
HAL Id: tel-01754039
https://theses.hal.science/tel-01754039

Submitted on 30 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The role of lysosome alterations in bladder cancer
progression

Camilla de Barros Santos

To cite this version:
Camilla de Barros Santos. The role of lysosome alterations in bladder cancer progression. Cellular
Biology. Université Pierre et Marie Curie - Paris VI, 2017. English. �NNT : 2017PA066250�. �tel-
01754039�

https://theses.hal.science/tel-01754039
https://hal.archives-ouvertes.fr


  

 
 

Université Pierre et Marie Curie 

Ecole doctorale Complexité du Vivant - ED515 

Department of Subcellular Structure and Cellular Dynamics - UMR144 

Laboratory Molecular Mechanisms of Intracellular Transport 

 

 

The role of lysosome alterations in bladder 

cancer progression 
 

Camilla DE BARROS SANTOS 

 

Doctoral Thesis in Cell Biology 

Under the supervision of Dr. Bruno GOUD and Dr. Kristine SCHAUER 

Presented and publicly defended on Thursday, September 28, 2017 

 

 

Before the examining committee composed of: 

Prof. Joëlle SOBCZAK-THEPOT     Université Pierre et Marie Curie President 

Dr. Cécile GAUTHIER-ROUVIERE CRBM Reviewer 

Dr. Guillaume MONTAGNAC Institut Gustave Roussy Reviewer 

Dr. Ana-Maria LENNON-DUMENIL Institut Curie Examiner 

Dr. Yves ALLORY Université Paris Est Créteil Examiner 

Dr. Bruno GOUD Institut Curie Thesis Director 

Dr. Kristine SCHAUER Institut Curie 

 

Thesis Director 

 



  

 

 

Abstract 

Cancer is a multifactorial disease defined by a rapid development of abnormal cells. Malignant cells 
acquire competitive advantages for growth and proliferation through a big spectrum of genetic and 
epigenetic changes leading to major changes in the transcriptome and proteome profiles and thus to 
alterations in multiple signaling pathways, intracellular trafficking and metabolism. Although many 
cellular pathways have been studied in the context of cancer, including signaling, migration, loss of 
apical-basal cell-polarity and cell adhesion, little is known about cancer-related alterations on the sub-
cellular, organelle level. This PhD thesis aimed to identify alterations in intracellular compartments and 
to study how these changes correlate with cancer progression. In classical culture, the systematic study 
on the organization and relative positioning of organelles is challenging because of the strong 
morphological cell-to-cell variations. To overcome this problem, we used innovative micro-patterning 
technique in combination with quantitative, probabilistic mapping of cell organelles. Using a systematic 
analysis of different cell lines representing different stages of bladder cancer, we identified several 
changes in the positioning of organelles. The most striking phenotype was revealed by lysosomes, 
whose distribution was more peripheral in cells representing higher grades of bladder cancer. This 
suggested that lysosome positioning could be potentially relevant in cancer progression. Therefore, we 
aimed to characterize the impact of lysosome alteration on cell behavior in transformed cells. We found 
that changes in lysosome positioning played a role on bladder cancer cell invasion. Indeed, 
anterograde transport of lysosomes correlate with 3D invasion behavior, contrary to retrograde 
transport that correlated with decreased cell invasion. Finally, we studied about the molecular 
mechanisms by which lysosome alterations impact cell invasion. 

Keywords: Lysosome positioning, Bladder cancer, Invasion, Micropatterning, Density maps  

Résumé 

Le cancer est une maladie multifactorielle définie par un développement rapide de cellules anormales. 
Les cellules malignes acquièrent des avantages compétitifs qui permettent une croissance et 
prolifération anormales, grâce à un large spectre de changements génétiques et épigénétiques 
conduisant à des changements majeurs dans les profils de transcriptome et protéome et ainsi des 
modifications dans des voies de signalisation, le trafic intracellulaire et le métabolisme. Des 
nombreuses voies cellulaires ont été étudiées dans le contexte du cancer, y compris la signalisation, 
la migration, la perte de la polarité cellulaire apico-basale et l'adhésion cellulaire, cependant très peu 
est connu sur les altérations au niveau des organelles. Cette thèse a comme objectif d'identifier des 
altérations dans les compartiments intracellulaires et d'étudier leurs corrélations avec la progression 
du cancer. Dans la culture cellulaire classique, l'étude systématique de l'organisation du 
positionnement relatif des organelles est difficile en raison des fortes hétérogénéités morphologiques 
des cellules. Pour contourner ce problème, nous avons utilisé l’innovante technique des micro-patrons 
combinée à des cartes de densité des organelles. Après une analyse systématique de différentes 
lignées cellulaires représentant différents grades du cancer de la vessie, nous avons identifié des 
changements dans le positionnement de plusieurs organelles. Le changement de position le plus 
important a été observé pour les lysosomes, dont la distribution était plus périphérique dans les 
cellules représentant des grades plus avancées du cancer de la vessie. Ceci suggère que le 
positionnement des lysosomes pourrait être potentiellement important dans la progression du cancer. 
Par conséquent, nous avons cherché à caractériser l'impact de l’altération des lysosomes sur le 
comportement des cellules transformées. Nous avons constaté que les changements dans le 
positionnement des lysosomes jouent un rôle dans l'invasion des cellules cancéreuses de la vessie. 
En effet, le transport antérograde des lysosomes est en corrélation avec l’invasion 3D, contrairement 
au transport rétrograde qui corrèle avec une diminution de l’invasion cellulaire. Enfin, nous avons 
étudié les mécanismes moléculaires par lesquels les altérations du lysosome ont un impact sur 
l'invasion cellulaire. 

Mots-clés: Positionnement des lysosomes, Cancer de la vessie, Invasion, Micro-patrons, Cartes de 
densité 
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1. Cancer 

 

The World Health Organization (WHO) defines cancer as a disease caused by abnormal 

growth and spread of cells that can affect any part of the body. Cancer is responsible for 

around 16% of deaths in the world, and metastasis are the major cause of death associated 

with cancer (WHO, 2017).  

Cancer is a multifactorial disease, triggered by interaction of genetic, epigenetic and extrinsic 

factors. As the human organism is constantly exposed to agents that can cause damages to 

DNA, many factors can trigger a cancer, such as tobacco, alcohol, ultraviolet rays and some 

viruses (like hepatitis B and human papilloma virus) (Ho et al., 2012a; WHO, 2017). 

Moreover, intrinsic factors, like reactive oxygen species (ROS) formed during the metabolism 

of oxygen, ageing and hereditary genes are also promoters of cancer (Tubiana, 2008).   

1.1. Hallmarks of cancer 

 

Figure 1: The Hallmarks of Cancer The 6 original hallmarks of cancer proposed by Hanahan and 

Weinberg in 2000.  
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During cancer, normal cells progressively acquire several functional characteristics until they 

become tumor cells, also known as neoplastic cells. In 2000, Hanahan and Weinberg have 

defined the six hallmarks of cancer: self-sufficiency in growth signals, insensitivity to anti-

growth signals, evading apoptosis, limitless replicative potential, sustained angiogenesis and 

tissue invasion and metastasis (Hanahan and Weinberg, 2000) (Figure 1). These hallmarks 

are complementary capabilities that enable normal cells to undergo tumor growth and 

metastatic dissemination, when cells spread to distant organs.  

1.1.1. Self-sufficiency in growth signals 

Transformed cells have acquired competitive advantages for cell proliferation and growth. 

Growth factors are major players in proliferative signaling. Cancer cells can either abnormally 

produce growth factor receptors, or stimulate neighbor cells from the adjacent stroma to 

supply growth factors (Cheng et al., 2008). For instance, epidermal growth factor (EGF) 

binds its receptor EGFR at the plasma membrane and stimulates cell growth. In physiological 

conditions, it is implicated, for instance, in embryonic development and wound healing. 

However, in cancer this pathway is frequently deregulated (Calvo and Rowinsky, 2004). 

1.1.2. Insensitivity to anti-growth signals 

In order to proliferate and disseminate to secondary sites, cancer cells inactivate tumor 

suppressor genes and resist cell death (Hanahan and Weinberg, 2011). The tumor 

suppressor genes, also known as antioncogenes, act by limiting cell growth and proliferation 

in normal cells, however cancer cells acquire the ability to inactivate them. Well known tumor 

suppressor genes are retinoblastoma-associated (RB) and tumor-protein 53 (TP53). In 

normal cells, RB negatively regulates cell growth from extracellular signals, whereas TP53 

inhibits cell growth due to cellular stress, such as genome damage and oxygenation defects 

(Hanahan and Weinberg, 2011). Contrary, cancer cells acquire selective growth advantage 

when oncogenes are activated by mutations (Vogelstein et al., 2013). These genes are 

promotors of cancer. 

1.1.3. Evading apoptosis 

In addition, transformed cells have to overcome the programmed cell death, apoptosis. In 

physical conditions, apoptosis is triggered in response to stress, such as nutrient deprivation 

and hypoxia, whereas in cancer, the cells suppress pro-apoptotic signals (Hanahan and 

Weinberg, 2011). For instance, the tumor suppressor TP53 is also a pro-apoptotic regulator. 
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The loss of this gene results in cells insensitive to apoptosis stimuli (Koff et al., 2015). 

Interestingly, is has been reported that apoptosis can favor cancer by killing less-suited 

clones for cancer dissemination (Labi and Erlacher, 2015). 

1.1.4. Limitless replicative potential 

Normal cells undergo a limited number of cell divisions and growth cycles. This is because 

telomeres, which are responsible to protect the ends of chromosomes, shorten after each 

division, limiting the number of cell divisions (Greider and Blackburn, 1985). Cell division is 

restricted during senescence, a non-proliferative state, in which the cells are still viable. 

Cancer cells undergo a transition called immortalization, in which they acquire the potential 

to replicate unlimitedly (Hanahan and Weinberg, 2011). In cancer cells, the telomerase, an 

enzyme that repeatedly adds segments to the end of telomeres (Greider and Blackburn, 

1989), provides immortality characteristics to these cells (Blasco, 2005).  

1.1.5. Sustained angiogenesis 

Cancer cells require, as normal cells, the presence of nutrients and oxygen provided by 

blood vessels. Thus, in order to fulfill the metabolic needs for increased proliferation, tumor 

cells promote angiogenesis, where pre-existing blood vessels form new vessels (Hanahan 

and Weinberg, 2000, 2011). Furthermore, cancer cells can adopt other forms of 

vascularization, like hijacking of existing vessels, or de novo formation of new bloods vessels 

(Fouad and Aanei, 2017). This tumor-associated neovascular network is continuously 

developed, from the microscopic premalignant phase until tumor growth.   

1.1.6. Tissue invasion and metastasis 

Finally, cancer cells are characterized by escape from their original location and spread into 

tissues of the entire body. First, cancer cells undergo local invasion by breaching the 

basement membrane, a barrier that surrounds almost all tissues. Then, cells perform 

intravasation, defined by breaching the blood or lymphatic vessels and reaching the 

circulation. Next, cells may extravasate from the vessels, and colonize a secondary organ 

where they form the secondary tumor (Hanahan and Weinberg, 2000, 2011). Epithelial 

cancer cells often colonize adjacent tissues. Moreover, many secondary tumors are 

developed in bone marrow and liver tissues, probably due to their highly permeable vessels 

that facilitate cancer cell extravasation (Fouad and Aanei, 2017).  
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In 2011, Hanahan and Weinberg have proposed two enabling characteristics that favor 

cancer cells to acquire cancer hallmarks: genomic instability and tumor-promoting 

inflammation (Hanahan and Weinberg, 2011). Genomic instability allows cancer cells to 

acquire selective advantages, enabling the genetic alterations that drive cell transformation 

and tumor progression. The genetic mutations are classified in: i) deletions, that always 

target tumor suppressors, ii) amplifications, in which the product of an oncogene is 

abnormally increased, and iii) translocations that fuse two genes to form an oncogene 

(Vogelstein et al., 2013). Tumor-promoting inflammation contributes to cancer development 

by providing growth and proangiogenic factors and by helping the remodeling of the 

extracellular matrix (Grivennikov et al., 2010). Thus, immune cells and the inflammation 

signaling support hallmark capabilities (Hanahan and Weinberg, 2011).  

Moreover, Hanahan and Weinberg have described two emerging hallmarks of cancer. The 

first one is the ability to reprogram and modify cell metabolism in order to support neoplastic 

proliferation. Normal cells consume glucose through glycolysis that occurs in the cytosol, and 

then the pyruvate (the product of glycolysis) is oxidated in the mitochondria. Under anaerobic 

conditions, the glycolysis is favored in order to spare oxygen that is consumed during 

mitochondrial respiration. Cancer cells reprogram their metabolism and energetic production 

by consuming high rates of glucose through glycolysis, even in the presence of oxygen 

(Hanahan and Weinberg, 2011; Warburg, 1956). This phenotype is known as Warburg effect 

and is also called as aerobic glycolysis. The second emerging hallmark is the capacity of 

cancer cells to evade immunological destruction, either by avoiding detection by immune 

cells, or by limiting the immunological killing (Hanahan and Weinberg, 2011).  

Recently, the hallmarks described by Hanahan and Weinberg in 2000 and 2011 have been 

revisited. Fouad and Aanei pointed out that the initial hallmarks of cancer are also shared by 

some benign tumors (Fouad and Aanei, 2017), for instance, endometrial cells from the 

benign endometriosis that are capable to invade new tissues while maintaining their benign 

histological appearance (Wilbur et al., 2017). Additionally, they have proposed a new model 

of seven hallmarks of cancer: 1) selective growth and proliferative advantage that merges the 

first and second original hallmarks; 2) altered stress response favoring overall survival, a 

merge of the third and fourth hallmarks. The following four hallmarks have been conserved: 

3) vascularization; 4) invasion and metastasis and 5) metabolic rewriting. Finally, they have 

proposed 7) abetting microenvironment as a new hallmark that considers the stroma as an 

active contributor to tumor growth (Fouad and Aanei, 2017). 
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1.1.7. Tumor environment 

The stroma is the connective tissue that surrounds epithelial tissues. It is colonized by 

several cell types, including, fibroblasts, immune cells, and vessels made of endothelial cells. 

The tumor-associated stroma (Figure. 2) is mostly responsible for the heterogeneity within 

tumors, because of the cell-cell communication between cancer and stromal cells (Fouad 

and Aanei, 2017; Hanahan and Weinberg, 2011). The endothelial cells of blood vessels 

participate in angiogenesis. The pericytes, which are mesenchymal cells related to muscle 

cells, act with the endothelial cells to synthesize the basement membrane of the vessels 

(Hanahan and Weinberg, 2000, 2011). The immune cells found in the stroma, such as 

macrophages and lymphocytes, can contribute to tumor growth (DeNardo et al., 2008). 

Cancer associated fibroblasts are an important type of mesenchymal cells. These cells favor 

proliferation (Bhowmick et al., 2004), angiogenesis (Fukumura et al., 1998) and invasion 

(Dumont et al., 2013). Additionally, mesenchymal stem and progenitor cells can be found in 

the stroma. These cells have the ability to differentiate into specialized cells from the tumor 

associated stroma. They are recruited from the adjacent bone marrow to ensure the 

formation of the different stroma cell types (Bergfeld and DeClerck, 2010). Moreover, cancer 

stem cells are found in the tumor-associated stroma. These cells often qshare markers with 

stem cells of the tissue of origin (Cho and Clarke, 2008). They are responsible for the 

heterogeneity of several aspects of cancer cells, for instance differentiation, proliferation and 

invasiveness (Hanahan and Weinberg, 2011).  
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Figure 2: The tumor microenvironment A large variety of cells present in the tumor associated 

stroma. Cancer associated fibroblasts (CAF) and immune inflammatory cells (ICs) participate in the 

remodeling of the extracellular matrix. Endothelial cells (EC) and pericytes (PC) are implicated in the 

angiogenesis process. Stromal and cancer stem cells are also present in the tumor 

microenvironment. Adapted from Hanahan and Weinberg 2011. 
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2. Bladder cancer 

 

Bladder cancer is the 9th most common cancer worldwide and represent 4% of cancer-

related deaths (Ferlay et al., 2015). It is the 7th most common in men worldwide, whereas in 

women it is less common (17th) (Burger et al., 2013). Bladder cancer is very heterogeneous 

and occurs mainly in patients after the age of 65 (Ferlay et al., 2015). Genetic factors and 

extrinsic factors, like consumption of tobacco and alcohol constitute the main risks for the 

development of bladder cancers (Benhamou et al., 2016; Ferlay et al., 2015).  

 

2.1. Classification of bladder cancers  

Several classifications have been established to characterized bladder cancer, showing high 

heterogeneity, that depend on invasion (staging), morphology (grading) and genetics 

(molecular characteristics). The 1973 WHO system classifies tumors according to three 

grades of increasingly aggressive behavior, grades 1, 2 and 3, based on morphological 

criteria. The grades of cancer mean how much cancer cells look similar to non-transformed 

cells, 1 being the most similar to normal cells and 3 the most de-differentiated. Bladder 

cancer progresses along two pathways: the papillary cancers from the Ta pathway, which 

has a low-grade malignant potential (grades G1/G2), but high rates of recurrence, and the 

flat lesions from the Carcinoma in situ (Cis) pathway that always have high-grade (G3) of 

malignity (Humphrey et al., 2016).  

Bladder cancers are also classified according to their invasion phenotype: Non-muscle-

invasive bladder cancers (NMIBC) represents 80% of new diagnosed cases. Furthermore, 

NMIBC of low grades present high rate of recurrence (around 50%), and 20% of higher-

grades NMIBC progress to muscle-invasive bladder cancers (MIBC). MIBC are associated 

with poor prognosis, with 50% of death cases within 5 years of cystectomy, the chirurgical 

removal of bladder (Benhamou et al., 2016; Knowles, 2008). Moreover, the stages represent 

the degree of invasion of bladder cancers (Figure 3). According to the Union for International 

Cancer Control TNM system, the NMIBC are divided into three stages: the papillary Ta and 

Tis stage (also called Cis, in which cells form non-invasive flat tumors, are restricted to the 

urothelial layer), and stage T1 that represents cells who have breached the basement 

membrane. MIBC are classified in stage T2, in which the invasion reaches the muscle tissue; 

the T3 stage classifies the invasion of the adipose tissue and the T4 stage with the 

dissemination to nearby organs (Benhamou et al., 2016; Ho et al., 2012a).  
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Figure 3: Representation of the 

different stages of bladder 

cancer progression. The NMIBC 

stages: Tis flat tumor, papillary Ta 

and T1. And the MIBC T2 to T4. 

Adapted from Cancer Research UK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bladder cancer heterogeneity is due to the presence of different mutations. The fibroblast 

growth factor receptor 3 (FGFR3) acts as an oncogene in bladder cancer (Cappellen et al., 

1999; van Rhijn et al., 2001). Indeed, activating mutations of the gene encoding this receptor 

is the most common genetic alteration in papillary NMIBC, especially in low-grades tumors 

(Billerey et al., 2001; Knowles, 2008). Additionally, large scale transcriptomic data 

demonstrated that the epidermal growth factor receptor (EGFR) pathway is associated with a 

subtype of bladder cancers, the basal-like subgroup, that represents 23,5% of MIBC. In 

these basal-like tumors the epidermal growth factor receptor (EGFR) pathway is 

overexpressed. In addition, 75% of the basal-like analyzed tumors were mutated for TP53. 
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Moreover, it was shown that the basal-like phenotype is associated with squamous 

differentiation, high grades and stages of bladder cancer progression, leading to poor 

survival (Rebouissou et al., 2014). Luminal-like MIBC subgroup are characterized by 

peroxisome proliferator activator receptor (PPAR - a transcription factor implicated in cell 

differentiation and metabolism) overexpression and FGFR3 mutations, which suggest that 

these cells originate from papillary NMIBC (Choi et al., 2014) (Figure 4). 

 

 

 

Figure 4: Differences between MIBC origins. Basal-like MIBC (lower) is mutated to EGFR and 

present a disorganized differentiation, whereas luminal-like MIBC (upper) are frequently mutated for 

FGFR3 and present a less disorganized phenotype. Adapted from Choi et al. 2014.  

 

2.2. Deregulated trafficking pathways in bladder cancer cells 

Growing evidence indicates that key regulators of intracellular trafficking, for instance small 

GTPases, play an important role in cancer. Abnormalities in the architecture of trafficking 

pathways lead to aberrations in the transport and sorting activities of the cell, for instance 
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defective transport of growth factor receptors or aberrant recycling of adhesion molecules. In 

addition, the disorganization of trafficking compartments such as endosomes impact 

signaling pathways, as growing evidence indicate that growth factor-mediated signaling 

persists throughout the intracellular journey of growth factor receptors. Several studies have 

highlighted a role for several GTP-ases of the Rab family in human cancers (Amillet et al., 

2006; Bravo-Cordero et al., 2007; Gebhardt et al., 2005; Lankat-Buttgereit et al., 1994; 

Wheeler et al., 2015). Rab proteins are key regulators of intracellular trafficking, controlling 

the formation of transport carriers from donor membranes, their movement along cytoskeletal 

tracks and their tethering/fusion with target membranes. Rab proteins are themselves under 

a strict control by a complex regulatory network of proteins that includes guanine nucleotide 

exchange factors (GEFs), GTPase activating proteins (GAPs) and guanine nucleotide 

dissociation inhibitors (GDI). In their active form Rab GTPases interact with a diverse range 

of effector proteins, such as molecular motors, lipid kinases, tethering factors and scaffolding 

proteins (Stenmark, 2009).   

A transcriptome study from our laboratory has demonstrated that many genes encoding Rab 

proteins as well as their regulators and effectors were deregulated in bladder cancer (Ho et 

al., 2012a). Interestingly, changes in gene expression often correlated with tumour 

progression along one of the pathways, the papillary low grade pathway (Ta pathway) or the 

carcinoma in situ (Cis) pathway. The genes encoding Rab27 or its regulators and effectors 

were deregulated in both pathways. Rab23 gene was specifically deregulated in tumors from 

the Cis pathway. Contrary, for the Ta pathway, no genes encoding Rab proteins or their 

regulators and effectors were found that were specifically deregulated. Furthermore, Ho and 

collaborators found that genes encoding Rab11 and Rab20 were associated with urothelial 

cell differentiation.  
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3. Intracellular changes during cancer disease 

Cancer cells present genetic and epigenetic modification, but also display morphological 

alterations in their subcellular organization. In healthy tissues, the apical-basal polarity is 

essential for normal physiological function of epithelial cells and the tissue integrity. The 

maintenance of this polarity is regulated by cell intrinsic factors, like protein trafficking and 

cytoskeleton, and by extrinsic factors, like the cell-cell, mainly mediated by cadherins, and 

cell-matrix interactions mediated by integrins (Muthuswamy and Xue, 2012; Wodarz and 

Näthke, 2007) (Figure 5). The genetic and epigenetic changes that occur during cancer 

development lead to major changes in the transcriptome and proteome profiles of cells and 

thus to alterations in multiple signaling pathways and intracellular trafficking. This leads to 

morphological changes that provide competitive advantages during cancer spread.  

 

 

Figure 5: Disruption of normal cell behavior of cancer cells. A. Loss of normal growth and 

disruption of normal cell behavior are characteristics of malignant cells. B. Organized pattern of 

normal human breast cancer tissue evidenced by apical (in green) and basolateral markers (in red). 

The DAPI stains the nucleus (in blue). Gradual loss of apical marker staining in breast cancer tissues. 

Adapted from Muthuswamy and Xue 2012. 
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3.1. Epithelial-mesenchymal transition  

The epithelial-mesenchymal transition (EMT) is the most studied example of changes in cell 

morphology. EMT is a physiological process in embryogenesis during development and in 

would healing, during which epithelial cells acquire, partially or totally, mesenchymal 

characteristics, such as fibroblast-like shape, changes of cell-cell adhesions (Peinado et al., 

2004) (Figure 6) and loss of apical-basal polarity (Thiery and Sleeman, 2006). The concept 

of EMT has been introduced to cancer because cancer cells dedifferentiate from epithelial 

pattern, which facilitate cell migration. During EMT, the cells have an increased expression of 

proteases, which favors the degradation of the extracellular matrix and thus increase cell 

escape (Thiery et al., 2009).  

 

 

 

Figure 6: Morphological 

changes during EMT. 

Murine mammary cells 

stained for actin with 

Phalloidin (in red) and for 

nucleus with Dapi (in blue). 

Cells treated with MMP3 to 

induce EMT (right). Loss 

their cell-cell contacts and 

have an elongated shape in 

comparison to control 

situation (left). Adapted 

from Thiery and Sleeman 

2006.  

 

 

 

The EMT requires changes in cadherin expression (van Roy, 2014). Cadherin superfamily 

plays a crucial role in cell morphology because it is the major player implicated in cell-cell 

interactions, which impacts baso-lateral polarity (Harris and Tepass, 2010). Cadherins are 

type-1 transmembrane receptors that mediate cell-cell adhesion localized in domains of the 

membrane enriched in cholesterol (Causeret et al., 2005). The extracellular domain of 

cadherins forms cellular junctions by binding cadherins from adjacent cells, while the 
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cytoplasmic tail interacts with catenins in the cytoplasm (Harris and Tepass, 2010). The 

catenin-cadherin complex binds to the cytoskeleton to mediate its remodeling, which impacts 

cell shape and trafficking of proteins (Harris and Tepass, 2010; Odenthal et al., 2016). 

Several types of cadherins exist, the E-, N- and P- cadherins. E-cadherin is exclusively 

expressed in epithelial cells (van Roy, 2014). N-cadherin is found in mesenchymal cells (van 

Roy, 2014) and their mediated contacts are transient (Theveneau and Mayor, 2012). P-

cadherin overlaps with E-cadherin in epithelial cells, however is also found in mesenchymal 

cells. Both E and P-cadherins play a role in intercellular force transmission of epithelial cells 

(Bazellières et al., 2015). Abnormal cadherin function is a common characteristic of cancers 

(Harris and Tepass, 2010; van Roy, 2014). Because E-cadherin is a major player in epithelial 

cell-cell interaction, it acts as growth and invasion suppressor (van Roy, 2014). Therefore, E-

cadherin loss is a common feature of epithelial cancers and is used to diagnosis and 

prognosis. E-cadherin expression is associated with positive prognosis (van Roy, 2014). N-

cadherin expression is often associated with a poor prognosis (van Roy, 2014). During EMT, 

a switch between E and N-cadherin is required (van Roy, 2014). Moreover, P-cadherin is 

frequently associated with increased migration and invasion (Plutoni et al., 2016).  

During EMT, cells modify their polarization. Three complexes regulate cell polarity in 

mammalian cells: the protease-activated receptor (PAR) and the atypical protein kinase C 

(aPKC) complex, Crumbs complex and Scribble complex (Muthuswamy and Xue, 2012). The 

deregulation of these complexes have been implicated in malignant transformation by 

leading to a loss of apical-basal polarity (Muthuswamy and Xue, 2012; Wodarz and Näthke, 

2007).  

The mutation of transforming growth factor β (TGFβ) has been implicated in EMT and 

inhibition of apoptosis (Valdés et al., 2002). These morphological and functional changes 

favor the survival, dissemination and metastatic spread of cancer cells (Hanahan and 

Weinberg, 2011; Thiery et al., 2009; Wodarz and Näthke, 2007).  

Once metastatic mesenchymal-like cells reach the secondary organ, they can undergo 

mesenchymal-epithelial transition (MET). This transition allows the differentiation in 

specialized epithelial cells to properly colonize the 3D complex structure of the secondary 

site (Clark and Vignjevic, 2015; Thiery et al., 2009).  
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3.2. Mesenchymal-amoeboid transition  

Cancer cells can undergo mesenchymal-amoeboid transition (MAT). These cells change 

from an elongated to a round irregular cellular shape and become highly contractile, which 

allows the cells to squeeze through narrow spaces in the stroma (Friedl and Alexander, 

2011; Liu et al., 2015). In this transition, Rac activity is often decreased, whereas Rho is 

activated and mediates actin contractility (Friedl and Alexander, 2011). This transition can be 

led by loss of protease activity and decrease in binding between cells and extracellular matrix 

(Friedl and Alexander, 2011; Friedl and Wolf, 2003). The absence of focal adhesions lead to 

loss of cortical membrane tensions that result in round cellular shape and acceleration of cell 

migration (Liu et al., 2015). Additionally, the amoeboid transition can occur in cells migrating 

collectively in a β1 independent manner, this process is called collective-amoeboid transition 

(CAT) (Friedl and Wolf, 2003).  

 

 

 

Alterations in intracellular compartments in cancer 

Changes in cancer cell shape due to alterations in cell polarity and adhesion are well 

characterized (Friedl and Wolf, 2003). However, the morphological alterations observed in 

cancer cells are not well-defined on the subcellular, organelle level. On the subcellular level, 

few alterations have been characterized in cancer cells, for example: abnormal nuclear size 

and shape (Zink et al., 2004a); augmented secretion of lysosomes, in prostate cancer cells 

(Steffan et al., 2014); increased energy production in mitochondria due to crosstalk with 

tumor associated stroma (Wallace, 2012); elevation of reactive oxygen species after 

activation of peroxisome proliferator activator receptors (Keller et al., 2000) and Golgi 

apparatus fragmentation (Petrosyan, 2015).  
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3.3. Nucleus 

The nucleus is a membrane-enclosed organelle that contains most of the cellular DNA. The 

nuclear morphology is currently used for diagnosis of cancer (Zink et al., 2004a). Indeed, 

alterations in nuclear size, shape, margins and numbers are often observed in tumor cells 

(Baba and Câtoi, 2007; Dey, 2010). During cancer dissemination, cells have to change their 

shape to pass through narrow spaces in the extracellular environment. The nucleus is the 

biggest organelle in cells and is stiffer than the cytoskeleton (Friedl et al., 2011). Nuclei 

deformation was observed in cells migrating under confinement in vitro (Denais et al., 2016; 

Raab et al., 2016). Cells migrating through narrow spaces presented leakage of nuclear 

proteins to the cytoplasm, which indicates disruption of the nuclear membrane. Thus, the 

deformability capacity of nuclei is a limitation to cell migration. 

 

3.4. Mitochondria 

Mitochondria are organelles originated from symbiotic bacteria that are responsible for cell 

respiration and energy production but also for the generation of reactive oxygen species 

(ROS) and initiation of apoptosis (Wallace, 2012). Alterations in function and number of 

mitochondria have been implicated in cancer (Wallace, 2012; Warburg, 1956; Zong et al., 

2016). To provide more energy to cancer cells, abnormal glycolysis occur in mitochondrial 

membranes even during aerobic conditions, which is known as Warburg effect (Baba and 

Câtoi, 2007; Warburg, 1956). The accumulation of mitochondria, in kidney cancers, provoked 

high rates of respiration and sustained proliferation (Hasumi et al., 2012). The ROS produced 

by mitochondrial activity causes cell toxicity that can initiate apoptosis. In cancer cells with 

inhibited apoptosis, ROS accumulation can contribute to malignant transformation (Wallace, 

2012).  

Interestingly, the mitonchondrial metabolism can influence the tumor associated stroma. 

Cancer cells secret H2O2, which induces degradation of mitochondria of the fibroblasts that 

leads to increased glycolytic metabolism. The increased glycolysis generates secretion of 

acids, such as lactate and ketones, to the extracellular space. Cancer cells use these acids 

for energy production, favoring cancer progression (Wallace, 2012). 

The mitochondria are not part of the vesicular cellular trafficking, thus these organelles adapt 

their shape and distribution within the cytoplasm to efficiently distribute their metabolites 

(Daniele et al., 2014). In epithelial migrating cancer cells, the anterograde localization 
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(between nucleus and leading edge) of mitochondria correlates with increase in velocity and 

directional persistence (Desai et al., 2013).  

 

3.5. Peroxisomes 

Peroxisomes are organelles responsible for the reduction of hydrogen peroxide and the 

catabolism of fatty acids. Oxidation of long chain fatty acids in peroxisomes shorten these 

lipids that will be next metabolized by the mitochondria (Lodhi and Semenkovich, 2014). 

Peroxisomes have the ability to increase their number and size in response to the 

accumulation of fatty acids (Delille et al., 2006). The nuclear transcription factors peroxisome 

proliferator-activated receptors (PPARs) are responsible for the highly dynamic proliferation 

of this organelle. The increase in number of peroxisomes results in increase of ROS 

production and it was reported that these proliferators can initiate or promote cancer 

development (Keller et al., 2000).  

Interestingly, PPARγ (one of three isoforms) has been implicated in the induction of 

differentiation of normal human urothelial cells (Varley et al., 2004). Moreover, PPARγ gene 

was amplified in 15% of luminal muscle-invasive bladder cancers, which suggests a role in 

bladder cancer promotion (Choi et al., 2014).  

 

3.6. Golgi apparatus 

The Golgi apparatus is an essential organelle that consists of interconnected flattened 

cisternae. It is a key player in protein glycosylation, trafficking and sorting along the 

biosynthetic/secretory pathway. In cancer cells this organelle is often fragmented (Chia et al., 

2012; Petrosyan et al., 2014) and poorly developed (Baba and Câtoi, 2007). Pertubation in 

Golgi morphology leads to aberrant glycosylation, which impact protein folding and stability 

(Petrosyan et al., 2014). The gene encoding Golgi phosphoprotein 3 (GOLPH3) was reported 

to be an oncogene (Scott et al., 2009). Oncogenic GOLPH3 regulates cell size, abnormal 

production of growth factors (Scott et al., 2009) and is implicated in aberrant glycosylation 

and secretion of matrix metalloproteinases (Rizzo et al., 2017).  

Several Rab proteins are localized at the Golgi apparatus (Petrosyan, 2015). The 

deregulation of these proteins have been reported in cancer, for instance Rab6a interact with 

giantin, a Golgi matrix protein, in normal conditions. However, it was reported that in prostate 
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cancer cells, Rab6a interacts with myosin II, an actin associated motor protein, which leads 

to Golgi disassembly and deregulated trafficking (Petrosyan et al., 2014). Moreover, Rab 

proteins often associate with kinesins to transport proteins sorted from Golgi. Interestingly, it 

has been shown that depletion of several kinases that are found down-regulated in cancers 

induce Golgi fragmentation and defects in glycan biosynthesis and protein secretion (Chia et 

al., 2012).  

 

 3.7. Endoplasmic reticulum 

Endoplasmic reticulum (ER) is an organelle that forms an interconnected cisternae network 

that is continuous with the nuclear membrane. It is the major organelle responsible for 

protein folding and translocation (Yadav et al., 2014). ER stress leads to unfolded or 

misfolded proteins. The accumulation of unfolded proteins triggers apoptosis to avoid cells 

with defective ER (Yadav et al., 2014). In cancer cells, ER stress can contribute to cell 

survival (Mollereau, 2013). Cancer cells induce hyperactivation of ER protein folding and 

transport to support cell survival and proliferation (Lee, 2007). During cancer progression, a 

reduction of the ER is associated with an increase of free ribosomes (Baba and Câtoi, 2007). 
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4. Lysosomes and lysosome-related organelles  

 

Lysosomes were first described by Christian de Duve and collaborators as acidic granules 

containing hydrolases (De Duve et al., 1955). These organelles are surrounded by a 

phospholipid bilayer membrane and contain over 60 different types of soluble hydrolases that 

require an acidic pH (4.5-5) for maturation and optimal activity (Kallunki et al., 2013). These 

hydrolases can degrade several substrates, such as proteins, carbohydrates, lipids and 

nucleic acids (Fennelly and Amaravadi, 2017; Hämälistö and Jäättelä, 2016). 

To prevent the degradation of the lysosomal membrane by hydrolases, lysosomal membrane 

proteins are heavily glycosylated. Around 50% of the lysosomal membrane is composed of 

the transmembrane lysosome-associated membrane protein 1 and 2 (LAMP1 and LAMP2). 

Other important lysosomal membrane proteins are the tetraspanin transmembrane CD63 

(also known as LAMP3), lysosome integral membrane protein 1 and 2 (LIMP1 and LIMP2) 

and vacuolar H+-adenosine triphosphatase (V-ATPase) (Kallunki et al., 2013; Solomon and 

Muro, 2017). The V-ATPase is responsible for the acidification of the lysosomes, by 

gradually pumping protons into the lysosomal lumen until pH 5 to 4.5 (Hämälistö and 

Jäättelä, 2016).  

In addition to conventional lysosomes, whose function is degradation, cells contain many 

lysosome-related organelles. Late endosomes share many molecular markers of lysosomes, 

but have several cellular functions (see below). In cytotoxic T cells and osteoclasts, all 

lysosomes are secretory, whereas in mast cells lysosome-related organelles co-exist with 

conventional lysosomes. The melanosomes of melanocytes, and Weibel-Palade bodies from 

endothelial cells are specialized lysosome related organelles (Luzio et al., 2014). The 

exocytosis of secretory lysosomes-related organelles is mediated by Ca2+ and soluble NSF 

attachment receptor (SNAREs) that are major regulators of membrane fusion (Rodríguez et 

al., 1997).  

An emerging role of lysosomes and lysosome-related organelles (for simplicity lysosomes 

will be used hereafter) has been proposed in cancer. During malignant transition, the 

secretion of lysosomal proteases is increased in prostate cancer (Dykes et al., 2016; Steffan 

et al., 2010). Lysosome-related functions, such as autophagy and exosome secretion, have 

been shown to be deregulated in breast cancer (Rashed et al., 2017; Hare and Harvey, 

2017; Hendrix and De Wever, 2013). Interestingly, proteins and mechanisms implicated in 

lysosome positioning have been reported to be deregulated during prostate cancer both in 

vitro and in vivo (Dykes et al., 2016; Steffan et al., 2009, 2010). Moreover, lysosome 

positioning has been recently shown to be implicated in EMT-mediated tumor invasion 
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(Dykes et al., 2017). Interestingly, a large scale screening has reported lysosome associated 

membrane protein 1 (Lamp1) as an important biomarker associated with bladder cancer 

(Duriez et al., 2017). Lamp1 expression is increased in urine samples from patients with 

bladder cancers as compared to control samples.  

 

4.1. Lysosome biogenesis 

Several pathways have been shown to participate in lysosomal biogenesis: the endocytic 

pathway; the secretory route for the delivery of enzymes from the Golgi apparatus; and 

fusion events with late or recycling endosomes (Braulke and Bonifacino, 2009; Klumperman 

and Raposo, 2014; Luzio et al., 2014) (Figure 7). 

 

Figure 7. Lysosomal biogenesis. The endocytic pathway: Maturation from early endosomes (EE) to 

late endosomes (LE) and finally lysosomes. The secretory pathway: Newly synthetized proteins are 

tagged with mannose 6 phosphate (M6P) and transported to EE. Upon acidification the proteins are 

delivered to the lysosomes. Endolysosome: Late endosomes and lysosomes can fuse, to exchange 

proteins, forming the hybrid organelle endolysosome.  
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4.1.1. Endosomal maturation pathway  

Lysosomes derive from early and late endosomes through maturation. The early endosomes 

are composed of a globular region and of tubular extensions. The tubular structures form the 

recycling endosomes that recycle molecules (e.g. transferrin and its receptor) to the plasma 

membrane. Early endosomes are enriched in Rab5 (Huotari and Helenius, 2011; 

Klumperman and Raposo, 2014). The maturation of the sorting endosomes to late 

endosomes initiates with the switch of Rab5 to Rab7 (Rink et al., 2005). Rab7 drives the 

transport of late endosomes along microtubules towards the perinuclear region (Bucci et al., 

2000; Jordens et al., 2001). Late endosomes contain several intraluminal vesicles that 

represent incorporations of endosomal membranes via ESCRT (endosomal sorting complex 

required for transport) complexes. Because of the presence of intraluminal vesicles, the late 

endosomes are also called multivesicular bodies (Huotari and Helenius, 2011; Klumperman 

and Raposo, 2014). Through this endosomal maturation pathway, late endosomes deliver 

endocytosed cargos, such as integrins and growth factor receptors, to the lysosomes for 

degradation (Huotari and Helenius, 2011; Klumperman and Raposo, 2014).  

4.1.2. Delivery of lysosomal enzymes by the secretory pathway  

Lysosomal hydrolases are synthetized as proenzymes in the endoplasmic reticulum and 

delivered to lysosomes trough the Golgi apparatus. The best-studied pathway for the 

secretion from the Golgi apparatus to lysosomes relies on the mannose-6-phosphate 

receptor (MPR). The prohydrolases are tagged with mannose-6-phospate (M6P) residues in 

the Golgi, then the M6P residues bind specifically to MPRs in the trans Golgi network (TGN). 

The complex MPRs-M6P-hydrolase exits the TGN through clathrin-coat intermediates and 

fuses with early endosomes. Then, upon acidification in late endosomes, the complex is 

dissociated and the hydrolases are released into the lumen of late endosomes, where the 

hydrolases become active due to the acidic pH (Braulke and Bonifacino, 2009; Kallunki et al., 

2013). Although MPRs represent an important pathway in lysosomal biogenesis, they are not 

present in mature lysosomes (Braulke and Bonifacino, 2009; Luzio et al., 2014), instead they 

are recycled back to the Golgi apparatus (Wang et al., 2014). 

4.1.3. Fusion with late endosomes  

Additionally, fusion events have been proposed to be important for lysosomal biogenesis. 

The formation of the hybrid endolysosome from the fusion of lysosomes with late endosomes 
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has been proposed to allow the exchange of proteins from both organelles (Klumperman and 

Raposo 2014; Luzio et al. 2014).  

 

4.2. Lysosomal Functions 

 

 

Figure 8: Functions of lysosomes.  

4.2.1. Role of lysosomes in cellular catabolism  

4.2.1.1. Degradation 

The major function of lysosomes is to degrade macromolecules through the action of the 

lysosomal hydrolases. These enzymes are classified by the substrate they degrade, such as: 

proteases (proteins), phosphatases (phosphoric acid residues), nucleases (nucleic acids), 

glycosidases (sugars), lipases (lipids) and sulfatases (sulfate esters) (Braulke and 

Bonifacino, 2009). The most studied lysosomal hydrolases belong to the family of cathepsin 

proteases, because of their implication in several cancers (Kallunki et al., 2013). The proteins 

and receptors entering the endosomal system by endocytosis (e.g. integrins) are degraded 

by cathepsins and recycled to the cytosol for metabolical reuse (Klumperman and Raposo, 

2014; Solomon and Muro, 2017). 
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The secretion of lysosomal proteases has been implicated in cancer (Dykes et al., 2017; 

Kallunki et al., 2013; Machado et al., 2015; Steffan et al., 2014). The secretion of cathepsin D 

is increased in most solid cancers, and cathepsin B overexpression is widely found in most 

types of cancers and in the tumor-associated stroma. The secreted cathepsins participate in 

the degradation of the extracellular matrix, which favors cell invasion, tumor growth and 

angiogenesis (Fennelly and Amaravadi, 2017; Kallunki et al., 2013). In prostate cancer, cells 

depleted for Rab7, the lysosomes are translocated to the cell periphery, which increases the 

secretion of cathepsin B (Steffan et al., 2014). Also in prostate cancer cells, it was reported 

that Arl8b, present on peripheral lysosomes, is necessary for secretion of proteases, matrigel 

degradation, tumor growth and invasion (Dykes et al., 2016). Small GTPase Rab7 and Arl8b 

key regulators of lysosome transport (see below). Furthermore, exacerbated lysosomal 

exocytosis of hydrolases increases the invasiveness phenotype of sarcoma cells (Machado 

et al., 2015). Moreover, enhanced secretion of lysosomes leads to acidification of the 

extracellular milieu that is a common feature of the tumor microenvironment and has been 

implicated in enhanced tumor invasion (Steffan et al., 2009). On the contrary, the release of 

cathepsins into the cytosol, upon destabilization of lysosomal membrane, can trigger 

apoptosis and impairs cancer progression (Kallunki et al., 2013).  

4.2.1.2. Autophagy 

Autophagy is a lysosomal-related multistep recycling process in which cytosolic components 

are recognized and isolated, then delivered to lysosomes for degradation (Galluzzi et al., 

2017; Nakamura and Yoshimori, 2017). This process happens at a basal level, however it is 

accelerated by cellular stress such as starvation, organelle damage and pathogen infection 

(Galluzzi et al., 2017; Nakamura and Yoshimori, 2017). Autophagy is classified as: i) 

microautophagy, a process that occurs in yeast and plants, where the cytosolic components 

for degradation are sequestered by invaginations of the vacuole membrane; ii) chaperone-

mediated autophagy, in which cytosolic soluble molecules are delivered to lysosomes for 

degradation via protein-translocation complex, instead of membrane invaginations; iii) and 

macroautophagy, the best characterized process of autophagy, where large amounts of 

cytosol, and even whole organelles, are sequestered to subsequently being degraded and 

reclycled (Galluzzi et al., 2017). Macroautophagy initiates by the formation of the 

phagophore, a double membrane structure that surrounds the intracellular component. Then, 

this membrane expands forming the enclosed autophagosome (Fennelly and Amaravadi, 

2017; Galluzzi et al., 2017; Klionsky et al., 2012). Finally, autophagophore fuses with 

lysosome forming the autolysosome, where the degradation of the sequestered material 

occurs. Then, the molecules are recycled for metabolical reuse (Galluzzi et al., 2017). 
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The role of autophagy in cancer is not clear. Autophagy has been described as a mechanism 

to support cancer cell survival in hostile environment. Indeed, when cells are exposed to 

starvation, such as in tumor environment, in order to compensate the nutrient deprivation, 

they initiate autophagy (Mathew et al., 2007). The activation of mTORC1 signaling lead to 

breast tumor progression and poor survival (Hare and Harvey, 2017). On the contrary, 

autophagy has been suggested as a tumor suppressor mechanism. For instance, impairment 

of autophagy causes oxidative stress, DNA damage, genome instability and inflammation, 

which can drive cancer initiation and progression (Mathew et al., 2009; White, 2015) 

4.2.2. Lysosomes function as platform of signaling molecules 

Transcription factor EB (TFEB) acts as the major regulator of lysosomal biogenesis and 

autophagy, thus cellular catabolism. Non-active TFEB is highly phosphorylated and is 

localized at the lysosomal membrane. However, under in low nutrition condition and 

requirement of degradation of macromolecules, TFEB becomes dephosphorylated and is 

translocated to the nucleus, where it activates the transcription of lysosomal and autophagy-

related genes, initiating the synthesis of lysosomal hydrolases and lysosomal membrane 

proteins as well as autophagy (Luzio et al., 2014; Settembre et al., 2012). Indeed, during 

starvation, mammalian target of Rapamycin complex 1 (mTORC1) is present in the 

lysosomal membrane and is inactivated, which triggers activation of autophagy. On the 

contrary, when cells have high amounts of nutrients, mTORC1 limits lysosomal biogenesis 

by keeping TFEB inactive at the lysosomal membrane (Fennelly and Amaravadi, 2017; 

Hämälistö and Jäättelä, 2016; Luzio et al., 2014).  

4.2.3. Attenuation of signaling 

The degradation of signaling receptors by lysosomes is important to attenuate receptor-

mediated signaling. When lysosomal degradation is delayed, for instance due to slower 

transport of activated receptors from early endosomes to late endosomes, the signaling from 

the receptors is activated for longer periods. In the case of the epithelial growth factor 

receptor (EGFR), the activation of the mitogen-activated protein kinase (MAPK) pathway is 

sustained, when its degradation is delayed. MAPK activation induces transcription factors 

implicated in cell proliferation and survival (Taub et al., 2007). 
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4.2.4. Cholesterol transport 

Besides their main function as degradative compartment, lysosomes are also implicated in 

cholesterol transport. The oxysterol-binding protein related 1 (ORP1L) is a cholesterol sensor 

present at lysosomes. This protein promotes interaction between lysosomes and 

endoplasmic reticulum under low cholesterol conditions to allow transfer of cholesterol from 

lysosomes to endoplasmic reticulum (Rocha et al., 2009). An important disease related to 

deregulated lysosomal homeostasis of cholesterol is Niemman Pick disease type C (NPC). In 

physiological conditions, NPC2 binds to cholesterol in lysosomes and delivers it to NPC1 that 

will transfer it to a cytosolic cholesterol-binding protein. In this disease, both NPC 1 and 2 

can be mutated, although mutation of NPC1 is more common (around 95% of cases). The 

mutations impair the sorting of cholesterol out of lysosomes (Maxfield, 2014).  

4.2.5. Migration and invasion 

Lysosomes have been implicated in cell migration, by fast recycling of activated α5β1 

integrins from the leading edge towards the plasma membrane at the cell rear of migrating 

cells (Dozynkiewicz et al., 2012). Additionally, peripheral lysosomes positive for the p14-MP1 

complex (MAPK kinase 1 partner MP1 and its endosomal adaptor protein 14) promote 

turnover of focal adhesions (FAs) required for migration. P14-MP1 positive lysosomes 

dissociate the integrins from the Ras GTPase-activating-like protein (IQGAP1), a scaffold 

protein (Schiefermeier et al., 2014). Moreover, BORC (biogenesis of lysosomes-related 

organelles complex 1 related complex) recruits the small GTPase ADP-rybosylation factor 

like protein 8b (Arl8b) that is specifically localized at lysosomes and mediates peripheral 

lysosomal movement. It has been observed that BORC knock-out cells present a clustered 

lysosomal pool at the cell center and a severely impaired cell spreading and migration 

phenotype (Pu et al., 2015). The authors hypothesize that peripheral lysosomes are required 

for integrin dynamics. Furthermore, silencing of the Rab7 leads to slower cell migration, due 

to an accumulation of β1 integrins at the leading edges of migrating lung cancer cells 

(Margiotta et al., 2017). In addition, it was reported that Rab27-mediated protease release 

cleaves integrin at the cell rear, in order to allow cell detachment and support cell dynamics 

(Singh et al., 2012). 

During invasion, in addition to cell migration, proteolysis of adjacent extracellular matrix is 

required. Matrix metalloproteinases (MMPs) are key players in extracellular substrate 

degradation (Friedl and Wolf, 2003). MT1-MMP (MMP14) is manly located at lysosomes 

(Steffen et al., 2008). MT1-MMP positive lysosomes move biderectionally along microtubules 
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regulated by KIF5B and p150Glued (Marchesin et al., 2015). These lysosomes accumulate in 

invadopodia membranes (Poincloux et al., 2009) were they secrete MT1-MMP to promote 

pericellular proteolysis (Monteiro et al., 2013), which favors cancer cell invasion (Hotary et 

al., 2003). Following local exocytosis, MT1-MMP are rapidly internalized and delivered to 

lysosomes to mediate fast recycling to the plasma membrane (Macpherson et al., 2014).  

4.2.6. Exosome secretion  

In some cases, multivesicular bodies, organelles that are tightly related to lysosomes, can 

secret intraluminal vesicles to the extracellular environment, which are called exosomes. 

Exosomes are small vesicles (30-100 nm) that carry proteins, lipids and RNA to the 

extracellular milieu and mediate cell-to-cell communication (Klumperman and Raposo, 2014; 

Simons and Raposo, 2009). Due to their endosomal origin, exosomes contain proteins found 

in endosomes, such as Rab proteins and integrins. However, these vesicles are specifically 

enriched in some proteins that are considered as exosomal markers, such as flotillin and 

CD63. Moreover, exosomes are enriched in cholesterol, sphingolipds and fatty-acyl chains. 

The most distinct function of exosomes is cell-cell communication, for instance exosomes 

can transport messenger RNA (mRNA) (Valadi et al., 2007). In addition, exosomes are 

implicated in regulation of coagulation after release from platelets (Simons and Raposo, 

2009).  

Exosomes are implicated in tumor progression by releasing proteomic material, which can 

travel through circulation and create a metastatic niche (H Rashed et al., 2017). Additionally, 

exosomes carry pre-angiogenic factors, and are implicated in cancer-associated fibroblast 

differentiation (Rashed et al., 2017; Klumperman and Raposo, 2014). Moreover, small 

GTPase Rab27a that regulates the docking of MVE with the plasma membrane regulates 

exosomal secretion in mammary carcinoma in vivo, which favor tumor progression and 

metastasis (Bobrie et al., 2012).  

4.2.7. Apoptosis 

Lysosomal membrane permeabilization can trigger apoptosis, an important regulator of 

tissue homeostasis, through leakage of hydrolases into the cytosol. These hydrolases can 

permeabilize the mitochondrial membrane, liberating cytochrome c that will activate the 

caspase cascade. Additionally, upon lysosomal membrane permeabilization, some 

cathepsins trigger cell death in a caspase-independent manner via necroptosis, a form of 

programmed necrosis (Fennelly and Amaravadi, 2017; Piao and Amaravadi, 2015).  
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4.3. Molecular regulators of lysosomal positioning  

Lysosomes are scattered around the entire cellular cytoplasm but sometimes can also be 

found concentrated at the perinuclear region or at the cell periphery. This organelle moves 

bidirectionally using the cellular microtubule network: the anterograde (centrifugal) transport 

implicates the kinesins, molecular motor proteins that drive cargos towards the plus-end of 

microtubules (which in non-polarized cells are localized at cell periphery), whereas the 

retrograde (centripetal) transport is driven by dynein towards the minus-end of microtubules 

(Bonifacino and Neefjes, 2017; Pu et al., 2016) (Figure 9).  

The implications of lysosome positioning in cancer cells is an emerging field. For instance, it 

was shown that lysosomes are distributed to the cell periphery due to acidification of the 

microenvironment in tumors (Glunde et al., 2003; Steffan et al., 2009). These peripheral 

lysosomes induce filopodia formation and tumor invasion, in breast cancer cells (Glunde et 

al., 2003). In prostate cancer cells, peripheral lysosomes in response to acidic pH secrete 

more cathepsin B, which increases tumor invasion (Steffan et al., 2010).  
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Figure 9: Main regulators of lysosome trafficking. (top) Anterograde transport regulated by 

Rab7-FYCO1 and BORC-Arlb8b-SKIP interaction. Both complexes recruit KIF5B to transport the 

lysosomes to the cell periphery. (bottom) Retrograde transport mainly regulated by Rab7-RILP 

complex. Rab7-RILP and ORP1L associate and recruit the dynactin subunit p150Glued that mediates the 

dynactin transport. Under low cholesterol conditions, this association is impaired because ORP1L 

interacts with the ER protein VAP-A. Adapted from Pu et al. 2016 

 

4.3.1. Motor proteins 

4.3.1.1. Kinesins 

Kinesins are microtubule-dependent motor proteins that use ATP hydrolysis to walk along 

microtubules. Several kinesin proteins (KIFs) have been implicated in the anterograde 

movement of lysosomes, for instance KIF5B (kinesin-1) (Rosa-Ferreira and Munro, 2011; 

Tanaka et al., 1998), KIF3A (kinesin-2) (Vihervaara et al. 2011), KIF1Bβ and KIF1A (kinesin-
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3) (Guardia et al., 2016). These kinesins have been shown to drive lysosomes towards the 

plus-end of microtubules. Particularly KIF5B seems to play an important role in lysosomal 

anterograde transport. The depletion of this protein results in lysosomes clustering at the cell 

center (Rosa-Ferreira and Munro, 2011; Tanaka et al., 1998). 

4.3.1.2. Dynein 

The retrograde (centripetal) transport of lysosomes is driven by dynein in a dynactin-

dependent manner. Dynein and dynactin are both multisubunit complexes. The linking of 

dynein to lysosomes depends on intermediate proteins and cargo adaptors, like BICD2 

(bicaudal D homolog 2 protein) that stabilizes the dynein-dynactin interaction and mediates 

the linkage of cargos, such as intracellular compartments (Reck-Peterson, 2015). Moreover, 

p150Glued, a dynactin subunit was shown to form a complex with regulators of lysosomal 

trafficking to mediate anterograde transport of this organelle (Rocha et al., 2009).  

 

4.3.2. Upstream regulation of motor proteins by small GTPases 

4.3.2.1. Arl8b 

The small GTPase ADP-rybosylation factor like protein 8b (Arl8b) is an Arf-like protein, 

specifically localized at lysosomes. Arl8b is specifically recruited from the cytosol to the 

lysosomes by BORC (Pu et al., 2015). BORC is an octameric complex (composed of BLOS1, 

BLOS2, BLOS3, snapin, KXD1, MEF2BNB, myrlysin, lypersin and diaskedin) that associates 

to the cytosolic face of the lysosomal membrane. 

Once on the lysosomal membrane, Arl8b recruits SifA and kinesin-interacting protein (SKIP) 

to lysosomes, through its RUN domain (Rosa-Ferreira and Munro, 2011). The Arl8b-SKIP 

complex recruits the kinesin-1 heavy chain KIF5B to lysosomes that are moved towards the 

cell periphery (Guardia et al., 2016; Rosa-Ferreira and Munro, 2011). Moreover, Arl8 can 

additionally recruit KIF1Bβ and KIF1A, proteins from kinesin-3 family, for centrifugal 

movement of lysosomes (Guardia et al., 2016). Arl8b is implicated in lysosomal trafficking, 

through its effector Vsp41, a subunit of the tethering HOPS complex (Garg et al., 2011). 

Arl8b was recently implicated in cancer progression. The knock-down of Arl8b, in prostate 

cancer cells, prevents the anterograde transport of lysosomes, which decreases the 

secretion of proteases (Dykes et al., 2016), and reverses the invasive phenotype of cells 
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undergone EMT (Dykes et al., 2017). Moreover, depleted Arl8b cells do not grow as 

xenograft tumors in vivo (Dykes et al., 2016).  

4.3.2.2. Rab7a 

Rab7a regulates traffic from late endosomes to lysosomes. Rab7a recruits Rab7-interacting 

lysosomal protein (RILP), a cytosolic protein, by an interaction with RILP C-terminal region. 

The N-terminal region of RILP binds to the dynactin/p150Glued subunit (Jordens et al., 2001). 

Thus, Rab7 promotes centripetal movement of lysosomes and a central lysosome 

positioning. The formation of the Rab7-RILP-p150Glued complex is regulated by cholesterol 

levels, because it is only maintained under high levels of cholesterol through ORP1L, a 

cholesterol sensor. In low cholesterol conditions, ORP1L binds to VAP (vesicle-associated 

membrane protein), an endoplasmic reticulum protein and does not support the recruitment 

of dynactin/p150Glued complex on lysosomes. Therefore, lysosomes are found at the cell 

center at high cholesterol levels and at the cell periphery at low cholesterol levels (Rocha et 

al., 2009). Although Rab7a is mostly responsible for retrograde transport of lysosomes, it can 

also participate in the anterograde transport through its other effector, FYCO1 (FYVE- and 

coiled-coil-domain-containing protein). FYCO1 is a motor adaptor that binds plus-end 

kinesins to distribute lysosomes to cell periphery (Raiborg et al., 2015). This interaction is 

dependent on the neuronal ER protein, protrudin, which transfers KIF5B to FYCO1 on 

lysosomes. Consequently, peripheral lysosomes fuse with the plasma membrane inducing 

protrusion formation in neuronal cells (Raiborg et al., 2015). Moreover, it was reported that 

ORP1L can also recruit kinesin-2, KIF3A, a plus-end directed motor protein that mediates 

centrifugal lysosome distribution (Vihervaara et al., 2011). Additionally, Rab7a interacts with 

other cytoskeleton components, such as vimentin, a protein member of intermediate 

filaments, and with the small GTPase Rac1, a key regulator of the actin cytoskeleton 

(Margiotta et al., 2017).  

Steffan and collaborators (Steffan et al., 2010) have demonstrated, in vitro, that depletion of 

Rab7 leads to peripheral lysosome positioning, augmentation of cathepsin B secretion and 

increase of invasion, in prostate cancer cells. Conversely, when RILP is overexpressed the 

lysosomes are clustered at the perinuclear region and the invasion is decreased, which 

indicates that lysosome positioning plays a role in cancer invasion (Steffan et al., 2010). 

Additionally, they have provided evidence that Rab7 is a tumor suppressor, in vivo. Tumors 

derived from Rab7-silenced cells grow larger due to increased proliferation and invasion of 

cancer cells, and decreased apoptotic rates (Steffan et al., 2014). Furthermore, Rab7 

silencing reduced cell-cell contact, which increased cell motility and invasion in melanoma 
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cells (Alonso-Curbelo et al., 2014), although cell proliferation was decreased in these cells. 

Conversely, Rab7 knock-down drecresed the recycling of MT1-MMP to the plasma 

membrane, which negatively impacted fibrosarcoma migration and invasion (Williams and 

Coppolino, 2011). 

4.3.2.3. Rab27 

Rab27 has two isoforms, Rab27a and Rab27b, that share 71% of amino-acid identity and are 

encoded by different genes (Ramalho et al., 2001). These proteins regulate secretion of 

exosomes from the multivesicular bodies/late endosomes (Ostrowski et al., 2010). 

Rab27 localizes on lysosome-related organelles and late endosomes/multivesicular bodies 

and regulates the exocytosis of exosomes once secreted (Hendrix and De Wever, 2013). 

This protein participate in exocytosis by mediating fusion of secretory lysosomes with the 

plasma membrane (Neeft et al., 2005; Wu et al., 2001).  Rab27 participates in exocytosis by 

mediating fusion of secretory lysosomes with the plasma membrane (Neeft et al., 2005; Wu 

et al., 2001). Both Rab27 isoforms are required for efficient secretion of exosomes in HeLa 

cells (Ostrowski et al., 2010). Silencing of both Rab27 isoforms reduced the number of 

exosomes, but did not change their protein content. However, the depletion of Rab27 a and b 

causes different phenotypes: Rab27a knock-down leads to bigger multivesicular bodies that 

are less motile than the control, whereas multivesicular bodies depleted for Rab27b clustered 

at the perinuclear region (Ostrowski et al., 2010). Interestingly, it has been reported that 

Rab27a inhibition reduces the secretion of a soluble nonexosome-associated molecule in 

vivo, the matrix metalloproteinase 9 (MMP9) (Bobrie et al., 2012).  

Depletion of Rab27 expression has been shown to increase invasion of colorectal cancers 

(Dong et al., 2015). Contrary, inhibition of Rab27a significantly reduces secretion of 

exosomes and non-exosome-associated proteins, which consequently impairs the growth of 

metastatic mammary adenocarcinoma 4T1 in mice, and reduces its ability to metastasize. 

Although, the growth and spreading of the nonmetastatic mammary tumor type, TS/A, were 

not impaired by Rab27a inhibition (Bobrie et al., 2012). Depletion of Rab27a impared 

invadopodia formation and pericellular proteoslysis in head and neck carcinoma cells 

(Hoshino et al., 2013). Additionally, it has been shown that Rab27b overexpression is 

implicated in the increase of invasion, proliferation and acidification of extra-cellular matrix in 

vitro, and increased tumor volume and weight in vivo (Hendrix and De Wever, 2013). 

Interestingly, in bladder cancer, the deregulation of Rab27 and its interacting proteins are 

associated with muscle-invasive tumors in both Ta and Cis pathways, and could be linked to 

the loss of differentiation markers of these tumors (Ho et al., 2012a). Thus, the deregulated 
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expression of Rab27 suggests an alteration in lysosome-related organelles in bladder 

tumors. Indeed, Rab27 silencing was implicated with reduction of exosome secretion, and 

consequently invasion in grade 3 bladder cancer cells (Ostenfeld et al., 2014). 

4.3.3. Other proteins 

In addition to Rab7 and Rab27, other GTPases have been implicated in retrograde lysosome 

positioning, such as the Golgi localized Rab34 (Wang and Hong, 2002). This Rab protein 

interacts with RILP mediating dynein binding at the lysosome. Since Rab34 is mostly 

localized at the Golgi apparatus, this interaction suggests a close apposition of Golgi and 

lysosomal membranes (Pu et al., 2016). Furthermore, the overexpression of Rho and its 

effector ROCK results in peripheral lysosome distribution (Nishimura et al., 2002).  

In addition to small GTPases, other proteins mediate retrograde lysosomal transport. The 

depletion of lysosomal transmembrane domain of LAMP1 and LAMP2 impairs the transport 

of lysosomes towards the microtubule organizing center, which is driven by dynein-dynactin, 

in a Rab7-independent manner (Huynh et al., 2007; Krzewski et al., 2013). Notably, the 

dynactin subunit p150Glued was less expressed in LAMP1 depleted cells (Krzewski et al., 

2013), even though Rab7-RILP recruitment was not impaired (Huynh et al., 2007; Krzewski 

et al., 2013). Furthermore, the Ca+2-sensor ALG-2 links the lysosomes to dynein-dynactin in 

response to changes in Ca+2 levels (Li et al., 2016).  

4.3.4. Cellular regulation of lysosomal positioning   

Several intracellular process play a role in lysosome positioning, such as acidification 

(Heuser, 1989; Steffan et al., 2009),  autophagy/signaling (Korolchuk et al., 2011), 

membrane contact with other organelles (Jongsma et al., 2016; Raiborg et al., 2015; Rocha 

et al., 2009) and nutrient sensing (Korolchuk et al., 2011; Rocha et al., 2009).  

4.3.4.1. pH  

The cytoplasmic pH (pHi) interferes with lysosome positioning. When the cytosolic pH is 

acidic, the lysosomes move toward the cell periphery. On the contrary, alkalization by 

ammonium chloride, drives the lysosomes to the cell center through microtubules (Heuser, 

1989). Although acidification of cytoplasm drives the lysosomes to cell periphery, it was 

reported that these peripheral lysosomes have a more alkaline intraluminal pH. The author’s 
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hypothesis that this less acidic luminal pH is an impairment for the maturation of lysosomes, 

which mostly happens at the perinuclear region (Johnson et al., 2016). 

4.3.4.2. Autophagy 

Autophagy has been implicated in intracellular distribution of lysosomes. mTORC1 is 

activated upon translocation from cytoplasm to the lysosomal membrane, which inhibits 

autophagy signaling (Pu et al., 2016). Anterograde lysosome transport mediated by Arl8b 

and kinesin-3 family (KIF1Bβ and KIF2) increases mTORC1-lysosome association, and 

mTORC1 activation. Contrary, the depletion of these proteins cluster lysosomes at the cell 

center, which facilitates the fusion with autophagosomes (Korolchuk et al., 2011).  

4.3.4.3. Membrane contact sites 

Recent studies correlate the intracellular distribution of lysosomes and lysosome dynamics 

with membrane contact sites between lysosomes and the endoplasmic reticulum (Friedman 

et al., 2013; Jongsma et al., 2016; Raiborg et al., 2015; Rocha et al., 2009; Vihervaara et al., 

2011). Membrane contact sites are zones of close apposition between membranes of two 

different organelles (10-20 nm), with no fusion, in order to exchange lipids and Ca2+ (Holthuis 

and Levine, 2005). Interestingly, the extension of contact site between endoplasmic reticulum 

and the endosomal vesicles seems to depend on their maturation. Indeed, early endosomes 

form tight, but less extended membrane contact sites than recycling endosomes. Moreover, 

late endosomes and lysosomes are almost completely bound by endoplasmic reticulum 

membranes (Friedman et al., 2013), which suggests that membrane contact sites could play 

a role in lysosome maturation. 

4.3.5. Ubiquitination 

Recently, an ubiquitinase was shown to act as a scaffold for lysosomes at the cell center. 

The endoplasmic reticulum protein RNF26 mediates ubiquitin ligation and recruits 

sequestosome 1 (SQSTM1), a ubiquitin biding protein to the endoplasmic reticulum 

membrane. This complex attracts lysosomes that stay retained at the perinuclear region, 

probably to complete their maturation, as shown by extracellular dye endocyosis and delivery 

to lysosomes as well as EGFR degradation (Jongsma et al., 2016). The deubiquitinase 

protein, USP15, dissociates the ubiquitin ligation and releases the lysosomes for fast 

transport to the cell periphery (Jongsma et al., 2016). 



  

44 
 

  



  

45 
 

5. Cell migration and invasion 

Cell migration and invasion are physiological processes, which cells use to move and 

penetrate into tissues. Invasion and migration are processes based on complex mechanisms 

that require highly adaptive capacity of cells. This adaptive response of invading cells is 

called plasticity. Cellular plasticity is critical for morphological changes during transitions, for 

instance epithelial mesenchymal transition (Krakhmal et al., 2015; Thiery et al., 2009). The 

transitions are tightly linked to cell movement because during migration and invasion cells 

have to constantly adapt to changes in microenvironment substrate, change their shape and 

stiffness and communicate with the neighbor cells (Friedl and Wolf, 2003). Invasion is the 

penetration of tissue barriers that requires proteolysis of extracellular substrate, in addition to 

migration and adhesion (Krakhmal et al., 2015). These processes occur in physiological 

conditions, for instance during embryogenic development and wound healing. However, 

migration and invasion are hallmarks of cancer disease (Hanahan and Weinberg, 2000). 

During metastasis, cancer cells detach from the primary tumor and the tumor-associated 

stroma and move towards the lymphatic and blood vessels where they reach the circulation 

and distant organs (Krakhmal et al., 2015).  

 

5.1. Steps of single cell migration and invasion 

Single cells can detach from the collective cell cluster and undergo individual cell migration 

and invasion. Individual cell movement is coordinated within the cell body. The cell 

movement occurs in a synchronized, contractile and pulsatile manner, which allow the cell to 

adhere, generate traction force and glide (Friedl and Alexander, 2011) (Figure 10A).  

The model of cell migration proposed by Friedl and Alexander in 2003 consists of five steps: 

1) The initial propulsion and elongation of the membrane protrusions are driven by actin 

cytoskeleton. The small GTPases Cdc42 and Rac1 control the assembly of signaling 

proteins and actin filaments at membrane protrusions called pseudopods. 2) The 

pseudopods are responsible for the extracellular matrix recognition and binding through 

recruited of integrins that bind to the extracellular matrix and form the focal adhesions (Friedl 

and Alexander, 2011; Odenthal et al., 2016). The focal adhesions are regions of cluster of 

integrins in close apposition between the cellular membrane and the substrate (~20nm) 

(Friedl and Alexander, 2011; Friedl and Wolf, 2003). 3) Soluble proteases are secreted for 

focalized proteolysis of the extracellular matrix.  4) Actin contractility at the cell rear 

generates forces of traction for the final step, 5) the cellular rear-end retraction.  
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Figure 10: Cell migration and invasion. A. the 5 steps model of individual cell migration that 

requires change in cell shape, recruitment of integrins and contractility and proteolysis during 

invasion. B. Collective cell migration from the path-generating cells and cells from the inner and 

trailing cells. Adapted from Friedl and Alexander 2011.  

 

The first barrier that epithelial cancer cells have to cross during invasion is the basement 

membrane. This membrane surrounds nearly all tissues, providing structural support and 

protection. It is mainly composed of self-assembled collagen type IV and laminins. The 

breaching of the basement membrane involves: i) proteolytic degradation by MMPs; ii) 

displacement of basement membrane by mechanical forces and iii) abnormal synthesis of 

basement membranes components around tumors (Glentis et al.).  

Once the basement membrane is breached, the invasive cells reach the stroma. The stroma 

is composed of extracellular matrix and some cell types, such as fibroblasts and immune 

cells (Clark and Vignjevic, 2015) (Figure 11). The most abundant component of the 

extracellular matrix is collagen type I. During cancer, the stroma becomes stiffer due to 

changes in collagen. The amount of this protein increases, their fibers become straighter and 

aligned in parallel with the tumor edge (Conklin et al., 2011). The reorganization of the 

stroma is mainly mediated by cancer-associated fibroblasts (CAFs) that secret extracellular 

matrix, enzymes for the proteolysis of the stroma (for instance MMPs) and growth factors 

(Attieh and Vignjevic, 2016; Clark and Vignjevic, 2015). Cancer-associated fibroblasts also 

exert mechanical forces by widening pores in the extracellular matrix, which favors cell 

movement (Attieh and Vignjevic, 2016). Indeed, it was reported that CAFs form junctions with 

cancer cells to mediate force transmission and favor collective cell migration (Labernadie et 

al., 2017).  
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Figure 11: Tumor invasion. First, the cells proliferate without invading, next changes in tumor 

cells present changes in cell shape. Then, the tumor-associated stroma becomes active and help the 

cancer cells to breach the basement membrane and undergo invasion. Adapted from Clark and 

Vignjevic 2015. 

 

5.1.1. Main players of migration and invasion  

Small GTPase proteins from Rho family, Rho, Rac and Cdc42, are crucial to cell migration, 

because they control the actin cytoskeleton and regulate focal adhesion formation (Friedl and 

Alexander, 2011; Parri and Chiarugi, 2010; Qadir et al., 2015). Cdc42 regulate the assembly 

of complexes of proteins to mediate actin polymerization and membrane protusion formation. 

Cancer cells often overexpres Cdc42, which leads to increased cell migration and invasion 

(Qadir et al., 2015). RhoA and its effector Rho-associated serine/threonine kinase (ROCK), 

mediate stress fibers assembly and contraction to generate forces during migration. The 

contraction of actin is mainly regulated by myosin II. While Rac proteins regulate actin 

polymerization at membrane protusions (Parri and Chiarugi, 2010). Increased expression of 

these proteins are commonly associated with cancer invasion and progression (Porter et al., 

2016).   
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The cluster of integrins form focal adhesions that are essential for mechanosignaling and 

force generation during migration (Friedl et al., 2011). Integrin receptors are the major 

proteins responsible for the adhesion and crosstalk between cells and the extracellular 

matrix. They are heterodimers formed by α and β subunits. The association of 1 of the 9 β 

subunits with the 24 types of α subunits are responsible for the variety of specific binding with 

different substrates (Alberts et al., 2002). Thus, the integrin clusters present in a specific 

focal adhesion depend on the extracellular matrix substrate. For instance, α2β1 integrins 

bind to collagen (Maaser et al., 1999), while α5β1 and αvβ3 integrins bind to fibronectin 

(Cukierman et al., 2001; Leavesley et al., 1992) and α6β1 and α6β4 bind laminin (Rabinovitz 

and Mercurio, 1997). After endocytosis integrins can either be recycled to the plasma 

membrane or be degraded. For instance, in cancer cells, cell survival and proliferation 

signaling receptors are often fast recycled to the plasma membrane, instead of being 

degraded. This support cell migration and cancer progression (Goldenring, 2013). Moreover, 

integrins can engage or impair growth factors through signaling crosstalk (Ivaska and Heino, 

2011). Recently, it was shown that clathrin-coated pits support cell migration in 3D by 

providing an anchorage site to collagen (Elkhatib et al., 2017). These structures are engaged 

by integrins and accumulate on collagen fibers. 

The matrix metalloproteinases (MMP) are the major proteases responsible for extracellular 

matrix degradation and remodeling. These proteases are secreted as soluble proenzymes 

that are activated in contact with the extracellular matrix. They are recruited to the cell 

surface by integrins. For instance, the collagenase MMP1 binds α2β1 integrins (Dumin et al., 

2001), the gelatinase MMP2 binds αvβ3 (Brooks et al., 1998), and the collagenase 

membrane-type metalloproteinase-1 (MT-MMP1, also know as MMP14) binds to β1 and β3 

integrins (Gálvez et al., 2002). Moreover, the MMPs regulate extracellular growth factors 

(e.g. epidermal, hepatocyte and fibroblast growth factors) by activating (Mu et al., 2002), 

inactivating (Dean et al., 2008) or degrading (Sounni et al., 2010) these components.  

 

5.1.2. Mesenchymal migration and invasion 

Mesenchymal migration is the movement of mesenchymal cells and cells undergone EMT. 

This migration is considered as a slow migration process (0.1-2 µm/min) and is characterized 

by the five steps model. It. Cells that undergo this process have a fibroblast-like, spindle-

shaped morphology. This type of migration is manly found in cells from connective tissue 

tumours, such as fibrosarcomas and gliomas. EMT is characteristic for poorly differentiated 



  

49 
 

epithelial tumors (Friedl and Wolf, 2003). In these cells, cell-cell E-cadherin junctions are 

weaken or lost, whereas the activity of integrins and proteases are retained (Krakhmal et al., 

2015; Thiery et al., 2009).  

5.1.3. Ameoboid migration 

Amoeboid migration requires less adhesion from the cell. In this process, cells behave like 

the amoeba Dictyostelium discoideum, which is characterized by cycles of expansion and 

contraction, high deformability and low adhesion to the extracellular matrix. The amoeboid 

migration can be fast or slow (0.1-20 µm/min), and instead of degrading, cells circumnavigate 

the extracellular matrix. Amoeboid migration is common for lymphoma, myeloic leukaemia 

and lung carcinoma cells (Friedl and Wolf, 2003).  

 

5.2. Collective migration and invasion 

Cells move collectively forming strands, clusters or streams. In physiological conditions, 

collective cell movement occurs during embryological development, development of glands 

and ducts of mammary tissue angiogenesis and wound healing. In tumors, two forms of 

collective movement are found: 1) the protruding sheets that stay attached to the primary 

tumor promoting a local invasion; and 2) cells clusters that detach from the primary tumor to 

invade the interstitial tissue (Friedl and Alexander, 2011; Krakhmal et al., 2015). Collective 

cell movement requires cell-cell adhesion to synchronize movements of the neighboring cells 

that form the multicellular contractile body. Thus, cadherin-mediated adhesion is essential to 

collective migration. Intercellular force transmission is generated by cadherin and cortical 

actin dependent cell-cell junctions (Harris and Tepass, 2010; Hegerfeldt et al., 2002), while 

integrins generate traction forces through binding to extracellular matrix. The inner and 

trailing cells of the contractile body move passively, dragged by the leading cells, called path-

generating cells (Figure 10B). The path-generating cells promote migration traction via 

pseudopods and proteolysis of adjacent extracellular matrix (Friedl and Alexander, 2011; 

Friedl and Wolf, 2003).  
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6. Geometrical confinement as a tool to study cells under 

normalized conditions 

 

The observation of early abnormalities in cell architecture could be a potent tool to identify 

and characterize cancer progression. However, systematic studies on the organization and 

relative positioning of intracellular organelles are difficult because, on the one hand, in vivo 

approaches are limited by the access of the samples, and on the other hand, in vitro cultured 

cells display a strong morphological cell-to-cell variation (Figure 12). In situ cells are confined 

within a microenvironment and are highly sensitive to mechanical forces and geometrical 

organization (Théry, 2010) (Figure 12). In classical in vitro cultures, these parameters are 

abrogated. Cell-cell variation occurs due to differences in cell-matrix adhesion, cell-cell 

contact, and dynamic shape changes during migration (Friedl and Alexander, 2011; 

Krakhmal et al., 2015). To overtake this difficulty, a new approach has been developed in our 

laboratory that combines normalization of single cells by bioengineered micropatterned 

surfaces with a mathematical method based on kernel density estimation (KDE) that allows 

to distinguish differences in cell organization in normalized cells (Schauer et al., 2010a). 

 

6.1. Normalization of cell adhesion by micropatterning 

Innovative micropatterning technique is employed to normalize the adhesion geometry of 

cells by bioengineered micropatterned surfaces (Théry et al., 2006a). Micropatterning 

represents a minimal cell culture system, where cells adhere to micro-fabricated surfaces 

coated with extracellular matrix proteins, such as fibronectin or collagen, that forces cells to 

adopt a given, defined shape, reducing cell-to-cell variation and mimicking cell confinement 

in tissues (Gumbiner, 1996; Théry, 2010). This technique was introduced in cell biology 50 

years ago (Carter, 1967) and and has recently became widely popular in biomedical 

research (Théry, 2010). Micropatterning methods have been used to study, for instance, the 

role of cell adhesion and cell-cell interactions in cell polarity (Desai et al., 2009; Théry et al., 

2006b).  
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Figure 12: The cell microenvironment in situ and in vitro. (left) In situ cells respond to 

several parameters of the microenvironment mainly imposed by adjacent cells (in gray), while cells in 

classical in vitro culture (right) loose mechanical and chemical cues. Micropatterning provides some of 

these parameters to reconstruct a tissue-like organization. Reproduced from Théry 2010.  

 

6.1.1. Control of the internal cell organization 

Micropatterns adhesive regions allow the control of intracellular organization. Asymmetrical 

micropattern shapes present an adhesive and a non-adhesive area (Figure 13A). This 

asymmetry leads to anisotropic distribution of adhesion proteins, such as integrins, and a 

polarized arrangement of both actin and microtubule cytoskeletons (Théry et al., 2006a). 

Cortical actin accumulates at the adhesive regions, whereas F-actin forms stress fibers in 

non-adhesive areas. The adenomatous polyposis coli (APC) protein participates in the 

connection between actin and microtubules (Näthke et al., 1996) and is distributed at 

adhesive areas. Microtubules stop growing when they reach APC enriched regions, while 

they continue to grow in non-adhesive areas (Figure 13B). Additionally, intracellular 

compartments have a defined localization at the subcellular level. Golgi apparatus and 

centrosome are found close to the cell center, while the nucleus is off-centered towards non-

adhesive region (Théry et al., 2006a). Moreover, early endosomes, lysosomes and ER exit 

sites are spatially organized in crossbow-shaped micropatterns (Schauer et al., 2010a) 
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(Figure 13C). Thus, the micropatterning technology enables the study of the average cellular 

architecture by cell normalization.  

 

 

 

Figure 13: Control of intracellular organization. A.1 Crossbow-shaped micropattern stained 

for fibronectin and representative cell visualized in phase contrast microscopy. B.1 (top) 

Representative cell stained for F-actin, cortactin, APC and microtubules. (bottom) average intensity 

projections of tens of cells. C.2 50% contour density map (of the kernel density estimation) showing 

stable intracellular organization of early endosomes, lysosomes, ER exit sites and TGN in tens of 

cells. Adapted from 1. Théry et al. 2006 2. Schauer et al. 2010 

 

Although micropatterning mimics geometrical constains that are encountered in tissue, this 

artificial system lacks control of other parameters, for instance the dynamics and composition 

of the microenvironment (Théry, 2010). Cells are highly responsive to their 

microenvironment, but these parameters cannot be taken into account when culturing cells 

on adhesive micropatterns.  
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6.2. Quantification of cell organization by density mapping 

Organelles are intimately linked to the cytoskeleton and are highly dynamic, thus their 

intracellular distribution varies constantly in unconstrained cells (Schauer et al., 2010a). The 

micropatterning method allows normalization of cell shape (Théry et al., 2006a). Fluorescent 

images of tens of cells can be superposed and parameters, such as average and maximum 

intensity projections can be used to study intracellular distribution of structures. However, this 

analysis does not take into account the 3 dimensional distribution of the intracellular 

compartments, which limits their quantitative comparison between different conditions 

(Duong et al., 2012). Therefore, a computational approach that is based on kernel density 

estimation (KDE) has been developed in our laboratory. This quantitative method provides a 

three-dimensional (3D) density map that reveals the average intracellular distribution of 

compartments and allows systematic study and quantitative comparison of the organization 

of intracellular compartments (Schauer et al., 2010a).  

In brief, 3D images of several cells, in which organelles are stained by fluorescence, are 

acquired. These images are segmented with a specific profile for each studied compartment 

providing the coordinates of each segmented structure. All coordinates are aligned using the 

fluorescent staining of the micropattern. A Gaussian function (kernel) is centered at each 

segmented structure (coordinate) and summed forming a cloud of densities that represents 

the probability of organelle positioning throughout the cell. This calculation thus provides a 

three-dimensional density map in which several probability contours can be visualized. 

These contours represent the smallest area in which a given percentage of organelles can 

be found, for example the 50% contour defines the smallest region where 50% of the 

fluorescently stained organelles are located (Figure 14A). The statistical error for density 

estimation is virtually unchanged after 20-50 cells (Schauer et al., 2010a) (Figure 14B-C).   
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Figure 14: Density estimation of intracellular compartments. A. Outline of experimental 

procedure. B. Estimated statistical error for 2D and 3D. Stabilization of variability from 20 cells. C. 

Overlap of the 50% contour of the 2D and 3D estimation for five independent experiments; color-

code for each independent experiment. Adapted from Schauer et al. 2010 

 

Importantly, using this approach, it has been found that intracellular compartments, for 

instance lysosomes and Golgi apparatus, are well organized and that their positioning is 

stable and reproducible (Schauer et al., 2010a). Moreover, the kernel density estimation 

allows statistical unbiased comparison and quantification of multivariate data (Duong et al., 

2012).  
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This approach provides the unique possibility to reveal how different compartments are 

organized in the cellular space. For instance, it has been shown that cell adhesion defines 

the topology of endocytosis in retinal pigment cells (RPE1) (Grossier et al., 2014a).  

Kernel estimation requires cells to have a spatial normalized shape. Furthermore, it is ideal 

to study structures whose coordinates can be resolved in independent data points. Thus, the 

application to continuous structures, like the cytoskeleton, is not optimal (Duong et al., 2012).  
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Objectives 

 

Cancer is a multifactorial disease responsible for around 16% of deaths worldwide. The 

alteration of cell morphology is a hallmark of cancer cells. Indeed, cancer cells undergo 

changes in cell polarity and cell-cell interactions, which favor cell invasion and metastasis. 

Nonetheless, very little is still known on changes in intracellular compartments during cancer 

progression. This is because systematic studies on the organization of intracellular 

organelles are challenging due to strong morphological cell-to-cell variations in classical cell 

culture. 

The global goal of my PhD thesis was to study changes in subcellular organization that 

occure during cancer progression. We used the model of bladder cancer, the 9th most 

common cancer worldwide, because bladder carcinomas show great diversity, giving rise to 

many morphologically distinct phenotypes. We took advantage of the micropatterning 

method combined with the technique of spatial density maps of intracellular compartments to 

compare intracellular organization between healthy cell and bladder cancer derived cell lines.  

The first aim of this project was to identify specific alterations in intracellular architecture in 

bladder cancer cell lines representing different grades and stages of desease progression. 

The second aim was to characterize the impact of intracellular changes that we found in 

transformed cells on invasion that is caracteristic for cancer. Finally, we started a 

characterization of the molecular mechanisms leading to intracellular changes.  
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1. Cell adhesion on micropatterned substrates 

 

Several cell lines derived from different bladder cancers are available and are representative 

of the diversity of these tumors (Earl et al., 2015). In this project, we compared intracellular 

organization of bladder cancer cell lines representing different grades and stages of bladder 

cancer progression and normal human urothelial (NHU) cells. NHU are primary 

noncancerous bladder cells obtained from ureter specimens used as control for in vitro 

experiments (Southgate et al., 1994). Bladder cancer cell lines have been classified by: i) 

grades, concerning their similarity to normal cells, and ii) stages, depending on the degree of 

invasion of the primary tumor (Knowles, 2008). The non-muscle-invasive bladder cancer cell 

lines MGHU3 and RT112 are classified as stage Ta (papillary tumors) and grade 1 and 2, 

respectively, while muscle-invasive bladder cancers are represented by grade 3 cell lines, 

KU19-19 stage T3 (invasion of adipose tissue) and JMSU1 stage T4 (invasion of nearby 

organs). These cells present major morphological differences (Figure 15A), which make it 

difficult to systematically characterize intracellular changes. The micropatterning method 

enables standardization of cell shape and intracellular organization (Théry et al., 2006a). In 

addition, the density map estimation allows quantification of organelle distribution (Schauer 

et al., 2010a) (figure 15B).  

In order to make cells properly spread on micropatterned surfaces, the coverslides need to 

be coated with an adhesive substrate, such as the extracellular glycoprotein fibronectin. We 

tested the adhesion of cancer cells on crossbow-shaped micropatterns coated either 

exclusively with fibronectin or with a mix of fibronectin and collagen I or fibranectin and 

concanavalin A. Collagen I is an abundant protein in human organism; it is synthesized 

intracellularly and participates in cell-matrix adhesion after secretion (Di Lullo et al., 2002). 

Concanavalin A is a lectin that binds sugars that are present on glycoproteins and 

glycolipids. We found that a mixture of 50 µg/ml of fibronectin and 100 μg/ml of concanavalin 

A allowed all bladder cancer cells to attach and spread on crossbow-shaped micropatterns 

as judged by staining of the actin cytoskeleton with phalloidin (Figure 15B). All following 

experiments have been performed using the established mixture of adhesion molecules.  

All cells of one cell line presented a similar shape and comparable intracellular organization 

when well-spread on micropatterns, which was not obvious in classical cell culture (Figure 

15C, example of JMSU1 cell line fluorescently stained for lysosomes with Lamp1 antibody). 

In order to confirm that the cell volumes of all tested baldder cancer cell lines were 

comparable to NHU cells, we measured the diameter of cells in suspension using automated 

analysis from standard trypan blue technique (Countess automated cell counter - Invitrogen). 
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There were no significant differences between NHU control cells and bladder cancer cells 

lines, indicating that cell size was comparable (Figure 15D) between cell types.  

 

Figure 15: Standardization of bladder cells by micropatterning. A. Morphological 

differences between NHU control cells and bladder cancer cells in classical cell culture. Scale bar 50 

µm. B. Cells well spread on micropatterns. Actin stained by Phalloidin. C. JMSU1 (T4) cells stained 

for lysosomes (Lamp1) on classical culture (left) and normalized using crossbow shape micropattern 

(right). Cells on micropatterns have similar shape and Lamp1 distribution. Scale bar: left 30 µm, right 

10 µm. D. Average diameter of analyzed cells in µm. No significant differences between NHU 

control cells and bladder cancer cells. ns, p>0.5 in a Student’s t-test. 
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Discussion:  

In order to quantitatively compare different cell lines, it is crucial that cells are adherent and 

well spread on micropatterns. Different substrates were tested to optimize adhesion. Some 

cell lines, for instance RT112 (TaG2), were hardly adherent. The best results were found with 

a mixture of fibronectin and concanavalin A. This is probably due to the fact that 

concanavalin A binds sugars of the glycolipids and glycoproteins present on the cell 

membrane, which should increase the adhesion (Eagles et al., 1975).  

 

Micropatterning provides geometrical constriction, that is typical for cells in tissues (Théry, 

2010). It has been reported that normalized cells have normal cell cycle (Théry et al., 2006a). 

All analyzed cell types were successfully cultured and well spread on crossbow shape 

micropatterns, as juged by actin staining. Moreover, all analyzed cells revealed a comparable 

shape and cell size. 
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2. Changes in organelle organization during bladder cancer 

progression 

 

To systematically characterize how intracellular organization changes in cancer progression, 

we have analyzed the positioning of major cellular compartments, such as lysosomes, 

mitochondria, Golgi apparatus, autophagosomes and peroxisomes, in NHU cells and bladder 

cancer cell lines derived from patients with different grades and stages of cancer 

progression. These organelles have been shown to be altered in cancer, however very little 

is known about alterations in their positioning during cancer.  

After full adhesion on micropatterns, cells were fixed and fluorescently marked for 

intracellular compartments. We visualized the lysosomes (anti-Lamp1 antibody), the 

mitochondria (Mitotracker dye), peroxisomes (anti-ABCD3 antibody), the nucleus (DAPI) and 

the Golgi apparatus (anti-GM130 antibody). Micropatterns were fluorescently stained using 

fibrinogen to align all analyzed cells according to the micropattern. Then, the quantification of 

average cellular organization of the above compartments was performed using density maps. 

The analysis was based on more than 50 cells from three independent experiments. An 

‘average’ density map was calculated for each compartment and each cell type using the 

50% probability contours for visualization. 50% contour defines the smallest area where 50% 

of an organelle of interest is located. Additionally, a fluorescent image of a representative cell 

has been selected to exemplify the cellular compartment analyzed. Average numbers of 

identified structures per cells were calculated from the segmentation data and bilateral 

Student t-tests were performed to access the significance of difference. For the following 

analysis we considered: ns (non significant, P> 0.05); * (P<0.05); ** (P<0.01); *** (P<0.001).

  

2.1. Mitochondria 

The function and morphology of mitochondria have been reported to be altered in cancer 

cells (Cavalli et al., 1997; Zong et al., 2016). Thus, we studied the mitochondrial distribution 

in bladder cells. These organelles were fluorescently stained using Mitotracker, a cell-

permeant dye that contains a mildly thiol-reactive chloromethyl group that labels the 

mitochondria fluorescently (Figure 16A). Density maps of mitochondria showed a change in 

distribution towards the cell periphery as compared to NHU cells (Figure 16B compare 
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orange density maps to control in white). The most striking difference was observed in 

JMSU1 (T4G3) cells.  

Moreover, increased number of mitochondria was observed in kidney cancer (Hasumi et al., 

2012). Thus, we investigated if the number of mitochondria per cell was altered in bladder 

cancer cells. We indeed observed a significant increase in the number of the mitochondria in 

all analyzed cancer cells lines compared to control cells (Figure 16C).  

 

Figure 16: Alterations of mitochondria in bladder cells. A. Representative normalized single 

cell image of fluorescently stained mitochondria using Mitotracker dye for each analyzed bladder cell 

line. Scale bar 10µm. B. 50% contour of the 3D density maps quantifying mitochondria distribution 

(in orange), as compared to NHU control cells (in white). Mitochondria distribution is more 

peripheral in cells representing stage T4 of bladder cancer. 50% contour represents the smallest area 

where 50% of the labeled structures are found. N is the number of cells. C. Average number of 

mitochondria obtained from segmentation data. Significant increase of mitochondria per cell in all 

bladder cancer cells lines. Red lines represent median. ***, p<0.001in a Student’s t-test. 



  

69 
 

2.2. Peroxisomes 

The expression of the peroxisome proliferator activated receptor γ (PPARγ) was shown to be 

increased in luminal muscle invasive bladder cancers (Choi et al., 2014). Additionally, it has 

been shown that increased number of peroxisomes could initiate or promote several cancers 

(Keller et al., 2000). Thus, we investigated the distribution and the number of peroxisomes in 

bladder cells (Figure 17). Peroxisomes were stained with an antibody recognizing ABCD3, 

an ATP-binding cassette sub-family D protein (Figure 17A). The average number of 

peroxisomes per cell was significantly reduced in MGHU3 (TaG1). Conversely, a significant 

increase was observed in RT112 (TaG2) and KU19-19 (T3G3) cells. Surprisingly, no 

significant changes were observed in JMSU (T4G3) cells (Figure 17C). Density maps of 

ABCD3 showed very different profiles for the four cell lines studied. In cells representing 

grades 1 and 2 (MGHU3 and RT112, respectively), no alterations in distribution, compared to 

the control, were observed (Figure 17B, compare red density maps with NHU in white). 

However, in grade 3 cells (KU19-19 and JMSU1), the peroxisomes were dispersed at the cell 

periphery.  

 

 



  

70 
 

 

Figure 17: Changes in peroxisomes positioning in bladder cells. A. Representative cell 

fluorescently stained for peroxisomes using anti-ABCD3 antibody. Scale bar 10µm. B. 50% contour 

3D density maps quantifying peroxisomes distribution (in red) in comparison with NHU (in white). 

Peroxisome distribution is more peripheral in cells representing grade 3 of bladder cancer. N is the 

number of cells C. Average number of peroxisomes per cell. MGHU3 (TaG1) presented less 

peroxisomes than control cells. An increase is observed in RT112 (TaG2) and KU19-19 (T3) cells. 

However, no significant changes were observed in JMSU1 (T4G3) cells. Red lines represent median. 

ns, p>0.5 and ***, p<0.001in a Student’s t-test. 
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Discussion:  

Our results reveal a significant increase in the number of mitochondria in all analyzed 

bladder cancer cells. Notably, the accumulation of functional mitochondria was reported to be 

increased in kidney cancer (Cavalli et al., 1997). Thus, our data suggest that increased 

mitochondria could also be a phenotype of bladder cancer. We additionally observed that 

JMSU1 (T4G3) cells, representing the most invasive stage of bladder cancer, display a 

peripheral distribution of mitochondria, as compared to NHU cells. It would be interesting to 

investigate whether these mitochondria are functional and if their activity is upregulated in 

bladder cancer cells.  

The number of peroxisomes was significantly decreased in MGHU3 (TaG1) cells and no 

significant changes were observed in JMSU1 (T4G3) cells. Interestingly, MGHU3 (TaG1) cell 

were classified as basal-like tumors, while JMSU1 (T4G3) cells were considered as non-

basal like cancers (Rebouissou et al., 2014). Because it was shown that the expression and 

activity of PPARγ are increased in luminal muscle invasive bladder cancers (Choi et al., 

2014) and PPARγ induces the increase in the number of peroxisomes, our results sugest 

that the numbers of peroxisomes could indeed correlate with basal/luminal phenotypes in 

bladder cancer cell lines. The distribution of peroxisomes was similar in NHU cells and 

grades 1 and 2 cell lines. Remarkably, the positioning of peroxisomes is peripheral in cells 

representing grade 3. Interestingly, it was shown that peroxisome movement is mediated by 

binding to early endosomes (Salogiannis et al., 2016). Thus, it would be interesting to study if 

the distribution of early endosomes correlates with that of peroxisomes and is altered in 

bladder cancer cells.  

Together, these results show that intracellular compartments are differently organized in 

bladder cells as compared to normal bladder cells.   
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3. Lysosomes 

 

Increased protease secretion from lysosoms has been implicated in many cancers. In 

prostate cancer, peripheral lysosomes have been found to favor extracellular degradation 

and acidification of the extracellular milieu (Dykes et al., 2016; Steffan et al., 2009, 2010). To 

study the lysosome/late endosomal compartment, we analyzed Lamp1-positive structures 

(that we refer as lysosomes) (Figure 18A) using density-based analysis. In NHU control cells, 

the lysosomes (density maps in turquoise) were found at the cell center. However, 

lysosomes became more peripheral in cells representing grade 2 and 3 (Figure 18B compare 

turquoise density maps to control density map in white). This analysis was based on more 

than 60 cells per cell type. A multivariate two-sample statistical test, developed in our lab, 

allows a nonparametric comparison of density maps and thus organelle distribution (Duong 

et al., 2012). This test indicated that lysosome distribution was significantly different between 

bladder cancer cells and NHU cells (Table 01). 

Although no differences in the number or volume of lysosomes were previously described in 

cancer cells, alterations in these parameters could impact lysosome distribution in cells. 

Thus, to better characterize lysosomes, their average number per cell and the average 

volume of this organelle was calculated using the data from the segmentation. A significant 

decrease of average number of lysosomes per cell was observed in MGHU3 (TaG1) and 

JMSU1 (T4G3) cells (Figure 18C). All analyzed cells showed a significant increase in the 

average volume of lysosomes (Figure 18D). These results indicated that lysosome 

morphology and number are altered in bladder cancer cells. However, changes in number of 

lysosomes do not correlate with grades of bladder cancer.  
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Figure 18: Alterations in lysosome distribution. A. Representative normalized single cell 

fluorescently stained for lysosomes using anti-Lamp1 antibody for of each analyzed bladder cell type 

B. 50% contour of the 3D density maps quantifying lysosome distribution (in turquoise), compared 

to NHU control cells (in white). Lysosome distribution is gradually more peripheral in bladder cancer 

cells. Scale bar 10µm. N is the number of cells. C. Average number of lysosomes per cell. Significant 

decrease in number of lysosomes in MGHU3 (TaG1) and JMSU1 (T4G3) cells. D. Average volume of 

lysosomes. Significant increase of volume in all analyzed cells compared with NHU cells. Red lines 

represent median. ns, p>0.5 and ***, p<0.001in a Student’s t-test. 

 

In order to investigate if the alterations in lysosome distribution were due to the cell 

normalization by micropatterning, the distribution of lysosomes was quantified in 

unconstrained bladder cancer cell lines. The cells were stained for lysosomes (Lamp1), 

nucleus (DAPI) and actin cytoskeleton (Phalloidin) (Figure 19A). A cell mask was determined 

from the actin staining that we considered as the cell mask for cell membrane. The distance 

from each lysosome to the nearest cell membrane and nuclear edge was calculated. We 
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established 3 different regions in the cells: a perinuclear, an intermediate and a peripheral 

one (Figure 19B). About 60% of the lysosomes in MGHU3 (TaG1) cells accumulated in the 

perinuclear region, while only 10% were distributed at the cell periphery. The percentage of 

peripheral lysosomes gradually increases in cells representing grade 2 and 3, JMSU1 

(T4G3) being the most peripheral (25% of lysosomes). This result, based on more than 60 

cells, confirmed the peripheral distribution of lysosomes in cells representing later grades 

and stages of bladder cancer progression. 

 

 

Figure 19: Lysosomes distribution in unconstrained cells. A. Representative unconstrained 

single cell image fluorescently stained for lysosomes (Lamp1), nucleus (DAPI) and actin cytoskeleton 

(Phalloidin) for each bladder cancer cell line. Scale bar 10µm. B. Distribution of lysosomes in 

unconstrained cells was divided in 3 regions: perinuclear (white), intermediate (gray) and peripheral 

(red). Lysosome peripheral dispersion is gradually increased depending on the bladder cancer cell 

grade. Analysis based in > 60 cells. ***, p<0.001in Chi-squared test. 
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Because lysosome positioning changes have been previously implicated in cancer, we 

focused on this organelle.  To further investigate the alterations in lysosome distribution, two 

additional grade 3 bladder cancer cell lines were tested, T24 and TCCSup (Figure 20). The 

distribution of lysosomes in the additional cell lines was more peripheral than NHU control 

cells (Figure 20B), as judged by Lamp1 staining in more than 45 cells per cell type (Figure 

20A). Our results suggest that changes in lysosome positioning could be an important 

phenotype in bladder cancer.   

 

Figure 20: Alterations in 

lysosome distribution in 

grade 3 bladder cancer cells.  

A. Representative normalized 

single cell stained for Lamp1 B. 

50% contour of the 3D density 

maps quantifying lysosome 

distribution (in turquoise), 

compared with NHU control 

cells (in white). Lysosome 

distribution is more peripheral in 

grade 3 bladder cancer cells. 

Scale bar 10µm. N is the number 

of cells. 

 

 

  

Table 01: Statistical differences between 

Lamp1 density maps. P-values correspond to 

differences between lysosome density maps of 

analyzed bladder cancer cells and NHU control cells 

based on nonparametric comparison of density maps. 

Larger differences are represented by smaller p-

values. 
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3.1. Lysosomal functions 

3.1.1. Lysosomal protease activity 

The main function of lysosomes is the degradation of molecules. These organelles are 

enriched in acidic hydrolases that are responsible for the degradation of several substrates, 

such as proteins and sugars (Braulke and Bonifacino, 2009). Cathepsin B is an important 

protease present in lysosomes that is often overexpressed in cancers (Fennelly and 

Amaravadi, 2017). We performed an assay to measure the cathepsin B activity. The activity 

was detected via a fluorogenic cathepsin B activity assay (Calbiochem), in which relative 

fluorescence units are emitted when cathepsin B cleaves the carboxyl side of arginylarginine. 

Cathepsin B activity was increased in KU19-19 cells (T3G3), while the other cell lines had 

comparable cathepsin B activities to NHU (Figure 21). Thus, cathepsin B activity did not 

correlate with peripheral lysosome positioning in bladder cancer cells. However, more 

experiments are required to confirm this finding.  

 

 

Figure 21: Cathepsin B activity.  Cathepsin B 

activity is increased in KU19-19 (T3G3) cells as 

compared to the other cancer cell lines. Error 

bars from triplicates of 1 experiment.  

  

 

 

 

Matrix metalloproteinases (MMPs) have been recognized as important proteases involved in 

invasive tumor growth (Hotary et al., 2003). MT1-MMP (MMP14) is manly located at 

lysosomes (Steffen et al., 2008). Therefore, we tested if proteolysis was induced by 

lysosome positioning. We tested the activity of MMPs using the fluorimetric SensoLyte® 520 

generic, in which a FRET peptide emits fluorescence signal when cleaved by MMPs. This 
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generic test target certain MMPs depending on the incubation time (Figure 22A), we choose 

the 3 hour time point because it targets both collagenases MMP1 and MT1-MMP (MMP14). 

We found that the activity of collagenases MMPs were gradually increased in bladder cancer 

cells (Figure 22B).  

 

Figure 22: Activity of matrix metalloproteinases in bladder cancer cells. A. Table from 

the manufacturer’s protocol indicating the time of incuba tion to target specific MMPs. 

Red rectangles indicate the targeted MMPs during the 3 hour incubation experiment. 

B. MMP activity is gradually increased during bladder cancer progression . Error bars 

from triplicates of 1 experiment 
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3.1.2. Signaling attenuation by lysosomal degradation 

In addition to their classical role as final degradative compartments in eukaryotic cells, 

lysosomes are responsible for the intracellular attenuation of signaling (Taub et al., 2007). 

The epidermal growth factor receptor (EGFR) signaling pathway is often altered in different 

cancer types (Baumdick et al., 2015), and about 40 to 60% of bladder cancers present an 

overexpression of EGFR (Ahmad et al., 2012). We analyzed whether changes in lysosome 

positioning alter the degradation of EGFR in bladder cancer cells. After EGF-induced uptake, 

EGFR is sorted to lysosomes where it is finally degraded. To monitor the degradation of 

EGFR, we stimulated bladder cancer cells with 100 nM of EGF for 30 minutes or 1 hour. 

Cells without EGF stimulation were used as a control. Protein extraction from cell lysate was 

realized for Western Blot analysis and the levels of EGFR were visualized (Figure 23). The 

intensity of EGFR chemiluminescent signal was normalized by tubulin expression. The 

degradation of EGFR after EGF stimulation was observed in all cell lines. The biggest 

degradation activity was observed in JMSU1 (T4G3) cells after 1 hour. In MGHU3 (TaG1), 

RT112 (TaG2) and KU19-19 (T3G3) the EGFR signal decreased between 20- 45% after 

stimulation, whereas in JMSU1 (T4G3) cells we observed an 80% decrease in EGFR signal 

after 1 hour. Nonetheless, we could not detect a correlation between lysosome positioning 

and the EGFR degradation capacity, because KU19-19 (T3G3) and JMSU1 (T4G3), both 

showing peripheral lysosomes, revealed very different degradation of EGFR. These results 

suggest that lysosomes positioning does not correlate with the degradation capacity of 

bladder cancer cells.  
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Figure 23: EGFR signaling attenuation. Degradation of epithelial growth factor receptor 

(EGFR). Western Blot of cell lysates from non-stimulated bladder cancer cells (CTRL), or cells 

stimulated with 100 nM of EGF for 30 minutes or 1 hour. The intensity of chemiluminescent EGFR 

signal was normalized by tubulin expression. EGFR intensity is strikingly decreased in JMSU1 (T4G3) 

after 1 hour. Error bars represent standard deviation of 2 independent experiments. 
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Discussion:  

Our results showed that lysosomes are gradually distributed to the cell periphery in bladder 

cancer cells. We found similar results in micropattern-normalized and unconstrained cells. 

Furthermore, the changes in lysosome distribution in these cells were accompanied by 

changes in lysosome volume. The volume of this organelle was increased in bladder cancer 

cells. However, the number of lysosomes per cell was not systematically altered. A 

significant decrease in average number of structures was noticed in cells MGHU3 (TaG1) 

and JMSU1 (T4G3) cells. Together, our results suggest that lysosome alterations could be 

an important characteristic of bladder cancer. Interestingly, induced peripheral lysosome 

positioning as a result of the acidification of the extracellular matrix was observed during 

cancer progression (Glunde et al., 2003; Steffan et al., 2010). However, our work indicates 

an intrinsic change in the distribution of lysosomes in cells representing higher grades of 

bladder cancer.  

We performed several experiments to investigate if lysosome distribution has an impact in 

lysosome functions, such as proteolysis and signaling attenuation. Our preliminary results 

indicated that peripheral lysosome positioning correlates with increased activity of MMPs. 

However, more experiments are needed to confirm these preliminary results. Cancer is a 

very heterogeneous disease, where cells acquire selective advantages to spread around the 

body (Hanahan and Weinberg, 2000). Thus, it is possible that different cell lines employ 

different mechanisms to invade and progress.  

Cathepsin B overexpression is a common phenotype of several cancers (Fennelly and 

Amaravadi, 2017). Our preliminary results suggest that intracellular cathepsin B activity does 

not correlate with peripheral lysosome positioning. Interestingly, it was reported, in prostate 

cancer, that peripheral lysosomes secreted more cathepsin B, which favors invasion (Steffan 

et al., 2014). Therefore, it will be interesting to study whether changes in lysosome 

positioning, for instance induced by gene silencing, alter lysosomal exocytosis of other 

proteases. 

EGFR is overexpressed in some bladder cancer cells from the basal-like subgroup 

(Rebouissou et al., 2014). EGF stimulation was sufficient to induce EGFR degradation in all 

analyzed cell lines. However, the attenuation of EGFR signaling is not dependent on grades 

of bladder cancer, since both cells from grade 3 presented very different phenotypes. While 
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JMSU1 (T4) cells degrade EGFR after 1 hour, only a small decrease in EGFR signal was 

observed in KU19-19 (T3) cells.  

To further explore the implication of lysosome positioning in bladder cells, it would be 

interesting to deeper investigate its main function, the degradation capacity. For instance, it 

was shown that DQ-BSA (bovine serum albumin) is degraded by lysosomes (Amaya et al., 

2016). This self-quenched fluorogenic substrate emits fluorescence when cleaved in the 

lysosomes. Additionally, the intraluminal, cytosolic and extracellular pH should be 

investigated because of the link between acidic pH and lysosomes. Acidic pH is essential for 

lysosomes proper function (De Duve et al., 1955), and it was shown that both cytoplasmic 

(Heuser, 1989) and extracellular (Steffan et al., 2009) pH play a role in lysosome positioning. 

Interestingly, it has been reported that lysosomes distributed at the cell periphery reveal a 

decrease in acidity of lysosomes (Johnson et al., 2016). Furthermore, the secretion of 

cathepsin B was correlated with peripheral lysosomes in prostate cancer. Therefore, it would 

be important to repeat our cathepsin B assay in the extracellular supernatant to investigate 

whether protease secretion correlates with lysosome positioning in the analyzed cells. 

Moreover, the secretion capacity of lysosomes can be tested with pH-sensitive cells 

expressing pHluorin-tagged lysosomal proteins (Miesenböck et al., 1998).  

Autophagy is a recycling process in cells that mediates lysosomal degradation of intracellular 

compartments (Klionsky et al., 2012). The exact role of autophagy in cancer is still unclear. 

On the one hand, autophagy was shown to support cancer cell survival in hostile 

environment, such as tumor milieu (Mathew et al., 2009). On the other hand, autophagy was 

proposed as a tumor suppressor mechanism that prevents DNA damage and oxidative 

stress (White, 2015). Because autophagosomes are mainly found at the cell center 

(Korolchuk et al., 2011) and lysosomes need to fuse with autophagosomes for their 

maturation (Nakamura and Yoshimori, 2017), the peripheral peripheral positioning of 

lysosomes in high-grade bladder cancer cells could lead to an impairment in autophagy in 

these cells. Our preliminary data comparing 50% contour density maps of lysosomes (Lamp1 

staining) and autophagosome (LC3 staining) suggested an alteration in relative positioning of 

these organelles in bladder cancer cells in comparison with NHU cells. Interestinlgy, it was 

reported that PI3K (phosphatidylinositol 3-kinase)/Akt (protein kinase B)/mTOR signaling, a 

major survival pathway, is abnormally activated in around 40% of bladder cancer, and this 

contributes to a poor prognosis (Knollman et al., 2015; Moon et al., 2014). Therefore, it would 

be interesting to test if mTOR inhibition, for instance by Rapamycin treatment or cell 

starvation, has an impact in autophagy of bladder cancer cell lines.  



  

83 
 

Our results suggest that lysosome positioning is potentially important in bladder cancer 

progression. Muscle-invasive bladder cancer cells have dispersed lysosome distribution 

compared with NHU control cells. Remarkably, the lysosomal membrane protein, Lamp1, 

was shown to be a potential clinical biomarker in bladder cancer (Duriez et al., 2017). Lamp1 

expression was strikingly increased in urine samples from patients affected by bladder 

cancer as compared to healthy patients. A significant decrease in Lamp1 abundance was 

also observed in recurrent bladder cancers. Interestingly, bladder cancers from Ta pathway, 

are recurrent in about 50% of cases (Knowles, 2008).  
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4. Invasion 

 

Invasion is an important hallmark of cancer, in which cells penetrate into tissues barriers 

(Hanahan and Weinberg, 2000). Moreover, the stages of bladder cancer are defined by the 

invasion of tissue layers (Ho et al., 2012). We investigated whether alterations in lysosome 

distribution lead to changes in invasion, using an invasion assays based on collagen I matrix 

invasion from cell aggregates called spheroids.  

The cells were plated on agarose, a polysaccharide, which forms a concave surface after 

polymerization. Since the cells do not adhere to agarose, they clustered at the concave 

surface and formed cell spheroids after deposition. After 3 days, the spheroids were plated 

into a 2 mg/ml Collagen I matrix, from rat tail. The spheroids were monitored and imaged at 

different time points to analyze the invasion behavior.  
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First, we performed the invasion assay with the different bladder cancer cell lines analyzed 

(Figure 24A). Invasion was characterized by the escape of cells from spheroids. We found, 

as expected, that invasion was gradually faster depending on grades of cancer. Cells 

representing grade 1 (MGHU3) invaded on average after 4,5 days, grade 2 cells, RT112, 

invaded on average after 3 days, while grade 3 cell lines KU19-19 (T3G3) and JMSU1 

(T4G3) invaded on average after 1 day (Figure 24C). Moreover, we quantified the 

percentage of invasive spheroids within 6 days (Figure 24B). The choice of this time point 

was due to the invasion of MGHU3 (TaG1) cells. About 26% of MGHU3 (TaG1) spheroids 

initiated invasion, while 80% of RT112 (TaG2) and 100% of KU19-19 (T3G3) and JMSU1 

(T4G3) invaded within 6 days. Our data demonstrated that the beginning of invasion and the 

percentage of invasive spheroids correlated with bladder cancer grade.  

 

Figure 24: Invasion assay. A. Spheroids from bladder cancer cells at two time 

points, day 1 and 3. Cells representing higher grades start the invasion earlier (red 

arrows) than cells representing lower grade of bladder cancer. B. The percentage of 

invasive spheroids after 6 days gradually increases depending on grade of bladder 

cancer D. Median day of invasion. Gradual acceleration depending on grade of bladder 

cancer. Error bars from > 4 experiments.  
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4.1. Anterograde repositioning of lysosomes  

It has been suggested that peripheral lysosome positioning participates in the increase of 

invasion (Dykes et al., 2016; Raiborg et al., 2015; Steffan et al., 2009). Thus, we investigated 

whether changes in lysosome positioning impacted cell invasion of bladder cancer cell lines. 

To change lysosomal distribution cells were silenced by siRNA for genes implicated in 

lysosome distribution, Rab7, Rab27 and RNF26. The 50% contours of 3D density maps were 

used to quantify the changes in positioning. The invasion was quantified based on images at 

different time points. The beginning of invasion refers to the visualization of the first cell that 

extrapolate from the cell spheroid. In addition, the percentage of invasive and non-invasive 

spheroids was compared between the silenced cells and the control.   

 

 

4.1.1. Impact of Rab7 depletion on invasion 

Rab7 and its effector Rab7-interacting lysosomal protein (RILP) have been shown to 

promote a central positioning of lysosomal compartments through recruitment of the dynein-

dynactin complex (Jordens et al., 2001). The silencing of this protein has been implicated in 

peripheral lysosome dispersion, which leads to increase of invasion both in vivo and in vitro 

(Steffan et al., 2014). Therefore, we investigated the role of Rab7 depletion in invasion using 

bladder cancer cell lines with less peripheral lysosome distributions, MGHU3 (TaG1) and 

RT112 (TaG2).  

The cells were transfected with siRNA targeting Rab7 (siRab7), or Luciferase (siLuc) as a 

control (Figure 25). To not perturb the formation of cell aggregates, the siRNA treatment was 

performed by adding the compound into the collagen mixture. In parallel, cells from the same 

passage were seeded on plates and transfected with siRNA. 3 days after the siRNA 

transfection, cells were plated on micropatterned surfaces and stained for Lamp1 to 

investigate changes in lysosome positioning, and cell lysates were used to quantify depletion 

either by Western Blot or qPCR. Rab7 protein level was substantially decreased in both cell 

lines to 15% in MGHU3 (TaG1) and 25% in RT112 (TaG2) of the control (siLuc) (Figure 25G-

H). 
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The silencing of Rab7 led to a peripheral distribution of lysosomes in both cells lines (Figure 

25A-B). Furthermore, we observed that Rab7 depletion increased invasion during the 6 days 

of monitoring. Only 26% of MGHU3 cells (TaG1) were invasive in siLuc control, while 60% of 

spheroids invaded in depleted cells (Figure 25C). The diagram of the fraction of non-invasive 

spheroids at different time points allowed to visualize the decrease of non-invasive spheroids 

each day (days 1-6). In MGHU3 (TaG1) cells, a significant decrease of non-invasive 

spheroids in comparison to control indicated an acceleration of invasion in these cells (Figure 

25E compare depleted cells in red to control in black). 80% of control RT112 (TaG2) cells 

invaded after 6 days, a moderate increase to 85% was observed after Rab7 silencing (Figure 

25D). Nonetheless, the diagram of the fraction of non-invading spheroids was significantly 

different between siRab7 and siLuc. This indicated a significant acceleration of invasion after 

Rab7 depletion in the early phase of the experiments, after 2 days (Figure 25F). Overall, 

Rab7 silencing positively impacted invasion behavior in both analyzed cell lines.  
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Figure 25: Impact of Rab7 depletion in bladder cancer invasion. (MGHU3 (TaGa1): A, C, E, 

G; RT112 (TaG2): B, D, F, H). A-B. 50% contour of the 3D density maps quantifying lysosome 

distribution in Rab7 depleted cells (in turquoise), compared to control cells treated with siLUC (in 

white). Lysosome distribution is more peripheral after Rab7 depletion. p corresponds to p-value in 

nonparametric comparison of density maps between depleted cell compared to control. C-D. 

Analysis of invasion from spheroids. A significant increase in the fraction of invasive spheroids is 

observed in Rab7 depleted MGHU3 (TaG1) cells (C.) E-F. Fraction of non-invasive spheroids at 

different time points. Significant differences between the diagrams of siRab7 and siLuc are observed. 

*, p<0.05 Mantel-Cox test. G-H. Quantification of Rab7 depletion from cell lysate in Western Blot 

analysis. Error bars from > 6 experiment.  
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Because it was shown that Rab7 is implicated in MT1-MMP trafficking (Williams and 

Coppolino, 2011), we tested if lysosomes dispersion by knockdown of Rab7 impacts 

secretion of collagenases in MGHU3 (TaG1) and RT112 (TaG2) cells. MMP activity was 

increased when Rab7 was depleted in both cells lines (Figure 26), which suggested that 

bladder cancer cell line invasion could be facilitated by collagenase proteolysis. However, 

more experiments are required to confirm these results.  

 

Figure 26: The activity of matrix metalloproteinases in bladder cancer cells tends to 

increase after Rab7 depletion. A. MGHU3. B. RT112. 

4.1.2. Impact of Rab27 depletion on invasion 

Rab27 is localized in multivesicular bodies/late endosomes that are lysosome-related 

compartments positive for Lamp1 (Ostrowski et al., 2010). Interestingly, negative expression 

of Rab27 was shown to increase invasion of colorectal cancers (Dong et al., 2015). We 

tested whether Rab27 silencing had an impact on bladder cancer invasion. Depletion of 

Rab27 dispersed the lysosomes to the cell periphery in both MGHU3 (TaG1) and RT112 

(TaG2) cell lines (Figure 27A-B), and had a strong impact on invasion of MGHU3 (TaG1) 

cells. In Rab27 depleted cells, 80% of spheroids were invasive within 6 days, compared to 

25% in control (Figure 27C). The diagram of the fraction of non-invading cells visualized a 

highly significant acceleration of invasion, with most spheroids invading after 4 days (Figure 

27E). Although Rab27 silencing in RT112 (TaG2) led to a peripheral distribution of 

lysosomes, no significant impact on the fraction of invasive spheroids was observed (Figure 

27D-F). Due to technical problems the depletion of this protein could not be quantified in 

these experiments. Thus, it is possible that Rab27 depletion was not sufficient to impact 

invasion in RT112 cells. This quantification will be performed in the near future.  
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Figure 27: Impact of Rab27 depletion on bladder cancer invasion. (MGHU3 (TaGa1): A, C, 

E; RT112 (TaG2): B, D, F). A-B. 50% contour of the 3D density maps quantifying lysosome 

distribution of Rab27 depleted cells (in turquoise), compared with control cells (in white). Lysosome 

distribution is more peripheral after Rab27 depletion. p corresponds to p-value in nonparametric 

comparison of density maps between depleted cell compared to control.  C-D. Number of invasive 

spheroids. Invasion is significantly increased in depleted MGHU3 (TaG1) cells (C.), but not in RT112 

(TaG2) (D.). E-F. Fraction of non-invasive spheroids. Acceleration of invasion in MGHU3 (TaG1) 

silenced for Rab27 (in red) as compared to control (in black) (E.) No significant change in RT112 

(TaG2) (F.) ns, p>0.5, ***, p<0.001in Matel-Cox test. 
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4.1.3. Impact of RNF26 depletion on invasion 

The ER protein RNF26 was shown to recruit and retain lysosomes to the perinuclear region 

(Jongsma et al., 2016). Since the depletion of this protein was described as leading to 

peripheral lysosome distribution, we tested its impact in bladder cancer cells. We observed a 

redistribution of lysosomes towards the cell periphery after transfection with siRNF26 in 

MGHU3 (TaG1) and RT112 (TaG2) cells (Figure 28A-B). In MGHU3 (TaG1) cells, the 

number of invasive spheroids increased by 40% after RNF26 depletion (Figure 28C). 

Moreover, in depleted cells, we observed an acceleration of invasion (Figure 28E). In RT112 

(TaG2) cells, 100% of spheroids invaded after silencing of RNF26 (Figure 28D). All 

spheroids invaded within 5 days as observed by the diagram representing the fraction of 

non-invading spheroids throughout time (Figure 28F), however, there was no significant 

difference in invasion behaviour between siRNF26 and siLuc. The mRNA level was 

decreased to 40 and 35% compared to control in MGHU3 (TaG1) and RT112 (TaG2), 

respectively (Figure 28G-H).  
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Figure 28: Impact of RNF26 depletion on bladder cancer invasion. (MGHU3 (TaGa1): A, C, 

E, G; RT112 (TaG2): B, D, F, H). A. 50% contour of the 3D density maps quantifying lysosome 

distribution of RNF26 depleted cells (in turquoise), as compared to control cells (in white) in 

MGHU3 (TaG1). Lysosome distribution is more peripheral after RNF26 depletion. p corresponds to 

p-value in nonparametric comparison of density maps between depleted cell compared to control.   

C-D. Number of invasive spheroids. Invasion is significantly increased in both cell lines after RNF26 

silencing. E-F. Fraction of non-invasive spheroids. Acceleration of invasion in MGHU3 (TaG1) 

silenced for RNF26 (in red) as compared to control (in black) (E.). All depleted RT112 (TaG2) 

spheroids invaded after 5 days (F.). ns, p>0.5 and *, p<0.5 in Mantel-Cox test. G-H. Quantification of 

RNF26 depletion from qPCR. Error bars from > 4 experiments.  
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4.2. Retrograde repositioning of lysosomes 

Our results show that dispersion of lysosomes to the cell periphery is positively correlated 

with invasion in bladder cancer cells. Moreover, it has been reported that cluster of 

lysosomes at the cell center negatively impacts invasion of cancer cells (Dykes et al., 2016). 

Thus, we aimed to change lysosomes to the cell center to investigate its impact in 3D cell 

invasion. Since 60% of lysosomes were concentrated at the perinuclear region in MGHU3 

(TaG1) cells, this cell line was not used in these experiments. 100% of spheroids of grade 3 

of bladder cancer cell lines (KU19-19 and JMSU1) invaded after 1 day, which demonstrated 

that these cells were highly invasive. Retrograde repositioning of grade 3 bladder cancer 

cells (KU19-19 and JMSU1) was targeted either by U18666A drug or by Arl8b and KIF5B 

depletion. Retrograde positioning of lysosomes was not suffient to impair invasion in KU19-

19 (T3G3) and JMSU1 (T4G3) (data not shown). Thus, we used RT112 (TaG2) cells that are 

moderately invasive compared to grade 3 cells and have 55% of lysosomes distributed 

around the intermediate and peripheral regions of the cell.  

4.2.1. Impact of Arl8b depletion on invasion  

Arl8b localizes to lysosomes and participates in the trafficking of lysosomes towards cells 

periphery (Guardia et al., 2016; Rosa-Ferreira and Munro, 2011). The silencing of Arl8b 

prevented the anterograde transport of lysosomes and decreased the invasion in prostate 

cancer cells (Dykes et al., 2016).  

We transfected the cells by adding siRNAs targeting Arl8b, or Luciferase as a control, into 

the collagen mixture. Quantification of lysosome positioning (Lamp1 staining) or protein 

depletion (qPCR) were performed in cells from the same passage transfected in parallel. The 

depletion of Arl8b to 10% (Figure 29D) redistributed the lysosomes to the cell center (Figure 

29A) in RT112 (TaG2) cells. In control, 80% of spheroids were invasive within 6 days, while 

depletion of Arl8b decreased the percentage of invasive spheroids to 60% (Figure 29B). The 

fraction of non-invasive spheroids throughout time was significantly increased after siArl8b 

treatment, which indicated a significant delay in invasion compared to control (Figure 29C).  
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Figure 29: Impact of Arl8b depletion on bladder cancer invasion. RT112 (TaG2) A. 50% 

contour of the 3D density maps quantifying lysosome distribution of Arl8b depleted cells (in 

turquoise), as compared to control cells (in white). Lysosome distribution is more central after Arl8b 

depletion. p-value in nonparametric comparison of density maps between depleted cell compared to 

control.  B. Number of invasive spheroids. Invasion is significantly decreased after Arl8b silencing C. 

Fraction of non-invasive spheroids. Delay in invasion in silenced RT112 (TaG2) (in red) as compared 

to control (in black). *, p<0.5 in Matel-Cox test. D. Quantification of Arl8b depletion by RT-PCR.  
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4.2.2. Impact of KIF5B depletion on invasion  

KIF5B is a microtubule motor protein implicated in the trafficking of lysosomes to the cell 

periphery (Tanaka et al., 1998) and its depletion clusters the lysosomes at the cell center 

(Raiborg et al., 2015; Rosa-Ferreira and Munro, 2011). We investigated the impact of Kif5B 

silencing on invasion. We found a 30% decrease of invasive spheroids after siKIF5B 

transfection (Figure 30A). Furthermore, the fraction of non-invading spheroids was 

significantly different in siKif5B spheroids than in siLuc spheroids, indicating a delay in 

invasion in Kif5B silenced cells (Figure 30B). In the near future, the depletion levels and 

density map to quantify changes in lysosome positioning will be performed to confirm these 

results.  

 

Figure 30: Impact of KIF5B depletion on bladder cancer invasion. RT112 

(TaG2) A. Number of invasive spheroids. Invasion is significantly decreased after 

KIF5B silencing B. Fraction of non-invasive spheroids. Delay in invasion in silenced 

RT112 (TaG2) (in red) as compared to control (in black). *, p<0.5 in Matel-Cox test. 

 

4.2.3. Chemically inducible changes in lysosome positioning  

The “inducible cargo trafficking” assay consists in chemically connecting the domain FKBP 

(FK506), associated with an organelle-specific membrane protein, to the domain FRB 

(FKBP-rapamycin-binding) coupled with a motor protein or its adaptor effector (Kapitein et 

al., 2010). In the presence of the heterodimerizer Rapalog (Rapamycin homolog) the FKBP 

domain is recruited to FRB. Then, the FKBP-FRB complex is transported by the coupled 
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motor protein. We stably co-expressed Lamp1-mCherry-FKBP and BicD2-HA-FRB 

constructs in RT112 cells. BicD2 is a cargo adaptor of the motor protein dynein (Reck-

Peterson, 2015). The addition of 1 µM of A/C heterodimerizer, a compound identical to 

Rapalog, clustered the lysosomes at the perinuclear region of transfected cells (Figure 31, 

example of KU19-19 cells). The stable RT112 expressing both constructs and the A/C 

heterodimerizer will be referred as RT112-BicD2 and Rapalog, respectively, in this report.  

 

 

Figure 31: Impact of inducible trafficking of lysosomes by dynactin effector BicD2 in 

lysosome positioning. KU19-19 cells: (left) Lysosomes dispersed around the cytosol, (right) after 

heterodimerization by Rapalog, lysosomes clustered at the perinuclear region. 

 

 

  



  

98 
 

RT112-BicD2 and wild type (wt) RT112 were cultured with (+) or without (-) 1 µM Rapalog to 

form cell aggregates. After 3 days, the spheroids were plated into collagen I matrix to 

analyse the cell invasion. RT112-BicD2+ cells were compared to untreated RT112-BicD2-. In 

addition, to investigate whether Rapalog treatment impacts invasion wt RT112+ were 

compared to RT112- cells. 

A 20% decrease of invasive spheroids (Figure 32C) and a delay in invasion (Figure 32D) 

was observed in wt RT112+ as compared to wt untreated cells. This indicates that Rapalog 

had an impact on invasion. The invasion was also moderately delayed in RT112-BicD2+ 

invasive spheroids as compared to untreated RT112-BicD2- (Figure 32B). Since both 

controls show a negative impact on cell invasion, this preliminary result does not allow us to 

conclude the role of chemically inducible changes in cell invasion. More experiments are 

necessary to further explore these observations.  
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Figure 32: Impact of inducible trafficking of lysosomes by dynactin effector 

BicD2 in bladder cancer invasion. “+” indicate addition of 1 µM Rapalog, “ -” 

indicate non-treated cells A. Number of invasive spheroids. Invasion is significantly 

decreased in RT112-BiD2+ cells compared to wild type (wt) RT112+ B. Fraction of 

non-invasive spheroids. Delay in invasion in RT112-BiD2+ cells (in red) as compared to 

wild type (wt) control (in black). C. Number of invasive spheroids. Invasion is 

moderately decreased in wild type RT112+ cells as compared to wild type control 

RT112- cells D. Fraction of non-invasive spheroids. Delay in invasion in wild type 

RT112+ compared to wild type control RT112- cells 
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4.2.4. Impact of drug-induced alterations in lysosome positioning  

Lysosome positioning changes can be induced with the drug U-18666A, an inhibitor of 

cholesterol synthesis, that leads to the accumulation of non-esterified cholesterol in 

lysosomes at the cell center (Rocha et al., 2009). To test the drug efficacy, we treated cells 

with 3uM of U-18666A and performed a filipin staining in fixed cells; non-treated cells were 

used as control. The filipin stains fluorescently non-esterified cholesterol in lysosomes. Cells 

treated with U-18666A showed an important increase in filipin staining, in comparison with 

non-treated control cells (Figure 33A, example of KU19-19 cells). 50% contour density maps 

of lysosomes in micropatterned KU19-19 cells, demonstrated that U-18666A changed the 

lysosomal positioning in these cells, since the lysosome distribution of treated cells (in 

turquoise) is more central than in non-treated cells (in white) (Figure 33B).  

 

 

 

Figure 33: Impact of U-18666A in lysosome positioning. A. 0,2 mg/ml Filipin 

staining. An increase in the fluorescent signal is observed in KU19-19 (T3) cells 

treated with 3 µM of U18666A for 20 hours, as compared to non-treated control cells. 

B. 50% 3D density map of Lamp1 staining showing a slight change in lysosomal 

positioning after treatment (in turquoise), as compared to control non-treated cells (in 

white). p-value in nonparametric comparison of density maps between depleted cell 

compared to control.    

 

We treated KU19-19 (T3) and JMSU1 (T4) spheroids with U-18666A drug, non-treated cells 

were used as control. We observed no difference in cell invasion in treated cell as compared 

to control (Figure 34). Since these cells are highly invasive with 100% of spheroids invading 

after 1 day, it is possible that the effect of this drug is not sufficient to impair the invasion 
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behavior. It would be interesting to test if changes of MCS dynamics affect invasion using 

grade 2 RT112 cells.  

 

 

Figure 34: U-18666A does not impact invasion in grade 3 bladder cancer 

cells.  
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Discussion:  

Lysosomes have been implicated in cell migration and invasion. For instance, lysosomes 

participate in the fast recycling of integrins to the plasma membrane to support cell migration 

(Dozynkiewicz et al., 2012; Pu et al., 2015; Schiefermeier et al., 2014). Moreover, lysosomes 

are implicated in pericellular proteolysis to favor cell invasion (Macpherson et al., 2014; 

Marchesin et al., 2015; Poincloux et al., 2009; Steffan et al., 2014; Steffen et al., 2008).  

Lysosome dispersion to the cell periphery induced by depletion of Rab7, Rab27 and RNF26 

significantly increased invasion in grade 1 and 2 cells into collagen matrix. Interestingly, the 

role of Rab7 seems to be dependent on the cancer type. On the one hand, Rab7 was 

proposed as a tumor suppressor in vivo (Steffan et al., 2014) and its depletion was 

associated with peripheral lysosome positioning and increased invasion behavior of prostate 

cancer cells. Rab7 silencing has been shown to decrease cell proliferation, but increase cell 

motility and invasion of moderately metastatic melanoma cells (Alonso-Curbelo et al., 2014). 

On the other hand, the expression of dominant negative Rab7 reduced the recycling of MT1-

MMP to the plasma membrane, which reduced migration and invasion of fibrosarcoma cells 

(Williams and Coppolino, 2011). In addition, Rab7 depletion impaired degradation of gelatin 

substrate by breast cancer cells (Kajiho et al., 2016), although this effect seems to depend 

on siRNA type: a 5-fold increase in gelatin degradation was observed in one individual siRNA 

as compared to siRNA pool.   

Rab27 silencing correlates with increased invasion of grade 1 MGHU3 cells, but not with 

grade 2 RT112. The impact of Rab27 on cancer is not clear. It was reported that Rab27 

overexpression increases invasion in breast cancer (Hendrix and De Wever, 2013). Rab27 

inhibition impairs tumor growth and metastasis, in xerographic metastatic breast cancer in 

mice (Bobrie et al., 2012). Additionally, Rab27 depletion has been shown to decrease 

invadopodia formation and associated matrix degradation (Hoshino et al., 2013). However, 

negative expression of Rab27 correlates with increased invasion in colorectal cancers (Dong 

et al., 2015). Notably, genes encoding Rab27 and its effector proteins were shown to be 

repressed in bladder cancers from both Ta and Cis pathway (Ho et al., 2012b). Interestingly, 

an impairment of grade 3 bladder cancer invasion upon Rab27 knock-down was reported 

(Ostenfeld et al., 2014). Depletion of Rab27 decreased exosome secretion, which negatively 

impacted invasion. Therefore, it is possible that the impact of Rab27 depletion in bladder 

cancer cells depends on grading.  
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Conversely, a central repositioning of lysosomes impaired 3D invasion of bladder cancer 

cells. Arl8b mediate peripheral lysosome distribution by recruiting KIF5B and the silencing of 

both proteins was implicated in lysosome clustering at the cell center (Rosa-Ferreira and 

Munro, 2011). Recently, Arl8b was reported to impact prostate cancer progression through 

secretion of proteases, degradation of extracellular matrix proteins and tumor growth and 

invasion both in vitro and in vivo (Dykes et al., 2016). Indeed, depletion of Arl8b led to a 

central positioning of lysosomes, and silencing of both Arl8b and KIF5B impaired cell 3D 

invasion in RT112 (TaG2) cells.  

Furthermore, a striking cluster of lysosomes was induced by Rapalog hetero-dimerization of 

Lamp1-mCherry-FKBP and BicD2-HA-FRB domains. Our preliminary results suggest that the 

heterodimerizer Rapalog impairs cell invasion. Therefore, we cannot conclude on the results 

obtained with RT112-BicD2 cells after addition of Rapalog. Interestingly, mTOR signaling 

pathway was reported to be hyperactivated in bladder cancer, a signature of poor prognosis 

(Knollman et al., 2015; Moon et al., 2014). Therefore, it is possible that treatment with 

Rapalog, a Rapamycin homolog, induced mTOR inhibition that led to decrease of invasion. It 

would be important to test the activation of mTOR in cells treated with Rapalog. Moreover, it 

would be interesting to investigate the impact of autophagy on cell invasion. Notably, a link 

between mTOR signaling and invasion was reported. Rainero and collaborators have shown 

mTOR activation, upon low nutrient conditions, increased integrin trafficking, which 

contributes to invasion (Rainero et al., 2015). 

Rocha and collaborators have shown that the drug U18666A redistributed the lysosomes to 

the cell center (Rocha et al., 2009). Therefore, we investigated if the central repositioning of 

lysosomes had an impact on invasion of grade 3 bladder cancer cell lines. Although 

lysosome positioning was altered, no impact on cell invasion was observed in these cell 

lines. Since these cells are highly invasive, it is possible that the drug treatment was not 

sufficient to impair invasion. Thus, it would be interesting to test the effect of lysosome 

anterograde distribution induced by U18666A drug on grade 2 cells.   

How does lysosome positions impact cellular invasion?  

Our results indicate that peripheral lysosome distribution correlates with increased invasion 

in bladder cancer cell lines. Peripheral lysosomes were reported to increase protease 
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secretion, acidify extracellular milieu and induce filopodia formation in cancers (Dykes et al., 

2016; Glunde et al., 2003; Poincloux et al., 2009; Steffan et al., 2010, 2014). Matrix 

metalloproteinases (MMPs) have been recognized as important proteases involved in 

invasive tumor growth (Hotary et al., 2003). It was shown that Rab7 is implicated in MT1-

MMP (MMP14) trafficking (Williams and Coppolino, 2011). MMP activity tends to increase 

when Rab7 is depleted in both MGHU3 (TaG1) and RT112 (TaG2) cell lines (Figure 26). 

Therefore, it would be important further explore if bladder cancer cell line invasion is 

facilitated by collagenase proteolysis, for instance by targeting specifc MMPs. Moreover, to 

address the question if increased MMP activity is specifically linked to Rab7 trafficking or 

whether is a result of lysosome dispersion to the cell periphery, more regulators of lysosome 

positioning need to be tested, such as Arl8b, Rab27, RNF26 and the inducible cargo 

trafficking. 

Our results show that cell invasion correlates with bladder cancer grades. Remarkably, we 

showed that lysosome positioning could play a role on cell invasion of bladder cancer cells. 

The anterograde transport of lysosomes correlated with accelerated invasion of grade 1 and 

2 bladder cancer cells. Conversely, the retrograde transport of lysosomes correlated with a 

delay of invasion of grade 2 cells, although no impact was observed in highly invasive grade 

3 cells. Moreover, MMP proteolysis is a potential mechanism by which invasion could be 

accelerated in cells with peripheral lysosome positioning.  
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5. Polarity in bladder cells 

 

Loss of polarity is an important phenotype of epithelial cancers (Wodarz and Näthke, 2007). 

The maintenance of polarity is regulated by intracellular trafficking, cell-cell contact and 

cytoskeleton (Muthuswamy and Xue, 2012). The nucleus and Golgi apparatus are often used 

to define the polarity axis of front-rear polarized cells (for instance migrating cells) and the 

Golgi apparatus has been implicated in cell polarity (Uetrecht and Bear, 2009). Thus, we 

investigated whether bladder cells have altered distribution and relative positioning of these 

organelles. 

 

5.1. Nucleus 

The nucleus is the biggest organelle in cells. Changes in shape and size of nuclei are a 

common phenotype of cancer cells (Denais et al., 2016; Raab et al., 2016; Zink et al., 

2004a). Nuclei were visualized with DAPI, a dye that fluorescently stains the DNA (Figure 

37A in blue).  

Since an alteration in nuclear size is a cancer characteristic, we analyzed the volume of 

nuclei, based on segmentation data. Analysis was based on more than 140 cells and each 

nucleus was represented by one point coordinate (Figure 35B). Remarkably, the average 

volume of nuclei was gradually increased during bladder cancer progression (Figure 35B). 

Moreover, a gradual alteration in nuclear positioning was noticed in the analyzed bladder 

cells (Figure 35A). Statistical comparison of density maps revealed stronger differences in 

distribution in JMSU1 (T4G3) cells as compared to NHU, while MGHU3 (TaG1) have the 

most similar distribution to control cells (Table 02).  
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Figure 35: Change in nuclear compartment in bladder cells. A. 3D density maps 50% 

contour quantifying nuclei distribution (in blue) compared with NHU control cells (in white). B. 

Average volume of nuclei gradually increases in bladder cancer cells.  

Table 02. Statistical differences between DAPI density maps. P-values correspond to 

differences between lysosome density maps of analyzed bladder cancer cells and NHU control cells 

based on nonparametric comparison of density maps. Larger differences are represented by smaller 

p-values. 

 

5.2. Golgi apparatus 

The Golgi apparatus was reported to be fragmented and dispersed in cancers cells (Chia et 

al., 2012; Petrosyan, 2015). The Golgi apparatus was labeled with an antibody recognizing 

the protein GM130 (Golgi matrix protein of 130 kDa) (Figure 37A in green). Since 

fragmentation of the Golgi apparatus is associated with cancer, we investigated whether 

bladder cancer cells have more Golgi apparatus structures, which could represent a 

fragmentation of this organelle. A significant increase in number of structures was observed 

in cells from grade 1, 2 and 3, except for JMSU1 (T4G3) cells (Figure 36B). Thus, alteration 

in number of these structures did not correlate with grades of bladder cancer. The distribution 

of Golgi apparatus is slightly modified in bladder cancer cells as compared to NHU (Figure 

36A compare green density maps with control in white).  
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Figure 36: Changes of Golgi apparatus in bladder cells.  A. 3D density maps 50% 

contour quantifying GM130 distribution (in green) compared with NHU control cells 

(in white). Slight differences in distribution between bladder cancer cells and control. 

B. Average number of Golgi apparatus structures in bladder cells. Significant increase 

in MGHU3 (TaG1), RT112 (TaG2) and KU19-19 (T3G3) cells. ns, p>0.5 and ***, 

p<0.001 in a Student’s t-test. 

 

 

5.3. Nucleus-Golgi apparatus polarization axis 

It was demonstrated that the polarization axis from the center of the nucleus towards the 

center of the Golgi apparatus pointed towards the leading edge of normalized non-

transformed human Tert-RPE1 cells on crossbow shaped micropatterns (Théry et al., 

2006a). The larger region of adhesion represents the leading edge of crossbow-shaped 

micropatterns, while the smallest region represents the cell rear. We investigated if this 

polarization axis is altered in bladder cancer cells, compared to normal human urothelium 

cells. An analysis of the orientation of the axis between the center of the nucleus and the 

center of the Golgi apparatus was performed in 2D and in 3D 50% contour density maps. 
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The vector (Figure 37B in blue) represented the direction of the nucleus-Golgi polarization 

axis in 2D. In NHU and grade 1 cells (MGHU3) the axis was pointing towards the leading 

edge. While an inversion is observed in cells representing grades 2 and 3, where vectors are 

pointing towards the cell rear. 

Next, the relative positioning between the 50% 3D density maps of both organelles was 

compared (Figure 37C). We observed a change in the relative positioning between GM130 

(in green) and DAPI (in blue). The nucleus is over the Golgi apparatus in NHU cells, whereas 

this distribution is changed in bladder cancer cells.  

 

 

 

Figure 37: Nucleus-Golgi apparatus polarization axis.  A. Representative single 

cell fluorescent image from GM130 (green) and DAPI (blue). B. 2D analysis if nucleus-

Golgi polarization axis towards the leading edge in NHU and MGHU3 (TaG1) cells. 

Inversion of axis in cells representing grades 2 and 3.  C. 50% contour of the 3D 

density maps quantifying Golgi apparatus (in green), compared to nucleus (in blue). 

Differences in relative positioning between the two organelles in bladder cancer cells 

as compared to NHU cells.  
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Discussion:  

We observed slight differences in Golgi distribution in bladder cancer cells, whereas for the 

nucleus the positioning is gradually different from normal human urothelium cells. 

Interestingly, these organelles are tightly connected and are related to cell polarity (Gomes et 

al., 2005). Loss of cell polarity is a hallmark of malignant cells and correlates with migration, 

invasion and dissemination (Gomes et al., 2005; Uetrecht and Bear, 2009; Wodarz and 

Näthke, 2007). It was proposed that crossbow shaped micropatterns mimic a front-rear 

polarized, migrating cell (Théry et al., 2006a). In RPE1 cells the nucleus-Golgi polarity axis, 

in 2D, is pointing towards the leading edge. Therefore, we compared the relative positioning 

between these organelles in crossbow-shaped bladder cancer cells using density maps. Our 

2D results suggest an inversion in the nucleus-Golgi apparatus polarization axis in bladder 

cancer cells from grade 2 and 3 compared to NHU and grade 1 cells. However, the 3D 

polarity in micropatterns is a complex process that involves several proteins, such as 

kinesins and proteins from nuclear envelope (Latgé B et al., unpublished work). We observed 

a change in the relative positioning between the two organelles in 3D. The nuclei are 

distributed on top of the Golgi apparatus in NHU cells. However this organization is lost in 

bladder cancer cells, where the density maps of the Golgi apparatus are distributed around 

the nuclei. Our results suggest alterations in cell polarity in bladder cancer cells. 

Additionally, the volume of nuclei was gradually increased and corresponded to bladder 

cancer progression. Interestingly, changes in the nuclear shape and size is a hallmark of 

cancer that is explored for diagnosis (Zink et al., 2004a). Moreover, the number of structures 

corresponding to the Golgi apparatus is significantly increased in all bladder cancer cell lines, 

except for JMSU1 (T4G3), which indicate that this phenotype does not correlate with grades 

of bladder cancer. The increased number of structures could suggest a fragmentation of 

Golgi apparatus, however more analysis are required to conclude on this.  

The nuclear size of bladder cancer cells increases gradually. Moreover, we observed 

alterations in Golgi-nucleus polarization axis in 2D and 3D. Our results suggest that nucleus 

volume and polarization are important phenotypes of bladder cancer progression. 
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Concluding remarks 

 

The changes in organelle distribution during cancer progression is poorly understood. We 

aimed to fill this gap and study how alterations in distribution of organelles affect bladder 

cancer progression by normalizing cells on micropatterned adhesive surfaces, combined with 

quantitative density estimation. We successfully normalized cells representing different 

stages and grades of bladder cancer, and primary normal human urothelium cells (control). 

Moreover, all analyzed cells have comparable size, which indicates that alterations observed 

in 50% contour density maps are indeed due to changes in distribution of organelles. 

We performed quantitative comparison of the topology of several major compartments in 

bladder cells. We observed changes of nucleus-Golgi apparatus polarity axis in cells 

representing higher grades of bladder cancer. We found that the size of nuclei was gradually 

increased in bladder cancer cells. Interestinlgy, increased nuclear size is a common feature 

in cancer cells (Zink et al., 2004). In addition, changes in distribution and number of 

mitochondria and peroxisomes were observed. However, no direct correlation between 

alterations in these organelles and bladder cancer grading could be found. 

Notably, we found that lysosomes were gradually distributed to the cell periphery in the 

analyzed bladder cancer cells. These results were confirmed with two additional cell lines 

that present a similar phenotype. We tested whether lysosome distribution was affected by 

micropatterns by quantifying lysosome distribution in unconstrained cells and found that 

lysosomes were also gradually peripheral in this condition. This suggests that lysosome 

positioning is potentially important in bladder cancer progression.  

To further investigate the impact of lysosome positioning in bladder cancer cells, we 

investigated lysosome-related processes, such as  cathepsin B activity (Kallunki et al., 2013) 

and EGFR signaling attenuation (Taub et al., 2007), in bladder cancer cell lines. No direct 

correlation between EGFR degradation or cathepsin B activity and peripheral lysosome 

positioning was found in bladder cancer cell lines.  

To further explore the impact of lysosome positioning in bladder cancer cell lines, we aimed 

to investigate its impact in an important hallmark of cancer, invasion (Hanahan and 

Weinberg, 2000). We altered the lysosome positioning by targeting several regulators of 
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lysosome trafficking, Rab7 (Jordens et al., 2001), Rab27 (Neeft et al., 2005), Arl8b (Rosa-

Ferreira and Munro, 2011), RNF26 (Jongsma et al., 2016) and KIF5B (Tanaka et al., 1998). 

Our results showed that distribution of lysosomes to the cell periphery correlates with 

invasion in grade 1 and 2 bladder cancer cells. Interestingly, it was reported that 

redistribution of lysosomes to the cell periphery increases cancer invasion (Glunde et al., 

2003; Hotary et al., 2003; Steffan et al., 2010). Conversely, preventing anterograde transport 

of lysosomes by Arl8b depletion was reported to impair invasion of prostate cancer cells 

(Dykes et al., 2016). Next, we aimed to investigate if moving lysosomes to the cell center 

negatively correlate with cell invasion of moderately invasive bladder cancer cell line. Our 

data suggest a delay in cell invasion after retrograde redistribution of lysosomes in RT112 

(TaG2) cells. These data suggest that lysosome positioning is potentially relevant in invasion 

and progression of moderately invasive bladder cancer cell lines.  

A possible mechanism by which peripheral lysosomes correlates with invasion could be 

increased secretion of matrix metalloproteinases. Indeed, MT1-MMP is a collagenase mainly 

located at lysosomes (Steffen et al., 2008) that accumulates in membrane protusions 

(Poincloux et al., 2009). We found that MMPs collagenases were gradually increased in the 

analyzed bladder cancer cell lines. Moreover, preliminary results suggest that Rab7-

mediated anterograde transport of lysosomes increases activity of these collagenases. 

Interestingly, Rab7 is implicated in MT1-MMP trafficking, and its depletion impaired the 

recycling of this protease to the cell surface, which negatively impacted invasion (Williams 

and Coppolino, 2011).  

Altogether, our results highlight that lysosome distribution could represent a phenotypic 

signature distinguishing grades and stages of bladder cancer. Of note, cytology exams of 

urine are currently used to detect bladder cancer. In agreement with our findings, Lamp1 was 

recently reported as a potential clinical biomarker in bladder cancer (Duriez et al., 2017).  
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Experimental procedures  

 

Cell culture 

Bladder cancer cells lines MGHU3 (Lin et al., 1985), RT112 (Marshall et al., 1977), KU19-19 

(Tachibana et al., 1997), JMSU1 (Morita et al., 1995), T24 (Bubeník et al., 1973) and 

TCCSup (Nayak et al., 1977) were grown in RPMI medium (Life Technologies, Carlsbad, CA, 

USA) supplemented with 10% Fetal Bovine Serum (FBS; Eurobio, Courtaboeuf, France). 

Primary normal human urothelium (NHU) (Southgate et al., 1994) cells were grown in 

KSFMC medium (Life Technologies). All cells were kindly provided by François Radvayi’s 

laboratory (Institut Curie, France). RT112 stably expressing Lamp1-mCherry-FKBP and 

BicD2-HA-FRB (Figure 38) were obtained by transfection of a Lamp1-mCherry-FKBP and 

BicD2-HA-FRB gateaway plasmids and selection with 0.5 mg.mL-1 Geneticin. The plasmids 

were a kind gift from Lukas Kapitein’s laboratory (Utrecht University, The Netherlands). All 

cells were cultivated in a humidified atmosphere containing 5% CO2.  

 

 

Figure 38: Inducible trafficking of lysosomes by the dynactin effector BicD2.  
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Cell transfection 

2x105 cell were transfected in 6 well plates with 25 pmol.mL-1 siRNA (Table 03) using 

Lipofectamine RNAiMAX Transfection Reagent (Life Technologies), in Opti-MEM medium 

(Life Technologies). Cells were incubated 72 hours prior to further manipulations. Efficiency 

of siRNA gene silencing was verified by performing RT-PCR on cell mRNA or Western Blot 

on cell lysates after 3 days of transfection. Controls were performed with a siRNA targeting 

Luciferase, a protein that is not expressed in human cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 03: siRNA sequences  

 

 

Micropatterned coverslips preparation and cell seeding 

This technique, described by Théry and collaborators in 2006 and adapted by Azioune and 

collaborators in 2009 (Azioune et al., 2009a; Théry et al., 2006b), allows production of 

micropatterned surfaces using photo-lithography (Figure 39). Clean glass coverslides were 

irradiated by Ultraviolet (UV) for 5 minutes. The radiated surface of the coverslips was 

incubated for 1 hour at room temperature (RT) with PLL-g-PEG (Poly-L-Lysine(20)-

grafted[3.5]-Polyethyleneglycol(2), from SuSoS - Dübendorf, Switzerland) at a final 

concentration of 0.1 mg.mL in 10 mM HEPES (pH 7,3) solution (from Surface Solutions, 

Zürich). Then, coverslides were exposed to deep UV during 5 min using photomask. 

Crossbows (37 μm diameter, 7 μm thick) were therefore photo-printed. Prior to cell seeding, 

the micropatterned surfaces were incubated for 1h with a mixture of fibronectin (Sigma-

Gene Sequence 

Luciferase 5’-CGTACGCGGAATACTTCGA-3’ 

Rab7-5 5’-CACGTAGGCCTTCAACACAAT-3’ 

Rab7-6 5’-CTGCTGCGTTCTGGTATTTGA-3’ 

Rab27a  

RNF26-1 5’-GAGAGGAUGUCAUGCGGCU-3’ 

RNF26-2 5’-GCAGAUCAGAGGCAGAAGA-3’ 

Arl8b 5’- GAUAGAAGCUUCCCGAAAU-3’ 

KIF5B#2 5’-GCACATCTCAAGAGCAAGT-3’ 

KIF5B#3 5’-AACGTTGCAAGCAGTTAGAAA-3’ 
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Aldrich, St. Louis, MO, USA) at a concentration of 50 μg.mL, concanavalin A (Sigma-Aldrich) 

at a concentration of 0,1 mg/ml and 10 μg/ml of fibrinogen–Cy5 from (Invitrogen) to stain the 

micropatterns . Cells were incubated in 20 mM of HEPES (Life Technologies) in serum free 

RPMI medium. 

 

Figure 39: Photoprinting 

patterning UV light pass trough 

micropatterns on cell mask and degrade 

PLL-g-PEG on glass coverslide. Next, 

the coverslide is coated with 

extracellular substrate.   

 

 

 

 

 

 

 

 

Drug treatment  

To induce autophagy, 10 µM of Rapamycin (InvivoGen) was added to the cell medium 4 

hours prior to fixation or cell lysate for Western Blot. To inhibit cholesterol synthesis and 

induce accumulation of non-esterified cholesterol in lysosomes, 3 µM of U-18666A 

(Calbiochem) was incubated for 20h (Rocha et al., 2009) prior to fixation.  

 

Immunofluorescence, image acquisition and analysis 

Cells were fixed with 4% Paraformaldehyde (PFA) for 15 minutes at room temperature (RT) 
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in the dark and then washed 3 times with PBS solution. To quench the PFA, ammonium 

chloride (NH4CL) was added at a concentration of 50 mM for 10 minutes following 3 washes 

with PBS solution. Cells were permeabilized with PBS-2% Bovine Serum Albumine (BSA)-

0,05% Saponin for 20 minutes in the dark at RT. Cells were then incubated with a primary 

antibody (Table 04) for 45 minutes, washed in PBS and incubated with Alexa Fluor 488- or 

Cy3- coupled secondary antibodies (Jackson ImmunoResearch) or FluoProbes 547H 

(557/572nm) coupled Phalloïdin (Interchim). Mitotracker (Invitrogen) was used to stain 

mitochondria at final concentration 100 nM for 15 minutes prior to fixation. Slices were 

mounted in Mowiol (Sigma-Aldrich). Nuclei were marked using 0.2 g.ml-1 4',6-diamidino-2-

phenylindole (DAPI; Sigma-Aldrich). Z images from fixed and immunolabelled cells were 

acquired with an inverted widefield Deltavision Core Microscope (Applied Precision) 

equipped with highly sensitive cooled interlined charge-coupled device (CCD) camera 

(CoolSnap Hq2,Photometrics). Z-dimension series were acquired every 0.5 µm using 40X 

(1,35 NA) oil objective. 

 

Protein Species Company Dilution 

GM130 Mouse BD Biosciences 1:1000 

Lamp1 Mouse BD Biosciences 1:300 

LC3 Rabbit MBL  1:200 

ABCD3 Rabit Sigma-Aldric 1:200 

Tubulin Human F2C-hFc LabCollector 1:400 

UKHC Rabbit Santa Cruz Biotechnology 1:1000 

Rab7 Rabbit Cell Signaling 1:1000 

EGFR Mouse Calbiochem 1:500 

PTP1B Rabbit Santa Cruz 1:500 

  

Table 04: Primary antibodies  

 

 

For each independent experiment, several tens of cells were imaged and aligned using the 

coordinates of the center and the angle of rotation of the micropattern (determined on 

ImageJ (Bethesda, MD, USA) as previously described (Grossier et al., 2014; Schauer et al., 
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2010). Images were segmented with the multidimensional image analysis (MIA) interface in 

MetaMorph (Molecular Devices, Sunnyvale, CA, USA) based on wavelet decomposition to 

extract 3D spatial coordinates of intracellular structures. Unconstrained cells were imaged 

and segmented as previously described for normalized cells. Using ImageJ, a cell mask was 

determined based on actin staining. Then, the smallest distance from the center of each 

segmentation point towards the closest nuclear and membrane edges was calculated. Next, 

the calculated distance was used to classify the lysosomes according to their sub-cellular 

localization: perinuclear, intermediate or peripheral.  

 

Kernel density estimation 

The coordinates of the segmented structures were processed for density estimation 

programmed in the ks library in the R programming language (R Development Core Team, 

2013) (Schauer et al., 2010). Briefly, Gaussian functions (kernels) with a mean 0 were 

centered at each segmentation point. Then, kernel functions were summed using a non-

parametric, unbinned kernel density estimator. Kernel density estimation could then be 

visualized by probability contours and the extension libraries mvtnorm, rgl, and miscd.  

 

 

Analysis of volume and number of intracellular compartments 

The segmentation data provides information about the number and volume of structures. 

This data was calculated for each individual cell. Then, the average number and volume of 

organelles were calculated and compared. 

 

2D polarity axis between the center of the Golgi apparatus and the center 

of the nucleus  

From segmentation data of the Golgi apparatus and the nucleus, a histogram of angles in 

Excel was realized and the values were plotted on 360°. The formulas, using 0-2π interval, 

were: arctan (y/x) for x and y > 0; arctan (y/x) + 2 π for x > 0 and y < 0 and.arctan (y/x) + π if 

x < 0. The histogram represents the direction of the axis between the center of the nucleus 

towards the center of the Golgi apparatus. 
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Immunoblotting  

After cell lysis, identical amounts of proteins were loaded in wells of 15% polyacrylamide gels 

(15-20 µL) and subject to electrophoresis. PageRuler (Thermo Scientific) molecular weight 

was used for calibration. Proteins were then transferred onto XXX membranes (marque) by 

semi-dry transfer. PBS + Tween20 (PBST) containing 5% milk (Régilait) was used to block 

the membranes and dilute the antibodies. PBST was used as wash solution. Primary 

antibodies (Table 04) were incubated overnight at 4°C, while HRP-conjugated secondary 

antibodies (Jackson ImmunoResearch) were incubated for 1 hour at RT. Femto or Pico kits 

(Thermo Scientific, Massachusetts, EUA) were used for the detection of the 

chemiluminescent signal in ChemiDoc (Biorad). Quantification analysis were performed 

using ImageJ. For EGFR attenuation of signaling assay, cells were stimulated with 100 nM 

EGF for 30 minutes or 1 hour prior to cell lysis.  

Real-time PCR 

Total RNA from cells in different conditions were isolated using xxx kit (Sigma- Aldrich) 

according to the manufacturer’s instructions, and cDNA was synthetized using High capacity 

cDNA reverse transcription kit, 2500 U (Applied Biosystems, Ref. 4368814). Real-time PCR 

was performed using LightCycler 480 (Roche) detection system. Relative mRNA levels 

(Table 05) were calculated using 2(-ΔΔCt) and normalized to GAPDH mRNA expression. All 

experiments were run in duplicate.  

 

cDNA Forward Reverse 

GAPDH 5’-TCCACTGGCGTCTTCACC-3’ 5’-GGCAGAGATGATGACCCTTTT-3’ 

Arl8b 5’-AAGCATGTGGGAGCGGTAT-3’ 5’-CGATCTGCAGCATCTATCATGT-3’ 

RNF26 5’-AGCCTGGTGGCTTATGTGAT-3’ 5’-AGGTTCTGAGTGCCGATGAG-3’ 

 

Table 05: RT-PCR primer sequences  

 

 

https://www.google.fr/search?rlz=1C1CHBF_frFR698FR698&q=Waltham+Massachusetts&stick=H4sIAAAAAAAAAOPgE-LSz9U3MCooMTBJU-IAsTOqjE21tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcUAAxikqkQAAAA&sa=X&ved=0ahUKEwjaqsn31dXVAhWpKcAKHe6xA6gQmxMIpgEoATAS
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3D Spheroid preparation and invasion assay 

Spheroid preparation was done as previously described (Thuault et al., 2016). Cells were 

trypsinized and 104 cells/ml were ressuspended in RPMI medium containing 10% FBS and 

1% Penicillin-Streptomycin (Life Technologies). Then 100 µl of cell suspension was plated in 

48-well plates coated with 1% agarose (Life Technologies) and incubated for 3 days (Figure 

40). In each well, a spheroid was formed from 103 cells. Next, the spheroids were plated on 

Lab-Tek chambers (Sigma), in a mixture of collagen I from rat tail (Corning) at a final 

concentration of 2 mg.ml-1, PBS, sodium hydroxide (NaOH) and serum-free medium. For 

siRNA experiments, the medium was replaced with the transfection mixture (Opti-MEM 

medium from Life Technologies, Lipofectamin RNAiMAX and siRNA). For inducible cargo 

trafficking assays, 1 µM of A/C heterodimerizer (Clontech, California-USA) was added in the 

collagen mixture and in the culture medium. The spheroids were monitored for 6 consecutive 

days by using an inverted Leica microscope (Wetzlar, Germany) equipped with camera 

device using a 4x objective.  

 

 

 

 

Figure 40: Spheroid formation.  

 

 

Matrix metalloproteinases activity 

MMPs activity was tested following the manufacturer’s protocol of the fluorimetric 

SensoLyte® 520 generic MMP activity assay (AnaSpec). Briefly, cell supernatant was 

centrifuged to eliminate floating cells. Then, samples were incubated with APMA (4-
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aminophenylmercuric acetate) for 3 hours at 37°C to target MMP1 and MMP14. Then, the 

MMP substrate containing 5-FAM/QXL™520 FRET peptide was incubated 1 hour at RT prior 

to measurement of fluorescence signal (450 nm excitation and 520 nm emission).  

 

Cathepsin B activity 

Cathepsin B activity was tested following the manufacturer’s protocol (InnoZyme - Millipore). 

Briefly, cell pellets were washed with cold PBS and lysed during 30 minutes on ice. 

Cathepsin B substrate containing the carboxyl side of arginylarginine was incubated for 30 

minutes at 37°C prior to measurement of fluorescence signal (360 nm excitation and 440 nm 

emission).  

 

Statistical analysis  

For each experiment, a large number of cells from 3 to 6 independent experiments were 

monitored. Bilateral Student t-tests were performed on averages to assess the significance of 

the difference. To compare the fraction of non-invasive spheroids Matel-Cox test was 

performed in Prism software. Additionally, to compare the global distribution of cell 

populations, χ² tests were performed (R function “chi-square()”). In this case, results from 

independent experiments were individually compared and combined for representation and 

statistical analysis. For the three analysis, consider: ns, P> 0.05; *, P<0.05; **, P<0.01; ***, 

P<0.001. Comparison between density maps was realized using multivariate two-sample 

nonparametric statistical test (R software) (Duong et al., 2012). 
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Abstract 23 

Alterations of cell morphology are a hallmark of cancer. Yet, sub-cellular changes of 24 

organelles remain a black box. Systematic studies on intracellular organelles are 25 

difficult, because in vivo approaches are limited by the access of the samples and 26 

the lack of subcellular resolution and in vitro cultured cells display a dynamic shape 27 

and strong morphological cell-to-cell variation. Employing innovative micro-28 

fabrication techniques in combination with quantitative, probabilistic mapping of cell 29 

organelles we found that cancer progression correlated well with a gradual peripheral 30 

positioning of lysosomes. Moreover, we found that displacing lysosomes 31 

experimentally to cell periphery accelerates 3D cell invasion, indicating that 32 

lysosomal homeostasis potentially plays an important role in malignancy.  33 

 34 

Introduction 35 
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Malignant transformation is characterized by major alterations in cell morphology. 1 

(Wodarz and Nathke 2007). For instance, changes in the size and shape of the 2 

nucleus have been associated with cell transformation and are used as a diagnostic 3 

criterion for cancer (Capell and Collins, 2006; Chow et al., 2012; Webster et al., 4 

2009; Zink et al., 2004) . Moreover, the loss of cell-polarity such as seen in Epithelial-5 

Mesenchymal Transition (EMT) have been well-described (Thiery et al., 2009). 6 

However, little is known about which alterations are found in cancer cells on the sub-7 

cellular, organelle level. No systematic studies on the organization of intracellular 8 

organelles have been performed, because, on the one hand, in vivo approaches are 9 

limited by the access of the samples and perturbation, and on the other hand, in vitro 10 

cultured cells display a dynamic shape and strong morphological cell-to-cell 11 

variations. 12 

To investigate the impact of organelle organization on cancer progression, we have 13 

focused on bladder cancer that is the fourth most common cancer in men and ninth 14 

most common in women in the western world (Burger et al., 2013). The bladder 15 

cancer model is interesting, because bladder carcinomas are heterogeneous 16 

showing great diversity that is well represented in available cancer-derived cell lines 17 

(Earl et al., 2015b): Non-muscle-invasive bladder cancers (NMIBC) can be divided 18 

into two distinct classes by their appearance that correlates with cancer progression. 19 

Papillary cancers are non-invasive (stage Ta) show low-grades of aggressive 20 

behavior (G1/G2), correlating with 10%-15% probability to progress into invasive 21 

tumors), but have a high recurrence rate (60%). Carcinoma in situ (CIS) shows flat 22 

lesions and high-grade of aggressive behavior (G3), often progressing from non-23 

invasive stage Tis to T1 (invasion of basal membrane) (according to The Union for 24 

International Cancer Control TNM system). Muscle-invasive bladder cancers (MIBC) 25 

are classified in stages T2, in which the invasion reaches the muscle tissue, T3 in 26 

which invasion reaches the adipose tissue and T4 which is characterized by the 27 

dissemination into nearby organs (Benhamou et al., 2016; Ho et al., 2012a). 28 

Molecular classification of MIBC have identified luminal-like and basal-like (23,5% of 29 

MIBC) subtypes whose transcription signatures correspond to luminal and basal 30 

normal bladder epithelial cells ( Rebouissou et al., 2014; Choi et al. 2014). 31 

Interestingly, the luminal-like subgroup presents fibroblast growth factor receptor 3 32 

(FGFR3) overexpression and mutations (Choi et al., 2014). Because activating 33 

mutations of FGFR3 is the most common genetic alteration in papillary NMIBC 34 

(Billerey et al., 2001; Knowles, 2008) this indicates that luminal-like subgroup 35 

originates from papillary NMIBC (Choi et al., 2014). The basal-like subgroup present 36 

overexpression of the epidermal growth factor receptor (EGFR) pathway 37 
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(Rebouissou et al. 2014) as well as biomarkers characteristic of EMT and stem cells 1 

(Choi et al. 2014) and is associated with squamous differentiation, high grades and 2 

stages of bladder cancer progression, leading to poor survival (Rebouissou et al., 3 

2014).  4 

Here we have employed micro-patterning and single cell analysis to investigate the 5 

intracellular alterations of different urothelial carcinoma cell lines that represent 6 

bladder tumors of different grades and stages. This allowed us to study intracellular 7 

alterations associated with the development and progression of bladder tumors 8 

under laboratory conditions. 9 

 10 

Results 11 

Comparative analysis of intracellular organelles revels intracellular alterations 12 

of late endosomes/lysosomes during bladder cancer progression  13 

We hypothesized that intracellular organization can change as a result of 14 

tumorigenesis. To investigate the intracellular alterations during cancer progression 15 

under laboratory conditions, we focused on a collection of bladder tumor cell lines 16 

that derive from tumors of different grades and stages of disease progression and 17 

control normal human urothelium (NHU) cells. We analyzed the following well-18 

characterized urothelial carcinoma cell lines 1) MGH-U3 from papillary, non-invasive 19 

transitional cell carcinoma representing Stage Ta and Grade G1 that contains a 20 

mutation in FGFR3 (Lin CW et al., 1985) 2) RT112 from papillary, non-invasive 21 

transitional cell carcinoma representing Stage Ta and Grade G2 (Marshall CJ et al., 22 

1977) 3) KU19-19 from invasive transitional cell carcinoma representing Stage T3 23 

and Grade G3 (Tachibana M et al., 1997) and 4) JMSU1 from malignant ascitic fluid 24 

from a patient with invasive transitional cell carcinoma representing Stage T4 and 25 

Grade G3 (Morita T et al., 1995) (Supplementary Figure 1). These cell lines were 26 

chosen, because they represent different grades and stages of malignancy and were 27 

reported to show close correlation in behavior and morphology between culture 28 

conditions and the original tumor. To be able to test our hypothesis and to compare 29 

the phenotypically different bladder cancer cells, we cultured them on identical 30 

crossbow-shaped patterns of extra-cellular matrix. Micropatterns normalize cells to 31 

the same, comparable shape and impair their migration without interfering with their 32 

cell cycle (Théry et al., 2006a). All tested cells were fully spread as judged by actin 33 

cytoskeleton staining (Figure 1A) revealing that all cells adopted well to the 34 

micropatterns. It is well documented that nucleus size changes during cell 35 
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transformation (Capell and Collins, 2006; Chow et al., 2012; Webster et al., 2009; 1 

Zink et al., 2004b). We thus first analyzed average nucleus size in micropatterned 2 

cells. We found that the volume of the nucleus indeed increased with the stage of 3 

disease progression (Figure 1B,C), confirming that cells grown on micropatterns 4 

maintain their cancer-related characteristics. Next, we used well-defined markers of 5 

intracellular organelles to visualize and compare different compartments by 6 

immunofluorescence. Interestingly, although many changes were apparent, we found 7 

strong differences in the late endosomes/lysosomes (LEL) compartment, which was 8 

clustered in NHU cells and low stage cell lines and scattered in the cytoplasm in high 9 

stage cell lines (Figure 1D). To further quantify and compare the spatial positioning of 10 

LEL in many cells we used probabilistic density maps that represent cellular areas 11 

containing the highest concentration of analyzed structures (Schauer et al. 2010). 12 

Plotting the 50% density map of LEL revealed the smallest 3D volume in which half 13 

LEL were found (Figure 1E). Density maps confirmed that lysosome positioning was 14 

central in NHU and low-stage, low-grade bladder cancer cell line (MGH-U3, TaG1), 15 

but peripheral in high-stage, high-grade bladder cell lines (T3G3, T4G3). In addition 16 

to a visual summary, density maps were used to statistically compare positioning of 17 

LEL (Duong et al. 2012) Table 1. Interestingly, we found that LEL positioning 18 

changed according to the grade of aggressive behavior by which cells were classified 19 

(Table 1). Analysis of the average number of LEL per cell revealed a significant 20 

increase of lysosomes in G1 and T4G3 cells (Figure 1F). The average volume of LEL 21 

was significantly increased in all cell lines (Figure 1G). We monitored LEL positioning 22 

in several additional cell lines, representing grades G1 and G3 and confirmed our 23 

results that peripheral LEL positioning correlated with cancer grades (Supplementary 24 

Figure 1B,C). Together this analysis indicated that LEL positioning could be a novel 25 

hallmark of bladder cancer progression.  26 

 27 

Alterations in the late endosome/lysosomal compartment in bladder cancer 28 

cell lines are also evident in classical cell culture conditions 29 

 30 

To verify that LEL positioning changes were not induced by micropatterning, we 31 

analyzed LEL in non-patterned bladder cell lines, employing classical cell culture 32 

conditions (Figure 2A). We analyzed the numbers of LEL that were found in each 33 

third of the area between the nucleus and the plasma membrane. In agreement with 34 
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our density map analysis, we found that in MGH-U3 (TaG1) cells 65 % the LEL were 1 

perinuclear and about 10% were peripheral (Figure 2B). LEL positioning was 2 

significantly different from MGH-U3 cells in RT112 (TaG2), KU19-19 (T3G3) and 3 

JMSU1 (T4G3) cells under classical culture conditions. Strikingly, the percentage of 4 

peripheral LEL positioning significantly increased from TaG1 to T4G3, JMSU1 5 

showing about 30% of peripheral LEL. Finally, because LEL have been implicated in 6 

the secretion of proteases (Kallunki et al., 2013; Steffan et al., 2010), we tested 7 

extracellular activity of MMP1 and MMP14 (MMPs). We found that MMPs activity 8 

was higher in RT112 (TaG2) and KU19-19 (T3) cells than in MGH-U3 (TaG1) cells, 9 

however this was not significant. Contrary, JMSU1 (T4) cells showed significantly 10 

higher MMPs activity than MGH-U3 (TaG1) and RT112 (TaG2) cells, indicating that 11 

MMPs activity somehow correlated with the stage of cell lines.  12 

 13 

Changes of LEL positioning to the cell periphery increase invasion of MGH-U3 14 

(TaG1) cells.  15 

To investigate whether LEL positioning only correlates with cancer grade or if LEL 16 

positioning regulates cancer-related behavior, we tested the role of LEL positioning 17 

changes in invasion, a hallmark of cancer cells. We employed an invasion assay 18 

based on collagen I matrix invasion from cell aggregates called spheroids. MGH-U3 19 

cells were deposited on a convex agarose well to form spheroids for three days. 20 

Then, spheroids were transfected with siRNA targeting known regulators of LEL 21 

positioning and embedded in 2 mg/ml collagen matrix. Spheroids were observed for 22 

6 consecutive days to monitor invasion that was characterized by the escape of cells 23 

from spheroids (Supplementary Figure 3). Because LEL are perinuclear in MHG-U3 24 

cells, we aimed at changing LEL positioning towards the cell periphery. Thus, we 25 

tested whether MGH-U3 cells became more invasive when showing more peripheral 26 

LEL. We knocked down the small GTPases Rab7, a general regulator of LEL 27 

movement that predominately regulates centripetal movement of LEL (Jordens et al., 28 

2001) and Rab27 that was shown to be downregulated in high stages bladder cancer 29 

cells (Ho et al., 2012a) and regulates positioning of late endosomes and the 30 

secretion of exosomes (Hendrix and De Wever, 2013). Additionally, we targeted 31 

RNF26, a protein found at the endoplasmic reticulum that mediates ubiquitin ligation 32 

and has recently been shown to retain LEL at the perinuclear region (Jongsma et al., 33 

2016). Gene silencing substantially decreased Rab7 protein levels and RNF26 34 

mRNA levels to 15% and 40% of the control (siLUC), respectively in MGH-U3 cells 35 

(Figure 3A). Under all conditions, LEL were found more at the cell periphery as 36 
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judged by the 50 % probability contour of LEL density maps (Figure 3B). Depletion of 1 

all genes significantly increased the number of invading spheroids in the six days of 2 

observation: whereas only 30% of MGH-U3 spheroids were invasive, gene silencing 3 

of Rab7 and Rab27 increased this number to over 50% (60%, 85% and 65%, 4 

respectively) (Figure 3C). Cells depleted for Rab7, Rab27 or RNF26 invaded 5 

significantly earlier than control (siLUC) cells (Figure 3D). Together, these results 6 

indicated that LEL movement to the cell periphery facilitated 3D invasion of MGH-U3 7 

cells.  8 

 9 

Changes of LEL positioning in RT112 cells predicts invasion behavior  10 

Next, we investigated LEL positioning changes in RT112 (TaG2) cells. Because 11 

RT112 cells contain about 50 % of LEL that are not perinuclear, we aimed at 12 

changing LEL positioning towards both, the cell periphery and the cell center. We 13 

tested whether RT112 cells became more or less invasive when showing more or 14 

less peripheral LEL, respectively. In addition to Rab7, Rab27 and RNF26 we 15 

knocked down the small GTPase ADP-rybosylation factor like protein 8B (Arl8B) and 16 

its effector the microtubule +end motor kinesin-1 Kif5B. Arl8B recruits Kif5B in order 17 

to promote movement towards the cell periphery of LEL (Pu et al. 2016), thus knock 18 

down of Arl8B leads to clustering of LEL at the cell center. Gene silencing 19 

substantially decreased protein or RNA levels of all tested proteins (Figure 4A).  As 20 

expected, sine silencing of Rab7, Rab27 and RNF26 moved LEL to the cell 21 

periphery, whereas gene silencing of Arl8b and Kif5B moved LEL to the cell center 22 

as judged by the 50 % probability contour of LEL density maps (Figure 4B). 23 

According their classification as G2, RT112 cells were more aggressive than G1 24 

MGH-U3 cells and 80 % of tested spheroids were invasive in the six days of 25 

observation (Figure 4C). The invasive behavior also correlated with the more 26 

peripheral positioning of LEL in RT112 than MGH-U3 cells. Knock down of Rab7 or 27 

Rab27 moderately increased invasion to 85 % of spheroids (Figure 4C) but led to a 28 

significantly earlier invasion than control (siLUC) cells (Figure 4D). Depletion of 29 

RNF26 increased invasion to 100 % of spheroids (Figure 4C) without accelerating 30 

invasion (Figure 4D). Strikingly, depletion of Arl8B or Kif5B significantly decreased 31 

the number of invading spheroids to about 60% (Figure 4C). Additionally, cells 32 

depleted for Arl8B or Kif5B invaded slower than siLUC control cells (Figure 4D). 33 

These results indicated that lysosome positioning controls invasion behavior of 34 

RT112 cells.  35 

Secretion of MMP 36 



  

151 
 

Finally, we addressed whether lysosome positioning impacted secretion of MMPs.  1 

 2 

Discussion 3 

Here, we investigated for the first time intracellular changes that can be found in 4 

urothelial carcinoma cell lines that represent bladder tumors of different grades and 5 

stages. Because bladder carcinomas show great diversity, giving rise to many 6 

morphologically distinct cells, we employed normalized cell culture condition on 7 

adhesive micropatterns that are getting popular and that allow fast and rigorous 8 

quantification. Analyzing the size of the nucleus on micropatterned cells, we 9 

evidenced that the volume of the nucleus increased with the stage of bladder cancer 10 

that is consistent with previous results (Dey, 2010; Zink et al., 2004a). Moreover, the 11 

average volume of LEL and their average number per cell in micropatterned cells 12 

was comparable to those measured in classical cell culture conditions for all cell lines 13 

tested. Together these results indicate that culture conditions on micropatterns are 14 

valid to study intracellular alterations in cancer cells.  15 

 16 

Role of LEL in cancer disease 17 

We found unprecedented changes in the positioning of LEL during bladder cancer 18 

progression. The lysosomal compartment has been reported to shows acidification 19 

defects and a changed lysosome-cytosol pH-gradient in cancer (Fehrenbacher and 20 

Jaattela 2005; Ndolo et al. 2012). The important role of lysosomal proteases in 21 

cancer progression is well documented: the aspartate and cysteine protease 22 

activities of cathepsin D and cathepsin B, respectively, are increased in most solid 23 

cancers (Dykes et al., 2016; Machado et al., 2015; Steffan et al., 2014). Membrane-24 

type I MMP (MT1-MMP, also known as MMP14) are also significantly unregulated in 25 

invasive breast cancer, and correlate with higher-grade tumors (Lodillinsky et al., 26 

2016). The secreted proteases participate in the degradation of the extracellular 27 

matrix, which favors cell invasion, tumor growth and angiogenesis (Fennelly and 28 

Amaravadi, 2017) and exacerbated lysosomal exocytosis of proteases increases the 29 

invasiveness phenotype of cancer cells (Machado et al., 2015). Our results further 30 

support that lysosomal homeostasis potentially plays an important role in malignancy 31 

and peripheral lysosome positioning could potentially be relevant in lysosomal 32 

secretion. Because enhanced secretion from lysosomes also leads to acidification of 33 

the extracellular milieu and acidification is a general feature of the tumor 34 
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microenvironment, lysosome positioning changes could play a role in other cancer 1 

types. 2 

 3 

LEL positioning changes and invasion 4 

Besides major interest in cancer research and high investigation, the importance of 5 

positioning changes of the LEL compartment in cancer is however emerging. Steffan 6 

et al. have reported that lysosomes are more peripheral in prostate cancer due to 7 

acidification of the extracellular milieu that is a common feature of the tumor 8 

microenvironment and has been implicated in enhanced tumor invasion (Steffan et 9 

al., 2009). Yet, it was shown that lysosomes are distributed to the cell periphery due 10 

to acidification of the microenvironment in tumors (Glunde et al., 2003; Steffan et al., 11 

2009)(Glunde et al. 2003; Steffan et al. 2009). These peripheral lysosomes induces 12 

filopodia formation and tumor invasion, in breast cancer cells (Glunde et al., 2003). 13 

Furthermore, peripheral lysosomes in response to low pH in prostate cancer cells, 14 

secrete more cathepsin B, which increases tumor invasion (Steffan et al., 2010). 15 

Interestingly, several functions of LEL are regulated by intracellular positioning, such 16 

as proteolysis (Johnson et al., 2016), migration (Margiotta et al., 2017; Schiefermeier 17 

et al., 2014) and cholesterol transport (Rocha et al., 2009). Indeed, the Cardelli lab 18 

has shown that proteins and mechanisms implicated in lysosome positioning are 19 

deregulated in cancer progression, both in vitro and in vivo (Dykes et al., 2016, 2017, 20 

Steffan et al., 2009, 2010). In prostate cancer cells, depleted of Rab7 leads to the 21 

translocation of LEL to the cell periphery, increases the secretion of the cathepsin-B, 22 

and increase of invasion (Steffan et al. 2010). Additionally, in 2014, they showed 23 

evidence that Rab7 is a tumor suppressor, in vivo: tumors derived from Rab7-24 

silenced cells grew larger due to increased proliferation and invasion of cancer cells, 25 

and decreased apoptotic rates (Steffan et al. 2014). Conversely, when the Rab7 26 

effector RILP was overexpressed the lysosomes were clustered at the perinuclear 27 

region and the invasion was decreased (Steffan et al. 2010). Arl8b was recently 28 

implicated in cancer progression in prostate cancer cells. The knock-down of Arl8b 29 

prevented the anterograde transport of lysosomes, which decreases the secretion of 30 

proteases, thus impairing cell invasion in 3D matrix. Moreover, depleted Arl8b cells 31 

did not grow as xenograft tumors in vivo (Dykes et al. 2016).  32 

Moreover, it has been noted that peripheral lysosomes reveal a higher pH and are 33 

compromised in their degradation capacity (Johnson et al., 2016), thus signaling 34 

receptors are more active in cells with peripheral lysosomes. Contrary, central 35 
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lysosomes increase degradation of growth factor receptors and thus decrease 1 

downstream signaling (Hoepfner et al. 2005; Taub et al. 2007). The epidermal growth 2 

factor receptor (EGFR) signaling pathway is often altered in different cancer types 3 

(Baumdick et al., 2015) and about 40 to 60% of bladder cancers present an 4 

overexpression of EGFR (Ahmad et al., 2012). It would be interesting to investigate 5 

whether LEL positioning changes control attenuation of EGFR signaling.  6 

Rab27 is a well-known regulator of late endosome positioning (Ostrowski et al., 7 

2010). Additionally, inhibition of Rab27a significantly reduced the growth of 8 

metastatic mammary adenocarcinoma 4T1 in mice, and reduced its ability to 9 

metastasize. Contrary, the growth and spreading of the nonmetastatic mammary 10 

tumor type, TS/A, were not impaired by Rab27a inhibition (Bobrie et al., 2012). 11 

Additionally, it has been shown that Rab27b overexpression is implicated in the 12 

increase of invasion, proliferation and acidification of extra-cellular matrix in vitro, and 13 

increased tumor volume and weight in vivo (Hendrix and De Wever, 2013). 14 

Interestingly, in bladder cancer, the deregulation of Rab27 and its effector proteins 15 

are associated with muscle-invasive tumors in both Ta and Cis pathways, and could 16 

be linked to the loss of differentiation markers of these tumors (Ho et al., 2012a). 17 

 18 

Could LEL positioning integrate the many changes of tumor cells into a limited 19 

number of phenotypes? 20 

The genetic and epigenetic changes occurring during cancer development lead to 21 

major changes in the transcriptome and proteome profiles of cells and thus to 22 

alterations in multiple signaling pathways, intracellular trafficking and metabolism. 23 

Although the pathways triggering cancer are complex, the resulting phenotypes of 24 

tumor cells are few, defined by proliferation, migration and invasion. A pertinent 25 

question is thus, at which level the multifold transformations are integrated giving rise 26 

to relatively restricted cellular phenotypes? We propose that regulation of LEL 27 

positioning downstream of different intracellular trafficking pathways could integrate 28 

many changes of tumor cells into a limited number of phenotypes that confer 29 

competitive advantages to transformed cells. We show that positioning changes due 30 

to different pathways impact invasion. LEL emerge as a logistic epicenter in cells. In 31 

addition to their classical role as final acidic degradation compartments in eukaryotic 32 

cells, lysosomes are responsible for the intracellular recycling of macromolecules 33 

and organelles delivered to them by endocytosis and autophagy. Additionally, 34 

lysosomes have been associated with signal regulation (Hoepfner et al. 2005; Taub 35 

et al. 2007), secretion of proteinases (Koblinski et al., 2000; Steffan et al., 2014; Tu 36 

et al., 2008), nutrient sensing (Rocha et al. 2009; Korolchuk et al. 2011) and cell 37 
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migration (Dozynkiewicz et al., 2012; Pu et al., 2015; Schiefermeier et al., 2014), all 1 

functions that are deregulated in cancer. Lysosomes have been implicated in more 2 

than 50 inherited lysosomal storage disorders and neurodegenerative diseases, their 3 

alterations in cancer opens a new horizon of lysosomal contribution to cancer-related 4 

pathologies.   5 

 6 

The deeper understanding of the very complex cancer disease is one of the greatest 7 

challenges currently attacked by many scientists worldwide. This study allowed an 8 

unprecedented, detailed investigation of intracellular morphology changes that take 9 

place during transformation, providing great potential to identify key biological 10 

processes underlying cancer pathogenesis that is important for the rational design of 11 

more effective and less toxic therapeutic strategies. 12 

  13 
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Material and Methods 1 

 2 

Cells and reagents 3 

Bladder cancer cells lines MGH-U3, RT112, KU19-91, JMSU1, RT4, T24 and 4 

TCCSup were grown in RPMI medium (Life Technologies, Carlsbad, CA, USA), 5 

supplemented with 10% Fetal Bovine Serum (FBS; Eurobio, Courtaboeuf, France), 6 

and Normal human urothelium (NHU) cells were grown in KSFMC medium in a 7 

humidified atmosphere containing 5% CO2.. During invasion assays 1% Penicillin-8 

Streptomycin (Life Technologies) was added to the medium. For micropatterned 9 

experiments, HEPES was from Life Technologies, Fibronectin from Sigma-Aldrich 10 

(St. Louis, MO, USA), fibrinogen–Cy5 from Invitrogen, and Poly-L-Lysine(20)-11 

grafted[3.5]-Polyethyleneglycol(2) (PLL-g-PEG) from SuSoS (Dübendorf, 12 

Switzerland). The PLL-g-PEG was used at a final concentration of 0.1 mg.mL-1 in 10 13 

mM HEPES (pH 7,3) solution. Mouse monoclonal antibodies against Lamp1/CD107a 14 

and Rab7, was bought BP PharmingenTM (Material number 555798) and Cell 15 

Signaling, respectevely. Rabbit polyclonal antibody against Kif5B was from Santa 16 

Cruz Biotechnology (UKHC, Santa Cruz). Human monoclonal antibody F2C-hFc 17 

against α-tubulin was produced by the Recombinant Protein and Antibody Platform of 18 

the Institut Curie. FluoProbes 547H (557/572nm) coupled Phalloïdin was from 19 

Interchim. Nuclei were marked using 0.2 g.ml-1 4',6-diamidino-2-phenylindole (DAPI; 20 

Sigma-Aldrich). 21 

 22 

Cell transfection  23 

 24 

Cells (200 000) were transfected in 6 well plate with 25 pmol.mL-1 siRNA (Sigma-25 

Aldrich, see table 2) using Lipofectamine RNAiMAX Transfection Reagent (5 μL.mL-1; 26 

Life Technologies). Cells were incubated 72 h prior further manipulations. Efficiency 27 

of siRNA gene silencing was verified by performing real time PCR on cell mRNA or 28 

Western Blot on cell lysate after three days of transfection. Controls were performed 29 

with siRNA targeting Luciferase. Rab7, RNF26 and KIF5B gene silencing was 30 

performed using the 2 siRNA independently and results were pooled for plotting. In 31 

invasion assays, the siRNA was added in the collagen mix that surrounds the cell 32 

aggregate. 33 

 34 

 35 

 36 



  

156 
 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

Table 2: siRNA sequences 14 

 15 

cDNA Forward Reverse 

GAPDH 5’-TGCACCACCAACTGCTTAGC-3’ 5’-GGCATGGACTGTGGTCATGAG-3’ 

Arl8b 5’-AAGCATGTGGGAGCGGTAT-3’ 5’-CGATCTGCAGCATCTATCATGT-3’ 

RNF26 5’-AGCCTGGTGGCTTATGTGAT-3’ 5’-AGGTTCTGAGTGCCGATGAG-3’ 

 16 

Table3: RT-PCR primers 17 

 18 

Micropatterned coverslips preparation and cell seeding  19 

Micropattern production was as previously described (Azioune et al., 2009b) using 20 

photo-lithography methods. Briefly, coverslips were coated with PLL-g-PEG and 21 

spatially controlled areas were exposed to deep UV during 5 min using a photomask. 22 

Crossbows (37 μm diameter, 7 μm thick) were therefore photo-printed. Prior to cell 23 

seeding, the patterned substrates were incubated for 1h with fibronectin (Sigma-24 

Aldrich) at a concentration of 50 mg.mL-1 and concanavalin A (Sigma-Aldrich) at a 25 

concentration of 5 μg/ml for the crossbow patterning. The fibronectin mixture was 26 

supplemented with 10 mg.mL-1 fibrinogen–Cy5 (Invitrogen) to stain micropatterns. 27 

Cells were seeded on micropatterns in RPMI medium supplemented with 10 mM 28 

HEPES for 4 h prior the experiment.  29 

 30 

Immunofluorescence, image acquisition and analysis 31 

For immunofluorescence staining, formaldehyde-fixed cells were washed three times 32 

Gene Sequence 

Luciferase 5’-CGTACGCGGAATACTTCGA-3’ 

Rab7-5 5’-CACGTAGGCCTTCAACACAAT-3’ 

Rab7-6 5’-CTGCTGCGTTCTGGTATTTGA-3’ 

Rab27a  

RNF26-1 5’-GAGAGGAUGUCAUGCGGCU-3’ 

RNF26-2 5’-GCAGAUCAGAGGCAGAAGA-3’ 

Arl8b 5’- GAUAGAAGCUUCCCGAAAU-3’ 

KIF5B#2 5’-GCACATCTCAAGAGCAAGT-3’ 

KIF5B#3 5’-AACGTTGCAAGCAGTTAGAAA-3’ 

Luciferase 5’-CGTACGCGGAATACTTCGA-3’ 

Rab7-5 5’-CACGTAGGCCTTCAACACAAT-3’ 

Rab7-6 5’-CTGCTGCGTTCTGGTATTTGA-3’ 

Rab27a  

RNF26-1 5’-GAGAGGAUGUCAUGCGGCU-3’ 

RNF26-2 5’-GCAGAUCAGAGGCAGAAGA-3’ 

Arl8b 5’- GAUAGAAGCUUCCCGAAAU-3’ 

KIF5B#2 5’-GCACATCTCAAGAGCAAGT-3’ 

KIF5B#3 5’-AACGTTGCAAGCAGTTAGAAA-3’ 



  

157 
 

with PBS and permeabilized in PBS/0.2% BSA/0.05% saponin. Cells were then 1 

incubated with a primary antibody for 1 h, washed in PBS and incubated with Alexa 2 

Fluor 488- or Cy3- coupled secondary antibodies (Jackson ImmunoResearch). Slices 3 

were mounted in Mowiol (Sigma-Aldrich). Z images from fixed and immunolabelled 4 

cells were acquired with an inverted widefield Deltavision Core Microscope (Applied 5 

Precision) equipped with highly sensitive cooled interlined charge-coupled device 6 

(CCD) camera (CoolSnap Hq2,Photometrics). Z-dimension series were acquired 7 

every 0.5 µm. 8 

For each experiment, several tens of cells were imaged and aligned using the 9 

coordinates of the center and the angle of rotation of the micropattern (determined on 10 

ImageJ (Bethesda, MD, USA) as previously described (Grossier et al., 2014b; 11 

Schauer et al., 2010b). To extract the 3D spatial coordinates of intracellular 12 

structures, images were segmented with the multidimensional image analysis (MIA) 13 

interface on MetaMorph (Molecular Devices, Sunnyvale, CA, USA) based on wavelet 14 

decomposition. Circular distribution of the vector nucleus centroid-centrosome was 15 

potted using the R function rose.diag() and the maximum contour represent 25% of 16 

the cells. 17 

 18 

Kernel density estimation 19 

The coordinates of the segmented structures were processed for density estimation 20 

programmed in the ks library in the R programming language (R Development Core 21 

Team, 2013) (Schauer et al., 2010b): the probability density function f for each data 22 

sample of n coordinates X1, X2, …, Xn was estimated. We used a non-parametric, 23 

unbinned kernel density estimator. At each of the data points, a kernel function K 24 

was centered. The kernel functions were then summed to form the kernel density 25 

estimator : 26 

, 27 

in which is the Gaussian kernel with mean zero and variance matrix H. To 28 

estimate H (also known as the bandwidth), we used the plug-in selector in the ks 29 

library that has been shown to be reliable for 2D and 3D spatial distributions. For 30 

visualizing kernel density estimates, we used probability contours and the extension 31 

libraries mvtnorm, rgl, and miscd.  32 

 33 

Invasion assay, acquisition and analysis  34 

Cells were trypsinized and 104 cells/ml were ressuspended in RPMI medium 35 
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containing 10% FBS and 1% Penicillin-Streptomycin (Life Technologies). Then 100 1 

µl of cell suspension was plated in 48-well plates coated with 1% agarose (Life 2 

Technologies) and incubated for 3 days (Figure 43). In each well, a spheroid was 3 

formed from 103 cells. Next, the spheroids were plated on Lab-Tek chambers 4 

(Sigma), in a mixture of collagen I from rat tail (Corning) at a final concentration of 2 5 

mg.ml-1, PBS, sodium hydroxide (NaOH) and serum-free medium. For siRNA 6 

experiments, the medium was replaced with the transfection mixture (Opti-MEM 7 

medium from Life Technologies, Lipofectamin RNAiMAX and siRNA). For inducible 8 

cargo trafficking assays, 1 µM of A/C heterodimerizer (Clontech, California-USA) was 9 

added in the collagen mixture and in the culture medium. The spheroids were 10 

monitored for 6 consecutive days by using an inverted Leica microscope (Wetzlar, 11 

Alemanha) equipped with camera device using 4x objective.  12 

 13 

Matrix metalloproteinases activity  14 

MMPs activity was tested following the manufacturer’s protocol of the fluorimetric 15 

SensoLyte® 520 generic MMP activity assay (AnaSpec). Briefly, cell supernatant 16 

was centrifuged to eliminate floating cells. Then, samples were incubated with APMA 17 

(4-aminophenylmercuric acetate) for 3 hours at 37°C to target MMP1 and MMP14. 18 

Then, the MMP substrate containing 5-FAM/QXL™520 FRET peptide was incubated 19 

1 hour at RT prior to measurement of fluorescence signal (450 nm excitation and 520 20 

nm emission).  21 

 22 

Statistical analysis  23 

For each experiment, a large number of cells were monitored from 3 to 6 24 

independent experiments. Bilateral Student t-tests were performed on averages to 25 

access the significance of difference. Additionally, to compare the global distribution 26 

of cell population, χ² tests were performed (R function “chi-square()”). In this case, 27 

results from independent experiments were individually compared and combined for 28 

representation and statistical analysis.  29 

 30 
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Supplementary methods  1 

Cell lines: British Journal of Cancer. 1970;24:746-54.) T24 G3 (Bubenik J, Baresova 2 

M, Viklicky V, Jakoubkova J, Sainerova H, Donner J. Established cell line of urinary 3 

bladder carcinoma (T24) containing tumour-specific antigen. Int J Cancer. 4 

1973;11:765-73.) TCCSUP G4 (Nayak SK, O'Toole C, Price ZH. A cell line from an 5 

anaplastic transitional cell carcinoma of human urinary bladder. Br J Cancer. 6 

1977;35:142-51.) 7 

 8 

  9 
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Figure legends 1 

Figure 1: Alterations of bladder cells on subcellular level. (A) All analyzed cells 2 

well spread on micropatterns as judged by actin stained by Phalloidin. (B) 3 

Representative image of nuclei labeled with DAPI showing increase in nuclear size in 4 

cells representing higher grades of bladder cancer. (C). Quantification of nuclear size 5 

based on segmentation data from nucleus staining. Data was based on more than 6 

140 cells and each nucleus was represented by one point coordinate. (D) 7 

Representative normalized single cell fluorescently stained for LEL using anti-Lamp1 8 

antibody for each analyzed bladder cell type. (E) 50% contour of the 3D density 9 

maps quantifying LEL distribution (in turquoise), compared to NHU control cells (in 10 

white). LEL distribution is gradually more peripheral in bladder cancer cells. N is the 11 

number of cells. (F) Average number of LEL per cell. Significant decrease in number 12 

of lysosomes in MGHU-3 (TaG1) and JMSU1 (T4) cells. (G) Average volume of LEL. 13 

Significant increase of volume in all analyzed cells compared with NHU cells. Red 14 

lines represent median. ns, p>0.5 and ***, p<0.001in a Student’s t-test. Scale bar 15 

10µm. 16 

Supplementary figure 1: Bladder cells. (A) Morphological differences between 17 

NHU control cells and bladder cancer cells in classical cell culture. Scale bar 50 µm. 18 

(B) Representative normalized single cell fluorescently stained for LEL using anti-19 

Lamp1 antibody for of supplementary grade 3 cell lines. (C) 50% contour of the 3D 20 

density maps quantifying LEL distribution (in turquoise), compared to NHU control 21 

cells (in white). LEL distribution is more peripheral in additional grade 3 bladder 22 

cancer cell lines. N is the number of cells. 23 

Figure 2: Alterations of LEL compartment in classical in vitro culture. (A) 24 

Representative unconstrained single cell image fluorescently stained for LEL 25 

(Lamp1), nucleus (DAPI) and actin cytoskeleton (Phalloidin) for each bladder cancer 26 

cell line. Scale bar 10µm. B. Distribution of LEL in unconstrained cells was divided in 27 

3 regions: perinuclear (white), intermediate (gray) and peripheral (red). Lysosome 28 

peripheral dispersion is gradually increased depending on the bladder cancer cell 29 

grade. Analysis based in > 60 cells. ***, p<0.001in a Student’s t-test. 30 

Figure 3: Changes of LEL positioning to the cell periphery increase invasion of 31 

MGHU3 (TaG1) cells. (A) Quantification of Rab7 and RNF26 depletion from cell 32 

lysate Western Blot analysis and mRNA levels in RT-PCR, respectively.(B) 50% 33 
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contour of the 3D density maps quantifying lysosome distribution in depleted cells (in 1 

turquoise), compared to control cells treated with siLUC (in white). Lysosome 2 

distribution is more peripheral after depletion of Rab7 and Rab27. (C) Number of 3 

invasive spheroids. A strong increase of invasive spheroids is observed in depleted 4 

MGHU3 (TaG1) cells. (D) Median day of invasion. A significant acceleration of 5 

invasion in Rab27 depleted cells. Error bars from > 6 experiment.  6 

Figure 4: Changes of LEL positioning in RT112 (TaG2) cells predict invasion 7 

behavior. (A) Quantification of depletion of Rab7 from cell lysate by Western Blot 8 

analysis and RNF26 and Arl8b by RT-PCR.(B) 50% contour of the 3D density maps 9 

quantifying LEL distribution in depleted cells (in turquoise), compared to control cells 10 

treated with siLUC (in white). LEL distribution is more peripheral after depletion of 11 

Rab7 and Rab27. Conversely, LEL are distributed to the cell center in Arl8b depleted 12 

cells. (C) Number of invasive spheroids. Rab7 and Rab27 silencing does not have an 13 

impact on number of  invasive spheroids. 100% of RNF26 depleted spheroids 14 

invaded within 6 days. (D) Median day of invasion. A significant acceleration of 15 

invasion in Rab7 depleted cells. Error bars from > 6 experiment. **, p<0.01 in a 16 

Student’s t-test. 17 

Table 1: Statistical differences between density maps. P-values correspond to 18 

differences between lysosome density maps of analyzed bladder cancer cells and 19 

NHU control cells based on nonparametric and asymptotically comparison of kernel 20 

distribution. Larger differences are represented by higher p-values.  21 
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