∞ otherwise.
(5.5)

5.2.2 Isotonic regression for restricted problems

Given an ordered partition � = (�1, . . . , ��) of � , we consider the original TV
problem restricted to � in ��. Since on this constraint set �(�) =

︀�
�=1 ��

︀
� (��)−

� (��−1)
︀
is a linear function, this is equivalent to

min
�∈Rm

�︁

�=1

��
︀
� (��)− � (��−1)− �(��)

︀
+ 1

2

︀�
�=1 |��|�2� such that �1 > · · · > ��.(5.6)

This may be done by isotonic regression in complexity �(�) by the weighted pool-
adjacent-violator algorithm [Best and Chakravarti, 1990]. Typically the solution �
will have some values which are equal to each other, which corresponds to merging
some sets ��. If these merges are made, we now obtain a basic ordered partition 1

1. Given a submodular function � and an ordered partition �, when the unique solution problem
in Eq. (5.6) is such that �1 > · · · > �m, we say that we � is a basic ordered partition for � − �.
Given any ordered partition, isotonic regression allows to compute a coarser partition (obtained by
partially merging some sets) which is basic.

73

such that our optimal � has strictly decreasing values. Primal stationarity leads to
explicit values of � given by �� = �(��)/|��| − (� (��)− � (��−1))/|��|, i.e., given �,
the exact solution of the TV problem may be obtained in closed form.

Dual interpretation. Eq. (5.6) is a constrained TV denoising problem that min-
imises the cost function in Eq. (5.1) but with the constraint that weights are com-
patible with the ordered partition �, i.e. min�∈�� �(�) − �⊤� + 1

2
‖�‖22. The dual

of the problem can be derived exactly the same way as shown in Eq. (1.13), using
the deinition of the support function deined by Eq. (5.5). The corresponding dual is
given by max�∈�︀�(�)−1

2
‖�−�‖22, with the relationship � = �−� at optimality. Thus,

this corresponds to projecting � on the outer approximation of the base polytope,
�︀�(�), which only has � constraints instead of the 2�−1 constraints deining �(�).
See an illustration in Figure 5-2.

5.2.3 Checking optimality of a basic ordered partition

Given a basic ordered partition �, the associated � ∈ R
� is optimal for the TV

problem in Eq. (5.1) if and only if � = �−� ∈ �(�) due to optimality conditions in
Eq. (1.13), which can be checked by minimizing the submodular function �−�. For
a basic partition, a more eicient algorithm is available.

By repeated application of submodularity, we have for all sets � ⊆ � , if �� =
� ∩ ��:

� (�)− �(�) = � (� ∩ �)−
�︁

�=1

�(��) (as � is a modular function),

= � (�� ∩ �)−
�︁

�=1

�(��) +
�−1︁

�=1

� (�� ∩ �)− � (�� ∩ �) (as �� = �),

=
�︁

�=1

� (�� ∩ �)− � (��−1 ∩ �)− �(��) (let �0 = ∅ and as � (∅) = 0),

=
�︁

�=1

� ((��−1 ∪ ��) ∩ �)− � (��−1 ∩ �)− �(��) (since �� = ��−1 ∪ ��),

=
�︁

�=1

� ((��−1 ∩ �) ∪ (�� ∩ �))− � (��−1 ∩ �)− �(��),

=
�︁

�=1

� ((��−1 ∩ �) ∪ ��)− � (��−1 ∩ �)− �(��),

>

�︁

�=1

︀
� (��−1 ∪ ��)− � (��−1)− �(��)

︀

(as (��−1 ∩ �) ⊆ ��−1 and due to submodularity of �).

Moreover, we have �(��) = � (��)−� (��−1), which implies �(��) = � (��) for all � ∈
{1, . . . ,�}, all subproblemsmin�i⊆�i

� (��−1∪��)−� (��−1)−�(��) have non-positive

74

values. This implies that we may check optimality by solving these � subproblems: �
is optimal if and only if all of them have zero values. This leads to smaller subproblems
whose overall complexity is less than a single SFM oracle calls. Moreover, for cut
functions, it may be solved by a single oracle call on a graph where some edges have
been removed [Tarjan et al., 2006].

Given all sets ��, we may then deine a new ordered partition by splitting all
�� for which � (��−1 ∪ ��) − � (��−1) − �(��) < 0. If no split is possible, the pair
(�, �) is optimal for Eq. (5.1). Otherwise, this new strictly iner partition may not
be basic, the value of the optimisation problem in Eq. (5.6) is strictly lower as shown
in Section 5.2.5 (and leads to another basic ordered partition), which ensures inite
convergence of the algorithm.

5.2.4 Active-set algorithm

This leads to the active-set algorithm below.
— Input: Submodular function � with SFM oracle, � ∈ R

�, ordered partition �.
— Algorithm: iterate until convergence

(a) Solve Eq. (5.6) by isotonic regression.
(b) Merge the sets with equal values of �� to deine a new ordered partition �.

Deine � =
︀�

�=1 ��1�i
and � = �− �.

(c) Check optimality by solving min�i⊆�i
� (��−1 ∪ ��)−� (��−1)−�(��) for

� ∈ {1, . . . ,�}.
(d) If � not optimal, for all �� which are diferent from ∅ and ��, add the new

set ��−1 ∪ �� in the ordered partition �.
— Output: � ∈ R

� and � ∈ �(�).
Relationship with divide-and-conquer algorithm. When starting from the trivial

ordered partition � = (�), then we exactly obtain a parallel version of the divide-
and-conquer algorithm [Groenevelt, 1991], that is, the isotonic regression problem in
(a) is always solved without using the constraints of monotonicity, i.e., there are no
merges in (b), and thus in (c), it is not necessary to re-solve the problems where
nothing has changed. This shows that the number of iterations is then less than �.
The key added beneits in our formulation is the possibility of warm-starting, which
can be very useful for building paths of solutions with diferent weights on the total
variation. This is also useful for decomposable functions where many TV oracles are
needed with close-by input. See experiments in Section 5.4.

5.2.5 Proof of convergence

In order to prove convergence of the algorithm, we only need to show that if the
optimality check fails in step (c), then step (d) introduces splits in the partition, which
ensures that the isotonic regression in step (a) of the next iteration has a strictly lower
value. Let us recall the isotonic regression problem solved in step (a):

min
�∈Rm

�︁

�=1

︂
��
︀
� (��)− � (��−1)− �(��)

︀
+ 1

2
|��|�2�

︂
(5.7)

75

such that �1 > · · · > ��. (5.8)

Steps (a-b) ensure that the ordered partition � is a basic ordered partition war-
ranting that the inequality constraints are strict, i.e., no two partitions have the same
value �� and the values �� for each element of the partition � = {1, . . . ,�} is given
through

��|��| = �(��)− (� (��)− � (��−1)), (5.9)

which can be calculated in closed form.

The optimality check in step (c) decouples into checking the optimality in each
subproblem as shown in Section 5.2.3. If the optimality test fails, then there is a subset
of �� of �� for some of elements of the partition � such that � (��−1∪��)−� (��−1)−
�(��) < 0. We will show that the splits introduced by step (d) strictly reduces the
function value of isotonic regression in Eq. (5.7), while maintaining the feasibility of
the problem. The splits modify the cost function of the isotonic regression as follows

Eq. (5.7) =
�︁

�=1

︂
��
︀
� (��−1 ∪ ��)− � (��−1)− �(��)

︀

+��
︀
� (��)− � (��−1 ∪ ��)− �(�� ∖ ��)

︀

+1
2
�2� |��|+ 1

2
�2� |�� ∖ ��|

︂
. (5.10)

Let us assume a positive �, which is small enough. The direction that the isotonic
regression moves is �� + � for the partition corresponding to �� and �� − � for the
partition corresponding to ��∖�� maintaining the feasibility of the isotonic regression
problem, i.e., �1 > . . . > �� + � > �� − � > . . . > �� . The function value is given by

�︁

�=1

︂
(�� + �)

︀
� (��−1 ∪ ��)− � (��−1)− �(��)

︀

+(�� − �)
︀
� (��)− � (��−1 ∪ ��)− �(�� ∖ ��)

︀

+1
2
(�� + �)2|��|+ 1

2
(�� − �)2|�� ∖ ��|

︂

=
�︁

�=1

︂︀
��
︀
� (��−1 ∪ ��)− � (��−1)− �(��)

︀

+��
︀
� (��)− � (��−1 ∪ ��)− �(�� ∖ ��)

︀

+1
2
�2� |��|+ 1

2
�2� |�� ∖ ��|

︀

+�
︀
2� (��−1 ∪ ��)− � (��−1)− � (��)

−�(��) + �(�� ∖ ��) + ��|��| − ��|�� ∖ ��|
︀

+1
2
�2|��|

︂
.

76

From this we can compute the directional derivative of the function, which is given
by

2� (��−1 ∪ ��)− � (��−1)− � (��)

−�(��) + �(�� ∖ ��) + |��|�� − |�� ∖ ��|��
= 2� (��−1 ∪ ��)− � (��−1)− � (��)

−2�(��) + �(��) + 2|��|�� − |��|��
= 2

︀
� (��−1 ∪ ��)− � (��−1)− �(��) + ��|��|

︀

(substituting Eq. (5.9))

= 2
︀
� (��−1 ∪ ��)− � (��−1)− �(��)

︀
< 0

(as � = �− � and Eq. (5.2.5)).

This shows that the function strictly decreases with the splits introduced in step (d).

Certiicates of optimality. The algorithm has dual-infeasible iterates � (they only
belong to �(�) at convergence). However, after step (c), we have that for all � ⊂ � ,
� (�) − �(�) > −�. This implies that � ∈ �(� + �1Card∈(1,�)), i.e., � ∈ �(��) with
�� = � + �1Card∈(1,�). Since by construction � = �− �, we have:

��(�)− �⊤� + 1
2
‖�‖22 + 1

2
‖�− �‖22 = �

⃒⃒
max
�∈�

�� −min
�∈�

��

⃒⃒
+ �(�)− �⊤� + ‖�‖2

= �
⃒⃒
max
�∈�

�� −min
�∈�

��

⃒⃒

+
�︁

�=1

��
︀
� (��)− � (��−1)− �(��)

︀
+

�︁

�=1

|��|�2�

= �
⃒⃒
max
�∈�

�� −min
�∈�

��

⃒⃒
(using Eq. (5.9))

= � range(�),

where range(�) = max�∈� �� − min�∈� ��. This means that � is approximately
optimal for �(�)−�⊤�+ 1

2
‖�‖22 with certiied gap less than � range(�)+� range(�*).

Maximal range of an active-set solution. For any ordered partition �, and the
optimal value of � (which we know in closed form), we have range(�) 6 range(�) +
max�∈�

︀
� ({�}) + � (� ∖{�})− � (�)

︀
. Indeed, for the � part of the expression, this

is because values of � are averages of values of �; for the � part of the expression,
we always have by submodularity:

� (��)− � (��−1) 6
︁

�∈�i

� ({�})

and

� (��)− � (��−1) > −
︁

�∈�i

� (�)− � (� ∖{�}).

77

�(�1)− �
2

�
2 − �(�2)

�1−�2
�
2−�20

�

�(�1)− �
2 �

2 − �(�2)

0

̂
��1(�1)− �

2
�
2 −

̂
��2(�2)

�1 − �
2 �

2 − �2

�

(a) (b)

Figure 5-3 – Closest point between two polytopes. (a) Output of Dykstra’s alter-
nating projection algorithm for the TV problem, the pair (�1, �2) may not be unique
while � = �1 + �2 − � is. (b) Dykstra’s alternating projection output for outer
approximations.

Exact solution. If the submodular function only takes integer values and we have
an approximate solution of the TV problem with gap � 6 1

4�
, then we have the

optimal solution [Chakrabarty et al., 2014].

Relationship with traditional active-set algorithm. Given an ordered par-
tition �, an active-set method solves the unconstrained optimisation problem in
Eq. (5.6) to obtain a value of � using the primary stationary conditions. The corre-
sponding primal value � =

︀�
�=1 ��1�i

and dual value � = �− � are optimal, if and
only if,

Primal feasibility : � ∈ ��, (5.11)

Dual feasibility : � ∈ �(�). (5.12)

If Eq. (5.11) is not satisied, a move towards the optimal � is performed to ensure
primal feasibility by performing line search, i.e., two consecutive sets �� and ��+1

with increasing values of �, i.e., �� < ��+1 are merged and a potential � is computed
until primal feasibility is met. Then dual feasibility is checked and potential splits
are proposed.

In our approach, we consider a diferent strategy which is more direct and does
many merges simultaneously by using isotonic regression. Our method explicitly
moves from ordered partitions to ordered partitions and computes optimal vector �,
which is feasible.

5.3 Decomposable Problems

Many interesting problems in signal processing and computer vision naturally
involve submodular functions � that decompose into � = �1 + · · · + ��, with �
“simple” submodular functions. For example, a cut function in a 2D grid decomposes
into a function �1 composed of cuts along vertical lines and a function �2 composed

78

of cuts along horizontal lines. For both of these functions, SFM oracles may be solved
in �(�) by message passing. For simplicity, we consider the case � = 2 functions, but
following [Komodakis et al., 2011, Jegelka et al., 2013], our framework easily extends
to � > 2.

5.3.1 Reformulation as the distance between two polytopes

Following our derivations in Chapter 1, we have the primal/dual problems :

min
�∈Rn

�1(�) + �2(�)− �⊤� + 1
2
‖�‖22

= min
�∈Rn

max
�1∈�(�1), �2∈�(�2)

�⊤(�1 + �2)− �⊤� + 1
2
‖�‖22

= max
�1∈�(�1), �2∈�(�2)

min
�∈Rn

(�1 + �2 − �)⊤� + 1
2
‖�‖22

= max
�1∈�(�1), �2∈�(�2)

−1
2
‖�1 + �2 − �‖22, (5.13)

with � = �− �1 − �2 at optimality.
This is the projection of � on the sum of the base polytopes �(�1) + �(�2) =

�(�). Further, this may be interpreted as inding the distance between two polytopes
�(�1)−�/2 and �/2−�(�2). Note that these two polytopes typically do not intersect
(they will if and only if � = 0 is the optimal solution of the TV problem, which is an
uninteresting situation).

Alternating projections (AP). The updates of each iteration of alternating pro-
jections described in Chapter 1 leads to the following updates for our problem.

�� = Π�/2−�(�2)Π�(�1)−�/2(��−1),

where �0 is an arbitrary starting point. Thus each of these steps require TV oracle
for �1 and �2 since projection onto the base polytope is equivalent to performing TV
denoising as shown in Eq. (1.13).

Averaged alternating relections (AAR). The updates of the each iteration of
the averaged alternating relections, also described in Chapter 1, which starts with
an auxiliary sequence �0 initialised to 0 vector, are given by

�� =
1
2
(� +��/2−�(�2)��(�1)−�/2)(��−1).

In the feasible case, i.e., intersecting polytopes, the sequence � weakly converges to a
point in the intersection of the polytopes on using both the algorithms. However, in
our case, we have non intersecting polytopes which leads to a converging sequence of �
with AP but a diverging sequence of � with AAR. However, when we project � by using
the following projection operation, i.e, �1,� = Π�(�1)−�/2(��); �2,� = Π�/2−�(�2)(�1,�) the

79

sequences �1 and �2 converge to nearest points on the polytopes, �(�1) − �/2 and
�/2− �(�2) [Bauschke and Luke, 2004].

Dykstra’s alternating projection algorithm [Bauschke and Borwein, 1994] retrieves
a convex feasible point closest to an arbitrary point, which we assume to be 0. It
can also be used and has a form of primal descent interpretation, i.e., as coordinate
descent for a well-formulated primal problem [Gafke and Mathar, 1989]. Let us
denote �� as the indicator function of a convex set �. In our case we consider inding
the nearest points on the polytopes �(�1)− �/2 and �/2−�(�2) closest to 0, which
can be formally written as:

min
�∈�(�1)− �

2

�∈ �
2
− �(�2)

1
2
‖�‖22 = min

�∈Rn

1

2
‖�‖22 + ��(�1)−u

2
(�) + �u

2
−�(�2)(�)

= min
�∈Rn

1

2
‖�‖22 + ��(�1)−u

2
(�) + ��(�2)−u

2
(−�)

= min
�∈Rn

1

2
‖�‖22 + max

�1∈Rn
�⊤

1 �− �1(�1) +
�⊤

1 �

2

+ max
�2∈Rn

−�⊤
2 �− �2(�2) +

�⊤
2 �

2

= max
�1∈Rn

�2∈Rn

−�1(�1)− �2(�2) +
(�1 + �2)

⊤�

2

+min
�∈Rn

1

2
‖�‖22 + (�1 − �2)

⊤�

= max
�1∈Rn

�2∈Rn

−�1(�1)− �2(�2) +
(�1 + �2)

⊤�

2

−1

2
‖�1 − �2‖22

= min
�1∈Rn

�2∈Rn

�1(�1) + �2(�2)−
(�1 + �2)

⊤�

2

+
1

2
‖�1 − �2‖22,

where � = �2 − �1 at optimal. The block coordinate descent gives

�1,� = Π�(�1)−�/2(�2,�−1),

�1,� = �2,�−1 − �1,�,
�2,� = Π�(�2)−�/2(�1,�),

�2,� = �1,� − �2,�,

with �1 and �2 converging to the nearest points on the polytopes closest to the
origin.

80

We have implemented it, which behaves similar to alternating projections, but
it still requires TV oracles for projection (see experiments in Section 5.4). There
is however a key diference: while alternating projections and alternating relections
always converge to a pair of closest points, Dykstra’s alternating projection algorithm
converges to a speciic pair of points, namely the pair closest to the initialisation of
the algorithm [Bauschke and Borwein, 1994]; see an illustration in Figure 5-3-(a).
This insight will be key in our algorithm to avoid cycling.

Assuming TV oracles are available for �1 and �2, we have shown in the Chap-
ter 4 the use of alternating projection [Bauschke et al., 1997] and alternating relec-
tion [Bauschke and Luke, 2004] algorithms. However, these algorithms are equivalent
to block dual coordinate descent and cannot be be cast explicitly as descent algorithms
for the primal TV problem. On the other hand, Dykstra’s alternating projection is
a descent algorithm on the primal, which enables local search over partitions. Com-
plex TV oracles are often implemented by using SFM oracles recursively with the
divide and conquer strategy on the individual functions. Using our algorithm in Sec-
tion 5.2.4, they can be made more eicient using warms tarts. (see experiments in
Section 5.4).

5.3.2 First attempt at an active-set method

Given our algorithm for a single function, it is natural to perform a local search
over two partitions �1 and �2, one for each function �1 and �2, and consider in the
primal formulation a weight vector � compatible with both �1 and �2; or, equiva-
lently, in the dual formulation, two outer approximations �︀�1(�1) and �︀�2(�2). That
is, given the ordered partitions �1 and �2, using a similar derivation as in Eq. (5.13),
we obtain the primal/dual pairs of optimisation problems

max
�1∈�︀�1 (�1)

�2∈�︀�2 (�2)

−1
2
‖�− �1 − �2‖22 = min�∈��1

�∈��2

�1(�) + �2(�)− �⊤� + 1
2
‖�‖22,

with � = �− �1 − �2 at optimality.

Primal solution by isotonic regression. The primal solution � is unique by
strong convexity. Moreover, it has to be compatible with both �1 and �2, which is
equivalent to being compatible with the coalesced ordered partition� = coalesce(�1,�2)
deined as the coarsest ordered partition compatible by both. As shown in Ap-
pendix 5.A, � may be found in time �(min(�1,�2)�).

Given �, the primal solution � of the subproblem may be found by isotonic regres-
sion like in Section 5.2.2 in time �(�) where � is the number of sets in �. However,
inding the optimal dual variables �1 and �2 turns out to be more problematic. We
know that �1 + �2 = � − � and that �1 + �2 ∈ �︀�(�), but the split in (�1, �2) is
unknown.

Obtaining dual solutions. Given an ordered partition �, a unique well-deined
pair (�1, �2) can be obtained by solving a set of linear systems. We propose such

81

an algorithm in Section 5.3.4 using the primal active-set method. However, due to
high complexity of these methods, we could use any convex feasibility algorithm such
as alternating projections [Bauschke et al., 1997] or alternating relections [Bauschke
and Luke, 2004]. However, the result would depend in non understood ways on
the initialisation, and we have observed cycling of the active-set algorithm. Using
Dykstra’s alternating projection algorithm allows us to converge to a unique well-
deined pair (�1, �2) that will lead to a provably non-cycling algorithm.

When running our algorithms starting from 0 on the polytopes �︀�1(�1) − �/2

and �/2 − �︀�2(�2), if � is the unique distance vector between the two polytopes,
then the iterates converge to the projection of 0 onto the convex sets of elements in
the two polytopes that achieve the minimum distance [Bauschke and Borwein, 1994].
See Figure 5-3-(b) for an illustration. This algorithm is however slow to converge
when the polytopes do not intersect (they will notice here for the most interesting
situations when � ̸= 0) and convergence is hard to monitor because primal iterates
diverge [Bauschke and Borwein, 1994].

Translated intersecting polytopes. In our situation, we want to reach the so-
lution while knowing the vector � (as mentioned earlier, it is obtained cheaply from
isotonic regression). Indeed, from Lemma 2.2 and Theorem 3.8 from [Bauschke and
Borwein, 1994], given this vector �, we may translate the two polytopes and now ob-
tain a formulation where the two polytopes do intersect; that is we aim at projecting 0
on the (non-empty) intersection of �︀�1(�1)− �/2 + �/2 and �/2− �/2− �︀�2(�2).
See Figure 5-4. We also refer to this as translated Dykstra problem 2 in the rest of the
chapter. This is equivalent to solving the following optimisation problem

min
�∈�︀�1 (�1)−u−w

2

�∈u−w
2

−�︀�2 (�2)

1
2
‖�‖22 = min

�∈Rn

1
2
‖�‖22 + ��︀�1 (�1)−u−w

2
(�) + �u−w

2
−�︀�2 (�2)

(�),

= min
�∈Rn

1
2
‖�‖22 + ��︀�1 (�1)−u−w

2
(�) + ��︀�2 (�2)−u−w

2
(−�),

= min
�∈Rn

︂
1
2
‖�‖22 +max�1∈��1 �

⊤
1 �− �1(�1) +

�⊤
1 (�−�)

2

+ max
�2∈��2

−�⊤
2 �− �2(�2) +

�⊤
2 (�− �)

2

︂
,

= max
�1∈��1

�2∈��2

︂
− �1(�1)− �2(�2) +

(�1 + �2)
⊤(�− �)
2

+min
�∈Rn

1

2
‖�‖22 + (�1 − �2)

⊤�

︂
,

= max
�1∈��1

�2∈��2

︂
− �1(�1)− �2(�2) +

(�1 + �2)
⊤(�− �)
2

2. We refer to inding a Dykstra solution for translated intersecting polytopes as translated Dyk-
stra problem

82

�(�1)− �
2

�
2 − �(�2)

�1−�2
�
2−�20

�

̂
��1(�1)− �

2

�
2 −

̂
��2(�2) �(�1)− �−�

2
�−�
2 − �(�2)

0

̂
��1(�1)− �−�

2

�−�
2 −

̂
��2(�2)

(a) (b)

Figure 5-4 – Translated intersecting polytopes. (a) output of our algorithm before
translation. (b) Translated formulation.

−1

2
‖�1 − �2‖22

︂
,

= min
�1∈��1

�2∈��2

︂
�1(�1) + �2(�2)−

(�1 + �2)
⊤(�− �)
2

+
1

2
‖�1 − �2‖22

︂
, (5.14)

with � = �2 − �1 at optimality.
In Section 5.3.5 we propose primal active-set algorithm and accelerated Dykstra’s

algorithm in Section 5.3.6 to solve the above optimisation problems. Assuming that
we are able to solve this step eiciently, we now present our active-set algorithm for
decomposable functions below.

5.3.3 Active-set algorithm for decomposable functions

— Input: Submodular function �1 and �2 with SFM oracles, � ∈ R
�, ordered

partitions �1,�2

— Algorithm: iterate until convergence (i.e., �1 + �2 small enough)
(a) Find � = coalesce(�1,�2) and run isotonic regression to minimise �(�)−

�⊤� + 1
2
‖�‖22 such that � is compatible with �.

(b) Find the projection of 0 onto the intersection of �︀�1(�1)−�/2+�/2 and
�/2−�/2−�︀�2(�2) using any of the algorithms described in Section 5.3.4.

(c) Merge the sets in �� which are tight for ��, � ∈ {1, 2}.
(d) Check optimality by solvingmin�j,ij

⊆�j,ij
��(��,�j−1∪��,�j)−��(��,�+�−1)−

��(��,�j) for �� ∈ {1, . . . ,��}, Monitor �1 and �2 such that ��(��)−��(��) >
−��, � = 1, 2.

(e) If both �1 and �2 not optimal, for all ��,�j which are diferent from ∅ and
��,�j , split partitions.

— Output: � ∈ R
� and �1 ∈ �(�1), �2 ∈ �(�2).

83

Given two ordered partitions �1 and �2, we obtain �1 ∈ �̂�1(�1) and �2 ∈
�̂�2(�2) as described in the following section. The solution � = �−�1−�2 is optimal if
and only if both �1 ∈ �(�1) and �2 ∈ �(�2). When checking the optimality described
in Section 5.2.3, we split the partition. As shown in Appendix 5.B, either (a) ‖�‖22
strictly increases at each iteration, or (b) ‖�‖22 remains constant but ‖�1−�2‖22 strictly
increases. This implies that the algorithm is initely convergent.

5.3.4 Optimizing the “translated Dykstra problem"

In this section, we describe algorithms to optimise the translated Dykstra problem
in Eq. (5.14), i.e.,

min
�1∈��1

�2∈��2

�1(�1) + �2(�2)− (�1+�2)⊤(�−�)
2

+ 1
2
‖�1 − �2‖2. (5.15)

The corresponding dual optimisation problem is given by

min
�∈�︀�1 (�1)−u−w

2

�∈u−w
2

−�︀�2 (�2)

1
2
‖�‖22 (5.16)

with the optimality condition � = �2−�1. Note that the only link to submodularity
is that �1 and �2 are linear functions on ��1 and ��2 , respectively. The rest of this
section primarily deals with optimizing a quadratic program, which we show in the
next section.

5.3.5 Primal active-set method

In this section, we ind the projection of the origin onto the intersection of the
translated base polytopes given by Eq. (5.14) using active-set methods by solving
a set of linear equations. For this purpose, we derive the equivalent optimisation
problems using equality constraints.

The ordered partition, �� is given by (��,1, . . . , ��,�j
), where �� is the number of

elements in the ordered partitions. Let ��,�j be deined as (��,1∪. . .∪��,�j). Therefore,

��(��) =

�j︁

�j=1

��,�j

︂
��(��,�j)− ��(��,�j−1)

︂
(5.17)

�� =

�j︁

�j=1

��,�j1�j,ij
(5.18)

with the constraints, ��,1 ≥ . . . ≥ ��,�j
. (5.19)

On substituting Eq. (5.17), Eq. (5.18) and Eq. (5.19) in Eq. (5.14), we have and
equivalent optimisation problem:

84

A1;1 A1;2 A1;3 A1;4 A1;5 A1;6

A2;1 A2;2 A2;3 A2;4 A2;5

Figure 5-5 – Bipartite graph to estimate �(�1,�2) with �1 having �1 = 6 compo-
nents and �2 having �2 = 5.

min
�1,1≥...≥�1,m1
�2,1≥...≥�2,m2

�1︁

�1=1

︂
�1(�1,�1)− �1(�1,�1−1)−

�(�1,�1)− �(�1,�1)

2

︂
�1,�1 +

�2︁

�2=1

︂
�2(�2,�2)− �2(�2,�2−1)−

�(�2,�2)− �(�2,�2)

2

︂
�2,�2 +

�1︁

�1=1

1

2
|�1,�1 |�21,�1 +

�2︁

�2=1

1

2
|�2,�2 |�22,�2 −

�1︁

�1=1

�2︁

�2=1

�1,�1�2,�21
⊤
�1,i1

1�2,i2
.

This can be written as a quadratic program in � =

︂
�1
�2

︂
with inequality con-

straints in the following form

min
�∈Rm1+m2

�(�1,�2)�<0

1

2
�⊤�(�1,�2)�+ �(�1,�2)

⊤�, (5.20)

where �(�1,�2) is a sparse matrix of size (�1 + �2 − 2) × (�1 + �2), which is a
block diagonal matrix containing the diference or irst order derivative matrices of
sizes �1 − 1 × �1 and �2 − 1 × �2 as the blocks and �(�1,�2) is a linear vector
that can be estimated using the functions evaluations of �1 and �2. Note that these
evaluations need to be done only once.

Estimating �(�1,�2). Let us consider a bipartite graph, � = (�1,�2, �), with
�1 + �2 nodes representing the ordered partitions of �1 and �2 respectively. The
weight of the edge between each element of ordered partitions of �1, represented by
�1,�1 and each element of ordered partitions of �2, represented by �2,�2 is the number
of elements of the ground set � that lie in both these partitions and can be written
as �(�1,�1 , �2,�2) = 1⊤�1,i1

1�2,i2
for all � ∈ �. The matrix �(�1,�2) represents the

Laplacian matrix of the graph �. Figure 5-5 shows a sample bipartite graph with
�1 = 6 and �2 = 5.

Optimizing the quadratic program in Eq. (5.20) by using active-set methods is
equivalent to inding the face of the constraint set on which the optimal solution lies.
For this purpose, we need to be able to solve the quadratic program in Eq. (5.20)
with equality constraints.

85

Equality constraint QP. Let us now consider the following quadratic program
with equality constraints

min
�∈Rm1+m2

�′�=0

1

2
�⊤�(�1,�2)�+

︀
�(�1,�2)�� + �(�1,�2)

︀⊤
�, (5.21)

where �′ is the subset of the constraints in �(�1,�2), i.e. indices of its rows that
are tight and �� is a primal feasible point. The vector � gives the direction of strict
descent of the cost function in Eq. (5.20) from feasible point �� [Nocedal and Wright,
2006].

Without loss of generality, let us assume that the equality constraints are ��,�j =
��,�j+1 for any �� in [0,��). Let �′

� be the new ordered partition formed by merging
��,�j and ��,�j+1 as ��,�j = ��,�j+1. Finding the optimal vector � using the quadratic
program in Eq. (5.21) with respect to the ordered partition �′

� is equivalent to solving
the following unconstrained quadratic problem,

�(�′
1,�′

2, ��) = min
�′∈Rm′

1+m′
2

︂
1

2
�′⊤�(�′

1,�′
2)�

′ +
︀
�(�′

1,�′
2)�� + �(�′

1,�′
2)
︀⊤
�′
︂
,(5.22)

where �′
� is the number of elements of the ordered partition �′

�. This can be esti-
mated by solving a linear system using conjugate gradient descent. The complexity
of each iteration of the conjugate gradient is given by �((�′

1 +�′
2)�) where � is the

number of non-zero elements in the sparse matrix, �(�′
1,�′

2) [Vishnoi, 2013]. We can
build � from �′ by repeating the values for the elements of the partition that were
merged.

Primal active-set algorithm. We now describe step (b) of the active-set algo-
rithm to optimise decomposable functions using a primal active-set method. Note
that we can warmstart this step by using � estimated from step (a) of the algorithm.

— Input: Laplacian matrix�(�1,�2) and vector �(�1,�2), ordered partitions�1,�2

and vector �.
— Algorithm: Iterate on � until both primal and dual feasibility conditions

in Eq. (5.15) and Eq. (5.16) respectively are satisied.
— Initialise: �0 using �, Working set��0 with tight sets of��. Estimate�′

1,�′
2

from ��0.
(a) Solve �(�′

1,�′
2, ��) in Eq. (5.22) to ind optimal �.

(b) Check Primal Feasibility: If � == 0

1. Estimate Dual: � = �(�1,�2)
−⊤︀�(�1,�2)�� + �(�1,�2)

︀
.

2. Check Dual Feasibility:
if �� ≥ 0 for all in � ∈ ���

— return Optimal �* = ��.
3. else

— Most violated Constraint:
update � = argmin�∈��t

�� .

86

— Update Working Set:
update ���+1 = ��� ∖ {�}.
update �′

1, �′
2 from ���+1.

— update ��+1 = ��
— Goto step (a).

4. endif

(c) else

1. Line Search: Find least � that retains feasibility of ��+1 = �� + ��
and ind the blocking constraints ��.

2. Update Working Set: ���+1 = ��� ∪ �� and update �′
1, �′

2 from
���+1.

3. Goto step (a).

(d) endif
— Output: �* ∈ R

�1+�2 .
We can estimate �1 and �2 from �*, which will enable us to estimate � feasible

in Eq. (5.16). Therefore we can estimate the dual variable �1 ∈ ��1(�1) and �2 ∈
��2(�2) using �.

5.3.6 Accelerated Dykstra’s algorithm

In this section, we ind the projection of the origin onto the intersection of the
translated base polytopes obtained by solving the optimisation problem in Eq. (5.14)
given by

min
�1∈��1

�2∈��2

�1(�1) + �2(�2)− (�1+�2)⊤(�−�)
2

+ 1
2
‖�1 − �2‖2

using Dykstra’s alternating projection. It can be solved using the following Dykstra’s
iterations.

�1,� = Π�︀�1 (�1)
(�/2− �/2 + �2,�−1),

�1,� = �/2− �/2 + �2,�−1 − �1,�,
�2,� = Π�︀�2 (�2)

(�/2− �/2 + �1,�),

�2,� = �/2− �/2 + �1,� − �2,�,

with Π� denoting the orthogonal projection onto the sets �, solved here by isotonic
regression. Note that the value of the auxiliary variable �2 can be warm-started. The
algorithm converges linearly on two intersecting convex sets [Shusheng, 2000].

In our simulations, we have used the recent accelerated version of [Chambolle and
Pock, 2015], which led to faster convergence. In order to monitor convergence, we
compute the value of ‖� − � − �1,� − �2,�‖1 which is equal to zero at convergence.
The optimisation problem can also be decoupled into smaller optimisation problems
by using the knowledge of the face of the base polytopes on which �1 and �2 lie. See
details in Appendix 5.D.

87

Number of Pixels

2e+04 8e+04 3e+05 1e+06 5e+06 2e+07

S
F

M
 O

r
a

c
le

 C
a

ll
s

10

15

20

25

30

35

Chambolle et al.

Our

Number of pixels
2e+04 8e+04 3e+05 1e+06 5e+06 2e+07lo

g
(T

im
e

 i
n

 s
e

c
o

n
d

s
)

-4

-2

0

2

4

6

8

Chambolle et al.

Our

(a) (b)

Decreasing lambda

#
 O

ra
c
le

 C
a
ll
s

2

4

6

8

10

12

14 Normal
Warm

Decreasing lambda

A
v
g

 O
ra

c
le

 C
o

m
p

le
x
it

y

0

0.2

0.4

0.6

0.8

1

1.2

Normal

Warm

(c) (d)

Figure 5-6 – (a) Number of SFM oracle calls for images of various sizes, (b) Time
taken for images of various sizes, (c) Number of iterations with and without warm
start, (d) Average complexity of the oracle with and without warm start.

88

5.3.7 Decoupled problem

In our context, the quadratic program Eq. (5.20) can be decoupled into smaller
optimisation problems. Let us consider the bipartite graph � = (�1,�2, �) of which
� is the Laplacian matrix. The number of connected components of the graph, � is
equal to the number of levelsets of �.

Let � be the total number of connected components in �. These connected
components deine a partition on the ground set � and a total order on elements of
the partition can be obtained using the levels sets of �. Let � denote the index of each
bipartite subgraph of � represented by �� = (�1,�,�2,�, ��), where � = 1, 2, . . . ,�.
Let �� denote the indices of the nodes of �� in �.

�*�k = argmin
�∈Rm1,k+m2,k

�(�1,�2)k�<0

1

2
�⊤�(�1,�2)�k�k�+ �(�1,�2)

⊤
�k
�, (5.23)

where ��,� is size of ��,�. Therefore, �1,� +�2,� is the total number of nodes in the
subgraph ��. Note that this is exactly equivalent to decomposition of base polytope
of �� into base polytopes of submodular functions formed by contracting �� on each
individual components representing the connected component �. See Appendix 5.C
for more details.

5.4 Experiments

In this section, we show the results of the algorithms proposed on various problems.
We irst consider the problem of solving total variation denoising for a non decom-
posable function using active-set methods in Section 5.4.1, speciically cut functions.
In Section 5.4.2, we consider cut functions on a 3D grid decomposed into a function
of 2D grid and a function of chains. We then consider 2D grid and a concave function
on cardinality, which is not a cut function. We show these results using primal active-
set method proposed in Section 5.3.5. The primal active-set method in Section 5.3.5
is compared with the accelerated Dykstra’s algorithm proposed in Section 5.3.6 to
optimise TV on a 2D grid, which is decomposed into 2 functions of 1D chains.

5.4.1 Non decomposable total variation denoising

Our experiments consider images, which are 2-dimensional grids with 4-neighborhood.
The dataset comprises of 6 diferent images of varying sizes. We consider a large im-
age of size 5616 × 3744 and recursively scale into a smaller image of half the width
and half the height maintaining the aspect ratio. Therefore, the size of each im-
age is four times smaller than size of the previous image. We restrict to anisotropic
uniform-weighted total variation to compare with Chambolle et al. [Chambolle and
Darbon, 2009] but our algorithms works as well with weighted total variation, which
is standard in computer vision, and on any graph with SFM oracles. Therefore, the

89

of Oracle calls
10

0
10

1
10

2
10

3
10

4

S
F

M
 -

 S
F

M
o

p
t

10
-5

10
0

10
5

AAR-WS
AAR
AP-WS
DAP-WS
SGD-P
ACTIVE

of Oracle calls
10

0
10

2
10

4
10

6

T
V

 -
 T

V
o

p
t

10
-5

10
0

10
5

10
10

AAR-WS
AAR
AP-WS
DAP-WS
ACTIVE

(a) (b)

of Oracle calls
10

0
10

1
10

2
10

3
10

4

S
F

M
 -

 S
F

M
o

p
t

10
-5

10
0

10
5

10
10

AAR-WS
AAR
AP-WS
DAP-WS
SGD-P
ACTIVE

of Oracle calls
10

0
10

1
10

2
10

3
10

4
10

5

T
V

 -
 T

V
o

p
t

10
-5

10
0

10
5

10
10

AAR-WS
AAR
AP-WS
DAP-WS
ACTIVE

(c) (d)

Figure 5-7 – (a) Number of 2D SFM calls to obtain 3D SFM, (b) Number of 2D SFM
calls to obtain 3D TV, (c) Number of 2D SFM calls to obtain SFM of 2D + concave
function, (d) Number of 2D SFM calls to obtain TV of 2D + concave function.

90

unweighted total variation is

�(�) = �
︁

�∼�

|�� − ��|,

where � is a regularizing constant for solving the total variation problem in Eq. (5.1).
Note that we restrict to uniform weights only to be able to perform a fair comparison
with their method [Chambolle and Darbon, 2009].

Maxlow [Boykov and Kolmogorov, 2004] is used as the SFM oracle for checking
the optimality of the ordered partitions. Figure 5-6-(a) shows the number of SFM
oracle calls required to solve the TV problem for images of various sizes. Note that
in [Chambolle and Darbon, 2009] each SFM oracle call optimises smaller problems
sequentially, while each SFM oracle call in our method optimises several independent
smaller problems in parallel. Therefore, our method has lesser number of oracle calls
than [Chambolle and Darbon, 2009]. However, oracle complexity of each call is higher
for the our method when compared to [Chambolle and Darbon, 2009]. Figure 5-
6-(b) shows the time required for each of the methods to solve the TV problem to
convergence. We have an optimised code and only use the oracle as plugin which takes
about 80-85 percent of the running time. This is primarily the reason our approach
takes more time than [Chambolle and Darbon, 2009] inspite of having lesser oracle
calls.

Figure 5-6-(c) also shows the ability to warm start by using the output of a related
problem, i.e., when computing the solution for several values of � (which is typical
in practice). In this case, we use optimal ordered partitions of the problem with
larger � to warm start the problem with smaller �. It can be observed that warm
start of the algorithm requires lesser number of oracle calls to converge than using
the initialisation with trivial ordered partition. Warm start also largely helps in
reducing the burden on the SFM oracle. With warm starts the number of ordered
partitions does not change much over iterations. Hence, it suices to query only
ordered partitions that have changed. To analyze this we deine oracle complexity
as the ratio of pixels in the elements of the partitions that need to be queried with
the full set. Oracle complexity is averaged over iterations to understand the average
burden on the oracle per iteration. With warm starts this reduces drastically, which
can be observed in Figure 5-6-(d).

5.4.2 Decomposable total variation denoising and SFM

Cut functions. In the decomposable case, we consider a 3D-grid that decomposes
into a function �1 composed of 2D grids and a function �2 composed of chains. For
each of these functions, the corresponding SFM oracle is a maxlow-mincut [Boykov
and Kolmogorov, 2004] and message passing algorithm on chains respectively. We
consider averaged alternating relection (AAR) [Bauschke and Luke, 2004] by solv-
ing each projection without warmstart and counting the number of 2D SFM oracle
calls to solve the corresponding projection as our baseline. We compare our algo-
rithm with other methods like alternating projection (AP-WS), averaged alternating

91

relection (AAR-WS) [Bauschke and Luke, 2004], Dykstra’s alternating projection
(DAP-WS) [Bauschke and Borwein, 1994] and dual subgradient based method (SGD-
P) [Komodakis et al., 2011] modiied with Polyak’s [Bertsekas, 1999] rule. All these al-
gorithms use the same optimisation algorithm but use ordered partitions to warmstart
the projection using ordered partitions as described in Section 5.2.4. The performance
of the activeset algorithm proposed in Section 5.3.3 with inner loop solved using the
primal active-set method proposed in Section 5.3.5 is represented by (ACTIVE).

In our experiments, we consider the 3D volumetric dataset of the Stanford bunny [max]
of sizes 102× 100× 79. �1 denotes 102 2D frame of size 100× 79 and �2 represents
the 100 × 79 = 7900 chains of length 102. Figure 5-7-(a) and (b) shows that our
algorithm converges for solving TV quickly by using only SFM oracles and relatively
less number of oracle calls. Note that we count 2D SFM oracle calls as they are more
expensive than the SFM oracles on chains.

Concave functions on cardinality. In this experiment we consider SFM problem
of sum of a 2D cut on a graph of size 5616 × 3744 and a super pixel based concave
function on cardinality [Stobbe and Krause, 2010, Jegelka et al., 2013]. The unary
potentials of each pixel is calculated using the Gaussian mixture model of the color
features. The edge weight �(�, �) = exp(−‖��−��‖2), where �� denotes the RGB values
of the pixel �. In order to evaluate the concave function, regions �� are extracted
via superpixels and, for each ��, deining the function �2(�) = |�||�� ∖ �|. We use
200 and 500 regions. Figure 5-7-(c) and (d) shows that our algorithm converges for
solving TV quickly by using only SFM oracles and relatively less number of oracle
calls. Note that we count 2D SFM oracle calls.

5.5 Conclusion

We have presented an active-set method to solve submodular function minimisa-
tion (SFM) and total variation (TV) denoising problem. For decomposable problems,
we have showed that we can solve both TV denoising and SFM problems by using
cheaper SFM oracles of the individual functions, while other competitive methods use
expensive TV oracles, which restricts the function decomposition, as for cut functions,
they are eicient only for chains and trees. This provides us lexibility to decompose
into functions for which we have eicient SFM oracles. Due to inherent parallelism,
this approach can be very useful in solving large scale optimization problems. As
future work, it could be interesting to improve the solutions for "translated Dykstra
problem" in the decomposable case and extend this formulation to solve constrained
submodular optimization.

92

Appendix

This section contains the appendices related to this chapter.

5.A Algorithms for coalescing partitions

The basic interpretation in coalescing two ordered partitions is as follows. Given
an ordered partition �1 and �2 with �1 and �2 elements in the partitions respec-
tively, we deine for each � = 1, 2, ∀�� = (1, . . . ,��),

��,�j = (��,1 ∪ . . . ∪ ��,�j).

The inequalities deining the outer approximation of the base polytopes are given
by hyperplanes deined by ∀�� = (1, . . . ,��), ��(��,�j) ≤ ��(��,�j). The hyperplanes
deined by common sets of both these partitions, deines the coalesced ordered parti-
tions. The following algorithm performs coalescing between these partitions.

— Input: Ordered partitions �1 and �2.
— Initialize: � = 1, � = 1, � = 1 and � = ∅.
— Algorithm: Iterate until � = �1 and � = �2 with � = �

(a) If |�1,�| > |�2,�| then � := � + 1.
(b) If |�1,�| < |�2,�| then � := �+ 1.
(c) If |�1,�| == |�2,�| then

— If �1,� == �2,� then
— �� = (�1,� ∖ �),
— � = �1,�, and
— � := � + 1.

— Output: � = �, ordered partitions � = (�1, . . . , ��).

5.B Optimality of algorithm for decomposable prob-

lems

In step (d) of the algorithms, when we split partitions, the value of the primal/dual
pair of optimization algorithms

max
�1∈�︀�1 (�1)

�2∈�︀�2 (�2)

−1
2
‖�− �1 − �2‖22,

93

= min
�∈��1

�∈��2

�1(�) + �2(�)− �⊤� + 1
2
‖�‖22,

cannot increase. This because, when splitting, the constraint set for the minimization
problem only gets bigger. Since at optimality, we have � = �− �1 − �2, ‖�‖2 cannot
decrease, which shows the irst statement.

Now, if ‖�‖2 remains constant after an iteration, then it has to be the same (and
not only have the same norm), because the optimal �1 and �2 can only move in the
direction orthogonal to �.

In step (b) of the algorithm, we project 0 on the (non-empty) intersection of
�︀�1(�1) − �/2 + �/2 and �/2 − �/2 − �︀�2(�2). This corresponds to minimizing
1
2
‖�1 − �/2 + �/2‖2 such that �1 ∈ �︀�1(�1) and �2 = �− � − �1 ∈ �︀�2(�2). This is

equivalent to minimizing 1
8
‖�1 − �2‖2. We have:

max
�1∈�︀�1 (�1)

�2∈�︀�2 (�2)
�1+�2=�−�

−1

8
‖�1 − �2‖22 = min

�1∈��1

�2∈��2

max
�1∈Rn

�2∈Rn

�1+�2=�−�

︂
− 1

8
‖�1 − �2‖22 + �1(�1) + �2(�2)

−�⊤
1 �1 − �⊤

2 �2

︂

= min
�1∈��1

�2∈��2

max
�2∈Rn

︂
− 1

8
‖�− � − 2�2‖22 + �1(�1) + �2(�2)

−�⊤
1 (�− � − �2)− �⊤

2 �2

︂

= min
�1∈��1

�2∈��2

max
�2∈Rn

︂
− 1

8
‖�− �‖22 −

1

2
‖�2‖22 +

1

2
�⊤2 (�− �)

+�1(�1) + �2(�2)− �⊤
1 (�− � − �2)− �⊤

2 �2

︂

= min
�1∈��1

�2∈��2

−�⊤
1 (�− �) + �1(�1) + �2(�2)−

1

8
‖�− �‖22

+ max
�2∈Rn

−1

2
‖�2‖22 + �⊤2

︀
�−�
2

+ �1 − �2

︀

= min
�1∈��1

�2∈��2

︂
− �⊤

1 (�− �) + �1(�1) + �2(�2)−
1

8
‖�− �‖22

+
1

2
‖�−�

2
+ �1 − �2‖22

︂

= min
�1∈��1

�2∈��2

︂
− �⊤

1 (�− �) + �1(�1) + �2(�2) +
1

2
‖�1 − �2‖22

+
1

2
(�− �)⊤(�1 − �2)

︂

94

= min
�1∈��1

�2∈��2

︂
�1(�1) + �2(�2)−

1

2
(�− �)⊤(�1 + �2)

+
1

2
‖�1 − �2‖22

︂
,

Thus �1 and �2 are dual to certain vectors �1 and �2, which minimize a decoupled
formulation in �1 and �2. To check optimality, like in the single function case, it
decouples over the constant sets of �1 and �2, which is exactly what step (c) is
performing.

If the check is satisied, it means that �1 and �2 are in fact optimal for the
problem above without the restriction in compatibilities, which implies that they are
the Dykstra solutions for the TV problem.

If the check is not satisied, then the same reasoning as for the one function case,
leads directions of descent for the new primal problem above. Hence it decreases;
since its value is equal to −1

8
‖�1 − �2‖22, the value of ‖�1 − �2‖22 must increase, hence

the second statement.

5.C Decoupled problems.

Given that we deal with polytopes, knowing � implies that we know the faces on
which we have to looked for. It turns outs that for base polytopes, these faces are
products of base polytopes for modiied functions (a similar fact holds for their outer
approximations).

Given the ordered partition �′ deined by the level sets of � (which have to be
iner than �1 and �2), we know that we may restrict �︀�j(��) to elements � such that
�(�) = � (�) for all sup-level sets � of � (which have to be unions of contiguous
elements of ��); see an illustration below.

Aj;1 Aj;3Aj;2 Aj;4 Aj;5

C1 C3C2

More precisely, if �1, . . . , ��′ are constant sets of � ordered with decreasing values.
Then, we may search for �� independently for each subvector (��)�k

∈ R
�k , � ∈

{1, . . . ,�′} and with the constraint that

(��)�k
∈ �̂�j∩�k

︀
(��)�k|�1∪···∪�k−1

︀
,

where �� ∩�� is the ordered partition obtained from �� once restricted onto �� and
the submodular function is the so-called contraction of � on �� given �1∪· · ·∪��−1,
deined as � ↦→ ��(� ∪ �1 ∪ · · · ∪ ��−1)− � (�1 ∪ · · · ∪ ��−1). Thus this corresponds
to solving � diferent smaller subproblems.

95

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

2

4

6

8

10

12
x 10

4

log(α)

T
o

ta
l

in
n

e
r

it
e

ra
ti

o
n

s

−5 −4 −3 −2 −1 0 1 2 3 4 5
120

140

160

180

200

log(α)

#
 O

ra
c
le

 C
a
ll
s

50 100 150
0

50

100

150

200

250

300

Outer Iteration

#
 I

n
n

e
r
 I

te
r
a

ti
o

n
s

(a) (b) (c)

Figure 5-8 – (a) Total number of inner iterations for varying �. (b) Total number
of outer iterations for varying �. and (c) Number of inner iterations per each outer
iteration for the � = 101

5.D Choice of �

The Dykstra step, i.e., step (b) of the algorithm proposed in Section 5.3.6 is
not initely convergent. Therefore, it needs to be solved approximately. For this
purpose, we introduce a parameter � to approximately solve the Dykstra step such
that ‖�1 + �2 − �+�‖1 ≤ �(�1 + �2). Let � be deined as �(�1 + �2). This shows that
the �1 and �2 are �-accurate. Therefore, � must be chosen in such a way that we avoid
cycling in our algorithm. However, another alternative is to warm start the dykstra
step with �1 and �2 of the previous iteration. This ensures we dont go back to the
same �1 and �2, which we have already encountered and avoid cycling. Figure 5-8
shows the performance of our algorithm for a simple problem of 100 × 100 2D-grid
with 4-neighborhood and uniform weights on the edges with varying �. Figure 5-
8-(a) shows the total number of inner iterations required to solve the TV problem.
Figure 5-8-(b) gives the total number of SFM oracle calls required to solve the TV
problem. In Figure 5-8-(c), we show the number of inner iterations in every outer
iteration for the best � we have encountered.

96

Chapter 6

Conclusion and Future Work

6.1 Summary of the thesis

In this thesis, we focused on some problems speciic to probabilistic graphical
models and submodular optimisation. We leverage the links between them to propose
solutions to some of the related problems.

In our irst contribution, we consider the problem of learning bounded treewidth
decomposable graphs under the maximum likelihood framework. Chow and Liu [1968]
proposed an exact algorithm to learn maximum likelihood trees. Srebro [2002] proved
that learning higher treewidth decomposable graphs is NP-hard. The irst convex
relaxation approach to learn bounded treewidth graphs was proposed by Karger
and Srebro [2001]. We pose the problem as a combinatorial optimisation problem
and propose a convex relaxation. The convex relaxation leads to optimising linear
functions on graphic and hypergraphic matroids. Use of these matroids enabled us to
use simple greedy algorithms to propose a subgradient based optimisation algorithm.
We have shown that the algorithm is able to recover the structure in toy problems on
some instances. On the rest, it is shown to have recovered an approximate structure.
We also show that the algorithm empirically outperforms on some standard datasets
when compared to state-of-art algorithms.

In our second main contribution, we propose a graph based bounds to submod-
ular functions and use variational inference on graphs to maximise general submod-
ular functions. Maximising submodular functions is an NP hard problem. However,
greedy algorithms [Buchbinder et al., 2012, Feige et al., 2011] give constant factor ap-
proximations to maximise non-monotone submodular functions. However, all these
algorithms use function value oracles to optimise them. There are functions like
entropy and mutual information where the function value oracles have complexity
exponential in cardinality of the set. Our work proposes an approach where the ac-
cess to function value oracles are available only for sets up to cardinality (� + 1).
This is the irst such work in this direction. We use graphs with treewidth bounded
by � to approximate the submodular functions by using the algorithm from our irst
contribution and use variational inference algorithms on bounded treewidth graphs
to propose an algorithm to maximise submodular functions.

97

In our inal contribution, we borrow our motivation from convex optimisation
literature to minimise sum of submodular functions. In the irst subpart of this
contribution, we make an extensive analysis of existing algorithms based on prox-
imal splitting methods to minimise sum of large scale submodular functions using
TV oracle [Jegelka et al., 2013]. We use cut functions speciically in this context
and compare them with state-of-art combinatorial algorithms. We observed that the
proximal splitting based methods have very low memory footprint when compared to
combinatorial algorithms, which use heavy data-structures. However there are two
drawbacks to this approach. The irst one is assumption of exact TV oracles of in-
dividual functions, which is not generally the case. And the second is lack of quick
convergence in cases when we consider minimising submodular functions, which are
decomposed into more than two functions. We address the former case in the next
subpart of this contribution. We only assume SFM oracles instead of TV oracles of
the individual submodular functions. We use ordered partitions to characterise the
base polytope of the individual submodular function and use local search over or-
dered partitions to solve the corresponding TV problem of the individual submodular
functions. This already improves the performance of the existing proximal splitting
methods as ordered partitions provide the lexibility to warm start. We further extend
this framework to decomposable case by using extending this framework to search over
ordered partitions.

6.2 Perspectives

Our work has triggered a few questions, which are still open.

(a) Learning bounded treewidth decomposable graphs under maximum likelihood
framework is known to be NP-hard. We provide a convex relaxation to learn
bounded treewidth graphs. However, there is a lack of theoretical analysis.
One possible direction is to study the duality gap, which provides a gap on the
integrality gap of the problem of learning bounded treewidth decomposable
graphs. This could possibility give an insight into approximability of the prob-
lem of learning bounded treewidth decomposable graph under the maximum
likelihood framework. The main motivation is the following open problem.

(b) Maximising submodular functions admit constant factor approximation algo-
rithms with function value oracles. Optimal bounds are available for approx-
imability on various submodular maximisation problems and all of them as-
sume function value oracle. It is an open problem to estimate the optimal
bound on having access to restricted function value oracles, i.e, an oracle,
which can return a function value only for sets of up to cardinality �. Note
that in some problems, it is not possible to compute higher order entropies.

(c) In most of our work and literature [Komodakis et al., 2011, Kappes et al.,
2013, Jegelka et al., 2013, Strandmark and Kahl, 2010], the decomposition of
submodular functions into “simple” functions is by design based on availablity
of oracles. There are two cases of decomposition of submodular functions,

98

where the algorithms we proposed can be of help. In the irst case, the de-
composition is based on decomposing the ground set, i.e., � into disjoint sets
��, which ensures quicker convergence in the outerloop as the base polytopes
become orthogonal in this case. Projection methods converge linearly in esti-
mating nearest points on on the polytopes in this case [Nishihara et al., 2014].
Here, the “simple” functions are the same functions with smaller problem size
�� but the oracle complexity may still be high. In the second case, as we did
in our thesis, the “simple” functions are characterised by simplicity of the ora-
cles with the same problem size. This could lead to slower convergence of the
outerloop. It is of clear interest to consider the whole regime of problems that
lie in between these two extreme cases of decomposition and ind an optimal
balance.

(d) We used SFM and TV oracles of individual functions to minimise the sum
of submodular functions. However, in our work we mainly concentrated on
solving the binary problem or discrete optimisation problem related to sets.
The same framework naturally extends to solve multi-label problems with total
order on the labels, i.e., to solve the formulation of Ishikawa [2003]. We be-
lieve it is important to propose similar algorithms to optimise tree-submodular
functions [Kolmogorov, 2010] or �-submodular functions [Gridchyn and Kol-
mogorov, 2013].

(e) A subclass of non-convex functions can be characterised by submodular func-
tions [Bian et al., 2016, Bach, 2015] and algorithms have been proposed to
optimise these class of functions. Our work could also contribute in this di-
rection by assuming structure to the submodular function that characterises
the non-convex function. This could lead to large scale distributed non-convex
optimisation.

99

100

Bibliography

Maxlow dataset online. http://vision.csd.uwo.ca/maxflow-data.

F. R. Bach. Submodular functions: from discrete to continous domains. ArXiv e-
prints, 2015.

F.R. Bach. Learning with Submodular Functions: A Convex Optimization Perspective,
volume 6 of Foundations and Trends in Machine Learning. NOW, 2013.

F.R. Bach and M.I. Jordan. Thin junction trees. In Advances in Neural Information
Processing Systems, 2002.

.Á Barbero and S. Sra. Modular proximal optimization for multidimensional total-
variation regularization. ArXiv e-prints, 2014.

H. H. Bauschke and J. M. Borwein. Dykstra’s alternating projection algorithm for
two sets. Journal of Approximation Theory, 79(3):418–443, 1994.

H. H. Bauschke, J. M. Borwein, and A. S. Lewis. The method of cyclic projections for
closed convex sets in Hilbert space. Contemporary Mathematics, 204:1–38, 1997.

Heinz H. Bauschke and Jonathan M. Borwein. On projection algorithms for solving
convex feasibility problems. SIAM Review, 38(3), 1996.

P. L. Bauschke, H. H.and Combettes and D. Luke. Finding best approximation pairs
relative to two closed convex sets in Hilbert spaces. Journal of Approximation
theory, 127(2):178–192, 2004.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type
methods. SIAM Journal on Optimization, 23(4):2037–2060, 2013.

I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM
Monitoring System: A Case Study with Two Probabilistic Inference Techniques for
Belief Networks. In Proceeding of European Conference on AI in Medicine, 1989.

D. P. Bertsekas. Nonlinear programming. Athena Scientiic, 1999.

101

D. P. Bertsekas and H. Yu. A unifying polyhedral approximation framework for
convex optimization. SIAM Journal on Optimization, 21(1):333–360, 2011.

M. J. Best and N. Chakravarti. Active set algorithms for isotonic regression: a
unifying framework. Mathematical Programming, 47(1):425–439, 1990.

Y. Bian, B. Mirzasoleiman, J.M. Buhmann, and A. Krause. Guaranteed non-convex
optimization: Submodular maximization over continuous domains. ArXiv e-prints,
2016.

C.M. Bishop et al. Pattern recognition and machine learning. springer New York,
2006.

A. Blake, P. Kohli, and C. Rother, editors. Markov Random Fields for Vision and
Image Processing. MIT Press, 2011.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Optimization and
Statistical Learning via the Alternating Direction Method of Multipliers, volume 3
of Foundations and Trends in Machine Learning. NOW, 2011.

Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-low al-
gorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis
Machine Intelligence, September 2004.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23
(11):1222–1239, 2001.

N. Buchbinder, M. Feldman, N. Naor, Joseph, and R. Schwartz. A tight linear time
(1/2)-approximation for unconstrained submodular maximization. In IEEE Sym-
posium on Foundations of Computer Science, 2012.

D. Chakrabarty, P. Jain, and P. Kothari. Provable submodular minimization using
Wolfe’s algorithm. In Advances in Neural Information Processing Systems, 2014.

A. Chambolle and J. Darbon. On total variation minimization and surface evolution
using parametric maximum lows. International Journal of Computer Vision, 84
(3):288–307, 2009.

A. Chambolle and T. Pock. A remark on accelerated block coordinate descent for
computing the proximity operators of a sum of convex functions. HAL, 2015.

B. G. Chandran and D. S. Hochbaum. A computational study of the pseudolow and
push-relabel algorithms for the maximum low problem. Operations Research, 2009.

A. Chechetka and C. Guestrin. Eicient principled learning of thin junction trees. In
Advances in Neural information Processing Systems, 2007.

102

D. M. Chickering. Optimal structure identiication with greedy search. Journal of
Machine Learning Research, 3:507–554, November 2002.

C. I. Chow and C. N. Liu. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14, 1968.

Laurent Condat. A direct algorithm for 1d total variation denoising. Technical report,
GREYC laboratory, CNRS-ENSICAEN-Univ. of Caen, 2012.

T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley & Sons,
2006.

A. Deshpande, M.N. Garofalakis, and M.I. Jordan. Eicient stepwise selection in
decomposable models. In Proceedings of Uncertainity in Artiial Intelligence, 2001.

F. R. Deutsch. Best approximation in Inner Product Spaces. Springer Verlag, 2001.

J. Djolonga and A. Krause. From map to marginals: Variational inference in
bayesian submodular models. In Advances in Neural Information Processing Sys-
tems (NIPS), 2014.

J. Djolonga and A. Krause. Scalable variational inference in log-supermodular models.
In International Conference on Machine Learning, 2015.

J. Edmonds. Submodular functions, matroids, and certain polyhedra. In Combina-
torial optimization - Eureka, you shrink!, pages 11–26. Springer, 2003.

D. Edwards. Introduction to Graphical Modelling. Springer, 2000.

U. Feige, V. S. Mirrokni, and J. Vondrák. Maximizing non-monotone submodular
functions. SIAM Journal on Computing, 2011.

W. Fenchel. On conjugate convex functions. Canadian Journal of Mathematics, 1:
73–77, 1949.

A. Frank, T. Király, and M. Kriesell. On decomposing a hypergraph into k connected
sub-hypergraphs. Discrete Applied Mathematics, 131(2):373–383, 2003.

N. Friedman and D. Koller. Being Bayesian about network structure. a bayesian
approach to structure discovery in bayesian networks. Machine learning, 50(1):
95–125, 2003.

S. Fujishige. Lexicographically optimal base of a polymatroid with respect to a weight
vector. Mathematics of Operations Research, pages 186–196, 1980.

S. Fujishige. Submodular Functions and Optimization. Annals of Discrete Mathemat-
ics. Elsevier, 2005.

T. Fukunaga. Computing minimum multiway cuts in hypergraphs from hypertree
packings. Integer Programming in Combinatorial Optimization, pages 15–28, 2010.

103

N. Gafke and R. Mathar. A cyclic projection algorithm via duality. Metrika, 36(1):
29–54, 1989.

P. Giudici and P.J. Green. Decomposable graphical gaussian model determination.
Biometrika, 86(4), 1999.

V. Gogate, W.A. Webb, and P. Domingos. Learning eicient Markov networks. In
Advances in Neural Information Processing Systems, 2010.

A. V. Goldberg, S. Hed, H. Kaplan, R. E. Tarjan, and R. F. Werneck. Maximum
lows by incremental breadth-irst search. In Proceedings of European Conference
on Algorithms, 2011.

M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. North Holland,
2004.

C. Gottschalk and B. Peis. Submodular function maximization on the bounded integer
lattice. ArXiv e-prints, 2015.

M. Grasmair. The equivalence of the taut string algorithm and BV-regularization.
Journal of Mathematical Imaging and Vision, 27(1):59–66, 2007.

I Gridchyn and V. Kolmogorov. Potts model, parametric maxlow and k-submodular
functions. ArXiv e-prints, 2013.

H. Groenevelt. Two algorithms for maximizing a separable concave function over
a polymatroid feasible region. European Journal of Operational Research, 54(2):
227–236, 1991.

M. Hein, S. Setzer, L. Jost, and S.S. Rangapuram. The total variation on hypergraphs
- learning on hypergraphs revisited. In Advances in Neural Information Processing
Systems, 2013.

D. S. Hochbaum. An eicient algorithm for image segmentation, markov random
ields and related problems. Journal of the ACM, 48(2), 2001.

D. S. Hochbaum. A polynomial time algorithm for rayleigh ratio on discrete variables:
Replacing spectral techniques for expander ratio, normalized cut, and cheeger con-
stant. Operations Research, 61(1):184–198, 2013.

D.S. Hochbaum and S.-P. Hong. About strongly polynomial time algorithms for
quadratic optimization over submodular constraints. Mathematical Programming,
69(1):269–309, 1995.

H. Höling and R. Tibshirani. Estimation of sparse binary pairwise markov networks
using pseudo-likelihoods. Journal of Machine Learning Research, 2009.

H. Ishikawa. Exact optimization for markov random ields with convex priors. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2003.

104

R. Iyer, S. Jegelka, and J. Bilmes. Fast semidiferential-based submodular function
optimization. In Proceedings of International Conference in Machine Learning,
pages 855–863, 2013.

S. Jegelka, F. R. Bach, and S. Sra. Relection methods for user-friendly submodular
optimization. In Advances in Neural Information Processing Systems, 2013.

N. A. Johnson. A dynamic programming algorithm for the fused Lasso and �0-
segmentation. Journal Computational and Graphical Statistics, 2013.

J. Kappes, B. Andres, C. Schnoerr, F. Hamprecht, S. Nowozin, D. Batra, J. Lellmann,
N. Komodakis, S. Kim, B. Kausler, and C. Rother. A comparative study of modern
inference techniques for discrete energy minimization problems. In Proceedings of
Computer Vision and Pattern Recognition, 2013.

D. Karger and N. Srebro. Learning Markov networks: maximum bounded tree-width
graphs. In Proc. ACM-SIAM symposium on Discrete algorithms, volume 10, 2001.

P. Kohli and P. Torr. Eiciently solving dynamic markov random ields using graph
cuts. In Proceedings of International Conference on Computer Vision, 2005.

P. Kohli, M.P. Kumar, and P. Torr. P3 & beyond: Move making algorithms for solv-
ing higher order functions. IEEE Transactions on Pattern Analysis and Machine
Learning, pages 1645—-1656, 2009a.

P. Kohli, L. Ladický, and P.H.S. Torr. Robust higher order potentials for enforc-
ing label consistency. International Journal of Computer Vision, 82(3):302—-324,
2009b.

D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques.
MIT press, 2009.

V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization.
IEEE Transaction on Pattern Analysis Machine Intelligence, 2006.

V. Kolmogorov. Submodularity on a tree: Unifying �♮-convex and bisubmodular
functions. ArXiv e-prints, 2010.

V. Kolmogorov. Minimizing a sum of submodular functions. Discrete Applied Math-
ematics, 160(15), 2012.

V. Kolmogorov and T. Schoenemann. Generalized sequential tree-reweighted message
passing. ArXiv e-prints, 2012.

V. Kolmogorov, Y. Boykov, and C. Rother. Applications of parametric maxlow in
computer vision. In Proceedings of International Conference on Computer Vision,
2007.

V. Kolmogorov, T. Pock, and M. Rolinek. Total variation on a tree. ArXiv e-prints,
2015.

105

N. Komodakis, Gi. Tziritas, and N. Paragios. Performance vs computational eiciency
for optimizing single and dynamic mrfs: Setting the state of the art with primal-
dual strategies. Computer Vision Image Understanding, 112(1):14–29, October
2008.

N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimization and beyond
via dual decomposition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2011.

A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical
models. In Proceedings of Uncertainity in Artiicial Intelligence, 2005.

J. B. Kruskal. On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem. In Proceedings of the American Mathematical Society, 1956.

L. Landrieu and G. Obozinski. Cut Pursuit: fast algorithms to learn piecewise con-
stant functions. In In Proc. AISTATS, 2016.

S. L. Lauritzen. Graphical Models. Oxford University Press, Oxford, 1996.

H. Lin and J. Bilmes. A class of submodular functions for document summarization.
In Proceedings of North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2011.

M. Lorea. Hypergraphes et matroides. In cahiers du centre d’études de recherche
opérationnelle, 1975.

L. Lovász. Submodular functions and convexity. Mathematical programming: the
state of the art, Bonn, pages 235–257, 1982.

F.M. Malvestuto. Approximating discrete probability distributions with decompos-
able models. IEEE Transactions on Systems, Man, Cybernetics, 21(5), 1991.

K. Murota. Discrete Convex Analysis: Monographs on Discrete Mathematics and
Applications 10. Society for Industrial and Applied Mathematics, 2003.

K. P. Murphy. Machine learning: a probabilistic perspective. MIT Press, 2012.

K. Nagano, Y. Kawahara, and K. Aihara. Size-constrained submodular optimization
through minimum norm base. In International Conference on Machine Learning,
2011.

M. Narasimhan and J. Bilmes. PAC-learning bounded tree-width graphical models.
In Proceedings of Uncertainity in Artiicial Intelligence, 2004.

M. Narasimhan and J. Bilmes. A submodular-supermodular procedure with applica-
tions to discriminative structure learning. In Proceedings of Uncertainity in Artii-
cial Intelligence, 2005.

106

A. Nedic and A. Ozdaglar. Approximate primal solutions and rate analysis for dual
subgradient methods. SIAM Journal on Optimization, 19(4):1757–1780, 2009.

R. Nishihara, S. Jegelka, and M.I. Jordan. On the linear convergence rate of decom-
posable submodular function minimization. In Advances in Neural Information
Processing Systems, 2014.

J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations
Research and Financial Engineering. Springer, Berlin, 2006.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press,
New York, NY, USA, 2000. ISBN 0-521-77362-8.

J.C. Picard and H.D. Ratlif. Minimum cuts and related problems. Neworks, 5(4),
1975.

P. Ravikumar, M.J. Wainwright, and J. Laferty. High-dimensional ising model selec-
tion using l1-regularized logistic regression. The Annals of Statistics, 2010.

P. Richtárik and M. Takáč. Parallel coordinate descent methods for big data opti-
mization. ArXiv e-prints, 2012.

R. T. Rockafellar. Convex Analysis. Princeton University Publishers, 1997.

C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer. Optimizing binary
MRFs via extended roof duality. In Proceedings of Computer Vision and Pattern
Recognition, 2007.

L. Saul and M.I. Jordan. Exploiting tractable substructures in intractable networks.
In Advances in Neural Information Processing Systems, 1995.

B. Savchynskyy, S. Schmidt, J. Kappes, and C. Schnörr. A study of Nesterov’s scheme
for Lagrangian decomposition and MAP labeling. In Proceedings of Computer
Vision and Pattern Recognition, 2011.

M. Schmidt, A. Niculescu-Mizil, and K. Murphy. Learning graphical model structure
using l1-regularization paths. In Proceedings of the 22Nd National Conference on
Artiicial Intelligence - Volume 2, 2007.

A. Schrijver. Combinatorial Optimization - Polyhedra and Eiciency. Springer, 2003.

K S Sesh Kumar and F. R. Bach. Maximizing submodular functions using proba-
bilistic graphical models. ArXiv e-prints, 2013a.

K. S. Sesh Kumar and F. R. Bach. Convex relaxations for learning bounded treewidth
decomposable graphs. In Proceedings of International Conference on Machine
Learning, 2013b.

K. S. Sesh Kumar and F.R. Bach. Active-set Methods for Submodular Optimization.
ArXiv e-prints, June 2015.

107

K. S. Sesh Kumar, A. Barbero, S. Jegelka, S. Sra, and F. R. Bach. Convex optimiza-
tion for parallel energy minimization. ArXiv e-prints, 2015.

D. Shahaf, A. Chechetka, and C. Guestrin. Learning thin junction trees via graph
cuts. In Proceedings of Artiicial Intelligence and Statistics (AISTATS), 2009.

H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous
and convex hull representations for zero-one programming problems. SIAM Journal
Discrete Mathematics, 1990.

X. Shusheng. Estimation of the convergence rate of Dykstra’s cyclic projections al-
gorithm in polyhedral case. Acta Mathematicae Applicatae Sinica (English Series),
16(2):217–220, 2000.

D. Sontag and T. Jaakkola. Tree block coordinate descent for MAP in graphical
models. In Proceedings of Artiicial Intelligence and Statistics, 2009.

D. Sontag, A. Globerson, and T. Jaakkola. Introduction to dual decomposition for
inference. In Optimization for Machine Learning. MIT Press, 2011.

P. Spirtes, C. Glymour, and R. Scheines. Causation, prediction, and search, vol-
ume 81. MIT press, 2001.

N. Srebro. Maximum likelihood bounded tree-width Markov networks. In Proceedings
of Uncertainity in Artiial Intelligence, 2002.

P. Stobbe and A. Krause. Eicient minimization of decomposable submodular func-
tions. In Advances in Neural Information Processing Systems, 2010.

P. Strandmark and F. Kahl. Parallel and distributed graph cuts by dual decomposi-
tion. In Proceedings of Computer Vision and Pattern Recognition, 2010.

M. Studeny. Probabilistic Conditional Independence Structures. Springer Publishing
Company, Incorporated, 1st edition, 2010. ISBN 1849969485, 9781849969482.

T. Szántai and E. Kovács. Discovering a junction tree behind a Markov network by
a greedy algorithm. ArXiv e-prints, 2011.

T. Szántai and E. Kovács. Hypergraphs as a mean of discovering the dependence
structure of a discrete multivariate probability distribution. Annals of Operations
Research, 193(1), 2012.

R. Tarjan, J. Ward, B. Zhang, Y. Zhou, and J. Mao. Balancing applied to maximum
network low problems. In European Symposium on Algorithms (ESA), pages 612–
623, 2006.

M. Teyssier and D. Koller. Ordering-based search: A simple and efective algorithm for
learning bayesian networks. In Proceedings of Uncertainity in Artiial Intelligence,
2001.

108

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine
learning for interdependent and structured output spaces. In International Con-
ference on Machine Learning, 2004.

N.K. Vishnoi. Lx = B - Laplacian Solvers and Their Algorithmic Applications. Now
Publishers, 2013.

J. Vondrák, C. Chekuri, and R. Zenklusen. Submodular function maximization via
the multilinear relaxation and contention resolution schemes. In Proceedings on
ACM Symposium Theory of Computing, pages 783–792, 2011.

M.J. Wainwright and M.I. Jordan. Treewidth-based conditions for exactness of the
sherali-adams and lasserre relaxations. Technical report, University of California,
Berkeley, Technical Report, 2004.

M.J. Wainwright and M.I. Jordan. Graphical models, exponential families, and vari-
ational inference. Foundations and Trends in Machine Learning, 1(1-2), 2008.

M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky. A new class of upper bounds on
the log partition function. IEEE Transactions on Information Theory, 51(7), 2005.

J. Ward and S. Zivny. Maximizing k-submodular functions and beyond. ArXiv e-
prints, 2014.

H. Whitney. On the abstract properties of linear dependence. American Journal of
Mathematics, 1935.

A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation,
2003.

Z. Zhang and R. W. Yeung. On characterization of entropy function via information
inequalities. IEEE Transactions on Information Theory, pages 1440–1452, 1998.

109

110

List of Figures

1-1 Conditional independences of which some can be represented by di-
rected acyclic graphs or undirected graphs. Decomposable graphs are
undirected graphs, which can represent the conditional independences
that can also be represented by directed acyclic graphs. 4

1-2 (a) Directed acyclic graph and (b) Undirected graph on a a set of
random variables associated to � = {1, 2, 3, 4}. 6

1-3 (a) A decomposable graph on the set of vertices � = {1, 2, 3, 4, 5, 6, 7, 8, 9}
having treewidth 2.(b) A junction tree embedded on the decomposable
graph representing the maximal cliques by blue dots and the separator
sets by blue lines. (c) The corresponding junction tree representation
of the decomposable graph with ovals representing the maximal cliques
and the rectangles representing the corresponding separator set. . . . 8

1-4 (a) The bijection between vertices of the hypercube and subsets of
� = {1, 2, 3}. (b) Division of the hypercube into simplices based on
the ordering of the components of � ∈ {0, 1}3. Figures are by courtesy
of Bach [2013]. 9

1-5 Submodular polyhedron, � (�) and Base polyhedron, �(�) for (a)
� = {1, 2} and (b) � = {1, 2, 3}. Figures are by courtesy of Bach
[2013]. 11

1-6 Graphic Matroid is given by (a) the ground set is the set of edges � of
the graph �(�,�), i.e., � = {(1, 2), (2, 3), (1, 3)} and (b) the family of
independent sets ℐ, i.e., the subsets of the edges � that do not form a
loop. 17

1-7 (a) Best approximation problem in Eq. (1.21) when �1 ∩ �2 = ∅.
(b) Convex feasibility problem in Eq. (1.21). (c) Dykstra problem in
Eq. (1.22). 20

2-1 Space of cliques � denoted by ovals and the space of feasible edges
ℰ denoted by lines for � = {1, 2, 3, 4, 5} and treewidth 2(in Black).
Clique and edge selections in blue represent decomposable graphs while
those in red denote graphs that are not decomposable (best seen in color). 26

2-2 Graph representing (a) chain junction tree, (b) star junction tree, with
an embedded junction tree in green and its junction tree representation
in blue. 37

111

2-3 Empirical integrality gaps of the learnt structures with and without
the acyclicity constraint on cliques in the (a) chain junction tree, (b)
star junction tree. 38

2-4 Log likelihood of the structures learnt using various algorithms on (a)
TRAFFIC and (b) ALARM datasets with � = 3 except Chow-Liu
(� = 1). 39

3-1 Performance on max-cut for (a) 2D-grid and (b) a random graph; the
primal cost is min�∈�k

�(�, ��) and the dual cost is min�∈� t
k
ℛ(�) in our

algorithm. 53

4-1 Grid graph structures and decompositions, indicated by diferent col-
ors. (a) 2D, 4-connected. (b) 2D, 8-connected. (c) 3D tensor, 6-
connected. 57

4-2 Illustration of alternating projections (AP) and averaged alternating
relections (AAR) for Problem (4.1), the problem of inding the closest
points between a polytope K and a subspace L. The iterations start
at the black point �0. AP alternatingly projects onto K and then L.
AAR relects at K and then at L; the next iterate ��+1 (magenta) is
the midpoint between �� and �L�K(�

�). For AAR, the sequence ��

diverges, but the projected shadow sequence of �� = ΠK(�
�) converges

(red). Here, AAR takes larger steps than AP and hence converges
more quickly. 60

4-3 Speedup of the AAR algorithm with parallelisation and warm starts.
(a) Normalised scale of performance with increasing number of cores on
Bunny datasets [max] of diferent resolutions. (b) Number of iterations
taken by each from of a video with "normal" initialisation and "warm
start" from the dual variables of the previous frame. 64

5-1 Base polytope for �=3. (a) Deinition from its supporting hyperplanes
{�(�) = � (�)}. (b) Each face (point or segment) of �(�) is associated
with an ordered partition. 71

5-2 Projection algorithm for a single polytope: projecting on the outer
approximation (a) �︀({2,3},{1})(�), with a projected element which is not
in �(�) (blue), then on (b) �︀({2},{3},{1})(�), with a projected element
being the projection of � onto �(�) (red). 72

5-3 Closest point between two polytopes. (a) Output of Dykstra’s alter-
nating projection algorithm for the TV problem, the pair (�1, �2) may
not be unique while � = �1 + �2 − � is. (b) Dykstra’s alternating
projection output for outer approximations. 78

5-4 Translated intersecting polytopes. (a) output of our algorithm before
translation. (b) Translated formulation. 83

5-5 Bipartite graph to estimate �(�1,�2) with �1 having �1 = 6 compo-
nents and �2 having �2 = 5. 85

112

5-6 (a) Number of SFM oracle calls for images of various sizes, (b) Time
taken for images of various sizes, (c) Number of iterations with and
without warm start, (d) Average complexity of the oracle with and
without warm start. 88

5-7 (a) Number of 2D SFM calls to obtain 3D SFM, (b) Number of 2D
SFM calls to obtain 3D TV, (c) Number of 2D SFM calls to obtain
SFM of 2D + concave function, (d) Number of 2D SFM calls to obtain
TV of 2D + concave function. 90

5-8 (a) Total number of inner iterations for varying �. (b) Total number
of outer iterations for varying �. and (c) Number of inner iterations
per each outer iteration for the � = 101 96

113

114

List of Tables

2.1 Comparison of suboptimality for learnt structure vs true structure
×103, where All represents the structures learnt by solving the pro-
posed convex relaxation with all the constraints including the hyperfor-
est constraint on cliques, Without clique acyclicity represents the
structures learnt by solving the proposed convex relaxation with all
constraints excluding hyperforest constraint on cliques and the struc-
ture learnt using an approximate greedy algorithm. 38

4.1 Memory footprint for Abdomen dataset (512× 512× 551) 63
4.2 Performance comparison of AAR with BK [Boykov and Kolmogorov,

2004], IBFS [Goldberg et al., 2011], and HPF [Goldberg et al., 2011]
on 3D datasets with 6 connectivity. AAR(< �%) denotes the time
taken for the algorithm to ind a cut whose diference to the optimal
cut is �% of the diference between the cut in the irst iteration and
the optimal cut. AAR-JD(< �) denotes time taken by the algorithm to
reduce Jaccard Distance to �. AAR(0.1x) is the number of iterations
taken by AAR after scaling the pairwise weights by 0.1. 66

115

116

117

Résumé
L’entropie d’une distribution sur un ensemble de va-

riables aléatoires discrètes est toujours bornée par l’en-

tropie de la distribution factorisée correspondante. Cette

propriété est due à la sous-modularité de l’entropie. Par

ailleurs, les fonctions sous-modulaires sont une généra-

lisation des fonctions de rang des matroides ; ainsi, les

fonctions linéaires sur les polytopes associés peuvent

être minimisées exactement par un algorithme glouton.

Dans ce manuscrit, nous exploitons ces liens entre

les structures des modèles graphiques et les fonctions

sous-modulaires. Nous utilisons des algorithmes glou-

tons pour optimiser des fonctions linéaires sur des poly-

topes liés aux matroides graphiques et hypergraphiques

pour apprendre la structure de modèles graphiques, tan-

dis que nous utilisons des algorithmes d’inférence sur les

graphes pour optimiser des fonctions sous-modulaires.

La première contribution de cette thèse consiste à ap-

procher par maximum de vraisemblance une distribu-

tion de probabilité par une distribution factorisable et de

complexité algorithmique contrôlée. Comme cette com-

plexité est exponentielle dans la largeur arborescente du

graphe, notre but est d’apprendre un graphe décompo-

sable avec une largeur arborescente bornée, ce qui est

connu pour être NP-difficile. Nous posons ce problème

comme un problème d’optimisation combinatoire et nous

proposons une relaxation convexe basée sur les ma-

troides graphiques et hypergraphiques. Ceci donne lieu

à une solution approchée avec une bonne performance

pratique.

Pour la seconde contribution principale, nous utilisons

le fait que l’entropie d’une distribution est toujours bor-

née par l’entropie de sa distribution factorisée associée,

comme conséquence principale de la sous-modularité,

permettant une généralisation à toutes les fonctions

sous-modulaires de bornes basées sur les concepts de

modèles graphiques. Un algorithme est développé pour

maximiser les fonctions sous-modulaires, un autre pro-

blème NP-difficile, en maximisant ces bornes en utili-

sant des algorithmes d’inférence vibrationnels sur les

graphes.

En troisième contribution, nous proposons et analysons

des algorithmes visant à minimiser des fonctions sous-

modulaires pouvant s’écrire comme somme de fonctions

plus simples. Nos algorithmes n’utilisent que des oracles

de ces fonctions simple basés sur minimisation sous-

modulaires et de variation totale de telle fonctions.

Mots Clés
Modéles graphiques probabilistes, arbres du maximum

de vraisemblance, optimisation discréte, optimisation

submodular, variation totale, optimisation convexe.

Abstract
The entropy of a probability distribution on a set of dis-

crete random variables is always bounded by the entropy

of its factorisable counterpart. This is due to the sub-

modularity of entropy on the set of discrete random vari-

ables. Submodular functions are also generalisation of

matroid rank function; therefore, linear functions may be

optimised on the associated polytopes exactly using a

greedy algorithm.

In this manuscript, we exploit these links between the

structures of graphical models and submodular func-

tions: we use greedy algorithms to optimise linear func-

tions on the polytopes related to graphic and hyper-

graphic matroids for learning the structures of graphical

models, while we use inference algorithms on graphs to

optimise submodular functions.

The first main contribution of the thesis aims at ap-

proximating a probabilistic distribution with a factoris-

able tractable distribution under the maximum likelihood

framework. Since the tractability of exact inference is ex-

ponential in the treewidth of the decomposable graph,

our goal is to learn bounded treewidth decomposable

graphs, which is known to be NP-hard. We pose this as

a combinatorial optimisation problem and provide convex

relaxations based on graphic and hypergraphic matroids.

This leads to an approximate solution with good empiri-

cal performance.

In the second main contribution, we use the fact that the

entropy of a probability distribution is always bounded

by the entropy of its factorisable counterpart mainly as a

consequence of submodularity. This property of entropy

is generalised to all submodular functions and bounds

based on graphical models are proposed. We refer to

them as graph-based bounds. An algorithm is devel-

opped to maximise submodular functions, which is NP-

hard, by maximising the graph-based bound using vari-

ational inference algorithms on graphs.

As third contribution, we propose and analyse algorithms

aiming at minimizing submodular functions that can be

written as sum of simple functions. Our algorithms only

make use of submodular function minimisation and total

variation oracles of simple functions.

Keywords
Probabilistic graphical models, maximum likelihood

trees, discrete optimisation, submodular optimisation, to-

tal variation, convex optimisation.

