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Preamble

. INRIA
◦ Public research institute

. Area of research
◦ Applied mathematics
◦ Computer Science

. MOAIS team (Grenoble)

. AVALON team (Lyon)
◦ High performance

computing
• Scheduling

. IFP Energies Nouvelles
◦ EPIC

. Area of research
◦ Renewable energy
◦ Transport
◦ Oil & Gas industry

. Computer science division
◦ Basin modeling
◦ Numerical simulation in

reservoir engineering
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Numerical simulations in reservoir engineering

. Strategic stakes
◦ Numerical simulator performances

. Need to replay simulations many times
◦ To explore new scenarios

. Main issue
◦ Intensive computational effort

. Performance improvements
◦ Simulation’s precision
◦ Increasing the number of simulations
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Numerical simulations in reservoir engineering

. Porous Media Flow
models

. Partial Differential
Equations

◦ Finite Volume scheme
• Non-linear system

solved with Newton
method

. Linear Solvers
◦ up to 80% of

computing load
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Issues on linear solver performances

. Challenges
◦ Linear solvers

• Complex methods
◦ Linear systems

• Large
• Sparse
• Unstructured

. Standard approaches
◦ BiCGStab
◦ GMRES

. Preconditioned systems
◦ Improving convergence rates
◦ Examples:

• Polynomial
• Incomplete LU Factorization (ILU)
• Algebraic Multi-Grid methods (AMG)
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Parallel architectures

. Hardware evolution
◦ Hierarchical memory

• Interconnected
memory banks

• Cache hierarchy
◦ Increasing number of cores

• Example:
Many-core processors

◦ Heterogeneity
• GPU
• FPGA Figure: NUMA design
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DDML as a promising method to scale on emerging architectures

. Standard methods
◦ ILU(0)

• Not robust on reservoir case
• Difficulties to scale on large machine

◦ AMG
• Complex parallelization

. Multi-Level Domain Decomposition methods
◦ Numerical properties

• Robust
• Extensible

◦ Parallelization
• Naturally parallel
• Fine grain size
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How to program parallel architectures ?

. Top-down classification
◦ Network

• MPI
◦ Multi-core

• OpenMP, Cilk, Intel TBB, StarPU, X-Kaapi, OmpSs, HARTS. . .
◦ Accelerators

• OpenCL, CUDA, OpenACC, OpenMP (since 4.0), OmpSs
◦ SIMD unit

• Compiler, AVX, OpenMP (since 4.0)

. Programming parallel computers is challenging !
◦ No consensus on standard way to program parallel computers

• Trend: Task based programming model
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Task programming model

. Advantages
◦ Fine control on parallelism

. Task description
◦ Piece of work
◦ Data dependencies

• Input
• Output

. Organization
◦ Direct Acyclic Graph (DAG)

. Implementation
◦ Runtime System
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Task-based Runtime Systems

Features OpenMP OmpSs X-Kaapi HARTS StarPU
Pragma directive Yes Yes Yes No No
Scheduling policy Impl. dep. Various Work Stealing Central. queue Various
Dataflow model Yes Yes Yes No Yes

Persistent structures No No No Yes No
Data locality No Yes Yes No No

GPU Yes Yes Yes Yes Yes
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Problematic

. Writing complex parallel sparse linear algebra problems...
◦ Numericians are no longer able to handle hardware complexity

. ... While guaranteeing good performances for users
◦ Able to survive to hardware evolution

• Performances portability
• Extensibility

. Methodology
◦ Construction of a sparse linear algebra interface
◦ Enable performances portability to take into account emerging

architectures
◦ Performance study: Multi-level Domain Decompositon preconditioner
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Overview

Iterative methods Preconditioners
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Introduction

. Motivations
◦ Programming

• Provide users a set of
functions to write standard
iterative methods

• Implicit parallelism
◦ Efficient execution

. Widespread kernels in iterative
methods

◦ BLAS Level 1 & 2
◦ Specific sparse kernels

• Sparse Matrix Vector
product (SpMV)

• Preconditioners

Algorithm 1: BiCGStab Algorithm
Matrix A;
Vector b, pp, p, r, v;
Preconditioner P;
Scalar a;
do

pp = inv(P).p;
v = A.pp ;
r += v;
a = dot(p,r);
if(a==0) break;
...;

while (|r| < tol ∗ |b|);
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Abstract Linear Algebra API

. Goals
◦ Sequential semantic to write iterative methods
◦ Implicit parallelism

. Key concepts
◦ Capture Iterative pattern

. Integrates
◦ Executive layer

• Tasks description
• Tasks and dependencies are sent to runtime system for execution

◦ Data manager
• Allocation
• Partitioning

. Various implementations
◦ OpenMP 4.0
◦ OmpSs
◦ X-Kaapi
◦ HARTS
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API’s functions

class AlgebraKernel
{

// allocates 'size ' bits and returns it in 'v' ;
void allocate ( size_t size , Vector & v) ;
// Out: y = op () ;
void assign ( LambdaT op , Vector & y) ;
// Out: y = x ;
void copy( Vector const & x, Vector & y) ;
// Out: y = a * y
void scal( Value const &a, Vector & y) ;
// Out: y += a * x ;
void axpy( Value const &a, Vector const & x, Vector & y) ;
// Out: a = ( x . y ) ;
void dot( Vector const & x, Vector const & y, Value & a) ;
// Out: y = A * x ;
void mult( Matrix const & A, Vector const & x, Vector & y) ;
// Out: preconditioner 'P' applied to 'x' and stored in 'y' ;
void exec( Precond const & P, Vector const & x, Vector & y) ;
// Break if value is null ;
void assertNull ( double value ) ;
// Performs the Sequence objects referred by "id" ;
void process ( SequenceType id) ;

} ;
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Generation of parallelism

. Task generation
◦ Data partitioning

• Vector
• Matrix

. Computed from
◦ Graph partitioning techniques

• Adjacency graph of the coefficient matrix

. Considerations
◦ Load balancing
◦ Communication reduction

• Limiting connections between subgraphs (i.e. dependencies)

. Reordering
◦ Contiguous memory accesses

. Graph partitioners
◦ Row partitioning
◦ Metis partitioning

• Heuristics to ensure load balancing & to minimize dependencies
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Execution Layer

. Parallel processing
◦ DAG execution

. Be able to conserve or to build on-the-fly the DAG
1 Storing execution DAG

• HARTS
2 Storing all the necessary information to build the DAG with

Task Descriptor objects
• OpenMP 4.0
• OmpSs
• X-Kaapi

. Storing DAG construction information
◦ Sequence object

• List of operations
• Capturing iterative pattern
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Task creation from Partitioning techniques

1 Operation x← α.x
◦ Input: α

• Scalar
◦ Input/Output: x

• Vector

2 Partitioned x
3 Creation of the task
descriptors

4 Instanciation in the
runtime system

alg.scal(alpha, x);

x
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Task creation from Partitioning techniques

1 Operation x← α.x
◦ Input: α

• Scalar
◦ Input/Output: x

• Vector

2 Partitioned x
3 Creation of the task
descriptors

4 Instanciation in the
runtime system

Sequence.process();

xx

α.x0 α.x1 α.x2 α.x3

in : x0, α
out : x0

in : x1, α
out : x1

in : x2, α
out : x2

in : x3, α
out : x3
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Illustration – BiCGStab method

AlgebraKernelType alg;
Matrix A; Vector p,pp ,r,v;
double alpha ;
SequenceType seq =

alg. newSequence ();
alg.exec(precond ,p,pp ,seq) ;
alg.mult(A,pp ,v,seq );
alg.axpy (1. ,r,v,seq );
alg.dot(p,r,alpha ,seq );
alg. assertNull (alpha ,seq );
while (! iter.stop ())
{

alg. process (seq );
}

Precond. Precond. Precond. Precond.

SpMV SpMV SpMV SpMV

Axpy Axpy Axpy Axpy

Dot Dot Dot Dot

Reduction

AssertNull
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Evaluation of the API

. Laplacian systems
◦ Origin

• Discretization of a 2D Laplace problem
◦ Interest

• Variable size

. SPE10
◦ Origin

• Realistic oil reservoir simulation
◦ Interest

• Ill-conditioned system
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First evaluation of the API

. Evaluation
◦ BiCGStab

. Input matrix
◦ Laplacian system

. Machine
◦ 1 × 24 cores

Broadwell processor
. Measurements

◦ MFlops

. Observation
◦ Adapted programming

model
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First evaluation of the API

. Evaluation
◦ BiCGStab

. Input matrix
◦ Laplacian system

. Machine
◦ 1 × 24 cores

Broadwell processor
. Parallel Efficiency

◦ Eff(p) = T1

p Tp

. Observation
◦ Bad efficiency
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Why and how to increase performances ?

. Need to analyze the execution
◦ Monitoring tools and performance counters

• At runtime level, in HARTS

. Measurements
◦ Tasks duration
◦ Placement
◦ Threads activity
. Output

◦ Gantt chart
◦ Critical path
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Work inflation on a BiCGStab method

. Input case
◦ Laplacian matrix

. Machine
◦ 24 cores Broadwell

processor
. Measurement

◦ Work =∑
Duration(Ti)

. Work increases in
function of the number of
threads in use

◦ Previously studied
in (Olivier et al., 2012)

. Reasons
◦ Limited bandwidth

• More important on
NUMA due to
remote memory
accesses
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Data locality management for NUMA architectures

. How to limit work inflation ?
◦ Reducing data communication across NUMA nodes

. Data locality management in runtime systems
◦ OpenMP, HARTS

• Nothing
◦ OmpSs (Ayguadé et al., 2010)

• Socket scheduler
• Initialization tasks

◦ X-Kaapi, libKomp
(Virouleau, Broquedis, et al., 2016; Virouleau, Roussel, et al., 2016)
• Work-stealing based on data dependencies locality
• OpenMP extensions through affinity clause
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Managing data locality in HARTS

. 2 steps approaches

1 Data distribution across NUMA nodes
◦ numactl

• Insufficient control
◦ Parallel initialization

• Initialization tasks
• First-touch NUMA policy

2 Work Stealing heuristic to take care of data locality
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An heuristic designed to favor data locality

. Parallel initialization tasks
◦ Static scheduling

• Association between a thread and a range of partition ids
◦ Assumption on NUMA first-touch policy to distribute data

• All data relative to the same partition identifier are in the same NUMA
memory bank

. Ready tasks
◦ Inserted in the queue related to task’s partition id

. Per-worker task queue
◦ Only filled with tasks operating close data

. Heuristic
◦ Steal a task which operates on close data

• NUMA distance between threads
◦ Pre-computed priority list of potential victims (i.e. threads)

• One per thread
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Experimental protocol

. 2 × 14 cores Broadwell processor
◦ 2.40 GHz

. Configuration
◦ Cluster-on-die

• A processor is viewed as two NUMA nodes

. Memory
◦ 128 Go
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Experiment without and with heuristic to enhance data locality on a
BiCGStab method
(p = 28 cores)
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. Conclusion
◦ Slight improvement of data locality task placement
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API Evaluation on a preconditioned BiCGStab method with HARTS

. Input case
◦ Laplacian matrix

• Nrows = 16.106

. Measurement
◦ Elapsed time

. Conclusion
◦ Time decrease in

function of threads
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API Evaluation on a preconditioned BiCGStab method with HARTS

. Input case
◦ Laplacian matrix

• Nrows = 16.106

. Measurement
◦ Speed-up ratio

(T1/Tp)
. Conclusion

◦ ILU(0) fails
• Insufficient

parallelism
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Conclusion

. Abstract linear algebra API
◦ Balance between

• Expressiveness
• Performances

◦ Keep it simple
• Sequential semantic
• Implicit parallelism

. Performances
◦ Scheduling could be improved to increase performances

. How to take care of variable hardware evolution ?
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Hardware evolution

. HARTS and the API originally designed for
◦ Multi-core architectures

. Hardware trends in parallel computing
◦ GPU computing
◦ FPGA
◦ Many-core processors

. Main issue
◦ Performance portability

• Guaranteeing application’s performances regardless the architecture
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Knights Landing architecture

. Many-core processor
◦ up 72 cores
◦ 36 bi-core processors with

a 2D mesh interconnect
• 2 × VPU
• Shared L2 cache

memory
◦ 16 Go of MCDRAM, High

bandwidth memory

. Complex configuration
◦ Cluster Mode

• All-to-all
• Quadrant Hemisphere
• Sub-Numa cluster

◦ Memory mode
• Flat
• Cache
• Hybrid
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Programming challenges

1 Number of cores
◦ from 64 to 72

• Fine grain parallelism

2 Vectorization
◦ Core simplification

• Lower frequency
(' 1.3 GHz)

• AVX-512

3 Memory management
◦ DRAM

• Huger memory capacity
◦ MCDRAM

• High bandwidth
• but limited size
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Are all kernels vectorized ?

. Widespread kernels in iterative methods
◦ Blas Level 1 & 2

• Easily vectorized
◦ Specific sparse kernels

• Need to change the sparse matrix representation

. Data representation impact
◦ Compressed Sparse Rows (CSR)

• Eigen (Guennebaud, Jacob, et al., 2010)
• Intel Sparse MKL (Intel, 2017)
• PETSc (Balay et al., 1997)

◦ Difficult to vectorize
. Vector-friendly format

◦ Ellpack format (Grimes et al., 1980)
• May generate too much padding

◦ Sell-C-σ (Kreutzer et al., 2013)
◦ Limiting memory footprint
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Data structures management

. Issues
◦ Managing several structures for one representation
◦ Kernel selection to enable specific implementation

Different possibilities
. Multi-versioning kernels in Runtime systems

◦ Examples
• StarPU (codelet) (Augonnet and Namyst, 2008)
• X-Kaapi (Body) (Gautier et al., 2013)

. Dynamic dispatch to enable auto-tuning
◦ Detecting hardware features to select appropriate kernel implementation
◦ Example

• Intel MKL (Intel, 2017)

. Compile time selection
◦ No need to maintain several structures at runtime
◦ Adapted to application context
◦ Limiting factor at middle term (e.g. heterogeneous architectures)
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Single thread execution – AVX512

. Input case
◦ Laplacian matrix
◦ Different sizes

. Measurement
◦ Operations performed

per second
. Configuration

◦ 1 thread
. Conclusion

◦ 3× more performances
with a good
vectorization
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Multi-threaded comparison

. Input case
◦ Laplacian matrix
◦ Different sizes

. Measurement
◦ Operations performed per

second
. Configuration

◦ Multi-threaded execution 1 8 16 32 48 64
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Multi-threaded comparison
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Managing memory allocation

. How to benefit from MCDRAM memory ?
◦ Cache mode

• Management at hardware level
◦ Flat mode

• Explicit management by developers
• Memkind library: allocating memory in MCDRAM

. Memory management
◦ Runtime level

• Distributed Shared Memory (DSM)
• Example: StarPU (Augonnet and Namyst, 2008)

◦ Management in the API while using Allocator concept
• Compile time selection
• All data fit in MCDRAM bank
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Impacts of MCDRAM on performances

. Input case
◦ Laplacian matrix
◦ Different sizes

. Benchmark
◦ SpMV

. Measurement
◦ Operations performed per

second
. Configuration

◦ 64 threads
◦ Flat memory mode

. Conclusion
◦ MCDRAM reaches up to

7× more performances
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Cluster modes impact on a BiCGStab method with HARTS

. Input case
◦ Laplacian matrix

• Nrows = 4.106

. Configuration
◦ Flat memory mode

• MCDRAM memory
allocation

. Measurement
◦ Operations performed

per second
. Conclusion

◦ No impact
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Conclusion

. Abstract Linear algebra API
◦ Extensibility

• Adaptation to new architectures

. Performances portability on KNL
◦ Vectorization

• Data structure management
• Kernel selection

◦ Memory management

. Perspectives
◦ Dynamic dispatch

• Automatic detection of architectures
• No need of user knowledge

Adrien Roussel PhD Defense 47 / 59



Outline

1 Context and Introduction

2 Sparse Linear Algebra API

3 Performance portability on Many-core systems

4 Domain Decomposition Methods

5 Conclusion

Adrien Roussel PhD Defense 48 / 59



Context and Introduction Sparse Linear Algebra API Performance portability on Many-core systems Domain Decomposition Methods Conclusion

Motivation

. Main interests
◦ Numerical performances
◦ Scalability

• Fine grain parallelism (Jolivet et al., 2013)

. 2-level Additive Schwarz Method
◦ Solving problem from subdomain solutions

• Local solvers
◦ Coarse Operator

• Couple all the subdomains
• Based on the computation of an eigenvalue problem

. Portability above the API
◦ Task decomposition

Adrien Roussel PhD Defense 49 / 59



Context and Introduction Sparse Linear Algebra API Performance portability on Many-core systems Domain Decomposition Methods Conclusion

Task-based parallelization – Direct Acyclic Graph

. Computational intensive
tasks

◦ Coarse Op
◦ Local Solv.

. Parameters and Influence

◦ Coarse Op
• Eigen vectors

numbers
• Partitioning

◦ Local Solvers
• System size
• Partitioning
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DDML tasks distribution in percentage (p = 28 cores)
on SPE10 benchmark
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. Conclusion
◦ Compromise between CoarseOp and LocalSolver
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Experimental compromises between LocalSolv and Coarse Op

. Input case
◦ SPE10 coming from oil

reservoir simulation
. Measurement

◦ Task granularity
. Objective

◦ Optimal sizes of the
two main tasks of
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DDML evaluation with HARTS on multi-core system

. Input case
◦ SPE10 matrix

. Measurement
◦ Elapsed time on p

cores
. Conclusion

◦ DDML is challenging
face to AMG
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DDML evaluation with HARTS on KNL many-core processor

. Input case
◦ SPE10 matrix

. Measurement
◦ Elapsed time on p

cores
. Objective

◦ Performance analysis
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Conclusion & perspectives

. Good alternative to AMG
◦ Fine grain parallelism
◦ Convergence rates

• Oil reservoir case

. Remaining optimizations
◦ Many-core processors

• Direct solvers vectorization

. Improving convergence rates
◦ Updating coarse operator definition
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Conclusion

. An abstract Linear Algebra API
◦ Sequential semantic and implicit parallelism

• Partitioning
• Task programming model
• Runtime system execution

◦ Extensions in HARTS
• Monitoring
• Data locality aware scheduler

. Extensions to support KNL many-core processors performance portability

◦ Vectorization
◦ MCDRAM management

. Application to Multi-Level Domain Decomposition methods
◦ Encouraging results on multi and many-core systems
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Perspectives

. Programming model
◦ Code evolution face to hardware variations

• KOALA ANR proposal

. Work inflation limitation
◦ Limited bandwidth

• Limits of parallelism
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Thanks for your attention
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Matrices Laplaciennes

Mesh size NR NNZ Memory Footprint
1000 x 1000 1.106 4996000 488 Mb
2000 x 2000 4.106 19992000 1953 Mb
3500 x 3500 12.106 61236000 5980 Mb
4000 x 4000 16.106 79984000 7811 Mb

Table: Test cases overview
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API Evaluation on a preconditioned BiCGStab method with HARTS

. Input case
◦ Laplacian matrix

. Measurement
◦ MFlops
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API Evaluation on a preconditioned BiCGStab method with HARTS

. Input case
◦ Laplacian matrix

. Measurement
◦ Computational

Efficiency
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