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Chapitre 1

Résumé

1.1 De l’impact des variables inutiles sur l’optimisation
Dans la plupart des problèmes étudiés, le poids de chaque variable diffère. C’est notam-
ment le cas sur la fonction ellipsoı̈de f (x) = 106x2

1 +∑
D
i=2 x2

i où la première variable x1
a un poids un million de fois plus important que les autres sur l’évaluation finale. Dans
certains cas en revanche, il y a des variables qui n’interviennent absolument pas dans le
résultat final. En dépit de ceci, on souhaite évidemment pouvoir procéder à l’optimisation.
Pour ce faire, il convient de choisir attentivement l’algorithme utilisé.

Une étude théorique des taux de convergence à l’optimum étendant les
résultats généraux pour la limite basse [Fournier and Teytaud, 2011] et la limite
haute [Jamieson et al., 2012] montre que le nombre de variables inutiles n’a pas d’impact
sur le taux de convergence des algorithmes.

Pourtant, les variables inutiles ont un impact clair dès l’initialisation des algorithmes,
et ce à deux niveaux. Le premier concerne les algorithmes pour lesquels la taille de la
population dépend de la dimension. Ainsi par exemple, la population nécessaire au fonc-
tionnement de Newuoa [Powell, 2008] a une taille de 2d + 1, tandis que celle de Nelder-
Mead [Nelder and Mead, 1965] est de d+1, où d est la dimension du problème considéré.
La plupart des algorithmes à stratégie évolutionnaire ont une population dont la taille est
indépendante de la dimension, ou, au pire, qui augmente logarithmiquement en fonction
de celle-ci. Cependant, certains de ces algorithmes reposent sur l’utilisation d’une matrice
de covariance. Stocker ces matrices en mémoire prend beaucoup de place, beaucoup trop
lorsque la dimension dépasse une certaine taille : en dimension un million, on stocke alors
une matrice carrée d’un million par un million de doubles, ce qui représente seize tera-
octets de mémoire vive. Même s’il était possible de stocker ces matrices, ces algorithmes

11
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nécessitent d2 paramètres, qu’il n’est statistiquement pas possible de déterminer. À l’in-
verse, des algorithmes plus simples (tels que (1+1)-ES) ne souffrent pas de ce problème.

L’impact d’un grand nombre de variables peut également se faire sentir à l’exécution
des optimiseurs. En effet, la supposition faite consistant à dire que le temps de calcul
nécessaire à l’algorithme pour passer d’une génération à l’autre est négligeable par rap-
port au temps nécessaire pour évaluer un individu, ne tient plus lorsque le nombre de
variables dépasse les dix mille dans le cas des algorithmes qui ont besoin de recalculer
un matrice de covariance. En fait, le temps de calcul devient si long qu’il est impossible
d’obtenir des résultats corrects dans un temps raisonnable. C’est pourquoi dans ce travail,
la comparaison se fait sur la base du temps de calcul global.

Les expérimentations effectuées sur le jeu de test BBOB [Hansen et al., 2010a],
avec un nombre de variables inutiles allant de cent à un million montrent qu’un
faible nombre de variables inutiles ne change pas démesurément les performances
des algorithmes par rapport à un fonctionnement normal. Plus le nombre de va-
riables inutiles augmente en revanche, et plus les performances d’algorithmes tels
que CMA-ES [Hansen and Ostermeier, 2003] ou CMSA-ES [Beyer and Sendhoff, 2008]
se dégradent, jusqu’à ce qu’ils ne soient tout simplement plus capables de trai-
ter le problème par défaut d’espace mémoire. Des algorithmes tels que Differen-
tial Evolution [Storn and Price, 1997], (1 + 1)− ES ou Self-Adaptive Evolution Stra-
tegy [Beyer, 2001] (dans ses versions isotropique ou anisotropique) ne sont pas impactés
par le nombre de variables inutiles. En fait, il est même possible de noter que même si
les temps de calculs augmentent forcément, ces algorithmes parviennent tout de même à
atteindre le même optimum que dans les cas sans variables inutiles.

1.2 Étude de performances sur des problèmes mal condi-
tionnés en grande dimension

Les systèmes complexes tels que les systèmes météorologiques ou les réseaux électriques,
sont un domaine faisant fréquemment appel à l’optimisation boı̂te noire. Les algorithmes
à même de traiter des problèmes mal conditionnés ou au mieux partiellement séparables
ne devraient a priori guère rencontrer de difficultés.

Or, si de nombreux travaux ont été publiés à propos des performances des algorithmes
d’optimisation tels que SA-ES [Beyer, 2001], CMA-ES [Hansen and Ostermeier, 2003],
Differential Evolution [Storn and Price, 1997], etc., dans la grande majorité de ces travaux,
les tests sont effectués sur des problèmes portant sur moins d’une centaine de variables.
Les systèmes complexes cités précedemment sortent cependant de ce domaine : il n’est
là pas rare de rencontrer des problèmes où plusieurs milliers de variables doivent être
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optimisées, sans qu’il soit possible de réduire le nombre de paramètres.
Le travail effectué ici vise à déterminer quelles sont les performances de ces algo-

rithmes dans les cas extrêmes où le nombre de variables atteint le million. En outre, du fait
de l’augmentation du nombre de variables, de nouveaux critères de comparaison entre les
algorithmes doivent être pris en compte : lorsque les temps de calculs internes à l’optimi-
seur augmentent, il convient non plus d’exprimer les budgets alloués aux optimiseurs en
terme de nombre d’évaluations, mais en temps.

Cette étude est effectuée sur les algorithmes d’optimisation stochas-
tique les plus représentés dans la littérature, à savoir (1 + 1) − ES,
SA-ES [Beyer, 2001] (y compris sa version avec matrice de cova-
riance [Rechenberg, 1973b]), CMA-ES [Hansen and Ostermeier, 2003],
CMSA-ES [Beyer and Sendhoff, 2008], DE [Storn and Price, 1997],
NM [Nelder and Mead, 1965] et PSO [Kennedy and Eberhart, 1995] et porte sur
trois fonctions différentes (Ellipsoı̈de, Cigar et Schwefel), en utilisant trois types de
rotation plus ou moins complètes, impliquant divers degrés de non-séparabilité.

Ce que l’on peut retenir des résultats sur ces problèmes, pour des dimensions allant
jusqu’à un million, est que DE, PSO et (1+1)−ES obtiennent globalement les meilleures
performances. Tout particulièrement dans le cas de DE pour une séparabilité intermédiaire,
PSO pour un budget faible. (1+1)−ES est quant à lui le plus stable.

Lorsqu’il est possible d’utiliser des algorithmes utilisant une matrice de covariance,
les résultats sont intéressants, mais pour cela la dimension ne doit pas être trop importante
sinon les temps de calcul explosent, voire il devient impossible de traiter le problème.
CMA-ES est par exemple particulièrement bon pour surmonter les soucis de précision
numérique, atteignant des précisions que les autres algorithmes ne peuvent pas atteindre.

L’un des points les plus importants à retenir de ce travail est que l’on voit à nou-
veau l’illustration du fait qu’un seul et même optimiseur ne peut pas répondre à tous les
problèmes de manière optimale : c’est toute la puissance d’un portfolio d’optimiseurs, qui
permet de déterminer automatiquement quel est l’optimiseur le plus adapté au problème
qui lui est soumis, et de l’utiliser pour atteindre l’optimum de la manière la plus efficace
possible.

1.3 Impact de l’utilisation des mutations Quasi-Aléatoire
sur les performances de CMA-ES

L’utilisation de processus aléatoires est une composante importante du fonctionnement
des algorithmes d’optimisation boı̂te noire. De fait, elle est si importante que c’est dans
certains cas la seule manière de garantir la convergence [Gelly et al., 2007].
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Tel qu’illustré par l’image 2.1a, le tirage de nombres purement aléatoires peut conduire
à exploiter abondamment une certaine région de l’espace tout en en ignorant une vaste
partie. Une manière de limiter ce problème consiste à utiliser des nombres générés quasi-
aléatoirement tel que proposé dans [Teytaud and Gelly, 2007]. Ainsi, on peut voir sur
l’image 2.1b que l’espace est bien plus uniformément couvert : aucune région n’est plus
ou moins exploitée que le reste.

L’utilisation de mutations quasi-aléatoires est le sujet du travail présenté dans cette
section, et est appliqué à la compétition “Expensive” de CEC2015 [Chen et al., 2014]. Si,
en règle générale sur les benchmarks tels que BBOB, le budget alloué aux algorithmes est
de l’ordre de budget = 10×D2 (avec D la dimension du problème), on se place ici dans un
cas où les évaluations sont beaucoup plus chères : on ne dispose que de budget = 50×D.

Un optimiseur souvent acclamé, à juste titre, pour sa capacité à atteindre une solution
optimale en un faible nombre d’évaluations est CMA-ES [Hansen and Ostermeier, 2003],
ce qui sera également le cas dans les problèmes qui nous intéressent ici. Nous allons ce-
pendant introduire une variante de CMA-ES, pour laquelle nous utiliserons des mutations
quasi-aléatoires.

Un autre moyen de pallier à ce manque de budget, proposé
par [Baudis and Posik, 2014] consiste à construire un portfolio, un ensemble de
plusieurs optimiseurs, et de leur partager le budget selon des règles plus ou
moins complexes [Pulina and Tacchella, 2009, Gagliolo and Schmidhuber, 2005,
Gagliolo and Schmidhuber, 2006]. En plus de CMA-ES, les autres optimiseurs utilisés
dans les portfolios sont (1+1)−ES, SA-ES [Beyer, 2001] (y compris sa version avec ma-
trice de covariance [Rechenberg, 1973b]), CMA-ES [Hansen and Ostermeier, 2003],
CMSA-ES [Beyer and Sendhoff, 2008], DE [Storn and Price, 1997],
NM [Nelder and Mead, 1965] et PSO [Kennedy and Eberhart, 1995]. Tous les port-
folios étaient construits de manière à ce que 25% du budget soit réparti équitablement
entre chaque optimiseur, puis sur les 75% restants du budget, seul le meilleur optimiseur
était utilisé pour tenter d’atteindre l’optimum.

Le premier enseignement des tests effectués est que globalement, les portfolios “res-
tart” ont été plus performants que les optimiseurs simples. Cela s’explique par le fait
qu’en dépit d’un budget plus réduit, les restarts permettent d’éviter les écueils d’une mau-
vaise initialisation. Bien que CMA-ES fasse preuve de performances tout à fait honorables
comme escompté, il est souvent battu par NM, qui semble moins souffrir d’une mau-
vaise initialisation. Ceci est confirmé par le fait que les portfolio “restart” de CMA-ES
obtiennent de meilleures performances que ceux de NM.

La deuxième batterie de tests effectués a consisté à créer une grande quantité de va-
riante de CMA-ES, en utilisant une stratégie élitiste ou non, un pas de mutation plus ou
moins grand que ce soit pour sa limite basse ou sa valeur initiale ou une taille de popula-
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tion plus ou moins grande. Enfin, chaque variante était dédoublée, l’une utilisant des muta-
tions aléatoires normales, et l’autre des mutations quasi-aléatoires. Il est particulièrement
intéressant de noter que selon les critères utilisés pour l’évaluation des résultats sur ce jeu
de test donné, à chaque fois, la version quasi-aléatoires l’emporte sur la version normale.
En fait, en y regardant de plus près, on se rend compte que bien que les plus mauvais runs
des variantes quasi-aléatoires sont plus mauvais que les variantes normales, on remarque
sur les moyennes et médianes, que ce sont les versions quasi-aléatoire qui dominent nette-
ment.

1.4 Introduction de la “Sieves Method” dans le
déroulement de l’optimisation

Une technique bien connue des statisticiens pour rendre un problème plus facile consiste à
commencer par considérer un sous-ensemble de variables, puis petit à petit d’introduire
de nouvelles variables. Bien que soutenue par un vaste éventail de travaux aussi bien
théoriques qu’empiriques, cette technique est pour ainsi dire inconnue dans le monde de
l’optimisation stochastique. Dans ce travail, une adaptation de cette technique à l’optimi-
sation stochastique est proposée et testée sur des problèmes artificiels puis basés sur le
monde réel. On l’appellera Élargissement Progressif.

Les algorithmes évolutionnaires fonctionnent en générant des descendants à partir d’un
ou plusieurs parents, en les faisant muter ou se croiser selon des règles plus ou moins com-
plexes en fonction des algorithmes. Chaque individu est alors évalué, puis va remplacer ou
non la génération précédente. Tandis que dans le cas général l’ensemble des variables sont
modifiées d’une génération à l’autre, il suffit, pour appliquer l’Élargissement Progressif de
ne modifier que les N premières variables. Ensuite, tout se joue dans la façon dont N est
calculé et mis à jour.

Si N est augmenté trop souvent, on se trouve finalement dans une situation où toutes les
variables sont optimisées dès le début ou presque. En revanche, si N n’est pas suffisamment
augmenté, on se retrouve dans une situation où l’on prend le risque de consommer tout le
budget sans avoir touché une seule fois à certaines variables, ce qui n’est pas une solution
souhaitable dans le cas général.

Les tests effectués avec SA-ES [Beyer, 2001] sur un problème artificiel montrent
que cette méthode peut permettre d’améliorer sensiblement les performances lorsque le
problème est mal conditionné. En revanche la paramétrisation de l’évolution de N dépend
du problème considéré : il n’existe pas une valeur unique qui permette de faire fonctionner
l’Élargissement Progressif dans tous les cas.

Des tests plus poussés sur un problème de recherche de politique floue sur un problème
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de gestion de stocks de production électrique en utilisant DE [Storn and Price, 1997] per-
mettent de renforcer cette première impression. Bien que l’amélioration des performances
d’un optimiseur utilisant l’Élargissement Progressif se fait souvent de manière asympto-
tique, cette amélioration est parfois très nette. Il est en outre intéressant de noter qu’une
vaste famille de fonctions contrôlant l’évolution de N permet d’obtenir cette amélioration :
ainsi que l’on incrémente N linéairement ou logarithmiquement en fonction du temps ou
du nombre de génération, les résultats sont meilleurs (de manière plus marquée dans le cas
logarithmique toutefois), sans même chercher à configurer les paramètres de contrôle de
manière particulièrement fine. Cette technique a toutefois un coût, visible au début du pro-
cessus d’optimisation : le nombre de variables optimisées étant faible, les performances
sont moindres qu’une optimisation normale.

1.5 Application sur un problème de gestion de stocks
Lorsque de nouveaux algorithmes d’optimisation stochastiques sont conçus, ou
que des algorithmes existants sont modifiés, ils sont testés sur des jeux de
tests connus comme BBOB [Hansen et al., 2010a], CEC [Suganthan et al., 2005],
Cute/Cuter/Cutest [Gould et al., 2003], etc. Ces jeux de tests sont bien évidemment parti-
culièrement importants pour déterminer les performances et lacunes de chacun des optimi-
seurs considérés, notamment de par le vaste éventail d’écueils qu’ils contiennent : multi-
modalité, non séparabilité, etc. Pour autant, ces jeux de tests ne sont pas sans défauts, et
ce notamment de par le fait que pour l’essentiel, les problèmes qu’ils proposent sont des
fonctions mathématiques artificielles sans lien avec le monde réel.

Pourtant, ces algorithmes étant destinés à être utilisés pour répondre à des problèmes
plus ou moins complexes du monde réel, il est tout aussi intéressant de les comparer sur
des jeux de tests qui en sont inspirés. Ici, la comparaison des principaux algorithmes d’op-
timisation stochastique de la littérature se fait sur un problème de gestion de stocks de
production électrique. Ce problème, complexe, est d’autant plus intéressant que cette com-
plexité est paramétrable : le nombre de stocks, le nombre de pas de temps, les conditions
de remplissage et de production sont autant de paramètres qui permettent de rendre un
problème plus ou moins complexe. Enfin, l’utilisation de plusieurs familles de politiques
de décision (fonction expert, réseau de neurones, logique floue ou planification pas-à-pas)
permet de passer de trois à plusieurs milliers de paramètres à optimiser.

Bien que ne remettant pas complètement en cause les résultats des jeux de tests arti-
ficiels, les tests effectués ici permettent de dégager quelques enseignements intéressants.
Ainsi, on remarque que DE [Storn and Price, 1997] est l’optimiseur le plus stable, of-
frant le plus souvent les meilleures performances sur ce type de problème, ou que
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PSO [Kennedy and Eberhart, 1995] fonctionne particulièrement bien en grande dimen-
sion. En revanche, les performances de CMA-ES [Hansen and Ostermeier, 2003] sont glo-
balement décevantes - tout particulièrement en grande dimension - de même que celles de
NM [Nelder and Mead, 1965] ou (1+1)−ES, à l’exception de quelques cas particuliers.

1.6 Combinaison de politiques de contrôles
La recherche directe de politique de contrôle consiste à déterminer les paramètres d’un
ensemble de règles qui permettent de répondre au mieux à un problème, le plus souvent
de planification : par exemple la production électrique en fonction d’un certain nombre de
contraintes, telles que la météo ou la consommation.

Les règles en question peuvent être issues de l’expertise humaine, ou bien être des
méthodes génériques comme un réseau de neurones ou des fonctions de logique floue. Les
premières sont particulièrement efficaces lorsqu’elles sont disponibles, mais ont souvent
l’inconvénient d’être très limitées par leur structure même. Quant aux dernières, elles sont
évidemment beaucoup plus libres, mais cela les rend par là même beaucoup plus difficiles
à configurer.

L’idée derrière ce travail est de parvenir à tirer profit de la robustesse de l’une et
de la capacité de généralisation de l’autre en les combinant toutes deux pour former
une méta-politique. Bien qu’il existe déjà des méthodes tirées de la Programmation Dy-
namique [Bellman, 1957] pour parvenir à déterminer quelle politique est optimale, ces
méthodes ont l’inconvénient d’être coûteuses en temps de calcul mais aussi de fournir une
réponse incomplète si pour une raison ou pour une autre le processus d’optimisation venait
à être interrompu avant sa conclusion normale.

Dans ce travail, on considère au contraire l’optimisation directe de deux politiques
différentes, C1 et C2, dont le poids respectif est contrôlé par un paramètre indépendant α .
La politique résultante est alors

C = αC1 +(1−α)C2

Les tests effectués sur des problèmes de gestion de stocks, en présence ou non de
bruit démontrent que lorsque les politiques combinées sont suffisamment différentes l’une
de l’autre (i.e. sont orthogonales), les résultats obtenus sont au pire aussi bons que la
meilleure des deux politiques. Le plus souvent en revanche, les résultats de la combinaison
sont nettement supérieurs aux deux politiques individuelles, et ce d’autant plus que le
budget augmente. En outre, l’un des gros avantages de cette technique est qu’il est possible
d’arrêter le processus d’optimisation à tout moment, et de tout même obtenir une politique
raisonnable.
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1.7 Application de la “Sieves Method” sur un problème
réel

Parmi les rares jeux de tests basés sur le monde réel, on trouve un ensemble de trois
problèmes de clustering [Gallagher, 2016], où le but est de parvenir à optimiser la position
d’un ensemble de noyaux dont le nombre varie de deux à dix, de manière à minimiser
la somme de la distance entre un point et le noyau le plus proche. Ces problèmes sont
intéressants à plus d’un titre car, en plus d’être inspirés du monde réel, leur complexité
varie en fonction du nombre de noyau et de la dimension de chaque point de donnée
et ils sont faciles à comprendre. Un autre point particulièrement important ici, est que
les solutions optimales sont connues [du Merle et al., 1999], ce qui rend l’évaluation des
performances des optimiseurs possible dans l’absolu, et pas seulement les uns par rapport
aux autres.

Dans l’article d’origine, les performances d’un ensemble d’algorithmes sont étudiées :
CMA-ES, Nelder-Mead, la recherche aléatoire et la méthode des k-means. Dans ce tra-
vail, la première chose qui est faite est de valider l’implémentation utilisée en comparant
les performances de CMA-ES. Ce faisant, l’indicateur SP1 [Auger and Hansen, 2005] qui
représente le nombre d’évaluations nécessaires pour atteindre l’optimum est calculé, dans
le but de permettre une comparaison plus précise de chaque optimiseur.

Dans un second temps, ces problèmes sont soumis à Differential Evolu-
tion [Storn and Price, 1997] qui offre des performances nettement supérieures à CMA-ES,
bien que ne parvenant pas toujours à atteindre l’optimum. Une étude des raisons de ces
échecs montre qu’ils sont le plus souvent dûs à un problème de minima locaux desquels
DE ne parvient pas à sortir. Afin de tenter de contourner le problème, est alors introduite
une variante de DE nommée Progressive Differential Evolution. Cette variante consiste à
introduire l’Élargissement Progressif du nombre de variables optimisées.

Cette modification n’est pas sans coût : jusqu’à 15 000 évaluations - sur un budget
de 300’000 - les performances de PDE sont nettement inférieures à celles de DE. Cela
s’explique simplement par le fait que jusqu’à ce moment là, toutes les variables n’étaient
pas encore optimisées. En revanche, après 15 000 évaluations, les résultats déjà excellents
de DE sont encore améliorés, parfois très nettement, grâce à cette technique, que ce soit en
terme de fitness moyenne que de taux d’atteinte de l’optimum (à l’exception de cinq cas
particuliers, et dans seulement deux cas la différence est importante).
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1.8 Reproduire un résultat de l’évolution biologique avec
des optimiseurs stochastiques

De nombreux algorithmes d’optimisation stochastiques sont inspirés de l’évolution na-
turelle, qu’elle soit d’origine sexuée (c’est par exemple le cas pour Differential Evolu-
tion) ou non (par exemple la famille SA-ES). D’autres algorithmes sont inspirés d’autres
phénomènes biologiques, comme le vol des oiseaux (ou la nage des bancs de poissons)
dans le cas de Particule Swarm Optimisation.

Ici, le but va être de tenter de reproduire une structure naturelle, fruit de plusieurs
millions d’années d’évolution, que l’on retrouve sur la chitine de scarabées ou les ailes
des papillons de la famille Morpho. Ces structures physiques appelées Miroirs de Bragg
ont la particularité d’être constituées de fines couches de matière transparente, capables de
réfléchir une partie du spectre lumineux grâce à un phénomène de physique quantique.

Les tests les plus simples, visant à concevoir un miroir de Bragg capable de réfléchir
la lumière à une longueur d’onde donnée (600nm, correspondant à du orange-rouge) se
révèlent concluants : c’est finalement relativement facile, dans la mesure où les différents
algorithmes parviennent souvent à obtenir la solution optimale. Lorsque l’on complique
le problème, en demandant non plus une réflexion à une longueur d’onde donnée mais sur
l’ensemble du spectre visible, les choses se corsent, mais surtout du point de vue physique :
là encore, avec un nombre limité de couches (jusqu’à une vingtaine), les optimiseurs se
mettent assez facilement d’accord sur l’optimum. Au delà de trente couches en revanche,
il n’y a plus guère que Differential Evolution qui parvienne à obtenir l’optimum, pour un
taux de réflexion d’environ 80% sur l’ensemble du spectre visible, ce qui est un très bon
résultat.

Le dernier test consiste à tenter de reproduire la réflexion particulière trouvée sur les
ailes des papillons de la famille Morpho. Cette réflexion a de particulier que la lumière
n’est pas directement réfléchie, mais l’est selon deux angles différents : ce phénomène est à
l’origine des reflets irisés bleutés. Là encore, les résultats obtenus sont extrêmement bons,
puisque l’on parvient à obtenir un taux de réflexion de 100%, qui se retrouve, finalement,
être trop “bon” par rapport à ce que l’on peut trouver dans la nature. Toutefois, le taux de
réflexion et l’architecture des structures peuvent être améliorées pour coller au plus près à
ce que l’on s’attend à obtenir en ajoutant de nouvelle contraintes sur les structures, comme
prendre en compte leur poids par exemple. D’un point de vue général, on observe là aussi
d’excellents résultats pour Differential Evolution.

En fait, il est intéressant de noter que sur l’ensemble de ces problèmes, l’algorithme
qui fonctionne le mieux est Differential Evolution, l’algorithme le plus proche d’une
évolution “naturelle”. Enfin, les tests effectués sur ce problème montrent encore une fois
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la supériorité des mutations quasi-aléatoires pour CMA-ES, comparées à des mutations
purement aléatoires.

1.9 Conclusion
Les travaux présentés dans cette thèse peuvent être articulés en deux axes :

Dans la première partie, nous avons dans un premier temps étudié le comporte-
ment des principaux algorithmes d’optimisation boı̂te noire dans des conditions rarement
considérées : en présence d’un grand nombre de variables “inutiles” ou en très haute di-
mension sur des cas mal conditionnés. Dans un cas comme dans l’autre, la théorie veut
que les algorithmes soient à même de gérer ces problèmes, mais la pratique prouve qu’il
en est autrement que ce soit pour des raisons de temps de calcul bien trop longs ou tout
simplement une impossibilité de stocker en mémoire tous les paramètres nécessaires au
fonctionnement d’un algorithme (les matrices de covariance par exemple, ou tout simple-
ment la population dans le cas de Nelder-Mead). D’autres algorithmes quant à eux (Diffe-
rential Evolution essentiellement, mais aussi (1+1)−ES et Particle Swarm Optimisation)
obtiennent des performances à la hauteur des attentes : à même d’ignorer le variables in-
utiles quel qu’en soit le nombre, ou de traiter des problèmes mal conditionnés même en
très haute dimension.

Dans un deuxième temps, nous avons proposé deux améliorations des algorithmes
d’optimisation boı̂te noire : la première concerne l’utilisation des mutations quasi-
aléatoires pour CMA-ES, qui a permis d’en améliorer les performances grâce à une
meilleure exploration de l’espace des mutations. La seconde est l’utilisation d’une
méthode tirée du domaine des statistiques, la “Sieves Method”, technique qui a fait ses
preuves en permettant d’obtenir de meilleurs résultats sur les cas tests considérés.

Dans la deuxième partie de cette thèse, nous avons cherché à appliquer ces ensei-
gnements sur des problèmes venant du monde réel ou en étant inspirés : des simula-
tions de réseaux électriques, des problèmes de clustering tirés du monde réel, et la re-
constitution de structures naturelles. L’objectif était double : déterminer s’il existait des
différences notables entre les performances des algorithmes sur des jeux de tests artificiels
et des problèmes plus réels d’une part ; d’autre part, tester si l’impact des mutations quasi-
aléatoires et de la “Sieves Method” sur ces problèmes est du même ordre que sur des cas
artificiels.

L’un des principaux enseignement à tirer de ceci est que si CMA-ES est le leader in-
constesté des jeux de tests artificiels, dans les cas considérés ici c’est Differential Evolution
qui s’impose sans conteste : bien qu’il soit parfois battu, cet algorithme est non seulement
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le plus souvent le meilleur, mais fait également montre d’une bonne régularité en n’étant
jamais particulièrement mauvais.

Enfin, malgré un coût certain (dans le sens ou un arrêt prématuré du processus d’opti-
misation conduit à un effondrement des performances), la “Sieves Method” a fait montre
de résultats intéressants puisqu’améliorant sensiblement les résultats obtenus sans, que ce
soit en terme de qualité de la solution que de probabilité d’atteindre l’optimum. De même,
l’utilisation des mutations quasi-aléatoires pour CMA-ES montre une nouvelle fois que
même dans les rares cas où les performances ne sont pas améliorées, elles ne sont pas
non plus diminuées mais que bien souvent on peut observer une nette amélioration des
résultats.



Chapter 2

Introduction

2.1 Generalities

Optimization: The action of
making the best or most effective
use of a situation or resource.

Oxford Dictionary

Optimization is found everywhere, as soon as we want to improve a process, an object,
a cost, etc. In mathematics, optimization is the process through which we will find the
minimum (or maximum) of a given function: given a function f : Ω ⊂ RD 7→ R we want
to find x∗, such that ∀x ∈ RD where D is the dimension of the problem then f (x∗) ≤ f (x)
if we want to find the minimum, or f (x∗)≥ f (x) if we want to find the maximum.

In trivial cases, this can be done through a simple analysis, and every high-school
student learns to do it. In some cases however, the function is far too complex to allow
such analysis. Specialized optimizers must be used.

2.1.1 Families of optimizers
Based on Hessians Optimizers have been around for a long time. In fact, in the algo-
rithms used to this day, one dates back from the seventeenth century: the Newton’s Method
(also known as Newton-Raphson method). Introduced in its primitive form by Isaac New-
ton in his De analysi per aequationes numero terminorum infinitas written in 1669, later
refined by Joseph Raphson’s Analysis Aequationum Universalis in 1690, this method is
designed to find successively better approximations of the roots (optimums) of a function.

22
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The simple fact that this method is still used today is testament to its efficiency. In
fact, when it can be used, it is one of the fastest ways to find the optimum of a given
function. The problem however is that it is necessary to compute the first and second
order derivatives of the optimized function. Even in cases where it would be theoretically
feasible, computing the Hessian - or worse, inverting it - would take far too long to be
efficient, if at all possible.

Based on gradients In order to address this problem was developed an evolu-
tion of the Newton’s Method, the Quasi-Newton Method [Davidon, 1959]. Since
then, multiple variants of the Quasi-Newton Methods were proposed such as Broy-
den–Fletcher–Goldfarb–Shanno (BFGS), a variant independently published by four au-
thors [Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, Shanno, 1970] which now has vari-
ants of its own, the Symmetry Rank One variant [Conn et al., 1991], etc.

While much slower than Newton’s Method (which has a quadratic rate of conver-
gence, versus a superlinear rate of convergence for Quasi-Newton’s Methods), the main
advantage of Quasi-Newton over its parent is that it doesn’t need to compute the Hessian:
instead, the Hessian is updated with the gradient vectors successively obtained through
the optimization. By not requiring to compute the inverse of the Hessian, Quasi-Newton
algorithms can be used on problems where the Newton Method is far too expensive.

Based on fitness values After that came optimizers only using the value (or fitness)
of the function at some sampling points in order to reach the optimum. One of such
methods is NEWUOA [Powell, 2008], which works by establishing a model by quadratic
interpolation in a given “trust region”. After a minimization of the surrogate model, it
samples some points, and, based on the a posteriori interpolation errors, it updates the
“trust” region or the current best point.

An interesting point of such a method is that it is derivative free, all it needs is to
sample and evaluate the function. The results of those evaluations will enable it to perform
its interpolation.

Based on comparisons At the bottom of this stack, we find optimizers working by
comparing the evaluation of two or more samples - individuals - to reach the opti-
mum. While there are many algorithms in this family, most of them have in com-
mon that they are inspired by the natural world: Particle Swarm Optimization (or
PSO) [Kennedy and Eberhart, 1995, Shi and Eberhart, 1998b] for example is inspired by
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the flight of birds or the behavior of a fish school. More often however, those algorithms
are, in some way, trying to reproduce natural evolution. At each step - or generation -
those optimizers mutate and/or recombine the current population to produce offsprings.
Each offspring is evaluated and the best ones are selected in order to become the new
population. Eventually, the offsprings converge to the solution. Or at least a solution.

One of the main strengths of such algorithms is that they don’t make any assumption
on the function and don’t need to know anything about it. All they require, is the
ability to evaluate each individual sample and compare them. While in algorithms like
NEWUOA [Powell, 2008] the fitness themselves are important, in comparison based
algorithms the only thing that matters is to know how they compare, which one is better
than the other.

The distinction between fitness based and comparison based algorithms is important
in some applications. When there are human appreciations of an individual or for some
problems originating from games, we only have a relative appreciation of two solutions:
one is better, the other is worse, but it isn’t necessarily easy or even possible to quan-
tify by how much they differ. In addition, some theorems (for example those derived
from [Fournier and Teytaud, 2011]) only deal with comparison-based methods.

Optimizers used in the thesis In this work, we only used optimizers based on compar-
isons:

• Self-Adaptive Evolution Strategies (SA-ES [Rechenberg, 1973a]), which come
in three main flavours: isotropic, where there is only one mutation pa-
rameter and anisotropic with one mutation factor for each parameter (both
from [Schwefel, 1977]) and anisotropic with covariance matrix[Schwefel, 1981a].

• Covariance Matrix Adaptation Evolution Strategy (CMA-
ES[Hansen and Ostermeier, 2003]) where the mutation step sizes are guided
by cumulative step-size adaptation and also features full covariance matrix
adaptation.

• Covariance Matrix Self-Adaptation, CMSA-ES [Beyer and Sendhoff, 2008], the ex-
tension of SA for invariance w.r.t. rotations through the use of a covariance matrix.

• The “simple” (1+1)-ES, where the step size is updated according to the success or
failure to improve (the 1

5 rule)

• Nelder-Mead [Nelder and Mead, 1965], a simplex method where one point is moved
at each generation.



CHAPTER 2. INTRODUCTION 25

• Particle Swarm Optimisation[Kennedy and Eberhart, 1995,
Shi and Eberhart, 1998b], where the speed of the particles is influenced by
the best solutions found by the particle itself and its neighborhood (a fixed subset of
all existing particles).

• Differential Evolution[Storn and Price, 1997], an algorithm where where mutation
is done by adding the difference of two or more solutions in the population to another
one, and crossover is done coordinate by coordinate between the parent and one
mutant.

In most cases, unless otherwise stated, none of the optimizers were tweaked to try to
achieve the best possible results. While it would of course have been possible, the goal
was to compare each optimizer as they came, in their default configuration (or one of their
default configurations if there are many different).

This means that in most cases in the following chapters, the parameters of the optimiz-
ers were:

• (1 + 1)− ES: step-size multiplied by 1.5 in case of success and one-fifth rule
(i.e.division by 1.5

1
4 in case of failure)

• SA-iso: population size λ = 12, parent population size µ = 3, mutation rate for
step-sizes τ = 1√

2N

• SA-aniso: population size λ = 12, parent population size µ = 3, and mutation rate
τglobal =

1√
2N

and τlocal =
1√
2
√

N
.

• SA-Cov: population size λ = 12, parent population size µ = 3, and mutation rates
τglobal =

1√
2N

and τlocal =
1√
2
√

N
with β = 0.0873

• CMA-ES: population size λ = b4+3log(N)c, and parent population size µ = λ/2

• CMSA: λ = 12, µ = 3, τ = 1√
2N

, and a learning rate for the covariance matrix

τC = 1+N(N+1)
2µ

• DE: variant DE/Curr-to-best/1 [Price, 1999] with a population size of 30, and pa-
rameters Cr = .5, F1 = F2 = .8

• NM: α = 1, γ = 2, ρ =−0.5, and σ = .5.

• PSO: population of size 30 organized in a social neighbourhoods of size 10. ω =
1/2log(2), φg = φp =

1
2 + log(2), initial velocity 1 and maximum velocity 3

2 .
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Throughout this thesis, there are many cases where each individual optimizer could
have obtained better performances had their parameters been optimized. The choice how-
ever has been to not do so for a very simple reason: as can be seen in chapters 7 through 10,
one of the important part of this thesis concerns applications to the real world. In many
cases, people who would have to use optimizers to solve their problems wouldn’t be able
to tweak, much less optimize the parameters of the optimizers they plan on using. As such,
the goal of the work done here was to assess the performances of the optimizers in as close
a setting as they would be used later on.

2.1.2 Randomization
Randomization is an important part of optimization. In gradient-based algorithms, it can
be used to change the step-size, to select a subset of variables to optimize or to select
the samples to use. In evolutionary algorithms, randomization is at the heart of the opti-
mizer: it’s through randomization that the current population produces offsprings, which
will lead to an evolution of the population. In fact, randomization is so important in this
process that it’s the only way convergence can be guaranteed for certain forms of robust-
ness [Gelly et al., 2007].

Purely random evolution is not without problems however. As can be seen in Fig-
ure 2.1a, for one hundred points uniformly drawn in [0,1]2, there are some redundancies,
points that are on top of one another. On the contrary, there are regions of space with not
a single point. What if the solution we’re looking for is in one of those spaces? Of course,
we will probably get there at some point. But this is far from optimal.

On the contrary, with points drawn quasi-randomly as proposed
in [Teytaud and Gelly, 2007], we can see in Figure 2.1b that the space is much bet-
ter covered and that there is no overlap. Of course, quasi-random is not random. But
among the quasi-random points generated, we can randomly select one. As can be seen
in Figure 2.1c, while the space is a bit less covered and overlap more of a risk compared
to pure quasi-random, it is still better than pure randomness. That way, we get the
best of both world. Robustness through randomization; low redundancy through quasi-
randomness. Of course, there are other and possibly better options to use quasi-random:
the simplest one could be to shift the selected values by a random vector drawn on [0,1]d

and apply a modulo 1, which has the advantage to preserve low discrepancy, to ensure
low variance [Tuffin, 2004] and to avoid introducing any bias.. Another option could be
to use the scrambling method [Ökten, 2002, Kocis and Whiten, 1997, Matoušek, 1998].
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(c) Random + Quasi-Random
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Figure 2.1 – Comparison of 100 points, drawn randomly, quasi-randomly, or randomly
chosen among 50’000 quasi-randomly generated points.
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2.1.3 Invariances
One of the many properties of optimizers to keep in mind is what their invariances are.
For example, given a specific problem, Newton, BFGS or NEWUOA will exhibit the same
performance on the base problem as in all cases where the problem is translated, rotated
or its variables re-scaled (with the caveat that the initialization may need to be adjusted).

On the other hand, things are more complicated when dealing with compari-
son based algorithms. While they are invariant with regard to an increasing func-
tion [Gelly et al., 2007], translations (if we do not consider the initialization of the al-
gorithms since the probability distribution for the initial points cannot be invariant), things
are more complicated when we are dealing with rotations. PSO [Hansen et al., 2008]
isn’t invariant with regards to rotations, in the case of Differential Evolution it depends
on one of its parameters [Auger et al., 2009] but others are able to deal with rotations,
such as Covariance Matrix Adaptation Evolution Strategy [Hansen, 2008] or Nelder-
Mead [Nelder and Mead, 1965].

A problem is said to be separable if it is possible to optimize each variable in turn by
fixing all the others to a given value. Rotating a separable problem gives a non-separable
problem, hence the importance of invariance with regard to rotation.

2.1.4 Benchmarks
In order to assess the performances and properties of any given optimizer, it needs to be
tested on one or more standardized testbeds. Only by comparing their results in a fair
way is it possible to improve anything. There exist many different testbed, each trying to
propose difficult challenges to the optimizers: ill-conditioning, non-separability, valleys,
non-convexity, multi-modality, etc.

Among them, we can cite BBOB [Hansen et al., 2010a],
CEC2005 [Suganthan et al., 2005], Cute/Cuter/Cutest [Gould et al., 2003] and BB-
Comp1. Despite the many properties tested by those benchmarks, they are mostly
restricted to low dimension (few problems have more than 64 dimensions), but the main
issue is probably the lack of real world problems.

In fact, while there are some real world problems in Cute/Cuter/Cutest, it is by far
the exception. In all other cases, the problems are mathematical functions. More or less
complex, but always mathematical functions. This, of course, is very useful, since it is
easy to implement and easy to know if an optimizer reaches the optimum or not.

There is a risk however in only assessing the performances of optimizers on artificial
benchmarks: can we be sure the properties we look for on an artificial benchmark, such

1The competition site can be found at http://bbcomp.ini.rub.de/

http://bbcomp.ini.rub.de/
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as multi-modality, non-separability, ill-condition, etc. can be found in real-problems in
much the same way? How can we be reasonably sure that we didn’t lose sight of the end
goal? Can we say that those artificial benchmarks give a reasonable estimate of the relative
performances we can expect when we want to design a piece of machinery or a concert
room, to decide on the best trajectory for the space shuttles? The only way to be able to
answer those questions is to experiment on real-world problems, or at the very least, on
benchmarks whose problems are inspired or taken from the real-world.

2.2 Outline & Contributions
Chapter 2 introduces the domain and some of the important notions found throughout this
Ph.D. thesis. After that, Part I will present some new interesting properties of existing al-
gorithms as well as present some improvements. Part II applies existing optimizers as well
as the improvements previously presented to real world problems in order to assess their
performances outside of an artificial benchmark. Finally Part III concludes in Chapter 11
and gives some perspectives in Chapter 12.

2.2.1 Methods
Part I is dedicated to the study of up to now passed by properties or the inclusion of
improvements to existing algorithms. Chapter 3 studies the impact of useless variables
on the optimization process and introduces the notion of invariance with regard to useless
variables. While ill-conditioning is well studied, it has most often only been the case in
low dimension. Chapter 4 will show a new picture in very high dimension.

Chapter 5 will show the impact of using Quasi-Random mutations for CMA-ES as well
as some interesting results involving porfolios, whereas Chapter 6 introduces Progressive
Widening, known as the Sieves Method to statisticians.

2.2.2 Applications
Part II is all about using optimizers on real world problems, or at least inspired by the real
world. Chapter 7 will compare optimizers on a unit commitment problem, where the goal
is to be able to meet a power production demand by using water stocks. On the same type
of problems, chapter 8, inspired by portfolios [Baudis and Posik, 2014, Gagliolo, 2010]
combines two control policies into one to take advantage of the strengths of each one.

Chapter 9 tests the performances of an optimizer modified with Progressive Widening
on a real world inspired benchmark, while Chapter 10 reproduces a naturally evolved
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structure, comparing the performances of several optimizers in the process, including a
quasi-random variant of CMA-ES.



Part I

Methods
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Chapter 3

On the codimension of the set of optima:
large scale optimization with few
relevant variables

This chapter’s content comes from the paper Berthier, V. and Teytaud, O. (2015a). On the
codimension of the set of optima: large scale optimisation with few relevant variables. In
International Conference on Artificial Evolution (Evolution Artificielle), pages 234–247.
Springer. Its abstract was:

The complexity of continuous optimisation by comparison-based algorithms has been
developed in several recent papers.Roughly speaking, these papers conclude that a preci-
sion can be reached with cost Θ(nlog(1)) in dimension n within polylogarithmic factors
for the sphere function. Compared to other (non comparison-based) algorithms, this rate
is not excellent; on the other hand, it is classically considered that comparison-based al-
gorithms have some robustness advantages, as well as scalability on parallel machines
and simplicity. In the present paper we show another advantage, namely resilience to use-
less variables, thanks to a complexity bound Θ(mlog(1)) where m is the codimension of
the set of optima, possibly m� n. In addition, experiments show that some evolutionary
algorithms have a negligible computational complexity even in high dimension, making
them practical for huge problems with many useless variables.

3.1 Introduction
In many, if not most, optimization problems, different variables have different weight in
the evaluation of the fitness function: one such example is the simple ellipsoid f (x) =

33
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106x2
1 +∑

D
i=2 x2

i , where one variable (x1) has a “weight” one million times more important
than the other variables. We say that the condition number of the problem is of one million.

In some cases though, some variables do not only have a far lesser impact on the
evaluation function than others, their impact is nil. By opposition to the other “critical”
variables, they are called “useless”. One such case can be seen when optimizing a neural
network controller with a sparsity criteria where many weights are set as zero: all vari-
ables linked to neurons with those weights have no impact on the fitness function. More
importantly, this phenomenon can be seen in parameter estimation problems or in genetic
programming where many variables may be useless due to some other variables.

This phenomenon can be observed in reinforcement learn-
ing [Sutton, 1996, Ratitch and Precup, 2004, Kearns et al., 1999], evolution of
trees [Zhang et al., 1997], Nash equilibrium [St-Pierre et al., 2011] or Support Vec-
tor Machines [Girosi, 1998]. [Powell, 2008] also mentions very flat directions as a key
point in some optimization problems. An important question is then to know how and
when those useless variables impact the optimization process, and if it is possible to
overcome it.

Notations. We here introduce some notations that will be used throughout this chapter.
d is the dimension of the search space; we consider optimization in D = (0,1)d . m is the
codimension of the set of optima, i.e.m = d− u where u is the dimension of the set of
optima.

x∗ is an optimum of the objective function. The objective function, also known as
fitness function, is f : D→ R. Õ denotes an upper bound within polylogarithmic factors.

Impact of useless variables on algorithms initialization. Some optimizers have a pop-
ulation size linear in the number of variables: Newuoa [Powell, 2008] generates an initial
population of size 2d +1. Newuoa uses this population for building a first approximation
of the Hessian. Nelder-Mead generates an initial population of size d + 1. Only when
this initial population is generated, points which depend on the fitness values are generated
based on the ranking of this initial population. Finite-differences methods will generate an
initial population of size d +1 for estimating the gradient.

For those optimizers, we can easily see that a small number of useless variables is
not an issue, but it soon becomes one as their number increases. In practice it is often
unfeasible: a population of one million individuals of one million double variables requires
tera-bytes of RAM (the exact number depending on double precision on the considered
system).

Many Evolution Strategies have a dimension-independent population size, or at worse
a logarithmically increasing one. However, those that rely on covariance matrix adaptation
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(e.g. CMA-ES, CMSA-ES, etc.) suffer from the same kind of problem: at some point, the
resources needed to store this matrix become insufficient. Other algorithms, not suffering
from either of those problems, can be said to be robust w.r.t. useless variables.

Runtimes in the presence of useless variables. When assessing the performances of an
optimizer, two measures can be used. The first and arguably most used one is to compare
them by the number of function evaluations required to reach the optimum. As it is in-
dependent of implementation, it is easier to use. However, there are huge gaps between
the “internal costs” of different optimization algorithms: this cost can be very high for
algorithms based on covariance matrix adaptation. In fact, it can be so high that those
algorithms are unable to deal with problems of dimension 10’000 or more. On the other
hand, some algorithms (e.g. Differential Evolution, Particle Swarm Optimization, etc.)
can be used with a hundred times more variables without problem.

The second possible measure is to compare algorithms on their runtimes: in some
cases, the number of function evaluations is not important, as long as we can get the result
fast. This however is a difficult measure to use: it is implementation dependent, making
indirect comparisons (e.g. from two different chapters) at best suspect; it does not make
any difference between the time needed to perform a function evaluation, and the time
needed by the algorithm itself. In most cases, the later is supposed negligible compared
to the former. With a high number of variables, this assumption does not hold anymore
in some cases: CMSA-ES and CMA-ES which need to compute the eigen values and
eigen vectors of the covariance matrix require a lot of time, far more than necessary for a
function evaluation.

One possible way to avoid this problem would be to use a diagonal covariance matrix
instead of the full matrix. The goal here however is to assess the impact of a high number
of useless variables on the performances and behavior of standard algorithms, not to find
ways to make it work.

Outline of the chapter. Section 3.2 investigates theoretically the impact of the codi-
mension in evolutionary computation. Section 3.3 discusses existing algorithms from the
point of view of the codimension of the set of optima, and from the point of view of
their invariance properties. Section 3.4 shows experimentally that optimizing in very high
dimensional search spaces is possible for evolutionary computation.
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3.2 Theoretical analysis: impact of the codimension on
the required number of function evaluations

We first summarize the state of the art.We then study lower bounds (Section 3.2.1) and
upper bounds (Section 3.2.2). We first discuss the case of a codimension m equal to the
dimension d, i.e.a set of optimum reduced to a single point. Sections 3.2.1 and 3.2.2 will
discuss the extension of these results to codimension m < d. [Fournier and Teytaud, 2011]
has shown that the number of function comparisons for finding the optimum with precision
ε is Θ(d log(1/ε)) for algorithms based on comparisons. The upper bound on the number
of iterations for reaching a given precision is for some specific comparison-based algo-
rithm on the sphere function and the lower bound of the same quantity is in the case of any
family of functions with unique optimum, when the optimum can be anywhere in the do-
main (optimum uniformly randomly drawn in the domain, or worst case over optima in the
domain), and for a precision (stopping criterion) defined either in terms of distance to the
optimum, or in terms of fitness values, if the fitness values f (x)− f (x∗) = Ω(||x− x∗||α)
for some α > 0.

These results are based on information theory. Basically, a comparison provides one
bit of information, so if we need a precision such that the optimum should be described
with M digits (in binary), we need M comparisons. More generally, a ranking of λ off-
spring provides at most log2(λ !) bits of information, and detailed results for algorithms
using a selection operator of µ individuals over λ can be derived in a similar manner.
[Jamieson et al., 2012] obtained a more general result (including various models of noise),
at the expense of a different dependency in ε; they get: (i) a lower bound on the number of
comparisons Ω(d log(1/ε)) on the number of iterations before reaching an expected pre-
cision ε . (ii) an upper bound on the number of comparisons O(d log(1/ε)2) on the number
of comparisons before reaching an expected precision ε , reached by an explicit algorithm.

3.2.1 Lower bound
The lower bound in [Fournier and Teytaud, 2011] can be adapted to our setting as follows:

Theorem 1 (corollary of [Fournier and Teytaud, 2011]): Consider a fixed δ < 1.
Consider the function fx∗,R,d,m : x 7→ ∑

m
i=1(R(x− x∗))2

i where R is a rotation of Rd and
x∗ ∈D. Consider Fm the set of such functions. Consider a comparison-based algorithm A.
Then, there is a universal constant K (depending on δ only), such that if for all functions in
Fm, with probability at least 1−δ , A outputs x̂ such that ||x̂−x∗|| ≤ ε after n comparisons,
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then
n≥ K×m× log(1/ε).

Proof: Consider F ′m,d the restriction of Fm,d to the identity matrix for R. Consider the
optimization in (0,1)d ×{0}d−m. Then by [Fournier and Teytaud, 2011], the number n
ensuring precision ε is at least K×m× log(1/ε), for some universal K depending on δ

only. F ′m ⊂ Fm, hence a lower bound for F ′m also holds for Fm. This yields the expected
result.

This result shows that the the rate depends on the codimension rather than on the
dimension itself.

3.2.2 Upper bound
The result from [Jamieson et al., 2012], for the upper bound and in the noise-free case, is
as follows:

Theorem 2 (corollary of [Jamieson et al., 2012]): Consider a fixed δ < 1. Consider
the function fx∗,R,d,m : x 7→ ∑

m
i=1(R(x− x∗))2

i where R is a rotation of Rd and x∗ ∈ D.
Consider Fm,d the set of such functions, for a given d and a given m. Then, there is a
universal constant K (depending on δ only) and an optimization algorithm A, such that
for all functions in Fm,d , with probability at least 1−δ , A outputs x̂ such that ||x̂−x∗|| ≤ ε

after n comparisons, where

n = dK×m× Õ(log(1/ε)2)e. (3.1)

Proof: The algorithm in [Jamieson et al., 2012] uses coordinate-wise line search, which
can not be applied directly for our rotated framework. However, as pointed out in
[Jamieson et al., 2012] (Section 5.1: “ an analysis with the same result can be obtained
with [...] chosen uniformly from the unit sphere”), the same result holds with randomly
rotated search directions. The algorithm with randomly rotated search direction applied to
fx∗,R,d,m exactly mimics the behavior of the algorithm on fx∗,R,m,0. This yields the expected
result.

We point out that evolution strategies (usually) also have this invariance property.
However, we did not use evolution strategies in the proof because there is no formal proof
of convergence for every variant of evolution strategies. Nonetheless, [Auger, 2005] is
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close to such a result for one specific version of evolution strategies (up to the sign of the
constant), Theorem 2 shows an upper bound for comparison-based methods, and there
is a big hope that Theorem 2 could be adapted to evolution strategies if the constant
in [Auger, 2005] is proved negative.

The gap with the lower bound is the exponent 2 on log(1
ε
) in Eq. 3.1. We do not

reduce the gap in the general case, but we propose the following partial result, using F ′′m,d =
{ fx∗,R,d,m;∀ix∗i 6= 0,R has all coefficients in {0,1}}.

Theorem 3: Consider a fixed δ < 1. Consider the family F ′′m,d of objective functions.
Then, there is a universal constant K (depending on δ only) and an optimization algorithm
A, using the parameter m as input, such that for all functions in Fm,d , with probability at
least 1−δ , for ε sufficiently small, A outputs x̂ such that ||x̂−x∗|| ≤ ε after n comparisons,
where n = dK×m×O(log(1/ε)).e

Remarks: We prove the upper bound for permutations of coordinates, and not for the
complete set of rotations. We assume that m is known; we conjecture that this assumption
can be removed. The result is for ε sufficiently small.

Proof:

Step 1: consider many algorithms. Consider I = {(i1, . . . , im) ∈ {1, . . . ,d}m; i1 <
i2 < · · · < im}. The cardinality of I is z = d!/(m!(d −m)!). For each i, consider the
algorithm Ai realizing the upper bound in [Fournier and Teytaud, 2011] with probability
1−δ/(3z), for some number of function evaluations w, for any sphere function restricted
to m components i = (i1, . . . , im). By union bound, all the algorithms reach this bound,
with probability at least 1−δ/3.

Step 2: a portfolio of algorithms, and algorithm selection. Consider now the al-
gorithm A running all the Ai concurrently, in a round. However, the algorithm spends half
his computational effort on the Ai which has found the best point up to now, and distributes
the remaining computational power evenly over the other A j. So a round of A is as follows:

(i) Spend one function evaluation on each A j, j ∈ I. This costs z function evaluations.
(ii) Spend z function evaluations on the A j∗ , with j∗ the index of the algorithm which

has proposed the best search point (randomly break ties).
The overall algorithm repeats (i) and (ii) up to the available budget.
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Step 3: eventually, only the right algorithm is selected. Consider the solver Ak∗

where k∗ is the family of the R−1(e j) for j ≤ m. Only this solver, among the A j, can
converge to the optimum. Hence, for ε ′ sufficiently small, Ak∗ always wins the comparison
after it reaches optimality within precision ε ′. The upper bound states that such a precision
is reached with probability at least 1−δ/3 when the number of rounds is at least w.

When this precision ε ′ is reached, j∗ = k∗, and from now on Ak∗ spends half of the
computation budget.

Step 4: the budget. We have seen that Ak∗ spends half of the computation budget,
except possibly for the early rounds (before reaching precision ε ′, see step 3). Let us now
show that Ak∗ spends one fourth of the whole computation budget, when the requested
precision is small enough.

Let us choose ε < ε ′ such that the required number of rounds for Ak∗ to reach precision
ε with probability at least 1−δ/3 is at least twice more (i.e. 2w) than the budget w.Such
an ε exists by the lower bound. With probability 1−δ , when Ak∗ reaches such a precision
ε ,

• the overall number of rounds is at least 2w (by the use of the lower bound, above);

• and during the second half of these ≥ 2w rounds at least one half of the evaluations
have been spent for Ak∗ (by Step 3).

Therefore it has spent at least one fourth of the budget when this number of rounds 2w is
reached.

Step 5: concluding. With probability at least 1−2δ/3, one fourth of the budget has
been devoted to Ak∗ when the number of rounds is≥ 2w. With probability at least 1−δ/3,
Ak∗ has the rate provided by the upper bound. This provides the expected result.

Theorem 2 provides a bound on the runtime, linear as a function of the codimension m,
but quadratic as a function of log(1

ε
). We show in theorem 3 that, for sets of optima with

codimension m aligned with axes, the quadratic dependency in log(1
ε
) becomes linear. We

conjecture that this holds in the general case of codimension m.

3.3 Algorithms & their invariances
Section 3.3.1 discusses invariance in optimization algorithms. Section 3.3.2 presents the
optimization algorithms we consider.
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3.3.1 Old and new invariances
Invariance is a classical consideration in optimization. Let us distinguish several kinds of
invariance (the fifth one is a new kind of invariance in which we are particularly interested
in the present chapter):

(i) Invariance w.r.t. translations is hard to achieve, due to the initialization; a
probability distribution for the initial search point(s) can not be translation invariant.
However, up to the initialization issue, many algorithms are invariant by translations
of the objective function. It is sufficient to prove lower bounds for evolution strate-
gies [Jägersküpper and Witt, 2005, Jägersküpper, 2006].

(ii) Invariance by composition with increasing functions is at the heart of ex-
tensions of these lower bounds to a more general setting, using information the-
ory [Fournier and Teytaud, 2011] - basically, a comparison can provide only one bit of
information, hence there is a limited rate for comparison-based algorithms.

(iii) Invariance w.r.t. rotations does not always hold, as discussed below for various
algorithms. Most algorithms are invariant w.r.t. permutations of indices. Anisotropic
evolution strategies [Beyer, 2001] provide invariance w.r.t. rescaling of variables (up to
the initialization), but not w.r.t rotations.

(iv) Invariance w.r.t. linear transformation (not only rotations) is addressed in e.g.
the Newton method in mathematical programming. It is approximated without expensive
computation of the Hessian in the BFGS [Broyden, 1970, Fletcher, 1970, Goldfarb, 1970,
Shanno, 1970] method. Up to the initialization, black-box counterparts of the quasi-
Newton methods ensure similar invariances [Powell, 2008]. In the field of evolution strate-
gies, the most well known methods which ensure invariance w.r.t. linear transformations
are CMAES [Hansen and Ostermeier, 2003] and CMSA [Beyer and Sendhoff, 2008] both
providing invariance with respect to rotations.

(v) This chapter discusses another kind of invariance: the fact that an algorithm is
invariant w.r.t. addition of useless variables. This invariance is related to the codimension:
when k variables are irrelevant in dimension d, then the codimension is at most d− k.
An algorithm is said to be invariant w.r.t. addition of useless variables if this addition
has no impact on the performances of the algorithm: the best obtained fitness with and
without useless variable is the same, and it is reached after the same number of function
evaluations.

3.3.2 Algorithms used in our experiments, and their invariances
Parameters used for the nine algorithms in our comparison are (with d as the dimension
presented below).

The optimizers used have some invariance properties:
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• CMAES has some invariance properties w.r.t. rotations and transla-
tions [Hansen, 2008], except (as most algorithms) for the initialization which, as
discussed above, can not be translation invariant. CMAES is asymptotically invari-
ant by rescaling of variables. On the other hand, CMAES is not invariant by addition
of useless variables.

• SAiso and SAaniso are not invariant by rotation. They are invariant for rescaling of
variables, up to the initialization.

• CMSA has the same kind of invariances as CMAES. CMSA is the extension of SA
for invariance w.r.t. rotations. The computational cost of CMSA is higher than the
one of SA. As CMAES, it is not invariant by addition of useless variables.

• SAcov is invariant for all invariance criteria discussed here.

• DE is invariant for all invariance criteria discussed here when Cr = 1; but not w.r.t
rotations when Cr < 1.

• (1+1)−ES is invariant for all invariance criteria discussed here.

• NM has the same kind of invariances w.r.t. rotations and translations as CMAES
and CMSA.

• PSO is not invariant for rotations [Hansen et al., 2008].

For all algorithms, the initialization is as follows. Each coordinate of each individual
is randomly drawn according to a Gaussian random variable with zero mean and standard
deviation 6 in order to cover the domain of each function in the BBOB testbed which is
[−5,5]D.

3.4 Experiments
Test cases & criteria. We use the functions from the BBOB test set, and perform exper-
iments with additional useless variables, i.e.we have codimension m = 40, and dimension
d = m+u with u = 100,1000000 useless variables.

Other experiments have been performed with m = 2,3,4,5,8,10,16,20,32,64, and
also with u = 10000; results were in agreement with results presented below with m = 40
and u ∈ {100,10000}.

We consider the expected fitness value (y-axis; the fitness at the optimum is subtracted
as all our algorithms are invariant by addition of a constant to the optimum), for given
computation times (x-axis).
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Figure 3.1 – Expected fitness value w.r.t computation time, for functions f1 to f6 in Bbob,
respectively, in the case of 100 useless variables. A zoomable and colored version is
available at http://www.lri.fr/~teytaud/uv.pdf.

http://www.lri.fr/~teytaud/uv.pdf
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Figure 3.2 – Expected fitness value w.r.t computation time, for functions f7 to f12 in Bbob,
respectively, in the case of 100 useless variables. A zoomable and colored version is
available at http://www.lri.fr/~teytaud/uv.pdf.

http://www.lri.fr/~teytaud/uv.pdf
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Figure 3.3 – Expected fitness value w.r.t computation time, for functions f13 to f18 in
Bbob, respectively, in the case of 100 useless variables. A zoomable and colored version
is available at http://www.lri.fr/~teytaud/uv.pdf. Confidence intervals are displayed
for one point out of four; they are very small and almost invisible.

http://www.lri.fr/~teytaud/uv.pdf
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Figure 3.4 – Expected fitness value w.r.t computation time, for functions f19 to f24 in
Bbob, respectively, in the case of 100 useless variables. A zoomable and colored version
is available at http://www.lri.fr/~teytaud/uv.pdf. Confidence intervals are displayed
for one point out of four; they are very small and almost invisible.

http://www.lri.fr/~teytaud/uv.pdf
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Figure 3.5 – Expected fitness value w.r.t computation time, for functions f1 to f6 in Bbob,
respectively, in the case of 10000 useless variables. A zoomable and colored version is
available at http://www.lri.fr/~teytaud/uv.pdf.

http://www.lri.fr/~teytaud/uv.pdf
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Figure 3.6 – Expected fitness value w.r.t computation time, for functions f7 to f12 in Bbob,
respectively, in the case of 10000 useless variables. A zoomable and colored version is
available at http://www.lri.fr/~teytaud/uv.pdf.

http://www.lri.fr/~teytaud/uv.pdf
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Figure 3.7 – Expected fitness value w.r.t computation time, for functions f13 to f18 in
Bbob, respectively, in the case of 10000 useless variables. A zoomable and colored version
is available at http://www.lri.fr/~teytaud/uv.pdf.

http://www.lri.fr/~teytaud/uv.pdf
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Figure 3.8 – Expected fitness value w.r.t computation time, for functions f19 to f24 in
Bbob, respectively, in the case of 10000 useless variables. A zoomable and colored version
is available at http://www.lri.fr/~teytaud/uv.pdf.

http://www.lri.fr/~teytaud/uv.pdf
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The x-axis is computation time, because for large number of variables the internal
computation time of considered algorithms is not negligible. In fact, many algorithms
could not run at all with such high dimension.

We did not permute coordinates, so that the useless variables are always the last ones.
However, all considered algorithms are invariant by permutation of variables, so that this
is not an issue.

Results. In all results, confidence intervals are presented for one point out of four; they
are almost invisible because they are very small. Results are presented in Fig. 3.1, 3.2,
3.3, 3.4 for 100 useless variables, and in Fig. 3.5, 3.6, 3.7, 3.8 for 10000 useless variables.

Roughly speaking, many algorithms can compete for dimension 140 (codimension 40,
100 useless variables), though the simple (1+ 1)-ES and DE perform best overall (recall
that we consider time on the x-axis, and not the number of evaluations). With 10000
useless variables, only fast algorithms (DE/SA/SAiso) can compete; DE performs best
in case of ill-conditioning; SA performs well in case of ill-conditioning and no rotation.
Algorithms which are not presented in the comparison are those who could not provide
results in the given time limit.

3.5 Conclusion
This chapter emphasizes useless variables as a key for understanding the practical behavior
of evolutionary algorithms on high dimensional problems. On the theoretical side, we
extend known runtime analysis from the case of a set of optima with dimension 0 to a set of
optima with dimension > 0 for quadratic problems with full rank, leading to a codimension
m possibly much lower than the dimension d. The lower bound extends the known lower
bound, from dimension = codimension to more general cases. The upper bound holds for
permutation of coordinates and not for the whole family of rotations (Theorem 3), or, in
the case of full rotations, with a quadratic dependency in the log-precision (Theorem 2).

Practically speaking, whereas many methods rely on a linear number of function eval-
uations (typically just for the initialization), evolutionary algorithms use a logarithmic or
constant initial population size.

In addition, an algorithm such as DE or SA or SAaniso or the simple (1+1)-ES will
just ignore unimportant variables and optimize the remaining ones.

Therefore, evolutionary algorithms can handle very large problems, provided that the
problem has a a special structure - in particular, when many variables are useless; and this
is far from being trivial as some state of the art optimization methods such as Newuoa,
CMAES or CMSA can not do that. In fact, a more general case might be true - when, up
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to a rotation, many variables are useless; in particular, DE is invariant by rotation when
cross-over is disabled (i.e.Cr=0), and (1+1)-ES is invariant by rotation, so that rotations
of problems with many useless variables can be tackled. Importantly, rotations of prob-
lems with useless variables are not problems with useless variables - therefore, our results
show that some high-dimensional problems can be tackled whenever they have no useless
variables, but are rotations of problems with useless variables.

Experimentally, we successfully optimized BBOB functions with up to a million of
useless variables. Unsurprisingly, for algorithms which are invariant w.r.t. useless vari-
ables, the best fitness for a given number of evaluations is exactly the same as with no
useless variables. On the other hand, results become worse for algorithms which do not
have this invariance and can even become impossible to obtain in a timely fashion due to
computation time constraints.

Further work. (a) On the mathematical side, we conjecture that Theorem 3 also holds
with Fm instead of F ′′m , i.e.with full rotations and not only with permutations of coordinates.

(b) On the experimental side, we might study the same question empirically: what
happens with random rotations of the BBOB testbed embedded in a large set of useless
coordinates. For algorithms which are invariant per rotation (not DE, not PSO) this does
not make any difference.

(c) Adaptive methods for choosing parameters might be tested for PSO
or DE [Yu and Zhang, 2011, Liu and Lampinen, 2005, Poaı́k and Klema, 2012,
Brest et al., 2006] as they could maybe handle better the extreme size of our prob-
lems.

(d) We tested the addition of completely useless variables. In fact, since full separa-
bility and fully rotated problems are extreme cases, we might consider variables with very
low but not zero impact. We might use tricks similar to those used in the Cute testbed for
partial separability [Gould et al., 2003].

(e) Recently, an effort has been made for developing real world test functions in the
evolutionary computation community [Gallagher, 2016]. This provides an example of test
case in which the real world decided the level of separability and the level of useless
variables in a test case. Extending [Gallagher, 2016] to a high dimension case might be a
good experiment.



Chapter 4

Large scale ill conditioned functions:
when criteria change the whole picture

4.1 Introduction: optimization for artificial intelligence
applications

When complex simulators are involved in weather or power systems for example, the
gradient is not necessarily available. To overcome this difficulty, we then have the choice
between reducing the number of parameters, and/or finding tools for high-dimensional
black-box optimization. These problems may be partially separable and/or ill-conditioned.
We will here focus on ill-conditioned problems.

Various algorithms, such as SA-ES, CMA-ES and CMSA-ES have been proposed
to handle ill conditioning in evolutionary continuous optimization [Rechenberg, 1973b,
Hansen and Ostermeier, 2003, Beyer, 2001, Beyer and Sendhoff, 2008]. We here compare
some of the main evolutionary algorithms methodologies on ill conditioned functions, in
the case of high-dimensional problems with partial separability. In particular, we extend
the analysis in [Hansen et al., 2008, Auger et al., 2009] in the direction of higher dimen-
sions, partial separability, and a set of different criteria..

The goal is to show that ill conditioned functions, in a partially separable world, lead
to very different results depending on simple things: criteria (often overlooked), partial
separability (there is an entire world between full separability and complete rotational
invariance), taking into account the computational cost or not.

52
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Figure 4.1 – Ellipsoid function (not rotated) in dimension 100 (top) and slightly rotated
ellipsoid function in dimension 100 (bottom). Algorithms good for ill-conditioned func-
tions perform well, including those working with full covariance such as CMA-ES and
CMSA-ES. There is not much rotation, hence the good performance of anisotropic SA
and PSO which can tackle rescaling of variables. Overall, DE performs best.
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4.2 Experiments
Second order approximations of difficult smooth functions, quadratic ill conditioned func-
tions have been widely used as a testbed. This is not a violation of the non-linear nature
of the test, because our tests are based on comparison-based algorithms; therefore, a wide
family of non-quadratic functions are handled as well - all functions with same-center el-
lipsoids as level sets are concerned. For example, [Auger et al., 2009] considers ellipsoid
functions raised to some exponent, which is deceptive for Newuoa [Powell, 2008] due to
its usage of fitness values (and not only comparisons), but does not disturb our algorithms
here.

In our experiments, in order to have both ill-conditioning and variable levels of sepa-
rability, we used some functions and three optional rotation schemes.

4.2.1 Test functions
The functions we used in our experiments are the ellipsoid function fe, the cigar function
fc and the Schwefel function such that:

fe(x) =
N

∑
i=1

α
i−1
N−1 x2

i

fc(x) = (x2
1)+106

N

∑
i=2

x2
i

Schwe f el(x) =
N

∑
i=1

i

∑
j=1

x2
j

In the general case for fe we have α = 106, which gives us an ill-conditioned function,
and the Schwe f el function is naturally ill-conditioned in high dimension. We also use the
special case of fe with α = 1, which is the sphere function fs(x) = ‖x‖2

2. This allows us
to have a baseline, not ill-conditioned. For all algorithms, each coordinate of each initial
individual in the population is randomly drawn according to a Gaussian random variable
with zero mean and standard deviation 1, on a domain of [−10,10]D

4.2.2 Rotations
To obtain different levels of separability, we considered three different rotation schemes,
plus of course no rotations at all. The first and simplest one is the pair-wise rotation, where
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Figure 4.2 – Slightly rotated ellipsoid function in dimension 100, 1000. The best algorithm
depends on the budget and dimension; (1+1)-ES is surprisingly strong, DEnc, DE, PSO,
also perform well. Standard deviations are plotted but so small they are barely visible.
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Figure 4.3 – Slightly rotated ellipsoid function in dimension 10000, 100000. The best
algorithm depends on the budget and dimension; (1+1)-ES is surprisingly strong, DEnc,
DE, PSO, also perform well. Standard deviations are plotted but so small they are barely
visible.
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each pair of two axes is rotated by a 45 degrees angle such that f2 = f (R(x)) where

R =


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2


.

This type of rotation, by just mixing two variables together, gives a low level of non-
separability. It is quite fast, and doesn’t use any matrix whatsoever, allowing us to use it at
any desired dimension.

A more complex rotation, called sparse rotation, is a generalization to random angles
of the pair-wise rotation: for i ∈ {1, · · · , N

2 }, given Pi a randomly drawn permutation of
indices, Ri is the composition of randomly drawn rotations for each pair of axes (i.e.1 and
2, 3 and 3, etc.), we define fsparse = f ◦R1 ◦P1 ◦ · · · ◦R N

2
◦PN

2
. Each variable i is therefore

mixed with approximately 2d
√

log(N)e other variables.
Finally, we have the full rotation, where fR = f (R f x), with R f being uniformly drawn

in the rotations space. This gives us a fully non-separable problem.
By applying each of those rotations to the different functions, we are able

to define functions with different levels of separability and ill-condition (e.g.
ellipsoid2,cigarsparse,ellipsoidR, etc.)

4.2.3 Invariances
In the white-box case, using the Hessian and gradient, the Newton algorithm is in-
variant per translation, rotation, rescaling of variables, except for the initialization.
BFGS [Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, Shanno, 1970] has similar prop-
erties with only the gradient, and NEWUOA [Powell, 2008] has similar properties with
gradient and Hessian approximated thanks to successive objective function values. We
now discuss invariances for comparison-based optimization algorithms, which are also
invariant for compositions with monotonic functions.

It is well known that PSO is not invariant for rotations [Hansen et al., 2008]. But in
the present chapter, we do not consider only full rotation. Full rotation is extremely costly
and fully destroys separability; it is nonetheless an interesting testbed, but the point is the
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present chapter is to investigate what is going on with moderate rotations of variables,
i.e.partial separability.

DE is invariant or not, depending on the choice of the Cr parame-
ter. [Auger et al., 2009] concluded that for their test case, Cr = 1 (full invariance)
was the best choice. We will include this in our test, but due to partial separability, it
makes sense to also keep Cr < 1 in the comparison.

[Auger et al., 2009] compared algorithms from the point of view of a limited dimen-
sion, high ill conditioning, full rotation, and neglecting the internal computation time of
algorithms - only numbers of evaluations are considered there. In contrast, we compare the
performance of various algorithms in high-dimension, with partial separability and taking
into account the internal computation time of algorithms, by comparing the performances
of the different algorithms not only based on the number of evaluations performed, but
also by the elapsed time.

4.2.4 Experimental results

Numerical results

The ellipsoid function. We first consider the ellipsoid function (Fig. 4.1). In dimension
100, for small budget, DE performed best; with higher budget, PSO becomes better; then it
is outperformed by Nelder-Mead, later joined by CMSA-ES and more surprisingly (1+1)-
ES. In higher dimension, PSO and DE get the best performances.

The slightly rotated ellipsoid function. We now slightly rotate the ellipsoid function,
function f2r; Fig. 4.2 and4.3. In dimension 100, the best results for small budgets are
obtained by DE and PSO, but they are quickly outperformed by Nelder-Mead and then
SA with isotropic mutations, and later joined by CMSA-ES and the simple (1+ 1). In
high-dimension (1000 and 1000000) PSO outperforms all other algorithms by far.

The sparsely rotated ellipsoid function. We now consider the sparsely rotated ellip-
soid function (Fig. 4.11 and4.11). PSO, DE and Nelder-Mead perform well in moderate
dimension. In high-dimension, PSO still performs well, but with larger budget it is clearly
outperformed by DE, the only algorithm which managed to benefit from second order
information in spite of the large dimension.

An interesting fact is that (1+1)-ES comes back as the best algorithm, in spite of its
simplicity; (1+1)-ES is not invariant by rescaling of variables, but it is invariant per rota-
tion and it is extremely fast, and succeeds with this degree of rotations which is, contrarily
to the “slightly” rotated ellipsoid, too hard for most algorithms.
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The fully rotated ellipsoid function. We now fully rotate the ellipsoid function, func-
tion ellipR; Fig. 4.4. In dimension 100, the best results for small budgets are obtained
by DE and PSO, but they are quickly outperformed by Nelder-Mead and then SA with
isotropic mutations, and later joined by CMSA-ES and the simple (1 + 1). In high-
dimension (1000 and 1000000) PSO outperforms all other algorithms by far.

Schwefel function. Fig. 4.5 and4.6 presents results for the Schwefel function in various
dimensions; NM performs best in small dimension, and then it is outperformed by CMA-
ES (dimension 100); in high dimension (1+ 1)-ES is the best algorithm but PSO, DE,
DEnc and SAcov have interesting results and SA-iso is good for a fast approximation - but
eventually fails probably because of isotropy.

Cigar function. Finally, Fig. 4.7 and4.8 presents results for the Cigar function with
various rotations, in dimension 1000.

Results are then reproduced in dimension 10000. The (1+1)-ES performs remarkably
well.

Criteria

Various criteria can be used when considering a minimization problem:

• A simple criterion, when an algorithm output an approximate x̂ of the optimum x∗

of an objective function f , is the simple regret f (x̂)− f (x∗). This can be averaged
over multiple runs.

• Another criterion is the probability of f (x̂)− f (x∗) < ε for some ε . The choice of
ε is important and it is not invariant by rescaling of the optimization algorithm; for
example, various optimization testbeds have used ε << 1 (such as ε = 10−9) for
functions with values of order 107; this is a very asymptotic behavior, and sensitive
to machine precision.

• The previous criterion can be adapted (SP1, Expected Running Time - ERT, both
in [Auger and Hansen, 2005]) without deeply modifying the nature of results.

• Less common criteria include ||x̂− x∗||.

Besides criteria, important experimental conditions include the dimension, the tuning of
the algorithms under analysis, the translation or rotation of the objective function.

In this work, we will focus on the first simple criterion: average regret as a function of
time.
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Figure 4.4 – Fully rotated ellipsoid function in dimension 1000 and 10000. Somehow
surprisingly, the simple (1+1) performs best, though in small dimension CMA-ES might
catch up. In high dimension, sophisticated algorithm pay the price of their computational
complexity - contrarily to many published chapters, we take into account computation
time. Standard deviations are plotted but so small they are barely visible.
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Figure 4.5 – Schwefel function in dimension 10, 100. Somehow surprisingly, the simple
(1+1) performs best, though in small dimension NM is best and CMA-ES might catch up.
In high dimension, sophisticated algorithm pay the price of their computational complexity
(contrarily to many published chapters, we take into account computation time). Standard
deviations are plotted but so small they are barely visible.
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Figure 4.6 – Schwefel function in dimension 1000 and 10000. Somehow surprisingly,
the simple (1+ 1) performs best, though in small dimension NM is best and CMA-ES
might catch up. In high dimension, sophisticated algorithm pay the price of their compu-
tational complexity (contrarily to many published chapters, we take into account compu-
tation time). Standard deviations are plotted but so small they are barely visible.
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Figure 4.7 – Cigar function, in dimension 1000, with no rotation (top) and pair-wise rota-
tion (bottom). DE becomes better and better with less rotations. Still, (1+1)-ES performs
best. Standard deviations are plotted but so small they are barely visible.
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Figure 4.8 – Cigar function, in dimension 1000, with sparse rotation (top) and full rotation
(bottom). DE becomes better and better with less rotations. Still, (1+ 1)-ES performs
best. Standard deviations are plotted but so small they are barely visible.
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Figure 4.9 – Cigar function, in dimension 10000, with no rotation (top) and pair-wise
rotation (bottom). The simple (1+ 1)-ES is the best performing algorithm; except for
small budget where PSO performs well. Standard deviations are plotted but so small they
are barely visible.
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t

Figure 4.10 – Cigar function, in dimension 10000, with sparse rotation (top) and full ro-
tation (bottom). The simple (1+1)-ES is the best performing algorithm; except for small
budget where PSO performs well. Standard deviations are plotted but so small they are
barely visible.
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Figure 4.11 – Sparsely rotated ellipsoid function in dimension 100, 1000. CMA-ES per-
forms very well in small dimension. Standard deviations are plotted but so small they are
barely visible.
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Figure 4.11 – Sparsely rotated ellipsoid function in dimension 10000, 100000. We see that
in dimension 100000, (1+1)-ES surprisingly outperforms its competitors for sufficiently
large time. Standard deviations are plotted but so small they are barely visible.



CHAPTER 4. ILL CONDITIONED FUNCTIONS 69

4.3 Conclusion

DE, PSO and (1+ 1)-ES performed well in many settings; PSO for small budget, DE
for moderate separability, and (1+ 1)-ES as the most stable algorithm. Full covariance
adaptation provides interesting results when it can be applied with a reasonable cost, i.e.
moderate dimension. CMA-ES is excellent for handling numerical precision issues, reach-
ing precisions that other algorithms just can’t reach.

We used log scales on the y-axis; it must be pointed out that this leads to pictures in
favor of algorithms which are efficient late in the runs; in many cases, PSO or DE was
the best for dividing the regret (i.e. the difference with the optimum fitness) by 10 - this
is visible only for careful readers on the graph, whereas without log the figures would
emphasize this kind of quick progression towards approximate solutions.

Portfolio algorithms. This might be the most important and practical conclusion indeed.
(1+ 1)-ES is computationally very fast and can work when nothing else works; full co-
variance algorithms such as CMA-ES and CMSA-ES can handle highly ill conditioned
problems in small scale; PSO is excellent when there is enough separability; DE outper-
forms PSO when there is not enough separability; NM is excellent when the cost of the
initialization does not make it intractable (i.e.when the dimension is small enough that
it’s possible to store the population in the RAM, and thus to apply NM on the considered
problem). A portfolio [Baudis and Posik, 2014] of those five algorithms can therefore get
the best of them, with just a factor five in the computation time (possibly discarded by
parallelization!); such a portfolio might be the most robust and practical solution. Since
all our graphs have x-axis in log-scale, a factor 5 does not change much in the results.

Some take-home messages:

• Do not overlook simple criteria such as the average obtained fitness values. Just
focusing on (variants of) the probability of reaching precision 1e−9 mainly selects
algorithms which are good at handling numerical problems.

• Do not overlook computation time and high dimension, which might be negligible
for small scale problems but becomes a big deal in dimension 1000 and crippling
in dimension 1000000, typically for algorithms which maintain a full covariance
matrix.

• Do not overlook partial separability; fully rotating problems might not be a better
model than full separability. Moreover, fully rotating induces huge computation
times, making the internal cost of algorithms artificially negligible and pushing re-
search towards small scale problems.
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• PSO, DE and the simple (1 + 1)-ES perform well in many cases, including full
rotation, when the dimension is large and the computation time is taken into account
and not only the number of iterations, or when the rotation is moderate. They are
weak at finding the solution up to 1e− 9 though, when the budget is large enough
for allowing this.

Further work
It would be interesting to add more degrees in the sparsity of rotations / separability of
functions (increasing the non separability and/or the computational cost of the objective
function). A small but non-zero coupling between different groups of variables could be
included [Gould et al., 2003]. Finally, quadratic forms extracted from real problems, using
the Hessian at the optimum, could be used for generating real world partial separability.



Chapter 5

Experiments on the CEC 2015 expensive
optimization testbed

This chapter’s content comes from the paper Berthier, V. (2015b). Experiments on the cec
2015 expensive optimization testbed. In Evolutionary Computation (CEC), 2015 IEEE
Congress on, pages 1059–1066. IEEE, a paper presented as an entry to the Expensive
Competition. Its abstract was:

We experiment various simple classical algorithms on the expensive optimization
testbed from Cec2015. CMA performs best, in particular its DCMA flavor using quasi-
random numbers. Nelder-Mead also performs well. Portfolios performed well for the
given budget (500 evaluations in dimension 10 and 1500 evaluations in dimension 30),
but not the half budget, which is also taken into account in the competition, hence we did
not include them in the final version.

5.1 State of the Art
[Chen et al., 2014] proposed a testbed for expensive optimization. This means that the
number of fitness evaluations is limited. In this case the budget is 500 in dimension 10 and
1500 in dimension 30. The test-case is also designed for difficult objective functions, with
2 unimodal and 13 multimodal functions including hybrid and composition functions.

[Baudis and Posik, 2014] proposed the use of portfolio methods in noise-
free optimization. Portfolio are generic tools for combining optimization al-
gorithms, most widely used in combinatorial optimization, but also appear-
ing in noisy continuous optimization[Cauwet et al., 2014] and noise-free continuous
optimization[Baudis and Posik, 2014].

We also use quasi-random numbers in mutations, as proposed in

71
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[Teytaud and Gelly, 2007]. Basically, it makes algorithms slightly better on average, with
a different distribution, as detailed later.

The computation time in portfolio algorithms can be simply divided equally
among solvers, or not[Pulina and Tacchella, 2009]. [Gagliolo and Schmidhuber, 2005,
Gagliolo and Schmidhuber, 2006] propose 50% for the best solver, 25% for the second
best, and so on. One might also run all solvers during e.g. 25% of total time, and then
keep 75% of the budget only for the best performing one. This is the approach we keep
for all our portfolio experiments in this chapter.

Surrogate models are classical for expensive optimization[El-Beltagy et al., 1999];
population-based methods have also been widely used[Poloni and Pediroda, 1997], as
well as derivative-free methods as expensive optimization is often due to heavy sim-
ulations without gradient[Booker et al., 1999]. Gaussian processes are also widely
used as their internal cost becomes negligible in front of the cost of the objective
function[Jones et al., 1998, Villemonteix et al., 2009]. We consider mostly population-
based optimization; the comparison with the results of other methods will be outputs of
the session, comparing various methods on this same testbed.

5.2 Restart / Portfolio
[Baudis and Posik, 2014] reported excellent results for sophisticated methods, and indeed
also good stable results with simple methods. We decided to focus on simple methods. In
all our experiments, the portfolio equally divides the computation time among the algo-
rithms during 25% of the budget, and then uses only the solver which provided the best
search point during the remaining 75% of the budget. CMA/CMA/CMA for example refer
to running 3 instances of CMA during 25% of the budget, and then the best performing
one during the remaining 75%.

5.3 Experiments
In the following sections, we first compare several classical algorithms, before tuning the
best one and adding quasi-random numbers.

The initialization of the population of each algorithm is uniform in the domain
[−100,100]D, for each algorithm.
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Figure 5.1 – Optimizers results on the expensive benchmark in dimension 10
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Figure 5.2 – Optimizers results on the expensive benchmark in dimension 30
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5.3.1 Preliminary experiments: comparing various algorithms
Figures 5.1 and 5.2 show the results obtained by the standard algorithms on each function
of the testbed in dimension 10 and 30 respectively. From this, we can with no surprise that
CMA performs really well on most problems except on functions 4 and 5. It is also inter-
esting to note that the results obtained by NM are often really good and able to compete
with CMA on most functions, even getting better results in some cases.

Figures 5.3 and 5.4 show the results obtained by 9 different portfolios. Despite the
lower budget allocated to a single optimizer, we can see that some of those portfolios
are still able to get very good results when they include an algorithm well suited for the
considered function. More importantly, we can see from functions 4 and 5 that while
CMA isn’t able to get good results by itself, when allowed to restart it becomes much
better. While CMA takes advantage of the restarts - showing that it’s very dependent on
the initialization - it’s much less obvious in some cases such as for PSO for example.

While the results of CMSA, DE and PSO cannot be described as good, a portfolio
composed of those three algorithms (designed as ’4’ on the plots), is consistently able to
achieve better results. This is very clearly illustrated on function 7 in dimension 30, where
neither CMSA, DE nor PSO are able to get good results, while the portfolio is able to
compete with the better ones.

5.3.2 Tuning, and adding quasi-random numbers
In order to see the impact of using Quasi-Random mutations on CMA, we performed tests
on multiple variants of CMA: the initial step-size was set at 1 or 40 (denoted as BI), by
setting the step-size lower-bound to 0.01 or 0.0001 (denoted as MS), and in addition to
the normal population size, we tested with half the normal population size (denoted as
SP) or twice the normal population size (denoted as BP). Finally, we also tested the elitist
strategy (denoted as +). All variants where tested as is, and with Quasi-Random variations
(denoted as QR).

As can be seen on Figure 5.5, with QR mutations, while the results are sometimes
worse than normal, most of the time they are better. In higher dimension as seen in Fig-
ure 5.6, the QR implementations take a very clear advantage over the vanilla version.

As can be seen in Table 5.4, this improvement of QR is in fact found on each of the
variants we tested.
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Figure 5.3 – Portfolio results on the expensive benchmark in dimension 10. The name of
the portfolios where removed to keep the legend clear. Portfolios are: 1: CMA/CMA, 2:
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Figure 5.4 – Portfolio results on the expensive benchmark in dimension 30. The name of
the portfolios where removed to keep the legend clear. Portfolios are: 1: CMA/CMA, 2:
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Figure 5.5 – Two CMA variants results on the expensive benchmark in dimension 10. QR
= 0 denotes the Vanilla version, while QR = 1 is the version with Quasi-Random mutations.
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Figure 5.6 – Two CMA variants results on the expensive benchmark in dimension 30. QR
= 0 denotes the Vanilla version, while QR = 1 is the version with Quasi-Random mutations.
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F Best Worst Median Mean Std
1 3066.821720 27350.414967 10303.331393 13532.288748 8015.631303
2 17946.244786 75601.839181 38585.782508 39525.522486 15424.252191
3 1.010692 15.066042 6.772117 7.342122 4.307489
4 130.551411 2754.489295 2213.214380 1919.328740 798.520928
5 0.428649 4.694434 3.378933 3.178128 1.239418
6 0.257797 0.816413 0.500261 0.494573 0.153775
7 0.288968 1.247096 0.495755 0.590027 0.302133
8 1.621837 6.750625 4.885070 4.552976 1.573973
9 3.353918 4.595982 4.222199 4.156896 0.340649

10 11346.738112 2450865.764312 263107.148179 556046.674992 730726.425838
11 2.187530 40.353662 6.419068 8.149008 7.903810
12 31.308448 610.640458 307.249692 322.513038 153.876607
13 316.642541 333.405878 320.124508 321.868712 4.217949
14 186.334995 210.410137 202.610188 201.771257 6.009089
15 10.511656 528.958620 408.019290 340.349673 170.162921

Table 5.1 – Errors obtained by CMASPHI-QR in 10D

5.4 CEC 2015 criteria
The CEC 2015 testbed uses an average between the mean and the best fitness, at the end of
the budget of 1500 evaluations (in dimension 30) and 500 evaluations (in dimension 10),
and also at half budget.

The lowest errors we were able to obtain with one variant of CMA-ES (termed
CMASPHI-QR in the following sections) are reproduced in tables 5.1 and 5.2. The corre-
sponding complexities are shown in tables 5.3a and 5.3b.

5.5 Other results
In this section, we present several results for all tested algorithms. We reproduced each
run 10 times; the standard deviation provided in this section is the standard deviation of
the score; i.e. they correspond to the variability of one run. Thanks to the averaging over
10 runs, our results are more significant.

Table 5.4 synthesizes the results of different variants of CMA-ES. HI refers to 80 as an
initial step-size. MI refers to 20 as an initial step-size. SP refers to small population size
1
2(3log(N)+4) instead of 3 log(N)+4. BP refers to big population size 2(3log(N)+4).
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F Best Worst Median Mean Std
1 4410.546684 2433205.172072 9909.121145 203114.035298 611688.572924
2 73838.778110 155921.584174 118489.287353 117191.061224 21987.789028
3 13.348001 37.062026 20.819096 21.305606 5.062646
4 2553.626647 9575.708781 8591.667368 7588.016926 2185.679036
5 4.662556 6.673121 5.284304 5.437349 0.591955
6 0.373039 1.045966 0.659812 0.685387 0.235695
7 0.323589 1.313365 0.535025 0.636289 0.286018
8 6.749165 56.118232 22.244325 22.911469 10.927353
9 13.241557 14.225287 13.976680 13.848334 0.303010

10 610222.482957 8220937.807046 2549366.836787 2774403.117855 2212879.888269
11 17.995147 88.531156 22.161005 27.828859 19.823562
12 224.026689 1078.687135 640.246067 671.996207 282.541119
13 354.170628 400.510809 376.774443 377.075234 11.912947
14 218.364928 271.850932 243.197289 245.710839 15.669614
15 600.342406 887.127952 771.879600 758.132119 79.104475

Table 5.2 – Errors obtained by CMASPHI-QR in 30D

(a) Computational Complexity for best results
in 10D

Func. T̂1/T0
1 5.20045e-01
2 2.61135e-01
3 1.05740e+00
4 2.81510e-01
5 5.36625e-01
6 3.41910e-01
7 3.59610e-01
8 3.36335e-01
9 2.66570e-01

10 2.80205e-01
11 4.34245e-01
12 3.10260e-01
13 2.94360e-01
14 3.13660e-01
15 1.13885e+00

(b) Computational Complexity for best results
in 30D

Func. T̂1/T0
1 1.25175e+00
2 1.17270e+00
3 8.35025e+00
4 1.27570e+00
5 3.27215e+00
6 1.22645e+00
7 1.24210e+00
8 1.29370e+00
9 1.15715e+00

10 1.46540e+00
11 2.71990e+00
12 1.56960e+00
13 1.54560e+00
14 1.67210e+00
15 8.83170e+00
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Nelder-Mead variants are shown in table 5.5. For Differential Evolution (Table 5.6),
the best performing one is a classical current to best with reasonably standard parametriza-
tion. PSO results are shown in table 5.7. Unless stated otherwise, the initial velocity is 1
and the maximum velocity MV is 1.5.

5.6 Conclusion
Without surprise, when comparing basic algorithms on this testbed, CMA-ES was the best
performing one. Perhaps more surprisingly, NM was able to get very good results on
most problems and was able to compete against CMA-ES. DE, CMSA and PSO however
suffered a lot from the short budget, and were never really able to get good results.

Despite the small budget, we can already see that portfolios (or restarts on individual
algorithms) are competitive and able to quickly select the best performing optimizer on a
given problem, without too much cost. In some cases, we even observed that a portfolio
of three algorithms performing poorly on a problem was able to get better results.

On this testbed, we were able to validate the use of Quasi-Random mutations for CMA-
ES, since usually - though not on all functions - DCMA outperformed CMA, with a clear
overall improvement, the best overall variant being one with Quasi-Random mutation.
When looking at each function in each dimension, we also noticed that in every case, the
best performing variant was one with Quasi-Random mutation.

We did not include mirroring[Teytaud et al., 2006]. We did not investigate sophisti-
cated memmetic algorithms on top of CMA. We did not experiments on dimensions other
than those proposed in the Cec2015 expensive optimization testbed. Portfolios methods
were tested, and validated for the total budget, but not for the mid-budget criterion.
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CMA Variants Mean STD Median Rank
CMA+ 5.78e8 1.60e8 5.34e8 20

CMA+QR 4.54e8 2.90e7 4.59e8 15
CMABI+ 5.99e8 1.81e8 5.41e8 22

CMABIQR 4.52e8 2.81e7 4.46e8 14
CMABI 6.17e8 1.94e8 5.80e8 24

CMABISS+QR 4.54e8 2.90e7 4.59e8 15
CMABISS+ 6.06e8 1.87e8 5.38e8 23

CMABISSQR 4.51e8 2.70e7 4.49e8 13
CMAMI+ 5.79e8 1.73e8 5.98e8 21

CMAMI+QR 4.55e8 2.83e7 4.59e8 18
CMASPBI+ 7.20e7 1.98e7 7.69e7 10

CMASPBI+QR 5.54e7 8.35e6 5.38e7 6
CMABPBI+ 5.39e9 6.23e8 5.40e9 27

CMABPBI+QR 4.30e9 1.98e8 4.24e9 25
CMABPBI 5.72e9 1.20e9 5.62e9 28

CMABPBIQR 4.30e9 1.98e8 4.24e9 25
CMASPBI 8.08e7 2.52e7 7.66e7 12

CMASPBIQR 5.21e7 3.47e6 5.20e7 1
CMASPBISS+ 7.39e7 2.66e7 6.42e7 11

CMASPBISS+QR 5.24e7 3.55e6 5.26e7 5
CMASPBISS 6.57e7 1.99e7 6.97e7 8

CMASPBISS+QR 5.21e7 3.47e6 5.20e7 1
CMASPMI+ 6.96e7 1.56e7 6.76e7 9

CMASPMI+QR 5.21e7 3.47e6 5.20e7 1
CMASPHI+ 6.53e7 1.80e7 6.34e7 7

CMASPHI+QR 5.21e7 3.47e6 5.20e7 1

Table 5.4 – Results of different variants of CMA-ES
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NM Variants Mean STD Median Rank
α = 1,γ = 2,ρ =−.5,σ = .5 1.11e10 5.16e9 1.00e10 2
α = .8,γ = 2,ρ =−.5,σ = .5 3.27e10 1.16e10 2.98e10 5
α = 1,γ = 2,ρ =−.75,σ = .5 1.13e10 6.51e9 9.91e9 3
α = 1,γ = 2,ρ =−.5,σ = .75 1.06e10 5.41e9 9.72e9 1

α = 1.5,γ = 3,ρ =−.25,σ = .25 3.55e10 1.28e10 3.26e10 6
α = .5,γ = 1.5,ρ =−.75,σ = .75 9.84e10 1.02e10 1.00e11 7

Table 5.5 – Results of different variants of Nelder-Mead

DE Variants Mean STD Median Rank
DE/curr− to−best/1
f1 = .8, f2 = .8,cr = .5 7.17e10 8.69e9 7.14e10 8
DE/curr− to−best/1
f1 = 1, f2 = 1,cr = .8 1.34e11 2.52e10 1.38e11 9

DE/curr− to−best/1
f1 = 1, f2 = 1,cr = .5 6.72e10 1.29e10 6.96e10 1

DE/curr− to−best/1
f1 = .5, f2 = .8,cr = .5 7.02e10 1.24e10 7.01e10 5
DE/rand− to−best/1
f1 = 1, f2 = 1,cr = .5 7.14e10 1.12e10 6.99e10 6

DE/best/1
f1 = 1, f2 = 1,cr = .5 6.95e10 9.39e9 6.97e10 4

DE/best/1
f1 = 1, f2 = 1,cr = .5 6.94e10 9.55e9 6.97e10 3

DE/best/1
f1 = 1, f2 = 1,cr = .5 6.94e10 9.54e9 6.97e10 2

Table 5.6 – Results of different variants of Differential Evolution
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PSO Variants Mean STD Median Rank
µ = 30,neighb = 10,ω = 1/(2log(2)),

φp = .5+ log(2),φg = .5+ log(2) 1.46e11 2.33e10 1.44e11 12
µ = 30,neighb = 5,ω = 1/(2log(2)),

φp = .5+ log(2),φg = .5+ log(2) 1.50e11 1.60e10 1.48e11 13
µ = 15,neighb = 5,ω = 1/(2log(2)),

φp = .5+ log(2),φg = .5+ log(2) 1702 1.45e11 1.43e10 1.41e11 11
MV = 2.5,µ = 30,neighb = 15,ω = 1/(2log(2)),

φp = .5+ log(2),φg = .5+ log(2) 1.13e11 1.57e10 1.13e11 8
MV = 5,µ = 15,neighb = 5,ω = 1/(2log(2)),

φp = .5+ log(2),φg = .5+ log(2) 8.48e10 1.63e10 7.78e10 5
MV = 2.5,µ = 30,neighb = 10,ω = 1/(2log(2)),

φp = .5+ log(2),φg = .5+ log(2) 1705 1.11e11 1.54e10 1.11e11 6
MV = 2.5,µ = 30,neighb = 10,ω = 1/(2log(2)),

φp = 1.5+ log(2),φg = 1.5+ log(2) 1.14e11 1.55e10 1.16e11 9
MV = 1.5,µ = 30,neighb = 10,ω = 1/(2log(2)),

φp = .5+ log(2),φg = .5+ log(2) 1.43e11 1.22e10 1.45e11 10
MV = 2.5,µ = 30,neighb = 10,ω = 1/(2log(2)),

φp = 1.5+ log(2),φg = 1.5+ log(2) 1708 1.11e11 1.13e10 1.11e11 7
MV = 10,µ = 30,neighb = 5,ω = 1/(2log(2)),

φp = .5+ log(2),φg = .5+ log(2) 5.63e10 8.16e9 5.77e10 3
MV = 20,µ = 30,neighb = 5,ω = 1/(2log(2)),

φp = .5+ log(2),φg = .5+ log(2) 4.45e10 1.34e10 4.60e10 1
MV = 10,µ = 30,neighb = 5,ω = 1/(2log(2)),

φp = .5+ log(2),φg = .5+ log(2) 1711 5.89e10 1.27e10 5.50e10 4
MV = 20,µ = 30,neighb = 5,ω = 1/(2log(2)),

φp = .5+ log(2),φg = .5+ log(2) 4.64e10 1.49e10 4.70e10 2

Table 5.7 – Results of different variants of PSO



Chapter 6

Sieves method in fuzzy control:
logarithmically increase the number of
rules

This chapter’s content comes from the paper Berthier, V. and Teytaud, O. (2015b). Sieves
method in fuzzy control: logarithmically increase the number of rules. In IEEE Interna-
tional Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–9. IEEE Press. Its abstract
was:

The Sieves method, in statistics, consists in extending a model progressively, as new
data are made available. Typically, parameters are progressively added in a statistical es-
timation method while new samples are provided. We propose an adaptation of the Sieves
method in optimization. Decision variables are progressively added while new fitness
evaluations are received. We experiment the method on a simple set of noisy optimization
problems, and then on a fuzzy control problem applied to unit commitment. The obtained
algorithm is simple, applicable to various optimization algorithms (not only evolutionary
optimization), and seemingly robust.

6.1 Introduction
The Sieves method consists in progressively adding variable in a computational intelli-
gence problem. While it is classical in statistics, both supported by a range of experiments
and a body of theoretical works, the Sieves method is unusual in optimization. In this
chapter we (i) propose an adaptation of the Sieves method in optimization, (ii) perform
artificial and (iii) perform real world experiments.

Section 6.1.1 describes the classical Sieves method in statistics. Section 6.1.2 proposes

86
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a Sieves method in evolutionary optimization. Section 6.2 presents artificial experiments.
Section 6.3 presents an application in fuzzy control.

6.1.1 Sieves method (SM)
Over-fitting is the poor behavior of parametric decision tools when the parameters are
tuned on a too small dataset. Typically, over-fitting occurs when an optimization run is too
short, compared to the number of parameters to be tuned. Over-fitting is widely discussed
in supervised machine learning [Vapnik, 2013], but not that much in optimization and
control. We will see (Fig. 6.3) that over-fitting does matter in Fuzzy control, and we
propose a method for avoiding it.

There is a long tradition of considering the impact of dimension in optimization,
statistics, machine learning. In statistics, this has given birth to the Sieves method: in-
stead of considering a huge problem at once, we work on a small sub-problem (with far
less variables), and then we progressively add other variables [Shen and Wong, 1994].
In optimization, a different approach has been preferred, based on decomposition: in-
stead of working on a high-dimensional optimization problem, we work on several sub-
problems, in a divide-and-conquer manner. For example, in mathematical program-
ming [Nowak and Römisch, 2000] involves a master, coordinating the global optimization,
and several sub-problems. In evolutionary computation, some main successes are based
on the decomposition of a big problem into several sub-problems, with an evolutionary
coordination, as in divide-and-evolve [Schoenauer et al., 2006].

A particular form of noisy optimization is simple regret bandits [Bubeck et al., 2011].
In such a setting, there is a counterpart of the Sieves method, namely Progressive Widening
( [Coulom, 2006, Chaslot et al., 2007] for the experimental part, [Wang et al., 2009] for
a mathematical analysis). However, these works on progressive widening are limited to
discrete sets of actions with little or no structure.

There has been little effort on the application of Sieves methods to optimization. We
here consider Sieves methods for noisy optimization.

6.1.2 Sieves method for evolutionary algorithms
Evolutionary algorithms are population-based meta-heuristics. At each iteration, offspring
are generated. Each individual (offspring) is evaluated. The best individuals become the
parents and generate the next offspring. As the optimization algorithm is not the core
of this chapter, we refer to [Beyer and Schwefel, 2002, Beyer, 2001] for more details
on SAES; the Sieves method that we propose can be implemented for other evolution
strategies without changing the principles. We use a Sieves index SievesIndex(i,d) which
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decides, at iteration i and if the problem dimension is d, how many coordinates are con-
sidered. The pseudo-code of the Sieves method for (µ,λ )-SAES is presented in Alg.6.1.

Algorithm 6.1 Sieves method applied to (µ,λ )-SAES in dimension d. N denotes independent
centered standard Gaussian (in dimension given by the context). The fitness function is obtained
by averaging multiple reevaluations, as detailed in the experimental section.

Parameters: parent population size µ , step-size mutation rate τ , population size λ , initial
parent population Pop, each parent is Popi = (xi,σi)i∈{1,...,λ} with σi initialized at some
σ0.
i← 0
while Computation time not exhausted do

i← i+1
for j ∈ {1, . . . ,µ} do

σ j← σ j× exp(τN )
end for
for j ∈ {1, . . . ,λ} do

o j = x
for u = 1 to SievesIndex(i,d) do

(o j)u+= σ jN
end for
f j = f itnessreevaluations(o j)

end for
Sort individuals, so that f1 ≤ f2 ≤ ·· · ≤ fλ

∀i ∈ {1, . . . ,µ},Popi← (oi,σi)
end while

A (µ/µ,λ )-SAES version is also used. It is recalled in Alg. 6.2.

6.2 Artificial experiments
In a noisy optimization problem, the objective function f depends on the chosen search
point θ and on a noise component ω . We consider the optimization of the following sim-
ple noisy sphere problem: f (θ ,ω) = ||θ −θ ∗||2+ω , where ω is an independent centered
standard Gaussian noise. The optimization is performed by a self-adaptive evolution strat-
egy (SAES [Beyer and Schwefel, 2002]). The optimum is θ ∗, which is randomly drawn
as follows: ∀ j ∈ {1,2, . . . ,100},θ ∗j =N / jγ for various γ , which is the parameter control-
ling the averaged ill-condition of the problem: the higher γ is, the higher the ill-condition
is (discussion later). The initial search point for SAES is 0. γ > 0 indicates that the first
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Algorithm 6.2 Sieves method applied to (µ/µ,λ )-SAES. N denotes independent centered stan-
dard Gaussian (in dimension given by the context). The fitness function is obtained by averaging
multiple reevaluations, as detailed in the experimental section.

Parameters: parent population size µ , step-size mutation rate τ , population size λ , initial
parent x, initial step-size σ = σ0
i← 0
while Computation time not exhausted do

i← i+1
for j ∈ {1, . . . ,λ} do

σ j = σ exp(τN )
o j = x
for u = 1 to SievesIndex(i,d) do

(o j)u+= σ jN
end for
f j = f itnessreevaluations(o j)

end for
Sort individuals, so that f1 ≤ f2 ≤ ·· · ≤ fλ

x← 1
µ ∑

µ

j=1 o j

σ ← exp( 1
µ ∑

µ

j=1 ln(σ j))
end while
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variable is (on average) more important than the second, which is more important than the
third and so on.

The initial step-size σ0 is the same for all coordinates, and we test several values. Each
experiment is reproduced 57 times. Each function evaluation is repeated several times in
order to mitigate the level of noise. More precisely, each evaluation at iteration i is repeated
i2 times and the obtained fitness values are averaged [Astete Morales et al., 2013].

We apply the Sieves method for optimization as follows. We compare several
sievesIndex(i,d) functions:

sievesIndex(i,d) = d d
1+9(k−1)

i(1+9(k−1))−
1
2 e

for k ∈ {1, . . . ,9}. k = 1 means no Sieves method. k large means a strong Sieves method
(i.e.additional variables are added very slowly).

With γ = 1.5 (leading to an average condition of 1000) we get results as presented in
Fig. 6.1a, Fig. 6.1b, Fig. 6.1c, depending on the initial step-size σ0 (too small, correct, too
large, respectively), with isotropic-SAES. Across all experiments performed here, k = 6
gave the best overall performances, leading to sievesIndex(i,d) = d20

9 i1/
√

46e ' 2i.15.
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Figure 6.1 – Impact of the k parameter on the Sieves method.

(a) Results for k = 1,2, . . . ,9, for an initial step-size σ0 = 2.5 i.e. way too large. k = 1 means no
Sieves method. k = 6 is one of the good values. The three curves are average, average + standard
deviation, average - standard deviation, respectively.
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(b) Results for k = 1,2, . . . ,9, for an initial step-size σ0 = 5/16 i.e. approximately ok. k = 1 means
no Sieves method. k = 6 is one of the good values. The three curves are average, average + standard
deviation, average - standard deviation, respectively.
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(c) Results for k = 1,2, . . . ,9, for an initial step-size σ0 = 5/54 i.e. way too small. k = 1 means no
Sieves method. k = 6 is one of the good values. The three curves are average, average + standard
deviation, average - standard deviation, respectively.
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We reproduced the experiments with various values of γ . Results were always positive
with γ > 1 (i.e. the Sieves method worked better than the original method), but the optimal
k was not always the same and k = 6 was not always better than no Sieves. With γ <
1, results were not good, whatever maybe k. We therefore conclude these preliminary
experiments as follows:

• The Sieves method in optimization does not work when all coordinates are approxi-
mately equally important (γ < 1).

• The optimal parametrization of the SievesIndex function is problem-dependent, so
some sub-optimal parametrizations seemingly cover a wide range of problems.

In the next section, we focus on fuzzy control, which is arguably a natural candidate for
the Sieves method in optimization: there are many parameters, and the ranking of the
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parameters is easy: a fuzzy controller is a combination of rules, the ordering of which
does not matter, and the first rules are more important than the next ones. We got in the
experiments above a polynomial Sieves function with a very small exponent, indeed close
to a logarithmic function; we will see that a single logarithmic function will work fine on
several of our fuzzy control problems.

6.3 Applications to fuzzy control
Section 6.3.1 introduces direct policy search. Section 6.3.2 briefly presents fuzzy control.
Section 6.3.3 presents our optimization problem. Section 6.3.4 presents our optimization
algorithm. Section 6.3.5 presents preliminary experiments. Section 6.3.6 presents our
parametrization of the SM. Section 6.3.7 shows our results.

6.3.1 Direct Policy Search and noisy optimization
Direct Policy Search (DPS) consists in optimizing a parametric policy directly on simula-
tions, i.e. the objective function simulates the whole system with the parametric decision
policy. There are many such works [Bengio, 1998] with neural networks, and in fuzzy
systems [Zadeh, 1990]. We here focus on fuzzy systems. Technically, DPS boils down to
noisy optimization. Noisy optimization can be performed by various methods, including
gradient-free gradient descent [Fabian, 1967] (the gradient is estimated by differences) or
evolutionary algorithms [Heidrich-Meisner and Igel, 2009, Arnold and Beyer, 2006]. We
here use evolutionary algorithms.

6.3.2 Fuzzy control
We consider fuzzy functions as follows:

action(s) =
s

∑
i=1

wi(s)
∑

s
j=1 w j(s)

θi,1

wi(s) =

I(θi,2) ×∏
d
j=1 max

(
0,

1−|s j−θi,3, j|
exp(d +θi,4, j)

)
(6.1)

where I : x 7→ 1
2(1+x/

√
x2 +1) is a mapping from R to [0,1], and where d is the dimension

of the state space s and action(s) is the chosen action for state s. As we consider methods
adding progressively new rules, we also tested the replacement of Eq. 6.1 by Eq. 6.2, and
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also by Eq. 6.3; there are aimed at reducing the weights of newly added rules. We mention
them for the sake of completeness, but they did not bring any clear improvement:

wi(s) =

I(θi,2−7) ×∏
d
j=1 max(0,1− |s j−θi,3, j|

exp(d +θi,4, j)
) (6.2)

wi(s) =

I(θi,2−2i) ×∏
d
j=1 max(0,1− |s j−θi,3, j|

exp(d +θi,4, j)
) (6.3)

This means that the parameter is θ = (θi,1,θi,2,θi,3,θi,4)i∈{1,...,NbRules} when the number
of rules is NbRules. θi,1 is the action chosen by the rule number i; θi,2 is the a priori
weight of the rule number i; θi,3 is the typical state at which the rule applies; θi,4 indicates
the scope of the rule (the larger θi,4, j, the wider the scope of the rule on axis j). We also
tested a different membership function, i.e. wi(s) having no prior weight:

wi(s) =
d

∏
j=1

max
(

0,
1−|s j−θi,3, j|
exp(d +θi,4, j)

)
. (6.4)

One important point here, is that when all parameters are set to zero, it’s equivalent
to the rule not existing at all: it’s completely neutral, with no impact whatsoever on the
fitness.

6.3.3 Objective function
The test case is a Unit Commitment problem with a number of hydroelectric production
plants and a thermal unit. Given a demand in power, the goal is to produce as much
electricity as possible from the dams (since it’s very cheap) and as little as possible from
the thermal plant (since it’s expensive) on each successive time steps.

Cost =−
T

∑
t=0

(max(0,Demandt−
n stocks

∑
s=0

Productions,t)×T hermalCost)−Penalisation

The penalization term is here to ensure that we do not produce too much electricity
from the dam, since it would waste water (at the very least, in a real network there would
be other consequences).

Of course, to produce electricity from the dams, it is necessary to use water. This water
may come from two sources: natural inflows (rain, snow melt, etc.), or from another dam
situated higher in the chain. The main difficulty of the problem is that the natural inflows
depend on the season and that there is a random component with more or less noise (so



CHAPTER 6. SIEVES METHOD IN FUZZY CONTROL 96

Parameter Value
Variant DE/curr-to-best/1

i.e. x′i = xi +F1(xa− xb)+F2(xbest− xi)
with x′i the proposal, a and b random,

xbest the best in the population.
Population size 30

Cr 0.5
F1 0.8
F2 0.8

Resampling 10
√

n resamplings
at iteration n

Table 6.1 – Parameters of our DE algorithm when optimizing N parameters, at iteration i.

more or less predictable), and that of course, water used at time t is not available anymore
at time t +1 (at least by the same dam, since it might be used by a lower dam if they are
linked).

6.3.4 Optimization algorithm
The optimization algorithm is a Differential Evolution [Storn and Price, 1997]. We use
the same resampling policy as above, with coefficients optimized on the target problem,
before including our Sieves method. The parameters used are presented in Table 6.1.

6.3.5 Preliminary experiments
There are many fuzzy membership functions available in the litera-
ture [Monicka et al., 2011, Zhao and Bose, 2002], so we conducted experiments for
comparing some of them. Eq. 6.1 uses as a distance the product, over coordinates, of
linearly decreasing member functions. We also tested Eq. 6.4, for checking the robustness
of the method. We also tested two different problems, both however in the family of unit
commitment.

6.3.6 Sieves parametrization
When using the Sieves Method, it is important to determine how the number of parameters
should increase. In our experiments, we tested two different scheme, both depending on
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Budget (s) No PW rate = 0.20 rate = 0.25 rate = 0.30
1 -1.29e+04 (±2.66e+02) -1.33e+04 (±1.92e+02) -1.33e+04 (±2.16e+02) -1.33e+04 (±1.53e+02)
2 -1.26e+04 (±2.75e+02) -1.30e+04 (±1.95e+02) -1.31e+04 (±1.65e+02) -1.32e+04 (±2.71e+02)
4 -1.23e+04 (±3.53e+02) -1.28e+04 (±3.31e+02) -1.28e+04 (±2.55e+02) -1.28e+04 (±2.23e+02)
8 -1.23e+04 (±4.62e+02) -1.27e+04 (±5.13e+02) -1.26e+04 (±4.61e+02) -1.27e+04 (±6.20e+02)

16 -1.21e+04 (±2.63e+02) -1.24e+04 (±3.77e+02) -1.24e+04 (±3.43e+02) -1.23e+04 (±2.64e+02)
32 -1.20e+04 (±2.96e+02) -1.21e+04 (±2.80e+02) -1.21e+04 (±3.09e+02) -1.21e+04 (±2.80e+02)
64 -1.20e+04 (±4.56e+02) -1.18e+04 (±2.09e+02) -1.19e+04 (±3.70e+02) -1.17e+04 (±3.33e+02)

128 -1.19e+04 (±2.53e+02) -1.14e+04 (±2.48e+02) -1.13e+04 (±3.39e+02) -1.11e+04 (±3.81e+02)
256 -1.17e+04 (±3.72e+02) -1.10e+04 (±2.64e+02) -1.06e+04 (±4.33e+02) -1.05e+04 (±3.68e+02)
512 -1.17e+04 (±3.97e+02) -1.06e+04 (±4.14e+02) -1.02e+04 (±3.23e+02) -1.02e+04 (±4.81e+02)

Table 6.2 – Sieves Method with Linear increase on the Big case, with the membership
function 6.1

the optimization time and overall budget. One of them was a linear increase:

SievesIndex(t) = nbParamsPerRule×dt/ratee
And the other one was logarithmic:

SievesIndex(t) = nbParamsPerRule×dlog2(1+ t)/ratee
Where SievesIndex(t) is the number of parameters optimized at time t,

nbParamsPerRule is the number of parameters of a rule in Fuzzy Control (number of
parameters that depends on the number of stocks). Many different parameters were tried
for rate, the only constraint being that by the end of the available budget, all rules were
optimized.

Interestingly enough, if this constraint is respected, we were always able to improve
the optimization result. Rules that are not yet considered have their parameters set to zero,
which means they don’t impact the solution found in any way.

6.3.7 Experimental results: Sieves method for fuzzy control
In our experiments we performed many tests, using both membership equations (6.1 and
6.4), using a small or large test case (the “Small” one had 5 plants and spanned 25
timesteps, while the “Big” one had 15 plants and 50 timesteps). On each of those test
cases, we compared the two schemes of progression (linear and logarithmic) to the vanilla
version, using different rates. Some typical results are visible in Figure 6.2 and 6.3: using
the Sieves Method didn’t always improve the results by a wide margin but it was always
better. In some cases, the results were much better with the Sieves Method than without.

Tables 6.2 through 6.9 synthesise the results obtained. As can be seen, in every case
using the Sieves Method improved the results. Something interesting to note is that in
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Figure 6.2 – Results with Eq. 6.1, smaller test case, logarithmic Sieves. “NO” indicates the
results with no Sieves Method, while the numbers on the other curves indicates the rates
used. We compare our Sieves method to the standard optimization with 32 optimized rules
from the start. This case shows the typical behaviour of applying the Sieves Method to the
optimization process: there’s a noticeable cost at the start of the optimization process, but
as the budget increases, the performances improve until they overtake the standard process.

Budget (s) No PW rate = 0.20 rate = 0.25 rate = 0.30
1 -6.39e+03 (±4.85e+02) -7.43e+03 (±4.48e+02) -7.68e+03 (±3.96e+02) -7.73e+03 (±2.64e+02)
2 -6.07e+03 (±2.60e+02) -7.17e+03 (±3.55e+02) -7.01e+03 (±3.50e+02) -6.93e+03 (±4.18e+02)
4 -5.74e+03 (±1.65e+02) -6.74e+03 (±2.78e+02) -6.73e+03 (±2.59e+02) -6.82e+03 (±3.39e+02)
8 -5.51e+03 (±4.94e+02) -6.16e+03 (±3.83e+02) -6.44e+03 (±3.85e+02) -6.53e+03 (±3.57e+02)

16 -5.13e+03 (±1.98e+02) -5.66e+03 (±3.74e+02) -5.81e+03 (±3.34e+02) -5.98e+03 (±4.25e+02)
32 -4.99e+03 (±1.75e+02) -5.06e+03 (±2.83e+02) -5.26e+03 (±2.47e+02) -5.08e+03 (±1.50e+02)
64 -4.68e+03 (±1.83e+02) -4.44e+03 (±2.01e+02) -4.73e+03 (±2.21e+02) -4.64e+03 (±2.31e+02)

128 -4.50e+03 (±7.00e+02) -4.04e+03 (±7.27e+02) -4.25e+03 (±6.53e+02) -4.25e+03 (±6.38e+02)
256 -4.35e+03 (±2.41e+02) -3.95e+03 (±3.17e+02) -3.85e+03 (±3.14e+02) -3.91e+03 (±2.49e+02)
512 -4.29e+03 (±3.31e+02) -3.64e+03 (±2.49e+02) -3.82e+03 (±1.97e+02) -3.63e+03 (±2.54e+02)

Table 6.3 – Sieves Method with Linear increase on the Small case, with the membership
function 6.4
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Figure 6.3 – Results with Eq. 6.1, large test case, logarithmic Sieves. “NO” indicates the
results with no Sieves Method, while the numbers on the other curves indicates the rates
used. We compare our Sieves method to the standard optimization with 32 optimized rules
from the start. In this case, we can see a very noticeable increase of performances when
using the Sieves Method compared to the vanilla process.

Budget (s) No PW rate = 0.20 rate = 0.25 rate = 0.30
1 -1.29e+04 (±2.07e+02) -1.32e+04 (±1.59e+02) -1.32e+04 (±1.76e+02) -1.32e+04 (±1.23e+02)
2 -1.27e+04 (±1.77e+02) -1.30e+04 (±2.39e+02) -1.30e+04 (±2.12e+02) -1.31e+04 (±1.47e+02)
4 -1.24e+04 (±2.62e+02) -1.26e+04 (±1.71e+02) -1.27e+04 (±3.64e+02) -1.28e+04 (±2.49e+02)
8 -1.20e+04 (±3.09e+02) -1.29e+04 (±2.42e+02) -1.26e+04 (±6.13e+02) -1.27e+04 (±3.80e+02)

16 -1.23e+04 (±3.49e+02) -1.23e+04 (±2.88e+02) -1.21e+04 (±1.48e+02) -1.23e+04 (±2.68e+02)
32 -1.21e+04 (±2.63e+02) -1.22e+04 (±3.99e+02) -1.22e+04 (±3.02e+02) -1.20e+04 (±2.52e+02)
64 -1.20e+04 (±2.85e+02) -1.18e+04 (±1.31e+02) -1.18e+04 (±3.20e+02) -1.17e+04 (±3.04e+02)

128 -1.20e+04 (±2.34e+02) -1.13e+04 (±2.46e+02) -1.14e+04 (±2.60e+02) -1.13e+04 (±2.89e+02)
256 -1.18e+04 (±2.95e+02) -1.10e+04 (±3.06e+02) -1.08e+04 (±4.16e+02) -1.06e+04 (±3.11e+02)
512 -1.17e+04 (±2.54e+02) -1.04e+04 (±4.11e+02) -1.03e+04 (±3.92e+02) -1.03e+04 (±2.96e+02)

Table 6.4 – Sieves Method with Linear increase on the Big case, with the membership
function 6.4
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Budget (s) No PW rate = 0.20 rate = 0.25 rate = 0.30
1 -6.46e+03 (±8.46e+02) -7.52e+03 (±4.99e+02) -7.63e+03 (±6.55e+02) -7.61e+03 (±5.66e+02)
2 -6.09e+03 (±3.29e+02) -6.94e+03 (±3.33e+02) -7.06e+03 (±3.97e+02) -7.04e+03 (±3.29e+02)
4 -5.76e+03 (±2.59e+02) -6.63e+03 (±4.14e+02) -6.93e+03 (±4.02e+02) -6.79e+03 (±3.56e+02)
8 -5.55e+03 (±5.69e+02) -6.50e+03 (±6.16e+02) -6.35e+03 (±4.04e+02) -6.55e+03 (±3.24e+02)

16 -5.23e+03 (±3.03e+02) -5.50e+03 (±3.12e+02) -5.50e+03 (±2.59e+02) -5.88e+03 (±5.07e+02)
32 -4.91e+03 (±2.93e+02) -4.94e+03 (±3.09e+02) -5.20e+03 (±1.65e+02) -5.12e+03 (±2.65e+02)
64 -4.86e+03 (±1.96e+02) -4.56e+03 (±1.97e+02) -4.67e+03 (±2.28e+02) -4.75e+03 (±1.48e+02)

128 -4.48e+03 (±6.82e+02) -4.24e+03 (±7.66e+02) -4.38e+03 (±6.08e+02) -4.29e+03 (±6.12e+02)
256 -4.35e+03 (±2.17e+02) -3.90e+03 (±2.44e+02) -3.86e+03 (±3.19e+02) -3.89e+03 (±3.52e+02)
512 -4.18e+03 (±3.28e+02) -3.78e+03 (±2.86e+02) -3.81e+03 (±3.25e+02) -3.61e+03 (±1.90e+02)

Table 6.5 – Sieves Method with Linear increase on the Small case, with the membership
function 6.4

Budget (s) No PW rate = 1.5 rate = 2.0 rate = 2.5
1 -6.46e+03 (±8.46e+02) -7.52e+03 (±4.99e+02) -7.63e+03 (±6.55e+02) -7.61e+03 (±5.66e+02)
2 -6.09e+03 (±3.29e+02) -6.94e+03 (±3.33e+02) -7.06e+03 (±3.97e+02) -7.04e+03 (±3.29e+02)
4 -5.76e+03 (±2.59e+02) -6.63e+03 (±4.14e+02) -6.93e+03 (±4.02e+02) -6.79e+03 (±3.56e+02)
8 -5.55e+03 (±5.69e+02) -6.50e+03 (±6.16e+02) -6.35e+03 (±4.04e+02) -6.55e+03 (±3.24e+02)

16 -5.23e+03 (±3.03e+02) -5.50e+03 (±3.12e+02) -5.50e+03 (±2.59e+02) -5.88e+03 (±5.07e+02)
32 -4.91e+03 (±2.93e+02) -4.94e+03 (±3.09e+02) -5.20e+03 (±1.65e+02) -5.12e+03 (±2.65e+02)
64 -4.86e+03 (±1.96e+02) -4.56e+03 (±1.97e+02) -4.67e+03 (±2.28e+02) -4.75e+03 (±1.48e+02)

128 -4.48e+03 (±6.82e+02) -4.24e+03 (±7.66e+02) -4.38e+03 (±6.08e+02) -4.29e+03 (±6.12e+02)
256 -4.35e+03 (±2.17e+02) -3.90e+03 (±2.44e+02) -3.86e+03 (±3.19e+02) -3.89e+03 (±3.52e+02)
512 -4.18e+03 (±3.28e+02) -3.78e+03 (±2.86e+02) -3.81e+03 (±3.25e+02) -3.61e+03 (±1.90e+02)

Table 6.6 – Sieves Method with Linear increase on the Big case, with the membership
function 6.1

Budget (s) No PW rate = 1.5 rate = 2.0 rate = 2.5
1 -6.46e+03 (±8.46e+02) -7.52e+03 (±4.99e+02) -7.63e+03 (±6.55e+02) -7.61e+03 (±5.66e+02)
2 -6.09e+03 (±3.29e+02) -6.94e+03 (±3.33e+02) -7.06e+03 (±3.97e+02) -7.04e+03 (±3.29e+02)
4 -5.76e+03 (±2.59e+02) -6.63e+03 (±4.14e+02) -6.93e+03 (±4.02e+02) -6.79e+03 (±3.56e+02)
8 -5.55e+03 (±5.69e+02) -6.50e+03 (±6.16e+02) -6.35e+03 (±4.04e+02) -6.55e+03 (±3.24e+02)

16 -5.23e+03 (±3.03e+02) -5.50e+03 (±3.12e+02) -5.50e+03 (±2.59e+02) -5.88e+03 (±5.07e+02)
32 -4.91e+03 (±2.93e+02) -4.94e+03 (±3.09e+02) -5.20e+03 (±1.65e+02) -5.12e+03 (±2.65e+02)
64 -4.86e+03 (±1.96e+02) -4.56e+03 (±1.97e+02) -4.67e+03 (±2.28e+02) -4.75e+03 (±1.48e+02)

128 -4.48e+03 (±6.82e+02) -4.24e+03 (±7.66e+02) -4.38e+03 (±6.08e+02) -4.29e+03 (±6.12e+02)
256 -4.35e+03 (±2.17e+02) -3.90e+03 (±2.44e+02) -3.86e+03 (±3.19e+02) -3.89e+03 (±3.52e+02)
512 -4.18e+03 (±3.28e+02) -3.78e+03 (±2.86e+02) -3.81e+03 (±3.25e+02) -3.61e+03 (±1.90e+02)

Table 6.7 – Sieves Method with Linear increase on the Small case, with the membership
function 6.4
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Budget (s) No PW rate = 1.5 rate = 2.0 rate = 2.5
1 -6.46e+03 (±8.46e+02) -7.52e+03 (±4.99e+02) -7.63e+03 (±6.55e+02) -7.61e+03 (±5.66e+02)
2 -6.09e+03 (±3.29e+02) -6.94e+03 (±3.33e+02) -7.06e+03 (±3.97e+02) -7.04e+03 (±3.29e+02)
4 -5.76e+03 (±2.59e+02) -6.63e+03 (±4.14e+02) -6.93e+03 (±4.02e+02) -6.79e+03 (±3.56e+02)
8 -5.55e+03 (±5.69e+02) -6.50e+03 (±6.16e+02) -6.35e+03 (±4.04e+02) -6.55e+03 (±3.24e+02)

16 -5.23e+03 (±3.03e+02) -5.50e+03 (±3.12e+02) -5.50e+03 (±2.59e+02) -5.88e+03 (±5.07e+02)
32 -4.91e+03 (±2.93e+02) -4.94e+03 (±3.09e+02) -5.20e+03 (±1.65e+02) -5.12e+03 (±2.65e+02)
64 -4.86e+03 (±1.96e+02) -4.56e+03 (±1.97e+02) -4.67e+03 (±2.28e+02) -4.75e+03 (±1.48e+02)

128 -4.48e+03 (±6.82e+02) -4.24e+03 (±7.66e+02) -4.38e+03 (±6.08e+02) -4.29e+03 (±6.12e+02)
256 -4.35e+03 (±2.17e+02) -3.90e+03 (±2.44e+02) -3.86e+03 (±3.19e+02) -3.89e+03 (±3.52e+02)
512 -4.18e+03 (±3.28e+02) -3.78e+03 (±2.86e+02) -3.81e+03 (±3.25e+02) -3.61e+03 (±1.90e+02)

Table 6.8 – Sieves Method with Linear increase on the Big case, with the membership
function 6.4

Budget (s) No PW rate = 1.5 rate = 2.0 rate = 2.5
1 -6.46e+03 (±8.46e+02) -7.52e+03 (±4.99e+02) -7.63e+03 (±6.55e+02) -7.61e+03 (±5.66e+02)
2 -6.09e+03 (±3.29e+02) -6.94e+03 (±3.33e+02) -7.06e+03 (±3.97e+02) -7.04e+03 (±3.29e+02)
4 -5.76e+03 (±2.59e+02) -6.63e+03 (±4.14e+02) -6.93e+03 (±4.02e+02) -6.79e+03 (±3.56e+02)
8 -5.55e+03 (±5.69e+02) -6.50e+03 (±6.16e+02) -6.35e+03 (±4.04e+02) -6.55e+03 (±3.24e+02)

16 -5.23e+03 (±3.03e+02) -5.50e+03 (±3.12e+02) -5.50e+03 (±2.59e+02) -5.88e+03 (±5.07e+02)
32 -4.91e+03 (±2.93e+02) -4.94e+03 (±3.09e+02) -5.20e+03 (±1.65e+02) -5.12e+03 (±2.65e+02)
64 -4.86e+03 (±1.96e+02) -4.56e+03 (±1.97e+02) -4.67e+03 (±2.28e+02) -4.75e+03 (±1.48e+02)

128 -4.48e+03 (±6.82e+02) -4.24e+03 (±7.66e+02) -4.38e+03 (±6.08e+02) -4.29e+03 (±6.12e+02)
256 -4.35e+03 (±2.17e+02) -3.90e+03 (±2.44e+02) -3.86e+03 (±3.19e+02) -3.89e+03 (±3.52e+02)
512 -4.18e+03 (±3.28e+02) -3.78e+03 (±2.86e+02) -3.81e+03 (±3.25e+02) -3.61e+03 (±1.90e+02)

Table 6.9 – Sieves Method with Linear increase on the Small case, with the membership
function 6.4
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most cases, the higher the rate (so the slower the number of rules is added), the better the
results are in the end but the longer it takes to achieve “good” results (something that can
be seen in Table 6.3 for example: the rate 0.20 is the first to beat the vanilla version, but is
then overcame by the rate 0.25, which in turn is beaten by rate = 0.30).

One might ask whether the improvement is because of the limited number of rules used
during the optimization run, or if the SM of the number of rules provides an improvement.
Additional experiments performed however show that even when there is a hard limit on
the number of rules, there is still an improvement.

6.4 Conclusions and further work
Fuzzy control is a wide research area. The Sieves method is classical in statistics. We
extended the Sieves method to noisy optimization, including experiments in fuzzy control.
Results are clearly positive. The simple recommendation is that the number of rules should
increase somewhere between logarithmically and linearly with the number of iterations.
Results for early stages of the optimization are sometimes positive and sometimes not, but
asymptotically in all cases the Sieves method provided better results. Seemingly, it avoids
local minima.

The classical mathematical results for justifying the method of Sieves are
based on VC-dimension arguments or other statistical complexity measure (see e.g.
[Devroye et al., 1997, Shen and Wong, 1994]). They do not apply here, because it is hard
to compute the VC-dimension or covering numbers of level sets of fitness functions in-
volved in control problems [Vidyasagar, 1997]. Based on our experiments, we conjecture
that a logarithmically increasing number of rules is a reasonable solution. The parame-
ters had little impact on our results, provided the rule was logarithmic, starting at 1, and
converging to a few dozen of rules within a reasonable time for the problem at hand.

Using this method, we can work without any hard constraint on the number of rules;
just add them progressively during the optimization run, in an anytime manner.

Our work is limited to DE. Our choice of parameters for the Sieves index might have
to be made adaptive - though we tested many rules and all of them were satisfactory under
this “start with one rule and concavely add new rules, reaching a few dozen within time
constants of the optimization problem”. The artificial setting was tested with various initial
step-sizes and several values of the problem parameter γ . The optimal parametrization is
not always the same, but with a slow increase we almost always outperform the baseline
if γ > 1 - which means that some parameters are more important than others and that we
know which ones. We consider as a main goal the construction of “universal” rules for
choosing the rate at which rules should be added; maybe validating our rule above on
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more test-cases of refining it. Sieves method are classical in many fields; there is room for
them in optimization.



Part II

Applications
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Chapter 7

Comparing optimizers on a unit
commitment problem

This chapter’s content comes from the paper Berthier, V. (2015a). Comparing optimizers
on a unit commitment problem. In Artificial Evolution (EA2015). Springer Verlag. Its
abstract was:

This paper compares several black-box optimization algorithms on a unit commitment
problem. Compared to existing testbeds, this one provides several scales, is real-world,
and none of the compared algorithms were created by the author of the testbed. Differen-
tial Evolution basically performs best overall, though not for all test cases.

7.1 Introduction
Several testbeds were provided by [Suganthan et al., 2005, Hansen et al., 2010a,
Gould et al., 2003, Gallagher, 2016] for non-linear optimization. In the evolutionary com-
putation community the most widely used might be [Suganthan et al., 2005]. We here
propose an alternative set of experiments, on which we compare a set of optimizers.

7.2 Testbed
Our testbed has the following characteristics:

• It is a real problem, originally not designed for academic purpose. As a consequence,
it has the same degree of partial separability as (at least some) real world problems.
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• It includes several cases, with dimension ranging from 3 to several thousands. We
should indeed include, later, bigger test-cases.

• It is restricted to direct policy search for power systems. This category of problems
is definitely an important one; we do not claim that our results have some validity
beyond this scope.

• We compared algorithms and implementations in a neutral manner. We have no
special interest for one algorithm or another, we just try to find which algorithm we
should recommend as default in our optimization platform.

• This family of problems has a huge economical (billions of dollars per year) and
environmental impact.

Our testbed has the following parameters:

• Number of time steps.

• Number of stocks (number of state variables).

• Parameters for the inflows and demand and their variances, which are held constant
over our experiments.

The objective function can be seen as:

Cost =−
T

∑
t=0

(max(0,Demandt−
n stocks

∑
s=0

Productions,t)×T hermalCost)−Penalisation

The penalization term is here to ensure that we do not produce too much electricity from
the dam, since it would waste water (at the very least, in a real network there would be
other consequences).

It would be impracticable to put a more detailed and in depth explanation on the test
bed here, as a consequence we made it available on at https://www.lri.fr/~teytaud/
uctest/uctest.html.

The number of decisions per time step is equal to the number of stocks (we decide
how much water we use for each stock). The number of inputs for making each decision
is one observation per stock (the level), plus the 4 calendar factors. Hence, the number of
action variables is nbActions = nbStocks and the number of input variables is nbInputs =
nbStocks+4.

The number of parameters for a given problem can be computed as follows (and the
detailed policies can be seen at https://www.lri.fr/~teytaud/uctest/uctest.html):

https://www.lri.fr/~teytaud/uctest/uctest.html
https://www.lri.fr/~teytaud/uctest/uctest.html
https://www.lri.fr/~teytaud/uctest/uctest.html
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• Handcrafted policy: the number of parameters is always N = 3.

• Conformant planning (a sequence of decisions, applied independently of observa-
tions): N = T ×NbActions = T ×NbStocks (one parameter per time step and per
stock).

• Neural network (feed-forward, one hidden layer), the number of parameters is N =
NbNeurons× (NbInputs+NbActions+1)+NbActions:

– NbActions parameters for the biases for the output,

– NbInputs+1 for the input weights of each neuron,

– and NbActions connections between each hidden neuron and the output neu-
rons).

• Fuzzy control: the number of parameters is N = NbRules × (2nbInputs +
nbActions+1) because each rule has 2NbInputs+1 parameters for the antecedent
(one scale and one average value for each coordinate, plus one default rule weight)
and NbActions parameters for the succedent.

For example, with 25 stocks and 100 time-steps, the number of parameters are 3 for
the handcrafted policy; 2500 for conformant planning; 2681 = 32(58+25)+25 for fuzzy
systems with 25 rules; 1785 = 32(29+25+1)+25 for neural networks with 25 neurons.

The fuzzy rule used in the experiments uses a membership function product of
coordinate-wise inverse distances. This was selected among various membership func-
tions after preliminary experiments.

7.3 Summary of results
We summarize our results in tables below for 512 seconds of budget. Overall, DE per-
formed best.

7.3.1 Overview and results per problem size
In Table 7.1 we give results averaged over all problems, and then for different sizes (< 10
parameters, 10 to 99, 100 to 999, and 1000+. Only the average performances of the
algorithms are shown here to avoid an avalanche of tables, but the underlying study was
performed based on average, worst, quartile and decile performances. We can see that
in high dimension, CMA suffers due to its internal cost, as shown by the small number
(relative to the other algorithms).



CHAPTER 7. UNIT COMMITMENT PROBLEM 108

All problems
average perf

DE 0.79 +- 0.023
CMA 0.75 +- 0.035
SAiso 0.73 +- 0.023
PSO 0.66 +- 0.033
SA 0.66 +- 0.026

SAcov 0.66 +- 0.025
1+1 0.6 +- 0.027
NM 0.54 +- 0.036

Nb params ≤ 10
average perf

PSO (1560k) 0.83 +- 0.092
DE (1545k) 0.82 +- 0.06

SAcov (1668k) 0.78 +- 0.064
CMA (1580k) 0.78 +- 0.054
SAiso (1580k) 0.78 +- 0.059

SA (1649k) 0.76 +- 0.077
NM (1548k) 0.67 +- 0.073
1+1 (1772k) 0.62 +- 0.071

10≤nb params < 100
average perf

DE (1622k) 0.87 +- 0.028
CMA (1660k) 0.82 +- 0.047
SAiso (1642k) 0.69 +- 0.04
PSO (1670k) 0.61 +- 0.04
1+1 (1629k) 0.59 +- 0.05

SAcov (1619k) 0.56 +- 0.056
SA (1618k) 0.55 +- 0.058
NM (1666k) 0.51 +- 0.046

100≤nbParams< 1000
average perf

DE (936k) 0.76 +- 0.035
CMA (641k) 0.75 +- 0.051
SAiso (932k) 0.74 +- 0.034

SA (926k) 0.68 +- 0.031
SAcov (875k) 0.68 +- 0.029
PSO (948k) 0.64 +- 0.053
1+1 (930k) 0.61 +- 0.041
NM (942k) 0.54 +- 0.056

1000≤nbParams< 10000
average perf

PSO (167k) 0.8 +- 0.088
SAiso (159k) 0.78 +- 0.064

SA (156k) 0.73 +- 0.056
DE (162k) 0.73 +- 0.075

SAcov (104k) 0.7 +- 0.054
CMA (5k) 0.59 +- 0.14
1+1 (159k) 0.58 +- 0.083
NM (152k) 0.54 +- 0.14

Table 7.1 – Each result is linearly normalized so that 1 is the maximum (best) result, and
0 is the minimum (worst) result over all runs for this controller and this unit commitment
problem (so higher is better). The numbers between parenthesis are the number of fitness
evaluations performed in the given budget of 512s.
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7.3.2 Per family of controllers and per problem size
For each testbed, we specify with which frequency an algorithm (in row) outperforms
another one (in column). These results in Tables 7.2 and 7.3 are the same as the results
above, but broken down on the different test cases. Due to size constraints results on the
large testbed are not shown, but they are essentially the same as the medium case, the
only major difference is that PSO becomes the best algorithm on the Conformant Planning
function.

7.4 Conclusions and further work
A short conclusion is that DE performs best overall, with also an excellent stabil-
ity. This is consistent with the success of DE on several competitions - variants or
combinations of DE have won the CEC 2006, CEC 2010 and CEC 2013 competi-
tions [Das and Suganthan, 2011, LaTorre et al., 2013].

Still, there is no clear-cut conclusion; DE is a bit weaker with neural network con-
trollers, and even algorithms which are usually not that stable (e.g. Nelder-Mead or
(1+ 1)-ES) sometimes perform very well. In particular, the important special case of
conformant planning is very well tackled by the simple (1+1)-ES.

PSO performed well in high dimensional problems. Nelder-Mead was surprisingly
good in spite of long initialization (with a population linear in the dimension).

CMA performed very well in some cases, but was in general clearly outperformed
by DE.Variants of CMA with limited covariance (e.g. diagonal) might be considered to
alleviate the dimensional problem.

For sure, this work is not intended to be some kind of “final” comparison. This is one
test case, with the advantage that it is a real world and (ecologically and economically)
important test case. Besides the fact that our test cases can lead to different conclusions,
we do not take into account the limit in terms of parallelization, whereas parallelization
is one of the main body of work around PSO [McNabb et al., 2007, Mahdad et al., 2010,
Schutte et al., 2003, Chang et al., 2005, Gardner et al., 2012].

The main further works are (i) including more algorithms (e.g.
Newuoa [Powell, 2008], variants of DE and memetic algorithms) (ii) including noisy
optimization (iii) parallel setting, e.g. constraining the population size to 1000 (iv) bigger
test cases (we can without effort extend the test case to 100 stocks and 2000 time steps,
which is consistent with some real world cases - unit commitment problems exist at
various scales).
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(a) DE outperforms everything for the specific policy

SAiso (1+1) SA SACov CMA NM DE PSO
SAiso 100.00 28.57 57.14 64.29 100.00 21.43 42.86

(1+1)−ES 0.00 0.00 0.00 7.14 14.29 7.14 0.00
SA−ES 71.43 100.00 57.14 71.43 92.86 14.29 50.00

SA−ESCov 42.86 100.00 42.86 78.57 92.86 21.43 50.00
CMA−ES 35.71 92.86 28.57 21.43 85.71 14.29 50.00

NM 0.00 85.71 7.14 7.14 14.29 0.00 0.00
DE 78.57 92.86 85.71 78.57 85.71 100.00 85.71
PSO 57.14 100.00 50.00 50.00 50.00 100.00 14.29

(b) With the neural network, PSO is clearly the best algorithm

SAiso (1+1) SA SACov CMA NM DE PSO
SAiso 92.86 92.86 89.29 42.86 21.43 50.00 0.00

(1+1)−ES 7.14 46.43 50.00 35.71 10.71 3.57 0.00
SA−ES 7.14 53.57 75.00 28.57 10.71 10.71 0.00

SA−ESCov 10.71 50.00 25.00 28.57 10.71 10.71 0.00
CMA−ES 57.14 64.29 71.43 71.43 28.57 25.00 17.86

NM 78.57 89.29 89.29 89.29 71.43 78.57 3.57
DE 50.00 96.43 89.29 89.29 75.00 21.43 0.00
PSO 100.00 100.00 100.00 100.00 82.14 96.43 100.00

(c) CMA is the best performing algorithm for Conformant Planning

SAiso (1+1) SA SACov CMA NM DE PSO
SAiso 100.00 71.43 71.43 0.00 42.86 7.14 100.00

(1+1)−ES 0.00 0.00 14.29 0.00 28.57 0.00 100.00
SA−ES 28.57 100.00 57.14 0.00 42.86 7.14 100.00

SA−ESCov 28.57 85.71 42.86 0.00 42.86 0.00 92.86
CMA−ES 100.00 100.00 100.00 100.00 100.00 64.29 100.00

NM 57.14 71.43 57.14 57.14 0.00 0.00 85.71
DE 92.86 100.00 92.86 100.00 35.71 100.00 100.00
PSO 0.00 0.00 0.00 7.14 0.00 14.29 0.00

(d) For Fuzzy control, SA-iso is the best algorithm

SAiso (1+1) SA SACov CMA NM DE PSO
SAiso 100.00 100.00 100.00 100.00 100.00 92.86 100.00

(1+1)−ES 0.00 42.86 64.29 92.86 100.00 60.71 100.00
SA−ES 0.00 57.14 96.43 92.86 100.00 67.86 96.43

SA−ESCov 0.00 35.71 3.57 92.86 100.00 25.00 82.14
CMA−ES 0.00 7.14 7.14 7.14 71.43 0.00 28.57

NM 0.00 0.00 0.00 0.00 28.57 0.00 0.00
DE 7.14 39.29 32.14 75.00 100.00 100.00 96.43
PSO 0.00 0.00 3.57 17.86 71.43 100.00 3.57

Table 7.2 – Frequency (in percentage) where an algorithm (in row) outperforms another
one (in column) in the small case (5 stocks, 25 time-steps).
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(a) DE outperforms everything for the specific policy

SAiso (1+1) SA SACov CMA NM DE PSO
SAiso 100.00 50.00 64.29 64.29 100.00 7.14 42.86

(1+1)−ES 0.00 0.00 0.00 0.00 42.86 0.00 0.00
SA−ES 50.00 100.00 64.29 42.86 92.86 0.00 28.57

SA−ESCov 35.71 100.00 35.71 28.57 92.86 0.00 14.29
CMA−ES 35.71 100.00 57.14 71.43 100.00 0.00 21.43

NM 0.00 57.14 7.14 7.14 0.00 0.00 7.14
DE 92.86 100.00 100.00 100.00 100.00 100.00 92.86
PSO 57.14 100.00 71.43 85.71 78.57 92.86 7.14

(b) With the neural network, PSO is clearly the best algorithm

SAiso (1+1) SA SACov CMA NM DE PSO
SAiso 75.00 82.14 78.57 10.71 3.57 35.71 0.00

(1+1)−ES 25.00 46.43 60.71 10.71 3.57 46.43 0.00
SA−ES 17.86 53.57 75.00 7.14 0.00 17.86 0.00

SA−ESCov 21.43 39.29 25.00 7.14 0.00 25.00 0.00
CMA−ES 89.29 89.29 92.86 92.86 21.43 60.71 10.71

NM 96.43 96.43 100.00 100.00 78.57 100.00 25.00
DE 64.29 53.57 82.14 75.00 39.29 0.00 7.14
PSO 100.00 100.00 100.00 100.00 89.29 75.00 92.86

(c) DE is the best performing algorithm for Conformant Planning

SAiso (1+1) SA SACov CMA NM DE PSO
SAiso 100.00 64.29 71.43 64.29 92.86 35.71 64.29

(1+1)−ES 0.00 0.00 21.43 21.43 57.14 0.00 50.00
SA−ES 35.71 100.00 64.29 64.29 92.86 35.71 57.14

SA−ESCov 28.57 78.57 35.71 42.86 78.57 7.14 64.29
CMA−ES 35.71 78.57 35.71 57.14 64.29 28.57 42.86

NM 7.14 42.86 7.14 21.43 35.71 7.14 21.43
DE 64.29 100.00 64.29 92.86 71.43 92.86 64.29
PSO 35.71 50.00 42.86 35.71 57.14 78.57 35.71

(d) For Fuzzy control, SA-iso is the best algorithm

SAiso (1+1) SA SACov CMA NM DE PSO
SAiso 89.29 89.29 100.00 100.00 100.00 89.29 96.43

(1+1)−ES 10.71 21.43 64.29 100.00 100.00 53.57 60.71
SA−ES 10.71 78.57 82.14 100.00 100.00 85.71 78.57

SA−ESCov 0.00 35.71 17.86 100.00 100.00 46.43 42.86
CMA−ES 0.00 0.00 0.00 0.00 42.86 0.00 7.14

NM 0.00 0.00 0.00 0.00 57.14 0.00 0.00
DE 10.71 46.43 14.29 53.57 100.00 100.00 53.57
PSO 3.57 39.29 21.43 57.14 92.86 100.00 46.43

Table 7.3 – Frequency (in percentage) where an algorithm (in row) outperforms another
one (in column) in the medium case (15 stocks, 50 time-steps).



Chapter 8

Combining policies: the best of human
expertise and neurocontrol

This chapter’s content comes from the paper Berthier, V., Couëtoux, A., and Teytaud, O.
(2015). Combining policies: the best of human expertise and neurocontrol. In Artificial
Evolution 2015, pages To–appear. Its abstract was:

We consider sequential decision making in the case where a generative model and a
parametric policy are available. Such a framework is naturally tackled with Direct Policy
Search, i.e. parametric op-timisation over simulations. We propose a simple method that
combines this parametric policy with a more generic neural network, where all parameters
are trained simultaneously. As such, our approach doesn’t require any computational
overhead. We show that the resulting policy significantly outperforms both the domain
specific policies and the neural network on a unit commitment test problem.

8.1 Introduction
In this chapter, we study planning under uncertainty, where only a generative model of the
domain is available. We do not make any assumption on the inner dynamics of the prob-
lem. Instead, we assume that we have some prior knowledge, in the form of handcrafted
parametric policies. These policies represent the existing methods to solve a problem.
They can be optimal solutions of a simplified version of the problem, or simply human
experience.

The constants in those parametric policies are replaced by parameters optimized on
simulations. This is Direct Policy Search, also known as Simulation-Based optimization.
More precisely, this is Direct Policy Search on top of expert policies; of course, Direct Pol-
icy Search can also be applied on top of generic policies such as neural networks or fuzzy
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rules. As Direct Policy Search rarely provides a gradient and needs a lot of robustness, it
is usually optimized by evolutionary algorithms.

This approach is stable and efficient. It is particularly convenient when an expert policy
is available [Bengio, 1998]. However, in that case, it is limited by the structure of the
policy.

To combine and exploit existing solvers, portfolios are now a widely established prin-
ciple. They are used in combinatorial optimization [Nudelman et al., 2004, Hamadi, 2013]
and noisy optimization [Baudis and Posik, 2014], including applications to control
[Gagliolo, 2010].

In this work, we propose a simple method for combining parametric policies in a direct
policy search framework. In contrast to portfolios as in [Gagliolo, 2010], our solution not
only selects the best of several policies but also in some cases vastly outperforms each of
them, without computational overhead. We perform experiments on a unit commitment
problem, a kind of power system management problem where the goal is to optimize the
cost of energy production.

The following sections briefly review discrete time controls methodologies, surveys
methods aimed at combining policies, and presents the concept of orthogonality in portfo-
lios, which will be central in our work.

8.2 Background and notations
With states noted x ∈X and actions u ∈ U , we assume a generative model is available,
i.e. given (x,u), we can sample a resulting state x′ = f (x,u) and reward r = ρ(x,u,x′). f
is the transition function and follows an unknown random distribution (e.g. x′ = f (x,u)
depends on some random ω through x′ = f (x,y,ω)).

A policy π is an object that given a state x, returns an action u. It can be deterministic
or stochastic, a parametric function or a qualitative heuristic.

Note that if the problem is non-Markovian, optimal policies might require to include
the entire history of observation in the state variable x, making methods sensitive to the
size of the state space highly impractical [Astrom, 1965].

The objective is to find a policy that maximizes the expected reward over a finite hori-
zon T . Formally, given an initial state x0, we try to find the solution π∗ to

argmax
π

E

[
∑
t

ρ(xt ,π(xt), f (xt ,ut))

]
(8.1)

with xt+1 = f (xt ,π(xt)) for 0≤ t < T .
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8.2.1 Methodologies based on value functions
To find the optimal policy, the favourite methods in power systems applications (e.g.
the management of long term hydroelectricity storage en production), come from Dy-
namic programming [Bellman, 1957] (DP) which is at the origin of a wide family
of discrete-time control algorithms such as Stochastic Dual Dynamic Programming
[Pereira and Pinto, 1991], Approximate Dynamic Programming [Powell, 2007], value it-
eration and a wide family of reinforcement learning algorithms.

Despite their solid theoretical basis, they are computationally expensive, they cannot
directly handle large scale non-Markovian random processes, and they are usually not any-
time algorithms (i.e. they return an incomplete answer if interrupted before termination).

Because of this, they are often less efficient than simpler deterministic approaches
[Zambelli et al., 2011, Christophe et al., 2014].

8.2.2 Direct Policy Search
Another trend in control is Direct Policy Search (DPS), which consists in searching in the
policy space directly, without any proxy.

This is often done by defining a set of parametric policies that depend on some param-
eter vector θ . One needs to find an optimal θ ∗, so that πθ∗ is a solution to Eq. 8.1.

The search for a good parameter θ can be done in a noisy optimization framework, by
relying on direct simulations of candidate policies πθ on the test problem.

Various algorithms have been proposed, including evolutionary algorithms with
re-sampling numbers chosen by Bernstein races [Heidrich-Meisner and Igel, 2009] or
by simple re-sampling rules [Astete Morales et al., 2013]. They are often improved
by the use of common random numbers [Strens and Moore, 2001, Strens et al., 2002,
Kleinman et al., 1999].

The performance of parametric DPS heavily relies on the choice of the policy search
space, i.e. the chosen class of policies that can be considered as candidates. Examples in-
clude neural networks [Bengio, 1998] and fuzzy systems [Zadeh, 1990], usually optimized
by evolutionary algorithms [Stalph et al., 2008].

We use in this chapter a self-adaptive evolution strategy, with anisotropic step-size
[Beyer, 2001]. The population size is set to λ = 4N +4 where N is the number of param-
eters, and µ = λ/4. The mutation rate is τ = 1/

√
2N. Initial parameters are randomly

drawn with a Gaussian distribution with step size 1 and step-sizes are independently ran-
domly drawn as the exponential of standard Gaussian distributions.

Other algorithms were not considered here, since the goal was to assess the viability
of the combination of two different strategies, not to compare the performances of each
individual algorithms in that situation.



CHAPTER 8. COMBINING POLICIES 115

8.3 Meta-policy search
To find an optimum solution, it is of course possible to try each of the policies, and select
the best one. This however implies to run the optimization process multiple times. Here,
we propose a scheme to combine multiple policies: one is problem specific under the form
of simple heuristics designed using prior knowledge on the domain, and the other one is a
generic parametric policy (eg. Neural Network, Fuzzy rules).

8.3.1 Combining policies
Combining several policies has been done before, in different ways. A part of the literature
combines policies in the sense that each policy, equipped with state prediction, handles a
part of the state space [Doya and Samejima, 2002].

Some approach combine policies based on their Q-functions
[Marivate and Littman, 2013] or by combining the policies themselves
[van Hasselt, 2011]. Another method is to distribute the computational power over
a family of algorithms (similarly to how multi-armed bandits distribute arm pulls) by
combining DPS algorithms [Gagliolo, 2010].

As in [Gagliolo, 2010], we consider a DPS-based approach. More precisely, we con-
sider several parametric policies, to be optimized by DPS. However, instead of optimizing
each family separately, and then combining them, we consider a parametric combination
αC1 +(1−α)C2 where, C1 and C2 are two policies. We then optimize the joint policy.
With this, the decision resulting from the joint policy is the combination of each policy’s
output.

More formally, given a current state s, we select the decision:

Ccombination(s) = αC1(s)+(1−α)C2(s). (8.2)

This makes sense in the case of continuous actions. The number of parameters to op-
timize is N1 + N2 + 1, where N1 and N2 are the number of parameters of C1 and C2
respectively. We actually write α as a parametric function ranging from 0 to 1, with
α = 1

2(1+β/
√

β 2 +1); the parameter β is optimized in R and initialized at 0.
Our method has the following advantages:

• there is almost computational overhead in terms of computational cost per iteration,
as all the parameters of the combined policy are trained at once, without specific
training of each independent policy. Most of the computation time is spent in the
simulations, not in the policies themselves. Therefore the computational overhead
for a given number of iterations, compared to each of the families separately, is
negligible.
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• By searching in a wider set of functions and not only the functions encoded by
method A or by method B, but instead all combinations of functions in A and func-
tions in B, we can outperform all the individual policies, as the global family of
functions contains weighted averages of the original policies and not only the union
of both families of functions.

8.3.2 Orthogonal policies
[Samulowitz and Memisevic, 2007] pointed out the importance of using “orthogonal” al-
gorithms in a portfolio. A portfolio containing too many optimizers tends to be unstable.
It is then necessary to choose as few optimizers as possible, while covering as best as
possible the set of all possible solvers. In order to increase the chances of finding a good
solution, what matters is not (only) the number of optimizers in the portfolio, but how
many orthogonal these optimizers are. Optimizers are said to be “orthogonal” if they are
“very” different one to each other.

In the same way, combining many policies, or two policies of the same type (eg. neural
networks) is not optimal. The best strategy would be to choose two policies as different
from one another as possible.

This principle of orthogonality can be linked to the notion of diversity present in En-
semble Learning.

8.4 Experimental results: combining handcrafted func-
tions and neural networks

To analyze our method, we designed many individual policies to later combine them.
These include:

• A handcrafted function based on heuristics, designed by human experts.

• Several fuzzy control functions.

• Conformant planning: a sequence of actions, independent of state observations.

• A one layer feed-forward neural network with sigmoid activation functions, such
that for a state at time t st , the action at is:

at =W0 +W1× tanh(W2× st +W3)

Where W0 is a bias vector of size the number of actions at each time step, W1 the
activation weights of the neurons in the hidden layer of dimension ‖actions‖ ×
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‖neurons‖, W2 is the weight matrix from the states to the neurons of dimension
‖neurons‖× ‖states‖, and W3 is a bias vector the size of the number of neurons.
The total number N of parameters to optimize is then

N = ‖states‖× ‖neurons‖+ ‖neurons‖+ ‖actions‖× ‖neurons‖+ ‖actions‖

Fuzzy systems and conformant planning are intermediates between expert handcrafted
functions and neural networks:

• They are less specialized than the expert function, which has only 3 parameters and
works quite well.

• They are less parameter-free learners than the neural network.

Typically in our experiments the expert function is the best one for small learning time,
and the neural network is the best function asymptotically. Interestingly however, we will
see that our combination not only selects the best among the neural network and the expert
function - it outperforms both.

8.4.1 Test problems: two types of unit commitment
Our test case is the one provided freely at https://www.lri.fr/~teytaud/uctest/

uctest.html. In the unit commitment problem, the goal is to use available means of
storage and production to satisfy a demand in energy over a given time horizon. We con-
sider the case where energy can be produced from hydroelectric plants for free and from
thermal plants at a cost.

Energy can be stored until a certain limit in hydroelectric plants. The goal being to
minimize the costs, we want to use the thermal plants as little as possible, and to maximize
the efficiency of the storage available, while still meeting the demand. Failures to produce
the required demand are heavily penalized.

The objective function can be seen as:

Cost =−
T

∑
t=0

(max(0,Demandt−
n stocks

∑
s=0

Productions,t)×T hermalCost)−Penalisation

We study our method on two distinct versions of this problem: a hydroelectric valley
(all dams are connected in series), and a random network of dams avoiding cycles.

In both cases, there are five dams, i.e. the state space contains 5 continuous variables.

https://www.lri.fr/~teytaud/uctest/uctest.html
https://www.lri.fr/~teytaud/uctest/uctest.html
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There are 21 time steps. Thermal units complete the dispatch, ie. they produce the
electricity needed to satisfy the demand. In short, the control problem has 5 input variables,
5 output variables, and 21 time steps.

The dams receive random inflows at each time step, simulating weather conditions.
We study two cases: rainy seasons with large inflows, and dry seasons with small inflows.

The noise-free setting corresponds to a case in which we assume that all random
processes can be predicted with high accuracy.The noisy setting represents a more dif-
ficult scenario. We need a noisy optimization algorithm instead of a classical optimiza-
tion algorithm. In the noisy case, each fitness evaluation at iteration i of the evolu-
tionary algorithm is averaged over d10

√
ie runs in order to mitigate the level of noise

[Astete Morales et al., 2013].

8.4.2 Noise free setting
We first present experiments in a simplified noise-free case, i.e.the objective function is
deterministic. This means that all random processes are replaced by a deterministic sim-
plified counterpart. Results are presented in Fig. 8.1 (hydroelectric valley in the noise-free
case; top: large inflows; bottom: small inflows) and Fig. 8.2 (hydroelectric network in the
noise-free case, same two settings).

In each of these four noise-free cases, the combination is at least as efficient as each
policy separately, and in two cases it outperforms them vastly. Each experiment is repro-
duced with various numbers of neurons; 2 or 4 neurons is usually optimal.

8.4.3 Noisy setting
We now perform experiments with random noise around the mean inflows and demands.
Fig. 8.3 presents the results in the case of the hydroelectric valley and Fig. 8.4 presents
the results in the case of the hydroelectric random network (in both cases, two settings,
namely large inflows and small inflows).

In each of these four noisy cases, the combination is at least as efficient as each policy
separately, and in two cases it outperforms them vastly. Each experiment is reproduced
with various numbers of neurons; 2 or 4 neurons is usually optimal.

8.4.4 Experimental results
The results of the combination vastly outperform each individual policy in some cases: in
the noise-free setting with large inflows (top plot of Figures 8.1 and 8.2) as well as in the
noisy setting with, again, large inflows (top plots of Figures 8.3 and 8.4).
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Figure 8.1 – Y-axis = reward. X-axis = learning budget. Hydroelectric valley. Noise-
free setting (i.e.all random processes are simplified to their average values). Each subplot
corresponds to a different number of neurons. 4: parametric expert function. .: neural
network. 5: combination. The combination outperforms both separate functions. Top:
large inflows. Bottom: small inflows.
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Figure 8.2 – Hydroelectric network, noise-free setting. Top: large inflows. Bottom: low
inflows. The combination (.) is a clear success in this case as well, though in the latter
case the expert function also performs very well.
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Figure 8.3 – Noisy setting, hydroelectric valley. Top: large inflow - the combination is
excellent. Bottom: small inflows - the combination performs well; it does not always
outperform the best of both solvers, but we point out that just selecting the best of two
controllers takes more time than training them [Gagliolo, 2010].
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Figure 8.4 – Noisy setting, hydroelectric network. Top: large inflows. Bottom: small
inflows. Results are qualitatively similar to Fig. 8.3.
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In all the other cases, when there is little to no improvement though, it is important to
note that the results aren’t any worse than the best of the two other policies.

Considering the very low cost of optimizing the combination in opposition to one
policy or the other, and the fact that in the worse case scenario the performances will be as
good as a single policy, and that in the best case scenario the combination’s results will be
vastly better, designing and optimizing the combination policy seem like a good idea.

8.4.5 Experimental results: others
We also tried to replace the neural network policy by some other parametric policies such
as fuzzy controllers, conformant planning, linear or quadratic controllers. However, none
of them could be combined with the expert policy as efficiently as the neural network
could.

Even more interestingly, when we combined two parametric policies, we could at best
approximately get the best of the two (or four in cases of recursive combinations) but we
never outperformed it. Furthermore, there was a clear delay to reach this selection, which
is a result comparable to [Gagliolo, 2010].

8.5 Conclusions and further works
We proposed a simple tool for combining parametric DPS policies:

• Just one optimization pass for both policies (though we might consider more than
two parametric policies);

• Usually quickly as good as the best of the considered policies;

• Sometimes much better.

Compared to separate learning, this makes the tool simpler (just one run) and faster (no
separate learning). Compared to algorithm selection methods as [Gagliolo, 2010], we can
outperform both approaches, whereas classical algorithm selection can only be equivalent
to the best of the two methods.

We do not claim that we outperform portfolio methods, or at least not in all cases.
Maybe for combining large numbers of policies our method would fail compared to port-
folio methods. A limitation of our approach is that we can combine various parametric
policies, but we can not combine DPS and completely different methods such as stochas-
tic dual dynamic programming [Pereira and Pinto, 1991] or Monte Carlo Tree Search
[Coulom, 2006, Kocsis and Szepesvari, 2006].
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In addition, the success of our method was not reproduced with something else than the
combination “expertise + neural networks”; we assume that this is related to the orthogo-
nality (the expert policy is very different from the generic neural network). Still, the com-
bination was very efficient in a stable manner, outperforming both methods without addi-
tional cost and without sophisticated developments. This was the case for 1,2,4,8,16,32
neurons, in all 8 sets of experiments (a deterministic and a stochastic case; a hydroelectric
valley and a hydroelectric random network; and two levels of inflows). Therefore we con-
sider that our simple combination (Eq. 8.2) should at least be considered when combining
policies.

Last, we point out a specific property of evolution strategies. In the case where only
one of the policies is relevant, then an optimization algorithm (evolutionary or not) might
quickly find the optimal extreme value for α in Eq. 8.2. Then, the variables from the other
policy have no impact on the objective function anymore, due to the weight zero of the
corresponding policy. As a consequence, many variables become pointless, with no impact
on the objective function. In contrast to many optimization algorithms, many evolutionary
algorithms are not impacted by the presence of these pointless variables. Therefore, once
α has been tuned, the evolutionary algorithm might just optimize the parameters of the
relevant policy.

Combining four controllers was briefly considered in this work, without clear results.
We considered combinations of controllers with less orthogonality (fuzzy systems, confor-
mant planning, linear controllers) and results were far less convincing; whereas for neural
networks and handcrafted policies the combination was already efficient. Extending the
method in cases with less orthogonality might be interesting, as well as validating the fact
that orthogonality is crucial.



Chapter 9

Progressive Differential Evolution on
Clustering Real World Problems

This chapter’s content comes from the paper Berthier, V. (2015c). Progressive differential
evolution on clustering real world problems. In International Conference on Artificial
Evolution (Evolution Artificielle), pages 71–82. Springer. Its abstract was:

In this paper, we assess the performances of Differential Evolution on real-world clus-
tering problems. To improve our results, we introduce Progressive Differential Evolution,
a small modification of Differential Evolution which aims at optimizing a small number of
parameters (eg. one cluster) at the beginning, and incrementally increase the number of
optimized parameters.

9.1 Introduction
While many benchmarks used in the optimization community to evaluate algo-
rithms are based on purely artificial functions such as [Suganthan et al., 2005] and
[Hansen et al., 2010b], it can only be the first step in what ultimately is aimed
at solving real world problems. Some recent initiatives went in that direction
(see [Gould et al., 2003] for example), proposing new ways to assess the performances
of optimization algorithms.

In this chapter, by comparing our results on one such benchmark, we (i) show that
the Differential Evolution algorithm is very efficient on clustering problems and (ii) pro-
pose Progressive Differential Evolution, which starts with a low number of parameters to
optimize and gradually increases it.

Section 9.2 describes the benchmark we used to compare our results to other algo-
rithms and Section 9.3 validates our approach. Section 9.4 recalls the Differential Evolu-
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tion algorithm and the “DE/curr-to-best/1” variant we used while Section 9.5 introduces
Progressive Differential Evolution. In Section 9.6 we compare our results to the state of
the art.

9.2 Continuous Real-World Representative benchmark
Most of the existing testbeds used to evaluate optimization algorithm compare their perfor-
mances on artificial functions, such as the sphere, the ellipsoid or the Rosenbrock function
to cite the most notable ones. With the improvements of the algorithms, more complex
functions were introduced with some specific properties such as rotation, non separability,
multimodality and so on, but ultimately, most testbeds are completely artificial.

While this is by no mean uninteresting, the ultimate goal in optimization is to solve
real world problems. The gap between artificial functions - as complex as they are - to real
world issues seems too large to directly apply what we know. As such, new testbeds, with
some real world properties are advisable.

Knowing that using evolution strategy optimizers on clustering problems is perfectly
viable, as shown in [Raul Hruschka et al., 2009], a new testbed revolving around clustering
problems with interesting problems is proposed in [Gallagher, 2016]: those problems have
interesting properties to evaluate optimization algorithms: challenging, scalable, easy to
understand and implement, and most of all, their data can - and should - come from real
world examples. Each cluster is used as a vector of coordinates in the parameters’ space
of data, which allows us to use optimization algorithms on those problems.

The three problems used here are the Iris [Fisher, 1936], the Ruspini [Ruspini, 1970]
and the German Town [Spath, 1980] data-sets, all of them widely used in the clustering
community to evaluate the performances of their own algorithms, and rooted in the real
world. More importantly, [du Merle et al., 1999] computed the global optimum for those
data-sets from two to ten clusters, which allows us to assess the performances of the algo-
rithms. The German Town points are defined in 3D, the Iris ones in 4D and for Ruspini it
is in 2D.

Along with a k-means clustering algorithm, [Gallagher, 2016] studied the per-
formances of three black-box algorithms: CMA-ES [Hansen and Ostermeier, 2001]
(one with standard population size, one with an increased population), Nelder-
Mead [Nelder and Mead, 1965] and Random-Search. One of the conclusions is that even
if the k-means algorithm converges very quickly, it is often beaten by CMA-ES (with in-
creased population size) in term of quality of the solution found. Thus, complete black-box
algorithms are able to outperform problem specific ones.
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D k f∗ CMA-ES(50,100) CMA-ES(50,100) SP1 CMA-ES CMA-ES SP1
G 02 6.02546e11 6.025472e11 (2.8e-04) 8.3400e03 (6.4e02) 1.172558e12 (7.6e11) 4.8798e04 (3.3e04)

03 2.94506e11 4.486461e11 (1.5e11) 4.2083e04 (2.6e04) 8.196432e11 (1.2e12) ∞

04 1.04474e11 3.362127e11 (1.4e11) 3.9970e05 (1.8e05) 7.629370e11 (4.7e11) ∞

05 5.97615e10 2.049802e11 (1.4e11) 6.8410e05 (2.0e05) 7.488858e11 (1.2e12) ∞

06 3.59085e10 1.585765e11 (1.5e11) ∞ 8.818792e11 (6.3e11) ∞

07 2.19832e10 1.051648e11 (1.1e11) ∞ 6.463187e11 (7.5e11) ∞

08 1.33854e10 1.068587e11 (9.3e10) ∞ 7.005948e11 (7.1e11) ∞

09 7.80442e09 2.780667e11 (3.1e11) ∞ 1.003192e12 (9.7e11) ∞

10 6.44647e09 5.869352e11 (5.2e11) ∞ 7.677317e11 (6.5e11) ∞

I 02 1.52348e2 1.523480e02 (6.4e-14) 1.8344e04 (5.0e02) 1.523542e02 (3.0e-03) ∞

03 7.88514e01 7.885144e01 (2.5e-14) 7.2048e04 (2.2e03) 1.279512e02 (1.2e02) ∞

04 5.72285e01 5.836730e01 (3.9e00) ∞ 9.728522e01 (3.5e01) ∞

05 4.64462e01 4.766177e01 (1.7e00) ∞ 1.330878e02 (1.3e02) ∞

06 3.90400e01 4.149195e01 (2.9e00) ∞ 1.292478e02 (1.3e02) ∞

07 3.42982e01 4.037920e01 (3.5e00) ∞ 7.892632e01 (4.5e01) ∞

08 2.99889e01 3.739813e01 (4.2e00) ∞ 7.750688e01 (5.4e01) ∞

09 2.77861e01 3.831817e01 (5.3e00) ∞ 8.018775e01 (7.6e01) ∞

10 2.58341e01 5.653196e01 (6.9e01) ∞ 9.553900e01 (1.0e02) ∞

R 02 8.93378e04 8.933783e04 (5.0e-12) 6.8260e03 (1.1e03) 8.933783e04 (3.1e-11) 3.5903e04 (5.0e03)
03 5.10635e04 5.110393e04 (4.6e01) 2.0453e04 (5.3e03) 5.473043e04 (9.8e03) ∞

04 1.28811e04 1.288105e04 (0.0e00) ∞ 2.046652e04 (1.5e04) ∞

05 1.01267e04 1.032449e04 (5.0e02) ∞ 3.209521e04 (1.4e04) ∞

06 8.57541e03 8.919118e03 (5.1e02) 2.5490e05 (1.7e04) 2.605724e04 (1.3e04) ∞

07 7.12620e03 7.634386e03 (4.4e02) 7.7641e05 (4.9e04) 2.309534e04 (6.1e03) ∞

08 6.14964e03 6.635902e03 (3.9e02) ∞ 2.061007e04 (5.2e03) ∞

09 5.18165e03 7.464273e03 (3.6e03) ∞ 1.906988e04 (5.3e03) ∞

10 4.44628e03 1.095691e04 (5.0e03) ∞ 1.696298e04 (5.6e03) ∞

Table 9.1 – Average fitness results and SP1 measure (mean and standard deviation) for
CMA-ES and CMA-ES(50,100). An SP1 measure of ∞ means that the optimum could not
be reached for any of the 50 runs. Results are give for the German Town (G), Iris (I) and
Ruspini (R) data-sets for all values of k.

9.3 Implementation validation
In order to compare results obtained on our platform using Evolving Objects
(see [Keijzer et al., 2002]), we ran the benchmark on two CMA-ES with the same con-
figuration as [Gallagher, 2016]: one has default parameters, one has a population size of
µ = 50 and λ = 100. In both cases, we stopped a run when fbest ≤ f ∗+ f ∗

1e15 (ie. the
optimum is reached), when the best fitness stagnated for too long or when the allocated
budget was consumed. This budget was set to 2e5 function evaluations (all budgets in this
chapter are expressed in terms of function evaluations).

As can be seen in Table 9.1, the mean fitnesses we were able to obtain are comparable
to the ones reported in [Gallagher, 2016]: sometimes better, sometimes worse, but never
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by far (except in high dimension where the results are degraded, probably due to different
parameters). This allows us to validate our implementation, and serves as a baseline for
the rest of our work.

In the original paper, the number of function evaluations was reported with the mean
fitnesses. The given explanation is that the main focus of the exercise being the fitness -
and not so much failures or successes - the required number of function evaluations to get
a result is not that important: each algorithm should have the time - the budget - to reach
the optimum or at least converge.

While this is perfectly valid, we don’t feel comfortable to do so as it weakens the
comparison between algorithms. Instead of reporting the mean number of function eval-
uations used, we will prefer the SP1 measure as defined in [Auger and Hansen, 2005] :
SP1 = E(Ts)

ps
, where E(Ts) is the expected number of function evaluations used in a suc-

cessful run and ps is the probability to get a success for a given run.
This measure has some disadvantages e.g. when the success probability is 0), but it

allows a more accurate comparison between algorithms, in particular when using restarts.
In such a way, two possible strategies (aiming for a 100% success rate no matter the
cost or allowing restarts if the solution is not quickly found) are both possible and their
performances can be compared without bias one way or another.

9.4 Differential Evolution
While the first work on this clustering benchmark obviously did not try to compare each
and every possible optimization algorithm, we felt that given the specificities of the prob-
lem, Differential Evolution (DE) [Storn and Price, 1997] could perform quite well. This
feeling is substantiated by [Das and Suganthan, 2011] in which DE is said to perform very
well on a lot of testbeds.

Built around crossovers, the DE algorithm replaces part of a given individual with two
or more others. Many different variants of DE exist, each one defining the crossovers rule.
The one we chose was “DE/curr-to-best/1”. For a given generation, we then have:

The only difference from “DE/best/1” is thus the update formula, which is Y (i)←
Best(i)+ f1(A(i)−B(i)).

In the spirit of [Gallagher, 2016], we didn’t try to tune the algorithm’s parameters.
Instead, in the absence of a standard recommendation, we set CR = 0.5, f1 = f2 = 0.8
for a population size of 30. The initialization points were randomly drawn with a normal
distribution of mean the average of the range of the variables, with a standard deviation of
a third of that average. We used here the same stopping criteria as with CMA-ES in our
previous experiment.
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DE/curr-to-best/1: U(0,1) is a random uniformly distributed number between 0 and 1, CR
is the crossover rate parameter, f1 and f2 are two real numbers, Best is the best individual
in the generation, and f is the evaluation function, n is the dimension of a point in the
given dataset.

for each individual I do
Y ← I
Randomly choose A and B, two individuals distinct from I and Best
Randomly select an index R ∈ {1, . . . ,n}
for all i ∈ {1, . . . ,n} do

if i = R or U(0,1)<CR then
Y (i)← I(i)+ f1(A(i)−B(i))+ f2(Best(i)− I(i))

end if
end for
if f (Y )< f (I) then

Replace I by Y
end if

end for

9.5 Progressive Differential Evolution
In some of our first trials, when studying the reasons for failures to reach the optimum, we
reached the conclusion that in a third of the failed runs, this failure was due to falling in a
local optimum. As can be seen on Figure 9.1 with a 3e4 budget, in most cases the failures
to reach the optimum are simply due to a lack of budget: the clusters found are not exactly
at the optimum but centered around them. In fact, by increasing the budget, we saw that
indeed, those points went to the optimum.

In the second case however, we can see that the points found are symmetrically op-
posed to the optimum solution, one cluster at the top, two at the bottom. This configura-
tion on the Ruspini problem with k = 3 gives a fitness of ≈ 51155, which is only slightly
worse than the optimum of ≈ 51063. As such, there is only a very small probability that
any mutation would get to the real optimum close enough to improve the solution.

In order to avoid this, we introduced “Progressive Widening” we saw in Chapter 6 in
Section 6.1.1, applied to Differential Evolution.

Here, we chose to use R = 100, which means that every one hundred generation, we
increase the number of parameters to optimize until we reach n · kmax.

Of course, the fact that we optimize k clusters doesn’t mean that the others “disappear”:
they are still taken into account in the evaluation, but don’t move from their initial position,
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Figure 9.1 – Clusters position on failure cases, Ruspini dataset with k = 3

which is the center of the search space. This means that even when training k clusters, there
is always one more that can be selected as the nearest from a given point. While we could
have completely removed them from the evaluation, we felt that this would have reduced
the black-box context of the problem.

In fact, one could argue that we are only able to use Progressive Widening by weak-
ening the black-box setting of the problem. Indeed, since we know the dimension of the
problem, we know that to add a cluster we have to add N parameters. We don’t think this
is an issue however, this knowledge being as much part of the specification of the problem

PDE: kmax is the desired number of clusters, N is the dimensionality of each point, R
determines the number of generations to do with k clusters

Initialize population
k← 1
while Not stop do

for i = 0 to R do
Run one generation of DE on the k ·N first parameters

end for
k← min(k+1,kmax)

end while
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as the definition of the search space.

9.6 Results

9.6.1 DE vs CMA-ES

D k f∗ DE DE SP1 PDE PDE SP1
G 02 6.02546e11 6.025472e11 (5.0e-04) 5.6160e03 (6.6e02) 6.025472e11 (5.0e-04) 9.1242e03 (2.9e02)

03 2.94506e11 3.006674e11 (4.3e10) 9.0893e03 (1.8e03) 2.945066e11 (0.0e00) 1.3496e04 (2.6e02)
04 1.04474e11 1.500823e11 (8.1e10) 2.3898e04 (1.6e04) 1.044747e11 (0.0e00) 1.9849e04 (4.5e02)
05 5.97615e10 7.423346e10 (3.6e10) 4.5462e04 (4.3e04) 6.065579e10 (6.3e09) 2.7124e04 (1.6e03)
06 3.59085e10 4.776401e10 (3.8e10) 4.8107e04 (2.3e04) 3.611288e10 (1.4e09) 3.3399e04 (1.5e03)
07 2.19832e10 3.176165e10 (1.6e10) 2.0357e05 (1.1e05) 2.423709e10 (5.1e09) 8.8896e04 (3.5e04)
08 1.33854e10 2.182272e10 (8.3e09) ∞ 1.639762e10 (4.1e09) ∞

09 7.80442e09 1.562879e10 (6.3e09) ∞ 1.127751e10 (2.9e09) ∞

10 6.44647e09 1.281459e10 (6.2e09) ∞ 8.793075e09 (4.3e09) 2.2032e06 (3.4e05)
I 02 1.52348e02 1.523480e02 (0.0e00) 8.9892e03 (2.7e03) 1.523480e02 (0.0e00) 1.3222e04 (3.5e02)

03 7.88514e01 8.032188e01 (1.0e01) 2.0023e04 (1.3e04) 7.885212e01 (1.5e-03) 2.1965e04 (7.9e02)
04 5.72285e01 5.867260e01 (5.2e00) 5.0221e04 (2.7e04) 5.722847e01 (4.8e-14) 2.6411e04 (5.6e03)
05 4.64462e01 4.978281e01 (4.3e00) 1.3932e05 (8.1e04) 4.847058e01 (1.8e00) 1.7655e05 (5.8e04)
06 3.90400e01 4.210588e01 (3.4e00) 1.9240e05 (7.7e04) 3.961203e01 (1.5e00) 1.2713e05 (4.7e04)
07 3.42982e01 3.735682e01 (3.4e00) 1.3620e06 (3.7e05) 3.506627e01 (1.6e00) 4.1865e06 (0.0e00)
08 2.99889e01 3.288639e01 (3.3e00) 1.0018e06 (1.2e05) 3.084912e01 (1.4e00) 9.5156e05 (1.3e05)
09 2.77861e01 2.928749e01 (2.2e00) 1.6612e06 (1.1e05) 2.855921e01 (1.2e00) 1.3116e06 (2.8e05)
10 2.58341e01 2.795759e01 (2.7e00) 3.5490e06 (0.0e00) 2.695760e01 (9.1e-01) 7.8765e06 (0.0e00)

R 02 8.93378e04 8.933783e04 (0.0e00) 5.9892e03 (2.3e03) 8.933783e04 (0.0e00) 1.0646e04 (4.0e02)
03 5.10635e04 5.109841e04 (4.5e01) 2.0758e04 (9.1e03) 5.106348e04 (4.1e-11) 1.1740e04 (4.0e02)
04 1.28811e04 1.288105e04 (0.0e00) ∞ 1.288105e04 (0.0e00) 1.1175e06 (0.0e00)
05 1.01267e04 1.015393e04 (1.9e02) ∞ 1.013935e04 (1.1e01) ∞

06 8.57541e03 8.664380e03 (2.5e02) 1.0505e05 (8.3e04) 8.660781e03 (1.1e02) 9.7329e04 (2.2e04)
07 7.12620e03 7.179452e03 (1.4e02) 1.0829e05 (7.4e04) 7.193774e03 (1.0e02) 1.6640e05 (1.0e04)
08 6.14964e03 6.246995e03 (3.6e02) 1.7645e05 (1.2e05) 6.168576e03 (3.4e01) 7.7184e04 (2.0e04)
09 5.18165e03 5.441820e03 (4.2e02) 2.8236e05 (1.3e05) 5.314655e03 (1.9e02) 1.3664e05 (5.8e04)
10 4.44628e03 4.694111e03 (4.3e02) 2.6013e05 (9.9e04) 4.622832e03 (8.4e01) 8.9633e05 (4.6e04)

Table 9.2 – Average fitness results and SP1 measure (mean and standard deviation) for DE
and PDE. An SP1 measure of ∞ means that the optimum could not be reach for any of the
50 runs. Results are give for the German Town (G), Iris (I) and Ruspini (R) data-sets for
all values of k.

The results we obtained with DE shown in Table 9.2 and Figure 9.3 were very good,
often better - sometimes by far - than CMA-ES(50,100). The first striking result is that DE
more consistently reaches the optimum solution: in only five cases (three on the German
Town dataset, two on the Ruspini dataset) DE was not able to reach the optimum at least
once in the 50 runs reported here.
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As such, it comes as no surprise that the average fitness obtained by DE after 50 runs
was improved in almost all cases (except on the Iris dataset when k≤ 6 and on the Ruspini
dataset with k = 3). While this improvement is not necessarily ground breaking on the
Ruspini dataset for example, it is much more important on the German Town problem (see
Figure 9.3a).

9.6.2 DE vs PDE
The effects of the Progressive Widening on DE were twofold: first, it globally improved
the average fitness across the board: in all but one trial (Ruspini with k = 7), the mean fit-
ness and associated standard deviation were better with Progressive Widening than with-
out. Once more, this is most notable on the German Town problem. Furthermore, in only
one case now (Iris dataset with k = 10) is CMA-ES the best: on all other cases, PDE gets
better results.

The second effect (shown in Table 9.3) was the one we expected: the success rate
improved, we find the optimum more often. Most notably, with k = 3 on the Ruspini
dataset, we went up from a 62% success rate to a full 100%: we no longer fall in the local
optimum reported in Figure 9.1, which was our goal when adding Progressive Widening
to DE.

In five cases though the rates went down but only in two cases was this decrease im-
portant: from 58% to 20% on the Ruspini dataset with k = 7 (which is also the only case
where the mean fitness obtained by DE is better than PDE) and from 32% to 6% still on
the Ruspini dataset but with k = 10. Interestingly here, while the success rate decreased
by almost 30%, the mean fitness obtained by PDE is still better than the one from DE.

In fact thanks to this, we can see that while the Progressive Widening works very well
in most instances in order to avoid a local minimum, in some rare cases it is exactly the
opposite, as we can see on Ruspini with k = 10. While the solution found is often very
good - there is not a huge difference between DE and PDE mean fitness there - by plotting
the proposed solution we see that when PDE fails to reach the optimum and stagnates, it
is because it fell in a local minimum.

9.6.3 The cost of PDE
Given the fact that the budget and stopping criteria are the same for DE and PDE, the
SP1 measures reported in Table 9.2 mostly reflect the differences in success rate we saw
previously. In the few cases were both algorithm have (almost) the same success rate, we
can see that the SP1 measure is higher (or worse) for PDE than for DE : the introduction
of Progressive Widening is not without cost.
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(a) German Town dataset

k CMA DE PDE
02 100 100 100
03 48 98 100
04 10 76 100
05 18 74 98
06 0 74 88
07 0 38 74
08 0 0 0
09 0 0 0
10 0 0 8

(b) Iris dataset

k CMA DE PDE
02 100 100 100
03 100 86 84
04 0 56 100
05 0 28 28
06 0 32 50
07 0 4 2
08 0 6 8
09 0 4 8
10 0 2 2

(c) Ruspini dataset

k CMA DE PDE
02 100 100 100
03 56 62 100
04 0 0 2
05 0 0 0
06 24 46 36
07 16 58 20
08 0 42 64
09 0 32 52
10 0 32 6

Table 9.3 – Success rate for CMA(50,100), DE and PDE

This is even more clearly illustrated in Figure 9.2, where some statistics on the fit-
nesses of 50 runs of DE and PDE are plotted. On the first few evaluations, PDE performs
two orders of magnitude worse than DE, still one order of magnitude worse after 5e3 eval-
uations, and it is not until at least 1.5e4 evaluations that PDE performs at least as well as
DE. While this is to be expected since until then not all clusters are optimized, it is still
something to take into account.

9.7 Conclusion
DE performs very well on clustering problems, even when compared to clustering algo-
rithms or CMA-ES, the current state of the art on this benchmark. This, by itself, is a very
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Figure 9.2 – Fitness statistics evolution on the Ruspini dataset with k = 6 with DE and
PDE. The Progressive Widening has a clear cost at the beginning of the optimization pro-
cess.

impressive result.
Our proposed variant of DE, PDE, gets even better results in most cases illustrating the

good impact the concept of Progressive Widening can have on a black box algorithm.
In addition, we propose a baseline for the SP1 measure that will allow more robust

comparisons of algorithms on this benchmark in the future.

9.8 Further work
While still following the spirit of the original chapter by not tuning the algorithms pa-
rameters, there are still many possibilities to try and improve the results. Some ways to
do so include other mutations rules for DE (DE/rand/1, DE/best/1, etc.), using Adaptive
Differential Evolution, or other variants.

Of course, another way could be to use the progressive strategy on other algo-
rithms when possible: for algorithms with covariance matrices such as CMA-ES,
CMSA [Beyer and Sendhoff, 2008] or even the self-adaptive with covariance algo-
rithm [Rechenberg, 1973b] such a change is not trivial. But for others like Particle Swarm
Optimization [Eberhart and Kennedy, 1995, Shi and Eberhart, 1998a] or the other mem-
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bers of the Self-Adaptive family [Beyer, 2001] (isotropic or anisotropic, 1+1, etc.) this is
quite straightforward.

The most interesting improvements could be done on the Progressive Widening con-
cept. For example, knowing why in some instances it is more prone to fall in a local
minimum would be interesting.

Furthermore, we have seen that the Progressive Widening is not without cost. To lessen
that cost, instead of adding clusters (or parameters in the general case) at fixed time-steps
we could design a rule that dynamically adds them when the fitness is reasonably stable.
An intermediate step might be to add those parameters after an increasing number of time-
steps (evaluations or generations) with a logarithmic rule for example, such that the more
parameters are currently optimized, the more time is spent on them before adding more.



CHAPTER 9. PROGRESSIVE DIFFERENTIAL EVOLUTION 136

2 3 4 5 6 7 8 9 10
Number of clusters

100

101

R
at

io
to

op
tim

um
(lo

g
sc

al
e)

German Dataset

DEPW
DE
CMA50
CMA
KM
NM
RS

(a) German Towns dataset

2 3 4 5 6 7 8 9 10
Number of clusters

0

1

2

3

4

5

6

7

8

R
at

io
to

op
tim

um

Iris Dataset

DEPW
DE
CMA50
CMA
NM
RS
KM

(b) Iris dataset



CHAPTER 9. PROGRESSIVE DIFFERENTIAL EVOLUTION 137

2 3 4 5 6 7 8 9 10
Number of clusters

0

1

2

3

4

R
at

io
to

op
tim

um

Ruspini Dataset

DEPW
DE
CMA50
CMA
KM
NM
RS

(c) Ruspini dataset

Figure 9.3 – Performance as a ratio to the optimum ( f̂
f ∗ ) of results reported in the original

chapter compared to DE and PDE with a 2e5 budget. From left to right are PDE, DE,
CMA-ES(50,100), CMA-ES, KM, NM and RS.



Chapter 10

Understanding bio-physical structures
with Genetic Algorithms

10.1 Introduction
There are many works done to test Optimization Algorithms, most of them on artifi-
cial benchmarks [Suganthan et al., 2005, Hansen et al., 2010b]. While there are fewer
made on benchmarks rooted in real world problems, they do exist [Gould et al., 2003,
Gallagher, 2016, Berthier, 2015d]. Looking further than simple tests of the algorithms, we
find many applications in a wide range of domains: physics, economics, biology, imagery,
etc.

One of the many applications of Stochastic Optimization in biol-
ogy [Chatterjee et al., 1996, Balsa-Canto et al., 2012, Banga, 2008] is to identify
and test models that are best able to fit the real world. This can also serve to validate - or
invalidate - hypotheses about a given biological phenomenon.

Here, we will focus on one such phenomenon, regarding the properties exhibited by
the shell of some insects or the wings of some butterflies to reflect light with a much bet-
ter efficiency than most artificial dies can. In the 70s, with the development of electronic
microscopes, it was found that the cuticles of some insects were assembled in a struc-
ture called Bragg Mirrors [Bragg and Bragg, 1913], something that we can manufacture
reliably since the 60s (detailed in section 10.2).

Despite this knowledge and tools able to compute the optical response of a given struc-
ture, no one had been able to reproduce in silico a structure similar to those found in nature:
the results of simulations were always much less efficient and a lot more complex.

Applying modern optimization algorithms (presented in section 10.3) was however
able to achieve much better results (see section 10.4), almost identical to the structures

138
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Figure 10.1 – Structure of a Dielectric Mirror: multiple layers of materials (usually two
types) are stacked. The two materials have a different reflective index which produces the
reflectivity of the structure. Image from [Underwood and Vaughan, 1986]

found in nature. Perhaps not so unsurprisingly, this work was able to exhibit the good
results of algorithms conceptually closed to in-vivo evolution, when the goal is to mimic
the results of millions of years of natural evolution.

10.2 Structural colours
A Bragg Mirror [Bragg and Bragg, 1913], also know as a dielectric mir-
ror [Birge and Kärtner, 2006], is a structure composed of multiple alternate layers
of different optical materials. Despite the fact that each layer is completely translucent,
the overall structure is able to reflect a high percentage of the incoming light, whose
wavelength is at or around a specific value. While the simplest dielectric mirrors are
designed to reflect a small specific region of the spectrum, it is possible to design more
complex mirrors such that they are able to reflect a wider spectrum, in which case we will
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refer to them as Chirped Mirrors. Dielectric mirrors are mainly used for laser studies or
applications [Keller et al., 1992, Hart et al., 2002].

The reflective properties of a dielectric mirror depend on the number of layers, their
width and their reflection coefficient. Altering those parameters produces new reflective
properties. The simplest mirrors, reflecting light at and around a specific wavelength con-
sist of the same two type of layers regularly interleaved. The type and width of the layers
are the parameters determining the exact wavelength they reflect. For mirrors reflecting
multiple wavelength or even a wide spectrum, the nature and width of every layer can be
different. The layers being completely translucent, they do not themselves reflect - nor ab-
sorb - light: it is the interfaces between two successive layers that allow a mirror to reflect
light. The exact consequences can be computed thanks to the Fresnel Equations.

Dielectric mirrors, or Bragg mirrors are nothing new: while they may be used in mod-
ern applications, they take their name from William Lawrence Bragg and his father, Sir
William Henry Bragg, who earned the Nobel Price of Physics in 1915 by using them.
They didn’t invent the mirrors though, and in fact, it is not clear who made their discovery
first. Those structures can be found in nature, on the shell of some insects (for example
the Chrysochroa Fulgidissima, a jewel beetle) or the wings of butterflies (of the Morpho
type). Those structures are responsible for the iridescent (but mostly blue) sheen visible
on those animals.

Despite being the focus of many studies for a long time now, dielectric mirrors have
not yet revealed all their secrets: the exact properties of some natural examples are not yet
understood. One of such properties was for example the exact impact of the first layer.
There are of course some rules to design such structures, but more often than not, those
same rules restricted what could be studied.

To understand, it was necessary to be able to simulate the impact of various constraints
on the structure of the mirror, while staying as close as possible to the desired efficiency:
a task Stochastic Optimizers are perfectly designed to handle.

10.3 Algorithms
For those problems in addition to the usual optimizers, a variant of CMA-ES was used,
where instead of drawing the mutations on N (0,1), they were generated by a quasi-
random process as proposed in [Teytaud and Gelly, 2007].

An interesting point to make, is to note the different origins of those algorithms: two
of them - CMA-ES and NM - are the products of applied mathematics. The three others
are inspired by nature: (1+1)−ES can be seen as an asexual reproduction; DE is akin to
evolution through reproduction (albeit with more than two partners); finally PSO mimics
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the flight of birds, or shoals of fish.
All optimizers ran ten times for any given number of layers on each of the three prob-

lems. In every instance, the maximum budget was set at 104 evaluations. For the first two
problems (unique wavelength and full visible spectrum), the dimension of the problem
was the number of layers of the mirror. Each layer was constrained to have a thickness
between 10 and 150 nanometers. The last problem, reproducing natural structures is more
complex: each layer is defined by its thickness (ranging from 0 to 150), its shift from the
origin (from 0 to 600), the third is its width (from 0 to 600) and the last is the space be-
tween this layer and the next (from 0 to 75). The overall dimension is then equal to four
times the number of layers.

10.4 Results
The optimization process was done in three steps: the first step was to make sure that
we were able to handle the problem, by designing the structure of a dielectric mirror able
to reflect as well as possible a single wavelength (a Bragg Mirror). This achieved, we in-
creased the complexity of the problem, and asked not the reflection of a single wavelength,
but of all the visible spectrum (a Chirped Mirror). Finally, we introduced more complexity
in order to approach the dielectric mirrors found in nature.

10.4.1 Bragg Mirrors
Here, the goal is to obtain a structure reflecting light with a wavelength of λ . The objective
function is then 1− r(λ ), where r(λ ) is the reflection coefficient of the structure. This
reflection is computed from the Fresnel equations.

As can be seen in Figure 10.2, ten layers was already quite good, since the mirror was
able to reflect almost 80% of incoming light with a wavelength of 600nm. As the number
of layers increases, the percentage of reflected light increases too, at more than 95% with
20 layers to almost 100% with 30: achieving a perfect 100% result is impossible, each
added layer would only approach it a bit more.

As such, since the bottom layers - added last - are less important in the overall reflec-
tion, it is interesting to note that this problem is ill conditioned.

Figure 10.3 shows the structure of the ten layers mirror obtained. The structure is
almost perfectly regular, with alternative layers of width 86 and 106nm, which was the
expected result.

Looking at each optimizer individual results (shown in Table 10.1), we can notice the
overall good performances of CMA-ES and DE. By comparing the medians to the best
individual, we can also notice that up to twenty layers, the problem seems to be quite well
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(a) Reflection profile for a Bragg Mirror with
10 layers
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(b) Reflection profile for a Bragg Mirror with
20 layers

400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

R
e
fl
e
c
ti
o
n
 r

a
te

Efficiency of reflection for a Dielectric Mirror calibrated for 600nm

(c) Reflection profile for a Bragg Mirror with
30 layers
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(d) Reflection profile for a Bragg Mirror with
40 layers

Figure 10.2 – Best results obtained by the optimization processes while designing a simple
Bragg Mirror intended to reflect light of 600nm
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Representation of interleaved layers of a Bragg Mirror

Figure 10.3 – Interleaved layers of a Bragg Mirror reflecting almost 80% of incoming light
with a wavelength of 600nm.
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Layers Stat (1+1)-ES CMA-ES NM DE PSONormal QR

10

best 2.627e-01 2.627e-01 2.627e-01 2.627e-01 2.627e-01 2.628e-01
mean 3.473e-01 2.729e-01 2.669e-01 3.082e-01 2.627e-01 2.645e-01

median 3.676e-01 2.627e-01 2.627e-01 2.731e-01 2.627e-01 2.642e-01
worst 6.535e-01 3.676e-01 3.676e-01 3.723e-01 2.627e-01 2.674e-01

20

best 3.928e-02 3.926e-02 3.926e-02 3.952e-02 3.926e-02 4.135e-02
mean 8.166e-02 4.733e-02 4.524e-02 6.729e-02 4.194e-02 4.702e-02

median 8.683e-02 3.926e-02 3.926e-02 6.093e-02 3.927e-02 4.659e-02
worst 2.162e-01 5.841e-02 5.831e-02 1.285e-01 5.837e-02 5.719e-02

30

best 8.024e-03 5.261e-03 5.261e-03 8.272e-03 5.285e-03 8.308e-03
mean 2.007e-02 2.600e-02 7.308e-03 1.438e-02 6.168e-03 1.160e-02

median 1.874e-02 7.884e-03 7.881e-03 1.326e-02 5.471e-03 1.129e-02
worst 6.323e-02 4.122e-01 1.183e-02 2.083e-02 8.368e-03 1.690e-02

40

best 1.310e-03 7.000e-04 6.960e-04 1.808e-03 7.260e-04 1.839e-03
mean 5.068e-03 2.733e-02 1.039e-03 3.275e-03 1.274e-03 3.068e-03

median 4.177e-03 2.364e-03 1.044e-03 3.032e-03 1.201e-03 2.819e-03
worst 1.487e-02 3.791e-01 2.345e-03 6.475e-03 3.927e-03 5.607e-03

Table 10.1 – Optimization results for a simple Bragg Mirror with 10, 20, 30 and 40 layers.
With ten layers the problem seems quite simple, but in higher dimensions there are visible
performance differences between the optimizers. Overall, CMA-ES and DE perform best,
with quasi-random noticeably improving the performances of CMA-ES.

handled by those two optimizers: at least half of the time they were able to reach the opti-
mal solution. This observation is reinforced by the fact that while the other three optimiz-
ers are not competitive in higher dimension on this problem, they manage to approach the
optimal solution for ten and twenty layers. After that however, their performances degrade
to the point where for forty layers, there is a factor of two between their performances and
those of DE/CMA-ES.

10.4.2 Chirped dielectric mirrors
Since we want here to reflect light at multiple wavelength, the objective function is com-
plexified to become:

1− 1
8

7

∑
n=0

r(500+50×n) (10.1)

Again, r(λ ) is the reflection coefficient of the structure, with λ expressed in nanome-
ters. λ goes from 500nm to 850nm, which corresponds to most of the visible spectrum,
the blue color excluded (reflecting the blue color was done easily, every structure found
was able to do so).

As we can see from figure 10.4, designing a Chirped Mirror to reflect the entirety of the
visible spectrum seems to be a much more difficult problem. The appearance of waves can
mostly be explained by the design of the objective function (See Eq. 10.1 that evaluates
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(a) Reflection profile for a Chirped Mirror with
12 layers
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(b) Reflection profile for a Chirped Mirror with
16 layers
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(c) Reflection profile for a Chirped Mirror with
20 layers
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(d) Reflection profile for a Chirped Mirror with
24 layers
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(e) Reflection profile for a Chirped Mirror with
28 layers

400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

R
e
fl
e
c
ti
o
n
 r

a
te

Efficiency of reflection for a Dielectric Mirror calibrated for 600nm

(f) Reflection profile for a Chirped Mirror with
32 layers
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(g) Reflection profile for a Chirped Mirror with
36 layers
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(h) Reflection profile for a Chirped Mirror with
40 layers

Figure 10.4 – Best results obtained by the optimization processes while designing a more
complex Chirped Mirror intended to reflect light of wavelength 500nm to 800nm, which
roughly correspond to the visible spectrum
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Representation of interleaved layers of a Bragg Mirror

Figure 10.5 – Interleaved layers of a Chirped Mirror reflecting from 40% to 80% of in-
coming visible light.

the efficiency of the mirror on 40 points uniformly distributed between 500nm and 800nm
(or more strictly, for λ = 500+7.6923x with x ∈ {0, · · · ,39}. To do otherwise would have
taken too much time to allow the optimizer to converge in a reasonable time, especially
when the number of layers increases.

As we can see with 20 layers, we are able to get some very nice reflection for a wave-
length at around 775nm, but it is much lower at around 640nm, where not even half of the
incoming light is reflected. Only with 36 and 40 layers are we able to consistently reflect
around 80% of the incoming light on the full visible spectrum, which is a very good result
when designing a structure like that.

As can be seen on Figure 10.5, the optimal Chirped Mirror for the full visible spectrum
is not regular anymore as was the case in the simplest case. However, as is shown in
table 10.2, there is some regularity, with a thin layer followed by a thicker one.
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Layers 1 & 2 3 & 4 5 & 6 7 & 8 9 & 10 11 & 12 13 & 14 15 & 16 17 & 18 19 & 20
Odd, thin 85.148 82.220 78.148 84.214 98.724 104.391 98.556 113.842 99.507 109.016

Even, thick 103.159 97.388 98.108 109.286 144.311 118.996 132.302 125.882 125.991 127.987

Table 10.2 – Thickness of layers in a 20 layers Chirped Mirror reflecting around 50% of
the visible spectrum. Table is read top to bottom, left to right. In this mirror, a thin layer
is always followed by a thicker one

Looking at each optimizer’s results (found on Table 10.3), it is interesting to note
that while the problem is a difficult one in the physics sense, it doesn’t seem to be for
the optimizers: up to 18 layers, all of them except PSO were able to get to the optimal
solution in at least one of the ten runs. In fact, DE performed so well that it was able to
find the optimum solution on almost each of its runs. While PSO wasn’t able to do so,
it still performed very well: on each problem, it was just a little worse than DE. In fact,
looking at the other statistics (mean, median and worst), we can see that PSO beats all the
other optimizers except DE in almost all instances. Still, in this problem, it is not so good:
the point of the exercise is to get the optimal solution, not to be consistent.

Increasing the number of layers, we can at first glance notice that (1+1)−ES, CMA-
ES and NM begin to be noticeably less consistent: (1+ 1)−ES never gets the optimal
solution (or at least, the best solution found by all the optimisers since there is no theo-
retical way to know what is the optimum on the problem) for 30+ layers, the QR version
of CMA-ES only gets it once for 32 layers, and for 20+ layers, NM only gets it for 36
and 40 layers. In the meantime, DE is once again the most consistent: reaching the opti-
mal solution in all but 3 cases (32, 36 and 40 layers), but with better means, medians and
worst results. On those indicators, PSO, NM and (1+1)−ES are just behind, while both
versions of CMA-ES are noticeably farther.

10.4.3 Reproducing the structures found on the Morpho family
When we speak about light reflection, we are thinking about a specific type of reflection:
the specular reflection. Specular reflection is the reflection we get from a simple mirror:
if light hit the mirror at an angle θi, then it is reflected with an angle θr with respect to the
normal of the mirror, such that θi = θr. The reflection of clouds in a lake is an example
of specular reflection. The specular reflection is the one we get with standard Bragg or
Chirped mirrors.

On the shell of insects or the wings of butterflies, those structures are more complex:
indeed, were they standard mirrors, those insects would only be visible at some very spe-
cific angles. This is of course not the case: insects “want” to be seen. In order to do so,
the specular reflection must be minimized, while other angles of reflection (or orders of
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Layers Stat (1+1)-ES
CMA-ES

NM DE PSO
Normal QR

08

best 6.329e-01 6.329e-01 6.329e-01 6.329e-01 6.329e-01 6.329e-01
mean 6.614e-01 6.693e-01 6.355e-01 6.343e-01 6.329e-01 6.332e-01

median 6.329e-01 6.329e-01 6.329e-01 6.329e-01 6.329e-01 6.331e-01
worst 7.527e-01 7.874e-01 7.333e-01 6.910e-01 6.329e-01 6.358e-01

12

best 5.570e-01 5.570e-01 5.570e-01 5.570e-01 5.570e-01 5.617e-01
mean 5.867e-01 7.130e-01 5.690e-01 5.643e-01 5.595e-01 5.660e-01

median 5.745e-01 7.241e-01 5.570e-01 5.614e-01 5.570e-01 5.643e-01
worst 6.559e-01 7.920e-01 7.714e-01 5.940e-01 5.745e-01 5.766e-01

16

best 4.616e-01 4.616e-01 4.616e-01 4.616e-01 4.616e-01 4.645e-01
mean 4.999e-01 7.220e-01 4.836e-01 4.681e-01 4.662e-01 4.743e-01

median 5.036e-01 7.332e-01 4.680e-01 4.680e-01 4.680e-01 4.720e-01
worst 6.270e-01 7.671e-01 7.539e-01 5.178e-01 5.103e-01 5.200e-01

20

best 3.882e-01 5.768e-01 3.882e-01 3.883e-01 3.882e-01 3.958e-01
mean 4.301e-01 7.073e-01 4.242e-01 4.055e-01 3.933e-01 4.207e-01

median 4.237e-01 7.119e-01 3.950e-01 3.965e-01 3.950e-01 4.163e-01
worst 5.302e-01 7.551e-01 7.122e-01 4.473e-01 3.950e-01 4.535e-01

24

best 3.432e-01 6.529e-01 3.431e-01 3.442e-01 3.432e-01 3.536e-01
mean 3.930e-01 6.946e-01 4.798e-01 3.652e-01 3.462e-01 3.869e-01

median 3.805e-01 6.965e-01 3.528e-01 3.606e-01 3.464e-01 3.839e-01
worst 5.597e-01 7.250e-01 7.325e-01 4.281e-01 3.507e-01 4.311e-01

28

best 2.955e-01 6.153e-01 2.954e-01 3.008e-01 2.965e-01 3.188e-01
mean 3.522e-01 6.794e-01 5.551e-01 3.183e-01 3.080e-01 3.572e-01

median 3.425e-01 6.844e-01 6.213e-01 3.133e-01 3.078e-01 3.568e-01
worst 4.838e-01 7.165e-01 6.946e-01 3.489e-01 3.261e-01 3.947e-01

32

best 2.542e-01 6.129e-01 2.491e-01 2.520e-01 2.501e-01 2.963e-01
mean 3.203e-01 6.659e-01 5.208e-01 2.786e-01 2.651e-01 3.314e-01

median 3.165e-01 6.678e-01 5.870e-01 2.772e-01 2.613e-01 3.321e-01
worst 4.033e-01 7.030e-01 6.811e-01 3.219e-01 2.911e-01 3.592e-01

36

best 2.366e-01 5.897e-01 2.183e-01 2.148e-01 2.163e-01 2.613e-01
mean 2.763e-01 6.523e-01 5.533e-01 2.453e-01 2.319e-01 3.079e-01

median 2.699e-01 6.550e-01 5.952e-01 2.449e-01 2.309e-01 3.069e-01
worst 3.331e-01 6.822e-01 6.619e-01 2.863e-01 2.526e-01 3.508e-01

40

best 1.923e-01 5.789e-01 4.287e-01 1.757e-01 1.761e-01 2.466e-01
mean 2.478e-01 6.404e-01 6.112e-01 2.172e-01 2.017e-01 2.931e-01

median 2.381e-01 6.438e-01 6.236e-01 2.167e-01 2.034e-01 2.945e-01
worst 3.402e-01 6.705e-01 6.544e-01 2.631e-01 2.350e-01 3.285e-01

Table 10.3 – Optimization results for a simple Bragg Mirror with 8 to 40 layers, reflecting
the entire visible spectrum. In low dimension, no optimizer seems really better than any
other. As the dimension increases however, DE really starts to outperform all the other
optimizers.
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Figure 10.6 – Examples of scales found on the wings of butterflies from the Morpho family,
from [Kinoshita et al., 2008].

reflection) are maximized.
Figure 10.6 shows the natural structures found on the wings of butterflies from the

Morpho families, some of the most complex found in nature. In Figure 10.6b, we can see
that the mirrors are “interdigitated”, there is a shift between two successive mirrors. It is
this phenomenon that is supposed to be responsible from the minimization of the specular
reflection, and the maximization of other angles of reflection. Preliminary studies (see
Figure 10.7) showed that indeed, this interdigitation should be responsible for the specific
reflection properties of the Morpho family.

Despite the much more complex structure of the Mirror (not only is the vertical aspect
of the layers important, the way they fit to one another horizontally is now important too),
we didn’t add any hard constraints, we just allowed the Mirror to be more than a succession
of layers, but a structure in blocks, each one defined by its dimensions, shift to the origin
and distance to the next block. The objective function had of course to be made more
complex, to take into account this change in the definition of the Mirror, but also to force
the specular reflection (r0) to be as close to zero, and other angles of reflection (r1 and
r−1) to be maximized. The hope was to “naturally” converge to a structure resembling the
one found in nature. Note that since we only focused on two reflection angled, natural
structures, we would get a beam effect of course absent in nature: as a consequence,
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Figure 10.7 – a) Pattern of the scales found on the wings of butterflies from the Morpho
family. b) Computed reflection of the scales. We can see a peak at around 425nm, which
corresponds to the blue colour, where around 75% of the light is refracted.

natural structures are less ordered than the ones obtained here.
The objective function became:

1− 1
2
(r+1(450)+ r−1(450)− r0(450))+

1
N

N

∑
i=1

r0(λi) (10.2)

with λi = {300,400,500,600,700,800}, ensuring the maximization of the diffraction or-
ders at 450 nm and the minimization of the specular reflection for a wide range of wave-
length.

As we can see from Figure 10.8, the goal was reached: the Order 0 (the specular
reflection) is almost null for all the visible spectrum, and the Orders 1 and -1 (two other
angles of reflection) are maximized for a wavelength of around 450nm. With only five
layers, only about 30% of the blue light is reflected along each angle, but this percentage
increases as we add more layers, reaching almost 50% with 12 layers. Another important
goal was to have the two orders 1 and -1 to each have the same profile. While for 7, 8 and
12 layers there was some difference, it was minimal and acceptable. For the other number
of layers however, the two orders reflected blue light in exactly the same way, which is a
very good result.

It is important to note that while on those examples we were able to get close to 100%
percent of light reflected (50% along each reflection angle), and thus obtained close to
perfect results, better than the structures found on the wings of the butterflies, it is because
these tests didn’t take some constraints important to the butterflies into account: for ex-
ample, if we add a constraint on the weight of the structure, we get less reflection, but a
structure even more close to the natural ones than we do here.
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(a) Reflection profile for a Morpho-like struc-
ture with 5 layers
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(b) Reflection profile for a Morpho-like struc-
ture with 6 layers
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(c) Reflection profile for a Morpho-like struc-
ture with 7 layers
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(d) Reflection profile for a Morpho-like struc-
ture with 8 layers
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(e) Reflection profile for a Morpho-like struc-
ture with 9 layers
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(f) Reflection profile for a Morpho-like struc-
ture with 10 layers
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(g) Reflection profile for a Morpho-like struc-
ture with 11 layers
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(h) Reflection profile for a Morpho-like struc-
ture with 12 layers

Figure 10.8 – Refraction spectrum obtained for a Morpho-like structure.
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Layers Stat (1+1)-ES CMA-ES NM DE PSONormal QR

05

best 7.583e-01 7.450e-01 7.334e-01 7.376e-01 7.335e-01 7.678e-01
mean 8.951e-01 8.366e-01 8.931e-01 7.637e-01 7.360e-01 8.175e-01

median 8.944e-01 8.268e-01 9.416e-01 7.551e-01 7.338e-01 8.115e-01
worst 9.907e-01 9.325e-01 9.869e-01 8.243e-01 7.841e-01 8.985e-01

06

best 7.400e-01 6.886e-01 6.614e-01 6.694e-01 6.616e-01 7.176e-01
mean 8.874e-01 8.532e-01 9.138e-01 6.969e-01 6.654e-01 7.888e-01

median 8.929e-01 8.528e-01 9.484e-01 6.827e-01 6.624e-01 7.859e-01
worst 9.793e-01 9.703e-01 9.846e-01 7.981e-01 7.285e-01 8.688e-01

07

best 7.593e-01 7.840e-01 5.965e-01 6.314e-01 6.252e-01 7.106e-01
mean 8.858e-01 9.404e-01 8.708e-01 6.675e-01 6.334e-01 7.636e-01

median 8.985e-01 9.612e-01 9.388e-01 6.658e-01 6.279e-01 7.611e-01
worst 1.035e+00 9.870e-01 9.728e-01 7.496e-01 6.730e-01 8.387e-01

08

best 7.830e-01 9.335e-01 5.848e-01 5.952e-01 5.850e-01 6.869e-01
mean 9.023e-01 9.605e-01 8.017e-01 6.257e-01 6.022e-01 7.571e-01

median 9.041e-01 9.609e-01 9.053e-01 6.204e-01 5.920e-01 7.517e-01
worst 1.021e+00 9.897e-01 9.662e-01 6.841e-01 6.490e-01 8.651e-01

09

best 6.661e-01 8.856e-01 5.631e-01 5.692e-01 5.644e-01 6.424e-01
mean 8.656e-01 9.496e-01 6.859e-01 6.021e-01 5.941e-01 7.405e-01

median 8.707e-01 9.536e-01 6.177e-01 5.979e-01 5.868e-01 7.517e-01
worst 1.020e+00 9.992e-01 9.808e-01 6.675e-01 7.089e-01 8.073e-01

10

best 7.224e-01 8.964e-01 5.431e-01 5.625e-01 5.520e-01 6.937e-01
mean 8.607e-01 9.496e-01 7.678e-01 5.842e-01 5.762e-01 7.458e-01

median 8.501e-01 9.485e-01 8.442e-01 5.813e-01 5.728e-01 7.392e-01
worst 1.013e+00 9.911e-01 9.656e-01 6.281e-01 6.281e-01 8.322e-01

11

best 7.486e-01 9.119e-01 5.384e-01 5.464e-01 5.443e-01 6.736e-01
mean 8.758e-01 9.503e-01 6.952e-01 5.735e-01 5.839e-01 7.499e-01

median 8.758e-01 9.504e-01 5.867e-01 5.678e-01 5.705e-01 7.571e-01
worst 1.043e+00 9.950e-01 9.575e-01 6.340e-01 7.605e-01 8.095e-01

12

best 7.167e-01 9.075e-01 5.404e-01 5.336e-01 5.376e-01 6.725e-01
mean 8.704e-01 9.565e-01 6.365e-01 5.563e-01 5.976e-01 7.561e-01

median 8.808e-01 9.553e-01 5.683e-01 5.587e-01 5.888e-01 7.467e-01
worst 1.001e+00 9.968e-01 9.272e-01 5.779e-01 7.270e-01 8.067e-01

Table 10.4 – Optimization results for a a structure mimicking the scales of butterflies of
the Morpho family.

Individual results shown in Table 10.4 shows a different picture from the previous re-
sults. DE still gets excellent results, but with 11 and 12 layers is beaten by NM, which
gets very good results across the board. (1+ 1)−ES and PSO are slightly worse, and
don’t perform as well on this problem than in the previous two. CMA-ES gets poor per-
formances: it manages to approach the optimal with 4 and 5 layers but not quite. After
that, it is quite badly outperformed by all of the others.

10.4.4 QR on CMA-ES
CMA-ES performed well on the simplest problem, not too badly on the more complex
one, but got poor results when the goal was to mimic natural structures. The performances
of the Quasi-Random variant however were in each and every case better than the vanilla
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version on the first and second problems. On the last one, even if it was not the case for
each computed statistic, it was always the case for the best run. In fact, where the vanilla
version didn’t reach the optimal a single time, the QR version got it in all but one case (the
last one, with 12 layers), and even then, it wasn’t far.

10.5 Conclusion & further work
This work managed to reach several important objective. Once more, it showed that Quasi-
Random mutations really improved the results of CMA-ES in almost all cases for abso-
lutely no additional cost. In addition to that, it is interesting to note that the optimizer that
worked best, by a comfortable margin, is Differential Evolution, an optimizer inspired by
sexual reproduction and natural evolution. While purely applied mathematics optimizers
like CMA-ES or Nelder-Mead performed well at times, they were never able to really
challenge DE. (1+1)−ES and PSO are a bit in the middle: they were not able to perform
as well as DE, but still got good results for the most part.

On this work, we used five optimizers, but it could be interesting to see
what would be the results obtained by optimizers such as SA-ES (isotropic,
anisotropic [Beyer, 2001, Beyer and Schwefel, 2002] or with a covariance
matrix [Schwefel, 1981b]), CMSA-ES [Beyer and Sendhoff, 2008] or even
Newuoa [Powell, 2008].

More importantly however, at least from a physicist or biologist point of view, this
work shows that modern stochastic optimizers are perfectly able to tackle problems where
the tools used in those fields fail. Considering that it even allowed to understand some
aspects of natural structures, it is a very important advance. Even more importantly, this is
the first time such complex structures naturally emerge without guiding the process along
some “known” rules. Should it be needed, it is proof that simple evolutionary rules are
able to create some very complex structures.



Part III

Summary, discussions and perspectives
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Chapter 11

Discussions

This Ph.D. thesis deals with continuous optimization with comparison based optimizers.
Part I studied new properties or an existing property under a different light and presented
some improvements to existing algorithms. Part II was focused on the application of
existing optimizers to real world problems, as well as the assessment of the improvements
proposed in Part I in such setting.

Every chapter includes its own conclusions and perspectives, so here will only be found
more general conclusions. Before we do so however, there is one important point to ad-
dress:

11.1 Are those results unfair?
The results presented throughout this thesis can be seen as somewhat unfair at times,
mainly for three reasons:

1. The diagonal variant of CMA-ES which was not considered

2. Time budgets instead of evaluations

3. “Default” parameters on the optimizers, and no tweaking or optimization.

There are multiple answers to give to each of those points:

11.1.1 Time budgets
It is well known that some optimizers, such as CMA-ES, have widely different perfor-
mances depending on if we are looking at time or evaluations budgets. In most bench-
marks, only evaluations budgets are considered, with time budgets completely ignored.
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As such, it can seem surprising that we often used time budgets here. However, this can
be easily understood on some of the problems we tackled, such as the Unit Commitment
one. A power provider will not care how many times the simulations are run, his only
requirement is to get the best possible solution before that solution has to go into effect.

Of course, it would be possible to allocate more resources to CMA-ES to reach a higher
number of evaluations, and thus allow for an evaluations based comparison. But in such
case, other optimizers could also benefit from the increase of resources, be it directly by
running more evaluations for example to reduce the impact of noise through reevaluations,
or indirectly, by increasing the complexity of the model, thus reaching a higher quality of
the proposed solution.

In fact, that question could very well be turned the other way around: isn’t it unfair to
always present results based only on evaluation budgets?

11.1.2 Default parameters
It seems obvious that any optimizer here would be able to get better results had we tweaked
their parameters, to say nothing of a meta-optimization of those parameters. The choice to
do nothing of the sort was in line with the “real world” considerations of this thesis: while
it would be pretty easy for us to do, a biologist, an industrialist, may not even know it is
a possibility. Furthermore, tweaking parameters can be really hard to do given that they
often have an impact on one another, to say nothing of a meta-optimization.

Even if it were a possibility in some cases (not considering budget issues), optimizers
here were all considered with default parameters: that means that all of them could benefit
from a meta-optimization, which could very well lead us to the exact same conclusions
as those done here. Of course, the results could also be slightly different (for example, if
CMA-ES benefited greatly from an optimization of its parameters, much more than DE
would), but that would require a whole new thesis to work on.

11.1.3 CMA’s diagonal variant
In chapters 3 and 4, we considered high dimension problems, where it came as no surprise
that CMA-ES struggled to even get results, a problem compounded with the use of time
budgets instead of evaluations ones. A possibility would have been to use the diagonal
variant of CMA-ES. At the very least, it would have allowed the optimizer to get results
on problems where it was simply impossible to even store the covariance matrix.

That is of course perfectly true, and it would be interesting to make such a study to
know how competitive the diagonal variant of CMA-ES can be on those problems. It can
not be considered as a default parametrization of CMA-ES however, and as such it was
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ignored.

11.2 Methods: Summary

11.2.1 New invariances: beyond the dichotomy “full separability”
and “invariance per rotation”

Invariance per rotation and its opposition, full separability has been extensively studied.
There is however a whole world between - or even outside of - those two extremes.

While the condition of a problem - and its impact on the performances of a given
algorithm - is well studied, and an important criterion to assess the quality of an optimizer,
Chapter 3 went a step ahead, and looked at the consequences of having a large number of
completely useless variables, with no impact whatsoever on the evaluation of an individual.
In doing so, we introduced a new invariance, invariance with regard to useless variables.

In our experiments, we show that despite the fact that all optimizers should have this
invariance, such was not the case in practice. However, while some optimizers were
completely unable to handle a large number of useless variables, others were able to
succeed (e.g. Differential Evolution and (1+1)-ES), reaching the same optima as when
there are no useless variables.

Chapter 4, also discussed invariance, but this time with regard to rotations, mainly in
the context of ill-conditioned problems. However, contrary to most works in the literature,
it was this time in a context of very high dimension, with different levels of separability.
In small scale, unsurprisingly, CMA-ES and CMSA obtained very good results, even with
high level of non-separability and ill-conditioning. However, like in the previous chapter,
those algorithms were unable to handle large scale problems. In such cases, Particle
Swarm Optimization, Differential Evolution or (1+1)-ES are the go-to algorithms, even
if they exhibited different properties: Particle Swarm Optimization was excellent with a
high level of separability, whereas Differential Evolution was the best algorithm in cases
of high non-separability. Interestingly enough, despite its simplicity, (1+ 1)-ES, being
very fast, often obtained good results when nothing else worked.

11.2.2 Portfolio methods in continuous optimization
Portfolios are well known and studied in combinatorics and were recently introduced in
continuous optimization [Baudis and Posik, 2014]. Here, one more step is done in that
direction.
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If unable to run each algorithm separately, designing a portfolio of each of those
optimizers is probably the smartest way to proceed. In that case, no matter what are the
levels of separability or the condition, the portfolio will find the optimizer best suited to
the considered problem.

In fact, as discussed in Chapter 5 in the case of “restart portfolios”, while there is of
course some loss of budget while the portfolio determines which optimizer is the best of
the current problem, this loss often ends up being more than compensated in the end.

11.2.3 Quasi Random: a generic improvement of randomized search
heuristics

In addition, this chapter also discussed the improvement using quasi-random mutations
can make on CMA-ES. With less redundancy, and more exploration, quasi-random muta-
tions were able to noticeably improve the performances of every variants of CMA-ES that
were tested: low or high population, mutation step-size, etc. In each case, the average of
the QR variant was better than the average of the vanilla version.

11.2.4 Sieves methods in optimization: a generic improvement of
high-dimensional noisy optimization

In addition to this improvement to CMA-ES, a variant of Self-Adaptive Evolution Strategy
and Differential Evolution was proposed in Chapter 6, by introducing a technique known
to statisticians as the “Sieves Method” to optimization. Here, called Progressive Widening,
despite a clear cost at the start of the optimization process it showed excellent results both
on artificial experiments as well as problems grounded in the real world, especially when
the number of optimized variables increased logarithmically with the generation. In addi-
tion, this process has the advantage over other techniques to be anytime: it can be stopped
in the middle of the optimization process, and still give a reasonable - if incomplete -
solution.

11.3 Applications: modularity, real world, and beyond
rotationally invariant artificial testbeds

In chapters 7 through 10, we have confirmed most of what theory and artificial experi-
ments from previous chapters have claimed, in clustering, unit commitment, artificial and
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biological photonic structures.
Testing and comparing optimizers on existing benchmarks gives some nice ideas about

their respective proprieties and performances but testing them on real world applications is
a must have. In Chapter 7, optimizers are tested and compared on a problem inspired by the
real world. There, while CMA-ES is the king of the hill in most artificial benchmarks, it
is clearly outperformed by Differential Evolution or even in some cases by (1+1)-ES and
Particle Swarm Optimization. This might be explained by the fact that the real world is not
fully invariant by rotations and that modularity (broken by introducing random rotations
of the domain) makes sense in the real world and the dimension of the problem, with few
cases having less than a hundred variables to optimize.

Perhaps the most important thing to keep from this chapter is that while considering
the exact same problem, optimizers can have widely different performances depending on
the control function used. As such, it would be perfectly appropriate to use a portfolio of
optimisers on problems such as those.

Chapter 8 continues on the same unit commitment testbed but this time with the goal
to design a control meta-policy. This is inspired by portfolios, since the goal is to take
advantage of the individual strengths of two or more policies, but with the added advantage
that the choice is not binary: the two policies can work in tandem to reach the best possible
solution.

In addition to being able to train two policies at the same time for no additional cost,
this technique was able to show very good results: in most cases, it performed at worse as
well as the best of its constituent policies. But in some cases, it vastly outperformed any
of them.

In Chapter 9, a new benchmark based on clustering with real-world data was used to
compare the performances of Differential Evolution with CMA-ES. While the problems
included in the benchmark seemed well suited to CMA-ES at first glance - with a dimen-
sion that doesn’t go further than 40 - it was systematically beaten by DE in all but two
instances.

The main lesson in this chapter however is found in the performances of Progressive
Differential Evolution, a variant of Differential Evolution using Progressive Widening in-
troduced in Chapter 6. While DE already exhibited very good results on those problems,
it was itself beaten by PDE in all but one instance as far as fitnesses were concerned. In
addition to that, PDE was able to reach the optimum more consistently than DE in most
instances.

This improvement was not however without a cost: at the beginning of the optimiza-
tion process, when PDE hasn’t yet optimized every single variables, the fitness obtained



CHAPTER 11. DISCUSSIONS 162

by PDE is much worse than DE. Should the budget be limited or the optimization stopped
before then, PDE will be outperformed by DE.

Finally, Chapter 10 presents another application domain, by trying to reproduce a struc-
ture found in the natural world, consequence of millions of years of evolution. By doing so,
it shows that once again Quasi-Random mutations are able to improve the performances
of CMA-ES by a very comfortable margin here, to no additional cost whatsoever. In ad-
dition, this work shows here too excellent performances for Differential Evolution, which
seems to be really well suited for real world applications. Here, it may be helped by its
conceptual similarity to the natural evolution process resulting in the goal structure.

More importantly, while the goal was not perfectly reached since there is a gap between
the performances of the natural structure and the best one obtained by the optimizers,
another interesting result was achieved by managing to identify the role of some aspects
of the natural structure, something that was, until now, not understood.



Chapter 12

Perspectives

Each chapter already includes its respective perspectives and further work ideas, so this
Chapter will only focus on two points.

12.0.1 Alleviate CMA-ES dimensionality problem
In Chapters 3, 4 and throughout Part II, the results of CMA-ES were disappointing, par-
ticularly compared to its performances on artificial benchmarks, even considering that the
algorithm was never tuned specifically for each problem.

While in some instances it is difficult to pinpoint the exact reason, such as in
Chapters 9 and 10, in most other cases the poor performances are a consequence of
the dimensionality: in Chapter 7 where the budget is given in time, CMA-ES performs
poorly in high dimension due to the time it takes to compute the Covariance Matrix. In
Chapters 3 and 4 in addition to this computation time problem there is the issue of the
storage size for the covariance matrix in the RAM (more than 16 terabytes in dimension
one million!).

There are ways to, if not suppress this issue, at least mitigate it, by only using the
diagonal of the covariance matrix or the partial Hessian to update the covariance matrix.
Problem is, by only using incomplete information, the performance of CMA-ES would
be degraded on an evaluation for evaluation basis. This however is not an issue where
CMA-ES would not be able to work at all in its complete version.

The main question would instead be to know if, while it would enable CMA-ES to
work on high dimension problems, would it still be competitive with other algorithms that
suffer far less from high-dimension, like Differential Evolution or even (1+1)−ES.
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12.0.2 Progressive Widening
As Chapter 6 and 9 showed, Progressive Widening seems a very promising tool, able to
improve, sometimes by a lot, the performances of algorithms like Differential Evolution
or Self-Adaptive Evolution Strategy. There is however a lot of possible works to be done
there.

While implementing Progressive Widening on other algorithms such as Particle Swarm
Optimization is quite straightforward, for other algorithms is would at least be much more
complicated, if not harmful. For example, while it would be quite easy to implement a
Progressive Widening variant of (1+1)-ES, it would probably not improve the results of
the vanilla variant due to the unique step-size for all variables.

For algorithms with covariance matrix, while it would most likely be possible to
implement a Progressive Widening variant, it would require a lot more work in order to
decide how to refresh the covariance matrix for example. Limited to its diagonal it would
probably become easier, but it remains to be seen if it can improve anything. Finally, in
the case of Nelder-Mead, a Progressive Widening variant doesn’t make any sense.

Another important work would be to formalize Progressive Widening for optimization.
As shown in Chapter 6, logarithmically increasing the number of optimized variables
seemed to give the best results, with a formula looking like N = log(generation× rate).
However, how should rate be chosen remains to be seen. In Chapter 6 and 9, there didn’t
seem to be any “bad” option, as long as all variables were optimized before the end of the
optimization process, but it should be possible to formalize this.

Finally, experiments showed a very clear cost for implementing Progressive Widening
at the beginning of the optimization process. Instead of using a fixed formula, it would
probably be better to increase the number of optimized variables when the optimization is
stagnating: this would help reduce the cost, limiting the plateau effect clearly visible in
Figure 9.2.

Quick experiments in that direction showed however that it may well be more compli-
cated than that. In fact, it seems that the convergence of the population to the intermediary
solution, while harmful in the short term, is necessary for long term gains. However, even
if that is the case, it should still be possible to determine when said convergence isn’t
useful anymore.
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Titre : Contributions à l’optimisation stochastique et applications au monde réel

Mots clefs : Optimisation, Stochastique, Boı̂te Noire, Monde Réel, Quasi-Aléatoire, Élargissement Progressif

Résumé : Un grand nombre d’études ont été faites dans le domaine de
l’Optimisation Stochastique en général et les Algorithmes Génétiques en par-
ticulier. L’essentiel des nouveaux développements ou des améliorations faites
sont alors testés sur des jeux de tests très connus tels que BBOB, CEC, etc.
conçus de telle manière que soient présents les principaux défis que les op-
timiseurs doivent relever : non séparabilité, multimodalité, des vallées où le
gradient est quasi-nul, et ainsi de suite.
La plupart des études ainsi faites se déroulent via une application directe sur le
jeu de test, optimisant un nombre donné de variables pour atteindre un critère
précis. La première contribution de ce travail consiste à étudier l’impact de la
remise en cause de ce fonctionnement par deux moyens : le premier repose
sur l’introduction d’un grand nombre de variables qui n’ont pas d’impact sur
la valeur de la fonction optimisée ; le second quant à lui relève de l’étude des
conséquences du mauvais conditionnement d’une fonction en grande dimen-
sion sur les performances des algorithmes d’optimisation stochastique.
Une deuxième contribution se situe dans l’étude de l’impact de la modifica-
tion des mutations de l’algorithme CMA-ES, où, au lieu d’utiliser des muta-
tions purement aléatoires, nous allons utiliser des mutations quasi-aléatoires.
Ce travail introduit également la “Sieves Method”, bien connue des statisti-
ciens. Avec cette méthode, nous commençons par optimiser un faible nom-

bre de variables, nombre qui est ensuite graduellement incrémenté au fil de
l’optimisation.
Bien que les jeux de tests existants sont bien sûr très utiles, ils ne peuvent
constituer que la première étape : dans la plupart des cas, les jeux de tests
sont constitués d’un ensemble de fonctions purement mathématiques, des plus
simples comme la sphère, aux plus complexes. Le but de la conception d’un
nouvel optimiseur, ou l’amélioration d’un optimiseur existant, doit pourtant in
fine être de répondre à des problèmes du monde réel. Ce peut-être par exem-
ple la conception d’un moteur plus efficace, d’identifier les bons paramètres
d’un modèle physique ou encore d’organiser des données en groupes.
Les optimiseurs stochastiques sont bien évidemment utilisés sur de tels
problèmes, mais dans la plupart des cas, un optimiseur est choisi arbitraire-
ment puis appliqué au problème considéré. Nous savons comment les op-
timiseurs se comparent les uns par rapport aux autres sur des fonctions ar-
tificielles, mais peu de travaux portent sur leur efficacité sur des problèmes
réels. L’un des principaux aspects des travaux présentés ici consiste à étudier
le comportement des optimiseurs les plus utilisés dans la littérature sur des
problèmes inspirés du monde réel, voire des problèmes qui en viennent di-
rectement. Sur ces problèmes, les effets des mutations quasi-aléatoires de
CMA-ES et de la “Sieves Method” sont en outre étudiés.

Title : Studies on stochastic optimisation and applications to the real world

Keywords : Stochastic, Optimisation, Black Box, Real World, Quasi-Random, Progressive Widening

Abstract : A lot of research is being done on Stochastic Optimisation in
general and Genetic Algorithms in particular. Most of the new developments
are then tested on well know testbeds like BBOB, CEC, etc. conceived to
exhibit as many pitfalls as possible such as non-separability, multi-modality,
valleys with an almost null gradient and so on.
Most studies done on such testbeds are pretty straightforward, optimising a
given number of variables for the recognized criterion on the testbed. The
first contribution made here is to study the impact of some changes in those
assumptions, namely the effect of supernumerary variables that don’t change
anything to a function evaluation on the one hand, and the effect of a change
of the studied criterion on the other hand.
A second contribution is in the modification of the mutation design for the
algorithm CMA-ES, where we will use Quasi-Random mutations instead of
purely random ones. This will almost always result in a very clear improve-
ment of the observed results. This research also introduces the Sieves Method
well known in statistics, to stochastic optimisers: by first optimising a small
subset of the variables and gradually increasing the number of variables during

the optimization process, we observe on some problems a very clear improve-
ment.
While artificial testbeds are of course really useful, they can only be the first
step: in almost every case, the testbeds are a collection of purely mathemat-
ical functions, from the simplest one like the sphere, to some really complex
functions. The goal of the design of new optimisers or the improvement of an
existing one is however, in fine, to answer some real world question. It can
be the design of a more efficient engine, finding the correct parameters of a
physical model or even to organize data in clusters.
Stochastic optimisers are used on those problems, in research or industry, but
in most instances, an *optimiser is chosen almost arbitrarily. We know how
optimisers compare on artificial functions, but almost nothing is known about
their performances on real world problems. One of the main aspect of the
research exposed here will be to compare some of the most used optimisers
in the literature on problems inspired or directly coming from the real-world.
On those problems, we will additionally test the efficiency of quasi-random
mutations in CMA-ES and the Sieves-Method.
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