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Résumé

Contexte et Motivation

La simulation numérique de réservoirs de pétrole conduit à la résolution d’équations
aux dérivées partielles (EDP). Les schémas numériques aux Volumes Finis amènent à
résoudre ces EDP via la résolution d’un système non-linéaire. La solution de ce système
est approchée par une méthode de Newton, où à chaque itération ce dernier est linéarisé.
Ce système linéaire, creux et de grande taille, doit être ensuite résolu grâce à un solveur
linéaire. Cumulées, les phases de résolution de systèmes linéaires représentent jusqu’à 80%
du temps total d’exécution des simulateurs de réservoirs à IFPEN.

Bien que robustes et précises, les méthodes de résolution directes ne conviennent pas
aux systèmes de grandes tailles car elles nécessitent trop de mémoire. De plus, elles sont
difficiles à paralléliser à cause de leur structure algorithmique. Dans ces conditions, les
méthodes dites itératives sont donc privilégiées, bien que donnant une solution approchée
et dépendent de la structure du système. Pour accélérer la vitesse de convergence de
ces méthodes, on applique un préconditionneur sur le système. Un préconditionneur
comme Algebraic Multi-Grid (AMG), bien que adapté numériquement à nos problèmes, se
révèle cependant difficile à paralléliser à un niveau suffisamment fin pour les architectures
parallèles possédant un grand nombre d’unités de calcul.

En revanche, les préconditionneurs de type Décomposition de Domaine sont eux
adaptés aux architectures parallèles modernes. Se basant sur une stratégie « diviser pour
mieux régner », la structure algébrique de ces méthodes est naturellement parallèle. En
revanche, ces méthodes ne sont pas assez robustes numériquement pour des problèmes
mal conditionnés comme ceux rencontrés en simulation réservoir. Néanmoins, avec l’ajout
d’un second niveau, et notamment l’opérateur grossier GenEO introduit par les travaux
de N. Spillane [Spillane et al., 2014] puis parallélisé par P. Jolivet [Jolivet et al., 2013] sur
une machine à mémoire distribuée, ces méthodes regagnent d’intérêt dans notre domaine
d’application. Pour autant, la construction de cet opérateur repose sur une discrétisation
selon un schéma aux éléments finis, ce qui diffère d’un schéma aux volumes finis utilisés
dans nos applications.



2

Actuellement, les architectures informatiques parallèles à mémoire partagée se basent
sur le modèle « Non Uniform Memory Access » (NUMA). En plus d’une mémoire qui
est segmentée, ces systèmes ont tendance à accroître leur nombre de cœurs de calculs.
De plus, la hiérarchie mémoire qui règne dans ces machines est également importante.
Ces caractéristiques font émerger des problèmes de latence d’accès à la mémoire et de la
contention des bus mémoire. Le nombre d’unités de calculs par socket explose en passant
par une simplification des cœurs. Ces processeurs many-cœurs apportent une complexité
de programmation supplémentaire, comme la nécessité de vectorisation.

Une partie de la complexité de programmation engendrée par ces architectures
migre de plus en plus d’une programmation bas niveau à un niveau supérieur. Des
problématiques telles que la gestion des données ou l’ordonnancement des tâches parallèles
sur les différentes ressources de calculs se retrouvent dorénavant gérées au travers d’un
support exécutif. L’utilisation de nouveaux modèles de programmation parallèle a déjà été
adopté en algèbre linéaire dense. En revanche, des problèmes épineux restent à surmonter
lors de la parallélisation de méthodes algébriques telles que celles employées dans les
simulateurs numériques.

Objectifs et contributions

L’objectif global de ces travaux est de fournir un préconditionneur de type Décom-
position de Domaines qui exploite au mieux les capacités des architectures multi-cœurs.
Cet objectif est en réalité double, il devra à la fois être robuste numériquement sur les
cas de simulation réservoir et devra bénéficier également d’une implémentation parallèle
efficace sur les architectures émergentes. Il est donc nécessaire de mettre en place les briques
numériques et logicielles pour atteindre un tel niveau d’efficacité.

La première contribution de ce travail est d’évaluer une parallélisation de méthodes
itératives via un modèle de programmation de type data-flow avec tâches. La parallélisation
a été réalisée à travers une interface de programmation (i.e. API) qui permet à l’utilisateur
de s’abstraire de l’implémentation sous-jacente et de se focaliser uniquement sur les aspects
algorithmiques de la méthode. Cette API a été développée au-dessus de plusieurs supports
d’exécution, tels que OpenMP 4.0, OmpSs, X-Kaapi et HARTS. L’interface de programmation
s’articule autour de plusieurs principes, tels que la notion d’itération ou le découpage en
tâches selon le graphe d’adjacence de la matrice des coefficients. Ces travaux ont fait l’objet
d’une communication lors de la conférence nationale Compas [Roussel, 2016].

Après une première étude publiée dans [Virouleau et al., 2016b] sur la parallélisa-
tion de la multiplication d’une matrice creuse par un vecteur grâce au moteur exécutif
XKaapi, nous avons intégré dans HARTS une manière de gérer l’exécution des tâches
sur architectures NUMA en gérant de bout en bout la distribution des données jusqu’à
l’exécution. Cette fonctionnalité est initialisée avant le début des sections parallèles car elle
prend uniquement en compte le partitionnement des données, qui est connu qu début de
l’exécution. A l’exécution, c’est l’ordonnanceur, basé sur un algorithme de type vol de tâche,
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qui chargera alors le thread voleur de dérober une tâche opérant sur des données les plus
proches possible.

Nous avons mis en place un système d’évaluation de performances à l’intérieur du
support d’exécution HARTS. A l’aide de ces outils, nous avons la possibilité d’observer
avec minutie le comportement de nos applications. Nous pouvons par exemple retracer le
cours des évènements à travers la génération de diagramme de Gantt. A une échelle plus
fine, nous pouvons faire des mesures au niveau d’une tâche, pour connaître aussi bien son
temps d’exécution, sa granularité et même sur quelle unité de calculs elle s’est exécutée.
Post-mortem, ces évènements sont utilisés pour aider à l’analyse des performances des
exécutions. Par exemple par le calcul du chemin critique, du temps de travail, des temps
d’inactivité par thread, etc.

Nous avons adapté nos méthodes pour les architectures de processeurs many-cœurs.
Nous avons mis en évidence l’importance de la vectorisation des codes existants et l’utilisa-
tion de la mémoire à haute vitesse que nous propose le processeur Intel Xeon Phi Knights
Landing. Bénéficiant du fait que nos données tiennent intégralement dans la mémoire à
bande passante élevée, nous montrons la performance de nos applications sur ce type
d’architecture.

Enfin, nous avons développé au dessus de l’API précédemment évoquée le précon-
ditionneur de type Décomposition de Domaine 2-niveaux, basé sur l’opérateur grossier
GenEO. Ainsi, nous avons pu attester de la performance numérique de ce préconditionneur
sur des cas réservoirs qui, à ce niveau, permet d’être concurrent face à d’autres méthodes
plus connues comme AMG. Nous avons aussi pu, à travers les travaux cités précédemment,
mettre en place des implémentations multi-cœurs et many-cœurs efficaces du précondi-
tionneur. Une étude préliminaire des performances du préconditionneur sur architecture
multi-cœurs a été publiée dans la revue OGST [Roussel et al., 2016].

Résumé des chapitres

Dans le premier chapitre, nous introduisons le contexte de nos travaux et les objectifs
attendus. Nous présentons également les contributions que nous avons apportées tout au
long de cette thèse, avant d’introduire le plan du mémoire.

Dans le second chapitre, nous replaçons le contexte du problème qui nous a été posé
ainsi que les difficultés rencontrées. Dans ce cadre, nous rappelons aussi bien les enjeux
dans les domaines du numérique et de l’informatique dont découlent les problématiques
alors posées tout au long de ces travaux.

Dans le troisième chapitre, nous introduisons une API d’algèbre linéaire creuse qui
permet à ses utilisateurs de pouvoir écrire des algorithmes itératifs de haut niveau avec
une sémantique séquentielle. La parallélisation est implicite, et repose sur le paradigme
de programmation par tâches. L’API est construite autour du concept de Sequence qui
représente une suite d’opérations. Une Sequence est une structure persistante, encapsulant
les différentes opérations à effectuer sous forme de tâches. A l’exécution, les Sequence
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peuvent être rejouées plusieurs fois, ce qui permet de les encapsuler à l’intérieur de boucles
itératives. Les tâches sont construites à partir du partitionnement du graphe d’adjacence
représentant la matrice donnée en entrée du solveur, i.e. le système linéaire à résoudre. Lors
du déclenchement de l’exécution de la Sequence, les tâches ainsi que leurs dépendances sont
alors traduites puis envoyées à un support executif. Jusqu’à présent, notre API supporte les
supports d’exécution suivants : OpenMP 4.0, OmpSs, X-Kaapi et HARTS. Lors d’une étude
préliminaire, nous avons fait un comparatif d’exécutions en utilisant différents supports
exécutifs.
Constatant que la plupart des machines multi-cœurs repose sur une architecture mémoire
de type NUMA, nous avons cherché un moyen de prendre en compte la localité des
données lors de l’exécution de nos méthodes. Nous avons alors mis en place un système
de tâches d’initialisation dans HARTS pour pouvoir bénéficier d’une politique de type
First-touch et ainsi distribuer nos données sur l’ensemble des bancs NUMA disponibles. En
contrôlant l’ordonnancement des tâches et grâce à l’utilisation d’une queue distribuée sur
chaque thread, nous garantissons que les tâches d’initialisation possédant un même numéro
de partition sont exécutées par la même unité de calcul. Par conséquent, des données
différentes seront distribuées de la même manière selon le partitionnement du graphe de la
matrice d’entrée. Nous remplissons la queue appropriée lors de l’instanciation des tâches.
Lors de l’équilibrage de charge, garanti par un algorithme de type vol de travail et grâce
à la connaissance de la distribution des données, un thread inactif va pouvoir voler une
tâche à un autre thread, tout en essayant de minimiser la distance NUMA qui le sépare
de sa victime. Grâce à cette stratégie, nous arrivons à diminuer les accès sur des données
distantes. Afin d’avoir une meilleure analyse de nos performances, nous avons mis en place
un système de monitoring à l’intérieur du support exécutif HARTS. Grâce à des métriques
collectées tout au long de l’exécution, nous pouvons alors analyser les données une fois
l’exécution parallèle terminée. Par ce biais, nous pouvons tracer aussi bien des courbes
d’activités de threads, diagrammes de Gantt, ou des analyses sur le chemin critique. Pour
finir, nous analysons les performances que nous obtenons sur des méthodes itératives
implémentées au dessus de notre API sur les machines multi-cœurs.

En l’état, notre API ne nous permet pas de pouvoir tirer parti efficacement des
processeurs many-cœurs car elle ne tient pas en compte d’optimisations spécifiques qui
sont requises pour ce type d’architecture. Le propos du quatrième chapitre est donc de
proposer des extensions à l’API afin de pouvoir gérer un autre type d’architecture que
celle que nous avons étudié par avant, tout en gardant la portabilité des performances à
notre approche. Pour ce faire, nous concentrons nos travaux sur les processeurs many-
cœurs Knights Landing d’Intel. Ceux-ci proposent une architecture particulière, basée
notamment sur un réseau d’interconnexion des cœurs sous forme de maillage 2D. Grâce
à une simplification des cœurs de calcul, le processeur peut alors posséder jusqu’à 64
unités de calculs. De plus, il embarque une mémoire à bande passante élevée appelée
MCDRAM qui a pour but de réduire le coût des communications mémoire. De là, il en
découle deux challenges de programmation que sont la gestion de la vectorisation des
codes de calculs et une gestion efficace de la MCDRAM. Par le biais de notre API et les
solveurs précédemments développés au-dessus de celle-ci, nous avons pu montrer que les
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performances de nos méthodes continuent d’augmenter malgré l’augmentation du nombre
de coeurs de calculs. A travers différents préconditionneurs, nous avons pu établir une
évaluation de performances montrant que nous arrivons à obtenir de bonnes performances
parallèles pour nos méthodes itératives, sur une architecture basée sur le processeur many-
cœurs Knights Landing. Pour arriver à ce niveau de performances, nous avons dû étendre
notre API pour permettre de prendre en considération la vectorisation des méthodes, mais
également de pouvoir tirer avantage de la mémoire MCDRAM embarquée sur le processeur
KNL. Ces extensions ont été faites dans le respect de la portabilité des performances de l’API
sur différentes architectures. Ces choix d’optimisations pour une architecture spécifique
se font à la compilation, sans altérer la manière dont on écrit nos méthodes itératives. Par
exemple, nous montrons dans ces travaux comment nous permettons la vectorisation d’une
opération de type produit matrice creuse par un vecteur (SpMV) grâce au changement de
structure de la matrice en entrée. A l’arrivée, cette opération nous permet alors d’accroître
les performances de nos solveurs écrits au-dessus de notre API.

Bien que nous pouvons proposer dorénavant une parallélisation des méthodes nu-
mériques employées en simulation réservoir, aussi bien sur architectures multi-cœurs que
many-cœurs, les méthodes développées jusqu’ici s’avèrent inefficaces sur le plan numérique
face à des système mal conditionnés. Pour palier à ce problème, dans le cinquième chapitre
nous proposons alors l’implémentation d’un préconditionneur de type décomposition de
domaine multi-niveaux. Après une rapide présentation des méthodes de type Additive
Schwarz, nous rappelons que l’ajout d’un opérateur grossier tel que GenEO permet de palier
à la robustesse et l’extensibilité des préconditionneurs de type décomposition de domaine
sur des cas provenant de simulations numériques réelles. Nous retrouvons ces résultats à
travers les mesures expérimentales que nous avons effectuées sur notre implémentation.
L’ajout d’un second niveau nous amène alors à la résolution d’un système linéaire de petite
taille. Cette résolution, dite grossière, nous permet alors de synchroniser l’ensemble des
sous-domaines pour favoriser la communication entre eux et accélérer la convergence de la
méthode. Nous proposons dans un second temps une parallélisation par tâches de cette mé-
thode à l’aide de notre API. Expérimentalement, nous montrons qu’il existe un compromis
à faire entre deux tailles de systèmes à résoudre à chaque itération. En effet, en fonction du
nombre de sous-domaines la taille des systèmes locaux tend à diminuer, alors qu’à l’inverse
la taille du système grossier augmente. Un compromis est alors de mise pour trouver le
meilleur équilibre en termes de performances, pour ne pas que chacune des opérations ne
freine les performances globales. Nous évaluons par la suite notre implémentation sur des
systèmes de diverses tailles sur une machine de type multi-cœurs. Notre implémentation
présente de bonnes performances, indépendamment de la taille du système. Comparée à
la référence AMG, notre application se montre un peu moins efficace, mais bien plus que
le préconditonneur ILU(0). Sur architecture many-cœurs, les performances ne sont pas en
reste et présente une bonne efficacité de calculs. De même que sur la précédente machine,
notre implémentation présente un niveau de performance un peu en retrait par rapport au
code de référence AMG. Nous expliquons cette différence par une analyse de la répartition
des temps de calculs à l’exécution qui montre que des tâches restent très consommatrices
en temps de calculs et nécessitent encore d’être vectorisées à court terme. En définitif, les
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performances actuelles du préconditionneur DDML sont en deçà de ce qui pourrait être
obtenu. Une fois ce problème d’optimisation résolu nous pouvons espérer de meilleures
performances sur ces machines car nous avons mesuré que le facteur d’accélération de
notre code est plus important par rapport à la version séquentielle du même code. Toute
amélioration séquentielle sera bénéfique.

Enfin, le sixième et dernier chapitre permet de conclure ce mémoire de thèse. Nous
rappelons alors l’ensemble des travaux effectués ainsi que les différents résultats obtenus.
Nous profitons également de ce chapitre pour donner des perspectives pour la suite de ces
travaux.



Chapter 1
Introduction

Contents
1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Context and motivation

Numerical simulations in reservoir engineering lead up to the resolution of Partial
Differential Equations (PDE), which are then discretized with a finite volume scheme. We
solve it thanks to a Newton solver, in which the system is linearized at each step. The given
linear system is generally large and sparse, and has to be solved via a linear solver method.
This part is time consuming because of the large amount of computations, and it represents
up to 80% of the total simulation time.

Direct resolution methods are accurate and robust algorithms to solve linear systems.
However, it is unsuitable for large system because of the memory requirements and the
lack of parallelism. Iterative methods are thus favored, despite the fact that they give
approximate solutions and depend on the matrix structure. Preconditioners are applied on
the system in order to increase their convergence rates. The Algebraic Multi-Grid (AMG)
preconditioner presents good numerical qualities for the problems encountered in reservoir
simulations. However, an efficient parallel implementation of a such method requires a
significant programming effort.

On the other hand, Domain Decomposition methods are well-suited for modern par-
allel architectures. Its design relies on the "divide and conquer" strategy. Hence, its
algorithmic structure naturally fits on parallel computers and enables a parallelization
at a fine granularity. This later advantage is particularly interesting with the increase
in number of computational units per socket. However, these methods are not robust
enough for our case study. Recently, the problem was fixed with the advent of 2-level
decomposition domain methods and the GenEO coarse operator [Spillane et al., 2014]. This
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method already benefits from an efficient parallel implementation on a distributed memory
computer [Jolivet et al., 2013].

Parallel computer architectures based on a shared memory model actually rely
on the Non Uniform Memory Access (NUMA) design. Such systems are characterized
by a segmented physical memory and an increase in the number of cores per chip. In
addition of that, memory hierarchy that rules memory transfers impacts the application
performances. In such designs, data latency problems arises from memory bus contention.
Nowadays, the number of cores per socket massively increases because of the simplification
of the core design. Programming efficiently these many-core processors is an additional
challenges. Performances enhancement often involves vector processing and a good memory
management.

A part of programming complexity moves from a low-level programming to a higher
layer. Runtime systems are tools that helps data management and work scheduling among
computational resources. The use of emergent parallel programming models is already
adopted in dense linear algebra. However, complex challenges still require much more
investment in the parallel design of the methods used in the reservoir simulation field.

1.2 Objectives and contributions

The main objective of this work is to develop a Domain Decomposition precondi-
tioner which efficiently exploits the capacities of multi-core and many-core systems. It
can be viewed as the combination of two derived objectives. The first one is to design
a robust preconditioner that can be used in oil reservoir simulation. The second is to
provide a parallel implementation of numerical methods on emerging architectures. We
thus need to prepare beforehand main concepts, both numerical and software, on which
our work will rely on. This preconditioner has to be integrated in the MCGSolver li-
brary [Anciaux-Sedrakian et al., 2014], developed at IFPEN, which aims to provide efficient
parallel linear solvers for numerical methods’ developers.

The first contribution of this work is to propose an efficient parallel implementation
of iterative methods. It relies on a data-flow programming model, and is packed within
an abstract linear algebra programming interface (i.e. API). By this way, users do not see
parallel implementation and can focus on the algorithm. This API has been developed over
several runtime systems among OpenMP, OmpSs, X-Kaapi and HARTS. The interface was
build around the iterative pattern of the methods while the tasks were created according to
the adjacency graph of the matrix. This work has been presented in [Roussel, 2016].

Within the X-Kaapi’s OpenMP interface, we also highlight the importance of data
locality scheduling policy on NUMA architecture. It enables to collect information on data
at run time to place tasks among computational units. We expose the case of a sparse
matrix vector product on a large scale NUMA machine in [Virouleau et al., 2016b].
Thanks to HARTS, we implement a data locality aware scheduling policy based on graph
partitioning information provided by the API. By this way, tasks are pushed in a distributed
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queue according to partition information. It enables to distribute data among memory
nodes thanks to first-touch NUMA policy and allocating tasks of the API. At run time, when
a thread is idle, a work stealing scheduler selects a victim according to the initial data
distribution.

Moreover, we enhance our understanding of application behavior with the imple-
mentation of performances analysis tools inside HARTS. This model allows users to collect
information at run time time, which enable to build application analysis after the execution.
For example, it enables to build a time line from events records (e.g. beginning and end of
tasks) gathered in a Gantt chart. At a lower scale, measurements can be collected at a task
level to know its granularity or which resource performs it. After an execution, we also can
analyze critical path which can give us an hint to a parallelism default.

Afterward, we adapt our numerical methods on many-core processors. On Intel
Knights Landing processor, we highlight the importance of code vectorization and effective
usage of high bandwidth memory. However, the performances of the API have to be portable
whatever the architecture in use. We thus need to extend the API while keeping the same
semantic. In order to enhance performances by code vectorization we enable the developers
to write kernels with multiple implementations and a multiple structures management.
Moreover, we extend the API with memory management unit to enhance applications with
high bandwidth memory when it is available (depending on the architecture). We illustrate
the performances we obtained with this architecture with various numerical methods we
implemented.

Eventually, we develop a 2-level Domain Decomposition preconditioner with the
GenEO coarse operator. This work was achieved within the abstract linear algebra API. We
validate the robustness of such a preconditioner on benchmarks coming from oil reservoir
simulations. By this way, we evaluate its numerical performance that is close to other
widespread methods as AMG. Thanks to the work previously described, we develop both
multi-core and many-core efficient parallel implementations. A preliminary study of this
preconditioner on multi-core architecture was published in [Roussel et al., 2016].

1.3 Outline

In the second chapter, we introduce the challenges that leads to high performance
computing in the sparse linear solver context. From algorithmic to the parallel implementa-
tion, there are many issues to overcome. This chapter aims to review them from algorithmic
to computer architectures, while discussing on the implementation between them.

In the third chapter, we describe a way to write efficient parallel numerical methods
on multi-core architectures. We present the framework we set up, and the required
optimization to maximize performances. This chapter is devoted to the evaluation of
parallel performances of iterative methods.

Many-core architecture is one alternative to multi-core processors in order to increase
computing performances. However, these architectures introduce new programming
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challenges. We review these challenges in the fourth chapter, and propose solutions for
sparse linear algebra methods.

We propose an efficient parallelization of a 2-level domain decomposition precon-
ditioner in the fifth chapter. We gather the various points we raised up in the previous
chapters. By this way, we develop a preconditioner which is robust and efficient on both
multi-core and many-core systems.

We conclude this thesis with the last chapter, on which we review our contribution
and the results we obtained all along this work.
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In basin modelization or oil reservoir simulation, multi-phase flow in porous media
models lead to solve complex Partial Differential Equations (PDEs) systems. These PDEs
are discretized with a cell-centered Finite Volume scheme in space and an Euler implicit
method in time, leading to a nonlinear system which is solved with an iterative Newton’s
method [Kelley, 2003]. At each Newton step, the system is linearized then solved using a
linear solver.

The equation reads Ax = b, where x is the vector of unknowns, A the input matrix
and b the right-hand side vector. The resolution of such systems is the most expensive
part among the simulator’s workflow. It may represent up to 80% of the simulation time.
Moreover, the generated linear system is ill-conditioned, large and sparse. As it is a
bottleneck for application performance, parallel computing is thus a necessity to enhance



12 Chapter 2. Background

simulator’s performances. Hence, methods must be adapted, or sometimes re-designed,
for efficient parallel computations. In addition of that, parallel computers become more
complex and programming them efficiently is challenging.

This chapter aims to review the challenges that parallel linear algebra algorithms
have to overcome at several levels of complexity.

At the top level, we have linear solver algorithmic which aims to find a feasible
solution in a reasonable time. Different classes of methods exist, which are designed from
various classes of problems. These methods are reviewed in the first section.

At the lowest level, there is the computer hardware on which we eventually address
parallel numerical methods. Parallel architectures are complex, and their understanding is a
first step to face challenges we encounter. In the second section, we thus review widespread
parallel computer designs in the high performance computing field.

Between these two levels, programming sparse linear algebra methods on parallel
architectures remains challenging. A way to address the work flow is given by a parallel
programming model to abstract the underlying architecture. Then, runtime systems tools
implement it to manage the computations between the processing units. We review
programming challenges in the third section.

Eventually, we discuss on the HPC trends in parallel sparse linear algebra field.

2.1 Sparse linear algebra

2.1.1 Linear Solvers

There are two ways to solve linear systems. The most intuitive one is direct method
to obtain an exact solution of the system. Another way is to use an iterative method
which refines an initial guess within a loop, until it reaches convergence to an approximate
solution. We here aim to review both methods.

2.1.1.1 Direct solver

A method which allows the computation of the unknowns vector x in a finite number
of operations is named a direct method for solving the the linear system Ax = b.

One of the most famous direct method consist to process a Gaussian elimination
method. It reduces any linear system to a triangular one. It is then trivial to obtain the
exact solution x.
Other methods [Ciarlet, 1998] rely on the factorization of the matrix A as a product of two
other matrices such that A = BC. The solution of the system will be replace by the solution
of two easily invertible systems as the matrices B and C are triangular or orthogonal.
Common factorization methods are LU or QR decomposition.

Direct methods provide a robust and accurate way to solve linear systems. Robustness
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property come from the fact that they do not depend on the shape of the linear system.
However, such methods are greedy in memory. Moreover, the computation of the exact
solution is time consuming and highly depends on the shape of the system to solve. Hence,
these methods are not used to solve large linear systems.

2.1.1.2 Iterative Methods

Given an initial guess, an iterative method will refine the approximate solution until
convergence is reached. This method modifies one or a few components of the solution
at each step, and stops when the convergence criterion is satisfied under a certain desired
precision ε. It can be theoretically proved that these methods converge to the exact solution.

At the k-th iteration, error estimation is given by the formula:

ek = xk − x (2.1)

The iterative method converges if and only if ek converges to 0. As x is unknown we cannot
compute it. It is pretty much easier to compute the residual vector at the k-th step, which is
given by :

rk = b− Axk (2.2)

and then convergence criterion is evaluated to satisfy ‖b− Axk‖ ≤ ε. In practice, we prefer
to refer to a relative error to be sure that the criterion is not misleading, and it is given by:

‖b− Axk‖
‖b− Ax0‖

≤ ε (2.3)

Iterative methods are less accurate than direct methods because of the computation of
an approximate solution to the problem, but the error is controlled. As a lack of robustness,
the distinction between structured and unstructured matrices may affect iterative methods.

Some of them are based of coordinates relaxation. These basic iterative methods are
algorithms like Jacobi, Gauss-Seidel or Successive Over Relaxation (SOR) methods. But these
techniques are rarely good alternatives for solving large and sparse systems.

Another way is the use of methods based on projection techniques. In this case, the
most popular ones are Krylov subspace methods. Common algorithms used for unstruc-
tured systems are the Generalized Minimum Residual Method (GMRES) [Saad and Schultz, 1986]
and the Biconjugate Gradient Stabilized (BiCGStab) [van der Vorst, 1992] algorithms (illus-
trated in Algorithm 3.1). In our work, we mainly focus on the BiCGStab algorithm because
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of its efficiency on unstructured linear systems arising in oil reservoir simulations.

Algorithm 2.1: BiCGStab Algorithm

1 Compute r0 = b− Ax0;
2 r∗0 arbitrary;
3 p0 = r0;
4 j = 0 ;
5 do
6 αj = (rj, r∗0)/(Apj, r∗0);
7 sj = rj − αj Apj;
8 ωj = (Asj, sj)/(Asj, Asj);
9 xj+1 = xj + αj pj + ωjsj;

10 rj+1 = sj −ωj Asj;

11 β j =
(rj+1,r∗0)
(rj ,r∗0)

× αj
ωj

;

12 pj+1 = rj+1 + β j(pj −ωj Apj);
13 j = j + 1;
14 while ! convergence;

2.1.2 Preconditioners

2.1.2.1 Generalities

In scientific computing, there is no exact computations. Real numbers are represented
in computer under a certain precision degree (representation with 32 bits for a single
precision, or with 64 bits for a double precision). A slight modification of matrix entries
may have a significant impact on the final computed solution. A numerical method which
does not amplify errors is said to be stable. Because of their recursive nature, stability
property for iterative methods is a way to not propagate and amplify error over iterations.
Otherwise, computed solution may be far away from the expected result.

To measure how sensitive is the solution to the problem of rounding error, we now
introduce the notion of matrix conditioning. It helps to measure the sensitivity of the solution
x of the linear system Ax = b to perturbations of the data A and b. The condition number
cond(A) quantify the conditioning or the sensitivity of the problem Ax = b to perturbations
in the data A or b. Condition number of a singular matrix (i.e invertible) A is given by

cond(A) = ‖A‖.‖A−1‖. (2.4)

Even if the relative error of the data is small, the impact on the solution x can be huge
if the condition number of A is large. In other words, the condition number cond(A)

measures the amplification of errors in A and b. A matrix A is said to be well conditioned if
cond(A) ' 1, and conversely a matrix is said to be ill conditioned if cond(A)� 1.

Due to the complexity to compute the matrix A−1 when A is large, we generally
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compute condition number by approximations which is enough to predict the amplification
of errors in data.

Highly heterogeneous geological data and complex studied geometry lead to ill-
conditioned linear systems solved with iterative methods. To prevent the propagation of
errors, preconditioning methods transform a system to another while reducing its condition
number. However, it does not change the solution of the problem. A left preconditioned
system is given by

M−1Ax = M−1b, (2.5)

in which A is an ill-conditioned matrix, and M a non-singular matrix named a preconditioner,
or a preconditioning matrix. There is also a right preconditioned system, given by

AP−1y = b

with
x = P−1y, (2.6)

such that P is a non singular and easily invertible matrix. An important property of a
preconditioned system is that cond(M−1A) < cond(A). The problem is now to find a matrix
M which is easily invertible so that M−1A is close to the identity matrix (whose condition-
ing is equal to 1). Computing A−1 is a problem at least as difficult as to solve the linear
system. So we have to find a matrix M which is close to A. Another important property of
a preconditioner is that is easy to apply. Indeed, we will apply this preconditioner at each
iteration of an iterative method, so it has to be not too expensive to apply it on A.

Ill-conditioned system fails to converge in a reasonable time because of the error
propagation. Improving conditioning of a matrix with a preconditioner is so important to
enhance linear solver’s convergence rate. Indeed, it reduces number of iteration required to
converge. Linear systems arising from oil reservoir simulation are generally ill-conditioned.

2.1.2.2 Polynomial

The idea of such a preconditioner is to define M−1 = p(A), where p is a polynomial
such that cond(C−1A) < cond(A). A good choice is to take for p(x), a truncation of the
expansion in power series of A−1, given by p(x) = 1 + ∑d

k≥1(1− x)k. Although it is easy
to built, this preconditioner is most of the time not efficient for complex problems arising
from oil reservoir simulations.

2.1.2.3 ILU(0)

Given a factorization of a large sparse matrix A such that

A = LU, (2.7)
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where L is a lower triangular matrix, and U an upper triangular matrix. It is well known
that usually in the factorization procedure, the matrices L and U have more non zero
entries then A. These extra entries are called fill-in entries. The Incomplete LU factoriza-
tion (ILU) [Varga, 1960] consists in dropping some of these elements. Incomplete factor-
ization preconditioners consist in taking M = L̄Ū ≈ A, where L̄ and Ū stand for the
incomplete LU factors of A. Let S be a subset of n× n positions of the original matrix
generally including the main diagonal, and ∀(i, j) such as ai,j 6= 0. An incomplete LU
factorization of A only allows fill-in positions which are in S, which is designated by the
elements to drop at each step. S has to be specified in advance in a static way by defining
a zero pattern which must exclude the main diagonal. Therefore, for any zero pattern P,
such that

P ⊂ {(i, j)|i 6= j; 1 ≤ i, j ≤ n} (2.8)

an Incomplete LU Factorization, ILU, can be computed as in Algorithm 2.

Algorithm 2.2: Incomplete LU Factorization Algorithm

1 for i = 2, ..., n do
2 for k = 1, ..., i− 1 and (i, k) /∈ P do
3 aik = aik/akk for j = k + 1, ..., n and (i, j) /∈ P do
4 aij = aij − aikakj

5 end
6 end
7 end

For an incomplete factorization with no-fill, named ILU(0), we define the pattern P as
the zero pattern of A. However, more accurate factorization can be obtained by allowing
some fill-in, denoted by ILU(p) where p stands for the desired level of fill. This class of
preconditioner has some difficulties to converge in a reasonably number of iterations on
ill-conditioned systems.

2.1.2.4 AMG

Algebraic MultiGrid (AMG) [Brandt et al., 1984] method solves linear systems based
on multigrid principles. It is a complex algorithm which is widely spread in simulation area
because of its robustness property on large sparse and unstructured systems. The setup
phase is non-negligible in the total solving time because of the determination, at each coarse
grid level, of the coarse grid, interpolation and coarse grid operators. The setup time may
be longer than the solving time as the solver requires only a few iterates to converge. The
solving phase is composed of two complementary operations, also called the smoothing
and the coarse grid correction steps. The first one attempt to reduce high-frequency error
by the application of a smoother, also called relaxation method. Coarse grid correction
eliminates low-frequency error. It performs a transfer of information to a coarser grid (also
called restriction operator), then a coarse-grid operator is solved and at last the solution is
send back to the fine grid (also called the interpolation). The major improvements of such



2.2. Parallel Computers 17

a method is that it operates on smaller problems, and the computational cost is therefore
smaller. Moreover, it requires no information on the problem geometry. The number
of iterations needed to converge only depends on the system size. In addition to that,
coarsening and smoothing strategies may be tuned to affect convergence rates.

2.2 Parallel Computers

Moore’s law [Moore, 1965] states that the number of transistors on a chip is multiplied
by 2 every 18 months. This law shows its limits because of the downsizing of the hardware
components is not enough to reach high performances regarding actual challenges of
scientific computing. Since the rise of multi-core processors, parallel computing is an
increasing need to take advantage of these architectures. Nowadays, processor’s frequency
tends to converge because of the heat dissipation induced by hardware limitations.

Since the multiplication of processors on a chip, the Admahl’s law defines the
theoretical speed-up obtained on an application. An application can be split in a part that
is parallelizable, and another which is not. Let Tp be the execution time on p processors,
and S the time to compute the serial part. The sequential time to compute the parallel part,
denoted by B, is so deduced by B = T1 − S. On p processors, a lower bound is so given
by Tp = S + (B/p). However, some overheads occur and factors such as data latency or
memory bandwidth make the theoretical time slightly different.

The aim of this section is to describe parallelism from hardware to programmer’s point
of view. In the first sub-section, we describe a way for parallel architectures and parallelism
classification. We then describe each significant hardware device which composes an actual
architecture and its hierarchy. In the third section, we detail the programming models that
help the developer to efficiently take advantage of parallel computers.

2.2.1 Generalities

The rise of multi-processors systems increases the complexity of programming. Sev-
eral types of parallel computers exist, and there is a need to find a classification to describe
any machine according to hardware features. There are several ways to classify parallel
computers, and we first present the most used in parallel architectures: the Flynn taxonomy
[Flynn, 1972]. This classification is based on instruction and data streams. In a second time,
we present memory types encountered on parallel machines.

2.2.1.1 Classification

On a sequential computer, executing model is the same as the Von Neumann machine
[Von Neumann, 1945]. There is a unique instructions stream in which one instruction is
process per processor cycle on a single data item. In parallel computing area, an application
can be viewed as one or several instructions streams acting on one or several data streams.
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The classification proposed by Flynn [Flynn, 1972] is based on it. It deals with both
instruction and data streams, and enables to store any computer in one of the four following
categories:

— Single Instruction stream, Single Data stream (SISD) – It refers to the uniprocessor
category. Developers see it as a sequential computer.

— Single Instruction stream, Multiple Data stream (SIMD) – The same instruction is
processed by multiple processors on multiple data in parallel. Such computers own a
single control unit. Exploiting this type of architectures needs sufficient amount of
data. Vector architectures and data parallel architectures are placed in this computer
class.

— Multiple Instruction stream, Single Data stream (MISD) – Until now, there is no
computer of this class.

— Multiple Instruction stream, Multiple Data stream (MIMD) – Each processor exe-
cutes its own instruction stream on its own data stream. Programming such archi-
tecture is more flexible, and imposes a significant grain size to efficiently exploit
parallelism.

For example, a common architecture in clusters are nodes composed of two processors.
Such a computational node can be classified in the MIMD category. A single single processor
includes several computing units (cores) which have SIMD capabilities.

There are several other models which extend the classification presented above. For
example, Single Program Multiple Data (SPMD) and Multiple Program Multiple Data
(MPMD) take care of a running program which can be distributed on one or several
computational nodes, and process local data at the same time.

2.2.1.2 Levels of parallelism

Parallelism is a meaning to divide a problem in smaller pieces processed by some
computational units. There are several ways and different levels to express parallelism. In
this part, we gradually review each level of parallelism.

Instruction Level Parallelism (ILP) in which instructions can be grouped or reorganized
to be processed in parallel if dependencies between data allow it, without changing the
result. Instruction level parallelism can be exploited by two major ways. The first one is at
hardware level with a dedicated logic on a chip. The second one is at software level with
the use of compiler.

Data Level Parallelism (DLP) is the ability to divide a problem by splitting processed
data which are related to its resolution. Data are then distributed among working threads
or processes which operate on it the same instructions. Efficient data parallelism requires a
large amount of data to process. In this case, the amount of data processed is known as the
work’s granularity.
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Task Level Parallelism (TLP) is the ability to divide the whole work in several tasks that
can be performed simultaneously on different data. Tasks may be different from each other,
and the completion of all of them lead to the final result of the problem.

2.2.2 Processors Architecture

The processor is the hardware unit responsible to perform computations. Nowadays,
computing processors handle several execution units to enable parallel computing. Classical
multi-processor chips are equipped with few but powerful execution units, also named
as cores. On the other hand, compared to classical processors, computing accelerators
generally handle much more cores which are less powerful. However, massive parallelism
induced by these accelerators may increase performances.

Computational accelerators may take several forms, and we aim in this subsection
to review some of the most popular ones. The first one, Graphical Processing Units
(GPUs), refers to a widespread component in computer systems which are now used for
achieving high performance computing. The second one is the Many Integrated Cores (MIC)
introduced by Intel to provide huge number of simplified cores to make computations.

2.2.2.1 General purpose processors

Current processors in a computer refer to multi-processors chips or multi-core pro-
cessors. A multi-core processor is composed of several processors, also called cores, on the
same die. It means that these chips contain several independent processing units, which
collaborate in parallel to achieve better performances than a single core processor. The
set of instructions that a processor can process is called the Instruction Set Architecture
(ISA). One of the most popular ISA is the x86 instruction set. Instructions represent data
transfers, arithmetic, conditional, branches and logical operations. A register is the fastest
memory location and is used to store temporary variables. There are some extensions to
classical ISAs to SIMD instructions like Streaming SIMD Extension (SSE) instructions and
also Advanced Vector Extension (AVX) support.

Current generation of multi-processors chips contains a cache memory hierarchy of
three levels of cache, from the closest to the farthest. Cache memory avoids a processor to
retrieve data each time from main memory, and so reduces latency by this means. At the
top level, there is the L1 cache which is private to a core. This is the fastest and the closest
cache level to the core but the size is highly limited. The L2 cache level is slightly bigger,
and local to core but data access has higher latency. In some cases, L2 may also be shared
(e.g. AMD Buldozer has shared L2 cache between 2 cores). The L3 cache level is the largest
cache level, and is generally shared between all the cores. Nowadays, this is the last cache
level to store data on current generation of processors. If after all, the data is not store in
one of the three levels of cache, the core request data from main memory and the latency is
therefore higher.
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2.2.2.2 Graphic Processing Units (GPU)

GPUs are no longer exclusively used for graphical applications. General Purpose
processing on GPU (GPGPU) refers to the fact that now GPUs are used as computational
accelerators for general purpose computations. They provide a massively parallel architec-
tures composed of a huge number of cores which have a simplified design. The most used
architectures for GPGPU are provided by the Nvidia company, and are named CUDA-aware
architectures. In Kepler architecture, cores are grouped in streaming multiprocessors (SMX),
where each one shares a L2 cache memory. Each SMX owns its own memory hierarchy
which is shared by all the cores of this SMX. For instance, each one shares a L1 cache
between all the cores, and a constant cache memory. GPU computing introduces Single
Instruction Multiple Threads (SIMT) execution model. Threads are grouped in a set called
warp (generally equals to 32 threads). Each SMX also handles a quad warp scheduler,
which allows to process the same instruction concurrently on four threads of different
warps. Such data transfers between host (CPU side) and device (GPU device) are processed
through the PCI Express bus. If an application processes too many data transfers, it could
be a bottleneck for application performances. Designing a good scheduler that reduce data
transfers and balance the work load is challenging. More details can be found in the Kepler
architecture white paper [Nvidia Corporation, 2012].

2.2.2.3 Intel® Xeon Phi Coprocessor

The accelerator proposed by Intel® is based on a Many Integrated Core (MIC) ar-
chitecture, named Intel® Xeon Phi [Jeffers and Reinders, 2013]. The coprocessor is known
under the name Knights Corner (KNC) product. The board is composed of more or less
60 x86 cores, linked by a bi-directional ring interconnect. Each core owns its own memory
hierarchy with L1 cache which is closer to the core, and L2 cache which is still closer but in
direct link with the interconnect. There are 8 memory controllers on the ring interconnect
to dispatch data around the ring from external memory device. The key feature of such an
architecture is that each core contains a vector processing unit to process vector instructions.
Difficulties come from the code optimization to take care of vector processing, hyper-
threading and multi-level parallelism. The hardware architecture of the KNC coprocessor
board is illustrated in Fig. 2.1.

2.2.3 Memory Systems

It is also important to distinguish which type of memory is used on parallel computers.
The reduction of both latency and bus contention is a determinant factor in memory systems.
The latency defines the time from the request to a data access to the answer. Bus contention
refers to the fact that more than one device attempt to simultaneously access to memory.

Nowadays, multi-processors chips handle several layers of memory hierarchy to
reduce latency. There are memory blocks, called caches, very closed to processing units
to reduce time to data retrieval. On the other hand, there is a need to handle memory
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Figure 2.1 – Intel®Xeon Phi architecture

coherency between all the layers of the memory hierarchy. There are specific protocols to
ensure the validity of the data between all the layers of the cache hierarchy of all the cores.
Such a protocol is named a cache coherence protocol. An architecture which is not cache
coherent is not easy to program.

We review here the two main categories of memory systems space. A shared memory
system relies on a centralized memory shared between the processors. In the other hand,
distributed memory is located at different locations such that each processor has not a
direct hardware access to this memory bank.

2.2.3.1 Shared Memory

In shared memory systems, a set of processors is linked to a memory system through
an interconnection network, and a processor can access to each memory location without
any software support. The interconnect can either connect all the processors to the main
memory, or each processor has its own local memory and can access to other memory
locations. So the main categories of shared memory systems are the Uniform Memory
Access (UMA) and Non-Uniform Memory Access (NUMA) architectures.

Uniform Memory Access (UMA)

UMA architectures are characterized by the fact that each processor has the same
path length to any memory address. In this case, bus contention may be a bottleneck for
application when several cores have to access the centralized memory at the same time. An
example of an UMA architecture with 8 threads is given in Fig.2.2. Systems which use UMA
architecture are Symmetric Multi-Processors (SMP) and the first multi-core processors.
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Figure 2.2 – UMA system with bus interconnection

Non Uniform Memory Access (NUMA)

In a NUMA architecture, data access time depends on its location in memory. Each
processor or group of processors has its own local memory. In this kind of architecture,
memory locality plays a significant role. Remote memory accesses increase the latency.
Local memory accesses not only favor a lighter latency overhead but also reduce bus
contention on the interconnect and other memory controllers. Nowadays, NUMA systems
are encountered in multi-processors systems. These systems may own several NUMA
nodes, where there is a local memory and a group of processors per NUMA node. Fig.2.3
illustrates a computation node based on a NUMA design which is composed of two NUMA
nodes, where each contains a 4 cores processor and a dedicated memory. In such machines,
we can thus define the notion of distance. Indeed, the distance between processors and
memory banks can vary. We measure the distance in hops to join a memory bank to a
processing unit, which depends on the network. Hence, a core and a memory bank located
in the same NUMA node have a smaller distance than if they are on two distinct nodes.
Memory latency depends on the distance distance between a core and the memory banks
the threads attempt to reach.

Figure 2.3 – System with 2 NUMA nodes with 8 processors

Most of NUMA systems are cache coherent, that means that the coherence of shared
data inside processor caches is ensure by a specific protocol for both processors. Such
systems are called CC-NUMA.
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2.2.3.2 Distributed Memory

In such kind of system, each processor or group of processors is paired with its own
private memory paired with an interconnection network. Distinct processors at various
locations may explicitly communicate by sending messages to exchange data (see section
2.3.1.2). Well known examples are clusters, composed of multiple nodes (such as a system
composed of one or two NUMA nodes) with their own local and private memory. Nodes are
then linked by interconnection network, like ethernet, infiniband, . . . This class of memory
is out of the scope of this work.

2.2.4 Topology discovery

Most of current computer architecture designs rely on a hierarchical topology. Taking
care of underlying hardware topology is a key point to reach high performance on parallel
computing. Nowadays, clusters are composed of several nodes which contains several
sockets in where we can found multi-core processors and accelerators. There it exists
specific memory hierarchy such as cache memory which can be shared or not between
cores. The way of binding cores is a determinant factor, specifically when it involves
communication, synchronization and sharing between them. It means that two related
computing tasks have to be placed on neighbor cores to optimize communication and/or
synchronization. Moreover, the democratization of heterogeneous architectures highlights
that locality importance grows and it is now applied to computational accelerators or
network interfaces [Goglin, 2014]. Thus, affinities between computing tasks and hardware
resources play a key role.

The Hardware Locality software Hwloc [Broquedis et al., 2010] aims to gather topology
information of the underlying hardware. The generated hierarchical tree contains at each
node some specific objects (among Machine, Node, Socket, Cache, Core, . . . ) and various
attributes such as cache type and size or core identifier. The depth of a node represents the
depth in the machine topology, and an edge between two nodes represents a physical link
between these components. It thus offers the possibility to discover I/O devices to have a
more detailed view of the architecture, such as some kind of accelerators. By browsing the
tree, developers can use information to adapt the behaviour of application at run-time to
the underlying hardware specificities. Fig.2.4 illustrates a topology scheme of a dual-socket
node obtained with the Hwloc software.

2.3 Parallel Programming Models and Runtime Systems

A programming model is an abstraction of the underlying architecture. It is generally
presented as a bridge between applications and hardware [Asanović et al., 2006]. It offers a
way for users to express parallel algorithms and match applications with the underlying
architecture. Programming models are still in constant evolution according to architecture’s
changes which provide new programming challenges.
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Figure 2.4 – Hwloc illustration on a dual-socket machine

The implementation of a parallel programming model may be provided by a library
invoked from a sequential language, an extension to an existing language or a new pro-
gramming language. Runtime systems are tools which implement a parallel programming
model while discharging users from the parallel execution.

2.3.1 Parallel Programming Models

In this subsection, we review three parallel programming models designed for multi-
core architectures. We first remind fork-join programming model. We then present message
passing model. We eventually present the data flow model.

2.3.1.1 Fork-Join Model

Fork-Join model is a model composed of two step. The work is initially divided in
smaller and independent tasks that can be performed in parallel: it is the fork phase. All
tasks are then reduced (i.e. the join phase), which generates a synchronization point at
task exit point. This programming model imposes that the granularity of tasks have to be
similar to not generate excessive inactivity time.

The POSIX threads library, pthread [Nichols et al., 1996], is a widespread library that
allows to easily implement the former programming model. The programming standard
for multi-threaded application, OpenMP [OpenMP Architecture Review Board, 2008], also
implements it via "parallel" and "parallel for" construct directives.
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2.3.1.2 Message Passing Model

In message passing model, each processor owns a private memory which is not
reachable from other processor. The only way for processors to exchange data is to use
explicit communication by sending messages. The two main functions are send and receive.
There is two main type of communication: synchronous and asynchronous. Synchronous
communications involve that two processors have to be synchronized to exchange data. In
this situation, when a processor has to wait for a message in its queue before resuming
its execution. At the opposite, asynchronous communications does not need that two
processors are synchronized to communicate.

Most of programming tools which implement this programming model use a multi
processes execution. The Message Passing Interface, MPI [Forum, 1994], is the most
popular to implement this programming model. It provides both C and Fortran interfaces
to implement message passing model.

2.3.1.3 Data flow Model

The data flow model described in [Johnston et al., 2004] enables a program to pro-
cess work according to dependencies between instructions. Initial model only considers
instructions, but its evolution upgrades to also consider macro instructions which now
correspond to a function call. We consider here that this model is not limited to data flow
machines [Davis, 1978]. There are two states of a data in this model: ready or not. A data
become ready when all its previous contributions are computed. Following this model, we
can associate access modes to a data (read, write or read/write). A Direct Acyclic Graph
(DAG) of the execution can be deduced by data flow computations. The graph is processed
following the dependency rules. Each node contains a function call, which corresponds
to a piece of work entirely written with a sequential language. A task is characterized by
work’s granularity, predecessor tasks, and successors.

2.3.2 Runtime Systems

To fully exploit parallel computer performances, runtime systems are key elements.
A runtime system is a tool which implements a programming model while balancing the
workload on the available computational units. On the software stack, runtime systems are
useful from users’ point of view to describe an application without taking care of workload
management. By this way, no knowledge about hardware is required to efficiently program
complex parallel architectures.

We only focus on task-based runtime systems with on-line scheduling policy (i.e. dy-
namic). Fundamentally, such a runtime system handles a task pool [Korch and Rauber, 2004].
It can be shared or not between a set of "workers" (i.e. threads in our study case) which
are responsible of performing computations. Runtime systems then define how a queue
is accessed by a thread, and the associated functions to push or pop a task. In the case of
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a centralized pool, all the threads share the access to it. In this case, concurrent accesses
may degrade performances if work granularity is too small. On the opposite, the queue
is distributed and can be operated by only one thread. The compromise between these
two strategies is to design a distributed pool where each queue is operated by a group of
threads. The scheduler conducts the execution. It assigns the work to do during execution
time by pushing tasks into the queue. The existing task-based runtime systems differ from
the way they manage tasks and scheduling policy they employ. We aim here to review some
of the most famous task-based runtime systems designed for shared memory machines.

2.3.2.1 Cilk

Cilk [Blumofe et al., 1995] is a multi-threaded runtime system which extends the
C programming language. It relies on the Fork-Join programming model with a notion
of tasks. Users are in charge to explicitly expose parallelism, while tasks scheduling is
abstracted by the runtime. In the Cilk-5 formalism [Frigo et al., 1998], a Cilk program
can be expressed within three keywords: cilk, spawn, sync. The keyword cilk defines a
Cilk procedure. The keyword spawn is used to execute a Cilk procedure in parallel. The
scheduler is then responsible to assign threads the spawned tasks. A local barrier is
generated when sync is encountered, which enforces a task to wait for the completion of its
children.

The Cilk scheduler relies on a work-stealing policy [Blumofe and Leiserson, 1994].
A thread is represented as a worker that performs tasks from its own deque. A worker
operates on its local pool with push and pop functions at the tail of its deque. When a
thread runs out of work, it becomes a thief, and tries to steal work from the head of another
worker’s deque named the victim.

2.3.2.2 OpenMP

OpenMP [OpenMP Architecture Review Board, 2013] is the well-known standard in
shared memory parallel programming. Code annotations with compiler directives avoid
to rewrite the whole application from scratch. When entering the first parallel region a
typical OpenMP runtime instantiates a thread pool which is reused for following parallel
regions. Threads in pool wait for work on a semi active synchronization barrier. Each
thread actively (thread in run state) spins waiting for work up to a maximum spin value
and if a thread reach this maximum value without work the runtime puts the thread in an
operating system wait queue (thread in sleep state) using mutex or futex like mechanisms.
This approach allows low latency parallel job start without monopolizing processor time.

Now a more advanced tasking feature is available since the version 3.0 of the specifi-
cation [OpenMP Architecture Review Board, 2008], and enables to explicitly define a task
[Ayguade et al., 2009]. Tasks are created in the order defined by the (partial) order of
#pragma task OpenMP keyword in the executing program. This means that in order to
have concurrent tasks these have to be created inside a parallel section. Access modes of
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Listing 2.1 – OpenMP – Axpy task

1

2 void omp_axpy (Value const& a,
3 Vector const& x, Vector & y,
4 const int size)
5 {
6 # pragma omp task firstprivate (a, x, y, size) \
7 depend (in: x[: size], a[:1] ) \
8 depend (out: y[: size] ) untied
9 {

10 for (int i = 0; i < size; ++i)
11 y[i] += a * x[i];
12 }
13 }

tasks’ data for dataflow directed computation are now available since the version 4.0 of the
standard [OpenMP Architecture Review Board, 2013], at the same time of work offloading
on computational accelerators. Access modes allow creating task dependencies thus ready
tasks pool is filled with tasks for which dependencies are satisfied. Work scheduling depend
on the hidden underlying implementations offered by compiler which implement OpenMP
(Gnu GCC and Intel ICC).

The standard offers a flat memory view of complex NUMA hardware. Recent
extensions allows to specify mapping of threads among cores of a parallel architecture. An
example of a Axpy task is thus illustrated in Listing 2.1. It simply shows the construction of
a task via the pragma omp task directive, and the dependencies via the depend keyword.

2.3.2.3 OmpSs

OmpSs is a task based programming environment which covers both heterogeneous
and homogeneous architectures used nowadays. Its target is the programming of multi-
GPU, many-core or multi-core architectures and offers asynchronous parallelism in the
execution of the tasks. OmpSs is build on top of Mercurium compiler and Nanos++ runtime
system. OmpSs syntax offers a flexible way to express the given tasks to be executed on
target architectures via the target construct. Then, Nanos++ is able to schedule and run
these tasks, taking care of the required data transfers and synchronizations on the accurate
resources. Resources can be used to bind a task to a certain node,socket, core or GPU.

Tasks in OmpSs are annotated with data directionality clauses that specify the use of
data, and how it will be used (read, write or read&write). Dependencies are then deduced
at run-time from user supplied annotations of data accesses which are translated into a
format that can be exploited by Nanos++.

Nanos++ proposes several scheduling policies which defines how ready tasks are
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Listing 2.2 – OmpSs – Axpy task

1 void ompss_axpy (Value const& a,
2 Vector const& x, Vector & y,
3 const int size)
4 {
5 # pragma omp task no_copy_deps label(Axpy)
6 in( x, a )
7 out( y )
8 {
9 for (int i = 0; i < size; ++i)

10 y[i] += a * x[i];
11 }
12 }

executed. We can list bf, dbf, socket, affinity, affinity-smartpriority or versioning. While the
first two scheduling implements a mechanisms to execute one after the other tasks with
a single or a queue per thread. The socket scheduling refers to a work stealing scheduler
which take care of NUMA affinity. There are also mechanisms to manage work priority
within scheduler. The most suitable scheduling policy can depend on the application and
architecture used.

OmpSs uses a thread-pool execution model. There is a master thread that starts the
execution and several other threads that cooperate executing the work it creates from work
sharing or task constructs [Ayguadé et al., 2010].

Nanos++ provides also a support for instrumentation which allows to obtain traces,
for performance analysis, and graph of dependencies, to better understand the application
characteristics.

OmpSs relies on the same principles as OpenMP, and does not provide execution
hints for task placement. The task construct is quite similar to the OpenMP formalism, as it
is illustrated in Listing 2.2. However, it is designed to run on heterogeneous architectures
with possibly several memory address spaces. In the case of we do not need to copy data
in several memory address space, the no_copy_deps statement is used.

2.3.2.4 X-Kaapi

X-Kaapi [Gautier et al., 2007] is a C library for supporting task-based programming
model with data flow dependencies for heterogeneous architecture [Ferreira Lima et al., 2015].
The data flow model enables non-blocking task creation: the caller creates the task and
proceeds with the program execution. Parallelism is explicit while the detection of synchro-
nizations is implicit: dependencies between tasks and memory transfers are automatically
managed by the runtime thanks to user annotation on data usage (annotation if data is
read, written or written concurrently). Target machines are homogeneous or heterogeneous
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such as machines with several GPUs [Gautier et al., 2013]. X-Kaapi offers several APIs (C,
C++, Fortran) and it provides a OpenMP runtime with binary compatibility with GCC’s
libGOMP runtime or it can be targeted by the K’STAR OpenMP compiler 1.

X-Kaapi runtime is structured around the notion of worker: it is the internal repre-
sentation of kernel thread. It executes the code of the tasks and it takes local scheduling
decisions. On hierarchical machine, several level of the hierarchy hold a queue of ready
tasks. At lower level the core manages tasks into stack for fast task’s creations. Depending
of the scheduling algorithm, the data flow graph is entirely built or only ready tasks are
discovered when inactive thread try to steal work. At a first glance, the schedulers in X-
Kaapi are list-based algorithms. They are composed of three operations that act on queues
of tasks: pop, push and steal. Specific schedulers have been developed to better exploit
NUMA machines: A locality-aware work stealing for multi-GPUs [Gautier et al., 2013] or a
Distributed Affinity Dual Approximation [Bleuse et al., 2014] that tries to better compute
a compromise between balancing the workload and reducing communication. Recently,
NUMA-aware scheduling policy was implemented in [Virouleau et al., 2016a]. At run time,
a task can be placed by the scheduler on a specific processor according to task affinity.
This affinity can be chosen according to data placement, or by a user-defined numa node
placement. It was implemented through the OpenMP task descriptor and evaluated with
several benchmarks in [Virouleau et al., 2016c].

2.3.2.5 StarPU

StarPU [Augonnet et al., 2011] runtime systems is a library designed for heteroge-
neous architectures while relying on a unified executing model. A parallel application can
be performed on multiple architectures without rewriting it from scratch. Its programming
model relies on task programming paradigm with data dependencies. At run time, a StarPU
application may address computations on various computing hardware technologies: multi-
core processors or accelerators. This feature thus requires some explicit data movements.
Hence, StarPU provides a high level library [Augonnet and Namyst, 2008] to manipulate
data between disjoint address spaces. The library helps to minimize data transfers, to ensure
data coherency and to overcome the limited amount of memory available on accelerators.

Within the use of codelet structure a task may have various implementations, each
one targeting a specific technology. A codelet handles input and output data, and their
corresponding access modes (Read, Write, Read/Write). Various callbacks are also part of
this structure. At run time, the scheduler thus has the choice to perform one among the
task version on the appropriate computing resources.

When a task is ready (i.e. all its dependencies are fulfilled), it is directly pushed in one
of the queues. StarPU scheduling policies are based on list schedulers. The runtime system
offers a collection schedulers among them work stealing and Heterogeneous Earliest Finish
Time (HEFT) [Topcuouglu et al., 2002]. However, StarPU offers developers the capacity to
write portable scheduling policies within a high level interface. Programmers can also

1. See http://kstar.gforge.inria.fr

http://kstar.gforge.inria.fr
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specify scheduling hints in codelet structure. By this way, developer may declare prioritized
tasks, or also try to balance the task graph with weighted tasks.

2.3.2.6 HARTS

The runtime system HARTS [Gratien, 2013] relies on abstract concepts to describe
and manage the layer between application and hardware that help to distribute and
manage work between computation units and the associated data movements between
the different memories. The library is based on a hardware model, a task model, a data
model and an executing model. Its hardware model is based on hardware discovery with
the Hwloc library [Broquedis et al., 2010]. It enables to describe various heterogeneous
architectures with different kinds of compute units, different levels of memories and
different kind of connections between each units. The Data model enables to encapsulate
the data manipulated by task objects in DataHandler objects, managed and organized in a
centralized data manager. The data model provides also tools to split data with partitioner
and partial views of each sub part of the data.

The task model is responsible of tasks objects creation and management within the
runtime system. A task may have multiple representations for the target devices on which
they may be executed. At its creation, a task is directly pushed in a task pool. HARTS
provides a centralized task pool that is shared between all the threads. Tasks are also
organized in a DAG that can be saved to be replayed as tasks are persistent (i.e. not deleted
after its execution).

Eventually, the executing model models the way that the tasks are performed on
the target machine. A thread pool attempts to operates on the task queue following the
scheduling policy. At execution time, roots of different DAGs are given to the scheduler
to dispatch tasks and balance them between computation units. Two main schedulers
are available in HARTS. The first one operates on centralized task pool and only fairly
distribute the tasks between the threads. The second one is a work-stealing scheduler which
is used with the centralized task queue. This model enables a thread to steal task from
another one following a user-defined policy.

2.4 Discussion on HPC Trend

2.4.1 Hardware

The main problem on heterogeneous architectures is the fact that computation speed
is faster than memory communication. So data transfers between host and accelerator(s)
can represent a bottleneck for application’s performances. An emergent solution is to give a
direct access from accelerator to main memory or to offer an access to a high-speed memory
bank. A possible way is to integrate GPU in processor chips. It has been experimented
with AMD (with AMD Fusion product family) and Intel (on some Intel Core products)
on x86 processors for laptops. Recently, Nvidia launched the Tegra X1 processor which
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Listing 2.3 – HARTS – Axpy task

1 void compute ( DataArgsType & args)
2 {
3 typedef vector <double > VectorType ;
4

5 // Get arguments encapsulated in "args"
6 VectorType & X = * (args.get("X")->get <VectorType >()) ;
7 VectorType & Y = * (args.get("Y")->get <VectorType >()) ;
8 double & a = * (args.get("ALPHA")->get <double >()) ;
9

10 // Prepare vectors to be split
11 SplitConstVectorType sX(X,this -> m_partition ) ;
12 SplitVectorType sY(Y,this -> m_partition ) ;
13

14 // get a data view of "X"
15 typename SplitConstVectorType :: ConstViewType x;
16 x = sX.view(this -> m_partition_id ) ;
17

18 // get a data view of "Y"
19 typename SplitVectorType :: ViewType y;
20 y = sY.view(this -> m_partition_id ) ;
21

22 // Compute
23 for(int i = 0; i < size; ++i)
24 y[i] += a * x[i]
25 }
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offers a similar way but the chip is composed of 8 ARM 64-bits cores, and 256 GPU’s
cores based on Maxwell architecture. Both of these architectures are currently designed for
portable devices such as laptops, tablets or smartphones. However, it become an interesting
way to explore because of the processors reduce energy consumption while keeping good
performances.

Another way to reduce data retrieval cost is to put memory banks closer to compu-
tational units. This approach was first experimented by AMD and Hynx which build a
stacked memory on the processor die. By this way, the memory bandwidth increases but
the size of this memory is limited. Recently, a stacked memory called "High Bandwidth
Memory (HBM)" is integrated onto the Nvidia’s Pascal GPUs but also onto Intel Knights
Landing processors.

2.4.2 Runtime Systems

In [Olivier and Prins, 2010] the authors compare several OpenMP-3.0 runtimes on
unbalanced task graphs against standard library or language such as Cilk and IntelTBB.
Considering several implementations of OpenMP 3.0 (Intel, Sun, GCC and the Nanos),
the now outdated results show important variations in the performances for the different
software. Moreover, the considered benchmark is compute-bound application with few
impact due to hierarchical NUMA architecture.

Closer to our problem, in [Kurzak et al., 2010], the authors compare several parallel
programming environments for dense linear operations on multi-core processors. The work
includes comparison between depend task environment (SMPss, precursor of OMPSs) and
independent task based language such as Cilk. Conclusions promote the expression of
parallel computation using dependent tasks due to finer possible synchronisation between
task among different iteration steps.

Recently, [Lacoste et al., 2014] reports experiments on using two general purpose
runtimes, StarPU [Augonnet et al., 2011] and PARSEC [Bosilca et al., 2012] to replace the
internal highly specialized scheduler of the PaStiX [Henon et al., 2002] parallel sparse direct
solver 2. While the authors conclude that general purpose runtimes can the replace specific
internal dynamic scheduler of PaStiX, they also reports differences in the performances due
to different design decisions.

2.4.3 Parallel Linear algebra

Many work has been done before to address sparse linear algebra application on
complex parallel architectures. However, each one differ from the way they address
computations on a given parallel architecture and the manner data are managed.

Efficient preconditioners are the keystone of many researches. According to the
evolution of HPC systems, finding a highly parallelizable method while solving quickly the

2. http://pastix.gforge.inria.fr

http://pastix.gforge.inria.fr
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problem is challenging. Some developers integrate parallel implementation of numerical
methods in linear algebra frameworks. By this way, users can take advantage of robust
methods regardless of the parallel implementation and its understanding. Each framework
differs from the architectures they target, or the programming model they use.

Liszt [DeVito et al., 2011] is a domain specific language that enables to write parallel
PDE solvers on various architectures. It provides the essential mesh components to users,
such as vertex, edge, face and cell. The framework split the work according to two
distinct execution strategies, graph partitioning or graph coloring. Then, they can address
parallelism to hardware by different ways such as pthreads for shared-memory architectures,
MPI for distributed systems and CUDA to target Nvidia’s GPUs. Within the results they
obtained, they prove that they are competitive to classical standards implementation while
hiding parallel features.

Developers of PETSc [Balay et al., 1997] provide software package to solve large
sparse linear systems. It offers many data structures to write efficient and portable code
on parallel machines. It enables to solve sparse linear systems coming from numerical
simulations. It also provide efficient preconditioners to speed up the convergence rates
of the solvers. The model relies on objected oriented concepts, and provides efficient
parallelism using distributed memory model with MPI library.

PSBLAS [Filippone and Colajanni, 2000] is a library designed for sparse linear algebra
computations on parallel machines. The interface is based on the Fortran 90 language. It
abstracts both sparse iterative linear solvers and data structures used by users. The library
aims to maximize load balancing while reducing data communications in a distributed
memory model. They implement it on top of the MPI library.

Hypre [Falgout et al., 2006] is a widespread library which provides efficient parallel
preconditioners and solvers for sparse linear systems. It relies on a object-oriented concep-
tion, but is written in C language. The library mainly focus on multigrid preconditioners.
It takes advantage of large distributed memory cluster with the MPI library. However, the
developers currently implement multi-threaded execution with the OpenMP standard for
shared-memory architectures.

2.5 Conclusion

From the complexity induced by both sparse linear solvers and parallel computers,
we aim to design parallel linear algebra methods in a convenient way. Our purpose is
to provide efficient parallel methods independently from the underlying architectures.
However, this objective often impose developers to maintain several versions of the code,
each targeting a specific architecture. This solution does not offer code portability. Hence,
we propose to design a portable sparse linear algebra framework which supports both
multi-core and many-core architectures. It relies on a task programming model, in which
the operations are transparently translated to graphs of tasks which are then executed by a
given runtime system. Within this strategy, we can write portable application with only
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one semantic and take advantage of different computer architectures.
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The development of complex algorithms well adapted for parallel computers is not
so easy. Parallel architectures are complex with deep memory hierarchy, limited latency
and huge number of cores, which make effective programming increasingly challenging.

In the numerical simulation field, most of the developers are not computer scientists.
They need some abstractions of the parallelism to only focus on the numerical robustness
of the methods they implement.

To overcome the programming challenge on complex architectures, we design an
abstract linear algebra API which targets parallel sparse iterative methods. Such methods are
widespread in linear solver software and numerical simulations, especially in oil reservoir
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simulators. This framework enables implicit parallelism at end-users level. The users does
not deal with parallelism and hardware specific implementations. The API provides users a
collection of functions which generates parallelism automatically. By hiding parallelism, we
can address the execution flow to various runtime systems without rewriting the application
from scratch. We detail the design and the various implementations of the API in the first
section of this chapter.

The API we develop targets several objectives. It has to keep its utilization simple
for users who are not from computer science area. It also enables the portability of
performances on high level algorithms for various computer architectures. Thanks to the
separation of concern pattern, management of parallelism is hidden to the user application.
A runtime system maps the parallelism described by API implementations to the underlying
hardware. Several implementation of the API have been implemented, each one targeting a
specific runtime system.

The API is first designed for multi-core architectures. Shared memory and hierarchical
NUMA memory designs are widespread in such systems. The memory is segmented in
several locations. Latency highly depends on the distance between a core and the location
of the data in memory. Thanks to our API, we develop a multi-level strategy to increase
data locality consideration at scheduling time. Our approach is detailed in the second
section.

In order to enhance our understanding of the parallel applications behavior, we
extended HARTS with performance counters and monitoring tools support. Data are
collected all along the various parallel regions, and gathered when the application ends. By
this way, we can analyze and then optimize performances. We give an overview of what it
is possible to extract with our tools in the third section.

All these developments have been experimented on real hardware. We report the
performance evaluations of some parallel preconditioners written thanks to the API. Indeed,
we implement two well-known preconditioners: polynomial and ILU(0). After describing
them, we make comparison on a multi-core machine. We analyze the results obtained from
monitoring tools. This is the purpose of the fourth and last section.

3.1 An Abstract Sparse Linear Algebra API

Experts on numerical simulation require to enhance performances of their application
thanks to parallel computing on complex architectures. However, these architectures
are mostly programmed by scientific experts of other application domains. Hence, we
develop a sparse linear algebra API which provides to users a collection of functionalities
to write efficient parallel methods. The framework aims to hide the parallel programming
complexity. One key feature is its sequential semantic presented in the next section.

Until the execution, the API includes several steps. To take advantage of loop pattern
from iterative methods, a separation of concern between initialization and execution is
operated. At the initialization phase, the API is responsible to prepare the work which
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has to be performed later (i.e. during parallel region). The next section is devoted to tasks
decomposition.
Once the work is prepared, the API is thus responsible to send the entire work to the
distinct execution units. Tasks are eventually performed by a specific runtime system that
could be chosen by user. The challenge is to keep a unique semantic for various runtime
systems with different features. The third subsection is devoted to the understanding of the
bridge that links API to a given runtime system.

3.1.1 A sequential semantic to describe numerical methods

The API aims to design efficient parallel algorithms while hiding programming
complexity to users. Linear solver algorithms, in particular iterative Krylov methods, can
be viewed as the execution of some successive sequences of linear algebra operations
which are repeated several times up to reach a user-defined convergence criteria. These
operations are mostly level 1 or level 2 BLAS (Basic Linear Algebra Subprograms) vector
operations, some sparse matrix-vector products (SpMV) or some specific sparse matrix
preconditioning operations. For example, the BiCGStab [van der Vorst, 1992] algorithm is
sketched in Algorithm 3.1.

Algorithm 3.1: BiCGStab Algorithm

1 Matrix A;
2 Vector b, pp, p, r, v;
3 Preconditioner P;
4 Scalar a;
5 do
6 pp = inv(P).p;
7 v = A.pp ;
8 r += v;
9 a = dot(p,r);

10 if(a==0) break;
11 ...;
12 while (|r| < tol ∗ |b|);

We implement these steps with our abstract algebraic API aiming to parallelize in a
transparent way linear algebra algorithms. The available list of kernels allows developers
to write a large collection of parallel linear solvers. The whole interface and its kernels
are illustrated in Listing 3.1. Each function takes some matrix, vector or scalar number
as arguments. By convention, we store results in the last argument of the function. The
API allows developers to describe compositions of kernels with a sequential semantic. The
result of a parallel execution remains the same as if performed sequentially, independently
of the degree of parallelism used. Thanks to the API, the user keeps a high level syntax
and could express the BiCGStab algorithm by the program of Listing 3.2.

The key feature is the capability to describe iterations around the concept of sequence.
A sequence represents a list of operations that can be replayed several times inside a loop.
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Listing 3.1 – Linear Algebra API

1 class AlgebraKernel
2 {
3 // allocates 'size ' bits and returns it in 'v' ;
4 virtual void allocate ( size_t size ,
5 Vector & v) ;
6

7 // Out: y = op() ;
8 virtual void assign ( LambdaT op , Vector & y) ;
9

10 // Out: y = x ;
11 virtual void copy( Vector const& x,
12 Vector & y) ;
13

14 // Out: y = y * a ;
15 virtual void scal(Value const &a,
16 Vector & y) ;
17

18 // Out: y += a * x ;
19 virtual void axpy(Value const &a,
20 Vector const& x,
21 Vector & y) ;
22

23 // Out: a = ( x . y ) ;
24 virtual void dot( Vector const& x,
25 Vector const& y,
26 Value& a) ;
27

28 // Out: y = A * x ;
29 virtual void mult( Matrix const& A,
30 Vector const& x,
31 Vector & y) ;
32

33 // Out: preconditioner 'P' applied to 'x' and stored in 'y' ;
34 virtual void exec( Precond const& P,
35 Vector const& x,
36 Vector & y) ;
37

38 // Break if value is null ;
39 virtual void assertNull ( double const& value) ;
40

41 // Performs the Sequence objects referred by "id" ;
42 virtual void process ( SequenceType id) ;
43 } ;
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Listing 3.2 – BiCGStab sequence

1 Matrix A;
2 PartitionerType partition (A, nb_partitions );
3 AlgebraKernelType alg( partition );
4 Vector p,pp ,r,v;
5 Value alpha;
6 Value tol = 1E -6;
7 int max_iter = 1000;
8 Iteration iter(tol , max_iter );
9 SequenceType seq = alg. newSequence ();

10 alg.exec(precond ,p,pp ,seq) ;
11 alg.mult(A,pp ,v,seq );
12 alg.axpy (1.,r,v,seq );
13 alg.dot(p,r,alpha ,seq );
14 alg. assertNull (alpha ,seq );
15 while (! iter.stop ())
16 {
17 alg. process (seq );
18 }

Parallel iterative methods are built from sequence object concept. The API’s kernels’ calls
take a sequence identifier in arguments to feed it with work to do. When it is completed,
a Sequence execution can be invoked via the process function. Thereby, a parallel region
begins when the work is transferred from the API to a given runtime system through the
use of a Sequence object. The parallel region is triggered when the process() function of
Sequence object is called. In the example, a parallel execution begins at line 17, and ends at
line 18. Sequence objects are encapsulated within a loop and are performed several times
until the convergence criteria is reached (line 15).

Convergence criteria is user-defined to stop the solver under a reasonable degree of
precision for the desired solution. As we can see in the Listing 3.2, the Sequence (referred
by seq) processing is trapped within a while loop. The list of operations that are contained
in seq are replayed until the condition described in iter is fulfilled. In this case, the solver
will stop if the solution reaches a precision of 10−6 or the method iterates more than 103

times (lines 6-8).

3.1.2 Internal creation and representation of parallelism

The purpose of the API is to generate parallelism, and then the parallel execution
is offloaded to runtime systems. The API is not restricted to one parallel programming
model, however our work is devoted to dataflow programming paradigm as described in
Section 2.3.1.3. In our model, the developers of API’s functions are thus responsible to
split the work in several tasks until their execution. Tasks decomposition, and thus the
parallelism, come from data partitioning.
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Figure 3.1 – Sparsity pattern
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Figure 3.2 – Graph representation

3.1.2.1 Data Partitioning using Graph partitioning

A Partitioner object computes a data distribution thanks to a given number of
partitions and load balancing consideration. The number of partitions may be chosen
according to the hardware architecture we use or according to the granularity needed by
the method. By default, if not specified, we chose to fix the number of partitions to the
number of cores we use.
The partitioning is built from the partition of the coefficient matrix which represents the
linear system to solve. Thanks to the graph partition techniques, we thus split it in several
sub-parts. Except the input matrix, most of the data we operate are vectors. The vector
structures are also split thanks to the matrix’s partitioning. Dependencies between tasks
are then built according to the dependencies between the nodes of the graph.

Let consider a matrix A and its coefficients (ai,j) with 0 ≤ i < n and 0 ≤ j < n.
Let GA = (V, S) be the undirected graph generated from adjacency matrix of A where
V = (vi) is the set of vertices representing the Nrows rows of A, and S = (si,j) the set of
edges connecting vertices vi and vj such that the matrix entry ai,j 6= 0.

We define a partition P of GA in Npart subparts as the set (Vk)0≤k<p of subsets of V
where Vk ⊂ V and Vk1 ∩Vk2 = ∅ if k1 6= k2 and V = ∪(Vk)0≤k<p.

For each Vk, we define two sets. Vik is the set of interior vertices vi ∈ Vk such as if
ai,j 6= 0, vi ∈ Vk and vj /∈ Vk1 , where k1 6= k, then j ∈ Vik. Vbk is the set of boundary vertices
vi ∈ Vk such as there is at least one k2 6= k and one vj ∈ Vk2 such as ai,j 6= 0.
In other words, the set Vik represents elements that are local to the given partition. On
the opposite, Vbk represents the set of remote elements that require data exchange with
another partition.

Let’s consider a vector x and its components (xi) with 0 ≤ i < n. The vector
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Figure 3.3 – Row partitioning
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Figure 3.4 – Custom partitioning

components xi are associated to the vertices vi of GA while the nonzero entries ai,j of A are
associated to the edges si,j of GA.

We can take the example of a 15×15 sparse matrix A, whose nonzero elements are
illustrated in the sparsity pattern in Figure 3.1. Its graph representation is then deduced
from adjacency matrix and illustrated in Figure 3.2.

Constraint graph partition problem is a NP-complete problem [Garey and Johnson, 1990].
In our case of study, a graph is said to be well partitioned if:

1. it limits the number of edges running between two separate subgraphs. By this way,
we intend to limit the amount of communications between distinct graph partitions.

2. it balances the number of internal edges and vertices of all the subgraphs to fairly
balance the work load between partitions.

Given the graph illustrated in Figure 3.2, we can create several distinct combinations
of partitions. In the case where the number of partitions is equals to two, the combinations
proposed in Figure 3.3 and in Figure 3.4 satisfy the previously defined conditions.

Figure 3.3 illustrates a row partitioning of the matrix, without taking care of com-
munications or load balancing. Each partition intends to be responsible of Nrows/Npart,
where Npart stands for the number of desired partitions. However, this solution is rarely
optimal. Instead of this classic strategy used in dense linear algebra, the graph can be
partitioned under given criteria. The Figure 3.4 shows the previous graph which is parti-
tioned in two partitions with more consideration about communications than the previous
splitting. Indeed, edges that links the two subgraphs are reduced to 4, instead of 7 with
row partitioning. If we also weight the graph with nonzero elements per node, we also can
take care of load balancing between the subgraphs.

As the graph partition problem is complex, exact solution computation needs an inten-
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sive computing effort. Thus, heuristics are used to find a reasonable solution close to the opti-
mal one in a feasible time. Softwares and libraries such as Metis [Karypis and Kumar, 1995]
or Scotch [Pellegrini and Roman, 1996] are tools that provide to developers a good candi-
date for graph partition problem. Those tools can be thereafter integrated to our API to
partition data (i.e. matrices and vectors). Task distribution is then built thanks to the graph
partition. The graph partitioning is initialized, and then encapsulated in a AlgebraKernel
structure as illustrated in the Listing 3.2 at line 3.

In practice, row partitioning is not successful for unstructured systems. Hence, we
favor a graph partitioning coming from the use of the Metis library.

3.1.2.2 Task Decomposition

A Partitioner object is responsible to partition and reorder the input matrix ac-
cording to graph partitioning. From this partition, vectors are also partitioned. Internal
nodes set of a partition k represents the vertex ids of its Vik set (see section 3.1.2.1 for the
notation). These nodes’ values correspond to a set of row numbers of the coefficient matrix
A which is partitioned. From these rows, we can also reorder vectors to then partition
them in the same way as matrix A. Before the execution, the right hand side vector b is
reordered and partitioned. In our current tasking model, parallelism comes from data
partitioning. According to a given operation, data related to a partition are encapsulated in
a task descriptor provided by the API.

Let’s take the example of the task decomposition of an axpy operation which is
sketched in the Listing 3.3. In this example, an instantiation of the Partitioner’s structure
is named partitioner. This structure is the same as the argument’s constructor of the
AlgebraKernel class previously illustrated in Listing 3.2. From coefficient matrix’s graph
partitioning, vectors are split in Npart parts. The Partitioner object computes a sub-set of
entries per partition, which corresponds to the internal nodes of the graph partition. As
the matrix is reordered, vectors need it too. Before starting parallel execution of the linear
solver, we only need to reorder right-hand side vector b, and the operation is performed
only once. When this operation is done, we only need to shift the vector to beginning
of the partition’s offset. It is illustrated in the listing at line 17 on which we obtain the
beginning of the current partition’s offset. At lines 24 and 25, we thus shift the vector to
the beginning’s partition position and operate on size elements. Vector’s partitions are
disjoint. By this way, tasks only operate on its own sub-set of values, without taking care of
others partitions. At line 22, we encapsulate data in a task descriptor object which describe
the operation performed at run time.

3.1.2.3 Dependencies between tasks

When a task is created, it is necessary to express its dependencies between previously
created tasks. The tasks are stored in an instance of the current Sequence object.

BLAS operations compose a large part of the iterative methods’ operations. They
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Listing 3.3 – Axpy decomposition

1 void
2 AlgebraKernel :: axpy (Value const& a, Vector const& x,
3 Vector & y, Sequence seq)
4 {
5 size_t begin = 0, end = 0;
6 // bring back the number of partitions
7 // in the variable 'psize '
8 int psize = partitioner -> getNbPartitions ();
9

10 // Shifting to the partition range
11 // is given by the Partitioner object
12 int const* offset = partitioner -> getOffset ();
13

14 for (int ipart = 0; ipart < psize; ++ ipart)
15 {
16 /* Range */
17 begin = offset [ipart ];
18 end = offset [ipart + 1];
19 size = end - begin;
20

21 // y[begin:end] += a * x[begin:end]
22 seq. push_back (
23 new axpy_Descriptor (ipart , size , a,
24 x[begin],
25 y[begin],
26 ));
27 }
28 }



44
Chapter 3. Design and Evaluation of an Abstract Linear Algebra API on top of a runtime

system

generally only need dependencies on the last created task which update the same partition.
The last argument is the output while the others are input parameters.

However, a few of them need particular attention as they need synchronization from
all the partitions. Let’s take the example of the dot product. Each partition computes its
own local result from its partition’s vector entries. Then a reduction from all the local results
computes the final result. The translation of this reduction is given by a dependencies from
all previous tasks on the various partitions to a reduction task.

Some other operations need dependencies from various number of partitions. It is
the case of the SpMV or specific preconditioner operations. Given a SpMV operation given
by the operation Ab = y, where b is the vector to be multiplied by the matrix A, and y the
result vector. The computation over a partition of the result vector require some external
contributions of the input vector. Hence, we express dependencies from external partition
of the current one, to the SpMV local operation.

3.1.3 Translation from the API to runtime system

The API we developed targets multiple runtime systems following the concept "write
once, run everywhere". Runtime systems provide different functionality. The challenge is to
keep the API’s sequential semantic true whatever the runtime used. We propose various
implementations of the API based on the inheritance principle offered by object oriented
programming. Each implementation has to inherit from the interface given in Listing 3.1,
and has to redefines functions which enable to create tasks to the targeted runtime system.
In accordance with the factory pattern, the kernel provides all the function needed by
the user who does not have to care about the underlying implementation of the API. To
add support for another runtime system, the developer just needs to implement all the
functions required by the API interface. The figure 3.5 illustrates the diagram class on
which the API relies. It illustrates AlgebraKernel’s inheritance feature to create new API’s
implementation.

AlgebraKernel

OpenMPKernel OmpSsKernel XKaapiKernel HARTSKernel

Figure 3.5 – AlgebraKernel diagram class

Next sections focus on the management of iterative computations and on dataflow
expressions.
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3.1.3.1 From the API to the runtime system

The API is a bridge that links a given algorithm to a runtime system which is then
responsible of the parallel execution.

The main objective here is to keep the same semantic for all the runtime systems we
target. However, the API is based on iterative pattern employed in sparse linear algebra
methods. The iterative pattern is thus captured within Sequence objects, replayed several
times. Most of the runtime systems create tasks on the fly inside a parallel region. Tasks
are then performed when their dependencies are fulfilled, and eventually deleted. Among
the selected runtime systems, only HARTS provides support for making tasks persistent
over iterations.

With OpenMP [OpenMP Architecture Review Board, 2013],
OmpSs [Ayguadé et al., 2010] and X-Kaapi [Ferreira Lima et al., 2015] runtime systems
tasks are executed once. Even if graph is complex into one iteration, it has to be built at
each iteration. The API’s developer has to save the required information to build on the fly
the DAG in the Sequence object. In this case, we store the data with their access modes and
a function pointer in a task descriptor object. When a sequence execution is invoked, the
API’s tasks’ descriptors will be translated into to tasks of the runtime system. API’s tasks
descriptors are stored in a FIFO (First In First Out) queue to respect sequential semantic.
One queue represents the work to do in a sequence. Tasks descriptors are not deleted
after their utilization because they could be reused over iterations to rebuild the DAG later.
The sequence identifier refers to the queue to operate. When starting the execution of a
sequence, tasks’ descriptors are thus activated one after another, following the insertion
order from the latest to the newest descriptor. The activation of such a structure means
that we translate a task’s descriptor to a runtime system’s task in a FIFO order: we thus
instantiate a new task in the runtime system tool. Tasks’ descriptor are not removed from
the queue to ensure persistence. A sequence’s queue is deleted only when the sequence is
deleted from the API.

In HARTS, the tasks are not deleted after their execution: tasks are said to be persistent.
HARTS provides high level features which simplify the design of the API implementation.
At the API level, developer handles a collection of HARTS’ tasks belonging to the current
sequences. Hence, there is no need to impose intermediate structures between the API and
HARTS. Tasks are not deleted after their completion, and can be replayed several times.
At the Sequence object level, developer needs to save the roots of the DAG he enriches at
each API’s function call. In this case, a Sequence is more than a list of tasks to perform: it
already represents the DAG to be performed later. When the processing of the Sequence
object is triggered, the roots of the Sequence’s DAG are send to HARTS.

3.1.3.2 Declaration of dependencies

Most of the runtime systems we selected rely on the data flow programming model,
but there are some differences between each others to express task’s dependencies. In the
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OpenMP task construct, the depend clause describes dependencies and their access modes
(read, write, read/write). We thus point to the piece of vector or matrix the task needs for
computations. Dependencies are then used by the runtime system to compute data flow
dependencies between tasks. The DAG is thus computed at execution time. X-Kaapi and
OmpSs benefit from the same kind of data flow description with respect to data accesses
made by tasks.

However, HARTS does not fully support this data-flow computations. It is managed
by the API developer at tasks’ creation. The HARTS’s task object implements a addChild()
method, which enables to explicitly build the dependencies between two tasks. When a task
is created, we need to search the last task using the same data as described in section 3.1.2.3.
When all tasks are created, the DAG is completed and ready to be sent to HARTS.

Let’s take the example of the dot product task decomposition using HARTS in
Listing 3.4. In the first loop at line 14, we thus operate the task decomposition of the dot
product and save the result in a temporary array. In this loop, we also save pointers to the
dot HARTS tasks (line 29). By this way we are able to add dependencies from these tasks to
the reduction one in a second loop at line 35.

The two previous models enable to express dataflow dependencies in different ways.
Except for HARTS, we encounter some issues to successfully express all the dependencies
between tasks we need. The dot product is one of the example we encounter to perform a
true data flow directed execution. The problem comes from the reduction task which needs
to synchronize all the threads before its execution. In OpenMP, it is impossible to express
this kind of dependencies as it requires to know the number of partitions we will have
at compile time. If it was possible, the reduction task should require input dependencies
from all the sub-vectors we generate from graph partitioning. However, the number of
sub-vectors is variable from one execution to another (depending on Npart parameter).

X-Kaapi offers a way to fix this issue with the Concurrent Write (CW) access mode.
Thanks to atomic operations, a data can be operated by several threads at a time without
making it incoherent because of data race. By this way, we do not need a reduction task for
dot product operation. The res is declared with the CW access mode. OpenMP enables
atomic operations too with the #pragma omp atomic construct. However, this clause do not
affect the DAG construction.

However, this model only works to produce a data thanks to concurrent threads.
Let’s take the example of a task which needs a variable number of input data to produce
a result. The concurrent write model is insufficient as it does not guarantee that a data is
ready before computations. To overcome this difficulty, a solution was proposed by OmpSs
and X-Kaapi thanks to the libKomp library. Developer provides a vector of data pointers
as input dependencies to task construct. By this way, the number of dependencies can be
dynamic and our issue is fixed.
This problem was encountered in SpMV operation. Indeed, the operation computes the
operation A ∗ x = b, where x is the vector to multiply by the matrix A, and b is the result
vector. Each task operates on independent piece of vector b, however the vector x need to
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Listing 3.4 – HARTS Dot decomposition

1 // res = x . y
2 void AlgebraKernel :: dot ( Vector const& x,
3 Vector const& y,
4 Value& res , Sequence seq)
5 {
6 size_t begin = 0, end = 0;
7 int psize = partitioner -> getNbPartitions ();
8 int const* offset = partitioner -> getOffset ();
9

10

11 Value* tmp = (Value *) malloc ( sizeof (Value) * psize );
12 Task ** last_inserted = (Task **)
13 malloc ( sizeof (Task *) * psize );
14

15 for (int ipart = 0; ipart < psize; ++ ipart)
16 {
17 /* Range */
18 begin = offset [ipart ];
19 end = offset [ipart + 1];
20 size = end - begin;
21

22 // tmp[ipart] = x[begin:end] . y[begin:end]
23 seq. push_back (
24 new dot_Descriptor (ipart , size ,
25 x[begin],
26 y[begin],
27 tmp
28 ));
29 // Save dot task pointers
30 last_inserted [i] = seq.end ();
31 }
32 // pushing the reduction task , res = sum(tmp[i]);
33 seq. push_back (
34 new reduction_Descriptor (psize , tmp , res) );
35

36 for (int ipart = 0; ipart < psize; ++ ipart)
37 {
38 // Add dependencies from Dot tasks to Reduction
39 last_inserted [i]-> addChild (seq.end ());
40 }
41 }
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be global. In fact, a task will only read x values related to the interior domain but also on
values belonging to the neighborhood of the partition. We thus need extra dependencies
to express it. Until now, we fix this issue on OpenMP-like models – which does not
support dynamic dependency declaration – with the addition of a global synchronization
(i.e. taskwait construct) before performing a SpMV task. It is not the best solution because
it may break the parallelism and impact performances. However, it is the only way we have
to respect tasks dependencies.

3.1.4 DAG execution

At the end of these steps, the threads instantiated by the runtime system will be
responsible of the execution of a data-flow directed DAG. This graph will be built during
the execution, according to the specified data dependencies. Figure 3.6 illustrates the DAG
related to the sequence of the BiCGStab algorithm, first illustrated in Listing 3.2. The graph
represents a task decomposition of the sequence in four partitions. This DAG is built at
Sequence initialization with HARTS, and at execution time for the other runtime systems.
Ready tasks are submitted to runtime system which is then responsible to its execution.
Runtime system’s scheduler dispatch tasks between processing units while taking care of
load balancing.

Precond. Precond. Precond. Precond.

SpMV SpMV SpMV SpMV

axpy axpy axpy axpy

local dot local dot local dot local dot

Reduction

AssertNull

TaskWait

Figure 3.6 – Direct Acyclic Graph of BiCGStab sequence (see Listing 3.2)
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3.1.5 Preliminary evaluations

In this section, we present a comparative study of the API with various runtime
systems. We benchmark the preconditioned BiCGStab algorithm presented on a collection
MR of matrices extracted from real petroleum reservoir simulations. We also pick up
matrices from a collection MLp of matrices coming from a Finite Volume discretization of
a 2D Laplace problem on a unit cube with regular meshes with different sizes. For each
system, we denote N = NRows the number of rows, Nnz the number of nonzero entries of
the matrix.

We first study the overhead due to the use of each runtime system regarding the
equivalent sequential hand written code. By this way, we can evaluate the impact on the
overall performances from the number of iterations and the number of generated tasks.
We then evaluate the efficiency of the parallelization of the solver algorithm regarding the
runtime system used to implement the API and the size N of the linear system.

Our experiments are run on a dual socket machine, linked by a Quick Path Inter-
connect (QPI). Each one is composed of an octo-core Sandy Bridge processor clocked at
2.60GHz with 32Gb of memory.

We evaluate the runtime systems of OpenMP 4.0 implemented in the Gnu GCC 4.9.0
compiler, of X-Kaapi release version 3.1.0 rc10, and of OmpSs with Nanos++ version 0.10a
and Mercurium version 1.99.9.

In the presented results, we denote Tseq the sequential time to compute a sequence
of operations without any runtime system, and Tp refers to the time to compute the same
sequence on p cores.

3.1.5.1 Instantiation and management of tasks

To evaluate the runtime system task management costs in the implementation of
our iterative algorithm, we run for each matrix of size N, the solver on a fixed computed
number of iterations Nit with 1 thread. We preconditioned our system at each iterate
with a diagonal preconditioner, which is composed of a single copy task. We compare the
execution time T1 to the execution time Tseq of the hand written code for the following
values of Nit: 10, 100, 500 and 1000. We compute the ratio R = ((T1 − Tseq)/Tseq)/Niter

to measure the overhead of the task usage per iteration compared to an implementation
without any runtime systems. The results are gathered in Table 3.1 where we can compare
the ratio R regarding the matrices sizes, each runtime system and the values of Nit.

We notice that each runtime system hides additional costs. All of them, except for
OmpSs, show a lower cost per iteration when Niter is equal to 10, and the gap between
parallel and sequential versions decreases. OmpSs has a higher cost first when number of
iterations is small, but decreases over iterations. X-Kaapi offers the lowest cost for both task
insertion and execution. Moreover, it successes to catch up HARTS which provides task
persistence feature. Indeed, X-Kaapi enables a constant size to task, so pushing one has a
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Niter OpenMP OmpSs X-Kaapi HARTS
10 -0,0277 1,1022 -0,1641 -0,1258
100 -0,0036 0,1164 -0,0157 -0,0126
500 -0,0008 0,02331 -0,0032 -0,0026
1000 -0,0004 0,0117 -0,0015 -0,0013

Table 3.1 – Cost Evaluation of tasking model (%) – N = 2 188 842

N = 556 494 N = 2 188 842

Figure 3.7 – Cost Evaluation of tasking model

constant time. A dynamic memory management may also explain it. Task execution order
changes because it is led by dataflow computation. Produced data are cached and next
task may use it again. As sequential version does not follow this strategy, the cache effect
does not operate. We therefore obtain better performances with runtime systems than with
sequential versions.

3.1.5.2 Efficiency on a single NUMA node

The second experience consists in running a multi-threaded execution of the previous
benchmark, with a fixed the number of iterations, Niter = 1000. We first compare the
sequential time Tseq to the parallel time Tp with p = {1, 2, 4, 8}. We then analyze the parallel
efficiency on p processors, Eff(p) = ((Tseq/Tp)/p), for each implementation. Results
are gathered in Figure 3.7 which illustrates the parallel efficiency for systems of size N
according to the number of threads and the runtime system used.

By analyzing the graphic, we can notice that the curves have all the same trend
regarding the number of threads. The efficiency between two runtime increases with the
system size (greater for N = 2188842 than for N = 556494). In particular, X-Kaapi has
a similar behaviour than OpenMP for 1 and 2 threads. All these observations can be
explained by the specificities of the internal task management of each runtime system.
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3.1.5.3 Impact of over decomposition

Task decomposition comes from the data partitioning through graph partitioning
techniques. We now attempt to evaluate the impact of the task decomposition on the
working time, i.e. the sum of the duration of all the tasks denoted by W. This time does
not include runtime system’s task management cost.

We thus benchmark a BiCGStab algorithm on matrices of various sizes coming from
the finite volume discretization of a 2D Laplace problem. We run it on a machine equipped
with 2 Broadwell 14 cores processors clocked at 2.40Ghz and each is paired with 64Gb
of memory. We only use one core but we vary the the granularity of tasks by modifying
the number of partitions we use. In Figure 3.8, we report working time in function of the
number of partitions we use for task decomposition. The execution was performed by the
HARTS runtime system.
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Figure 3.8 – Work inflation over partitioning

We can observe a slight work inflation while increasing the number of partitions for
both input matrices. From 1 partition to 672, the effective working time inflation does not
exceed 0.2%. It means that we add some extra operations induced by task decomposition.
However, it has not a significant impact on performances as it does not degrade it. Hence,
we can decompose the problem in many subparts regardless the generated overhead.

3.2 Managing data locality computations

NUMA designs are widespread in shared-memory systems. Computations’ efficiency
thus depends on data locality and how work is scheduled while limiting remote memory
accesses. Indeed, a data located in a memory bank close to the running thread will reduce
memory latency and bus contention. At run time, a thread generally picks a task from a
queue without taking care of data locality. Threads’ queue is fed by scheduler, which can
make the decision on which task is given to a thread.
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3.2.1 NUMA aware policy and runtime systems

The authors of [Drebes et al., 2014] describe scheduling techniques to control both
data placement and task placement through runtime system for the OpenStream language.
This strategy exploits data locality and information about data dependencies. At the
execution time, it evaluates the best candidate to perform a task in order to avoid intensive
data communications between NUMA nodes. Data are also allocated to optimize data
accesses before task execution according to both system’s topology and tasks’ dependencies.
This model is centered in the runtime system and does not offer data locality control to
users.

In [Al-Omairy et al., 2015], the authors extend the OmpSs programming environment
to enhance work stealing scheduler with a NUMA aware strategy. The scheduler provides a
queue per NUMA node. According to a first-touch NUMA policy, data locality is presumed
from initialization tasks. By this way, data locality is related to the thread which performs
this kind of tasks. At run time, an idle thread attempts to steal a task from another NUMA
node task pool. To chose this pool, the scheduler refers to the NUMA distance from the
current thread to the presumed victim NUMA node.

The authors of the paper [Olivier et al., 2012b] evaluates a hierarchical task scheduling
policy for multi-core architectures. One centralized task pool is created per NUMA node,
and is shared between all the threads of this node. If the list becomes empty, a work stealing
scheduler is activated to steal tasks from another list of another NUMA node. Contrary to
the previous reference, there is notion of distance between two node lists. They ensure local
computations by limiting the number of remote steals with a centralized queue per NUMA
node. They assume that remote computations only occur when there is a steal between two
node queues.

The authors of [Virouleau et al., 2016a] enables to take into account data locality at
task schedule time. The description of a task integrates data that is read and/or written.
Until now, data are just used to compute dataflow dependencies. However, data can also
be used to place task in order to favor local computatons. They integrate this schedul-
ing policy in the X-Kaapi runtime system. This is similar to version [Gautier et al., 2013]
of X-Kaapi work stealing policy for multi-GPUs to CPUs. According to the OpenMP
formalism, X-Kaapi then extends the task’s construction clause with the affinity key-
word [Virouleau et al., 2016b]. It enables to provide scheduling hints for data locality
computations. This clause can guide the execution by scheduling a task according to a
specified NUMA node, a thread or the location of data.

3.2.2 Locality-aware computations in HARTS

All the previous works emphasize the importance of data locality computations to
enhance memory accesses and thus application’s performances. Initially, HARTS did not
support this feature as the scheduling policy places tasks regardless of the data locality.
Threads operate on a shared centralized queue without any information on data locality.
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In collaboration from the API and HARTS, we develop a strategy at different levels
to enhance data locality computations. At the API level, we provide users a collection of
allocating tasks to distribute data among NUMA nodes while hiding data distribution. It
thus corresponds to the allocate functions from the API’s interface in Listing 3.1. The
runtime systems then manages work at run time considering the previous data allocation
information.

In the first subsection, we detail the data distribution among memory banks across
the NUMA nodes. At the runtime system level, we then propose in the second subsection a
distributed queue to enforce threads to perform tasks which operates on data as close as
possible. In the last subsection, we develop the scheduling policy based on work stealing
scheduler which encourages data locality first.

3.2.2.1 Transparency at the initialization

The numactl tool enables to distribute data among memory banks in a transparent
way. However, it is not the best solution as it does not provide a fine control of data locality
for users.

The API provides a collection of functions for both vector and matrices via the
allocate function in Listing 3.1. New memory pages are reserved in the virtual memory
address space. Then, data are initialized in parallel to benefit from a first-touch NUMA policy.
We ensure by this way that data are close to the threads which perform the initialization
tasks, i.e. within the same NUMA node. We discharge the load balancing issue to graph
partitioning techniques. As it has been seen in section 3.1.2.1, graph partitioning attempt to
balance the work among the various partitions. We expect that for a parallel execution on p
threads, the partitioning tools will provide p balanced partitions. Therefore, we intend to
fairly distribute memory among NUMA nodes.

From this step, we intend to evaluate the gain obtained by a data distribution among
memory banks available on a compute node. We thus benchmark two different applications
with various data initialization modes: in parallel or sequential. We select a Sparse Matrix
Vector Product and a BiCGStab method performed via HARTS. We run our experiments
on a large scale NUMA machine with 24 NUMA nodes of 8 cores Sandy Bridge processor
clocked at 2.40GHz and 32Gb of memory each 1. Time results on SpMV kernel are reported
in Figure 3.9, while the performance of the BICGStab method is illustrated in Figure 3.10.
For both experiments, we select a matrix coming from the MLp collection on a square mesh
of size 5000×5000.

For both experiments, we can notice that performances of both initialization methods
differ from 8 cores in the X-axis. It corresponds to a single processor, so there is no
remote computations under 8 cores. Thereafter, we can see that performances of parallel
initialization mode outperform methods ran after a sequential data initialization. Indeed,
in this case data are distributed among NUMA nodes and threads grant a reduction of

1. Thanks to J.F. Mehaut who gives me access to this experimental machine
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Figure 3.9 – SpMV on 24 NUMA nodes

memory traffic across interconnects between processors. With a sequential initialization,
data fit in a single memory bank. Therefore, most of the threads operate on remote data
and it results bus contention and memory access latency. In this case, parallel time grows
up while it decreases with a parallel data initialization.

3.2.2.2 Work pushing strategy

At the runtime system level, we then implement a distributed task pool in HARTS.
Each thread operates its own private queue and cannot access another one. When a task is
marked as ready the task queue’s owner, if idle, performs it. In this way, a thread can fill its
queue with tasks that operates on close data. We can thus assume that a thread will always
be responsible of tasks with the same partition identifiers.

At the instantiation of a task by the API, HARTS is then responsible to push it in
a local thread’s queue. This queue is thus chosen thanks to an affinity function. It takes
in arguments a partition id, and returns the thread identifier that will own the task in its
queue. Various strategies can be employed. We limit our study to place tasks in queues
while ensuring that all threads will be responsible of an equivalent number of partitions.
A smarter strategy can also be chosen according to the graph partition. In this case, we
could fill threads’ queue while trying to reduce data exchanges between sockets. We should
attempt to place neighboring partitions tasks in threads on the same NUMA node. However,
this is a minimization problem that is out of scope here.

As we mentioned above, threads are always responsible of the same set of partitions
during the execution. By this way, we ensure that tasks with equal partitions id are always
performed by the same thread. Therefore, data stored in memory are always initialized by
the same threads. Two memory blocks belonging to the same partition are located in the
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Figure 3.10 – BiCGStab on 24 NUMA nodes

same memory banks in a NUMA context. However, there is no strategy here to dynamically
balance the work if a thread becomes in idle state.

3.2.2.3 Dynamic strategy at the execution

The execution model presented in section 3.2.2.2 does not allowed a thread to pick
up tasks in another queue. It is a scheduling policy based on private queues without
dynamic load balancing. The private distributed queue model shows its limits at run time.
In the case of unbalanced work load, private queues hamper efficient computations. We
thus implement a work stealing scheduling policy similar to Cilk[Blumofe et al., 1995]. By
default, a thread launches a steal request to another thread according to ascending threads’
numbering. However, this basic strategy generally is not the best because it does not take
into account data locality. As we operate the data distribution before the beginning of the
parallel region, we can thus know in advance where data are located. This information can
be used at run time to decide the placement of a task according to data locality computations
enhancement. By this way, we can make scheduling hints before tasks execution while
avoiding system calls to know data locations. Our objective is to guide a thread to select
a victim to steal following a steal strategy. For a given thread, we build a priority list of
thread’s ids that are good candidate for work stealing. At steal request a thread will browse
its list to find the best victim according to a predefined strategy. If steal fails, the thread will
check again its own queue. And if it is empty, the work stealing scheduler will be executed.

In order to build the threads’ lists according to data locality, we used the notion of
NUMA distance, previously explained in section 2.2.3.1. We make the assumption that data
are initialized in parallel, so distributed among NUMA nodes. Thanks to the distributed
queue and affinity function, tasks which are contained in the neighborhood of a thread thus
operates on local data. Therefore, we can conclude that threads with a minimal NUMA
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distance between them operates on close memory locations. The threads list is built by
sorting threads by NUMA distance. A thread having a low NUMA distance from the list’s
owner will thus be selected with a higher priority than a more distant thread.

In order to validate our approach in HARTS, we benchmark a BiCGStab method with
various task pools: a centralized and a distributed queue with work stealing strategy as
described above. For both strategies, data are distributed among memory banks of the
various NUMA nodes the machine is composed. We also select the NUMA aware work
stealing strategy we set up with the distributed queue. The matrix we use comes from a
realistic reservoir simulation: the SPE10 benchmark [Christie and Blunt, 2001]. At run time,
we count the number of tasks a thread operates depending on the task partition id. As we
know which thread is responsible of a partition id, we can thus deduce if the thread operates
on a local or a remote memory bank. We thus compute the part of the computations that
are local or remote, in percentage. We run our experiments on a dual socket machine, each
composed of two Broadwell 14 cores processor configured with Cluster-on-die mode. So
the machine is viewed as a 4 NUMA nodes, each one is composed of 7 cores and 32Gb of
memory. We report the results we obtained in Figure 3.11a for the centralized task pool,
and in Figure 3.11b for the distributed one.
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Figure 3.11 – SPE10 – BiCGStab with Diagonal preconditioner

In order to unbalance the work between processors, we used here a row partitioner
which distributes rows among processors regardless of the number of nonzero elements per
partition. We thus encourage work stealing for distributed task queue. If the sub-graphs
are better balanced, steal requests are less numerous and threads operate more their own
queue (filled with local tasks). Here, our objective is to emphasize our work steal strategy’s
benefit.

We can mention that we improve local computations from 5 to 7% with the dynamic
work stealing scheduler. Threads perform up to 70% of local computations with this later
policy. These results are quite moderate but still show data locality enhancement.
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From this step, all the experiments with HARTS will be made with a distributed task
pool with both work-stealing scheduler and the NUMA-aware scheduling hints.

3.2.2.4 Positioning with related works

As we previously seen in section 3.2.1, many works exist to take advantage of NUMA
machines through scheduling policy.

The purpose of X-Kaapi is to get information from data at task execution time to
schedule it according to memory location. Contrary to our strategy, there is no assumption
on data placement before scheduling the tasks of a parallel region. By this way, we avoid
system requests at run time to know where data are. OpenStream relies on the same
strategy which consist to evaluate memory location at run time. However, they proposed a
way to initialize data through tasks to distribute data among memory banks.

OmpSs enables users to detect initializing tasks which are supposed to distribute data
among NUMA memory banks. By this way, the runtime system can make assumptions on
data to efficiently schedule the tasks. It also provides runtime system calls to hint scheduler
on data location before task instanciation. In addition of that, they enable work stealing
scheduler to avoid load imbalance. The main difference to our strategy comes from the
queue design. In our work, we distribute the queue among threads while OmpSs distribute
them among nodes.

3.3 Monitoring and performance tools in HARTS

A parallel execution is a succession of tasks performed by various threads. Each task
execution can be viewed as two events associated to start and end times. Performance
counters and monitoring tools are employed to gain a more refined understanding of such
an execution. We implement it inside HARTS, at several levels. During execution, we collect
information about tasks before and after their execution. It happens when a task is marked
as ready state and then picked up by a thread in its queue. At the end of the program, we
gather data and then analyze them to analyze on the application behavior.

This modest work has not the pretension to be concurrent face to tools such as
Tau [Shende and Malony, 2006] or Paraver [Servat et al., 2013]. While these tools enable to
trace analysis from multi-level parallelism application on heterogeneous architectures, our
study is limited to multi-threading analysis on shared memory machines. Tau enables
to track parallelism in the application without instrumentation. We enable it too by
instrumenting directly HARTS and it is limited to the use of this runtime system. Paraver
with its Extrae extension enables to profile OpenMP or OmpSs applications. It enables to
extract statistics from task-based parallel applications and may draw DAG of the application.
We can also produce some statistics from task programming model in HARTS.
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3.3.1 Monitoring in HARTS

All the collected information are first stored in memory, and then flushed in several
files at the end of the execution. We create one chronological file per thread in CSV format.
We set up points of interest (POI) to only focus on a part of the execution. A set of
events can thus be gathered together and statistics can be made especially on this POI.
An example is given by the Figure 3.12, which represents the chronology of a program
performed by several threads. In this example we only focus on time measurements based
on start/end timestamps collected from hardware clock. However any event can collect
various information at run time. Task type and granularity, task placement or work stealing
ratio are also precious data that can be helpful to understand application’s dysfunctions.
We set task granularity by user-defined values. We handle a list of thread’s identifiers that
refer to physical core ids. By this way, task placement is then deduced by storing thread id
which performs the tasks in the event structure. When the distributed pool of HARTS is
employed with work stealing scheduler, we also count how many steals are performed per
thread. Tasks are also characterized by dependencies. A parallelism issue may be detected
by analyzing the links between tasks grouped in the same DAG. The critical path is thus
the longest path from the root of the DAG to the leaves. We denote the critical time by Tc

which is the sum of the duration from the nodes of the critical path. DAGs and execution
times are collected during the execution, whereas critical path is computed at the parallel
region ending. We do not consider overheads generated by runtime systems in the critical
time computation.

Time
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Figure 3.12 – Gantt chart example

Metrics

From collected data during the execution, critical path is not the only one data that
can be computed at the end of the program. From timestamps, we can build a Gantt chart
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such as the previously exposed one, both in CSV and Paje 2 formats. Moreover, we denote
by W the addition of all the tasks duration which gives the total amount of work performed
without runtime systems overheads. The duration of a task θk is given by:

w(θi) = end(θi)− start(θi).

And so,
W = ∑ w(θi).

Classical studies assume that W(p) = W(1) so E reflects the parallel efficiency of the
algorithm with respect to the sequential code. Note that due to NUMA effect, work may
vary with the number of cores in use [Olivier et al., 2012a]. So we consider W in function of
the number of partitions Npart in which we decompose our problem, but also in function of
the number p of threads in use. The computation efficiency Ecomp(Npart, p) of an execution
is given by the formula:

Ecomp(Npart, p) =
W(Npart, p)

pTp
.

We can note that in the case where W(Npart, p) = W(1, 1), Ecomp corresponds to the parallel
efficiency Eff(p) = Tseq/(pTp).

Because we log the tasks dependencies, we are able to compute the critical time Tc.
We can thus detect a parallelism default by computing the ratio between W and Tc that
represent the potential parallelism, i.e. W/pTc. If Tc is high regarding W/p, then W/pTc

is low. So, we can deduce that Tc is the limiting factor so the application may suffer from
a bad parallelism. In the same way, Tc is a lower bound for the parallel time Tp. If the
two given times differ, we can thus deduce that the application suffers from inactivity.
We notice that W(Npart, p) does not vary a lot face to Npart parameter (See Figure 3.8 in
Section 3.1.5.3). For more simplicity, we can let W(Npart, p) = Wp.

Scheduling activities
A thread can be inactive because of a lack of parallelism or scheduling inefficiency. For a
given thread, we compute its idle time by the formula:

Idle(k) = {Tp −∑ D(θi) | ∀θi}.

From task types we can identify which one is the most time consuming, and how many
times the task is invoked. We can do some statistics per threads on a task type, or in a global
context. Task placement is one of these statistics we can make. In this model, we assume
that both allocation and initialization are done in parallel following the assumptions made
in section 3.2. Tasks with different types but with the same partition identifier are thus
performed by the same thread. Hence our assumption let us to say that data are located in
the same memory address space. As we collect both partition and thread identifiers per
task, we can thus deduce if a thread requests a data to a local or a remote memory bank.

2. https://github.com/schnorr/poti
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By this way, we avoid system calls to ask where the data are physically located. We can
then plot statistics per thread about data locality computations.

3.3.2 First analysis

We now give an overview on the information we can extract from an execution with
monitoring tools. We thus run a BiCGStab method on a multi-core machine while varying
both the number p of used cores and the size of the input matrix. We partition data from
Metis graph partitioner. We are able to do some statistics to have a good understanding of
performances we obtain from the traces we collect at run time. We made our experiment
on a bi-socket Broadwell computing node. Each processor is configured with cluster-on-die
mode, so it is exposed as 2 NUMA nodes where each one has 7 cores and 32Gb of memory.

3.3.2.1 Overhead of Instrumentation

We first expose how intrusive the counters are during the execution. For a given
number of threads, we compare two executions: with and without performance counters.
For each one, we collect the parallel elapsed time to compute the BiCGStab algorithm. We
then compute the time increasing from a classical execution to the one on which counters
are turned on. We reduce it in percentage, and then illustrate the results in the Figure 3.13.
As a simple BiCGStab does not converge without preconditioner, the method iterates up to
1000 times. Hence, it generates a lot of tasks and the benchmark is perfect to measure how
sensitive are the performances according to code instrumentation.
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Figure 3.13 – Counters’ overhead evaluation

We can see that it mainly affects the smallest input matrix, which can reach up up
to 5% of increasing. In this case, the application does not provide a sufficient computing
effort to hide overheads. For the other matrix sizes, out monitoring tools does not degrade
application performances. The overall performances does not exceed more than 2%.
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3.3.2.2 Iterative method analysis

Then, we illustrate performance evaluation in terms of executed flop performed per
second in Figure 3.14a and of parallel efficiency in Figure 3.14b.
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(b) Computational Efficiency

1 2 4 7 10 14 21 28
0

20

40

60

80

100

# Threads

C
o
m
p
.
E
f
f
ic
ie
n
c
y
(%

)

NRows :

25.104

1.106

4.106

16.106

Figure 3.14 – BiCGStab with Diagonal preconditioner

We can first notice that for the smallest test case, performances increase up to 14
threads, and decrease after. It results a decrease in the parallel efficiency up to 50%. For
the other input matrices, we see an increase in the parallel performances in function of the
number of threads. For the biggest case, we decrease up to 85% in computational efficiency,
while the other reach 82% and 75% respectively in descending order. Size is the only
varying factor between the execution, while the matrix pattern remains the same between
each other. We can thus suppose that for the smallest benchmarks, computing efforts are
inferior to data communication which degrades performances when the number of threads
grows up. On the opposite, the bigger benchmarks succeed to hide data communication
and peak performances are reached. We now look at the data locality policy for one of
the benchmark, NRows = 4.106, with p = 28 threads. Results are shown in Figure 3.15a, on
which we illustrate both local and remote computations per NUMA node. We can see that
threads perform up to 69% of local computations, which enhance computing performances.

We then investigate on the scheduling efficiency with the same input matrix. We
thus activate monitoring on the previous method with the maximal available number of
cores, i.e. p = 28. We now look at the threads’ activity in Figure 3.15b on which we report
both compute and idle times grouped by NUMA nodes. We can first report that we obtain
around 17.7% of inactivity per NUMA node. This result slightly corresponds to the loss of
efficiency reported in Figure 3.14b, which is equal to around 18%.
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Figure 3.15 – 2000 x 2000 mesh – BiCGStab with Diagonal preconditioner

3.3.2.3 Work inflation in a NUMA system

We split the computations into tasks thanks to graph partitioning methods. Until now,
we build tasks according to the number of threads in use, i.e. Npart = p. In section 3.1.5.3, we
already show that we do not observe a work inflation on 1 threads while varying the number
of partitions. However, this experiment has not be done on multi-threaded executions yet.
Thanks to monitoring tools implemented in the HARTS runtime system, we aim here to
evaluate work inflation. For this experiment, we enable the work stealing scheduler we
have developed. We benchmark a BiCGStab method with a matrix coming from the Laplace
problem Finite Volume discretization. The size of the system is NRows = 16.106 rows.

From metrics we already introduced, work inflation is given by the formula:

WInflp(Npart) =
W(Npart, 1)−W(1, 1)

W(1, 1)
.

Results are gathered in Figure 3.16a. We present various executions which differ from
the number of threads in use (p = 7, 14, 28), on which we vary the number of partitions.

We can notice that the working time increases from the initial working time W(1, 1),
regardless the number of threads we use. However, we observe that the working time
inflation depends on threads. It only depends on the number of partitions too, but this is
less important. Until now, we need more investigation to explain why the working time is
dependent from the number of threads in use. However, we suppose that this phenomena
is linked to memory accesses and bus contention.
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Figure 3.16 – Work inflation of BiCGStab with Diagonal preconditioner

Mesh size NRows NNZ Memory Footprint
1000 x 1000 1.106 4996000 488 Mb
2000 x 2000 4.106 19992000 1953 Mb
3500 x 3500 12.106 61236000 5980 Mb
4000 x 4000 16.106 79984000 7811 Mb

Table 3.2 – Input matrices overview

3.4 API Evaluation on various preconditioners

This section is devoted to the performance evaluation of the API we develop. We
thus implement several preconditioners on top of the framework to enhance their parallel
performances. The platform we use is based on the multi-core architecture. The machine is
composed of one computate node equipped with two Intel Broadwell multi-core processors
clocked at 2.4GHz. Each processor contains 14 cores, and is paired with 64Gb of memory.
The processor is configured with Cluster-on-Die mode, which enables to split a processor in
two distinct NUMA nodes. It results that the machine is viewed by the system as 4 NUMA
nodes, each paired with 7 processors and 32Gb of memory.

For this study, we used standard linear systems which are not ill-conditioned. Matrices
are coming from the MLp set, which are built from a Finite Volume discretization of a
Laplacian operator on a unit cube mesh. We summarize information on the input matrices
in Table 3.2.

3.4.1 Polynomial preconditioner

First of all, we analyze performances of one of the simplest preconditioner which
is easy to build (See section2.1.2.2). However it is now used in simulations because of
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its numerical inefficiency. This preconditioner is a succession of sparse matrix vector
products, so it is easy to parallelize. We implement it through our linear algebra API, and
benchmark it on various linear systems of different sizes. We then execute it on a number p
of processors.

We first report performance evaluation. Time results are exposed in Figure 3.17a
and operated operations per second in Figure 3.17b. We can observe that parallel time is
decreasing in function of threads. It is more blatant on number of operations performed per
second. On the Figure 3.17b, we can see that performances are growing up in function on
the number of threads. We reach up to around 6GFlops for all matrices with the execution
on 28 threads.
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Figure 3.17 – BiCGStab with Polynomial preconditioner parallel performances

We can also see the parallel efficiency on both execution in Figure 3.14b. We observe
that the curves go down up from 70 to 80% of efficiency, depending on the matrix size.
We can see that the performances begin to decrease from an execution with 14 threads.
This phenomena is induce by data communication because we run it on two NUMA nodes
instead of only one before.

We are now looking at the cores’ states during the execution on 28 cores of the largest
matrix (i.e. NRows = 16.106) in Figure 3.18b. We can observe that cores waste around 20% of
the time in idle state. This ratio corresponds to the percent of inefficiency we previously
observed. It may be related to HARTS’s overhead, or induced by waiting times on data for
both SpMV and dot products.

3.4.2 Incomplete LU Factorization (ILU) preconditoner

We now attempt to evaluate the parallel performances of the ILU preconditioner we
develop via our framework. The preconditioning operation, not naturally parallel, solves
LU.x = y with a backward substitution, then by a forward substitution. This preconditioner,
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(b) Thread activity per NUMA node (p = 28)
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Figure 3.18 – BiCGStab with Polynomial preconditioner parallel performances

well known to be efficient for standard cases (i.e. not ill-conditioned and moderate problem
size), is not naturally parallel, since its algorithm is recursive. Task programming associated
to domain decomposition and renumbering techniques enable to extract different hidden
levels of parallelism. Figure 3.19 illustrates the DAG of the backward and forward steps of
ILU(0) algorithm parallelized with a 4 parts domain decomposition. A partitioner is used
to split the global domain into 4 not connected interior domains and 4 interface domains
connecting the 4 previous ones. The chosen partitioner algorithm aims to maximize the size
of the independent interior domains and to minimize the size of interface domains creating
dependencies between all the domains. Thus, tasks associated to interior domains can be
executed in parallel, while the runtime system scheduler extracts automatically a two level
degree of parallelism between tasks associated to interface domains. Data associated to
local domains are stored contiguously in memory.

We run the ILU preconditioner in conjunction with a BiCGStab solver on several
threads with input matrices of different sizes. As the previous experiment on polynomial
preconditioner, matrices are coming from the MLp set. We report time results in Figure 3.20a.

We can first notice that the ILU preconditioner is less time consuming than the
polynomial one. However, we can see that time results decrease at a very low speed for all
the input matrices.

We now have a look to parallel efficiency which is illustrated in Figure 3.21a. We can
notice that the efficiency tumbles from 7 threads and reaches the lowest efficiency with 28
threads from 80 to 65%, depending of the matrix. To better analyze this phenomena, we
thus compute the ration W/pTc as previously explained in section 3.3, between the working
time W and the critical time Tc. We observe that all the curves decrease in function of the
number of threads we use. With the maximal number of threads, all the test cases obtain
the time Wp represents about 80% of the critical time Tc. It means that the parallelization is
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Figure 3.19 – Incomplete LU Facto. DAG
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Figure 3.20 – BiCGStab with ILU preconditioner parallel performances

bounded by the critical time, but globally the application is well parallelized. We so then
analyze threads activity in Figure 3.22, for the matrix of size NRows = 4.106 of an execution
with 28 threads. In these results, we group both working and idle times by NUMA nodes.
We can observe that idle time reach up to around 39% of inactivity. Even if the tasks are well
balanced among NUMA nodes, because of the structure of the ILU algorithm dependencies
generates many idle time in the execution.

3.5 Conclusion

In this chapter, we propose a way to write efficient parallel iterative methods to solve
large and sparse linear systems. Through a unique semantic, we decompose the work into
tasks that are then directed to a given runtime system. Thanks to the HARTS runtime
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Figure 3.21 – BiCGStab with ILU preconditioner parallel performances

system, we enhance data locality computations to take advantage of multi-core systems
based on a NUMA memory topology. We also develop monitoring tools in order to analyze
and evaluate performances. By this way, we demonstrate the efficiency of the methods we
implemented on top of the linear algebra framework we developed.

However, many-core systems imposes other challenges than multi-core platforms.
Our concern is to develop a portable solution to write efficient algorithms regardless of the
underlying architecture. Hence, we propose an extension of the API in the next chapter
to take care of many-core architectures challenges such as code vectorization or memory
management. As for the current chapter, we evaluate all these extensions on sparse iterative
methods we use in oil reservoir simulations.
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Through the computer hardware evolution, multi-core chips tend to significantly
increase the number of computational units per node. Many-core processors come from a
core design simplification. The strategy is to handle many more but less powerful cores
while aiming to outperform chips with less but more powerful cores. Another advantage is
the low power consumption of such chips. However, programming challenges are different
and require additional efforts on many-core systems to reach high performances.

GPUs are computing accelerator boards which provide a great efficiency face to
intensive data parallelism thanks to their huge number of simple cores. Since several
years, GPUs have been used efficiently in a large scope of domains such as numerical
simulations. Programming such systems involves difficulties which mainly arise from the
communication between the CPU and the GPU, but also from the SIMT model, which is
close to vector processing. However, GPU programming is out from the concern of this
work. Among the many-core processors, Kalray and the MPPA-256 (standing for Multi-
Purpose Processor Array) architecture [de Dinechin et al., 2013] mainly focus on power
efficiency while providing a huge number of cores per chip. Intel built its own many-core
technology, first based on a accelerator board. Many integrated core (MIC) architecture was
first handled by the Intel’s Xeon Phi Knights Corner co-processor board [Chrysos, 2012]. Its
main characteristic comes from the ring interconnect that links all the cores. A core handles
several hardware threads (also known as hyper threads), and various execution units
(both a scalar and a vector units). The challenge arising from this kind of chip is double.
The architecture of this chip is complex, and reaching high performances comes from
vectorization and overlapping communication by computations. Systems equipped with
those accelerators are heterogeneous, so developers have to take care of data movements
across PCI bus. Our first concern was to exploit this kind of architecture. However,
following the evolution of its MIC architecture, Intel recently launches the Xeon Phi Knights
Landing processor. Our interest thus switches on this many-core processor.

This chapter is devoted to the Knights Landing architecture programming to achieve
high performance computing. From a performance portability perspective, we have up-
graded the API we previously developed. By this way, it can address solutions to various
programming challenges coming from hardware features without any formalism changes.
For this purpose, we operate internal mechanisms changes inside the API. Hence, it does
not impact the end users’ way of programming.

In the first section, we make a short overview of the KNL many-core processor and the
key elements of which it is composed. The way we take into account the various elements
may have a significant impact on performances. However, we face several programming
challenges to make a good utilization of hardware components.
We introduce in the second section the programming challenges we have faced to maintain
performance portability while taking advantage of KNL many-core processors. After high-
lighting different challenges, we detail the approaches which are already adopted in other
contexts.
In the third section, we detail the extension we introduce to benefit from vectorization on the
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KNL processor in standard operations like the BLAS operation while keeping performances
of the API. We explain the way we set up in our API while keeping transparency for users.
We have noted that sparse structures we used until now are not well adapted for vectoriza-
tion. After a short review of the most popular sparse matrix format in the fourth section,
we explain how it is possible to integrate a new one in our API without any changes for
developers.
The fifth section is devoted to memory management between various memory banks avail-
able in the KNL processor.
In the sixth section, we present the performance evaluation of the API on the KNL many-
core processor. Thanks to various benchmarks, we thus demonstrate the relevance of our
approach on the overall performances.
Eventually, we discuss on the improvements and the ongoing work aiming to enhance
programming challenges management.

4.1 Knights Landing architecture Overview

Before overcoming programming challenges, it is necessary to well understand
the architecture to know the challenges’ origin and then to think about an appropriate
solution. In this section, we overview the main features of the Knights Landing (KNL)
micro-architecture. At a microscopic scale, a core is responsible of the computations. When
we zoom out, interconnect that links all the cores enables communications between them
and the memory. In the KNL processor, different kind of memory banks are available to
gain in performance. In particular, Intel integrates a stacked memory onto the chip to
attempt to reduce memory latency.

4.1.1 Core design and Cache levels

A core is the entity that handles instructions fetch and execution units. It is thus
responsible of doing computations. KNL processor can handle from 64 to 72 cores in a
chip. Cores are derived from the Intel Atom microarchitecture used in mobile devices, but
adapted to HPC applications. They benefit from a lower frequency than the usual cores.
Depending on the KNL processor model, the clock rate is from 1.3GHz to 1.5GHz while
reducing power consumption. The KNL’s cores use the x86 instruction set. Moreover, Intel
extends the Advanced Vector Extensions (AVX) to support 512 bits wide instructions. At a
clock time, an instruction can thus operates on 16 floating numbers in single precision, or 8
floating numbers in double precision. A core handles 2 vector processing units (VPU) that
are the vector and floating point execution units of KNL.
Each core is composed of four hardware threads, also called hyper-threads [Marr et al., 2002].
This feature enables to possibly benefit from several execution contexts on the same core.

Cores are paired by two to constitute a tile. A tile shares a large 1Mb L2 cache
between the two cores. Additionally, each core of the tile owns its own private L1 cache.
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4.1.2 High Bandwidth Memory (HBWM)

The KNL processor supports two different kinds of memory banks: MCDRAM and
classical DRAM. First, the processor is equipped with a stacked memory on the chip,
named MCDRAM. This memory bank intends to reduce memory latency while being closer
to the cores. MCDRAM has a capacity of 16Gb, which is scattered in 8 devices of 2Gb
each. A device can be accessed from one of the 8 memory controllers on which the mesh
architecture is composed. The MCDRAM delivers a performance of around 400Gb/s, that
is 4.5 times faster than the DDR4 memory (˜ 90Gb/s). As a standalone processor, KNL also
supports DRAM memory, up to 384Gb. There is 6 memory channels to this memory bank.

Two different memory modes are available to make a good cohabitation between
the two memory banks. The memory mode is configurable at boot time. First, MCDRAM
can be considered as a standalone memory within the Flat Mode. By this way, user has to
explicitly allocate memory in the MCDRAM through the Memkind library 1 and allocator
functions. It enables to devote memory management to end users.

However, the MCDRAM can also be viewed as a Last-Level Cache via the Cache Mode.
If a data is not in the L2 Cache, a request is thus sent to the MCDRAM as a cache to ask if
the data is present or not. If the data is in it, the data is thus returned. If not, a data request
is sent to the main memory (DRAM) which will send back the data to the requesting core.
Users does not have to take care about MCDRAM, and allocate memory as usual. The
mechanism is only hardware managed.

Another hybrid mode is possible by configuring MCDRAM between Flat and Cache
memory modes. We can split the MCDRAM in two parts, one as a Cache and another as a
Flat memory. Users have just to define the proportion of each one when they turn on the
Hybrid Mode.

4.1.3 2D Mesh interconnect

All the tiles are linked together via a cache coherent 2D mesh interconnect. The
architecture is illustrated in Figure 4.1. The architecture handles a distributed tag directory
which is dispatched among all the tiles. More precisely, L2 caches are connected all together
with a mesh interconnect. The directory in each tile owns a portion of the address space
based on a address hash.

Users can select various cluster modes to improve memory bandwidth by lowering
the distance to retrieve a data when a L2 miss occurs. Indeed, in the case of a tile is looking
for a data, it will first ask its own cache levels. If the data is not present, it will ask to tag
directory which handles the memory address. If the data is no longer valid, the directory
will then asks the main memory. The memory bank will be read from memory controller
and then send to the tile requesting the data. So cluster modes attempt to reduce memory
latency while minimizing the path from the tile to both the tag directory and the memory.

1. See https://github.com/memkind/memkind

https://github.com/memkind/memkind
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In the All-to-all mode, the memory addresses are uniformly distributed among all the
tag directories. Hence, a core may take a long path to first request a data to a tag directory
and then maybe the memory.

For the Quadrant/Hemisphere clustering mode, tiles are divided in four quadrants or
two hemispheres. In each part, a tag directory is affiliated to a set of memory controllers.
When a cache miss occurs, a request is thus send to a tag directory containing the memory
address. If it does not have a coherent data, it thus asks to the memory controller it is
related to. It possibly may increase the path length if the tile which owns the memory
address is not in the same part as the tile which requests data.

The Sub-Numa Cluster (SNC) mode extends the quadrant/hemisphere mode while
affiliating a tile with the directory and the memory. Each part is exposed as a NUMA
node. For a NUMA optimized application, a tile will access data from tag directories and
memory controllers which are located in the same NUMA node. By this way, latency is
thus reduced.

Figure 4.1 – Intel ® Knights Landing processor architecture

4.2 Programming Challenges

From hardware features of the KNL processor, some programming issues arise.
Taking care of them is challenging, but it has a significant impact on performances. It
sometimes needs to rewrite programs from scratch, for example, due to the change of
algorithmic structure or data structures.

However, our interest here is to write portable application regarding performances
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on various architectures while benefiting from the best optimization. Thanks to the internal
structure of our API, it is easy for developers to integrate new structures or mechanisms
without rewriting applications. By this way, we can fix issues introduced by a specific
architecture transparently for users.

4.2.1 Multi-versioning of kernels for vectorization

Vector processing is one of the most powerful features enabled by the KNL processor.
Vector registers increase up to 512 bits with this architecture. This size corresponds to
16 single precision floating numbers, or 8 double precision floating numbers. Each core
handles two vector processing units 4.1.1. Clock rate of the KNL processor is slower than
most of the standard actual multi-core processors. However, the 512 bits wide range vector
processing enables to boost performances. It is a good compromise to overcome the slow
down of the core frequency. It is thus important to take advantage of this feature to enhance
performance applications from multi-core to KNL programming.

Several solutions exist to write efficient vectorized applications. For the simpler cases,
it only requires to adapt the existing code to force the use of vectorized instructions rather
than sequential ones. In some cases, an alternative algorithmic approach is favored, while
keeping the same data representations.
However, in the most complex cases we are obliged to take other data structures to enable
the vectorization of the associated operations.

4.2.1.1 Implementation

As our API is designed to support several architectures, we must be able to manage
several versions of a kernel, possibly one per targeted architectures. In the case of the KNL
architecture, a version of a kernel will designate a AVX-512 vectorized implementation’s
kernel. The factory pattern is employed to choose the appropriate version to the current
architecture. The choice of the version can be made at two distinct times.

Runtime systems such as StarPU [Augonnet and Namyst, 2008] allows to attach meta
data to a task, which enables a task to have several representation. A codelet is an abstraction
of a task which may have several representations (e.g. one for classical CPU and another
one for GPU). The choice of the version that will be performed is done at run time by the
scheduler. This representation of multi-version kernels is mainly adopted in the case of the
heterogeneous architectures because of the cohabitation of two distinct architectures at a
time. Hence, the decision has to be dynamic and made at execution time.
X-Kaapi [Gautier et al., 2013] has a similar feature to provide multi-versions of task imple-
mentations through C++ template specialization.

Thanks to dynamic dispatch, the Intel MKL [Intel, 2017] library detects the appropri-
ate version of BLAS kernels depending on the underlying architecture at execution time. By
this way, it is fully transparent for its users and does not require any knowledge from them.
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The choice can also be done at compile time, with conditional building application.
By this way, there is only one kernel with an implementation that is frozen during the
execution. The decision could not react to runtime variations. It is favored for regular
applications. Dynamic adaptation of code is subject to future work.

4.2.1.2 Data Structure

Some specific kernel’s implementations require to change data representation struc-
tures (e.g. vector or matrix). The API will thus have to manage several structures for the
same data. The challenge is thus to manage distinct data representations at execution time.

The choice may be done at execution time, while using a factory pattern for all the
data structures available. The use of a structure instead of another is dictated by the type of
computational resources chosen by scheduling decision to perform the task. This choice is
well adapted to heterogeneous architectures, in which we may need to handle several data
structures at run time.

However, we sometimes are in the case where we need to handle only one structure
per data. In this case, we do not require to make decision at run time but may be at
compilation time. It can be implemented through several ways, as with API’s template
functions in C++. It only requires to redefine all the methods for all the structures.

4.2.2 Managing memory to control High Bandwidth Memory usage

High bandwidth memory enhances data accesses and thus overall performances.
However, the size of such a memory bank is highly limited compared to standard memory.
The coexistence of the two kinds of memory banks in compute node based on KNL
processor imposes to find a compromise between each other. Indeed, memory management
is needed to be sure to maximize performances while taking advantage of the best memory
latency.

To benefit from the best latency, users need to allocate data in the appropriate memory
bank. The purpose of the API is to provide a collection of features to abstract users from
managing computations at hardware level. By this way, we aim to manage data allocations
in a transparent way for users.

4.3 Various vectorized implementation for standard kernels: ex-
ample with the BLAS

BLAS operations are the most used operations in the linear algebra area. These
operations are particularly well adapted for vector processors, but it exists many ways to
vectorize code. The API we develop enables to propose various implementations for a
single BLAS kernel. In our case, the differences between each ones come from the way of
vectorizing the code.
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4.3.1 Different ways to vectorize a method

Vectorization of code may be produced by several ways. First, compilers may generate
vectorized code through code analysis. Since OpenMP 4.0, the compiler may automatically
generate vectorized code via the #pragma omp simd pre-processing directive. This directive
enforces compiler to generate vectorization. But there are other directives which give hints
to compiler. It then vectorizes the code or not, depending if the conditions are fulfilled.
By this way, user does not have to care about loops unrolling. This method has also the
advantage to be portable and non invasive. However, performances may be degraded if the
application was not designed for vector processing. Moreover, the compiler will possibly
not unroll the loop as expected by the developer. Indeed, the compiler may not detect
the best option to unroll the loops to vectorize codes. In that case, it possibly needs the
intervention of the developer to reorganize algorithmic structure of the method before code
vectorization.

Some libraries are available to take advantage from vector processing units in a
convenient way. Hence, developers do not have to care about vectorization because it is
hidden behind a library call. One of the most popular library used in linear algebra field are
the BLAS library such as OpenBlas [Xianyi et al., 2017], Atlas [Whaley and Dongarra, 1998]
or the Intel Math Kernel Library (MKL) [Intel, 2017]. This latter provides BLAS operations
while vectorizing many of them in a transparent way to increase application performances.
The library enables to target several architectures by addressing specific computations with
the available vector instruction set on the machine. By this way, a code targeting the KNL
architecture does not need any changes from multi-core implementations.

However, when specific operations are required, manual vectorization by developers
is needed. Most of the time, we prefer to use intrinsic functions to manage vector processing
instructions at a lower level (close to the assembly) instead of automatic vectorization by
compiler. However, the application lose its portability because of the intrinsic functions
are hardware dependent. They are generally designed for only one instruction set. For
example with the Advance Vector Extension (AVX) which is supported by most of the
current processors. However, AVX2 and more recently AVX512 are supported by only a
subset of recent processors. Functions differ from the input vector register sizes between
two AVX instruction sets version. But the processor builders also add new features with
specific vector register uses. Hence, developers have to maintain a version for each version
of AVX they use. Each one will benefit from the hardware features of the underlying
architecture.

4.3.2 Various implementations proposal in the API

In the case of level 1 BLAS operations, we operate on vectors or subvectors only.
Hence, we do not need to change data structures to enable vectorization. However, the
vectorized method differs from the previously implemented kernel. Hence, we need to
maintain various implementations of a method in the API depending on the architecture or
the instruction set we use. In our case, we need to handle a vectorized implementation of
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kernel to take advantage of the KNL architecture, while keeping the other implementations
for other architectures (e.g. multi-core architecture).

Thanks to our API, developers can select among several implementation of the kernel.
In our case, the differences between each implementation come from the way to vectorize
the operation or not. All the BLAS operations proposed by our API enable to target one
of the three options of vectorization proposed by the previous sub-section. As it has been
explained in section 4.2.1.1, several options exist to enable multi-versioning of a kernel
in the API. Depending on the compiler option we provide to build the API, a flag is
raised. By this way, kernel implementation is frozen all along the execution. Indeed,
contrary to heterogeneous architectures we do not require the coexistence of two various
implementation at run time. We suppose that the selected implementation is valid all along
the execution.

The choice of the implementation we used is specified at API’s tasks creation. For
each task formalism, developers have to specify a function pointer to the work to do at task
execution time. The compiler flags activate one implementation among the available ones.
The choice of one implementation is here dictated by the libraries or compiler we used to
build the API.

Hence, when the implementation is available we can activate it. In the absence
of parameters, the vectorization is disabled for all the tasks. It thus corresponds to the
basic multi-core API version. Otherwise, if BLAS library is detected at compile time we
built the API around it for BLAS operation. If a specific intrinsic version is implemented,
we can switch to this version if intrinsics functions are available. We can also select the
auto-vectorization provided by the scheduler.

Actually, the instruction set AVX512 is only supported by the KNL processor. It
enables to operate on 512 bits wide registers. It doubles the AVX2 capacity (i.e. 256 bits),
which encourage developer to vectorize codes. However, the way of generating vectorized
code is not the only one issue we have. Indeed, vector instructions need to perform the
same instruction on a range of elements at a given time. All the structures are not adapted
to it and need reorganization. Sometimes, memory accesses can not be performed on a
regular range of elements. It is thus hard to find a way to correct it, and then benefit from
vector processing. The solution can be found from algorithmic structure of the application.
In this case, we attempt to change the order of execution of the operations to process
instructions by vectors. However, it is not always possible. Sometimes, we must change
data representation to impact the elements access pattern in a more convenient way for
vector instructions.

Let’s take the example of the axpy kernel, which can be performed thanks to the
several ways we cited above. The Listing 4.1 illustrates how we can chose between each
implementations. In this way, we decide to select the implementation of the axpy kernel
when a task descriptor execution is invoked. However, we also could select it by changing
the task descriptor we push in the Sequence object. In Listing 4.2 we illustrate the kernel’s
implementation via the compiler hints. Listing 4.3 shows the use of Intel MKL to compute
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Listing 4.1 – Axpy’s descriptor trigger execution

1 void axpy_Descriptor :: exec ()
2 {
3 #ifdef USE_MKL
4 task_axpy_mkl (A, B, C, val , begin , end );
5 #elif defined ( USE_AVX512 )
6 task_axpy_intrin (A, B, C, val , begin , end );
7 #else
8 task_axpy_auto (A, B, C, val , begin , end );
9 #endif

10 }

Listing 4.2 – Axpy’s taks auto-vectorization

1 void task_axpy_auto ( double * __restrict__ A,
2 double * __restrict__ B,
3 double * __restrict__ C,
4 double val , int begin , int end)
5 {
6 int k;
7 # pragma vector always
8 for(int i = begin; i < end; ++i )
9 C[i+k] = val * A[i] + B[i];

10 }

the result. Eventually, the Listing 4.4 sketches an implementation made with AVX-512
intrinsics.

We can observe that the kernel’s implementation using intrinsic requires much more
effort than the two other ones. Moreover, in this case we do not consider the case where
size is not multiple of 8, which requires mask operations (but we implemented it in the
API). Hence, it is not so easy to implement a method with intrinsics.

4.3.3 Experiment on Axpy kernel

Most of the operations coming from linear solvers are BLAS level 1 or 2. Hence, these
functions operate on vectors, and they do not need any changes. Let’s take an example
of an Axpy kernel such as proposed by our API in Listing 3.1. The function browses two
vectors at a time, and store the result in another vector. Instead of browsing vector one
element per step, the vectorized version will operate several entries per vector and per
instruction. To illustrate the gain we can obtain from vectorization on simple kernels, we
vectorize an Axpy kernel with different methods: no vectorization, auto-vectorization given
from compiler, intrinsic and the Intel MKL. Thanks to the API we develop, we benchmark it
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Listing 4.3 – Axpy’s taks MKL

1 void task_axpy_mkl ( double * __restrict__ A,
2 double * __restrict__ B,
3 double * __restrict__ C,
4 double val , int begin , int end)
5 {
6 cblas_daxpy ((end -begin), val , A, 1, B, 1);
7 }

Listing 4.4 – Axpy’s taks Intrinsics

1 void task_axpy_intrin ( double * __restrict__ A,
2 double * __restrict__ B,
3 double * __restrict__ C,
4 double val , int begin , int end)
5 {
6 int i;
7 __m512d a,b,c,alpha;
8 alpha = _mm512_set1_pd (val );
9 # pragma novector

10 for(int i = begin; i < end; i += 8)
11 {
12 a = _mm512_load_pd (&A[i]);
13 b = _mm512_load_pd (&B[i]);
14 a = _mm512_add_pd ( _mm512_mul_pd (a, alpha), b);
15 _mm512_store_pd (&C[i], a);
16 }
17 }
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with the OpenMP 4.0 runtime system. All the data are allocated in the MCDRAM memory
bank. The application is compiled with Intel v.2017 compiler. Vector are partitioned through
following a row partitioning. We select the number of rows to be a multiple of the vector
register width. Results are gathered in Table 4.1, in GFlops units, for an input vector with
NRows = 10.106.

# threads Auto-Vectorization MKL Intrinsics
1 0,96 0,96 0,96
16 8,73 8,75 8,09
32 16,75 16,80 15,60
64 25,71 25,79 25,03

Table 4.1 – Various vectorized ways for Axpy kernel (GFlops)

As we can see, both implementation succeed to take advantage of AVX-512 instruction
set. Between the various implementations, results are equivalent. However, we show in the
previous subsection that the effort to write each of them is not the same. In particular for
intrinsic kernel’s version which requires a huge programming effort.

4.4 Adaptation of sparse structures to vector processing

Dense structures do generally not need any data reorganization for efficient pro-
gramming on vector processors. At the opposite, sparse data formats suffer from a lack
of performances for vector processing. Most of the widespread sparse structures does not
optimize entries accesses pattern. Hence, operations related to sparse matrices does not
fully benefit from vector processing and performances are generally quite moderate.

4.4.1 Comparison and discussion on sparse matrix format

Until now, sparse matrices are stored via the Compressed Sparse Rows (CSR) for-
mat [Williams et al., 2009] in our interface. This format is generally favored because it mini-
mizes memory footprint while storing only non-zero entries (i.e. Nnz values). It is thus used
in most of the well-knows sparse linear algebra software as Eigen [Guennebaud et al., 2010],
PetSc [Balay et al., 1997] or Sparse BLAS [Carney et al., 1994] in the Intel MKL [Intel, 2017].
However, this data structure is not well adapted to vector processors. It may be particularly
inefficient when a matrix has few non-zeros values per row. If many computations are
done on smaller number of entries than the vector register sizes, the instruction throughput
will be under used. If this phenomena is repeated many times per row, and the matrix is
potentially big too, the vector processing will be inefficient.

Let’s take an example of the product of a sparse matrix by a vector, which is one
of the basic kernel in linear algebra. Given a sparse matrix as it is shown in Figure 4.2,
its corresponding access pattern of CSR-formatted matrix’s entries is then illustrated in
Figure 4.3a.
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Ellpack (ELL) [Grimes et al., 1980] is another format which is specially designed
for vector processing. Matrix entries are stored following a column major fashion, and
computations are then packed on vector register size. In order to build such a format, we
first look at the largest row in the matrix. Then, all the rows are padded to this width. It is
thus assumed that the padding is negligible regarding to the gain obtained by vectorization.
Nevertheless, this format may generate many more entries in the matrix and degrade both
the memory footprint and the performances. It is true especially for matrices in when there
is too much differences between the widths of the rows. Let Avgrows be the average width
of all the rows of a sparse matrix, and Nmax be its widest row. It is thus easy to see that if
Nmax � Avgrows, then we will add a lot of zero entries. Hence, the matrix will consume
more memory but also the application will perform much more operations. An example is
given in Figure 4.3b, where Nnz = 54, Nmax = 8 and Agvrows = 3.375. In this case, we add
74 elements which correspond to an increase in 137% of additional entries.

Sparse matrices arising from oil reservoir simulation are unstructured. It means that
we cannot know in advance the shape of the matrix, and if its values are well balanced
among rows or not. So we are looking for a format that enables efficient code vectorization
while minimizing the number of padded values, whatever the input matrix. The Sell-C-
σ [Kreutzer et al., 2013] storage format limits the memory footprint while keeping a vector
friendly access pattern. The format is based on the Ellpack we previously described, while
limiting the number of padded zero values. In a first step, we sort rows by width in
descending order per packets of size σ in order to reduce the fill-in in the chunks of size
C. If we take a large value σ, sorting rows will be time consuming if NRows is high but
we are sure to minimize the fill-in. A strategy is established to find a good value for σ

in [Kreutzer et al., 2013]. Then, matrix coefficients are stored in a column major fashion.
However, rows are stored by chunks of size C. This argument generally corresponds to the
number of elements that can be processed per instructions. Indeed, it specifies the number
of rows (one element per row) that will be processed per instruction. All the rows in a
chunk have the same width. We insert padding to the rows which have a smaller width
than the largest one of the chunk. As the rows were first sorted by the rows’ width, we
thus intend to limit the padding. Two different configurations of the format are illustrated
in Figures 4.3c and 4.3d. It respectively corresponds to an increase in 70% and 41% of
additional entries from the number of non-zero values.

All the main information about sparse matrix representations are summarized in the
Table 4.2.

Feature CSR Ellpack Sell-C-σ
Access pattern Row Major Col. Major Col. Major
Vector friendly No Yes Yes

Padding No Yes Yes
Padding Limitation No No Yes

Table 4.2 – Sparse Format summary
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CSR

AA JA IA

Figure 4.2 – Example of any sparse matrix

4.4.2 Switching to specific matrix format for a target architecture

Thanks to the structure of our API and its functions based on C++ templates, de-
velopers only need to write new matrices types and the corresponding operations to be
integrated. Changing one element can thus have a performance impact, while keeping the
same semantic. The Sell-C-σ format, which is supposed to have greater performances on
KNL processor, can thus be selected by user when implementing an input matrix. The
matrix is then passed as argument to all the API functions. End-users does not have to care
about the internal structure, as all operations have been developed.

Until now, we only have to manage one structure per data at execution time. However,
because of the API’s capability to have several representation for one data, at run time two
different tasks may operate on the same data but with various structures. The way to fix
this issue mainly depends on the runtime systems we use in the API. With HARTS, we
previously seen in Section 3.1.3.2 that we built the DAG according to the linear system’s
graph partitioning. In that case, we do not care about data structure we use. We can
thus have various data representation at run time with the HARTS API’s implementation.
However, our API can take advantage of other runtime systems as the ones based on
the OpenMP task programming interface. With these tools, tasks dependencies are built
regarding pointers specified in the depend clause of the task construct. If we use several
structures, pointers will thus be different and the dependencies will not be correctly
expressed. To fix this issue, we propose to create a new structure that gather all the
representations of a data. At task dependencies expression (i.e. the depend clause), we
will thus give pointer to the factorized structure. By this way, we will homogenize all the
pointers to build the DAG and we will not generate data race at run time. Until now, we
do not face to this situation and does not require such a mechanism. However, we expect to
implement it soon to prevent developers from this issue.

4.4.3 Experiments

This subsection is devoted to the performance evaluation of the Sparse Matrix Vector
product kernel we implement through the API. This operation impacts the overall execution



4.4. Adaptation of sparse structures to vector processing 83

(a) Compressed Sparse rows (b) Ellpack

(c) Sell-4-4
(d) Sell-4-8

σ

C

Figure 4.3 – Various sparse matrix format for vector processors
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time of numerical iterative methods.

For both experiments, we do not reorder the matrix via the Sell-C-σ (i.e. σ = 1). By
this way, we still take advantage of fill-in reducing face to Ellpack format and we avoid to
reorder all the other data structures too. We initialize the matrix structure with chunks of
width C = 16. By this way, we can load 16 indexes of the input vector per SpMV iterate. We
thus decompose the iterate in two blocks of 8 floating points numbers in double precision.

We first present the improvement we can attempt from a vectorization of the SpMV
using a single vector processing unit with various sparse matrix representations. Then, we
evaluate the potential parallel gain using the Sell-C-σ format while varying sizes. Eventually,
we propose a comparison between two parallel executions with two distinct sparse formats.

4.4.3.1 Vectorization benefit from various sparse format

This test is devoted to the performances comparison of SpMV using CSR and Sell-
C-σ format. For the CSR format, we benchmark two various implementations. The first
one is the one we implemented with auto-vectorization compiler hints, while the second
one is provided from the Intel Sparse MKL library. The Sell-C-σ multiplication comes
from a vectorization made with AVX-512 intrinsics. The results we obtained from both
implementations with different sizes of Laplacian matrices are reported in Figure 4.4.
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Figure 4.4 – Performances on SpMV implementations on 1 thread

We can observe that the SpMV kernel with the Sell-C-σ format outperforms the two
other implementations using CSR format. With these later implementations, we report
performances of around 300 MFlops regardless the matrix size. However, we reach a peak
performance of around 970 MFlops with the Sell-C-σ implementation with the smaller
benchmark. The performances seems to be stabilized to around 900 MFlops when the
matrix size grows up.
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4.4.3.2 Multi-threaded execution

In order to illustrate the benefit we can attempt from vectorization in sparse matrices
computations, we now compare two SpMV distinct parallel executions on a KNL processor.
The first one is computed thanks to the widespread CSR format. The second SpMV’s
execution is performed thanks to the previously presented Sell-C-σ sparse format. Each
implementation benefit from vectorization using AVX-512 intrinsic. We run both of them
on several threads, from 1 to 64. We then collect the results in terms of time and floating
point operations per second.
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Figure 4.5 – SpMV’s time results

Time results for CSR format are presented in Figure 4.5a, while those for Sell-C-σ
are illustrated in Figure 4.5b. If we only focus on these times, we can first stare on the
results with only one thread. Instantly, we can observe that the CSR format achieve around
3 times worst performances than its concurrent on the biggest input matrix. However, this
case is not unique and also works for all the other tested matrices. The conclusion remains
the same while increasing the number of threads we use. For the biggest matrix, the CSR
format execution based performed with 64 threads ends the execution after 12 seconds. The
same execution with the Sell-C-σ ran during around 5 seconds.

We have now a look on operations performed per second. The CSR format results are
sketched in Figure 4.6a while the ones for the Sell-C-σ are presented in Figure 4.6b. We can
observe that results for the CSR format have difficulties to grow up while increasing the
number of threads we use. Indeed, the performances does not exceed 15 GFlops. At the
opposite, the Sell-C-σ executions does not have these difficulties, and reach up to 33 GFlops
of performances. On the other hand, we can observe decreases from 32 and 48 threads for
two smaller test cases. One hypothesis is that the data communications costs can not be
hidden by computations. Indeed, computations are not too intensive to achieve it. In this
case, performances are thus leaded by data retrieval more than computations. Until now,
we do not have verified the veracity of this hypothesis.
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Figure 4.6 – SpMV’s Flops

4.5 Flexible memory allocation for various memory banks

Memory bandwidth is considered to be one of the most critical bottleneck in HPC
systems. It has been accentuated since the rise of accelerators in computing nodes. Stacked
memory with a limited size is the option adopted by the KNL. However, the way to manage
it efficiently is not so easy because of its limited size. Several configuration modes are
available to attempt to take advantage of this memory, previously described in section 4.1.2.
Moreover, clusters mode (see section 4.1.3) also have also an influence the way of reaching
memory and eventually application performances.

4.5.1 Memory management depending on the memory mode

We previously explained in section 4.1.2 that it exists two major memory modes
selectable at boot time. First, the Cache mode enables to use the high bandwidth memory
as a last level cache. This mode does not require any particular attention from developer
because data are allocated via standard functions like malloc or posix_memalign. The
system is then responsible to the cache eviction policy. An application whose all the data fit
in the 16Gb of the MCDRAM bank will not need any changes to increase its performances.
If the amount of data is bigger than the capacity of the MCDRAM, data are not guaranteed
to be inside. Data accesses could possibly slow down the application and thus degrade the
performances.

At the opposite, the Flat mode offers distinct views between MCDRAM and standard
DRAM memories. By this way, developers may have a finer control on data allocation.
They can specify where the data must be placed, depending on their knowledge of the
application. Hence, allocation in DRAM memory will be processed via a call to malloc.
Memory allocation in MCDRAM will be addressed by a call to hbw_malloc function, given
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by the Memkind library.

From Flat memory mode, two problems arise. First, how can we manage data
allocation inside our API without users’ understanding. Then, how can we decide in which
memory bank a data should be placed.

4.5.2 Taking care of memory modes in the API

We previously seen in section 3.2.2.1 that the memory allocations are managed
through the API via the allocate function. We generalize the Allocator concept to easily
switch between various allocating functions. It is responsible to reserve memory space in
the virtual address space, and free memory space too. By default, the Allocator object
uses standard memory allocation functions (i.e. mmap and munmap). We now extend it to
take in account the allocation in high bandwidth memory. Hence, we build an Allocator
object that inherits from the default Allocator implemented for multi-core architecture.
This new Allocator uses the functions provided by the Memkind library to allocate and
free memory space in the MCDRAM memory bank (i.e. hbw_malloc and hbw_free).

At compile time, developers can select the Allocator object passed as an argument
of the API. If nothing is specified, the default Allocator is chosen. We can also select
the one based on the hbw_malloc function for KNL processor. However, the developer is
responsible on performance optimization. Hence, he can decide to privilege an allocator if
it deems it necessary. In that case, the developer has to instantiate a new Allocator object,
which will be different from the one handled by the API. Unfortunately, it requires a good
understanding of the application. Let’s take an example of a heavy data which is needed
only once. It can take place for other data that will be operated many times during problem
solving phase. A smart strategy is thus to place data for initialization in DRAM memory.
By this way, we can save enough place for other data in the MCDRAM.

Data distribution between the two kinds of memory is not easy. In our strategy, we
allow developers to allocate memory as they wish while using Allocator objects. However,
we can describe the strategy we employed in our API model. We distinct data that are used
for structure initialization from data used for linear solver execution. Indeed, some data
are only operated to initialize other data and then they are less or never used again. Let’s
take a simple example with matrices which represent linear systems. We first read data
from file, and then partition it in several sub-domains. We thus handle two structures, but
the non-partitioned one will not be used for parallel execution and takes a lot of memory.
Storing this matrix does not guarantee that the partitioned system will have enough place
in MCDRAM. We thus decide to store in DRAM memory the original matrix, and the
partitioned system in MCDRAM. We then initialize the partitioned system from the original
matrix. By this way we maximize chances to fit all the data in MCDRAM.
In this model, we do not consider data that do not fit entirely in MCDRAM memory bank.
Until now, all the data we used fit inside. However, we are conscious that it will not be
always the case. We thus consider the question in the discussion’s section, see 4.7.
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4.5.3 Experiment

In this context, we can wonder if the high bandwidth memory handled by KNL
processor has a strong impact on SpMV performances. Hence, we run a parallel SpMV
operation 103 times while using the Sell-C-σ matrix format. The cache is not flushed
between the various iterations. We attempt to allocate memory in the two various memory
banks of the KNL processor. First, data are physically set on classical DRAM memory.
The benchmark is performed another time but data are now physically in the MCDRAM
memory. For both execution, the KNL processor was configured in the SNC4 cluster mode.
We compute the speed-up ratio between the execution where data are in MCDRAM and
the new one by the formula: R = TDRAM/TMCDRAM. We thus plot the results in Figure 4.7
while varying the linear system sizes.
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Figure 4.7 – SpMV performances using the two memory banks of the KNL processor

We can first observe that independently from the system size, the use of the KNL’s
stacked memory improve performances of the SpMV methods. The two smaller systems
are able to reach up to 8 times more performances with the MCDRAM use compared to the
classical DRAM memory use. We also observe decreases from respectively 48 and 64 threads
on the two smaller benchmarks. In this case, we suppose that the data communication cost
are high face to computations. The largest input case reaches up to 6.5 of speed-up ratio
between MCDRAM and DRAM memory banks.

We now compare the two previous executions with flop per second measurements,
on p = 64 cores. Results are sketched in Figure 4.8 while varying system sizes.

We can observe that performances of the SpMV execution where data are in the
MCDRAM are increasing up to the 25.106 rows matrix. After this, we do not increase
performances anymore. Hence, we have to deal with huge data to reach the best perfor-
mances of the MCDRAM memory bank. In that case, SpMV performances reach up to
40 GFlops. The DRAM memory reaches the best performances earlier, since matrices of size
NRows = 16.106. Moreover, slower memory bandwidth shows its limitations while achieving
up to 5.7 GFlops of performances on the SpMV benchmark.
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Figure 4.8 – Performances on SpMV benchmarks using KNL memory banks

4.6 Experiments on sparse iterative methods

The overall objective of our initiative is to take advantage of linear solver on many-core
systems. All the extensions we proposed in the previous sections impact the performances
of solvers we wrote through the API we develop. To benefit from these extensions, it is fully
transparent for end users. BLAS operations are performed via the Intel MKL library. We
use the Sell-C-σ format for matrix operations. All the data required to perform the iterative
methods are allocated in the MCDRAM memory.

This section is devoted to the performance evaluation of the linear solver we de-
veloped with various preconditioners. As for the multi-core systems, we benefit from
performance counters (see section 3.3) and statistics we extract at execution time to upgrade
the understanding of our results.

For all the experiments, we use the matrices MLp coming from the Finite volume
discretization of a 2D Laplace problem with various mesh sizes. Although simpler than in
realistic oil reservoir simulations, the size of these systems can be easily tuned.

For these experiments, we used a 64 cores KNL processor which has 192 Gb DRAM
memory 2. The many-core processor is configured with the 4 Sub-Numa Cluster mode.
The 16 Gb of MCDRAM memory are exposed according to the Flat memory mode. As
explained in [Jeffers et al., 2016], we turn off the Turbo mode to benefit from the maximal
performances when using vector intensive computing. Indeed, it can generate many
frequency variations and thus degrade performances. The Hyper-threading mode is
enabled, but we do not experiment hyper-threading here (See section 4.7). By default, we
pin the first processing unit of the core in the appearance order through the Hwloc library.

2. Thank you to the LIP laboratory and the INRIA’s AVALON Team to grant me the access to this
machine, which is part of the crunch machines
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4.6.1 BiCGStab

4.6.1.1 Performance evaluation

We first intend to evaluate the parallel implementation of the BiCGStab algorithm on
a KNL processor. Given various linear systems with different sizes, we run the iterative
method on a sub-set p of processors. First, we extract parallel times of system resolution
and illustrate it in Figure 4.9a. From time results, we then compute the speed-up ratio and
illustrate it in Figure 4.9b.
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(b) Speed-Up
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Figure 4.9 – BiCGStab parallel performances

We can observe that for all the systems, the time is decreasing while the number of
threads increases. For the two smallest matrices, speed-up ratio is decreasing respectively
from 48 and 64 threads. We can thus deduce that increasing the performances is relative to
the size of the system. For the smaller test cases, data communication from memory bus
degrade the performances when data are too small.

We can now have a look to the performance evaluation through the use of counters
we implement. The number of operations performed per second is thus illustrated in
Figure 4.10a, while the computational efficiency is shown in Figure 4.10b.

As we previously saw, performances are decreasing for the two smallest benchmark,
from respectively 48 and 64 threads. A peak of performance of 33 GFlops is reach for the
bigger system we use. Its computational efficiency decreases down to 81%. For the smaller
benchmark, which most suffers from data communication, efficiency reach around 50% of
efficiency with the maximal number of threads.
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(a) Operations per second
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(b) Computational Efficiency
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Figure 4.10 – BiCGStab parallel performances

4.6.1.2 Cluster mode impact

We now aim to compare the performances of the previously presented BiCGStab
method while configuring the KNL processor with various cluster modes. We thus configure
the same system with modes among All-to-all, Quadrant and 4 Sub-NUMA clusters (SNC4).
We present results while varying the size of the input system in the Figure 4.11.
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Figure 4.11 – Comparison between cluster modes of the KNL on a BiCGStab algorithm

We can notice that there is no significant differences between each cluster modes on
the BiCGStab method’s performances, regardless the size of the input system. For more
convenient way, we configure the KNL processor with the 4 Sub-Numa clusters mode as
we have previously made optimizations on NUMA architectures.
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4.6.2 Preconditioned BiCGStab

4.6.2.1 Polynomial preconditioner

We now focus on the performance evaluation of the BiCGStab method with a polyno-
mial preconditioner. Our purpose is to know if our parallel implementation via the API
we developed presents some good properties on the KNL many-core processor. As it been
mentioned before in the previous chapter (see section 3.4.1), the polynomial preconditioner
performances mainly relies on the SpMV performances. Thanks to a metis graph partition-
ing, we perform parallel execution of this benchmark on several input matrices of different
sizes while varying the number of threads. Time results are illustrated on the Figure 4.12a,
while speed-up ratio evolution is shown in Figure 4.12b.
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(b) Speed-Up

1 8 16 32 48 64

0

5

10

15

20

25

30

35

# Threads

S
p
e
e
d
-U

p
(T

1
/T

p
)

NRows :

1.106

4.106

16.106

Figure 4.12 – BiCGStab w. polynomial precon. parallel performances on a KNL processor

Whatever the input matrix, time results are decreasing while the number of threads
increases. On the other hand, we can see that speed-up ratio is increasing for both input
matrices up to 32 threads. Beyond this step, the speed-up ratio of the smaller system is
decreasing. The intermediate sized system presents the same behavior from 48 threads. The
bigger matrix does not suffer from this phenomena, and reaches up to 33 of speed-up with
64 threads. The proportions are not the same, however the results have the same behavior
as the SpMV parallel performances previously presented in section 4.4.3.2.

Now, we can have a look at other measurements such as operations operated per
second or computational efficiency. These metrics are collected at run time by HARTS
runtime system, with the methodology previously described in section 3.3. Results are
gathered in Figures 4.13a and 4.13b.

We can first observe the same phenomena as speed-up ratio evolution curves as for the
performances measured in GFlops. The largest input system reaches a peak performances
of around 32 GFlops. On the computational efficiency results, we observe that the bigger
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(b) Computational Efficiency
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Figure 4.13 – BiCGStab w. polynomial precon. performance counters on a KNL processor

benchmark reaches the best efficiency among all the input systems. The computational
efficiency’s curve related to this system is slower decreasing than the two others.

As we only vary sizes between the executions, we can thus deduce that performances
depend on the system size. Data are partitioned according to the number of threads (1
partition per thread). We can thus suppose that partitioned data become too small for the
smaller benchmark when we use too much threads. In this case, computing effort may be
insufficient face to data communications. It can explain why smaller data are much more
impacted than the bigger ones.

4.6.2.2 ILU preconditioner

We now experiment the parallel implementation of the ILU(0) preconditioner on the
KNL processor. We previously introduced the parallel implementation of this method in
section 3.4.2. We benchmark linear systems coming from the finite volume discretization of
the Laplacian problem with various mesh sizes. We first illustrate time results in function
of the number of threads we use in Figure 4.14a. We compute the speed-up ratio by the
formula S = T1/Tp, and present our results in Figure 4.14b.

In the first hand, we can notice that time is decreasing while the number of threads
increase, regardless of the linear system size. We can observe on speed-up curves that the
performances decrease from 48 to 64 threads for the smallest benchmark. For the other
benchmarks, we reach a speed-up ratio more than 20.

We now looking at the computational efficiency, which measures the efficiency
regarding the computational effort (see section 3.3 for more details). Results are sketched
in Figure 4.15a.

We can observe that computational efficiency sharply decrease while the number of
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(b) Speed-Up
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Figure 4.14 – BiCGStab w. ILU precon. parallel performances
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Figure 4.15 – BiCGStab w. ILU precon. parallel performances

cores in use increase, regardless the size of the system. In the best case, performances are
decreasing up to 80% for the bigger system. At the opposite, the smallest benchmark reach
around 60% of efficiency. This inefficiency corresponds to the work imbalance caused by
the algorithmic structure of the method. It has already been sketched for the multi-core
implementation via the API we develop in Section 3.4.2.

4.7 Discussion

Until now, we have only focused on the problems we encountered on the KNL many-
core processor and their integration in the API we develop. However, much more work is
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ongoing in order to expect better performances. This section is devoted to expose a list of
the bottlenecks we need to take in consideration for the future. We first have a look on the
MCDRAM memory management when we face big data. We then attempt to benefit from
hyper-threading, that could provide 4 times more hardware contexts.

4.7.1 Distributed Shared Memory for MCDRAM

As previously seen in section 4.5, we only focus our work on data that entirely fit in
the MCDRAM memory. However, it is not always the case. Indeed, applications that work
on large data sometimes require more memory than offered by the MCDRAM memory. A
lazy solution is to setup the KNL processor with Cache memory mode which offers a cache
hardware management. However, we do not know the cache eviction policy offered by this
mode.

One of the solution previously adopted in heterogeneous computing was to imple-
ment a software cache. X-Kaapi [Gautier et al., 2013] proposed a software cache based on
a Least Recently Used (LRU) policy. They managed the software cache to avoid intensive
data communication from CPU to GPU. If a data is not present in the cache, memory will
be allocated and then transferred to GPU. This model is also based on the asynchronous
memory transfers to prepare data before processing.

Another way was introduced by [Augonnet and Namyst, 2008] which is based on
sub-data manager. As accelerators only operate on a piece of data at a time, they do not
need to fit all the data in limited memory. By this way, they avoid to waste memory with
unused data. They enforce a cache software to manage data movements between CPU and
GPU while ensuring coherency through a MSI protocol.

We expect that a similar approach can be used for the MCDRAM management. Con-
trary to GPU, the KNL processor can operate on data that are not present in MCDRAM
bank. Choosing between the two memory banks of the KNL is only a performance issue.

We expect to manage this issue at several layers. Until now, we have already operated
on sub-partitions given by the Partitioner objects of the API. However, we do not guarantee
that data related to one partition fit in a specific memory bank or not. We can thus extend
the Partitioner objects to take care of memory bank with limited size. By this way, we
will split data in which a sub-partition data set can fit in high bandwidth memory. At
runtime system level, we can make several suggestions. First, a software cache based on
the LRU policy. This tool will be responsible to allocate, deallocate and move data. In
addition, it ensure the coherency between the memory banks. At scheduler level, we can
imagine a scheduling policy that favors work with data that are allocated in the higher
bandwidth memory. By this way, the scheduler ensures that the execution benefits from the
best memory latency with the knowledge acquired from the system. If a data is not present
in the cache, the scheduler may be advised from a performances prediction model. By this
way, it can thus decide if it is necessary to retrieve data from a memory bank to another.
Depending on the data sizes, these hints according to system information can be used to
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evaluate the benefit to move a data. If a data is too small, the scheduler will not decide to
move data. If not, the work will wait for the software cache manager to move data.

4.7.2 Hyper-Threading

We previously introduced hyper-threads in section 4.1.1. We mentioned that a KNL’s
core is composed of four hardware contexts, and two VPUs. Until now, we have taken
advantage of one thread per core. On the later generation of Intel Xeon Phi product, authors
of [Jeffers and Reinders, 2013] highly recommend to benefit from two hyper-threads per
core to take advantage of all the core resources.

As a KNL’s core handles two VPUs, we can thus expect to benefit from two times more
performances while pinning two threads per core. We can thus expect to take advantage
of hyper-threading through our linear algebra API. At first glance, two conditions are
supposed to be fulfilled. First, vector intensive applications are required to feed enough the
two vector processing units per core. Then, tasks granularity has to be enough small to not
perturb L2 cache share between the two cores of a tile.

Unfortunately, until now we made some experiments that does not have a great
success. The ongoing work will study the feasibility of taking advantage of hyper-threading.
However, the authors of [Jeffers et al., 2016] already mentioned that most of the applications
reach the best performances with one thread per core.

4.7.3 Preconditioners

Until now, we have demonstrated the scalability performances of the API both
on multi-core and many-core systems. To reach this purpose, we implemented classic
numerical methods as polynomial or ILU preconditioners. By this way, we succeed to
evaluate our work in a convenient way, on concrete implementations.

However, these methods show their numerical limits on ill-conditioned linear systems
coming from the oil reservoir simulations. Other emerging methods seems to be more
robust while their performances scales up to hundreds of processing units. Thanks to these
methods, and our API, we are confident to provide robust and efficient parallel methods on
various architectures to API’s users.
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Linear systems coming from oil reservoir simulations are ill-conditioned because
of their unstructured pattern and coefficients heterogeneity. Until this chapter, we have
only focused our work on the way to write efficient and portable algorithms on various
architectures. We have evaluated our approach on well-known preconditioners such as ILU.
However, these methods suffer from numerical and/or scalability issues. Two important
numerical properties are required for preconditioners while facing ill-conditioned systems:
robustness and extensibility. A preconditioner is said to be robust when it enables to
converge in a reasonable number of iterations. Moreover, if the convergence rate does not
depend on the size of the system, so the preconditioner is said to be extensible.

Preconditioners such as Algebraic Multigrid (AMG) [Brandt et al., 1984, Stüben, 2001]
method are well-known to be robust and extensible. However, AMG suffers from strong
scaling issues. It requires a huge programming effort to be parallelized efficiently on
multi-core systems [Feng et al., 2013, Park et al., 2015, Baker et al., 2011].

Domain Decomposition Methods (DDM) are methods that are naturally parallel.
More recently, these methods regain in interest because of the popularization of massively
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parallel architectures in simulation field. However, these methods have suffered from
a lack of numerical robustness until recent works on the addition of the 2-level meth-
ods [Spillane et al., 2014, Dolean et al., 2015]. Thanks to the divide-and-conquer strategy,
DD methods achieve highly efficient parallelism on massively parallel machines [Jolivet et al., 2013].

Our concern is here to propose a task-based parallel implementation of a multi-level
domain decomposition preconditioner written through the API we have developed. The
API targets both multi-core and many-core systems. Hence, we aim to prove the parallel
efficiency of our implementation regardless the architecture in use. We also compare our
performances to the AMG preconditioner.

5.1 Overview and motivations

Different classes of DD methods exist. Among them, substructuring methods aim to
split the whole system in distinct subdomains without overlaps contrary to the DD methods
with overlap. Alternating Schwarz methods [Schwarz, 1870] are part of the overlapping
domain decomposition methods. However, some alternative methods offer to avoid overlap
as [Gander et al., 2002].

In this section, we focus on the Additive Schwarz method which is well-known to
be easy to parallelize. We aim to highlight the numerical performances of such methods
on problem coming from oil reservoir simulations. In the first subsection, we focus on the
classic Additive Schwarz Method and on the 2-level methods. In the second subsection, we
present DDML numerical performances we obtain on systems coming from oil reservoir
simulations.

5.1.1 Multi-Level Domain Decompositon method

5.1.1.1 1-level method Additive Schwarz Method

Additive Schwarz method (ASM) [Schwarz, 1870] is a fully parallel domain decompo-
sition method. The main principle of such methods is to split the whole domain in smaller
ones. The system solution is therefore computed from the solutions on smaller and easier
problems on each sub-domain. However, this method suffers from a lack of numerical
robustness and extensibility. The number of iterations required to converge depends on
the number of sub-domains. It is mainly due to the fact that at each iteration data are
exchanged only between a neighbors sub-domain.

We here focus on the method with no overlapping sub-domains. We consider the
ASM algorithm as linear solver of the equation:

Ax = b, (5.1)

where A is the coefficient matrix, b the right-hand side vector and x the unknowns vector.
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The Additive Schwarz method is thus given by:

um+1 = um + M−1
j (b− Aum), (5.2)

where Mj is the Jacobian matrix, composed of block diagonal elements of A. Given the
partitioning of A following the graph partition. We consider the matrix Ak

int be the internal
matrix belonging to the partition k, and Ak

ext be the matrix of external contribution from
the partition k. Internal matrices refers to the set of elements Vik for a given partition k
coming from data partitioning (previously presented in Section 3.1.2.1, on page 40). At the
opposite, external matrices are built from the boundary vertices Vbk of the partition k.
We can thus rewrite equation 5.2 as:

um+1 = um + A−1
int (b− (Aint + Aext)um) (5.3)

= A−1
int (b− Aextum). (5.4)

From equation 5.4, if we take u0 = A−1
int b, we can thus obtain the algorithm illustrated

in Algorithm 5.1.

Algorithm 5.1: ASM Algorithm

1 x = 0;
2 do
3 x̃ = A−1

int b;
4 x = x + x̃ ;
5 b = −Aext x̃;
6 while (||b|| < ε);

At each step of the algorithm, we have to solve a linear system given by Aint x̃ = b,
and a matrix vector product. All of these steps can be performed independently in parallel.

5.1.1.2 2-level Additive Schwarz Method

This problem has been fixed by the introduction of a two-level method via a coarse
space correction. A coarse small problem is added to couple all the sub-domains at each
iteration.

The coarse grid correction is given by the equation:

um+1 = um + ZE−1ZT(b− Aum), (5.5)

where E is the matrix corresponding to the discretization of the initial equation on the
coarse grid, and Z is restrict operator from the fine to the coarse grid. The matrix Z is
called the deflation matrix, while the m× m matrix E is the coarse operator. The linear
system to solve involved by E in Equation 5.5 as m� NRows. The 2-level Additive Schwarz
algorithm corresponding to the Equation 5.2 is given in Algorithm 5.2.
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Algorithm 5.2: 2-level ASM Algorithm

1 x = 0;
2 do
3 b̃ = AextZTE−1Zb;
4 b = b− b̃;
5 x̃ = A−1

int b;
6 x = x + x̃ ;
7 b = b̃− Aext x̃;
8 while (||b|| < ε);

At each iteration of the method, two linear systems are solved. From the 1-level
method, a second system is induced by the coarse operator E. It has to be solved to couple
all the sub-domains. It is a quite moderate sized system as m is supposed to be small
regarding the original system size. However, the resolution is repeated at each iteration.
Each variant of Multi-level Domain Decomposition (DDML) methods [Dolean et al., 2015]
differs from the chosen coarse operator.

Nicolaides coarse operator [Nicolaides, 1987] is one of the most simpler coarse opera-
tor. It is based on the indicator functions per subdomain. Its construction is not complex,
but is well-known to be inefficient face to ill conditioned systems.

From a linear algebra point of view, the stagnation of the convergence rate corre-
sponds to a few very low eigenvalues in the spectrum of the preconditioned system. Our
work is focused on the GenEO [Spillane et al., 2014] coarse operator, which identifies and
incorporates the low frequency modes in the coarse grid construction. GenEO is based on a
overlaped domain decomposition method. The coarse operator select, per subdomain, the
first Nev eigenvalues coming from an eigenvalue solved built in the overlaps of the domain
decomposition. The size of E is then given by the formula: Size(E) = Nev ∗ Npart. By this
way, it is theoretically proved that GenEO coarse operator’s convergence does not depend
on the matrix coefficients, but only on the matrix size. The coarse operator was originally
designed for finite element discretizations. We have adapted the method to handle at the
algebraic level matrices from application using Finite Volume discretizations. The setup
phase of DDML preconditioner mainly relies on the construction of the coarse problem.
Since the resolution of an eigenvalue problem is not trivial, this phase is time consuming.

5.1.2 Numerical performances

One of the main interest of the 2-level Additive Schwarz method is its ability to
converge in a feasible time on complex linear systems. Given an appropriate coarse
operator, the convergence rate of the DD method depends on it. This subsection aim to
validate the numerical properties of the GenEO coarse operator which motivate this work.
Hence, we study the convergence rate of various preconditioners such as ILU(0), AMG 1

1. available from the Hypre library [Falgout et al., 2006]
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and 2-level ASM with both GenEO and Nicolaides coarse operator. We benchmark these
preconditioners on two classes of problems.

The first class presented is the discretization of the Laplace problem on a unit cube
mesh. The second category is coming from the oil reservoir industry.

5.1.2.1 Laplacian systems

To prove the numerical robustness of DDML preconditioners for large heterogeneous
problems, we have benchmarked various preconditioning methods with a matrix coming
from the finite volume discretization of a Laplacian problem. The matrix size is set to
NRows = 106. We have drawn the evolution of the residual error at each iteration to reach a
10−15 precision. The results are illustrated in Figure 5.1.
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Figure 5.1 – LP Homogeneous

We notice that ILU(0) fails to converge in a reasonable time. For the three other
ones, convergence is reach approximately at the same time. We can conclude that for
easy problems as Laplacian systems, the DDML method with GenEO coarse operator is
numerically robust and is as robust as the AMG reference method. We can also see that the
DDML method with the Nicolaides coarse operator requires a bit more iterates to converge
than AMG and the GenEO based DDML method.

5.1.2.2 Oil reservoir simulations

However, oil reservoir simulators does not deal with the Laplacian ones. To validate
our approach on realistic oil reservoir simulations, we benchmark the various precondi-
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tioners previously tested on two linear systems well-known cases from the oil reservoir
industry: SPE9 [Killough, 1995] and SPE10 [Christie and Blunt, 2001].

The convergence rate results obtained from the SPE9 matrix are illustrated in Fig-
ure 5.2a, while those of the SPE10 problem are shown in Figure 5.2b.
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(b) SPE10
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Figure 5.2 – SpMV with CSR format

For the first benchmark, AMG and DDML presents both an effective rate of con-
vergence (around 10 iterations). Contrary to ILU(0) which failed to converge as fast (76
iterates). The curve draws a plateau that illustrates its slow convergence rate.

The larger benchmark, SPE10, shows some disparities between all the convergence
rate curves. AMG achieves convergence after around 10 iterates while DDML requires 117
iterations. As previously seen, ILU(0) curve draws a plateau before reaching convergence
after more than 1000 iterates. The DDML with the GenEO coarse operator’s performances
does not equalize AMG on this benchmark. However, the method still converges in a
convenient number of iterations, at the opposite of the ILU(0) preconditioner. We can also
notice that the Nicolaides coarse operator requires 387 iterations to converge, which is more
than the GenEO coarse operator.

5.2 Parallel task-based implementation of DD methods

DDML preconditioner is robust regarding ill conditioned linear systems coming from
oil reservoir simulation. Although the domain decomposition preconditioners rely on a
parallel structure, programming such methods remains challenging.

In the first subsection, we describe the translation from the algorithm to the task
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decomposition and therefore the DAG organization. The second subsection is devoted to
the DAG’s structure analysis to detect any issue encountered at method’s parallelization.
From this analysis, we experiment a 2-level ASM with the GenEO coarse operator in order
to achieve a good performance of the method.

5.2.1 Task Decomposition

The main difference between the 1-level and the 2-level ASM algorithms relies on the
addition of the coarse operator on line 3 of the Algorithm 5.2. However, lines 5-7 of this
algorithms also corresponds to the classical AS method. In a first step, we translate the
classic ASM algorithm sketched in Algorithm 5.1 (see page 99) into the API formalism. It
can be viewed as two major parts: local solver part (line 3), and result update (lines 4-5).
The later part groups several operations: 2 axpy kernels and a matrix vector product. All
these steps can be performed in parallel independently and can be decomposed in tasks.
Local solver resolution is operated only on internal nodes of the input matrix. As the matrix
is reordered and partitioned, this local solving phase can thus be split into Npart partitions.
The same treatment can thus be done for both axpy and SpMV kernels. One operation is
thus divided in Npart tasks, as it has been discussed in the section 3.1.2. The different steps
of the ASM algorithm are at the 5th and 6th levels of the 2-level ASM DAG illustrated in
Figure 5.3.

We now focus on the additional operations of the Algorithm 5.2 (lines 3-4) induced
by the insertion of the coarse operator of the 2-level Additive Schwarz Method. The line 4
is translated by an axpy kernel, which corresponds to the 4th level of the DAG. A particular
attention is required for the line 3 as it involves a linear combination of deflation operations
coming from the multiplications coming from Z and ZT. We respectively name these steps
Interpolation operator and Restriction operator and are at the 1st and 3rd levels of the DAG.
Another matrix vector multiplication is also induced Aext. These operations can be done in
parallel. In addition of that, we also have a linear system to solve induced by the coarse
operator E, that couple all the sub-domains. This operation could be performed in parallel,
however the linear system is supposed to be small. Hence, we operate this solving phase in
a unique task, named Coarse Op, which synchronizes all the partitions as it is sketched at
the 2nd level of the DAG in Figure 5.3.

5.2.2 Bottleneck identification

The most costly operations of the 2-level Additive Schwarz algorithm are linear
solvers introduced in the resolution phase (i.e. coarse operator and local solvers). Both
systems are supposed to be of small size, and can thus be solved by direct solvers. In
our approach, we solve linear solvers which appeared from 2-level ASM with the Eigen
library [Guennebaud et al., 2010].

The size of the coarse operator E increases according to the number subdomains.
In the case of GenEO coarse operator, it also relies on the number NEv of eigenvalues we



104 Chapter 5. Domain Decomposition Methods

Figure 5.3 – 2-level ASM DAG

incorporate per subdomain. The size of the coarse operator is thus given by the formula:
Size(E) = Npart ∗ NEv. If the coarse operator sizes increase too much, the coarse operator
system will be more difficult to solve. The time complexity of a dense direct solver is O(n3).
In this case, it means that the coarse resolution may synchronize all the threads because it
is a blocking task as it couples all the subdomains at a time.

On the other hand, the size of a system Ak
int coming from local solver operation on

the k-th subdomain depends on the size of the partition k, i.e. its number of internal nodes.
The partition’s size then rely on the number of partitions we use. Indeed, we expect that
the size of local solvers decrease when the number of subdomains increase. According to
graph partitioning techniques, we assume that the average number of rows of a system Ak

int
is NRows/Npart. If the number of partitions is high, thus the number of internal nodes per
partition will decrease. Hence, the local linear system to solve per partition will be simpler
and the resolution will be faster.

Hence, the granularity of both problems are connected together. We have to find a
compromise between the sizes of both problem. From one side, we have to incorporate a
sufficient numbers of subdomains to enhance communication between them, but not too
much to not synchronize too much time the threads per iteration. At the other side, we
have to partition in a sufficient number of partitions to make the local solver simpler.

5.2.3 Experiments

We explained in the previous section that it exists a compromise to do between the
sizes of the coarse operator and the local internal systems Ak

int. We intend to illustrate this
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compromise in terms of time results while varying both solvers’ sizes. We performed a
2-level ASM preconditioner with the GenEO coarse operator on the SPE10 oil reservoir
benchmark. We fixed the number of threads to 28, and run it on a 2 sockets nodes each
composed of a 14 cores processor clocked at 2.40GHz and 64Gb of memory. The GenEO
coarse operator’s size depends on the number of partitions and the number of eigenvalues
we incorporate. Hence, we vary the number of eigenvalues. For a given number of
eigenvalues incorporated in the coarse operator, we vary the number of partitions we
used. We illustrate in Figure 5.4a the time results we obtained from this execution. We
illustrate in right part of the Figure 5.4c the evolution the number of elements of the coarse
operator regarding both the number of partitions and eigenvalues. We then compute the
ratio R = (∑ NRows(Ak

int))/Npart which gives the average number of rows of the systems
Ak

int and plot the results regarding Npart in the left y axis of the Figure 5.4c.
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Figure 5.4 – Partitioning information

From a theoretical point of view, we can first notice that we can attempt to find an
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optimum between the two linear system’s sizes (i.e. local and coarse systems). It can be
defined on the Figure 5.4c at the intersection between the sizes of local and coarse problems.
By this way, we can attempt to find the optimum at 112 partitions while NEv = 10, 150
subdomains when NEv = 5, and eventually Npart = 224 when NEv = 2.

We can see on Figure 5.4a that all the curves decrease from 14 to 112 partitions. It
is cause from the high size of local solvers that takes too much time and then slow down
the overall performances. When the average size of the Ak

int systems decrease, time results
decrease too. From 112 to 560 partitions, time results are stabilized before growing up
beyond 560 partitions. The best performances are obtained from 112 to 560 subdomains,
independently from the size of the the coarse operator E. Between these partitions’ sizes,
its size vary from 224 to 5600 elements. Hence, we can suppose that the most important
factor here is to find a good size for the local solvers to not degrade performances. Here,
the average of rows of the systems Ak

int is from 9771 with 112 partitions to 1954 with 560
partitions.

In order to have a better understanding on the origin of the minimal time values
arising from 112 to 560 subdomains, we are now looking to the tasks’ distribution of the
two executions. In Figures 5.5a and 5.5b we illustrate the time spend to perform each task
types with the incorporation of 5 eigenvalues per subdomain in the coarse operator. We
only focus on tasks related to the Coarse operator addition. Let ωj be a task type, and we
gather all the tasks of type ωj in the set Ω. The function D(ti) gives the duration of the task
ti. W denotes the sum of the duration of all the task performed, W = ∑ D(ti). For each
task type ωj, we compute the ratio,

Rωj =
100 ∗∑ D(Ωi)

W
.
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Figure 5.5 – DDML’s tasks percentage

We can first notice that the most time consuming tasks are the local solver tasks.
Coarse solver operation only represents around 1%, which does not involve a too much
aggressive synchronization for all the threads. When the system is partitioned in 48
subdomains, the local solver tasks represent 65% of the global time. They represent 20% less
when using 448 subdomains. This analysis confirms our assumption made in the previous
paragraph. Indeed, the time decrease observed from 14 to 560 partitions is caused by the
local solver’s time reduction.
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We assume that the time increase from 560 subdomains and beyond is induced by
the increase in the size of the coarse operator E. When its size grows up, the coarse solver
task is supposed to be more time consuming and synchronizes much more threads because
of its blocking property. We thus compare both compute and idle times for the execution
of 448 and 1008 subdomains with the incorporation of 5 eigenvalues per subdomain in E.
Results are sketched in Table 5.1.

Subdomains Idle Compute
448 8.27 % 91.73 %

1008 11.90 % 88.10 %

Table 5.1 – Load Balancing analysis

We observe that idle time increases according to the increase of the number of
subdomains. It is caused by the cost of the coarse solver which increases too. Indeed, we
observe that the CoarseOp task represent 2.11% of the overall execution for Npart = 1008,
instead of only 1.24% for Npart = 448.

To conclude this experiment, we can notice that the number of subdomains Npart

enable to find an optimum between both local and coarse solver tasks. Theoretically, we
can find an optimum between 112 and 224 subdomains, depending on the number of
eigenvalues we incorporate per subdomain in the coarse operator. Experimentally, we show
that the optimum is reach when Npart is between 112 and 560 regardless NEv. Hence, the
theoretical analysis is not biased from the experimental one and can give a first hint to find
the best compromise between the two task granularity.

5.3 Experiments on multi-core based systems

Our experiment are made on a 2 sockets compute node, each composed of a 14 cores
Broadwell processor clocked at 2.40Ghz and 64Gb of memory. On this compute node,
Cluster-on-Die mode is enabled in order to expose a processor as two various NUMA
nodes. We compile the application with the GCC 6.1.0 compiler and we use Intel MKL
to operate BLAS operations through the API we developed. We partition data through
Metis partitioner. For these experiments, we use the 2-level ASM preconditioner with
the BiCGStab algorithm. At each iterate, we incorporate two iterations of the DDML
preconditioner.

5.3.1 2-level ASM method performances

We first intend to evaluate the 2-level DDM preconditioner performances through the
use of the GenEO coarse operator. We analyze preconditioner’s behavior while varying
sizes of the input matrices via systems coming from the finite volume discretization of a 2D
Laplace problem. For both problems, we partition the system in 252 subdomains.
We report our results on the Figure 5.6. Figure 5.6a illustrates the parallel time Tp according
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to the number of threads p. From time Tp we plot the speed-up ratio, S = T1/Tp, according
to p on the Figure 5.6b.
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Figure 5.6 – 2-level AS preconditioner on Laplacian matrices

Whatever the input system, the parallel time is decreasing while the number of cores
p is increasing. On the speed-up curves, we can observe that the smallest benchmark’s
performances increase up to 14 threads, then slow down and eventually decrease. As its
work is not high, we can thus suppose this benchmark reach its parallel limits at 14 threads.
However, beyond 14 threads the application run on the two sockets of the machine. Even
if data are distributed among NUMA nodes, we can suppose that data communication
induced by SpMV products or coarse operator synchronization are too expensive face to
computing efforts. For the two other benchmarks, parallel performances are still increasing
in function of the number p of cores. For the bigger input matrix, we reach a speed-up peak
of 15.3 with 28 threads while the intermediate size matrix reach 12 with the same number
p of cores.
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5.3.2 Oil reservoir simulation’s case

We now aim to validate our approach by evaluating 2-level DD method with Ge-
nEO coarse space regarding widespread preconditioners used in oil reservoir simulation.
Hence, we compare parallel time results obtained from the parallelization of the given
preconditioners: ILU(0), AMG from the Hypre [Falgout et al., 2006] library and our custom
implementation of the DDML preconditioner. We benchmark both preconditioners while
using the SPE10 [Christie and Blunt, 2001] linear system, which is representative to linear
systems arising from oil reservoir simulations. We plot results according to various numbers
p of processors in Figure 5.7. Elapsed parallel time, Tp, is sketched in Figure 5.7a, while the
speed-up ratio S = T1/Tp is illustrated in Figure 5.7b.
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Figure 5.7 – 2-level AS preconditioner on the SPE10 system

We can observe on both curves that the AMG preconditoner offers the best perfor-
mances for the reservoir case. It can be explained by the few iterations required to converge.
We can notice that DDML preconditioner achieve good performances, but not as good as
the AMG preconditioner. Even if we require a bit more number of iterations than the AMG
method, DDML’s iterations remain time consuming because of the local linear solver’s
phase. Indeed, we previously seen in section 5.2.3 that this step represent up to 50% of the
parallel execution in the case where p = 28 cores. In the last position, ILU(0) preconditioner
fails to converge in a reasonable number of iterations and it impacts a lot its performances.
We can also see that its performances tend to decrease from 14 threads, because of its
difficulties to be efficiently parallelized.

5.4 Experiments on the KNL many-core processor

For these experiments, we used a 64 cores KNL processor embedded in a system
which handles 192Gb of DRAM memory. The many-core processor is configured with the 4
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Sub-Numa Cluster mode. The 16Gb of MCDRAM memory are exposed according to the
Flat memory mode. We turn off the Turbo mode to not perturb the vector processing unit
frequencies. By default, we pin the first processing unit of the core in the appearance order
through the Hwloc library.

We aim here to evaluate the performances of the DDML method with the GenEO
coarse operator on the KNL many-core processor. We intend to use systems coming from
the finite volume discretization of the Laplace problem in order to evaluate the method
on various system sizes. We benefit from the improvement we made on the API to take
care of the KNL architecture. Indeed, we use here the Sell-C-σ format while vectorizing
SpMV operations. The BLAS kernel are vectorized too thanks to the use of the Intel MKL
library. All the effective data used for iterative method computations are allocated in the
high bandwidth memory bank of the KNL, i.e. the MCDRAM. For each system size, we
run a BiCGStab algorithm with a DDML preconditioner based on the 2-level ASM method
and the GenEO coarse operator.

Results are presented in the Figure 5.8. Time results are illustrated in Figure 5.8a.
From these results, we compute the speed-up ratio via the formula S(p) = T1/Tp and show
its evolution in Figure 5.8b.
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Figure 5.8 – 2-level AS preconditioner with various Laplacian systems on KNL processor

We can first observe that time decrease while the number of threads in use increase.
On the speed-up curves, we can see that the two biggest input systems, the application
benefit from a speedup factor of around 40. We do not achieve such performances for the
smaller system which reach no more than 20 of speedup ratio. For this case, performances
are decreasing from 48 to 64 threads. We suppose that it is due to the difficulty to provide
enough data to feed the KNL processor.

Thanks to monitoring tools we implemented, we now have a look the computational
efficiency of the DDML method on the same input systems. Computational efficiency has
already been defined in the section 3.3. Results are gathered in the Figure 5.9.
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Figure 5.9 – Computational Efficiency of the DDML method on a KNL processor

We can notice that the computational efficiency decreases while threads in use
increase, regardless the system size. For the smaller system, the efficiency decreases up to
80% while the biggest one reaches 90% at its minimum value. We can thus conclude that
our DDML implementation does not suffer from treads’ inactivity caused by the coarse
system’s solver.

Thanks again to monitoring tools, we then analyze task balancing at execution time.
In Figure 5.10, we gather the task distribution of two executions on 64 threads while varying
the system’s size.
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Figure 5.10 – DDML’s tasks percentage on KNL processor

We can observe that for both system sizes, LocalSolver task leads the performances of
the DDML’s parallel execution. The cost of this task may represent up to 84% of the total
time execution for the bigger test case. We can thus conclude that this task still represent a
bottleneck for parallel performances. We already have seen in section 4.4.3 that tasks as the
SpMV operation may be enhanced by vectorization on the KNL architecture. Until now,
LocalSolver task is still not vectorized and its performances may be improved while taking
advantage of AVX512 instructions. A reflection on this problem is still in progress to enable
sparse direct solver enhancement by vectorization.
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5.5 Discussion

We have seen in this chapter that DDML preconditioners are robust facing ill condi-
tioned systems coming from oil reservoir simulators. Thanks to the API we developed, we
propose here a task-based parallel implementation of a 2-level ASM preconditioner. By
this way, we are able to propose both multi-core and many-core implementations of the
preconditioner to simulator’s users.

Thanks to our implementation, we show by experiment that the granularity of two
task types are linked together. The cost of each one is not negligible as the time complexity
is of O(n3). We thus find a compromise to not compromise performances.

On multi-core architectures, DDML preconditioner’s performances does not suffer
from the increase in number of cores in use. On realistic simulation case, it successes to be
robust while getting high performances. Compared to the AMG preconditioner, DDML is a
bit more expensive.

The KNL many-core processor enable to enhance performances while multiplying
the number of concurrent processing units in use. Thanks to our API, we demonstrate that
the DDML methods are efficient on this kind of systems thanks to their natural parallel
structure. However, some improvements on vectorization are still in progress to fully exploit
the capabilities of such many-core processor. Thanks to this ongoing work, we expect to
increase performances of the DDML preconditioner face to AMG.



Chapter 6
Conclusion

The performance of numerical methods used in numerical simulations in reservoir
engineering relies on the performances of iterative methods used to solve large and sparse
linear systems. In this case, performances have several meanings: few iteration to converge,
low memory footprint, robustness face to ill-conditioned systems, low execution time.

Our work is focused on the objective to reduce execution time of iterative methods
while using parallelism induced by computer architectures. We experiment the benefit
of task parallel programming model to implement efficient methods, especially domain
decomposition preconditioner. This programming model is useful in dynamic scheduling
which adapts the execution face to the variation of the environment.

In a first time, we develop a sparse linear algebra framework which aims to provide
task based parallel implementation of iterative methods used to solve sparse linear systems.
Its semantic is sequential while the parallelism is implicit. The API is built around the
Sequence concept, which is an ordered list of tasks that represents a succession of operations.
The Sequence allows capture the sequential semantics of the execution of tasks. At runtime,
the sequence allows to compute data flow dependencies and thus it detects at run time
independent tasks that could be performed concurrently. Most of the BLAS like kernels
used by our algorithms in sparse linear algebra are decomposed by a sequence of tasks.
The API and implementation could be easily extended to support new basic algorithm. The
design of the API follows a factory pattern to trigger task creation and management to a
specific runtime systems in charge of scheduling and balance the work load.
We based most of our development effort on the HARTS runtime system developed at
IFPEN. Due to strong data locality impact in our algorithms, we extend HARTS in order
to be able to distribute data among memory nodes thanks to the first touch policy. Then
we add a work stealing scheduler which uses precomputed good victims to steal when
a thread becomes idle. By experimentation, we demonstrate that our scheduler improve
data locality computations compared to a classical scheduler based on a centralized task
pool. In order to have a better understanding of the application’s behavior, we implement
monitoring tools in the HARTS runtime system. We add instrumentation to the HARTS
runtime. It allows to collect some metrics such as task duration and task placement. From
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these extracted information, we can analyze post-mortem the performance of the execution
of the application. By this way, we are able to analyze the parallel execution through
various performance tools such as threads’ activity, Gantt chart and critical path analysis.
Eventually, we evaluate the performances of the iterative methods we built on top of the
API we develop.

The goal of the API was to make easy writing application in our context. Moreover,
the API aims at making portable performances among architecture. Our work is focused
on the recent Knights Landing many-core processors. These processors simplify the core
design to handle many more cores per processor. The vector register size increased to
face to the decreasing in core frequency. They also embed a High Bandwidth Memory
(HBWM) in order to reduce memory latency. We identify two main needs to be efficient
on such an architecture: code vectorization with SIMD instructions and high bandwidth
memory management. We propose to froze the implementation of kernels at compile time
among several versions for a same function. By this way, we fully benefit from vectorized
kernels while taking advantage of vector capabilities of the KNL processor. However, some
data structures are not adapted to vector processing. Hence, we handle several structures
for a same data at the API level. By this way, we are able to reach up to 3 times more
performances on a SpMV kernel by changing the sparse matrix data structure from classical
CSR format to the Sell-C-σ. Moreover, we also extend the API to let the choice to developers
to select in which memory bank data are supposed to be. Thanks to Allocator concept,
we thus abstract users from data allocating function. We highlights the importance of the
MCDRAM in the solver performance. We have benchmarked various linear solvers to
highlight the performances of the API on the KNL many-core processor.

Although we are able to write portable applications on both multi-core and many-core
systems, we only evaluated parallel performances of sparse iterative methods regardless
the input linear system. However, classical methods have difficulties to converge in a
reasonable time face to ill conditioned systems arising from reservoir simulation. Thanks
to the API we developed, we are able to propose a parallel task-based implementation of
a 2-level Domain Decomposition preconditoner. By experimentation, we show that the
DDML preconditoner performances are leaded by two kinds of task that represent direct
solvers. The granularity of the these two categories of tasks are linked as they both depend
on the number of subdomains. Hence, we investigate on the optimum between the two
sizes of problems in order to reach the best performances. We also demonstrate that the
DDML preconditioner has no difficulty on parallel scalability facing the increase of number
of cores on multi-core systems. Compared to the AMG preconditioner, DDML is a bit
more costly but remains more efficient than ILU(0). Thanks to the increase in cores of the
KNL many-core chip, we show that the DDML preconditioner naturally fit on massively
parallel processor thanks to its algorithmic structure. The performances of our parallel
implementation reach up to around 80% of computational efficiency. It highlights that this
task based parallel implementation enable to take advantage of such a method on complex
architectures.

To sum up, we propose an abstract linear algebra API to developers at IFPEN, which
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hide parallelism without perturbing performances while being adapted for two kind of
architectures. This evaluating work has been done in the linear solver context developed
through the MCGSolver library [Anciaux-Sedrakian et al., 2014], which is integrated in the
Arcane software [Grospellier and Lelandais, 2009]. These evaluations have been proposed
thanks to the instrumentation of the HARTS runtime system. By this way, we have been
able to propose two kinds of optimization. The first one is the integration of the NUMA
concern in HARTS, including a specific scheduler. The second one is the optimization of
the Sparse Matrix Vector kernel on the KNL architecture.

During this work, we face to the problem of code portability. Regardless the com-
plexity of emerging architectures, some optimizations are specific to only one architecture.
However, rewriting from scratch application is time consuming. Our choice is to adopt
a static strategy chosen at compile time. However, this solution is not optimal because it
requires knowledge about architecture from end-users to switch on some parameters. In a
long-term prospect, we hope to develop a more flexible solution that can adopt decision
at execution regarding the underlying architecture. First, this solution can be provided
at the runtime system with the help of auto-tuning parameters. By this way, it can make
decision on optimizations that are the most favorable on the current architectures such
as multi-versioning kernels. However, this answer to the problem can also come from
the programming model. Within the API, we only experiment task-based programming
model and it is adapted to our application, but we have no guarantee that it will be always
right. This "code portability" is general and most people who maintain codes are faced
without support. The study of programming model and tools for providing solution or
methodology to manage code evolution among different architecture variations has been
submitted into an ANR project named "KOALA" leaded by my PhD supervisor.

Meanwhile, the short-time prospect is the study of our solution with the OpenMP
standard. By this way, we attempt to understand and then limit the work inflation phenom-
ena we previously observed. Our first hypothesis is that the work inflation comes from bus
contention. The solution may come from various sources as scheduling to favor cache reuse.
We will also try to increase computation load to limit memory transfers, and hide them by
computations.



116 Chapter 6. Conclusion



Bibliography

[Al-Omairy et al., 2015] Al-Omairy, R., Miranda, G., Ltaief, H., Badia, R., Martorell, X.,
Labarta, J., and Keyes, D. (2015). Dense matrix computations on numa architectures with
distance-aware work stealing. Supercomputing Frontiers and Innovations, 2(1).

[Anciaux-Sedrakian et al., 2014] Anciaux-Sedrakian, A., Gottschling, P., Gratien, J.-M., and
Guignon, T. (2014). Survey on Efficient Linear Solvers for Porous Media Flow Models on
Recent Hardware Architectures. Oil and Gas Science and Technology, 69(4):pp. 753–766.
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Résumé

Les méthodes en simulation numérique dans le domaine de l’ingénierie pétrolière nécessitent
la résolution de systèmes linéaires creux de grande taille et non structurés. La performance
des méthodes itératives utilisées pour résoudre ces systèmes représente un enjeu majeur afin de
permettre de tester de nombreux scénario.

Dans ces travaux, nous présentons une manière d’implémenter des méthodes itératives
parallèles au dessus d’un support exécutif à base de tâches. Afin de simplifier le développement des
méthodes tout en gardant un contrôle fin sur la gestion du parallélisme, nous avons proposé une
API permettant d’exprimer implicitement les dépendances entre tâches : la sémantique de l’API
reste séquentielle et le parallélisme est implicite.

Nous avons étendu le support exécutif HARTS pour enregistrer une trace d’exécution afin
de mieux exploiter les architectures NUMA, tout comme de prendre en compte un placement
des tâches et des données calculé au niveau de l’API. Nous avons porté et évalué l’API sur les
processeurs many-cœurs KNL en considérant les différents types de mémoires de l’architecture.
Cela nous a amené à optimiser le calcul du SpMV qui limite la performance de nos applications.

L’ensemble de ce travail a été évalué sur des méthodes itératives et en particulier l’une de
type décomposition de domaine. Nous montrons alors la pertinence de notre API, qui nous permet
d’atteindre de très bon niveaux de performances sur des architectures multi-cœurs et many-cœurs.

Mots clés: Calcul parallèle, Support exécutif, Décomposition de domaine, multi-cœurs, many-cœurs,

programmation par tâches

Abstract

Numerical methods in reservoir engineering simulations lead to the resolution of unstructured,
large and sparse linear systems. The performances of iterative methods employed in simulator to
solve these systems are crucial in order to consider many more scenarios.

In this work, we present a way to implement efficient parallel iterative methods on top of
a task-based runtime system. It enables to simplify the development of methods while keeping
control on parallelism management. We propose a linear algebra API which aims to implicitly
express task dependencies: the semantic is sequential while the parallelism is implicit.

We have extended the HARTS runtime system to monitor executions to better exploit NUMA
architectures. Moreover, we implement a scheduling policy which exploits data locality for task
placement. We have extended the API for KNL many-core systems while considering the various
memory banks available. This work has led to the optimization of the SpMV kernel, one of the most
time consuming operation in iterative methods.

This work has been evaluated on iterative methods, and particularly on one method com-
ing from domain decomposition. Hence, we demonstrate that the API enables to reach good
performances on both multi-core and many-core architectures.

Keywords: Parallel computing, runtime system, domain decomposition, multi-core, many-core, task
programming
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