Nicolas Jacquemet

Lab. G2R Univ. H. Poincaré (Nancy, France)

One issue: the leakage through deteriorated wells

- Different cement-fluids contacts
- High P-T conditions
- \rightarrow Alteration of the materials
- ightarrow Pathway for leakage to the surface

SCOPE OF THE STUDY:

Evaluation of the well materials durability

in such environment

INTRODUCTION

1 - EXPERIMENTAL AND ANALYSIS PROTOCOL

2 - STARTING MATERIALS

3 - EXPERIMENTAL APPROACH

4 - NUMERICAL APPROACH

1-Experimental and analysis protocol

Experimental protocol
Analysis protocol

Experimental apparatus

AUTOCLAVES AND REACTORS

- Systems at geological relevant P-T
- → Hydraulic pressure autoclaves (Max. cond.: 1000 bar-450°C)
- Systems with high concentration of gas Safety rules
- \rightarrow Use of micro-reactors (gold capsules of 2 cc)

GAS LOADING IN THE CAPSULES

- Specific apparatus under the form of a gas line
- → Allows to introduce safely a precise mass of gas in the capsules

1-Experimental and analysis protocol

Experimental protocol
Analysis protocol

Analysis of cement and steel

<u>1. STEEL</u>

- Optical microscopy
- SEM
- TEM
- 2. CEMENT
- X rays diffraction
- SEM → elemental mapping
- Raman micro-spectroscopy → mineralogical mapping
- TEM
- Water porosimetry

Analysis of the fluids

1. <u>Recovery and quantitative analysis of the residual gas using the gas</u> <u>line</u>

--> Mass balance of the gaseous species --> amount of mineralized gas

- 2. Synthetic fluid inclusions
 - --> in situ sampling of fluids surrounding the materials
 - --> visualisation of the number and state of fluid phases
 - --> Composition of the phases (speciation of liquid, concentration, ...)

2-Starting materials

The starting materials: analogues of deep well materials

CEMENT (slurry hardening)

- The slurry has a typical composition of deep well cement slurry
- It hardened in hydrothermal conditions during the cure

Assemblage of Tobermorite + Quartz

STEEL:

- used for the casing
- low C content
- --> Fe° (98 mol%)

Starting materials

3-Experimental approach

1. Experimental conditions 2. Results

Geologically relevant conditions

Cement under the form of bar

• FORMATION WATER:

• TOTAL PRESSURE:

• TEMPERATURE:

• <u>GAS:</u>

NaCl brine (150 g/l)

500 bar

120°C, 200°C

66mol% H₂S + 34mol% CO₂

3-Experimental approach

1. Experimental conditions

2. Results

Different carbonation profiles according to the exposures

Schematization of the carbonation profiles

The sulfidation of the iron bearing phases

1. IN THE CIMENT: THE SULFIDATION OF THE FERRITES

 $Ca_2AIFeO_5 + 2H_2S \rightarrow FeS_2 + ...$

2. THE SULFIDATION OF THE STEEL

 $Fe^{\circ} + H_2S \rightarrow FeS + H_2$

Group of pyrrhotites

4 – Numerical approach

Numerical approach

Cement alteration: a result of coupled processes

→ Need of a coupled chemistry-transport code (HYTEC)

SCOPE: Reproduction of the experimental results by numerical simulation

Numerical approach

Modelling results

EXTERNAL MEDIA CEMENT

- Confirm the calcite deposit as the responsible of the stopping of the alteration that we observed experimentally
- Refine the model to fit the experimental and numerical front thicknesses

Conclusion

Distinctive reactions according to the material

- The cement highly reacts with the CO₂ weakly with the H₂S
- The steel strongly reacts with the H₂S weakly with the CO₂
- 1st order parameter which controls the intensity degree of carbonation = fluid phase at the contact of the minerals
- \rightarrow carbonation favoured without liquid water, max. within dry SC

Evaluation of the well durability (petrograph point of vue)

CONCLUSION

Limits and perspectives

 Ageing at 200°C: experimental T° is superior to the cure T° of the cement --> superposition of two processes (re crystallisation and alteration)

- → Ageing $T^{\circ} \leq$ curing T° of the cement
- At reservoir scale:
 - 1) volumic predominance of the reservoir rock / well,
 - 2) flowing.
 - \rightarrow the fluids which interact with the well are:
 - 1) at equilibrium with the reservoir rock,
 - 2) renewed.

→ Reactive percolation experiments where the fluid is pre-equilibrated with the reservoir rock

- Exhaustive study of durability
- \rightarrow Must take in account the mechanical properties variations of the materials
- Large spatial and time scale view on the alteration of well
- --> Extrapolate the numerical results

COMPLEMENTARY SLIDES

The micro-reactors and autoclaves

- Respect of geological relevant P-T
- → Hydraulic pressure autoclaves (Max. cond.: 1000 bar-450°C)
- Systems with high concentration of gas Safety rules
- \rightarrow Use of micro-reactors (gold capsules of 2 cc)

The secured gas loading in gold capsules

- Gas inlet and apparatus placed in hood in safe area
- The cryo-condensation allows a low pressure loading
- Precise mass of gas in the capsules

Terminology in cement chemistry and specific mineralogy

Oxide	CaO	SiO ₂	H ₂ O	Al ₂ O ₃	Fe ₂ O ₃		
Designation	С	S	Н	А	F		
Mineral name		Simpl	ified formul	a Miner	Mineralogic formula		
Hydrothermal C-S-H							
Tobermorite		$C_5S_6H_5$		Ca ₅ S	Ca ₅ Si ₆ O ₁₆ (OH) ₂ ·4H ₂ O		
Xonotlite		C_6S_6H		C	Ca ₆ Si ₆ O ₁₇ (OH) ₂		
Other minerals							
Quartz		S		SiO ₂			
Bicalcium silicate			C ₂ S		Ca ₂ SiO ₄		
Ferrite			C ₄ AF		Ca ₂ AlFeO ₅		

The starting materials: analogues of deep well materials

CEMENT (slurry hardening)

The slurry has a typical composition of well cement slurry :

Portland class G-HSR + silica flour (quartz grains) + water

It hardened in hydrothermal conditions during the cure:

210 bar, 140°C, 8 days

- Assemblage of Tobermorite + Quartz
- Porosity = 0.4

STEEL:

- used for the casing
- low C content
- --> Fe° (98 mol%)

Two forms of cement and geological relevant conditions

Cement under the form of powder

Cement under the form of bar

"Real" texture of the well cement

 Optimisation of the reactive surface --> homogeneous reactivity AND advanced reaction state

Proper minerals reactivity

Schematization of the alteration profiles

Analogy experimental system – numerical system

Modelling results

WITHOUT THE DIFFUSIONAL BARRIER EFFECT

WITH THE DIFFUSIONAL BARRIER EFFECT

- Confirm the calcite deposit as the responsible of the stopping of the alteration that we observed experimentally
- Refine the model to fit the experimental and numerical front thicknesses
- Extrapolate this results to large spatial and time scales (well during several 1000 years)