N

N

Symbolic Data Mining Methods with the Coron
Platform

Laszlo Szathmary

» To cite this version:

Laszlo Szathmary. Symbolic Data Mining Methods with the Coron Platform. Software Engineering
[cs.SE]. Université Henri Poincaré - Nancy 1, 2006. English. NNT : 2006NAN10159 . tel-01754284v2

HAL Id: tel-01754284
https://theses.hal.science/tel-01754284v2
Submitted on 3 Nov 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01754284v2
https://hal.archives-ouvertes.fr

NANCY 1

' \\\\iVer‘r

Département de formation doctorale en informatique Ecole doctorale IAEM Lorraine

UFR STMIA

Méthodes symboliques de fouille de
données avec la plate-forme Coron

THESE

présentée et soutenue publiquement le 24 novembre 2006
pour I'obtention du
Doctorat de I'université Henri Poincaré — Nancy 1
(spécialité informatique)

par

Laszlo SZATHMARY

Composition du jury

Professeur, UHP Nancy 1, France

Président : Claude GODART
Rapporteurs : Bruno CREMILLEUX Professeur, Université de Caen, France
Sergei O. KUZNETSOV Professor, Higher School of Economics, Moscow, Russia
Ezaminateurs - Katalin BOGNAR Associate professor, University of Debrecen, Hungary
Marzena KRYSZKIEWICZ Associate professor, Warsaw Univ. of Technology, Poland

Amedeo NAPOLI Directeur de recherche CNRS, UHP Nancy 1, France

Laboratoire Lorrain de Recherche en Informatique et ses Applications — UMR 7503

Mis en page avec la classe thloria.

Remerciements

En premier lieu, je remercie vivement Amedeo Napoli qui m’a proposé d’effectuer une thése
sous sa direction. Travailler avec Amedeo m’a permis d’apprendre énormément, sur le plan sci-
entifique, sur le plan humain, ainsi que sur le métier de chercheur.

Je tiens & remercier les personnes qui m’ont fait 'honneur de participer & mon jury de thése
et de s’'intéresser & ce travail. Merci & Claude Godart d’avoir présidé ce jury. Un grand merci
a Bruno Crémilleux et Sergei O. Kuznetsov d’avoir accepté d’étre rapporteur et d’avoir évalué
mon travail avec autant d’intérét et d’enthousiasme. Je remercie également beaucoup les ex-
aminateurs qui ont composé mon jury : Katalin Bognar et Marzena Kryszkiewicz. Merci pour
I’attention avec laquelle elles ont lu et évalué ce mémoire, pour leurs encouragements ainsi que
pour les remarques et critiques constructives qu’elles m’ont adressées.

Je souhaite remercier tous les membres de ’équipe Orpailleur pour leur acceuil, leur soutien,
leurs conseils et pour tout ce qui fait de cette équipe un lieu ou il est trés agréable et profitable
de travailler. Merci en particulier & Sandy Maumus, avec qui ¢’était un vrai plaisir de travailler
sur notre projet commun. Merci également & mes camarades de bureau, Mathieu d’Aquin et
Sylvain Tenier, pour m’avoir supporté pendant tout ce temps. Merci & mes stagiaires, Thomas
Bouton et Pierre Petronin, pour leur contribution & mon travail.

Antoinette Courrier et Nadine Beurné m’ont apporté une aide trés efficace et trés sympa-
thique.

Merci aux autres thésards du LORIA avec qui j’ai partagé tant de discussions, tant de
cafés et tant de baby-foot (Mohamed, Fred, Raghav, Daniel, Rokia, Yves, Nizar, Adrien, Fadi,
Hatem, Szilard, Ustun, Rémi, Benjamin, ...). Merci aussi aux autres copains de Nancy : Ola,
Jean-Daniel, Alan, Sébastien, ...

Je voudrais remercier aussi Petko Valtchev de I’Université du Québec & Montréal pour sa trés
enrichissante collaboration aux travaux de I’équipe.

Je souhaite également remercier madame Demangel et madame Hangs au STUAP pour m’avoir
introduit dans le monde du rock & roll et de la salsa. Grace a la danse, le temps de la rédac-
tion est passé beaucoup plus facilement. Merci & tout le monde au SIUAP, surtout & Sophie et
Anne-Laure.

Je tiens également & remercier ma famille et tout particuliérement ma mére pour m’avoir
toujours fait confiance et toujours soutenu dans mes études.

Je remercie aussi tous ceux que j’ai oublié de remercier !
Finalement, je voudrais remercier le travail des développeurs des logiciels suivants

Debian GNU/Linux, K Desktop Environment (KDE), vim, BTEX, gv, xpdf, GALICIA, Java,
Eclipse, Microsoft Windows XP, Microsoft Visio 2000, ...

Laszlé Szathméary

i

1ii

For my mother.
For my grandparents.

iv

Table of Contents

List of Figures
List of Tables

1 Introduction

1.1 Knowledge Discovery in Databases
1.2 Data Mining — The Central Step of KDD
1.3 Methods for KDD
1.3.1 An Introducting Example oo
1.3.2 Data Mining Methods oo
1.4 Overview of the Thesis
1.4.1 Frequent Itemset Search L.
1.4.2 Frequent Association Rules
1.4.3 Rare Itemsets and Rare Association Rules
1.4.4 The Coron Toolkit
1.5 Thesis Outline

Symbolic Methods for Knowledge Discovery

2.1 Lattice-Based Classification
2.1.1 Classical Notation of Formal Concept Analysis
2.2 Frequent Itemset Search and Association Rule Extraction
2.2.1 Frequent Itemset Search L
2.2.2 Association Rule Extraction L L.
2.3 Applications
2.3.1 Mining Chemical Reaction Database
2.3.2 An Experiment in Biology o
2.3.3 An Introduction to Web Mining,
2.4 Discussion
2.5 Conclusion

xi

xiii

N O O O Ot Ot e W W W -

=}

vi Table of Contents
3 Frequent Itemset Search 29
3.1 Basic Concepts 29
3.2 Classification of Itemset Mining Algorithms 30
3.2.1 Levelwise Algorithms oo 30

3.2.2 Vertical Algorithms oL oo 33

3.2.3 Hybrid Algorithms o 35

3.24 Other Algorithms 35

3.3 Detailed Description of Selected Algorithms 36
3.3 1 Zart ... 37

3.32 Eclat-Z 51

3.3.3 Charm-MFIL 58

4 Frequent Association Rules 61
4.1 All Association Rules 61
4.2 Closed Association Rules L o 64
4.3 Family of “Minimal Non-Redundant Association Rules” 68
4.3.1 Why MNR Rules are “Minimal” and “Non-Redundant” 69

4.3.2 Deducing Valid Association Rules from MNR Rules 72

4.4 Other Statistical Measures 72
4.4.1 Interestingness Measures Lo 72

4.4.2 Combining Quality Measures 74

443 Example 75

4.5 Efficient Support Derivation of Frequent Itemsets 75
4.6 Experimental Results o 77
4.6.1 Numberof Rules 77

4.6.2 Execution Times of Rule Generation 78

4.7 Related Work o 80
4.8 Conclusion e 80

5 Rare Itemsets and Rare Association Rules 81
9.1 Rare Itemsets e 81
5.1.1 Contribution and Motivations o L. 82

5.1.2 Bagic Concepts 82

5.1.3 A Lattice-Based Approach for Itemset Enumeration 83

5.1.4 Finding Rare Itemsets Lo 85

5.2 Border Study 88

5.2.1 Minimal Rare Generators o 90

vii

5.3 Rare Association Rules o 93
5.3.1 Introduction. 93
5.3.2 Basic Concepts 93
5.3.3 Related Work L 93
5.3.4 Contribution and Motivations L L. 95
5.3.5 Finding MRG Association Rules 96
5.3.6 Generating MRG Rules o 98
5.3.7 Calculating Other Interestingness Measures 99
5.3.8 A Methodology for Finding Rare Association Rules 100
5.3.9 A Classification of Association Rules by the Frequency of the Antecedent

and Consequent oL 100

5.3.10 Experimental Results 101

5.3.11 Conclusion 104

6 A Data Mining Methodology and the Coron Toolkit 105

6.1 An Overview of the Coron System 105

6.2 A Global Data Mining Methodology 107
6.2.1 Definition of the Study Framework 108
6.2.2 Tterative Step L 108
6.2.3 Using the Methodology with Rare Association Rules 109

6.3 Experiments on a Real-Life Biological Database 109
6.3.1 Introduction to Mining Biological Data 109
6.3.2 Studied Population: the STANISLAS Cohort 110
6.3.3 Experiments and Results 0oL 111

6.4 Other Uses of the Coron System 114
6.4.1 The Cabamaka System 114
6.4.2 The Galicia Platform o 119

7 Conclusion and Perspectives 121

7.1 Conclusion oL L 121
7.1.1 Algorithms for Finding MNR Rules 121
7.1.2 Closed Association Rules 122
7.1.3 Rare Itemsets and Rare Association Rules 122
7.1.4 The Coron Toolkit 123

7.2 Mid- and Long-Term Perspectives oL 124

viil

8 Summaries in French and in Hungarian

E

F

81 Résuméétendu L.
8.1.1 Introduction.
8.1.2 Une méthodologie pour la fouille et la boite & outils Coron
8.1.3 L’extraction de motifsrares
8.1.4 Conclusion et perspectives

82 Reziimé
8.2.1 Konklazié
8.2.2 MNR szabalyokat keres§ algoritmusok
8.2.3 Zart asszociacids szabalyok
8.2.4 Ritka mintak és ritka asszocidciés szabalyok

825 A Coronrendszer

Test Environment

Classical Itemset Mining Algorithms

B.1 Apriori.
B.2 Apriori-Close
B3 Eclat
B4 Charm o

The Trie Data Structure

C.1 The Trie Data Structure
C.2 Subset Function with a Trie
C.3 Superset Function with a Trie

Horizontal and Vertical Data Layouts

Efficient Support Count of 2-itemsets

Table of Contents

127

159

161

................ 161
................ 164
................ 167
................ 172

179

................ 179
................ 180
................ 182

187

189

Comparison of Generators Representation and Frequent Closed Itemset Rep-

resentation

G

The Coron Toolkit

G.1 Coron-base 0L
G.1.1 Command-line Interface
G.1.2 Available Algorithms
G.1.3 Graphical User Interface

G.2 AssRuleXo

191

193

G.2.1 Command-line Interface
G.2.2 Graphical User Interface o 0o
G.3 Pre-processing: Data Preparation and Filtering

G.3.1 Filter-DB . .
G.3.2 Filter-Compl

G.4 Post-processing of the Extracted Rules

G.4.1 Filter-Rules .
G.4.2 Rule-Coloring

G.4.3 RuleMiner: a GUI for Post-processing Modules

G.5 Other Utilities . . .

G.5.1 Analyze-Ttemsets

G.5.2 Analyze-Rules
G.5.3 getlnterval . .
G.5.4 rules2sql . . .
G6 LeCo.

Bibliography
Glossary

Index

ix

204
208
210
210
213
214
214
215
216
218
218
219
220
221
223
226

229

241

243

Table of Contents

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2

5.1
9.2

6.1

8.1
8.2
8.3

B.1
B.2
B.3
B.4
B.5
B.6
B.7

List of Figures

The KDD loop: from rough data to knowledge units. 2
The lattice representing the power set of the set {a,b,c,d,e}.. 10
The lattice representing a part of the divisibility relation in N. 10
The Galois lattice associated to the formal context of Figure 2.1. 12
The general schema of a synthesis problem. 18
Skeleton and functional groups of a target molecule. 19
The structural information on a reaction. 19
The representation of the reaction #13426 in the 1sM-2002 database. 20
Powerset lattice of dataset D. 31
IT-tree: Itemset-Tidset search tree of dataset D. 34
Result of Pascal. 38
Result of Zart. e 38
Response times of Zart for T20I6D100K. 50
Response times of Zart for C20D10K. oo oL 50
Response times of Zart for MUSHROOMS. o .. 20
The PosIndex structure of Eclat-Z. 23
Contents of the file with the frequent itemsets. 23
Position of Closed Rules. 66
Non-optimized and optimized support derivation of frequent itemsets. 76
Powerset lattice of dataset D. o 83
Rare equivalence classes found by BtB. oL 98
Life-cycle of the mining methodology. 107
La boucle d’ECBD : des données brutes aux unités de connaissance. 128
Cycle de vie de la méthodologie de fouille symbolique de données. 135
Treillis des parties de la base de données D. 146
Response times of Apriori-Close for T20I6D100K. 166
Response times of Apriori-Close for C20D10K. 166
Response times of Apriori-Close for MUSHROOMS. 166
Execution of Eclat. e 169
Response times of Eclat for T20I6D100K. 170
Response times of Eclat for C20D10K.o L. 171
Response times of Eclat for MUSHROOMS. 171

xi

xii

List of Figures
B.8 Execution of Charm. 174
B.9 Hash table for the I'T-tree in Figure B.8. 175
B.10 Response times of Charm for T20I6D100K. 176
B.11 Response times of Charm for C20D10K. 177
B.12 Response times of Charm for MUSHROOMS. 177
C.1 Trie of dictionary words. L 179
C.2 Trieof itemsets. 180
C.3 Subset function with a trie. Lo 181
C.4 Superset function with a trie.o oo 185
D.1 Horizontal and vertical layouts. o oL oL 187
D.2 Horizontal to vertical database transformation. 188
D.3 Vertical to horizontal database transformation. 188
E.1 Initialized upper triangular matrix for counting the support of 2-itemsets. 189
E.2 Support count of 2-itemsets with an upper triangular matrix. 190
G.1 Step 0 — Welcome screen. Lo Lo 200
G.2 Step 1 — Choosing the input file. 201
G.3 Step 2 — Choosing the output file. oo 201
G.4 Step 3 — Defining the minimum support. 202
G.5 Step 4 — Choosing the mining algorithm. 202
G.6 Step 5 — Statistics of the user’s choice., 203
G.7 Step 6 — Displaying theresult. o 203
G.8 Step 3 — Defining the minimum support and minimum confidence thresholds. . . 208
G.9 Step 4 — Choosing the mining algorithm and rules to extract. 209
G.10 Step 6 — Displaying the result. Lo 209
G.11 Horizontal filtering. 212
G.12 Vertical filtering. 212
G.13 Graphical frontend for Filter-Rules. 216
G.14 Graphical frontend for Rule-Coloring. 217

G.15 Filtering rules by support and/or confidence. 217

List of Tables

1.1 An example of a binary matrix.

2.1 An example of a formal context. L
2.2 Preparing the original data for the mining task.

3.1 A toy dataset (D) for the examples.
3.2 Tablesused in Zart. e
3.3 Fields of the tables of Zart.
3.4 Execution of Zart. e
3.5 Output of Zart.
3.6 Characteristics of databases used for Zart.
3.7 Response times of Zart and other statistics.
3.8 Order of frequent itemsets produced by Eclat.
3.9 Execution of Eclat-Z. o
3.10 Respouse times of Eclat-Z.
3.11 Execution of Charm-MFEL
3.12 Respouse times of Charm-MFI.

4.1 Different sets of association rules extracted from dataset D.
4.2 Characteristics of the different quality measures.
4.3 Generating CR without and with cache. 000
4.4 Generating MN'R without and with cache.
4.5 Comparing sizes of different sets of association rules.
4.6 Execution times of rule generation. o L0

5.1 Execution of Apriori-Rare.o
5.2 Minimal rare itemsets found in dataset D.
5.3 Execution of Arima.o
54 Border sizes. L e
5.5 Rare equivalence classes found by BtB. o0
5.6 Exact MRG rules found in dataset D.
5.7 Approximate MRG rules found in dataset D.
58 FRrulesindataset D.
5.9 Distribution of MRG rules.
5.10 Steps taken to find MRG association rules. L.

6.1 Extracted association rules that are interesting from the expert’s point of view.

8.1 Un exemple de matrice binaire. o oo

xiii

115

130

xiv

8.2
8.3
8.4
8.5

Al

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8

F.1

F.2

G.1
G.2

List of Tables

Régles d’association extraites présentant un intérét du point de vue de I'expert. . 141
Une base de données simple (D) utilisée dans les exemples. 145
Exécution de D'algorithme Apriori-Rare. 149
Exécution de l'algorithme Arima. oL 150
Database characteristics.o o 159
Tables used in Apriori. 161
Fields of the tables of Apriori. 161
Execution of Apriori. 163
Execution of Apriori-Close. 165
Response times of Apriori and Apriori-Close. 165
Response times of Eclat. 170
Another dataset (D') for Charm. 172
Response times of Charm. 176
Comparison of the generators representation and the FCI representation of fre-

quent itemsets (Table 1 of 2). 191
Comparison of the generators representation and the FCI representation of fre-

quent itemsets (Table 2 0f2). 192
A toy dataset for the examples. 194

Our example dataset in different file formats. 194

Chapter 1

Introduction

In this chapter we give an introduction of the thesis. In Sections 1.1 — 1.3 we give the context of
the thesis, i.e. knowledge discovery in databases and data mining. In Section 1.4 we provide an
overview of the thesis and we give a summary of the forthcoming chapters.

1.1 Knowledge Discovery in Databases

The knowledge discovery in databases process is aimed at extracting from large databases infor-
mation units that can be interpreted as knowledge units to be reused. This process is based on
three major steps: the selection and preparation of data, the data mining operation, and finally
the interpretation of the extracted units.

Knowledge discovery in databases can be likened to the process of searching for gold in the
rivers: the gold nuggets that are researched are knowledge units, and the rivers are the databases
under study.! Huge volumes of data —and particularly documents— are available, without any
intended usage. A fundamental question is to know if there may be something interesting in these
data, and to find methods for extracting these “interesting things”. The knowledge discovery in
databases process —hereafter KDD— consists in processing a huge volume of data in order to extract
knowledge units that are non trivial, potentially useful, significant, and reusable. Generally, the
KDD process is iterative and interactive, and controlled by an expert of the data domain, called
the analyst, who is in charge of guiding the extraction process, on the base of his objectives, and
of his domain knowledge. The analyst selects and interprets a subset of the units for building
“models” that will be further considered as knowledge units with a certain plausibility. The KDD
process is based on three major steps: (i) the data sources are prepared to be processed, (ii) then
they are mined, and (iii) finally, the extracted information units are interpreted for becoming
knowledge units. These units are in turn embedded within a representation formalism to be
used within a knowledge-based system. The KDD process may also be understood as a process
turning data into information and then knowledge (see Figure 1.1), considering the following
definitions [SAAT99, Wil02]:

Data. Data are the uninterpreted signals that reach our senses every minute. A red, green, or
yellow light at an intersection is one example. Computers are full of data: signals consisting of
strings of numbers, characters, and other symbols that are blindly and mechanically handled in
large quantities.

! Actually, the name of our research team “Orpailleur” means “gold miner” in English.

2 Chapter 1. Introduction

Data (rough data, databases)
l Domain understanding
l Data selection (windowing)
Selected data
l Cleaning / Transformation of data
l Preparation of the data set
Prepared data
l Data mining process (discovering patterns)
1 Numerical and symbolic KDD methods
Discovered patterns
l Post-processing of discovered patterns
l Interpretation / Evaluation
Knowledge units (for knowledge systems)

Figure 1.1: The kDD loop: from rough data to knowledge units. The overall objective of the
KDD process is to select, prepare and extract knowledge units from different sources, and then
to represent the extracted knowledge units in adequate knowledge structures.

Information. Information is data equipped with meaning. For a car driver, a red traffic light
is not just a signal of some colored object, rather, it is interpreted as an indication to stop. In
contrast, a color-blind person will probably not attach the same meaning to a red light.

Knowledge. Knowledge is the whole body of data and information that people bring to bear
to practical use in action, in order to carry out tasks and create new information. Knowledge
adds two distinct aspects: first, a sense of purpose, since knowledge is the “intellectual machin-
ery” used to achieve a goal; second, a generative capability, because one of the major functions
of knowledge is to produce new information. It is not accidental, therefore, that knowledge is
proclaimed to be a new “factor of production”.

The KDD process is performed within a KDD system that is composed of the following ele-
ments: the databases, the either symbolic or numerical data mining modules, and the interfaces
for interactions with the system, e.g. editing and visualization. Moreover, the KDD system may
take advantage of domain knowledge embedded within an ontology relative to the data domain.
Closing the loop, the knowledge units extracted by the KDD system must be represented in an
adequate representation formalism and then they may be integrated within the ontology to be
reused for problem-solving needs in application domains such as agronomy, biology, chemistry,
medicine, etc.

There are a number of general books that can be used with profit for understanding the KDD

principles and the usage of the KDD methods, such as [FPSSU96, MBK98|, and more recent
textbooks such as [HK01, HMS01, Dun03], and [WF00] that is associated with the WEKAZ

system.

*http://www.cs.waikato.ac.nz/“ml/weka/

1.2. Data Mining — The Central Step of KDD 3

1.2 Data Mining — The Central Step of KDD

Data mining is the central step of the KDD process. The KDD process involves several stages: se-
lecting the target data, pre-processing the data, transforming them if necessary, performing data
mining to extract patterns and relationships, and then interpreting and assessing the discovered
structures.

Progress in digital data acquisition and storage technology has resulted in the growth of
huge databases. Consequently, interest has grown in the possibility of extracting information
from these data that might be of value to the owner of the database. The discipline concerned
with this task has become known as data mining. Hand et al. in [HMS01] define data mining
the following way: “Data mining is the analysis of (often large) observational data sets to find
unsuspected relationships and to summarize the data in novel ways that are both understandable
and useful to the data owner.”

Data mining typically deals with data that have already been collected for some purpose
other than the data mining analysis. This means that the objectives of the data mining exercise
play no role in the data collection strategy. For this reason, data mining is often referred to as
“secondary” data analysis.

The definition also mentions that the datasets examined in data mining are often large.
When we are faced with large bodies of data, new problems arise. Some of these relate to such
fundamental issues as what data management strategy to use, how to analyze the data in a
reasonable period of time, or how to filter noise from the data. Often the available data comprise
only a sample from the complete population; the aim may be to generalize from the sample to
the population. For instance, we might wish to predict how future customers are likely to behave.
Sometimes we may want to summarize or compress a very large dataset in such a way that the
result is more comprehensible, without any notion of generalization. This issue would arise, for
example, if we had complete census data for a particular country or a database recording millions
of individual retail transactions.

Data mining should not be seen as a simple one-time exercise. Huge data collections may
be analyzed and examined in an unlimited number of ways. As time progresses, so new kinds of
structures and patterns may attract interest, and may be worth seeking in the data.

Data mining has, for good reason, recently attracted a lot of attention: it is a new technol-
ogy, tackling new problems, with great potential for valuable commercial and scientific discover-
ies [HMSO01].

1.3 Methods for KDD

1.3.1 An Introducting Example

First, let us examine what may be expected from the application of data mining methods to
data. Let us consider a binary matrix M;j, also called a formal context, where the rows represent
customers, and the columns represent products bought by particular customers (see Table 1.1):
M;; = 1 whenever the customer i buys the product j. In real-world formal contexts, such a binary
matrix may have thousands of columns, and millions of lines... From this formal context, one
may extract the following units:

4 Chapter 1. Introduction

Customers/Products chips mustard sausage soft drink beer

Cy 1 0 0 0 1
Co 1 1 1 1 1
Cs 1 0 1 0 0
Ca 0 0 1 0 1
Cs 0 1 1 1 1
Ce 1 1 1 0 1
Cr 1 0 1 1 1
Ce 1 1 1 0 0
Co 1 0 0 1 0
Cio 0 1 1 0 1

Table 1.1: An example of a binary matrix representing transactions between customers (C) and
products (P).

e The set X — {beer, sausage, mustard} has frequency ¢(X) = 4, i.e. there are four individu-
als of ten buying the three products together. In the same way, the set Y = {beer, sausage}
has frequency ¢(Y) = 6. The set X (respectively Y) may be interpreted as the fact that 40%
(resp. 60%) of the customers buy the products in X (resp. in Y) at the same time.

e Moreover, the rule R = {beer, sausage — mustard} may be extracted from the sets X and
Y (i.e. Y — X\ Y where X\ Y denotes the set X without Y), with the confidence 0.66 (66.6%),
i.e. if a customer buys beer and sausage, then the probability that he buys mustard is
0.66 (among six customers buying beer and sausage, four customers also buy mustard).

From the point of view of the analyst, the sets X and Y, and the rule R as well, may be
interpreted and validated as knowledge units extracted from the data.

1.3.2 Data Mining Methods

The extraction process is based on data mining methods returning knowledge units from the
considered data. The data mining methods can be either symbolic or numerical:

e Symbolic methods include among others: classification based on decision trees, lattice-
based classification, frequent itemsets search and association rule extraction, classification
based on rough sets [Paw91]|, learning methods, e.g. induction, instance-based learning,
explanation-based learning [Mit97, MBK98|, and database methods based on information
retrieval and query answering. . .

e Numerical methods include among others: statistics and data analysis, hidden Markov
models of order 1 and 2 (initially designed for pattern recognition), Bayesian networks,
neural networks, genetic algorithms. ..

These methods are dependent on research domains to which the KDD process is linked [Man97]:
o Statistics and data analysis: the goal is similar, but the KDD process requires most of

the time a combination of different methods, symbolic as well as numerical methods, and
domain knowledge for the interpretation of the extracted units.

1.4. Overview of the Thesis 5

e Database management: database management system techniques may be used to help
solving the data mining task, e.g. using the query capabilities for preparing data to be
mined.

o Machine learning: machine learning methods are the core of the KDD process, but scalabil-
ity, i.e. the amount of data that is considered, and the objectives are different, i.e. reusing
the results of the KDD process for problem-solving or decision making.

o Knowledge representation and reasoning: the data mining process may be guided by a
model —a domain ontology— for interpretation and problem-solving.

The KDD process may be considered as a kind of “supervised learning process” — since an
analyst is in charge of controlling and guiding the KDD process. The analyst may take advantage
of his own knowledge and of domain ontologies, for giving an interpretation of the results and for
validating the results. In this way, the results of the KDD process may be reused for enlarging
existing ontologies, showing that knowledge representation and KDD are two complementary
processes: no data mining without knowledge on the data domain!

1.4 Overview of the Thesis

The main topic of the thesis is knowledge discovery in databases (KDD). More precisely, we have
investigated one of the most important tasks of data mining today, namely itemset extraction
and association rule generation. Throughout our work we have borne in mind that our goal is
to find interesting association rules. We have developed specific algorithms in order to achieve
this goal.

The main contributions of this thesis are: (1) We have developed algorithms for finding
minimal non-redundant association rules; (2) We have defined a new basis for association rules
called Closed Rules; (3) We have investigated an important but relatively unexplored field of
KDD namely the extraction of rare itemsets and rare association rules; (4) We have packaged our
algorithms along with other auxiliary operations for KDD into a unified software toolkit called
CORON.

We now present a more detailed summary of the thesis contributions.

1.4.1 Frequent Itemset Search

In Chapter 3 we present two algorithms that we have specifically adapted to extract minimal
non-redundant association rules (MNR). These rules are lossless, sound and informative rep-
resentations of all valid association rules. The output of most of the other algorithms cannot be
used directly for generating MN'R rules. The first algorithm, Zart, is a practical extension of
Pascal, which is one of the most efficient levelwise algorithms for finding frequent itemsets (FIs).
In addition to Pascal’s capabilities, Zart identifies the set of frequent closed itemsets (FCIs)
and associates their generators to them. We show that this extra output from Zart is essential
for extracting MNR rules. In the second algorithm, Fclat-Z, we go further and we show how
to generalize the idea in Zart for any frequent itemset mining algorithm. This way, arbitrary
Fl-miner algorithms can be extended in order to support the extraction of MNR rules.

In Chapter 3 we propose a simple modification of Charm that we call Charm-MFI which
identifies maximal frequent itemsets among frequent closed itemsets. This algorithm has been
used for our border studies.

6 Chapter 1. Introduction

1.4.2 Frequent Association Rules

In Chapter 4 we present different sets of frequent association rules, namely all valid rules and the
family of minimal non-redundant rules. We also introduce a new basis called Closed Rules that
we position between the previously mentioned two sets of association rules, filling a gap between
them. Closed Rules is a concise representation of all valid rules, and it only requires frequent
closed itemsets. Closed Rules seems to be a good alternative to all valid association rules.

In the literature, most of the algorithms concentrate only on the support and the confidence
values of rules. We show how to calculate some other statistical measures that require, in
addition, the support value of the right sides of the rules. In our work, for the condensed
representation of Fls we use FCIs that are stored in a trie data structure. Deriving the support
values of both sides of rules would require lots of trie operations. To overcome this problem, we
propose a hash-based itemset cache that proved to be a very efficient solution. The use of cache
is advantageous even if we do not need other interestingness measures, and thus the caching
technique can also be incorporated into the other algorithms.

1.4.3 Rare Itemsets and Rare Association Rules

Chapter 5 is one of the most original part of this thesis work. In this chapter, we address the
problems of extracting rare itemsets and generating rare association rules. In the literature, these
problems have not yet been studied in detail, although rare itemsets can also contain important
information just as frequent itemsets do. A particularly relevant field for rare itemsets is medical
diagnosis.

In Chapter 5.1 we present a method for finding all rare itemsets. For this task we use the
well-known Apriori algorithm. Apriors is known to find all Fls, but actually it also finds a special
subset of rare itemsets, the minimal rare itemsets (MRIs). A slight modification of Apriori, which
we call Apriori-Rare, retains MRIs instead of dropping them. We show how to restore all rare
itemsets from MRIs while avoiding itemsets with support 0.

In Chapter 5.3 we go further by showing how to generate valid rare association rules. Our
work is motivated by the long-standing open question of devising an efficient algorithm for finding
rules with low support and very high confidence. In order to find such rules using conventional
frequent itemset mining algorithms like Apriori, the minimum support must be set very low,
which drastically increases the runtime of the algorithm. Moreover, when minimum support is
set very low, Apriori produces a huge number of frequent itemsets. This is also known as the
rare item problem. For this long-existing problem we propose a solution. With our method we
can extract a set of exact rare association rules (we call these rules “exact MRG rules”). We also
show how to extract approximate MRG rules; however their interestingness is doubtful. Thus,
we concentrate more on exact rare rules. Furthermore, these rules are non-redundant because
the antecedent is minimal and the consequent is maximal, implying that among rules with the
same support and same confidence, these rules contain the most information.

1.4.4 The Coron Toolkit

All the algorithms that we present in this thesis are implemented and grouped together in a
unified software toolkit called CORON. CORON is a domain and platform independent, multi-
purposed data mining platform, which incorporates not only a rich collection of data mining
algorithms, but also allows a number of auxiliary operations. To the best of our knowledge, a
data mining toolkit designed specifically for itemset extraction and association rule generation

1.5. Thesis OQutline 7

like CORON does not exist elsewhere. CORON also provides support for preparing and filtering
data, and for interpreting the extracted units of knowledge.

Most of the experiments with CORON were performed on a real-life biomedical dataset called
STANISLAS cohort. During these experiments, we realized that we needed a (1) methodology
for mining, and (2) a tool for implementing the methodology. Chapter 6 presents our global
data mining methodology that can be generalized to arbitrary datasets. The methodology can
be used for both frequent and rare association rules.

At the end of Chapter 6, besides the STANISLAS cohort, we present three other projects that
use the CORON toolkit with success.

1.5 Thesis Outline

In Chapter 2 we begin by presenting the state of the art. Our main focus is symbolic KDD
methods based on the classification operation, more precisely on lattice-based classification,
frequent itemset search, and association rule extraction. We show how the whole transformation
process from rough data to knowledge units is based on the underlying principle of classification.

In Chapter 3 we present in depth concepts and algorithms of frequent itemset search. We
propose algorithms that we have specifically adapted to our needs, i.e. for finding minimal
non-redundant association rules and for studying the border. In Appendix B we present some
classical algorithms that are very closely related to this chapter.

In Chapter 4 we investigate the extraction of different sets of frequent association rules,
namely all valid rules, Closed Rules, and the family of minimal non-redundant association rules.

In Chapter 5 we address the problems of the extraction of rare itemsets and the generation
of rare association rules. This is one of the most important part of this thesis.

In Chapter 6 we present a global data mining methodology for mining both frequent and
rare association rules. The second part of the chapter describes the CORON platform that
implements the methodology in its entirety.

Finally, Chapter 7 summarizes the main contribution of the thesis, and suggests avenues
for future work.

It must be noted that the appendices are also an important part of the thesis. Among other
things, we present some classical algorithms, an efficient data structure for itemsets, different
optimization techniques, and a detailed user guide for the CORON toolkit.

Chapter 1. Introduction

Chapter 2

Symbolic Methods for Knowledge
Discovery

This chapter provides an overview of the so-called symbolic methods in knowledge discovery,
namely lattice-based classification, frequent itemset search and association rule extraction. Then,
we detail some applications of the KDD process, and we propose a discussion of the main char-
acteristics of the KDD process and a conclusion for ending the chapter.

2.1 Lattice-Based Classification

A number of classification problems can be formalized by means of a class of individuals (or
objects) and a class of properties (or attributes), and a binary correspondence between the two
classes, indicating for each individual-property pair whether the property applies to the individual
or not [BM70, GVM93, GW99|. The properties may be features that are present or absent, or
the values of a property that have been dichotomized into binary variables. These variables are
collected into binary tables relating a set of individuals with a set of properties, where (1,j) =1
or is true whenever the individual i has the property j (just as illustrated in Table 1.1).

Lattice-based classification relies on the analysis of such binary tables and may be considered
as a symbolic data mining technique that can be used for extracting from a database a set of
concepts organized within a hierarchy (i.e. a partial ordering), frequent itemsets, i.e. sets of
properties or features of data occurring together with a certain frequency, and association rules
with a given confidence emphasizing correlations between sets of properties.

More precisely, a lattice is an ordered set (E,C), where T denotes a partial ordering such
that every pair of elements (x,y) has an upper bound x V y and a lower bound x Ay [DP90].
The partial order relation C is also called a “subsumption relation”. The powerset 2F of a set E
equipped with the inclusion relation is a basic example of a lattice (see Figure 2.1). Note that
the powerset of E is often denoted as PB(E). The set of natural numbers N equipped with the
divisibility relation is also a lattice: x C y if and only if y is a divisor of x in N (see Figure 2.2).

A lattice may be built according to the so-called Galois connection, classifying within a formal
concept a set of individuals, i.e. the extension of the concept, sharing a same set of properties,
i.e. the intension of the concept. Considering the Boolean correspondence between individuals
and properties (as shown in Table 1.1), it is possible to derive for each individual i the set of
all properties that apply to i. Similarly, it is possible to derive for each property j the set of
all individuals to which j applies. One may further derive rectangles, i.e. pairs 0 x A where 0 is
a set of individuals and A is a set of properties, such that every property of A applies to every

9

Chapter 2. Symbolic Methods for Knowledge Discovery

abcde

Figure 2.1: The lattice representing the power set of the set {a,b,c,d,e}.

<

252 280

AN

0

=)

Figure 2.2: The lattice representing a part of the divisibility relation in N.

2.1. Lattice-Based Classification 11

Objects /Ttems a b c d e
04 0 1 1 0 1
02 1 0 1 1 0
03 1 1 1 1 0
04 1 0 0 1 0
0s 1 1 1 1 0
Oe 1 0 1 1 0

Table 2.1: An example of a formal context.

individual of 0. Moreover, mazimal rectangles 0 x A are such that the property set A consists of all
common properties of the individuals in 0, and that the individual set 0 consists of all individuals
to which the properties of A jointly apply. Maximal rectangles are called formal concepts: they
are concepts because they actually represent a class of objects, where the individual set 0 is
the extension of the class, and the property set A is the intension of the class; they are formal
concepts because they are mathematical entities that do not necessarily refer to any reality.

From a mathematical point of view, let E and F be two finite sets, and R a binary relation on
E X F.

Definition 2.1 The mapping £ : E — F is such that, if x is an element of E, £({x}) consists of
all elements of F related to x by R, i.e. £({x}) ={y € F | xRy}. If X is an arbitrary subset of E,
f(X) ={y €F | Vx € X: xRy}.

Dually, the mapping g : F — E is such that, if y is an element of F, g({y}) consists of all
elements of E that are related to y by R, i.e. g({y}) = {x € E| xRy}. IfY is an arbitrary subset
of F, g(Y) ={x €E | Vy € Y: xRy}.

The couple {f,g} is said to be a Galois connection (or a Galois correspondence) between the
sets E and F.

Two mappings f and g form a Galois connection if:

(1) VX4,Xo € (,B(E),Xl CXy=> f(Xg) - f(Xl)

(2) VY1,Yy € P(F), Y1 C Yo = g(¥2) C g(Vy)

(3) VXePB(E),XCfog (X)and VY € P(F),Y Cgof (V) .

In terms of objects and attributes, £(X) is the set of all attributes shared by all objects in X,
and g(Y) is the set of all objects that have all attributes of Y. Moreover, X; C X, = £(X3) C £(X4),
and Y; C Yy = g(Y2) C g(Y¥1): the mappings f and g are decreasing. For example, considering
the binary table of Table 2.1, we have £({0;}) = {b,c, e} and g({b,c,e}) = {01}, £({01,02}) =
{c}and g({c}) = {01, 02,03,05,06}, g({a,c}) = {02, 03, 05,06} and £({02,03,0s,06}) = {a, c,d}.

The mapping hy = go f = g[f] maps every part of E onto a part of E, and the mapping
hy, = f o g = f[g] maps every part of F onto a part of F. It can be shown that the mappings h;
and hy are closure operators:

Definition 2.2 Let X, X3 and Xa be subsets of E. A closure operator h is: (i) monotonously
increasing, i.e. X1 C Xo = h(X1) C h(Xz), (4¢) extensive, i.e. X C h(X), and (4i) idempotent,
i.e. h(X) = h[h(X)].

A subset X of E is said to be closed if and only if X = h(X).

The closure operators hy = gof = g[f] for E and hy = f o g = f[g] for F are said to be Galois
closures. Let Lg and L be the sets of all closed parts of E and F respectively, partially ordered

12 Chapter 2. Symbolic Methods for Knowledge Discovery

¥i=i}
¥E={ol, 02, 03, 04, 05, oG}

1 2
¥l={ch ¥l={a, d}
¥E={ol, 02, 03, 65, 06} ¥E=i02, 03, 04, 05, 06}
3 4
¥i=lb, o ¥l={a, ¢, d}
¥E={ol, 03, o5} ¥E={n2, 03, 05, 06}
Sail {b } e
=ib, c, 8 -
€E={o1} ¥l={a, b, ¢ d}

¥ E={03, 05}

Figure 2.3: The Galois lattice associated to the formal context of Figure 2.1.

by set inclusion. Then, (Lg, C€) and (Lg, C) have lattice structures: the meet of two parts is their
intersection, whereas the join of two parts is the closure of their union®. The Galois connection
{f, g} restricted to the closed parts of E and F materializes a one-to-one correspondence between
the lattices (Lg, C) and (Lg,).

We may now consider the set L of all couples of corresponding parts of Lg and L, i.e. each
element of L is the Cartesian product of closed parts of E and F, denoted by (X, £(X)), or (g(Y),Y),
with X, £(X), Y, and g(Y) being closed. The partial order relation C may be defined on L such
that (X1,Y1) C (Xg,Ys) if and only if X; C Xy (or dually Yo C Yy). The structure (L,C) is the
Galois lattice or the concept lattice of the relation R on E X F, and it can be demonstrated that
the elements of L are the formal concepts derived from the relation R. For example, the Galois
lattice associated to the formal context of Table 2.1 is shown in Figure 2.3.

More precisely, the partial order between two concepts (X1,Y1) T (Xo,Ys) verifies that the
extension X of (X2,Ys), i.e. the subsumer concept, includes the extension X; of (X1,Yy1), i.e. the
subsumed concept, and, dually, that the intension Y, of (X5,Ys) is included in the intension Y
of (X1,Y1). Thus, there exists an order-reversing one-to-one correspondence between the exten-
sions and the intensions of formal concepts, covariant for the extensions and contravariant for
the intensions. Moreover, there exists a number of algorithms for building Galois lattices —see
[Gue90, Duq99, GW99, KO01, KO02]- with different and specific characteristics.

Lattice-based classification may be used for a number of purposes in Kbp [SWW98, Wil02,
VMGO04]:

3The union of two closed sets is not necessarily a closed set as it is the case for the intersection of two closed
sets.

2.1. Lattice-Based Classification 13

e Since the concepts are the basic units of human thought (and hence the basic structures
of logic), the logical structure of information is based on concepts and concept systems.
Therefore, Galois (or concept) lattices, as mathematical abstraction of concept systems,
can support humans to discover information and then to create knowledge.

e [t is important to have a mathematization of concepts that reflects the rich logical function-
alities in which concepts are embedded in the real-world. Concept lattices and lattice-based
clagsification are examples of such mathematical tools. Indeed, the mathematical structure
of a concept lattice is effectively accessible to human reasoning by labeled line diagrams
(lattice drawings).

e Lattice-based classification and formal concept analysis is a suitable paradigm for KDD,
as discussed in [VMGO04]. The mathematical and algorithmic backgrounds exist and may
be used for real-sized applications [Kuz04, KO02|. Moreover, some improvements may
be carried on, especially on facility, i.e. the ease of use of the data mining methods,
on the cost-effectiveness of the methods allowing effective and efficient implementations,
e.g. distributive and parallel architectures, and finally on adaptability, i.e. the ability
to fit evolving situations with respect to the constraints that may be associated to the
KDD process. Moreover, one other major research point is the extension of lattice-based
classification to complex objects, where properties may be many-valued properties, or even
relations.

e Lattice-based classification has also been used for Information Retrieval (IR) and document
clustering [CR04, GMM95]. The application of FCA to the field of IR is motivated by the
obvious analogy exisiting between object/attribute (in FCA) and document/term (in IR)
tables. Concepts in a lattice are seen as classes of relevant documents that match a given
user query. The subsumption relation allows moving from one query to another (to a more
general or to a more specific query).

2.1.1 Classical Notation of Formal Concept Analysis

The notion of Galois lattice has given rise to the lattice-based classification, and to the active
research domain of formal concept analysis* [GW99]. Formal concept analysis is used for a
number of different tasks, among which the design of object hierarchies, especially in object-
oriented programming for designing class hierarchies.

Here we recall the classical notation of Formal Concept Analysis for future reference, as pre-
sented in the book of Ganter and Wille |[GW99|.

The basic notions of Formal Concept Analysis are those of formal context and a formal
concept. The adjective “formal” is meant to emphasize that we are dealing with mathematical
notions. From now on, where we write context or concept we actually mean a formal context or
a formal concept, respectively.

Definition 2.3 Let (M, <) be an ordered set and A a subset of M. A lower bound of A is an
element s of M with s < a for all a € A. An upper bound of A is defined dually. If there is a
largest element in the set of all lower bounds of A, it is called the infimum of A and is denoted
by inf A or \ A; dually, a least upper bound is called supremum and denoted by sup A or \/ A.

‘fca-list@cs.uni-kassel.de
http://www.kde.cs.uni-kassel.de/mailman/listinfo/fca-1list

14 Chapter 2. Symbolic Methods for Knowledge Discovery

If A ={x,y}, we also write x Ny for inf A and x V y for sup A. Infimum and supremum are
frequently also called meet and join.

Definition 2.4 An ordered set V := (V,<) is a lattice, if for any two elements v and y in V
the supremum x V y and the infimum x Ay always exist. V is called a complete lattice, if the
supremum \/ X and the infimum N\ X exist for any subset X of V. Every complete lattice V
has a largest element, \/ V', called the unit element of the lattice, denoted by 1. Dually, the
smallest element Oy is called the zero element.

Definition 2.5 A formal context K := (G, M, I) consists of two sets G and M and a relation
I between G and M. The elements of G are called the objects and the elements of M are called
the attributes of the context.® In order to express that an object g is in relation I with an
attribute m, we write gIm or (g,m) € I and read it as “the object g has the attribute m”.

A small context can be easily represented by a cross table, i.e. by a rectangular table the
rows of which are headed by the object names and the columns headed by the attribute names.
A cross in row g and column m means that the object g has the attribute m. See Table 3.1 for
an example.

Definition 2.6 For a set A C G of objects we define
A:={me M | gIm for all g € A}

(the set of attributes common to the objects in A). Correspondingly, for a set B of attributes we
define
B :={g € G| gIm for all m € B}

(the set of objects which have all attributes in B).
Note that these two mappings (: G — M and ": M — @) form a Galois connection.

Definition 2.7 A formal concept of the context (G, M,I) is a pair (A, B) with A C G, B C
M, A = B and B = A. We call A the extent and B the intent of the concept (A, B).
B(G, M, I) denotes the set of all concepts of the context (G, M, I).

Proposition 2.1 If (G,M,I) is a context, A, A1, Ay C G are sets of objects and B, By,
By C M are sets of attributes, then

(1)A1§A2:>AIQQA/1 (1’)BlgBQ:>B§§Bi
(2) A Q A// (27) B g B//
(3) Al C A (3’) B'C B"

(4) ACB <= BCA «< AxBCI.

The proposition shows that the two derivation operators form a Galois connection between
the powerset lattices PB(G) and P(M). Hence we obtain two closure systems on G and M, which
are dually isomorphic to each other:

For every set A C G, A’ is an intent of some concept, since (A”, A") is always a concept.
Consequently, a set A C G is an extent if and only if A = A”. The same applies to intents.
The union of extents generally does not result in an extent. On the other hand, the intersection
of any number of extents (respectively intents) is always an extent (intent), as is proved by the
following proposition:

PStrictly speaking: “formal objects” and “formal attributes”.

2.2. Frequent Itemset Search and Association Rule Extraction 15

Proposition 2.2 If T is an index set and, for everyt € T, Ay C G 1is a set of objects, then

(U At>, = () 4.

teT teT

The same holds for sets of attributes.

Definition 2.8 If (A1, B1) and (Aa, Ba) are concepts of a context, (A1, By) is called o subcon-
cept of (Aa, By), provided that Ay C Ay (which is equivalent to By C By). In this case, (Az, Bg)
is a superconcept of (A1, B1), and we write (A1, B1) < (Ag, Ba). The relation < is called
the hierarchical order (or simply order) of the concepts. The set of all concepts of (G, M, T)
ordered in this way is denoted by B(G, M, I) and is called the concept lattice of the context

(G, M,).

Theorem 2.1 (The Basic Theorem of Concept Lattices) The concept lattice B(G, M, I)
s a complete lattice in which infimum and supremum are given by:

paso=(Qa(Ys))
\ (4, B) = ((ﬂAt) ,ﬂBt>.

teT teT teT

2.2 Frequent Itemset Search and Association Rule Extraction

In parallel with lattice-based classification, one may extract frequent itemsets and association
rules from data (as shown in the introductory example in Section 1.3.1). Here we give an overview
of these two methods, and we detail them in Sections 3 and 4, respectively. The extraction of
frequent itemsets consists in extracting from formal binary contexts sets of properties occurring
with a support, i.e. the number of individuals sharing the properties, greater than a given
threshold. From the frequent itemsets, it is then possible to generate association rules of the form
A — B relating a subset of properties A with a subset of properties B, that can be interpreted as
follows: the individuals including A include also B with a certain support and a certain confidence.
The numbers of itemsets and rules that can be extracted from a formal binary context may be
very large, and thus there is a need for pruning the sets of itemsets and the sets of extracted
rules for ensuring a subsequent interpretation of the extracted units. This is especially true when
the interpretation has to be done —and this is usually the case- by an analyst who is in charge
of interpreting the results of the KDD process.

In the following, we introduce the principles of frequent itemset search and of the extraction
of association rules. Then practical examples of both models are proposed.

2.2.1 Frequent Itemset Search

Definition 2.9 Given a set of objects 0 and a set of properties P, an item corresponds to a
property of an object, and an itemset, or a pattern, to a set of items: an object is said to include
an item. The number of items in an itemset determines the length of the itemset. The image of
an itemset corresponds to the set of objects including the item.

16 Chapter 2. Symbolic Methods for Knowledge Discovery

The support of an itemset corresponds to the number of objects including the itemset. An
itemset is said to be frequent if its support is greater than or equal to a given frequency threshold
minimum support (denoted by min_ supp).

For example, considering the formal context shown in Table 2.1, with min_supp = 3, we
have: {a} is a frequent itemset of length 1 and of support 5; {ac} is of length 2, of support 4,
and frequent; {abc} is of length 3, of support 2, and not frequent; {abcde} is of length 5, of
support 0, and not frequent. It can be noticed that the support is a monotonously decreasing
function, with respect to the length of an itemset.

When the number of properties in P is equal to n, the number of potential itemsets is equal to
2" (actually, the number of all possible subsets of the set P): thus, a direct search for the frequent
itemsets by directly testing the itemsets that are frequent is not conceivable. Heuristics have
to be used for pruning the set of all itemsets to be tested. This is the purpose of the so-called
levelwise search of frequent itemsets, and the associated well-known Apriori algorithm [AIS93,
AS94, MTV94, AMS'96|. Apriori relies on two fundamental and dual principles: (i) every
sub-itemset of a frequent itemset is a frequent itemset, (ii) every super-itemset of an infrequent
itemset is infrequent. Apriori can be summarized as follows:

1. The search for frequent itemsets begins with the search for frequent itemsets of length 1.

2. The frequent itemsets are recorded and combined together to form candidate itemsets of
greater length. The infrequent itemsets are discarded, and by consequence, all their super-
itemsets. The candidate itemsets are then tested, and the process continues in the same
way, until no more candidates can be formed.

For example, considering the formal context on Table 2.1, with min_ supp = 2, the frequent
itemsets of length 1 are {a} (3), {b} (5), {c} (5), {d} (5). The itemset {e} (1) is not frequent
and pruned. Then the candidates of length 2 are formed, combining the frequent itemsets of
length 1, e.g. {ab}, {ac}, {ad}, {bc}... and then tested. The frequent itemsets of length
2 are {ab} (2), {ac} (4), {ad} (5), {bc} (3), {bd} (2), {cd} (4). The candidates of length 3
are formed and tested: the frequent itemsets of length 3 are {abc} (2), {abd} (2), {acd} (4),
{bcd} (2). Finally, the candidate of length 4 is formed, i.e. {abcd}, tested and recorded as a
frequent itemset ({abcd} (2)). No other candidates can be formed, and the algorithm terminates.

When the data to be mined are huge, i.e. millions of rows and thousands of columns, there
is a need for minimizing the access to the data for calculating the support. A number of studies
have been carried out in this direction, giving rise to very efficient algorithms (see for example
[PBTTL.99d, PBTL99b, ZH02|).

Lattices and itemsets are related: actually, the search for frequent itemsets corresponds to a
breadth-first search in the concept lattice associated to the formal context under study. However,
an itemset corresponds to a subset of properties, without being necessarily a closed set. In this
way, the property of closure for an itemset is one of the characteristics which underlie fast
algorithms for generating itemsets (it can be noticed that the name of one of these algorithms is
Close |[PBTL99b, PBTL99d]).

2.2.2 Association Rule Extraction

Definition 2.10 An association rule has the form A — B, where A and B are two itemsets. The
support of the rule A — B is defined as the support of the itemset A UB. The confidence of a

2.2. Frequent Itemset Search and Association Rule Extraction 17

rule A — B is defined as the quotient supp(A U B)/supp(A). The confidence can be seen as a
conditional probability P(B|A), i.e. probability of B knowing A.

A rule is said to be valid (or strong) if its confidence is greater than or equal to a confidence
threshold minimum confidence (denoted by min_conf), and its support is greater than or equal
to the frequency threshold minimum support (denoted by min_supp). A wvalid rule can only be
extracted from a frequent itemset. A rule is said to be exact if its confidence is equal to 1, i.e.
supp(A UB) = supp(A), otherwise the rule is approximate.

For example, with min_supp = 3 and min_conf = 3/5, {ac} is frequent, and the rule
a — c is valid (with support 4 and confidence 4/5); the rule ¢ — a is valid (with support 4 and
confidence 4/5). With min_supp = 2 and min_conf = 3/5, {abd} is frequent, the rule b — ad
is valid (with support 2 and confidence 2/3); the rule ad — b is not valid (with support 2 and
confidence 2/5).

The generation of valid association rules from a frequent itemset (of length necessarily greater
than or equal to 2) proceeds in a similar way as the search for frequent itemsets. Given a frequent
itemset P, the extraction starts by generating the valid rules with a right hand side (conclusion)
of length 1, say rules of the form P\ {i} — {i}, where {i} is an item of length 1, and P\ {i}
denotes the itemset P without the item {i}. Then, the conclusions of the valid rules P\ {i} — {i}
are combined for generating the candidate conclusions of length 2, e.g. P\ {ij} — {ij}, and the
process continues until no more valid rules can be generated from the frequent itemset.

For example, with our current formal context, given min_supp = 2 and min_conf = 2/5,
when P = {ab}, the generated valid rules are {a} — {b} (supp: 2; conf: 2/5) and {b} — {a}
(2; 2/3). Given the frequent itemset P = {abc} (2), the generated rules are {ab} — {c} (2; 1),
{ac} — {b} (2; 1/2), {bc} — {a} (2; 2/3); as {a,b,c} has three valid conclusions, they can be
combined for producing the new conclusions {ab,ac,bc}, and generate the rules {c} — {ab}
(2; 2/5), {b} — {ac} (2; 2/3), {a} — {bc} (2; 2/5), which are all valid rules.

There exists a number of studies on the possible measures that can be attached to an as-
sociation rule [LFZ99, TKS02, CNTO03|. Considering the confidence of the rule A — B as the
conditional probability P(B|A) (probability of B knowing A), other measures may be built on the
basis of probability calculus:

e The interest or lift of the rule A — B measure is defined as P(A UB)/P(A) x P(B), i.e. the
interest measures the degree of compatibility of A and B, i.e. the simultaneous occurrences
of both events A and B.

e The conviction of the rule A — B is defined as P(A) x P(—B)/P(A U —B), i.e. the conviction
measures the deviation of the rule A — B from the rule A — =B, or, in other words, how
high is the degree of implication of the rule A — —B.

e The dependency of the rule A — B is defined as |P(B|A) — P(B)| = |[P(A UB)/P(A) — P(B)|,
i.e. the dependency measures the degree of independence between the events A and B, i.e.
the fact that the occurrence of the event A is or is not dependent on the occurrence of the
event B.

In the same way as lattice-based classification, frequent itemset search and association rule
extraction may be used with benefit for KDD tasks. In the following, we present three real-world
applications where these two data mining methods have been successfully applied to real world
data.

18 Chapter 2. Symbolic Methods for Knowledge Discovery

?

9 .
: synthesis methods

starting material
(reactants) (reactions)

Figure 2.4: The general schema of a synthesis problem.

2.3 Applications

In the following, we detail three applications of the KDD process relying on the data mining tech-
niques presented here-above: an experiment in mining reaction databases for organic chemistry
planning, an application in mining gene expression databases in biology, and an introduction to
Web mining.

2.3.1 Mining Chemical Reaction Database

In this subsection, we present an experiment on the application of knowledge discovery algo-
rithms for mining chemical reaction databases [BLNN04b, BLNNO4a]. Chemical reactions are
the main elements on which relies synthesis in organic chemistry, and this is why chemical reac-
tion databases are of first importance. Synthesis planning is mainly based on retrosynthesis, i.e.
a goal-directed problem-solving approach, where the target molecule is iteratively transformed
by applying reactions for obtaining simpler fragments, until finding accessible starting materials
(see Figure 2.4). For a given target molecule, a huge number of starting materials and reactions
may exist, e.g. thousands of commercially available chemical compounds. Thus, exploring all the
possible pathways issued from a target molecule leads to a combinatorial explosion, and needs a
strategy for choosing reaction sequences to be used within the planning process.

From a problem-solving process perspective, synthesis in organic chemistry must be consid-
ered at two main levels of abstraction: a strategic level, where general synthesis methods are
involved, and a tactic level, where actual chemical reactions are applied. The present experiment
is aimed at discovering generic reactions, also called synthesis methods, from chemical reaction
databases in order to design generic and reusable synthesis plans. This can be understood in
the following way: mining reaction databases at the tactic level for finding synthesis methods at
the strategic level. This knowledge discovery process relies on one hand on mining algorithms,
i.e. frequent itemset search and association rule extraction, and, on the other hand, on domain
knowledge, that is involved at every step of the knowledge discovery process.

At present, reaction database management systems are the most useful tools for helping the
chemist in synthesis planning. One aspect of the present experiment is to study how data mining
techniques may contribute to knowledge extraction from reaction databases, and beyond that, to
the structuring of these databases and the improvement of the database querying. Two reaction
databases have been mined using frequent itemset search and association rule extraction. This
experiment is original and novel within the domain of organic synthesis planning. Regarding the
knowledge discovery research, this experiment stresses the fact that knowledge extraction within
a complex application domain has to be guided by knowledge domain if substantial results have
to be obtained.

2.3. Applications 19

The Chemical Context

Actually, the main questions for the synthesis chemist are related to chemical families to which a
target molecule belongs, i.e. the molecule that has to be built, and to the reactions or sequence of
reactions building structural patterns, to be used for building these families. Two main categories
of reactions may be distinguished: reactions building the skeleton of a molecule —the arrangement
of carbon atoms on which relies a molecule-, and reactions changing the functionality of a
molecule, i.e. changing a function into another function (see Figure 2.5). Hereafter, we are
mainly interested in reactions changing the functionality, and especially in the following question:
what are the reactions allowing the transformation of a function F; into a function F;7

carbon skeleton

functions

Figure 2.5: Skeleton and functional groups of a target molecule.

The experiment reported hereafter has been carried out on two reaction databases, namely
the “Organic Syntheses” database ORGSYN-2000 including 5,486 records, and the “Journal of
Synthetic Methods” database JSM-2002 including 75,291 records. The information items in
databases such as ORGSYN-2000 and JSM-2002 may be seen as a collection of records, where
every record contains one chemical equation involving structural information, that can be read,
according to the reaction model, as the transformation of an initial state —or the set of reactants—
into a final state —or the set of products— associated with an atom-to-atom mapping between the
initial and final states (see Figure 2.6).

Figure 2.6: The structural information on a reaction with the associated atom-to-atom mapping
(reaction #13426 in the JsM-2002 database).

The purpose of the pre-processing step of data mining is to improve the quality of the selected
data by cleaning and normalizing the data. In this framework, data pre-processing has mainly
consisted in exporting and analyzing the structural information recorded in the databases for
extracting and for representing the functional transformations in a target format that has been
processed afterwards. The considered transformations are functional modifications, functional

20 Chapter 2. Symbolic Methods for Knowledge Discovery

addition and deletion, i.e. adding or deleting a function. The reactions have been considered
at an abstract level, the so-called block level as shown in Figure 2.7. The transformation of
a reaction at the block level is carried out thanks to the RESYN-ASSISTANT knowledge system
[VL00, NLD94], whose objective is to help synthesis problem-solving in organic chemistry. This
points out the role of knowledge and knowledge systems within the KDD process.

-+ | anhydride | —
S

Figure 2.7: The representation of the reaction #13426 in the 1sM-2002 database at the block
level.

carbonyle

Mining of a Reaction Database

The RESYN-ASSISTANT system [VL00O] has been used for recognizing the building blocks of reac-
tions. Based on the atom-to-atom mapping, the system establishes the correspondence between
the recognized blocks of the same nature, and determines their role in the reaction. A function
may be present in a reactant, in a product, or in both. In the last case, the function is unchanged.
In the two other cases, the function in the reactant is destroyed, or the function in the product
is formed. During a reaction, either one or more reactant functions may contribute to form the
functions in the products. At the end of the pre-processing step, the information obtained by
the recognition process is incorporated into the representation of the reaction.

For allowing the application of the algorithms for frequent itemset search and association rule
extraction, namely the Close algorithm [PBTL99d, PBTL99b], the data on reactions have been
transformed into a binary table (losing the actual representation of a molecule as a composition
of functional blocks). Then, a reaction can be considered from two main points of view (see
Table 2.2):

e a global point of view on the functionality interchanges leads to consider a single entry
R corresponding to a single analyzed reaction, to which a list of properties, i.e. formed
and/or destroyed and/or unchanged functions, is associated,

e 3 specific point of view on the functionality transformations that is based on the consid-
eration of two (or more) different entries Ry corresponding to the different functions being
formed.

Both correspondences have been used during the experiment. Close has been applied to
binary tables for generating first itemsets, i.e. sets of functions (with an associated support),
and then association rules. The study of the extracted frequent itemsets may be done with
different points of view. Studying frequent itemsets of length 2 or 3 enables the analyst to
determine basic relations between functions. For example searching for a formed functions Fg
(_¢ for formed) deriving from a destroyed function Fgq (_4 for destroyed) leads to the study of
the itemsets Fq U Fg, where the symbol U stands for the union of items or functions. In some
cases, a reaction may depend on functions present in both reactants and products that remain
unchanged (_, for unchanged) during the reaction application, leading to the study of frequent

2.3. Applications 21

Entries/Blocks Destroyed Formed Unchanged

anhydride | hemiacetal || carbonyle | ester alcene aryle

without correspondence
entry R X X X X X X

with correspondence
entry Ry X X X X X

entry Ry X X X X

Table 2.2: The original data are prepared for the mining task: the binary transformation of
the data can be done without taking into account the atom mapping, i.e. one single line in the
binary table, or by taking into account the atom mapping, i.e. two lines in the table.

itemsets such as Ff UF, UFq4. This kind of itemsets can be searched and analyzed for extracting
a “protection function” supposed to be stable under given experimental conditions.

The extraction of association rules gives a complementary perspective on the knowledge
extraction process. For example, searching for the more frequent ways to form a function Fg
from a function Fyq leads to the study of rules such as F¢ — Fq4: indeed, this rule has to be read
in a retrosynthesis way, i.e. if the function F¢ is formed then this means that the function Fy is
destroyed. Again, this rule can be generalized in the following way: determining how a function
F¢ is formed from two destroyed functions Fg; and Fgo, knowing say that the function Fg; is
actually destroyed, leads to the study of the association rules such as F¢ UFq1 — Fqo.

Looking at the Extracted Itemsets and Rules Results

A whole set of results of the application of the data mining process on the ORGSYN-2000 and
JSM-2002 databases is given in [BLNNQ4b]. These results show that both reaction databases
share many common points though they differ in terms of size and data coverage, i.e. among
500 functions included in the concept hierarchy of functional graphs within the knowledge base
of the RESYN-ASSISTANT system, only 170 are retrieved from ORGSYN-2000 while 300 functions
are retrieved from JsM-2002. The same five functions are ranked at the first places in both
databases with the highest occurrence frequency. However, some significant differences can be
observed: a given function may be much more frequent in the ORGSYN-2000 database than in
JsM-2002 database, and reciprocally. These differences can be roughly explained by different
data selection criteria and editor motivations for both databases.

A qualitative and statistical study of the results has shown the following behaviors. Some
functions have a high stability, i.e. they mostly remain unchanged, and, on the contrary, some
other functions are very reactive, i.e. they are mostly destroyed. All the reactive functions are
more present in reactants than in products, and some functions are more often formed. Some
functions, that are among the most widely used functions in organic synthesis, are more often
present and destroyed in reactants, e.g. alcohol and carboxylic acid. For example, among the
standard reactions involving functions, it is well-known —for chemists— that the ester function
derives from a combination of two functions, one of them being mostly an alcohol. The search

22 Chapter 2. Symbolic Methods for Knowledge Discovery

for a second function relies on the study of rules such as estery Ualcoholy — F4q. The main
functions that are retrieved are anhydride, carboxylic acid, ester, and acyl chloride. If the
chemist is interested in the unchanged functions, then the analysis of the rule estersUalcoholgU
anhydridey — Fy gives functions such as acetal, phenyl, alkene, and carboxylic acid.

These first results provide a good overview on the function stability and reactivity. They also
give partial answers to the question of knowing what are the reactions allowing the transformation
of a function F; into a function Fj.

Discussion

A number of topics are discussed hereafter regarding this experiment in mining chemical reaction
databases. First, it can be noticed that only a few research works hold on the application of data
mining methods on reaction databases; the study on the lattice-based classification of dynamic
knowledge units proposed in [GRO1] has been a valuable source of inspiration for the present
experiment. The abstraction of reactions within blocks and the separation in three kinds of
blocks, namely formed, destroyed, and unchanged blocks, is one of the most original idea in that
research work, which is responsible of the good results that have been obtained. This idea of the
separation into three families may be reused in other contexts involving dynamic data. However,
the transformation into a binary table has led to a loss of information, e.g. the connection
information on reactions and blocks.

Frequent items or association rules are generic elements that can be used either to index
(and thus organize) reactions or to retrieve reactions. Termed in another way, this means that
frequent itemsets or extracted association rules may be in certain cases considered as a kind of
meta-data giving meta-information on the bases that are under study.

Knowledge is used at every step of the knowledge extraction process, e.g. the coupling of the
knowledge extraction process with the RESYN-ASSISTANT system, and domain ontologies such as
the function ontologies, the role of the analyst, etc. Indeed, and this is one of the major lessons of
this experiment: the knowledge discovery process in a specific domain such as organic synthesis
has to be knowledge-intensive, and has to be guided by domain knowledge, and an analyst as
well, for obtaining substantial results. The role of the analyst includes fixing the thresholds,
and interpreting the results. The thresholds must be chosen in function of the objectives of the
analyst, and in function of the content of the databases (it can be noticed that a threshold of
1% for an item support means that for a thousand of reactions, ten of them may form a reaction
family, and this is not a bad hypothesis).

Moreover, the use of data mining methods such as frequent itemsets search or association rule
extraction has proven to be useful, and has provided encouraging results. It could be interesting
to test other (symbolic) data mining methods, and mainly relational mining for being able to
take into account the structure of molecule for the data mining task [DT99, GGKS04, DLO01].

2.3.2 An Experiment in Biology

In this section, we present an experiment on the mining of gene expression databases for extract-
ing association rules, based on the article [CHO3] (see also [WZTS04] for a recent overview on
data mining in bioinformatics). Global gene expression profiling can be a valuable tool in the
understanding of genes, biological networks, and cellular states. One goal in analyzing expression
data is to try to determine how the expression of any particular gene might affect the expres-
sion of other genes; the genes involved in this case could belong to the same biological network.
Another goal of analyzing expression data is to try to determine what genes are expressed as a

2.3. Applications 23

result of certain cellular conditions, e.g. what genes are expressed in diseased cells that are not
expressed in healthy cells.

As larger and larger gene expression data sets become available, data mining techniques can
be applied to identify patterns of interest in the data. In [CHO3| an experiment is detailed where
the Apriori algorithm has been applied for mining association rules from gene expression data,
using a set of data of 300 expression profiles for yeast. An example of extracted association rule
is the following: {cancer} — {gene A T, gene B |, gene C T}, meaning that, for the data set that
has been mined, in most profile experiments where the cells used are cancerous, gene A has been
measured as being up (highly expressed), gene B is down (low expression), and gene C is up. In
the context of formal databases, a gene expression profile can be thought of a single transaction
(corresponding to a row in a binary table), and each protein can be thought as an item. A gene
expression profile transaction may include the set of genes that are up and the set of genes that
are down in the profile. Ttems in the transaction can also include relevant facts describing the
cellular environment. Moreover, in an expression profile each protein is assigned a real value
that specifies the relative abundance of that protein in the profiled sample. These protein values
have been made discrete for allowing the processing using standard techniques based on binary
tables.

The extracted association rules that have been considered in the experiment are of the form
{LHS} — {RHS}, where {LHS}, i.e. left hand side, is composed of only one item, and {RHS}, i.e.
right hand side, may have an arbitrary number of items. It can be noticed that such association
rules (where {LHS} is composed of only one item) are very interesting, as explained hereafter.

Furthermore, such rules may be used to check the validity of other rules as shown below. Let
us consider the rule X3 — Y\ Xy, where X; C Y, then: supp(X; — Y\ X1) = supp(X1 U(Y\Xy)) =
supp(Y). If Xy — Y\ X; is a valid rule, then Y has to be a frequent itemset, and Xy, as a subset
of Y, has to be frequent too. Then, any rule of the form X5 — Y \ X5, where X3 C X5 C Y is valid
too. For example, knowing that {ab} — {cd} is valid, it can be deduced that {abc} — {d}
and {abd} — {c} are valid too. This shows that the less is the length of the condition of
an association rule of the form X; — Y\ X4, the more we can deduce valid rules of the form
Xo — Y\ Xo, with Xy C X C Y. In [STBT02], minimal left hand sides of the rules are generators,
and maximal right hand sides of the rules correspond to the closed itemsets related with closed
sets of properties constituting the intension of the concepts in the associated lattice.

Actually, in [CHO3|, closed itemsets have been mainly considered, and the set of extracted
association rules has been manually pruned for a better understandability of the results. In
particular, this shows the importance of presenting small sets of association rules or frequent
itemsets for a valuable human analysis of the results (as discussed in [CNT03] for example). Two
examples of extracted association rules are the following, where the minimum support has been
fixed to 10%, and the minimum confidence to 80%, and where a rule may be interpreted as
follows: when the gene in {LHS} is up, so are the genes in {RHS}. The expressions of rules have
been simplified for a better readability for non-biologists.

{YHM1} — {SEQ1, AR03}

{ARO3} — {SEQ1, YHM1}

where {SEQ1} = {ARG1, ARG4, CTF13,HIS5, LYS1, RIB5, SNO1, SNZ1, YHR029C, YOL118C}.

An analysis that may be of interest is the following. The genes {YHM1} in the first rule and {AR03}
in the second rule are found on opposite sides of the rules. The gene {YHM1} has been identified
as a suppressor of a gene having the property of being a binding factor. On the other hand,
the gene {AR03} is activated by a binding factor itself. Whether the nature of the association
suggested here between {AR03} and {YHM1} has something to do with the fact that both of these
genes have an association with a binding factor is an open —and very interesting— question.

24 Chapter 2. Symbolic Methods for Knowledge Discovery

The association rules that have been mined represent only a fraction of all the possible
gene-to-gene interactions that remain to be discovered in yeast. More rules can be found using
different search criteria, i.e. changing the support, the confidence, the data, and the form of the
extracted rules. The extracted association rules can lead to the generation of new hypotheses
explaining some aspects of the gene interactions, to be confirmed in wet laboratory experiments.
Mining expression data for association rule extraction seems to be more useful to interpret and to
understand gene networks: association rules can describe how the expression of one gene may be
associated with the expression of a set of genes. It must be noticed that an association rule implies
an “association” which is not necessarily a “cause and effect” relationship. Determining the precise
nature of the association requires biological knowledge, as emphasized in the preceding paragraph
on the mining of chemical reaction databases. This study shows that it becomes possible to
develop bioinformatics applications that go further than storing and retrieving expression data,
and to propose tools for exploratory data analysis.

2.3.3 An Introduction to Web Mining

In the framework of the Semantic Web, the machines are talking to machines for delivering
services to people [FHLWO03]. Tomorrow the Web will be a distributed, shared, declarative and
navigable space; it will be mainly exploited by computers solving problems for humans, and
providing the results to humans. The semantics of documents on the Web must be accessible
to computers. One main element of this semantics is constituted by an explicit model of the
domain of data, describing the vocabulary and the structure of informations in relation with the
domain of interest. This model must be commonly accepted and shared: this is the essence of
the notion of onfology, as it is considered in the framework of Semantic Web, and for building
knowledge systems. For example, let us consider the following list of queries that leads to a series
of different and complex problems:

o A book on Béla Baridk.

A book written by Béla Bartdk or a book of Béla Bartdk.

A biography of Béla Bartdk.

An autobiography of Béla Bartdk.

A scorebook of Béla Bartdk.

A book on the work of Béla Bartdk.

For answering these questions, a computer system has to understand the actual meaning of
the questions (the “intended meaning” of the user), and the system has to be able to make the
difference between “on” in “a book on” and “of” in “a book of”, and to understand the difference
between terms such as “book”; “songbook”, “biography”, “autobiography”... This is the purpose
of ontologies in the framework of Semantic Web and Web mining [SS04]. Moreover, it can be
also very useful for the system to know who is “Béla Bart6k” for answering the questions above
(as it should be for a human himself. ..).

The description of the content of documents may be made explicit by using document descrip-
tion languages such as XML, and a semantics can be attached to documents —and their content—
using knowledge representation languages, e.g. description logics, owL [FHLWO03|. An intelligent
manipulation of documents is based on the exploitation of the content and of the semantics of

2.4. Discussion 25

the documents, with respect to the knowledge on the domain of documents. The technology
for the Semantic Web is based on one hand on the use of languages for ontology representation,
and for document and resource description such as XML and RDF(S), and on the other hand on
the use of intelligent search engines and mining modules for improving the retrieval of adequate
resources for problem solving. In this way, information extraction —extraction of key terms from
documents— and data mining —especially text mining— may be used for analyzing and classify-
ing documents with respect to their content (the reference [CR04] may be of interest regarding
content-based information retrieval and lattice-based classification of documents).

The mining of documents on the Web, or Web mining, can be carried out with three main
points of view [KB00, BHS02]:

e The mining of the content of documents, in relation with text mining (see |[JCK104] for
example).

e The mining of the structure of the pages and of the links between pages (hypertext links).
e The mining of usages or mining the sets of operations applied to pages.

Web mining can be a major technique in the design of Semantic Web: on that base, ontologies
can be designed in a semi-automatic way, leading the real-scale ontologies, semi-automatic design
rather than manual design of ontologies. Ontologies can be used for annotating the documents,
and thus to enhance the document mining process, on the base of the content of documents. The
Web mining process can be used to improve annotation of documents, and thus the semantics
attached to the documents, i.e. content, understandability, and structure.

Moreover, information retrieval can be guided by document mining: key terms are extracted
and used to complete domain ontologies, that are in turn used for guiding the data mining process,
and so on. Knowledge units extracted from documents can be used for classifying documents
according to relations between units and the domain ontology, leading to alternative points of
view on documents.

2.4 Discussion

The KDD process must be carried out in a KDD environment where data mining is guided by
domain knowledge, embedded in ontologies and knowledge-based systems. The knowledge units
used in knowledge systems may have two major different sources: explicit knowledge that can
be given by domain experts, and implicit knowledge that must be extracted from databases of
different kinds, e.g. rough data or textual documents. In addition, an important question in
the framework of Semantic Web and Web mining for improving the KDD process is to be able
to manipulate documents by their content, for searching, for annotating and for classifying the
documents. The content-based manipulation of documents allows solving a number of problems
such as information extraction, intelligent information retrieval, content-based document min-
ing... More precisely, the following requirements for knowledge discovery tools are given in
[BA96]:

e The system should represent and present to the user the underlying domain in a natural
and appropriate fashion. Objects of the domain should be easily incorporated into queries.

e The domain representation should be extendible by the addition of new concepts or classes
formed from queries. These concepts and their representative individuals must be usable
in subsequent queries.

26 Chapter 2. Symbolic Methods for Knowledge Discovery

e It should be easy to form tentative segmentations of data, to investigate the segments,
and to re-segment quickly and easily. There should be a powerful repertoire of viewing
and analysis methods, and these methods should be applicable to segments (such as in the
WEKA system for example [WF00]).

e Analysts should be supported in recognizing and abstracting common analysis (segmenting
and viewing) patterns. These patterns must be easy to apply and modify.

e There should be facilities for monitoring changes in classes or concepts over time.

e The system should increase the transparency of the knowledge discovery process and should
document its different stages.

e Analysis tools should take advantage of explicitly represented background knowledge of
domain experts, but should also activate the implicit knowledge of experts.

e The system should allow highly flexible processes of knowledge discovery respecting the
open and procedural nature of productive human thinking. This means in particular to
support the intersubjective communication and argumentation.

The support of knowledge discovery by concept lattices, itemset search and association rule
extraction, may be explained as follows [Wil02]. The mathematization of logical structures of
concepts and concept hierarchies by formal concepts and concept lattices of formal contexts yields
a close relationship between logical and mathematical thinking, which, in particular, allows acti-
vating a rich amount of mathematics to support human reasoning. Especially, the representation
of concept lattices by labeled line diagrams enables an interplay between the mathematical analy-
sis of relationships and the logical analysis of data and information, influenced by already existing
background knowledge. Therefore, conceptual knowledge discovery, i.e. conceptual information
discovery and knowledge creation, can be performed by first looking under the guidance of some
purpose for discoveries of information in graphically represented concept lattices, and then creat-
ing new knowledge from the discovered information and appropriate pre-knowledge. These two
steps should be repeated in a circular process which is open for critic and self-correction.

2.5 Conclusion

The knowledge discovery in databases process consists in processing a huge volume of data in
order to extract knowledge units that can be reused either by an expert of the domain of data
or by a knowledge-based system for problem-solving in the domain of data. The KDD process is
based on three major steps, data preparation, data mining and interpretation of the extracted
units. Moreover, the KDD process is iterative and interactive, and is controlled by an analyst,
who is in charge of guiding and validating the extraction process. In addition, the KDD process
may take advantage of domain knowledge, i.e. ontologies, knowledge base, for improving the
process at every step. Data mining methods are divided into two main categories, symbolic and
numerical methods. In this chapter, we have mainly focused on symbolic methods, and especially
on lattice-based classification, frequent itemset search, and association rule extraction. These
methods are operational and can provide good results in real-world problems. Indeed, three kinds
of application have been detailed, an experiment on the mining of chemical reaction databases,
an experiment on the mining of gene expression databases, and finally, a research field with a
growing importance, Web mining.

2.5. Conclusion 27

Regarding the future of KDD, there remains many problems to be solved, at every step of the
process, especially considering the KDD process as a knowledge-guided process, as we have tried
to demonstrate it, and considering the complete environment of a KDD system as a combination
of a database and of a knowledge base operations. Another important investigation field for
symbolic methods is the extension to the processing of complex data (contrasting with binary
data). Finally, let us mention that important challenges are linked to the application domains,
and must still be undertaken, e.g. biology, chemistry, medicine, space, weather forecast, finance,...
In Chapter 1, we have compared knowledge discovery to gold research or archaeology: first, it is
necessary to get to know the domain of data, then to apply a number of data mining methods
that produce more or less useful results, and then to validate these results. Meanwhile, the
analyst has to be patient because the process is iterative —the work may be long without being
successful— but it is worth continuing the job, being confident and optimistic!

28

Chapter 2. Symbolic Methods for Knowledge Discovery

Chapter 3

Frequent Itemset Search

In this chapter, we present in depth concepts and algorithms of frequent itemset search. The
chapter is organized as follows. Section 3.1 presents the basic concepts. In Section 3.2, we
classify algorithms in four families, such as levelwise, vertical, hybrid and other algorithms.
Selected algorithms namely Zart, Fclat-Z and Charm-MFI are detailed in Section 3.3.

3.1 Basic Concepts

Frequent Itemsets. Below we use standard definitions of Data Mining. We consider a set of
objects or transactions O = {01,09,...,0n}, a set of attributes or items A = {a1,as,...,an},
and a relation R C O x A, where R(0,a) means that the object o has the attribute a. In formal
concept analysis [GW99] the triple (O, A, R) is called a formal context. A set of items is called
an itemset® or a pattern. Each transaction has a unique identifier (tid), and a set of transactions
is called a tidset. The length of an itemset is the cardinality of the itemset, i.e. the number
of items included in the itemset. An itemset of length ¢ is called an i-long itemset, or simply
an i-itemset’. An itemset P is said to be larger (resp. smaller) than Q if |P| > |Q]| (resp.
|P| < |Q]). We say that an itemset P C A is included in an object o € O, if (0,p) € R for all
p € P. Let f be the function that assigns to each itemset P C A the set of all objects that
include P: f(P)={o € O | oincludes P}. The (absolute) support of an itemset P indicates
how many objects include the itemset, i.e. supp(P) = |f(P)|. The support of an itemset P can
also be defined in relative value, which corresponds to the proportion of objects including P,
with respect to the whole population of objects. To distinguish relative support from absolute
support, we denote them by rsupp and supp, respectively.® Thus, the relative support of an
itemset P C A is: rsupp(P) = |f(P)|/|O] = supp(P)/|O|. An itemset P is called frequent, if
its support is not less than a given minimum support (below often denoted by min_ supp), i.e.
supp(P) > min_supp. An itemset G is called generator if it has no proper subset H (H C G)
with the same support. An itemset X is called closed if there exists no proper superset Y
(X CY) with the same support. The closure of an itemset X (denoted by (X)) is the largest
superset of X with the same support. Naturally, if X = (X)), then X is a closed itemset. A
frequent itemset is a mazimal frequent itemset (MFT) if all its proper supersets are not frequent.

®Following standard FCA notations, we will use separator-free set notations throughout the thesis, e.g. AB
stands for {A, B}.

"For instance, ABE is a 3-itemset.

8Note that throughout the thesis, we use absolute support everywhere, except for the quality measures in
Section 4.4.

29

30 Chapter 3. Frequent Itemset Search

MFTs are closed itemsets. The task of frequent (closed) itemset mining consists of generating
all (closed) itemsets (with their supports) with supports greater than or equal to a specified
min_ supp.

Frequent Association Rules. An association rule is an expression of the form P; — Ps,
where P; and P, are arbitrary itemsets (P, P> C A), PPN P, = () and P, # (. The left
side, P; is called antecedent, the right side, P is called consequent.” The support of an as-
sociation rule r: P} — P» is defined as: supp(r) = supp(P1 U P;). An association rule r
is called frequent, if its support is not less than a given minimum support (below often de-
noted by min_supp), i.e. supp(r) > min_supp. The confidence of an association rule r:
P, — P is defined as the conditional probability that an object includes P,, given that it
includes Py: conf(r) = supp(P1 U Py)/supp(P1). An association rule r is called confident, if its
confidence is not less than a given minimum confidence (below often denoted by min_ conf), i.e.
conf(r) > min_conf. An association rule r with conf(r) = 1.0 (i.e. 100%) is an ezact associa-
tion rule, otherwise it is an approzimate association rule. A frequent association rule is valid or
strong (their set is denoted by AR) if it is both frequent and confident, i.e. supp(r) > min_ supp
and conf(r) > min_conf. The problem of mining frequent association rules in a database D
consists of finding all frequent valid rules in the database.

3.2 Classification of Itemset Mining Algorithms

3.2.1 Levelwise Algorithms

In this subsection, we present levelwise algorithms in a general way. The most well-known
algorithm of this kind, without doubt, is Apriori. This algorithm addresses the problem of
finding all frequent itemsets in a dataset. Apriori has been followed by lots of variations, and
several of these levelwise algorithms concentrate on a special subset of frequent itemsets, like
closed itemsets or generators. We present shortly some of these algorithms too. Mannila and
Toivonen provided a general framework for levelwise algorithms in [MT97].

The levelwise algorithm for finding all Fls is a breadth-first, bottom-up algorithm, which
means the following. First it finds all 1-long frequent itemsets'®, then at each i*" iteration it
identifies all i-long frequent itemsets. The algorithm stops when it has identified the largest
frequent itemset. Frequent itemsets are computed iteratively, in ascending order by their length.
At each iteration one database pass is needed to count support values, thus the number of
database passes is equal to the length of the largest frequent itemset. This approach is very
simple and efficient for sparse, weakly correlated data. The levelwise algorithm is based on two
basic properties.

Property 3.1 (downward closure) All subsets of a frequent itemset are frequent.'!

Property 3.2 (anti-monotonocity) All supersets of a non-frequent itemset are non-frequent.

Consider the following dataset D (Table 3.1) that we will use for examples throughout the
thesis. Figure 3.1 shows the powerset lattice of this dataset. By defining min_supp = 3, the

®Note that the union of the antecedent and consequent is also called sometimes the “base” of a rule [Kry02].
10That is, first it identifies all frequent items (attributes).
" The name of the property comes from the fact that the set of frequent itemsets is closed w.r.t. set inclusion.

3.2. Classification of Itemset Mining Algorithms 31

1] x| x X | x
2| x X

3| x| x| x X
4 X | x X
5 x| x| x X

Table 3.1: A toy dataset (D) for the examples.

itemsets can be grouped in two sets: frequent and non-frequent (or rare) itemsets. Between the
two sets a border can be drawn that cuts the itemset lattice in a positive and a negative space.
Frequent itemsets are on the positive side of the border. (The concept of the border theory was
introduced in [MT97], and we also investigate it in detail in Chapter 5 with the rare itemsets).
At the bottom of the lattice we can find the smallest itemset, the empty set. At each level
there are itemsets of the same length. At the top of the lattice we can find the largest itemset
that contains all the attributes. At each itemset at the top right-hand corner the support of the
itemset is indicated. The task of frequent itemset mining consists of generating all itemsets that
are on the positive side of the border.

0 (O rare itemset
ABCDE [] frequentitemset

Figure 3.1: Powerset lattice of database D (Table 3.1).

Levelwise Exploration of the Positive Side of the Border

The levelwise algorithm discovers frequent itemsets of the itemset lattice in a levelwise manner,
i.e. at each level 7 it only uses i-long frequent itemsets to generate their (i + 1)-long supersets.
These supersets are called candidates, and only potentially frequent itemsets are kept. For storing
itemsets, two kinds of tables are used: F; for i-long frequent itemsets, and C; for potentially
frequent i-long candidates. An itemset of length (i 4+ 1) is called potentially frequent if all its

32 Chapter 3. Frequent Itemset Search

i-long subsets are frequent. Otherwise, if it has an ¢-long subset not present in Fj, then it means
that it has an infrequent subset, and by Property 3.2 the candidate is also infrequent and can be
pruned. With one database pass the support of potentially frequent candidates is counted, and
itemsets that turn out to be infrequent are pruned. The frequent (i + 1)-long itemsets are used
then to generate (i + 2)-long candidates, etc. The process continues until no new candidates can
be generated. The generation of (i + 1)-long potentially frequent candidates from i-long frequent
itemsets consists of two steps. First, in the join step, table F; is joined with itself. The union
pUgq of itemsets p, ¢ € Fj; is inserted in Cj41 if they share their ¢ —1 first items. Next, in the prune
step, candidates in C;11 are deleted if they have an i-long subset not present in F;. This way
infrequent itemsets are pruned (it is not necessary to count their supports), and only potentially
frequent candidates are kept in Cj41.

Note that the itemsets that are potentially frequent candidates, but turn out to be infrequent,
form the set of minimal rare itemsets. A minimal rare itemset is a rare itemset such that all
its proper subsets are frequent (and necessarily, all its supersets are not frequent). The set of
minimal rare itemsets is also known as negative border [MT97|. By the two basic properties,
the levelwise algorithm guarantees that after having found a minimal rare itemset, it will not
generate any of its supersets later. As a consequence, supports of proper supersets of minimal
rare itemsets will never be counted, and this is the way that the levelwise algorithm reduces the
search space in the powerset lattice (see Figure 3.1).

As an example of the join step, consider the Fj table of dataset D: {AB, AC, AE, BC, BE,
CE}. After the join step, C3 is: {ABC, ABE, ACE, BCE}. Since all their 2-long subsets are
present in Fy (which means that all their subsets are frequent), they are also potentially frequent
and kept in C3. That is, the prune step will not delete any elements of Cj.

The candidate generation and the support counting process require a subset test. In candidate
generation, having an (i+ 1)-long candidate, we need to identify its subsets in Fj;. In the support
counting process, the dataset is read object by object. We need to find the subsets of the
corresponding itemset of each object (i.e. the itemset that is included by the given object) in
C%, and the support value of each subset in Cy must be incremented by 1. As it can be seen,
these subset operations must be performed lots of times, thus it must be implemented in a very
efficient way for a good performance. There are two commonly used data structure for subset
test: hash-tree, as suggested in [AMS™96|, and trie (a.k.a. prefix-tree) [AHU85, PBTL99c|. Note
that for all of our implementations of levelwise algorithms we have used the trie data structure.
For the description of this data structure, see Appendix C.1; for the description of the subset
function, see Appendix C.2.

Short Overview of Levelwise Algorithms

Apriori, a concrete realization of the levelwise algorithm, is presented in detail in Appendix B.1.
Apriori-Close, detailed in Appendix B.2, extends Apriori with the possibility to find not only
frequent but frequent closed itemsets too. Pascal, a very efficient improvement of Apriors, is pre-
sented together with Zart in Section 3.3.1. Pascal uses the so-called pattern counting inference,
and thanks to this technique it can greatly reduce the expensive database passes and support
counts. Pascal also finds the frequent generators. Zart, presented in Section 3.3.1, is a practical
extension of Pascal. It was designed to facilitate the generation of a special set of rules (called
minimal non-redundant association rules). To achieve it, Zart finds frequent closed itemsets too,
and it associates generators to their closures. Close, that we also implemented in our platform
CORON, is also a levelwise algorithm for finding frequent closed itemsets. First it finds a subset
of generators, and then it calculates their closures.

3.2. Classification of Itemset Mining Algorithms 33

3.2.2 Vertical Algorithms

In this subsection, we present the common parts of two well-known algorithms of Zaki, namely
Eclat and Charm. This subsection mainly relies on [ZPOL97|, [Zak00] and [ZH02].

Short Overview of Vertical Algorithms

Eclat was the first successful algorithm proposed to generate all frequent itemsets in a depth-
first manner. Charm is a modification of Eclat to explore frequent closed itemsets only. Both
algorithms use a vertical layout of the database. In this way, the support of an itemset can
be easily computed by a simple intersection operation. As we will see in the experiments, the
vertical database layout shows significant performance improvements over levelwise algorithms
that usually use horizontal representation.

Basic concepts. Here we would like to present the necessary concepts specific to Eclat and
Charm using the terminology of Zaki. Let Z be a set of items, and D a database of transactions,
where each transaction'? has a unique identifier (tid) and contains a set of items. The set of all
tids is denoted as 7. A set of items is called an itemset, and a set of transactions is called a
tidset. For convenience we write an itemset {A, B, E} as ABE, and a tidset {2,3} as 23. For
an itemset X, we denote its corresponding tidset as ¢(X), i.e. the set of all tids that contain X
as a subset. For a tidset Y, we denote its corresponding itemset as i(Y'), i.e. the set of items
common to all the tids in Y. Note that {(X) = (,cx t(z), and i(Y') =,y i(y). For instance,
using our dataset D (Table 3.1), t(ABFE) = t(A) Nt(B) Nt(F) = 1235 N 1345 N 1345 = 135 and
i(23) =i(2)Ni(3) = ACNABCE = AC. The support of an itemset X is equal to the cardinality
of its tid-list, i.e. supp(X) = [t(X)].

Lemma 3.1 Let X and Y be two itemsets. Then, X CY = t(X) D t(Y).

Proof. Follows from the definition of support. [l

Itemset-tidset search tree and prefix-based equivalence classes. Let 7 be the set of
items. Define a function p(X,k) = X[1 : k| as the k length prefix of X, and a prefiz-based
equivalence relation @, on itemsets as follows: VXY C 7, X =y, Y < p(X,k) = p(Y, k).
That is, two itemsets are in the same k-class if they share a common k-length prefix.

Eclat and Charm perform a search for frequent (closed) itemsets over a so-called IT-tree
search space, as shown in Figure 3.2. While most previous methods exploit only the itemset search
space, Eclat and Charm simultaneously explore both the itemset space and the transaction space.
Each node in the IT-tree, called an IT-node, represented by an itemset-tidset pair, X x ¢(X),
is in fact a prefix-based equivalence class (or simply a prefix-based class). All the children of a
given node X belong to its prefix-based class, since they all share the same prefix X. We denote
a prefix-based class as [P| = {l1, 2, ...l,}, where P is the parent node (the prefix), and each [; is
a single item, representing the node Pl; x t(Pl;). For example, the root of the tree corresponds
to the class [| = {A, B,C, D, E}. The left-most child of the root consists of the class [A] of all
itemsets containing A as the prefix. Each class member represents one child of the parent node.
A class represents items that the prefix can be extended with to obtain a new frequent node.
Clearly, no subtree of an infrequent prefix has to be examined. The power of the prefix-based
class approach is that it breaks the original search space into independent sub-problems. When

12In the case of levelwise algorithms, we used the FCA terminology “objects” instead of “transactions”.

34 Chapter 3. Frequent Itemset Search

{}x 12345

Ax 1235 [Bx 1345 | [Cx2345] [Dx1] [Ex1345]
AB x 135 AC x 235 | [ADx1] [AEx135][BCx345] [BDx1] [BEx 1345 [CEx345] [DEx1 |

| S

[ABCx35] [ABDx1] [ABEx135 | [ACEx35|[ADEx1]

|

[ABCE x 35| |ABDE x1 |

Figure 3.2: IT-tree: Itemset-Tidset search tree of dataset D (Table 3.1).

all direct children of a node X are known, one can treat it as a completely new problem; one can
enumerate the itemsets under it and simply prefix them with the item X, and so on.

Lemma 3.1 states that if X is a subset of Y, then the cardinality of the tid-list of YV
(i.e. its support) must be less than or equal to the cardinality of the tid-list of X. A practi-
cal and important consequence of this lemma is that the cardinalities of intermediate tid-lists
shrink as we descend in the IT-tree. This results in very fast intersection and support counting.

Vertical layout. It is necessary to access the dataset in order to determine the support of a
collection of itemsets. Itemset mining algorithms work on binary tables, and such a database can
be represented by a binary two-dimensional matrix. There are two commonly used layout for the
implementation of such a matrix: horizontal and wvertical data layout. Levelwise algorithms use
horizontal layout. Fclat and Charm use instead vertical layout, in which the database consists of
a set of items and their tid-lists. To count the support of an itemset X using the horizontal layout,
we need one full database pass to test for every transaction T if X C T'. For a large collection
of itemsets, this can be done at once using the trie data structure. The vertical layout has the
advantage that the support of an itemset can be computed by a simple intersection operation.
In [Zak00], it is shown that the support of any k-itemset can be determined by intersecting the
tid-lists of any two of its (k — 1)-long subsets. A simple check on the cardinality of the resulting
tid-list tells us whether the new itemset is frequent or not. It means that in the IT-tree, only
the lexicographically first two subsets at the previous level are required to compute the support
of an itemset at any level. One layout can be easily transformed to the other layout on-the-fly
(see Appendix D for details).

Other Optimizations

Element reordering. As pointed out in [Goe03| and [CGO05|, Eclat does not fully exploit the
monotonocity property. It generates a candidate itemset based on only two of its subsets, thus
the number of candidate itemsets is much larger as compared to breadth-first approaches such
as Apriori. FEclat essentially generates candidate itemsets using only the join step of Apriori,
since the itemsets necessary for the prune step are not available due to the depth-first search. A
technique that is regularly used is to reorder the items in support ascending order, which leads
to the generation of less candidates. In Eclat and Charm, such reordering can be performed on
the children of a node N when all direct children of N are discovered. Experimental evaluations
show that item reordering results in significant performance gains in the case of both algorithms.

3.2. Classification of Itemset Mining Algorithms 35

Support count of 2-itemsets. It is well known that many itemsets of length 2 turn out to be
infrequent. A naive implementation for computing the frequent 2-itemsets requires n(n — 1)/2
intersection operations, where n is the number of frequent 1-items. Considering that 1-items
have the largest tid-lists (see Lemma 3.1), these operations are quite expensive. Here we present
a method that can be used not only for depth-first, but for breadth-first algorithms too, such
as Apriori. First, the database must be transformed in horizontal format (see Appendix D).
Secondly, through a database pass on the horizontal layout, an upper-triangular 2D matrix is
built containing the support values of 2-itemsets [ZH02|. Consult Appendix E for a detailed
description and an example.

Diffsets for further optimizing memory usage. Recently, Zaki proposed a new approach
to efficiently compute the support of an itemset using the vertical data layout [ZG03]. Instead
of storing the tidset of a k-itemset P in a node, the difference between the tidset of P and the
tidset of the (k —1)-prefix of P is stored, denoted by the diffset of P. To compute the support of
P, we simply need to subtract the cardinality of the diffset from the support of its (k — 1)-prefix.
Support values can be stored in each node as an additional information. The diffset of an itemset
P U {i,j}, given the two diffsets of its subsets P U {i} and P U {j}, with i < j, is computed
as follows: diffset(P U {i,j}) « diffset(P U {j}) \ diffset(P U {¢}). Diffsets also shrink as larger
itemsets are found. Diffsets can be used together with the other optimizations presented above.
This technique can significantly reduce the size of memory required to store intermediate results.
Diffsets can be used for both FEclat and Charm, resulting in dEclat and dCharm, respectively.
Note that we have not used diffsets in our implementations yet.

Conclusion

In this subsection we presented the common parts of Eclat and Charm. Detailed description
of Eclat can be found in Appendix B.3. Charm is presented in Appendix B.4. Section 3.3.2
presents an algorithm called FEclat-Z, which is based on Fclat and produces the same result as
Zart, i.e. a result that can be used directly to generate minimal non-redundant association rules.
Finally, Section 3.3.3 presents Charm-MFI, a simple extension of Charm. Charm-MFI marks
maximal frequent itemsets among frequent closed itemsets.

3.2.3 Hybrid Algorithms

Under “hybrid” we mean such algorithms that are a combination of levelwise and vertical algo-
rithms. We present two algorithms of this type, namely Eclat-Z (Section 3.3.2) and Charm-MFI
(Section 3.3.3). Eclat-Z is composed of two parts: first all FIs are found by Fclat, then these
Fls are post-processed in a levelwise manner, i.e. in ascending order by their length. During
this post-processing step generators and closed itemsets are marked among FIs, and then gen-
erators are associated to their closures. Charm-MFI finds FCls with the help of Charm, then it
also post-processes FCls in ascending order by their length in order to filter maximal frequent
itemsets.

3.2.4 Other Algorithms

In our work we have examined algorithms of the previous three types (levelwise, vertical and hy-
brid algorithms), but there exist other algorithms too. Maybe the most well-known is FP-growth

13We plan to investigate this technique as a future perspective.

36 Chapter 3. Frequent Itemset Search

by Han et al. [HPY00]|. FP-growth is also a depth-first algorithm that uses a new data structure
called FP-tree (frequent pattern tree), which is a compressed representation of all the transac-
tions in the database. Every item has a linked list going through all transactions that contain
that item. The FP-tree structure is a lossless representation of the complete dataset for the
generation of frequent itemsets. FP-growth also has several modifications, like Closet [PHMO00]
or Closet™ [WHP03] that are designed to extract frequent closed itemsets only.

3.3 Detailed Description of Selected Algorithms

In the forthcoming sections, the following algorithms will be presented in details: Zart (Sec-
tion 3.3.1), Eclat-Z (Section 3.3.2) and Charm-MFI (Section 3.3.3). In the appendices we present
the following classical algorithms: Apriori (Appendix B.1), Apriori-Close (Appendix B.2), Eclat
(Appendix B.3) and Charm (Appendix B.4). The Pascal and Pascal® algorithms are presented
together with Zart in Section 3.3.1.

3.3. Detailed Description of Selected Algorithms 37

3.3.1 Zart
Short Overview of the Zart Algorithm

In this subsection we present a multifunctional itemset mining algorithm called Zart'*, which
is a refinement of the Pascal algorithm. We have designed Zart for this thesis work. The most
well-known algorithm for finding frequent itemsets is Apriori. The main problem with Aprior:
and most of its variations is the high number of operations required for counting support values.
To overpass this drawback, a new algorithm called Pascal was proposed, which introduced the
notion of pattern counting inference. Using this technique, the support of an itemset can be
determined without accessing the database if its so-called generators are already known. We
propose a refinement of this algorithm, called Zart, which extends Pascal in certain ways: it can
simultaneously identify frequent closed itemsets, and in parallel it can associate the generators
to their closures. At present, there are no algorithms that propose to extract at the same time
frequent itemsets, frequent closed itemsets, and their associated frequent generators. We show
that these refinements are necessary and sufficient conditions for finding minimal non-redundant
association rules.

Contribution and Motivation

Minimal non-redundant association rules (MNR) have the following form: P — @ \ P, where
P C @ and P is a generator and Q) is a closed itemset. In this part of our work we are interested to
find these rules because of two reasons. First, this set of rules is lossless (enables the derivation of
all valid rules), sound (forbids the derivation of rules that are not valid) and informative (allows
the determination of rules parameters such as support and confidence). In [Kry02], it is shown
that with the so-called cover operator, which is an inference mechanism, all valid rules can be
restored from these rules with their proper support and confidence values. Secondly, among rules
with the same support and same confidence, these rules contain the most information and these
rules can be the most useful in practice [Pas00b]. See Section 4.3.1 for the whole explanation.

The minimal non-redundant association rules were introduced in [BTPT00b]. In [BTP*00a]
and [BTPT02| Bastide et al. presented Pascal, and claimed that MNR can be extracted with
this algorithm. However, we do not agree with them because of two reasons. First, frequent
closed itemsets must also be known. Secondly, frequent generators must be associated to their
closures. Figure 3.3 shows what information is provided by Pascal when applied on dataset
D (Table 3.1), i.e. it finds frequent itemsets and marks frequent generators. Unfortunately,
this information is insufficient. However, with an extension Pascal can be enriched to fulfill the
previous two criteria. This is the so-called Zart algorithm, whose result is shown in Figure 3.4.
Obviously, this result is necessary and sufficient to generate minimal non-redundant association
rules.

We have chosen Pascal because of the following reasons. First, among levelwise frequent
itemset mining algorithms it may be the most efficient thanks to its pattern counting inference
mechanism. Pascal also marks which frequent itemsets are generators. This result serves as a
good basis for identifying closed itemsets and then associating generators to them. Secondly, the
authors of Pascal claimed that this algorithm is capable of extracting MNR. We show that it
is possible with our refinement.

Furthermore, the idea introduced in Zart can be generalized, and thus it can be used with
any frequent itemset mining algorithm. As we will see in Eclat-Z (Section 3.3.2), it is not

!4The name of the algorithm comes from the Hungarian word “zart”, which means “closed”.

38 Chapter 3. Frequent Itemset Search

ABCE
(Re0)" (AcE)’
3 3
ABE B
BE |*
O)

C

&

g ©

BE | frequentitemset (FI)
frequent generator (FG)

Figure 3.3: Result of Pascal on D (Table 3.1) with min_supp = 2 (40%).

(> equivalence class P Q
. P is directly subsumed by Q
frequent closed itemset 4 Y
P -Q
frequent generator P is subsumed by Q

Figure 3.4: Result of Zart on D (Table 3.1) with min_ supp = 2 (40%). Note that information
on the subsumption relation (see Def. 3.5) is provided by the trie data structure.

3.3. Detailed Description of Selected Algorithms 39

even necessary that frequent itemsets be generated in ascending order by their length. That is,
with the generalized idea of Zart any frequent itemset mining algorithm can be turned into an
algorithm that supports the extraction of minimal non-redundant association rules.

Detailed Description of Zart

Zart is a levelwise algorithm that enumerates candidate itemsets in ascending order by their
length. It means that the generators of an equivalence class are found first. Their support is
calculated, and later when finding other (larger) elements of the equivalence class, their support
does not have to be counted since it is equal to the support of the generators that are already
known. Apriori has a serious drawback: it has to count the support of each candidate itemset,
and it necessitates one whole database pass at each iteration. Due to the counting inference
support, the number of expensive database passes and support counts can be reduced seriously,
especially in the case of dense, highly correlated data.

Shortly, Zart works in the following way: as it is based on Pascal, first it finds frequent
itemsets and marks frequent generators. Then, it filters frequent closed itemsets among frequent
itemsets, like Apriori-Close. The idea is that an itemset is not closed if it has a superset with
the same support. Thus, if at the i iteration an itemset has a subset of size (i — 1) with the
same support, then the subset is not a closed itemset. This way all frequent closed itemsets can
be found. The last step consists in associating generators to their closures. This can be done
by collecting the non-closed, generator subsets of the given closed itemset that have the same
support.

Thus, Zart has three main characteristics, namely (1) pattern counting inference, (2) iden-
tifying frequent closed itemsets, and (3) identifying generators of frequent closed itemsets. In
this section we give the theoretical basis of Zart.

Pattern counting inference. The first part of Zarf is based on Pascal, thus the definitions
of this paragraph mainly rely on [BTP*00a|. Pascal introduced pattern counting inference,
which is based on the following observation. Frequent itemsets in a database are not completely
independent one from another. Itemsets that are common to the same set of objects belong to
the same equivalence class. In a class three kinds of elements are distinguished: the maximal
element, the minimal element(s) (w.r.t. set inclusion), and all other elements. The maximal
element, which is a unique element, is the closure of all the elements in the class, thus it is a
frequent closed itemset. The minimal elements are called generators.!> An equivalence class has
the special property that all its elements have exactly the same support. This is the key idea
behind the counting inference.

Levelwise algorithms are based on two basic properties of Apriori, namely downward closure
(see Def. 3.1) and anti-monotonicity (see Def. 3.2). Like Apriori or Pascal, Zart traverses
the powerset lattice of a database in a levelwise manner. At the i** iteration, the algorithm
first generates candidate i-itemsets. Using the Apriori properties, only the potentially frequent
candidates are kept, i.e. those whose (i — 1)-long subsets are all frequent. After this, with one
database pass, the support of all candidate i-long itemsets is determined.

Pattern counting inference is based on the observation that frequent itemsets can be grouped
in equivalence classes. All itemsets in a class are equivalent, in the sense that they describe
exactly the same set of objects:

'5In the literature these itemsets have various names: key itemsets, minimal generators, free-itemsets, etc.
Throughout the thesis we will refer to them as “generators” or “key generators”.

40 Chapter 3. Frequent Itemset Search

Definition 3.1 (equivalence class) Let f be the function that assigns to each itemset P C A
the set of all objects that include P: f(P) = {o € O | o includes P}. Two itemsets P,QQ C A
are said to be equivalent (P = Q) iff f(P) = f(Q). The set of ilemsets that are equivalent to an
itemset P (also called P’s equivalence class) is denoted by [P]={Q C A | P = Q}.

If P and @ are equivalent (P =2 (@), then their support is the same:

Lemma 3.2 Let P and Q be two itemsets.
(i) P = Q= supp(P) = supp(Q)
(1) P C Q and (supp(P) = supp(Q)) = P = Q

Definition 3.2 An itemset P € [P] is called a generator (or key generator), if P has no proper
subset in [P], i.e. it has no proper subsel with the same support. It means that generators are
minimal elements in their equivalence classes (w.r.t. set inclusion). A candidate generator is an
itemset such that all 1ts proper subsets are generators.

Property 3.3 (downward closure for generators) All subsets of a frequent generator are
frequent generators.

Property 3.3 can be generalized the following way:
Property 3.4 All subsets of a generator are generators [Kry01].

Property 3.5 (anti-monotonocity for generators) If an itemset is not a (frequent) gener-
ator, then none of its supersets are (frequent) generators.

Theorem 3.1 Let P be a frequent itemset.

(i) Letp e P. Then P € [P\ {p}] iff supp(P) = supp(P \ {p}).
(it) P is a generator iff supp(P) # minyecp(supp(P \ {p})).

Theorem 3.2 If P is not a generator, then supp(P) = minpep(supp(P \ {p})).

The proofs of Properties 3.3, 3.5 and Theorems 3.1 and 3.2 can be found in [BTP*00a]. Prop-
erty 3.4 is proven in [Kry01].

Let maz[P] be the maximal element of the equivalence class of P, i.e. maz[P] is the closure of
the class of P. Let min[P] be the set of minimal elements (w.r.t. set inclusion) of the equivalence
class of P, i.e. min[P] is the set of generators of the class of P (jmin[P]| > 1).

Definition 3.3 An equivalence class P is simple if P has only one generator and this generator
1s equivalent to the closure of P.

Definition 3.4 An equivalence class P is complex if P has at least one generator that is not
equivalent to the closure of P.

This distinction is interesting from the point of view of rule extraction. For example, the generic
basis (see Def. 4.3) can only be generated from complez equivalence classes.

3.3. Detailed Description of Selected Algorithms 11

Definition 3.5 (subsumption relation on equivalence classes) The equivalence class Q is
an ascendant (or a subsumer) of the equivalence class P if maz|[P] C maz|Q]. The equivalence
class Q is a direct ascendant (or a direct subsumer) of the equivalence class P if Q is an
ascendant of P and there exists no equivalence class T such that max|[P] C max[T] C maz|[Q).
The subsumption relation on equivalence classes is transitive.

For example, let us consider the equivalence class with closure {C} in Figure 3.4. This class
is directly subsumed by the equivalence class with closure {BCE}. This class is subsumed by
the equivalence class with closure {ABCE} too. However, between this class and the equivalence
class with closure {ABE} there is no subsumption relation.

How to use pattern counting inference? Thanks to the levelwise traversal of frequent itemsets,
first the smallest elements of an equivalence class are discovered, and these are exactly the key
generators. Later when finding a larger itemset, it is tested if it belongs to an already discovered
equivalence class. If it does, the database does not have to be accessed to determine its support,
since it is equal by definition to the support of the already found generator in the equivalence
class (see Theorem 3.2).

Note that a class can have more than one generator, and the length of generators can be
different. For instance in the database D'={ABC, ABC, B, C}, the frequent closed itemset
{ABC} has two generators: {A} and {BC}.

Figure 3.4 shows the equivalence classes of database D (Table 3.1) with minimum support 2
(40%). In a class only the maximal (frequent closed itemset) and minimal elements (frequent
generators) are indicated. Support values are shown in the top right-hand corner of classes. The
empty set is not indicated since its closure is itself in the example, thus it is not interesting from
the point of view of association rule generation.

The first part of the algorithm that enumerates all frequent itemsets can be summarized
as follows: it works like Apriori, but counts only those supports that cannot be derived from
previously computed steps. This way the expensive database passes and support counts can be
reduced to the frequent generators only. From some level on, all frequent generators are found,
thus all remaining frequent itemsets and their supports can be inferred without any database
pass. In the worst case (when all frequent itemsets are also generators) the algorithm works
exactly like Apriori.

Identifying closed itemsets among frequent itemsets. The second part of Zart consists
in the identification of frequent closed itemsets among frequent itemsets, adapting this idea from
Apriori-Close. By definition, a closed itemset has no proper superset with the same support.
At each " step all i-long itemsets are marked “closed”. At the (i + 1) iteration for each
(i + 1)-long itemset we test if it has an i-long subset with the same support. If so, then the
t-long itemset is not a closed itemset since it has a proper superset with the same support and
it is marked “not closed”. When the algorithm terminates with the enumeration of all frequent
itemsets, itemsets still marked “closed” are the frequent closed itemsets of the dataset. This way
we manage to identify the maximal elements of equivalence classes.

Associating the generators to their closures. During the previous two steps we have found
the frequent itemsets, marked frequent generators, and filtered the frequent closed itemsets that
are the maximal elements of equivalence classes. What remains is to find the links between the
generators and closed itemsets, i.e. to find the equivalence classes.

42 Chapter 3. Frequent Itemset Search

Because of the levelwise itemset search, when a frequent closed itemset is found, all its
frequent subsets are already known. This means that its generators are already computed, they
only have to be identified. We have already seen that a generator is a minimal subset (w.r.t. set
inclusion) of its closed itemset with the same support. Consider first the following straightforward
approach to associate generators: given a frequent closed i-long itemset z, find all its subsets
(length from 1 to (¢ — 1)) having the same support as z, and store them in a list. This results
in all the elements of an equivalence class, not only its generators. If the list is empty then it
means that the closed itemset only has one generator, itself. We can find the generators in the
list as follows: for each itemset delete all its proper supersets in the list. What remains are the
generators. However, this approach is very slow and inefficient, since it looks for the subsets of a
closed itemset in a redundantly large space. We show that the search space for generators can be
narrowed to “not closed” key itemsets. At step ¢ the previously found frequent itemsets do not
have to be kept in memory. After registering the not closed key itemsets in a list, the frequent
and frequent closed itemsets can be written to the file system and deleted from the memory. This
way at each iteration a great amount of memory can be reused, and thus the algorithm can work
on especially large datasets. Furthermore, we show that it is not needed to store the support of
not closed key itemsets, thus the space requirement of the algorithm is further reduced. This is
justified by the following properties:

Property 3.6 A closed itemset cannot be a generator of a larger itemset.

Property 3.7 The closure of a frequent not closed generator g is the smallest proper superset
of g in the set of frequent closed itemsets.

By using these two properties, the algorithm for efficiently finding generators is the following:
key itemsets are stored in a list I. At the i*? iteration frequent closed i-itemsets are filtered. For
each frequent closed i-itemset z the following steps are executed: find the subsets of z in list [,
register them as generators of z, and delete them from [. Before passing to the (i+1)"" iteration,
add the ¢-long not closed key itemsets to list . Properties 3.6 and 3.7 guarantee that whenever
the subsets of a frequent closed itemset are looked for in list I/, only its generators are returned.
The returned subsets have the same support as the frequent closed itemset, it does not even have
to be tested! Since only the generators are stored in the list, it means that we need to test much
less elements than the whole set of frequent itemsets. When all frequent itemsets are found,
the list [is empty. This method has another feature: since at step ¢ in list [the length of the
largest element can be maximum (i — 1), we do not find the generators that are identical to their
closures. It must be added when equivalence classes are processed. Whenever a frequent closed
itemset is read that has no generator registered, it simply means that its generator is itself.

As for the implementation, instead of using a “normal” list for storing generators, the trie
data structure is suggested (see Appendix C.1), since it allows a very quick lookup of stored
subsets of a set (see Appendix C.2).

The Algorithm

In this section, we present the Zart algorithm.

Pseudo code. The main block of the algorithm is given in Algorithm 1. Zart uses three
different kinds of tables, their description is provided in Tables 3.2 and 3.3. We assume that

3.3. Detailed Description of Selected Algorithms 43

C; | potentially frequent candidate i-itemsets

fields: (1) itemset, (2) pred supp, (3) key, (4) support
F; | frequent i-itemsets

fields: (1) itemset, (2) key, (3) support, (4) closed

Z; | frequent closed i-itemsets

fields: (1) itemset, (2) support, (3) gen

Table 3.2: Tables used in Zart.

itemset — an arbitrary itemset
pred supp — the minimum of the supports of all
(1 — 1)-long frequent subsets of the itemset
key — is the itemset a key generator?
closed — is the itemset a closed itemset?
gen — generators of a closed itemset

Table 3.3: Fields of the tables of Zart.

an itemset is an ordered list of attributes, since we will rely on this in the Zart-Gen function
(Algorithm 2).16

SupportCount procedure: this method gets a C; table with potentially frequent candidate
itemsets, and it fills the support field of the table. This step requires one database pass. For a
detailed description see Algorithm 21.

Subsets function: this method gets a set of itemsets S, and an arbitrary itemset [. The func-
tion returns such elements of S that are subsets of [. For a detailed description see Algorithm 22.

Note that the empty set is only interesting, from the point of view of rule generation, if its
closure is not itself. By definition, the empty set is always a generator and its support is 100%,
i.e. it is present in each object of a dataset (supp(0)) = |O]). As a consequence, it is the generator
of an itemset whose support is 100%, i.e. of an itemset that is present in each object. In a binary
table it means a rectangle that fills one or more columns completely. In this case, the empty set
is registered as a frequent generator (line 15 of Algorithm 1), and attributes that fill full columns
are marked as “not keys” (line 10 of Algorithm 1). Since in our database D (Table 3.1) there is no
full column, the empty set is not registered as a frequent generator, and not shown in Figure 3.4
either.

Optimizing the support count of 2-itemsets. It is well known that many itemsets of length
2 turn out to be infrequent. Counting the support of 2-itemsets can be done more efficiently the
following way. Through a database pass, an upper-triangular 2D matrix can be built containing
the support values of 2-itemsets. This technique is especially useful for vertical algorithms where
the number of intersection operations can thus be significantly reduced, but this optimization
can also be applied to levelwise algorithms. Consult Appendix E for a detailed description and
an example. Note that for a fair comparison with other algorithms, we disabled this option in
the experiments.

16Note that we have this assumption for all levelwise algorithms presented in the thesis.

44 Chapter 3. Frequent Itemset Search

Algorithm 1 (Zart):
1) fullColumn «— false;
2) FG < {};// global list of frequent generators
3) filling C7 with 1-itemsets; // copy attributes to C}
4) SupportCount(C1);
5) Fy « {ce Cy | csupport > min_supp};
6) loop over the rows of Fy (1)
A
8) l.closed « true;
9) if (Lsupp = [O]) {
10) l.key « false; // the empty set is its generator
11) fullColumn «— true;
1)}
13) else [.key <« true;
1)}
15) if (fullColumn = true) FG «— {0};
16) for (i « 1; true; +-+1i)
17
18) Ciy1 < Zart-Gen(F;);
19) if (Ci41 = 0) break; // exit from loop
20) if C;41 has a row whose “key” value is true, then
o) |
22) loop over the elements of the database (o) {
23) S « Subsets(Ciy1, 0);
24) loop over the elements of S (s):
25) if (s.key = true) +-+s.support;
%)}
)
28) loop over the rows of Cj41 (c)
)
30) if (c.support > min_ supp) {
31) if ((c.key = true) and (c.support = c.pred supp)):
32) c.key « false;
33) Fip1 — Fiy U{ch
)}
35) }
36) loop over the rows of Fiy1 (1) {
37) l.closed « true;
38) S «— Subsets(F;, 1);
39) loop over the elements of S (s):
40) if (s.support = l.support) s.closed « false;
a)
42) Z;i —{l € F; | l.closed = true};
43) Find-Generators(Z;);
))
45) Z; « Fj;
46) Find-Generators(Z;);
47)
48) Result:
49) Fls: |, F;
50) FClIs + their generators: |J; Z;

3.3. Detailed Description of Selected Algorithms

45

Algorithm 2 (Zart-Gen function):

Input: F; — set of frequent itemsets
Output: table C;11 with potentially frequent candidate itemsets.

1)

— =
—_— O © 0 ~J O O i W I

N e e e e N e N N N e N N e e N

I o T e T e T S =Y
~ O U = W N

Plus: key and pred_supp fields will be filled in Cj41.

insert into Cjiq

select p[1],p[2],...,pli], qi]
from F; p, F; q

where p[1] = q[1],...,p[i — 1] = q[i — 1], p[i] < q[d]; // like in Apriori
loop over the rows of Ciy1 ()
{

c.key « true;
c.pred_supp = |O| + 1; // number of objects in the database + 1 (imitating +00)
S « (i — 1)-long subsets of ¢;
loop over the elements of S (s)
{
if (s ¢ F;) then Ciyq <« Ciq1 \ {c}; // remove it if it is rare
else {
c.pred_supp < min(c.pred _supp, s.support);
if (s.key = false) then c.key « false; // by Property 3.5
}
}
if (c.key = false) then c.support « c.pred _supp; // by Theorem 3.2

}

return Cyq1;

Algorithm 3 (Find-Generators procedure):

Method: fills the gen field of the table Z; with generators
Input: Z; — set of frequent closed itemsets

loop over the rows of Z; (z2)
{
S« Subsets(FG, z);
z.gen «— S
FG — FG\ S,
}

FG — FGU{l € F; | l.key = true A l.closed = false};

46 Chapter 3. Frequent Itemset Search

Running example. The execution of Zart on dataset D (Table 3.1) with min_supp = 2
(40%) is illustrated in Table 3.4.

DB
scanj
N Cy | pred_supp | key | supp Fy | key | supp | closed Zy | supp | gen
{A} 4 {A} | yes 4 yes {A} 4
{B} 4 {B} [yes | 4 | wes {Cy| 4
{C} 4 {C} | yes 4 yes FGiepore = {}
{D} 1 {E} yes 4 yes FGafter = {BE}
{E} 4
DB
scang
- Cy pred supp | key | supp Fy key | supp | closed Zo supp gen
{AB} 4 ves | 3 {AB} | yes | 3 ven {AC} | 3
{AC} 4 yes 3 {AC} | yes 3 yes {BE} 4 {B, E}
{AE} 4 yes 3 {AE} | yes 3 ves FGhefore = {B, E}
{BC} 4 yes 3 {BC} | yes 3 yes FGyfier = {AB,AE, BC,CE}
{BE} 4 yes | 4 {BE} | no 4 yes
{CE} 4 yes 3 {CE} | yes 3 yes
DB
scang
_ Cs pred_supp | key | supp F3 key | supp | closed Zs supp gen
{ABC} 3 yes | 2 {ABC} | yes | 2 ver {ABE} | 3 | {AB, AE}
{ABE} 3 yes 3 {ABE} | no 3 yes {BCE} 3 {BC, CE}
{ACE} 3 yes 2 {ACE} | yes 2 yes FGiefore = {AB,AE,BC,CE}
{BCE} 3 yos | 3 {BCE} | no 3 yes FGyfier = {ABC, ACE}
Cy pred supp | key | supp Fy key | supp | closed Zy supp gen
{ABCE} 2 yes | 2 {ABCE} | no 2 yes {ABCE} | 2 | {ABC, ACE}
FGiepore = {ABC, ACE}
F Ga fter = {}
Cs | pred_supp | key | supp
0

Table 3.4: Execution of Zart on dataset D with min_supp = 2 (40%).

The algorithm first performs one database scan to count the supports of 1-itemsets. The
candidate itemset {D} is pruned because it is infrequent. At the next iteration, all candidate
2-itemsets are created and stored in (5. Then a database scan is performed to determine the
supports of the six potentially frequent candidate itemsets. In Co there is one itemset that has
the same support as one of its subsets, thus {BE} is not a key generator (see Theorems 3.1
and 3.2). Using Fj, the itemsets {B} and {E} in F; are not closed because they have a proper
superset in Fy with the same support. The remaining closed itemsets {A} and {C} are copied to
7y and their generators are determined. In the global list of frequent generators (FG), which is
still empty, they have no subsets, which means that both {A} and {C} are generators themselves.
The not closed key itemsets of F; ({B} and {E}) are added to FG .

In C3 there are two itemsets, {ABE} and {BCE}, that have a non-key subset ({BE}), thus by
Property 3.5 they are not key generators either. By Theorem 3.2, their support values are equal
to 3, i.e. their supports can be determined without any database access. By Fj, the itemsets
{AB}, {AE}, {BC} and {CE} turn out to be “not closed”. The remaining closed itemsets {AC}
and {BE} are copied to Zs. The generator of {AC} is itself, and the generators of {BE} are
{B} and {E}. These two generators are deleted from FG and {AB}, {AE}, {BC} and {CE} are
added to FG.

At the fourth iteration, it turns out in Zart-Gen that the newly generated candidate itemset
contains at least one non-key subset. By Property 3.5 the new candidate itemset is not a
candidate key generator, and its support is determined directly in Zart-Gen by Theorem 3.2.

3.3. Detailed Description of Selected Algorithms

All frequent
itemsets (|, Fi)

All frequent closed itemsets
with their generators (|J; Z;)

{a} (4) +

{a} (4); [{a}]

47

{b} (4) 3
{c} (4) + {a, b, c}
{e ()(¥

4
{a, b} (3
b3
F3
}(

{c} (4); [{c}]

2) {a, c} (3); [{a, c}]

3) + | {b, e} (4); [{b}, {e}]

) {a, b, e} (3); [{a, b}, {a, e}]

{b, ¢, e} (3); [{b, c}, {c, e}]

{a, b, c, e} (2); [{a, b, ¢}, {a, c, e}]

{a, c} (3) + {b, ¢, e}

{a,
{b,

D — —
—
o
on
o
@
—
—~
[\)
S
+

e
ct (3

Table 3.5: Output of Zart.

As there are no more candidate generators in Cy, from this step on no more database scan is
needed.

In the fifth iteration no new candidate itemset is found and the algorithm breaks out from
the main loop. The largest frequent closed itemset is {ABCE}, its generators are read from FG.
When the algorithm stops, all frequent and all frequent closed itemsets with their generators are
determined, as shown in Table 3.5. In the table the “+” sign means that the frequent itemset is
closed. The support values are indicated in parenthesis. If Zart leaves the generators of a closed
itemset empty, it means that the generator is identical to the closed itemset (as this is the case
for {A}, {C} and {AC} in the example). Due to the property of equivalence classes, the support
of a generator is equal to the support of its closure.

Apriori-Close. Here we provide the pseudo code of Apriori-Close (see Appendix B.2). This
algorithm is an extension of Apriori. When it finds i-long frequent itemsets, it filters closed
itemsets among (i — 1)-long frequent itemsets. The algorithm relies on the property that a closed
itemset has no proper superset with the same support. The pseudo code of the extension of
Apriori-Close over Apriori can be found between lines 36 and 41 in Algorithm 1.

Pascal®. Actually, Zart can be specified to another algorithm that we call Pascal™. Previ-
ously we have seen that Zart has three main characteristics. Removing the 3" part of Zart
(associating generators to their closures), we get Pascalt that can filter FCIs among FIs, just
like Apriori-Close. To obtain Pascal™the Find-Generators() procedure calls must be deleted
from Algorithm 1 in lines 43 and 46.

Generalizing Zart

The idea presented in Zart can be generalized and thus it can be applied to any frequent itemset
mining algorithm, be it either breadth-first or depth-first. We show it in details in Section 3.3.2,
in the algorithm called Eclat-Z. Eclat-Z is a vertical algorithm that finds all frequent itemsets.
Since it is a depth-first algorithm, it does not produce frequent itemsets in ascending order by
their length. We will show how to use the ideas of Zart even in such a case, and how to extend
an arbitrary frequent itemset mining algorithm to produce such results that can be used directly
to generate not only all valid association rules, but minimal non-redundant association rules too.

48 Chapter 3. Frequent Itemset Search

‘ H # Objects ‘ # Attributes ‘ Avg. length | Largest attr. ‘

T20I6D100K 100,000 893 20 1,000
C20D10K 10,000 192 20 385
MUuUsHROOMS 8,416 119 23 128

Table 3.6: Characteristics of databases used for Zart.

Experimental Results

We evaluated Zart against Apriori and Pascal. Here we recall the characteristics of our test
environment from Appendix A. All times reported are real, wall clock times as obtained from
the Unix time command between input and output. Table 3.6 shows the characteristics of
the databases used in our evaluation. It shows the number of objects, the number of different
attributes, the average transaction length, and the largest attribute in each database.

The T20I6D100K!7 is a sparse dataset, constructed according to the properties of market
basket data that are typically weakly correlated data. The number of frequent itemsets is small,
and nearly all Fls are closed. The C20D10K is a census dataset from the PUMS sample file,
while the MUSHROOMS'® describes mushrooms characteristics. The last two are highly correlated
datasets. It has been shown that weakly correlated data, such as synthetic data, constitute easy
cases for the algorithms that extract frequent itemsets, since few itemsets are frequent. For such
data, all algorithms give similar response times. On the contrary, dense and highly-correlated
data constitute far more difficult cases for the extraction due to large differences between the
number of frequent and frequent closed itemsets. Such data represent a huge part of real-life
datasets.

Weakly correlated data. The T20I6D100K synthetic dataset mimics market basket data
that are typically sparse, weakly correlated data. In this dataset, the number of frequent item-
sets is small and nearly all frequent itemsets are generators. Apriori, Pascal and Zart behave
identically. Response times for the T20I6D100K dataset are presented numerically in Table 3.7
and graphically in Figure 3.5.

Table 3.7 also contains some statistics about the datasets, provided by Zart. It shows the
number of Fls, the number of FCls, the number of frequent generators, the proportion of the
number of FCIs to the number of Fls, and the proportion of the number of frequent generators to
the number of FIs, respectively. As we can see in T20I6D100K, above 0.75% minimum support
all frequent itemsets are closed and generators at the same time. It means that each equivalence
class has one element only. Because of this, Zart and Pascal cannot use the advantage of pattern
counting inference, and they work exactly like Apriori.

Strongly correlated data. Response times obtained for the C20D10K and MUSHROOMS
datasets are given numerically in Table 3.7, and graphically in Figures 3.6 and 3.7, respectively.
In these two datasets, the number of frequent generators is much less than the total number
of frequent itemsets. Hence, using pattern counting inference, Zart has to perform much fewer
support counts than Apriori. We can observe that in all cases the execution times of Zart and
Pascal are almost identical: adding the frequent closed itemset derivation and the identification of
their generators to the frequent itemset discovery does not induce serious additional computation

"http://www.almaden. ibm.com/software/quest/Resources/
Bhttp://kdd.ics.uci.edu/

3.3. Detailed Description of Selected Algorithms 49

min_supp (%) ‘ ‘ Apriori ‘ Pascal ‘ Zart ‘ ‘ # Fls ‘ # FClIs ‘ # FGs ‘ iFFC}ISS f;?j
T20I6D100K
2 72.67 71.15 | 71.13 378 378 378 100.00% | 100.00%
1 107.63 | 106.24 | 107.69 1,534 1,534 1,534 | 100.00% | 100.00%
0.75 134.49 | 132.00 | 133.00 4,710 4,710 4,710 100.00% | 100.00%
0.5 236.10 | 228.37 | 230.17 26,836 | 26,208 | 26,305 | 97.66% | 98.02%
0.25 581.11 | 562.47 | 577.69 155,163 | 149,217 | 149,447 | 96.17% | 96.32%
C20D10K
50 61.18 16.68 17.94 1,823 456 456 25.01% | 25.01%
40 71.60 19.10 19.22 2,175 544 544 25.01% | 25.01%
30 123.57 | 26.74 | 26.88 5,319 951 967 17.88% 18.18%
20 334.87 | 53.28 | 54.13 20,239 2,519 2,671 12.45% 13.20%
10 844.44 | 110.78 | 118.09 89,883 8,777 9,331 9.76% 10.38%
MUSHROOMS
60 3.10 2.04 2.05 51 19 21 37.25% | 41.18%
50 6.03 3.13 3.13 163 45 53 27.61% | 32.52%
40 13.93 6.00 5.94 505 124 153 24.55% | 30.30%
30 46.18 12.79 12.75 2,587 425 544 16.43% | 21.03%
20 554.95 | 30.30 | 34.88 53,337 1,169 1,704 2.19% 3.19%

Table 3.7: Response times of Zart and other statistics.

time. Apriori is very efficient on sparse datasets, but on strongly correlated data the other
algorithms perform much better.

Comparing Pascal™ and Pascal. We also compared the efficiency of Pascal™ with Pascal.
We got the same results like with Apriori-Close and Apriori in Appendix B.2. Pascal™ gives
almost equivalent response times to Pascal on both weakly and strongly correlated data, i.e. the
filtering of closed itemsets among frequent itemsets is not an expensive step. Since the results
are almost identical (w.r.t. differences of response times) with the results shown in Table B.5 and
Figures B.1, B.2 and B.3, we do not include experimental results of Pascal™ and Pascal here.
As Pascal is more efficient than Apriori on strongly correlated data (see Table 3.7), Pascal®
is necessarily more efficient than Apriori-Close. If we need both frequent and frequent closed
itemsets, then Pascal™ is recommended instead of Apriori-Close.

Conclusion

In this subsection we presented a new, multifunctional itemset mining algorithm called Zart,
which is a refinement of Pascal. With pattern counting inference, using the generators of equiv-
alence classes, it can reduce the number of itemsets counted and the number of database passes.
In addition, it can identify frequent closed itemsets among frequent itemsets, and it can associate
generators to their closure. We showed that these extra features are required for the generation
of minimal non-redundant association rules. Zart can also be specified to another algorithm that
we call Pascal™. Pascal™ finds both frequent and frequent closed itemsets, like Apriori-Close.

We compared the performance of Zart with Apriori and Pascal. The results showed that Zart
gives almost equivalent response times to Pascal on both weakly and strongly correlated data,
though Zart also identifies closed itemsets and their generators. Since Zart finds all frequent
itemsets too, if needed, it can also be used to extract all valid association rules.

50

T2016D100K

Chapter 3. Frequent Itemset Search

time (s)

Apriori —+—
Pascal —-x-—

minimum support (%)

Figure 3.5: Response times of Zart for T2016D100K.

C20D10K
140 | ‘ Apriori ——
Pascal ---x---
Zart ---%---
120 | 5
100 |-
s 80f
(]
£
60 F
40 — E
20 & .. 1
o \ \ \ \ \ \ \
50 45 40 35 30 25 20 15 10

minimum support (%)

Figure 3.6: Response times of Zart for C20D10K.

mushrooms

time (s)

T
Apriori —+—
Pascal --->---

minimum support (%)

20

Figure 3.7: Response times of Zart for MUSHROOMS.

3.3. Detailed Description of Selected Algorithms 51

3.3.2 Eclat-Z

Eclat-Z is a hybrid algorithm that produces the same result as Zart, i.e. its output can also be
used directly to generate minimal non-redundant association rules (MNR). Eclat-Z combines
two algorithms: Eclat and Zart. Eclat (Appendix B.3) is a vertical, depth-first algorithm that
finds all frequent itemsets in a very efficient way. Zart (Section 3.3.1) is a levelwise algorithm
that filters frequent closed itemsets among frequent itemsets and associates generators to their
closures. In Fclat-Z we present an idea how to extend an arbitrary frequent itemset mining
algorithm in order to support the generation of minimal non-redundant association rules too.

Motivation and Contribution

Our motivation is the same as in the case of Zart: we want to find minimal non-redundant
association rules. Two things are needed for generating these rules: frequent closed itemsets
and their associated generators. Zart is a levelwise algorithm, based on Pascal. Thanks to
its pattern counting inference mechanism, it can greatly reduce the number of database passes.
Pascal finds all FIs and marks frequent generators. Zart, in addition, filters FCls and associates
the generators to their closures. Among levelwise FI-miner algorithms, Pascal may be the most
efficient. Experimental results show that Zart almost gives equivalent response times to Pascal,
i.e. its extra features do not induce any serious additional computation time.

We posed ourselves the following question: can the idea of Zart be generalized and used with
any arbitrary frequent itemset mining algorithm, be it either breadth-first or depth-first? Could
we somehow extend these algorithms in a universal way to produce such results that can be used
directly to generate not only all valid association rules, but minimal non-redundant association
rules too? Our answer is positive, and this is the subject of this section.

The idea of Zart can be generalized the following way. Find all frequent itemsets and organize
them in ascending order by their length. Then process Fls in a levelwise manner. First, filter
frequent generators, and then continue like Zart: filter frequent closed itemsets too and associate
generators to their closures. In Zart, we used Pascal for finding Fls, but this part of Zart can
be replaced with another Fl-miner algorithm, whose output can be post-processed in a levelwise
manner. We chose Zaki’s Eclat algorithm as the new “engine” of Zart. As we saw in Appendix B.3,
Eclat is more efficient than Pascal on both sparse and dense datasets. However, Pascal has two
advantages. First, due to its levelwise nature, it finds FIs in ascending order by their length.
Secondly, it tells which itemsets are generators. This provides a very good basis for Zart that adds
two more things: filtering FCIs and associating generators to their closures. On the contrary,
Eclat provides Fls in a completely unordered way due to its depth-first nature. However, the
levelwise post-processing of Fls requires itemsets in ascending order by their length. There are
two possibilities. First, we could modify Eclat to produce itemsets in an ordered way. It means
a breadth-first traversal of the I'T-tree. Unfortunately, in practice it is impossible, because it
would keep too many elements in the main memory at the same time. The only way is to
produce itemsets in a depth-first manner, write these itemsets in a file, and then process the
itemsets in the file in ascending order by length. Obviously, because of the high cost of I/O
operations, we need an efficient indexing technique for this file. We have made two versions of
Eclat-Z. In the first version, we keep an index structure in main memory. For each itemset length
we build a list that only stores file positions that indicate where an itemset is written in the file.
For instance, if there are twenty 2-itemsets, then we build a list of twenty file positions. When
reading back itemsets of a given length, simply the appropriate list must be traversed, seek to
the given positions, and read itemsets from the file. Instead of a whole itemset and its support

52 Chapter 3. Frequent Itemset Search

value, we only keep one integer in main memory for each itemset. However, this version has a
drawback: when finding too many itemsets, the index structure slowly fills up the memory. In a
revised version of Felat-Z, we managed to eliminate this problem by building the index structure
in the file itself. In the memory we only keep a simple index array, whose memory requirement
is insignificant.

Our contribution can be summarized as follows. We present a universal way to extend any FI-
miner algorithm in order to produce minimal non-redundant association rules too. We present
an efficient method how to store Fls in a file if FIs are not provided in ascending order by
length. Thanks to our special indexing technique, FIs can be read in ascending order by length.
Our indexing requires no additional memory. Once itemsets are available in ascending order by
length, we show how to filter generators, closed itemsets, and how to associate generators to
their closures.

Detailed Description of Eclat-Z

Eclat-Z combines ideas of Eclat and Zart. Eclat finds all Fls that we save in the file system.
Then, this file is processed in a levelwise manner, i.e. itemsets are read in ascending order by
length, generators and closed itemsets are filtered, and finally generators are associated to their
closures. In the following two subsections we present the algorithm in detail.

Processing Itemsets in Ascending Order by Length

This step is required for such algorithms that do not generate Fls in ascending order by length.
Eclat is a good example for such an algorithm that we used as our “engine” in Eclat-Z. Levelwise
algorithms, like Apriori, represent an easier case, because they produce Fls in a good order. If
someone wants to use such an algorithm, he can continue with the second part of the algorithm.
Here, in the first part, we present an efficient, file-system based approach to process Fls in
ascending order by their length.

For our example, we use dataset D (Table 3.1) with min_supp = 2 (40%). Eclat produces
FlIs of D in an unordered way, as shown in Table 3.8.

order itemset support

1) ABCE 2
2) ABC 2
3) ABE 3
1) AB 3
5) ACE 2
6) AC 3
7) AE 3
8) A 4
9) BCE 3
10) BC 3
11) BE 4
12) B 4
13) CE 3
14) C 4
15) E 4

Table 3.8: Order of frequent itemsets produced by FEclat.

3.3. Detailed Description of Selected Algorithms 53

As it is impossible to keep all Fls in the main memory, we write Fls in a binary file. For
this, we need to modify the save method of Eclat, as follows. In the main memory we have an
index, called PosIndex, for file positions (Figure 3.8). PosIndex is a simple array of integers. At
position ¢ it indicates where the last i-long itemset is written in the binary file. Posinder must
always be kept up-to-date. On the left part of Figure 3.8, it is indicated how PosIndex changes
in time between tg and t15. The right side of the same figure shows the final state of Posindez.
Figure 3.9 shows the contents of the file (file positions are also indicated).

to|ti|te|ta|ta|ts|te |17]| ts | to [tio|t1r|t12|tia|t1a|tis 0Ol -1
(1) -1 26 38 43|45 1] 45
2| -1 13 20123 32(35 40 2] 40
3 -1 5|9 16 28 3| 28
41-1]10 4 0

Figure 3.8: The PosIndex structure of Eclat-Z. Timeline (left) and final state (right).

file positions: 01 17(18|19]20(21|22] ...
file contents: -1|A|B|C|E|[1|A|B|C|5|A|B|E|-1|A|B|9|[A|C|E]|13]A|C

N
w
N
(6)}
(0)}
~
(00}
©
Y
o
—
-
—
N
N
w
—
N
—
(&)}
—
(e)}

. 123]124(25]|26|27]28|29(30|31|32|33|34(35(36|37|38|39|40|41|42|43|44|45|46
20|A|E|-1|A|16|B|C|E|23|B|C[32|B|E [26(B (35| C | E |38|C (43| E

Figure 3.9: Contents of the file with the FIs. File positions are also indicated.

Running example. The first frequent itemset found by Eclat is ABCE (see Table 3.8). It is
a 4-itemset. The size of the PosIndez array is dynamically increased to size 4 + 1 (+1, because
position 0 is not used). The array is initialized: at each of its position we store —1 (¢9). As the
length of the found itemset is 4, we read the value of PosIndex at position 4. This value (—1),
together with the itemset is written to the binary file (see Figure 3.9). The value that we read
from PosIndex is a backward pointer that shows the file position of the previous itemset with the
same length. As the value is —1 here, it simply means that this is the first itemset of this length.
After writing ABCE to the file, the 4*" position of PosInder is updated to 0 (t1), because the
last 4-long itemset was written to position 0 in the file. ABC is written similarly, and PosIndex
is updated (t2). When ABFE is written to the file, its backward pointer is set to 5. This value is
read from PosIndex at position 3, since ABFE is a 3-itemset. The process continues until all Fls
are found. The final state of PosIndex is indicated on the right side of Figure 3.8.

Reading itemsets of a given length. Figure 3.9 demonstrates how to read back 1-itemsets
from the file (shown in darker grey). First, we need to know where the last 1-itemset is written.

54 Chapter 3. Frequent Itemset Search

It is registered in PosInder (Figure 3.8), at position 1. The value here shows that the last 1-
itemset is at position 45 in the file. Itemset E is read, and we seek to the previous 1-itemset at
position 43. C is read, seek to position 38. B is read, seek to position 26. A is read, and —1
indicates that there are no more 1-itemsets. This way Fls can be processed in ascending order
by length.

Some implementation details. For an easier understanding, we presented our indexed file
structure in a slightly simplified way. Actually, after each itemset we also have to save the
appropriate support values. In the schema, we used simple byte values. All of our algorithms are
implemented in Java, where an integer (type int) requires 4 bytes. We save all values as integers
(int), thus to get the real file positions, all values in the schema must be multiplied by 4.

Finding Generators, Closures, and Associating them

In the previous subsection, we presented the 1st part of the algorithm, i.e. how to get frequent
itemsets in ascending order by their length, even if they are produced in an unordered way. In
this subsection we continue with the 2nd part, namely how to associate generators and their
closures, once FIs are available in a good order.

The main block is shown in Algorithm 4. Two kinds of tables are used, namely F; for frequent,
and Z; for frequent closed itemsets. They are equivalent to Zart’s tables (see Tables 3.2 and
3.3). Here we suppose that Fls are available in ascending order by their length.

readTable function (Algorithm 5): this method is responsible for reading frequent itemsets of
a given length. If Eclat is used as the Fl-miner part of the algorithm, then readTable reads Fls
from the binary file, as explained previously. The function returns Fls in an F; table. Fields of
the table are initialized: itemsets are marked as “keys” and “closed”. Of course, during the post-
processing step these values may change. Frequent attributes (frequent 1-itemsets) represent a
special case. If they are present in each object of the dataset, then they are not key generators,
because they have a smaller subset with the same support, namely the empty set. In this case
the empty set is a useful generator (w.r.t. rule generation).

findKeysAndClosedItemsets procedure (Algorithm 6): this method is responsible for filter-
ing FCIs and FGs among FIs. The filtering procedure is based on the following definitions. A
frequent closed itemset has no proper superset with the same support. Furthermore, a frequent
generator has no proper subset with the same support.

Subsets function: this method is identical to Algorithm 22.

Find-Generators procedure: this method, which is responsible for associating FCIs and FGs,
is identical to Algorithm 3.

Running example. The execution of Eclat-Z on dataset D (Table 3.1) with min_ supp = 2
(40%) is illustrated in Table 3.9. Since this 2nd part of the algorithm is based on Zart, we do
not repeat the explanation of the example here.

3.3. Detailed Description of Selected Algorithms

95

Algorithm 4 (Eclat-Z):

1) maxltemsetLength <+ (length of the largest FI previously found by the Fl-miner);
2) fullColumn « false;
3) FG «—{};// global list of frequent generators
4) Fy <« readTable(1); // get frequent 1-itemsets
5) for (i « 1; i < maxltemsetLength; ++i)
6) {
7) Fitq1 < readTable(i + 1); // get frequent (i+1)-itemsets
8) findKeysAndClosedItemsets(F; 1, F;);
9) Z;i «— {l € F; | l.closed = true};
10) Find-Generators(Z;);
1)}
12) Z; « {l € F; | l.closed = true};
)

—
w

Find-Generators(Z;);

Algorithm 5 (readTable function):

Input: 1 — length of frequent itemsets that are to be read
Method: reads i-long itemsets and returns them in an F' table.
It also initializes other fields of the table.

1) F «{};// F is an empty table
2) loop over i-long itemsets (curr)
3) |
4) row.itemset < curr.itemset;
5) TOW.SUPP “— CUTT.SUpp;
6) row.closed « true;
) it (i=1)
8 {
9) if (row.supp = |0|) {
10) row.key « false; // the empty set is its generator
11) FullColumn « true;
)}
13) else row.key « true;
)
15) else row.key « true;
16) F — F Urow;
17}
18) if (fullColumn = true) FG « {0}; // the empty set is a useful generator
)
)

return F;

56 Chapter 3. Frequent Itemset Search

Algorithm 6 (findKeysAndClosedltemsets procedure):

Input: Fi11 — set of (i + 1)-long frequent itemsets
F; — set of i-long frequent itemsets

Method: (1) using Fj41, it filters FCIs in Fj, and
(2) using F;, it filters key generators in Fj

1) loop over the rows of Fj1q (sup)
2) |
3) S « Subsets(F;, sup); // find subsets of sup in F;
4) loop over the elements of S (sub)
5 A
6) if (sub.supp = sup.supp)
7) {
8) sub.closed <« false; // it has a proper superset with the same support
9) sup.key < false; // it has a proper subset with the same support
10) }
11) }
12) }
Fy | key | supp | closed Zy1 | supp | gen
{A} | yes 4 yes {A} | 4
{B} | yes | 4 | yes {Cy| 4
{C} yes 4 yes FGbefore = {}
{E} yes 4 yes FGafte'r = {Bv E}
) key | supp | closed Zo supp gen
{AB} | yes | 3 ves {AC} | 3
{AC} | yes | 3 yes {BE} | 4 | {B,E}
{AE} yes 3 yes FGbefore = {B7 E}
{BC} | yes 3 yes FGapter = {AB,AE,BC,CFE}
{BE} | ves | 4 yes
{CE} | yes | 3 es
3 key | supp | closed Zs3 supp gen
{ABC} | yes 2 Tes {ABE} 3 {AB, AE}
{ABE} | yes | 3 yes {BCE} | 3 | {BC, CE}
{ACE} | yes 2 yes FGyefore = {AB,AE, BC,CE}
{BCE} | yes 3 yes FGatter = {ABC,ACE}
Fy key | supp | closed Zy supp gen
{ABCE]} | yes | 2 | yes {ABCE} | 2 | {ABC, ACE}
FGyefore = {ABC, ACE}
FGafter = {}

Table 3.9: Execution of Eclat-Z on dataset D with min_supp = 2 (40%).

3.3. Detailed Description of Selected Algorithms 57

min_supp (%) Eclat-Z | Zart
T20I6D100K
2 7.08 71.13
1 7.87 107.69
0.75 9.21 133.00
0.5 19.40 | 230.17
0.25 96.18 | 577.69
C20D10K
50 1.31 17.94
40 1.36 19.22
30 1.75 26.88
20 4.27 54.13
10 16.76 | 118.09
MUSHROOMS
60 0.91 2.05
50 0.91 3.13
40 0.98 5.94
30 1.27 12.75
20 10.04 34.88

Table 3.10: Response times of Eclat-Z.

Experimental Results and Conclusion

We compared the efficiency of Fclat-Z with Zart. These two algorithms are similar in the sense
that they both produce exactly the same results. The execution times of the algorithms on
different datasets is illustrated in Table 3.10. As we can see, Eclat-Z performs much better than
Zart, on both weakly and strongly correlated data. This difference is due to the FI-miner “engine”
of the algorithms. Zart is based on Pascal, and Eclat-Z is based on FEclat. In Appendix B.3
it is shown that FEclat —a vertical, depth-first algorithm— performs much better than Pascal,
which is a levelwise algorithm. The 2nd part of Eclat-Z and Zart are almost identical: they find
frequent generators and frequent closed itemsets, and they associate generators to their closures.
This way, the result of both algorithms can be used directly to generate minimal non-redundant
association rules.

As a conclusion we can say that the idea of Zart, i.e. associating generators and their closures,
is very useful for the generation of interesting association rules. However, Zart has one drawback,
namely that it is based on a levelwise algorithm. Although Pascal is very efficient among other
levelwise algorithms, its performance degrades in the case of dense datasets, or when minimum
support is set very low. In Eclat-Z we generalized the idea of Zart, and we applied this idea on
a very efficient Fl-miner algorithm called Eclat. With Eclat we had to face another problem: it
produces itemsets in an unordered way. Thanks to a special file indexing technique, we managed
to solve this problem, and then we could use the idea of Zart in a post-processing step. Naturally,
beside Fclat other Fl-miner algorithms can also be extended this way in order to support the
extraction of minimal non-redundant association rules too.

58 Chapter 3. Frequent Itemset Search

3.3.3 Charm-MFI
Short Overview of the Charm-MFI Algorithm

In this section, we present an extension of Charm called Charm-MFI. This algorithm can identify
not only frequent closed itemsets (FCIs), but mazimal frequent itemsets (MFIs) too. By defini-
tion, a maximal frequent itemset is a frequent closed itemset such that all its proper supersets are
rare itemsets (and necessarily, all its subsets are frequent itemsets). Clearly, MFI C FCI C FL
The idea for filtering MFIs among FCIs is the following. At each i** step, all i-long FCIs are
marked as “maximal” (where “maximal” means maximal frequent itemset). At the next (i + 1)
iteration for each (i + 1)-long FCI we test if it has an i-long subset. If so, then the i-long subset
is not a maximal frequent itemset because it has a frequent superset, thus we mark it as “not
maximal”. When the algorithm terminates with the enumeration of all frequent closed itemsets,
the itemsets still marked “maximal” are the MFIs. As a consequence, the largest frequent closed
itemsets are always maximal frequent itemsets. This technique is very similar to the filtering
of Apriori-Close (Apriori-Close marks FCIs among FIs). As we will see it in the experimental
results, this kind of filtering of maximal itemsets does not induce any serious additional com-
putation time. In our implementation we extended Charm, but the idea presented here can be
used with any frequent closed itemset mining algorithm. The only criterion is that FCIs must
be processed in ascending order by their length.

MFIs are called mazimal, because they have no frequent supersets. On the other hand,
regarding the number of these itemsets, they are minimal, i.e. they form a minimal generator
set from which all frequent itemsets can be restored.'® The MFI representation is a condensed,
but not lossless representation of Fls. Subset frequency is not available, thus from MFIs all
frequent itemsets can be restored the following way. First, we need to take all possible subsets
of MFIs, and then with one database pass their supports can be counted. This kind of support
count is a very expensive step, thus MFIs are not really suitable for generating association rules.
In our work we have only used MFIs for our border studies (see Chapter 5). In our approach,
first we find FCls then we filter MFIs, but there are several other algorithms that find MFIs
directly [Bay98, AAP00, GZ01].

The Algorithm

In this section, we present the Charm-MFI algorithm.

Pseudo code. The main block of the algorithm is given in Algorithm 7. We assume that all
frequent closed itemsets are already discovered, because FCIs provide the input of Charm-MFI.

readTable function: this method collects i-long (given as a parameter) FCIs and returns
them in a table. In the table all itemsets are marked as “maximal”. In our implementation, we
extended Charm. As can be seen in Appendix B.4, Charm stores all FCIs in the main memory
in a hash structure. This structure can be easily traversed in order to gather itemsets of a given
length. As mentioned, our approach can be generalized and used with any FCI-miner algorithm.
To do so, only this procedure needs to be customized.

Subsets function: this method is identical to Algorithm 22.

19Maybe they should rather be called “largest frequent itemsets”, because they have no larger frequent supersets.

3.3. Detailed Description of Selected Algorithms 59

Algorithm 7 (Charm-MFI):

Description: finds maximal frequent itemsets
Input: frequent closed itemsets

) mazxzltemsetLength «+ (length of the largest FCI);
) Ty <« readTable(1);
) for (i < 1; ¢ < maxItemsetLength; +-+i)
n
) T;41 < readTable(i+1);
) findMaximalFrequentltemsets(T;41, T3);
)

Algorithm 8 (findMaximalFrequentltemsets procedure):

Method: filter maximal frequent itemsets in T; using 7T; 1
Input: T;+1 — table of frequent closed itemsets of length (i + 1)
T; — table of frequent closed itemsets of length ¢

—

loop over the rows of Tj11 (sup)

{

[\]

DD T W
e N S

S « Subsets(T;, sup); // find subsets of sup in T;
loop over the elements of S (sub):
sub.maximal « false;

T1 | supp | maximal
{C 4 ves
{A} | 4 ves
Ts supp | maximal
{BE} 4 yes
{AC} | 3 yes
T3 supp | maximal

{BCE} | 3 yes
{ABE} 3 yes

Table 3.11: Execution of Charm-MFI on dataset D with min_ supp = 3 (60%).

60 Chapter 3. Frequent Itemset Search

Running example. The execution of Charm-MFI on dataset D (Table 3.1) with
min_supp = 3 (60%) is illustrated in Table 3.11. The algorithm processes FCIs in ascend-
ing order by their length. Itemsets of the same length are stored in a table. Note that itemsets
do not have to be ordered in a table. In dataset D by min_supp = 3 there are six frequent
closed itemsets altogether. The largest FCI is a 3-itemset. Filtering of maximal frequent item-
sets works the following way. First, all itemsets are marked “maximal” in 7. Then, using 75,
itemsets {C} and {A} are marked “not maximal” because they have a frequent proper superset
in T5. All itemsets are marked “maximal” in 75, but {BE} turns out to be “not maximal” because
of {BCE} in T5. At the end, there are 3 itemsets marked “maximal” {AC}, {BCE} and {ABE}.
From these three itemsets, all frequent itemsets could be restored.

Experimental Results

We compared the efficiency of Charm-MFI with Charm. The execution times of the algorithms
on different datasets is illustrated in Table 3.12. This table also shows the number of Fls, the
number of FCIs, the number of MFTs, the proportion of the number of FCIs to the number of
FIs and the proportion of the number of MFIs to the number of Fls. It can be seen that MFIs
are typically orders of magnitude fewer than all frequent itemsets, especially on dense datasets.

As a conclusion, we can say that Charm-MFI gives almost equivalent response times to
Charm on both weakly and strongly correlated data, i.e. the filtering of maximal frequent item-
sets among frequent closed itemsets is not an expensive process. The idea presented here can be
easily applied to any frequent closed itemset mining algorithm.

min__supp (%) ‘ ‘ Charm ‘ Charm-MFI ‘ ‘ # FIs ‘ 4 FCls ‘ 4 MFTs ‘ #FCTs ‘ ZMFTs

|

#F1s #F1s
T20I6D100K

2 32.80 33.24 378 378 365 100.00% | 96.56%

1 73.25 74.63 1,534 1,534 914 100.00% | 59.58%

0.75 91.77 91.52 4,710 4,710 1,791 100.00% | 38.03%

0.5 135.87 134.98 26,836 | 26,208 4,520 97.66% | 16.84%

0.25 361.96 372.34 155,163 | 149,217 | 12,467 96.17% | 8.03%

C20D10K

50 1.35 1.24 1,823 456 6 25.01% | 0.33%

40 1.55 1.34 2,175 544 3 25.01% | 0.14%

30 1.60 1.41 5,319 951 24 17.88% | 0.45%

20 2.28 1.97 20,239 2,519 26 12.45% | 0.13%

10 3.99 3.65 89,883 8,777 152 9.76% 0.17%
MUSHROOMS

60 0.86 0.91 o1 19 7 37.25% | 13.73%

50 0.86 0.96 163 45 17 27.61% | 10.43%

40 0.91 0.96 505 124 39 24.55% | 7.72%

30 1.12 1.19 2,587 425 89 16.43% | 3.44%

20 1.43 1.53 53,337 1,169 245 2.19% 0.46%

Table 3.12: Response times of Charm-MFI.

Chapter 4

Frequent Association Rules

Finding association rules is one of the most important tasks in data mining today. Generating
valid association rules (denoted by AR) from frequent itemsets often results in a huge number of
rules, which limits their usefulness in real life applications. To solve this problem, different concise
representations of association rules have been proposed, e.g. generic basis (GB), informative ba-
sis (ZB) [BTPT00b|, representative rules (RR) |Kry98|, Duquennes-Guigues basis (DG) [GD86],
Luxenburger basis (LB) [Lux91|, proper basis (PB), structural basis (SB) [PBTL99a), etc. A
very good comparative study of these bases can be found in [Kry02], where it is stated that a rule
representation should be lossless (should enable the derivation of all valid rules), sound (should
forbid the derivation of rules that are not valid) and informative (should allow the determination
of rules parameters such as support and confidence).

In this chapter, we present different sets of association rules, namely all valid association rules
and the family of minimal non-redundant association rules. We also introduce a new basis called
Closed Rules (CR) that we position among the other sets of association rules. All these sets
presented here can be extracted with the CORON platform. Pseudo code and running examples
are provided in all cases. The chapter is organized?® as follows: Sections 4.1 — 4.3 present the
selected sets of association rules. In Section 4.4 we show how to calculate other interestingness
measures beside support and confidence. In Section 4.5 we present an efficient way of support
derivation for frequent itemsets. Experimental results are given in Section 4.6. Finally, we review
the related works, and we close the chapter with the conclusions.

4.1 All Association Rules

From now on, by “all association rules” we mean all (frequent) valid association rules. The concept
of association rules was introduced by Agrawal et al. in [AIS93]. Originally, the extraction of
association rules was used on sparse market basket data. The first efficient algorithm for this
task was Apriori. It is interesting to note that in [AIS93]| Agrawal et al. extracted rules that
only have one item in the consequent.

The generation of all association rules consists of two main steps:

1. Find all frequent itemsets P in dataset D, i.e. where supp(P) > min__ supp.

2. For each frequent itemset P; found, generate all confident association rules r of the form
Py — (P \ P»), where P, C Py and conf(r) > min_conf.

20The necessary basic concepts are provided in Section 3.1.

61

62 Chapter 4. Frequent Association Rules

The more difficult task is the first step, which is computationally and I/O intensive. Some
selected itemset mining algorithms for this task have been presented in the previous chapter.

Generating All Valid Association Rules

Once all frequent itemsets and their supports are known, this step can be done in a relatively
straightforward manner. The general idea is the following: for every frequent itemset Pp, all
subsets P» of P; are derived, and the ratio supp(Py)/supp(P;) is computed.?! If the result is
higher or equal to min_conf, then the rule P, — (P, \ P) is generated.

The support of any subset P3 of P» is greater than or equal to the support of P,. Thus, the
confidence of the rule P3 — (P; \ P3) is necessarily less than or equal to the confidence of the
rule P, — (P \ P2). Hence, if the rule P, — (P; \ P») is not confident, then neither is the rule
P; — (P \ P3). Conversely, if the rule (P, \ P») — P» is confident, then all rules of the form
(P \ P3) — Ps are confident. For example, if the rule A — BE is confident, then the rules
AB — F and AE — B are confident as well.

Using this property for efficiently generating valid association rules, the algorithm works
as follows [AMS™96]. For each frequent itemset Pj, all confident rules with one item in the
consequent are generated. Then, using the Apriori-Gen function (see Algorithm 23) on the set
of 1-long consequents, we generate consequents with 2 items. Only those rules with 2 items in
the consequent are kept whose confidence is greater than or equal to min_conf. The 2-long
consequents of the confident rules are used for generating consequents with 3 items, etc.

The Algorithm

Pseudo Code. Here we present a slightly modified version of the algorithm of Agrawal et al.
for generating all association rules [AMS'96]. We present the algorithm in a more general way,
thus it can be used for all association rules and for closed association rules too. Furthermore, the
algorithm is extended to support other statistical measures, as we will see later in the chapter.
Note that the support of the right side of a rule is not needed for the support and confidence
values. If we do not want to calculate other statistical measures, this can be removed from
Algorithm 9 (line 9) and Algorithm 10 (line 9). In the algorithm, Lj is a set of frequent k-
itemsets (resp. frequent closed k-itemsets). The set AR collects the generated association rules.

getSupport0f function: this function returns the support of an arbitrary frequent itemset.
Since all frequent itemsets have already been explored before, finding the support of an itemset
is a trivial task. Note that this function will be modified when generating closed association
rules (Section 4.2).

Apriori-Gen function: this function is already known from Apriori. Using m-long itemsets,
it generates their (m 4+ 1)-long supersets. For a detailed description see Algorithm 23.

2 supp(P1)/supp(Pe) is the confidence of the rule Py — (P \ P).

4.1. All Association Rules 63

Algorithm 9 (main block):
Description: — generates all association rules (resp. closed association rules)
Input: frequent itemsets (resp. frequent closed itemsets)
Output: all association rules (resp. closed association rules)
1) loop over the elements of Ly where k > 2 (Ij)
%) |
3) H, < {itemsets of size 1 that are subsets of I };
4) loop over the elements of Hy (hi)
5 A{
6) leftSide — (I \ h1);
7) rightSide «— hy;
8) le ftSupp < getSupportOf(leftSide);
9) rightSupp «— getSupportOf(rightSide); // for other measures only
10)
11) conf «— getSupportOf(ly) / leftSupp;
12) if (conf > min_conf) then AR «— AR U {r : leftSide — rightSide};
13) else H1 — H1 \ {hl};
I
15) Gen-Rules(lg, Hy);
16) }
17) return AR;

Algorithm 10 (Gen-Rules procedure):

Input: I — frequent k-itemsets (resp. frequent closed k-itemsets)
H,, — set of m-long consequents

1) if(k>m+1)
2) |
3) Hp 41 < Apriori-Gen(Hy,);
4) loop over the elements of Hy,+1 (Am+1)
5 A
6) leftSide — (lk: \ hm+1);
7) rightSide «— hpy11;
8) le ftSupp «— getSupportOf(leftSide);
9) rightSupp «— getSupportOf(rightSide); // for other measures only
10)
11) conf «— getSupportOf(ly) / leftSupp;
12) if (conf > min_conf) then AR «— ARU{r : leftSide — rightSide};
13) else Hyp1 — Hppgr \ {hms1};
)
15) Gen-Rules(l, Hpt1);
16) }

64 Chapter 4. Frequent Association Rules

| AR [supp. [conf. [CR[GB|IB [MNR]

B— A 3 0.75

A— B 3 0.75

C— A 3 0.75 | + + +
A—-C 3 0.75 | + + +
E— A 3 0.75

A—FE 3 0.75

C —B 3 0.75

B—-C 3 0.75

E=21B 4 1.0 + | + +
B=F 4 1.0 + | + +
E—-C 3 0.75

C—FE 3 0.75

BE — A 3 075 | +

AEF =B 3 1.0 + | + +
AB=F 3 1.0 + | + +
E — AB 3 0.75 | + + +
B — AE 3 0.75 | + + +
A — BE 3 0.75 | + + +
CE =B 3 1.0 + | + +
BE - C 3 075 | +

BC=FE 3 1.0 + | + +
E— BC 3 0.75 | + + +
C —- BE 3 0.75 | + + +
B—-CFE 3 0.75 | + + +

Table 4.1: Different sets of association rules extracted from dataset D (Table 3.1) by min_ supp =
3 (60%) and min_conf = 0.5 (50%).

Example. Table 4.1 depicts which valid association rules (AR) can be extracted from dataset
D (Table 3.1) by min_supp = 3 (60%) and min__conf = 0.5 (50%). First, all frequent itemsets
have to be extracted from the dataset. In D by min_supp = 3 there are 12 frequent itemsets,
as shown in Table B.3. Only those itemsets can be used for generating association rules that
contain at least 2 items. Eight itemsets satisfy this condition. Given the itemset ABFE, which
is composed of 3 items, the following rules can be generated: BE — A (supp: 3; conf: 0.75),
AE = B (3; 1.0) and AB = FE (3; 1.0). Since all these rules are confident, their consequents
are used to generate 2-long consequents: AB, AE and BFE. This way, the following rules can be
constructed: £ — AB (3; 0.75), B — AFE (3; 0.75) and A — BFE (3; 0.75). In general, it can be
said that from an m-long itemset, one can potentially generate 2™ — 2 association rules.

4.2 Closed Association Rules

In the previous subsection we presented all association rules that are generated from frequent
itemsets. Unfortunately, the number of these rules can be very large, and many of these rules
are redundant, which limits their usefulness. Applying concise rule representations (a.k.a. bases)
with appropriate inference mechanisms can lessen the problem [Kry02|. By definition, a concise
representation of association rules is a subset of all association rules with the following prop-

4.2. Closed Association Rules 65

erties: (1) it is much smaller than the set of all association rules, and (2) the whole set of all
association rules can be restored from this subset (possibly with no access to the database, i.e.
very efficiently) [JB02].

Related Work. In addition to the first method presented in Section 4.1, there are two other
approaches for finding all association rules. The second approach was introduced in [PBTL99¢|
by Bastide et al. They have shown that frequent closed itemsets are a lossless, condensed repre-
sentation of frequent itemsets, since the whole set of frequent itemsets can be restored from them
with the proper support values. They propose the following method for finding all association
rules. First, they extract frequent closed itemsets®?, then they restore the set of frequent itemsets
from them, and finally they generate all association rules. The number of FCIs is usually much
less than the number of Fls, especially in dense and highly correlated datasets. In such databases
the exploration of all association rules can be done more efficiently by this way. However, this
method has some disadvantages: (1) the restoration of FIs from FCIs needs lots of memory,
(2) the final result is still “all the association rules”, which means lots of redundant rules.

The third approach is based on the extraction of maximal frequent itemsets. Recall that a
maximal frequent itemset has the following properties: all its proper supersets are infrequent
and all its subsets are frequent. Experiments have shown that this approach is very efficient for
finding large itemsets in databases [Bay98, AAP00, LK98, GZ01], but these itemsets cannot be
used very efficiently for rule generation since the support values of their subsets are not known,
i.e. MFIs are a condensed but not a lossless representation of Fls. Even though it is not difficult
to make one more database pass to count the support of the subsets, due to the high number of
inclusion tests it can be a very expensive step. Algorithms based on this approach identify all
association rules, like Apriori.

Contribution. We introduce a new basis called Closed Association Rules, or simply Closed
Rules (CR). This basis requires frequent closed itemsets only. The difference between our work
and the work presented in [PBTL99c| stems from the fact that although we also extract FCls,
instead of restoring FIs from them, we use them directly to generate valid association rules. This
way, we find less and probably more interesting association rules.

CR is a generating set for all valid association rules with their proper support and confidence
values. Our basis fills a gap between all association rules and minimal non-redundant association
rules (MNR), as depicted in Figure 4.1. CR contains all valid rules that are derived from
frequent closed itemsets. Since the number of FCIs are usually much less than the number of
FIs, the number of rules in our basis is also much less than the number of all association rules.
Using our basis the restoration of all valid association rules can be done without any loss of
information. It is possible to deduce efficiently, without access to the dataset, all valid association
rules with their supports and confidences from this basis, since frequent closed itemsets are
a lossless representation of frequent itemsets. Furthermore, we will show that minimal non-
redundant association rules are a special subset of the Closed Rules, i.e. MNR can be defined
in the framework of our basis. CR has the advantage that its rules can be generated very easily
since only the frequent closed itemsets are needed. As there are usually much less FCIs than
Fls, the derivation of the Closed Rules can be done much more efficiently than generating all
association rules.

22For this task they introduced a new algorithm called “Close”. Close is a levelwise algorithm for finding FCIs.

66 Chapter 4. Frequent Association Rules

(O all association rules
@ closed association rules

@ minimal non-redundant association rules

Figure 4.1: Position of Closed Rules.

Definitions

Before showing our algorithm for finding the Closed Rules, we present the essential definitions.

Definition 4.1 (closed association rule) An association rule r: Py — Py is called closed if
Py U Py is a closed itemset.

This definition means that the rule is derived from a closed itemset.

Definition 4.2 (Closed Rules) Let F'C be the set of frequent closed itemsets. The set of Closed
Rules contains all valid closed association rules:

CR={r:P— P | (PLUP) € FC A supp(r) > min_supp A conf(r) > min_conf} .

Property 4.1 The support of an arbitrary frequent itemset is equal to the support of its smallest
frequent closed superset [PBTL99c].

By this property, FCIs are a condensed lossless representation of FIs. This is also called the
frequent closed itemset representation of frequent itemsets. Property 4.1 can be generalized the
following way:

Property 4.2 If an arbitrary itemset X has a frequent closed superset, then X is frequent and
its support is equal to the support of its smallest frequent closed superset. If X has no frequent
closed superset, then X is not frequent.

The idea behind generating all valid association rules is the following. First we need to
extract all frequent itemsets. Then rules of the form X \ Y — Y, where Y C X, are generated
for all frequent itemsets X, provided the rules have at least minimum confidence.

Finding closed association rules is done similarly. However, this time we only have frequent
closed itemsets available. In this case the left side of a rule X \ Y can be non-closed. For
calculating the confidence of rules its support must be known. Thanks to Property 4.1, this
support value can be calculated by only using frequent closed itemsets. It means that only FCls
are needed; all frequent itemsets do not have to be extracted. This is the principle idea behind
this part of our work.

4.2. Closed Association Rules 67

The Algorithm

Pseudo Code. Algorithms 9 and 10 in Section 4.1 were presented in a general way, thus they
are the same for Closed Rules. There are two differences. First, Algorithm 9 gets frequent closed
itemsets as its input. Secondly, the getSupportOf function must be adapted to frequent closed
itemsets.

getSupport0f function: this function returns the support of an arbitrary itemset, either
closed or non-closed. If the itemset is closed, then its support is known since FCIs have been
extracted. If the itemset is not among closed itemsets, then its support is derived by using
Property 4.1.

getSmallestSuperset0f function: this function finds the smallest superset of the input
frequent itemset among the frequent closed itemsets. This function can be implemented very
efficiently using the trie data structure (see Appendix C.3).

Algorithm 11 (getSupportOf function):

Input: it — an arbitrary itemset (closed or non-closed)
Output: support value of it

1) if 4t is in the list of closed itemsets then return it.support; // i.e. it is a closed itemset
2) // else, if it is a non-closed frequent itemset

3) s« getSmallestSupersetOf(it);

4) return s.support;

Example. Table 4.1 depicts which closed association rules (CR) can be extracted from dataset
D (Table 3.1) by min_supp = 3 (60%) and min_conf = 0.5 (50%). First, frequent closed
itemsets must be extracted from the dataset. In D by min__supp = 3 there are 6 FCls, as shown
in Table B.4. Note that the total number of frequent itemsets by these parameters is 12. Only
those itemsets can be used for generating association rules that contain at least 2 items. There
are 4 itemsets that satisfy this condition, namely itemsets AC (supp: 3), BE (4), ABE (3)
and BCE (3). Let us see which rules can be generated from the itemset BCE for instance.
Algorithm 9 produces three rules: CE — B, BE — C and BC — E. Their support is known, it
is equal to the support of BC'E. To calculate the confidence values we need to know the support
of the left sides too. The support of BE is known since it is a closed itemset, but CE and BC
are non-closed. Their supports can be derived by Property 4.1. The smallest frequent closed
superset of both CE and BE is BC'E, thus their supports are equal to the support of this closed
itemset, which is 3. Algorithm 10 produces three more rules: ¥ — BC, C — BE and B — CFE.
Their confidence values are calculated similarly. From the four frequent closed itemsets 16 closed
association rules can be extracted altogether. In general, we can say that from an m-long itemset
one can potentially generate 2™ — 2 association rules.

68 Chapter 4. Frequent Association Rules

4.3 Family of “Minimal Non-Redundant Association Rules”

In this section, we present the family of minimal non-redundant association rules. We call it a
family because 5 different sets of these rules can be distinguished.

Definition 4.3 (generic basis for exact association rules) Let FC be the set of frequent
closed itemsets. For each frequent closed itemset f, let F'Gy denote the set of frequent generators
of . The generic basis:

GB={r:g=(f\g) | fEFCANge FGfNg# [} .

Definition 4.4 (informative basis for approximate association rules) Let F'C be the set
of frequent closed itemsets and let FG denote the set of frequent generators. The notation v(g)
signifies the closure of itemset g. The informative basis:

IB={r:g—(f\g) | fe FCNge FGA~(g) C f} .

Definition 4.5 (transitive reduction of the informative basis) Let ZB be the informative
basis for approximate association rules, and let F'C denote the set of frequent closed itemsets.
The transitive reduction of the informative basis:

RIB={r:g— (f\g) € ZB | v(g) is a mazimal proper subset of f in FC} .
Definition 4.6 Minimal non-redundant rules (MNR) are defined as: MNR = GBUZIB.

Definition 4.7 Transitive reduction of minimal non-redundant rules (RMNR) is defined as:
RMNR =GBURIB.

Clearly, MN'R is the largest set of these rules, and GB, ZB, RZB and RMNR are its sub-
sets. These five sets form the family of minimal non-redundant association rules. The following
inclusions are true for these sets: RIB C IB, RMNR C MNR, GB C RMNR C MNR,
IB C MNR and RZB € RMNR. From the definitions above it can be seen that we only need
frequent closed itemsets and their generators to produce these rules. In the previous chapter we
have presented some algorithms that are designed specifically for finding the MNR rules (like
Zart and Eclat-7).

Kryszkiewicz has shown in [Kry02] that MAN'R with the cover operator, and RMNR with
the cover operator and the confidence transitivity property are lossless (they enable the derivation
of all valid rules), sound (they forbid the derivation of rules that are not valid) and informative
(they allow the determination of rules parameters such as support and confidence) representations
of all valid association rules.

Frequent itemsets have several condensed representations, e.g. closed itemsets [PBTL99c,
PBTL99b, STBT02, ZH(02|, generators representation |[Kry0l, BTP'00a|, approximate free-
sets [BBROO], disjunction-free sets [BRO1|, disjunction-free generators |[Kry01|, generalized dis-
junction-free generators [KG02] and non-derivable itemsets [CG02, CGO05]. However, from the
application point of view, the most useful representations are frequent closed itemsets and fre-
quent generators that proved to be useful not only in the case of representative and non-redundant
association rules, but as well as representative episode rules [HDST01], which constitute concise,
lossless representations of all association/episode rules of interest. Common feature of these rule
representations is that only closed itemsets and generators are involved.

4.3. Family of “Minimal Non-Redundant Association Rules” 69

The Algorithm

Pseudo Code. Here we present an algorithm that finds MNR or RMNR (Algorithm 12).
The algorithm can be easily adapted to GB, ZB and RZB. As input, three things are needed:
(1) frequent closed itemsets, (2) frequent generators of closed itemsets, and (3) support values
of itemsets. The right side of Table 3.5 shows a sample input, produced by Zart.

getProperSupersets function: it has two parameters: a set of itemsets S and an itemset
p. The function returns the proper supersets of p in S. This function can be implemented very
efficiently using the trie data structure (see Appendix C.3).

getSupport0f function: this function returns the support of an arbitrary frequent itemset
(Algorithm 13). This time FCIs and FGs are all available, thus first we check if the given itemset
is among them. If yes, then its support is known, otherwise we will have to look up its support
from the trie of FCIs using Property 4.1.

Finding MNR Rules with Zart. By Definitions 4.3 — 4.7, rules in the family of minimal
non-redundant association rules have the following form: the antecedent is a frequent generator,
the union of the antecedent and consequent is a frequent closed itemset, and the antecedent is a
proper subset of this frequent closed itemset.

Shortly, the algorithm for finding MNR rules is the following: for each frequent generator
Py find its proper supersets P, in the set of FCIs. Then add the rule r : P, — Py \ P} to the
set of MANR. As can be seen, for the generation of such rules the frequent closed itemsets and
their generators are needed. Since Zart can find both, the output of Zart (see Table 3.5) can be
used directly to generate these rules. For a very quick lookup of proper supersets of generators
we suggest storing the frequent closed itemsets in the trie data structure (see Appendix C.1 and
Appendix C.3).

Example. Figure 3.4 shows what equivalence classes are found in dataset D (Table 3.1) by
min__supp = 2. For instance, using the generator E in Figure 3.4, three rules can be determined.
Rules within an equivalence class form the generic basis (GB), which are exact association rules
(E = B), while rules between equivalence classes form the informative basis (ZB) that are
approximate rules (F — BC and E — ABC). For extracting RMNR, the search space for
finding frequent closed proper supersets of generators is reduced to equivalence classes that are in
direct subsumption relation (see Def. 3.5), i.e. transitive subsumption relations are eliminated.
Thus, for instance, in the previous example only the first two rules are generated: £ = B and
E — BC. Removing exact association rules from RMNR, we can get the transitive reduction
of the informative basis (RZB).

Table 4.1 depicts the sets GB, IB and MNR extracted from dataset D (Table 3.1) if
min_supp = 3 (60%) and min_conf = 0.5 (50%).

4.3.1 Why MNR Rules are “Minimal” and “Non-Redundant”

Definition 4.6 simply states that MAR rules have the following form: P — @\ P, where P C @,
P is a generator and @ is a closed itemset. That is, an MNR rule has a minimal antecedent and
a maximal consequent. Minimal (resp. maximal) means that the antecedent (resp. consequent)
is a minimal (resp. maximal) element in its equivalence class. Note that P and @ are not
necessarily in the same equivalence class.

Kryszkiewicz gives a different definition of MNR rules in [Kry02]. We will refer to this definition

70 Chapter 4. Frequent Association Rules

Algorithm 12:

Description: generates MN'R or RMNR

Input: FCIs + their generators + support values
Output: set of MN'R or RMNR
1) loop over the generators (g)
2 |
3) // find proper supersets of g among the frequent closed itemsets:
4) Cq « getProperSupersets(FCI, g);
5)
6) loop over the elements of Cg (c)
oA
8) leftSide «— g;
9) rightSide — (c\ g);
10) leftSupp < g.support;
11) rightSupp «— getSupportOf(rightSide); // for other measures only
12)
13) rule — (leftSide — rightSide);
14)
15) if (conf(rule) > min_conf) // conf(rule) = supp(c) / supp(g)
16
17) /* The following step is optional. It is to be executed
18) if we want to extract RMNR instead of MNR. */
19) if (conf(rule) # 1.0)
20)
21) // delete proper supersets of ¢ in Cg:
22) Cq «— Cg \ getProperSupersets(Cg, c¢);
23) }
24) R — RU{rule};
%)}
%))
)
)

Algorithm 13 (getSupportOf function):

Input: 4t — an arbitrary itemset
Output support value of it

—

if 4t is in the list of closed itemsets then return it.support;

// else, if it is non-closed

if 4t is in the list of frequent generators then return ¢t.support;
// else, if it is non-closed and non-generator

s < getSmallestSupersetOf(it);

return s.support;

W N

ot

(=] ~
= D=

4.3. Family of “Minimal Non-Redundant Association Rules” 71

as “Kryszkiewicz’s definition of MAN'R rules”. As we will see later, this definition is equivalent
to Def. 4.6:

MNR={(r1: X1 = Y1\ X1) € AR | 3(r2: X2 — Yo\ Xo) € AR, 72 # 11 A
Xo € X1 AY2 D Y3 Asupp(ra) = supp(r1) A conf(ra) = conf(ri)} .

In other words, it means the following. Let 7o be a rule. If there exists a rule r; (different
from r9) that we can get by shortening the antecedent of ro and/or enlarging the consequent
of r9 (by moving itemsets from the left side of the rule to the right side), and the parameters
(support and confidence) of 71 are equal to the parameters of ro, then ry is not an MNR rule.
Why not? (1) The rule ro is not minimal. As mentioned before, Kryszkiewicz’s definition of
MNR rules is equivalent to Def. 4.6, i.e. MAN'R rules have minimal antecedents and maximal
consequents. The rule o does not satisfy this condition. (2) The rule ro is redundant, because
from the set of MAN R rules, this rule can be deduced with its proper support and confidence
values.

We show here that Kryszkiewicz’s definition of MN'R rules defines a set of rules that have
the following form: P — Q \ P, where P C @ and P is a generator and Q is a closed itemset.

Minimal antecedent. Let 1 and r9 be two rules:
P —Q\ P
T2 Py — Q\ P

supp(r1) = supp(re) = supp(Q)
conf(r1) = supp(Q)/supp(Pr)
conf(rz2) = supp(Q)/supp(Pz)

Make the following hypothesis: conf(r;) = conf(ra) and P C P». Since conf(r1) =
conf(re), we can deduce that supp(Py) = supp(P2). As P, C Py and supp(Py) = supp(P2),
it means that P; and P» are in the same equivalence class (by Lemma 3.2).

That is, those rules contain the most information that have the smallest antecedents. The
minimal elements of an equivalence class are the generators. Thus, P is a generator.

Maximal consequent. Let r; and 75 be two rules:
r: P — Ql \ P
ro : P — QQ \ P

Make the following hypothesis:

@1 C Q2 and
supp(r1) = supp(rz) and
conf(ry) = conf(ra).

If supp(r1) = supp(r2), then supp(Q1) = supp(Q2). If Q1 C Q2 and supp(Q1) = supp(Q2),
then it means that Q1 and Q2 are in the same equivalence class.

That is, those rules contain the most information that have the largest consequents. The
largest elements of an equivalence class is the closure of the equivalence class. This is a closed
itemset, which is unique in its equivalence class. Thus, () is a closed itemset.

72 Chapter 4. Frequent Association Rules

4.3.2 Deducing Valid Association Rules from MNR Rules

Minimal non-redundant association rules contain the most information among rules with the
same support and same confidence. This statement underlies the following reasons.

Let r1: Py — Q\ Py be a valid (not necessarily an MNR) rule, where P, C Q. If r1: P, — Q\ Py
is a valid rule, then ro: Py — @\ P, is also a valid rule, where P; C P.

If P, C P», then supp(P1) > supp(Ps).

supp(r1) = supp(rz2) = supp(Q)

conf(ry) = supp(Q)/supp(F1)

con f(ra) = supp(Q)/supp(P2)

Since supp(P1) > supp(Ps), conf(r1) < conf(rs).

As can be seen, most valid rules can be deduced from rules with minimal antecedents and maximal
consequents.

4.4 Other Statistical Measures

Typically, the number of extracted association rules in a dataset is very large, and only a few
of these rules are likely to be of interest to the domain expert analyzing the data. To increase
the utility, relevance and usefulness of the discovered rules, techniques are required to reduce the
number of rules that need to be considered. There are two well-known techniques:

1. The number of all association rules is usually very large, and many of these association
rules are either irrelevant or obvious, and do not provide new knowledge. In order to reduce
the number of extracted rules, different bases have been defined. In the previous section
we have seen two bases (closed rules and minimal non-redundant rules) that try to find the
most interesting rules instead of generating all possible valid rules.

2. Another approach that tries to find the most interesting rules is referred to as interesting-
ness measures (or quality measures). The most well-known statistical measures are support
and confidence, but beside them there exist a large number of other statistical measures
too |[LFZ99, TKS02, CNT03, HH99|. In this section we investigate some of them.

The best result may be achieved by combining these two techniques.

4.4.1 Interestingness Measures

In this section, the following interestingness measures are investigated: interest (or lift), convic-
tion, dependency, novelty and satisfaction. We will use the following terminology in the section:
the antecedent of a rule is referred to as left side and denoted by L; the consequent of a rule is
referred to as right side and denoted by R. Support values are relative values this time.?* The
following data are needed for these measures:

e support of the left side (supp(L))

Z3Recall that the absolute support (denoted by supp) of an association rule r: P; — P, is: supp(r) =
supp(P1 U Py). The relative support (denoted by rsupp) of the same rule is: rsupp(r) = supp(r)/|0|, where
|0| signifies the total number of objects in the input database.

4.4. Other Statistical Measures 73

e support of the right side (supp(R))
e support of the union of the left and right sides (supp(L UR))

e total number of objects in the input database (having this, supports in absolute values can
be easily converted to relative values)

Some measures require the support of the negation of an itemset, e.g. rsupp(—L), which
means: proportion of objects not including itemset L. Calculating this value is very easy:

rsupp(—L) = 1 — rsupp(L).

A comparative table of the characteristics of the different measures is shown in Table 4.2. In
the “Preferred value” column, the arrow ' (resp. \) indicates that a higher (resp. lower) value
signifies a more interesting rule.

Support

The support of the rule L — R shows how many objects include L and R at the same time.
supp(L — R) = supp(L UR)

In the rest of the thesis we use absolute values, but interestingness measures require relative
values, i.e. absolute values must be divided by the total number of objects in the dataset (|0).
The relative support of the rule L — R is the probability P(L UR), which shows the probability
of having L and R at the same time.

supp(L UR)

rsupp(L — R) =P(LUR) = 0

This way, relative support values are between 0 and 1.0. Example: given the itemset BCE in
dataset D (Table 3.1), its absolute support is 3 and its relative support is 3/5 = 0.6.

Confidence

The confidence of the rule L — R is the conditional probability P(R|L). The confidence shows the
conditional probability that an object includes itemset R, given that it includes itemset L. The
value of confidence is a real number between 0 and 1.0.

P(LUR) supp(LUR) rsupp(LUR)
P(L) ~ supp(L) rsupp(L)

conf(L — R) =P(R|L) =

Interest (Lift)

The interest [IBM98| (or lift) measures the degree of compatibility of L and R, i.e. the simul-
taneous occurrences of both events L and R. Possible values: [0,+oo[. If 1ift = 1, then L
and R are independent. The closer is the value of lift to 0, the more L and R are incompatible.
The larger the value of lift than 1, L and R are more dependent. The lift is symmetric, i.e.
lift(A — B) = 1ift(B — A).

lift(L - R) = P(L; R) _ conf(L —R) rsupp(L UR)

P(L) x P(R) rsupp(R) - rsupp(L) x rsupp(R)

74 Chapter 4. Frequent Association Rules

Conviction

The conviction [BMUT97| measures the deviation of the rule A — B from the rule A — —B, or, in
other words, how high is the degree of implication of the rule A — —B. Possible values: [0, 4o0].
If conv > 1, then L and R are dependent. When conv = 1 then L and R are completely unrelated.
A value in the interval [0, 1] signifies that L and R are not dependent. The value of conviction is
not defined in the case of exact rules.

conv(L — R) = P(L) x P(7R) - rsupp(L) x rsupp(—R) _ rsupp(L) X (1 — rsupp(R))
P(LU-R) rsupp(L) — rsupp(L UR) rsupp(L) — rsupp(L UR)

Note that in the formula P(L U —R) is the probability of having L but not having R at the same
time. In other words, this is the proportion of counter examples of the rule L — R.

Dependency

The dependency measures the degree of independence between the events L and R, i.e. the fact
that the occurrence of the event L is or is not dependent on the occurrence of the event R.
Possible values: [0,1[. A value closer to 0 means that L and R are independent. A value closer
to 1 means that L and R are more dependent.

dep(L — R) = |P(R|L) — P(R)| = |conf(L — R) — rsupp(R)|

Novelty

The novelty [PS91| is used to quantify the correlation between attributes in a rule. Possible
values: | —1,1[. When nov = 0, then L and R are statistically independent and the rule is not
interesting. When nov > 0 (resp. nov < 0), then L is positively (resp. negatively) correlated
to R. The value of novelty is close to —1 in the case of rules with weak support, i.e. where
P(LUR) = 0. The novelty is symmetric, i.e. nov(A — B) = nov(B — A).

nov(L - R) =P(LUR) —P(L) x P(R) = rsupp(LUR) — (rsupp(L) x rsupp(R))

Satisfaction

The possible values of the satisfaction fall in the interval | — oo, 1]. If the rule is exact, then
sat = 1. Otherwise, the value of satisfaction is calculated by the formula shown below. If
sat = 0, then L and R are independent. The less the value of novelty and the more the value of
satisfaction is, the more interesting a rule is considered.

conv(L - R)—1

sat(l ~R) = conv(L — R)

4.4.2 Combining Quality Measures

In [CNTO03], Cherfi et al. propose an algorithm that allows one to combine the previously pre-
sented quality measures. The idea is the following. They take a set of association rules, and
investigating their lift values, they choose the most interesting rules (in the case of lift a higher
value indicates a more significant rule). From these rules, by their conviction, they choose again
the rules that seem to be the most interesting. They continue so with each interestingness mea-
sures until they get a subset of rules that are significant from the point of view of all quality
measures. Of course, this process requires the help of an analyst who can decide at each step
what percentage of rules should be filtered.

4.5. FEfficient Support Derivation of Frequent Itemsets 75

Measure Interval | Preferred Value of Reference Symmetric?
value independency value(s)
1lift(L — R) | [0, 4o0| / 1 = 0, incompatible yes
conv(L — R) | [0,+4o0] /! 1 > 1, dependent no
[0, 1], not dep.
dep(L — R) [0,1] Ve 0 ~ 1, dependent no
nov(L—R) | |—1,1] AN 0 ~ —1, weak support yes
sat(L—R) || — o0,1] V4 0 =1, exact rule no

Table 4.2: Characteristics of the different quality measures.

4.4.3 Example

Let us calculate all the quality measures of the approximate rule B — CE and the exact rule
AB = E. Both of these rules are extracted from dataset D (Table 3.1).

B — CE (supp = 3; rsupp = 3/5 = 0.6 (60%); suppLeft = 4; rsupplLeft = 4/5 =
0.8 (80%); suppRight = 3; rsuppRight = 3/5 = 0.6 (60%); conf = 3 = 0.75 (75%); lift =

, , _ 0.8x(1-0.6) _ . 4. _ _ . _ _
S8 = 1.25; conv = 28X1-08) _ 4 6; dep = |0.75 — 0.6 = 0.15; nov = 0.6 — (0.8 x 0.6) =

: _ 16-1 _
0.12; sat = 5= = 0.375)

AB = E (supp = 3; rsupp = 3/6 = 0.6 (60%); suppLeft = 3; rsuppleft = 3/5 =
0.6 (60%); suppRight = 4; rsuppRight = 4/5 = 0.8 (80%); conf = 1.0 (100%); lift =
555 = 1.25; conv = NOT_DEFINED; dep = [1.0 — 0.8] = 0.2; nov = 0.6 — (0.6 x 0.8) =
0.12; sat = 1.0)

4.5 Efficient Support Derivation of Frequent Itemsets

In general, from an itemset P; one can generate association rules of the form Py — (P \ P»),
where P, C P;. To calculate interestingness measures, the support of both sides must be known.
Considering a frequent association rule r: Py — P, both P; and P, are frequent itemsets, since
all subsets of a frequent itemset are frequent (Property 3.1). Calculating the quality measures
of all association rules is a trivial task because the support of all frequent itemsets is known.
The only problem may be the memory usage, knowing that the number of frequent itemsets is
usually very large.

Calculating the quality measures of closed and minimal non-redundant association rules might
result in a low performance rate. Previously we have seen that FCls are a very useful repre-
sentation of FIs. The number of FCIs is usually much less than the number of FIs, and using
FCIs the support of any FI can be properly derived (Property 4.1). This task can be realized
efficiently with the trie data structure (see Appendix C.3). Trie provides an efficient solution,
but when the trie contains many elements and the trie is consulted lots of times, its efficiency
can quickly degrade. This is especially true when computing other quality measures, not only
support and confidence. Recall that support and confidence require the lookup of the support
of the left side only, while the other measures require the support of both sides.

Here we present an efficient solution for seriously reducing the expensive trie accesses. Our
solution is based on the observation that the support of a large number of itemsets is asked lots
of times. Actually, this is not surprising, knowing that a huge number of association rules share

76 Chapter 4. Frequent Association Rules

the same antecedents and/or consequents. Our idea: once the support of an itemset is retrieved
from the trie, store the itemset-support pair temporarily in a cache. Next time, when the support
of the same itemset is asked, first look it up in the cache. If it is there, then its stored support
value is sent back. If it is not in the cache, then we access the trie. The cache is implemented
as a hash structure, allowing a very quick look-up of itemsets. Figure 4.2 shows the difference
between the two approaches.

Generating | ————————— Generating | —— P
Association | —— Association
Rules - Rules -
trie of FCls cache trie of FCls

Figure 4.2: Non-optimized and optimized support derivation of frequent itemsets.

The Algorithm. The cache optimization can be added transparently to the previously pre-
sented association rule mining algorithms. Simply the getSupport0f function (Algorithm 11)
must be extended as shown in Algorithm 14. (The extension of Algorithm 13 can be done simi-
larly.) Additional lines are marked with an asterisk. As for the cache, it is a simple hash structure
containing itemset-support pairs. The chosen hash function must provide a uniform distribution
of elements in the hash. When an itemset is looked for and it is in the hash, then its associated
support is returned. When an itemset is not cached, it is looked up in the trie and then stored
in the cache, even if its slot is occupied. This means that an itemset can be overwritten in the
cache. This way the cache is kept small and simple. Experiments show that this provides a very
efficient solution.

Algorithm 14 (getSupportOf function with cache):

Input: it — an arbitrary itemset (closed or non-closed)
Output support value of it

1) if 4t is in the list of closed itemsets then return it.support; // i.e. it is a closed itemset
2) // else, if it is a non-closed frequent itemset
*3) cachedItemset « cache.get(it); // is it cached?
*4) if (cachedltemset !'= null) return cachedlItemset.support;
5) // else, if it is not cached
6) s« getSmallestSupersetOf(it); // support of it is equal to s.support
*7) cache.register(it, s.support); // register it with its support value
)

oo

return s.support;

Experimental Results. In the experiments, we compared the extraction of closed (Table 4.3)
and minimal non-redundant (Table 4.4) association rules with and without cache optimization.

4.6. Experimental Results 7

The indicated time values show the time of rule generation (the extraction time of the neces-
sary itemsets is not included). The tables contain the following information: min_supp and
min__conf thresholds; number of generated rules; number of trie accesses without cache; time of
rule generation without cache; number of trie accesses with cache; time of rule generation with
cache. In all cases, support values of both sides were calculated.

As we can see, the generation of MNR requires much less trie access. It has two reasons.
First, by definition, the left side of an MN'R rule is a generator, thus its support is known.
Secondly, beside FClIs, FGs are also available. Thus, if an itemset is non-closed, it can still be
a generator, which means that its support is available. However, in the case of CRs, when an
itemset is non-closed, the trie has to be consulted in order to derive its support.

Using the cache, the number of trie accesses can be seriously reduced in all cases, which
results in an improved performance. This performance gain is especially spectacular in the case
of closed rules. It is worth noting that CRs can be generated more efficiently than MNRs in
sparse datasets (T20I6D100K). Experiments clearly show the usefulness of a cache. Another
advantage is that this extension can be easily implemented and added to other rule mining
algorithms.

4.6 Experimental Results

Here we compare AR, CR and MNR. Experiments were carried out on three different databases,
namely T20I6D100K, C20D10K and MUusHroOMS. Detailed description of these datasets and
the test environment can be found in Appendix A. It has to be noted that T20I6D100K is a
sparse, weakly correlated dataset imitating market basket data, while the other two datasets are
dense and highly correlated. Table B.5 contains additional information about the proportion of
the number of FCIs to the number of FIs. It can be seen that weakly correlated data contain
few frequent itemsets, even at low minimum support values, and almost all frequent itemsets are
closed. On the contrary, in the case of highly correlated data the difference between the number
of frequent itemsets and frequent closed itemsets is significant.

4.6.1 Number of Rules

Table 4.5 shows the following information: minimum support and confidence; number of all
association rules; number of closed rules; number of rules in the generic basis; number of rules
in the informative basis; number of rules in the reduced informative basis; number of minimal
non-redundant association rules; number of reduced minimal non-redundant association rules.
We attempted to choose significant min_supp and min_conf thresholds as observed in other
papers for similar experiments.

In T20I6D100K almost all frequent itemsets are closed, thus the number of all rules and the
number of closed association rules is almost equal. For the other two datasets that are dense
and highly correlated, the reduction of the number of rules in the Closed Rules is considerable.

From the family of minimal non-redundant association rules, the most significant sets are
MNTR and RMNR, because they are lossless, sound and informative representations of all
association rules [Kry02]. The size of the MN'R set is almost equal to the size of AR in
sparse datasets, but in dense datasets MNR produces much less rules. Removing the transitive
relations, the number of rules can be further reduced in all cases (RMNR).

78 Chapter 4. Frequent Association Rules

dataset # of rules || # of trie acc. time # of trie acc. time
(min_supp) | min_conf (CR) — cache — cache + cache + cache
90% 726,459 10,465 164.48 2,034 120.30

T20I6D100K 70% 956,083 11,017 201.15 2,068 152.31
(0.5%) 50% 1,044,086 11,502 216.20 2,099 167.07
30% 1,073,114 11,559 222.59 2,099 170.06

90% 47,289 80,719 16.82 41,784 12.49

C20D10K 70% 91,953 148,884 31.79 63,451 21.10
(30%) 50% 114,245 179,343 38.43 67,224 24.24
30% 138,750 216,014 45.89 70,161 27.36

90% 5,571 8,306 2.23 3,941 1.49

MUSHROOMS 70% 11,709 17,219 4.57 5,850 2.44

(30%) 50% 16,306 23,777 6.36 6,239 2.98

30% 20,120 28,786 7.63 6,457 3.31

Table 4.3: Generating CR without (—) and with (4) cache.

dataset # of rules || # of trie acc. time # of trie acc. time
(min_supp) | min_conf | (MNR) — cache — cache + cache + cache
90% 721,948 1,814 404.22 525 394.14

T20I6D100K 70% 951,572 2,208 436.99 593 428.59
(0.5%) 50% 1,039,575 2,528 451.93 644 441.52
30% 1,068,603 2,568 457.89 653 449.47

90% 9,221 436 1.78 54 1.68

C20D10K 70% 19,866 567 2.85 94 2.77

(30%) 50% 25,525 1,298 3.48 228 3.35

30% 31,775 2,497 4.24 579 4.04

90% 1,496 295 0.67 67 0.54

MUSHROOMS 70% 3,505 1,119 0.95 288 0.78

(30%) 50% 5,226 1,942 1.34 590 1.00

30% 7,115 2,893 1.63 1,219 1.28

Table 4.4: Generating MNR without (—) and with (+) cache.

4.6.2 Execution Times of Rule Generation

Figure 4.6 shows for each dataset the execution times of the computation of all, closed and
minimal non-redundant association rules. For the extraction of the necessary itemsets we used
the multifunctional Zart algorithm (Section 3.3.1) that can generate all kinds of association rules
indicated in Table 4.5. Figure 4.6 does not include the extraction time of itemsets, it only shows
the time of rule generation.

Comparing AR and CR

For datasets with much less frequent closed itemsets (C20D10K, MUSHROOMS), the generation
of closed rules is more efficient than finding all association rules. As seen before, we need to look
up the closed supersets of frequent itemsets very often when extracting closed rules. For this
procedure we use the trie data structure that shows its advantage on dense, highly correlated

4.6. Experimental Results 79

dataset AR CR GB B RIB MNR RMNR
(min supp) | min conf (GBUZIB) | (GBURIB)
D (40%) 50% 50 30 8 17 13 % 21
90% 752,715 726,459 721,716 91,422 721,948 91,654
T20I6D100K 70% 986,058 956,083 232 | 951,340 98,097 951,572 98,329
(0.5%) 50% 1,076,555 || 1,044,086 1,039,343 | 101,360 | 1,039,575 101,592
30% 1,107,258 || 1,073,114 1,068,371 | 102,980 | 1,068,603 103,212
90% 140,651 47,289 8,254 2,784 9,221 3,751
C20D10K 70% 248,105 91,953 967 18,899 3,682 19,866 4,649
(30%) 50% 207,741 || 114,245 24558 | 3,780 | 25525 4,756
30% 386,252 || 138,750 30808 | 4,073 | 31,775 5,040
90% 20,453 5,571 952 682 1,496 1,226
MusHROOMS | T0% 45147 | 11,709 | 544 | 2961 | 1,221 3,505 1,765
(30%) 50% 64,179 | 16,306 4682 | 1481 5,226 2,025
30% 78888 || 21,120 6,571 | 1,578 7115 2,122

Table 4.5: Comparing sizes of different sets of association rules.

dataset AR CR | MNR
(min_supp) | min_ conf
90% 114.43 | 120.30 | 394.14
T20I6D100K 70% 147.69 | 152.31 | 428.59
(0.5%) 50% 165.48 | 167.07 | 441.52
30% 169.66 | 170.06 | 449.47
90% 15.72 12.49 1.68
C20D10K 70% 26.98 21.10 2.77
(30%) 50% 34.74 | 2424 | 3.35
30% 41.40 27.36 4.04
90% 1.93 1.49 0.54
MUSHROOMS 70% 3.99 2.44 0.78
(30%) 50% 5.63 2.98 1.00
30% 6.75 3.31 1.28

Table 4.6: Execution times of rule generation.

datasets. On the contrary, when almost all frequent itemsets are closed (T2016D100K), the high
number of superset operations cause that all association rules can be extracted faster.

Comparing CR and MNR

As we have seen, CR is a maximal set of closed association rules, i.e. it contains all closed
association rules. As a consequence, we cannot say that this basis is minimal, or non-redundant,
but by all means it is a smaller set than AR, especially in the case of dense, highly correlated
datasets. Moreover, CR is a framework for some other bases. For instance, minimal non-
redundant association rules are also closed association rules, since by definition the union of the
antecedent and the consequent of such a rule forms a frequent closed itemset. Thus, MANR is a
special subset of CR, which could also be defined the following way:

Definition 4.8 Let C'R be the set of Closed Rules. The set of minimal non-redundant association

80 Chapter 4. Frequent Association Rules

rules 1s:
MNR={r:P,— P, | r€ CRADP, is a frequent generator} .
This is equivalent to the following definition:
MNR ={r: P, — P, | (PLUP) € FC APy is a minimal generator} ,
where F'C stands for the set of frequent closed itemsets.

Experimental results show that CR can be generated more efficiently than MANR on sparse
datasets. However, on dense datasets MN R can be extracted much more efficiently.

4.7 Related Work

Beside CR and MN'R, there are several other concise representations of association rules pro-
posed, e.g. representative rules (RR) [Kry98|, Duquennes-Guigues basis (DG) [GD86|, Luxen-
burger basis (LB) [Lux91]|, proper basis (PB), structural basis (SB) [PBTL99al, etc. A very
good comparative study of these bases can be found in [Kry02].

All valid exact association rules can be derived from DG, and all valid approximate association
rules can be derived from L£B. The exact association rules are derived from DG by applying
Armstrong’s axioms. RR is a subset of MNR, but unlike MN'R, this rule representation is
not informative (although it gives a pessimistic estimation of support and confidence values).

4.8 Conclusion

In this chapter we presented a new basis for association rules called Closed Rules (CR). This
basis contains all valid association rules that can be generated from frequent closed itemsets.
CR is a lossless representation of all association rules. Regarding the number of rules, our basis
is between all association rules (AR) and minimal non-redundant association rules (MNR),
filling a gap between them. The new basis provides a framework for some other bases. We have
shown that MNR is a subset of CR. The number of extracted rules is less than the number
of all rules, especially in the case of dense, highly correlated data when the number of frequent
itemsets is much more than the number of frequent closed itemsets. CR contains more rules than
MNR, but for the extraction of closed association rules we only need frequent closed itemsets,
nothing else. On the contrary, the extraction of minimal non-redundant association rules needs
much more computation since frequent generators also have to be extracted and assigned to their
closures.

As a summary, we can say that CR is a good alternative for all association rules. The number
of generated rules can be much less, and beside frequent closed itemsets nothing else is required.

Chapter 5

Rare Itemsets and Rare Association
Rules

In this chapter we address the extraction of rare itemsets and the generation of rare association
rules. This is one of the most important part of this thesis work. Until now, studies in data mining
have mainly concentrated on frequent itemsets and generation of association rules from them.
The first algorithm to find frequent itemsets was Apriori, which has been followed by numerous
other algorithms. Most of these algorithms are extensions and optimizations of Apriori. Their
common property is that they all extract frequent itemsets or a subset of frequent itemsets
(frequent closed itemsets, maximal frequent itemsets, frequent generators). In this chapter we
investigate the complement of frequent itemsets, namely the rare (or non-frequent) itemsets. In
the literature, the problem of rare itemset mining and the generation of rare association rules
has not yet been studied in detail, though such itemsets also contain important information
just as frequent itemsets do. A particularly relevant field for rare itemsets is medical diagnosis.
For example it may be that in a large group of patients diagnosed with the same sickness, a
few patients exhibit unusual symptoms. It is important for the doctor to take this fact into
consideration.

The chapter is organized as follows. In Section 5.1 we show how to extract all rare itemsets
from a dataset. This section is based on [SMPT06]. In Section 5.2 we first define the border
between frequent and rare itemsets, and then study the properties of the border. Section 5.3
details how to generate rare association rules from rare itemsets.

5.1 Rare Itemsets

As we noted before, research has concentrated on finding frequent association rules (i.e. asso-
ciation rules with sufficiently high support and confidence). To find them, frequent itemsets
from the dataset must be extracted first. The problem of frequent itemset extraction was ini-
tially a sub-problem of association rule mining [AMS196], but later it turned out to be useful
also in different areas, such as sequential pattern mining [AS95], spatial association rule min-
ing [KH95|, cyclic association rule mining [ORS98]|, negative association rule mining [SON9S§],
frequent closed itemset search [PBTL99c, STBT02, ZH02, WHP03|, maximal frequent itemset
search [Bay98, LK98, AAP00, GZ01], discovery of disjunction-free sets [BRO1]|, etc.

81

82 Chapter 5. Rare Itemsets and Rare Association Rules

5.1.1 Contribution and Motivations

We present a new method for finding rare itemsets. The first part of our method identifies a
minimal generator set called minimal rare itemsets. In the second part, these itemsets are used
to restore all rare itemsets. To the best of our knowledge there is no algorithm yet designed
specifically for extracting all rare itemsets.

The discovery of rare itemsets may be particularly useful in medicine and biology. We describe
hereafter some potential applications of rare itemset extraction in these domains. For example, we
may be interested in identifying the cause of cardiovascular diseases (CVD) for a given database of
medical records. A frequent association rule such as “{elevated cholesterol level} = {CVD}”
may validate the hypothesis that people having a high cholesterol level are at high risk for CVD.
On the other hand, if we have sufficiently high number of vegetarian people in our database, then
a rare association rule “{vegetarian} = {CVD}” may validate the hypothesis that vegetarian
people have a low CVD risk. In this case, the itemsets {vegetarian} and {CVD} are both frequent,
but the itemset {vegetarian,CVD} is rare. To take another example, this time from the field
of pharmacovigilance (a field of pharmacology dedicated to the detection, survey and study of
adverse drug effects), given a database of adverse drug effects, rare itemset extraction enables
a more efficient way to associate drugs with adverse effects. Thus, withdrawal or continuance
of a given drug can be decided (e.g. the lipid-lowering drug cerivastatin was withdrawn in
August 2001), and thereby fatal accidents may be avoided. Finally, as a third example, rare
itemset extraction may be useful for the data mining of healthy cohorts. For example, the
real-world healthy cohort STANISLAS cohort [SVHT98, MNSVS05a] is composed of a thousand
presumably healthy French families. Its main objective is to investigate the impact of genetic
and environmental factors on diversity in cardiovascular risk factors. Interesting information to
extract from this database for the expert of the domain includes the profiles which associate
genetic data with extreme or borderline values of biological parameters. However, such types of
associations are rather rare in healthy cohorts. That is the reason why rare itemset extraction
could be very helpful to the expert.

5.1.2 Basic Concepts

Below we present the basic concepts of rare itemsets. We use definitions that were given in
Section 3.1.

Definition 5.1 (rare itemset) An itemset P is called rare (or not frequent) if its support is
not more than a given maximum support (denoted by max_supp), i.e. supp(P) < max_ supp.

This definition allows an interval between min_supp and maz_supp. We work with a special
case, i.e. no interval between maz supp and min_supp. That is, we consider an itemset to
be rare if it is not frequent. It means one single border between frequent and rare itemsets.
Section 5.2 contains a detailed study of this border. In the case of a single border, knowing the
min_ supp value, max_supp can be easily computed. If min_supp is given in absolute value,
then max__supp = min_supp — 1. If min_ supp is given in relative value, then max_supp =
min_supp — 1/|0|, where |O| is the number of objects in the dataset. The task of rare itemset
mining consists of generating all itemsets (with their supports) with supports less than or equal
to a specified threshold maz_ supp.

5.1. Rare Itemsets 83

5.1.3 A Lattice-Based Approach for Itemset Enumeration

Before presenting our algorithms for finding rare itemsets, we investigate our method from a
lattice-based point of view. Figure 5.1 shows the powerset lattice P(D) of the set of items in
our example database D (Table 3.1). The set of all rare itemsets forms a join semilattice since
it is closed under the join operation, i.e., for any rare itemsets X and Y, X UY is also rare. On
the other hand, it does not form a meet semilattice, since if X and Y are rare, it does not imply
X NY is rare. Note that frequent itemsets form a meet semilattice, i.e. for any two frequent
itemsets, X and Y, X NY is also frequent. In the examples we define min_supp = 3, which
means that maz__supp = 2.

O rareitemset
(> rare itemset with support 0

© minimal rare itemset (MRI)

() minimal zero generator (MZG)

frequent itemset
maximal frequent itemset (MFI)

Figure 5.1: Powerset lattice of dataset D (Table 3.1).

Ttemsets can be grouped in two sets: frequent and rare itemsets. Between the two sets a
border can be drawn (see Section 5.2 for more details on the concept of border). At the bottom
of the lattice we find the smallest itemset, the empty set. At each level there are itemsets of
the same length. At the top of the lattice we find the largest itemset, which contains all the
attributes. In Figure 5.1, support values are indicated in the top right-hand corner of itemsets.

Both sets (frequent and rare itemsets) have a minimal generator subset.?* In the case of
frequent itemsets this subset is called maximal frequent itemsets. Here we recall the definition
of MFIs from Section 3.1:

An itemset is called o maximal frequent itemset (MFI) if it is frequent (and thus all its

24Under a “generator set” of frequent (resp. rare) itemsets we mean here a set of itemsets from which all other
frequent (resp. rare) itemsets can be restored.

84 Chapter 5. Rare Itemsets and Rare Association Rules

subsets are frequent), and all its proper supersets are not frequent.?

These itemsets are called mazimal because they have no frequent supersets. On the other
hand, the set of these itemsets is a minimal set, i.e. the smallest set from which all frequent
itemsets can be restored.?6

As the complementary of MFIs, we can define the minimal rare itemsets in the following way.

Definition 5.2 (minimal rare itemset) An itemset is called a minimal rare itemset (MRI)
if it is rare (and thus all its supersets are rare), and all its proper subsets are not rare.

Note that minimality is used here in the sense that MRIs have no proper rare subsets, i.e. all
their proper subsets are on the other (positive) side of the border.

This definition can be rewritten formally in the following way. Recall that A denotes the set of
attributes in a dataset. The set of minimal rare itemsets is:

MRI ={X CA|VY C X, supp(X) < min_supp < supp(Y)} .

Such itemsets form a minimal set, i.e. the smallest set from which all rare itemsets can be
restored. For restoring all frequent itemsets, we first take all possible subsets of MFIs, and then
with one database pass count their supports. Similarly, for restoring all rare itemsets, we first
generate all possible supersets of MRIs, and then with one database pass count their supports.

Rare itemsets can be distinguished into two kinds of subsets: (a) rare itemsets with support 0,
and (b) rare itemsets with support greater than 0. This distinction is important, because the
total number of rare itemsets is usually very high, and thus we are more interested in working
with rare itemsets whose support exceeds 0.

Definition 5.3 An itemset is called a zero itemset if its support is 0, otherwise it is called a
non-zero itemset.?’

In this part of our work we concentrate on finding non-zero rare itemsets. However, it must be
noted that zero itemsets can also be interesting in some cases. For instance, a zero itemset Z
provides the information that items of Z never occur together in the database.

In the case of all rare itemsets, we have already described the minimal rare itemsets. For zero
itemsets, a similar minimal generator subset can also be defined:

Definition 5.4 An itemset is a minimal zero generator (MZG), if it is a zero itemset (thus all
its supersets are zero itemsets), and all its proper subsets are non-zero itemsets.

In Figure 5.1 there is one minimal zero generator: {CD}. MZGs are a lossless condensed
representation of zero itemsets, i.e. from MZGs all zero itemsets can be restored with their proper
support values (which are always 0). For this we only need to generate all possible supersets of
MZGs using the attributes of the dataset.

As mentioned before, we do not restore zero itemsets because of their high number. To
avoid zero itemsets, we will use MZGs. The second part of our method restores all non-zero
rare itemsets from MRIs in a levelwise manner. If a candidate has an MZG subset, then this
candidate is surely a zero itemset, thus it can be pruned. That is, using the MZGs, we can
reduce the search space during the restoration of all rare itemsets.

Z5Note that maximal frequent itemsets are closed itemsets (M FI C FCI C FI).
26They could also be called largest frequent itemsets, because they do not have a larger frequent superset.
2TThe concept of “zero itemset” is not to be confused with the concept of “empty set”.

5.1. Rare Itemsets 85

Proposition 5.1 All zero itemsets are in the same unique equivalence class called the zero
equivalence class. If this class is not empty, then (1) the generators (see Def. 3.2) of this
class are the minimal zero generators (MZGs); and (2) the closure of this class is the largest
itemset, i.e. the itemset that contains all the attributes of the dataset.

Proof.

(1) If there exist a zero itemset, then the largest itemset is a zero itemset as well by the anti-
monotonocity property (see Property 3.2). Thus, a zero itemset is a subset of the largest itemset,
and since their support is the same, by Lemma 3.2 they are in the same equivalence class. That
is, all zero itemsets are in the same unique equivalence class whose closure is the largest itemset.
(2) Minimal zero generators (MZGs) are the generators of the zero equivalence class because by
Def. 5.4 they have no proper subset with the same support. O

Corollary 5.1 If an object includes all the attributes of the dataset®®, then there exist no zero
itemsets. As a consequence, there are no minimal zero generators, and there is no zero equivalence
class either.

5.1.4 Finding Rare Itemsets

In this section we present the two parts of our method for finding rare itemsets. The first part
only finds minimal rare itemsets, while the second part restores all non-zero rare itemsets from
the set of minimal rare itemsets.

Finding Minimal Rare Itemsets

It may be surprising, but the easiest way to find minimal rare itemsets is to use the well-
known Apriori algorithm [MT96]|. Apriori is based on two principles (see Properties 3.1 and
3.2). Apriori is designed to find all frequent itemsets, but as a “side effect” it also explores the
minimal rare itemsets. When Apriori finds a rare itemset, it will not generate later any of its
supersets because they are surely not frequent. Since Apriori explores the itemset lattice level by
level from the bottom up, it will count the support of the minimal rare itemsets. These itemsets
are pruned, and later the algorithm notices if a candidate has a minimal rare subset (actually
Apriori checks if all (k — 1)-long subsets of a k-candidate are frequent. If one of them is not
frequent, then the candidate is surely rare. But it also means that the candidate has a minimal
rare subset). Thanks to this pruning technique, Apriori can significantly reduce the search space
in the itemset lattice.

In order to save minimal rare itemsets, Apriori needs just a slight modification. If the support
of a candidate is less than the minimum support, then instead of deleting it we will save it in
the set of minimal rare itemsets (see Apriori-Rare, Algorithm 15).

SupportCount method: counts the support of the candidate itemsets. This requires one
database pass.

Apriori-Gen function: using frequent k-long itemsets it generates potentially frequent (k+1)-
long candidates. Potentially frequent means that the candidates have no rare subset, i.e. they
have no minimal rare subset. Including a rare itemset means being rare (by Property 3.2). For
a detailed description of this function see Algorithm 23.

8Tn other words, the input dataset —considered as a binary matrix— contains a full line (a line full of 1s).

86 Chapter 5. Rare Itemsets and Rare Association Rules

Algorithm 15 (Apriori-Rare):

Description: modification of Apriori to find minimal rare itemsets (MRISs)
Input: dataset + min_supp

Output: all frequent itemsets + minimal rare itemsets
1) C; « {l-itemsets};
2) 1+ 1;
3) while (C; # 0)
4) |

ot

SupportCount(C;);

R; — {r € C; | support(r) < min_supp}; // R - for rare itemsets

F; — {f € C; | support(f) > min_supp}; // F — for frequent itemsets
Ciy1 < Apriori-Gen(F;); // C - for candidates

1— 14+ 1;

D

—
S © o

}

Inyr < |J R;; // minimal rare itemsets
Ip — |J F;; // frequent itemsets

[y
—_

e e - e N e L e e e e e

—
N

The execution of the algorithm on dataset D (Table 3.1) with minimum support 3 (60%)2° is
illustrated in Table 8.4. Taking the union of the R; tables the algorithm finds the minimal rare
itemsets (collected in Table 5.2).

In the next subsection we show how to reconstruct the supersets of MRIs (i.e. how to
reconstruct all rare itemsets) avoiding zero itemsets.

Restoring All Rare Itemsets

All rare itemsets are restored from minimal rare itemsets. For this we need to generate all
possible supersets of MRIs. The minimal zero generators are used to filter zero itemsets during
the generation of supersets. This way the search space can be significantly reduced. In this
subsection we present a prototype algorithm for this task called Arima3° (A Rare Itemset Miner
Algorithm, see Algorithm 16).

SupportCount method: counts the support of the candidate itemsets. This requires one
database pass.

The execution of the algorithm on dataset D (Table 3.1) with minimum support 3 (60%)3
is illustrated in Table 5.3.

The algorithm first takes the smallest MRI, {D}, which is rare, thus it is copied to Ry. Its
2-long supersets are generated and stored in Cy ({AD}, {BD}, {CD} and {DE}). With one
database pass their supports can be counted. Since {CD} is a zero itemset, it is copied to the
MZG list. Non-zero itemsets are stored in Ro. For each rare itemset in Ry, all its supersets are
generated. For instance, from {AD} we can generate the following candidates: {ABD}, {ACD}
and {ADE}. If a candidate has an MZG subset, then the candidate is surely a zero itemset and
can be pruned ({ACD}). Potentially non-zero candidates are stored in Cs. Duplicates are not
allowed in C; tables. From MRIs the 3-long itemsets are added to C3 ({ABC} and {ACE}). The

29This is equivalent to maximum support 2 (40%).
3%Not to be confused with the ARIMA model methodology (Auto Regressive Integrated Moving Average).
31This is equivalent to maximum support 2 (40%).

5.1. Rare Itemsets

Table 5.1: Execution of the Apriori-Rare algorithm with min_ supp = 3 (max_supp = 2).

set supp

{D} 1
{ABC} | 2
{ACE} | 2

Cy | supp Ry | supp Fy | supp
{Ay | 4 {D} {A}y | 4
{B} | 4 {B} | 4
{cy| 4 {C}| 4
{D} | 1 (B} | 4
{E} | 4

Co supp Ry | supp F supp
{AB} 3 0 {AB} 3
{AC} 3 {AC} 3
{AE} 3 {AE} 3
{BC} 3 {BC} 3

{BE} 4 {BE} 4
{CE} 3 {CE} 3

Cs supp R3 supp F3 supp
{ABC} 2 {ABC} 2 {ABE} 3
{ABE} 3 {ACE} 2 {BCE} 3

{ACE} 2
{BCE} 3
Cy4 | supp

0

Table 5.2: Minimal rare itemsets found in dataset D.

87

88 Chapter 5. Rare Itemsets and Rare Association Rules

Algorithm 16 (Arima):

Description: restores all (non-zero) Rls from MRIs

Input: dataset + MRIs
Output: all rare itemsets + MZGs
1) MZG — 0;
2) S « {all attributes in D};
3) i« {length of smallest itemset in M RI};
4) C; < {i-long itemsets in M RI}; // i.e. smallest itemsets in M RI
5 MZG— MZG U {z € C; | support(z)= 0};
6) R; <« {r e C;|support(r) >0};
7) while (R; # 0)
8) {
9) loop over the elements of R; (r)
0
11) Cand « {all possible supersets of r using S}; // no duplicates are allowed
12) loop over the elements of Cand (c)
13) i
14) if ¢ has a proper subset in MZG (i.e. if ¢ is a superset
of a min. zero gen.), then delete ¢ from Cand;
15) }
16) Ciy1 < Ciy1 U Cand; // no duplicates are allowed
17) Cand « 0; // re-initializing Cand
1))
19) SupportCount(Cjy1);
20) Cit1 < Ciy1 U {(i + 1)-long itemsets in M RI};
21) MZG — MZG U {z € Cij4+1 | support(z)= 0};
22) Rit1 «— {r € Ci;1 | support(r) > 0};
23) i it 1
2)
25) Ip < |JRi; // rare itemsets

algorithm stops when the R; table is empty. The union of the R; tables gives all non-zero rare
itemsets. At the end we also have all MZGs collected, thus if one needs all zero itemsets, this
list can be used to restore them. The process is similar; we would need to generate all possible
supersets of MZGs. In our case we are only interested in non-zero itemsets, but it is also possible
to work with zero itemsets.

5.2 Border Study

If we consider an itemset to be rare if it is not frequent, then there exists a single border between
frequent and rare itemsets in the powerset lattice. Frequent itemsets are said to be on the positive
side of the border, while rare (or not frequent) itemsets are on the negative side of the border.
The theory of the border was introduced by Mannila and Toivonen in [MT97]. The border was
also studied and discussed by Boulicaut et al. in [BBR03, CRB05|. There also exist studies on

5.2. Border Study 89

MZG =10
S:{ 7B707D7E}
MRI = {D(1), ABC(2), ACE(2)}
1=1
‘ Cs ‘ supp ‘ ‘ R ‘ supp ‘
{ABD} 1 {ABD} 1
{ADE} | 1 (ADE} | 1
BDE 1 BDE 1
(Boe) | 1 e | 1
%);Gi . [ACE} | 2 [ACE} | 2
MZGbefore:—@ MZGbefm“e :{CD}
after MZGafter :{CD}
TG o] [R: [supp|
wr | [T [
{ABCE} | 2 {ABCE} | 2
{CD} |0 {DE} | 1 MZGhefore ={CD}
(DE} 1 e ore_*
MZGbefore = MZGafter —{CD}
MZG, g0, ~(CD) o
7] SR
MZGyefore ={CD}
AfZGafter :{CD}

Table 5.3: Execution of the Arima algorithm with min_supp = 3 (max_supp = 2).

the complexity of finding maximal frequent and minimal infrequent itemsets [BGKMO02, STT9S].
Given an arbitrary dataset and a user-defined minimum support threshold, let F be the set
of frequent itemsets in the dataset.

Definition 5.5 (positive border) The positive border of frequent itemsets (or simply positive
border) is a set that consists of frequent itemsets such that all their proper supersets are not
frequent. The positive border is denoted by Bd™(F).

Definition 5.6 (negative border) The negative border of frequent itemsets (or simply nega-
tive border) is a set that consists of not frequent itemsets such that all their proper subsets are
frequent. The negative border is denoted by Bd™ (F).

From the definitions above, it is clear that the positive border is equivalent to the set of
maximal frequent itemsets (see Def. 5.1), and the negative border is equivalent to the set of
minimal rare itemsets (see Def. 5.2).

Definition 5.7 (border) The border of frequent itemsets (or simply border) is the union of the
positive and negative borders, i.e. Bd(F) = Bd™(F)U Bd~ (F).

Example. Consider the dataset D (Table 3.1) with min__supp = 3 (see Figure 5.1). Then
F=1{0,A,B,C,E,AB, AC, AE, BC, BE,CE, ABE, BCE},

Bd*(F) = {AC, ABE, BCE},

Bd~(F) = {D, ABC, ACE}. O

90 Chapter 5. Rare Itemsets and Rare Association Rules

Table 5.4 contains some statistics about border sizes. It shows the name of the database, the
minimum support values, the number of frequent itemsets, the size of the positive border and the
size of the negative border. As can be seen, the size of the negative border can be significantly
larger than the positive border, especially in the case of sparse datasets.

By [MT96], the negative border defines which sets are frequent and which are not. Given a
set X, if X is a superset of some set in the negative border, then X is not frequent, otherwise it
is frequent (by Property 3.2).

Note that its dual is also true, i.e. the positive border also defines which sets are frequent
and which are not. Given a set Y, if Y is a subset of some set in the positive border, then Y is
frequent, otherwise it is not frequent (by Property 3.1).

In [MT96] it is also stated that “algorithms that compute the collection of frequent sets also
compute the frequencies of sets in the negative border, as the negative border consists of exactly
those sets which, on the basis of other information, could be frequent, and whose frequency
should therefore be checked”. In Section 5.1 we have used Apriori to compute the negative
border (Apriori-Rare), but this idea could be applied to other levelwise algorithms too, e.g. to
Pascal or to Zart.

5.2.1 Minimal Rare Generators

Definition 5.8 (minimal rare generator) An itemset is called a minimal rare generator (MRG)
if it 4s a rare generator, and all its proper subsets are not rare.

Note that minimality is used here in the sense that MRGs have no proper rare subsets, i.e. all
their proper subsets are on the other (positive) side of the border.

This definition can be rewritten formally in the following way. Let G be the set of generators.
The set of minimal rare generators is:

MRG ={X € G| VY C X, supp(X) < min_supp < supp(Y)} .
Corollary 5.2 All proper supersets of an MRG are rare (by Property 3.2).
Corollary 5.3 All proper subsets of an MRG are frequent generators (by Property 3.4).

Proposition 5.2 An itemset is a minimal rare itemset if and only if it is o minimal rare gen-
erator.

Proof.

(1) An MRI is an MRG. We prove it by contradiction. A generator, by definition, has no proper
subset with the same support. Suppose that an MRI is not a generator. In this case, it has
a proper subset with the same support. Since MRIs are rare, this subset is also rare, but by

definition all proper subsets of an MRI are frequent. This conclusion contradicts the assumption.
(2) An MRG is an MRI. The proof follows by Def. 5.8 and Corollaries 5.2 and 5.3. O

By Def. 5.8 and Prop. 5.2 it can be seen that MRGs (and thus MRIs) have a double minimality.
First, they are minimal globally, i.e. among rare itemsets because they have no proper rare
subsets. Secondly, they are minimal locally, i.e. in their equivalence classes because they have
no proper subsets with the same support.

5.2. Border Study 91

Generators Representation

Kryszkiewicz has shown in [Kry01] that generators can constitute a concise lossless representation
of frequent itemsets. Minimal rare generators are called negative generator border in her work,
denoted by GBd~. Kryszkiewicz’s generators representation requires:

e frequent generators (FGs) with their support values
e minimal rare generators (MRGs)

e the set Ip of items that occur in the given database.

Given an arbitrary itemset X, it can be decided with the generators representation whether X
is frequent or not. If it is frequent then its proper support value can be derived. The method is
the following:

o if «(X CIp)or(3Z€ MRG | Z C X), then X is not frequent;

e else X is frequent and supp(X) = min({supp(Y)} | Y € FGAY C X).

Example. Let us consider dataset D (Table 3.1) with min_ supp = 3 (see Figure 5.1). Then
FG={A,B,C,E,AB, AC, AE, BC,CFE},

MRG = {D,ABC, ACE}.

The itemset ABDFE has an MRG subset, D, thus ABDFE is not frequent. The itemset ABFE has
no MRG subset, thus it is frequent. Its frequent generator subsets are: A, B, E/, AB and AF,
of which AE (or AB) has the smallest support, i.e. supp(ABE) = supp(AE) = 3. O

Comparing the Generators Representation with the Frequent Closed Itemset Rep-
resentation

Previously, we have presented another concise lossless representation of frequent itemsets, namely
the frequent closed itemsets representation (see Property 4.2). In our work we have used the
FCI representation because of the following reasons. First, this representation only requires the
FCIs. Secondly, the FCI representation is much more condensed than the generators represen-
tation (see Appendix F) because of the following reasons.

The number of FCIs is less than or equal to the number of frequent generators (by the defi-
nition of equivalence classes), i.e. |FCI| < |FG|. The generators representation requires the
MRGs too, and the number of MRGs can be quite high (see Table 5.4 for a comparison). If
MRGs are added to FGs, we get the following: |FCI| < |FG|+ |[MRG].

Chapter 5. Rare Itemsets and Rare Association Rules

dataset | min_supp | | F| | [Bd™(F)| | [Bd™(F)] |
T20I16D100K 10% 7 7 907
5% 99 99 5,645
2% 378 365 68,411
1% 1,534 914 169,819
0.75% 4,710 1,791 211,578
0.5% 26,836 4,520 268,915
0.25% 155,163 12,467 537,765
T25110D10K 10% 20 20 1,099
5% 142 142 10,798
2% 533 492 106,931
1% 2,893 1,979 223,262
0.75% 17,073 4,230 279,363
0.5% 302,284 11,990 413,827
0.25% 2,055,355 | 33,946 | 1,190,931
C20D10K 10% 89,883 152 901
5% 352,611 388 2,002
2% 1,741,883 1,589 7.735
1% 6,194,967 3,794 18,666

0.75% 9,004,043 | 5,417 924,641
0.5% 15,602,883 | 8,846 37,816
0.25% | 40,450,371 | 18,604 69,104

C73D10K 95% 1,007 18 1,622
90% 13,463 81 1,701
85% 46,575 45 1,652
80% 109,159 137 1,802
75% 235,271 181 1,939
70% 572,087 588 2,727
65% 1,544,691 988 3,675
MUSHROOMS 50% 163 17 147
40% 505 39 254
30% 2,687 89 409
20% 53,337 245 1,004
10% 600,317 895 3,077
5% 4,137,547 | 2475 8,806
1% 92,894,869 | 10,563 41,557

Table 5.4: Border sizes.

5.3. Rare Association Rules 93

5.3 Rare Association Rules

5.3.1 Introduction

Conventional data mining techniques are only designed to find frequent itemsets in a database.
Although it is very useful when one wants to find regularities in a database to help the prediction
task, in certain cases one may be more interested in irregularities. As frequent itemsets are usually
consistent with the expectations of experts, a large number of frequent association rules with
high confidence and support are not interesting. On the other hand, rare itemsets are unknown,
unexpected or contradictory to what the user believes. Therefore, they are novel and potentially
more interesting for the user than frequent itemsets [LLEH99].

Rare cases are often of special interest. This is especially true in the context of data mining,
where one often wants to uncover patterns that may be hidden in massive amounts of data. Rare
cases deserve special attention because they address significant problems for data mining algo-
rithms. Rare cases are often more interesting than typical ones [Wei04|. For instance, in medical
diagnosis, unusual symptoms often help research more than regular or expected symptoms.

In order to find such rare rules using conventional frequent itemset mining algorithms like
Apriori, the minimum support must be set very low, drastically increasing the runtime of the
algorithm. Moreover, when the minimum support is set low, Apriori produces a huge number
of frequent itemsets. This is also known as the rare item problem [LHM99, CDF*01, YHHRO3].
If some data occur rarely but on occurring they appear together in high proportion, the support
is low and the confidence is high. Though this case is worthy to be discovered, with the existing
frequent association rule techniques these rules remain hidden. In theory, frequent itemset mining
algorithms are capable of finding rare associations, but in practice they become intractable if
the minimum support is set low enough. As these algorithms are inadequate for finding rare
associations, new algorithms are needed.

5.3.2 Basic Concepts

Below we present the basic concepts of rare association rules. We rely on definitions given in
Section 5.1.2. An association rule is called rare if its support is not more than a given mazimum
support. Since we use a single border, it means that a rule is rare if its support is less than a given
minimum support. A rare association rule r is valid if r is confident, i.e. supp(r) < min__supp
and conf(r) > min_conf. In the rest of the thesis, by “rare association rules” we mean valid
rare association rules. In this part of our work we are interested in finding valid rare association
rules, i.e. rules with low support and high confidence.

A rare itemset is a perfectly rare itemset, if all its subsets are rare itemsets, otherwise it is
an imperfectly rare itemset. A rule r: A — B is a perfectly rare rule if AU B is a perfectly
rare itemset. A rule r: C — D is an imperfectly rare rule it C U D is an imperfectly rare
itemset [KR05].32

5.3.3 Related Work

Although the rare itemset mining problem has not yet been studied in much detail, there have
been some approaches for solving the “rare item problem”. We shall discuss the MSapriori (Mul-
tiple Supports Apriori), the RSAA (Relative Support Apriori Algorithm), the Apriori-Inverse
and the MIISR (Mining Interesting Imperfectly Sporadic Rules) approaches.

32Note that instead of “rare rules” Koh and Rountree use the terminology “sporadic rules” in [KR05].

94 Chapter 5. Rare Itemsets and Rare Association Rules

With the MSapriori algorithm, Liu et al. [LHM99] try to overcome the rare item problem
by changing the definition of minimum support. In their extended model, each item in the
database can have a minimum item support (MIS) given by the user. This way, the user expresses
different support requirements for different rules. Let MIS(7) denote the MIS value of item .
The minimum support of a rule is the lowest MIS value among the items in the rule. The
rule {a1,aq9,...,ar} — {ags+1,...,a,} satisfies the minimum support condition if the support
of the rule®® in the data is greater than or equal to min(MIS(a),MIS(a2),...,MIS(a,)). With
minimum itemset supports they can change the minimum support value of rules dynamically to
obtain higher minimum supports for rules that only involve frequent items, and lower minimum
supports for rules that involve less frequent items. In this way, MSapriori tries to solve the
problem that arises by adopting the uniform support in Apriori. The MIS values are calculated
by the following formula:

MIS(i) = M(i), if M(i)>LS
= LS, otherwise
M(i) = x (i), where 0 < g <1 .

The user must specify two parameters: (1) LS, the lowest minimum item support allowed,
and (2) f, a parameter that controls how the MIS values for items should be related to their
frequencies. The actual frequency of an item, (), is expressed in percentage of the database
size.34

MSaprior: is a method to discover the association rules using a different MIS value as the
support for each item. Actually, MSaprior: finds frequent association rules, and since it dynam-
ically changes the minimum support values, it identifies some less frequent rules. However, the
actual criterion of discovery is determined by the user’s value of § rather than the frequency
of each item. Since this method is based on Apriori, it has a similar drawback: finding rare
association rules requires the use of a low min_ supp value, and as a result, the number of rules
generated can be enormous, with only a small number being significant rare rules.

The RSA A algorithm [YHHRO3] generates rules which involve significant rare itemsets. This
technique uses relative support: for any dataset, and with the support of item ¢ represented as
supp(i), relative support is defined®® as:

Rsupp{ib i27 e aZk} - maX(Supp(Z.ly i27 cee ,Zk)/SUpp(Zl),
supp(it, iz, . .., ix)/supp(iz),
cey

supp(iy, io, . . ., ix)/supp(ix)) -

This algorithm increases the support threshold for items that have low frequency and decreases
the support threshold for items that have high frequency. Like Apriori and MSapriori, RSAA
is exhaustive in its generation of rules, so it spends time looking for rules which are not rare.
If the minimum-allowable relative support value is set close to zero, then RSAA takes a similar
amount of time to that taken by Apriori to generate low-support rules.

The Apriori-Inverse [KR05| is a levelwise, bottom-up algorithm. It uses two borders. The
first threshold maz _supp is used to find rare itemsets, and the second threshold, the absolute

33The definition of the support of a rule is not changed in this model, i.e. supp(A — B) = supp(AU B), where
AU B is the itemset that contains all items of A and B.

34Example. Consider three items, A, B and C, where f(4)=1%, f(B)=2% and f(C)=10%. If LS=2% and
(3=0.3, then MIS(A)=2%, MIS(B)=2% and MIS(C)=3%.

35This definition of “relative support” is different from ours given in Section 3.1.

5.3. Rare Association Rules 95

minimum support is used to eliminate itemsets that are considered to be foo rare. First, it
identifies 1-long rare itemsets and stores them in the table R;. From this point onwards, it
works like Apriori. Since R; only contains rare itemsets, when the algorithm generates their
2-long, 3-long, etc. supersets, they all will be rare according to the anti-monotonocity property
(Property 3.2). Moreover, they all will be perfectly rare because all their subsets are rare. This
is guaranteed by the fact that R; only contains rare items. At the end, taking the union of the
R; tables, the algorithm finds all perfectly rare itemsets. Then, association rules are formed in
the usual way.

It is important to note that Apriori-Inverse does not find all rare itemsets, but only a subset
of rare itemsets. This subset contains all perfectly rare itemsets, i.e. rare itemsets such that all
their subsets are rare. For instance, in dataset D (Table 3.1) by max__supp = 3, Apriori-Inverse
would only find the itemset {D}, from which no association rule can be generated.

Koh and Rountree note that it would be desirable to be able to generate imperfectly rare
rules as well. For this task they propose slight modifications of Apriori-Inverse to find at least
some imperfectly rare rules: specifically, those that contain subsets that have support just a little
higher than max__supp.

Apriori-Inverse is not able to find imperfectly rare rules because it never considers itemsets
that have support above max _supp. Apriori will miss these rules, because the support of the
itemsets forming these rules is low. Apriori-Inverse will miss them as well, because the support
for the individual items is too high. Therefore, both algorithms will miss rules of the form
AB — C, where A and B are individually frequent, but AB is rare and C is rare. For instance,
this is the situation when two symptoms —both of which commonly occur alone— appear together
only rarely; but when they do, the combination indicates a rare and serious disease with high
confidence. In biomedicine, this type of rule is considered to be very important.

With Apriori, the min_supp must be set very low in order to find rare itemsets. This results
in drastically increased runtime of the algorithm due to the combinatorial explosion in the number
of frequent itemsets. Apriori-Inverse suffers from the same problem in reverse: max__supp has
to be set so high that it qualifies too many itemsets as rare.

Koh et al. in [KROO06| propose a modification of Apriori-Inverse called MIISR to find some
imperfectly rare rules using item constraints: they capture rules with a single-item consequent
below the max supp, and then these items are considered to be the only possible consequents
for all rules that will be generated. Thus, they generate such rare association rules where the
consequent is always a perfectly rare itemset. Though MIISR can find some imperfectly rare
rules, it has the same problem as Apriori-Inverse: in order to find rare itemsets, the maz__supp
has to be set so high that it qualifies too many itemsets as rare.

5.3.4 Contribution and Motivations

In this part of our work we are interested in finding valid rare association rules, i.e. rules with low
support and high confidence. In Section 5.1 we presented a method to restore all rare itemsets
from the set of minimal rare itemsets. Once we have all rare itemsets, in theory it is possible
to generate all valid rare association rules. However, this method has two drawbacks. First, the
restoration of all rare itemsets is a very memory-extensive step due to the huge number of rare
itemsets. Secondly, even if we manage to restore all rare itemsets, the number of generated rules
would be even more. We should face the same problem as in the case of AR rules: we have a
huge number of rules of which many are redundant and not at all interesting.

Among frequent association rules, there are some special subsets, called bases, from which all
other frequent association rules can be restored with a proper inference mechanism. Previously

96 Chapter 5. Rare Itemsets and Rare Association Rules

we have seen that the minimal non-redundant association rules (MNR) are a lossless, sound
and informative representation of all valid association rules. Moreover, these rules are considered
to be very interesting because they allow one to deduce maximum information with a minimal
hypothesis.

Our work is motivated by the long-standing open question of devising an efficient algorithm
for finding rules that have very high confidence, but for which there is weak support. Thus, the
aim of this part of our research is twofold. First, we want to find valid rare association rules
efficiently. Secondly, we want to find directly an interesting subset of rare association rules,
something like the MN'R rules for frequent rules. We present a method that first identifies
a minimal set of rare itemsets called minimal rare generators (MRGs). Then, we calculate
their corresponding rare equivalence classes, and finally we generate exact rare association rules.
We call these rules “MRG rules” because their antecedents are minimal rare generators. We
demonstrate that MRG rules can always be extracted. Even if the min_supp value is set very
high, one can find MRG rules with very low support. We also provide a methodology for mining
rare association rules.

5.3.5 Finding MRG Association Rules

We became interested in rare association rules while working on a real-life biomedical database
called STANISLAS cohort (see Chapter 6 for more details on this database). Our expert was
interested in finding relations that are true in the case of a very small number of individuals, say
even as small as one or two patients. This required finding association rules with an extremely
low support. We also had to face the rare item problem |[LHM99|. In order to find rules with
very low support, we made several experiments trying to lower the min_ supp as low as possible
in an iterative way. We also realized that conventional frequent itemset mining algorithms have
a limit on how low min_ supp can be set. We call this absolute limit the barrier.

The barrier is the absolute minimum support value that is still manageable for the given fre-
quent itemset mining algorithm in the given computing environment.

Naturally, the exact position (value) of the barrier depends on several computing environment
variables, e.g.:

e the database (size, density, highly- or weakly-correlated, etc.)
e the platform (characteristics of the machine that is used for the calculation (CPU, RAM))

e the software (efficient / less efficient implementation).

For instance, suppose that in one environment one can lower the min_ supp to 80%. Using the
same database on a different platform it may be possible that we are able to descend to 60% or
even lower. But the essential point is that with conventional techniques there is always a barrier
that cannot be crossed, and it is almost certain that we cannot lower the min_supp to 1.3
What is on the other side of the barrier? What kind of information is hidden from us? These
are the questions that we pose.

36Tf min_supp = 1 (absolute value), then all itemsets are frequent, i.e. by this value one can have all itemsets
whose support exceeds 0.

5.3. Rare Association Rules 97

Breaking the Barrier

How could we break the barrier? How to extract interesting association rules from the negative
side of the barrier? The key algorithm that can help us is Apriori-Rare that we presented
in Section 5.1.4 (Algorithm 15). Apriori finds frequent itemsets, but as a “side effect” it also
explores the so-called minimal rare itemsets (MRIs). Apriori-Rare keeps these itemsets instead
of deleting them. In Section 5.2.1 we show that minimal rare itemsets are rare generators
(Proposition 5.2). The idea is the following: find the closures of these rare generators so as
to obtain their equivalence classes. Once rare equivalence classes are explored, it is possible
to generate rare association rules in a way very similar to that of finding (frequent) minimal
non-redundant association rules (Section 4.3). We call these rules “MRG rules” because their
antecedents are minimal rare generators. We group these steps together in an algorithm called
BtB (Breaking the Barrier).

Note that we are interested in rules whose support is very low but greater than 0. Since
Apriori-Rare can find MRIs with support 0 too, these itemsets are pruned.

MRG Rules

As we will see later, two kinds of MRG rules can be distinguished, namely exact and approximate
rules. In our experiments we are more interested in rare association rules with low support and
very high confidence. The exact MRG rules can thus be characterized as:

r: P = P\ P;, where Pjisa minimal rare generator
Py U (Py\ P) = P, is a rare closed itemset
PCh
r 18 a rare association rule
conf(r)=1.0
P; is rare
Py \ P is rare or frequent.

Since a generator is a minimal subset of its closure with the same support, these rules allow us to
deduce maximum information with a minimal hypothesis, just as the MANR rules. Furthermore,
the MRG rules are non-redundant, because for rules with the same support and same confidence,
these rules contain the most information.

Example. Figure 5.2 shows all the equivalence classes of dataset D (Table 3.1). Support
values are depicted above to the right of equivalence classes. Itemsets with the same support are
grouped together in the same level. Levels are separated by borders that are defined by different
min__supp values. Next to each min_supp value, the corresponding minimal rare generators
are also shown. For instance, if min_ supp = 4 then there exist 5 frequent itemsets (A, C, B,
E, BE) and 6 minimal rare generators (D, AB, AC, AE, BC, CE).

Suppose that the barrier is at min_supp = 4. In this case, using Apriori, the less frequent
association rules have support 4. Our method allows us to find rare association rules below
this barrier. With Apriori-Rare, the following MRGs are found: D, AB, AC, AFE, BC and CE.
Calculating their closures, four rare equivalence classes are explored, as shown in Table 5.5. Note
that not all rare equivalence classes are found. For instance, the class whose closure is ABCE
is not found because its generators are not MRGs, i.e. it is not true for ABC and AC'E that all
their proper subsets are frequent itemsets.

98 Chapter 5. Rare Itemsets and Rare Association Rules

_—

- .

- min_supp=t
-~ MRG={ } - min_supp=2

- - MRG={D}

min_supp=3
MRG={D, ABC, ACE}

—
—_—

min_supp=4
MRG={D, AB, AC, AE, BC, CE}

—_
—

-~ min_supp=5

——_ — - MRG={A, B, C, D, E}
~—— - - e
(> equivalence class P————Q
. P is directly subsumed by Q
closed itemset
P s Q
generator P is subsumed by Q

Figure 5.2: Rare equivalence classes found by BtB at different min_ supp values.

closure support generators

ABDE 1 D
AC 3 AC
ABE 3 AB, AE
BCE 3 BC, CE

Table 5.5: Rare equivalence classes found by BtB at min_supp = 4.

5.3.6 Generating MRG Rules

Once the rare equivalence classes are found (see Table 5.5), the rule generation method is ba-
sically the same as in the case of MNR rules (see Algorithm 12 in Section 4.3). Two kinds
of MRG rules can be distinguished, ezact and approzimate rules. Whereas approximate rules
are generated from two different equivalence classes, exact rules are always extracted within the
same equivalence class.

Finding exact MRG rules. So, exact MRG rules are extracted within the same equivalence
class. Such rules can only be extracted from complex classes (see Def. 3.4). Table 5.6 shows
which exact MRG rules can be extracted from Table 5.5.

Finding approximate MRG rules. Approximate MRG rules are extracted from classes
whose closures are comparable with respect to set inclusion. The algorithm is the following: let
Py be an MRG and let (P;) denote the closure of P;. Find all proper supersets Ps of v(P;)
among the closures of the found rare equivalence classes. Then add r: P — P, \ P; to the set

5.3. Rare Association Rules 99

rule support confidence
D = ABE 1 1.0
AB=FE 3 1.0
AE = B 3 1.0
BC=F 3 1.0
CE =B 3 1.0

Table 5.6: Exact MRG rules found in dataset D (Table 3.1) by min_ supp = 4.

rule support confidence
AB — DE 1 1/3=10.33
AE — BD 1 1/3=10.33

Table 5.7: Approximate MRG rules found in dataset D (Table 3.1) by min_ supp = 4.

of approximate MRG rules. For instance, Table 5.7 shows which approximate MRG rules can be
extracted from Table 5.5.

Note that we are just interested in rare rules that have high confidence. As for approximate
rules with low confidence, their importance is doubtful. There is a high chance that the itemsets
in these rules only appear together by chance. Because of this reason, in our experiments we
concentrate rather on ezact MRG rules.

The Algorithm

Algorithm 17 presents the pseudo code of the BtB (Breaking the Barrier) algorithm. BtB consists
of three main steps. First, we assemble the set of minimal rare generators. For this task we use
the Apriori-Rare algorithm that finds the set of minimal rare itemsets. Proposition 5.2 says
that MRIs are MRGs. Then, the algorithm calculates the closures of MRGs to produce their
equivalence classes. The closure of an itemset X is equal to the intersections of the corresponding
itemsets of objects that include X. For instance, AB of dataset D (Table 3.1) is included in the
1%t 37 and 5" objects, thus y(AB) = ABDE N ABCE N ABCE = ABE. Finally, MRG rules
are generated from the found rare equivalence classes, as explained before.

Algorithm 17 (BtB):
Description: finds MRG rules
1) find the set of minimal rare generators (MRGs);

2) find the closures of MRGs;
3) generate MRG rules from the found rare equivalence classes;

5.3.7 Calculating Other Interestingness Measures

The support and confidence values of the extracted MRG rules can be easily computed, as shown
in Tables 5.6 and 5.7. However, to calculate other interestingness measures (see Section 4.4), the
support of the right side must be known too. There are two possibilities: (1) the right side is
frequent, or (2) the right side is rare.

100 Chapter 5. Rare Itemsets and Rare Association Rules

Frequent right side. The general form of an MRG rule r is: P, — P»\ Pi, where P, is a rare
closed itemset. The right side, P, \ Pi, is a subset of Py, thus it can be frequent. To derive its
support, we use the FCI representation of frequent itemsets (see Property 4.1).

Recall that the support of an arbitrary frequent itemset is equal to the support of its smallest
frequent closed superset (Property 4.1). This task can be done very efficiently with the trie data
structure (see Appendix C.3).

Rare right side. If the right side is rare, there are two further possibilities. Either it is among
the rare itemsets that were discovered by BtB, or it is not. In the first case its support is known.
In the second case, however, its support is not known because it is in an undiscovered rare
equivalence class. To find out its support, we are obliged to scan the database.

Note that some association rules may be completely trivial: for instance, when the antecedent
is rare but the consequent has support of 100%. Other quality measures can help to find these
cases, e.g. the lift. Thus, to filter trivial rules, it is highly recommended to derive the support
of the consequents too.

In order to reduce the number of trie and database accesses, we use our cache optimization (see
Section 4.5) in all cases.

5.3.8 A Methodology for Finding Rare Association Rules

The algorithm BtB is designed to find rare association rules where conventional methods fail.
In our experiments, frequent itemset mining algorithms perform quite well with sparse datasets,
i.e. the min_ supp can be set relatively low. However, these algorithms have serious problems
with dense datasets. For these cases we suggest using BtB. The first step is finding the exact
position of the barrier. For this purpose, we propose an iterative automated method. There
are two limitations: space limit and time limit. Space limit is determined by the main memory
of the platform, while time limit is set by the user (for instance 2 hours). First the min_supp
is set very high, e.g. 90%. If Apriori can find all FlIs within the limits, min_ supp is lowered.
The process continues until Apriori fails (for two possible reasons: (1) not enough memory, or
(2) too long running time). The barrier is determined by the last successful min_supp value.
At this point, we change to BtB. As BtB calls Apriori-Rare, a slight modification of Apriori, it
is guaranteed that Apriori-Rare will not fail with this min_ supp value if Apriori did not fail.
Our global data mining methodology (see Section 6.2) can also be applied to rare association
rules.

To sum up, first we start with Apriori, and we lower the minimum support in an iterative
way. When Apriori fails, we change to BtB in order to find rare association rules below the
barrier.

5.3.9 A Classification of Association Rules by the Frequency of the An-
tecedent and Consequent
Association rules?”, by the frequency of the left and right sides, can be grouped in four classes:
1. rare — rare (i.e. a rare itemset implies a rare itemset)

2. rare — frequent (i.e. a rare itemset implies a frequent itemset)

37 Any kind of association rules, either frequent or rare.

5.3. Rare Association Rules 101

3. frequent — rare (i.e. a frequent itemset implies a rare itemset)
4. frequent — frequent (i.e. a frequent itemset implies a frequent itemset).

From now on, we will refer to these rules as rule types RR, RF, FR and FF respectively.

Frequent association rules. All frequent association rules are in type FF. The reason is the
following. An association rule 7: X — Y\ X (X CY) is frequent if the union of the left and right
sides is frequent. By the downward closure property (Property 3.1), any subset of a frequent
itemset is frequent. Thus, X and Y \ X are frequent.

Rare association rules. Rare association rules can be in types RR, RF or FR. However,
MRG rules can only be in types RR or RF because by definition, their antecedents are minimal
rare generators. In our work, we have not yet worked with rules of type FR, but they can also be
generated easily. Once we have the frequent equivalence classes and the rare equivalence classes
(that are found by using the MRGs), the rule generation process is similar to the generation of
MNR rules. For instance, from dataset D (Table 3.1), the following FR rules are extracted (see
also Figure 5.2):

‘ FR rule ‘ support ‘ confidence
A — BDE 1 1/4=0.25
B —CE 3 3/4=0.75
B — AFE 3 3/4=0.75
B — ADE 1 1/4=0.25
E — BC 3 3/4=0.75
E — AB 3 3/4=0.75
E — ABD 1 1/4=0.25

Table 5.8: FR rules in dataset D (Table 3.1) by min_ supp = 4.

The FR rules are generated by using a frequent and a rare equivalence class, thus they also
have the property that the antecedent is a (frequent) generator and the union of the antecedent
and consequent is a (rare) closed itemset. For finding rare equivalence classes, we have used the
MRGs, as in the case of “exact MRG rules”.

Property 5.1 Association rules X — Y \ X (X CY), where X is frequent and Y \ X is rare,
are approximate rules.

Property 5.1 states that FR rules are approximate rules.

Proof. Since theruler: X — Y\ X (X CY)isan FR rule, X is frequent and Y \ X is rare. As
Y\ X is rare, Y is rare too (by Property 3.2). AsY israre and X is frequent, supp(Y') < supp(X).
Thus, the confidence of r is: supp(X U (Y \ X))/supp(X) = supp(Y)/supp(X) < 1. O

5.3.10 Experimental Results

We evaluated BtB on five different datasets. Table 5.10 shows the different steps of finding
exact MRG rules. It shows the name of the dataset, the minimum support value, the number
of frequent and frequent closed itemsets, the total number of minimal rare generators (zero

102 Chapter 5. Rare Itemsets and Rare Association Rules

itemsets included)3®, the number of non-zero MRGs, the number of found rare equivalence classes
(support > 0), the number of complex rare equivalence classes (support > 0), the number of
generated exact MRG rules, the number of these rules in types RR and RF, and the time of
rule generation. The number of Fls is only indicated to show the combinatorial explosion of Fls
as the min_ supp is lowered. The headers of the most important columns are printed in bold,
which are: (1) FCIs (they are only needed if we are interested in knowing the support of the
consequents, as it was the case in our experiments), (2) MRGs whose support exceeds 0, and
(3) complex rare equivalence classes that are found by using non-zero MRGs.

Example. The first row of Table 5.10 contains information about dataset D (Table 3.1). If
min__supp = 4, i.e. 80% (see also Figure 5.2), then we can extract 5 FIs of which 3 are closed.
Apriori-Rare finds 6 MRGs, none of them have support 0. Calculating their closures we have
4 rare equivalence classes. One of them is simple, but 3 of them are complex, thus they are
appropriate for generating exact MRG rules. Among the 5 exact rules, there is 1 of type RR
and 4 of type RF. The rule generation process, including the derivation of the support of the
consequents, required 0.03 seconds.

For each dataset, the min_ supp value was lowered in an iterative way in order to find the barrier.
For each dataset (except for D), the lowest min_ supp value indicates the barrier, i.e. the lowest
value before hitting the space limit of the platform or the time constraint of 10,000 seconds.

Distribution of MRG Rules

As can be seen in Table 5.10, the most challenging database is the C73D10K, where min_ supp
could only be lowered to 65%. With BtB we could find 3,675 MRG rules below this thresh-
old. Table 5.9 shows some statistics about the distribution of these rules. The rule with the
smallest support has support 1 (0.01%), while the rule with the largest support has support
6,499 (64.99%). As indicated, several rules are found that can be considered to be very rare
(interval |0%-10%|). Note that altogether we have found 61 rules with support 1 (0.01%).

C73D10K
min_supp = 65%

smallest support 1 (0.01%)
largest support 6,499 (64.99%)
10%—10%]| 1,447
[10%-20%] 34
[20%-30%)| 33
[30%-40%)| 16
[40%-50%)| 35
50% 60%| 120
[60% 65%] 1,990

Table 5.9: Distribution of MRG rules.

38Gee Def. 5.3.

103

5.3. Rare Association Rules

08°L6G G6LCE | 68C'T | ¥E0°LE 66L°91 66L°91 ¥€0°L¢ LGCTH 80L'CS | 698°'F68°C6 %1

S PIF'L 67 £96°L 0g¥e 0gFq £96°L 908°S 68L°CT | LPS'LETY %G

081 62L°C 181 916°C 70ec ¥0e'c 916'C LL0°€E 088‘F L18°009 %01

1.0 ces %4 636 4 €38 636 700°T 691°T LE€'eS %02

0 92¢ 9. c0¥ 19¢ 19¢ c0F 60¥ qT¥ L8¢°C %0€

ze0 8T 99 16 s e 16 raste izd! G0% %0¥

82°0 6. 89 L1 6£1 681 Lyl L1 5 €91 %09 SWOOUHSNA
69°€G L6S°T | 8L0°T 6L9°¢ £C6°C £66°C GL9'¢ 6L9°¢ I6%'LF | T69'FFS'T %S9

8%°0¢ TLS'T | CST'T L2L'T G9£°C G9EC L2L'e L3t 10G°67T 180°2LS %0.L

e1°2e 7.9 G9z'1 6£6°T P6L°T 76.°T 6£6°T 656°T L9¢°6 1.2°G€T %GL

12°L1 o8¥ 02¢'T 208’1 869°T 869°T 208’1 Q08T 29T’y 6ST°60T %08

G191 c0¢ 7T 7891 1651 16S°T 789°1 7891 63¢c GLG T %G8

6£°91 gee 89¢‘T 10L°1 691 Gz9‘1 10L°1 T0LT 6 €97'E1 %06

25°S1 (444 00¥'T 229’1 0.5°1 051 2c9'1 Te9'1 €6 L00'T %S6 MOTAELD
LV'¥8¢ T6F'8S | T189°¢ | €AT'Z9 GT6'T¥ GT6°T¥ €L1°29 F0T°69 | SPF'E6T | TLE0CH 0F %820

V1L e81°ze | ¥80°1 99Z°¢E G91°Gg G91°GE 99Z°¢E 918°LE | TS6'TET | €88°C09°CT %G°0

19'%€ 19%°0¢ 709 G90°1¢ 78991 38991 G90°1% 179'%¢ | ¢68°COT | €£F0'F00°6 %SGL°0

80°0¢ TL6'TT 19% gerer GR¥'2T G8¥'CT gerer 999°81 809°G8 | L96T6T'9 %I

LL°9 9689 602 G90°L $10°9 #10°9 690°L SN 62L0C | €88°TFL'T %%

9z'1 618'T i L98'T 7891 7891 L98'T 200G ¢1C'1¢ 119°2S¢ %G

cL0) 4 L€8 8LL 8LL L€8 106 LLL'S £88°68 %0T MOTA0ZD
%6°€0TT cle'Le | L08°CL | 6L0°OTT 0S7°99 8LV CEE L0T°9LE LTS'CTF | €€0°CS ¥8¢°20¢ %G°0

€0°6¢S 80€0% | 190°1S | 69E£'1L oo 9v 110°9€e 8C6°09¢ €9¢'6.L3 1¥8°L €L0°L1 %SL0

29°%ee €6CTT | LC8TE | 0CT'6F ovese 921°00¢ 700712 292'€ee 9.9'C €68°C %I

9L'1€ CL¥'c | £L9°¢ 8719 716°C LT¥'901 199°90T 1€6°90T €€s €ee %G

19°0 id 09 9 €9 L6201 8601 86L°0T 1 4 %8

990 4 29 79 €9 860°T 660°T 660°T 0% 02 %01 M0TAOTICZL
8¢ 8T8 €G6°8C | SC0°LT | T166°CYH 8CH Y GGG 1ES 880°7€S G9L°LEC | LIT'6VT €91°6GT %820

8€°GRE P8T°0T | 6S0°9 | €¥¢9T 001°9T 9%1°89% 685°89¢ G16'89C | 80%'9¢ 9€8°9¢ %S0

07°6. ¥ | 609°T €607y 670°F LGC'TTE 19G°T1Z 8LG'TTC 0TL'¥ 0TL'F %8GL°0

9z’ 70L 6 96. 96. 618691 618691 618691 FECT vee'T %I

G9'1 8 61 Lz e 117°89 11789 11¥°89 8LE 8LE %G

01°C ¢ g LT LG cr9°g Gh9°'q Gr9°g 66 66 %8

07'% 0 LG L LG L06 206 L06 L L %01 SI00TA9I0Z.L

€0°0 id 1 G ¢ id 9 9 ¢ g %08 a

(xordwoo
(0as) (10ex0) | (10ex0) | (10ex0) | ‘or9z-uou) | (0I0Z-UOU)
uoryeIouss sonI so[na sa[nI sasse[d S9SSR]D (oxaz-uou) (1re)
omijoowmy | Y # | YU # | DUIN # | ‘ba axex # | ‘bo orer # | sOYIN # | SOUIN # | SIDA # | SId # ddns urur joseIep

Table 5.10: Steps taken to find MRG association rules.

104 Chapter 5. Rare Itemsets and Rare Association Rules

5.3.11 Conclusion

Frequent association rule mining has been studied extensively in the past. The model used in all
these studies, however, has always been the same, i.e. finding all rules that satisfy user-specified
min__supp and min__conf constraints. However, most rules with high support are obvious and
well-known, and it is the rules of low support that provide interesting new insights.

In this part of our work we presented a method to extract interesting rare association rules
that remain hidden with a conventional frequent itemset mining algorithm. These rules, called
“MRG rules”, are very similar to frequent minimal non-redundant association rules (MANR) in
the sense that the antecedent is a generator and the union of the antecedent and consequent is
a closed itemset. The main difference is that these rules are generated from rare equivalence
classes, and the antecedent is not a “simple” rare generator but a minimal rare generator (MRG)
with the additional property that all its proper subsets are frequent. Another advantage of our
method is that MRG rules can be found in all cases. We also presented a methodology for mining
rare association rules. The idea is to start working with Apriori and decrease the min__ supp
value in an iterative way to as low as possible so that the absolute minimum support called the
barrier, can be found. When Apriori fails, we change to BtB, and it is capable of finding MRG
rules below this threshold. The MRG rules, similarly to the MNR rules, are interesting because
they allow the deduction of maximum information with a minimal hypothesis. Furthermore,
they are non-redundant because these rules contain the most information among rules with the
same support and same confidence.

There are several bases defined for frequent itemsets. We are curious to know if similar
bases can be defined for rare association rules either. FExact MRG rules represent a subset of
all exact rare association rules. It is natural to ask if there is a way to restore all exact rare
association rules. Since all rare itemsets can be restored from MRGs, as we showed with the
Arima algorithm, we suppose that the answer is positive. With all this, can we say that the
exact MRG rules are a condensed representation of all exact rare rules? Kryszkiewicz states
in [Kry02| that a frequent rule representation should be lossless, sound and informative. How
can these definitions be applied to rare association rules?

As can be observed, rare association rules raise lots of questions. As a future perspective, we
plan to continue studying these rules. We also plan to describe experiments done on the real-
world data of the STANISLAS cohort, in order to provide a concrete example of this promising
field of KDD.

Chapter 6

A Data Mining Methodology and the
Coron Toolkit

6.1 An Overview of the Coron System

In this thesis, we have studied and designed an intelligent information system that allows one
to (i) extract knowledge pieces from datasets (extract frequent itemsets and association rules),
and to (ii) organize the extracted knowledge units (classification and visualization with formal
concept analysis). We have designed a domain independent, multi-purpose data mining platform
called CORON??| which incorporates a rich collection of data mining algorithms, and allows a
number of auxiliary operations. At present, CORON appears to be an original working platform,
integrating efficient algorithms for both itemset and association rule extraction. CORON also
provides support for preparing and filtering data, and, for interpreting the extracted units of
knowledge.

In our case, the extracted knowledge units are association rules. At the present time, finding
association rules is one of the most important tasks in data mining. Association rules allow one to
reveal “hidden” relationships in a dataset. Finding association rules requires first the extraction
of frequent itemsets.

Most experiments with CORON were performed on a real-life biomedical dataset called
STANISLAS cohort. During these experiments, I have worked together with one of my colleagues,
Sandy Maumus*’, who was an expert on this dataset. During the course of these experiments,
we realized that we needed a (1) methodology for mining, and (2) a tool for implementing
the methodology. This inter-disciplinary collaboration led to the development of a global data
mining methodology, and to the development of the CORON platform (see Appendix G for a
detailed user guide).

Currently, there exist several freely available data mining algorithms and tools. For instance,
the goal of the FIMI workshops®! is to develop more and more efficient algorithms in three
categories: (1) frequent itemsets (FI) extraction, (2) frequent closed itemsets (FCI) extraction,
and (3) maximal frequent itemsets (MFI) extraction. However, they tend to overlook one thing:
the motivation to look for these itemsets. After having found them, what can be done with them?
In Chapter 4 it is shown that extracting FIs, FCIs, or MFIs only is not enough to generate really
useful association rules (see also the Zart algorithm in Section 3.3.1). The FIMI algorithms may

3%http://coron.loria.fr
40Sandy MAUMUS defended her PhD on 15 November 2005.
Uhttp://fimi.cs.helsinki.fi/

105

106 Chapter 6. A Data Mining Methodology and the Coron Toolkit

be very efficient, but they are not always suitable for our needs. Furthermore, these algorithms
are independent, i.e. they are not grouped together in a unified software platform. We also did
experiments with other toolkits, like WEKA*2. WEKA covers a wide range of machine learning
tasks, but it is not really suitable for finding association rules. The reason is that it provides only
one algorithm for this task, the Aprior: algorithm. Apriori finds FIs only, and is not efficient
for large, dense datasets.

Because of all these reasons, we decided to group the most important algorithms into a
software toolkit that is aimed at data mining. We also decided to build a methodology and a
platform that implements this methodology in its entirety. Another advantage of the platform is
that it includes the auxiliary operations that are often missing in the implementations of single
algorithms, like filtering and pre-processing the dataset, or post-processing the found association
rules. Of course, the usage of the methodology and the platform is not narrowed to one kind of
dataset only, i.e. they can be generalized to arbitrary datasets.

Extraction of Frequent Itemsets and Association Rules with Coron

CORON is an integrated software platform including components for finding frequent (closed)
itemsets in binary contexts and for extracting different kinds of association rules, i.e. key oper-
ations that can be required in practical applications. CORON is designed to cover a wide range
of basic tasks of symbolic data mining, including pre-processing the dataset, extracting frequent
itemsets, generating association rules using these itemsets, and filtering the rules according to
different conditions. CORON offers an open architecture and generic implementations which ease
its adaptation to the particular application domain and problem setting. The platform supports
several data formats (context types), like binary contexts or relational context families. In ad-
dition, a rich set of algorithmic methods for symbolic data mining is included in the system’s
architecture. CORON is designed in parallel with the development of the GaLiciA platform?®?
for formal concept analysis experiments.

Extracting itemsets. The central part of CORON called Coron-base contains a rich set of
algorithms. The currently implemented algorithms for extracting frequent (closed) itemsets
are the following: Apriori, Apriori-Close, Close, Titanic, Pascal, Pascal®, Zart, Eclat, Eclat-Z,
Charm and Charm-MFI. Beside frequent itemsets, Coron-base contains algorithms for extracting
rare itemsets too, such as Apriori-Rare, Arima and BtB.

Extracting association rules. A module of the CORON system called ASSRULEX (Asso-
ciation Rule eXtractor) is specialized to work with the previously found itemsets to generate
different sets of frequent association rules, namely (1) all valid rules, (2) closed rules and (3)
the family of minimal non-redundant rules (GB, ZB, RIB, MNR, RMNR). AssRULEX also
supports the extraction of rare association rules, i.e. finding exact MRG rules.

The chapter is organized as follows. Section 6.2 details the global data mining methodology and
the different modules of the CORON system. Furthermore, we present a methodology for finding
rare itemsets that can suggest new hypotheses to be tested and show new research directions.
Section 6.3 gives an introduction to mining biological data and describes our real-world dataset,
the STANISLAS cohort. Major results, obtained from the application of the methodology on the

http://www.cs.waikato.ac.nz/ ml/weka/
“*http://galicia.sourceforge.net

6.2. A Global Data Mining Methodology 107

STANISLAS cohort using association rule extraction, are summarized at the end of Section 6.3,
together with our conclusions and perspectives on this real-life database. Other uses of the
CORON system are presented in Section 6.4.

6.2 A Global Data Mining Methodology

The methodology was initially designed for mining biological cohorts, but it is generalizable to
any kind of database. It is important to notice that the whole process is guided by an expert,
who is a specialist of the domain related to the database. Her role may be crucial, especially for
selecting the data and for interpreting the extracted units (for fully becoming knowledge units).
CORON (which is described below) is designed to satisfy the present methodology and offers
all the tools that are necessary for its application in a single platform. Nevertheless, the user
who prefers to test other tools than CORON can also apply the proposed global data mining
methodology.

The methodology consists of the following steps: (1) Definition of the study framework,
(2) Tterative step: data preparation and cleaning, pre-processing step, processing step, post-
processing step; Validation of the results and Generation of new research hypotheses; Feedback
on the experiment. The life-cycle of the methodology is shown in Figure 6.1.

data preparation
+
filtering operations

®

extraction of frequent ‘
(closed) itemsets

pre-processing

itemset
extraction

datasets

visualisation of the
results

(post-processing #2)

itemsets

~
!

|
\
\

rule sets

rule
extraction

mining rules

‘ (post-processing #1) generating rules J

A — B operation between A and B

A--—>B information flow

Figure 6.1: Life-cycle of the mining methodology.

108 Chapter 6. A Data Mining Methodology and the Coron Toolkit

6.2.1 Definition of the Study Framework

The expert of the domain defines a specific field for the analysis (called hereafter “framework”).
Thus, she may choose on what type of data she wants to work: biological data, genetic data, or
both; unrelated individuals or families; focus on a special metabolic network or on a particular
syndrome.

6.2.2 TIterative Step

Data preparation and cleaning. Data cleaning is necessary. This step includes the detection
and the possible removal of incomplete and out-of-range values. Moreover, several actions for
converting the data can be done at this step:

o Addition/creation of new attributes for helping the extraction of association rules by com-
bining attributes (intersection, union and complementary).

e Deletion of attributes that are not interesting in the chosen biological framework. This
option is close to the projections described below.

e Discretization: transform continuous data into Boolean values, for instance by using a
threshold defined in the literature, or by separating values of each continuous variable into
quartiles.

Data filtering (pre-processing). Several actions can be carried out that correspond to op-
erations found in set theory: complement, union and intersection (with operations of additions
and projections).

o Apply projections:

- On the rows: i.e. selecting individuals with one or more attributes specified by the
expert.

- On the columns: i.e. selecting (or deleting) some attributes.

o Consider the complement of a set of individuals satisfying a rule, defined by the set of
individuals who do not satisfy this rule.

Thus, the output of the filtering process is considered as a new dataset on which data mining
procedures can be applied again.

Applying the data mining procedure. We used symbolic data mining methods, in par-
ticular, frequent itemset search and association rule extraction. With the help of the expert,
the necessary thresholds values can be set for quality indices such as the minimum support and
the minimum confidence for generating frequent itemsets and association rules, respectively. As
the process is iterative and interactive, the expert can change these thresholds during a next
iteration to carry out new experiments.

Post-processing. By filtering and visualizing the rules, we can find those rules that contain
the most interesting attributes. If a less relevant attribute is always present in the rules, it can
be considered as “noise”, and can be deleted from the input dataset. This means, we extract
association rules again from the modified dataset. The iterative step can be repeated until the
most relevant rules are found. The expert’s interpretation is mobilized both for rule mining and
result visualization. In the rule mining step, the expert can also make several choices:

6.3. Experiments on a Real-Life Biological Database 109

Choosing rules with a specific form (e.g. selecting rules that only have one attribute on
their left side).

o Selecting rules with an attribute of interest from the expert’s point of view, on the left hand
side, on the right hand side, or on both sides.

o Classifying the extracted rules in ascending (or descending) order according to their support
or confidence values (or even according to other statistical values [CNT05]).

o Selecting rules with a support belonging to a given interval [a,b]; returning rules with a
support less than (or more than) or equal to a given value ¢. These selections can also be
applied with the other statistical indices cited above.

The rule mining step may be dependent on numerical measures, e.g. support and confidence, or
on domain knowledge as shown in some experiments [JCKT04].

Visualization of the results. A visualization method adapted to symbolic data mining
method procedure has to be chosen. For frequent itemset search leading to the extraction of
less frequent itemsets, concept lattices may be used beneficially [Jay03, VW94, Col01].

Validation of the results and generation of new research hypotheses. The evaluation
of the rules can be done either by statistical tests or numerical data analysis, i.e. component
analysis. The generated results allow the expert to suggest new directions of research. Accord-
ingly, these new hypotheses are tested by new experiments managed at the biological level, like
genetic epidemiological studies or wet laboratory experiments.

6.2.3 Using the Methodology with Rare Association Rules

In Section 5.3 we presented a method for extracting association rules with such low support
values that cannot be handled with conventional frequent itemset mining algorithms. We are only
interested in those rare rules that have very high confidence values. An iterative and automated
method for finding such rules is detailed in Section 5.3.8. We recall here the basic principles.
First, we start mining with a frequent itemset mining algorithm, say Apriori. Iteratively, the
minimum support threshold is set as low as possible. When Apriori fails, i.e. the barrier is
reached, we change to Apriori-Rare. Apriori-Rare identifies the so-called minimal rare generators
(MRGs). Then, using MRGs it is possible to generate rare association rules (we call them “MRG
rules”).

The global data mining methodology, as shown in Figure 6.1, can be applied in the same way
to rare association rules as it is applied to frequent rules.

6.3 Experiments on a Real-Life Biological Database

6.3.1 Introduction to Mining Biological Data

A cohort study consists of following a defined population during a period of time, and of recording
different data concerning this population [BHC195]. Data from cohorts show a high rate of
complexity. First, these data are longitudinal ones, i.e. they can vary in time. Secondly,
these studies involve a large number of individuals, and collect a large quantity of different
parameters [MCHSV02]. Moreover, these data are of different types: quantitative, qualitative,

110 Chapter 6. A Data Mining Methodology and the Coron Toolkit

textual, binary, etc. Finally, when the recording terminates, some values of variables may be
missing or noisy, leading to incomplete databases. All these characteristics show that data from
a cohort study can be considered as complex data. Therefore, the exploitation of such data is a
non-trivial task.

An example of the complexity met in cohort studies is given by the STANISLAS cohort. This
ten-year study is designed to study cardiovascular risk factors. It involves presumably healthy
French families (familial data, with subjects of different ages), and records different types of
data (clinical, biological, environmental and genetic data) at three points of health examination,
separated from each other by a five-year interval (longitudinal data).

The experts involved in the study of the STANISLAS cohort are specialists of the cardiovascu-
lar domain, and they are interested in finding associations relating one or more genetic features
(polymorphisms) to biological cardiovascular risk factors. To satisfy this objective, many types
of statistical analysis are classically used by biologists. However, such analyses are valid only if
an a priori hypothesis to be tested is proposed. Facing the amount and the complexity of the
data, experts need alternative methods that could help them to foresee new hypotheses.

Symbolic data mining methods could play role of these alternative methods. They have
already been used in biology for different purposes [BBJ*02, CCH03, CHO03]. In this chapter, we
present an experiment for evaluating symbolic data mining methods, and in particular frequent
itemset search and association rule extraction in the context of the STANISLAS cohort. We have
used the Zart algorithm that is implemented in CORON [SNO5]. In the case of the STANISLAS
cohort, the objective is to discover frequent itemsets and association rules linking biological risk
factors and genetic polymorphisms. As a genetic polymorphism is defined as a variation in the
DNA sequence that occurs in at least one percent of the population, it is easily understandable
that the frequency of the different genetic variants is relatively low in the STANISLAS cohort,
given that it is based on a presumably healthy population. Therefore, rather than analyzing
frequent itemsets in the present study, we are much more interested in rare (or infrequent)
itemsets.

6.3.2 Studied Population: the STANISLAS Cohort

The STANISLAS cohort is a ten-year family study whose main objective is to investigate the im-
pact of genetic and environmental factors on variability of cardiovascular risk factors [MCHSV02,
SVH'98]. Recruitment of families living in Northeastern France started in 1993 (f9) with an
invitation for a health examination in the “Centre de Médecine Préventive at Vandceuvre-lés-
Nancy”, France. At this time, 1006 presumably healthy families (4295 individuals) have been
recruited, satisfying the following selection criteria: families of French origin, consisting of two
parents, and at least two biological children aged of 4 or more, with members of the family
free from serious and/or chronic illnesses. All participants gave their written informed consent.
This cohort was approved by the Local Ethics Committee of Nancy, France. In 1998 (t45), the
participants returned for the second health screening with a participation rate of 75%. A third
examination is currently under development.

The collected data are of four types: (1) Clinical data (e.g. morphometric measures like size,
weight, blood pressure); (2) Environmental data (life habits, physical activity, medical history,
drug intake); (3) Biological data (different dosages like glucose, cholesterol, blood count, ...);
(4) Genetic data: genotypes are determined for each individual based on data stemming from
116 genetic polymorphisms (or SNPs for Single Nucleotide Polymorphisms) that correspond to
different metabolic processes involved in cardiovascular diseases.

Thus, it may be noticed that the data in the STANISLAS cohort have many facets and possibly

6.3. Experiments on a Real-Life Biological Database 111

a large range of values, explaining why they are considered complex.

6.3.3 Experiments and Results

The two experiments that are described hereafter were performed on the data of the STANISLAS
cohort. This part has been done in collaboration with Sandy Maumus and is dependent on
biological knowledge. The interpretation of the biological results have been kept even if they are
hard to understand for a computer scientist.

Data preparation. All the data of the STANISLAS cohort are recorded in a Microsoft Access
database. Biological, clinical and environmental data can have continuous or discrete values
whereas genetic data have discrete values. As the Zart algorithm only accepts discrete values,
the biological data have been discretized. Two types of discretization are tested. For the first
one, each continuous variable is converted into four discrete attributes by using the thresholds
given by the calculation of quartiles (this was used in both experiments). For the second type of
discretization, each continuous variable is converted into a discrete one using the NCEP thresh-
olds. Indeed, according to NCEP ATP criteria [oH01|, an individual has metabolic syndrome
if he or she has three or more of the following criteria: waist circumference > 102 cm in men
and > 88 cm in women; triglyceride levels > 1.70 mmol/l; HDL cholesterol concentration < 1.04
mmol/l in men and < 1.30 mmol/l in women; blood pressure > 130/85 mmHg; and fasting glu-
cose value > 6.1 mmol/l. Therefore, the biological data have been converted into the following
discrete ones: obesity (increased waist circumference), hypertriglyceridemia, hypoHDLemia, hy-
pertension (increased blood pressure), and hyperglycemia. Moreover, variables have been added
for computational reasons in the second experiment: the variable metabolic syndrome (“MS”)
defined by NCEP criteria; the variable “non MS” that takes the value 1 for a given individual
if he does not present the metabolic syndrome; the variables “normal glucose”, “normal HDL”,
“normal blood pressure”, “normal triglycerides”, “normal waist circumference”, that correspond to
the negation of the discrete variables hyperglycemia, hypoHDLemia, hypertension, hypertriglyc-
eridemia, and obesity, respectively.

Genetic data of the STANISLAS cohort are recorded in Boolean format in a Microsoft Access
database, where each genetic polymorphism is represented by its alleles. A genetic polymorphism
can be noted A/a where A is the frequent allele and a is the rare allele. A gene can exist
under different forms called alleles. The differences between these gene alleles involve sequence
variations. For a given gene, the genotype corresponds to the combination of two alleles. An
individual is homozygous for a gene whenever he has two similar alleles for this gene. Inversely,
an individual is heterozygous for a gene whenever he has two different alleles for this gene.
Two data conversions for the genetic polymorphisms have been tested: (1) presentation of the
polymorphisms by genotypes: AA, Aa and aa; (2) presentation of the polymorphisms by alleles
AA and a, where a represents the regrouping of Ae and aa genotypes. In both experiments,
the data preparation was done keeping in mind that the main objective here is to extract rare
patterns associating biological cardiovascular risk factors and genetic polymorphisms.

Projections. The expert may use horizontal and vertical projections on the discretized database
composed of biological and genetic data. Horizontal projections allow the selection of individuals
having a particular attribute of interest (e.g. a specific genotype, obesity, or the attribute corre-
sponding to the highest quartile for triglyceride levels). Vertical projections allow the selection
of some particular attributes (e.g. rare genotypes or rare alleles).

112 Chapter 6. A Data Mining Methodology and the Coron Toolkit

First Experiment: Detection of Interactions Involving Lipids

The chosen framework (framework #1) is the lipid metabolism. The aim was to detect potential
interactions between genetic polymorphisms and biological variables involving lipids. For this
specific study, the expert has chosen to work on clinical data (age, sex, BMI**), biological data
(low-density cholesterol concentration), genetic data (genetic polymorphisms of APOE: APOE
codons 112/158 and APOB: APOB Thr71Ile) and environmental data (oral contraceptive intake,
smoking and alcohol consumption). Thus, the studied population consisted of 1552 individuals
(772 men and 780 women) selected from the STANISLAS cohort.

The use of the Zart algorithm on this population led us to generate thousands of rules. Here
we present results obtained by performing two different horizontal projections that the expert
was interested in. The first projection led to work on a small subset of women having the
£2/e2 genotype. An interesting rule from the expert’s viewpoint is RI (see Table 6.1). R1 can
be interpreted as follows: “A woman being APOE £2/¢2 has low LDL-C concentration and is
homozygous for the wild type of APOB Thr711le gene polymorphism”. This rule brings two units
of information. First, a well-known result in the domain of lipid research: an individual carrying
the £2/e2 genotype for the APOE gene has lower LDL-C concentration. Secondly, a new result:
each one of the 780 women being APOE £2/¢2 is also APOB 71 Thr/Thr. This result has been
validated by a statistical test. Indeed, the APOB Thr71lle distribution was significantly different
according to APOE genotypes in women (p = 0.016 in women, p = 0.428 in men, Kruskal-Wallis
test).

Therefore, we found an interaction between two gene polymorphisms (APOB Thr71Ile and
APOE codons 112/158) located on different chromosomes (APOB gene is located at chromosome
2p24 and APOE gene at chromosome 19q13.2), which could suggest a genetic protective profile.

The second projection performed on the studied population generated a subset of 162 indi-
viduals with Ile/Tle genotype for the APOB Thr71lle polymorphism. An interesting extracted
rule was R2 (Table 6.1). This rule can be interpreted as follows: “twelve of the 162 individuals
being APOB 71 Ile/Ile are men with a high body mass index and with an LDL-C concentration
superior to the NCEP norm [BR95|”. This rule is very interesting, because it provides a new
hypothesis that did not appear neither in our previous articles, nor in the literature, at least to
the best of our knowledge. This new hypothesis, i.e. a potential interaction between body mass
index and the APOB Thr71Ile polymorphism, was tested by statistical analysis (general linear
regression model). A significant interaction was found between body mass index and APOB
Thr71Ile polymorphism in men only (p = 0.009 and p = 0.844 in men and women respectively).
As a consequence, the APOB 71 Ile/Ile genotype was related to higher LDL-C concentration in
only men with overweight (BMI > 25 kg/m?; p = 0.002).

Second Experiment: Extraction of a Genetic Profile Characterizing the Metabolic
Syndrome

The framework chosen for this experiment is the genetics of the metabolic syndrome
(framework #2). The metabolic syndrome is defined as a cluster of synergistically interact-
ing cardiovascular risk factors. It is mainly characterized by insulin resistance, glucose intol-
erance, dyslipidemia, hypertension, and obesity. To study the genetics of the metabolic syn-
drome in the STANISLAS cohort, the following variables have been selected: (1) biological at-
tributes represented by gender (man or woman), and the five biological variables used by the

“BMI (body mass index) is an index that estimates the body mass of an individual. An individual with a BMI
between 25 and 30 is considered as overweighted. An individual with a BMI more than 30 is considered as obese.

6.3. Experiments on a Real-Life Biological Database 113

NCEP-ATPIII [oHO1]| for defining metabolic syndrome, i.e. plasma glucose concentration, blood
pressure, triglyceride concentration, HDL-cholesterol level and waist circumference; (2) the 101
genetic polymorphisms available in the STANISLAS database. Three hundred and eight adults
have been genotyped for all the genetic polymorphisms. Therefore, we have worked on a starting
database of 308 individuals and 235 attributes. Here, the expert is interested in extracting pro-
files showing the co-occurrence of properties related to metabolic syndrome with specific genetic
polymorphisms.

One example of projection that concretely illustrates the extraction of new biological hypoth-
esis is given below. The aim of the experiment is to characterize the genetic profile of individuals
of the dataset presenting metabolic syndrome. Here, genetic polymorphisms are divided into their
genotypes. A first horizontal projection is done to obtain metabolic syndrome individuals. Nine
individuals are kept. Only exact rules (with minimal confidence equal to 100%) are conserved.
The nine individuals verify the rule R3. In this rule, all the genotypes involved are homozygous
for the frequent allele except one that is an heterozygous genotype: APOB 71Thr/Ile. A vertical
projection is applied on the entire dataset on the following attributes: the APOB 71Thr/Ile ge-
netic polymorphism, hyperglycemia, hypertriglyceridemia, hypoHDLemia, hypertension, obesity
and man and woman. In order to extract association rules involving rare itemsets, the minimal
support has to be lowered. As the number of generated rules is high, the set of extracted rules is
mined for selecting rules with the attribute metabolic syndrome in the left or in the right hand
side. An interesting extracted rule is R4, that can be interpreted as “an individual presenting the
metabolic syndrome is heterozygous for the APOB 71Thr/Ile polymorphism”. This rule has been
verified and validated using statistical tests, allowing to conclude that the repartition of geno-
types of the APOBT71 polymorphism is significantly different if an individual presents metabolic
syndrome or not (statistical validation on another data set of 740 individuals, Chi square test,
p = 0.03). This validation suggests a new biological hypothesis: a subject possessing the rare
allele for the APOB 71Thr/Ile polymorphism presents more frequently the metabolic syndrome.

Discussion

The results that are given above show that the mining of the STANISLLAS cohort is not a trivial
work. Many rules may be extracted that are not necessarily interesting: actually, only a few rules
are indeed interesting for the expert of the domain. Moreover, it is very important that the expert
is able to reiterate the mining process as many times as needed. Hence, the data preparation and
the parameter adjustment of the mining system have to be simple and straightforward operations.
In these conditions, the expert may obtain some substantial results.

Here, we have shown how to obtain rules with a special form, i.e. a minimal antecedent
and a maximal consequent, in the same way as the experience related in [CH03|. Furthermore,
the extracted rules that have been judged as interesting by the expert have given new biolog-
ical insights, and suggested some fruitful research directions. Thus, it is worth continuing the
experience. Even though association rule extraction has been rarely used in biology, there exist
some studies [BBJT02, CH03, QTDDB02, STVN(04, SBMP01]. Nevertheless, there are not many
studies investigating real-world data such as the data of the STANISLAS cohort. Creighton and
Hanash [CHO3]| studied gene expression data of yeasts obtained from a public database, by using
the Apriori algorithm [AMS196]. Moreover, these authors focused on rules whose left hand side
contains a single item. This study is close to our work. On the one hand it is close from the
methodological point of view, because both Apriori and Zart are levelwise algorithms. On the
other hand, both studies focus on special association rules. In the study of Quentin-Trautvetter
et al. [QTDDB02], the CBA software (Classification Based on Association) is used for association

114 Chapter 6. A Data Mining Methodology and the Coron Toolkit

rule extraction. As the authors are faced with a too large number of generated rules and thus
unable to detect interesting rules, they select a limited number of attributes. This is related to
our approach using vertical and horizontal projections which are described in the methodology.

Conclusion

This methodology shows that the preparation of the data, and the interpretation of the results, as
well as the iterations of the mining process, are of first importance for a mining experimentation
in biology. Moreover, the role of the expert of the domain is central and crucial: the whole data
mining process is led under the supervision of the expert.

Two experiments involving real-world data of a cohort population have been performed here.
The first one led to the detection of interactions involving lipid genes and the second one en-
abled the extraction of a genetic profile characterizing the metabolic syndrome in the studied
population. These two experiments have given a number of results that may be very interesting.
The methodology and the associated tools, as well as the behavior of the expert regarding the
mining system still have to be improved. This is particularly true for the preparation of data,
and for the visualization of results, where some visualization modules still have to be tested.

6.4 Other Uses of the Coron System

Here we demonstrate some other uses of the CORON system. This section is organized as follows.
Section 6.4.1 presents the CABAMAKA system for case-based reasoning. Section 6.4.2 shows the
collaboration between the GALICIA and the CORON platforms. We also present shortly how
CORON is being used for text mining experiments.

Text Mining with Coron

A part of the ongoing research in our team concerns text mining using the CORON system. Re-
sults of this experiment will be reported in the future. This project aims at defining a method-
ology to detect adverse drug effects through databases or texts. In fact, there exist databases
where doctors record adverse effects due to drug absorption. The problem is to generate an alert
as soon as there are enough “reliable” conditions saying that one or more drugs are responsible
for these adverse effects. Current tools use numerical and statistic approaches. We want to apply
association rule extraction and lattice based classification to this problem.

6.4.1 The Cabamaka System

This subsection is based on [dBLT06]. This part has been done in collaboration with Mathieu
d’Aquin, Fadi Badra, Sandrine Lafrogne, Jean Lieber and Amedeo Napoli.

Introduction

Case-based reasoning (CBR [RS89]) aims at solving a target problem thanks to a case base. A
case represents a previously solved problem. A CBR system selects a case from the case base and
then adapts the associated solution, requiring domain-dependent knowledge for adaptation. The
goal of adaptation knowledge acquisition (AKA) is to extract this knowledge. The system CABA-
MAKA applies principles of knowledge discovery from databases (KDD) to AKA. The originality
of CABAMAKA lies essentially in the approach to AKA that uses a powerful learning technique

115

6.4. Other Uses of the Coron System

00T /6 {oqLiL dodv}) <= {sw} fy
{nomoTypss ATAS SIy8Iv90S Ad ‘USYUSYI6Z TdT ©IIULIL dOdV
0IJOIJ6E CUDD ‘WIIYLFIT ¢dHMAV ‘10S1088.F HMFTII ‘DD0IZ0Z 114
‘dirdireer eDeNH TeAlBAL ANV ‘VVSF6 — €SON ‘dirdiry9 equdav

00T 00T/6 ‘DOUDH09E AIVOAV ‘WIIYLLYE AIVOJV ‘ODHIZT IVOdV ‘SIN} <= {} ¢y

00T 7 L/T1 {orolr 12904V ‘0 =00} <= {F¥ <D —"1A7T ‘G99z < INd ‘T=UeiN} gy

00T v 1L/S {IqLL 1290dV ‘2323 dOdV 9OT'¢ > D — TdA1} < {1 =uwewopn} 1y

(%) (%/u)

oouapyuod jroddns 9[NI PojoRIIXS I[NI #

Table 6.1: Extracted association rules that are interesting from the expert’s point of view.

LDL-C: concentration in low-density cholesterol; BMI: body mass index; OC: oral contraceptive

intake; MS: metabolic syndrome.

116 Chapter 6. A Data Mining Methodology and the Coron Toolkit

that is guided by a domain expert, according to the spirit of KDD. We propose an original and
working approach to AKA, based on KDD techniques.

CBR and adaptation. A case in a given CBR application is usually represented by a pair
(pb, Sol(pb)) where pb represents a problem statement and Sol(pb) is a solution of pb. CBR
relies on the source cases (srce,Sol(srce)) that constitute the case base CB. In a particular
CBR session, the problem to be solved is called target problem, denoted by tgt. A case-based
inference associates to tgt a solution Sol(tgt), with respect to the case base CB and to additional
knowledge bases, in particular O, the domain ontology that usually introduces the concepts and
terms used to represent the cases.

A classical decomposition of CBR consists in the steps of retrieval and adaptation. Retrieval
selects (srce,Sol(srce)) € CB such that srce is judged to be similar to tgt. The goal of
adaptation is to solve tgt by modifying Sol(srce) accordingly.

The work presented hereafter is based on the following model of adaptation, similar to trans-
formational analogy [Car83]:

@ (srce,tgt) — Apb, where Apb encodes the similarities and dissimilarities of the problems
srce and tgt.

@ (Apb, AK) — Asol, where AK is the adaptation knowledge and where Asol encodes the
similarities and dissimilarities of Sol(srce) and the forthcoming Sol(tgt).

® (Sol(srce),Asol) — Sol(tgt), Sol(srce) is modified into Sol(tgt) according to Asol.

Adaptation is generally supposed to be domain-dependent in the sense that it relies on
domain-specific adaptation knowledge. Therefore, this knowledge has to be acquired. This
is the purpose of adaptation knowledge acquisition (AKA).

A related work in AKA. The idea of the research presented in [HK96] is to exploit the
variations between source cases to learn adaptation rules. These rules compute variations on
solutions from variations on problems. More precisely, ordered pairs (srce-case;, srce-cases) of
similar source cases are formed. Then, for each of these pairs, the variations between the problems
srce; and srcey and the solutions Sol(srce;) and Sol(srceg) are represented (Apb and Asol).
Finally, the adaptation rules are learned, using as training set the set of the input-output pairs
(Apb, Asol). The experiments have shown that the CBR system using the adaptation knowledge
acquired from the automatic system of AKA shows a better performance compared to the CBR
system working without adaptation. This research has strongly influenced our work that is
globally based on similar ideas.

Cabamaka

Principles. CABAMAKA deals with case base mining for AKA. Although the main ideas un-
derlying CABAMAKA are shared with those presented in [HK96]|, the followings are original
ones. The adaptation knowledge that is mined has to be validated by experts and has to be
associated with explanations that make it understandable by the user. In this way, CABAMA-
KA may be considered as a semi-automated (or interactive) learning system. Another difference
with [HK96] lies in the volume of the cases that are examined: given a case base CB where |CB| = n,
the CABAMAKA system takes into account every ordered pair (srce-casej,srce-cases) with
srce-case; # srce-casey (whereas in [HK96], only the pairs of similar source cases are consid-
ered, according to a fixed criterion). Thus, the CABAMAKA system has to cope with n(n — 1)

6.4. Other Uses of the Coron System 117

pairs, a rather large number of elements, since in our application n ~ 750. (n(n — 1) ~ 5 - 10°).
This is why efficient techniques of knowledge discovery from databases (KDD [Dun03|) have been
chosen for this system.

Principles of KDD. The goal of KDD is to discover knowledge from databases, with the
supervision of an analyst (expert of the domain). A KDD session usually relies on three main
steps: data preparation, data-mining and interpretation.

Data preparation is based on formatting and filtering operations. The formatting operations
transform the data into a form allowing the application of the chosen data-mining operations.
The filtering operations are used for removing noisy data and for focusing the data-mining
operation on special subsets of objects and/or attributes.

Data-mining methods are applied to extract pieces of information from the data. These
pieces of information have some regular properties allowing their extraction. For example,
Charm |ZH02| is a data-mining algorithm that performs efficiently the extraction of frequent
closed itemsets (FCIs). The CABAMAKA system uses our Charm implementation, which is part
of the CoroN platform.

Interpretation aims at interpretating the output of data-mining i.e. the FCIs in the present
case, with the help of an analyst. In this way, the interpretation step produces new knowledge
units (e.g. rules).

Formatting. The formatting step of CABAMAKA inputs the case base CB and outputs a set of
transactions obtained from the pairs (srce-case;, srce-cases). It is composed of two substeps.
During the first substep, each srce-case = (srce,Sol(srce)) € CB is formatted in two sets
of boolean properties: ®(srce) and ®(Sol(srce)). The computation of ®(srce) consists in
translating srce from the problem representation formalism to 27, P being a set of boolean
properties. Possibly, some information may be lost during this translation, but this loss has to
be minimized. Now, this translation formats an expression srce expressed in the framework of
the domain ontology O to an expression ®(srce) that will be manipulated as data, i.e. without
the use of a reasoning process. Therefore, in order to minimize the translation loss, it is assumed
that if p € ®(srce) and p entails ¢ (given O) then ¢ € ®(srce). In other words, ®(srce)
is assumed to be deductively closed given O in the set P. The same assumption is made for
®(Sol(srce)). How this first substep of formatting is computed in practice depends heavily on
the representation formalism of the cases.

The second substep of formatting produces a transaction T' = ®((srce-case;, sTce-cases))
for each ordered pair of distinct source cases, based on the sets of items ®(srce;), ®(srceq),
®(Sol(srcep)) and P(Sol(srcez)). Following the model of adaptation presented in introduction
(items @, @ and ®), T has to encode the properties of Apb and Asol. Apb encodes the
similarities and dissimilarities of srce; and srces, i.e.:

e The properties common to srce; and srceg (marked by “="),
e The properties of srcej that srces does not share (“-”) and
e The properties of srcey that srce; does not share (“+7).

All these properties are related to problems and thus are marked by pb. Asol is computed in a
similar way and ®(7T") = Apb U Asol. For example,

118 Chapter 6. A Data Mining Methodology and the Coron Toolkit

if ®(srcey)={a,b,c} P(Sol(srcei))={A,B}
and ®(srcey) = {b,c,d} P(Sol(srceq)) ={B,C}

_ - = = + - = +
then T'= {a pb> bpb’ Cpb7 dpb’ sol’ “sol’ C’sol}

(6.1)

Mining. The extraction of frequent closed itemsets from the set of transactions is computed
with the Charm algorithm. A transaction T' = ®((srce-case;,srce-casesy)) encodes a specific
adaptation

((srcej,Sol(srcey)),srces) — Sol(srcez). An extracted FCI may be considered as a gen-
eralization of a set of transactions. For example, if I, = {a‘pb,c;b,d;b,A;ol,B;l,C;ol} is
an FCI, I, is a generalization of a subset of the transactions including the transaction 7' of
equation (6.1): I., C T. The interpretation of this FCI as an adaptation rule is explained below.

Interpretation. The interpretation step is supervised by the analyst. The CABAMAKA system
provides the analyst with the extracted FCIs and facilities for navigating among them. The
analyst may select an FCI, say I, and interpret I as an adaptation rule. For example, the FCI
1., may be interpreted in the following terms:

if a is a property of srce but is not a property of tgt,
c is a property of both srce and tgt,
d is not a property of srce but is a property of tgt,
A and B are properties of Sol(srce) and
C' is not a property of Sol(srce)
then the properties of Sol(tgt) are
d(Sol(tgt)) = (P(Sol(srce)) \ {A}) U{C}.

This has to be translated as an adaptation rule r of the CBR system. Then the analyst corrects
r and associates an explanation with it.

Implementation. The application domain of the CBR system we are developing is breast
cancer treatment: in this application, a problem pb describes a class of patients with a set
of attributes and associated constraints (holding on the age of the patient, the size and the
localization of the tumor, etc.). A solution Sol(pb) of pb is a set of therapeutic decisions (in
surgery, chemotherapy, etc.). The requested behavior of the CBR system is to provide a treatment
and explanations on this treatment proposal. This is why the analyst is required to associate an
explanation to a discovered adaptation rule.

The problems, solutions and the domain ontology of the application are represented in
OWL DL (recommendation of the W3C).

Conclusion

The CABAMAKA system is inspired by the research presented in [HK96] and by the principles
of KDD for the purpose of semi-automatic adaptation knowledge discovery. It has enabled to
discover several useful adaptation rules for a medical CBR application. It has been designed
to be reusable for other CBR applications: only a few modules of CABAMAKA are dependent
on the formalism of the cases and of the domain ontology, and this formalism, OWL DL, is a
well-known standard. One element of future work consists in searching for ways of simplifying

6.4. Other Uses of the Coron System 119

the presentation of the numerous extracted FCIs to the analyst. This involves an organization of
these FCIs for the purpose of navigation among them. Such an organization can be a hierarchy
of FClIs according to their specificities or a clustering of the FCIs in themes.

6.4.2 The Galicia Platform

GALiciA [VGRRO3] is intended as an integrated software platform that includes components
for the key operations on lattices that might be required in practical applications or in more
theoretically-oriented studies. Thus, the basic configuration of the platform performs major
functions such as context input, lattice construction and visualization.

GALICIA is designed to cover the whole range of basic tasks that make up the complete
life-cycle of a lattice, i.e. contexts are either loaded or created by means of a context editor;
lattices are constructed and visualized; rearrangements of the context are performed to clarify
the lattice structure; the resulting lattice is reduced to a suborder or decomposed into smaller
lattices.

The intended impact of the platform is two-fold since it should support both applications of
FCA and development of new lattice-based techniques. As an FCA-tool, GALICIA offers an open
architecture and generic implementations which ease its adaptation to a particular application
domain and problem settings. For example, a wide range of data formats (context types) are
allowed in the platform. In addition, a rich set of algorithmic methods for lattice construction
and maintenance is included in the system’s architecture. Finally, the platform offers several
visualization mechanisms including 2D and 3D graph drawing modes.

Our team Orpailleur has a collaboration with the developers of GALICIA at the University
of Québec in Montreal. As a part of this collaboration, the GALICIA platform now includes
an implementation of the Titanic algorithm done by the author of this thesis. Titanic allows
constructing tceberg concept lattices.

120 Chapter 6. A Data Mining Methodology and the Coron Toolkit

Chapter 7

Conclusion and Perspectives

In this chapter we summarize the research contribution of the thesis, we give a synthesis of our
work and point out directions for future work.

7.1 Conclusion

The main topic of this thesis is knowledge discovery in databases (KDD). More precisely, we
have investigated two of the most important tasks of KDD today, namely itemset extraction
and association rule generation. Throughout our work we have borne in mind that our goal is
to find interesting association rules from various points of view: for efficient mining purposes,
for minimizing the set of extracted rules and for finding intelligible (and easily interpretable)
knowledge units. We have developed and adapted specific algorithms in order to achieve this
goal.

The main contributions of this thesis are: (1) We have developed and adapted algorithms for
finding minimal non-redundant association rules; (2) We have defined a new basis for association
rules called Closed Rules; (3) We have investigated an important but relatively unexplored field
of KDD namely the extraction of rare itemsets and rare association rules; (4) We have packaged
our algorithms and a collection of other algorithms along with other auxiliary operations for KDD
into a unified software toolkit called CORON.

7.1.1 Algorithms for Finding MNR Rules

In Chapter 3 we present two algorithms that we have specifically adapted to extract minimal
non-redundant association rules (MNR). This set of rules is a lossless, sound and an informative
representation of all valid association rules. The first algorithm, Zart, is a practical extension
of Pascal, which is probably the most efficient levelwise algorithm for finding frequent itemsets
(FIs). In Zart, Pascal is integrated with Apriori-Close and with an extension of ours. In addition
to Pascal’s capabilities, Zart identifies the set of frequent closed itemsets (FCls) and associates
their generators to them. We show that this extra output from Zart is essential for extracting
MNR rules. In the second algorithm, Eclat-Z, we go further and we show how to generalize the
idea in Zart for any frequent itemset mining algorithms. This way, arbitrary Fl-miner algorithms
can be extended in order to support the extraction of MNR rules. We present a general idea,
and FEclat-Z is a concrete implementation of this concept. As its name indicates, we have made an
extension of Fclat. Fclat is a vertical algorithm that identifies FIs very efficiently, but due to the
depth-first search it produces Fls in an unordered way by length. Zart relies on the hypothesis

121

122 Chapter 7. Conclusion and Perspectives

that FIs are available in an ordered way by length. In FEclat-Z we solve this problem with a
special file indexing technique. With this idea, arbitrary Fl-miner algorithms can be turned
into algorithms that find a useful and interesting subset of all valid association rules namely the
minimal non-redundant association rules.

7.1.2 Closed Association Rules

In Chapter 4 we introduce a new basis called Closed Rules that we position between the set of all
valid rules and the set of minimal non-redundant rules, filling a gap between them. In the case of
dense and highly correlated datasets, the generation of closed rules is more efficient than finding
all association rules. However, in sparse datasets, when almost all FIs are closed, all association
rules can be extracted more efficiently. By all means, the set of Closed Rules is always smaller
than the set of all valid association rules. As Closed Rules is a concise representation of all valid
rules, and it only requires frequent closed itemsets, Closed Rules seems to be a good alternative
to all valid association rules.

7.1.3 Rare Itemsets and Rare Association Rules

Chapter 5 is one of the most original part of this thesis work. In this chapter, we address the
problems of extracting rare itemsets and generating rare association rules. In the literature, these
problems have not yet been studied in detail, although rare itemsets can also contain important
information just as frequent itemsets do. A particularly relevant field for rare itemsets is medical
diagnosis.

In Chapter 5.1 we present a method for finding all rare itemsets. For this task we use the
well-known Apriori algorithm. Aprior: is known to find all Fls, but actually it also finds a special
subset of rare itemsets, the minimal rare itemsets (MRIs). A slight modification of Apriori, which
we call Apriori-Rare, retains MRIs instead of dropping them. We show how to restore all rare
itemsets from MRIs while avoiding itemsets with support 0.

In Chapter 5.3 we go further by showing how to generate valid rare association rules. Our
work is motivated by the long-standing open question of devising an efficient algorithm for finding
rules with low support and very high confidence. In order to find such rules using conventional
frequent itemset mining algorithms like Apriori, the minimum support must be set very low,
which drastically increases the runtime of the algorithm. Moreover, when minimum support is
set very low, Apriori produces a huge number of frequent itemsets. This is also known as the rare
item problem. For this well-known problem we propose the following solution. In an iterative
way, we lower the minimum support for Apriori until we reach the limit that is still manageable
by the algorithm. At this point we change to Apriori-Rare that finds MRIs. We prove that
MRIs are minimal rare generators (MRGs). By finding their closures, some rare equivalence
classes are obtained from whom it is possible to extract exact rare association rules (we call
these rules “exact MRG rules”). We also show how to extract approximate MRG rules; however
their interestingness is doubtful. Thus, we concentrate more on exact rare rules. Furthermore,
these rules are non-redundant because the antecedent is minimal and the consequent is maximal,
implying that among rules with the same support and same confidence, these rules contain the
most information. MRG rules can be found in all cases, even if the minimum support is set high.

We believe that the extraction of rare association rules is a very interesting and very promis-
ing field of KDD. Use of rare association rules can be advantageous in a variety of practical
applications, be it marketing, business domains, telecommunications, or scientific fields such as

7.1. Conclusion 123

biology, astronomy, medicine, etc. Being a relatively new field, it has not yet been studied in
detail. Our approach is a first step in this direction. Rare itemsets and rare association rules
raise lots of questions. There exist several bases for frequent association rules. Can we define
similar bases for rare association rules too? The exact MRG rules are a subset of all exact rare
association rules. Can we derive all these rare exact rules from the set of exact MRG rules? In
our approach we consider one border only, i.e. for us an itemset is rare if it is not frequent. An
interesting research direction is to work with two borders. While we use the “side product” of
levelwise frequent itemset mining algorithms, namely the minimal rare itemsets, one may inquire
if it possible to mine these rare itemsets directly, i.e. without first extracting frequent itemsets.
Answering these questions requires further research.

7.1.4 The Coron Toolkit

All the algorithms presented in this thesis have been implemented in software. They have been
grouped together in a unified software platform called CORON. CORON is a domain and platform
independent, multi-purposed data mining toolkit, which incorporates not only a rich collection
of data mining algorithms, but also allows a number of auxiliary operations. To the best of our
knowledge, a data mining toolkit designed specifically for itemset extraction and association rule
generation like CORON does not exist elsewhere. CORON also provides support for preparing
and filtering data, and for interpreting the extracted units of knowledge.

Most of the experiments with CORON were performed on a real-life biomedical dataset called
the STANISLAS cohort. During these experiments, we realized that we needed (1) a methodology
for mining, and (2) a tool for implementing the methodology. Chapter 6 presents our global
data mining methodology that can be generalized to arbitrary datasets. The methodology can
be used for both frequent and rare association rules.

At the end of Chapter 6, besides the STANISLAS cohort, we present three other projects that
use the CORON toolkit with success.

Future Plans for Improving Coron

While CORON is already a nearly comprehensive working platform that has exhibited its use-
fulness in varied projects, it can be ameliorated in some ways. We list below some ideas for its
improvement.

At the moment, using CORON we can extract two concise representations of frequent asso-
ciation rules namely the Closed Rules and the minimal non-redundant association rules. We are
interested in working with other bases too, such as the Duquennes-Guigues basis [GD86] for ex-
act rules, the Luxenburger basis [Lux91] for approximate rules, or Kryszkiewicz’s representative
rules [Kry98]. All these bases are more concise than the MANR rules. However, they are not
lossless, sound and informative at the same time.

Currently, CORON can only work with binary contexts. Many-valued contexts should also
be supported in a future version.

CORON contains, among other algorithms, Eclat and Charm. Recently, Zaki proposed an
optimization called diffsets that significantly reduces the memory footprint of these algorithms
(see Section 3.2.2). The optimized versions are called dFEclat and dCharm. We plan to add these
optimized algorithms in CORON. Since they use much less memory, it is likely that they allow
treating larger databases or smaller minimum support values on the same platform.

Currently, CORON does not have algorithms in the other category (see Section 3.2.4). Maybe
the most well-known algorithm of this kind is FP-growth [HPY00], which uses a new data struc-

124 Chapter 7. Conclusion and Perspectives

ture called FP-tree. This novel data structure is a compressed representation of all the transac-
tions in the database. While FP-growth finds frequent itemsets, some of its modifications like
Closet [PHMO00] or Closett [WHP03] are designed to extract frequent closed itemsets only.

Charm-MFI is a simple extension of Charm that filters MFIs among FCIs. We plan to
compare it with some other algorithms that are specifically made for maximal frequent itemsets,
e.g. Maz-Miner |Bay98|, DepthProject [AAP0OO|, GenMaxz |GZ01], etc.

CORON is a project with one of the goals to integrate a large number of itemset mining
algorithms. Since there is no best algorithm for arbitrary datasets, CORON offers the possibility
for a user to test several algorithms and to choose the one that best suits his needs. However, a
large list of algorithms could easily confuse users. As a consequence, we should make a thorough
experimental study on a large set of different databases to give indications for a user which
algorithm is suggested for a specific type of dataset. Or, CORON could also analyse the dataset
and offer an algorithm that, beside the given parameters such as min_ supp, could possibly give
an optimal performance.

KDD refers to the overall process of discovering new, useful and understandable patterns in
data. Developing efficient algorithms is just one of the steps of this process. For the visualization
step, we use formal concept lattices. For constructing the lattices, first we find FCls, then we
calculate the order among concepts. However, there are more efficient ways to calculate the
order; for instance, by using algorithms that explore the order parallely with the FCIs. Currently,
CORON only has algorithms that extract itemsets and association rules, but in the future we
plan to incorporate in it algorithms from the field of formal concept analysis too [KO01, KO02]
in order to make its visualization module more efficient. As we have a collaboration with the
developer team of the GALICIA project, it is very likely that the two platforms will borrow
algorithms from one another, or maybe the two platforms will be merged together.

Another objective is to connect CORON with database management systems. For instance,
Coron-base and AsSRULEX should be able to save their results directly in a DBMS system in
order to facilitate data exchange with other projects that want to use the results produced by
CORON.

7.2 Mid- and Long-Term Perspectives

The final component in any data mining algorithm is the data management strategy: the ways
in which the data are stored, indexed and accessed. Most well-known data analysis algorithms
have been developed with the assumption that the dataset can be accessed quickly and efficiently
in the main memory (RAM). While memory technology has improved rapidly, there have been
equally rapid improvements in secondary storage technologies. Many massive datasets do not
fit in available RAM, thus new algorithms and/or new data management strategies are needed.
Today, gigabyte or even terabyte databases are not uncommon. The ultimate goal is to be able
to handle efficiently such large databases too.

Another challenge is the treatment of constantly evolving databases, e.g. records of telephone
calls or electricity usage. Databases can have new records, new attributes or attributes of existing
records can have new values. Previously extracted knowledge may need to be updated or it may
even become invalid. This requires using incremental algorithms. Databases will continue to
increase in size. It is generally agreed that such large databases can only be treated efficiently
with parallel algorithms in a distributed environment. Parallel processing is ideally suited for
addressing issues of scalability. Data mining algorithms should be integrated more with DBMS
systems to provide common representation, storage and retrieval.

7.2. Mid- and Long-Term Perspectives 125

Combining the previously mentioned characteristics -DBMS integration with incremental
parallel processing— could result in very powerful data mining solutions. It would be interesting
to develop such combined solutions for mining rare association rules in large databases.

126 Chapter 7. Conclusion and Perspectives

Chapter 8

Summaries in French and in Hungarian

8.1 Résumé étendu

8.1.1 Introduction
L’extraction de connaissances dans les bases de données

Le processus d’extraction de connaissances dans les bases de données a pour objectif d’extraire,
a partir de grandes bases de données, des unités d’information pouvant étre interprétées en tant
que connaissances réutilisables. Ce processus repose sur trois étapes principales : la sélection
et la préparation des données, la fouille de données et, finalement, U'interprétation des unités
extraites.

L’extraction de connaissances dans les bases de données peut étre vue de maniére similaire &
Porpaillage : les pépites d’or recherchées sont dans ce cas les unités de connaissances et la riviére
la base de données considérée. D’importants volumes de données — en particulier de documents
— sont disponibles sans information a priori concernant leur usage. Une question fondamentale
est de savoir si ces données contiennent quelque chose d’intéressant et de trouver des méthodes
pour extraire ces “éléments d’intérét”. L’extraction des connaissances dans les bases de données
— notée dans la suite ECBD — consiste a traiter d’importants volumes de données dans le but
d’en extraire des unités de connaissances non triviales, potentiellement utiles, significatives et
réutilisables. De facon générale, le processus d’ECBD est itératif et interactif. Il est controlé par
un expert des données, appelé I'analyste, dont le role est de guider le processus d’extraction, sur
la base de ses objectifs et de ses connaissances du domaine. L’analyste sélectionne et interpréte
un sous-ensemble des unités extraites pour construire des “modéles” qui seront dans la suite con-
sidérés comme des unités de connaissances auxquelles est associée un degré de plausibilité. Le
processus d’ECBD repose sur trois étapes principales : (i) préparation : les sources de données
sont préparées pour étre traitées, (ii) fouille : elles sont alors fouillées et, (iii) interprétation :
finalement, les unités d’information extraites sont interprétées pour devenir des unités de con-
naissances. Ces unités sont représentées dans un formalisme de représentation des connaissances,
afin d’étre utilisées au sein d’un systéme & base de connaissances. L’ECBD peut aussi étre vue
comme un processus permettant de passer des données aux informations, puis aux connaissances
(voir la Figure 8.1), en considérant les définitions suivantes [SAAT99, Wil02] :

Données. Les données sont les signaur non interprétés qui atteignent nos sens a chaque minute.
Une lumiére rouge, verte ou orange & un carrefour est un exemple de donnée. Les ordinateurs
sont emplis de données : signaux codant des chaines de caractéres, des nombres, des caracteres

127

128 Chapter 8. Summaries in French and in Hungarian

Données (données brutes, bases de données)
1 Compréhension du domaine
1 Sélection de données (fenétrage)
Données sélectionnées
1 Nettoyage des données / Transformation des données
l Préparation de 1l’ensemble des données
Données préparées
1 Processus de fouille de données (découverte de motifs)
1 Méthodes numériques et symboliques d’ECBD
Motifs extraits
l Post-traitement des motifs extraits
l Interprétation / Evaluation
Unités de connaissances (pour des systémes & base de connaissances)

Figure 8.1: La boucle d’ECBD : des données brutes aux unités de connaissance. L’objectif du
processus d’ECBD est de sélectionner, de préparer et d’extraire des unités de connaissances depuis
différents sources, puis de représenter les unités de connaissances dans des structures appropriées.

ou d’autres symboles qui sont traités en grande quantité, de fagon mécanique et transparente.

Informations. Les informations sont des données associées & un sens. Pour un conducteur de
voiture, la lumiére rouge (le feux rouge) n’est pas seulement un signal d’une certaine couleur,
mais aussi une indication signifiant qu’il doit s’arréter. Par contre, un daltonien n’attachera
probablement pas le méme sens & une lumiére rouge.

Connaissances. Les connaissances sont constituées de ’ensemble des données et des informa-
tions qu’'une personne peut utiliser dans le but de réaliser certaines taches et de créer de nouvelles
informations. Les connaissances montrent une aptitude de génération, du fait qu'une des fonc-
tions principales des connaissances est de produire de nouvelles connaissances.

Le processus d’ECBD est réalisé au sein d’un systéme d’ECBD qui se compose des éléments
suivants : les bases de données, les modules de fouilles de données (symboliques et numériques)
et les interfaces pour l'interaction avec le systéme, par exemple I’édition et la visualisation. De
plus, le systéme d’ECBD peut tirer parti des connaissances du domaines, intégrées au sein d’une
ontologie du domaine des données. Fermant la boucle, les unités de connaissances extraites par le
systéme d’ECBD doivent étre représentées dans un formalisme de représentation des connaissances
adéquat et ainsi étre intégrées au sein d’une ontologie afin d’étre réutilisées pour la résolution de
problémes dans des domaines tels que I’agronomie, la biologie, la chimie, la médecine, etc.

1l existe plusieurs livres permettant de mieux comprendre les principes de 'ECBD et 'utilisation
des méthodes d’ECBD, comme par exemple |[FPSSU96, MBK98| et plus récemment [HKO1,
HMS01, Dun03], ainsi que [WF00] qui est associé¢ au systéme Weka.

Phttp://www.cs.waikato.ac.nz/ ml/weka/

8.1. Résumé étendu 129

La fouille de données, étape centrale de 'TECBD

La fouille de données est I’étape centrale du processus d’ECBD. Le processus d’ECBD est constitué
de plusieurs éléments : la sélection des données, le pré-traitement des données, leur éventuelle
transformation, la mise en ceuvre de la fouille pour extraire des motifs et des relations, et enfin,
I'interprétation et ’examen des structures découvertes.

Les progrés concernant ’acquisition numérique de données et les technologies de stockage
ont conduit & la création d’énormes bases de données. En conséquence, un intérét croissant est
apparu concernant la possibilité d’extraire des informations, qui pourrait étre utiles. La discipline
liée & cette tache est connue sous le nom de fouille de données. Hand et al. définissent la fouille
de données, dans [HMSO01], de la facon suivante : “la fouille de données est 1’analyse de grandes
ensembles de données, afin d’y trouver des relations non suspectées et de résumer les données
d’une nouvelle fagon qui soit & la fois compréhensible et utile.”

La fouille de données est typiquement appliquée & des données qui ont été collectées dans un
autre but que celui de la fouille. Cela signifie que les objectifs de la fouille ne jouent pas de role
dans la stratégie de collection de ces données. Pour cette raison, la fouille de données est souvent
désignée comme une analyse “secondaire” de données.

La définition mentionne aussi que I’ensemble de données examiné en fouille de données est
souvent grand. Quand d’importants volumes de données doivent étre pris en compte, de nouveaux
problémes apparaissent. Certains de ces problémes sont liés a des considérations fondamentales
telles que le choix de la stratégie de gestion des données, la fagon d’analyser les données en un
temps raisonnable ou la fagon de filtrer le bruit des données. Souvent, les données ne comprennent
qu’une partie de la population, 'objectif pouvant étre de généraliser & la population & partir
de l'extrait. Par exemple, il peut étre intéressant de prédire la facon la plus probable dont les
futurs clients réaliseront leurs achats. Parfois, il peut étre utile de résumer ou de compresser
un important volume de données de facon & ce que le résultat soit plus compréhensible, sans
notion de généralisation. Cela peut étre le cas, par exemple, si I'on dispose des données d’un
recensement complet pour un pays particulier ou une base de données enregistrant les détails de
millions de transactions commerciales.

La fouille de données ne doit pas étre vue comme un simple exercice réalisé une seule fois.
D’énormes collections de données peuvent étre analysées et examinées selon un nombre illimité
de maniéres. Au fil du temps, de nouveaux types de structures ou de motifs peuvent attirer
I'attention et devenir intéressants a rechercher dans les données.

La fouille de données a, pour de bonnes raisons, beaucoup attiré I’attention : c’est une nou-
velle technologie, dédiée & de nouveaux problémes, amenant potentiellement a des découvertes,
utiles autant a des applications commerciales qu’a la recherche scientifique [HMSO01].

Méthodes pour 'ECBD

Un exemple introductif. Tout d’abord, examinons ce que 'on peut attendre d’une appli-
cation des méthodes de fouilles de données. Considérons un tableau binaire M;j, aussi appelé
contexte formel, on les lignes représentent des clients et les colonnes les produits achetés par
les clients (voir la Table 8.1) : M;; = 1 quand un client i a acheté un produit j. Dans le
cas d’applications réelles, ce type de tableau peut contenir plusieurs milliers de colonnes et des
millions de lignes. .. A partir de ce contexte formel, les unités suivantes peuvent étre extraites :

130 Chapter 8. Summaries in French and in Hungarian

Clients/Produits chips moutarde saucisse boissons biére

C 1 0 0 0 1
Cs 1 1 1 1 1
Cs 1 0 1 0 0
Ca 0 0 1 0 1
Cs 0 1 1 1 1
Ce 1 1 1 0 1
Cy 1 0 1 1 1
Ce 1 1 1 0 0
Co 1 0 0 1 0
Cio 0 1 1 0 1

Table 8.1: Un exemple de matrice binaire représentant des transactions entre des clients (C) et
des produits (P).

e L’ensemble X = {biere, saucisse,moutarde} apparait avec une fréquence ¢(X) = 4, c’est-
a-dire que quatre individus sur dix ont acheté ces produits en méme temps. De la méme
facon, 'ensemble Y = {biere, saucisse} apparait avec une fréquence ¢(Y) = 6. L’ensemble
X (respectivement Y) peut étre interprété par le fait que 40% (respectivement 60%) des
clients achétent les produits de ’ensemble X (respectivement de Y).

e De plus, la régle R = {biere,saucisse — moutarde} peut étre extraite des ensembles
XetY (Y—X\Y,ouX\Y correspond a l'ensemble X auquel est retiré Y), avec un indice de
confiance de 0.66 (66.6%), indiquant que si un client achéte de la biere et des saucisses,
la probabilité que ce méme client achéte de la moutarde est de 0.66 (parmi 6 clients achetant
de la biére et des saucisses, 4 clients achétent aussi de la moutarde).

Du point de vue de 'analyste, les ensembles X et Y, ainsi que la régle R, peuvent étre
interprétés et validés comme des unités de connaissances extraites des données.

Méthodes de fouille de données. Le processus d’extraction est fondé sur des méthodes de
fouille de données produisant des unités de connaissances & partir des données considérées. Les
méthodes de fouille de données peuvent étre soit symboliques soit numériques :

e Les méthodes symboliques incluent principalement : la classification par arbres de déci-
sion, la classification par treillis, la recherche de motifs fréquents et ’extraction de régles
d’association, les méthodes d’apprentissage, comme l'induction, 'apprentissage a partir
d’instances, et les méthodes utilisant la recherche d’information. . .

e Les méthodes numeériques incluent principalement : les statistiques et ’analyse de données,
les modeéles de Markov cachés d’ordres 1 et 2 (congus initialement pour la reconnaissance
de formes), les réseaux bayeésiens, les réseaux de neurones, les algorithmes génétiques. . .

Ces méthodes sont dépendantes des domaines de recherche en lien avec le processus d’ECBD
[Man97] :

o Statistiques et analyse de données : le but est similaire, mais le processus d’'ECBD nécessite
dans la plupart des cas la combinaison de différentes méthodes, symboliques ou numériques,
et des connaissances du domaine pour 'interprétation des unités extraites.

8.1. Résumé étendu 131

o (estion de bases de données : les techniques de gestion de bases de données peuvent étre
utiles pour aider & résoudre les problémes liés & la fouille de données, en utilisant par
exemple des requétes pour préparer les données a fouiller.

o Apprentissage : les méthodes d’apprentissage sont au centre du processus d’ECBD, méme
si les quantités de données impliquées, ainsi que les objectifs, c’est-a-dire ['utilisation des
résultats pour la résolution de problémes ou la prise de décisions, sont différents.

o Représentation des connaissances el raisonnement : le processus de fouille de données
peut étre guidé par un modéle — une ontologie du domaine — pour l'interprétation et la
résolution de problémes.

Le processus d’ECBD peut étre considéré comme une sorte de “processus d’apprentissage
supervisé” — considérant qu'un analyste controle et guide le processus d’'ECBD. L’analyste peut
s’appuyer sur ses propres connaissances, ainsi que sur des ontologies du domaine, pour produire
une interprétation des résultats et les valider. De cette fagon, les résultats du processus d’'ECBD
peuvent étre réutilisés pour enrichir les ontologies existantes, montrant ainsi que la représentation
des connaissances et 'ECBD sont deux taches complémentaires : pas de fouille de données sans
connaissances du domaine !

Vue globale de la thése

Le sujet principal de cette thése est [’exiraction de connaissances dans les bases de domnées
(ECBD). Plus précisément, nous avons étudié deux des plus importantes taches d’ECBD actuelles,
qui sont 'extraction de motifs et la génération de régles d’association. Tout au long de notre
travail, notre objectif a été de trouver des régles d’associations intéressantes selon plusieurs
points de vue : dans un but de fouille efficace, pour réduire au minimum I’ensemble des régles
extraites et pour trouver des unités de connaissances intelligibles (et facilement interprétables).
Pour atteindre ce but, nous avons développé et adapté des algorithmes spécifiques.

Les contributions principales de cette thése sont : (1) nous avons développé et adapté des
algorithmes pour trouver les régles d’association minimales non redondantes ; (2) nous avons
défini une nouvelle base pour les régles d’associations appelée “régles fermeées” ; (3) nous avons
étudié un champ de 'ECBD important mais relativement peu étudié, a savoir ’extraction des
motifs rares et des régles d’association rares ; (4) nous avons regroupé nos algorithmes et une
collection d’autres algorithmes ainsi que d’autres opérations auxiliaires ’ECBD dans une boite
a outil logicielle appelée CORON.

Nous présentons maintenant un résumé un peu plus détaillé des points forts de la thése.

Motifs fréquents. Dans le Chapitre 3 nous présentons deux algorithmes spécifiquement adap-
tés pour extraire des régles d’association minimales non-redondantes (MANR). Cet ensemble de
régles est obtenu sans perte d’information, et représente de maniére informative toutes les re-
gles d’association valides. Notre premier algorithme, Zart, est une extension de Pascal qui est
probablement I'algorithme le plus efficace de recherche des motifs fréquents par niveau. En plus
des capacités de Pascal, Zart est capable d’identifier I’ensemble des motifs fermés fréquents et
de leurs associer leurs générateurs. Nous montrons que ces données supplémentaires fournies
par Zart sont essentielles pour l'extraction de régles MANR. Dans notre second algorithme,
Eclat-Z, nous allons plus loin et montrons comment généraliser 'idée de Zart pour n’importe
quel algorithme d’extraction des motifs fréquents. Il est ainsi possible d’étendre n’importe quel

132 Chapter 8. Summaries in French and in Hungarian

algorithme d’extraction des motifs fréquents afin de rajouter le support de 'extraction des régles
MNTR.

Dans ce méme chapitre nous proposons une extension simple de Charm, appelé Charm-
MFI. Charm-MFI filtre les motifs fréquents maximaux parmi les motifs fréquents fermés. Cet
algorithme a été utilisé pour étudier la frontiére entre fréquents et non fréquents.

Reégles d’association fréquentes. Le Chapitre 4 présente différents ensembles de régles
d’association fréquentes, les régles valides et la famille des régles minimales non-redondantes.
Nous introduisons aussi une nouvelle base, les régles fermeées, qui se positionne entre les deux
ensembles de régles d’association mentionnés précédemment, comblant ’écart entre ces deux en-
sembles. L’ensemble des régles fermées est une représentation concise de toutes les régles valides,
pour lequel il y seulement besoin de calculer les motifs fermés fréquents. Les régles fermées
semblent étre une bonne alternative a I’ensemble des régles valides.

Dans la littérature, la plupart des algorithmes se concentrent seulement sur les valeurs de
support et de confiance des régles. Nous montrons comment calculer d’autres indices statistiques
qui recquiérent, en plus, la valeur du support pour la partie droite des régles. Dans notre travail,
pour la représentation condensée des motifs fermés, nous utilisons des motifs fermés fréquents qui
sont stockés dans une structure de données de type “trie”. Dériver le support des deux parties des
régles nécessite un nombre important d’opérations sur le “trie”. Pour pallier ce probléme, nous
proposons un mécanisme de cache utilisant une table de hachage, qui se montre une solution
efficace. L’utilisation d'un cache est avantageuse méme si d’autres mesures d’intérét ne sont pas
requises et ainsi les techniques de cache peuvent aussi étre incorporées dans les autres algorithmes.

Motifs rares et régles d’association rares. Le Chapitre 5 est un des chapitres les plus ori-
ginaux de cette thése. Dans ce chapitre, nous nous intéressons aux problémes de I'extraction des
motifs rares et de la génération de regles d’associations rares. Dans la littérature, ces problémes
n’ont jusqu’alors pas été étudiés en détail, bien que les motifs rares puissent contenir des infor-
mations importantes dans la méme mesure que les motifs fréquents. En particulier, I'application
aux diagnostics médicaux nous parait un champ d’application particuliérement adapté.

Dans le Chapitre 5.1 nous présentons une méthode permettant de trouver tous les motifs
rares. Pour ce faire, nous utilisons 'algorithme classique Apriori. Apriori est connu pour
trouver ’ensemble des motifs fréquents, mais il trouve également un ensemble spécial des motifs
rares : les motifs rares minimaux (MRM). Une légére modification d’Apriori, que nous appelons
Apriori-Rare, permet ainsi de conserver I’ensemble des MRM. Nous montrons ensuite comment
reconstruire ’ensemble de tous les motifs rares & partir des MRM tout en évitant les motifs de
support 0.

Dans le Chapitre 5.3 nous allons plus loin en montrant comment générer des régles d’asso-
ciation rares valides. Notre travail est motivé par la question ouverte de longue date visant
a construire un algorithme efficace pour la découverte de régles & support faible et confiance
élevée. Afin de trouver de telles régles en utilisant des algorithmes conventionnels de recherche
des motifs fréquents comme Apriori, le support minimal doit étre fixé a un seuil trés faible, ce qui
augmente de maniére drastique le temps d’exécution de ’algorithme. De plus, lorsque le support
minimal est fixé trés bas, Apriori produit un grand nombre des motifs fréquents. Ce probléme
est également connue sous le nom de probléme des motifs rares. Pour résoudre ce probléme bien
connu, nous proposons une solution. Avec notre méthode nous pouvons extraire un ensemble des
régles d’associations rares exactes (nous appelons de telles régles “régles MRG exactes”). Nous
montrons également comment extraire des régles MRG approximatives ; néanmoins leur intérét

8.1. Résumé étendu 133

parait limité. De ce fait, nous nous concentrons plutét sur les régles rares exactes. De plus,
de telles régles sont non-redondantes car ’antécédent est minimal et le conséquent maximal,
impliquant ainsi que parmi les régles de support et confiance identiques, celles-ci contiennent le
plus d’information.

La boite a outils Coron. Les algorithmes présentés dans cette thése ont été implémentés et
regroupés dans une plate-forme logicielle unifiée appelée CORON. CORON est une boite a outils
de fouille de données indépendante du domaine et de 'architecture utilisés. Non seulement
CORON incorpore une riche collection d’algorithmes de fouille de données mais CORON permet
également un grand nombre d’opérations auxiliaires. A notre connaissance, aucun autre logiciel
n’a été concu spécifiquement pour U'extraction de motifs et la génération de régles d’association.
CORON fournit également un support pour la préparation, le filtrage des données ainsi que pour
I'interprétation des unités de connaissances extraites.

La plupart des expériences avec CORON ont été réalisées sur de véritables bases de données
biomédicales appelées la cohorte STANISLAS. Durant ces expériences, nous avons réalisé qu’il
nous était nécessaire d’avoir (1) une méthodologie pour la fouille et (2) un outil permettant de
Iimplanter. Le Chapitre 6 présente notre méthodologie globale de fouille de données, pouvant
étre généralisée & n’importe quel ensemble des données. Cette méthodologie peut étre utilisée
pour les recherches des motifs aussi bien fréquents que rares.

A la fin du Chapitre 6, en plus de la cohorte STANISLAS, nous présentons trois autres projets
ayant utilisé CORON avec succeés.

Organisation de la thése

Dans le Chapitre 2, nous commencons par présenter ’état de ’art. Nous nous focalisons
principalement sur les méthodes d’ECBD symboliques s’appuyant sur 'opération de classification,
la recherche de motifs fréquents et 'extraction de régles d’association. Nous montrons comment
I’ensemble du processus, des données brutes aux unités de connaissances, est fondé sur le principe
sous-jacent de classification.

Dans le Chapitre 3, nous approfondissons les concepts et algorithmes de recherche de motifs
fréquents. Nous proposons des algorithmes que nous avons spécifiquement adaptés & nos besoins,
c’est-a-dire pour trouver les régles d’association minimales non-redondantes et pour étudier la
frontiére. L’annexe B présente des algorithmes classiques en relation avec ce chapitre.

Dans le Chapitre 4, nous nous intéressons a l'extraction de différents ensembles de régles
d’association fréquentes : les régles valides, les régles fermées et la famille des régles minimales
non-redondantes.

Dans le Chapitre 5, nous traitons le probléme de 'extraction de motifs rares et la génération
de régles d’association rares. Ceci constitue 'une des parties les plus importantes de cette thése.

Dans le Chapitre 6, nous présentons une méthodologie de fouille de données globale pour
fouiller & la fois les régles rares et fréquentes. La deuxiéme partie du chapitre décrit la plate-forme
CORON qui implémente cette méthodologie dans son intégralité.

Finalement, le Chapitre 7 résume les principales contributions de la thése et suggére des
perspectives pour des travaux futurs.

11 doit étre remarqué que les annexes sont aussi une part importante de la thése. Parmi
d’autres choses, nous presentons des algorithmes classiques, une structure de données efficace
pour les motifs, différentes techniques d’optimisation et un guide d’utilisation détaillé de la
plate-forme CORON.

134 Chapter 8. Summaries in French and in Hungarian

8.1.2 Une méthodologie pour la fouille et la boite & outils Coron

Les données biomédicales collectées dans les cohortes sont relativement complexes & analyser
de par leur diversité et leur taille. Dans cette sous-section nous introduisons une méthodologie
guidée par 'expert qui permet la fouille de données issues de cohortes. Les expériences ont
été menées avec CORON, notre plate-forme qui propose différentes méthodes symboliques de
fouille de données pour la recherche de motifs fréquents et I’extraction de régles d’association.
Les données réelles utilisées proviennent de la cohorte STANISLAS, une étude sur dix ans qui
collecte des données recueillies sur des familles francaises supposées saines. Dans le contexte de
cette étude, l'expert est intéressé par des motifs et des régles associant des facteurs de risques
cardiovasculaires et des polymorphismes génétiques. Les résultats obtenus montrent les capacités
de la méthodologie de fouille de données dans la suggestion de nouvelles hypothéses, & tester
ensuite par de nouvelles études en biologie.

Introduction

Une étude de cohorte consiste & suivre une population donnée pendant une période de temps et a
collecter différentes données concernant cette population [BHCT95]. Les données issues de telles
études présentent un degré élevé de complexité. D’une part, ces données sont des données longi-
tudinales, c’est a dire qu’elles peuvent varier dans le temps. D’autre part, ces études recrutent un
grand nombre d’individus, et recueillent une quantité importante de paramétres différents. De
plus, ces données sont de différents types : quantitatives, qualitatives, textuelles, booléennes, etc.
Enfin, le recueil des données étant fait, certaines valeurs de variables peuvent étre manquantes
ou bruitées, conduisant & des bases de données incomplétes. Toutes ces caractéristiques montrent
que les données issues de cohortes peuvent étre considérées comme des données complexes. Par
conséquent, 'exploitation de telles données s’avére étre une tache non triviale.

La cohorte STANISLAS illustre la complexité des données de cohortes. C’est une étude sur
dix ans qui a été mise en place afin d’étudier les facteurs de risque cardiovasculaire. Des familles
d’origine francaise supposées saines ont été recrutées pour cette étude (données familiales; avec
des sujets apparentés et non apparentés, de différentes tranches d’ages). Les données de cette
cohorte sont de types variés (cliniques, biologiques, environnementales et génétiques) et ont été
recueillies lors de trois visites séparées par cing ans (données longitudinales).

Les experts impliqués dans I’étude de la cohorte STANISLAS sont des spécialistes du domaine
cardiovasculaire et sont intéressés par la découverte de nouvelles associations liant un ou plusieurs
polymorphismes génétiques & des facteurs de risque cardiovasculaire. Afin d’atteindre cet objectif,
des analyses statistiques sont classiquement utilisées par les biologistes. Cependant, de telles
analyses sont valides uniquement si une hypothése a priori est donnée. Face & la quantité et &
la, complexité des données, les experts demandent des méthodes alternatives qui pourraient les
aider a formuler de nouvelles hypothéses de recherche.

Les techniques symboliques de fouille de données pourraient étre ces méthodes alternatives.
D’ailleurs, certaines d’entre elles ont déja été utilisées en biologie [BBJT02, CCHO03, CHO03,
QTDDB02, STVNO04]|. Dans cette sous-section, nous présentons une expérimentation des mé-
thodes de recherche de motifs fréquents et d’extraction de régles d’association dans la base de
données de la cohorte STANISLAS. Nous avons utilisé l'algorithme Zart qui est implémenté
dans CORON, qui est présenté dans cette thése [SN05]. Dans le cas de la cohorte STANISLAS,
I’objectif est de découvrir des motifs fréquents et des régles d’association qui lient des variables
biologiques et des polymorphismes génétiques. Un polymorphisme génétique correspond & une
variation dans la séquence de ’ADN présente chez au moins 1% de la population, nous sommes

8.1. Résumé étendu 135

donc intéressés par la recherche des motifs & support faible.

Nous présentons une méthodologie globale de fouille de données de cohortes, qui suggére
de nouvelles hypothéses & tester en biologie et qui ouvrent la porte a de nouvelles directions
de recherche. Aprés avoir présenté la méthodologie globale de fouille de données et la plate-
forme CORON, nous décrivons briévement les données réelles de la cohorte STANISLAS. Nous
détaillons ensuite une expérimentation menée sur les données de la cohorte qui met en cevre la
méthodologie, puis nous discutons les résultats obtenus et l'intérét de la méthodologie. FEnfin,
nous terminons par nos conclusions et perspectives de travail.

La méthodologie globale de fouille de données

La méthodologie que nous décrivons a été initialement introduite dans [MNSVS05b| et a été mise
au point pour fouiller les données issues de cohortes en biologie. Toutefois, cette méthodologie
peut trés facilement étre adaptée & n’importe quel autre type de base de données. Une chose
importante & remarquer est que tout le processus de fouille décrit dans cette méthodologie est
guidé par expert, qui est un spécialiste du domaine d’analyse (la biologie en ’occurrence). Son
role est crucial, en particulier dans la sélection des données et 'interprétation des résultats, qui
permettront de transformer les modéles extraits en unités de connaissance. CORON est conc¢u
pour correspondre & notre méthodologie et offre donc tous les outils nécessaires a sa mise en
oeuvre dans une plate-forme unique. Cependant, si I'utilisateur préfére tester d’autres outils que
ceux de CORON, il peut quand méme s’appuyer sur la méthodologie que nous décrivons ci-apreés.

®

préparation des données
+
opérations de filtrage

®

extraction des motifs]

(fermés) fréquents

recherche de
motifs

/
/

ase de données

/
i
1
h
i

visualisation des
résultats
(post-processing #2)

base de motifs

base de régles

extraction de
regles

fouille de regles

(post-processing #1) génération de régles}

A——B opération entre A et B

A-—>B flux d'information

Figure 8.2: Cycle de vie de la méthodologie de fouille symbolique de données.

136 Chapter 8. Summaries in French and in Hungarian

La méthodologie se compose de cinq étapes résumées dans la Figure 8.2 :

(1) — Définition du cadre d’étude
(2) — Préparation et nettoyage des données
(3) — Etape itérative :
+ Pré-traitement : le filtrage des données
+ Application des procédures de fouille de données
+ Post-traitement (fouille de régles et visualisation des résultats)
(4) — Interprétation et validation des résultats
(5) — Génération de nouvelles hypotheses de recherche

CORON : une plate-forme dédiée a la mise en ceuvre de la méthodologie

CORON [SNO5] est une plate-forme logicielle intégrée qui fédére des modules dédiés a la recherche
de motifs (fermés) fréquents dans des contextes binaires ainsi qu’a l'extraction de différents
types de régles d’association, opérations clés pouvant étre utilisées dans des applications pra-
tiques. CORON est congu pour couvrir un large éventail de taches en fouille de données incluant
le pré-traitement de l’ensemble des données, 'extraction de motifs fréquents, la génération de
régles d’association & partir de ces motifs et le filtrage des régles selon différentes conditions.
CORON offre une architecture ouverte ainsi que des implémentations génériques, ce qui facilite
son adaptation & un domaine d’application particulier pour un probléme spécifique. CORON
s’accommode de différents formats de données, comme par exemple les données binaires ou les
données Relational Context Family (ce format inclut un ensemble de contextes formels et un
ensemble de relations inter-objets). De plus, de nombreux algorithmes de fouille symbolique de
données sont inclus dans 'architecture du systéme. La conception de CORON est menée par-
allélement au développement de GALICIA%®, une plate-forme mise en ceuvre pour I’analyse de
concepts formels.

Extraction de motifs (fermés) fréquents. La partie centrale de CORON (module
Coron-base) contient un ensemble d’algorithmes d’extraction de motifs (fermés) fréquents. Les
algorithmes actuellement implémentés sont les suivants : Apriori, Apriori-Close, Close, Pascal,
Titanic, Zart, Eclat, Charm et Arima. Apriori [AMST96] est & la base de la plupart des al-
gorithmes de recherche de motifs. C’est un algorithme de recherche par niveau qui permet
d’extraire les motifs frequents. Apriori-Close [PBTL99a| est une extension d’Apriori permet-
tant le calcul simultané des motifs fréquents et fermés fréquents. Close [PBTL99c| recherche
uniquement les motifs fermés fréquents et se montre plus efficace sur les bases de données denses.
Pascal |BTPT00a, BTPT02] introduit la notion de motifs générateurs et démontre que le sup-
port de nombreux motifs fréquents peut étre inféré par leur générateurs, réduisant ainsi de fagon
importante le nombre de passages dans la base de données. Titanic [STBT02] utilise comme
Pascal les motifs générateurs pour rechercher les motifs fermeés fréquents. Zart [SNKO05| est une
extension de Pascal pouvant identifier en paralléle les motifs fermés fréquents et les générateurs
des motifs fermés. Le résultat en sortie de Zart peut étre utilisé directement pour trouver des ré-
gles d’association informatives. A la différence des algorithmes présentés ci-dessus et qui traitent
la base de données de fagon “horizontale” (priorité aux lignes), Fclat [ZPOLIT7| et Charm [ZH02]
traitent la base de fagon “verticale” (priorité aux colonnes). Eclat et Charm recherchent respec-
tivement les motifs fréquents et les motifs fermés fréquents. Enfin depuis peu, CORON, grice

“®http://galicia.sourceforge.net

8.1. Résumé étendu 137

a lalgorithme Arima, permet également la recherche de motifs rares qui peuvent s’avérer trés
pertinents dans les domaines de la médecine et de la biologie [SMP106].

Extraction de régles d’association. AsSRULEX (Association Rule eXtractor) est un module
de CORON qui utilise les motifs précédemment extraits pour générer les régles d’association cor-
respondantes. Si ’on souhaite générer la totalité des régles d’association possibles & partir des
motifs fréquents, le nombre de régles produites est trés élevé et beaucoup de régles sont redon-
dantes. Pour cette raison, il est préférable de travailler sur les régles d’association informatives
définies dans [BTPT02]. Une régle d’association informative a la forme suivante : P — Q\ P ou
P est un générateur, Q est un motif fermé fréquent et P est un sous-ensemble propre de ce motif
fermé fréquent (P C Q). Etant donné qu'un générateur est un sous-motif minimal du motif fermé
de méme support, les régles informatives permettent de déduire le maximum d’information avec
une hypothése minimale. Les régles d’association informatives forment un ensemble minimal de
régles d’association non-redondantes ot chaque régle posséde un antécédent minimal et un con-
séquent maximal. Parmi les régles présentant un support et une confiance identiques, les régles
d’association informatives sont celles qui contiennent le plus d’information et qui se révélent étre
les plus utiles en pratique [Pas00b].

A coté des indices de support et de confiance qui sont classiquement donnés pour une ré-
gle d’association, CORON permet de calculer d’autres mesures de qualité qui ont été décrites
dans [CNTO05] : Vintérét (ou lift), la conviction, la dépendance, la nouveauté et la satisfaction.

Grace & CORON, il est & ’heure actuelle possible de générer I’ensemble des régles d’association,
I’ensemble des régles d’association informatives, les régles d’association informatives réduites, les
régles d’association informatives exactes, les régles d’association informatives approximatives et
les régles d’association informatives approximatives réduites.

Pré-traitement des données. 1l existe deux modules pour le pré-traitement des données dans
CORON. Le premier module, Filter-DB, permet de filtrer les lignes et les colonnes de la base de
données en entrée. Les différentes opérations de filtrage possibles correspondent aux opérations
de la théorie des ensembles (complément, union et intersection) : application de restrictions et
de projections (i) sur les lignes : sélection des individus possédant un ou plusieurs attributs
choisis par 'expert, (ii) sur les colonnes : sélection (ou suppression) de certains attributs. Le
résultat du filtrage est considéré comme un nouvel ensemble de données sur lequel les procédures
de fouille de données sont & nouveau exécutées.

Le second module de pré-traitement est Filter-Compl, qui permet de trouver le complémen-
taire d’un ensemble d’objets satisfaisant une régle, défini par I’ensemble des objets qui ne satisfont
pas cette régle.

Post-traitement des données. Le filtrage (ou fouille) des régles ainsi que leur visualisation
permettent de repérer les régles mettant en jeu les attributs les plus intéressants pour 'expert.
Deux modules sont disponibles dans CORON pour le post-traitement des données : RULEMINER
et LECo.

Grace au sous-module Filter-Rules de RULEMINER, il est possible, & partir de ’ensemble
des régles d’association générées avec ASSRULEX, de conserver ou de supprimer selon le cas
les régles satisfaisant ou non certains critéres. Différents choix peuvent étre faits a cette étape :
(i) choix des regles possédant une forme particuliére (par exemple, les régles ayant un antécédent
unique), (ii) choix des régles possédant un attribut intéressant pour 'expert dans I'antécédent,
dans le conséquent, ou indifféremment dans une des deux parties de la regle.

138 Chapter 8. Summaries in French and in Hungarian

L’étape de fouille de régles peut étre dépendante de certaines mesures numériques telles
que le support ou la confiance, ou bien de la connaissance du domaine comme 'ont montré des
expérimentations récentes [JCK104]. L’expert joue donc un réle crucial dans ’analyse. Un autre
sous-module de RULEMINER permet (i) le classement des régles extraites par ordre (dé)croissant
selon les valeurs de leur support, de leur confiance, ou encore d’un autre indice statistique tels
que ceux précédemment décrits, (ii) la sélection des régles dont le support appartient & un
intervalle donné [a,b] ; de retourner les régles dont le support est inférieur (ou supérieur) ou égal
a une valeur ¢ donnée. Ces sélections peuvent étre faites avec les autres indices statistiques cités
ci-dessus.

RULEMINER contient également un sous-module qui permet de spécifier une couleur pour
chaque attribut. Ainsi, il est trés facile pour l'utilisateur de suivre le ou les attributs qui
I’intéressent.

En ce qui concerne la recherche de motifs fréquents qui est conduite pour trouver des motifs
fréquents a support faible, les treillis de concepts peuvent s’avérer étre un outil de choix [Jay03].
Avec le module LEC0O, CORON permet 'utilisation d’un outil de visualisation adapté aux méth-
odes symboliques de fouille de données. En effet, étant donné que les motifs fermés fréquents
peuvent étre visualisés avec les treillis de Galois [GW99], LECO utilise en entrée les motifs fermeés
fréquents qui sont les intensions des concepts formels. Aprés avoir calculé les extensions, LECO
ordonne les concepts formels et peut ainsi construire le treillis de Galois.

Le contexte biologique : la cohorte STANISLAS

La cohorte STANISLAS (Suivi Temporaire Annuel Non Invasif de la Santé des Lorrains Assurés
Sociaux) est une étude familiale qui a été lancée en 1993 au centre de Médecine Préventive de
Vandeeuvre-lés-Nancy. Son objectif principal est d’étudier le role et la contribution de facteurs
génétiques et environnementaux sur la fonction cardiovasculaire [SVH'98]. C’est une étude lon-
gitudinale sur dix ans, ol des familles de la Meurthe-et-Moselle et des Vosges ont été invitées par
la caisse primaire d’assurance maladie & venir passer un examen de santé tous les cinq ans. Lors
du recrutement initial (1993-1995, ¢y), les critéres d’inclusion étaient les suivants : familles sup-
posées saines, exemptes de maladies aigués et/ou chroniques, composées de deux parents et d’au
moins deux enfants biologiques de plus de six ans. 1006 familles (4295 sujets) ont ainsi pu étre re-
crutées. Lors de la deuxiéme visite (1998-2000, t45), 75% des familles sont revenues. La troisiéme
visite (2003-2005, t410) est actuellement en cours de réalisation. Les données collectées sont de

différents types : (1) données cliniques (taille, poids, pression sanguine, ...) ; (2) données en-
vironnementales (habitudes de vie, activité physique, histoire médicale, prise de médicaments) ;
(3) données biologiques (dosages du glucose, du cholestérol, de l'insuline, ...) ; (4) données

génétiques : pour chaque individu sont déterminés les génotypes correspondant & 116 polymor-
phismes génétiques (ou SNPs pour Single Nucleotide Polymorphisms) correspondant & différents
processus métaboliques impliqués dans les maladies cardiovasculaires [SACT99, CWST04].

Par conséquent, les données de la cohorte STANISLAS ont différents aspects & prendre en
compte ainsi qu’un large éventail de valeurs possibles, ce qui explique leur complexité.

Le détail d’une expérimentation : mise en ceuvre de la méthodologie sur les données
de la cohorte STANISLAS

Définition du cadre d’étude. L’expert définit un domaine spécifique d’étude pour ’analyse.
Dans le cas de la base “STANISLAS”, il choisit de travailler sur des données biologiques, génétiques,
ou les deux, de travailler sur des individus non apparentés ou sur des familles, de se concentrer

8.1. Résumé étendu 139

sur un réseau métabolique ou bien sur un syndrome en particulier.

Le cadre d’étude choisi dans la présente expérimentation est la génétique du syndrome
métabolique. Le syndrome métabolique regroupe un ensemble de facteurs de risque cardio-
vasculaire et est essentiellement caractérisé par l'insulino-résistance, 'intolérance au glucose, la
dyslipidémie, I’hypertension et ’obésité. Afin d’étudier la génétique du syndrome métabolique
dans la cohorte STANISLAS, nous avons sélectionné les variables suivantes :

— les attributs biologiques représentés par le sexe (homme ou femme) et les cing variables
biologiques utilisées par le NCEP ATP-III pour définir le syndrome métabolique : concentra-
tion en glucose plasmatique, pression sanguine, concentration en triglycérides, concentration en
HDL-cholestérol et tour de taille [oHO1],

- tous les polymorphismes génétiques disponibles dans la base de données STANISLAS, ce qui
représente 101 polymorphismes génétiques.

Trois cent huit adultes ont été génotypés pour tous les polymorphismes génétiques. La base
de données de travail, notée “BDSM” sur laquelle les expérimentations ont été réalisées est donc
composée de 308 individus et 235 attributs.

Préparation et nettoyage des données. Le nettoyage des données comprend tout d’abord
la détection ainsi que la possibilité de suppression de valeurs incomplétes et/ou extrémes. Par
ailleurs, différentes actions de conversion des données peuvent également étre réalisées a cette
étape en fonction des besoins :

— addition/création de nouveaux attributs afin d’aider a 'extraction de régles d’association par
combinaison d’attributs,

— suppression des attributs non pertinents dans le cadre d’étude choisi. Cette option est proche
des projections et restrictions décrites plus haut,

— discrétisation : transformation des données continues en données booléennes, soit en utilisant
un seuil (“valeur de référence”) défini dans la littérature, soit en divisant chaque variable continue
en quartiles.

Préparation des données biologiques de la base BDSM. Les données biologiques de
la cohorte STANISLAS sont recueillies dans une base de données Microsoft Access. Toutes les
données biologiques choisies pour ’expérimentation sont continues (mis a part le sexe qui est une
donnée discréte). Etant donné que I'algorithme Zart accepte uniquement des données discrétes,
les données biologiques ont été discrétisées. Deux types de discrétisation sont testées. Pour la
premiére, chaque variable continue est discrétisée en utilisant les seuils proposés par le NCEP. En
effet, si 'on se réfere aux critéres du NCEP ATP-IIT [oHO1], un individu présente un syndrome
métabolique s’il posséde au moins trois des cinqg critéres suivants : tour de taille > 102 cm chez
les hommes et > 88 cm chez les femmes ; taux de triglycérides > 1.70 mmol/1 ; concentration en
HDL-cholestérol < 1.04 mmol/] chez les hommes et < 1.30 mmol/] chez les femmes ; pression
sanguine > 130/85 mmHg ; concentration en glucose > 6.1 mmol/l. Les données biologiques
de départ ont dont été converties en cing variables discrétes : obésité (tour de taille éleve),
hypertriglycéridémie, hypoHDLémie, hypertension et hyperglycémie.

Pour le second type de discrétisation, chaque variable continue est divisée en quatre attributs
discrets en utilisant des seuils obtenus par le calcul des quartiles des distributions des valeurs des
variables. De plus, des variables ont été ajoutées pour des raisons de calcul : la variable syndrome
métabolique (“SM”) définie par les critéres du NCEP, la variable “non SM” dont la valeur est
égale & 1 si I'individu ne présente pas le syndrome métabolique, les variables “glucose normal”,
“HDL normal”, “pression sanguine normale”, “triglycérides normaux”, “tour de taille normal”,

140 Chapter 8. Summaries in French and in Hungarian

correspondant & la négation des variables discrétes hyperglycémie, hypoHDLémie, hypertension,
hypertriglyceridémie et obésité.

Préparation des données génétiques de la base BDSM. Les données génétiques de la
cohorte STANISLAS sont recueillies sous un format booléen dans une base de données Microsoft
Access. Chaque polymorphisme génétique est représenté par ses alléles. Un polymorphisme
génétique est noté A/a, A étant Vallele fréquent et a D’allele rare. Un géne peut exister sous
différentes formes appelées alléles. Ces alléles different par des variations dans la séquence ADN.
Pour un géne donné, le génotype correspond & la combinaison de deux alléles. Un individu est
homozygote pour un géne s’il posséde deux alléles identiques pour ce géne. Un individu est
hétérozygote pour un geéne 8’il posséde deux alléles différents pour ce géne. Deux modes de con-
version différents ont été testés sur les données génétiques : (1) présentation des polymorphismes
par génotypes : AA, Aa et aa; (2) présentation des polymorphismes par alleles AA et a, ou a
représente le regroupement des génotypes Aa et aa.

Etape itérative. Pour chaque itération, il y a une étape de pré-traitement (le filtrage des
données), une étape de traitement (l’application des procédures de fouille de données), et une
étape de post-traitement (fouille de regles, interprétation et visualisation des résultats). Nous
pouvons réaliser toutes ces opérations avec la plate-forme CORON. Dans ce qui suit, nous
décrivons une expérimentation particuliére sur la base visant a caractériser le profil génétique
associé au syndrome métabolique.

Pré-traitement des données de la base BDSM. Les polymorphismes génétiques sont
codés par leur génotypes. Grace a un premier filtrage, nous sélectionnons les individus présentant
le syndrome métabolique dans la base BDSM, ce qui représente neuf individus. Ce chiffre peut
paraitre faible, mais il ne I'est pas tant que cela en regard du nombre global de 308 adultes
examinés.

Application des procédures de fouille de données. L’utilisateur applique la recherche
de motifs fréquents et 'extraction de régles d’association grace au module Coron-base. A cette
étape, I'expert fixe les valeurs de certains seuils, comme le support minimum et la confiance min-
imum pour la génération de motifs fréquents et de régles d’association. Comme la méthodologie
globale décrite ici est un processus itératif et interactif, I’expert est amené a changer lors d’une
itération les valeurs des seuils introduites et & mener de nouvelles expérimentations.

Dans notre analyse, seules les régles exactes sont conservées. Les neuf individus vérifient
la régle R1 (Table 8.2). Dans cette régle, tous les génotypes impliqués sont homozygotes
pour allele le plus fréquent, sauf un qui est hétérozygote, APOB 71Thr/Ile. Suite & ce ré-
sultat, la sélection des attributs suivants est réalisée sur la base de donnée BDSM compléte :
le polymorphisme APOB 71Thr/Ile, I'hyperglycémie, 'hypertriglycéridémie, ’hypoHDLémie,
I’hypertension, 1'obésité et le sexe. Le cadre d’étude choisi ici est le syndrome métabolique. Cet
état est peu fréquent dans la cohorte STANISLAS, ceci s’expliquant par le fait que les individus
qui la composent sont présumés sains. Ainsi, I'expert, qui est intéressé par la découverte de
régles d’association mettant en jeu le syndrome métabolique, va orienter le processus de fouille
en baissant le seuil du support minimum.

Post-traitement. Les étapes de post-traitement s’effectuent dans CORON avec le modu-
le RULEMINER. Comme le nombre de régles générées au cours de cette expérimentation est

8.1. Résumé étendu 141

ID régle | Régle extraite Support | Confiance
(n/%) (%)
R1 {} = {SM, APOAI_121GG, APOAIV_347ThrThr, APOAIV _360GluGlu, 9/100 100

ADRB3_ 64TrpTrp, NOS3 — 948AA, ANP 7ValVal, ENaCa 493TrpTrp,
FII 20210GG, IL4R_478SerSer, ADRB2_ 164ThrThr, CCR3_39ProPro,
APOB_71Thrlle, LPL 291AsnAsn, FV_506ArgArg, SELE 554LeuLeu}
R2 {SM} = {APOB_71Thrlle} 9/3 100

Table 8.2: Regles d’association extraites présentant un intérét du point de vue de ’expert.

élevé, I’ensemble des régles extraites est lui-méme fouillé afin de sélectionner les régles com-
portant attribut syndrome métabolique (SM) dans I'antécédent ou dans le conséquent. Une
régle intéressante du point de vue de l'expert est R2 (Table 8.2), car elle associe le syndrome
métabolique & un génotype particulier dans notre base de données.

Interprétation et validation des résultats. R2 s’interpréte par : “présenter le syndrome
métabolique implique pour un individu qu’il est hétérozygote pour le polymorphisme
APOB 71Thr/Ile”. Cette régle a été vérifiée et validée en utilisant des tests statistiques et a
permis de conclure que la répartition des génotypes du polymorphisme de PAPOBT71 différe
significativement selon qu’un individu présente ou non un syndrome métabolique (validation
statistique sur une nouvelle base de données de 740 individus, test du x2, p=0.03).

Génération de nouvelles hypothéses de recherche. Les résultats générés permettent de
suggérer de nouvelles directions de recherche. Ces nouvelles hypotheéses sont testées par de
nouvelles expérimentations en biologie, telles que des études d’épidémiologie génétique ou des
expériences en laboratoire.

La validation effectuée précédemment suggére une nouvelle hypothése en biologie : un sujet
possédant 1’alléle rare pour le polymorphisme APOB 71Thr/Ile présente plus fréquemment un
syndrome métabolique. Suite & cela, une nouvelle étude d’épidémiologie génétique a été menée
et a donné des résultats intéressants.

Discussion, situation par rapport a I’état de ’art

Les résultats décrits dans cette sous-section montrent que la fouille des données de la cohorte
STANISLAS est une opération complexe qui met en ceuvre un ensemble d’opérations variées.
De nombreuses régles peuvent étre extraites, mais en fait, seul un petit nombre de régles est
effectivement intéressant pour ’expert du domaine. Par ailleurs, il est trés important que ’expert
puisse réitérer le processus de fouille autant de fois qu’il le juge nécessaire. Par conséquent, la
préparation des données et ’ajustement des parameétres du systéme de fouille doivent étre des
opérations simples et faciles d’accés. Dans ces conditions, ’expert peut espérer obtenir des
résultats significatifs.

Nous avons décrit comment obtenir des régles avec une forme particuliére, possédant un
antécédent minimal et un conséquent maximal, dans le méme ordre d’idées que ’expérience
décrite dans [CHO3]. De plus, les régles extraites qui ont été estimées intéressantes par l’expert
ont donné de nouvelles hypothéses en biologie et suggéré des directions de recherche fructueuses.
L’expérience vaut donc la peine d’étre poursuivie et approfondie.

Meéme si 'extraction de régles d’association est encore peu utilisée en biologie, il existe
quelques études intéressantes [BBJT02, CH03, QTDDB02, STVN(04, SBMP01]. Cependant,
peu d’études exploitent des données sur des populations telles que les données de la cohorte

142 Chapter 8. Summaries in French and in Hungarian

STANISLAS. Creighton et Hanash [CHO3] ont étudié des données d’expression des génes de le-
vures provenant de bases de données publiques en utilisant I'algorithme Apriori [AMST96] et
en se concentrant sur des régles ayant un antécédent unique. Cette étude est proche de notre
travail du point de vue de la méthodologie utilisée, d'une part parce qu’Apriori et Zart sont
tous les deux algorithmes de recherche par niveau et d’autre part parce que nos deux études
se focalisent sur des régles d’association présentant une forme particuliére. Dans 1’étude de
Quentin-Trautvetter et al. [QTDDB02], le logiciel CBA*" (Classification Based on Association)
est utilisé pour 'extraction de régles d’association. Les auteurs, confrontés & un nombre de régles
générées trop important pour permettre la détection de regles intéressantes, ont sélectionné un
nombre limité d’attributs. Leur choix est a rapprocher de nos méthodes de projections verticales
et horizontales.

Par rapport 8 WEKA [WF99| qui est une boite a outils généraliste sur la fouille de données,
CORON a ’avantage d’étre un outil trés complet pour qui veut effectuer de la recherche de motifs
et de régles d’association. Dans WEKA en effet, alors que le nombre d’algorithmes implémentés
est trés important, il y a peu d’algorithmes d’extraction de motifs et de régles qui sont implé-
mentés (uniquement Apriori). Par ailleurs, CORON propose un éventail de d’indices de qualité
qui ne sont pas disponibles dans WEKA.

Conclusions et perspectives

En conclusion, I’expérimentation sur le syndrome métabolique qui a été menée ici en suivant la
meéthodologie pour la fouille de cohortes a donné des résultats intéressants du point de vue de
I’expert. Cette méthodologie montre que la préparation des données, 'interprétation des résultats
et la possibilité d’itérations successives du processus de fouille sont de premiére importance
pour une expérimentation en biologie. De plus, le réle de 'expert du domaine est central et
déterminant : la totalité du processus de fouille de données est menée sous la supervision de
I'expert.

CORON, qui permet de mettre en ceuvre la méthodologie, et les outils qui lui sont associés
doivent encore étre améliorés. Ceci est vrai en particulier pour la préparation des données et
pour la visualisation des résultats, o quelques modules de visualisation (dont LECO) doivent
encore étre testés. Par ailleurs, étant donné que les régles d’association peuvent également étre
extraites a partir des treillis de Galois, nous prévoyons d’étudier aussi ce type de génération de
régles.

“"http://www.comp.nus.edu.sg/~dm2/

8.1. Résumé étendu 143

8.1.3 L’extraction de motifs rares

Un certain nombre de travaux en fouille de données se sont intéressés & ’extraction de motifs
et a la génération de régles d’association & partir de ces motifs. Cependant, ces travaux se sont
jusqu’a présent centrés sur la notion de motifs fréquents. Le premier algorithme & avoir permis
I'extraction de tous les motifs fréquents est Apriori mais d’autres ont été mis au point par la
suite, certains n’extrayant que des sous-ensembles de ces motifs (motifs fermés fréquents, motifs
fréquents maximaux, générateurs fréquents). Dans cette sous-section, nous nous intéressons aux
motifs rares qui peuvent également véhiculer des informations importantes. Les motifs rares
correspondent au complémentaire des motifs fréquents. A notre connaissance, ces motifs n’ont
pas encore été étudiés en détail, malgré I'intérét que certains domaines pourraient tirer de ce
genre de modéle. C’est en particulier le cas de la médecine, ol par exemple, il est important
pour un praticien de repérer les symptdémes non usuels ou les effets indésirables exceptionnels
qui peuvent se déclarer chez un patient pour une pathologie ou un traitement donné.

Travaux en relation. L’extraction de motifs rares et la génération de régles d’association
rares n’ont pas encore été étudiées en détail dans la littérature. Ici, nous partons d’une vue
d’ensemble de la recherche de motifs fréquents pour introduire notre méthode d’extraction des
motifs rares.

Plusieurs approches ont été proposées pour trouver les motifs fréquents dans les bases de
données. La premiére s’appuie sur 'algorithme Apriori, qui fut le premier algorithme par niveau
a réaliser cette tache [AMS'96]. Cette méthode identifie les i-motifs & chaque "¢ itération
puis génére les (i-+1)-motifs fréquents a partir des i-motifs?®. A chaque itération il requiert
un passage sur la base de données pour compter le support des motifs candidats et ensuite
élague les candidats non fréquents. Cet algorithme est trés simple et efficace pour des données
peu corrélées. Apriori a été suivi par de nombreuses variations dans le but d’en améliorer
Vefficacité [BMUT97, Toi96].

La deuxiéme approche g’intéresse & la recherche de motifs fermés fréquents dans la base de
données [PBTL99¢|. Les motifs fermés fréquents permettent une représentation condensée et
sans perte d’information des motifs fréquents, puisque ’ensemble des motifs fréquents (et leur
support) peut étre retrouvé a partir des motifs fermeés fréquents. Cette idée fut implémentée dans
Close [PBTL99c¢|, qui est aussi un algorithme par niveau. Depuis Close d’autres algorithmes ont
été proposés pour la recherche de motifs fermés fréquents [STBT02, ZH02, WHP03].

Un autre sous-ensemble intéressant de motifs fréquents est ’ensemble des générateurs fréquents.
Bastide et al. ont montré comment utiliser les générateurs fréquents pour trouver les régles
d’association informatives®® [BTPT02, BTPT00b]. Parmi les régles partageant les mémes in-
dividus comme support et ayant la méme confiance, les régles construites a partir d’'un mo-
tif fermé et ayant un motif générateur en partie gauche sont celles qui contiennent le plus
d’informations [Pas00b].

Le premier algorithme pour trouver les générateurs fréquents fut Pascal [BTP100a]. Pascal
peut réduire le nombre de passages sur la base de données et compter le support des candidats
plus efficacement. Pascal trouve tous les motifs fréquents et tous les générateurs fréquents,
mais ce n’est pas suffisant pour trouver les régles informatives. Pour la génération des régles
d’association informatives, il faut identifier parmi les motifs fréquents, les motifs fermés et les
associer aux générateurs. Pour résoudre ce probléme, un autre algorithme appelé Zart a été
proposé récemment |[SNKO05|. Zart est un algorithme multifonctionnel d’extraction de motifs

“8Un i-motif est un motif de taille i. Par exemple {4, C'} est un 2-motif.
49T ’expression “Reégles d’association informatives” regroupe la Base Générique et la Base Informative.

144 Chapter 8. Summaries in French and in Hungarian

qui étend Pascal de maniére & ce qu’il soit conforme & la génération de régles d’association
informatives. Zart trouve les motifs fréquents, les motifs fermés fréquents et les générateurs
fréquents. De plus, les générateurs fréquents sont associés & leur fermeture. En conséquence, la
génération des régles informatives peut étre réalisée trés rapidement et aisément avec Zart.

Une quatriéme approche est basée sur I'extraction des motifs fréquents mazimaouz. Un motif
fréquent maximal a les propriétés suivantes : tous ses sur-motifs sont non fréquents et tous ses
sous-motifs sont fréquents. Des expériences ont montré que cette approche est trés efficace pour
trouver de grands motifs dans les bases de données [Bay98, AAP00, LK98, GZ01]. Les algorithmes
basés sur cette approche identifient, comme Apriori, 'ensemble des régles d’association.

Contributions et motivations. Nous présentons une nouvelle méthode pour trouver les mo-
tifs rares dans une base de données en deux étapes. La premiére étape identifie un ensemble
générateur minimal appelé ensemble des motifs rares minimauz. Dans la seconde étape, ces
motifs sont utilisés pour retrouver tous les motifs rares.

La découverte des motifs rares peut se révéler trés intéressante, en particulier en médecine
et en biologie. Prenons d’abord un exemple simulé d’une base de données médicale o nous
nous intéressons a lidentification de la cause des maladies cardio-vasculaires (MCV). Une ré-
gle d’association fréquente telle que “{niveau élevé de cholestérol} = {MCV}” peut valider
I’hypothése que les individus qui ont un fort taux de cholestérol ont un risque élevé de MCV. A
I’opposé, sinotre base de données contient un grand nombre de végétariens, une régle d’association
rare “{végétarien} = {MCV}” peut valider 'hypothése que les végétariens ont un risque faible
de contracter une MCV. Dans ce cas, les motifs {végétarien} et {MCV} sont tous deux fréquents,
mais le motif {végétarien, MCV} est rare. Un autre exemple est en rapport avec la pharmacovigi-
lance, qui est une partie de la pharmacologie dédiée a la détection et I’étude des effets indésirables
des médicaments. L’utilisation de I’extraction des motifs rares dans une base de données des effets
indésirables des médicaments pourrait contribuer a un suivi plus efficace des effets indésirables
graves et ensuite & prévenir les accidents fatals qui aboutissent au retrait de certains médica-
ments (par exemple en aott 2001, la cérivastatine, médicament hypolipémiant). Finalement, un
troisiéme exemple basé sur les données réelles de la cohorte STANISLAS [SVHT98, MNSVS05a]
montre l'intérét de 'extraction des motifs rares pour la fouille de données dans des cohortes
supposées saines. Cette cohorte est composée d’un millier de familles frangaises présumées
saines. Son principal objectif est de mettre en évidence 'influence des facteurs génétiques et
environnementaux sur la variabilité des risques cardio-vasculaires. Une information intéressante
A extraire de cette base de données pour 'expert dans ce domaine consiste en des profils qui
associent des données génétiques & des valeurs extrémes ou limites de paramétres biologiques.
Cependant, ces types d’associations sont plutot rares dans les cohortes saines. Dans ce contexte,
Pextraction de motifs rares est trés utile pour atteindre les objectifs de 'expert.

Concepts de base

Ci-dessous nous utilisons les définitions usuelles de la fouille de données. Nous considérons un
ensemble d’objets O = {o01,09,...,0m}, un ensemble d’attributs A = {aj,aq9,...,a,} et une
relation R C O x A, ou R(o, a) signifie que l'objet o posséde I'attribut a. En analyse de concepts
formels [GW99], le triplet (O, A, R) est appelé contexte formel. Un ensemble d’attributs est
appelé motif. Un motif de taille ¢ est appelé i-motif. Nous disons qu’un objet o € O contient
le motif P C A, si (o,p) € R pour tout p € P. Le support d'un motif P indique combien
d’objets contiennent le motif. Un motif est dit fréquent si son support est supérieur ou égal a
un support minimum donné (noté min_ supp par la suite). Un motif est dit rare ou non fréquent

8.1. Résumé étendu 145

si son support est inférieur ou égal & un support mazimum (noté maz_supp par la suite). P,
est un sur-motif de P; ssi P; C P,. Ici, nous nous sommes placés dans le cas particulier o
max_supp = min_supp — 1, c’est-a-dire qu'un motif est rare s’il n’est pas fréquent.’® Cela
implique 'existence d’une seule frontiére entre motifs rares et fréquents. [BBRO03] fait par ailleurs
lui aussi mention de cette frontiére. Un motif G est dit générateur s’il n’existe pas de sous-motif
H (H C G) de méme support. Un motif X est dit fermé s’il n’existe pas de sur-motif Y (X C Y)
de méme support. L’extraction de motifs fréquents consiste a générer tous les motifs (fermés)
fréquents (avec leur support) dont le support est supérieur ou égal & min_ supp. L’extraction de
motifs rares consiste a générer tous les motifs (avec leur support) dont le support est inférieur
ou égal & mazx_ supp.

Une approche basée sur les treillis pour I’énumération des motifs rares

Avant d’exposer nos algorithmes pour trouver les motifs rares, nous présenterons notre méthode
du point de vue des treillis (voir [GW99] pour une description détaillée des treillis).

La Figure 8.3 montre le treillis de ’ensemble des parties P(D) de l’ensemble des attributs
dans notre base de données exemple D' (voir Tableau 8.3). L’ensemble des motifs rares forme
un sup-demi-treillis car il est fermé pour 'opération de jointure, c’est-a-dire que pour tous motifs
rares X et Y, X UY est aussi rare. D’un autre coté, il ne forme pas un inf-demi-treillis “meet”,
car la rareté de X et Y n’implique pas celle de X NY. Notons que les motifs fréquents forment
un inf-demi-treillis, ¢’est-a-dire que pour tous motifs fréquents X et Y, X NY est aussi fréquent.

| [A[B[C|D[E]

1| x| x X | x
2] x X

3| x| x| X X
4 X | x X
5| x| x| X X

Table 8.3: Une base de données simple (D) utilisée dans les exemples.

Prenons 'exemple de la base de données D (Tableau 8.3) et fixons min_supp = 3, ce qui
signifie que maxr_supp = 2. Les motifs peuvent étre séparés en deux ensembles formant une
partition : les motifs rares et les motifs fréquents. Une frontiére peut étre dessinée entre ces
deux ensembles. En bas du treillis nous trouvons le plus petit motif, I’ensemble vide. A chaque
niveau se situent les motifs de méme taille. Au sommet du treillis on trouve le motif le plus long
qui contient tous les attributs. Le support de chaque motif est indiqué dans le coin en haut &
droite (voir Figure 8.3).

Avant d’énoncer les définitions essentielles, nous empruntons a Apriori [AMS196] ses deux
principes fondamentaux que nous rappelons ici :

Propriété 8.1 Tous les sous-ensembles d’un motif fréqguent sont fréquents.
Propriété 8.2 Tous les sur-motifs d’un motif non fréquent sont non fréquents.

L’ensemble des motifs rares et ’ensemble des motifs fréquents ont tous deux un sous-ensemble
minimal générateur. Dans le cas des motifs fréquents, ce sous-ensemble est appelé ensemble des
motifs fréquents mazimaur (MFM).

50Les seuils max_supp et min__supp sont donnés en valeur absolue.
lCet exemple est équivalent avec ’exemple présenté dans le Tableau 3.1.

146 Chapter 8. Summaries in French and in Hungarian

motif rare
motif a support nul

motif rare minimal (MRM)

générateur minimal a support nul (GMSN)

motif fréquent maximal (MFM)

O
[] motif fréquent

Figure 8.3: Treillis des parties de la base de données D (voir Tableau 8.3).

Définition 8.1 Un motif est un MFM s’il est fréquent (et ainsi tous ses sous-motifs sont
fréquents) et si tous ses sur-motifs ne sont pas fréquents.

Ces motifs sont dits mazimauz, parce qu’ils n’ont pas de sur-motifs fréquents. Du point de
vue du nombre de ces motifs ils sont minimaouz, ¢’est-a-dire qu’ils forment un ensemble générateur
minimal & partir duquel tous les motifs fréquents peuvent étre retrouves.>?

Nous pouvons définir les motifs rares minimauz (MRM) en tant que complémentaires des
MFMs, de la maniére suivante :

Définition 8.2 Un motif est un MRM s’il est rare (et ainsi tous ses sur-motifs sont rares) et
st tous ses sous-motifs ne sont pas rares.

Ces motifs forment un ensemble générateur minimal & partir duquel tous les motifs rares
peuvent étre retrouvés. Tous les motifs fréquents peuvent étre retrouvés a partir des MFM.
Dans un premier temps, nous devons prendre tous les sous-ensembles possibles des MFM. Dans
un deuxiéme temps, le support des motifs fréquents peut étre calculé grice & un passage sur la
base de données. Un processus similaire est mis en ceuvre pour retrouver les motifs rares. Nous
devons d’abord générer tous les sur-motifs possibles des motifs rares minimaux, puis calculer le
support des motifs rares grace a un passage sur la base de données.

Parmi les motifs rares, nous distinguons deux sous-ensembles : (a) les motifs rares de
support 0, et (b) les motifs rares de support supérieur a 0. Cette distinction est importante, car
le nombre total de motifs rares peut étre élevé et ainsi nous pouvons privilégier les motifs dont
le support est non nul.

52Peut-étre devrait-on les appeler plutét motifs fréquents les plus longs, car ils n’ont pas de plus long sur-motif
fréquent.

8.1. Résumé étendu 147

Définition 8.3 Un motif est appelé motif a support nul si son support est égal o 0. Sinon, il
est appelé motif & support non nul.

Pour tous les motifs rares nous avons déja décrit 'ensemble des motifs rares minimaux. Pour
les motifs & support nul, un sous-ensemble générateur minimal semblable peut étre défini :

Définition 8.4 Un motif est un générateur minimal & support nul (GMSN) si c’est un motif
support nul (ainsi tous ses sur-ensembles sont des motifs o support nul) et si tous ses sous-motifs
sont des motifs a support non nul.

Sur la Figure 8.3 se trouvent un GMSN : {CD}. De plus, les GMSN forment une représenta-
tion condensée et sans perte d’information des motifs & support nul, c’est-a-dire qu’a partir des
GMSN tous les motifs & support nul peuvent étre retrouvés avec leur support (qui est toujours 0).
Pour cela, nous avons seulement besoin de générer tous les sur-motifs possibles des GMSN en
utilisant les attributs de la base de données.

Trouver les motifs rares

Nous présentons les deux étapes de notre méthode pour trouver les motifs rares. La premiére
étape trouve seulement les motifs rares minimaux, tandis que la seconde retrouve les motifs rares
non nuls & partir de I’ensemble des motifs rares minimaux.

Nous ne générons pas les motifs & support nul & cause de leur grand nombre. Pour éviter les
motifs & support nul, nous utiliserons les GMSN. La seconde étape de notre méthode permet de
restaurer tous les motifs rares non nuls & partir des MRM & l’aide d’une approche par niveau.
Si un candidat a un sous-motif GMSN, alors ce candidat est nécessairement un motif & support
nul et peut étre ainsi élagué. Autrement dit, & ’aide des GMSN nous pouvons réduire l'espace
de recherche lors de la recherche des motifs rares.

Trouver les motifs rares minimaux. Bien que cela puisse paraitre surprenant, les motifs
rares minimaux peuvent étre trouvés simplement a 'aide de l'algorithme bien connu Apriori.
Apriori est basé sur deux principes (voir Propriétés 8.1 et 8.2). Il est congu pour trouver les
motifs fréquents, mais, puisque nous sommes dans le cas ol non fréquent signifie rare, cela a
pour “effet, collatéral” d’explorer également les motifs rares minimaux. Quand Apriori trouve un
motif rare, il ne générera plus tard aucun de ses sur-motifs car ils sont de maniére siire rares.
Puisque Apriori explore le treillis des motifs niveau par niveau du bas vers le haut, il comptera
le support des motifs rares minimaux. Ces motifs seront élagués et plus tard algorithme peut
remarquer qu'un candidat a un sous-motif rare. En fait Apriori vérifie si tous les (k — 1)-sous-
motifs d’'un k-candidat sont fréquents. Si 'un d’entre eux n’est pas fréquent, alors le candidat
est rare. Autrement dit, cela signifie que le candidat a un sous-motif rare minimal. Grace & cette
technique d’élagage, Apriori peut réduire significativement I'espace de recherche dans le treillis
des motifs.

Une légére modification d’ Aprior: suffit pour conserver les MRM. Si le support d’un candidat
est inférieur au support minimum, alors au lieu de I'effacer nous I'enregistrons dans ’ensemble
des motifs rares minimaux (voir Algorithme 18).

Fonction Apriori-Gen : & l'aide des k-motifs fréquents, génére les candidats potentiellement
fréquents de taille (k+1). Potentiellement fréquent signifie ne pas avoir de sous-motif rare, c’est-a-
dire pas de sous-motif rare minimal. Inclure un motif rare implique étre rare (voir Propriété 8.2).
Pour une description détaillée de cette fonction voir Algorithme 23.

148 Chapter 8. Summaries in French and in Hungarian

Algorithme 18 (Apriori-Rare) :

Description : modification Apriori pour trouver les motifs rares minimaux

—
=)

}

Inyr < |J Ri; // motifs rares minimaux
Ir — |J F;; // motifs fréquents

[y
—_

Entrée : base de données + min_supp
Sortie : tous les motifs fréquents + motifs rares minimaux
1) C; « {l-motifs};
2) i1,
3) while (C; # 0)
59 o
5) SupportCount(C;); // compte le support des motifs candidats
6) R; — {r € C; | support(r) < min_supp}; // R — pour les motifs rares
7) F; — {f € C; | support(f) > min_supp}; // F — pour les motifs fréquents
8) Ciy1 < Apriori-Gen(F;); // C — pour les candidats
9) i i1
)
)
)

—
N

L’exécution de Palgorithme sur la base de données D (Tableau 8.3) avec un support minimum
de 3 (équivalent & un support maximum de 2) est illustrée dans le Tableau 8.4. En prenant 'union
des tableaux R;, I’algorithme trouve les motifs rares minimaux ({D} avec support 1, {ABC} et
{ACE} avec support 2).

Dans le prochain paragraphe, nous montrons comment restaurer les sur-motifs des MRM
(c’est-a-dire comment reconstruire tous les motifs rares) en évitant les motifs & support nul.

Retrouver les motifs rares. Tous les motifs rares sont retrouvés & partir des motifs rares
minimaux. Pour cela nous avons besoin de générer tous les sur-motifs possibles des MRM. Les
générateurs minimaux & support nul sont utilisés pour filtrer les motifs & support nul pendant
la génération des sur-motifs. De cette maniére ['espace de recherche peut étre réduit de maniére
considérable. Dans cette section nous présentons un algorithme prototype pour cette tache appelé
Arima®® (A Rare Itemset Miner Algorithm, voir Algorithme 19).

L’exécution de Palgorithme sur la base de données D (Tableau 8.3) avec un support minimum
de 3 (équivalent & un support maximum de 2) est illustrée dans le Tableau 8.5.

L’algorithme détermine d’abord le plus court MRM, {D}, qui est rare et ainsi copié dans
R;. Ses sur-motifs de taille 2 sont générés et stockés dans Cy ({AD}, {BD}, {CD}, et {DE}).
Avec un passage sur la base de données leur support peut étre compté. Puisque {CD} est un
motif & support nul, il est copié dans la liste des GMSN. Les motifs non nuls sont stockés dans
Ro. Pour chaque motif rare dans Rs tous ses sur-motifs sont générés. Par exemple, & partir de
{AD} nous pouvons générer les candidats suivants : {ABD}, {ACD} et {ADE}. Si un candidat
posséde un sous-motif GMSN, alors le candidat est de maniére siire un motif & support nul et
peut étre élagué ({ACD}). Les candidats potentiels non nuls sont stockés dans Cs. Dans les
C; les doublons ne sont pas permis. A partir des MRM, les 3-motifs sont ajoutés & C3 ({ABC}
et {ACE}). L’algorithme s’arréte quand R; est vide. L’union des tableaux R; donne tous les
motifs rares & support non nul. A la fin nous avons aussi collecté tous les GMSN. Ainsi si on a

3 A ne pas confondre avec la méthodologie des modéles ARIMA (Auto Regressive Integrated Moving Average).

8.1. Résumé étendu 149

C7 | supp Ri | supp Fy | supp
{A} | 4 Dy | 1 {A} | 4
{B} | 4 {B} | 4
{Cr| 4 {Cy| 4
{b} | 1 (B} | 4
{E} | 4

Co supp Ry | supp F supp
{AB} 3 0 {AB} 3
{AC} 3 {AC} 3
{AE} 3 {AE} 3
{BC} 3 {BC} 3

{BE} 4 {BE} 4
{CE} 3 {CE} 3

Cs supp R3 supp F3 supp
{ABC} 2 {ABC} 2 {ABE} 3
{ABE} 3 {ACE} 2 {BCE} 3

{ACE} 2
{BCE} 3
Cy | supp

0

Table 8.4: Exécution de ’algorithme Apriori-Rare avec min_supp = 3 (mazx_ supp = 2).

besoin des motifs & support nul, cette liste peut étre utilisée pour les retrouver. Le procédé est
similaire : nous aurions besoin de générer tous les sur-motifs possibles des GMSN. Dans notre
cas nous ne nous sommes intéressés qu’aux motifs non nuls, mais il est possible de travailler avec
les motifs & support nul.

Conclusion et travaux futurs

Dans cette sous-section, nous avons présenté une méthode pour extraire les motifs rares d’une
base de données. Notre méthode est composée de deux étapes : (1) nous trouvons un sous-
ensemble générateur minimal des motifs rares appeles MRM (algorithme Apriori-Rare) ;
(2) al’aide des MRM nous retrouvons les motifs rares dont le support est strictement supérieur
a 0 (algorithme Arima).

Notre méthode fait partie des premiéres a s’intéresser spécifiquement aux motifs rares. Apriors
fut le premier algorithme pour trouver les motifs fréquents et a été suivi par de nombreux algo-
rithmes plus efficaces. De maniére similaire, il ne fait aucun doute que nos algorithmes prototypes
pourraient étre améliorés de nombreuses maniéres. Dans le futur nous aimerions travailler sur
ce sujet.

Un domaine important dans le cadre de l'utilisation des motifs rares est la génération des
régles d’association rares (voir Section 5.3 pour plus de détails).

En outre, dans un futur proche, nous prévoyons de décrire des expériences réalisées sur des
données réelles de la cohorte STANISLAS, dans le but de fournir un exemple concret de ce nouvel
aspect prometteur de la découverte de connaissances dans les bases de données.

150 Chapter 8. Summaries in French and in Hungarian

Algorithme 19 (Arima):

Description : retrouve les motifs rares a partir des MRM

Entrée : base de données + MRM
Sortie : tous les motifs rares a support non nul + GMSN
1) GMSN 0
2) S « {tous les attributs de D};
3) i« {longueur du plus petit M RM };
4) C;«— {i-MRM}; // c’est a dire les plus courts motifs dans les M RM
5) GMSN — GMSN U {z € C; | support(z)= 0};
6) R;<— {reC;|support(r) > 0};
7) while (R; # 0)
8) A
9) boucle sur les éléments de R; (r) {
10) Cand « {tous sur-motifs de r utilisant S}; // aucun doublon permis
11) boucle sur les éléments de Cand (¢) {
)

12 si ¢ a un sous-motif dans GMSN (c’est a dire si ¢ est un sur-motif
d’'un GMSN), alors supprime ¢ de Cand,;

13) }

14) Ciy1 < Ciy1 U Cand; // aucun doublon permis

15) Cand « 0; // ré-initialise Cand

1))

17) SupportCount(C;+1); // compte le support des motifs candidats

18) Cit1 < Ciy1 U {(i + 1)-motifs de MRM};

19) GMSN «— GMSN U {z € C;11 | support(z)= 0};

20) Rit1 — {r € Cit1 | support(r) > 0};

21) i1

2))

23) I < U Ri; // motifs rares & support non nul

GMSN =10

S={A,B,C,D,E}
MRM = {D(1), ABC(2), ACE(2)}

i=1
‘ Cs ‘ supp ‘ ‘ R3 ‘ supp ‘
{ABD} | 1 {ABD} | 1
{ADE} | 1 {ADE} | 1
Cy | supp Ry | supp {BDE} 1 {BDE} 1
Dy 1 Dy | 1 {ABC} | 2 {ABC} | 2
GMSNavant = 0 {ACE} | 2 {ACE} | 2
GMSNapres = 0 GMSNayant ={CD}
apres G]\/[SNaprcg :{CD}
C sup R Sup
C Supp Ry supp
{BD} | 1 {BD} | 1 {ABDE} | 1 {ABDE} | 1
{cD} | o (DE} | 1 {ABCE} | 2 {ABCE} | 2
{DE} 1 G]\'[SNm;anf, :{CD}
GMSNavant =0 GMSNapres ={CD}
G Napres ={CD}
GMSNavant :{CD}
GMSNgpres ={CD}

Table 8.5: Exécution de I'algorithme Arima avec min_supp = 3 (max_supp = 2).

8.1. Résumé étendu 151

8.1.4 Conclusion et perspectives

Dans ce chapitre nous résumons les contributions & la recherche apportées par cette thése. Nous
présentons une synthése de notre travail et développons différentes pistes pour nos travaux futurs.

Conclusion

Le sujet principal de cette thése est [’exiraction de connaissances dans les bases de domnées
(ECBD). Plus précisément, nous avons étudié deux des plus importantes taches d’ECBD actuelles,
qui sont 'extraction de motifs et la génération de régles d’association. Tout au long de notre
travail, notre objectif a été de trouver des régles d’associations iniéressantes selon plusieurs
points de vue : dans un but de fouille efficace, pour réduire au minimum ’ensemble des régles
extraites et pour trouver des unités de connaissances intelligibles (et facilement interprétables).
Pour atteindre ce but, nous avons développé et adapté des algorithmes spécifiques.

Les contributions principales de cette thése sont : (1) nous avons développé et adapté des
algorithmes pour trouver les régles d’association minimales non-redondantes ; (2) nous avons
défini une nouvelle base pour les régles d’associations appelée “régles fermeées” ; (3) nous avons
étudié un champ de ’'ECBD important mais relativement peu étudié, & savoir 'extraction des
motifs rares et des régles d’association rares ; (4) nous avons regroupé nos algorithmes et une
collection d’autres algorithmes ainsi que d’autres opérations auxiliaires ’ECBD dans une boite
a outils logicielle appelée CORON.

Algorithmes pour ’extraction des régles MNR

Dans le Chapitre 3 nous présentons deux algorithmes spécifiquement adaptés pour extraire des
régles d’association minimales non-redondantes (MNR). Cet ensemble de régles s’obtient sans
perte d’information, et représente de maniére informative toutes les régles d’association valides.
Notre premier algorithme, Zart, est une extension de Pascal qui est probablement 1’algorithme
le plus efficace de recherche des motifs fréquents par niveau. Dans Zart, Pascal est intégré avec
Apriori-Close et nos extensions. En plus des capacités de Pascal, Zart est capable d’identifier
I’ensemble des motifs fermés fréquents et de leurs associer leurs générateurs. Nous montrons que
ces données supplémentaires fournies par Zart sont essentielles pour 'extraction de régles MANR.
Dans notre second algorithme, Fclat-Z, nous allons plus loin et montrons comment généraliser
Iidée de Zart pour n’importe quel algorithme d’extraction des motifs fréquents. Il est ainsi
possible d’étendre n’importe quel algorithme d’extraction des motifs fréquents afin de rajouter
le support de lextraction des régles MNR. Nous présentons une idée générale dont Eclat-Z
est une implantation concréte. Comme son nom lindique Fclal-Z est une extension d’Fclat.
Eclat est un algorithme vertical identifiant les motifs fréquents trés efficacement. Néanmoins,
A cause de sa recherche en profondeur, il produit les motifs fréquents de maniére non ordonnée
(par longueur). Or Zart dépend de 'hypothése que les motifs fréquents sont disponibles en étant
ordonnés par longueur. Dans Eclat-Z nous résolvons ce probléme & I’aide d’une technique spéciale
d’indexation de fichiers. Grace & cette idée, tout algorithme arbitraire de recherche des motifs
fréquents peut étre transformé en un algorithme trouvant un sous-ensemble utile et intéressant
de toutes les régles d’associations valides : les régles d’association minimales non-redondantes.

Reégles d’association fermées

Dans le Chapitre 4 nous introduisons une nouvelle base appelée les “régles fermées” que nous
positionnons entre 'ensemble de toutes les régles valides et l’ensemble des régles minimales

152 Chapter 8. Summaries in French and in Hungarian

non-redondantes. Dans le cas de bases de données denses et hautement corrélés, la généra-
tion des régles fermées est plus efficace que celle des régles d’association. Néanmoins, pour les
bases de données creuses, lorsque presque tous les motifs fréquents sont fermés, toutes les régles
d’association peuvent étre extraites plus efficacement. Quelle que soit la méthode, ’ensemble
des régles fermées est toujours plus petit que 'ensemble des régles d’association valides. Les
régles fermées étant une représentation concise de toutes les régles valides et ne requérant que
les motifs fréquents fermés, elles semblent étre une bonne alternative & ’ensemble de toutes les
régles d’association.

Motifs rares et régles d’association rares

Le Chapitre 5 est un des chapitres les plus originaux de cette thése. Dans ce chapitre, nous
nous intéressons aux problémes de 'extraction des motifs rares et de la génération de régles
d’association rares. Dans la littérature, ces problémes n’ont jusqu’alors pas été étudiés en détail,
bien que les motifs rares puissent contenir des informations importantes dans la méme mesure
que les motifs fréquents. En particulier, I’application aux diagnostics médicaux nous parait un
champ d’application particulierement adapté.

Dans le Chapitre 5.1 nous présentons une méthode permettant de trouver tous les motifs
rares. Pour ce faire, nous utilisons 'algorithme classique Apriori. Apriori est connu pour
trouver ’ensemble des motifs fréquents, mais il trouve également un ensemble spécial des motifs
rares : les motifs rares minimaux (MRM). Une légére modification d’Apriori, que nous appelons
Apriori-Rare, permet ainsi de conserver I’ensemble des MRM. Nous montrons ensuite comment
reconstruire ’ensemble de tous les motifs rares & partir des MRM tout en évitant les motifs de
support 0.

Dans le Chapitre 5.3 nous allons plus loin en montrant comment générer des régles d’asso-
ciation rares valides. Notre travail est motivé par la question ouverte de longue date visant &
construire un algorithme efficace pour la découverte de régles a support faible et confiance élevée.
Afin de trouver de telles régles en utilisant des algorithmes conventionnels de recherche des motifs
fréquents comme Apriori, le support minimal doit étre fixé & un seulil trés faible, ce qui augmente
de maniére drastique le temps d’exécution de I'algorithme. De plus, lorsque le support minimal
est fixé trés bas, Apriori produit un grand nombre des motifs fréquents. Ce probléme est égale-
ment connue sous le nom de probléme des motifs rares. Pour résoudre ce probléme bien connu,
nous proposons la solution suivante : de maniére itérative, nous diminuons le support minimal
pour Apriori jusqu’a atteindre la limite pour laquelle I’algorithme reste utilisable. A ce niveau
nous changeons d’algorithme pour Apriori-Rare afin de trouver les MRM. Nous prouvons que
les MRM sont des générateurs rares minimaux (MRG). En trouvant leurs fermetures, des classes
d’équivalence rares sont obtenues, desquelles il est possible d’extraire des régles d’association
rares exactes (nous appelons de telles régles “régles MRG exactes”). Nous montrons également
comment extraire des régles MRG approximatives ; néanmoins leur intérét parait limité. De ce
fait, nous nous concentrons plutot sur les régles rares exactes. De plus, de telles régles sont non-
redondantes car ’antécédent est minimal et le conséquent maximal, impliquant ainsi que parmi
les régles de support et confiance identiques, celles-ci contiennent le plus d’information. Des ré-
gles MRG peuvent étre trouvées dans tous les cas, y compris lorsque le support minimal est élevé.

Nous pensons que l'extraction de régles d’association rares est un champ intéressant et
prometteur de I’'ECBD. L’utilisation de régles d’association rares peut s’avérer avantageuse pour
toute une variété d’applications pratiques : marketing, business, télécommunications, ou bien
applications scientifiques sur des domaines tels que la biologie, I’astronomie, la médecine, etc.

8.1. Résumé étendu 153

Etant un champ relativement nouveau, cette extraction n’a pas encore été étudiée en détails.
Notre approche est ainsi un premier pas dans cette direction. Les motifs rares et les régles
d’association rares soulévent de nombreuses questions. Il existe différentes bases pour 'extraction
de régles d’associations fréquentes. Pouvons-nous définir des bases similaires pour I'extraction
de régles d’association rares 7 Les régles exactes MRG forment un sous-ensemble de toutes les
régles d’association rares. Serait-il possible de dériver toutes ces régles rares exactes a partir
de lensemble des régles MRG exactes 7 Dans notre approche nous considérons seulement une
frontiére, i.e. pour nous un motif est rare s’il n’est pas fréquent. Une piste de recherche intéres-
sante serait de travailler avec deux frontiéres. Enfin, tandis que nous utilisons un “effet de bord”
d’algorithmes par niveau de recherche des motifs fréquents, a savoir les motifs rares minimaux,
on peut se demander s’il ne serait pas possible de trouver ces motifs rares directement, i.e. sans
avoir & extraire au préalable les motifs fréquents. Les réponses & ces questions nécessitent encore
d’avantage de recherches.

La boite a outils Coron

Les algorithmes présentés dans cette thése ont été implémentés et regroupés dans une plate-
forme logicielle unifiée appelée CORON. CORON est une boite a outils de fouille de données
indépendante du domaine. Non seulement CORON incorpore une riche collection d’algorithmes
de fouille de données mais CORON permet également un grand nombre d’opérations auxiliaires.
A notre connaissance, aucun autre logiciel n’a été concu spécifiquement pour Iextraction de
motifs et la génération de régles d’association. CORON fournit également un support pour la
préparation, le filtrage des données ainsi que pour Iinterprétation des unités de connaissances
extraites.

La plupart des expériences avec CORON ont été réalisées sur une véritable base de données
biomédicales appelée la cohorte STANISLAS. Durant ces expériences, nous avons réalisé qu’il
nous était nécessaire d’avoir (1) une méthodologie pour la fouille et (2) un outil permettant de
Pimplanter. Le Chapitre 6 présente notre méthodologie globale de fouille de données, pouvant
étre généralisée & n’importe quel ensemble des données. Cette méthodologie peut étre utilisée
pour les recherches des motifs aussi bien fréquents que rares.

Améliorations futures de Coron. Alors que CORON est déja une plate-forme compléte qui
a montré son utilité dans des projets variés, elle pourrait étre amélioré de différentes maniéres.
Nous listons ici différentes idées d’améliorations.

Pour le moment, en utilisant CORON, il est possible d’extraire deux représentations conden-
sées de régles d’association fréquentes, a savoir les régles fermées et les régles d’association mini-
males non-redondantes. Nous sommes également intéressés & travailler avec d’autres bases comme
la base de Duquennes-Guigues [GD86| pour les régles exactes, la base de Luxenburger [Lux91|
pour les régles approchées ou encore les régles représentatives de Kryszkiewicz [Kry98]. Toutes
ces bases sont plus condensées que les régles MNR. Néanmoins, elles ne sont pas simultanément
sans perte d’information, correctes et informatives.

A Theure actuelle, CORON peut seulement travailler avec des contextes binaires. Les con-
textes pluri-valués devraient également étre pris en charge dans une version future.

CORON contient, entre autres algorithmes, Fclat et Charm. Récemment, Zaki a proposé
une optimisation appelée “diffsets” réduisant de maniére significative I'utilisation mémoire de ces
algorithmes (voir Section 3.2.2). Nous planifions ainsi d’ajouter ces versions optimisées, dEclat et
dCharm, & CORON. Utilisant moins de mémoire, il est probable qu’elles permettent le traitement
de bases de données plus grandes ou de valeurs de support minimum plus petits.

154 Chapter 8. Summaries in French and in Hungarian

CORON ne comprend aucun algorithme de la catégorie “autre” (voir Section 3.2.4). L algo-
rithme de ce type le plus connu est sans doute FP-growth [HPYO00]. Il utilise une nouvelle
structure de donnée appelée FP-arbre. Cette nouvelle structure est une représentation com-
pressée de toutes les transactions de la base de données. Alors que FP-growth trouve des motifs
fréquents, certaines de ses modifications comme Closet [PHMO00| ou Closet™ [WHP03| permettent
I'extraction des motifs fermés fréquents.

Charm-MFI est une extension simple de Charm filtrant les motifs fréquents maximaux
parmi les motifs fréquents fermés. Nous avons en projet de la comparer avec d’autres algo-
rithmes créés spécifiquement pour les motifs fréquents maximaux, e.g. Maz-Miner |Bay9§],
DepthProject |[AAP00|, GenMaz [GZ01], etc.

Un des buts du projet CORON est d’intégrer un grand nombre d’algorithmes de recherche
des motifs. Comme il n’y a, pour des bases de données arbitraires, aucun algorithme meilleur,
CORON offre la possibilité a l'utilisateur de tester différents algorithmes et de choisir ainsi celui
correspondant le mieux a ses besoins. Néanmoins, une grande liste d’algorithmes pourrait étre
difficile & manipuler par les utilisateurs. En conséquence, nous devons faire une étude expéri-
mentale portant sur un grand nombre de bases de données afin d’étre en mesure de fournir &
I'utilisateur des indications sur le meilleur algorithme pressenti pour un ensemble des données
spécifique. Alternativement, CORON pourrait également analyser ’ensemble des données et
fournir un algorithme qui serait en mesure de donner des performances optimales.

L’ECBD se référe au processus de découverte de motifs nouveaux et utiles dans des données.
Le développement d’algorithmes efficaces n’est qu’une étape de ce processus. Pour 1’étape de
visualisation, nous utilisons la notion de treillis. Pour construire des treillis, nous commencons
par chercher les motifs fermés fréquents, puis calculons 'ordre des concepts. Néanmoins, il
y a des méthodes plus efficaces de calcul de l'ordre ; par exemple, 'utilisation d’algorithmes
explorant 'ordre parallélement aux motifs fermés fréquents. Actuellement, CORON ne dispose
que d’algorithmes extrayant motifs et régles d’association, mais dans le futur nous espérons y
intégrer des algorithmes du domaine de I'analyse des concepts formels [KO01, KO02] afin de
rendre son module de visualisation plus efficace. Comme nous avons une collaboration avec
I’équipe des développeurs du projet GALICIA, il est fort probable que les deux plate-formes
s’échangent mutuellement des algorithmes ou fusionnent dans le futur.

Enfin, un dernier objectif est de connecter CORON avec des systémes de gestion de bases de
données. Par exemple, Coron-base et ASSRULEX devraient étre capable de sauvegarder leurs
résultats directement dans un SGBD afin de faciliter I’échange de données avec d’autres projets
qui souhaiteraient utiliser des données fournies par CORON.

Perspectives & moyen et long terme

Le composant final de tout algorithme de fouille de données est la stratégie de gestion des don-
nées : la maniére dont les données sont stockées, indexées et accédées. La plupart des algorithmes
d’analyse de données connus ont été développés avec 'hypothése que les bases de données peuvent
étre consultées rapidement et efficacement en mémoire principale (RAM). L’évolution rapide des
technologies de mémoire a également été suivie par I’amélioration des technologies de stockage
secondaire. De nombreuses bases de données massives dépassent actuellement les capacités de la
RAM, rendant nécessaire le développement de nouveaux algorithmes et/ou de nouvelles gestions
de données. Actuellement, des bases de données de l'ordre du giga- ou teraoctet ne sont pas
rares. Le but final serait d’étre capable de manipuler efficacement de telles bases de données.
Un autre défi est le traitement de bases de données en évolution constante, comme les fac-
turations d’appels téléphonique ou de consommation d’électricité. Les bases de données peuvent

8.1. Résumé étendu 155

s’enrichir de nouvelles entrées, nouveaux attributs ou bien des attributs d’entrées existantes peu-
vent changer de valeur. Le connaissances extraites avant les changements peuvent ainsi nécessiter
une mise & jour ou se voir invalidées. Ceci requiert l'utilisation d’algorithmes incrémentaux. Alors
que les bases de données continuent d’augmenter en taille, il est généralement admis que des bases
trés grandes ne peuvent étre traitées efficacement qu’a 1’aide d’algorithmes paralléles dans un
environnement distribué ; le calcul paralléle étant idéal pour traiter les problémes de passage a
I’échelle. Les algorithmes de fouille de données devraient étre mieux intégrés avec les SGBD afin
de fournir représentation, stockage et accés communs.

La combinaison des caractéristiques précédemment mentionnées — intégration avec les SGBD
pour le calcul paralléle incrémental — pourrait permettre des solutions de fouille de données trés
puissantes. Il serait intéressant de développer de telles solutions pour la recherche de régles
d’association rares dans de grandes bases de données.

156 Chapter 8. Summaries in French and in Hungarian

8.2 Rezumé

8.2.1 Konklazibé

A dolgozat kdzponti témaja ismeretfeltdrds adatbdzisokban (KDD).>* Egészen pontosan mintak
keresésével, ill. asszociacios szabdlyok generalasaval foglalkoztunk, melyek jelenleg a KDD leg-
fontosabb kutatasi teriiletei kdzé tartoznak. Munkank soran végig azt a célt tartottuk szem el6tt,
hogy érdekes asszociacios szabalyokat nyerjiink ki. Fzeknek a szabdlyoknak tébbféle kritérium-
nak is meg kell felelnitik, ugymint (a) hatékonyan kell tudni Sket megkeresni; (b) a kinyert
szabéalyhalmaz mérete legyen minimalis; valamint (c) ezen szabalyok legyenek érthetéek, kony-
nyen értelmezhetéek.

A tézis tudomanyos eredményei a kovetkezdk: (1) Kifejlesztettiink ill. adaptaltunk olyan al-
goritmusokat, melyekkel minimalis nem-redundans asszociacios szabalyok (MANR) generdlhatok;
(2) Definidltunk egy 0j bazist az asszociacios szabalyok szamara (zéart szabalyok); (3) Foglalkoz-
tunk a KDD egy igen fontos, de eddig még részleteiben fel nem téart teriiletével, nevezetesen a ritka
mintak ill. a ritka asszociacios szabélyok kérdésével; (4) Egy egységes szoftvereszkozben gytijtot-
tiik 6ssze a dolgozatban bemutatott valamennyi algoritmust, tovabbi ismert algoritmusokkal, ill.
egyeéb kiegészit miiveletekkel egytitt (CORON rendszer).

8.2.2 MNR szabalyokat keresé algoritmusok

A 3. fejezetben két olyan algoritmust mutatunk be, melyeket kifejezetten a minimélis nem-
redundéns asszociacios szabalyok keresésére terveztiink. Ezen szabédlyhalmaz az 6sszes asszocié-
cios szabélynak egy veszteségmentes, pontos és informativ reprezenticidja. Az els6 algoritmus
(Zart) a Pascal algoritmus gyakorlati kiterjesztése. A szintenkénti, gyakori mintékat keress algo-
ritmusok kozott talan a Pascal tekinthetd a leghatékonyabbnak. A Zart algoritmusban a Pascal
algoritmust 0tvozzitk az Apriori-Close-zal, ill. még egy sajat kiterjesztést is hozzatettiink. A
Zart algoritmus — a Pascal-t6l eltér6en — a gyakori zart mintdkat is megkeresi, s ezekhez hoz-
zatarsitja a megfelel§ generator mintdkat. Megmutatjuk, hogy a Zart algoritmus eredménye
szitkséges az MN'R szabdlyok elgallitasahoz. A masodik algoritmus (Eclat-Z) esetében meg-
mutatjuk hogyan altalanosithaté a Zart-ban bemutatott otlet barmely gyakori mintakat keress
algoritmusra. Ezaltal tetszéleges gyakori mintakat keres§ algoritmus kiterjeszthets oly modon,
hogy az adott algoritmus tdmogassa az MNR szabalyok eléallitasat is. Az Eclat-Z algoritmus
ennek az altalanos otletnek egy konkrét megvaldsitdsa. Mint ahogy azt a neve is mutatja, az
Eclat-Z algoritmus alapja az Fclat. Az Eclat egy vertikalis algoritmus, mely nagyon hatékonyan
keresi meg az Gsszes gyakori mintat. Mivel mélységi keresést végez, ezért a gyakori mintakat hossz
szerint rendezetlen mdédon allitja el6. A Zart algoritmus azonban megkdveteli, hogy a mintak
hossz szerint névekvs sorrendben legyenek. Az Eclat-Z esetében ezt a problémét egy specidlis
file indexelési technikaval oldottuk meg. Ezen 6tlet alapjan tehét a tetsz6leges, gyakori mintakat
keresd algoritmus atalakithat6é oly modon, hogy az algoritmus az 6sszes asszocidcids szabalynak
csupan egy érdekes részhalmazat, a minimalis nem-redundans asszociaciés szabdlyokat keresse
meg.

8.2.3 Zart asszociacios szabalyok

A 4. fejezetben egy Uj bazist, a zart szabélyokat mutatjuk be. Ez a bazis az Osszes szabdly,
ill. a minimélis nem-redundans szabalyok kdzé helyezhets el. Stirt, erésen korrelalt adatbazisok

%Knowledge Discovery in Databases

8.2. Rezilimé 157

esetén a zart szabdlyok halmazat hatékonyabban el§ lehet allitani mint az Gsszes asszociacios
szabalyt. Ritka adatbazisok esetén azonban, mikor a gyakori mintadk nagyrésze zart, az Osszes
szabalyok halmaza hatékonyabban kereshet6 meg. Elmondhaté azonban, hogy a zart szabélyok
szama minden esetben kevesebb mint az Osszes asszocidcids szabdly. Mivel a zart szabalyok az
Osszes asszociacios szabalynak egy veszteségmentes, tomoritett reprezentacioja, ill. ezen szaba-
lyok elgallitadsa nem igényel semmi egyebet csupan a gyakori zart mintakat, ezért a zart szabalyok
egy jo alternativat kindlnak az Osszes asszociacids szaballyal szemben.

8.2.4 Ritka mintak és ritka asszociaciés szabalyok

Az 5. fejezet tartalmazza a dolgozat leglényegesebb eredményeit. Ebben a fejezetben a ritka
mintak és ritka asszociaciés szabalyok elgallitasaval foglalkozunk. A szakirodalomban ezt a két
teriiletet még nem kutattak kell§ alapossaggal annak ellenére, hogy a ritka mintak is fontos
informacidkat rejthetnek, csakigy mint a gyakori mintak. Orvosi diagndzisok esetén példaul
kiilonosen fontos szerephez jutnak a ritka minték.

Az 5.1. fejezetben bemutatunk egy olyan moédszert, mellyel az 6sszes ritka minta megkeres-
hets. Erre a célra a jol ismert Aprior: algoritmust hasznaljuk. Az Apriori-rol kéztudott, hogy
egy gyakori mintékat keres6 algoritmus, de valdjaban a ritka mintdknak egy speciélis részhal-
mazat, a minimalis ritka mintakat is megtaldlja. Az Apriori egy enyhén modositott valtozata,
az Apriori-Rare algoritmus ahelyett, hogy torélné a minimalis ritka mintakat, megtartja Gket.
Megmutatjuk, hogy hogyan lehet a minimalis ritka mintdk halmazabol visszadllitani az Osszes
ritka mintat.

Az 5.3. fejezetben tovabblépiink, s megmutatjuk hogyan lehet ritka asszociacids szabalyokat
elgallitani. Munkanknak ezt a részét egy hossza ideje megvélaszolatlan kérdés motivalta, még-
pedig az, hogy hogyan lehet hatékonyan olyan szabalyokat elGallitani, melyek support értéke
alacsony, megbizhatésdguk viszont nagyon magas. Ha ilyen szabalyokat szeretnénk, akkor a
hagyoményos, gyakori mintékat keres§ algoritmusok esetén — mint amilyen az Apriori is — a
minimum support értéket nagyon alacsonyra kell allitani. Ennek viszont az az eredménye, hogy
az algoritmus futasideje drasztikusan megnd, ill. az algoritmus nagyon nagy szamu gyakori
mintat talal. Ez az un. ritka mintdk probléméja”. Mi erre a kivetkezé megoldast javasoljuk.
Az Apriori algoritmust hasznalva addig csékkentjiik iterativ médon a minimum support értékét,
amig el nem érjitk azt a hatart, amelyen tdl mar miikédésképtelen az algoritmus. Ezen a ponton
atvaltunk az Apriori-Rare algoritmusra, mely kisztri a minimalis ritka mintakat. Bebizonyitjuk,
hogy a minimalis ritka mintak egyben minimélis ritka generdtorok (MRG) is. Ezutdn megke-
ressiik ezen mintak lezartjat, s igy rendelkezésiinkre all néhany ritka ekvivalencia osztaly. Ezen
ritka ekvivalencia osztalyokbdl pedig mar el6 lehet allitani pontos ritka asszocidcios szabalyokat
(ezeket a szabélyokat mi ,pontos MRG szabalyoknak” neveztiik el). Azt is megmutatjuk, hogy
hogyan lehet megkozelits, azaz nem pontos MRG szabalyokat elGallitani. Mivel ez utébbi sza-
balyok jelentsége kétséges, ezért inkabb a pontos ritka szabalyokra koncentralunk. Az MRG
szabalyok ezen tilmen&en nem-redundansok, mivel a szabalyok bal oldala minimalis, mig jobb
oldaluk maximélis. Ez azt jelenti, hogy az azonos support-tal és megbizhatésiggal rendelkezs
szabalyok kozott ezek a szabalyok tartalmazzak a legtobb informaciot. MRG szabalyokat minden
esetben lehet talalni, még nagyon magas minimum support értékek mellett is.

Ugy gondoljuk, hogy a ritka asszociacios szabalyok a KDD egy nagyon érdekes és nagyon
igéretes kutatési tertiletét képezik. A ritka asszociacios szabalyokat sikerrel lehetne alkalmazni
szamos teriileten, tgymint marketing, iizleti alkalmazasok, telekommunikécid, ill. kiilonb6z6 tu-
doményteriileteken, mint pl. biolégia, asztronémia, orvostudomany, stb. Mivel ez még aranylag

158 Chapter 8. Summaries in French and in Hungarian

1j teriiletnek szamit, a szakirodalom még nem foglalkozott vele részletesen. A mi munkink
ezaltal az els6k kozott szerepel.

8.2.5 A Coron rendszer

A dolgozatban bemutatott dsszes algoritmust implementaltuk, s egy egységes szoftver platform-
ban, a CORON nevi rendszerben gytijtéttiik 6ssze Sket. A CORON egy tobbféle kutatasi teriileten
alkalmazhato, platformfiiggetlen, tébbcéli adatbanyaszati eszkdztar, amely nem csupén szamos
adatbanyaszati algoritmust fog 6ssze, de tébbféle kiegészitd szolgaltatist is nyujt, mint pl. az
adatok el6készitése, tisztitasa, ill. az eredmények megjelenitése, értelmezése. Legjobb tudoma-
sunk szerint nem létezik még egy olyan, a CORON-hoz hasonlé adatbanyaszati szoftver, mely
direkt médon mintakeresésre, ill. asszociacids szabalyok elGallitasara lett volna kifejlesztve.

A CORON rendszert legtobbet egy valos orvosi adatbéazison (STANISLAS cohort) alkalmaztuk.
A tesztek soran arra jottiink ra, hogy sziikségiink van (1) egy adatbanyaszati metodologiara, ill.
(2) egy olyan eszkozre, amely teljes mértékben megvaldsitja a metodologia lépéseit. A 6. fe-
jezetben talalhato ez az adatbanyaszati metodolégia, amely tetsz6leges adatbézis esetén hasznal-
haté. A metodologia mind gyakori, mind ritka asszocidciés szabalyokra alkalmazhato.

A 6. fejezet végén — a STANISLAS adatbézis mellett — még tovabbi harom projektet is
bemutatunk, melyek sikeresen alkalmazzik a CORON rendszert.

Appendix A

Test Environment

Test Platform

All the experiments in the thesis were carried out on the same Intel Pentium IV 2.4 GHz machine
running under Debian GNU /Linux operating system with 512 MB of RAM. All the experiments
were carried out with the CORON system. All times reported are real, wall clock times, as
obtained from the Unix #ime command between input and output. Time values are given in
seconds.

Test Databases

For testing and comparing the algorithms, we chose several publicly available real and synthetic
databases to work with. Table A.1 shows the characteristics of these datasets, i.e. the name and
size of the database, the number of transactions, the number of different attributes, the average
transaction length, and the largest attribute in each database.

database database | # of transactions | # of attributes | # of attributes | largest attribute
name size (bytes) in average
T20I6D100K | 7,833,397 100,000 893 20 1,000
T25110D10K 970,890 10,000 929 25 1,000
C20D10K 800,020 10,000 192 20 385
C73D10K 3,205,889 10,000 1,592 73 2,177
MUSHROOMS 603,513 8,416 119 23 128

Table A.1: Database characteristics.

The T20I16D100K and T25110D10K5® are sparse datasets, constructed according to the properties
of market basket data that are typically sparse, weakly correlated data. The number of frequent
itemsets is small, and nearly all the Fls are closed. The C20D10K and C73D10K are census
datasets from the PUMS sample file, while the MUSHROOMS?® describes the characteristics of
various species of mushrooms. The latter three are dense, highly correlated datasets. Weakly
correlated data, such as synthetic data, constitute easy cases for the algorithms that extract
frequent itemsets, since few itemsets are frequent. On the contrary, correlated data constitute
far more difficult cases for the extraction due to the large number of frequent itemsets. Such
data are typical of real-life datasets.

®Shttp://www.almaden. ibm. com/software/quest/Resources/
*®http://kdd.ics.uci.edu/

159

160 Appendix A. Test Environment

Appendix B

Classical Itemset Mining Algorithms

B.1 Apriori

Short Overview of the Apriori Algorithm

Apriori®™ is the first efficient algorithm for finding all frequent itemsets in a dataset [AS94,
MTV94, AMS'96]. This is a levelwise, breadth-first, bottom-up algorithm. Apriori has been
presented in a general way in Section 3.2.1, thus here we only present the algorithm and the
experimental results. Apriori has been followed by lots of variations in order to improve different
efficiency aspects [BMUT97, PCY95, SON95, Toi96].

The Algorithm

Pseudo code. The main block of the algorithm is given in Algorithm 20. Apriori uses two
different kinds of tables, their description is provided in Tables B.1 and B.2. We assume that an
itemset is an ordered list of attributes, since we will rely on this in the Apriori-Gen function
(Algorithm 23). Note that we have this assumption for all levelwise algorithms presented in the
thesis.

C; | potentially frequent candidate i-itemsets
fields: (1) itemset, (2) support

F; | frequent i-itemsets

fields: (1) itemset, (2) support

Table B.1: Tables used in Apriori.

itemset — an arbitrary itemset
support — support of the itemset

Table B.2: Fields of the tables of Apriori.

Running example. The execution of Apriori on dataset D (Table 3.1) with min_supp = 3
(60%) is illustrated in Table B.3. The algorithm first performs a database scan to count the
supports of 1-itemsets. The candidate itemset {D} is pruned because it is not frequent. At

57 Agrawal and Srikant [AS94] and Mannila et al. [MTV94] independently proposed the same technique. The
two works were cumulated afterwards in [AMS™96].

161

162 Appendix B. Classical Itemset Mining Algorithms

Algorithm 20 (Apriori):

Description: finds all frequent itemsets

Input: dataset + min_supp
Output: all frequent itemsets
1)) « {1-itemsets};
2) i< 1;
3) while (C; # 0)
n
5 SupportCount(C;);
6 F; — {f € C; | f.support > min_supp}; // F — for frequent itemsets

T e~ e N N

7 Ciy1 < Apriori-Gen(F;); // C — for candidates
8 ++1;
9) }

10) Ip « |JF;; // frequent itemsets

Algorithm 21 (SupportCount procedure):

Description: counts the support of potentially frequent candidate itemsets

Input: a Cj table with potentially frequent candidate itemsets
Method: the procedure fills the support field of the C; table

1) loop over the objects of the input dataset (o)

2) |

3) S «Subsets(Cj, 0); // such elements of C; that are subsets of o
4) loop over the elements of S (s):

5) ++s.support;

6) }

the next iteration all candidate 2-itemsets are generated and stored in C5. Then a database
scan is performed to determine the supports of the six candidate itemsets. In Cj there are
four potentially frequent candidates, but after counting their supports it turns out that actually
only two of them are frequent. Note that the support of the other two candidates had to be
counted too because it was not known whether they are frequent or not. As all their subsets are
frequent, they could have been frequent too. The itemsets of F3 have no 4-long supersets, thus
the algorithm stops. The union of F; tables (Fy U Fy U F3) gives the list of all frequent itemsets
in D.

Experimental Results

Apriori was originally made to extract frequent itemsets from market basket data that are
typically sparse, weakly correlated data. In these datasets, the number of frequent itemsets is
small, and Apriori performs very well. Later on, the need for finding frequent itemsets in dense,
strongly correlated data has risen, and it turned out that Apriori is not too efficient on such
datasets. As a consequence, Apriori has been followed by lots of other mining algorithms. Some
of them are some kind of optimizations / extensions of Apriori (Apriori-Close, Pascal, Zart),
some of them are based on a different idea (Fclat, Charm), and some of them are a hybrid
solution of these approaches (Eclat-Z, Charm-MFI).

B.1.

Apriori

Algorithm 22 (Subsets function):

Description: in a set of itemsets finds the subsets of a given itemset
Input: S — a set of itemsets

! — an itemset whose subsets we are looking for in S

Output: such elements of S that are subsets of [

This task can be solved very efficiently with the trie data structure (see Appendix C.2).

Algorithm 23 (Apriori-Gen function):

Description: from a set of i-long frequent itemsets it generates their (i + 1)-long

supersets and only keeps the potentially frequent candidates

Input: F; — set of frequent i-long itemsets
Output: table C; with potentially frequent candidate itemsets
1) insert into Cj4+1 // join step
select p[1],p[2], ..., pli], q[i]
from F; p, Fi q
where p[1] = ¢[1],..., pli — 1] = qli — 1], p[i] < qil;
2) loop over the rows of Cj+1 (¢) // prune step
3) A
4) S — (i — 1)-long subsets of ¢;
5) loop over the elements of S (s):
6) if (S ¢ Fl) then CH—l — CH—l \ {C},
7}
8) return Ciyy;

C1 | supp Fy | supp
{A} 4 {A 4
{By| 4 {B}y | 4
{ct| 4 {C}y| 4
{D}| 1 {E}y | 4
{Ey | 4

Cy supp P supp
{AB} 3 {AB} 3
{AC} 3 {AC} 3
{AE} 3 {AE} 3
{BC} 3 {BC} 3

{BE} 4 {BE} 4
{CE} 3 {CE} 3

Cs supp F3 supp

{ABC} 2 {ABE} 3
{ABE} 3 {BCE} 3
{ACE} 2
{BCE} 3
Cy | supp

0

Table B.3: Execution of Apriori on dataset D with min_supp = 3 (60%).

163

164 Appendix B. Classical Itemset Mining Algorithms

B.2 Apriori-Close

Overview of the Apriori-Close Algorithm

Apriori-Close was proposed in [PBTL99a]. This algorithm is an extension of Apriori and it
can identify not only frequent, but frequent closed itemsets too simultaneously. The idea is the
following. By definition, a closed itemset has no proper superset with the same support. At each
ith step all i-long frequent itemsets are marked as “closed”. At the next (i + 1) iteration for
each (7 + 1)-long itemset we test if it has an i-long subset with the same support. If so, then
the i-long frequent itemset is not a closed itemset and we mark it as “not closed”. When the
algorithm terminates with the enumeration of all frequent itemsets, the itemsets still marked as
“closed” are the frequent closed itemsets of the dataset. As a consequence, the largest frequent
itemsets are always closed. As we will see it in the experimental results, this kind of filtering of
closed itemsets does not induce any serious additional computation time.

Note that this algorithm is also called Close™ in [Pas00a], but this name is quite misleading,
because this algorithm is not an extension of Close [PBTL99c|, but an extension of Apriori.
Thus, we will refer to this algorithm as Apriori-Close.

Detailed Description of Apriori-Close

The idea of Apriori-Close has been adapted in our algorithm Zart, thus we present the pseudo
code of Apriori-Close in Section 3.3.1.

Running example. The execution of Apriori-Close on dataset D (Table 3.1) with
min_supp = 3 (60%) is illustrated in Table B.4. For finding frequent itemsets it works ex-
actly like Apriori. Filtering frequent closed itemsets is done the following way. First, all itemsets
are marked “closed” in F. Then, using Fj, itemsets {B} and {E} are marked “not closed” because
they have a proper superset with the same support ({BE})). All itemsets are marked “closed”
in Fy, but {AB}, {AE}, {BC} and {CE} turn out to be “not closed” because they have a proper
superset with the same support in F3. At the end, there are 6 itemsets marked “closed™ {A},
{C}, {AC}, {BE}, {ABE} and {BCE}. In dataset D exactly these itemsets are the frequent
closed itemsets.

Experimental Results

We compared the efficiency of Apriori-Close with Apriori. The execution times of the algorithms
on different datasets is illustrated in Table B.5. This table also shows the number of FIs, the
number of FCls, and the proportion of the number of FCIs to the number of FIs. Response times
are presented graphically in Figures B.1, B.2 and B.3.

As a conclusion, we can say that Apriori-Close gives almost equivalent response times to
Apriori on both weakly and strongly correlated data, i.e. the filtering of closed itemsets among
frequent itemsets is not an expensive process.

B.2. Apriori-Close 165

C1 | supp Fy | supp | closed
{A} 4 {A} 4 yes
{B} | 4 {BY | 4 | yes
{C} 4 {C} 4 yes
{D}| 1 {E} | 4 | yes
{E} | 4

Cy supp Fy supp | closed
{AB} 3 {AB} 3 yes

{AC} 3 {AC} 3 yes
{AE} | 3 {AE} | 3 yes
{BC} 3 {BC} 3 yes
{BE} | 4 {BE} | 4 | wyes
{CE} 3 {CE} 3 yes

Cs supp F3 supp | closed

{ABC} | 2 {ABE} | 3 yes
{ABE} | 3 {BCE} | 3 yes
{ACE} 2
{BCE} 3
Cy | supp

0

Table B.4: Execution of Apriori-Close on dataset D with min_supp = 3 (60%).

min_supp (%) ‘ ‘ Apriori ‘ Apriori-Close ‘ ‘ # Fls ‘ # FCIs ‘ #;FFC}?
T20I6D100K

2 72.67 71.14 378 378 100.00%

1 107.63 106.53 1,534 1,534 | 100.00%

0.75 134.49 132.88 4,710 4,710 | 100.00%

0.5 236.10 232.45 26,836 | 26,208 | 97.66%

0.25 581.11 585.04 155,163 | 149,217 | 96.17%

C20D10K

50 61.18 62.67 1,823 456 25.01%

40 71.60 71.84 2,175 544 25.01%

30 123.57 125.27 5,319 951 17.88%

20 334.87 338.69 20,239 2,519 12.45%

10 844.44 860.21 89,883 8,777 9.76%
MUSHROOMS

60 3.10 3.03 51 19 37.25%

50 6.03 5.99 163 45 27.61%

40 13.93 13.56 505 124 24.55%

30 46.18 54.70 2,587 425 16.43%

20 554.95 545.79 53,337 | 1,169 2.19%

Table B.5: Response times of Apriori and Apriori-Close.

166

Appendix B. Classical Itemset Mining Algorithms

T2016D100K

time (s)

Apriori —+—
Apriori-Close ---x---

0.5 0.25
minimum support (%)

Figure B.1: Response times of Apriori-Close for T2016D100K.

C20D10K

900

time (s)

T
‘ ‘ Apriori ——
Apriori-Close ---x--- |

0
50

1
35 30 25 20 15 10
minimum support (%)

Figure B.2: Response times of Apriori-Close for C20D10K.

Mushrooms

600

500 -

400 -

time (s)

300 |

100

‘ ‘ Apri(‘)ri — 1
Apriori-Close ---x---

60

55

50

45 40 35 30 25 20
minimum support (%)

Figure B.3: Response times of Apriori-Close for MUSHROOMS.

B.3. Eclat 167

B.3 Eclat

This appendix is based on Section 3.2.2, where we presented Eclat [ZPOL97, Zak00] in a general
way. As seen, Fclat is a vertical algorithm that traverses a so-called itemset-tidset search tree
(IT-tree) in a depth-first manner. The IT search tree of dataset D (Table 3.1) is depicted in
Figure 3.2. The goal of Fclat is to find all frequent itemsets in this search tree. FEclat processes
the input dataset in a vertical way, i.e. it associates to each attribute its tidset pair. Here we
present the algorithm in detail through an example, and we provide experimental results.

The Algorithm

Eclat uses a special data structure for storing frequent itemsets called 1T-search tree. This
structure is composed of IT-nodes. An IT-node is an itemset-tidset pair, where an itemset is a
set of items, and a tidset is a set of transaction identifiers. That is, an IT-node shows us which
transactions (or objects) include the given itemset.

Pseudo code. The main block of the algorithm®® is given in Algorithm 24. First the IT-tree
is initialized, which includes the following steps: the root node, representing the empty set, is
created. The support of the empty set is equal to the number of transactions in the dataset
(100%). Eclat transforms the layout of the dataset in vertical format, and inserts under the root
node all frequent attributes. After this the dataset itself can be deleted from the main memory
since it is not needed anymore. Then we call the extend procedure recursively for each child of
the root. At the end, all frequent itemsets are discovered in the IT-tree.

addChild procedure: this method inserts an I'T-node under the current node.

save procedure: this procedure has an I'T-node as its parameter. This is the method that is
responsible for processing the itemset. It can be implemented in different ways, e.g. by simply
printing the itemset and its support value to the standard output, or by saving the itemset in a
file, in a database, etc.

delete procedure: this method deletes a node from the I'T-tree, i.e.: it removes the reference
on the node from its parent, and frees the memory that is occupied by the node.

getCandidate function: this function has two nodes as its parameters (curr and other). This
function creates a new candidate node, i.e. it takes the union of the itemsets of the two nodes,
and it calculates the intersection of the tidsets of the two nodes. If the support of the candidate is
less than the minimum support, it returns null, otherwise it returns the candidate as an I'T-node.
In Section 3.2.2 we presented an optimization method for the support count of 2-itemsets. This
technique can be used here: if the itemset part of curr and other consists of one attribute only,
then the union of their itemsets is a 2-itemset. In this case, instead of taking the intersection of
their tidsets, we consult the upper-triangular matrix to get its support. Naturally, this matrix had
been built before in the initialization phase. In the “skipped intersections” column of Table B.6,
it is indicated how many intersection operations can be saved thanks to this technique. Consult
Appendix E for a detailed description and an example.

sortChildren procedure: this procedure gets an I'T-node as parameter. The method sorts
the children of the given node in ascending order by their support values. This step is highly
recommended since it results in a much less number of rare candidates (see the last two columns
of Table B.6 for the difference).

*®Note that the main block of Charm is exactly the same.

168 Appendix B. Classical Itemset Mining Algorithms

Algorithm 24 (Eclat & Charm):

1) root.itemset < 0; // root is an IT-node whose itemset is empty
2) root.tidset « {all transaction IDs}; // the empty set is present in every transaction
3) root.support < |O|; // from the previous: support()=100%
4) root.parent < null; // the root has no parent node
5) loop over the vertical representation of the dataset (attr) {
6) if (attr.supp > min_ supp) root.addChild(attr);
0o}
8) delete the vertical representation of the dataset; // free memory, not needed anymore
9) sortChildren(root); // optimization, results in a less number of rare candidates
10)
11) while root has children
12) {
13) child « (first child of root);
14) extend(child);
15) save(child); // processing the itemset
16) delete(child); // free memory, not needed anymore
17

Algorithm 25 (“extend” procedure):

Method: extends an IT-node recursively (discovers Fls in its subtree)

Input: curr — an IT-node whose subtree is to be discovered
1) loop over the “brothers” (other children of its parent) of curr (other)
%) |
3) candidate — getCandidate(curr, other);
4) if (candidate # null)
5) curr.addChild(candidate);
6) }
7)
8) sortChildren(curr); // optimization, results in a less number of rare candidates
9)
10) while curr has children
1) {
12) child «— (first child of curr);
13) extend(child);
14) save(child); // processing the itemset
15) delete(child); // free memory, not needed anymore
16) }

B.3. Eclat 169

Running example. The execution of Fclat on dataset D (Table 3.1) with min_supp = 3
(60%) is illustrated in Figure B.4. The execution order is indicated on the left side of the
nodes in circles. For the sake of easier understanding, the element reordering optimization is not
applied.

{} x 12345

®Ax1235\ ®@Bx1345 @\Cx2345\ @[Ex1345 |

©ax135] ©[acx235| P[AEx135] V[BCx345] P[BExT1345] Y[CE x 345

O rACEX35] 3 rcEx345
©[ABEX 135

Figure B.4: Execution of Eclat on dataset D with min_supp = 3 (60%).

The algorithm first initializes the IT-tree with the root node, which is the smallest itemset,
the empty set, which is present in each transaction, thus its support is 100%. Using the vertical
representation of the dataset, frequent attributes with their tidsets are added directly under
the root. The children of the root node are extended recursively one by one. Let us see the
prefix-based equivalence class of attribute A. This class includes all frequent itemsets that have
A as their prefix. 2-long supersets of A are formed by using the “brother” nodes of A (nodes
that are children of the parent of A, i.e. B, C and E). As AB, AC and AF are all frequent
itemsets, they are added under A. The extend procedure is called now recursively on AB. Its
first 3-long superset, ABC), is not frequent, thus it is not added in the I'T-tree. ABE is frequent,
thus it is added. During the extension of AC' it turns out that ACFE is not frequent either. With
this, the subtree of A is completely discovered. After processing the nodes, this subtree can be
deleted from main memory. Extension of nodes continues with B. When the algorithm stops,
all frequent itemsets are discovered.

Experimental Results and Conclusion

We compared the efficiency of Eclat with Apriori and Pascal. These three algorithms are similar
in the sense that they are specifically built to find all frequent itemsets. The execution times
of the algorithms on different datasets is illustrated in Table B.6. Response times are presented
graphically in Figures B.5, B.6 and B.7. As we can see, Eclat performs much better than levelwise
algorithms, on both weakly and strongly correlated data.

In this appendix we presented the frequent itemset mining algorithm Fclat that is based on
a different approach. Fclat is not a levelwise, but a depth-first, vertical algorithm. As such, it
makes only one database scan. Eclat requires no complicated data structures, like trie, and it uses
simple intersection operations to generate candidate itemsets (candidate generation and support
counting happen in a single step). Apriori has been followed by lots of optimizations, extensions.
The same is true for Eclat. Experimental results show that Eclat outperforms levelwise, frequent
itemset mining algorithms. It also means that Eclat can also be used on such datasets that other
levelwise algorithms cannot simply handle.

170

Appendix B. Classical Itemset Mining Algorithms

min_supp (%) Apriori | Pascal Eclat skipped + reordering | — reordering
intersections
T20I6D100K
2 72.67 71.15 7.05 67,887 0 3
1 107.63 | 106.24 7.77 169,012 753 2,251
0.75 134.49 | 132.00 9.92 208,448 4,500 13,036
0.5 236.10 | 228.37 22.56 250,136 27,698 75,087
0.25 581.11 | 562.47 119.22 301,114 274,685 641,676
C20D10K
50 61.18 16.68 1.09 0 3 80
40 71.60 19.10 1.14 11 0 117
30 123.57 | 26.74 1.35 22 33 2,078
20 334.87 | 53.28 2.33 220 18 4,484
10 844.44 | 110.78 6.53 512 241 20,912
MUSHROOMS
60 3.10 2.04 0.81 10 2 7
50 6.03 3.13 0.79 35 6 29
40 13.93 6.00 0.84 118 39 146
30 46.18 12.79 1.00 189 132 722
20 554.95 | 30.30 3.08 491 482 4,280

Table B.6: Response times of Fclat. The column “skipped intersections” indicates the number
of intersection operations that can be saved in the case of 2-itemsets using the upper-triangular
matrix optimization (Appendix E). The last two columns show the number of rare candidates
generated by Fclat with (4) and without (—) element reordering, respectively.

T2016D100K

Apriori —+—
Pascal ---x---

time (s)

1 0.75 0.5 0.25
minimum support (%)

Figure B.5: Response times of Eclat for T2016D100K.

B.3. Eclat

time (s)

time (s)

C20D10K
I I Apri(l)ri —
Pascal
Eclat
40 -
/—/”/‘)(/ /
00 e i
[SEEEEEEEEEEEEEE [T Hoooooiooooeoo poosceioiia-e- Moo | s * |
50 45 40 35 30 25 20 15 10
minimum support (%)
Figure B.6: Response times of Eclat for C20D10K.
mushrooms
35 I ' Apri'ori ——
Pascal ---><---
Eclat -
30 R
25 4
20 4
15 4
10 7
|
25 20

minimum support (%)

Figure B.7: Response times of Eclat for MUSHROOMS.

171

172 Appendix B. Classical Itemset Mining Algorithms

B.4 Charm

This appendix is based on Section 3.2.2, where we presented the common parts of Eclat and
Charm [ZH02|. Eclat was designed to find all frequent itemsets in a dataset. Charm is a
modification of Eclat, allowing one to find frequent closed itemsets only.% Since Charm is based
on Fclat, reading Appendix B.3 is highly recommended for an easier understanding. Charm is a
vertical algorithm that traverses the itemset-tidset search tree (IT-tree) in a depth-first manner.
The IT search tree of dataset D (Table 3.1) is depicted in Figure 3.2. The goal of Charm is to
find frequent closed itemsets only in this search tree. Charm, just like Eclat, processes the input
dataset in a vertical way, i.e. it associates to each attribute its tidset pair. Here we present
the algorithm in detail. For the example we will use another dataset D’, depicted in Table B.7,
because D (Table 3.1) is not appropriate to show a speciality of Charm, namely the subsumption
check (see later). This subsection mainly relies on [ZH02|, where the proof of Theorem B.1 can
also be found.

| [A[B[C|D]E]

1 X
2| x

3| x X | x

4 x| x| x| x|x
51 x| x X | x
6 X | x| x|x

Table B.7: Another dataset (D’) for Charm.

Basic Properties of Itemset-Tidset Pairs

There are four basic properties of I'T-pairs that Charm exploits for efficient exploration of closed
itemsets. Assume that we are currently processing a node P x t(P), where [P] = {l1,l2,...,l,} is
the prefix class. Let X; denote the itemset Pl;, then each member of [P] is an IT-pair X; x t(Xj;).

Theorem B.1 Let X; xt(X;) and X; xt(X;) be any two members of a class [P], with X; <5 X;,
where f is a total order (e.g. lexicographic or support-based). The following four properties hold:

1 IFH(X0) = 1(X;), then v(Xi) = 7(X;) = (Xi U X))
2. If t(X;) C H(X;), then v(X;) # v(X;), but v(Xi) = v(X; U X;)
9. IFH(Xi) D (X)), then v(Xi) # 1(X;), but 7(X;) = v(X: U X;)
4. IfH(Xa) # 8(X;), then v(X;) # v(X;) # v(X; U X))

The Algorithm

Pseudo code. The main block of the algorithm is exactly the same as the main block of Fclat
(see Algorithm 24), thus we do not repeat it here. The difference is in the extend procedure (Al-
gorithm 26). While Eclat finds all frequent itemsets in the subtree of a node, Charm concentrates
on frequent closed itemsets only.

% Actually, this algorithm could also be called Eclat-Close, or simply Eclat-C.

B.4. Charm 173

The initialization phase is equivalent to Fclat’s: first the root node is created that represents
the empty set. By definition, the empty set is included in every transaction, thus its support is
equal to the number of transactions in the dataset (100%). Charm transforms the layout of the
dataset in vertical format, and inserts under the root node all frequent attributes. After this,
the dataset itself can be deleted from main memory since it is not needed anymore. Then the
extend procedure is called recursively for each child of the root. At the end, all frequent closed
itemsets are discovered in the IT-tree.

Algorithm 26 (“extend” procedure):

Method: extends an IT-node recursively (discovers FCls in its subtree)

Input: curr — an IT-node whose subtree is to be discovered
1) loop over the “brothers” (other children of its parent) of curr (other)
2) |
3) if (curr.tidset = other.tidset) { // Property 1
4) replacelnSubtree(curr, other.itemset);

5) delete(other);

6) }

7) else if (curr.tidset C other.tidset) { // Property 2
8) replacelnSubtree(curr, other.itemset);

9) }

10) else if (curr.tidset D other.tidset) { // Property 3

11) candidate «— getCandidate(curr, other);

12) delete(other);

13) if (candidate # null) curr.addChild(candidate);

)

15) else { // if (curr.tidset # other.tidset) // Property 4

16) candidate «— getCandidate(curr, other);

17) if (candidate # null) curr.addChild(candidate);

18)

19) }

20)

21) sortChildren(curr); // optimization, results in a less number of rare candidates

22)

23) while curr has children

2) |

25) child « (first child of curr);

26) extend(child);

27) save(child); // processing the itemset

28) delete(child); // free memory, not needed anymore

2)

The following methods are equivalent to the methods of Eclat with the same name: addChild,
delete, getCandidate, sortChildren. Their description can be found in Appendix B.3.

replaceInSubtree procedure: it has two parameters, an IT-node (curr), and an itemset X
(the itemset part of another node). The method is the following: let Y be the union of X and

174 Appendix B. Classical Itemset Mining Algorithms

the itemset part of curr. Then, traverse recursively the subtree of curr, and replace everywhere
the itemset of curr (as a sub-itemset) with Y.

save procedure: this procedure is a bit different from the procedure described in Fclat. First,
it must be checked whether the current itemset is closed or not. It can be done by testing if a
proper superset of the current node with the same support was found before. If yes, then the
current node is not closed. If the test is negative, i.e. the current itemset is closed, we can
process the itemset as we want (print it to the standard output, save it in a database, etc.).

Running example. The execution of Charm on dataset D’ (Table B.7) with min_ supp = 3
(50%) is illustrated in Figure B.8. The execution order is indicated on the left side of the nodes in
circles. For the sake of easier understanding, the element reordering optimization is not applied.

{}x 123456

OK X456 OX x346 @[Dx3456] ©[Ex1456]

©racxas] @[BO_x 456 G3[CD x 346
N\

(®|BDE x 456

o ®
ACX 34 AE X345

A x 2345

B[Dex<s]

Figure B.8: Execution of Charm on dataset D’ with min_ supp = 3 (50%).

The algorithm first initializes the IT-tree with the root node, and adds all frequent attributes
under it. The children of the root node are extended recursively one by one. Fztending A. The
itemsets AB and AC are rare. The tidsets of A and D have no relation (Property 4), thus AD
is generated and inserted under A. The itemset AFE is also rare. Frztending B. The itemset BC
is rare. The tidset of B is a proper subset of the tidset of D, thus in the subtree of node B the
sub-itemset “B” is replaced by “BD” everywhere. Since the subtree of node B consists of one
node only, this replacement only concerns one node (B x 456 becomes BD x 456). As the tidset
of BD is a proper subset of the tidset of F again, the same procedure is repeated, and BD x 456
becomes BDE x 456. Extending C. Like in the previous two cases, applying Property 2 results in
the node C'D x 346. The itemset CDE is rare. Eztending D. After applying Property 4, we get
the itemset DE. With this itemset there is a “problem™ although it is frequent, this itemset is
not closed because we already found a superset of it with the same support (BDFE), thus DFE is
not added to the I'T-tree. When the algorithm stops, all frequent closed itemsets are discovered.

Fast subsumption checking. Let X; and X; be two itemsets. We say that X; subsumes
X; (or X; is subsumed by X;), iff X; C X; and supp(X;) = supp(X;). Recall that in the
save procedure, before adding an itemset X to the set of closed itemsets, Charm checks if X is
subsumed by a previously found closed itemset. In other words, Charm can find itemsets that
are actually not closed itemsets. It might seem to be a problem, but Zaki managed to find a
very efficient way to filter these non-closed itemsets.

Zaki proposes a hash structure for storing FCls in order to perform fast subsumption checking.
It also means that Charm stores the found frequent closed itemsets in the main memory. The
idea is the following. Charm computes a hash function on the tidset and stores in the hash table
a closed set with its support value. Let h(X;) denote the hash function on the tidset of X;. This
hash function has one important criteria: it must return the same value for itemsets that are

B.4. Charm 175

included by the same set of objects. Several hash functions could be possible, but Charm uses the
sum of the tids in the tidset (note that this is not the same as support, which is the cardinality of
the tidset). Itemsets having the same hash value are stored in a list at the same position of the
hash. Before adding X to the set of closed itemsets, we retrieve from the hash table all entries
with the hash key h(X). For each element C in this list check if supp(X) = supp(C). If yes,
check if X C C. If yes, then X is subsumed by C', and we do not register X in the hash table.

2 AD (3)
3 —cb@E [—+Dw@ |
4 A (4)

Figure B.9: Hash table for the IT-tree in Figure B.S.

Let us see Figure B.9 that depicts the hash structure of the IT-tree in Figure B.8. For this
example, the size of the hash table is set to five.50 At each position of the hash table there are
pointers to lists. In each list we can find itemsets that have the same hash key. In the running
example we saw that DE is not closed. Using the hash table it can be determined the following
way. First, compute the sum of the tids in its tidset (4 + 5+ 6 = 15); then modulo this sum
by the size of the hash table to get its hash value: 15 mod 5 = 0. Traverse the list of the hash
table at position 0. We find that BDFE has the same support value as DF, thus check if DF is
a subset of BDFE. As the answer is positive, it means that DE is not closed.

Experimental Results

We compared the efficiency of Charm with Close and Pascal™. Charm and Close are specifically
built to find FCls, while Pascal®™ can filter FCIs among FIs.

Close was the first algorithm that concentrated on frequent closed itemsets instead of the
whole set of frequent itemsets [PBTL99c|. Close is a levelwise algorithm that identifies the
closure of candidate generators. If it finds a closure that already has been explored, Close
deletes it together with its generator. Thanks to this technique, Close can greatly reduce the
number of candidate generators in highly correlated data. However, computing closures this way
is an expensive operation. This algorithm is also implemented in our platform CORON.

Pascal™ was introduced in Section 3.3.1. Pascal™ is based on Pascal. First it finds all frequent
itemsets, then it marks closed itemsets. Experimental evaluations show that Pascal® gives almost
equivalent response times to Pascal.

The execution times of the algorithms on different datasets is illustrated in Table B.8. Re-
sponse times are presented graphically in Figures B.10, B.11 and B.12. On sparse datasets, like
T2016D100K, Charm is about twice as fast. However, on dense, highly correlated datasets there
is a huge difference between vertical and levelwise approaches. It is also interesting that Pascal™,
even though it finds both frequent and frequent closed itemsets, does not perform much worse
than Close.

5°Tn our implementation, we set the size of the hash table to 100,000.

176

time (s)

Appendix B. Classical Itemset Mining Algorithms

min_supp (%) Charm | Close | Pascal®™
T20I6D100K
2 32.80 | 79.37 71.23
1 73.25 | 121.66 | 106.84
0.75 91.77 | 148.89 | 133.54
0.5 135.87 | 251.69 | 231.99
0.25 361.96 | 615.51 | 575.71
C20D10K
50 1.35 17.11 16.69
40 1.55 19.55 19.03
30 1.60 27.13 26.69
20 2.28 51.18 54.56
10 3.99 103.29 | 118.60
MUSHROOMS
60 0.86 1.94 2.07
o0 0.86 2.77 3.18
40 0.91 5.01 6.05
30 1.12 10.15 12.99
20 1.43 20.22 35.88

Table B.8: Response times of Charm.

T2016D100K

700 | Charm —+— -
Close ---x---
Pascal+ ------

500 -

1 0.75 0.5 0.25
minimum support (%)

Figure B.10: Response times of Charm for T20I16D100K.

B.4. Charm

time (s)

time (s)

140

C20D10K

100

80

T T T T T T T
Charm —+—

Close
Pascal+ ---*---

50 45

35

40

30 20 15 10

minimum support (%)

25

Figure B.11: Response times of Charm for C20D10K.

mushrooms

35

25

T T T T T T T

Charm —+—
Close --x—--

Pascal+ ------

Fi

minimum support (%)

gure B.12: Response times of Charm for MUSHROOMS.

178 Appendix B. Classical Itemset Mining Algorithms

Appendix C

The Trie Data Structure

C.1 The Trie Data Structure

The trie (or prefiz tree) data structure is a tree for storing strings in which each node corresponds
to a prefix [AHUS85|. The root is associated with the empty string. The descendants of each node
represent strings that begin with the prefix stored at that node. The name of the data structure
comes from the word “retrieval” and is pronounced as “try” in order to distinguish it from the
more general “tree”. A common application of a trie is that of storing dictionary words, where
there are usually lots of words with the same prefix. Tries represent words in a very compact
way, and they allow for very fast word lookup, insertion and deletion.

Example. Store the following words in a trie (see Figure C.1): tar, tardily, tardy, target, tack,
temp.

(i) inner node
@ terminal node
(end of a word)

Figure C.1: Trie of dictionary words.

179

180 Appendix C. The Trie Data Structure

s ToD
{ABC} 2 e
{ABE} 3 el
{ACE} I e e
{BCE} 3 k- |

Figure C.2: Trie of itemsets.

Our structure is derived from the one proposed in [PBTL99c|. In our implementations, itemsets
with their associated descriptions (e.g. support value) form a Row object. Row objects are stored
in tables. If an operation requires a trie (e.g. subsets or supersets functions), then a trie is built
over the itemsets. It is important to note that all itemsets are sorted in lexzicographic order. Each
node in the trie has a value, which is a 1-long item (an attribute). Because of lexicographic order,
the value of each child is greater than the value of its parent. An itemset is represented as a path
in the trie, starting from the root node. Each node has a pointer back to its parent. Children
of a node are stored in a hash table. Each terminal node (marked with double circles) has a
pointer to its corresponding Row object. In our pseudo codes we use the following terminologies:
node.value is the item stored in the node. In the case of terminal nodes, node.itemset refers to
the corresponding itemset on which the node points to.

Example. Figure C.2 shows the trie that is built upon the table Cs of Table B.3.

C.2 Subset Function with a Trie

The Algorithm

Here we present an efficient algorithm for finding all subsets of a given set using the trie data
structure.®! Our algorithm is derived from the one proposed in [PBTL99c|.

Pseudo code. The pseudo code of the algorithm is given in Algorithm 27. The findSubsets0f
method is a recursive method with three parameters. The first parameter is the given set whose
subsets are to be found. The second parameter is the current node, which is the root of the
subtree in which the subsets are searched for. Initially, the algorithm is called with the root of
the trie. The subsets found by the algorithm are collected in a list that is a global variable. This
list is empty initially.

81 Bquality (C) is allowed.

C.2. Subset Function with a Trie 181

Algorithm 27 (subsets with a trie):

Description: finds all subsets of a given set in a trie

Input: trie — trie of itemsets
set — the set whose subsets we are searching for

Output: all subsets of the given set

1) subsets — (;

2) findSubsetsOf(set, trie.root, subsets);

3) return subsets;

hy

5) void findSubsetsOf(set, currNode, subsets)

6) {

7) if (currNode == null) return; // stopping recursion

8) // else

9) currNode.label «— set;
10) if (currNode is a terminal node) then subsets < subsets U curr N ode.itemset;
11) // where currNode.itemset is the corresponding itemset of the current node
12)
13) loop over the elements of currNode.label (attr)
)
15) childNode < currNode.getChild(attr); // get child whose value is attr
16) if (childNode 1= null)
17) {
18) setToPass <« (currNodelabel \ attr);
19) findSubsetsOf(setToPass, childNode, subsets);
20) }
o)}
2))

Figure C.3: Subset function with a trie.

182 Appendix C. The Trie Data Structure

Example. Suppose we have the following itemsets: A, AB, AC, AD, BC, BD, ABC and
ABCD. Among these itemsets we want to find all subsets of ABC, i.e. A, AB, AC, BC and
ABC.

Figure C.3 shows the trie that contains the eight itemsets. Each node in the trie has a value
(i.e. an item) and it is shown as a letter inside the node. Terminal nodes are marked with double
circles. The numbers in the boxes represent the order in which the nodes are visited. We will
use these numbers also to reference the nodes of the trie. For instance, node 1 is the root node,
node 2 is the left-most child node of the root with value A, etc. The algorithm labels each node
it visits. A node’s label appears in the top right-hand corner of the node. Henceforth, we will
write “subset” for any subset of ABC. Any subset that is found is stored in a list.

First, the root is labeled with the set whose subsets we are searching for (ABC). The
first item of ABC is A, and the root has a child node (node 2) with the value A, so we pass
ABC \ A = BC to node 2. Since node 2 is a terminal node, it is a subset. Node 2 has a child
node whose value is B (node 3), thus BC'\ B = C'is passed to node 3. Again, node 3 is a subset.
Node 3 has a child node with value C' (node 4), and so we pass C'\ C =) to node 4, which is
also a subset. We come back through recursion to node 2, and now BC \ C' = B is passed to
node 5 (since it has the value B). Node 5, being a terminal node, is therefore also a subset. The
remaining child node of node 2 has value D and the item D is not in the label of node 2 (BC).
Hence it is not visited. We return to root via recursion. Now we pass ABC \ B = AC to the
child node of root with value B, which is node 6. This is not a terminal node, and so it is not
a subset. Node 6 has a child node with the value C' (node 7). Thus AC' \ C' = A is passed to
node 7. Node 7 is a terminal node, and so it is a subset. Recursing back to root, we find that
the root does not have a child node with the value C. Therefore, the algorithm terminates.

In this method equality is allowed. If we need to find proper subsets of a given set, we simply
need to remove the given set from the answer set.

C.3 Superset Function with a Trie

The Algorithm

Here we propose an efficient algorithm for finding all supersets of a given set using the trie
data structure.’? The proposed algorithm also gives a very efficient solution if we only need the
smallest proper superset of a given set (see Property 4.1). Below we show three different uses of
the algorithm.

(1) Finding all supersets of a given set. Our algorithm traverses the trie in a breadth-first
manner (BFT). As a consequence, supersets are produced in ascending order by itemset length.
In order to reduce the search space, we rely on the property of our trie that itemsets are ordered
lexicographically. As we will see in the given example, at a certain point it is guaranteed that
no supersets are present in the subtree of a node, allowing the trie to be cut at that node.

(2) Finding all proper supersets of a given set. All proper supersets of a given set can be
found by first finding the set of its supersets and then simply removing the given set from this
set.

52Bquality (D) is allowed.

C.3. Superset Function with a Trie 183

(3) Finding the smallest proper superset of a given set. Due to breadth-first traversal,
supersets are produced in ascending order of length. To find the smallest proper superset, all
supersets need not be found. Instead, when the first superset is found, it is tested to see if it is
larger than the given set. If it is, then the search process can be stopped, since this implies that
the smallest proper superset has been found. However, if the given set is present in the trie, it
will be found the very first time (since V.S, S O S). In this case, the search is continued till the
next superset is found.

Pseudo code. The pseudo code of this algorithm is given in Algorithm 28. In its present form,
the algorithm finds all supersets of a given set, as explained above under (1). The algorithm can
be easily modified for the other two cases.

In breadth-first traversal, two kinds of nodes are distinguished. A node is said to be closed
if it has already been visited and processed. A node is called open if it is “visible” from a closed
node but it has not yet been visited and processed. All the other nodes in the search tree are
not (yet) discovered. Note that in Algorithm 28 we use the term “closed” in this sense.%3

53Not to be confused with “closed itemsets”.

184 Appendix C. The Trie Data Structure

Algorithm 28 (supersets with a trie):

Description: finds all supersets of a given set in a trie

supersets « supersets U curr N ode.itemset;

}
}

loop over the children of currNode (child) {
child.label « currNode.label;
make child open;

}

make currNode closed;
} // end while

Input: trie — trie of itemsets
set — the set whose supersets we are looking for
Output: all supersets of the given set
1) supersets «— ()
2) mark all nodes in trie as “not yet discovered”; // initialization for the BFT
3) mark trie.root open; // initialization for the BFT
4) trie.root.label « set;
5)
6) loop:
7) while there are open nodes in trie
8) |
9) currNode — first open node in trie; // choose it by breadth-first
10)
11) if (currNode is not the root of trie)
12)
13) if (currNode.label is not empty)
14) {
15) if (currNode.value == first element of currNode.label) {
16) delete first element of currNode.label,
17) }
18) else if (currNode.value > first element of currNode.label)
19) {
20) make currNode closed;
21) continue loop; // continue execution at line 6
22) // Stop the exploration of this subtree. Because of lexicographic order,
23) // it is sure that we will not find any supersets in this subtree.
24) }
25) }
26)
27) if ((currNodelabel is empty) and (currNode is a terminal node))
)
)
)
)
)
)
)
)
)
)
)
)

return supersets;

C.3. Superset Function with a Trie 185

Figure C.4: Superset function with a trie.

Example

Suppose we have the following itemsets: AB, ABC, ABD, ABE, BCDE, BCEF, BCFG, C
and CDE. Among these itemsets we want to find all supersets of BD, i.e. ABD and BCDE.
Figure C.4 shows the trie that contains the nine itemsets.

Each node in the trie has a value (i.e. an item) and it is shown as a letter inside the node.
Terminal nodes are marked with double circles. The numbers in the boxes represent the order
in which the nodes are visited. We will use these numbers also to reference the nodes of the trie.
For instance, node 1 is the root node, node 2 is the left-most child node of the root with value
A, etc. The algorithm labels nodes. A node’s label appears in the top right-hand corner of the
node. Henceforth, we will write “superset” for any superset of BD. Any superset that is found
is stored in a list.

Labels are an essential part of the algorithm. Let S be the search set, i.e. the set whose
supersets are to be found, and let £ be the label of a node. Then:

1. The set S\ £ contains the elements that have already been found in the current path.*

2. The set L contains the elements that are still to be found by extending the search path.

For instance, merely by looking at the label of node 6, it is evident that the current path
(root — node 3 — node 6) contains B and does not contain D. If a node n has an empty label,
it implies that all the elements of the search set have been found. It also implies that all the
terminal nodes of the sub-tree starting at node n are supersets of the search set.

Problem: find all supersets of BD in the trie of Figure C.4. First, the trie is initialized for
breadth-first traversal: all nodes are marked as “not yet discovered”; the root is marked “open”;

64The “current path” is the path from the root to the current node.

186 Appendix C. The Trie Data Structure

the root is labeled with the search set (here, BD). Children of the root node are marked “open”
and the label BD is passed to them. Now, root is marked “closed”. Since we use breadth-first
traversal, the first open node is node 2. Node 5 is labeled with BD and it is marked “open”.
Now node 2 is marked “closed”. The value of node 3 is equal to the first element of its label,
thus “B” is removed from its label. Its new label, D, is passed to node 6 and node 6 is marked
“open”. Now node 3 is marked “closed”. Node 4’s value, C, is larger than the first element of its
label (lexicographically C' > B). Because of the lexicographic ordering, it is not possible to find
a superset in the subtree of node 4, thus the trie is cut at node 4. The subtree of node 4 will
not be traversed. Node 4 is marked “closed”. The value of node 5 is equal to the first element
of its label. The new label of node 5, D, is passed to its children, and the children are marked
“open” while node 5 is marked “closed”. From node 6, D is passed to its children, which are
marked “open” and node 6 is marked “closed”. Node 7 is marked “closed”. In node 8, the value
of the node is equal to the first element of its label, thus its label is changed to the empty set.
Since its label is empty and node 8 is a terminal node, the corresponding itemset (ABD) is a
superset. Node 8 is marked “closed”. At node 9 the trie is cut and it is marked “closed”. In node
10 the label is changed to the empty set. As node 10 is not a terminal node, it is not a superset.
Node 10 is marked “closed” and node 13 is marked “open”. Node 13 is labeled by the empty set.
The trie is cut at nodes 11 and 12. Node 13 has an empty label and it is a terminal node, thus
BCDE is a superset.

Appendix D

Horizontal and Vertical Data Layouts

Most itemset mining algorithms use a horizontal database layout, such as the one shown in Fig-
ure D.1, consisting of a list of transactions (or objects), where each transaction has an identifier
followed by a list of items that are included in that transaction. Some algorithms, like Eclat or
Charm, use a vertical database layout, such as the one shown in Figure D.1, consisting of a list
of items (or attributes), where each item is associated with a list of transactions that include the
given item. One layout can easily be converted into the other on-the-fly, with very little cost.
This process requires only a trivial amount of overhead.

1 A B CDE
2 1] [1] [2 1
3 2l [al s s
4 511515 5
;

Horizontal layout Vertical layout

Figure D.1: Horizontal and vertical layouts of dataset D (Table 3.1).

Horizontal to Vertical Database Transformation

For each transaction ¢, we read its item list. During the transformation process, we build an
array that is indexed by items of the database. We insert the ID of ¢t in those positions of the
array that are indexed by the items present in the associated list of ¢.

Example. Consider the item list of transaction 1, shown in Figure D.1. We read its first item,
A, and insert 1 in the array indexed by item A. We repeat this process for all other items in the
list and for all other transactions. Figure D.2 shows the transformation process step by step.?

55In the figure, “tid” stands for “transaction ID”.

187

188 Appendix D. Horizontal and Vertical Data Layouts

Add tid 1 Add tid 2 Add tid 3 Add tid 4 Add tid 5
A B CDEI'!ABTGCDE A B CDE A B CDE A B CDE
[[1] 1@ NRIBEARRANAEE
2 2| (3] |3 3 2| 3] |3 3 2| (3] |3 3

3 3| |4] |4 4 3| 4] |4 4

5|(5]|5 5

Figure D.2: Horizontal to vertical database transformation.

AddA | AddB Add C Add D Add E
1 1 1 1 [aBD]| | 1 [ABDE]
2 2 2 2 2
3 3 3 3 [ABC| | 3 [ABCE]
4 4 4 4 4 [BCE
5 5 5 [ABC| | 5 [ABC| | 5 [ABCE]

Figure D.3: Vertical to horizontal database transformation.

Vertical to Horizontal Database Transformation

For each item 4, we read its transaction list. During the transformation process, we build an
array that is indexed by transaction IDs. We insert item ¢ in those positions of the array that
are indexed by the transactions present in the associated list of i.

Example. Consider the transaction list of item A, shown in Figure D.1. We read its first
transaction ID, 1, and insert A in the array indexed by transaction 1. We repeat this process for
all other transaction IDs in the list and for all other items. Figure D.3 shows the transformation
process step by step.

Appendix E

Efficient Support Count of 2-itemsets

Here we present an optimization of the support count of 2-itemsets. This method was proposed
by Zaki in [ZH02| for the Charm algorithm. However, this optimization can be used with Eclat
and with breadth-first algorithms too, such as Apriori.

In the case of vertical algorithms (e.g. Fclat, Charm), this method significantly reduces the
number of intersection operations. The idea is that the support of 2-itemsets is calculated and
stored in a matrix. Then, an intersection operation is performed only if it surely results in a
frequent itemset.

In the case of levelwise algorithms, with this method we can read the support from the matrix
directly, and we do not need to use a trie for finding the subsets of each transacation in Co (where
Cy contains the potentially frequent 2-itemsets). Note that this optimization only concerns the
support count of 2-itemsets in Cy. The support values of larger candidates are determined by a
trie.

The Algorithm

The algorithm requires that the database be in horizontal format. In the case of vertical algo-
rithms it means that first the database must be transformed (see Appendix D). If the database
has n attributes, then an (n — 1) x (n — 1) upper triangular matrix is built, such as the one
shown in Figure E.1. This matrix will contain the support values of 2-itemsets, thus its entries
are initialized by 0. A row (transaction) of the database is decomposed into a list of 2-itemsets.
For each element in this list, the value of its corresponding entry in the matrix is incremented
by 1. This process is repeated for each row of the database.

B
0

ool O

o|o|o| O

OO0 >
o|lo|o|lo| m

Figure E.1: Initialized upper triangular matrix for counting the support of 2-itemsets.

189

190 Appendix E. Efficient Support Count of 2-itemsets

Read row 1 Read row 2 Read row 3 Read row 4 Read row 5
E DCB E DCB E DC B E DCB E DCB
A[1[1]0]1 A [1]1]1]1 Al2|1]|2|2 Al2|1]|2|2 A |3]1[|3(3
B |1]1]0 B [1]1]0 B |2]1]1 B |3|1]2 B [4]1]3
C (o]|0 C |0]|O C |[1]0 C|2]0 C |3|0
D [1] D [1] D [1] D [1] D [1]

Figure E.2: Support count of 2-itemsets of dataset D (Table 3.1) with an upper triangular matrix.

Example. The first row of dataset D (Table 3.1) includes the itemset ABDE. This itemset is
decomposed into the following list of 2-itemsets: {AB, AD, AE, BD, BE, DE}. We read the
first element of this list, AB, and increment its entry in the triangular matrix. We repeat this
process for all other itemsets in the list and for all other rows of the database. Figure E.2 shows
the process step by step.

Appendix F

Comparison of Generators
Representation and Frequent Closed
Itemset Representation

Here we compare the sizes of the generators representation and the frequent closed itemset
representation of frequent itemsets. Tables F.1 and F.2 show the database name, the used
minimum support value, the number of frequent generators and minimal rare generators, the
size of the generators representation (which is the sum of the cardinality of the previous two
sets), the size of the FCI representation (i.e. the number of FCIs), and the ratio of the size
of the FCI representation to the size of the generators representation expressed in percentage.
As we can see, the FCI representation is always much more condensed than the generators
representation, especially in the case of sparse datasets.

size of size of
dataset min_supp |FG] IMRG| generators FCI repr. |FCT repr |
|gen. repr.|
repr.
(IFG|+|MRG]|)
T20I6D100K 10% 7 907 914 7 0.77%
5% 99 5,645 5,744 99 1.72%
2% 378 68,411 68,789 378 0.55%
1% 1,634 169,819 171,353 1,534 0.90%
0.75% 4710 | 211,578 916,288 4,710 2.18%
0.5% 26,305 | 268,915 295,220 26,208 8.88%
0.25% 149,447 | 537,765 687,212 149,217 21.71%
T25I10D10K 10% 20 1,099 1,119 20 1.79%
5% 142 10,798 10,940 142 1.30%
2% 533 106,931 107,464 533 0.50%
1% 2728 | 223,262 995,990 2,676 1.18%
0.75% 8,164 | 279,363 287,527 7,841 2.73%
0.5% 57,857 | 413,827 471,684 52,033 11.03%
0.25% 193,104 | 1,190,931 1,384,035 150,601 10.88%

Table F.1: Comparison of the generators representation and the FCI representation of frequent
itemsets (Table 1 of 2).

191

192 Appendix F. Comparison of Generators Representation and Frequent Closed Itemset Representation

size of size of
dataset min_supp [FG| | IMRG] generators FCI repr. [FCT repr |
|gen. repr.|
repr.
(IFG|+|MRG|)
C20D10K 10% 9,331 901 10,232 8,777 85.78%
5% 23,051 | 2,002 95,053 21,213 84.67%
2% 97,659 | 7,735 65,394 50,729 77.57%
1% 102,315 | 18,666 120,981 85,608 70.76%
0.75% | 127,745 | 24,641 152,386 103,892 68.18%
0.5% 170,260 | 37,816 208,076 132,952 63.90%
0.25% | 267,248 | 69,104 336,352 193,448 57.51%
C73D10K 95% 121 1,622 1,743 93 5.34%
90% 1,368 1,701 3,069 942 30.69%
85% 3513 | 1,652 5,165 2.359 45.67%
80% 6,280 | 1,802 8,082 4,262 52.73%
5% 13,917 | 1,939 15,856 9,367 59.08%
70% 20,007 | 2,727 31,734 19,501 61.45%
65% 71,874 | 3,675 75,549 47,491 62.86%
MUSHROOMS 50% 93 147 200 45 22.50%
40% 153 254 407 124 30.47%
30% 544 409 953 425 44.60%
20% 1,704 | 1,004 2708 1,169 43.17%
10% 7585 | 3,077 10,662 4,850 45.49%
5% 21,391 | 8,806 30,197 12,789 42.35%
1% 105,520 | 41,557 147,077 52,708 35.84%

Table F.2: Comparison of the generators representation and the FCI representation of frequent
itemsets (Table 2 of 2).

Appendix G

The Coron Toolkit

G.1 Coron-base

Coron-bage is the most important module of the CORON platform. This module is responsible
for the extraction of different itemsets, providing input to the other modules of the platform.
With Coron-base one can extract the following itemsets:

e frequent itemsets (FIs)

e frequent closed itemsets (FCIs)

o frequent generators (FGs)

e maximal frequent itemsets (MFIs)
e minimal rare itemsets (MRIs)

e rare itemsets (RlIs)

e minimal zero generators (MZGs)

e minimal rare generators (MRGs; equivalent to MRIs by Proposition 5.2)

Coron-base has a command line and a graphical user interface as well.

G.1.1 Command-line Interface

Usage: coron [switches] <database> <min_supp> [-alg:<alg>]

There are two compulsory parameters:
1. the database file (in .basenum, .bool or .rcf format), and

2. the minimum support (in absolute or relative value).

Throughout this guide we will work with the dataset shown in Table G.1.% In the examples we
assume that this dataset is stored in a file called laszlo.rcf in .rcf format. The supported file
formats are shown in Table G.2. Line ¢ of a .basenum file contains items that are included in
object i. The .bool file is a binary matrix representation of the binary database. The .rcf file
is very similar to the .bool file format but it has the advantage that names can be assigned to
objects and to attributes.

66This database is the same as dataset D in Table 3.1.

193

194 Appendix G. The Coron Toolkit

01 b'e X X X
09 X X

03 X X X b'¢
04 X X X
05 X X X X

Table G.1: A toy dataset for the examples.

(1) .basenum (2) .bool (3) .rcf
1245 11011 [Relational Context]
13 10100 Default Name
1235 11101 [Binary Relation]
235 01101 Name_of_dataset
1235 11101 ol | 02 | 03 | 04 | 05

alblcldle
11011
10100
11101
01101
11101

[END Relational Context]

Table G.2: Our example dataset (Table G.1) in different file formats.

G.1. Coron-base 195

The minimum support can be given in either absolute or relative value, e.g. 2 or 40%.

There are two kinds of switches:
1. -option (example: -names)

2. -key:value (example: -alg:apriori)

The algorithm to be used can be specified with the -alg:<alg> switch. The available algorithms
are described below.

Example:
./start test/laszlo.rcf 2 -names -alg:apriori
Result:
Database file name: test/laszlo.rcf
Database file size: 208 bytes
Number of lines: 5
Largest attribute: 5
Number of attributes: 5
Number of attributes in average: 3.4
min_supp: 2, i.e. 40%
Chosen algorithm: Apriori
{a} @)
{b} (4)
FIs: 15

At the beginning and at the end there are some statistics about the dataset and the number of
found itemsets.

If we only want to analyze the input dataset without calculating the itemsets, use the -stat
option:

./start test/laszlo.rcf -stat
In this case the program terminates after showing the database statistics.

The -names option is highly recommended. It works only for .rcf files. With this option, attribute
numbers can be replaced by their names. The example above without -names would look like
this:

./start test/laszlo.rcf 40% -alg:apriori
Result:

{1} 4)
{2} @

196 Appendix G. The Coron Toolkit

This means: the first attribute has support 4, the second attribute has also support 4, etc.

Other options:

--help help information
--version, -V version information
--update check for a new version

Verbosity options:

-V:m memory usage
-v:f function information (which function is called)
-v:t time information (runtime)

These options can be combined with -vc:
-vc:mf equivalent to -v:m,-v:f

Verbosity options display some additional information while the program is running. These kind
of feedbacks are always redirected to the standard error, and these lines start with a ’>’ sign.
Because of the redirection to stderr, this information does not mix with normal result.

Statistical information is sent to the standard output, and these lines always start with a "#
sign. This way, these lines can be easily filtered.

G.1.2 Available Algorithms
1. Apriori (-alg:apriori)

This is the basic algorithm for finding FIs. It is efficient for sparse datasets only. Since it is a
levelwise algorithm, it produces itemsets in ascending order by length. Sample output:

[{a} (@)

This means: {a} is a frequent itemset with support 4.

2. Apriori-Close (-alg:aprioriclose, -alg:ac)

A simple extension of Apriori. It also marks FCls. It is almost as efficient as Apriori, i.e. the
derivation of FCIs does not induce serious additional computation time.

{a} (4) +
{b} (4)

In each algorithm, the '+’ sign means that the itemset is closed. That is: {a} is a frequent closed
itemset with support 4; {b} is frequent (but not closed) with support 4.

G.1. Coron-base 197

3. Apriori-Rare (-alg:apriorirare)

This algorithm is based on Apriori, thus its efficiency is like Apriori’s. While enumerating Fls,
it filters minimal rare itemsets (MRIs). An MRI is a rare itemset, and all its proper subsets are
frequent.

There are two kinds of MRIs: MRIs with support 0 (zero itemsets), and MRIs with support
higher than 0 (non-zero itemsets). It must be specified which group to extract:

e -all extract zero itemsets too, or
e -nonzero extract non-zero itemsets only

./start test/laszlo.rcf 3 -names -alg:apriorirare -nonzero

[{d} (D

This means: {d} is an MRI with support 1.

4. Arima (-alg:arima)

Arima (A Rare Itemset Miner Algorithm) finds rare itemsets (RIs) in the following way: it takes
MRIs generated by Apriori-Rare. Then, using non-zero MRIs it finds their proper supersets. In
the result zero-itemsets are avoided because of their large number.

Minimal zero generators (MZGs) are used to reduce the search space (lots of zero itemsets are
pruned thanks to this technique).

./start test/laszlo.rcf 3 -names -alg:arima

’{a, d, e} (1)

This means: {a, d, e} is a rare itemset with support 1.

5. BtB (-alg:btb)

BtB (Breaking the Barrier) finds rare (non-zero) equivalence classes. The result is like Zart’s
with the difference that these equivalence classes are rare. From this result we can generate
MRG association rules.

Idea: get non-zero MRIs and find their closures. Result is produced in the following form:
closure + list of generators.

./start test/laszlo.rcf 3 -names -alg:btb

{a, b, c, e} (2 +; Ha, b, c}, {a, c, e}l

This means: {a,b,c,e} is a rare closed itemset with support 2. It has two generators: {a,b,c} and
{a,c,e}. By the property of equivalence classes, their support is also 2.

198 Appendix G. The Coron Toolkit

6. Charm (-alg:charm)

A very efficient algorithm for finding FCIs. Not a breadth-first, but a depth-first algorithm. It
needs to keep all FCls in the main memory in order to decide if a newly found itemset is closed
or not. When the algorithm finishes the enumeration of itemsets, it has all FCIs in the main
memory in a hash structure. Normally the itemsets are not ordered by length, but if needed, the
hash structure can be easily traversed in such a way that the result be ordered.

{a, b, e} (3) +

This means: {a,b,e} is an FCI with support 3.

7. Charm-MFI (-alg:charmmfi, -alg:mfi)

This algorithm is based on Charm (thus its efficiency is almost the same). Filters MFIs among
FCIs. The two options (-alg:charmmfi and -alg:mfi) result in different outputs:

./start test/laszlo.rcf 3 -names -alg:charmmfi

{a, ¢} (3) [mfi: +] +
{b, e} (4) [mfi: -] +

It prints all FCIs and marks which FCIs are MFIs. That is: {a,c} is an FCI with support 3, and
it is an MFI too. On the contrary, {b,e} is not an MFI.

./start test/laszlo.rcf 3 -names -alg:mfi

{a, b, e} (3) [mfi: +] +

It only prints MFIs. Those FCIs that are not MFIs are not displayed. That is: {a,b,e} is an
MFTI. Note that all MFIs are FCIs too (just like all FCIs are FIs).

8. Close (-alg:close)

A levelwise algorithm that finds FCIs. It is more efficient on dense datasets. Its authors do not
mention that during the levelwise search the algorithm can find the same FCIs several times.
Thus, if the result is written immediately to a file, then it will contain duplicates. To avoid it,
FCIs must be kept in main memory in order to prune duplicates. It results in a large memory
consumption.

[{b, c, e} (3) +

This means: {b,c,e} is an FCI with support 3.

9. Eclat (-alg:eclat)

Actually, Charm is a modified version of Fclat. Eclat is not a breadth-first, but a depth-first
algorithm. It finds all Fls in a very efficient way. In the output, frequent itemsets are not ordered
by their length.

G.1. Coron-base 199

’{a, b, e} (3)

This means: {a,b,e} is an FI with support 3.

10. Eclat-Z (-alg:eclatz)

Eclat-Z (Eclat-Zart) is a combination of Fclat with the idea introduced in Zart. Eclat finds
efficiently all FIs. These itemsets are stored in a file. When done, the itemsets in the file are
processed in ascending order by length (remember, Eclat produces Fls in an unordered way).
This can be done efficiently with a special file indexing technique. During this levelwise post-
process, FGs and FCIs are marked, and generators are associated to their closures.

[{b, e} (&) +; [{b}, {e}]

This means: {b,e} is an FCI with support 4. It has two generators, {b} and {e} (with the same
support).

11. Pascal (-alg:pascal)

An efficient levelwise algorithm for finding all FIs. It also marks which itemsets are key genera-
tors. Among levelwise Fl-miner algorithms, it may be the most efficient.

{a} (4) [key: +]
{b, e} (4) [key: -]

This means: {a} is an FI with support 4. It is an FG too. The itemset {b,e} is an FI with
support 4, but it is not a key generator.

12. Pascal+ (-alg:pascalplus)

Pascal™ is a simple extension of Pascal. In addition to Pascal, it also tells which itemsets are
closed.

{a} (4) [key: +] +
{b, c} (3) [key: +]
{b, e} (4) [key: -] +

This means: {a} is an FI, an FG and an FCI. The itemset {b,c} is an FI, an FG, but not an
FCI. The itemset {b,e} is an FI, not an FG, but an FCI.

13. Titanic (-alg:titanic)

Titanic, similary to Pascal, uses pattern counting inference to minimize the number of database
passes. Titanic has an interesting “trick” it can derive the closure of frequent generators without
accessing the database. Unfortunately, in order to do so, it must keep in main memory a large set
of itemsets, and it must also perform lots of intersection operations. This results in an algorithm
with a huge memory consumption.

200 Appendix G. The Coron Toolkit

{b} (4) [key: +; closure: {b, e}]

This means: {a} is an FG with support 4. Its closure is {b, e} with the same support value.

14. Zart (-alg:zart)

This algorithm is based on Pascal. In addition to Pascal, it marks FCIs, and associates generators
to their closures. It is almost as efficient as Pascal. The output of the algorithmn is ideal for
generating minimal non-redundant association rules.

[{b, e} (@) +; [{b}, {e}]

This means: {b,e} is an FCI with support 4. It has two generators, {b} and {e} (with the same
support).

G.1.3 Graphical User Interface

Coron-base is equipped with a graphical frontend too. Figures G.1 — G.7 show the different steps
of the interface. At step 1 the user chooses the input file. At step 2 he chooses an output file
because the result is saved in a file in all cases. It is possible to use a temporary file. After
defining the minimum support (step 3) and choosing the mining algorithm (step 4), the software
summarizes the user’s choice at step 5. The user can go back at each step to modify his choice.
After pressing the “Start calculation!” button, the result is saved in a file, which can be visualized
at the end (step 6).

The graphical interface uses a configuration file called .coron_gui.rc, which is placed in the
HOME/ . coron directory. When the GUI is launched for the very first time, this file is created
automatically with the default values. This file can be edited by the user to customize the
software.

|2 Coron GUI v0.6.1
Eile Coron Help

Start 1
> Coron CUI w0 6.1
> Coron version 0.7.0.0
= The file caron_gui.rc has been successfully read |

[N

4|

.fstant

Figure G.1: Step 0 — Welcome screen.

G.1.

Coron-base

Coron GUI v0.6.1
File Coron Help

Step 1: Choosing the input file Reset this step

(Mext step © Choosing the output file)

Help

Input File : [fusersforpailleurfszathmar/eclipsefCoranftestflaszlo.rcf

My input dir Clear

o
> Coron GUI w061 = |
= Caran wersion 0.7.0.0
= The file .coron_gui.rc has been successfully read |
> Proceeding 1o step 1.
L fstart
Figure G.2: Step 1 — Choosing the input file.
Coron GUI v0.6.1 — O X

File Coron Help

Step 2 : Choosing the output file Reset this step

(Mext step - Defining minimum support)

Help

Output File : |ftmp/coronS 2413 out

My output dir Temp. File Clear

[] Delete if exists

Back

> Coron wersion 0.7.0.0

= The file .coron_gui.rc has bheen successfully read |

> Proceeding 1o step 1.

= Using the file fusersforpailleur/szathmar/feclipsefCoronftestflaszlo.rct as input
> Proceeding to step 2...

Jfstart Jusersforpailleurfszathmar/feclipsefCaronftestflaszlo. rcf

Figure G.3: Step 2 — Choosing the output file.

201

202 Appendix G. The Coron Toolkit

Coron GUI v0.6.1 — O X
File Coron Help

Step 3 : Defining minimum support Reset this step Help

(Mext step - Choosing the mining algaorithm)

Minimum support: ® absolute 2! Clear

) relative % Clear

> Caron GUI w0 & 1 -
> Caron wersion 0.7.0.0

= The file .coron_gui.rc has been successfully read |

> Proceeding to step 1.,

= Using the file fusersfarpailleur/szathmar/eclipse/Coron/test/laszlo.rof as input
>

>

>

Proceeding to step 2.,
Using the file ftmpfcorons24 13 out as output
Proceeding to step 3.

Jfstart fusersforpailleurfszathmar/eclipse/Coronftestflaszlo.rcf -of: ftmpfooron524 132 out
Figure G.4: Step 3 — Defining the minimum support.
Coron GUI v0.6.1 — O x

File Coron Help

Step 4 : Choosing the mining algorithm Reset this step Help

(Mext step : Summary and calculation)

Algorithm to use : (0 Apriori Algorithm description :

) Apriori- Close Extracts FCIs, minimal generators,
and associates minimal generators

2 Apriori-Rare with their closure

i) Close

i) Pascal

i) Pascal+

| Zart

) RMS Carpathia

i) Charm

i Edlat

) Edlat-Z

Get itemsets 0 without names §ust numbers)

® with names (only for .rcf files)

> Proceeding 1o step 2.

= Using the file fimpfcoronS24 13 out as output
> Proceeding to step 3.,

= Using a minimum support of 2

> Proceeding to step 4.,

Jfstart jusersforpaillewrfszathmar/eclipsefCoronftestflaszlo.rcf -of: jfimpfooron24 13 out 2 -alg: Zar -names

Figure G.5: Step 4 — Choosing the mining algorithm.

G.1.

Coron-base

Coron GUI v0.6.1 — | O X
File Coron Help

Step 5 : Summary and calculation Help

summary :
Input file : Jusersferpaillersszathmarfedipse/Corenftestlaszlo rof
Output file Jmp/iorons2413 owt
Min. suppart 2
lAlgarithm 1o use : Zar
Show attribute names © YES
Start Calculation | View result
Elapsed time : 000000000 | je 0.000s5

Back

v

=)
> Using the file fimpfooranS24 13 00t as output
> Proceeding to step 3
= Using a minimum support of 2
> Proceeding to step 4
= Using the mining algorithm "Z2an”
> Extracting itemsets with names
> Proceeding to step 5...

fstart fusersforpailleurfszathmarfeclipse/Coronftestflaszlo. ref -of: jimpjcoron5 2412 out 2 -alg:zart -names

Figure G.6: Step 5 — Statistics of the user’s choice.

CORON Result Viewer (/tmp/cor:

File VYiew Help
Database Statistics

[Database file name fusersforpailleurfszathmarfeclipse/Coronftest flas...
Database file size 208 bytes
Mumber of lines)
Largest attribute 5
Number of attributes)
Mumber of attributes in awverage R
min_supp 2, i.e. 40%
Chosen algorithim Zart (w2 [triangular matrix]
Itemsets
Frequent Closed ltemsets Supports Minimal generators
ia} 4 ia)
i} 4 ich
ia, c} 3 {a, o}
ih, e} 4 ikl {8}
ia, b, e} i ia, b} {a, e}
ib, c, &) 3 ih, b i, e}
ia, b, C, e} 2 {3, b, c} {3 ¢, e}

Itemsets Statistics

Fls: 15

FCls: 7

Total number of minimal generators: 11

There is MO full column in the input dataset,

46.67% of Fls are closed.

F3.33% of Fls are minimal generators.

Awerage number of minimal generators in equivalence classes: 1.57
Max. number of minimal generatars in equivalence classes: 2
kumber of iterations {with the last, empty table included): 5
Mumber of database passes: 2

| ¥

> The file "ftmpfcoron>24 13 out" is being read. ..
> The file "ftmp/fcoron>24 13 out" was completely read {7 itemsets).

Figure G.7: Step 6 — Displaying the result.

I

203

204 Appendix G. The Coron Toolkit

G.2 AssRuleX

AssRULEX (Association Rule eXtractor) is the second most important module of the CORON
platform. This module is responsible for the extraction of different sets of association rules. With
AssRULEX one can extract the following association rules:

1. all valid association rules -rule:all

2. closed association rules -rule:closed
3. all informative association rules -rule:all_inf
4. reduced informative association rules -rule:inf

5. Generic Basis (GB) -rule:GB

6. (all) Informative Basis (IB) -rule:all_IB
7. reduced Informative Basis (IB) -rule:IB

8. rare informative association rules -rule:rare

Note that under “all informative association rules” we mean the minimal non-redundant as-
sociation rules (MANR), under “reduced informative association rules” we mean the transitive
reduction of MNR (i.e. RMNR), and under “rare informative association rules” we mean the
exact MRG rules.%7

G.2.1 Command-line Interface

Usage:

assrulex [switches] <database> <min_supp> <min_conf> -alg:<alg> -rule:<rule>

There are five compulsory parameters:

database file (in .basenum, .bool or .rcf format)
minimum support

minimum confidence

name of the algorithm to be used

A

rule set that we want to extract with the previously specified algorithm.

The minimum support can be given in either absolute or relative value, e.g. 2 or 40%.

The minimum confidence can be given as a real value (between 0 and 1.0, e.g. 0.5), or as a
percentage (between 0% and 100%, e.g. 50%).

There are two kinds of switches:
1. -option (example: -names)

2. -key:value (example: -alg:apriori)

Other options:

57The reason of this “confusion” is that Bastide et al. called their rules as “informative rules” in [BTPT02].
However, Kryszkiewicz in [Kry02] uses the concept “informative” in a different sense, and she calls the same set
of rules as “minimal non-redundant rules”. In the thesis we use this latter terminology, but since we started to
develop AssRULEX using the old terminology, we decided not to change it to allow backward compatibility.

G.2. AssRuleX

--help help information
--version, -V version information
--update check for a new version

Verbosity options:

-V:im Imemory usage
-v:f function information (which function is called)
-v:t time information (runtime)

These options can be combined with -vc:

-vc:mf equivalent to -v:m -v:f

The following algorithm /association rules combinations can be used:
Apriori:

1) all association rules -rule:all
Close:

1) closed association rules -rule:closed
Pascal:

1) all association rules -rule:all
Pascal+:

1) all association rules -rule:all

2) closed association rules -rule:closed
Charm:

1) closed association rules -rule:closed
Zart:

1) all association rules -rule:all

2) closed association rules -rule:closed

3) all informative association rules -rule:all_inf

4) reduced informative association rules -rule:inf

5) Generic Basis (GB) -rule:GB

6) (all) Informative Basis (IB) -rule:all_IB

7) reduced Informative Basis (IB) -rule:IB
Eclat-Z:

1) all association rules -rule:all

2) closed association rules -rule:closed

3) all informative association rules -rule:all_inf

4) reduced informative association rules -rule:inf

5) Generic Basis (GB) -rule:GB

6) (all) Informative Basis (IB) -rule:all_IB

7) reduced Informative Basis (IB) -rule:IB
BtB:

1) rare association rules -rule:rare

Example:

205

206 Appendix G. The Coron Toolkit

./start test/laszlo.rcf 4 50} -names -alg:zart -rule:inf

Result:

Database file name: test/laszlo.rcf
Database file size: 208 bytes

Number of lines: 5

Largest attribute: 5

Number of attributes: 5

Number of attributes in average: 3.4

min_supp: 4, i.e. 80%

min_conf: 50%

Chosen algorithm: Zart

Rules to extract: reduced informative association rules

{b} => {e} (supp=4 [80.00%]; conf=1.000 [100.00%]; suppL=4 [80.00%];
suppR=4 [80.00%]; class=FF) +

{e} => {b} (supp=4 [80.00%]; conf=1.000 [100.00%]; suppL=4 [80.00%];
suppR=4 [80.00%]; class=FF) +

Number of found rules: 2
Number of FF rules: 2

At the beginning and at the end there are some statistics about the dataset and the number of
found rules.

If we only want to analyze the input dataset without calculating the itemsets, use the -stat
option:

./start test/laszlo.rcf 4 50}, -names -alg:zart -rule:inf -stat
In this case the program terminates after showing the database statistics.

The -names option is highly recommended. It works only for .rcf files. With this option, attribute
numbers can be replaced with their names.

Let us see what a rule looks like:

{b} => {e} (supp=4 [80.00%]; conf=1.000 [100.00%]; suppL=4 [80.00%];
suppR=4 [80.00%]; class=FF) +

This means: the antecedent is {b}, the consequent is {e}. The support of the rule is 4, which
is equivalent to 80% in this dataset (Table G.1). Confidence: 100%. Support of the left part of
the rule: 4; support of the right part of the rule: 4. The rule is in the FF class, i.e. both sides
of the rule are frequent (frequent itemset implies frequent itemset). The rule is closed.

There are some other quality measures available for the rules. They can be visualized with the
-full or -measures switch.

G.2. AssRuleX 207

{b} => {e} (supp=4 [80.00%]; conf=1.000 [100.00%]; suppL=4 [80.00%]; suppR=4
[80.00%]; 1ift=1.250; conv=NOT_DEF; dep=0.200; nov=0.160; sat=1.000; class=FF) +

This means:

1. left part of the rule ({b})
2. right part of the rule ({e})
3. support of the rule (4, i.e. 80%)
4. confidence of the rule (1.0, i.e. 100%)
5. support of the left part of the rule (4, i.e. 80%)
6. support of the right part of the rule (4, i.e. 80%)
7. lift (1.250)
8. conviction (not defined in the case of exact association rules)
9. dependency (0.200)

10. novelty (0.160)

11. satisfaction (1.000)

12. classification of the rule (type FF, i.e. frequent itemset implies frequent itemset)

13. is it a closed rule? (in the example the rule is closed)

Notes: in some cases a statistical measure cannot be calculated for a rule. In this case “NOT DEF”
is displayed. The '+’ at the end means that the rule is closed, i.e. the union of the antecedent
and consequent is a closed itemset.

With the -examples switch one can visualize the positive and negative examples of each rule.
Positive example: objects that contain left and right sides of the rule. Negative example: objects
that contain the left, but not the right side of the rule.

Example:

./start test/laszlo.rcf 2 50% -names -alg:zart -rule:inf -examples

Sample output:

{a} => {b, e} (supp=3 [60.00%]1; conf=0.750 [75.00%]; suppL=4 [80.00%];

suppR=4 [80.00%]; class=FF) +

Positive examples (objects that contain left AND right sides of the rule):

[o1, 03, 05]

Negative examples (objects that contain left, BUT NOT the right side of the rule):
[o2]

208 Appendix G. The Coron Toolkit

G.2.2 Graphical User Interface

AssRULEX also has a graphical frontend. The graphical interface is very similar to Coron-base’s,
thus the following figures only show those screens that are different.

At step 1 the user chooses the input file. At step 2 we need to choose an output file because
the result is saved in a file in all cases. It is possible to use a temporary file. After defining
the minimum support and minimum confidence (step 3, Figure G.8), we must choose the mining
algorithm and the type of rules to be extracted (step 4, Figure G.9). The software summarizes
the user’s choice at step 5. We can go back at each step to modify our choice. After pressing
the “Start calculation!” button, the result is saved in a file, which can be visualized at the end
(step 6, Figure G.10).

The graphical interface uses a configuration file called .assrulex_gui.rc, which is placed
in the HOME/.coron directory. When the GUI is launched for the very first time, this file is
created automatically with the default values. This file can be edited by the user to customize
the software.

. AssRuleX GUI v0.5.1
File AssRuleX Help

IStep 3 : Defining minimum support and minimum confidence Reset this step Help

(Mext step : Choosing the algarithm and rules to extract)

Minimum support: ® absolute gntegen 2 Clear

) relative G5 % Clear

Minimum Confidence : 0 absolute ¢real 05

Clear
@ relative ¢ S0f%

e [|

e T a8 T T T T T AT a8 T T T T AT e 8 T T T T T T AT e A 8 T T T T T AT e 8T T T T T T AT e e 8 T T T T T T AT e A T TP T T e e T AT e AT T T e T T T e e e

= AssRulex CUlwD 5. 1 -~
> AssRuleX version 0.4.5.0

= The file .assrulex_qui.rc has heen successfully read |

> Proceeding to step 1...

= IJsing the file fusersforpailleurfszathmar,eclipsefAssEuleX ftestflaszlo rcl as input
= Proceeding 1o step 2...

= IJsing the file fusersforpailleurfszathmar,eclipsefassEulel ftmpfout txt as output
> Proceeding to step 3...

1

Jfassrulex fusersforpailleurjszathmar/feclipsejAssRulex jtestflaszlo.rcf -of: fusersforpailleurfszathmarjeclipse fAssRulex ftmp fout. 1xt

Figure G.8: Step 3 — Defining the minimum support and minimum confidence thresholds.

G.2. AssRuleX 209

AssRuleX GUI v0.5.1 =0 X
File AssRuleX Help
Step 4 : Choosing the algorithm and rules to extract | Reset this step ‘ | Help ‘

(Mext step Extracting rules)
Description
A possiple association rules (rules generated from Flsy

Algorithm to use Rules to extract
@ lapriori
) Close

) Pascal
® all association rules
) Pascal+

) Charm @) [triangular matrix hash for FCIS)
) 2art &2y [triangular matrix]

Get itemsets
) without names §ust numbers)

@ with names (only for .rcf filesy

Back Last step

J'!"H;ILEEU\iIIJ L1t VlE[.J
= Uzing the file fusers/orpaillzur/szathmar/eclipsefAssRuleX; timg) out 1t as output
> Proceeding to step 3.,
= Using a minimurm support of 2 =
% sing a minimurn canfidence of 50.0% L
> Proceeding to step 4

a

-

athmar/eclipse fassRulex ftestflaszlo rcf —of jusers/orpailleur/szathmar/eclipse fassEulel fimpfout txt 2 50% -alg zart -ruleinf -names

Figure G.9: Step 4 — Choosing the mining algorithm and rules to extract.

Result Viewer (/users/orpailleur/szathmar/eclipse/AssRuleX/tmp/out.txt)

File Yiew Help
Statistics
[Database file name fusersjorpailleur/szathmarfeclipse/AssEuleX ftest. .
Databasze file size 208 bnies
Mumker of lines 5
Largest attribute 5
Mumber of attributes)
Mumker of attributes in average 2.4
min_supp 2, l.e. 40%
min_conf 505
Chosen algorithm Agriori
Eules to extract all assaciation rules
Mumbier of found rules 50
Mumker of FF rules S0
Itemsets

Left side Right side Supp Supp CH Conf Conf ¢ Closed -
b} ial 3 E0.00 0.750 75.00 L]
{a} H=h] 3 0,00 Q.70 7500 L]
fct {a} 3 60.00 0.750 75.00 L] L
ia} ich 3 E0.00 0.750 75.00 L]]
{e} ia) 3 0,00 Q.70 7500 L]
{a} ie} 3 E0.00 0.750 75.00 L] ||
ich Ha)} 2 50,00 0.750 75.00 L]
Ha)} ich 3 G000 0.750 7500 L]
e} b} 4 B0.00 1.000 100,00 L]
Ha)] ie} 4 50.00 1.000 100.00 L]
e} it 3 G000 0.750 7500 L]
ich e} 3 E0.00 0.750 75.00 L]
ih, c} {a} 2 40.00 0667 G667 L]
fa, c} Ha)] 2 40.00 0.667 66.67 L]
ia, b} ich 2 40.00 0.667 66.67 L]
fct ia, bl 2 40.00 0.500 50.00 L]
Ha)} {a, c} 2 40.00 0.500 50.00 L] =
Mumber of found rules @ 50
> The file "jusersforpailleurfszathmar/feclipsefAssRuleX ftmpfout.txt" is being read. . el
> The file "fusersfarpailleurszathmar/eclipsefAzsRulex ftmpfout. 1xt" was campletely read (S0 rules).
> Mumber of found rules : 50

ad |

Figure G.10: Step 6 — Displaying the result.

210 Appendix G. The Coron Toolkit

G.3 Pre-processing: Data Preparation and Filtering

G.3.1 Filter-DB

Filter-DB (Filter-DataBase) is a utility for pre-processing datasets for further work with
Coron-base and ASSRULEX. It can filter horizontally (i.e. the rows) and/or vertically (i.e. the
attributes) of the input dataset.

Usage: filter-db <option> <database> [-to=basenum|bool|rcf]

Three different input and output file formats are supported (.basenum, .bool and .rcf). In the
input case, the format is decided automatically by the extension of the file. In the output case,
rcf format is the default one but any of the other two formats can also be specified.

Horizontal Filtering
Option: -attributes=<file>, where the configuration file <file> can have two forms.

The configuration file has one line. The configuration file has just one line, a list of at-
tributes, e.g.

:

which means: keep rows that have attributes 1 and 2. Output:

[Relational Context]
Default Name

[Binary Relation]
Name of dataset

03| 05|

alblc|d]|e]

11101

11101

[END Relational Context]

The configuration file has two lines. The configuration file has one more line, containing
a number, e.g.

1235
3 7

which means: keep rows that have at least three attributes of {1,2,3,5}. That is: keep rows that
have the following attributes: 235 or 135 or 125 or 123 or 1235. Output:

[Relational Context]
Default Name

[Binary Relation]
Name of dataset

02| 03| 05 |
alblc|d]|e]

01101

11101

11101

[END Relational Context]

G.3. Pre-processing: Data Preparation and Filtering 211

Vertical Filtering

Keep some columns. The option to use is -columnkeep=<file>, where the configuration file
<file> can have one line, a list of attributes, e.g.

:

which means: in rows only keep the following columns: 1 and 2 and 3. Note that the other
columns are still present, but all their values are set to 0.

Output:

[Relational Context]
Default Name

[Binary Relation]
Name_of_dataset

ol | 02 | 03 | o4 | o5 |

alblcldlel
10100
01100
11100
01000
11100

[END Relational Context]

Delete some columns. The option to use is -columndelete=<file>, where the configuration
file <file> can have one line, a list of attributes, e.g.

:
which means: delete the 15 and 3"% columns in each row of the dataset. Note that these columns
are still present, but all their values are set to 0.

Output:

[Relational Context]
Default Name

[Binary Relation]
Name_of_dataset

ol | 02 | 03 | o4 | o5 |

alblcldlel
00010
01001
01001
01001
01001

[END Relational Context]

Graphical User Interface

Filter-DB also has a graphical frontend. Figure G.11 shows the input screen of horizontal filtering,
and Figure G.12 shows the input screen of vertical filtering.

212 Appendix G. The

Coron Toolkit

Filter_db GUI vi.4

File Filter_db Help

Step 4 : Horizontal filtering Reset this step

(Mext step Summary and calculation)

INumber of attributes: 5

Attributes : 1-2, 5

Clear

AL least:

Clear

Back

Last step

> Proceeding to step 2.

= Using the file ftimpfFilter_db472 15, out as output
> Proceeding to step 2.,

= Horizantal filtering selected |

> Proceeding to step 4.

fstart fusersforpailleurfszathmar/coronftestflaszlo. rcf —of ftmpfFilter_db472 15 out

Figure G.11: Horizontal filtering.

Filter_db GUI vi.4
File Filter_db Help

Step 4 : Vertical filtering Reset this step

(Mext step : Surmmans and calculation)

[iMumber of attributes : 3

 Keap some columns

 Delete some columns

Colurnns :

1—3“ Clear ‘

Back

W

Last step

o =
= Horizontal filtering selactad |
= Proceeding to <tep &
» Back to step 3.
= Yerical filtering selected |
> Froceeding to step ...

[»]:

L]

Jfstart fusersforpailleurdszathmarf coronftestflaszlo.rof —of fimp Filter_db 472 15 out

Figure G.12: Vertical filtering.

G.3. Pre-processing: Data Preparation and Filtering 213

G.3.2 Filter-Compl

Filter-Compl (Filter Complement) is a utility for filtering certain objects/individuals from an .rcf
file. Using ASSRULEX we can generate rules, and with the -examples option we can look at the
positive and negative examples. Idea: take the complement of the positive examples and work
with the rest. The output of this software is another .rcf file that contains the complements.

Usage: filter-compl <database> <config_file_with_positive_examples>

There are two compulsory parameters: (1) the database file in .rcf format, and (2) a text file
with the positive examples.

Let us see a concrete example.

Input
The database file:

[Relational Context]
Default Name

[Binary Relation]
Name_of_dataset

ol | 02 | 03 | o4 | o5 |

alblcldlel
10110
01101
11101
01001
11101

[END Relational Context]

The configuration file with the positive examples:
[01,02,05]

Output

This file contains the complements of the following individuals:
[ol, 02, o5]

[Relational Context]
Default Name
[Binary Relation]
Name_of_dataset

03 | o4
alblcladlel
11101

01001

[END Relational Context]

214 Appendix G. The Coron Toolkit

G.4 Post-processing of the Extracted Rules

G.4.1 Filter-Rules

Filter-Rules is a utility for post-processing rules produced by AssRULEX. With this utility we
can filter rules that satisfy certain criteria.

Usage: filter-rules <rules_file> <reg_exp> <option_1> <option_2>

The parameters are the following:

<rules_file> is a text file that contains association rules

<reg_exp> is a Java regular expression
<option_1> is either ‘-delete’ or ‘-keep’
<option_2> is either ‘-left’, ‘-right’ or ‘-any’

<option_1> has two possible values, which decide what to do with a rule that matches our
criterion: delete it or keep it.

<option_2> has three possible values, that determine the side on which we search for the given
attribute: left side, right side or both sides.

Examples

Let us suppose that we have the following rules in a file called example.txt:

{ANP_7ValVal} => {Hypertension}

{ADRB3_64TrpTrp} => {Hypertension}

{ANP_8Val, ENaCa_493TrpTrp} => {Hypertension}

{Hypertension, FCER1B_237GluGlu} => {LPL_9AspAsp’}

{Hypertension, CCR3_39ProPro, LPL-93TT, LPL_291AsnAsn} => {LPL_9AspAsp}
{Hypertension, LPL-93TT} => {LPL_9AspAsp}

(1) ./start test/example.txt "Val" -keep -left

This means: show all rules that have attributes on the left side with the “Val” substring. Result:

{ANP_7ValVal} => {Hypertension}
{ANP_8Val, ENaCa_493TrpTrp} => {Hypertension}

Note that "Val" is not a simple string, but a Java regular expression that matches any attribute
that contains the substring “Val”. If we want exact matching, then we should use "~Val$"
instead. Note that with "~Val$" we could not find any matching rule in this example.

(2) ./start test/example.txt "“Hypertension$" -keep -right

This means: show the rules that have the attribute “Hypertension” on the right side. Result:

G.4. Post-processing of the Extracted Rules 215

{ANP_7ValvVal} => {Hypertension}
{ADRB3_64TrpTrp} => {Hypertension}
{ANP_8Val, ENaCa_493TrpTrp} => {Hypertension}

(3) ./start test/example.txt "“LPL-93TT$" -delete -any

This means: delete rules that contain the attribute “LPL-93TT”. Actually, it means display-
ing rules that do not contain the attribute “LPL-93T1”. Result:

{ANP_7ValVal} => {Hypertension}

{ADRB3_64TrpTrp} => {Hypertension}

{ANP_8Val, ENaCa_493TrpTrp} => {Hypertension}
{Hypertension, FCER1B_237GluGlu} => {LPL_9AspAsp}

G.4.2 Rule-Coloring

Rule-Coloring is a utility that allows the coloring of some attributes. This way, even if we have a
large list of association rules, the important attributes can be easily found. As input, it requires
two files: (1) a file with the association rules, and (2) a color schema. The output is a colored
HTML file.

Usage: rule-coloring <rules_file> <color_schema> [-show:all|colored]

The parameters are the following:

<rules_file> is a text file with the rules
<color_schema> is a text file with the color schema
-show:all show all rules (non-colored rules too) (default)

-show:colored show colored rules only

Example: ./start test/rulz.txt schema/rulz.col > tmp/out.html

The color schema file uses the syntax of CSS files:

body { background-color: #EAF1FD; }

yellow { a } // let attribute ‘a’ be yellow
#AOFFFF { b } // using red-green-blue components
red { ¢ } // let attribute ‘c’ be red

Sample result:

Database file name: test/in. ref

Database file size: 247 bytes

Number of lines: 5

Largest attribute: 5

Number of attributes: 5

Number of attributes in average: 3.2

min_supp: 2, 1.8, 4056

min_conf: =lcy

Chosen algorithm: Zart

Rules to extract: all association rules

’1_|{b} => {a} (supp=2 [40.00%], conf=0.500 [50.00%]; suppLeft=4 [80.00%])
’27|{a} => {b} (supp=_ [40.00%]; conf=0.667 [66.67%], suppLeft=3 [60.00%])
’3_|{I} =>{a} (supp=3 [60.00%], conf=0.750 [75.00%], suppLeft=4 [30.00%]) +
’4_|{a} => {I} (supp=3 [60.00%:], conf=1.000 [100.00%]; suppLeft=3 [60.00%]) +
F|{e} => {a} (supp=2 [40.00%], conf=0.500[50.00%]; suppLeft=4 [80.00%])

216 Appendix G. The Coron Toolkit

G.4.3 RuleMiner: a GUI for Post-processing Modules

The user interface of the CORON system has a module called RULEMINER, which integrates
the GUIs of the post-processing modules. RULEMINER consists of three parts:

1. a graphical frontend for Filter-Rules (Figure G.13)
2. a graphical frontend for Rule-Coloring (Figure G.14)

3. a graphical interface for filtering association rules by support and/or confidence values
(Figure G.15).

Rule Miner v0.2.1 — O X
File RuleMiner Help
StEp 4 : Filter Attributes | Reset this step | Help
Regular expression : |AH\,apertensi0n$ || Clear |

| Not exact match |

Delete or keep ? i delete @ Kkeep
Which side ? i left ® right i any
Other constraints ? []1eft side has only 1 attribute

[] right side has only 1 attribute

Description :
K.eep rules that have the attribute "Hypertension” on the right side.

Filter rules View results
000000000, ie 0.000s

P T THTETTITET _QUun T s 1EET 2 ULl T TZald
= Proceeding to step 1.
= IJsing the file fusersforpailleurfszathmar,eclipsefAssEuleX ftrmpfout txt as input —
= Proceeding 1o step 2...
= Using the file ftmpjruleminerd2 0= 1 out as output
> Proceeding to step 2.,
= Task : filter attributes

(|

Jfstart fusersiorpailleurfszathmarfeclipse fassRuleX tmpfout 15t "Hypenension$" -of ftmpfruleminer4 2032 1 out -nonl -keep -right

Figure G.13: Graphical frontend for Filter-Rules.

G.4. Post-processing of the Extracted Rules

Rule Miner v0.2.1 — =
File RuleMiner Help

(Mext step : Coloring rules)

Color schema : |fusers/orpailleurfszathmarfeclipse fRuleColoring/schemagrulz. col " |
Show ?

2 all rules

@ colored rules only

Step 4 : Choosing the color schema Reset this step Help

Color rules View results

WG 00, Q00

L, e 0000z

Back

TR

> Using the file jusersforpailleur/szathmarfeclipsefAssREulex timp/out. 15t as input
> Proceeding to step 2.,

= Using the file ftmpfruleminerd202 1 out as output
> Proceeding to step 3.,

> Task : filter attributes

> Back to step 3...

> Task : filter rules by supportfconfidence

> Anakyzing...

= Anakyzis done |

> Back to step 3.

> Task : color rules

[*]:

fassRuleX ftmpfout txt fusersforpailleurfszathmar/eclipse fRuleCaoloring/schemajfrulz.col -of: ftmpfruleminerd42 02 1. html -show: colored

Figure G.14: Graphical frontend for Rule-Coloring.

Rule Miner v0.2.1

File RuleMiner Help

Step 4 : Filter by support and confidence Reset this step Help

Analyze the input file

Minimal support: 2 Minimal confidence : 0.5 Q0.0
Maximal support: 4 Maximal confidence : 1.0 (100.0%5
Mumber of rules : 50
Filter by support.. | | Resel support | | Filter by confidence... | | Reset confidence
Mew minimal support: 3 Mew minimal confidence @ 0.7
Meww maximal support: 4 Mew maximal confidence 1.0
Filter rules | Yiew results

Pooo0:00.000 | je 0.000s

> RuleMiner wo.2.1

= The file .ruleminer_gui.rc has been successfully read !
> Proceeding to step 1.,

= Using the file fusersforpailleurfszathmarfeclipsefAssRuleX ftmpfout.txt as input
> Proceeding 1o step 2.

= Using the file fimpfruleminerd2 03 1. out as output

= Proceeding to step 3...

» Task : filter attributes

> Back to step 3.

> Task : filter rules by supportfconfidence

= Anakzing...

D

4]

jstant jusersjorpailleur/szathmarjeclipse/AssRulex ftmpfout. ta "“Hyperension$" -of: ftmpfruleminer42 03 1.out -nonl -keep -right

Figure G.15: Filtering rules by support and/or confidence.

217

218 Appendix G. The Coron Toolkit

G.5 Other Utilities

G.5.1 Analyze-Itemsets

Analyze-Ttemsets is a utility for analyzing itemsets produced by Coron-base. The itemsets are
analyzed by their support values. The input file can contain arbitrary itemsets (Fls, FCls, etc.).

Usage:

analyzeltemsets.pl <input_file>
Example:

analyzeltemsets.pl btb_c73d10k.65
Output
minswp: 1 0.0
max_supp: 6,499 [64.99%]
Number of itemsets: 2,953

Number of itemsets with support in interval]0.0%, 10.0%[: 1,418
Number of itemsets with support in interval [10.0%, 20.0%[: 33
Number of itemsets with support in interval [20.0%, 30.0%[: 29
Number of itemsets with support in interval [30.0%, 40.0%[: 16
Number of itemsets with support in interval [40.0%, 50.0%[: 32
Number of itemsets with support in interval [50.0%, 60.0%[: 103
Number of itemsets with support in interval [60.0%, 70.0%[: 1,322

This means: there are 2,953 itemsets in the input file. The itemset with the smallest support
value has support 1 (0.01%), while the largest support value among the 2,953 rules is 6,499
(64.99%). At the end, it is indicated how many itemsets there are in the intervals. For instance,
the interval ‘[10.0%, 20.0%| contains the itemsets p where supp(p) > 10% and supp(p) < 20%.

G.5. Other Utilities

G.5.2 Analyze-Rules

219

Analyze-Rules is very similar to Analyze-Itemsets with the difference that it analyzes association

rules. Rules are analyzed by their support values.

Usage:

Example:

analyzeRules.pl btb_rules_genotypgroup308.95

analyzeRules.pl <input_file>

Number
Number
Number

Number
Number
Number
Number
Number
Number
Number
Number
Number
Number

min_supp:
max_supp:

rules:

RR rules:
RF rules:

support
support
support
support
support
support
support
support
support
support

in
in
in
in
in
in
in
in
in
in

1 [0.32%]
288 [93.51%]

interval
interval
interval
interval
interval
interval
interval
interval
interval
interval

lo.o%,

[10.
[20.
[30.
.0%,
.0%,
.0%,
0%,
.0%,
0%,

0%,
0%,
0%,

10.0%[:
20.0%1L:
30.0%[:
40.0%L:
50.0%[:
60.0%[:
70.0%4L:
80.0%L:
90.0%[:
100.0%]1 :

This means: there are 114 rules in the input file of which 48 are in the class RR (a rare itemset
implies a rare itemset) and 66 are in the class RF (a rare itemset implies a frequent itemset).
The rule with the smallest support value has support 1 (0.32%), while the largest support value
among the 114 rules is 288 (93.51%). Then we see in the output 10 intervals, and the number of
rules in each interval is displayed. For instance, the interval ’[10.0%, 20.0%|" contains the rules
r where supp(r) > 10% and supp(r) < 20%.

220 Appendix G. The Coron Toolkit

G.5.3 getlnterval

The utility “getInterval” is a Perl script that filters rules whose support value falls in a given
interval. The interval can be open and/or closed on both sides.

Usage:
getInterval.pl <rule_file> <lower_limit> <upper_limit>
Example:
getInterval.pl btb_rules_genotypgroup308.95 17, 10%
Output:

{197} => {43, 51, 84, 96, 108, 114, 158, 182, 184, 186, 206, 214}
(supp=10 [3.25%]; conf=1.000 [100.00%]; suppL=10 [3.25%]; suppR=116 [37.66%];
class=RR) +

#
Number of rules with support in interval [1%, 10%]: 15
#

Other examples:

./getInterval.pl btb_rules_genotypgroup308.95 [1% 10%]
both sides of the interval are closed

./getInterval.pl btb_rules_genotypgroup308.95 [1% 10%[
left side closed, right side open

./getInterval.pl btb_rules_genotypgroup308.95 11% 10%]
left side open, right side closed

./getInterval.pl btb_rules_genotypgroup308.95 11% 10%[
both sides open

./getInterval.pl btb_rules_genotypgroup308.95 1% 10%
is equivalent to:
./getInterval.pl btb_rules_genotypgroup308.95 [1% 10%]

G.5. Other Utilities

G.5.4 rules2sql

221

rules2sql creates an SQL script from a file that contains association rules. Currently, this SQL
script works only on PostgreSQL 8, but it can be easily modified for other DB systems.

Usage: rules2sql.pl <input_file>

Example: rules2sql.pl short.txt > script.psql

Suppose that the content of the file short.txt is the following:

{237} => {108} (supp=76 [24.68%]; conf=1.000 [100.00%]; suppL=76 [24.68%];
suppR=306 [99.35%]; class=RF) +

Output (script.psql):

(
leftPart
rightPart
suppInt
suppPerc
confReal
confPerc
supplLeftInt
suppLeftPerc
suppRightInt
suppRightPerc
class

closed
primary key
)3

INSERT INTO RULES VALUES (°{237}’,
306, 99.35, ’RF’, true);

DROP TABLE RULES;
CREATE TABLE RULES

text,

text,

integer check (supplInt >= 0),

real check (suppPerc >= 0.0 AND suppPerc <= 100.0),

real check (confreal >= 0.0 and confReal <= 1.0),

real check (confPerc >= 0.0 AND confPerc <= 100.0),

integer check (suppLeftInt >= 0),

real check (suppLeftPerc >= 0.0 AND suppLeftPerc <= 100.0),
integer check (suppRightInt >= 0),

real check (suppRightPerc >= 0.0 AND suppRightPerc <= 100.0),
char(2) check (class in (’RR’,’RF’,’FR’,’FF’)),

boolean,

(leftPart, rightPart)

>{108}’, 76, 24.68, 1.000, 100.00, 76, 24.68,

Working with PostgreSQL

Here we list some of the most important commands of PostgreSQL and we give some sample
queries on the rules stored in the database.

psql -U <user_name>
connect to the server with a given username

psql -U <user_name> -d <database>
connect with a given username to a given database

222 Appendix G. The Coron Toolkit

Tip: create a database called “assrulex”, and store association rules in it:

psgl=> \1
list of databases

psql=> create database assrulex;
create a database called “assrulex”

psql -U <user_name> -d assrulex
easy connection (it is recommended to put it in a batch file)

psql=> \d
List of relations
Schema | Name | Type | Owner
________ oo
public | rules | table | szathmar
(1 row)

Some sample SQL queries on the database:

(1) number of rules:

select count(*)
from rules;

(2) number of RR rules:

select count(*)
from rules
where class=’RR’;

(3) which rule(s) has (have) the smallest support?

select *

from rules

where suppInt = (select min(suppInt)
from rules);

(4) minimum and maximum support values:

select min(suppInt) as min_supp,
min(suppPerc) as "min_supp %",
max (suppInt) as max_supp,
max (suppPerc) as "max_supp 4"
from rules;

(5) number of rules whose support is between 0% and 10%:

select count(*)
from rules
where suppPerc between O and 10;

G.6. LeCo 223

G.6 LeCo

LECo (Lattice Constructor) is a module of the CORON platform. The goal of LECO is to
construct Hasse diagrams of formal concept lattices.

Usage: leco [switches] <database> <min_supp> [-alg:<alg>]

There are two compulsory parameters: (1) the database file (in .basenum, .bool or .rcf format),
and (2) minimum support (in absolute or relative value, e.g. 2 or 40%).

There are two kinds of switches:
1. -option (example: -names)
2. -key:value (example: -alg:charm)
The algorithm to be used can be specified with the -alg:<alg> switch. The available algorithms

are Charm (default) and Close. We recommend using Charm since in most cases it is more
efficient than Close.

Other options:

--help help information
--version, -V version information
--update check for a new version

Verbosity options:

-V:m memory usage
-v:f function information (which function is called)
-v:t time information (runtime)

These options can be combined with -vc:
-vc:mf equivalent to -v:m -v:f

The verbosity options allow the displaying of some additional information while the program is
running. These kind of feedbacks are always redirected to the standard error, and these lines
start with a >’ sign. Because of the redirection to stderr, we can avoid cluttering the normal
result with this information. Statistical information is sent to the standard output, and these
lines start with a ‘#’ sign. This way, these lines can be easily filtered.

If we only want to analyze the input dataset without any calculation, use the -stat option.
In this case the program terminates after showing the database statistics.

The -names option is highly recommended. It works only with .rcf files. With this option,
attribute numbers can be replaced with their names.

LECO works in the following way: as input, it takes the frequent closed itemsets (FCIs) that
are generated by Coron-base. FCIs are the intent parts in the concepts of a Hasse diagram.
LECO can, in addition: (1) find extents (i.e. find concepts), (2) find order (construct the Hasse
diagram), and (3) visualize the Hasse diagram.

224 Appendix G. The Coron Toolkit

Examples

(1) Find concepts (extent + intent).

./start test/laszlo.rcf 2 -names -ext
Note that there is no order yet. The result is sent to the standard output.
(2) Find order among concepts.
./start test/laszlo.rcf 2 -names -ext -order
The result is sent to the standard output.
(3) Visualize the Hasse diagram of the concept lattice.
./start test/laszlo.rcf 2 -names -ext -order -dot:ext -dot:int

In this case two kinds of results are written:
e the first result is written to the standard output

e the second result (.dot description of the diagram) is written
to the file ./graphviz/lattice.dot

The second result can be processed with the GraphViz utility:

dot -Tgif lattice.dot -o lattice.gif

The result is a GIF image of the Hasse diagram:

[o1, 02, 03, 04, 05]

X
{} &

N

[ol, 02, 03 05] [02, 03, 04, 05] [ol, 03, 04 05]
X

(4) {c} @ (4)

A S

[02, 03 05] [ol, 03, 05] [03, 04, 05]
X X
{3,0} (3) {a,b, e} (3) {b,c,e} (3)
[03, 05]
X
{a,b,c,e} (2)

1]

X
{a,b,c,d, e} (0)

G.6. LeCo 225

In each node (for instance the node “[03, 05] x {a, b, ¢, e} (2)”) the following information
is shown: (1) extent (objects), (2) intent (attributes) and (3) support.

The two gray nodes are the Top and Bottom elements. LECO always shows them in the Hasse
diagram, even if the support of the Bottom element is less than the specified minimum support.

(4) Suppressing the standard output.

If we only want the .dot file, and we do not want to display the result on the standard out-
put, use the -null switch:

./start test/laszlo.rcf 2 -names -ext -order -dot:ext -dot:int -null

(5) Hiding the extents.

The calculation and visualization of the extents can be disabled:

./start test/laszlo.rcf 2 -names -order -dot:int -null

{3} ®

SN

{a} 4 {c} @ {b.e}

[2N

{a,c} 3) {a,b, e} 3) _{’b, c.e} (3)

N

{a,b,c,e} (2)

{a,b,c,d,e} (0)

That is: do not use the switches -ext and -dot:ext.

O~ O UL = W N~

QO W W W W W WOWWWNKN NDNDNDNNDNNDNNRFE =~ =~ === = =
CO O Ol WNH O OO Utk WNRFE O WO Uk WNhRFE OO

226 Appendix G. The Coron Toolkit

G.7 Using the Coron API

Here we demonstrate the ease with which CORON can be integrated into other software written
in Java. The algorithms encapsulated in CORON that compute the necessary itemsets, can be
called from any Java software by means of the API library provided by CORON.

In the example below we simply specify the input dataset and the minimum support thresh-
old. Then, we call the Charm algorithm of CORON that extracts frequent closed itemsets. These
itemsets are saved in a vector.

import java.util.Enumeration;
import java.util.Vector;

import coron.algorithm .Charm4b;

import coron.datastructure.charm.HashElem ;
import coron. helper.C;

import coron. helper.Database;

import coron.helper.FileFormatHandler;

public class Calling Charm

{
Vax:

x Input dataset.

*/

private String rcf file = "test/laszlo.rcf";

/% *

x Minimum support.

*/

private int min supp = 2;

Vit
x Entry point.
*/

public static void main(String|] args)

{

Calling Charm main = new Calling Charm ();
main. start (args);

}
Vax:

x The real "main” function.
*/

public void start(String|]| args)

{

Database.setDatabaseFileStr (this.rcf file);
Database.setDatabaseFileType (C.FT _RCF);

39
40
41
42
43
44
45
46
47
48
49
50
ol
52
23
54
29
56
o7
o8
29
60
61
62
63
64
65
66
67
68
69
70
71
72

G.7.

Using the Coron API

FileFormatHandler.readFile ();

Charm4b charm = new Charm4b(Database.getDatabase (),
this . min_ supp);

charm. start (); // start calculation

Vector fciV = charm.getFCls ();

processFClIs (fciV);

227

}
VaT:
* Process FClIs.
*
x @param fciV Vector of FCI wvectors.
*/
private void processFCIs(Vector fciV)
{
Vector list;
Enumeration in;
HashElem elem;
for (Enumeration e = fciV.elements (); e.hasMoreElements();)
{
list = (Vector) e.nextElement ();
if (list = null) continue;
// else
for (in = list.elements(); in.hasMoreElements();)
{
elem = (HashElem) in.nextElement ();
System.out.println (elem.toStringName ());
}
}
}
}
The output of this program is the following:
{a, b, c, e} (2) +
{a, b, e} (3) +
{a, ¢} (3 +
{a} (4) +
{b, c, e} (3) +
{b, e} (4) +

{c}

(4) +

228 Appendix G. The Coron Toolkit

[AAPOO]

[AHUSS|

[AIS93]

[AMS*96]

[AS94]

[AS95]

[BA9G|

[Bay93]

[BBJT02]

[BBROO|

Bibliography

R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad. Depth first generation of
long patterns. In KDD °00: Proceedings of the Sizth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 108-118. ACM Press,
2000.

A.V. Aho, J. E. Hopcroft, and J. D. Ullman. Data structures and algorithms.
Addison Wesley, 1985.

R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between
Sets of Ttems in Large Databases. In Proceedings, ACM SIGMOD Conference on
Management of Data, Washington, D.C., pages 207-216, 1993.

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast dis-
covery of association rules. In Advances in knowledge discovery and data mining,
pages 307-328. American Association for Artificial Intelligence, 1996.

R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in
Large Databases. In VLDB ’9): Proceedings of the 20th International Conference
on Very Large Data Bases, pages 487-499, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc.

R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 1995 Int. Conf.
on Data Engineering (ICDE 95), pages 3-14, Mar 1995.

R. J. Brachman and T. Anand. The Process of Knowledge Discovery in Databases.
In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors,
Advances in Knowledge Discovery and Data Mining, pages 37-57, Menlo Park,
California, 1996. AAAI Press / MIT Press.

R. J. Bayardo. Efficiently mining long patterns from databases. In SIGMOD ’98:
Proceedings of the 1998 ACM SIGMOD international conference on Management
of data, pages 85-93. ACM Press, 1998.

C. Becquet, S. Blachon, B. Jeudy, J-F. Boulicaut, and O. Gandrillon. Strong-
association-rule mining for large-scale gene-expression data analysis: a case study
on human SAGE data. Genome Biology, 3(12):research0067.1-research0067.16,
2002.

J-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of Frequency Queries
by Means of Free-Sets. In Proceedings of PKDD 2000, Lyon, France, pages 75-85.
Springer Berlin / Heidelberg, 2000.

229

230

[BBRO3|

[BGKM02

[BHCT95]

[BHS02]

[BLNN04a]

[BLNN04b]

[BM70]
[BMUTY7]

[BR93)

[BRO1]

[BTP*00a]

[BTP00D)

[BTP*02]

Bibliography

J-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-Sets: A Condensed Represen-
tation of Boolean Data for the Approximation of Frequency Queries. Data Mining
and Knowledge Discovery, 7(1):5-22, Jan 2003.

E. Boros, V. Gurvich, L. Khachiyan, and K. Makino. On the Complexity of Gener-
ating Maximal Frequent and Minimal Infrequent Sets. In STACS ’02: Proceedings
of the 19th Annual Symposium on Theoretical Aspects of Computer Science, pages
133-141, London, UK, 2002. Springer-Verlag.

J. Bouyer, D. Hémon, S. Cordier, F. Derriennic, 1. Stiicker, B. Stengel, and
J. Clavel. Epidémiologie : Principes et méthodes quantitatives. Editions INSERM,
1995.

B. Berendt, A. Hotho, and G. Stumme. Towards Semantic Web Mining. In I. Hor-
rocks and J. Hendler, editors, The Semantic Web - ISWC' 2002, Lecture Notes in
Artificial Intelligence 2342, pages 264—278. Springer, Berlin, 2002.

S. Berasaluce, C. Laurengo, A. Napoli, and G. Niel. An Experiment on Knowledge
Discovery in Chemical Databases. In J.-F. Boulicaut, F. Esposito, F. Giannotti,
and D. Pedreschi, editors, Knowledge Discovery in Databases: PKDD 2004, Pisa,
Lecture Notes in Artificial Intelligence 3202, pages 39-51. Springer, Berlin, 2004.

S. Berasaluce, C. Laurencgo, A. Napoli, and G. Niel. Data mining in reaction
databases: extraction of knowledge on chemical functionality transformations.
Technical Report A04-R-049, LORIA, Nancy, 2004.

M. Barbut and B. Monjardet. Ordre et classification. Hachette, 1970.

S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and
implication rules for market basket data. In SIGMOD ’97: Proceedings of the 1997
ACM SIGMOD international conference on Management of data, pages 255—-264.
ACM Press, 1997.

P. S. Bachorik and J. W. Ross. National Cholesterol Education Program recom-
mendations for measurement of low-density lipoprotein cholesterol: executive sum-
mary. The National Cholesterol Education Program Working Group on Lipopro-
tein Measurement. Clin. Chem., 41(10):1414-1420, 1995.

A. Bykowski and C. Rigotti. A condensed representation to find frequent patterns.
In PODS ’01: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages 267-273. ACM Press, 2001.

Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining frequent
patterns with counting inference. SIGKDD Ezxplor. Newsl., 2(2):66-75, 2000.

Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining Minimal
Non-Redundant Association Rules Using Frequent Closed Itemsets. In J. Lloyd
et al., editor, Proc. of the Computational Logic (CL’00), volume 1861 of Lecture
Notes in Artificial Intelligence — LNAI pages 972-986. Springer, 2000.

Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Pascal : un
algorithme d’extraction des motifs fréquents. Technique et science informatiques,
21(1):65-95, 2002.

[Car83]

[CCHO3]

[CDF+01]

[CG02

[CGO5]

[CHO3]

[CNTO3]

[CNTO5]

[Col01]

[CRO4]

[CRBO5|

[CWS*04]

[dBL*06]

231

J. G. Carbonell. Learning by analogy: Formulating and generalizing plans from
past experience. In Michalski, R. S. and Carbonell, J. G. and Mitchell, T. M.,
editor, Machine Learning, An Artificial Intelligence Approach, chapter 5, pages
137-161. Tioga Press, 1983.

T. J. Chen, L. F. Chou, and S. J. Hwang. Application of a data-mining technique
to analyze coprescription patterns for antacids in Taiwan. Clin. Ther., 25(9):2453—
2463, 2003.

E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J.D. Ullman,
and C. Yang. Finding Interesting Associations without Support Pruning. IFEFE
Transactions on Knowledge and Data Engineering, 13(1):64-78, 2001.

T. Calders and B. Goethals. Mining All Non-derivable Frequent Itemsets. In PKDD
"02: Proceedings of the 6th European Conference on Principles of Data Mining and
Knowledge Discovery, pages 74-85, London, UK, 2002. Springer-Verlag.

T. Calders and B. Goethals. Depth-first non-derivable itemset mining. In Proc.
SIAM Int. Conf. on Data Mining SDM ’05, Newport Beach (USA), Apr 2005.

C. Creighton and S. Hanash. Mining gene expression databases for association
rules. Bioinformatics, 19(1):79-86, 2003.

H. Cherfi, A. Napoli, and Y. Toussaint. Toward a text mining methodology using
frequent itemset and association rule extraction. In M. Nadif, A. Napoli, E. San-
Juan, and A. Sigayret, editors, Journées de linformatique Messine (JIM-2003),
Knowledge Discovery and Discrete Mathematics, Metz, pages 285-294. INRIA,
2003.

H. Cherfi, A. Napoli, and Y. Toussaint. Towards a Text Mining Methodology
Using Association Rules Extraction. Soft Computing, 10(5):431-441, 2005.

R. Cole. Automated Layout of Concept Lattices Using Layered Diagrams and
Additive Diagrams. In 24th Australasian Computer Science Conference (ACSC
'01), Queensland, Australia, pages 47-60. IEEE Computer Society, 2001.

C. Carpineto and G. Romano. Concept Data Analysis: Theory and Applications.
John Wiley & Sons, Chichester, UK, 2004.

T. Calders, C. Rigotti, and J-F. Boulicaut. A Survey on Condensed Representa-
tions for Frequent Sets. In J-F. Boulicaut, L. de Raedt, and H. Mannila, editors,
Constraint-Based Mining, volume 3848 of LNCS. Springer-Verlag, 2005.

Hoppe C., Klitz W., Cheng S., Apple R., Steiner L., Robles L., Girard T., Vichin-
sky E., Styles L., and CSSCD Investigators. Gene interactions and stroke risk in
children with sickle cell anemia. Blood, 103:2391-2396, 2004.

M. d’Aquin, F. Badra, S. Lafrogne, J. Lieber, A. Napoli, and L. Szathmary. Adap-
tation Knowledge Discovery from a Case Base. In G. Brewka, editor, Proceedings of
the 17th European Conference on Artificial Intelligence (ECAI-06), Trento, pages
795-796. IOS Press, 2006.

232

[DLO1]

[DP90)

[DT99]

[Dun03]

[Duq99]

[FHLW03]

[FPSSU96]

[GDS6]

[GGKS04]

[GMMO95]

[Goe03]

[GRO1]

[Gue90]

[GVMO3]

Bibliography

S. Dzeroski and N. Lavrac, editors. Relational Data Mining. Springer, Berlin,
2001.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, Cambridge, UK, 1990.

L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Mining
and Knowledge Discovery, 3:7-36, 1999.

M. H. Dunham. Data Mining — Introductory and Advanced Topics. Prentice Hall,
Upper Saddle River, NJ, 2003.

V. Duquenne. Latticial structures in data analysis. Theoretical Computer Science,
217:407-436, 1999.

D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster, editors. Spinning the
Semantic Web. The MIT Press, Cambridge, Massachusetts, 2003.

U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Ad-
vances in Knowledge Discovery and Data Mining. AAAI Press / MIT Press, Menlo
Park, California, 1996.

J. L. Guigues and V. Duquenne. Familles minimales d’implications informatives
résultant d’un tableau de données binaires. Mathémaltiques et Sciences Humaines,
95:5-18, 1986.

B. Ganter, P. A. Grigoriev, S. O. Kuznetsov, and M. V. Samokhin. Concept-
Based Data Mining with Scaled Labeled Graphs. In K. E. Wolff, H. D. Pfeiffer,
and H. S. Delugach, editors, Conceptual Structures at Work: Proceedings of the
12th International Conference on Conceptual Structures, ICCS 2004, Huntsville,
AL, Lecture Notes in Artificial Intelligence 3127, pages 94-108. Springer, Berlin,
2004.

R. Godin, G. W. Mineau, and R. Missaoui. Méthodes de classification conceptuelle
basées sur les treillis de Galois et applications. Revue d’intelligence artificielle,
9(2):105-137, 1995.

B. Goethals. Survey on Frequent Pattern Mining. Manuscript, 2003.

B. Ganter and S. Rudolph. Formal Concept Analysis Methods for Dynamic Con-
ceptual Graphs. In H. S. Delugach and G. Stumme, editors, Conceptual Structures:
Broadening the Base — 9th International Conference on Conceptual Structures,
1CCS-2001, Stanford, Lecture Notes in Artificial Intelligence 2120, pages 143-156.
Springer, Berlin, 2001.

A. Guenoche. Construction du treillis de Galois d’une relation binaire. Mathéma-
tiques, Informatique et Sciences Humaines, 109:41-53, 1990.

A. Guenoche and I. Van Mechelen. Galois Approach to the Induction of Concepts.
In I. Van Mechelen, J. Hampton, R. S. Michalski, and P. Theuns, editors, Cat-
egories and Concepts: Theoretical Views and Inductive Data Analysis. Academic
Press Ltd, 1993.

[GW99)

[GZ01]

[HDSTO1]

[HHY9]

[HK96]

[HKO1]

[HMSO01]

[HPY00]

[IBMOS]

[Jay03)]

[TB02]

[JCK+04]

[KBOO]

[KG02]

233

B. Ganter and R. Wille. Formal concept analysis: mathematical foundations.
Springer, Berlin/Heidelberg, 1999.

K. Gouda and M. J. Zaki. Efficiently Mining Maximal Frequent Itemsets. In ICDM
"01: Proceedings of the 2001 IEEFE International Conference on Data Mining, pages
163-170, Washington, DC, USA, 2001. IEEE Computer Society.

S.K. Harms, J.S. Deogun, J. Saquer, and T. Tadesse. Discovering Representative
Episodal Association Rules from Event Sequences Using Frequent Closed Episode
Sets and Event Constraints. In ICDM ’01: Proceedings of the 2001 IEEE Interna-
tional Conference on Data Mining, pages 603—606, Washington, DC, USA, 2001.
IEEE Computer Society.

R.J. Hilderman and H.J. Hamilton. Knowledge discovery and interestingness mea-
sures: A survey. Technical Report, Department of Computer Science, University
of Regina (Canada), Oct 1999.

K. Hanney and M. T. Keane. Learning Adaptation Rules From a Case-Base.
In I. Smith and B. Faltings, editors, Advances in Case-Based Reasoning — Third
European Workshop, EWCBR ’96, LNAI 1168, pages 179-192. Springer Verlag,
Berlin, 1996.

J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-
mann Publishers, San Francisco, 2001.

D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. The MIT Press,
Cambridge (MA), 2001.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In SIGMOD ’00: Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, pages 1-12. ACM Press, 2000.

IBM. Intelligent Miner for Text. International Business Machine (IBM), 1998.

N. Jay. Recherche et interprétation de motifs séquentiels fréquents dans une base
de données médicales, 2003. Mémoire de DEA, Université Henri Poincaré Nancy
1.

B. Jeudy and J-F. Boulicaut. Using condensed representations for interactive
association rule mining. In Proceedings PKDD 02, volume 2431 of LNAI, Helsink:
(Finland), pages 225-236. Springer-Verlag, 2002.

D. Janetzko, H. Cherfi, R. Kennke, A. Napoli, and Y. Toussaint. Knowledge-Based
Selection of Association Rules for Text Mining. In Proc. of the 16th European
Conference on Artificial Intelligence — ECAI °04, Valencia, Spain, pages 485—489.
108 Press, 2004.

R. Kosala and H. Blockeel. Web Mining: A Survey. SIGKDD Ezxplorations, 2(1):1-
15, 2000.

M. Kryszkiewicz and M. Gajek. Why to Apply Generalized Disjunction-Free Gen-
erators Representation of Frequent Patterns? In M.-S. Hacid, Z.W. Ra, D.A.

234

[KHO5|

[KOO1]

[KO02]

[KRO5]

[KROO6]

[Kry98]

[Kry01]

[Kry02]

[Kuz04]

[LFZ99]

[LHM99]

Bibliography

Zighed, and Y. Kodratoff, editors, Proceedings of Foundations of Intelligent Sys-
tems: 13th International Symposium, ISMIS 2002, Lyon, France, pages 383-392.
Springer-Verlag Berlin / Heidelberg, June 2002.

K. Koperski and J. Han. Discovery of spatial association rules in geographic in-
formation databases. In Proc. 4th Int. Symp. Large Spatial Databases (SSD ’95),
pages 47-66, Aug 1995.

S. O. Kuznetsov and S. A. Obiedkov. Algorithms for the Construction of Con-
cept Lattices and Their Diagram Graphs. In L. De Raedt and A. Siebes, editors,
Principles of Data Mining and Knowledge Discovery: 5th European Conference,
PKDD 2001, Freiburg, Germany, Lecture Notes in Computer Science 2168, pages
289-300. Springer-Verlag Heidelberg, 2001.

S. O. Kuznetsov and S. A. Obiedkov. Comparing performance of algorithms for
generating concept lattices. J. Exp. Theor. Artif. Intell., 14(2-3):189-216, 2002.

Y.S. Koh and N. Rountree. Finding Sporadic Rules Using Apriori-Inverse. In
PAKDD ’05: Proceedings of the 9th Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining, Hanot, Vietnam, volume 3518 of Lecture
Notes in Computer Science, pages 97-106. Springer, May 2005.

Y.S. Koh, N. Rountree, and R. O’Keefe. Mining Interesting Imperfectly Spo-
radic Rules. In PAKDD ’06: Proceedings of the 10th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining, Singapore, volume 3918 of
Lecture Notes in Computer Science, pages 473-482. Springer, April 2006.

M. Kryszkiewicz. Representative Association Rules. In PAKDD ’98: Proceedings
of the Second Pacific-Asia Conference on Research and Development in Knowledge
Discovery and Data Mining, pages 198-209, London, UK, 1998. Springer-Verlag.

M. Kryszkiewicz. Concise Representation of Frequent Patterns Based on
Disjunction-Free Generators. In ICDM °01: Proceedings of the 2001 IEEE In-
ternational Conference on Data Mining, pages 305-312, Washington, DC, USA,
2001. IEEE Computer Society.

M. Kryszkiewicz. Concise Representations of Association Rules. In Pattern De-
tection and Discovery, pages 92-109, 2002.

S. O. Kuznetsov. Machine Learning and Formal Concept Analysis. In P. W. Ek-
lund, editor, Concept Lattices, Second International Conference on Formal Con-
cept Analysis, ICFCA 2004, Sydney, Australia, Lecture Notes in Computer Science
2961, pages 287-312. Springer, 2004.

N. Lavrac, P. A. Flach, and B. Zupan. Rule Evaluation Measures: A Unifying
View. In S. Dzeroski and P. A. Flach, editors, Inductive Logic Programming,
9th International Workshop, ILP-99, Bled, Slovenia, Lecture Notes in Computer
Science 1634, pages 174-185. Springer, 1999.

B. Liu, W. Hsu, and Y. Ma. Mining association rules with multiple minimum
supports. In KDD ’99: Proceedings of the fifth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 337-341, New York, NY,
USA, 1999. ACM Press.

[LKOS]

[LLFH99]

[Lux91]

[Man97]

|MBK98]

[MCHSV02]

[Mit97]

[MNSVS05a]

[MNSVS05b]

[MT96]

[MT97]

[MTV94]

235

D.-I. Lin and Z. M. Kedem. Pincer Search: A New Algorithm for Discovering
the Maximum Frequent Set. In EDBT ’98: Proceedings of the 6th International
Conference on Extending Database Technology, pages 105-119, London, UK, 1998.
Springer-Verlag.

H. Liu, H. Lu, L. Feng, and F. Hussain. Efficient Search of Reliable Exceptions. In
PAKDD ’99: Proceedings of the Third Pacific-Asia Conference on Methodologies
for Knowledge Discovery and Data Mining, pages 194-203, London, UK, 1999.
Springer-Verlag.

M. Luxenburger. Implications partielles dans un contexte. Mathématiques, Infor-
matique et Sciences Humaines, 113:35-55, 1991.

H. Mannila. Methods and Problems in Data Mining. In F. Afrati and P. Kolaitis,
editors, Database Theory — ICDT’97, 6th International Conference, Delphi, Greece,
Lecture Notes in Artificial Intelligence 1186, pages 41-55. Springer, Berlin, 1997.

R. S. Michalski, 1. Bratko, and M. Kubat, editors. Machine Learning and Data
Mining. John Wiley & Sons LTD, Chichester, 1998.

M. Mansour-Chemaly, N. Haddy, G. Siest, and S. Visvikis. Family studies: their
role in the evaluation of genetic cardiovascular risk factors. Clin. Chem. Lab. Med.,
40(11):1085-1096, 2002.

T. M. Mitchell. Machine Learning. McGraw-Hill, Boston, Massachusetts, 1997.

S. Maumus, A. Napoli, L. Szathmary, and S. Visvikis-Siest. Exploitation des don-
nées de la cohorte STANISLAS par des techniques de fouille de données numériques
et symboliques utilisées seules ou en combinaison. In Workshop on Fouille de Don-
nées Complezes dans un Processus d’Extraction des Connaissances - EGC 2005,
Paris, France, pages 73-76, Feb 2005.

S. Maumus, A. Napoli, L. Szathmary, and S. Visvikis-Siest. Fouille de données
biomédicales complexes : extraction de régles et de profils génétiques dans le
cadre de I'étude du syndrome métabolique. In G. Perriére, A. Guénoche, and
C. Gourgeon, editors, Journées Ouvertes Biologie Informatique Mathématiques -
JOBIM 2005, Lyon, France, pages 169-173, Jul 2005. contrat de plan Etat-Région.

H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed rep-
resentations. In Proceedings of the 2nd International Conference on Knowledge
Discovery and Data Mining (KDD ’96), Portland (USA), pages 189-194. AAAI
Press, 1996.

H. Mannila and H. Toivonen. Levelwise Search and Borders of Theories in Knowl-
edge Discovery. Data Mining and Knowledge Discovery, 1(3):241-258, September
1997.

H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering
association rules. In U. M. Fayyad and R. Uthurusamy, editors, Proc. of the
AAAI Workshop on Knowledge Discovery in Databases (KDD ’9/), pages 181—
192, Seattle, Washington, USA, July 1994. AAAT Press.

236

[NLD94]

[oHO1]

[ORS98]

[Pas00al

|Pas00b]

[Paw91]

[PBTL99a]

[PBTLI9D)

[PBTL99¢|

[PBTLY9]

[PCY95

[PHMO0]

[PSO1]

Bibliography

A. Napoli, C. Laurenco, and R. Ducournau. An object-based representation system
for organic synthesis planning. International Journal of Human—Computer Studies,
41(1/2):5-32, 1994.

National Institutes of Health. Third Report of the National Cholesterol Education
Program Expert Panel on Detection, Evaluation, and Treatment of High Blood
Cholesterol in Adults (Adult Treatment Panel IIT). NIH publ. no. 01-3670, 2001.
Executive Summary. Bethesda, MD, National Institutes of Health, National Heart,
Lung and Blood Institute.

B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In Proc.
1998 Int. Conf. Data Engineering (ICDE ’98), pages 412-421, Feb 1998.

N. Pasquier. Data Mining : Algorithmes d’Extraction et de Réduction des Régles
d’Association dans les Bases de Données. Thése de doctorat, Université Clermont-
Ferrand II, Clermont-Ferrand II, 2000.

N. Pasquier. Mining association rules using formal concept analysis. In Proc. of
the 8th International Conf. on Conceptual Structures (ICCS '00), pages 259-264.
Shaker-Verlag, Aug 2000.

7. Pawlak, editor. Rough Sets. Theoretical Aspects of Reasoning about Data.
Kluwer Academic Publishers, Dordrecht, The Netherlends, 1991.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Closed set based discovery of
small covers for association rules. In Proc. 15emes Journees Bases de Donnees
Avancees, BDA, pages 361-381, 1999.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. Lecture Notes in Computer Science, 1540:398-416,
1999.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association
rules using closed itemset lattices. Inf. Syst., 24(1):25-46, 1999.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Pruning Closed Itemset Lattices
for Association Rules. International Journal of Information Systems, 24(1):25-46,
1999.

J. S. Park, M.-S. Chen, and P. S. Yu. An effective hash-based algorithm for
mining association rules. In SIGMOD °95: Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, pages 175-186. ACM Press,
1995.

J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm for mining frequent
closed itemsets. In ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, pages 21-30, 2000.

G. Piatetsky-Shapiro. Knowledge Discovery in Databases, chapter Discovery, Anal-
ysis, and Presentation of Strong Rules (chapter 13), pages 229-248. AAAI/MIT
Press, Menlo Park, G. Piatetsky-Shapiro and W.J. Frawley edition, 1991.

237

[QTDDB02] J. Quentin-Trautvetter, P. Devos, A. Duhamel, and R. Beuscart. Assessing Asso-

[RS89]

[SAA*99]

[SAC+99]

[SBMPO1]

[SMP+06]

[SNO5]

[SNKO5]

[SON95]

[SON9S]

[5S04]
[STB*02]

[STTOS]

ciation Rules and Decision Trees on Analysis of Diabetes Data from the DiabCare
Program in France. Studies in Health Technology and Informatics, 90:557-561,
2002.

C. K. Riesbeck and R. C. Schank. Inside Case-Based Reasoning. Lawrence Erbaum
Associates, Inc., 1989.

G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. van de
Velde, and B. Wielinga. Knowledge Engineering and Management: the Com-
monKADS Methodoloy. The MIT Press, Cambridge, MA, 1999.

Cheng S., Grow M. A., Pallaud C., Klitz W., Erlich H. A., Visvikis S., Chen J. J.,
Pullinger C. R., Malloy M. J., Siest G., and Kane J.P. A multilocus genotyping

assay for candidate markers of cardiovascular disease risk. Genome Res., 9:936—
949, 1999.

S. Stilou, P. D. Bamidis, N. Maglaveras, and C. Pappas. Mining Association
Rules from Clinical Databases: An Intelligent Diagnostic Process in Healthcare. In
MEDINFO 2001: Proceedings of the 10th World Congress on Medical Informatics,
pages 1399-1403. TOS Press, 2001.

L. Szathmary, S. Maumus, P. Petronin, Y. Toussaint, and A. Napoli. Vers
l'extraction de motifs rares. In G. Ritschard and C. Djeraba, editors, Extrac-
tion et gestion des connaissances (EGC 2006), Lille, pages 499-510. RNTI-E-6,
Cépadués-Editions Toulouse, 2006.

L. Szathmary and A. Napoli. CORON: A Framework for Levelwise Itemset Mining
Algorithms. In B. Ganter, R. Godin, and E. Mephu Nguifo, editors, Supplementary

Proceedings of The Third International Conference on Formal Concept Analysis —
ICFCA 05, Lens, France, pages 110-113, Feb 2005.

L. Szathmary, A. Napoli, and S. O. Kuznetsov. ZART: A Multifunctional Itemset
Miner Algorithm. LORIA Research Report A05-R-013, Feb 2005.

A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining
association rules in large databases. In Proc. of the 21th International Conf. on
Very Large Data Bases (VLDB ’95), pages 432-444, Sep 1995.

A. Savasere, E. Omiecinski, and S. B. Navathe. Mining for Strong Negative Asso-
ciations in a Large Database of Customer Transactions. In ICDE ’98: Proceedings
of the Fourteenth International Conference on Data Engineering, pages 494-502.
IEEE Computer Society, 1998.

S. Staab and R. Studer, editors. Handbook on Ontologies. Springer, Berlin, 2004.

G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal. Computing Iceberg
Concept Lattices with TITANIC. Data and Knowledge Engineering, 42(2):189-222,
2002.

R. H. Sloan, K. Takata, and Gy. Turan. On frequent sets of Boolean matrices.
Annals of Mathematics and Artificial Intelligence, 24(1-4):193-209, 1998.

238

[STVNO4]

[SVH*08]

[SWWOs]

[TKS02

[T0196]

[VGRRO3]

[VL0O]

[VMG04]

[VW94]

[Wei04]

[WF99]

[WFO00]

Bibliography

A. Salleb, T. Turmeaux, C. Vrain, and C. Nortet. Mining Quantitative Association
Rules in a Atherosclerosis Dataset. In In Proc. of the PKDD Discovery Challenge
(co-located with the 6th Furopean Conference on Principles and Practice of Knowl-
edge Discovery in databases), Pisa, Italy, pages 98-103, 2004.

G. Siest, S. Visvikis, B. Herbeth, R. Gueguen, M. Vincent-Viry, C. Sass, B. Beaud,
E. Lecomte, J. Steinmetz, J. Locuty, and P. Chevrier. Objectives, Design and Re-
cruitment of a Familial and Longitudinal Cohort for Studying Gene-Environment
Interactions in the Field of Cardiovascular Risk: The Stanislas Cohort. Clinical
Chemistry and Laboratory Medicine (CCLM), 36(1):35-42, Jan 1998.

G. Stumme, R. Wille, and U. Wille. Conceptual Knowledge Discovery in Databases
Using Formal Concept Analysis Methods. In J. Zytkow and M. Quafafou, edi-
tors, Principles of Data Mining and Knowledge Discovery (Proceedings PKDD’98,
Nantes), Lecture Notes in Artificial Intelligence 1510, pages 450-458, Berlin, 1998.
Springer.

P.N. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure
for association patterns. In Proceedings of the 8" ACM International Conference
on Knowledge Discovery and Data Mining (KDD’02), Edmonton, Canada, pages
183-193, 2002.

H. Toivonen. Sampling large databases for association rules. In Proc. of the 22nd
International Conf. on Very Large Data Bases (VLDB ’96), pages 134-145, Sep
1996.

P. Valtchev, D. Grosser, C. Roume, and Hacene M. R. Galicia: an open platform
for lattices. In Supplementary Proceedings of The 11th International Conference
on Conceptual Structures (ICCS '08), Dresden, Germany, 2003.

P. Vismara and C. Laurenco. An abstract representation for molecular graphs. DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, 51:343—
366, 2000.

P. Valtchev, R. Missaoui, and R. Godin. Formal Concept Analysis for Knowledge
Discovery and Data Mining: The New Challenges. In Proc. of the 2nd Intl. Conf.
on Formal Concept Analysis, pages 352-371. Springer Verlag, Feb 2004.

F. Vogt and R. Wille. TOSCANA — A Graphical Tool for Analyzing and Exploring
Data. In R. Tamassia and I. G. Tollis, editors, Graph Drawing, volume 894 of
Lecture Notes in Computer Science, pages 226-233. Springer-Verlag, 1994.

G.M. Weiss. Mining with rarity: a unifying framework. SIGKDD Ezplor. Newsl.,
6(1):7-19, 2004.

1. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann Publishers, 1999.

I. H. Witten and E. Franck. Data Mining. Morgan Kaufmann Publishers, San
Francisco, California, 2000. (Practical machine learning tools and techniques with
Java implementations — Weka).

[WHP03)|

[Wil02]

[WZTS04]

[YHHRO3]

[ZakO0]

[ZG03]

[ZH02]

[ZPOL97|

239

J. Wang, J. Han, and J. Pei. CLOSET-+: searching for the best strategies for
mining frequent closed itemsets. In KDD ’03: Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data mining, pages
236-245. ACM Press, 2003.

R. Wille. Why can concept lattices support knowledge discovery in databases?
Journal of Theoretical Artificial Intelligence, 14(2/3):81-92, 2002.

J. T. L. Wang, M. J. Zaki, H. T. T. Toivonen, and D. Shasha, editors. Data Mining
in Bioinformatics. Morgan Kaufmann Publishers, Springer, Berlin, 2004.

H. Yun, D. Ha, B. Hwang, and K.H. Ryu. Mining association rules on significant
rare data using relative support. Journal of Systems and Software, 67(3):181-191,
2003.

M. J. Zaki. Scalable Algorithms for Association Mining. IEEE Transactions on
Knowledge and Data Engineering, 12(3):372-390, 2000.

M. J. Zaki and K. Gouda. Fast vertical mining using diffsets. In KDD ’03: Proceed-
ings of the ninth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 326-335, New York, NY, USA, 2003. ACM Press.

M. J. Zaki and C.-J. Hsiao. CHARM: An Efficient Algorithm for Closed Itemset
Mining. In STAM International Conference on Data Mining SDM’02, pages 33-43,
Apr 2002.

M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New Algorithms for Fast
Discovery of Association Rules. In Proceedings of the Srd Int’l Conference on
Knowledge Discovery in Databases, pages 283286, August 1997.

240 Bibliography

Glossary

Absolute support : The absolute support of an itemset P (denoted by supp(P)) indicates how
many objects include P. Unless specified otherwise, by “support” we mean “absolute
support”.

Anti-monotonocity property : All supersets of a non-frequent itemset are non-frequent.

Closed association rule : An association rule r: P, — P5 is closed if P; U P is a closed
itemset.

Closed itemset : An itemset X is closed if it has no proper superset Y (X C Y) with the same
support. A closed itemset is the maximal element (w.r.t. set inclusion) in its equivalence
class.

Closure : The closure of an itemset X (denoted by (X)) is the largest superset of X with the
same support. If X is equal to its closure (X = v(X)) then X is a closed itemset.

Confidence : The confidence of an association rule r: P; — P, is defined as the conditional
probability that an object includes P», given that it includes Py: conf(r) = supp(Py U
Py)/supp(Pr).

Confident association rule : An association rule r is confident if its confidence is not less
than the user-defined threshold min_conf, i.e. conf(r) > min_conf.

Downward closure property : All subsets of a frequent itemset are frequent.

Empty set : The empty set (denoted by () is the smallest possible itemset, i.e. an itemset that
contains no items. By definition, its relative support is 1.0 (100%), i.e. it is included in
every object of the database. The empty set is always a generator. If the database has a
closed itemset P (different from the empty set) with relative support 1.0, then P is the
closure of the empty set; otherwise the empty set is a closed itemset. From the point of
view of rule generation, the empty set is interesting only if it is not a closed itemset.

Equivalence class : An equivalence class is a set of itemsets that all have the same closure.
That is, itemsets in an equivalence class are equivalent w.r.t. closure equality.

Extent : An extent (a.k.a. extension) is a closed tidset, i.e. a closed set of transaction (or
object) identifiers.

Frequent association rule : An association rule r: P; — Ps is frequent if P; U P; is a frequent
itemset.

Frequent Itemset (FI) : An itemset P is frequent if its support is not less than a given
minimum support, i.e. supp(P) > min__ supp.

Frequent valid association rule : A frequent and confident association rule. Unless specified
otherwise, by “valid association rules” we mean “frequent valid association rules”.

Generator : An itemset X is a generator if it has no proper subset Y (Y C X) with the same
support. Generators are minimal elements (w.r.t. set inclusion) in an equivalence class.

241

242 Glossary

Informative association rules : A set of rules that allows the determination of rules param-
eters such as support and confidence.
Intent : An intent (a.k.a. intension) is a closed itemset, i.e. a closed set of items (or attributes).

Lossless association rules : A set of rules that enables the derivation of all valid rules.

Maximal Frequent Itemset (MFI) : A frequent itemset such that all its proper supersets are
not frequent (and necessarily, all its subsets are frequent). Note that maximal frequent
itemsets are closed itemsets: MFI C FCI C FI.

Minimal Rare Generator (MRG) : A rare generator such that all its proper subsets are not
rare. Note that minimal rare generators are minimal rare itemsets.

Minimal Rare Itemset (MRI) : A rare itemset such that all its proper subsets are not rare
(and necessarily, all its supersets are rare). Note that minimal rare itemsets are minimal
rare generators.

Minimal Zero Generator (MZG) : A zero itemset such that all its proper subsets are non-zero
itemsets (and necessarily, all its supersets are zero itemsets).

Non-zero itemset : An itemset such that its support exceeds 0.

Potentially frequent candidate : An itemset such that all its proper subsets are frequent
itemsets. Note that it does not mean that the candidate is frequent too.

Pseudo-closed itemset (PCI) : A (frequent) pseudo-closed itemset P is a (frequent) non-closed
itemset that includes the closures of all (frequent) pseudo-closed itemsets included in P.

Rare association rule : An association rule r: P, — P is rare if P U P, is a rare itemset.

Rare Itemset (RI) : An itemset P is rare if its support is less than or equal to the user-defined
threshold max _supp, i.e. supp(P) < max_supp. In the case of a single border it
means that an itemset P is rare if it is not frequent, i.e. if its support is less than the
user-defined threshold min_supp (supp(P) < min_ supp).

Rare valid association rule : A rare and confident association rule.

Sound association rules : A set of rules that forbids the derivation of rules that are not valid.
Strong association rule : See “valid association rule”.

Valid association rule : See “frequent valid association rule”.

Zero itemset : An itemset such that its support is 0. Not to be confused with the empty set.

absolute minimum support, see barrier
absolute support, see support

all association rules, 61

analyst, see expert

antecedent, 30

anti-monotonocity, 30, 40
approximate association rule, 17, 30
approximate free-sets, 68

Apriori, 16, 23, 61, 65, 81, 85, 93, 161
Apriori-Close, 47, 164
Apriori-Inverse, 94

Apriori-Rare, 85, 97

Arima, 86

ascendant equivalence class, 41
association rule, 4, 15, 16, 30
association rules basis, 64, 72

barrier, 96, 100

basic theorem of concept lattices, 15
basis, see association rules basis
border, 82, 83, 88, 89

BtB, 97, 99

cache, 75, 100

candidate, 16, 31

Charm, 58, 172

Charm-MFT, 58

classification, 7

classification of association rules, 100
Close, 20, 65, 175

closed association rules, 61, 64-66
closed itemset, 11, 29, 65, 164
Closet, 36

Closet™, 36

closure, 29

closure operator, 11

cohort, 109

complete lattice, 14

complex equivalence class, 40
computing environmental variables, 96

Index

concept, 11

concept lattice, 12, 15

concise rule representation, 61, 64, 80
condensed itemset representation, 65
confidence, 17, 30, 73

confidence transitivity, 68

confident association rule, 30
congsequent, 30

context, 3, 14, 29

conviction, 17, 74

cover operator, 37, 68

cross table, 14

cyclic association rule mining, 81

data analysis, 4

data mining methodology, 100, 107

data mining methods, 4

database management, 5

dCharm, 35

dEclat, 35

dependency, 17, 74

description logics, 24

diffset, 35

direct ascendant of an equivalence class, 41
direct subsumer of an equivalence class, 41
disjunction-free generators, 68
disjunction-free sets, 68, 81

downward closure, 30, 40
Duquennes-Guigues basis, 61, 80, 123

Eclat, 167

Eclat-Z, 51, 68

element reordering, 34

empty set, 43, 54, 84, 167, 173

environmental variables, see computing envi-
ronmental variables

equivalence class, 39

exact association rule, 17, 30

example dataset, 31

expert, 1, 5, 15, 22, 74, 82

243

244

extension, see extent
extent, 9, 11, 14

FIMI workshops, 105

formal concept, 11, 12

formal concept analysis, 13, 29

formal context, see context

FP-growth, 36

FP-tree, 36

French summary, 127

frequent association rule, 30, 81

frequent closed itemset representation, 66, 68,
91, 100, 191

frequent itemset, 29

frequent itemset mining, 30

Galicia, 106, 119, 124

Galois closure, 11

Galois connection, 9, 11, 14

Galois correspondence, see (Galois connection
Galois lattice, see concept lattice

generalized disjunction-free generators, 68
generator, 29

generators representation, 68, 91, 191
generic basis, 61

hash, 174

hash tree, 32

hierarchical order, see order
horizontal data layout, 34, 187
Hungarian summary, 156

iceberg concept lattice, 119

image, 15

imperfectly rare association rule, 93
imperfectly rare itemset, 93
infimum, 13

informative association rules, 37, 61, 68
informative basis, 61

infrequent itemset, see rare itemset
intension, see intent

intent, 9, 11, 14

interest, see lift

interestingness measures, 72, 99
item, 15

itemset, 15, 29

join, 12, 13

KDD, 1

Index

knowledge representation, 5

largest itemset, 31, 85

lattice, 9, 14

lattice-based classification, 13
levelwise search, 16

lift, 17, 73, 100

lossless association rules, 37, 61, 68
lossless itemset representation, 65
lower bound, 9, 13

Luxenburger basis, 61, 80, 123

machine learning, 5

magyar reziimé, 156

maximal frequent itemset, 58, 65, 83
maximum support, 82, 93

meet, 12, 13

methodology, see data mining methodology
MIISR, 95

minimal non-redundant rules, 65, 68
minimal rare generator, 90, 96
minimal rare itemset, 32, 84
minimal zero generator, 84
minimum confidence, 17, 30
minimum item support, 94
minimum support, 16, 29, 30, 93
MRG association rules, 97
MSapriori, 94

negative association rule mining, 81
negative border, 32, 89

negative generator border, 91
non-derivable itemsets, 68

non-zero itemset, 84

novelty, 74

numerical data mining, 4

ontology, 2, 5, 24
order, 15
OWL, 24

partial order relation, 12

Pascal, 37

Pascal™, 47, 49, 175

pattern, see itemset

pattern counting inference, 37, 39, 41
perfectly rare association rule, 93
perfectly rare itemset, 93

positive border, 89

potentially frequent candidate, 31
prefix tree, see trie
prefix-based equivalence class, 33
proper basis, 61, 80

quality measures, see interestingness measures

résumé étendu en francais, 127
rare association rule, 93

rare item problem, 93, 96

rare itemset, 82

RDF(S), 25

reasoning, 5

relative support, 29

representative episode rules, 68
representative rules, 61, 68, 80, 123
RSAA, 94

satisfaction, 74

Semantic Web, 24

sequential pattern mining, 81

simple equivalence class, 40

sound association rules, 37, 61, 68

spatial association rule mining, 81

sporadic association rule, see rare association
rule

STANISLAS cohort, 82, 96, 104, 110, 111

statistics, 4

strong association rule, see valid association rule

structural basis, 61, 80

subconcept, 15

subset function, 180

subsumed concept, 12

subsumer concept, 12

subsumer equivalence class, 41

subsumption check, 174

subsumption on itemsets, 174

subsumption relation on concepts, see partial
order relation

subsumption relation on equivalence classes, 41

superconcept, 15

superset function, 182

supervised learning, 5

support, 16, 29, 30, 73

support count, 34

support count of 2-itemsets, 34, 43, 167, 189

supremum, 13

symbolic data mining, 4

245

text mining, 25

tidset, 29, 33

toy dataset, see example dataset
trie, 32, 179

unit element, 14
upper bound, 9, 13

valid association rule, 17, 30, 61
valid rare association rule, 93
vertical data layout, 34, 187

Web mining, 24
Weka, 2, 26, 106

XML, 25

Zart, 37, 68, 69
zero element, 14
zero equivalence class, 85
zero itemset, 84

Nancy-Université

Universite
Henri Poincaré

Monsieur SZATHMARY Laszlo

DOCTORAT DE L'UNIVERSITE HENRI POINCARE, NANCY 1

en INFORMATIQUE

P
VU, APPROUVE ET PERMIS D'IMPRIMER A/Zf 7

Nancy, le af",//g,;/('é

Le Président de 'Université

CE ORI FEOCRED
Université Henri Poincaré, Nancy |
24-30 rue Lionnois - B.P. 3069 - 54013 NANCY Cédex
Tél, : 03 83 68 20 00 - Fax : 03 83 68 21 00

Abstract

The main topic of this thesis is knowledge discovery in databases (KDD). More precisely, we
have investigated two of the most important tasks of KDD today, namely itemset extraction
and association rule generation. Throughout our work we have borne in mind that our goal is
to find interesting association rules from various points of view: for efficient mining purposes,
for minimizing the set of extracted rules and for finding intelligible (and easily interpretable)
knowledge units. We have developed and adapted specific algorithms in order to achieve this
goal.

The main contributions of this thesis are: (1) We have developed and adapted algorithms for
finding minimal non-redundant association rules; (2) We have defined a new basis for association
rules called Closed Rules; (3) We have investigated an important but relatively unexplored field
of KDD namely the extraction of rare itemsets and rare association rules; (4) We have packaged
our algorithms and a collection of other algorithms along with other auxiliary operations for KDD
into a unified software toolkit called CORON.

Keywords: artificial intelligence, knowledge discovery in databases (KDD), data mining, sym-
bolic data mining, frequent itemset extraction, frequent association rule generation, rare item
problem, rare itemset extraction, rare association rule generation.

Résumé

Le sujet principal de cette thése est lextraction de connaissances dans les bases de données
(ECBD). Plus précisément, nous avons étudié deux des plus importantes taches d’ECBD actuelles,
qui sont lextraction de motifs et la génération de régles d’association. Tout au long de notre
travail, notre objectif a été de trouver des régles d’associations intéressantes selon plusieurs
points de vue : dans un but de fouille efficace, pour réduire au minimum ’ensemble des régles
extraites et pour trouver des unités de connaissances intelligibles (et facilement interprétables).
Pour atteindre ce but, nous avons développé et adapté des algorithmes spécifiques.

Les contributions principales de cette thése sont : (1) nous avons développé et adapté des
algorithmes pour trouver les régles d’association minimales non redondantes ; (2) nous avons
défini une nouvelle base pour les régles d’associations appelées “régles fermées” ; (3) nous avons
étudié un champ de I’'ECBD important mais relativement peu étudié, a savoir ’extraction des
motifs rares et des régles d’association rares ; (4) nous avons regroupé nos algorithmes et une
collection d’autres algorithmes ainsi que d’autres opérations auxiliaires d’ECBD dans une boite
a outil logicielle appelée CORON.

Mots-clés : intelligence artificielle, extraction de connaissances dans les bases de données
(ECBD), fouille de données, fouille de données symbolique, extraction des motifs fréquents,

génération des régles d’associations fréquentes, problém des motifs rares, extraction des motifs
rares, génération des régles d’associations rares.

