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ABSTRACT 

Lebanon’s water resources are under increasing pressure due to economic development, 
demographic growth, unsustainable water resource management, and climate change. The 
Mount- and Anti-Lebanon Mountains are natural water towers for Lebanon as they play an 
important role in enhancing orographic precipitation. Due to the influence of the Mediterranean 
climate, most precipitation above 1200 m a.s.l. falls as snow during winter season. As a result, 
snowmelt is an important contributor to the national water balance. In particular, snowmelt from 
Mount-Lebanon feeds the karst groundwater systems, which provide key water resources to the 
coastal region. Despite the importance of the snow cover in the Lebanese mountains, the actual 
snowpack spatial and temporal variability and its contribution to the spring and river discharges 
in Lebanon remains poorly constrained. The objective of this work is to reduce this lack of 
knowledge using a combination of in situ measurements, remote sensing observations and 
modelling of the snowpack in Mount-Lebanon.  
 

1. We first present an extensive review of the literature about the snow hydrological 
processes in Mediterranean-like mountain regions. Many studies - mainly from Western USA 
and Southern Europe mountains - emphasize the strong impact of the interannual Mediterranean 
climate variability on the snowpack dynamics. The high incoming solar radiation is an 
important driver of the snowpack energy balance, but the contribution of heat fluxes is stronger 
at the end of the snow season. Snow sublimation and rapid densification are important processes 
to consider. Hybrid approaches combining weather station data with optical remote sensing of 
the snow extent through modelling are recommended to tackle the lack of spatially-distributed 
observations of the meteorological forcing. 

2. Then, we introduce an original dataset on the snow cover in Mount-Lebanon for the 
period 2013-2016. We collected field observations of the snow height (HS), snow water 
equivalent (SWE), and snow density between 1300 and 2900 m a.s.l. in the western slope of 
Mount-Lebanon. In addition, continuous meteorological data were acquired by three automatic 
weather stations located in the snow dominated region of Mount-Lebanon. The MODIS snow 
product was used to compute the daily snow cover area in three snow dominated basins. We 
find that HS and SWE have large variances and that snow density is high. The strong correlation 
between HS and SWE may be useful to reduce the amount of field work for future operational 
monitoring. 

3. Using these data we set up a distributed snowpack energy balance in the Mount-
Lebanon at 100 m resolution. The model is validated at different scales using the observed 
SWE, snow density, HS and SCA. A simulation with very limited adjustments to the default 
parameterization is found to correctly capture most of the observations. This simulation allows 
the estimation of the SWE evolution and snow melt in the three study basins between 2013 and 
2016.  
 

This research highlighted the importance of conducting simultaneous field surveys and 
meteorological observations to gain insights into the physical processes driving snowpack 
evolution in Mount-Lebanon. Finally, the influence of snow erosion by wind and the influence 
of dust deposits on snowmelt, remains less known, and are warrant for future research.  
 
Keywords: Snow monitoring, Remote sensing of snow, Snow water equivalent, Snow 
hydrology, Mediterranean climate, Climate change, Water resources, Lebanon 
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Snow, a major source for the karst groundwater in Lebanon. Balaa (1485 m), 20 Feb 2016. 
Photograph by A. Fayad 
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RÉSUMÉ 
Les ressources en eau du Liban sont soumises à une pression croissante due au 

développement économique, à la croissance démographique, à la gestion non-durable des 
ressources en eau et au changement climatique. Les montagnes du Mont et Anti-Liban sont des 
châteaux d'eau naturels pour le Liban car elles augmentent les précipitations par le soulèvement 
orographique des masses d’air. En raison de l'influence du climat méditerranéen, la plupart des 
précipitations au-dessus de 1200 m a.s.l. tombe sous la forme de neige en hiver. Par conséquent, 
la fonte des neiges contribue de façon importante au bilan hydrique national. En particulier, la 
fonte des neiges du Mont-Liban alimente les réseaux d'eau souterraine karstiques, qui 
fournissent des ressources en eau essentielle pour la région côtière. Malgré l'importance du 
manteau neigeux au Liban, sa variabilité spatiale et temporelle est insuffisament observée si 
bien que sa contribution au débit des fleuve et des sources reste méconnue. L'objectif de ce 
travail est de réduire ce manque de connaissance en utilisant des mesures in situ, des 
observations satellite et de la modélisation du manteau neigeux. 

 
1. Nous présentons d'abord une revue de la littérature sur les processus nivo-

hydrologiques dans les régions montagneuses méditerranéennes. De nombreuses études - 
principalement aux Etats-Unis de l'Ouest et dans les montagnes au sud de l'Europe - soulignent 
l'impact fort de la variabilité interannuelle du climat méditerranéen sur la dynamique du 
manteau neigeux. Le rayonnement solaire élevé est un facteur important du bilan énergétique 
du manteau neigeux, mais la contribution des flux de chaleur est plus forte à la fin de la saison 
nivale. La sublimation de la neige et la densification rapide sont des processus importants dans 
ce contexte. Les approches hybrides combinant des données de stations météorologiques et la 
télédétection optique de la surface enneigée à travers la modélisation sont recommandées pour 
compenser l'absence d'observations spatialisées du forçage météorologique. 

2. Ensuite, nous présentons un ensemble original de données sur le manteau neigeux au 
Mont-Liban pour la période 2013-2016. Nous avons recueilli des observations sur le terrain de 
la hauteur de neige (HS), de l'équivalent en eau de neige (SWE) et de la densité de neige entre 
1300 et 2900 m d’altitude sur le flanc occidental du Mont-Liban. De plus, des données 
météorologiques continues ont été acquises par trois stations météorologiques automatiques 
situées dans la partie enneigée du Mont-Liban. Le produit MODIS a été utilisé pour calculer la 
superficie couverte par la neige dans trois bassins hydrographiques couverts par les 
observations in situ. Nous remarquons la grande variabilité de HS et SWE et une densité élevée 
du manteau neigeux. Nous trouvons une corrélation significative entre HS et SWE qui peut être 
utile pour réduire la quantité de travail de terrain en vue d’un suivi opérationnel futur. 

3. Grâce à ces données, nous avons mis en place un modèle distribué du manteau 
neigeux sur le Mont-Liban à une résolution de 100 m. Le modèle est validé à différentes échelles 
en utilisant les observations de SWE, densité, HS et SCA. Une simulation avec des 
modifications très limitées du paramétrage par défaut permet de capturer correctement la 
plupart des observations. Cette simulation permet donc d'estimer l'évolution du SWE et la fonte 
dans les trois bassins étudiés entre 2013 et 2016. 

 
Cette recherche a mis en évidence l'importance de réaliser simultanément des mesures 

sur le terrain et des observations météorologiques continues pour mieux appréhender les 
processus physiques qui contrôlent l'évolution du manteau neigeux sur le Mont-Liban. Enfin, 
l'influence du transport de la neige par le vent et des dépôts de poussière sur la fonte des neiges 
reste à évaluer en perspective de ce travail.  
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Measuring snow height (HS) and snow density. Cedars (2870 m), 6 Mar 2016. 
Photograph by C. Abou Chakra 
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Snow course revisited: trace of the federal snow sampler in Mzar (2300 m), 10 Mar 2015. 
Photograph by A. Fayad 
 
 



xi 
 

 
 
 
 
 
 

 
Déyé món, gen món 

Beyond mountains there are mountains 

Derriere les montages se cachent d’autres montagnes 

 خلف الجبل جبال
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Moutain ponds are a major source of water for agriculture. Laqlouq (1800 m), 20 Mar 2016.  
Photograph by A. Fayad 
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1 INTRODUCTION 

1.1 Water scarcity in Lebanon 

Mediterranean like mountain regions (e.g., López-Moreno et al., 2011) are among the 

most vulnerable to global warming (e.g., Nogués-Bravo et al., 2007; Giorgi and Lionello, 2008; 

Harpold and Molotch, 2015; Grouillet et al., 2016). In addition, temperature is expected to 

increase with elevation (Kotlarski et al., 2015; Pepin et al., 2015). As a result, the mid-elevation 

mountain regions, in many Mediterranean like climate, are expected to shift from snow 

dominated to rain dominated hydrologic regimes (e.g., Maurer et al., 2007; Berghuijs et al., 

2014; Goulden and Bales, 2014). Furthermore, Mediterranean mountain regions are 

characterized with high seasonal snow depth variance and snow densification rates when 

compared to other mountain regions such as Prairies or Tundra’s (e.g., Sturm et al., 2010). 

Understanding, different climate drivers and topographic influence on the snow variability is 

needed and provides the basis for investigating the link between snowmelt and hydrologic 

processes (e.g., Bales et al., 2006). Solving the snow mass balance is important to anticipate the 

effects of climate change (Molotch and Meromy, 2014; Lopez-Moreno et al., 2015).  

The Mount- and Anti-Lebanon are major water tower in the Levant region. With average 

elevations above 2200 m a.s.l., these mountain ranges play an important role in enhancing 

orographic precipitation. Snowfall is more common at elevations above 1200 m a.s.l. and snow 

season usually extends over 6 months in the high elevation regions (above 2200 m a.s.l.). The 

hydrologic regime in these mountain catchments is snow dominated and influenced by (1) the 

Mediterranean climate which influences both the seasonal snowpack accumulation and melt 

processes and (2) the karst system characterized by a fast response between snowmelt and 

spring discharge (Margane et al. 2013; Königer et al. 2016). The meltwater released from the 

snowpack between March and May is a major source of fresh water for lowland coastal regions 

and inland plains, where most of the population and the economic activities are concentrated 

(mostly are irrigated agriculture). More specifically, the snowmelt from the Mount- and Anti-

Lebanon plays a major role in the sustainability of spring water supply during the dry season 

(May-August) because it contributes to the replenishment of groundwater resources (e.g., 

Königer and Margane, 2014; UNDP, 2014; Königer et al. 2016). This groundwater resource is 

essential to the water supply of the major urban agglomerations in coastal Lebanon. For instance 

Beirut receive 75% of its potable water supply from the Jeita karstic spring (Margane et al., 

http://www.sciencedirect.com/science/article/pii/S0921818111000385
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2013). In addition, snowmelt contributes to the storage of surface water (e.g. mountainous hill 

lakes, reservoirs, and dams), and the sustainability of agricultural and ecological systems.  

Despite the amount of the water captured by the Lebanese mountains, there is growing 

concerns in Lebanon regarding its sustainability. The current situation is characterized by the 

overexploitation of surface water resources and the increased over-abstraction from 

groundwater resources (MOEW, 2010; UNDP, 2014). The problem has been attributed to the 

lack in the quantification of surface and groundwater resources, the unsustainable water 

resource management, access to improved drinking water sources, increased water demand by 

all sectors, and the increased water pollution and seawater intrusion (MOEW, 2010; UNDP, 

2014).   

The focus of this research is to quantify the snowmelt contribution in the major snow-

dominate basins located in the windward side (west slope) of Mount-Lebanon. Due to the lack 

of an established snow monitoring program in Lebanon we started by an extensive review of 

the key concepts and methods to quantify snowmelt in Mediterranean mountain regions. Then, 

we present the new snow observations that were collected in the frame of this thesis and the 

snow observatory that was established in Lebanon to address this issue. Finally, we apply a 

distributed snowpack model to compute the spatio-temporal distribution of SWE and snowmelt 

during three snow seasons in three basins of Mount-Lebanon (Fig 1.1.) 

Next section (Section 1.2) describes the study area. Section 1.3) focuses on the existing 

knowledge regarding the snow hydrology in Lebanon. Section 1.4) presents the rationale of the 

thesis and the main objectives. Section 1.5) outlines the organization of the dissertation. 

 

1.2 Study area 

The study region is part of the Mount- and Anti Lebanon mountain regions. We focus 

on three snow dominated basins located on the windward side on Mount-Lebanon (Fig. 1.1). 

The climate is Mediterranean, i.e. most precipitation falls mainly between December and 

March, over a period of 90 days (MOEW, 2010). The Mount- and Anti-Lebanon play a critical 

role in enhancing orographic precipitation. The average annual precipitation volume is 

estimated at 830 mm (equivalent to 8.6 billion cubic meters (MOEW, 2010). Due to the 

influence of the Mediterranean climate, the precipitation varies between years. For example, 

the total precipitation ranged between 577 and 899 mm for the water years between 2008 and 

2012 (UNDP, 2014). Mean annual observed precipitation at the Beirut international airport is 

744.5 mm (1932-2010) and the normal over the time period between 1981 and 2010 is equal to 
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711.9 mm (Fig 1.2). It is estimated that between 30 to 40% of the annual precipitation over 

Lebanon falls as snow (Shaban et al., 2004; UNDP, 2014). On an average water year 

(September - August), the mountain regions receive between 50 to 67% of the total annual 

precipitation as snow (UNDP, 2014).   

 
Fig. 1.1. Study Area showing (a) the Mount- and Anti-Mount Lebanon and (b) the location of the three major snow 
dominated basins of Abou ALi, Ibrahim and Kelb. 

 

 
Fig. 1.2. (a) Mean monthly precipitation at the Beirut international Airport (1932-2010) and (b) annual 
precipitation over the same time period. 
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Renewable water resources for the entire Lebanon are estimated at 2.7 billion cubic 

meters (258 mm) for the average water year (i.e., 2.2 billion cubic meters as surface water and 

0.5 billion cubic meter for groundwater storage) (MOEW, 2010). The SWE contributes to 26% 

of the national hydrologic budget (Mhawej et al., 2014). In Mount-Lebanon, the SWE 

contributes to 31% of the rivers and springs discharges (Telesca et al., 2014). Basin scale studies 

(e.g., Margane et al., 2013), on the other hand, estimates that snowmelt contribution to 75% of 

the groundwater recharge in the El Kelb Basin.  

Surface water is available via more than 2000 major springs (with discharge above 30 

l/s) originating mostly from the karst mountainous regions. Most of the fresh-water in the 

coastal basins is used to meet urban demands. The flows of these springs is usually 

characterized by a high seasonal variability (i.e., during a single water year (September-August) 

and inter-annual variability (i.e., between dry and wet years). The total surface yield from 

springs is estimated to 1.2 billion cubic meters on an average year, with around 0.2 billion cubic 

meter being available during the dry summer period. Surface water yield from springs decreases 

to 0.85 billion cubic meter in dry years. These springs, however, are currently intensively 

exploited (MOEW, 2010). 

Surface water resources use in Lebanon   was estimated to 0.63 billion cubic meter in 

2010 – preliminarily supplied from springs. Withdrawal from groundwater was estimated to 

0.71 billion cubic meter exceeding the natural recharge rate of 0.50 billion cubic meter per 

average year. The current available annual water per capita is estimated to 830 m3 which is less 

that than the water stress threshold (i.e. 1000 m3 cap-1 yr-1) (MOEW, 2010). In contrast, the 

country current water deficit is estimated at 0.28 billion cubic meter per average water year 

(MOEW, 2010).   

Lebanon, as part of the Mediterranean basin is particularly exposed to climate change 

(Nohara et al., 2006; Giorgi and Lionello, 2008; Morán-Tejeda et al., 2014). More particularly, 

the Levant region has witnessed consecutive dry periods over the past two decades (1998-2012) 

(Cook et al., 2016) characterized by above-normal temperature and below-normal winter 

(November - April) precipitation (1931-2008) (Kelley et al., 2015). 

Future climate projections indicate that many Mediterranean mountain catchments 

would shift from the snow dominated to the rain dominated hydrologic regime (e.g., Maurer et 

al., 2007; Goulden and Bales, 2014). Furthermore, mid-altitude regions (elevation ~2000 m 

a.s.l.) are most sensitive to global warming (Pepin et al., 2015). These expected climatic 

changes will have a direct impact on the different hydrological processes of snowmelt, runoff, 
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and evapotranspiration (e.g., Knowles and Cayan, 2004; Lundquist and Loheide, 2011; Milano 

et al., 2013; Godsey et al., 2014). The Lebanese mountains are among this category of mountain 

vulnerable to global warming. As a result, there are reasonable grounds for strong concern as 

to the sustainability of the water resources from Mount-Lebanon and Anti-Lebanon under 

projected warming scenarios. Under a 2 °C warming by 2040, snow depth is projected to reduce 

by 50% at 2000 m a.s.l. resulting in the retreat of winter snowline from 1500 to 1700 m a.s.l. 

(MOEW, 2010). Under the same scenario the snow season is projected to be 2 to 6 weeks shorter 

and the annual SWE volume would decrease by 40% (MOEW, 2010).  

 

1.3 The delineation of the Mont- and Anti-Lebanon mountainous regions 

A better representation of the mountain regions is needed for the separation between 

lowland and mountain areas. We used a modified Viviroli et al. (2007) scheme in order to better 

identify the mid-elevation climate-vulnerable zones in the Mount- and Anti-Lebanon 

mountains. The Viviroli et al. (2007) scheme is based on Meybeck et al., (2001) land form 

classes with a modified mountain clustering. The Meybeck et al., (2001) scheme clusters 

mountains into four different classes (low, middle, high and very high altitude mountains) based 

on a set of 15 different land form classes (see Fig. 1.3). The landform classes are derived from 

digital elevation model using a combination of relief roughness (RR in ‰) and mean elevation 

range (in meters) (Meybeck et al., 2001). The modified Viviroli et al. (2007) scheme, on the 

other hand, recommends to add the landform classes of hills, mid-altitude plains above 1000 m 

a.s.l. and plateaus of medium, high and very high altitude to the four mountain classes defined 

by Meybeck et al., (2001). In this study, we further expanded the Viviroli et al. (2007) scheme 

by including regions with snow cover (Table 1.1). We found that when using the Meybeck 

(2001) scheme only 25.8% of Lebanon’s area was classified as mountain regions. This 

classification, in fact, excluded most of the high plateaus, especially those above 2200 m a.s.l. 

where most snow falls. This classification also excluded mid-altitude areas with relatively high 

roughness (e.g. the steep coastal rugged terrains at the base of Mount-Lebanon) (Fig. 1.3). The 

estimated mountain region under the Viviroli (2007) scheme increased to 59.9% of Lebanon’s 

area. The areal difference between the two schemes is due to the previously excluded (1) mid-

altitude areas, which are considered as potential sources of runoff production and groundwater 

recharge, and (2) mid- and high altitude and high plateaus, which are the major regions for snow 

accumulation and groundwater recharge (Fig. 1.3). We also found that 14.9% of Lebanon’s area 



6 

 

is classified as mid-altitude plateaus between 1000 and 2000 m a.s.l. and 6.6% as high altitude 

plateaus with elevations above 2000 m a.s.l. (Table 1.1 and Fig. 1.3). 

 

 
Fig. 1.3. (a) Landforms  for Lebanon after Meybeck et al. (2001) where: (1) plains, (2) mid-altitude plains, (3) 
high-altitude plains, (4) lowlands, (5) rugged lowlands, (6) platforms, (7) low plateaus, (8) mid-altitude plateaus, 
(9) high plateaus, (10) very high plateaus, (11) hills, (12) low mountains, (13) mid-altitude mountains, (14) high 
mountains, (15) very high mountain; (b) and (c) are mountain clustering according to Meybeck et al. (2001) and 
Viviroli et al. (2007) respectively where: (0) lowland, (1) low mountains, (2) mid-altitude mountains, and (3) high 
mountains; and (d) current study mountain clustering where: (0) lowland, (1) low areas with no snow contribution, 
(2) low with coarse to no snow contribution, (3) mid-altitude areas with coarse snow contribution, (4) mid-altitude 
with partial snow contribution, and (5) high mountains with snow contribution (see Table 1.1). 

The snow cover of the different topographies in the study area are presented in Fig. 1.4. 

All photos were taken, in the three major basins of Mount-Lebanon, during field work 

conducted during winter seasons 2015 and 2016 (courtesy of the author). The snow dominated 

region, in general presents little to no vegetated surfaces. Sparse scrublands are located below 

the treeline (~1550 m a.s.l.) (Fig. 1.4a). Home settlements are below 1800 m and gricultural 

crops are found in terraces and in the low elevation plateau regions (elevation below 1800 m) 

(e.g., Fig. 1.4b). The low elevation plateau region between Laqlouq and Aaqoura is rich in 

mountain pounds (elevation range 1600 and 1900 m) (e.g., Fig. 1.4b). The mid-elevation 

mountain regions at elevations between 1800 and 2300 m are characterized with rugged 

topography (e.g. Fig 1.4c). Mid-elevation region between 2100 and 2400 m a.s.l in Mzar and 

Ouyoun Al Siman are rich in Dolines and sinkholes (e.g. Fig 1.4d). The mid-elevation plateau 

is located at the elevation between 2300 m and 2500 m between Ouyoun Al Siman and Mount 

Sannine (Fig. 1.4e). The mountainous regions in the three basins is characterized with steep 

slopes and valleys and the winter snowline is usually above 1500 m (Fig. 1.4f). Medium and 

high elevation mountain regions are in the Cedars region (elevation range 1860 and 2750 m) 
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(Fig. 1.4g). The high-elevation plateau has an elevation range between 2750 and 3000 m (Fig. 

1.4h).    

 

Table 1.1. Classification of the Lebanese mountains and lowland areas. 

Mountain Class: 
Meybeck et al. 
(2001) and Viviroli 
et al. (2007) 

Mountain Class: This Study Area in % (by Landform class) 

Meybeck et 
al. (2001) 

Viviroli et 
al. (2007) 

This Study 

Lowland Lowland 74.2 (1-11) 40.1 
(1-2; 3*-7) 

40.1 
(1-2; 3*-7) 

Low mountains Low areas with no snow contribution 8.5 (12) 12.5 
(11, 12) 

4 (11, 12†) 

Low areas with coarse snow 
contribution 

8.5 (12†) 

Mid-altitude 
mountains 

Mid-altitude areas with temporal snow 
cover 

16.4 (13) 39.9 
(3*, 8, 13) 

23.5 (3*, 8‡, 
13‡) 

Mid-altitude with persistent snow cover 16.4 (8‡, 
13‡) 

High mountains High mountains with persistent snow 
cover 

0.9 (14) 7.5 (9, 14) 7.5 (9,14) 

Total lowland (%) 74.2 40.1 40.1 

Total mountains (%) 25.8 59.9 59.9 

* high-altitude plains range in elevation between 500 and 2000 m a.s.l. in the modified Vivorili et al. (2007) 
cluster suggested the need to include all regions above 1000 m a.s.l. as part of the mid altitude mountains. 
† Snowfall in not uncommon in the elevation regions between 800 and 1000 m a.s.l., but usually remains for 
around a week following major storm events.  
‡ Snow persist above 1400 m a.s.l. (personal note) 
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Fig. 1.4. Example of the different snow cover in Mount-Lebanon: (a) sparse scrublands in Ehmej (16 Feb, 2015); 
(b) mountain ponds and tree crops in Laqlouq (20 Feb, 2016); (c) rugged topography in Mzaar (1800- 2300 m 
a.s.l.) (2 Apr, 2015); (d) Dolines at 2300 m a.s.l (2 Apr, 2015); (e) mid-elevation plateau (shown here for elevations 
2200–2400 m) ( 5 Mar, 2015); (f) low-land and mountainous region between Wadi Qannoubine and Bcharre (27 
Jan, 2015); (g) high elevation mountain regions at Cedars (27 Jan, 2015); (h) high elevation plateau at Cedars, 
shown here for the elevations between 2820–2900 m (23 Mar, 2016). All images are courtesy of the author. 
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1.4 Existing snow hydrological studies 

Despite the importance of snow in Lebanon, the knowledge on the seasonal snowmelt 

contribution to the hydrologic budget, especially during dry season, remains limited. This can 

be attributed to: (1) the limited number of meteorological and snow observations in the high-

elevation regions; (2) the fact that most existing knowledge is usually limited either to national 

scales studies with monthly or yearly means or to point scale studies with observations over 

short time periods; and (3) the fact that groundwater is dominated by a wide karstic system 

(around 65 % of the country’s total area), which hinders the evaluation of snowmelt 

contribution to surface runoff, spring discharge, and groundwater recharge.  

1.4.1 Point scale snow observations  

Observation networks in mountainous regions and complex terrain are usually sparse 

(e.g., Raleigh et al., 2016). In Lebanon, the meteorological network operated by the Lebanese 

meteorological department (Part of the directorate general of civil aviation), is below the 

snowline (highest operational weather station is located at 1220 m a.s.l). Snow and 

meteorological observations in snow dominated regions are usually carried via (1) cooperation 

projects (e.g., Margane et al., 2013) or through research programs with observations of 1 to 3 

years on average (e.g., Shaban et al., 2004; Aouad-Rizk et al., 2005; Hreiche et al., 2007). The 

newly established network for snow observations (NSO) is the first attempt to measure 

snowfall, snow depth, and SWE, and standard meteorological variables on a regular basis in the 

windward snow dominated regions of Mount-Lebanon (elevation range between 1830 and 2830 

m a.s.l.). The NSO is a joint collaboration between the ‘Institut de Recherche pour le 

Développement’ IRD (France), the ‘Centre d'Etudes Spatiales de la Biosphere’ CESBIO 

(France), the National Council for Scientific Research – Remote Sensing Center 

(CNRS\NCRS) (Lebanon), and the University of Saint Joseph USJ (Lebanon). The network 

includes three automatic weather stations (AWS) and became fully operational in 2014 via the 

installation of the third AWS at Laqlouq (Fig. 1.1).  

 

1.4.2 Monitoring snow cover extent using satellite imagery 

At present, the technique for mapping the Snow Cover Area (SCA) using satellite 

remote sensing is well established; such technique relies on the high reflectance of snow surface 

in the visible wavelengths and low reflectance in the near-infrared (e.g., Dozier et al., 1989; 



10 

 

Seidel and Martinec, 2004; Tedesco (ed.), 2015). Various studies assessed the accuracy of snow 

maps derived from optical sensors (e.g., Painter et al., 2003; Frei et al., 2012). The MODIS data 

have been used to generate a global, daily, snow cover extent product at 500 m resolution (Hall 

and Riggs, 2007; Painter et al., 2009). Despite their advantage to detect snow, optical satellite 

images are subject to cloud obstruction (Parajka and Blöschl, 2008). In this context, different 

methodologies were used to interpolate the missing data (e.g., Andreadis, 2006; Boudhar, et al., 

2009; Gascoin et al., 2015). Another limitation of remote sensing is that space-borne sensors 

do not allow an accurate estimation of the SWE in mountain regions due to the facts that: (1) in 

case of orbiting spaceborne Radar measurements, the complex topography causes multiple 

reflections of the emitted microwave signal, which limits the interpretation of the data, and (2) 

in case of passive microwave, the ground spatial resolution of current spaceborne radiometer is 

too coarse to be useful over mountainous regions. 

Deriving the snow cover extent is useful to the quantification of the spatial and temporal 

distribution of the snowpack properties and melt through the implementation of snow 

hydrologic model (De Jong et al., 2005). In fact, while the snow coverage is best observed using 

remote sensing, the assessment of hydrologic processes requires field observations which are 

most of the time difficult to obtain in mountainous environments. The proper understanding of 

the spatio-temporal dynamics of a snowpack is fundamental for the hydrologic modeling of 

mountain basins (e.g., Liston, 1995; De Jong, et al., 2005). Therefore, many studies pointed out 

that, in order to extend the usefulness of remote sensing data for mountain hydrology, there is 

a need to combine remote sensing observations (i.e., SCA) with a snow model that takes into 

consideration the surface meteorological variables (e.g., precipitation, air temperature, 

humidity, wind, etc) and radiative variables (e.g., longwave and shortwave radiation) (Sun et 

al., 2004; De Jong, et al., 2005; Clark et al., 2006; Andreadis, 2006; Tedesco (ed.) 2015; Dozier 

et al., 2016).   

In Lebanon, the MODIS snow product (MOD10) was used to compute the SCA 

evolution with time and map the snow cover duration (SCD). These data served to estimate the 

SWE using index based approaches (Mhawej et al. 2014; Telesca et al. 2014). It is worth noting, 

that Mhawej et al. (2014) data set did not account for cloud gap filling which may be one of the 

gaps that still requires attention. Telesca et al. (2014), on the other hand, used a gap-filling 

algorithm that is described by Gascoin et al. (2015) in the case of the Pyrenees to interpolate 

the missing data due to clouds. The gap-filling step is necessary to draw meaningful 

climatological variables from the MODIS products.  
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1.4.3 Snow water equivalent (SWE) 

The proper quantification of the SWE is crucial for basin scale hydrology (DeWalle and 

Rango, 2008). SWE which is the depth of water that is contained in the snowpack and is 

expressed as the product of the snowpack height (HS) and the bulk snowpack density. In 

Lebanon, the average annual SWE is estimated to range between 1.82 and 2.57 billion cubic 

meter (174-246 mm equivalent) for the water years between 2008 and 2012 (UNDP, 2014). The 

average annual SWE is estimated at 2.42 billion cubic meter for Mount-Lebanon and Anti-

Lebanon combined (2002-2011) (Mhawej et al., 2014) (Appendix A1). The average annual 

SWE for Mount-Lebanon is estimated to range between 0.77 billion cubic meter (average over 

the time priod 2000-2012) (Telesca et al., 2014) and 1.1 billion cubic meter (2001-2002) 

(Shaban et al., 2004). Such differences in the estimation of SWE can be attributed to (1) the 

different methods used for the estimation, and (2) the limited number of ground observations 

used to validate model estimates. Hence, the proper quantification of SWE remains incomplete.  

1.4.4 Snowpack dynamics  

Snowmelt dynamics are thermodynamic in nature and thus are best evaluated in function 

of an energy balance model (Corripio, et al., 2005). Different methods have been proposed and 

used for the estimation of SWE in mountain regions (Dozier et al., 2016). These methods rely 

on the use of ground observations (e.g. meteorological stations) and in situ measurements (e.g., 

snow depth snow density measurements). However, in many cases, methods based on snow 

observations usually lack the spatial coverage of snow cover (Takala et al., 2011). Spatial 

interpolation (e.g., Girotto et al., 2014) and the integrated approach between remote sensing 

derived SCA and ground measurements are among the most used to derive spatial SWE 

(Molotch et al., 2005; Jonas et al., 2009; Brown et al., 2010; Skaugen et al., 2011). 

Solving for the snow energy balance requires good knowledge of meteorological 

variables (e.g. precipitation, temperature, wind speed, and solar radiation) and snow data (e.g., 

snow depth, SWE) for model forcing and model validation (e.g., Liston et al., 1999). To 

simplify, two main approaches are used for the evaluation of snowmelt from snowpack: (1) the 

Degree-Day or Temperature Index Method (DDM) (e.g., Hock, 2003) and (2) Snowpack 

Energy Balance (SEB) (e.g., Liston et al., 1999; Corripio, et al., 2005). The application of DDM 

is practical, due to its simplicity and minimal data requirement (i.e., can be derived based on 

temperature data only), but it requires snowmelt observations to calibrate the degree-day factor. 

The SEB, on the other hand, enables the computation of the snowmelt based on physically-

based equations provided that meteorological forcing of precipitation, wind speed, air humidity, 
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air temperature, and of the incoming radiation (i.e., longwave and shortwave radiation) are 

available (e.g., Liston and Elder, 2006). 

Modeling attempts in Mount-Lebanon are so far limited to the experimental watershed 

scale using point scale models. For example, Aouad-Rizk et al., (2005) investigated snowmelt 

in the El Kelb River Basin using both an energy balance and a degree day method. This study 

highlights the importance to account for the snow density and the SWE variation with altitude 

when assessing snowmelt contribution. Hreiche et al., (2007), on the other hand, used a coupled 

rainfall–runoff with a DDM module to investigate changes in runoff under projected climate 

change scenarios in the Ibrahim river basin. A 2 ℃ increase in temperature would result in 2 

months shift towards earlier peak flow in the snow-dominated catchment of the Ibrahim Basin 

(Hreiche et al., 2007). These research efforts give a global picture on the temporal variability 

of snow in Lebanon and its melting behavior. However, the spatial-temporal distribution of 

SWE and the link between snowmelt and surface runoff and groundwater recharge remains 

largely unidentified. 

 

1.4.5 Snow hydrology and the Importance of Karst system  

In Lebanon, most snow falls over the cretaceous plateau (the “roof” of the karstic rock 

formation, ~ 40% of the country) (Fig 1.5). The karst system constitutes between 62 to 79% of 

the three basins areas (Table 1.2).Snow melt (between November and May) recharges the 

groundwater karst system (e.g., Margane et al., 2013). Example from the El Kelb Basin (e.g., 

Margane et al., 2013) revealed that the high mountain regions, with elevation between 1000 

and 2600 m a.s.l., contributes to around 75% of the karst groundwater recharge (e.g., Margane 

et al., 2013). The snowmelt was estimated to contribute to 56% of the spring discharge located 

in the lowland area of Mount-Lebanon at the Jeita spring (outlet at 60 m a.s.l.) (Margane et al., 

2013). The spring discharge response to precipitation in the El Kelb Basin is fast (can be seen 

within 24-48h after precipitation events) and usually depends on the distribution and type of 

precipitation (rainfall or snowfall) (Margane et al., 2013; Koeniger and Margane, 2014). The 

spring response to snow is common to most coastal basins, for instance we show below the map 

of the snow detection probability from the daily “binary” (snow/no snow) MODIS snow 

product (MOD10A1) (Hall et al., 2006) in Mount-Lebanon and Anti-Lebanon mountain ranges 

over the period 2000-2011 after the application of the gap-filling method of Gascoin et al. 

(2015) (Fig. 1.6a). The mean monthly snow cover area evolution from the same product is 

compared to the spring discharge at Afaq, a major spring and the source of the Ibrahim river, 
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for the time period between 2000 and 2011 (Fig. 1.6b). Fig. 1.7 illustrates the correlation 

between the observed spring discharge at the Afqa Spring and the SCA in the Afqa spring 

topographic catchment over 2000-2011, a period which includes dry, average and wet years. 

Here, as a first introductory example, we used the SCA as a proxy of the SWE. We found 86% 

correlation with a 2-month time lag between SCA and the Afqa Spring (1113 m a.s.l.) discharge. 

Such correlation highlights the importance of snowmelt in the hydrologic responses of the karst 

system in Mount-Lebanon. These findings go along with Margane et al. (2013) investigations 

on the fast response of the karst system in the El Kelb River Basin.  

 

 

 
Fig. 1.5. Major groundwater system showing the major upper Cretaceous aquifer (C4) where most the snow falls 
in the Mount Lebanon. Both the Cretaceous (C4) and Jurasic (J4) aquifer systems are chareteized by their high 
Karstification. 
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Table 1.2. Major geologic formations in the three snow dominated basins. 

Basina   
Area 
(km2) 

Elevation 
range 
(average)b, 
m a.s.l. 

Karst 
exposure 
(% total 
area) 

Cretaceous aquifer 
(C4) (% total area) 

Jurassic aquifer 
(J4) (% total area) 

Aquitardc (% total 
area) 

1 513 
0–3088 
(1202) 

62% 49% 5% 14% 

2 323 
0–2681 
(1547) 

79% 60% 19% 17% 

3 256 
0–2619 
(1381) 

65% 26% 39% 31% 

aBasins are Abou Ali (1), Ibrahim (2), and El Kelb (3) (Fig. 3.1). bValues are derived for the national 10 meter 
DEM (NCRS). c Namely the lower Creataceous and upper Jurasic (C3-J5). 

  

   
Fig. 1.6. (a) Snow detection probability (% of 1 year) computed from MOD10A1 product over Mount Lebanon 
and Anti Lebanon mountain ranges, and (b) Mean monthly discharges of Afqa spring and snow cover area derived 
from the same MOD product (2000-2011). The dotted lines indicate the minimum and maximum observed over 
the period between 2000 and 2011.  

 

 
Fig. 1.7. (a) The Afqa spring (1113 m a.s.l) in the Ibrahim River Basin captured in the mid-snow season where 
flow is still minimal. The image was taken on February 24th, 2015 (courtesy of the author); and (b) the correlation 
between MODIS SCA and Afqa spring discharge for the water years (September-October) between 2003 and 
2013. 
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Hence, snowmelt, which usually occurs during spring, at the time where there is little 

contribution from rainfall, has great influence on the observed discharges of most springs and 

rivers. Fig. 1.8 illustrates the different discharges of the at the Afqa spring (Ibrahim River Basin 

in Mount Lebanon), a typical snow fed spring, over the last decade (2000-2011). Discharge 

remains minimal during winter season (December to March) and peaks between end of March 

and May depending on the snow amount and the onset of snowmelt.  

 

 
Fig. 1.8. Mean monthly spring discharge at the Afqa spring (1113 m a.s.l.), Ibhrahim Basin, between 2000 and 
2011. 

1.5 Rationale 

The rationale behind this study is that groundwater recharge and spring discharge from 

the karst system are strongly linked to snowmelt in Mount and Anti-Lebanon (Koeniger and 

Margane, 2014; Doummar et al., 2014; UNDP, 2014). The proper understanding of these 

processes is only achievable with the proper quantification of SWE and snowmelt. So far, this 

problem had been approached using (1) point scale DDM or EB models to estimate SWE at the 

point or small pilot catchment scales (e.g., Aouad-Rizk et al., 2005; Hreiche et al., 2007) or (2) 

using a combined spatially distributed MODIS SCA data with average snow density (Telesca 

et al., 2014) or bulk AMSR-E SWE averages (Mhawej et al. 2014) to estimate average annual 

SWE at a relatively medium spatial resolution (i.e. 500 m). However, there remain large 

uncertainties in the quantification of the snowmelt due to a lack of continuous meteorological 

data in the Mount- and Anti-Lebanon Mountain Chains.   

One of the most persistent questions in Lebanon are (1) how much water is stored 

as snow, in the Mount- and Anti-Lebanon during the winter season? and (2) what is the 

contribution of snowmelt to springs and groundwater resources?  



16 

 

To answer these two questions, we conducted field measurements over two snow 

seasons 2014-2016, and used new automatic weather station observations and remote sensing 

snow cover data, to set up and evaluate a spatially- distributed snowpack model for the first 

time in the snow dominated regions of Mount-Lebanon between (elevation range between 1300 

and 2900 m a.s.l.). The specific objectives of this thesis are to answer the following questions: 

1- What are the major meteorological and physiographic factors controlling the snow 

processes in Mediterranean like regions and what is the fate of snowmelt in the hydrologic 

system of these regions? 

2- What is the spatio-temporal variability of the SWE at different elevation range (1300-

2900 m a.s.l.), in the snow dominated regions of Mount-Lebanon? 

3- To which extent can we accurately estimate the spatial distribution of daily SWE at 

a fine spatial scale (100 grid)?  

4- Given the difficulty and relatively high cost needed for conducting intensive field 

measurements and maintaining meteorological stations in mountainous areas, which temporal 

scale is most suitable for conducting field measurements? And which meteorological forcing 

are considered a priority for running energy balance snow models? 

1.6 Content of the report 

In addition to this introductory chapter this dissertation contains four chapters. In 

Chapter 2 we try to answer question 1 by presenting a synthesis of the snow studies in 

Mediterranean like mountain regions. This work is based on a review of more than 650 papers 

published in peer review journals.  

Chapter 3 addresses question 2 and introduces the snow observatory in Lebanon which 

cover the upper area of three snow dominated basins located in the windward side of Mount-

Lebanon. This chapter presents the three AWS collecting continuous meteorological and snow 

observations in the snow dominated regions of Mount-Lebanon. In addition, this chapter shows 

the results of field surveys of snow depth, SWE, and snow density that were conducted by the 

author of this dissertation across different elevation regions (1300-2900 m a.s.l.). Eventually, 

SCA data from MODIS are presented to define the snow cover area and snow cover duration 

in these basins. 

Chapter 4 tackles question 3 using a distributed energy balance model (Liston et al. 

1999; 2006). The model is ran at a 100 m resolution grid across the Mount- and Anti-Lebanon 

but we focused on the three study basins introduced in Chapter 3. The model is forced and 

validated using the novel dataset presented in Chapter 3.   
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Chapter 5 addresses question 4, presents the main conclusions of this research work, 

highlights the major limitations and proposes potential ideas for future research.   
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1.8 INTRODUCTION (VERSION FRANÇAISE) 

I. 1. Pénurie d’eau au Liban 

Les régions méditerranéennes de montagne sont parmi les plus vulnérables au 

réchauffement climatique (Nogués-Bravo et al., 2007; Giorgi et Lionello, 2008; Harpold et 

Molotch, 2015). En outre, la hausse de température causée par le changement climatique a 

tendance à augmenter avec l’altitude (Kotlarski et al., 2015; Pepin et al., 2015). On s'attend 

donc à ce que de nombreuses régions de montagne passent d’un régime hydrologique dominé 

par la neige à un régime hydrologique dominé par la pluie (Maurer et al., 2007, Goulden et 

Bales, 2014). De plus, les régions méditerranéennes sont naturellement caractérisées par une 

forte variabilité de la hauteur de neige par rapport à d'autres régions de montagne comme les 

prairies ou la toundra (Sturm et al., 2010). La compréhension des différents facteurs climatiques 

et topographiques qui contrôlent l’évolution du manteau neigeux est nécessaire pour établir le 

lien entre la neige et les ressources en eau associées (Bales et al., 2006) et pour anticiper les 

effets du changement climatique (Molotch et Meromy, 2014 , Lopez-Moreno et al., 2015). 

Le Mont-Liban et l'Anti-Liban sont deux châteaux d'eau naturels au Proche-Orient. 

Avec des altitudes moyennes supérieures à 2200 m.s.l., ces chaînes de montagnes reçoivent 

d’importantes précipitations déclenchées par le soulèvement orographique des masses d’air 

chaudes et humides en provenance de la mer Méditerranée. Ainsi, on estime que le Liban reçoit 

en moyenne 830 mm de précipitations par année hydrologique (septembre-août). A cause de 

l’altitude, le Mont et l'Anti-Liban, reçoivent entre 50 et 67% des précipitations annuelles totales 

sous forme de neige (MOEW, 2010; PNUD, 2014). Les chutes de neige sont plus fréquentes 

aux altitudes supérieures à 1200 m. La saison nivale s'étend généralement sur six mois dans la 

partie haute (au-dessus de 2200 m). Le régime hydrologique de ces bassins montagneux est 

dominé par (1) la fonte des neige sous l’influence du climat méditerranéen et (2) le système 

karstique caractérisé par une réponse rapide entre la fonte et le débit de printemps (Königer et 

al., 2016). L'eau de fonte entre le mois de mars et le mois de mai est une source 

d’approvisionnement essentiel en eau douce pour la région de plaine côtière et la plaine 

intérieure où se concentrent la majorité de la population et les activités économiques, y compris 

l'agriculture irriguée. Plus spécifiquement, la fonte des neiges sur le Mont-Liban qui recharge 

les aquifères karstiques, joue un rôle majeur dans la durabilité de l’écoulement des sources qui 

alimentent les zones urbaines du littoral libanais pendant la saison sèche (mai-août) (e.g. 

Königer et Margane, 2014 ; PNUD, 2014, Königer et al., 2016). Par exemple, Beyrouth reçoit 

75% de son approvisionnement en eau potable à partir de la source karstique de Jeita (Margane 
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et al., 2013). Enfin, il ne faut pas négliger le fait que la fonte des neiges contribue au remplissage 

des réservoirs de surface artificiels ou naturels utiles pour l’agriculture notamment, et au 

fonctionnement des écosystèmes. 

Malgré la quantité d'eau captée par ses montagnes, le Liban est de plus en plus 

préoccupé par la durabilité de la ressource en eau. La situation actuelle se caractérise par la 

surexploitation des eaux de surface et par des prélèvements excessifs des eaux souterraines 

(MOEW, 2010; PNUD, 2014). Cette situation s’explique par un manque de connaissance 

concernant les quantités d’eau disponibles, par une gestion non raisonnée, une demande accrue 

d'eau par tous les secteurs. On constate une augmentation de la pollution de l’eau de surface et 

l’intrusion d’eau salée dans la nappe souterraine en bord de mer (Fayad et al., 2013, PNUD, 

2014). 

Le but de cette recherche est de quantifier la contribution de la fonte des neiges en 

provenance du Mont-Liban. Nous nous sommes concentrés sur les bassins versant situés sur le 

flanc ouest du Mont-Liban car ils approvisionnent la région côtière qui est aussi la plus peuplée. 

Comme il n’existe aucun programme opérationnel de suivi du manteau neigeux au Liban, nous 

avons commencé par un examen approfondi des concepts et des méthodes clés pour quantifier 

la fonte des neiges dans les régions de montagne méditerranéennes. Ensuite, nous présentons 

les nouvelles observations qui ont été recueillies dans le cadre de cette thèse et dans le cadre de 

l'observatoire de la neige qui a été établi au Liban pour remédier à ce manque. Enfin, nous 

appliquons un modèle de neige distribué pour calculer la fonte pendant trois saisons pour trois 

bassins hydrographiques majeurs. 

La section suivante (section 1.2) décrit la zone d'étude. Section 1.3) se concentre sur les 

connaissances actuelles concernant l'hydrologie des neiges au Liban. Section 1.4) présente la 

logique de la thèse et les principaux objectifs. Section 1.5) décrit l'organisation de la 

dissertation. 

 

I. 2. Zone d'étude 

Le climat du Liban est méditerranéen, donc les précipitations sont abondantes entre 

décembre et mars (MEE, 2010). Le volume moyen annuel des précipitations est estimé à 8,6 

milliards  de mètres cubes (MEE, 2010). En raison de l'influence du climat méditerranéen, les 

précipitations sont assez variables d’une année à l’autre. Par exemple, le total des précipitations 

varie entre 577 et 899 mm pour les années hydrologiques 2008 et 2012 (PNUD, 2014). On 

estime qu'entre 30 à 40% des précipitations annuelles au Liban tombent sous forme neige 
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(Shabanet al, 2004; PNUD, 2014). Les régions de montagne du Liban reçoivent quant à elles 

entre 50 à 67% des précipitations annuelles sous forme neige (UNDP, 2014).   

Les ressources en eau renouvelables annuelles sont estimées à 2,7 milliards de mètres 

cubes (258 mm) (2,2 milliards de mètres cubes d’eau de surface et 0,5 milliard de mètres cubes 

d’eaux souterraines) (MEE, 2010). La fonte de la neige contribuerait à 26% du bilan 

hydrologique national (Mhawej et al., 2014). Dans la région du Mont-Liban, la neige apportait 

31% du débit rivières et des sources (Telesca et al., 2014). Margane et al. (2013) ont estimé que 

la neige contribue à hauteur de 75% de la recharge des eaux souterraines dans le bassin versant 

El Kelb.  

Les eaux de surface sont issues de plus de 2000 sources (dont le débit est supérieur à 30 

l/s) principalement dans la région montagneuse karstique. Les débits de ces sources sont 

généralement caractérisés par une forte variabilité saisonnière et inter-annuelles. La production 

totale des sources est estimée à 1,2 milliards de mètres cubes par an, dont environ 0,2 sont 

disponibles durant la période estivale sèche. La production annuelle diminue à 0,85 milliards 

de mètres cubes lors des années sèches. Ces sources sont exploitées de façon intensive (MEE, 

2010). 

L’utilisation de l’eau de surface en 2010 a été estimé à 0,63 milliards de mètres cubes - 

principalement depuis les sources karstiques. Les pompages d’eau souterraine sont estimés à 

0,71 milliards de mètres cubes, ce qui est supérieur à la recharge naturelle estimée à 0,50 

milliards mètres cubes par an. L'eau disponible est estimée à 830 m3 par habitant et par an, ce 

qui est inférieur au seuil de stress hydrique qui est fixé à 1000 m3 cap-1 an-1) (MEE, 2010). Le 

déficit actuel en eau du pays est estimé à 0,275 milliards mètres cubes par an (MEE, 2010).   

Le Liban, faisant partie du bassin Méditerranéen est particulièrement exposé au 

changement climatique (Nohara et al, 2006; Giorgi et Lionello, 2008; Milano et al., 2013; 

Morán-Tejeda et al, 2014.). Plus particulièrement, le Proche-Orient a connu une période de 

sécheresse (1998-2012) (Cook et al., 2016) caractérisée par une température supérieure à la 

normale et des précipitations inférieures à  la normale en hiver (Novembre - Avril) telle que 

définie sur la période 1931-2008 (Kelleyet al., 2015). Les tendances et projections climatiques 

suggèrent que les montagnes libanaises sont fortement vulnérables au réchauffement 

climatique. La hauteur de neige pourrait réduire de 50% à 2000 m sous 2 degrés de 

réchauffement en 2040, conduisant à un retrait de la ligne d’altitude de la neige de 1500 à 1700 

m d’altitude (MEE, 2010). Dans le même scénario la saison de neige devrait être 2 à 6 semaines 

plus courte et le volume annuel de SWE  diminuerait de 40% (MEE, 2010). Par conséquent, il 
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y a des motifs de vive préoccupation quant à la durabilité des ressources en eau en provenance 

du Mont-Liban et de l’Anti-Liban.  

 
Figue. 1.1 Zone d’étude montrant (a) le Mont-Liban et l’Anti-Liban (b) l'emplacement des trois grands bassins 

étudiés dans cette thèse: Abou ALi, Ibrahim et Kelb. 

 

I. 3. Etudes précédentes en hydrologie nivale au Liban 

Malgré l'importance de la neige au Liban, les connaissances sur la contribution de la fonte des 

neiges au bilan hydrologique, en particulier pendant la saison sèche, restent limitées. Ceci peut 

être attribué à: 1) le peu d'observations météorologiques dans les régions de montagne 2) le fait 

que la plupart des connaissances existantes sont limitées soit à des études à l’échelle nationale 

avec des moyennes mensuelles ou annuelles, soit à des études à l’échelle ponctuelle avec des 

observations sur de courtes périodes; 3) le fait que l'eau souterraine est dominée par un système 

karstique qui couvre environ 65% de la superficie totale du pays, ce qui complique l'évaluation 

de la contribution de la fonte des neiges au ruissellement.  

 

I. 3.1. Échelle ponctuelle 

Les réseaux d'observation dans les régions montagneuses sont généralement insuffisants 

(Raliegh et al., 2015). Au Liban, tout le réseau météorologique opéré par l’agence 

météorologique (faisant partie de la direction générale de l'aviation civile) se trouve en-dessous 

de la limite d’enneigement hivernale (la plus haute station météorologique opérationnelle est 
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située à 1220 m.a.s.l). Les observations nivales et météorologiques dans les régions d’altitude 

sont habituellement réalisées via (1) des projets de coopération (par exemple, Margane et al., 

2013) ou par des programmes de recherche avec des observations de 1 à 3 ans en moyenne 

(Shaban et al. Aou-Rizk et al., 2005, Hreiche et al., 2007). Le réseau nouvellement créé dans le 

cadre de l'observatoire de la neige est la première tentative de mise en place d’un réseau stable 

de mesure de la hauteur de neige ainsi que des variables météorologiques standards sur le Mont-

Liban (altitude entre 1830 et 2830 m.a.s.l.). Cet observatoire est une collaboration entre l'Institut 

de Recherche pour le Développement (IRD), le Centre d'Etudes Spatiales de la Biosphère 

CESBIO (France), le Conseil National de la Recherche Scientifique - Centre de télédétection 

(CNRS \ NCRS, Liban), et l'Université de Saint Joseph (USJ, Liban). Le réseau comprend trois 

stations météorologiques automatiques (AWS) et est devenu entièrement opérationnel en 2014 

avec l'installation de la troisième AWS à Laqlouq (Fig. 1.1). 

 

I. 3.2. Suivi de la surface enneigée par satellite  

À l'heure actuelle, la technique de cartographie de la surface enneigée (snow cover area, 

SCA) par télédétection satellite est bien établie. Elle repose sur la réflectance élevée de la 

surface enneigée dans les longueurs d'onde visibles et une faible réflectance dans le proche 

infrarouge (Dozier et al., 1989, Seidel et Martinec 2004, Salomonson et Appel, 2004, Tedesco 

(éd.) 2015) . Diverses études ont évalué favorablement des cartes de neige dérivées de capteurs 

optiques (Simic et al., 2004). En particulier les données MODIS ont été utilisées pour générer 

un produit global, quotidien, de SCA à une résolution de 500 m (Hall et Riggs, 2007). Mais les 

images satellites optiques sont sujettes à l'obstruction par les nuages (Parajka et Blöschl, 2008). 

Dans ce contexte, différentes méthodes ont été proposées pour interpoler les données 

manquantes (par exemple, Andreadis, 2006, Boudhar et al., 2009; Gascoin et al., 2015). Une 

autre limitation de la télédétection est que les capteurs spatiaux ne permettent pas une estimation 

fiable du SWE dans les régions montagneuses en raison des faits suivants: (1) en cas de mesures 

radar, la topographie complexe provoque des réflexions multiples du micro-onde émis, et 

l’absorption par l’eau liquide du signal limite l'interprétation des données (2) en cas de micro-

ondes passives, la résolution spatiale atteinte par les radiomètres est trop grossière (~25 km) 

pour être utile sur les régions montagneuses. 

La compréhension correcte de la dynamique spatio-temporelle d'un manteau neigeux 

est fondamentale pour la modélisation hydrologique des bassins de montagne (Liston, 1999, De 

Jong et al., 2005). Le calcul de l'étendue du manteau neigeux aide à la quantification de la 

répartition spatiale et temporelle des propriétés physiques du manteau neigeux lorsque les 
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observations sur le terrain sont insuffisantes. Par conséquent, de nombreuses études ont 

souligné que, pour étendre l'utilité des données de télédétection pour l'hydrologie de montagne, 

il est nécessaire de combiner les observations de télédétection avec un modèle de neige qui tient 

compte des variables météorologiques de surface : les précipitations, la température de l'air, 

l'humidité, le vent et le rayonnement de courte et de grande longueur d’ondes (Sun, et al., 2004; 

2006, Tedesco (éd.) 2015, Dozier et al., 2016). 

Au Liban, le produit de neige MODIS (MOD10) a été utilisé pour calculer l'évolution 

de SCA dans le temps et cartographier la durée d’enneigement (snow cover duration SCD). Ces 

données ont servi à estimer le SWE en utilisant des approches empiriques (Mhawej et al., 2014, 

Telesca et al., 2014). Il convient de noter que Mhawej et al. (2014) ne tiennent pas compte du 

remplissage des lacunes causés par les nuages. Telesca et al. (2014), d'autre part, ont utilisé un 

algorithme d’interpolation qui est décrit par Gascoin et al. (2015) dans le cas des Pyrénées. 

Cette étape est nécessaire pour tirer des variables climatologiques utiles des produits MODIS.  

 

I. 3.3. Équivalent en eau de neige (SWE) 

La quantification correcte du SWE est cruciale pour l'hydrologie à l'échelle du bassin 

(DeWalle et Rango, 2008). Le SWE est la lame d'eau équivalent qui est contenue dans le 

manteau neigeux. Il peut être exprimé comme le produit de la hauteur du manteau neigeux (HS) 

et de la densité du manteau neigeux. Au Liban, on estime que le SWE annuel moyen se situerait 

entre 1,82 et 2,57 milliards de mètres cubes (équivalent de 174-246 mm) pour les années entre 

2008 et 2012 (PNUD, 2014). Une autre étude suggère que la moyenne annuelle SWE est de 1,1 

milliard de mètres cubes (2001-2002) (Shaban et al., 2004). Plus récemment, le SWE annuel 

moyen a été estimé à 2,42 milliards de mètres cubes pour le Mont-Liban et l'Anti-Liban 

combinés (Mhawej et al., 2014) et 0,77 milliard de mètres cubes pour le Mont-Liban (Telesca 

et al. 2014). Ces différences dans l'estimation de SWE peuvent être attribuées à (1) les 

différentes méthodes utilisées pour l'estimation, et (2) au nombre limité d'observations au sol 

utilisées pour valider les estimations du modèle.  

 

I. 3.4. Dynamique du manteau neigeux  

La dynamique de la fonte des neiges est un phénomène thermodynamique qui est donc 

modélisable par un bilan énergétique (Corripio, et al., 2005). Différentes méthodes ont été 

proposées et utilisées pour l'estimation du SWE dans les régions de montagne (Dozier et al., 

2016). Ces méthodes reposent sur l'utilisation d'observations au sol (par exemple, des stations 

météorologiques) et sur des mesures in situ (par exemple, des mesures de la densité de neige de 
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profondeur de neige). Cependant, dans de nombreux cas, les méthodes basées sur les 

observations de neige manquent généralement de couverture spatiale (Takala et al., 2011). 

L'interpolation spatiale (par exemple, Girotto et al., 2014) et les approches qui combinent le 

SCA dérivé de la télédétection et les mesures au sol sont parmi les plus utilisées pour calculer 

le SWE spatialisé (Molotch et al., 2005; Al., 2010; Skaugen et al., 2011). 

Une autre approche consiste à utiliser un modèle de manteau neigeux forcé par les 

données météorologiques. Pour simplifier, deux approches principales sont utilisées pour 

l'évaluation de la fonte du manteau neigeux: (1) la méthode degrés-jours (degree day model 

DDM) ou d'indice de température (Hock, 2003) et (2) la méthode du bilan d’énergie (surface 

energy balance SEB, Liston et al., 1999, Corripio, et al., 2005). L'approche DDM est pratique, 

en raison de sa simplicité et de son exigence minimale de données (uniquement des données de 

température), mais elle nécessite des observations de fonte pour évaluer le facteur degré-jour. 

D'autre part, le SEB permet de calculer la fonte des neiges à partir d'équations physiques, à 

condition que le forçage météorologique de la précipitation, de la vitesse du vent, de l'humidité 

de l'air, de la température de l'air et du rayonnement entrant (radios à ondes longues et ondes 

courtes) soit disponible (Liston et Elder, 2006). 

Les tentatives de modélisation sur le Mont-Liban avaient jusqu'ici été limitées à l'échelle 

du bassin expérimental à l'aide de modèles à l'échelle ponctuelle. Aouad-Rizk et al., (2005) ont 

étudié la fonte des neiges dans le bassin de la rivière El Kelb à l'aide d'un bilan énergétique et 

d'une méthode de degré jour. Cette étude met en évidence l'importance de la densité de neige 

et la variation SWE avec l'altitude lors de la prise en compte de la contribution de la fonte des 

neiges. D'autre part, Hreiche et al. (2007) ont utilisé un couplage d’un modèle pluie-débit avec 

un module DDM pour étudier les effets des scénarios de changement climatique dans le bassin 

Ibrahim. Une augmentation de 2 ° C de la température se traduirait par une avance de 2 mois 

de l’écoulement de pointe dans le bassin versant dominé par la neige de Nahr Ibrahim (Hreiche 

et al., 2007). Ces travaux de recherche donnent une image globale de la variabilité temporelle 

de la neige au Liban et de son comportement de fonte. Cependant, la répartition spatio-

temporelle du SWE et la relation entre la fonte des neiges et le ruissellement superficiel et la 

recharge des eaux souterraines reste largement méconnue. 

 

I. 3.5. Hydrologie nivale et importance du karst  

Au Liban, la plupart des chutes de neige tombe sur le plateau crétacé (le «toit» de la 

formation karstique, soit environ 40% du pays). La fonte des neiges (entre novembre et mai) 

recharge le système karstique (par exemple, Margane et al., 2013). Un exemple du bassin d'El 
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Kelb (Margane et al., 2013) a révélé que les régions de haute montagne, entre 1000 et 2600 m 

d'altitude, contribuent à environ 75% de la recharge des eaux souterraines karstiques (Margane 

et al. 2013). On a estimé que la fonte des neiges contribuait à 56% du débit de la source dans la 

zone de plaine du Mont-Liban au printemps à Jeita (à 60 m a.s.l.) (Margane et al., 2013). La 

réponse du débit de la souce aux précipitations dans le bassin El Kelb est rapide (peut être 

observée dans les 24-48h après les précipitations) et dépend généralement de la distribution et 

du type de précipitation (pluie ou chute de neige) (Margane, 2014). La réponse des sources à la 

neige est commune à la plupart des bassins côtiers, par exemple nous montrons ci-dessous la 

carte de la probabilité de détection de neige du produit de neige MODIS (MOD10A1) (Hall et 

al., 2006) Dans les chaînes de montagnes du Mont-Liban et de l'Anti-Liban sur la période 2000-

2011 après l'application de la méthode de gap-filling de Gascoin et al. (2015) (Fig. 1.2a). 

L'évolution mensuelle moyenne de la surface de couverture neigeuse du même produit est 

comparée à la moyenne mensuelle dérivée du SCA et du débit pour la période entre 2000 et 

2011 de la source d’Afqa, source importante qui aliment la rivière Ibrahim (Fig. 1.2b). Fig 1.3 

illustre la corrélation entre le débit observé à Afqa et la SCA dans le bassin topographique 

d’Afqa sur la période 2003-2013, période qui comprend des années sèches, moyennes et 

humides. Ici, comme c’est un exemple préliminaire, nous avons utilisé le SCA comme 

indicateur du SWE. Nous avons trouvé une corrélation de 86% avec un décalage de 2 mois 

entre la SCA et la sortie du printemps Afqa (1113 m a.s.l.). Une telle corrélation souligne 

l'importance de la fonte des neiges dans les réponses hydrologiques du système karstique au 

Mont-Liban. Ces résultats vont de pair avec Margane et al. (2013) sur la réponse rapide du 

système karst dans le bassin de la rivière El Kelb. 

  

Figue. 1.2. (a) probabilité de détection de neige (% de 1 an) calculée à partir du produit MOD10A1 sur le Mont 

Liban et Anti Liban, et (b) débits moyens mensuels et surface enneigée du bassin de la source Afqa dérivé du 

même produit (2000-2011) . Les lignes pointillées indiquent le minimum et maximum observés.  
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Figue. 1.3 (a) La source Afqa (altitude 1113 m) dans le bassin  de la rivière Ibrahim en hiver quand le débit est 

encore minime. L'image a été prise le 24 Février 2015 (avec l’aimable autorisation de l'auteur); et (b) la corrélation 

entre MODIS SCA et le débit d’Afqa pour les années 2003 à 2013. 

 

Par conséquent, la fonte des neiges, qui se produit habituellement au printemps, au 

moment où il ya peu de contribution des précipitations, a une grande influence sur les débits de 

la plupart des sources et des rivières du Liban. Fig. 1.4 illustre les débits d’Afqa au cours de la 

dernière décennie. Les débits sont faibles pendant la saison hivernale (de décembre à mars) et 

atteignent leur maximum entre fin mars et mai en fonction de la quantité de neige. 

 

 
Figue. 1.4 Débit de la source d’Afqa, bassin du Nahr Ibhrahim, moyenne mensuelle entre 2000 et 2011 

 

I. 4. Problématique 

Cette thèse est motivée par le fait que la recharge des eaux souterraines et les débits du 

système karstique sont fortement liés à la fonte de la neige sur le Mont-Liban (Koeniger et 

Margane, 2014, Doummar et al., 2014 et PNUD, 2014). Jusqu'à présent, ce problème a été 

abordé à l'aide de deux types d'approches (1) à l'aide de modèles DDM ou SEB à l’échelle 
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ponctuelle ou de petits bassin pilotes (Aouad-Rizk et al., 2005, Hreiche et al. , 2007) ou (2) en 

combinant des données de MODIS SCA avec des mesures manuelles du SWE (Telesca et al., 

2014), ou par micro-ondes passives à faible résolution (Mhawej et al., 2014) . Cependant, il 

subsiste de grandes incertitudes quant à la quantification de la fonte des neiges à l'échelle 

régionale, principalement en raison du manque de données météorologiques continues dans les 

zones d’altitudes au Liban. 

  

Parmis les questions les plus pressantes au Liban sont (1) quelle est la quantité 

d’eau stockée sous forme de neige en hiver? (2) quelle est la contribution de la fonte des 

neiges aux à la recharge des eaux souterraines?  

 

Pour répondre à ces deux questions, nous avons effectué des mesures sur deux saisons 

de 2014 à 2016, nous avons utilisé les nouvelles observations de stations météorologiques, et 

de télédétection pour mettre en place et évaluer un modèle du couvert neigeux distribué 

spatialement pour la première fois sur le Mont-Liban entre de 1300 et 2900 m. Les objectifs 

spécifiques de cette thèse sont: 

 

1- Quels sont les principaux facteurs météorologiques et physiographiques qui 

contrôlent les processus nivaux dans les régions méditerranéennes et quel est le rôle de la fonte 

des neiges dans l’hydrologie de ces régions? 

2- Quelle est la variabilité spatio-temporelle du SWE à différentes altitude (1300-2900 

m a.s.l.) sur le versant ouest du Mont-Liban? 

3- Dans quelle mesure pouvons-nous estimer avec précision la répartition spatiale du 

SWE au pas de temps journalier à une résolution spatiale fine (100 m)? 

4- Compte tenu de la difficulté et des coûts relativement élevés pour effectuer des 

mesures sur le terrain et maintenir les stations météorologiques dans les zones montagneuses, 

quelle périodicité convient le mieux pour effectuer des mesures sur le terrain? Et quels forçages 

météorologiques sont considérés comme prioritaires pour le bon fonctionnement d’un modèle 

du manteau neigeux? 

 

I. 5. Contenu du rapport 

En plus de ce chapitre introductif cette thèse comporte quatre chapitres. Dans le chapitre 

2 nous essayons de répondre à la question 1 en présentant une synthèse des études nivologiques 
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dans les régions Méditerranéennes. Ce travail est basé sur un l'examen de plus de 650 articles 

publiés dans des revues scientifiques.  

Le Chapitre 3 aborde la question 2 et introduit l'observatoire de la neige au Liban sur le 

Mont-Liban. Ce chapitre présente les trois AWS et montre les résultats des mesures de terrain 

de hauteur, SWE, et densité de la neige qui ont été menées par l'auteur de cette thèse entre 1300 

et 2900 m d’altitude. Finalement, les données de surface enneigées MODIS sont présentées. 

Le chapitre 4 aborde la question 3 en utilisant un modèle de bilan d’énergie (Liston et 

al., 1999;2006). Le modèle a été appliqué sur une grille de résolution 100 m et nous nous 

sommes concentrés sur son évaluation dans les trois bassins d'étude présentés au chapitre 3. Le 

modèle est forcé et validé en utilisant le l’ensemble des données présentées au chapitre 3.   

Le chapitre 5 aborde la question 4, et présente les principales conclusions de ces travaux 

de recherche, met en évidence les principales limites et propose des pistes de recherches futures.   
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Summary of chapter: “Snow hydrology in mediterranean mountain regions: a review” 

This chapter in its current form is published in the Journal of Hydrology: Fayad, A., 

Gascoin, S., Faour, G., López-Moreno J. I., Drapeau L., Le Page M., Escadafal, R.: Snow 

hydrology in Mediterranean mountain regions: a review, J. Hydrol. 

doi:10.1016/j.jhydrol.2017.05.063 

 

The objective of this paper is to provide a review on the snow hydrological processes in 

Mediterranean like mountain regions. In order to investigate this issue, we collected 620 peer-

reviewed papers published between 1913 and 2016, and dealing with Mediterranean-like 

mountainous regions namely those located in the western USA, the Central Andes in South 

America, and the Mediterranean basin (South Europe, North Africa and Western Asia). 

This chapter contributed to highlighting the major meteorological and physiographic 

factors controlling the snow processes in Mediterranean like regions and what is the fate of 

snowmelt in the hydrologic system of these regions. We found that (1) the persistence of snow 

cover is highly variable in space and time but mainly controlled by elevation and precipitation; 

(2) the snowmelt is driven by radiative fluxes, but the contribution of heat fluxes is stronger at 

the end of the snow season and during heat waves and rain-on-snow events; (3) the snow 

densification rates are higher in these regions than other climate regions; and (4) the snow 

sublimation is an important component of snow ablation, especially in high-elevation regions.  

Despite snow importance in Mediterranean like mountainous regions the proper 

investigation of snow dynamics and SWE is still hindered by the lack of consistent ground 

observation especially in high-elevation regions. The spatial representation of SCA and SCD 

can be well achieved using remotely sensed snow data. A better spatial characterization of snow 

cover, however, can be achieved by combining ground observations with remotely sensed snow 

data. SWE reconstruction using satellite snow cover area and a melt model provides reasonable 

information that is suitable for hydrological applications.  

Among the pressing issues is the lack of stable ground observation in high-elevation 

regions. However, a few years of snow depth (HS) and snow water equivalent (SWE) data can 

provide realistic information on snowpack variability. Further advances in our understanding 

of the snow processes in Mediterranean snow-dominated basins will be achieved using finer 

and more accurate climate forcing. Finally, while the theory on the snowpack energy and mass 

balance is now well established the connections between the snowpack and the water pathways 

in the critical zone (soil, groundwater) require further investigation.  
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2 SNOW HYDROLOGY IN MEDITERRANEAN MOUNTAIN 

REGIONS: A REVIEW 

Abstract 

Water resources in Mediterranean regions are under increasing pressure due to climate change, 
economic development, and population growth. Many Mediterranean rivers have their 
headwaters in mountainous regions where hydrological processes are driven by snowpack 
dynamics and the specific variability of the Mediterranean climate. A good knowledge of the 
snow processes in the Mediterranean mountains is therefore a key element of water 
management strategies in such regions. The objective of this paper is to review the literature on 
snow hydrology in Mediterranean mountains to identify the existing knowledge, key research 
questions, and promising technologies. We collected 620 peer-reviewed papers, published 
between 1913 and 2016, that deal with the Mediterranean-like mountain regions in the western 
United StatesA, the central Chilean Andesthe Central Andes in South America, and the 
Mediterranean basin (south Europe, North Africa and western Asia). We find a large amount 
of studies in the western US that form a strong scientific basis for other Mediterranean mountain 
regions. This review led to the followings highlights: (1) the persistence of snow cover is highly 
variable in space and time but mainly controlled by elevation and precipitation; (2) the 
snowmelt is driven by radiative fluxes, but the contribution of heat fluxes is stronger at the end 
of the snow season and during heat waves and rain-on-snow events; (3) the snow densification 
rates are higher in these regions than other climate regions; and (4) the snow sublimation is an 
important component of snow ablation, especially in high-elevation regions. Among the 
pressing issues is the lack of stable ground observation in high-elevation regions. However, a 
few years of snow depth (HS) and snow water equivalent (SWE) data can provide realistic 
information on snowpack variability. A better spatial characterization of snow cover can be 
achieved by combining ground observations with remotely sensed snow data. SWE 
reconstruction using satellite snow cover area and a melt model provides reasonable 
information that is suitable for hydrological applications. Further advances in our understanding 
of the snow processes in Mediterranean snow-dominated basins will be achieved by finer and 
more accurate climate forcing. While the theory on the snowpack energy and mass balance is 
now well established, the connections between the snow cover and the water resources involve 
complex interactions with the sub-surface processes, which demand future investigation.  
 
Keywords: Snowpack; Snow hydrology; Mountain hydrology; Mediterranean regions 
 
 

2.1 Introduction  

Mountains regions are a major source of surface water and groundwater recharge in the 

world (Viviroli et al., 2007; Dettinger, 2014). The water balance in mountainous regions is 

defined by the interactions between the climate, cryospheric, and hydrological systems (de Jong 

et al. eds. 2005; DeWalle and Rango, 2008). In mountainous regions that are under the influence 

of the Mediterranean climate (Bolle 2003; Lionello et al. 2006), the wet-winters and hot and 

dry-summers climate, orographic enhanced precipitation, variability of temperature and the 
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partitioning of rain and snow with elevation, and the high seasonal variability of the snow cover 

make the hydrologic processes in these mountainous regions significantly different from those 

found in other cryospheric regions and or dry or wet climates. Under the influence of the 

Mediterranean climate, an important fraction of the precipitation occurs during winter months 

(e.g., Demaria et al., 2013a; López-Moreno et al., 2013a; Valdés-Pineda et al., 2014), with the 

highest elevation areas receiving most of this winter precipitation as snow while the mid-

elevation areas have a mixed precipitation regime (McCabe et al., 2007; Surfleet and Tullos, 

2013; Guan et al., 2016). Winter precipitation is orographically enhanced along with elevation 

(Dettinger et al., 2004; Behrangi et al., 2016; Derin et al., 2016). The snowmelt from the 

Mediterranean mountain occurs in the spring and summer when precipitation is otherwise 

scarce, and thus, this snowmelt is an essential water resource for many communities living in 

the surrounding low land regions (Morán-Tejeda et al., 2010; López-Moreno et al., 2008a, 

2014).  

The Mediterranean mountain regions include thecountries around the Mediterranean 

Sea (e.g., Morocco, Spain, France, Italy, Bulgaria, Croatia, Greece, Turkey, and Lebanon.), the 

western USA (California) and the mid-latitude area of Chile and Argentina. In almost all these 

regions, agriculture is an important source of income and employment and snowmelt provides 

runoff during the crop growing season, when irrigation is the most needed. However, the 

sustainability of the water resources is threatened by the pressure of a growing population, 

increasing irrigation, and climate change (e.g., Barnett et al., 2008). While Mediterranean 

region have been considered as climate change “hot spots” since the first IPCC reports (Milly 

et al., 2005; Giorgi, 2006; Nohara et al., 2006; Nogués-Bravo et al., 2007; Giorgi and Lionello, 

2008; Loarie et al., 2009; Kyselý et al., 2012; Kapnick and Delworth, 2013; Morán-Tejeda et 

al., 2014; Prudhomme et al., 2014; Harpold and Molotch, 2015; Vano et al., 2015; Kumar et 

al., 2016), there is also new evidence that the rate of atmospheric warming increases with 

elevation (Kotlarski et al., 2015; Pepin et al., 2015), which strengthens the concern about the 

climate change in Mediterranean mountain regions. The impact of atmospheric warming is 

expected to be strong in snow-dominated watersheds since snow accumulation and ablation are 

highly sensitive to air temperature (Beniston, 2003; Barnett et al., 2005; Howat and Tulaczyk, 

2005; Brown and Mote, 2009; Cooper et al., 2016). The main consequence to warming is a shift 

in the hydrological regimes from a snow-dominated regime towards a rain-dominated regime 

(Berghuijs et al., 2014; Goulden and Bales, 2014). For example, in the western USA, areas with 

elevations between 2000 to 2800 m are the most sensitive to global warming (Maurer et al., 

2007). Regions in the western US where the average winter-wet-day minimum temperature 
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increased by +3 °C are witnessing a reduction in the winter-total snowfall to precipitation ratio 

(Knowles et al., 2006). Most Northern-Hemisphere’s snow-dependent regions are likely to 

experience increasing stress from low snow years within the next three decades (Diffenbaugh 

et al., 2012). Areas with an average winter temperature between -4 and -2 °C are expected to 

witness shifts towards earlier streamflow peaks (changes that exceed 45 days relative to those 

from 1961–1990) (Maurer et al., 2007). Similar results were reported in the Southern Alpine 

river basins (Zampieri et al., 2015). The Mediterranean climate is also characterized by a high 

inter-annual variability, although the underlying mechanisms depend upon the specific region. 

North and South American Mediterranean regions are under the influence of the climatic 

variability of the Pacific Ocean, while the Mediterranean climate in Europe and North Africa is 

relatively connected to the North-Atlantic climatic variability (López-Moreno et al., 2013a).  

Research on the seasonal snow and snow hydrology in mountains is well established 

and several authors have already produced review articles or chapters on the following: (1) the 

physical properties of the snowpack (e.g., Armstrong and Burn (eds) 2008; Kinar and Pomeroy, 

2015; Sturm, 2015); (2) remote sensing of snow (Dozier and Painter, 2004; Seidel and Martinec 

2004; Dozier et al., 2009; Dietz et al., 2012; Frei et al., 2012; Deems et al., 2013; Lettenmaier 

et al., 2015; Sturm, 2015; Tedesco (ed.) 2015); (3) spatial distribution of the snow water 

equivalent, SWE (Dozier et al., 2016); (4) snow and mountain hydrology (e.g., Seidel and 

Martinec 2004; de Jong et al. (eds.) 2005; Bales et al., 2006; Armstrong and Burn (eds) 2008; 

DeWalle and Rango 2008; Varhola et al., 2010; Hrachowitz et al., 2013; Bierkens, 2015; Sturm, 

2015); (5) snow spatial representation in hydrologic and land-surface models (e.g., Clark et al., 

2011); and the (6) projected climate impact on the cryospheric and hydrological systems in 

mountains (e.g., Beniston, 2003; de Jong et al. (eds.) 2005; Huber et al. (eds.) 2005; Vicuña and 

Dracup, 2007; Viviroli et al., 2007; Brown and Mote, 2009; Stewart, 2009; García-Ruiz et al., 

2011; Diffenbaugh et al., 2012; Kapnick and Delworth, 2013; Beniston and Stoffel, 2014; Pepin 

et al., 2015; Sturm 2015; Wu et al., 2015; Meixner et al., 2016).  

Snow processes are driven by meteorological forcing (energy and mass fluxes), and land 

surface physiography (topography and vegetation). Therefore, the snowpack present different 

characteristics depending on the region. The standard snow classification that was introduced 

by Sturm et al. (1995) defines seven classes of seasonal snow according to their physical 

properties: Tundra, Taiga, Alpine, Maritime, Ephemeral, Prairie, or Mountain. The 

“Mediterranean snow” can be observed as a subset of the Maritime class and it is characterized 

by a warmer snowpack, a shorter snow season, and a higher variance in both the intra-annual 

snow depth and mean monthly snow density compared to the Tundra, Taiga, and Prairie snow 
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regions (Brown and Mote, 2009; Sturm et al., 2010; Bormann et al., 2013) (Fig. 2.1). In 

comparison with the Tundra and Taiga regions, the snowpack in Mediterranean mountains is 

characterized by higher mean annual snow densities and annual densification rates (Bormann 

et al., 2013; Trujillo and Molotch, 2014) (Fig. 2.1).   

To our knowledge, no review to date has explicitly addressed the characterization of 

snow hydrologic processes related to snow in one of the major snow regions. Given the 

significance of the snowmelt as a water resource in Mediterranean regions, we considered that 

a review of the previous snow studies undertaken in Mediterranean mountain regions is needed. 

This review may be helpful, for example, in defining a new research program in this climate 

region, which is highly sensitive to global warming and where snowmelt is an important 

contributor to the hydrologic cycle (Grouillet et al., 2016). 

More specifically this review seeks to answer the following questions: (1) what are the 

major forcing variables and controls that drive the snow dynamics in Mediterranean mountain 

regions? (2) To what extent are we able to estimate the spatiotemporal properties of snowpack 

(i.e., SCA, HS, and SWE)? (3) What are the current limitations and opportunities associated 

with available observational networks and methods used to assess the snowpack dynamics and 

hydrologic responses in these mountain regions?  

 

 
Fig. 2.1. Variation in the mean monthly snow density (Oct-June) (kg m-3) adopted from Brown and Mote (2009) 
for the major climate regions. *California monthly snow density means (Jan-June) are based on long-term monthly 
data records (more than 20 years) retrieved from 46 snow courses and 26 SNOTEL stations (data are available 
online at wcc.nrcs.usda.gov/snow/). The average snow depth and standard deviation, not shown, were as follows: 
Tundra (43.8 cm, 24.7 std dev), Taiga (59.6, 22.7), Alpine (130, 82.5), Prairie (88.5, 72.8), and Maritime (176.6, 
149.9) (Sturm et al., 2010), and the average for California calculated from long term monthly snow courses and 
SNOTEL data was 146.1 cm (std dev = 97.5). 

We collected 620 peer-reviewed articles published between 1913 and 2016, which 

dealing with the snowpack and snow hydrology in Mediterranean regions. From this large 

number of papers, we adopted a hybrid quantitative (metadata analysis from the papers) and 

qualitative approach (literature review) to gain insight into the major issues, trends, and 
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advances in this already large and growing research field. We present the geographic extent of 

the papers and the methodology to analyze them in section (2). The key indicators obtained 

from the papers dataset are presented in section (3). The second part of the paper is devoted to 

the review of the three key issues that emerge from this article database: Section (4) addresses 

the characterization of the climatic forcing in snow-dominated Mediterranean regions; Section 

(5) describes the main features of the snowpack obtained from ground measurements and 

remote sensing techniques; Section (6) focuses on the studies dedicated to the snowmelt 

modeling; and Section (7) draws conclusions and opportunities for future work.  

We focused on papers that address snowfall, snowpack and snow hydrology processes 

in Mediterranean mountains. We did not focus on the climate change impact studies, which 

already represent an important body of the literature per se. Interested readers can refer to 

Beniston (2003), Beniston and Stoffel, (2014), de Jong et al., (eds) (2005), and de Jong et al., 

2012) for additional information regarding the potential impact of climate changes on mountain 

hydrology and water resources in Mediterranean regions.  

 

2.2 Method  

2.2.1 Geographic extent of the review 

The Mediterranean climate is found on the western part of the continents between 

latitudes 30° and 45° (Bolle (ed.), 2003). The land regions around the Mediterranean Sea 

(southern Europe, Northern Africa and the Levantine region) form the largest area of this type 

of climate. The Mediterranean climate is also found in the western Coastal USA (California, 

and western Oregon), and the Central Andes of Chile and Argentina (Fig. 2.2). Limited regions 

in Southern Australia and southern Africa are also classified as Mediterranean (not shown). A 

combined Koppen (Kottek et al., 2006) and mountain classification scheme (Viviroli et al., 

2007) was used to better distinguish the mountain regions associated with the Mediterranean 

climate (Fig. 2.2). The Koppen climate scheme defines five main groups and multi subtypes 

according to the long-time annual and monthly temperature means and precipitation totals. Of 

particular interest to this study are the Mediterranean (Csa, Csb) regions and the regions 

influenced by Mediterranean climate, such as the adjacent maritime zones (Cfb, Cfc) and the 

semi-arid regions (BSh, BSk). The Viviroli et al., (2007) scheme distinguishes a total of 15 

relief patterns by combining elevation and a relief roughness indicator, and it was used to 

distinguish between mountainous and lowland areas.  
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Fig. 2.2. Mediterranean mountain regions (a) Central Chile (b) western USA and (c) Mediterranean Basin. 
Mountain regions were derived using the Viviroli et al., (2007) scheme based on the global multi-resolution terrain 
elevation data (GMTED2010) at 15-arc second resolution (Danielson et al., 2011), and they are shown in light 
blue; the three main distinct climates portray the Mediterranean (Csa, Csb) shown in light orange, oceanic and 
maritime climates (Cfb, Cfc) in dark olive, and the semi-arid regions (BSh, BSk) in plum (Kottek et al., 2006). 
The red dot indicates the coordinates associated with each paper in the database. 

 

2.2.2 Bibliographic sources 

We used the website of the three major scientific publishers (Elsevier, Wiley, and 

Springer), Google Scholar, ReadCube, and open access journals websites to find articles from 

the early 1900’s to the present, in which snow, hydrology, and mountain hydrology and 

climatology appeared in the title or abstract, or as a keyword. Only articles published in peer-

reviewed journal with an impact factor greater than one and articles related to the Mediterranean 

regions presented above were considered. A second round of screening focused on reading the 

abstract and identifying articles where snow properties, snow hydrology and mountain 

hydroclimatology are considered as part of the article’s main objectives. As much as possible, 

we avoided papers where snow was addressed in a marginal context. Hundreds of articles were 

identified during the initial screening. A total of 620 articles, (published in 82 different journals) 

(Fig. 2.3a.), were retained after the second screening. A table with the metadata for the articles 

is provided in Appendix (A2).  

We identified a list of 35 different indicators that correspond to key research areas 

(Appendix A3). These were classified under three major groups (science, methods, and data) 

and subdivided into different categories. The first group focuses on science and it includes three 

categories: (1) meteorology and climatology in mountains (e.g., mountain climate, climate 

change and variability, climatology and meteorology, and hydrometeorology (inc. 

hydroclimatology), (2) snow (e.g., snow hydrometeorology (inc. climatology), snow properties, 
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and snow hydrology) and (3) hydrology (e.g., mountain hydrology, hydrology in snow-

dominated basins, and hydrogeology in mountains). The second group focuses on the following 

methods: (4) methods used to quantify the snow cover extent (e.g., remote sensing of snow); 

methods used to describe the spatial distribution of snowpack indicators (e.g., spatial statistics 

and trends in climate, snowpack, and hydrology); and methods used to simulate the main 

characteristics of snow accumulation, snow duration, and snowmelt processes (e.g., snow 

energy and mass balance simulation, hydrological modeling). The third group emphasizes the 

following: (5) data (i.e., length of data used, source and type of data (i.e., ground observations, 

projections, and reanalysis), and spatial scales (extent of the study area and elevation range). 

Each article was associated with a pair of longitude and latitude coordinates, which represent 

the approximate centroid of the study area highlighted in the paper, and each article was 

reported on a map that shows both the Koppen climate classes and the mountain regions, as 

defined by Viviroli et al., (2007) (Fig. 2.2). 

Using our personal criteria, each article was classified under one or two major science 

topics (see categories 1-3 above) and a methodological approach (see category 4 above). We 

then combined both in a single label. For instance, Maurer et al. (2007) addressed streamflow 

trends in snow dominated regions where climate change, hydrology, snow and streamflow 

timing were all considered. Hence, since the article emphasizes on the use of a hydrologic model 

for streamflow in mountain regions the paper was categorized under the “trends in snowpack 

and hydrology, using distributed hydrological model”.  

 

2.3 Description of the articles database 

2.3.1 Mountain ranges 

Mountain regions covered in this review include the following (Fig. 2.3b): (1) the 

coastal regions of western United States (Bales et al., 2006) including the Oregon Cascade 

(Sproles et al., 2013) and California Sierra Nevada Mountains (Guan et al., 2013a; Molotch and 

Meromy, 2014); (2) the central Andes that cover two of Chile’s major natural regions – Chile’s 

central and southern zones (Favier et al., 2009; Cortés et al., 2011; Valdés-Pineda et al., 2014); 

the major mountain chains around the Mediterranean Sea (López-Moreno et al., 2011a) namely; 

(3) Spanish (López-Moreno et al., 2014) and French (Gascoin et al., 2015) Pyrenees; (4) 

Spanish Sierra Nevada Mountains (Pimentel et al. 2015); (5) French and Italian Maritime Alps 

(Dedieu et al., 2014) – which are under the influence of the Mediterranean climate (Durand et 
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al. 2009); (6) Turkey and the Armenian Plateau (Tekeli, 2008); (7) Mount Lebanon and Anti 

Lebanon Ranges (Mhawej et al., 2014); and (8) Moroccan Atlas (Marchane et al., 2015). Little 

information was found on other Mediterranean Sea Mountains (López-Moreno et al., 2011a) 

such as the Iberian Peninsula Mountains (Morán-Tejeda et al., 2014), Italian Apennines 

(Martelloni et al., 2013), Southern Calabrian mountains in Italy (Senatore et al., 2011), Julian 

Alps (Italy and Slovenia), Dinaric Alps (mostly over Croatia and Bosnia and Herzegovina), 

Bulgarian mountains (Brown and Petkova, 2007), Pindos (Greece), Rhodope (Greece), and 

Taurus (Turkey). 

2.3.2 Bibliometric analysis  

Papers that covered local and regional scale studies accounted for ~90% (of all 620 

papers), the remaining (~10%) were global studies and review papers. The majority of all 

articles (90.5%) were published between 2000 and 2016 inclusive, and half of all articles 

(53.4%) were published over the past five years (2011-2016) (Fig. 2.3a). The remaining (<10%, 

not shown) were published between 1913 and 1999, of which ~85% were published between 

1990 and 1999. Approximately 66.5% of all articles were published in 10 journals (Fig. 2.3a). 

Over the past 16 years (2000-2016), papers covering the California, Sierra Nevada Mountains 

amounted to 30% of the local and regional scale studies (41% when the regional scale studies 

over the western United States are included). Spanish Pyrenees (10%) and the Chilean central 

Andes (6%) were among the most studied mountain regions (Fig. 2.3b). Fig. 2.3c highlights the 

yearly number of published papers in the first three major Mediterranean regions (2000-2016). 
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Fig. 2.3. Key bibliometric indicators were the following (from top to bottom): (a) cumulative yearly number of 
publications per journal (based on 561 articles published between 2000 and 2016); (b) Distribution of studies by 
major mountain regions shown; and (c) number of yearly published papers in California (excluding western US 
regional studies) (30%), Spanish Pyrenees (10%), and Chilean Central Andes (6%).  
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2.3.3 Thematic analysis  

The papers cover multiple scales: (1) experimental sites and small catchments (Storck 

et al., 2002; Franz et al., 2010; López-Moreno et al., 2010, 2013b; Bales et al., 2011; Liu et al., 

2013; Raleigh et al., 2013; Harpold et al., 2014; Girotto et al., 2014; Revuelto et al., 2016a; 

Marti et al., 2016); (2) snow-dominated basins (Lundquist et al., 2010; Powell et al., 2011; 

Rousselot et al., 2012; Smith et al., 2013; Welch et al., 2013; Cortés et al., 2014; Franz et al., 

2014; Telesca et al., 2014; Marchane et al., 2015); (3) multiple basins, mountain ranges, and 

regional scales  (Painter et al., 2009; López-Moreno et al., 2011a; Pavelsky et al., 2011; Guan 

et al., 2013b; Núñez et al., 2013; Slater et al., 2013; Stewart, 2013; Avanzi et al., 2014; Hüsler 

et al., 2014; Cornwell et al., 2016); and (4) continental scales and the global scale (e.g., Nohara 

et al., 2006; Pepin et al., 2015). The studies provide information on (1) mountain climatology 

and meteorology (Bonfils et al., 2008; Herrero and Polo, 2012; Pavelsky et al., 2012; Lute and 

Abatzoglou, 2014; Lundquist et al., 2015a; Guan et al., 2016); (2) long-term hydroclimatology 

and snowpack trends in mountains (López-Moreno and García-Ruiz, 2004; Hamlet et al., 2005; 

Mote et al., 2005; Stewart et al., 2005; Masiokas et al., 2006; McCabe et al., 2007; Pierce et al., 

2008; Das et al., 2009); (3) meteorological forcing and topographic controls on snowfall and 

snowpack in mountains (Anderton et al., 2004; Guan et al., 2010; Rice et al., 2011; Musselman 

et al., 2012; Trujillo et al., 2012; Wayand et al., 2013; Ayala et al., 2014; Molotch and Meromy, 

2014; Hinkelman et al., 2015; Lapo et al., 2015; López‐Moreno et al., 2015; Harpold, 2016); 

(4) snowpack properties (Mizukami and Perica, 2008; Perrot et al., 2014; Trujillo and Molotch, 

2014); (5) snow accumulation and ablation (Harpold et al., 2012; Meromy et al., 2013; Guan et 

al., 2013a; Avanzi et al., 2014; Sade et al., 2014); (6) snowmelt runoff (Tekeli et al., 2005a; 

Herrero et al., 2009; Şorman et al., 2009; Franz and Karsten, 2013; Liu et al., 2013; Jepsen et 

al., 2016a); and (7) different hydrological (Aguilar et al., 2010; Kourgialas et al., 2010; 

Lundquist and Loheide, 2011; Goulden et al., 2012; Schlaepfer et al., 2012; Harpold et al., 

2015; Penna et al., 2015; Harpold, 2016); and (8) hydrogeological processes (Tague and Grant, 

2009; Lowry et al., 2010) in snow-dominated mountain regions. 

Given the variety of the topics covered in the literature, we found that the most relevant 

approach for synthesizing them is to treat the three main vertical levels of the hydrosystem from 

the atmosphere to the bedrock separately: (1) climate forcing to the snowpack, (2) snowpack 

spatio-temporal variability, and (3) snowmelt hydrology and hydrogeology. A synthesis on 

climate forcing, snowpack dynamics, and hydrological processes is presented in Table 2.1 and 
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further discussed in detail under sections 4-6, respectively. Fig. 2.4 summarizes the key 

elements of the energy fluxes and mass balance in a typical Mediterranean mountain context. 

Early studies published prior to the ‘90s emphasized on mountain meteorology, ground 

observations of the snowpack, and the theoretical aspects of snow energy balance and 

snowmelt-runoff models. The time period between 1990 and 1999 witnessed a diversification 

in the topics with a focus on the quantification of the snow water equivalent, snow interception 

in forests, hydrology and hydrogeology in snow-dominated basins– including hydrochemical 

analysis of snowmelt runoff. In this period, the first studies on the changes in snowpack and 

streamflow under global warming were published. Few studies were based on remote sensing 

(5%).  

After 2000, the number of scientific publications increased exponentially each five 

years. Such a growth rate is higher than the doubling time for natural sciences, which is 

estimated at 8.7 years (Bornmann and Mutz, 2015). Fig. 2.5 summarizes the number of 

published papers (2000-2016) based on their key category. The main scientific area was the 

effect of meteorological and climatological variables on the snow hydrology that accounted for 

29% of the studies (Fig. 2.5), of which about a half were dedicated to assessing climate change 

impacts on the hydrology and the snowpack. 25% and 7% of the studies were dedicated to 

hydrology and hydrogeology, respectively. The snowpack modeling accounted for 13% of the 

studies, and the snow remote sensing for 8% (Fig. 2.5).  
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Fig. 2.4. Major climate forcing and snow processes in Mediterranean-like mountainous regions with emphasis on 
the specific objectives shown here for mountain hydrology and snowpack dynamics. Where SWi and SWo are 
incoming and outgoing shortwave radiation, respectively; Lwo and Lwi are the emitted and incoming longwave 
radiation, respectively; P is precipitation, Ws is wind speed, and RH is relative humidity; HM is sensible heat 
fluxe; Ts is surface temperature and Tg is ground temperature; HS is snow depth, ds is snow density, and SWE is 
snow water equivalent; Ss is snow sublimation and Sm is snow melt; ET is evapotranspiration, R is surface runoff, 
G is subsurface and groundwater flow. The background image was taken in Laqlouq at 1850 m a.s.l. (Mount-
Lebanon) on February 20th, 2016 (courtesy of the author). 

 

 

Fig. 2.5. Distribution of papers by science groups and key sub-categories with emphasis on climate forcing to the 
snowpack (29% of all studies, shown in red), snow studies (39%, blue), and snowmelt hydrology and hydrogeology 
(32%, green). S. is snow; Trend S. indicates a study that emphasis addressing climate change impacts on snow. 
RSS indicates a paper that focuses on remote sensing of snow. EBM indicates a study that describes and testes an 
energy balance model (see appendix A3 for a detailed list of indicators). 
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Table 2.1. Summary of key science topics identified in the literature; in addition, the table lists major variables, 
scales and sources of uncertainty.  

Topic Main variables of 

interest 

Main source of 

data 

Main methods Major sources of 

uncertainty 

Climate forcing 
to the snowpack 

Near-surface 
meteorological 
variables (air 
temperature, air 
humidity, 
precipitation, 
longwave and 
shortwave 
radiation); latent 
and sensible heat. 

Ground 
observations 
(automatic weather 
stations); reanalysis 
data. 

Mesoscale 
atmospheric model 
(e.g., WRF); 
assimilation 
techniques; 
downscaling; spatial 
interpolation. 

Lack of weather 
stations at high-
elevation; high 
spatial variability of 
the climate in 
mountains; lack of 
long time series; 
snowfall undercatch 
by precipitation 
gauges; few 
radiation and flux 
measurements 

Snowpack 
spatio-temporal 
variability 

Snow cover area, 
snow depth, snow 
density, snow water 
equivalent, snow 
albedo. 

Field 
measurements; 
Automatic weather 
stations, space 
borne remote 
sensing products; 
terrestrial remote 
sensing (Lidar, 
camera). 

Temperature index 
model; regression 
analysis; modeling 
of snowpack mass 
and energy balance. 

Spatial variability of 
snow depth; inter-
annual variability of 
SWE; difficulty to 
sample large areas 
in the field; cloud 
and canopy 
obstruction in 
optical remote 
sensing; large errors 
of SWE retrievals in 
complex topography 
by microwave 
remote sensing. 

Meltwater 
hydrology 

Surface runoff, soil 
moisture, 
evapotranspiration, 
groundwater flow 
and recharge. 

Gauging stations; 
remote sensing; 
hydro-chemical 
testing for 
streamflow and 
groundwater 
recharge. 

Water balance, 
hydrological and 
hydrogeological 
modeling. 

Medium to high 
difficulty in 
conducting 
measurements; 
heterogeneity of 
mountain 
topography and land 
cover; mixed 
rain/snow regimes; 
lack of sub-surface 
measurements. 

 

2.4 Climate forcing to the snowpack 

The two processes that control snowpack dynamics in mountains are snow accumulation 

and ablation. The accumulation is mainly forced by snowfall and this mainly depends on 

precipitation and temperature (López-Moreno, 2005), while the ablation is driven by radiation 

and heat fluxes between the atmosphere, the snowpack and the underlying soil (Herrero et al., 

2009). The near-surface wind also influences both accumulation and ablation (e.g., Gascoin et 

al., 2013) (see Sect. 5).  
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2.4.1 Near-surface meteorological observations    

The minimum meteorological data to run a temperature index snowmelt model are the 

precipitation and the air temperature (DeWalle and Rango, 2008). A typical 1D (vertical) 

snowpack energy balance model requires additional data of air relative humidity, incoming 

shortwave and longwave radiation and wind speed. The wind direction is only useful to simulate 

wind drift and lateral heat advection (e.g., Burns et al., 2014), in case of a patchy snow cover 

(e.g., Liston, 1995). However, information on the spatial distribution of the main meteorological 

variables remains incomplete in Mediterranean mountains, such as in most of the world’s 

mountains (e.g., Bales et al., 2006). This has been attributed to the following: 

(1) The sparseness of the automatic weather stations (AWS) networks (Horel and Dong, 

2010; Gottardi et al., 2012; Valdés-Pineda et al., 2014; Henn et al., 2015). Even in well-

monitored regions most of the AWS are usually below 3000 m a.s.l, although meltwater 

production generally increases with elevation (Favier et al., 2009).  

(2) The number of variables being measured at the AWS (Raleigh et al., 2016). A survey 

based on 1318 AWS across the western US, where meteorological data and either SWE or snow 

depth are measured, indicated that near-surface forcing variables of air temperature and 

precipitation are among the most sampled (99-83%) whereas wind speed, humidity (often as 

relative humidity RH), and incoming shortwave radiation are measured 24-36% of the time. 

Incoming longwave radiation is the least measured (1.4%). Nearly 99% of all AWSs do not 

measure all six forcing variables (Raleigh et al., 2016). 

(3) Biases and uncertainties that arise from observational data. AWS are prone to data 

logging failure; some sensors require periodic calibration and the data must undergo specific 

quality control given the harsh climatic conditions encountered in high-elevation areas (Estévez 

et al., 2011; Filippa et al., 2014; Lundquist et al., 2015a). 

Radiative and turbulent fluxes in Mediterranean mountain regions can be calculated 

from meteorological and incident solar radiation and thermal radiation observations (e.g., using 

pyranometer and pyrgeometer) at experimental sites (e.g., Marks et al., 1992). There are few 

flux tower locations (e.g., Goulden et al., 2012; Burns et al, 2014) and specific research sites, 

such as the CUES in California, which feature a full range of censors for measuring the snow 

energy balance (Bair et al., 2015). Flux towers equipped with eddy covariance system and 

specific stations equipped with pyranometers and pyrgeometers remain the two options for 

measuring the sensible heat, latent heat, and radiative fluxes. However, most of the available 

flux towers are generally located at flatter lowland areas and provide little information needed 
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to evaluate fluxes in snow ablation in complex mountain regions (Bales et al., 2006; Raleigh et 

al., 2016). Studies that address snow energy balance in snow-dominated regions (e.g., Sproles 

et al., 2013; Mernild et al., 2016a) rely on solving the energy balance solely from meteorological 

observations (e.g., Liston et al., 1999; Herrero et al., 2009). This led has resulted in the current 

availability of limited information for validating the contribution of radiative and turbulent 

fluxes (Lapo et al., 2015; Raleigh et al., 2016). 

2.4.1.1 Precipitation  

In Mediterranean mountain regions, more than 80% of the annual precipitation falls 

during winter (November to March for the Northern Hemisphere and May to September in the 

Southern Hemisphere) (Mazurkiewicz et al., 2008; Demaria et al. 2013a; López-Moreno et al. 

2013a). Mountain regions such as the Sierra Nevada, California receive 75-90% of winter 

precipitation in the form of snow (Jepsen et al., 2012). Mountain regions tend to receive more 

precipitation than surrounding lowland areas due to the orographic enhancement (Favier et al., 

2009; Neiman et al., 2014; Lundquist et al., 2015a; Derin et al., 2016).  

The assessment of the distribution of precipitation amounts in mountain regions and an 

accurate identification of the precipitation type (snow or rain) emerge as the most uncertain 

factors in the literature (Gottardi et al., 2012; Neiman et al., 2014; Dettinger, 2014; Buisan et 

al., 2014; Derin et al., 2016). Uncertainties in the precipitation distribution over mountain 

regions are associated with (1) snow gauge undercatch (Sevruk et al, 1991; Rasmussen et al., 

2012), (2) precipitation phase determination (e.g., Harpold et al., 2017), (3) methods for 

estimating spatial precipitation distribution, including the precipitation lapse rates (Lundquist 

et al., 2015a; Henn et al., 2017), and (4) the heterogeneity of the precipitation network (Favier 

et al., 2009; Rice and Bales, 2010; and Gottardi et al., 2012). 

Wind-induced precipitation undercatch affects the accuracy of precipitation data and is 

more pronounced for solid precipitation than for liquid precipitation (Rasmussen et al., 2012; 

Buisan et al., 2016; Smith et al., 2016; Pan et al., 2016). Measurement errors due to gauge 

undercatch frequently range between 20% and 50% (Rasmussen et al., 2012). The factors that 

govern snow undercatch are related to the gauge setting (i.e. shielded and unshielded) (Colli et 

al., 2015), snowflake characteristics (Theriault et al., 2012), and wind speed (Rasmussen et al., 

2012). Despite its importance little information was found in the literature on snow undercatch 

in Mediterranean regions. 

Precipitation phase determination is often done as post-processing given that most 

gauges do not detect the phase. The phase is required to determine the water equivalent during 
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the accumulation season, but also to properly correct precipitation undercatch, and for 

investigating rain-on-snow events which contribute to the snowpack ablation. Determining 

precipitation phase from ground observation can be achieved using (1) thresholds for 

temperature (e.g., air, dewpoint, and wet bulb) (see Marks et al., 2013), (2) linear transition, 

range, and sigmoidal curve methods based on near-surface air temperature (e.g., Harpold et al., 

2017), and (3) psychrometric energy balance method (Harder and Pomeroy, 2013). Despite the 

availability of these methods, one of the major limitation for the proper determination of 

precipitation phase from ground data is attributed to the lack of meteorological observations for 

stations in near locations to the precipitation gauges (Harpold et al., 2017). 

Rain-on-snow events are not uncommon in Mediterranean mountains (Guan et al., 

2016). These events help in warming the snowpack and add very high sensible heat to the 

snowpack through condensation, which accelerates melting and sometimes triggers 

catastrophic floods (McCabe et al., 2007; Surfleet and Tullos, 2013). In the western United 

States, rain-on-snow-events appear to be partly driven by the El Niño–Southern Oscillation 

(ENSO), the Pacific Decadal Oscillation (PDO) (McCabe et al., 2007; Lute and Abatzoglou, 

2014) and atmospheric rivers (Trujillo and Molotch, 2014; Guan et al., 2016). To our 

knowledge, the impacts of rain-on-snow events were not specifically addressed in regions other 

than the western USA. The analysis of rain-on-snow events remain challenging and warrant 

future investigation (Wayand et al., 2015). 

Uncertainties associated with the spatial distribution of precipitation increases with 

elevation, where differences between datasets ranged between 5 to 60%, exceeding 200 mm yr-

1 on average, were reported across the Western United States (Henn et al., 2017). Different 

methodologies were developed to compute the integrated precipitation in high-elevation 

watersheds (Valery et al., 2010) and to generate gridded precipitation maps from daily ground 

observation (see Demaria et al., (2013b) and Lundquist et al., (2015a) for a list of gridded 

precipitation products). The emergence of gridded precipitation products over the 2000s has 

boosted the research in snow hydrology and facilitated the upscaling of point-scale studies. 

Precipitation grids are invaluable data for distributed hydrological modeling in both the 

operational and research context, e.g., to perform climate change impact studies at the scale of 

river basins (Mernild et al., 2016b). While the overall accuracy of gridded precipitation products 

has been deemed satisfactory, the biases increase with elevation (Mizukami et al., 2011; 

Lundquist et al., 2015a). Precipitation-gauge undercatch, a poor knowledge of wind patterns to 

correct the undercatch, and the lack of in situ input data are sources of errors in the gridded 

precipitation products (Dettinger, 2014; Lundquist et al., 2015b; Mizukami and Smith, 2012). 
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In addition, temporal inconsistencies in multi-year gridded precipitation biases tend to increase 

the uncertainty in simulating hydrological responses in snow-dominated basins (Mizukami and 

Smith, 2012). 

Acquiring precipitation and snowfall from high-resolution satellite-based rainfall (SBR) 

products (e.g., TRMM and GPM) in mountain regions (Derin et al., 2016), such as the western 

US (Behrangi et al., 2016), and northeastern Spain (Kenawy et al., 2015), is still hindered by 

the facts that (1) capturing solid precipitation is practically challenging for TRMM and results 

are highly biased over snow surfaces, (2) precipitation satellites tend to underestimate the wet 

season and overestimate dry season precipitation rates over land and should be corrected using 

in situ measurements; and (3) the performance of gauge correction to SRB is less effective in 

mountain regions and depends on the representativeness of the observation networks.  

Over the past decade there had been an increase in the use of assimilation techniques 

and the downscaling of atmospheric model (e.g., Vionnet et al., 2016, Mernild et al., 2016a). 

These different techniques to estimate precipitation using a combination of ground 

observations, numerical weather prediction, and remote sensing observations are still not 

complete and the generated gridded data is at coarser and medium resolution at best (e.g., Quéno 

et al., 2016). There is more work needed to understand how atmospheric circulation (Jin et al., 

2006; Lundquist et al., 2010) and the complex topography at the finer scales (López-Moreno et 

al., 2015) affects precipitation and snowfall and both topics are interesting field of research. An 

intercomparison between different gridded precipitation datasets (e.g., Lundquist et al., 2015a; 

Henn et al., 2017) across different mountain regions is needed. Reducing the bias in 

precipitation estimates along altitude and enhancing the spatial resolution of gridded 

precipitation could be the next breakthrough in mountain hydrology. 

 

2.4.1.2 Air temperature  

The air temperature is the most important factor that determines the precipitation phase 

(rain or snow), and it is strongly correlated to the snowmelt rate (Jin et al., 2006; Mote, 2006; 

Brown and Petkova, 2007; Kapnick and Hall, 2010). During the melting season in the mid-

elevation regions of the Spanish Pyrenes, the increase in the daily snowmelt rates was correlated 

with the increase in the observed daily temperature (López‐Moreno and Latron, 2008). In many 

low and mid-elevation Mediterranean mountain regions, changes in the surface air temperature 

had been previously identified as the major driver for the reduction in the amount of 

precipitation that falls as snow, the decline in the snow water equivalent, and shifts towards 
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earlier snowmelt (Stewart et al., 2005; Bonfils et al., 2008; Demaria et al. 2013a; Pagán et al., 

2016).  

Similar, to all other meteorological variables, uncertainties associated with measuring 

the air temperature arise from the lack of AWS in remote and high-elevation mountain areas 

(Raleigh et al., 2016). However, air temperature is the climatic variable that is the most often 

available from in situ and gridded-products. In comparison with precipitation, the in-situ 

measurements of temperature are much less biased and the interpolation methods are more 

robust. From the papers we could examine, the uncertainty on the precipitation data is generally 

considered as a more important issue. 

2.4.1.3 Radiation and heat fluxes  

In Mediterranean mountain regions, the snowpack melt energy is dominated by the 

radiative fluxes (shortwave and longwave) (Marks and Dozier, 1992; López‐Moreno et al., 

2012). The net radiative flux accounts for approximately 70-80% of the energy for snow melt 

in regions, such as Sierra Nevada California, Oregon Cascades, Spanish Pyrenees, and the 

Armenian Plateau (Marks and Dozier, 1992; Şensoy et al., 2006; Mazurkiewicz et al., 2008; 

López-Moreno et al., 2008; Hinkelman et al., 2015). However, this contribution varies 

significantly over the time and the location. For instance, the net radiation contribution to melt 

at three different sites in the Oregon cascades was found to range between 49 and 80% 

(Mazurkiewicz et al., 2008). Similar results were found in the Armenian Plateau, which 

indicates that the net radiation fluxes and turbulent fluxes account for 70 to 30% of the melt 

energy, respectively (Şensoy et al., 2006). Sensible and latent heat transfers were found to be 

of similar magnitude with an opposite sign, and therefore they tend to cancel each other in some 

sites during the now-melt season (Marks and Dozier, 1992; Jepsen et al., 2012). A significant 

amount of snow is lost through sublimation in Mediterranean mountains, approximately 20% 

of the total snowpack ablation depending on the location, and this amount increases at the end 

of the snow season (Beaty, 1975; Marks and Dozier, 1992; Jepsen et al., 2012). The net 

turbulent flux tends to increase during the melt season. Its contribution to snowmelt during the 

entire season was found to range between 0 to 19% in a mountain basin in Sierra Nevada 

California (a mean of 10% with a standard deviation of 6% over a time period of 12 years) 

(Jepsen et al., 2012). The contribution of the turbulent energy fluxes was found to increase 

under rain-on-snow events, and it accounts for up to 42% of snowmelt during such events 

(Mazurkiewicz et al., 2008). The contribution of turbulent fluxes (i.e., latent and sensible heat 

fluxes) to melt energy was found to be slightly higher in warmer Mediterranean regions (Atlas 
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Mountain, Iberian Peninsula and Eastern Mediterranean) (Schulz and de Jong, 2004; Herrero 

et al., 2009; Sade et al., 2014). Under extreme weather conditions (i.e., episodic strong low-

humidity winds, clear skies, intense solar radiation, and sudden increases in temperatures), 

sublimation accounted for up to 40% of the total loss in snowpack in Sierra Nevada, Spain 

(Herrero et al., 2009), and similar results were reported for the Atlas Mountain (Schulz and de 

Jong, 2004) and Mount Hermon (Sade et al., 2014).  

In the absence of radiation sensors (pyranometer and pyrgeometer), the incoming 

radiation can be estimated using (1) empirical relationships with surface air temperature and 

relative humidity (Jepsen et al., 2012; Lundquist et al., 2013) or (2) solar and longwave surface 

irradiance data from synoptic satellite products (Jepsen et al., 2012; Hinkelman et al., 2015). 

However, computing radiative fluxes using empirical methods can lead to overestimation errors 

of up to 50% in the snowmelt rates, which indicates the need for enhanced methods that 

combines satellite products and ground observations (e.g., Hinkelman et al., 2015). The 

application of such products to Mediterranean mountains should account for the fact that 

shortwave and longwave radiations vary significantly with elevation, terrain geometry and the 

forest cover (Aguilar et al., 2010; Raleigh et al., 2013, Lundquist et al., 2013).  

Sensible and latent heat exchange are influenced by surface air temperature, water 

vapor, and wind speed (Marks and Dozier, 1992; Kim and Kang, 2007; Jepsen et al., 2012). 

Most of these variables exhibit high spatial variability over the complex mountainous 

topography (Marks and Dozier, 1992), which makes it difficult to achieve reliable estimates of 

the contribution of snowmelt from heat fluxes at most sites. Furthermore, while the surface air 

temperature is measured at most AWS, information on wind speed and humidity are often 

lacking, and thus, this hinders the calculation of sensible heat fluxes (Raleigh et al., 2016). 

Our understanding of the energy exchange between the snowpack and the atmosphere 

in mountains is incomplete. The installation of more complete meteorological stations 

(including longwave/shortwave sensors and turbulent heat measurement systems) in mountains 

is needed in order to better characterize the different components of the energy balance. 

However, this requires solving the issue that eddy covariance systems are not considered 

reliable in complex terrain. 



51 

 

2.5 Snowpack  

2.5.1 In situ observations 

Historical studies on snow properties and the quantification of the waterthat falls as 

snow are more than 300 years old (Grew, 1673), and the importance of snow cover on climate 

was first highlighted by Woeikof (1885). The first published investigations of snowfall, HS, 

snow density, SWE and snow melt, and the first method for field sampling of snow and snow 

instrumentation in California can be dated to the late 19th and early 20th centuries (e.g., Church, 

1913). Monthly snowfall observations in California date back to 1878 (Christy, 2012). Over the 

past two decades, there has been a significant increase in the number of studies that investigates 

HS, snow density, and SWE through manual field sampling (Bocchiola and Groppelli, 2010; 

Sturm et al., 2010; López-Moreno et al., 2013b; Bormann et al., 2013; Ayala et al., 2014), HS 

measurements using (acoustic) snow depth gauges, SWE measurements with snow pillows, and 

snow density measurements from HS and SWE observations (e.g.,  SNOTEL network) (e.g., 

Rice and Bales, 2010; Meromy et al., 2013; Luce et al., 2014).  

The main variable of interest for snow hydrologists is the SWE, which is obtained by 

multiplying the snow height by the snow density. The snow height is typically measured with 

a calibrated snow probe and it is easier to estimate than the snow density, which requires a more 

elaborate field-work (e.g., Bocchiola and Groppeli, 2010; Sturm et al., 2010; López-Moreno et 

al., 2011b). Field measurements are usually biased with observational errors (Lundquist et al., 

2015b) and uncertainty about the representativeness of in-situ snow depth and density 

measurements (López-Moreno et al., 2011b, 2013b). Improving the in-situ accuracy of snow 

courses measurements can be achieved by increasing the rate of data sampling along the snow 

course and minimizing human errors. Findings in the Spanish Pyrenees indicated that increasing 

the number of in-situ measurements (i.e., using at least five snow depth measurements at 5-10 

meter intervals) could ensure a bias of less than 10% when estimating the average snow depth 

at plots of 100 m2 (López-Moreno et al., 2011b). The snow density exhibits less variability than 

the snow depth (López-Moreno et al., 2013b), which implies the need for fewer snow density 

measurements along each course. Such findings support the US snow courses sampling 

guidelines, which indicates the need for 10 point measurements of HS, SWE, and density at 30 

meter interval (over a 300 m transect) (Rice and Bales, 2010). The same applies for snow 

sampling approaches in other regions (e.g., Watson et al., 2006; Jost et al., 2007). However, 

collecting in-situ probe measurements at larger scales remains challenging. Steeps slopes and 

high-elevation areas (above 3000 m a.s.l) are unsafe and not easily accessible. Airborne and 
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terrestrial Lidar now enable the measurement of HS with a centimetric accuracy at a much 

higher resolution than manual surveys (Sect. 5.2.4). However, these techniques remain costly 

and do not provide continuous observations of HS like AWS. A terrestrial time-lapse camera is 

a cost-effective device used to monitor the snow cover variability in space and time, but its use 

is restricted to small spatial scales (less than 1 km²) (Revuelto et al., 2014). As a result, it is 

difficult to capture the temporal variability of the HS and SWE by field sampling. On the other 

hand, continuous AWS measurements of snow depth and SWE remain site specific, and most 

of the time, they fail to capture the spatial variability of the snowpack due to the spatial 

heterogeneity of the climate and terrain with respect to the network density (Bales et al., 2006; 

Gottardi et al., 2012; Raleigh et al., 2016).   

Some regions are equipped with advanced snow observatories and the data are easily 

accessible (e.g., SNOTEL in the West USA) while other mountain regions, such as the 

Pyrenees, are well covered by ground stations but the data are to be collected from various 

agencies and are not always publicly distributed (e.g., Gascoin et al., 2015). The 

implementation of snow observatories based on the principles of open data is en route in regions 

such as Lebanon where snow observations are recently being collected (e.g., Fayad et al., 2017). 

Extending the ground-based observation networks remains crucial in mountain regions that 

remain under-sampled, however it is as important to share these data to foster their use by the 

scientific community and among water stakeholders. 

2.5.2 Remote sensing of seasonal snow cover 

The snow cover extent, albedo, height, and water equivalent are the main remote sensing 

products for snow hydrology, but they have very different levels of accuracy and resolution. 

Here, we only briefly present the main products that were used in our list of papers. Interested 

readers can refer to Dietz et al. (2012) and Frei et al. (2012) for further information on snow 

remote sensing.  

2.5.2.1 Optical remote sensing of the snow cover  

The NASA MODIS Aqua/Terra daily snow products (collection 5 MOD10A1 and 

MYD10A1 (Hall et al., 2002)) are the most widely used. These products have provided the 

binary snow-covered area (SCA) and fractional SCA (fSCA), and the snow albedo at a500 m 

resolution since 2000 for Terra and 2002 for Aqua. The SCA product allow the calculation of 

the snow cover duration (SCD), snow cover start date (SCS) and snow cover melt-out date 

(SCM). The SCA and fSCA allow the calculation of the snow coverage in a watershed. MODIS 
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snow products were tested and applied in the Sierra Nevada California (Painter et al., 2009; 

Molotch and Meromy, 2014), Pyrenees (Gascoin et al., 2015), Southern Alps (Dedieu et al., 

2014), Moroccan Atlas (Marchane et al., 2015), Armenian Plateau (Tekeli et al., 2006), and 

Mount Lebanon (Telesca et al., 2014).  

The main limitation of optical snow products is the obstruction by cloud cover. A cloud 

removal algorithm must be run to generate meaningful snow climatology from MODIS snow 

products (Gascoin et al., 2015; Marchane et al., 2015). There are also errors related to sensor 

viewing geometry and forest canopy obstruction (Dozier et al., 2008; Gao et al., 2010; Dietz et 

al. 2012; Raleigh et al., 2013; Kostadinov and Lookingbill, 2015).  

In addition to the MOD10 family, there are more sophisticated approaches to retrieve 

sub-pixel fSCA, grain size, and albedo from MODIS using spectral unmixing techniques 

(Painter et al., 2009). The validation of the fSCA against higher resolution snow cover maps 

data obtained from Landsat ETM+ over the Sierra Nevada California, in particular, indicates 

their better accuracy compared to the MOD10A1 products (Dozier et al., 2009; Painter et al., 

2009; Rittger et al., 2013). The accuracy of the fSCA is lower in forested areas, which suggests 

that there is a need for future research in this direction (Raleigh et al., 2013; Kostadinov and 

Lookingbill, 2015). 

Snow cover extent and snow climatology had also been derived from AVHRR data at a 

spatial resolution of 1 km for the Alpine region (1985–2011) (Hüsler et al., 2014) and the 

Armenian Plateau (Tekeli et al., 2005a). Finally, Cortés et al., (2014) proposed and tested a sub-

pixel approach for mapping snow and ice cover over the central Andes using spectral unmixing 

of Landsat imagery at a spatial resolution of 30 m (1986–2013).  

Future improvement of snow cover representativeness from optical remote could 

include better cloud removal and enhanced snow cover mapping in forested regions. Daily SCA 

from MODIS are hindered by their spatial resolution of 500m which is too coarse to capture 

snow variability in heterogenous mountain slopes, in regions where snow is ephemeral, and at 

the end of the season when snow becomes patchy. The Sentinel-2 mission with its 20 m spatial 

resolution and 5 days revisit time is expected to provide better accuracy for mapping SCA in 

the heterogenous mountain regions. 

2.5.2.2 Remote sensing of SWE  

The retrieval of SWE form spaceborne passive microwave (PM) sensors involves a 

coarser resolution (~25 km) and limited accuracy (Dietz et al., 2012; Frei et al., 2012; Vuyovich 

et al., 2014; Dozier et al., 2016). PM sensors tend to underestimate SWE. For example, from 
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April 1st 2014 SWE estimates, the passive microwave AMSR2sensor underestimated the SWE 

by 40-75% compared to other SWE retrieval methods (i.e., interpolation from snow pillows and 

SCA, calculation using SCA and NLDAS, and modeling using SNODAS) (Dozier et al., 2016). 

Examples from the Mediterranean regions include the use of AMSRE/AMSR2 over the 

contiguous US (Vuyovich et al., 2014), California (Li et al., 2012), the Armenian Plateau 

(Tekeli, 2008; Şorman and Beser, 2013), and Mount Lebanon (Mhawej et al., 2014) and the use 

of the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave 

Imagers (SSM/I) over the Andes (Foster et al., 2009).  

PM sensors have limited capability in capturing the SWE in regions with ephemeral or 

patchy snow cover and regions with vegetation cover (Li et al., 2012; Vuyovich et al., 2014), 

and they exhibit an overall tendency to underestimate SWE during snowfall and melt seasons 

(Dozier et al., 2016). This was attributed to the high scattering in mountain regions due to relief 

(Li et al., 2012) and the tendency of PMs to saturate at an SWE value of 120 mm (for 

wavelength 18 GHz as the background signal and 37 GHz as the scattering signal) (Dietz et al. 

2012).  

Despite these limitations of PMs, a number of studies demonstrated that PMs are able 

to capture the overall seasonal variations of snow accumulation, melt timing, and season length 

at the macro scale, and in contrast to imaging spectrometry, they are not affected by cloud cover 

(Foster et al., 2009; Vuyovich et al., 2014). Coupling ground-observed data, SCA, and PM 

sensed SWE is being investigated as an alternative for enhancing the SWE estimation in 

Mediterranean regions (e.g., Vuyovich et al., 2014; Şorman and Beser, 2013).  

 

2.5.2.3 Snow albedo 

The importance of snow albedo in Mediterranean regions has been attributed to the fact 

that most of the snowmelt is dominated by net radiation (Sect. 4.1). A decrease in snow albedo 

results in an increased amount of absorbed shortwave radiation and eventually, an enhancement 

in the snowmelt (). Surface snow albedo changes in Mediterranean mountain regions are 

associated with snowpack thickness (Tekeli et al., 2006), snow grain size and surface wetness 

(Dozier et al., 2008, 2009), and snow impurities (mainly mineral dust and organic particles) 

(Lee and Liou, 2012). In California’s Sierra Nevada, the reduction in the snow albedo during 

the melt season (March to April) is driven by the increase in surface temperature and the 

increase in the deposition of absorbing aerosols. Both temperature and aerosols contribute to 

the 61% decrease in snow albedo, and 26% of the albedo reduction was attributed to the increase 
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in the aerosol optical depth (Lee and Liou, 2012). Snow albedo can be calculated by observing 

the incoming and reflected solar radiation at AWS. Given the lack of in-situ observations, many 

studies have used optical remote sensing techniques. The method to derive snow albedo from 

imaging spectrometry is well developed in literature (e.g., Dozier and Painter, 2004; Seidel and 

Martinec 2004; Frei et al., 2012; Deems et al., 2013; Tedesco (ed.) 2015). In the Mediterranean 

context, most studies were conducted in Sierra Nevada California using MOD10A1 or 

MODSCAG MODIS albedo products (Painter et al., 2003; Dozier et al., 2009; Lee and Liou, 

2012). In the Armenian Plateau, the MOD10A1 albedo was found to be consistent with in situ 

measurements in terms of magnitude and temporal variability, with a small positive bias due to 

differences in the acquisition time (Tekeli et al., 2006). On the contrary, in the Spanish Sierra 

Nevada, the coarse-resolution albedo products from MODIS and SPOT underestimated the in-

situ snow albedo due to the mixing effects of snow and snow-free patches in a MODIS pixel 

especially during the melting periods (e.g., Pimentel et al., 2016). 

Advances in airborne hyperspectral remote sensing have enabled the accurate 

estimation of snow surface cover, grain size and albedo at a relatively higher cost (e.g., Painter 

et al., 2003). Future research areas in surface snow properties can be found in Dozier et al. 

(2009), which indicates the need to better understand the spectral characteristics of snow from 

remote sensing sensors, to further investigate the consequences of dust and other impurities on 

snow reflectance, and to further investigate the coupling of snow properties and snowpack 

energy via models (e.g., Oaida et al., 2015). 

 

2.5.2.4 High resolution airborne and ground-based remote sensing  

Over the past few years, a number of studies have used ground-based terrestrial laser 

scanner (TLS) and airborne LiDAR to measure the snow depth at high spatial resolution with 

decimetric accuracy (e.g., in California (Harpold et al., 2014; Kirchner et al., 2014; Zheng et 

al., 2016), and the Spanish Pyrenees (Revuelto et al., 2014; López-Moreno et al., 2015). These 

technologies have enabled numerous fundamental advances in our knowledge of the snow depth 

distribution (see Sect. 5.4). They also hold potential for operational snow monitoring if their 

costs can be mitigated; otherwise, their application will remain restricted to relatively small 

areas, as noted in the scientific literature (<100 km2). The NASA Airborne Snow Observatory 

(ASO) (Painter et al., 2016) is a notable exception since it is run over major water basins in the 

western US. ASO is composed of an imaging spectrometer and a Lidar altimeter to measure the 

snowpack reflectance and depth from an aircraft. The SWE maps are produced over 48 hours 
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using the snow reflectance as a proxy for snow density (Dozier et al. 2016). Recent alternatives 

were proposed to determine the snow depth at high resolution and at a lower cost: (1) an 

unmanned aircraft vehicle photogrammetric survey, and (2) high-resolution stereo satellites 

imagery (Marti et al., 2016). 

2.5.3 Methods of HS and SWE regionalization 

2.5.3.1 Regionalization 

Spatial interpolation (regionalization) techniques are required to estimate the snowpack 

water equivalent at the catchment scale. Various statistical models based on the terrain 

characteristics were proposed to compensate for the low spatial density of snow course surveys 

and ground stations observations. Spatially distributed HS estimates from observations in 

Mediterranean mountain were represented using: linear regression models, classification trees, 

generalized additive models (GAMs), regression tree models (e.g., Molotch et al., 2005), and 

combined tree classification with GAM residuals (e.g., López‐Moreno and Nogués‐Bravo, 

2006; López-Moreno et al., 2010). Similarly, but at much lower scale, the assimilation of snow 

cover area maps derived from time-lapse camera images time series was shown to give good 

results in small Mediterranean pilot catchments, where the snow cover is highly variable and 

sometimes ephemeral (Pimentel et al., 2015; Revuelto et al., 2016b). 

2.5.3.2 SWE reconstruction  

Dozier et al. (2016) reviewed the methods to generate spatially distributed SWE as 

follows: (1) spatial interpolation from ground based networks only using statistical models such 

as decision trees (Anderton et al., 2004); (2) constrained interpolation by remotely sensed SCA 

(Girotto et al., 2014); (3) SWE reconstruction using snow modeling (e.g., Raleigh and 

Lundquist, 2012; Guan et al. 2013b); and (4) reconstruction using data assimilation  (Cortés et 

al., 2016) (see Sect. 6.1) and backmelt calculations (e.g., Raleigh and Lundquist, 2012), which 

may be combined with time-lapse photography (Revuelto et al., 2016a). The increase in the 

reliance of SWE reconstruction had been motivated by the assumption that knowledge of melt 

energy fluxes would be superior to knowledge of precipitation accumulation (Cline et al., 1998; 

Jepsen et al., 2012; Slater et al., 2013). 

SWE reconstruction estimates the total volume of snow based on backward calculation 

of the amount of ablation that occurred prior to the complete removal of snow (Cline et al., 

1998). The SWE reconstruction process as described by Cline et al., (1998) is performed at 
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each pixel by (1) determination of fSCA; (2) computation of the snowmelt energy; and (3) 

determination of the initial SWE at the beginning of the melt season. 

Several snowpack models for SWE reconstruction are constantly being tested and 

enhanced for application in Mediterranean regions, and they range in complexity from (1) 

simple temperature index models (Daly et al., 2000; Rice et al., 2011; Biggs and Whitaker, 

2012), to (2) enhanced degree day models (DDMs) that account for net radiation and snow 

albedo (e.g., Molotch and Bales, 2006) and tree cover (Biggs and Whitaker, 2012), and (3) 

modified DDMs (based on a modified SRM (Martinec, 1975) (Tekeli et al., 2005b; Şensoy and 

Uysal, 2012), to (4) energy balance models (Cline et al., 1998; Jepsen et al., 2012; Raleigh et 

al., 2016; Boudhar et al., 2016; Cornwell et al., 2016), and (5) models that perform both forward 

and backward reconstruction (Raleigh and Lundquist, 2012; Revuelto et al., 2016a).  

SWE reconstruction models have proven to be suitable for many Mediterranean regions 

such as the Andes (Cornwell et al., 2016); Sierra Nevada California (Shamir and Georgakakos, 

2006; Rice et al., 2011; Raleigh et al., 2016), Oregon cascades (Sproles et al., 2013); Pyrenees 

(Gómez‐Landesa and Rango, 2002); Alps (Thirel et al., 2012); Turkey (Tekeli et al., 2005b); 

and the Atlas Mountains (Boudhar et al., 2016).  

The uncertainty associated from SWE reconstruction arises from the probable error 

propagation in model forcing especially in areas where dense observing network are not 

available (Lundquist et al., 2015b; Dozier et al., 2016). Another source of uncertainty is 

attributed to the retrieval and spatial resolution of SCA and fSCA from imaging spectrometer 

(e.g., AVHRR and MODIS) (Sect. 5.2) and return time period (e.g., 16 days for Landsat) (Slater 

et al., 2013). The Sentinel-2 mission with its 5 days repeat cycle offers the prospect of 

improving the SWE reconstruction results in regions where the snow cover variability is high 

(Marti et al., 2016). 

SWE reconstruction methods based on the use of depletion curves that relate fractional 

snow cover area to average SWE should consider that there is an hysteresis in the SWE-fSCA 

relationship (Luce and Tarboton, 2004; Magand et al., 2014; Gascoin et al, 2015). In fact, a 

given snow cover fraction generally corresponds to a smaller snow mass at the beginning of the 

snow season to that found at the end of the season. This is due to the snowpack evolution along 

the season, where snow wind redistribution and snowmelt occurring at preferential locations, 

tend to increase the heterogeneity in the SWE spatial distribution. 

The success of the spatial interpolation techniques for the estimation of HS and SWE 

should encourage the implementation of regular snow surveys and automatic snow stations in 

less monitored mountain regions, such as the Andes, Atlas Mountains, and Mount Lebanon. In 
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the absence of ground measurements, methods based on SCA data assimilation into an energy 

balance snow model are the most promising since they rely on publicly available remote sensing 

and climate datasets (reanalyses) with global coverage (e.g., Kapnick and Delworth, 2013). 

2.5.4 Snowpack spatial variability  

2.5.4.1 Snow height spatial variability  

Results from the aforementioned studies indicate that in Mediterranean mountain 

regions, the spatial distribution of the snow height is driven by meteorological forcing (López-

Moreno 2005;  Svoma, 2011; Mizukami and Smith, 2012; Bormann et al., 2013; Luce et al., 

2014) and topography (elevation, slope, aspect and related radiation parameters) (e.g., Elder et 

al., 1998; Anderton et al., 2004; López‐Moreno and Nogués‐Bravo, 2006; Rice et al., 2011; 

Molotch and Meromy, 2014; Revuelto et al., 2014). Canopy interception (e.g., López-Moreno 

and Latron, 2008; Revuelto et al., 2015; Zheng et al., 2016) plays a secondary role in 

comparison with other snow regions because most of the snowpack accumulates above the tree 

line in many Mediterranean mountains. Forest regions are present at mid-altitude mountain 

regions (2000-2600 m a.s.l) in California (e.g., Rice and Bales, 2010; Musselman et al., 2012), 

Oregon (Kostadinov and Lookingbill, 2015) and the Pyrenees (e.g., Gascoin et al., 2015). Snow 

redistribution due to wind is probably an important process (Gascoin et al., 2013), and it is one 

of the less explored fields of research in Mediterranean regions. This may be due to the lack of 

accurate information needed to create reliable wind fields over complex topography. Snow 

models run using high-resolution meteorological forcing are still unable to capture wind snow 

redistribution, which usually occurs at the sub-pixel scale (e.g., Quéno et al., 2016). However, 

the wind redistribution may be less important in Mediterranean mountains than in colder 

regions due to the higher snowpack densification rates. Table 2.2 summarizes the contribution 

of climate forcing and mountain controls potentials in explaining snow distribution and depth, 

and the level of uncertainty in Mediterranean mountain regions.   

For example, in Sierra Nevada California, Elder et al., (1998) obtained a model that 

could explain up to 70% of the observed variance in HS using the elevation, net radiation and 

slope as predictors. According to Molotch and Meromy, (2014), snow cover persistence is 

driven by mountain controls where elevation (the most explanatory variable) and climate 

controls of precipitation and temperature determined most of the snow variability. Vegetation 

and slope ranked second in explaining part of the snow cover variability, whereas shortwave 

solar radiation and the terrain aspect were of tertiary importance. Similar findings were reported 
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in the Spanish Pyrenees, which indicates that elevation and solar radiation explain a high 

percentage of the variance in HS (Anderton et al., 2004; López‐Moreno and Nogués‐Bravo, 

2005).   

Similar findings based on high-resolution airborne lidar were reported from an 

experiment over a micro-scale snow dominated basin (with an elevation range of 1500–3300 

m) in the Sierra Nevada, California; the experiment indicated that 43% of snow-depth 

variability can be explained by elevation, and another 14% is related to the slope, aspect and 

canopy penetration fraction (Zheng et al., 2016). A ground-based terrestrial laser scanner in the 

Pyrenees demonstrated that the high resolution topographic position index and maximum 

upwind slope are more statistically significant (α<0.05) in explaining the intra-annual snow 

variability compared to the elevation and slope (Revuelto et al., 2014). Snow variability at this 

scale is further influenced by mountain curvature, whereas the aspect and the computed 

incoming radiation were found to be less statistically significant when correlated with intra-

annual snow variability (Revuelto et al., 2014).  

Despite these encouraging results, to date, there is no accepted universal law to derive 

HS or SWE from a set of predictors that can be obtained anywhere. This is because the link 

between the terrain parameters and the snow distribution is not fully explained at the small scale 

(e.g., Molotch et al., 2005; López-Moreno et al., 2010, 2015; Revuelto et al., 2014; Zheng et 

al., 2016). This quest is hindered in particular by (1) the high inter-annual snow variability in 

Mediterranean regions, since most studies rely on 1-2 years of sporadic observations (e.g., 

Anderton et al., 2004; López-Moreno et al., 2010; Zheng et al., 2016), and (2) the increase in 

the scale dependency of the model results (e.g., the importance of elevation) as the grid cell size 

increases (López-Moreno et al., 2010).  

The presence of vegetation, especially forest, adds to the ambiguity in explaining 

topographic control because it modifies meteorological variables, such as wind and the 

incoming radiation with difference intensities, which depends on the canopy density, trees 

trunks and crow size (e.g., Musselman et al., 2012; Harpold et al., 2014; Zheng et al., 2016). 

The snow depth can be significantly reduced by 20% to 80% in forested areas compared to open 

sites due to interception and the sublimation or melting of the intercepted snow (Revuelto et al., 

2015; Szczypta et al., 2015). Information on the impact of vegetation cover on snow 

interception in Mediterranean mountain regions and elsewhere (Varhola et al., 2010) remains 

limited and warrants future research (López-Moreno and Latron, 2008; Musselman et al., 2012; 

Raleigh et al., 2013; Revuelto et al., 2015; Zheng et al., 2016).  

 



60 

 

Table 2.2. Main variables influencing the snow depth spatial distribution 

Variable Control Level 

Elevation [1-5, 7-9] Medium to very high 
Slope [1-5, 7-9] Low to high (micro); High (meso-macro) 
Curvature [5, 8-9] High at micro 
Exposure [3-5, 7-8] Low at micro to medium at the micro scale 
Radiation [1-3, 5, 7-9] Low to medium (micro); High (macro) 
Relative elevation [2, 5, 8] Low to very high 
Upwind slope [3, 5, 7, 9] High at micro 
Canopy interception [4, 6] Medium to high 

Radiation: potential incoming solar radiation; Relative elevation (inc. topographic position index (TPI) and combined TPI); 
Upwind slope: maximum upwind slope.  
Scale (micro 1–102 km2; meso 102–104km2; macro > 104km2) 
Sources: [1] Elder et al., 1998; [2] López‐Moreno and Nogués‐Bravo, 2005, 2006; [3] Anderton et al., 2004; [4] Zheng et al., 
2016; [5-6] Revuelto et al., 2014, 2015; [7] Molotch et al., 2005; [8] López-Moreno et al., 2010; and [9] López -Moreno et al., 
2015. 
 

2.5.4.2 Snowpack density 

Over most parts of the maritime US, the snowpack density was found to be highly 

correlated with total precipitation (Svoma, 2011). The variability in snow densities is also 

driven by the average air temperature during days with no snowfall, the mean snowfall density, 

the fractional precipitation that falls as snow (Svoma, 2011) and melt-refreeze events (Bormann 

et al., 2013). At the slope scale, densification processes are further influenced by solar radiation, 

slope, vegetation cover, and wind exposure (Bormann et al., 2013, Elder et al., 1998).  

However, the observed spatial variability of the snowpack density in Mediterranean 

regions is much lower than the spatial variability of the snow height (Mizukami and Perica, 

2008; López-Moreno et al., 2013b). As a result, the number of density measurements required 

to derive the SWE may be lower than the number of HS measurements. This has important 

implications for the monitoring of the snowpack since density measurements in the field are 

time consuming. Similarly, year-to-year changes are significantly higher for the HS than for the 

snowpack density (Mizukami and Perica, 2008; Bormann et al., 2013). However, the density 

should be carefully measured at the start and end of each season when its intra-annual variance 

is maximal (Sturm et al., 2010; López-Moreno et al., 2013b; Bormann et al., 2013; Trujillo and 

Molotch, 2014). The low inter-annual variability of snow density also holds potentials in 

Mediterranean regions. Climatological values of snow density can be estimated with confidence 

using few years of measurements (Anderton et al., 2004; Mizukami and Perica, 2008; Meromy 

et al., 2013), and combined with regular HS measurements, to estimate the SWE for 

hydrological applications in mountains (Mizukami and Perica, 2008).  
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2.5.4.3 SWE 

Long-term records of SWE (> 50 years) indicate that the maximum snow accumulation 

is higher and the snow season is shorter in the Oregon Cascades and the California Sierra 

Nevada than in continental mountain ranges (Trujillo and Molotch, 2014). In the western US, 

the April 1st SWE (a proxy of the annual peak of SWE) and the snow residence time (SRT) are 

highly correlated with daily temperature and precipitation (Luce et al., 2014). Hence, the 

observed decrease in SWE in this region was linked to the regional increase in temperature, and 

the results were qualitatively consistent with observed trends in temperature and precipitation 

at nearby stations (Mote, 2003). In southern Italian Alps, the SWE average and variances are 

known to a good degree of approximation if continuous information on the accumulated SWE, 

snow depth, and density are known (Bocchiola and Rosso, 2007). Smaller scale studies in 

California and Central Andes indicate a higher influence of the slope and maximum upwind 

slope (Molotch et al., 2005; Welch et al., 2013; Ayala et al., 2014). The influence of the 

theoretical incoming radiation increased during the melt season, which is in agreement with 

energy balance model studies (Molotch et al., 2005; Ayala et al., 2014) (Sect. 4). We do not 

detail the spatial variability of the SWE since it is largely inherited from the HS, as presented 

above.  

2.6 Snowmelt hydrology and hydrogeology 

Once snowmelt occurs, the snowpack water is channeled through surface outflows and 

streams, and it undergoes evapotranspiration, subsurface flow and groundwater recharge via 

deep percolation (e.g., Knowles and Cayan, 2004; Franz et al., 2010; Lundquist and Loheide, 

2011; Smith et al., 2013; Manning et al., 2012; Godsey et al., 2014). Given the spatio-temporal 

variability of the climatic conditions that were highlighted in the previous sections, the closure 

of the hydrologic budget in Mediterranean snow-dominated basins remains challenging (e.g., 

Ralph et al., 2016). In addition, several authors point to a limited understanding of surface and 

sub-surface hydrologic processes in mountains (Bales et al., 2006; Smith et al., 2013).  

2.6.1 Snowmelt modeling  

2.6.1.1 Snow melt models 

Different snowmelt models were applied in the Mediterranean context with significantly 

varying levels of details between the models. Following DeWalle and Rango (2008), these 

models can be classified under three categories: (1) statistical snowmelt-runoff methods (e.g., 
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Stewart et al., 2005), (2) temperature index or degree day models (TIM/DDM) (e.g., Null et al., 

2010), and (3) physically based distributed-snowmelt models or energy balance models (EBM) 

(e.g., Herrero et al., (2009) in the Spanish Sierra Nevada; Şensoy et al., (2006) in Karasu basin, 

Turkey; and Mernild et al. (2016a) in the Andes). The distinction between these boundaries 

seems to be fading in the literature as there is a tendency towards the use of heterogeneous 

modeling approaches, and a continuum now exists between the three categories. Martelloni et 

al., (2013) proposed and tested a modeling scheme, over the Italian Apennines that is considered 

as an intermediate approach between temperature index and physically based models. Sproles 

et al., (2016) used a modified snowmelt runoff model (SRM), which was run using MODIS 

SCA data, to investigate snowmelt forecasts in the data-poor regions of the Chilean Andes. 

Major sources of uncertainty in snow melt simulation arise from (1) the error in the 

input data (particularly precipitation), (2) reliance on DDM (due to limited information on 

incoming and reflected radiation and fluxes), which usually translates into the lack of 

accounting of snow sublimation, and (3) the model parameterization regarding rain/snow 

separation and turbulent fluxes (Franz et al., 2010; He et al., 2011; Raleigh and Lundquist, 

2012; Slater et al., 2013; Avanzi et al., 2014). Snow model inter-comparison studies in 

Mediterranean mountain regions (Franz et al., 2010; Slater et al., 2013) and elsewhere (Molotch 

and Margulis, 2008; Essery et al., 2013; Bavera et al., 2014) indicate that while very large 

differences can exist between models (different melt algorithms), proper simulation of 

snowmelt is highly associated with the proper parameterization of models (e.g., Smith et al., 

2013) and the model’s ability to solve SWE with high confidence (e.g., Franz et al., 2010). To 

the best of our knowledge the only snow-hydrological model comparison studies which 

includes Mediterranean catchments are the studies of Franz et al., (2010) and Valéry et al. 

(2014a, 2014b). We believe that there is a need for testing and comparing different snow models 

and carrying meaningful intercomparison exercises across different Mediterranean mountain 

regions. The reader is advised to look at model parameterizations and sensitivity (Clark et al., 

2011; Garcia et al., 2013), the inter-comparison in forested snow regions (e.g., Essery et al., 

2009; Rutter et al., 2009), the influence of soil moisture response on snow distribution and melt 

(Bales et al., 2011; Kerkez et al., 2012; Harpold et al., 2015), single model SRM multi-site 

comparison (e.g., Martinec and Rango, 1986; Seidel and Martinec, 2004; DeWalle and Rango, 

2008), ensemble model simulation (e.g., Franz et al., 2010; Essery et al., 2013), and the snow 

model intercomparison Project (MIP) (e.g., DMIP (Smith et al., 2013) and SNOWMIP2 (Essery 

et al., 2009)).  
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2.6.1.2 Large scale land surface models and assimilation techniques  

The modeling of large-scale distributed cryospheric processes had been made possible 

through the application of the following: (1) finer scale land surface models with snow schemes 

(e.g., Boone et al. 2004; Livneh et al., 2010; Brun et al., 2013; Magand et al., 2014; Singh et 

al., 2015); (2) physically based simulations using mesoscale WRF model (Caldwell et al., 2009; 

Pavelsky et al., 2011, 2012; Wayand et al., 2013; Liou et al., 2013; Franz et al., 2014; Oaida et 

al., 2015); (3) blending snow sensor observations and remote sensing data with snowmelt model 

simulations (e.g., Guan et al. 2013a; Rittger et al., 2016); and using data assimilation (e.g., Franz 

et al., 2014; Girotto et al., 2014) of ground and remote sensing data with Land Surface Model 

(Zaitchik and Rodell, 2009; Hancock et al., 2013) and Snow Data Assimilation System 

(SNODAS) (Guan et al., 2013a; Vuyovich et al., 2014); and (4) reanalysis of ground data 

(Gottardi et al., 2012; Avanzi et al., 2014), remote sensing data (Margulis et al., 2016), and land 

surface data (e.g., Durand et al., 2009; Vidal et al., 2010;  Rousselot et al., 2012; Rutz et al., 

2014).  

While such techniques can capture large-scale variability in the cryospheric system, 

most of these techniques are still hindered by (1) limited ground data and dependence on the 

representativeness of the observation network (e.g., Livneh et al., 2010; Guan et al., 2013a; 

Balsamo et al., 2015; Dozier et al., 2016); (2) uncertainties in the quality of forcing data (surface 

meteorological and radiative forcing) (Livneh et al., 2010; Pavelsky et al., 2011; Gottardi et al., 

2012; Liou et al., 2013; Guan et al., 2013a); (3) model parameterization and the number of 

model simplifications of physical phenomena (Livneh et al., 2010); (4) limitations in mountain 

environments (Gottardi et al., 2012; Wayand et al., 2013; Wrzesien et al., 2015), which are 

attributed to the downscaling of surface forcing over topographically complex areas (Livneh et 

al., 2010; Guan et al., 2013a); (5) fSCA data retrieval gaps due to cloud contamination (Guan 

et al., 2013a); (6) lack in accounting for the spatial variability snow of albedo (Livneh et al., 

2010; Guan et al., 2013a); (7) accounting for canopy/forest cover (Livneh et al., 2010; Guan et 

al., 2013a); and (8) tendency towards reporting earlier snowmelt/depletion (Pavelsky et al., 

2011; Wrzesien et al., 2015) and higher biases observed during snow depletion (Wrzesien et 

al., 2015) ablation seasons (Guan et al., 2013a).  

 

2.6.2 Snowmelt contribution to runoff and groundwater  

While rainfall defines most of the hydrograph shape in the mid to low mountain regions, 

the streamflow in higher elevation areas (typically above 2000 m a.s.l.) is dominated by 
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snowmelt (López-Moreno and García-Ruiz 2004; Wayand et al., 2013; Jepsen et al. 2016a). In 

the western US, snowmelt-dominated rivers reach their highest sustained flow during the spring 

melt season, whereas rain-dominated rivers achieve their highest sustained flows during the 

winter rainy season (Lundquist and Cayan, 2002). Streamflow was estimated to peak 2-4 weeks 

earlier in transitional rain–snow-dominated basins compared to snow-dominated basins 

(Ashfaq et al., 2013; Liu et al., 2013). Processes controlling the water transfer through overland, 

subsurface and groundwater flow are reasonably well understood (e.g., Jefferson et al., 2008; 

Tague and Grant, 2009; Smith et al., 2013; Wayand et al., 2013). However, the effect of the 

snowpack dynamics on those processes is one of the foremost challenges in the hydrology of 

Mediterranean mountains.  

 

2.6.2.1 Snowmelt runoff 

 The simulation of the streamflow in snow-dominated Mediterranean regions was 

successfully achieved using lumped rainfall-runoff models with a snowmelt routine (e.g., 

Karpouzos et al., 2011; Hublart et al., 2016) distributed statistical model that combines remote 

sensing SCA and ground observation (e.g., Gómez‐Landesa and Rango, 2002; Powell et al., 

2011; Akyurek et al., 2011; Biggs and Whitaker, 2012), and a physically based distributed 

hydrologic model that balances both surface energy and water budgets and accounts for 

snowmelt using snowpack energy balance routines, such as the variable infiltration capacity 

(VIC) model (Maurer et al., 2007) and the Distributed Hydrology Soil Vegetation Model 

(DHSVM) (e.g., Wayand et al., 2013; Cristea et al., 2014). Apart from the modeling approach, 

the relationship between snowmelt and streamflow in Mediterranean snow-dominated regions 

had also been successfully addressed by the empirical analysis of streamflow data against 

observed SWE (Lundquist et al., 2004), and tracer tests (Liu et al., 2013).  

There is a global agreement that the total annual runoff volume will decrease, in regions 

such as California, under a warming climate (Jepsen et al., 2016a). Changes in snow-fed 

streamflow volume are controlled by the (1) annual snow mass (total snowfall) and melt rates 

(e.g., Lundquist et al., 2005; Franz and Karsten, 2013; Morán-Tejeda et al., 2014; Godsey et 

al., 2014), and (2) subsurface processes (Liu et al., 2013; Jepsen et al., 2016a). Controls driven 

by (1) soil moisture and water holding capacity (Costa-Cabral et al., 2013), (2) vegetation cover 

(Biggs and Whitaker, 2012; Cristea et al., 2014), (3) evapotranspiration (Lundquist and 

Loheide, 2011; Goulden et al., 2012; Godsey et al., 2014), and (4) groundwater storage (Godsey 

et al., 2014) are usually site specific and vary depending on soil type (e.g., soil water holding 
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capacity) and groundwater storage capacity and flow time (e.g., low capacity and faster travel 

time in Karst). A study carried in a snow–rain transition mountain region in the Southern Sierra 

Nevada, California indicate that streamflow generation is controlled by subsurface flow 

(average relative contribution to streamflow discharge was greater than 60%), snowmelt runoff 

including rain on snow (less than 40%), and fall storm runoff (less than 7%), whereas soil water 

in the unsaturated zone and regional groundwater were not significant contributors to 

streamflow (Liu et al., 2013). In the Spanish Pyrenees, using a single multiple regression model, 

the contribution of snowpack to spring runoff was estimated to be a 42% for the 1955-2000 

period (López-Moreno and García-Ruiz, 2004). In the Anti-Lebanon Mountain, the karst 

formation has a short-term influence characterized by an intra-annual patterns of fast spring 

discharges (Koeniger et al., 2016).   

Regional long-term trends in the snowmelt-generated streamflow in California are 

believed to be controlled by long-term decadal changes and spring warming temperature trends 

(e.g., Stewart et al., 2005; Maurer et al., 2007). Whereas, the inter-annual variations of 

snowmelt and streamflow timing are driven by regional temperature fluctuations and 

precipitation anomalies (Stewart et al., 2005). It is clear that temperature and precipitation alone 

cannot explain the entire variability in snowmelt onset and streamflow peak timing and that 

changes are also influenced by elevation (Maurer et al., 2007; Biggs and Whitaker, 2012; 

Wayand et al., 2013) and shifts in snowfall-snowmelt patterns in regions such as California 

(Godsey et al. 2014), and the Spanish Sierra Nevada (Morán-Tejeda et al., 2014). In 

Mediterranean regions, a shift in streamflow timing would have profound implications on water 

management by reducing the available water resources in late spring and summer when the 

precipitation is low (e.g., Stewart et al., 2005; Tanaka et al., 2006; López-Moreno et al., 2008b; 

Vicuña et al., 2011; Fabre et al., 2015). In California, changes in snowmelt and streamflow 

onset timing, at the micro- and mesoscale, were found to respond non-linearly to the increase 

in temperature (Lundquist and Flint, 2006). Snowmelt-driven streamflow timing, at smaller 

scales, is strongly dominated by solar radiation and the combined effect of solar radiation 

exposure (a function of aspect, elevation and time of the year) and temperature (a function of 

elevation and shading) (Lundquist and Flint, 2006). These results highlight the need to account 

for solar radiation, meteorological forcing, and topography when addressing snowmelt and 

streamflow responses in Mediterranean-like regions (Wayand et al., 2013). Diurnal snow-

dominated streamflow patterns are also sensitive to the basin size (Lundquist et al., 2005). At 

the micro-scale (< 30 km2), travel times through the snowpack dominate streamflow timing, 

whereas in mesoscale basins (>200 km2), streamflow peaks are more consistent, with little or 
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no variation, due to snowpack heterogeneity and the longer travel percolation times through 

deeper snowpacks and stream channels.  

2.6.2.2  Snowpack control on soil moisture and evapotranspiration  

The role of the soil water holding capacity in controlling soil moistures and 

evapotranspiration is usually site specific (Christensen et al., 2008; Maurer et al., 2010; Bales 

et al., 2011; Schlaepfer et al., 2012; Tague and Peng, 2013; Harpold et al., 2015; Jepsen et al., 

2016a,b). The interaction between snowmelt and soil moisture is subject to soil physical 

properties (texture) and soil depth (Schlaepfer et al., 2012; Bales et al., 2011; Harpold, 2016).  

At present, little information is available on soil water holding capacities at high 

elevations (e.g., Christensen et al., 2008; Bales et al., 2011; Costa-Cabral et al., 2013). 

Information on the soil water potential and water table depth is useful to explain the runoff 

generation processes (Latron and Gallart, 2008). An increase in temperature would not only 

reduce the snow accumulation but also increase the soil water storage and evapotranspiration 

in snow-dominated basins (Maurer et al., 2010; Tague and Peng, 2013; Wu et al., 2015). The 

acquisition of soil moisture data in snow-dominated mountain regions would aid a better 

understanding and forecasting snowmelt runoff (Kerkez et al., 2012). 

A number of studies investigated evapotranspiration in snow-influenced Mediterranean 

mountains, mostly in California Sierra Nevada (Leydecker and Melack, 2000; Dettinger et al. 

2004; Bales et al., 2011; Lundquist and Loheide, 2011; Tague and Peng, 2013; Costa-Cabral et 

al., 2013; Goulden and Bales, 2014; Jepsen et al., 2016b; Harpold, 2016); Sierra Nevada Spain 

(Aguilar et al., 2010) and Southern Italy (Senatore et al., 2011). The interplay between 

snowmelt and evapotranspiration was most of the time addressed using modeling approaches 

that do not explicitly account for snowpack dynamics (e.g., Aguilar et al., 2010; Lundquist and 

Loheide, 2011; Tague and Peng, 2013; Jepsen et al., 2016a).  

In Mediterranean regions, high-elevation areas are usually snowmelt-dominated 

whereas lower-regions are evapotranspiration/infiltration-dominated (Lundquist and Cayan, 

2002). Evapotranspiration tends to be low during the winter season through the beginning of 

the melt season due to the presence of the snow cover and at late summer and autumn due to 

soil dryness. During the melt season, the combined effect of increasing air temperatures and 

solar radiation tends to accelerate snowmelt, enhance water availability in soil, and increase 

surface temperature, which results in increased evapotranspiration (Leydecker and Melack, 

2000). The inter-annual evapotranspiration is controlled by elevation and aspect, which define 

the amount of incoming solar radiation (Goulden et al., 2012; Lundquist and Loheide, 2011). 
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Evapotranspiration in mid-altitude regions is usually water-limited, i.e., controlled by the 

precipitation (Christensen et al., 2008; Lundquist and Loheide, 2011), whereas in higher snow-

dominated regions, it is rather energy-limited, i.e., it responds more strongly to temperature 

variations (Christensen et al., 2008; Lundquist and Loheide, 2011; Schlaepfer et al., 2012; 

Godsey et al., 2014; Jepsen et al., 2016a). Based on a number of papers reported in Jepsen et 

al., (2016a), the evapotranspiration in Sierra Nevada California under a warming climate, has 

an overall tendency to increase (medium confidence) in snow-dominated regions and some 

regions are either susceptible to warming or expected to experience a slight decrease. 

2.6.2.3 Groundwater recharge  

Groundwater studies in Mediterranean mountain are most of the time presented at the 

basin scale and provide little information on the link between snowpack dynamics and 

groundwater processes. Groundwater recharge in snow-dominated regions is dominated by the 

timing of the snowmelt (early or late spring) and the subsurface flow (Tague and Grant, 2009). 

In groundwater-dominated watersheds, the aquifer storage and the slow recession can help in 

sustaining discharge during the summer dry periods even under a negative yearly water balance 

(Jefferson et al., 2008). Despite its importance, the lack of extended studies has resulted the 

availability of negligible information on the extent of snowpack controls on groundwater 

resources in most Mediterranean mountains (e.g., Palmer et al., 2007; Lowry et al., 2010, 2011; 

Liu et al., 2013; Valdés-Pineda et al., 2014). The separation between rain-fed and snow-fed 

groundwater recharge is still incomplete due to a number of factors: (1) lack of groundwater 

wells and monitoring networks, (2) complex geology especially in karst regions (e.g., Hartmann 

et al., 2014; Tobin and Schwartz, 2016), and (3) the complexity of subsurface flows in mountain 

regions (e.g., Knowles and Cayan, 2004; Tague and Grant, 2009; Millares et al., 2009; Godsey 

et al., 2014). A comprehensive review on the different groundwater mechanisms and the 

importance of snow in groundwater recharge under projected warming scenarios over the 

western USA can be found in the work of Meixner et al., (2016). 

The link between snowmelt and groundwater spring discharge at the mesoscale in 

Mediterranean regions was addressed by using hydrochemical analysis. Studies on 

experimental snow-influenced micro- to mesoscale basins in Sierra Nevada California (Taylor 

et al., 2001; Friedman et al., 2002; Rademacher et al., 2005; Huth et al., 2004; Shaw et al., 

2014), Oregon (Palmer et al., 2007), Serra da Estrela Mountain Portugal  (Carreira et al., 2011), 

Sierra Nevada Spain (Fernández‐Chacón et al., 2010), and the Southern Italian Alps (Penna et 

al., 2015) demonstrated the potentials of suing stable isotopic analysis for hydrograph 
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separation between snow-fed, rain-fed and groundwater-fed sources and to investigate flow 

paths (Bales et al., 2006), and the evolution of snowmelt (Taylor et al., 2001). Tracer tests were 

used to (1) separate between snowmelt runoff (including rain on snow) (Williams et al., 2001), 

subsurface flow and fall storm runoff (Liu et al., 2013; Perrot et al., 2014) and shallow 

evapotranspired groundwater from groundwater sources (Shaw et al., 2014), and (2) investigate 

meltwater-driven surface runoff and catchment transit time (e.g., McGuire and McDonnell, 

2010). General chemical analyses also provided reliable information on the state of water 

residence time in springs (Rademacher et al., 2005). The karst aquifers are of particular 

relevance in the Mediterranean region since they represent a key source of freshwater supply 

for the people living in the Mediterranean basin (Doummar et al., 2014). The estimation of 

groundwater recharge from snowmelt in karst regions had been limited to mid and low latitude 

micro-scale snow-influenced mountainous regions with studies in southern Europe Spain 

(Andreo et al., 2004), Italy (Allocca et al., 2014), Greece (Novel et al., 2007), and the eastern 

Mediterranean regions of mount Lebanon (Bakalowicz et al., 2007). A pioneering study in the 

mid-altitude mountain region in Crete showed promise for simulating the contribution of 

snowmelt to karst hydrosystems by coupling a karstic model and an energy balance snow model 

(Kourgialas et al., 2010). 

New opportunities for the separation between SWE, surface water reservoir storage, soil 

moisture, ET, and changes in groundwater storage have been made possible using the GRACE 

mission (Famiglietti et al., 2011; Scanlon et al., 2012) and finer-resolution land-surface models 

(Singh et al., 2015). The use of global position system (GPS) vertical land motion observations 

in the California Central Valley (Ouellette et al., 2013; Argus et al., 2014; Boniface et al., 2015) 

and Oregon (Fu et al., 2015) seems to show potential for estimating terrestrial water storage 

while accounting for snow accumulation and melt. While these studies are encouraging, they 

are still limited to the regional scale due to the coarse resolution of the GRACE observations 

(approximately 300 km). 

2.7 Conclusion  

The review of 620 papers published between 1913 and 2016 demonstrated that the 

science behind snowpack dynamics (energy and mass fluxes) and hydrological process in 

Mediterranean mountain regions is well developed. The number of studies that are dedicated to 

the snow in Mediterranean regions also reflects the societal importance of the topic in the 

context of climate change, economic development and population growth. The use of indicators 

helped in highlighting major snow hydrologic processes in Mediterranean mountains. In 
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specific areas, such as in identifying major drivers for snowpack dynamics, it was difficult to 

draw definitive conclusions given the variety of approaches (e.g., different major drivers and 

methods). Our classification of Mediterranean mountains encompasses a large range of 

geologic and physiographic conditions. Despite the fact that the theory behind hydrologic 

processes in mountains is well established, drawing a common conclusion remains difficult 

beyond the case studies because the limited number of studies in this area of research area and 

the variety of approaches used (e.g., different models). 

Mediterranean snow-influenced regions are marked by a high inter- and intra-annual 

climate variability that shapes up most of the hydrologic processes. As a result, the snow depth, 

snow density, and snow water equivalent exhibit high inter- and intra-annual variance. In 

addition, the snowpack is affected by higher densification rates compared to other climate 

regions. The snowpack energy and mass balances are dominated by radiation fluxes, which 

account for most of the energy available for melt. The contribution of sensible and latent heat 

fluxes to ablation becomes prominent at the end of the snowmelt season.  Snow sublimation is 

more pronounced in the high-elevation zones, whereas snowmelt dominates the warmer, low to 

mid-elevation regions. The role of snow metamorphism (grain size and albedo) on the melt 

onset is still an open field of research. There is also room for improving snow mapping in forests 

and assessing the impact of absorbed impurities the radiative exchange at the snow surface. In 

particular, the snowpack in the Mediterranean basin is exposed to the deposition of mineral dust 

from the surrounding desert areas in Middle East and North Africa. 

In Mediterranean mountain regions snowmelt are exposed to (1) periods of low 

precipitation or high temperature causing “snow drought” (Cooper et al., 2016) (2) heatwaves 

(3) rain on snow events and (4) and dust deposition on the snowpack. Increasing air 

temperatures will lead to a shift in precipitation regime with elevation (i.e., rain to snow and 

increase in rain-on-snow events). The dust deposition tends to enhance the snow melt by 

increasing the radiative exchange due to the of decrease snow albedo. Understanding snowmelt 

sensitivity to these climate variables is of primary importance to improving our knowledge on 

the hydrologic processes and water resources system responses in mountain regions and 

downstream areas. 

In situ networks are often too sparse given the aforementioned spatial variability and 

most of the monitoring stations only monitor few meteorological variables needed to solve the 

energy budget of the snowpack. The increasing availability of remote sensing data, especially 

in the visible domain, has enabled scientific breakthroughs, such as the reconstruction of the 

SWE at the mountain scale with a decametric resolution for the last 30 years (Margulis et al., 
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2016). Limitations associated with passive microwave and radar are physically linked to the 

band width and are likely to remain in the near future. Airborne techniques (e.g., NASA’s ASO, 

(Painter et al., 2016) are an option for acquiring high detailed and direct estimates of HS and 

SWE once their high operational costs are reduced.  

Data assimilation portability to different regions is hindered by the reliance on larger 

data sets as input variables. In regions with limited ground-based observations, model outputs 

can be biased by an increased uncertainty (e.g., Hublart et al., 2015). Similarly, the reliance on 

multiple other technologies (e.g., ground-based and remote sensing observations) makes the 

system highly dependent on the simultaneous availability of data from all systems (Guan et al., 

2013a). The results using reanalysis of remote sensing data (Margulis et al., 2016) and 

physically based simulations run using the mesoscale WRF model (e.g., Caldwell et al., 2009; 

Wayand et al., 2013) seem to provide better results of SWE in regions with limited station data. 

One of the promising areas for research is the development of combined products, which 

include ground observations and remotely sensed data through data assimilation in snowpack 

models.  

Conducting snow measurements in less monitored regions such as Lebanon's mountains 

and the Atlas Mountains is required, and these investigations can make use of the extended 

knowledge gained from other Mediterranean regions. In the meantime, the models based on 

climate reanalysis and remote sensing data are more easily transferrable. Snow density and 

SWE spatiotemporal variability can be estimated, with an acceptable accuracy, using a few 

years of ground observation (e.g., Anderton et al., 2004; Mizukami and Perica, 2008). 

Maintaining the existing in situ network is critical for monitoring the snowpack response to 

climate change. Free access to open software and snow and meteorological data in the western 

USA has allowed an intense development of the snow science in this region that can benefit all 

other Mediterranean regions, which would only be possible if computation codes are made 

available to the research community. Although snow models, hydrological models and land 

surface models are increasingly distributed as open source software, data assimilation codes are 

less available. There is still need for more collaboration in terms of standardizing and sharing 

data. It is important, that snow observations, measurements and analysis are documented and 

archived in online snow data repositories (Kinar and Pomeroy, 2015) to serve as a source of 

information and provide data that can be used for research purposes and intercomparison 

projects. 
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Advancing our understanding of hydrological processes in Mediterranean mountain is 

partly hindered by the sparse meteorological stations and hydrological gauging networks, and 

the large uncertainty in key variables, such as the stream flow in headwaters catchments 

(Avanzi et al., 2014; Lundquist et al., 2015b; Raleigh et al., 2016).  In addition, there remain 

challenges in taking advantage of these advances in catchment hydrology because the response 

of the streamflow to the snowmelt is modulated by other hydrologic processes (ET, infiltration, 

groundwater flow). These processes are more strongly influenced by the subsurface properties 

(soil, geology), and hence, they are less easily constrained by current observational networks, 

remote sensing and modeling technologies. Closing on the water balance in Mediterranean 

mountain regions seems to be only feasible when these processes are solved simultaneously. 

Understanding of the connections between snowmelt, streamflow, evapotranspiration, and 

groundwater flow in snow-dominated regions is an open field for future research (e.g., Jefferson 

et al., 2008; Liu et al., 2013; Godsey et al., 2014; Jepsen et al., 2016a). Furthermore, there is a 

need to integrate human processes, such as reservoir management and irrigation, to investigate 

the vulnerability of the water resources under global change scenarios (e.g., Maurer et al., 2007; 

López-Moreno et al., 2008b; Viviroli et al., 2011; Anghileri et al., 2016).  

Snowpack response to climate variability and change remains one of the critical issues 

in Mediterranean mountains that motivated many of the reviewed studies (e.g., Guan et al., 

2012, 2013b). Projected scenarios indicate a marked warming and increased dryness in 

Mediterranean regions, which will amplify the transition from a snow-dominated to a rain-

dominated in mid elevation watersheds, and reduce the persistence of the seasonal SWE. These 

snow-related changes may have broad implications on evapotranspiration, groundwater 

recharge and runoff in many Mediterranean catchments. Mediterranean snow dominated basins 

are vulnerable to the increase in temperature and recurring dry periods. The sustainability of 

the water system, in the lowland regions, requires better understanding of the seasonal snow 

water storage and release as well as the quantification of uncertainties associated to the 

projected climate change, population growth, and land-use changes on the hydrologic responses 

of mountainous basins (e.g., Barnett et al., 2008; Morán-Tejeda et al., 2014). These challenges 

remain partially understood and warrant future research to anticipate their management in the 

coming decades. 
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Summary of Chapter: “Snow observation on Mount-Lebanon” 

This chapter in its current form is published in the journal Earth System Science Data: Fayad, 

A., Gascoin, S., Faour, G., Fanise, P., Drapeau, L., Somma, J., Fadel, A., Al Bitar, A., Escadafal, R.: 

Snow observations in Mount-Lebanon (2011–2016), Earth Syst. Sci. Data, doi:10.5194/essd-2017-3. 

The spatio-temporal variability of snow was presented in the second INARCH workshop held at the 

Laboratoire de Glaciologie et de Géophysique de l'Environnement (LGGE) in Grenoble (17-19 October 

2016) (http://www.usask.ca/inarch/wkshp2_report.php).  

 

 

The main objective of this chapter is to address the spatio-temporal variability of snow 

depth, snow density, and SWE in the snow dominated regions of Mount-Lebanon (1300-2900 

m a.s.l.). The study region covers the recharge area of three karstic river basins (total area of 

1092 km2), up to 3088 m in elevation.  

In this chapter, we present a snow meteorological dataset for the first time in Lebanon 

(2011-2016). The dataset builds from previous joint efforts of CESBIO/CNRS-L/USJ and 

includes observations from three high elevation automatic weather stations (1840-2834 m 

a.s.l.). Continuous meteorological observations at 30 minute intervals for the snow seasons 

(November – June) between 2011 and 2016 include surface air temperature and humidity, 

precipitation, wind speed and direction, incoming and reflected shortwave irradiance, and snow 

height. Observations of snow height (HS), snow water equivalent, and snow density were 

collected at 30 snow courses located at elevations between 1300 and 2900 m a.s.l. during two 

snow seasons 2014–2016 with an average revisit time of 11 days. Daily gap-free snow cover 

extent (SCA) and snow cover duration (SCD) derived from MODIS snow products are provided 

for the same period (2011–2016).  

We used the dataset to (1) describe the climatology of the winter seasons 2013-2016 

from AWS observations and to characterize (2) mean snow height, and (3) SWE and density 

across different elevation gradients for the first time in Mount-Lebanon. We found that snow is 

characterized with large snow height and SWE variances and a high-density mean (equal to 467 

kg m-3). We used a model to investigate the link between snow density and HS. The model 

explained 34% of the variability in the entire dataset (all regions between 1300 and 2900 m 

a.s.l.) and 61% for high mountain regions (elevation 2200–2900 m a.s.l.).  

 Finally, this dataset was made to be fully compatible with the application of distributed 

energy-balance snowpack models. Therefore, this data set holds the potential to greatly improve 

the quantification of snowmelt and mountain hydrometeorological processes in this data-scarce 

region of the Mont-Lebanon. The dataset was deposited in the public domain to foster its 

application beyond this work.    

http://www.usask.ca/inarch/wkshp2_report.php
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3 SNOW OBSERVATION ON MOUNT LEBANON  

Abstract  

We present a unique meteorological and snow observational dataset in Mount Lebanon, a 
mountainous region with a Mediterranean climate, where snowmelt is an essential water 
resource. The study region covers the recharge area of three karstic river basins (total area of 
1092 km2 and an elevation up to 3088 m). The dataset consists of (1) continuous meteorological 
and snow height observations, (2) snowpack field measurements, and (3) medium-resolution 
satellite snow cover data. The continuous meteorological measurements at three automatic 
weather stations (MZA 2296 m; LAQ 1840 m; and CED 2834 m a.s.l.) include surface air 
temperature and humidity, precipitation, wind speed and direction, incoming and reflected 
shortwave irradiance, and snow height, at 30 minute intervals for the snow seasons (November 
– June) between 2011 and 2016 for MZA and between 2014 and 2016 for CED and LAQ. 
Precipitation data were filtered and corrected for Geonor undercatch. Observations of snow 
height (HS), snow water equivalent, and snow density were collected at 30 snow courses located 
at elevations between 1300 and 2900 m a.s.l. during the two snow seasons 2014–2016 with an 
average revisit time of 11 days. Daily gap-free snow cover extent (SCA) and snow cover 
duration (SCD) maps derived from MODIS snow products are provided for the same period 
(2011–2016). We used the dataset to characterize mean snow height, snow water equivalent 
(SWE), and density for the first time in Mount Lebanon. Snow seasonal variability was 
characterized with high HS and SWE variance and a relatively high snow density mean equal 
to 467 kg m-3. We find that the relationship between snow depth and snow density is specific 
to the Mediterranean climate. The current model explained 34% of the variability in the entire 
dataset (all regions between 1300 and 2900 m a.s.l.) and 62% for high mountain regions 
(elevation 2200–2900 m a.s.l.). The dataset is suitable for the investigation of snow dynamics 
and for the forcing and validation of energy balance models. Therefore, this dataset bears the 
potential to greatly improve the quantification of snowmelt and mountain hydrometeorological 
processes in this data-scarce region of the eastern Mediterranean. The DOI for the data is 
https://doi.org/10.5281/zenodo.583733. 
 
Keywords: Snow observations; Snow water equivalent; Automatic weather station; Mountain 
hydrology; Water resources; Mediterranean climate 
 
 

3.1 Introduction  

Water scarcity is a growing concern in Lebanon due to the unsustainable water resource 

management, the limited accessibility to the water sources, increasing  water demand by all 

sectors, increasing water pollution, and sea water intrusion (MOEW, 2010; UNDP, 2014; 

Kalaoun et al. 2015). Lebanon receives on average 830 mm of precipitation per water year 

(September–August) (MOEW, 2010). Most precipitation falls during the winter season 
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(December–March). The two Lebanese mountain chains, the Mount Lebanon and Anti 

Lebanon, receive between 50 and 67% of the total annual precipitation as snow (UNDP, 2014). 

This is mainly due to the orographic enhancement of the precipitation on the western slope of 

the mountain chains. The Mount Lebanon range has an average elevation above 2200 m and 

stretches over a distance of 150 km parallel to the Mediterranean coast, therefore causing 

enhanced orographic uplift of moist air masses. Due to the influence of the Mediterranean 

climate (wet winter, dry summer) most of the precipitation above 1200 m a.s.l. falls as snow on 

Mount Lebanon (Shaban et al., 2004; Aouad-Rizk et al., 2005; Mhawej et al., 2014; UNDP, 

2014). The average contribution of snowmelt to spring and river discharge in Mount Lebanon 

was estimated at 30% by Telesca et al. (2015). Snowmelt contributes to the recharge of karstic 

aquifers and springs of all the watersheds located in the windward regions of Mount Lebanon 

(Fig. 3.1) (e.g., Bakalowicz et al., 2008; Doummar et al., 2014). This snow contribution to 

groundwater recharge can reach up to 75% in the upper mountainous aquifers where the 

groundwater recharge was estimated at 81% from precipitation in the snow-dominated regions 

of the El Kelb Basin (Margane et al., 2013; Königer and Margane, 2014). The snowmelt 

contribution from high-elevation regions (above 1800 m a.s.l.) was estimated to contribute to 

around 56% of the major spring discharge at the lowland regions (Margane et al., 2013). The 

coastal watersheds, such as the EL Kelb Basin, are the major sources of water for the coastal 

population, where most of the Lebanese population is located.  

Although snow is recognized as a major component of the hydrologic system in Mount 

Lebanon (Shaban et al., 2004; Aouad-Rizk et al., 2005; Bakalowicz et al. 2008; Mhawej et al., 

2014; Königer and Margane 2014), the link between snowmelt and the hydrological processes 

remains poorly characterized on the basin scale. This can be attributed to the (1) lack of an 

operational snow observation network in Lebanon and (2) limited number of published basin-

scale hydrometeorological datasets. Meteorological stations operated by the department of civil 

aviation are usually located below the snowline (maximum elevation at 1220 m a.s.l.) and the 

few stations located in the mountainous regions (elevation range 1510–1890 m a.s.l.) are not 

equipped to measure snowfall. Furthermore, only a few datasets on precipitation, temperature, 

snow, groundwater recharge and streamflow are available for basin-scale studies (e.g., Königer 

and Margane 2014). Existing datasets, available through published material, are usually limited 

to (1) national-scale studies with monthly or yearly means (Shaban et al. 2004; Corbane et al., 

2005; Mhawej et al., 2014; Telesca et al., 2014), (2)  multi-year  daily spring discharge and 

precipitation time series (e.g., Hreiche et al., 2007), (3) seasonal observations collected for 

mesoscale catchment studies (Bernier et al. 2003; Aouad-Rizk et al., 2005; Doummar et al. 
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2014), and (4) local-scale snowpack observations (e.g., Somma et al., 2006, 2014). In most 

cases the research datasets are not made publicly available.   

 

 

Fig. 3.1. Location of the three study river basins in Mount Lebanon and the location of the three automatic weather 
stations (AWSs). Points indicates the location of the snow courses. Snow height HS, snow density, and snow water 
equivalent (SWE) were measured at 30 snow courses for the two snow years (2014–2016): 9 snow courses at 
Cedars have an elevation range between 1800 and 2900 m a.s.l., 15 snow courses between Faraya and Mzar 
(elevation between 1350 and 2350 m), and 6 snow courses between Ehmej and Laqlouq (elevation range 1350-
1850 m a.s.l.). 

 

In this paper, we present a dataset targeted at the study of the mountain and snow 

hydrology in three mesoscale basins (area 256–513 km3) located on the west slope of Mount 

Lebanon (Fig. 3.1). The dataset consists of, (1) continuous meteorological and snow height 

observations collected at three automatic weather stations (AWSs) (2011–2016), (2) snowpack 

field measurements collected during two snow seasons (2014–2016), and (3) medium-

resolution satellite observations of the snow cover extent at a daily time step (MODIS). We use 

these data to characterize the variability in key snowpack properties. The dataset presented in 

this paper is unique because it is the only dataset that includes a range of continuous snow and 

meteorological measurements in the mountain region of Lebanon at the elevation regions 
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between 1300 and 2900 m a.s.l. The data presented are readily suitable for the forcing and 

validation of a snowpack energy and mass balance model. The data also can be useful for further 

hydro-meteorological studies such as climate model downscaling or hydrological modeling for 

water resource management.  

The study area is described in section 3.2. Meteorological observations and post 

processing methods, snow course measurement protocols, and MODIS data processing are 

presented in section 3.3. Section 3.4 provides a summary of the observations and an example 

application on using the datasets to derive the relationships between HS, snow water equivalent 

(SWE) and snow density. Data accessibility and conclusions are presented in sections 3.5 and 

3.6 respectively.  

 

3.2 Study area  

This study’s measurements were collected in the upper area of three mesoscale snow-

dominated mountain basins located in Mount Lebanon with an average centroid located at 

34.10° N and 35.90° E and covering a total area of 1092 km2 (Fig. 3.1). These basins belong to 

the “coastal watersheds”, which supply fresh water to major Lebanese cities including Beirut. 

Due to the influence of the Mediterranean climate, most precipitation falls between November 

and April. Winter precipitation (December–March) accounts for 84 % of the total annual 

precipitation. Most precipitation above 1600 m a.s.l. falls as snow. The topography of the mid-

elevation regions (1600–2200 m a.s.l.) is usually rugged terrain (Fig. 3.2). The mid-elevation 

and high-elevation plateau are found at elevation ranges between 2300 and 2500 m and between 

2700 and 3000, respectively (Fig. 3.2). The treeline is located at 1550 m a.s.l., where sparse 

scrublands dominate most of the land cover. The retreat of the natural tree line is due to the 

increased deforestation and urbanization. The natural tree line which can be still found in sparse, 

small, forested regions extends up to 2450 m in Abou Ali and 1900 m in Ibrahim and El Kelb 

basins. Most snow-fed karstic springs are located at altitudes between 300 and 2280 m a.s.l. 

The physical attributes of the three study basins are shown in Table 3.1.  
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Fig. 3.2. Overview of the mountain topography at (a) Laqlouq and Mzar, and (b) Cedars, Mount Lebanon. The 
images were captured on 6 May 2011 (a) and 21 February 2015 (b) (courtesy of the author). The locations of the 
AWSs are shown approximately on the images where the letters M, L, and C represent the stations at MZA, LAQ, 
and CED, respectively (see Table 3.1). The topography near Laqlouq (LAQ) is a relatively low plain (elevation 
between 1600 and 1800 m a.s.l.) and low-elevation mountains (1900 – 2100 m a.s.l.). The region near Mzar (MZA) 
is characterized by rugged terrain (1600 – 2200 m a.s.l.) and mid-elevation plateau (elevation range 2300 – 2500 
m). The high-elevation plateau (shown partially in (b) near Cedars (CED)) have an elevation range between 2700 
and 3000 m a.s.l. Snow presists  until the end of May in the mid-elevation mountain regions (plateau and rugged 
terrain region above 2300 m a.s.l.). The low-elevation and mid-elevation regions (1300 – 2000 m a.s.l.) are usually 
snow-free by mid-March to mid-April.  

 

Table 3.1. Attributes of the three snow-dominated basins in Mount Lebanon described in this study.  

Basina 
  

Area 
(km2) 

Elevation range 
(average)b, m 
a.s.l. 

Dominant land coverc 
(%) 

AWS Elevation, 
m a.s.l. (year 
installed)d 

Snow course 
count (elevation 
rangee 

1 513 0–3088 (1202) Clear grassland (20%) 2834 (2013) 9 (1650–2900) 

2 323 0–2681 (1547) Clear grassland (30%) 1840 (2014) 6 (1300–1850) 

3 256 0–2619 (1381) Clear grassland (16%) 2296 (2011) 15 (1300–2300) 

aBasins are Abou Ali (1), Ibrahim (2), and El Kelb (3) (Fig. 3.1). bValues are derived for the national 10 meter 
DEM (NCRS). cSource: Landuse land cover map of Lebanon (NCRS, 2015). dSource: Institut de recherche pour 
le développement (IRD) (Tabel 3.2). eSnow courses observations were conducted between December and May 
over two snow years (2014–2016) (Fig. 3. 1). 

 

3.3 Snow and Meteorological Data 

3.3.1 Meteorological data  

The three AWSs were installed in Mount Lebanon above the winter snowline 

(approximately 1550 m a.s.l.) with the primary objective to monitor the meteorological 

variables that drive seasonal snowpack evolution on Mount Lebanon (Fig. 3.1 and Fig. 3.2). 

The Laqlouq AWS (LAQ) is located in a monastery at 1840 m a.s.l., the Mzar station (MZA) 

is located in a ski resort domain at 2296 m a.s.l., and the Cedars AWS (CED) (2834 m a.s.l.) is 

located on the higher plateau below the mountain’s peak at Qornet El Sawda, 3088 m a.s.l. (Fig. 

3.1, Table 3.2). The LAQ station is in a relatively flat plain area with fruit trees, bare rocks, and 

L 

L 

C 

M 
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sparse, short grasslands. The MZA station is located on one of the medium-elevation peaks in 

a mountainous region with rugged terrain (maximum elevation in the area is ~2600 m a.s.l.) 

with dominant bare soils and sparse speargrass grassland. The CED AWS is located on a higher 

plateau with dominant bare rocks and sparse shrubs and grasslands at lower elevations (1600–

2200 m a.s.l.). Wind effects on snow cover are more noticeable in MZA due to the combined 

effect of topography and higher wind velocities. The three stations are operated under a joint 

program for establishing a network for snow observation (NSO). The program, established in 

2010, is a collaboration between the Institut de Recherche pour le Développement (IRD, 

France), the Centre d'Etudes Spatiales de la Biosphere (CESBIO, France), the National Council 

for Scientific Research – Remote Sensing Center (CNRS/NCRS, Lebanon), and the University 

of Saint Joseph (USJ, Lebanon).   

 

Table 3.2. Meteorological stations. 

Stationa  Location  
Elevation, m 
a.s.l. 

Record period (30 
min averages) b 

Coordinates (WGS84) 

CED Cedars  2834 2013–2016 34.27° N, 36.09° E 

LAQ Laqlouq 1840 2014–2016 34.14° N, 35.88° E 

MZA Mzar 2296 2011–2016 33.98° N, 35.86° E 
aSee Table 3. 3 for sensors description. b The time period cover the snow season between 1 November and 30 
June. 

  

Meteorological data are available starting from snow season (December–June) 2011 for 

Mzar AWS and the monitoring network became fully operational in snow season 2014–2015 

with the installation of the third AWS (LAQ) at Laqlouq (Table 3.2). Meteorological data– 

including snow height, temperature, relative humidity, incoming and reflected shortwave solar 

radiation, wind speed and direction, and atmospheric pressure – are collected at the three sites 

using sensors mounted on towers (Fig. 3.3). Longwave radiation, which is, an important 

component of the energy balance in Mediterranean regions (Herrero and José Polo 2016), is not 

measured. However, incoming longwave radiation can be estimated from air temperature and 

humidity measurements at the stations (Brutsaert 2013). Incoming solar radiation can also be 

used to better constrain the cloud fraction in the computation of the longwave radiation. Each 

station consists of a data logger (CR1000; Campbell Scientific Inc., Utah, USA) and a 

precipitation gauge (T-200B; Geonor Inc., Eiksmarka, Norway), a snow depth sensor (SR50A; 

Campbell Scientific Inc., Utah, USA), an air temperature and humidity sensor (CS215; 

Campbell Scientific Inc., Utah, USA), an incoming and reflected shortwave solar radiation 

sensor (SP LITE 2 pyranometer; Kipp & Zonen, Netherlands), and a wind speed and direction 
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sensor (Alpine v05103–45L, Young, USA). Data are transmitted via a GPRS modem every 8 

hours. Observations from the three AWSs are collected at 30 sec and then aggregated into 30 

min averages. Temperature and humidity sensor are installed at 2.4 m in MZA, 3.9 m in LAQ, 

and 4.2 m in CED. Wind speed sensors are installed at 2.6 m in MZA, 4.2 m in LAQ, and 4.9 

m in CED. Snow height observations were recorded automatically at each station using an 

acoustic snow gauge installed at 2.0 m in MZA and at 4.0 m in CED and LAQ. Precipitation 

data are recorded at a snow gauge placed in the proximity of the station (Fig. 3.3). Precipitation 

has been observed since 2012 at MZA (2012–2016) and since 2014 at LAQ (2014–2016). The 

CED station was equipped with a Geonor in December 2016.  Data for precipitation were 

missing during the first year (2011–2012) at MZA and shortwave solar radiation measurements 

began in snow season 2014. CED AWS data between 24 April and 30 June 2015 were removed 

due to station rotation. The wind speed data located at CED were discarded after 15 January 

2016 due to sensor malfunction. Missing data were less than 10% for all stations after the 

network became fully operational (2014–2016). 

Raw data collected at the stations underwent basic quality control, including checks for 

missing data and boundary values. We performed further quality control for the 30 min and 

daily average observations by screening outliers and erroneous data following rules given by 

Serreze et al., (1999), Shafer et al., (2000), and Estévez et al., (2011). Humidity, pyranometers, 

and wind sensors were unheated and thus may be subject to error when covered by frost (Malek, 

2008). The temperature sensors are protected against solar radiation (Huwald et al., 2009) using 

radiation shield and are naturally ventilated. The accumulation of frost on the sensor was 

observed during multiple field visits at MZA and CED. These events usually coincide with the 

week following storm events.  

For precipitation (P), air temperature (T), snow height (HS), and humidity (RH), we 

used running step tests to detect abrupt jumps in means, especially during storm events (Table 

3.3). Incoming and reflected shortwave solar radiation (SR) measurements were screened using 

snow half-hourly albedo, by eliminating data that do not give a positive albedo (0 ≤ albedo ≤ 

1). We used a positive snow height (HS) to detect the presence or absence of snow. Data ranges 

were used for P (0–240 mm h–1), T (–30 to +40 °C), RH (0–100%), HS (0–4.5 m), and SR (0–

1500 W/m2). For the two snow seasons 2015–2016 (November–June) data record retained at 

the three stations were 71.1, 95.4, and 94.3% of the total datasets for CED, LAQ, and MZA, 

respectively. An example of the semi-hourly precipitation and temperature observations at 

Laqlouq for the snow seasons (2014-2016) is shown in Figure 3.4. 
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Fig. 3.3. Automatic weather station at Mzar (MZA) (2296 m a.s.l.) where all sensors are located on the tower and 
the precipitation gauge is located to the right of the station. Image captured on March 5th, 2015 (courtesy of the 
author). 

 

Fig. 3.4. Example of daily precipitation and temperature observations at Laqlouq (1840 m a.s.l.) during snow 
season 2015-2016 (November–June). 
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Table 3.3. Sensor specifications and quality control checks for hourly and daily data – modified after Estévez et 
al. (2011) and WMO (2008).  
 

Sensor Variable Accuracy 
(Sensitivity) 

Range test Step test Cross–validation 
test 

T–200B (1000mm 
at MZA and LAQ) 
and 1500mm at 
CED†) 

Precipitation 
(mm) 

0.1% Full 
scale (0.075 – 
0.1) 

0 ≤ Psh ≤ 120  
0 ≤ P ≤ 508 

0 ≤ Psh ; P(0 – 6h) ≤ 
P(0 – 24h);  

RHsh > 80% 

SR50 Snow height 
(cm) 

±1 
(0.25) 

0 ≤ HSsh ≤ 450   Maximum HS(0–
24h) < 0.15*P(0–
24h) 

CS215 Temperature 
(°C) 

±0.4 –30 < T < 50 |Tsh – Tsh–1| < 3 Tsh ≠ Tsh–1 ≠ Tsh–2 
≠ Tsh–4 

SP LITE 2 Incoming 
Radiation 

 –1 < SwIsh < 1500 0 ≤ |SwIsh – SwRsh–

1| ≤ 555 

For SwIsh > 0 & 
SwRsh > 0  
[0 < Albedo 
(SwR/SwI) < 
0.95] 

 Reflected 
Radiation 

 –1 < SwRsh < 
1500 

0 ≤ SwRsh – SwRsh–

1 ≤ 550 

 

CS215 Relative 
Humidity (%) 

±0.2 0.8 < RH < 103 |RHsh – RHsh–1| ≤ 45  

Young 05103 – 
Alpine 

Wind Speed (m 
s–1) 

±0.3 0 < Ws < 60  Wssh = 0 & Wdsh 
= 0;  
Wssh ≠ Wssh –1 
Wssh ≠ Wssh –2 ≠ 
Wssh –4; Wdsh ≠ 
Wdsh–1 Wdsh ≠ 
Wdsh–2 ≠ Wdsh–4 

 Wind direction 
(deg) 

±3 0 ≤ Wd ≤ 360   

Where: P and Psh = daily and semi-hourly precipitation; SD and SDsh = daily and semi-hourly snow depth; T = 
mean air temperature respectively; Tsh = semi-hourly air temperature; SwI and SwR = incoming and reflected solar 
radiation respectively (sh denotes semi-hourly); RH and RHsh = daily mean and semi-hourly relative humidity; 
WS and Wd = mean wind speed and mean wind direction respectively (sh denotes semi-hourly); For SD we used 
visual interpretation to account for snow depth following snowfall, or when SR50 measurement are lost, assuming 
the difference in SD over a single day is less than total daily precipitation multiplied by an average fresh snow 
density of 0.15 g cm-1. The sensor’s field life cycle is ~ 3 years. †The snow gauge (model T–200B, 1500mm) was 
installed in October 2016 and measurements will be available staring snow year 2016–2017. 
 

3.3.2 Correcting for Geonor undercatch 

The output data from the Geonor accumulating gauge were post-processed in order to 

identify and correct biased observations, to determine the precipitation type, and to correct the 

Geonor precipitation undercatch. Three types of biases are found in the Geonor observations 

similarly to previous studies (Harder and Pomeroy 2013; and Pan et al. 2016): (1) erroneous 

readings associated with the Geonor field servicing (i.e., emptying and/or adding of antifreeze 

and oil to the Geonor bucket); (2) jitters and diurnal noise due to wind speed (e.g., MZA) and 

changes in temperature are similar to those found in sites with strong diurnal changes in 

temperature, radiation, and wind speed (e.g., Harder and Pomeroy 2013; and Pan et al. 2016); 

and (3) long-term drift results from evaporation within the bucket, which occurs at the end of 

snow season when air temperature is high. We post-processed the raw precipitation data using 
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a supervised correction similar to the one described in Harder and Pomeroy, (2013) by 

performing the following steps: (1) The Geonor raw data were adjusted to account for when the 

gauge is emptied and/or filled with oil and antifreeze. (2) We used the predefined values for 

range test and cross validation tests (Table 3) to automatically flag and remove erroneous peaks 

(e.g., Psh > 120 mm). (3) All erroneous changes in the calculated raw cumulative precipitation 

(raw Psh < –20 mm and > 20 mm) were removed. (4) We flagged and removed all accumulated 

precipitation greater than 1000 mm (equal to the maximum capacity of the Geonor bucket), and 

the precipitation data for the same time period is set to "no data" in the final dataset. (5) All 

missing cumulative precipitation observations were assumed to be equal to the previous 

observed observation for running the filter. (6) We used a supervised rolling maximum filter 

(Harder and Pomeroy, 2013) to remove the biased precipitation observation. The filter was run 

sequentially on the time series of the cumulated precipitation: the precipitation observation was 

retained if it was greater than the previous maximum.  

The rolling maximum filter preserves the cumulative change in precipitation and the 

timing of precipitation events (Harder and Pomeroy, 2013) (Fig. 3.5). However, a visual check 

is needed to flag potential errors. We visually compared the auto-filtered data versus the raw 

data to (1) check for erroneous departures between the auto-filtered and raw data; (2) check 

whether the filter captured the start of a precipitation event and whether the calculated Psh 

occurred when humidity was greater than 80% (Psh with low humidity values were removed); 

and (3) check and correct errors attributed to gauge drift events, which are associated with 

evaporation effects, that are not captured by the filter (Fig. 3.5a).  We corrected these errors by 

manually replacing the filtered accumulated precipitation data to fit the actual change from the 

raw precipitation data (Fig. 3.5a). We made sure that the total sum of the replaced precipitation 

was equal to the cumulative observed precipitation which was assumed to be correct over the 

same time period. We also checked that the precise start and timing of precipitation events was 

preserved and that the long-term drift due to evaporation was eliminated (Fig. 3.5a).  
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Fig. 3.5. Examples of the jitters and diurnal noise filtering for Geonor T-200B weighing gauge (Praw: raw data; 
Padj: filtered data). (a) Significant evaporation occurred during winter season 2014 (e.g., MZA: 12 – 29 December 
2013) and required manual correction (28 – 29 December). No correction for the accumulation of raw precipitation 
between 22 – and 23 December was made because the observed average humidity was below 15%. (b) Filtering 
of jitters and diurnal noise (no manual correction) (e.g., MZA: 23 March – 11 April, 2015). 

 

The collection efficiency of precipitation gauges is influenced by the wind speed and a 

bias adjustment for solid precipitation is needed under windy conditions (Rasmussen et al., 

2012; Buisan et al., 2017; Smith et al., 2017; Pan et al., 2016). Measurement errors due to gauge 

undercatch frequently range between 20% and 50% (Rasmussen et al., 2012). The catch 

efficiency for the Geonor with a single Alter shield decreases linearly to approximately 60% at 

wind speed 5 m s–1 (Thériault et al., 2012). The bias adjustment for precipitation undercatch is 

achieved by estimating the catch efficiency (CE) (wind speed relationship) of the precipitation 

gauge. The determination of CE requires the determination of precipitation type and that the 

wind speed is measured at gauge height (Rasmussen et al., 2012). The need for precipitation 

type separation is important because the influence of wind is much more pronounced for solid 

precipitation than for liquid precipitation (Rasmussen et al., 2012). In this study, we applied 

bias correction for the filtered precipitation data (Padj). For solid precipitation, we used the 
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empirical relationship between catch efficiency and wind speed derived by Thériault et al., 

(2012) after Yang et al., (1998) and Rasmussen et al., (2001): � = �� /�� 
 �� =  + � ∗ �

 

 
 

where Pcor (mm) is the corrected precipitation, Padj (mm) is the measured precipitation 

after filtering, CE is the catch efficiency of the Geonor, Ws (m s–1) is the hourly mean wind 

speed at the gauge height, and C is a constant and represents the gauge configuration parameter 

and is equal to – 7.1 (C= – 7.1) for the single Alter shield Geonor (Thériault et al., 2012).  Over-

correction is possible for snowfall events and occurs under the impact of blowing snow at high 

wind speeds (Pan et al. 2016). To limit overcorrection, we used a threshold for maximum wind 

speed. Thus, the CE was set to 0.44 (CE for 8 m s–1). We used this threshold since the median 

collection efficiency of the Geonor in the single Alter shield seemed to saturate at wind speeds 

greater than 8 m s–1 for a test site in Colorado (Thériault et al., 2012). The median wind speed 

recorded during precipitation events over the winter seasons of 2014-2016 ranged between 3.3 

and 3.7 m s–1 for LAQ and 8.8 and 9 m s–1 for MZA with maximum recorded wind speed at 10 

and 20.1 m s–1 for LAQ and MZA, respectively. We adjusted all rainfall measurements using 

the constant average catch efficiency for the single Alter shield Geonor estimated at 95% (CE 

= 0.953) (Devine and Mekis, 2008).  

Wind speed at gauge height is required for the estimation of CE. We used the 

logarithmic wind profile to estimate the wind speed at the height of the Geonor gauge (Yang et 

al. 1998): 

 � ℎ = � � [ln ℎ/�0ln �/�0 ] 

 
where Ws(h) is the estimated hourly wind speed (m s-1) at the gauge height, Ws(H) is 

the measured mean hourly wind speed at the anemometer height, h and H are the heights (m) 

of the Geonor gauge and the anemometer, respectively, and z0 is the roughness parameter (m), 

set to 0.01 m for the winter snow surface and 0.03 m for short grass in the warm period (Yang 

et al. 1998). For this study, we set z0 = 0.01 for the time period between December and March 

and z0 = 0.03 for the rest. 

Different approaches for precipitation phase determination have been summarized in 

Harpold et al., (2017). Most common methods rely on the use of mean air temperature (Ta) 
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thresholds (e.g., Marks et al., 2013). In this study, we use a static Ta threshold at 0°C (Marks 

et al., 2013) to distinguish between snowfall and rainfall. All precipitation below or above the 

threshold are partitioned as snow or rain, respectively. This method was found to produced 

reliable snow volume predictions in Idaho when cloud levels are at or close to the surface during 

storms and the RH is at or close to saturation (Marks et al., 2013). The Mount Lebanon 

meteorological conditions during storm events are similar and are usually characterized by RH 

saturation and cloud levels are near the surface.  

 

3.3.3 Snow course data  

We identified 30 different snow courses with lengths varying between 75 and 400 m, 

within the upper area of the three basins (Fig. 3.1). The locations of the snow courses were 

selected based on accessibility, representativeness of the snow cover within the region 

(suggesting, whenever possible, one snow course for relatively flat and low slope regions and 

two snow courses representing the maximum and minimum snow depth transects in rough 

topographic regions). Snow courses were spaced at ~100 m vertical elevation. All snow courses 

had a slope of less than 30%. Field measurements of snow depth, snow density, and SWE were 

carried out over two snow seasons (2014–2016) with an average revisit time of 11.4 days for 

each snow course. A total of 649 snow course measurements are reported and can be found at 

(https://doi.org/10.5281/zenodo.583733). Snow depth was measured manually, to the nearest 1 

cm, using a 3 m snow probe, at 5 meter intervals along each snow course. Snow density was 

measured using a federal snow sampler (snow cutter inner diameter at 3.772 cm) along each 

snow course at 25 meter intervals for snow courses shorter than 100 m and at 50 m intervals for 

longer snow courses so at least 3–5 snow density measurements were recorded at each snow 

course site. Snow density and SWE protocol consisted of weighing the empty tube. The snow 

tube was then plunged into the snowpack and the snow depth marker on the tube was recorded. 

Once the core was removed the snow depth of the snowpack was checked to make sure that at 

least 80% of the snowpack has been cored (Dixon and Boon, 2012). We also measured the 

snowpack HS using a marked snow probe (1 cm) to make sure no snow was left unsampled. 

Any amount of soil entering the snow cutter, especially during the melt season, was removed 

and reported alongside the HS measurements. The combined weight of the tube and core was 

recorded. Each snow sample was weighed three times (five times under windy conditions) and 

the average snow weight was registered. Under windy conditions maximum and minimum 

weights were removed and the weight was averaged for the three measurements. The mass of 
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the snow core sample was calculated by subtracting the empty tube mass from the combined 

tube and snow core mass. Snow courses with an HS of less than 30 cm and where the snow 

cover was less than 50 % (based on visual interpretation) were sampled by taking bulk density 

measurements. Bulk density measurement consisted on taking four snow core samples at a 

single location and weighing the total mass for the combined four samples, the average density 

is then reported for this point-location. Weighing scales were validated under normal weather 

conditions by taking 50 measure s of the empty snow tube and thus suggesting an accuracy of 

98.75% when using a 2 m snow tube. Snow density and snow water equivalent were calculated 

using:    = � �2 × ��  ��� = ��  

where  is the density of the snow core sample (g cm-3),  is the density of water (1 

g cm-3), � �  is the mass of the snow core sample, r is the inside radius of the snow tube 

cutter (3.772 cm), and HS is snow height (cm).  

3.3.4 Snow cover extent and snow cover data 

Daily maps of the snow cover extent at 500 m spatial resolution were generated for the 

three watersheds from the MODIS snow products. We used the “binary” snow cover area sub-

dataset from MOD10A1 (Terra) and MYD10A1 (Aqua) collection 5 products from the National 

Snow and Ice Data Center (Hall et al., 2006). Mount Lebanon falls between MODIS grid tiles 

h20v05 and h21v05. All available tiles from 01 September 2011 to 31 August 2016 were 

assembled and resampled to 500 m with a nearest-neighbor method in UTM 36N using the 

MODIS reprojection tool over a rectangular spatial subset (upper left x = 730 km, y = 3830 

km ; lower right x = 850 km, y = 3680 km). Then we ran a gap-filling code which is fully 

described in (Gascoin et al., 2015) to interpolate the missing information mostly caused by 

cloud cover. The algorithm utilizes the topographic information (elevation and aspect) from the 

ASTER global digital elevation map, which was resampled to the same resolution. The output 

is a series of daily, gap-free, raster maps of the snow presence or absence for every pixel. These 

data were then used to compute the daily snow cover area in each watershed and the mean 

annual snow cover duration per pixel (SCD), i.e., the mean number of snow days per year. The 

dataset is available at https://doi.org/10.5281/zenodo.583733. 
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3.4 Results and discussion  

In this section, we limited the data analysis to two snow seasons (2014–2016) because 

(1) the AWS network became fully operational with the installation of the third station in 2014 

and (2) snow field observations were collected starting in snow season 2014–2015.  

 

3.4.1 Meteorology 

The observed average seasonal (average 30–min from 01 November to 30 June) surface 

air temperature for the two snow seasons (2014–2016) was 6.9, 4.3, and –1.4 °C for LAQ 

(monthly range: –0.3–17.1 °C), MZA (–2.9–14.3 °C), and CED (–7.1–8.4 °C), respectively. 

There is a strong positive correlation in the 30 min surface air temperature records from the 

three stations (r = 92.7–97.9). Total annual precipitation ranged between 732 and 1125 mm 

during 2014–2015 and 1592 to 1880 mm for 2015–2016, representing precipitation data 

recorded at the LAQ and MZA stations, respectively (1840–2294 m a.s.l.). Average wind 

speeds for the same time period (2014–2016) were 2.4 m s–1 (monthly range:  1.5–3.3), 5.4 

(4.1–8.0), and 4.7 m s–1 (3.6–5.5) for LAQ, MZA, and CED, respectively. Strong winds seldom 

exceed 10 m s–1 at LAQ, 20 m s–1 at MZA, and 25 m s–1 at CED except during storm events, 

where maximum wind gusts recorded reached up to 40.1 m s–1 at CED. Seasonal incoming solar 

shortwave radiation averages (30–min averages) ranged between 156 and 219 W m–2 for the 

three stations (2014–2016).  

 

3.4.2 Snow depth, snow density and SWE 

SWE peaks in mid-February at low and mid-altitude regions and in mid-March high 

mountainous regions. Snowmelt varies depending on elevation, beginning late February at 

lower altitudes and by mid-March at higher altitudes and extending into late April. Rain on 

snow events are common during winter season and usually occur at elevations below 1800 m 

amsl. Snow patches can persist until June in areas above 2700 m a.s.l. The median HS, SWE, 

and density obtained from snow courses (1300–2900 m a.s.l.) between 2014 and 2016 are 

shown in Fig. 3.6. The median HS, SWE, and density across different region and mountain 

elevation are illustrated in (Fig. 3.7). High regions like CED (1650–2900) and MZA (1300–

2300) have higher mean HS and SWE when compared to mid- and low mountainous regions 

like LAQ (1300–1850). Median seasonal HS values at high elevations (i.e. mean for all CED 

and MZA snow courses; Fig. 3.7a,d) were very close which reflects similar snowfall patterns. 
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CED seasonal HS medians were 77 and 79 cm representing snow years 2014–2015 and 2015–

2016, respectively, and similar values were found in MZA (71 and 76 cm). Meanwhile, HS 

medians at LAQ were 53 and 54 cm over the same time period. The high mountainous regions 

above 2200 (e.g., CED) have a higher 75th quantile range and this is attributed to the extend 

snow persistence. The higher maximum HS observed in MZA can be attributed to the rough 

topography of the region whereas the high region in CED above 2700 m a.s.l. is presented as a 

plateau with less variance in HS and SWE when compared to high regions in MZA (2100–

2500). 

Peak SWE values for the two winter seasons (2014–2015; 2015–2016) were 103 and 83 

cm w.e. for CED, 127 and 158 cm w.e. for MZA, and 59 and 36 cm w.e. for LAQ. The peaks 

for SWE, and similarly for HS, observed at MZA (Fig. 3.7) are attributed to the topography of 

the region where wind-blown snow was more noticeable. Despite MZA bieng characterized by 

higher variability in the SWE and HS, observations at CED show higher seasonal medians for 

both variables, which is expected since CED is higher and the snow season extends longer than 

the one observed at MZA. SWE remains relatively constant during winter season and starts to 

melt starting mid-March or early April at regions above 2100 m a.s.l. Snowmelt at lower 

elevation 1600–2100 m a.s.l. started earlier by mid–February and early March. Regions 

between 1300 and 2000 m a.s.l. are subject to rain on snow, which influences snowmelt 

processes during the entire snow season especially in warm years. The higher variance and 

inter-seasonal variability in the observed SWE across the different regions (Fig 3.5) illustrate 

the importance for monitoring snowpack dynamics in Mount Lebanon as it is the major 

contributor to the water resource system. 

The median seasonal snow density for all snow courses over the 2-year period (2014–

2016) (Fig. 3.6) was 476 km m–3 and ranged between 431 and 522 kg m–3, representing the 25th 

and 75th percentiles. Mean snow density for the three regions (Fig. 3.7c, f) over the two snow 

seasons (2014–2016) ranged between 440 and 489 kg m-3. These high seasonal density values 

are common in Mediterranean regions (e.g., Rice and Bales, 2010; López–Moreno et al., 2013). 

Although close median values can be observed for snow density across the different regions, it 

is worth noting that different snow metamorphism, compaction, or melting differences exist 

between regions. During the months of January and February the mid-altitude regions (e.g., 

LAQ) snow is usually wetter and less compacted when compared to high-elevation regions 

(e.g., CED), where snow is usually wind-compacted, highly supportable, and dry.  

Snow year 2015–2016 was characterized by rain-on-snow events, when most of the 

precipitation occurring few days after the first major snowfall event (mid-January) fell as rain 
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in mid-altitude regions (1300–2300 m a.s.l.). Rain on snow resulted in the disappearance of 

the snowpack below 1800 m a.s.l and accelerated the snow densification at elevations 

between 1800 and 2300 m a.s.l. Observed snow densities for the same date were 1.4–1.6 times 

higher than those observed during the same time period in the previous year (2014–2015).  

 

 
Fig. 3. 6. Box-and-whisker plots for nonzero data : (a) snow height, (b) SWE, and (c) snow density over the two 
snow seasons of 2014–2016 using data from 30 snow courses located at elevations between 1300 and 2900 m a.s.l 
(n = 649). The box brackets represent 25% and 75% of the data (lower and upper boxes, respectively). The whiskers 
are at minimum and maximum values. 

 

 
Fig. 3.7. Box-and-whisker plots for nonzero data: (a) snow height, (b) SWE, and (c) snow density over two snow 
season 2014–2015 (n = 311) and (d) snow height, (e) SWE, and (f) snow density over snow season 2015–2016 (n 
= 371) distributed by region where CED (elevation range, 1650–2900 m), LAQ (1300 – 1850 m), and MZA (1350 
– 2350 m). The box brackets represent 25% and 75% of the data (lower and upper boxes, respectively). The 
whiskers are at minimum and maximum values. 
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3.4.3 Modeling snow bulk density 

Establishing the relationship between distributed snow depth and SWE is among the 

used approaches to quantify SWE from snow depth measurements (e.g., Jonas et al., 2009). 

Figure 3.8. shows the general relationship between SWE vs. HS (Fig. 3.8a) and density vs. HS 

(Fig. 3.8b). The higher densities (Fig. 8b) are typical with Mediterranean, warm maritime, and 

alpine regions (e.g., Sturm et al. 2010). In contrast, the observed scatter between snow density 

and HS (Fig. 8b) cannot be explained using linear estimators. While SWE can be estimated 

linearly from HS, it is recommended to model the bulk density from HS and then derive SWE 

(Sturm et al. 2010). Such an approach is justified by the fact that (1) depth varies over a range 

that is many times greater than that of bulk density and (2) because estimates derived from 

measured depths and modeled densities are usually very close to measured values of SWE. The 

snow density can be estimated from HS using a linear function. However, a better representation 

of snow density from snow depth measurement can be achieved using nonlinear function that 

include HS and account for the effect of snow aging (represented in terms of day of the year, 

DOY) (Sturm et al. 2010). Distinct classes for different climate regions are used to account, 

indirectly, for the effects of meteorological condition (i.e. temperature and wind) (Sturm et al., 

2010). The general equation is a nonlinear function asymptotic to the maximum seasonal 

density (Sturm et al. 2010): 

ℎ�,���� = � − 0 [ − � − ×ℎ�− ×���� ] + 0 

 

where ρmax and ρ0 are maximum and minimum bulk density, k1 and k2 are densification 

parameters, and hi is snow depth at the ith observation. ρmax, ρ0, k1, and k2 vary with climate 

region and the model parameters for the major snow class are found in Sturm et al. (2010) Table 

3.4. The equation was applied to the ensemble points, presented in Figure 3.8b, using snow 

depth and DOY as predictor variables and snow depth as predictand. The model parameters 

were ρmax = 0.553, ρ0 = 0.0345, k1 = 0.0000, and k2 = 0.0167 for the entire dataset with the 

model explaining 34% (coefficient of determination r2 = 0.344) of the snow density variability 

(Table 3.4). We believe that some of the observed differences between the current 

Mediterranean and the maritime and alpine regions in general can be attributed to the shorter 

snow season, warmer temperature, and higher densification rates, especially in the mid-

elevation zone (1300–1900 m a.s.l.). During February field visits, most of the observed snow 

at this mid-elevation zone was wetter and characterized by higher densities when compared to 

high-elevation regions (e.g., above 2200 m a.s.l., where the snow was usually dry). A better 

snow density fit was achieved using elevation bands with a better fit for elevation above 2200 
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m (Table 3.4). The model was not able to explain the variability in snow densities to snow 

elevation in low mountain regions (1300–1800 m a.s.l.) namely because this region is subject 

to rain-on-snow events and multiple instances of snow accumulation and melt during a single 

snow season.  

 

 
Fig. 3.8. (a) SWE vs. snow height (HS) and (b) density vs HS for all snow course data (observed during two 
snow seasons of 2014–2016 at elevations between 1300 and 2900 m a.s.l) (n = 649).  

 

Table 3.4. Model parameters by elevation bands for nonzero data. 

Elevation range (m a.s.l.) ρmax ρ0 k1 k2 r2 

2200–2900 (n = 136) 0.582 0.229 0.0004 0.0139 0.616 

1300–2900 (n = 353) 0.553 0.345 0.0000 0.0167 0.344 

 
 

3.4.4 Remote sensing snow cover data 

MODIS data indicate that snow storm events occurred between November and March. 

The snow cover area peaked between January and February. Maximum snow cover duration 

(SCD) was 160 days at higher altitudes (above 2700 m a.s.l.). SCD in medium-elevation 

mountain regions (2200–2600 m a.s.l.) ranged between 100 and 140 days per average year. The 

percent of snow-covered area (SCA) of the basins during winter months (December–March), 

for the years between 2011 and 2016, ranged between 28 and46% (Abou Ali), 36 and 66% 

(Ibrahim), and 27 and 50% (El Kelb) (Fig. 3.9). 
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Fig. 3.9. From left to right: time series of the snow cover area (SCA, percentage of the basin area), box plot of 
mean monthly SCA, and snow cover duration (SCD) for (from top to bottom) the Abou Ali, Ibrahim, and El Kelb 
River basins.  

3.5 Data availability 

All data described in this paper are made publicly available at Zenodo ((Fayad et al., 

2017). Included are comma-separated files (.csv) for AWSs listing the three stations and snow 

course observation, as well as a compressed file for processed daily MODIS SCA and SCD. 

3.6 Conclusions 

This paper presents the first dataset of snow and meteorological conditions in Mount 

Lebanon. The observations focused on three major basins of the coastal region of Lebanon and 

cover the snow seasons between 2011 and 2016 (for MZA AWS located at 2300 m a.s.l.). The 

observation network became fully operational in 2014. The network includes three automatic 

stations covering the range of snow-dominated areas between 1840 and 2834 m a.s.l. 

Distributed in situ HS and SWE measurements were also collected during two snow seasons 

(2014–2016) at 30 different snow courses located between 1300 and 2900 m a.s.l. MODIS snow 

products were processed to compute SCA and SCD at the basin scale. These observations are 

the result of an ongoing joint collaboration between IRD (France), CESBIO (France), 
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CNRS/NCRS (Lebanon), and USJ (Lebanon). The observatory is currently being funded for 2 

years (2016–2018) via grants from CNRS/NCRS, IRD and USJ. 

Additional unpublished data observations may also be available to complete this dataset, 

including meteorological data collected by the meteorological services at the department of 

civil aviation and the Lebanese Agricultural Research Institute (LARI), and river and spring 

discharges monitored by the Litani River Authority (LRA) as well as meteorological and 

hydrological data combined by the early warning system at the National Center for Remote 

Sensing (NCRS) and the observational datasets at the Centre d’Information et de Formation 

aux Métiers de l’Eau (CIFME) at the Ministry of Energy and Water (MOEW). 

We provided mean and seasonal snow properties over two snow seasons (2014–2016) 

and provided an example on how SWE and snow density can be obtained using only HS 

measurements. This time span is insufficient to characterize the temporal variability in the snow 

cover. However, it already provides consistent information on the snow spatial variability. The 

combination of the meteorological station, snow courses, and remote sensing data through the 

application of a snowpack model will enable a multi-year evaluation of the snow resources at 

the basin scales.  

The accurate representation of the spatial distribution of HS, SWE, and snow density is 

crucial for hydrological applications. In particular, we are using the AWS data for running a 

distributed energy balance model. The snow observations also hold potential for the 

characterization of the spatial distribution of snow across different gradients. SCA and SCD 

data can be used for model validation or as an operational tool for water resource management 

(e.g., Sproles et al. 2016). The AWS data may also support the validation and downscaling of 

regional climate models for various applications beyond the study of snow hydrology and the 

use of water resources.  
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Summary of chapter: “Modeling the daily distribution of SWE, snow depth, and SCA in 

Mount-Lebanon” 

This chapter is in preparation for submission to Water Resources Research.  

 

 

This chapter’s main objective is to address the spatial distribution of the SWE and the 

contribution of snowmelt to the hydrologic budget in the three major basins of Mount-Lebanon.  

We used the meteorological dataset presented in Chapter 3 as forcing data for the energy 

balance SnowModel (Liston and Elder, 2006) to simulate the spatial distribution of the SWE 

and snowmelt for the first time in three major catchments in coastal Lebanon. We ran the model 

at 30-min time step over snow seasons (2013-2016) with a spatial resolution of 100 m over a 

domain of 150x120 km but we focused on the windward slope of Mount Lebanon for the 

validation. The model was evaluated against continuous snow depth observations at the AWS, 

snow courses measurements, and MODIS snow cover area. 

Model derived daily SCA (based on modeled SWE) showed good correlation (r=0.87) 

against MODIS SCA (MOD10A1). The model was able to capture most of the variability in 

observed snow height (HS), snow density and SWE. However, the model had a tendency to 

underestimate snowmelt during spring season at higher elevations. This can be attributed to an 

overestimation in precipitation distribution and snow to rain partitioning.  

We found that SWE peaked between late-February early-March for the three basins over 

the simulation period. Over the three snow years between 2013 and 2013 the April 1st snow 

water equivalent (SWE) ranged between 173 mm and 421 mm w.e. (Abou Ali), 24-198 mm 

w.e. (Ibrahim), and 54-193 mm w.e. (Kelb) (average calculated for the snow dominated 

watersheds with elevations above 1200 m a.s.l.). The simulated snowmelt is concentrated 

between February and April but significant melt occurred throughout the entire snow season. 

The length of the snowmelt season can vary by more than one month depending on the year. 

These results are important for understanding the link between snowmelt and 

groundwater recharge in Mount-Lebanon and provide the basis for further studies over longer 

periods using climate reanalysis data and future climate scenarios. The need for better 

separation between rain and snowfall is important especially in mid-elevation regions and given 

the specificity of the warm Mediterranean climate and the projected warming, we believe this 

specific area of research warrants future investigations. Understanding the evolution of snow 

density and the potential impact of rain on snow is a potential field for future research. 
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4 MODELING THE DAILY DISTRIBUTION OF SWE, SNOW DEPTH, 

AND SCA IN MOUNT-LEBANON 

Abstract 

The seasonal snowpack is an essential component of the national water budget in 
Lebanon. In particular, snowmelt from the high-elevation plateau of Mount-Lebanon recharges 
a system of karst aquifers, which supply key water resources to the coastal plain of Lebanon 
where most of the Lebanese population lives. To date, the estimation of the snow water 
equivalent (SWE) and snow melt was limited by the lack of meteorological and snow 
observations in the high-elevation mountain areas. In this study, we used new measurements 
from three automatic weather stations (AWS) located in the snow-dominated regions of Mount-
Lebanon (elevation range 1840-2834 m a.s.l.) to compute the spatial distribution of the SWE 
and snowmelt for the first time in three major basins of the coastal Lebanon. We ran a spatially-
distributed snowpack evolution model at a 100 m resolution grid forced by 30-min 
meteorological data over three snow seasons (2013-2016). The model was evaluated against 
continuous snow depth observations at the AWS, snow courses measurements, and MODIS 
snow cover area. Results showed the model ability to capture most of the variability in observed 
snow height (HS), snow density and SWE. However, the model had a tendency to underestimate 
snowmelt during spring season at higher elevations, and this was attributed to an overestimation 
in precipitation distribution and snow to rain partitioning. SWE peaked between late-February 
early-March for the three basins over the simulation period. Over the three snow years between 
2013 and 2013 the April 1st snow water equivalent (SWE) ranged between 173 mm and 421 
mm w.e. (Abou Ali), 24-198 mm w.e. (Ibrahim), 54-193 mm w.e. (Kelb) (average calculated 
for the snow dominated watersheds with elevation above 1200 m a.s.l.). The simulated 
snowmelt is concentrated between February and April but significant melt occurred throughout 
the entire snow season. The length of the snowmelt season can vary by more than one month 
depending on the year. These results are important for understanding the link between snowmelt 
and groundwater recharge in Mount-Lebanon and provide the basis for further studies over 
longer periods using climate reanalysis data and future climate scenarios.  
 
Keywords: Snow; Snow water equivalent; Snowmelt; Snow hydrology; Lebanon; 
Mediterranean climate 
 

4.1 Introduction 

The Mount-Lebanon mountains is a major water tower for Lebanon. The hydrology of 

the snow dominated basins in Mount-Lebanon are influenced by the Mediterranean climate 

which limits precipitation to the winter season (December- March). Snow, which usually falls 

above 1200 m a.s.l., play a key role in defining the availability of water resources by releasing 

the stored water during dry months (April-June). Snowmelt is the main contributor to the karst 

groundwater recharge (Margane et al., 2013; UNDP, 2014) and help in sustaining spring flow 

during dry months (April to August with flow peaks in May-June).   

 Despite the importance snowpack to the hydrologic budget in Lebanon (Shaban et al., 

2004; Corbane et al., 2005; Aouad-Rizk et al., 2005; Bakalowicz et al., 2007; Somma et al., 
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2014; Mhawej et al., 2014; Koeniger and Margane, 2014; Telesca et al., 2014), little is known 

on the spatio-temporal variability of snow water equivalent (SWE) nor on the timing and release 

of snow water into the hydrologic system. So far, most estimates are either available at the 

experimental scale (point scale and small catchments) (e.g., Aouad-Rizk et al., 2005; Hreiche 

et al., 2007) or spatially derived as monthly or yearly averages (Bernier et al., 2003; Mhawej et 

al., 2014; Telesca et al., 2014; UNDP, 2014).  

The annual SWE over the past decade was assessed using index based models 

combining average snow density observations with remote sensing SCA (e.g., Shaban et al., 

2004; Mhawej et al., 2014; Telesca et al., 2014). The average annual SWE, from multiple 

studies conducted over different time frames between 2000 and 2012, was estimated to range 

between 1.7 and 2.8 billion m3 yr-1 for both Mount- and Anti Lebanon (Mhawej et al., 2014; 

UNDP, 2014). The average annual SWE was estimated to 2.42 billion m3 yr-1 (2002-2011) 

(Mhawej et al., 2014). Early annual SWE estimates over mount-Lebanon for the water year 

2000-2001 was estimated to 1.1 billion m3 yr-1 (425 mm equivalent) (Shaban et al., 2004). 

Meanwhile, the long-term average over Mount-Lebanon was estimated to 0.77 billion m3 yr-1 

(water years between 2000 and 2013) (Telesca et al., 2014).  

The temporal viability of SWE was addressed using degree day methods and energy 

balance models run at the point scale (e.g., Aouad-Rizk et al., 2005) or by coupling hydrological 

models with a DDM module to investigate runoff (e.g., Hreiche et al., 2007) and groundwater 

recharge (e.g., Koeniger and Margane, 2014) in snow-dominated basins. hese experimental 

studies highlighted the need to account for the variation of SWE and snow density along with 

elevation (Aouad-Rizk et al., 2005). One of main limitation highlighted by these studies was 

the lack of meteorological and snow data needed for model forcing and validation.  

Snowmelt contribution to surface runoff in the Mount-Lebanon was estimated to 30% 

based on sparse in situ SWE samples (2000-2012) (Telesca et al., 2014). Meanwhile, the snow 

contribution to groundwater recharge was estimated at 75% in the snow dominated regions 

(above 1600 m a.s.l.) of the El Kelb Basin (Fig 4.1.) (Margane et al., 2013; Königer and 

Margane, 2014). The snowmelt contribution from high elevation regions (above 1800 m a.s.l.) 

was estimated to 56% of the major spring discharge at the Jeita spring (outlet at 60 m a.s.l.) 

which is the major spring feeding Beirut the capital (Jeita contributes to 75% of the total potable 

water supplied for Beirut) (Margane et al., 2013). One of the major aspect related to snowmelt-

hydrology is the fast spring response to precipitation. In the snow-dominated basin El Kelb the 

spring response can be seen within 24-48h after precipitation events and usually depends on the 
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distribution and type of precipitation (rainfall or snowfall) (Margane et al., 2013; Koeniger and 

Margane, 2014).  

The and snowmelt contribution to surface runoff and groundwater recharge remains 

poorly known (UNDP, 2014). The deficiency in the estimation of spatio-temporal SWE can be 

attributed to the scarcity of snow measurements and the lack of meteorological observations in 

mountainous areas; and the limited number of ground observations used to validate model 

estimates. These deficiencies in the proper representation of the spatial-temporal distribution of 

SWE had thus resulted in that the link between snowmelt and other hydrological processes 

remains largely unknown.  

These data allow us to spatially simulate the temporal variability of SWE and snowmelt 

in three major snow dominated basins located in the windward side of Mount-Lebanon (total 

area 1092 km2; elevation range 0-3080 m a.s.l.) (Fig. 4.1). For that purpose, we used the 

distributed snow energy model SnowModel (Liston and Elder, 2006a, 2006b). The model had 

been used for modeling snow in different climate regions (e.g. semi-arid, alpine, and arctic) 

(e.g., Hiemstra et al. 2006; Sturm and Wagner 2010; Gascoin et al. 2013; Mernild et al. 2016).  

The model is run over a domain area extending over the three snow dominated basins 

of Mount Lebanon (Fig. 4.1). As model forcing we use 30-min meteorological observations 

from the three automatic weather stations over the period 2013-2016. SnowModel is used to (1) 

generate spatially distributed meteorological forcing data over the study domain (MicroMet 

submodel, Liston and Elder, 2006a, 2006b); (2) solve the snowpack energy balance (EnBal 

submodel, Liston 1995; Liston et al. 1999); (3) simulate the snow depth evolution (SnowPack-

ML, Liston and Mernild, 2012); and (4) simulate the wind effects on snow distribution 

(SnowTran-3D, Liston and Sturm, 1998, 2002; Liston et al., 2007).  

The model outputs are validated against (1) daily averages of observed albedo and HS 

at the three AWS, (2) bi-weekly snow course measurements of the SWE and snow density, and 

(3) daily maps of the snow cover extent from MODIS. The model outputs are then used to 

quantify the daily evolution of the SWE and snowmelt across the three snow seasons in the 

three study catchments.  

The study area is described in section 4.2. The methodology and data used are described 

in section 4.3. Section 4.4 shows the results and discusses model uncertainty. The conclusions 

are presented in section 4.5. 
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4.2 Study area 

The Mount-Lebanon (35.98E, 34.14N) and Anti-Lebanon Mountains (36.25E, 33.8N) 

are located on the eastern part of the Mediterranean Sea and extend parallel to the coastline over 

145 and 150 km respectively (Fig. 4.1). The mountains are classified mid- to high-altitude 

ranges with rugged topography and high plateaus (based on a classification adopted after 

Viviroli et al. (2007). Elevation ranges between 500 and 3000 m msl for Mount-Lebanon which 

peaks at Qurnet El Sawda (3088 m a.s.l.) and 500 to 2500 for Anti-Lebanon (peaks at Mount 

Hermon, 2814 m a.s.l.). The land cover is mainly bare rocks and soils, low scrublands, and 

speargrass.  

The climate is typical Mediterranean with precipitation occurring between mid-

November to late April and peaks during winter season (January to March). The mountain 

regions (above 1200 m a.s.l.) receive between 50 to 67% of their total annual precipitation as 

snow (Shaban et al., 2004; Aouad-Rizk et al., 2005). Annual average precipitation for four 

hydrological years between 2008 and 2012 was estimated at 7.41 billion m3 (946 mm yr-1 

equivalent) (± 1222 standard deviation, equivalent to ±143 mm yr-1). The estimated snowpack 

volume for the same time period, based on monthly averages, was 2.3 billion m3 yr-1 (294 mm 

yr-1) (±0.294 standard deviation, equivalent to 29 mm yr-1) the monthly snowfall to 

precipitation ratio (S/P) was estimated at 0.31 (±0.24) (UNDP, 2014).   

 
Fig. 4.1. (a) Mount- and Anti-Lebanon mountains (b) topography with the same extent as the simulation domain 
(200-m contour interval) with snowline shown in blue and the location of the three automatic weather stations.  
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4.3 Methods 

4.3.1 Model description 

The SnowModel (Liston and Elder, 2006a, 2006b) model is a spatially distributed snow 

model that account for meteorological forcing, topography and vegetation cover. SnowModel 

combines six submodels: MicroMet (Liston and Elder, 2006a, 2006b) is a spatially distributed 

meteorological forcing conditions from AWS observations. EnBal is a distributed energy 

balance model which simulates energy and water fluxes from the MicroMet outputs (Liston 

1995; Liston et al. 1999); SnowPack simulates snow depth, snow desnity, and snow water 

equivalent (Liston and Mernild, 2012).  SnowTran-3D simulates blowing snow and snow 

redistribution by wind (Liston and Sturm 1998, 2002; Liston et al. 2007), SnowAssim (Liston 

and Hiemstra, 2008) assimilates field and remote sensing data (not used in this study), and 

Hydrofow is a runoff routing model (Liston and Mernild, 2012) (not used in this study). 

SnowModel requires temporally varying meteorological forcing data (at least surface air 

temperature, relative humidity, wind speed, wind direction, and snow precipitation) and 

spatially distributed grids of topography and land-cover types (Liston and Elder, 2006a). The 

model can be configured to run at different temporal (sub-hourly-1day) and spatial scales (meter 

to multi-kilometer grids). The SnowModel sub-models are run simultaneously to generate 

spatially distribute meteorological forcing grids (MicroMet) over the entire domain, the model 

then solves the mass balance (EnBal) whith the option of accounting for snow transports 

(SnowTran-3D) at each time step. Snowpack then simulates HS and SWE at each grid cell. A 

complete description of SnowModel and sub-models can be found in Liston and Elder (2006a, 

2006b).  

4.3.2 Simulation domain  

The model simulation domain includes both mountain regions and lowland areas (Fig. 

4.1a). The domain covered an area of 120 x 150 km (180,000 km2) centered at x = 790,000 and 

y = 3,755,000 (UTM Zone 36N) with 100-meter pixel resolution. Elevation ranged between 0 

m mean seal level to 3050 m a.s.l. (mean elevation of 998 ± 597 m a.s.l) (Fig. 4.1b). Model 

forcing is made from three AWS located on the windward side of Mount-Lebanon (Fig. 4.1b). 

The three automatic weather stations are located at 2296 (MZA), 1830 (LAQ), and 2834 (CED) 

m a.s.l.. Model validation was evaluated at three snow dominated basins located within the 

same domain of the weather stations (Fig 4.1b; Table 4.1). The three AWS are all located above 

the winter snowline (approximately 1550 m a.s.l.) (Fig. 4.1b). The LAQ station (1830 m a.s.l.) 
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is located in the Ibrahim Basin in a relatively flat plain area with fruit trees, bare rocks, and 

sparse short-grasslands. The Mzar (MZA) station (2296 m a.s.l.) is located in the El Keleb 

Basin, in a rugged terrain mountainous region at one of the medium elevation peaks (maximum 

elevation in the area is ~2600 m a.s.l.) with dominant bare soils and some sparse speargrass 

grassland. The Cedars (CED) AWS (2834 m a.s.l.) is located Abou Ali Bain, at a higher plateau 

with dominant bare rocks (Fig. 4.1., Table 4.1). The validation domain covers a total area of 

1092 km2 (elevation range 0-3088 m a.s.l.. 

The elevation grid for the simulation domain was obtained from ASTER GDM V2 

(reference). The original ASTER 1 acrsecond horizontal (30 meter at the equator) with a vertical 

accuracy of 10-25 meters (RMSE) dataset was rescaled into 100 m horizontal grid (Fig. 4.1b). 

The land cover distribution grid was obtained by aggregating the land cover land use (LULC) 

map of Lebanon produced at a spatial resolution of 25 m (CNRS, 2015) into 100 m using 

maximum pixel count. Land classes were aggregated into 9 classes after Liston and Elder 

(2006a): Bare soils and rocks (59%), Shrubland/Playa (12%), Ocean/Sea (8%), Crops (7%), 

Grassland (4%), Clear-cut conifer (4%), Urban (3%), Coniferous, Deciduous and mixed forests 

(<3%), and Water (<1%). The different land classes are needed to account for the snow holding 

capacities and LAI (see Liston and Elder, 2006a).  

 

Table 4.1. Attributes of the three snow-dominated basins in Mount-Lebanon described in this study.  

asina 

  
Area (km2) Elevation range 

(average)b, m a.s.l. 
Dominant land coverc 
(%) 

AWS Elevation, m 
a.s.l. (year 

installed)d 

Snow courses 
count (elevation 

rangee 
1 513 0-3088 (1202) Clear grassland (20%) 2834 (2013) 9 (1650-2900) 

2 323 0-2681 (1547) Clear grassland (30%) 1840 (2014) 6 (1300-1850) 

3 256 0-2619 (1381) Clear grassland (16%) 2296 (2011) 15 (1300-2300) 

aBasins are Abouali (1), Ibrahim (2), and Kelb (3) (Fig. 4.1) 
bValues are derived for the national 10 meter DEM (NCRS) 
cSource: Landuse land cover map of Lebanon (NCRS, 2015) 
dSource: Institut de recherche pour le développement (IRD)  
eSnow courses observations were conducted between December and May over two snow years (2014-2016) 
(Fayad et al., 2017b). 
 

4.3.3 Meteorological forcing 

The model was forced by 6 meteorological variables including, precipitation (not 

observed at CED AWS), temperature, relative humidity, incoming solar radiation, wind speed 

and direction, and atmospheric pressure, collected at three AWS. No observations were 
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available for LAQ AWS during snow season (2013-2014). Model simulations were run at 30-

min time step for three snow seasons between 2013 and 2016 (1 November to 30 June).    

Fig. 4.2 illustrates the major climate and atmospheric forcing variables at the three 

AWS. Highlighted are air temperatures (temperature above 0°C contributes to snowmelt) and 

precipitation (temperature and precipitation are the two major drivers for snow accumulation 

and melt in Mediterranean like regions (e.g., see Chapter 2; Fayad et al. 2017a; Molotch et al., 

2014). Wind speeds are another important factor since greater than 5 m s-1 contributes to snow 

transport (e.g., Pomeroy and Burn 2001; Mernild et al., 2006). Incoming shortwave solar 

radiation (not shown) are also important as they are one of the major drivers for snowmelt (e.g., 

see Chapter 2; Molotch et al. 2014).  

The observed average seasonal (average 30-min from 01 November to 30 June) surface 

air temperature for the three snow seasons (2013-2016) was 6.93, 4.26, -1.36 °C for LAQ, 

MZA, and CED respectively. The months with temperature below zero varies by station 

(different elevations) and the time of year. The coldest months were January and February (Fig. 

4.2). In LAQ and MZA (elevation 1840-2296 m) it is common to have temperature above 5°C 

during winter season. By early April temperature is almost always positive. CED temperature 

(elevation 2834 m) is negative most of the winter and above zero temperature are only observed 

starting April. There is a strong positive correlation in the 30-min surface air temperature 

records from the three stations (r 92.7-97.9). Such correlation, indicates strong orographic 

effects and can be used for calculating monthly temperature lapse as model parameterization 

input for MicroMet. Total annual precipitation ranged between 546 and 1025 mm during 2014-

2015 and 1018 to 1288 mm for 2015-2016 representing precipitation data recorder at stations 

LAQ and MZA respectively (1840-2294 m a.s.l.).   

Average wind speed for the three seasons (2013-2016) were 2.17 m s-1 (range 2.25, 

2.09), 4.44 (4.76-4.11), and 4.40 (4.31, 4.49) m s-1 for LAQ (2014-2016), MZA, and CED 

respectively (Fig 2). Dominant wind directions were N to E for LAQ, S and SW for MZA, and 

S to NW for CED (Not shown). Strong winds typically do not exceed the 15 m s-1 barrier (LAQ, 

CED) and 20 m s-1 (MZA) except during storm events were maximum wind gusts reached up 

to 40.1 m s-1 (2014-2016). Wind effects on snow erosion is more noticeable in MZA (notes 

from field visits) due to the combined effect of topography and higher wind velocities. Seasonal 

incoming solar shortwave radiation averages (30-min averages) ranged between 156 and 219 

W m-2 for the three stations (2014-2016).   

These thee years when compared to the long time average at Beirut AWS (operated by 

the national civil aviation service) (20 m a.s.l.) for the time period (1930-2016) suggest a very 
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dry year (2013-2014), average year (2014-2015), and an average warm year (2015-2016) (Table 

4.2). The snow starts to fall by mid-November in altitudes above 2700 m and snow patches in 

sheltered places remain till end of August in regions above 2900 m a.s.l.. Snowpack season 

starts by mid-late December and heavy snow usually fall between late November and late 

March. Snowmelt starts by early to mid-March in lower mountain regions 1600-2000 m a.s.l. 

and by late March to late April in medium to high altitude regions (2200-2800 m a.s.l.). 

 
Table 4.2. Snow season (November –June) median air temperature, precipitation, solar radiation, wind speed, 
and humidity calculated from half-hourly data (2013-2016). Long-term averages (1930-2016) for the same 
months are provided for the Beirut (BEY) station (24 m a.s.l.).  

Year (Nov-
June) 

Air temperature average (°C yr-
1) 

Precipitation total (cm yr-1) Humidity (%) 

 BE
Y 

LAQ† MZA CED‡ BEY LAQ† MZA CED BEY LAQ† MZA CED 

2013-2014  NA     NA  NA  NA   
2014-2015  5.78 3.79 -2.62  54.6* 101.8 NA  68.9 66.18 79.4 
2015-2016  7.25 4.14 -0.36  102.5 130 NA  60.2 56.9 63.0 

† LAQ observations for 2013-2014 are not available ‡ CED AWS data between April 24th and June 30th 2015 
were removed due to station rotation.  

 
Fig. 4.2. Sub-hourly climate forcing variables of precipitation and surface air temperature at the three AWS for 
the winter seasons (1 November to 30 June) (2014-2016).   
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4.3.4 Evaluation datasets  

The validation dataset includes sub-hourly snow height (HS) and snow albedo collected 

at the three AWS (2013-2016), bi-weekly snow course measurement of snow density, SWE, 

and HS collected over two winter seasons (2014-2016) at 30 different snow courses (elevation 

range 1300-2900 m a.s.l.), and daily MODIS snow cover area (2013-2016) observations. 

Observed snow height (HS) was recorded at 30 min interval for LAQ (2014 to 2016) and MZA 

and CED (2013-2016) and we computed the daily snow albedo by integrating 30-min incoming 

and reflected shortwave radiation (Table 4.2). The snow course observations are used in order 

to verify the model outputs of HS, SWE and snow density in three basins with different 

elevation ranges. We used the MODIS snow product MOD10A1 to generate daily cloud-free 

maps of the snow presence and absence at 500 m resolution. All these data are fully described 

in Chapter 3 (Fayad et al., 2017b) and are available as open data in a public repository (Fayad 

et al. 2017c).   

4.3.5 Model configuration (Model setup/ Model simulation) 

SnowModel was run using three configurations: (1) The model was first run using 

default configuration and standard lapse rates for temperature, precipitation and humidity and 

standard snow albedo ranges (for dry and melting snow albedo) and snow density parameter 

for Snowtrans-3D initialization (Liston and Elder 2006a, 2006b) (Tabel 4.3). The second run 

(2) a modified model configuration by setting the precipitation lapse rate to zero in an attempt 

to remove the dependency of precipitation to elevation. This was based on the lack of distributed 

rain and snow gauges in the study area and the plateau geomorphology of Mount-Lebanon. For 

the third configuration (3) we used a modified model configuration based on different 

precipitation partitioning between rain and snow. The SnowModel is configured to separate 

between snow and rain using the air temperature threshold of +2.0 after Auer (1974). We set 

the temperature threshold for snow at zero (Tsnow = 0) after (Harpold et al. 2017) (Table 4.3). 

Model runs were validated against AWS observations, snow course measurements and MODSI 

SCA. 
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Table 4.3. List of user-defined variables used in model parameterization and simulations (2013-2016) (see Liston 
and Elder, (2006a, 2006b) for a detailed description for parameter definitions). 

Variable Value 
(Range) 

  Description 

 Run 1 
(Default) 

Run 2 
(Optimized) 

Run 3 
(Optimized) 

 

Snow melting albedo 0.6 0.6 0.6 Albedo for snow melting (clearing) (unitless) 
Albedo (dry snow) 0.8 0.8 0.8 Albedo for dry snow (non melting) (unitless) 
Tlapse 5.5 

4.7 
4.4 
5.9 
7.1 
7.8 
8.1 
8.2 

5.5 
4.7 
4.4 
5.9 
7.1 
7.8 
8.1 
8.2 

5.5 
4.7 
4.4 
5.9 
7.1 
7.8 
8.1 
8.2 

Temperature monthly lapse Nov-June (deg C km-1); 
Default run 1 are based on (Liston and Elder 2006a); 
Optimized run 2 are medians (2014-2016) 

Plapse Default Zero Zero Precipitation adjustment factor (km-1) 
Separation between 
rain and snow 

Default (+2 
C°) 

Default (+2 
C°) 

Optimized (0 
C°) 

Default: based on Auer (1974)  
Optimized: modified after Harpold et al. (2017) 

Snow density 
(ro_snow)  

300 300 300 Snow density (kg m-3) 

Snow layer 1 1 1 Number of snow layer; 1 = Single layer snow 
Time step 30 30 30 Sub-hourly time step 
Vegetation  11   11   11 Land use classes (unitless) based on Liston and Elder 

(2006). 
Elevation  0-3062 0-3062 0-3062  Grid (meter a.s.l.), same as MODIS Grid 
Grid resolution (dx, 
dy) 

100 100 100 Grid (cell size in meter), same as MODIS Grid 

Model and sub-
routines 

Activated Activated Activated  

SnowTran-3D  Yes Yes Yes Simulates gridded meteorological forcing 
EnBal Yes Yes Yes Simulate snow energy balance 
SnowPack Yes Yes Yes Simulate snow depth  
SnowTran-3D Yes Yes Yes Simulates wind-effects on snow distribution 

 

 

4.4 Results and discussion  

4.4.1 Model validation  

4.4.1.1 Simulated vs. observed AWS snow height (HS) 

Median snow height recorded for snow seasons 2014-2016 were 70 and 66 cm (std dev 

37, 36) at LAQ, 25 and 30 cm (std dev 37-23) at MZA, and 114 and 99 cm (std dev 56, 44) at 

CED. We extracted the simulated snow height for three pixels representing the location of the 

three AWS (i.e. CED, LAQ, and MZA) (Table 4.1). The correlation between daily modeled and 

observed HS at the AWS was good ranged between 0.41 for MZA and 0.72 for LAQ and 0.73 

for CED (Fig. 4.3). The bias was 0.48 for MZA, -0.06 for LAQ and 0.46 for CED. We noted 



121 

 

good agreement for the CED and LAW stations which are in relatively flat mountain regions. 

The underestimated HS values for snow season (2014-2015) in LAQ may be attributed to the 

underestimated snowfall in the station for this year. The model overestimation at MZA is 

attributed to the topography which result in high snow erosion with few tens of meters near the 

station. HS at MZA were not representative for the melting season due to blowing wind 

conditions and rough topography which resulted in the removal of snow from the station 

domain. The combined effect of wind and topography resulted in that the MZA AWS was 

indicating lower HS observations and this is due to the high snow variability in this region as 

can be seen in Fig. 4.4. The model overestimation in CED may be attributed to the lack of 

precipitation from the AWS (2834 m a.s.l.). With the start of snowfall observation in CED 

starting snow-season (2016-2017) future simulation may help in addressing this issue.  

 

4.4.1.2 Simulated vs. snow course observed snow density and SWE 

We compared the modeled snow density and SWE against observed snow course data 

for the three snow courses located near the three AWS stations for two snow seasons (01 

November –30 June) between 2014-2016) (Fig. 4.5 and 4.6 respectively). The model showed 

good potentials in capturing snow density at the different elevations (range 1850-2850 m a.s.l.) 

(Fig. 4.5a). Better snow density estimates were reported at the CED snow course (elevation 

2850 m a.s.l.). Good fit between simulated and observed snow densities were found during 

snow season 2015-2016. The model underestimate of snow densities at the beginning of season 

2015-2016 (Fig. 4.5a) and may be attributed to the rain on snow event which resulted the high 

densification of snow at higher elevations (1700-2400 a.s.l.). The model also showed good 

potentials in capturing SWE (Fig. 4.5b) with a tendency to overestimate SWE at the end of 

season. The overestimation of SWE at LAQ during winter 2014-215 may be attributed to 

snowfall undercatch at the station.  

Snow density observations over the time period (2014-2016) showed that maximum 

snow densification can be reached within 2-3 weeks following the major first snow events and 

1-2 weeks following secondary and tertiary snowfall events. The snow density range for the 

three basins is presented in Fig. (4.6a).   
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Fig. 4.3. Comparison between observed and simulated HS at the three stations - snow seasons (01 November –30 
June) (2013-2016).   

 

 
Fig. 4.4. Snow redistribution following major snowfall event at 2310 m a.s.l. and 200 m away from the MZA 
AWS (located at 50 m to the left of the image). Image taken on January 15th, 2016 at 2310 m a.s.l. Snow depth 
readings at the station was 7.5 cm. 

MZA- 

AWS 
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Fig. 4.5. Comparison between observed and simulated snow density collected at the three snow courses located 
near the three AWS stations - snow seasons (01 November –30 June) (2014-2016).   

 
Fig. 4.6. Boxplots comparison between observed and simulated (a) snow density and (b) SWE (m w.e.) 
variability by basin representing the different elevation ranges in Mount-Lebanon - snow seasons (01 November 
–30 June) (2013-2016).   

 

4.4.1.3 Modeled vs. MODIS SCA 

The model was validated against daily MODIS SCA over the large domain area 

(120x150 km) (Fig. 4.1). Since SnowModel does not simulate SCA we used the modeled SWE 

with a detection threshold equal to 40mm water equivalent (w.e.) (Gascoin et al., 2015). The 

model derived SCA dataset was then resampled from the 100-m grid size to match the MODIS 

500 m grid using a cubic interpolation. We compared the results over all model runs (Table 

4.2). The model had an overall tendency to overestimate SCA especially over the Anti-Lebanon 

area (which is not covered by AWS) (Fig. 4.7). The correlation between MODIS and modeled 

SCA ranged between 0.83-0.9 under model runs. The optimized model configuration which is 

used for the analysis of SWE and snowmelt was 0.871 (Fig. 4.7c). When using single station 

(i.e. MZA) for model forcing the estimate correlation dropped to 0.79 but was still within good 

agreement. The model showed better correlation when compared to the MODIS SCA at the 
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basin scale (Fig. 4.8). This higher correlation is expected since the model was forced which 

meteorological data form the 3 AWS located within these basins. The good fit between the 

modeled and observed SCA confirms the model ability to simulate SCA with high accuracy 

when the climatological forcing are within the study domain. We noted a slight model tendency 

to overestimate SCA at higher-elevations, this can be seen in Abou Ali (elevation range 0-3088 

m a.s.l.) (Fig. 4.8). We think this is linked to the lack of precipitation data at the CED stations 

(2834 m a.s.l.). The overestimation in the Ibrahim and El Kelb during snow season 2015-2016 

may be attributed to the rain on snow events which resulted in the disappeared of snow at lower 

elevations (mostly below 1600 m a.s.l.) and the high densification of snow at higher elevations 

(1700-2400 a.s.l.). 

 

 

Fig. 4.7. Comparison between daily MODIS and model derived snow cover day (SCD) over the snow seasons 
(01 November –30 June) (2013-2016); where (a) total MODIS SCD, (b) average model derived SCD, and (c) 
scatter plot between MODIS and modeled SCD. 

 

Fig. 4.8. Comparison between daily MODIS and model derived SCA over the three basins - snow seasons (01 
November –30 June) (2013-2016).   

 



125 

 

4.4.2 SWE estimation and snowmelt by basin 

Snow water equivalent monthly medians for the three basin is presented in Fig. 4.6b for 

the two snow seasons 2014-2016 along with observed snow courses data. The maximum 

observed SWE storage based on snow course data was during February. The modeled results 

reveal a higher difference which is expected given the model was run at daily time step and has 

a better representation of all snow cover within the catchment area. Fig. 4.9 portrays the spatial 

distribution of the April 1st snow in the three basins. Fig 4.10. Illustrates the average daily SWE 

evolution in the three Basins. Here we can see that the SWE peaked during mid-late February 

in the El Kelb and the Ibrahim basin over the snow seasons between 2014 and 2016. The SWE 

is more consistent in the Abou Ali basin where snow melts at lower rates over the time period 

between late-February and early-April. The snow year 2013-2014 was very dry and this can be 

seen with the relatively low SWE when compared to snow seasons 2014-2016 (Fig. 4.10). 

 
Fig. 4.9. Spatial distribution of April 1st SWE for the three major basins in Mount-Lebanon averaged over three 
snow seasons (01 November –30 June) (2013-2016).   
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The estimated April 1st SWE for the snow dominated regions (above 1200 m) for the 

three basins (2013-2016) were 173 -421 mm w.e. (Abou Ali), 24-198 mm w.e. (Ibrahim), and 

54-193 mm w.e. (Kelb) (Fig. 4.10). The maximum SWE for was observed between 11 and 23 

February for the snow seasons (2014-2016). Maximum SWE for the three basins over the three 

seasons (2013-2016) ranged between 181 and 451 mm w.e. (Abou Ali), 94-429 mm w.e. 

(Ibrahim), and 96-370 mm w.e. (Kelb) (Fig 4.10). 

 

 
Fig. 4.10. Temporal evolution of daily SWE (m w.e.) at the snow dominated regions (elevation > 1200 m a.s.l.) 
of the three basin for the snow seasons between 2013 and 2016 (01 November –30 June).   

 

4.5  Conclusions 

This study represents the first simulation of the daily SWE on Mount-Lebanon (2013-

2016). This was made possible with the availability of sub-hourly meteorological AWS 

observations in the high elevation areas (1840-2834 m a.s.l.). The results indicate that over the 

simulation period 2013-2016 the maximum SWE is reached between February and March and 

can change significantly from year to year in the three major snow basins in Mount-Lebanon 
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(i.e. Abou Ali, Ibrahim, El Kelb). The snowmelt occurred from Mid-February to Mid-April and 

Early-May in the basins Ibrahim and El Kelb.    

Despite the importance of these findings it is good to note that the stations used have a 

short record to study long term snowmelt dynamics. Future work could focus on the application 

of reanalysis data (e.g. Grouillet et al., 2016) to extend the study period. Applying hydrological 

models with snow module could be used to assess water resources availability (e.g., Hublart et 

al., 2016). Longer SWE time series would also allow the coupling with a hydrogeological model 

of the karst to improve our knowledge on the snowpack dynamics in the regional water cycle. 
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5 CONCLUSION AND FUTURE WORK 

 
This work is motivated by the importance of snowmelt as an essential source of surface 

water and groundwater recharge in Lebanon. This thesis made use of an integrated approach by 

combining field measurements, automatic weather station observations, and energy balance 

modeling in order to understand the evolution of SWE and snowmelt in Mount-Lebanon. 

Solving the snow balance is the first step towards understanding the link between snowpack 

and groundwater recharge in Lebanon. In this thesis we tried to address the different science 

questions by (1) reviewing the major drivers controlling snow hydrologic processes in 

Mediterranean-like mountain regions (2) by quantitatively investigating the snowpack 

properties in the field, and (3) computing melt in three major basins of the windward snow 

dominated regions of Mount-Lebanon. 

 

5.1 Conclusion 

In chapter 2 we tried to address the first question related to “What are the major 

meteorological and physiographic factors controlling the snow processes in Mediterranean like 

regions and what is the fate of snowmelt in the hydrologic system of these regions?” we found 

that the snow distribution in Mediterranean mountain are characterized with high densification 

rates and intra-annual variability. Such variability is good as it allows the estimation of snow 

density and SWE with confidence using few years of HS and SWE measurements. Snow cover 

persistence is mainly controlled by precipitation and elevation and snowmelt is driven by 

radiative fluxes and heat flux contribution tend to increase during the melt season and during 

heat waves and rain-on-snow events. Despite snow importance in Mediterranean like mountain 

regions the proper investigation of snow dynamics and SWE is still hindered by the lack 

consistent ground observation especially in high-elevation regions. The spatial representation 

of SCA and SCD can be well achieved using remotely sensed snow data. Meanwhile the 

reconstruction of the SWE from SCA and melt models provides reasonable information that is 

suitable for hydrological applications. There is still a need to further collect snow data and finer 

and more accurate climate forcing dataset in Mediterranean snow-dominated with the notable 

exception of the Sierra Nevada in the USA, where the NASA’s Airborne Snow Observatory 

now provides routinely SWE maps every two weeks in key watersheds. Finally, while the 

theory on the snowpack energy and mass balance is now well established the connections 
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between the snowpack and the water pathways in the critical zone (soil, groundwater) require 

further investigation. 

 

In Chapter 3 we tried in answer the second question “What is the spatio-temporal 

variability of snow depth, snow density, and SWE at different elevation range (1300-2900 m 

a.s.l.), in the snow dominated regions of Mount-Lebanon?” In this chapter we presented a snow 

meteorological dataset for the first time in Lebanon (2011-2016). The dataset builds from 

previous joint efforts of CESBIO/CNRS-L/USJ and includes observations from three high 

elevation automatic weather stations (1840-2834 m a.s.l.). It was completed by snow course 

measurements conducted during this thesis, and post-processed MODIS snow products. The 

meteorological and snow observations include 30-min data of precipitation, temperature, 

humidity, wind speed and direction, shortwave solar radiation, snow depth, and snow albedo 

spanning over snow seasons between 2011 and 2016 (November-June). Snow course 

measurements includes SWE, HS, and snow density conducted over 30 different snow courses 

(1300-2900 m a.s.l.) and were collected over two snow seasons (2014-2016) with an average 

revisit time of 11.4 days. We found that snow is characterized with large snow height and SWE 

variances and a high density values. This suggests the importance of conducting field 

measurements with a bi-weekly revisit time. The variability of snow across different elevation 

ranges is also important given the different forcing variables affecting snow especially at mid-

elevation altitudes. We also found that the relationship between snow height and snow density 

is specific to warm climate and may be classified as warm Mediterranean. Finally, this dataset 

was made to be fully compatible with the application of distributed energy-balance snowpack 

models. The dataset was deposited in the public domain to foster its application beyond this 

work.   

 

In Chapter 4 we tried to quantify “To which extent can we accurately estimate the spatial 

distribution of the SWE at the daily timestep? and what is the contribution of snowmelt to the 

hydrologic budget in the three major basins of Mount-Lebanon?”. We used the meteorological 

dataset presented in Chapter 3 as forcing for the energy balance SnowModel (Liston and Elder, 

2006). The model was validated using the snow observations from AWS, snow course data and 

MODIS SCA. The model was run at 30-min time step over snow seasons (2013-2016) with a 

spatial resolution of 100 m over a domain of 150x120 km but we focused on the windward 

slope of Mount Lebanon for the validation. Model derived daily SCA (based on modeled SWE) 

showed good correlation (r=0.87) against MODIS SCA (MOD10A1). The correlation between 
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modeled HS and AWS HS showed good correlation (range for 3 stations) with an bias of 

!cm.day). The validation of modeled SWE, HS, and snow density against snow course data 

showed good correlation at point the scale. A good correlation was also found when comparing 

model averages across different elevation ranges (1300-2900 ma.s.l.). The estimated April 1st 

SWE for the snow dominated regions (above 1200 m) for the three basins (2013-2016) were 

173 -421 mm w.e. (Abou Ali), 24-198 mm w.e. (Ibrahim), and 54-193 mm w.e. (Kelb). While 

the modeled values correlated better during season 2014-2015 the model underestimated snow 

density values in winter season 2015-2016 could be attributed to the rain on snow events which 

was not captured by the model. Understanding the evolution of snow density and the potential 

impact of rain on snow a potential field for future research. The comparison of modeled and 

observed snow albedo is also another potential field for future investigation given the difference 

in modeled albedo (entire snowpack) and bias related to the pyranometer representativeness of 

snow area as well as the dust on snow deposition not accounted by the model. While the model 

had an overall tendency to overestimate SWE and HS we suspect this is attributed to model 

precipitation forcing and the separation between rain and snow. The need for better separation 

between rain and snowfall is important especially in mid-elevation regions and given the 

specificity of the warm Mediterranean climate and the projected warming we believe this 

specific area of research is warranted future investigations.   

 

5.2 Major contribution  

The thesis as a whole represent a first attempt in (1) summarizing major climate forcing 

and snow hydrological processes in Mediterranean like regions and (2) to quantitatively assess 

snow hydrology and SWE evolution in the warm Mediterranean regions of Mount-Lebanon.  

● This research provided a synthesis on snow hydrology in Mediterranean like climate 

region with emphasis on major climate forcing and topographic controls on the 

persistence of snowpack in in these regions.  

● This thesis highlighted the importance of operational snow observation network and 

snow measurements and meteorological observations in the data-scarce snow 

dominated mountain basins with emphasis on the major windward basins of Mount-

Lebanon.  

● This work provided information on the seasonal spatial variability of HS, SWE, and 

snow density in the snow dominated region of Mount-Lebanon (elevation range 1300-

2900 m a.s.l.). The publishing of AWS observations and snow course field 
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measurements is the first step towards operational snow hydrologic monitoring in this 

data scarce region.  

● This work contributed to the knowledge on snow hydrology in the Mount-Lebanon by 

providing spatially distributed SWE estimates (at 100m pixel resolution) at 30-min 

temporal resolution. In contrast to existing knowledge these estimates are both spatially 

and temporally distributed. The developed model is also the first step towards linking 

snowmelt to groundwater karst system. Information on the SWE spatio-temporal 

variability will allow for the estimation of water availability during dry months.  

 

5.3 Perspectives 

● While the two years field measurements provide sound information on the snow 

variability across elevation gradient it is recommended that operational snow course 

measurement are carried on yearly basis to meet the recommended standard of 5-10 

years (e.g., Mizukami and Perica, 2008). Despite their relatively high operational cost 

whether for the AWS maintenance or the operational cost for conducting field 

measurements they are of particular interest for Lebanon given the persistence in water 

shortage during summer time period and the projected impact of global warming on the 

mechanism of snow accumulation and melt. Long-term snow observatories are the focus 

of the International Network for Alpine Research Catchment Hydrology (INARCH). 

INARCH is a collaborative effort to provide measurement strategies, sharing data and 

tools to improve the understanding of hydrometeorological processes in mountains. As 

such, we suggest that our (albeit recent) Lebanese netwerok for snow observatoions 

(NSO) joins INARCH to increase its visibility and benefit from the most recent 

developments in future climate downscaling for example. 

 

● Snow cover is one of the most sensitive variables of the hydrological cycle to air 

temperature, projected climate warming for the next decades are likely to have profound 

implications on the regional water resources, which are already under stress. The 

validated model provides a starting point for the use of reanalysis data and the the 

potential investigation of projected climate change scenarios on both snowpack 

dynamics and their induced impact on the hydrologic system of major river basins in 

Lebanon.  
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● One the main remaining challenge is to find an adequate method to simulate the water 

pathways from the snowmelt to the discharge at the karst outlets. . A first approach 

could be to feed a simple karst model such as KARSTMOD (Jourde et al., 2015) with 

our simulated snowmelt. There remains a long way (maybe another thesis?) to address 

this question with a proper quantification of the uncertainties given the complexity of 

the karst system.     
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5.5 CONCLUSION ET PERSPECTIVES (VERSION FRANÇAISE) 

 

V. 1. Conclusion 

Ce travail de recherche est motivé par l'importance de la fonte des neiges pour la 

recharge des eaux souterraines au Liban. Cette thèse a fait appel à une approche intégrée 

en combinant les mesures de terrain, les observations automatiques de stations 

météorologiques et la modélisation afin de comprendre l'évolution du SWE et de la fonte 

des neiges sur le flanc ouest du Mont-Liban. Cela est une première étape vers la 

compréhension du lien entre le manteau neigeux et la production d’eau souterraine au 

Liban.  

 

Dans le chapitre 2, nous avons tenté de répondre à la première question: 1- Quels sont 

les principaux facteurs météorologiques et physiographiques qui contrôlent les 

processus nivaux dans les régions méditerranéennes et quel est le rôle de la fonte des 

neiges dans l’hydrologie de ces régions? 

 

 La revue de la littérature suggère que le manteau neigeux méditerranéen se caractérise 

par des taux de densification élevés et une forte variabilité intra-annuelle. Une telle 

variabilité est permet l’estimation de la densité a partir de la profondeur de neige avec 

confiance en utilisant quelques années de mesures seulement. La persistance de la 

couverture neigeuse est principalement contrôlée par les précipitations et l’altitude 

tandis que la fonte est contrôlée par les flux radiatifs. La contribution du flux de chaleur 

sensible tend à augmenter pendant la saison de fonte et pendant les vagues de chaleur. 

Les événements pluie-sur-neige sont importants dans la dynamique de fonte. Malgré 

l'importance de la neige dans les régions méditerranéennes montagneuses, la 

caractérisation du SWE est encore entravée par l'absence d'observations in situ, en 

particulier dans les régions de haute-altitude. Si la représentation spatiale de la surface 

enneigée ou SCA est bien acquise par télédétection optique, le SWE reste inatteignable 

par télédétection satellite seulement. Pour cela, il est recommandé de combiner 

modélisation, SCA satellite et données in situ. Il est encore nécessaire de recueillir 

davantage de données climatiques dans les régions méditerranéennes de montagne, à 
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l'exception notable de la Sierra Nevada aux États-Unis, où l'observatoire aéroporté de la 

neige de la NASA fournit désormais des cartes SWE toutes les deux semaines de façon 

quasi opérationnelle pour les principaux bassins versants. Enfin, la théorie du bilan de 

masse et d’énergie est maintenant bien établie, mais les connexions entre le manteau 

neigeux et les chemins de l’eau dans la zone critique (sol, eaux souterraines) sont encore 

méconnus. 

 

Dans le chapitre 3, nous avons essayé de répondre à la deuxième question: “2- Quelle 

est la variabilité spatio-temporelle du manteau neigeux à différentes altitude (1300-2900 

m a.s.l.) sur le versant ouest du Mont-Liban?” Dans ce chapitre, nous avons présenté 

pour la première fois un ensemble de données météorologiques pour l’étude de la neige 

au Liban (2011-2016). L'ensemble de données est le résultat des efforts conjugués du 

CESBIO / CNRS-L / USJ et comprend les données de trois stations météorologiques 

automatiques d’altitude (1840-2834 m a.s.l.). Elle a été complétée par des parcours 

nivométriques effectuées au cours de cette thèse, et les données de SCA MODIS. Les 

données des stations sont des données au pas de temps 30 minutes des précipitations, 

température et humidité de l’air, vitesse et la direction du vent, rayonnement solaire, 

hauteur de neige et albédo pour les saisons nivales entre 2011 et 2016 (novembre-juin), 

mais il y a beaucoup de lacunes avant 2013. Les mesures de parcours nivométrique 

incluent le SWE, HS et densité sur 30 parcours différents (1300-2900 m a.s.l.) pendant 

deux saisons (2014-2016) avec un temps moyen de revisite de 11,4 jours. Nous avons 

constaté une grande variabilité temporelle dans la hauteur de neige et le SWE et des 

valeurs élevées densité. Cela montre l'importance de procéder à des mesures de terrain 

avec une périodicité bi-hebdomadaire. La variabilité spatiale de ces mesures entre les 

différentes tranches d’altitude est également importante. Nous avons constaté une 

corrélation entre la hauteur de neige et la densité caractéristique d’un climat 

méditerranéen chaud. Enfin, ce jeu de données a été conçu pour être pleinement 

compatible avec l'application des modèles distribués de bilan d’énergie du manteau 

neigeux. L'ensemble de données a été déposé dans le domaine public pour favoriser sa 

diffusion au-delà de ce travail. 
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Dans le chapitre 4, nous avons essayé de répondre à: “Dans quelle mesure pouvons-nous 

estimer avec précision la répartition spatiale du SWE au pas de temps journalier à une 

résolution spatiale fine (100 m)?”. Nous avons utilisé l'ensemble de données 

météorologiques présentées au chapitre 3 pour forcer le modèle de bilan énergétique et 

d’évolution du manteau neigeux SnowModel (Liston et Elder, 2006). Le modèle a été 

validé à l'aide des observations continues de hauteur de neige aux stations, des données 

des parcours nivométriques, et de SCA MODIS. Le modèle a été exécuté au pas de 

temps de 30 minutes sur les saisons de neige 2013-2016 à une résolution spatiale de 100 

m sur un domaine de 150x120 km, mais nous nous sommes concentrés pour la validation 

sur la partie ouest du Mont-Liban qui nous intéresse. La surface enneigée simulée est 

bien corrélée avec les observations MODIS (r = 0.87). La comparaison de HS modélisé 

et HS observé aux stations est globalement satisfaisante. Les simulations de SWE, HS 

et densité dans les secteurs couverts par les parcours nivométriques est également 

encourageante. Nous avons estimé que le SWE du premier avril variait entre 173 et 421 

mm w.e. (Abou Ali), 24-198 mm w.e. (Ibrahim), and 54-193 mm w.e. (Kelb). Les 

simulations sont meilleures pendant la saison 2014-2015. Le modèle sous-estime la 

densité de neige pendant la saison hivernale 2015-2016, ce qui peut être attribué à un 

événement de pluie sur neige qui n'a pas été capturé par le modèle.  

 

V. 2. Résumé des contributions de ce travail 

 

Cette thèse a fourni une synthèse sur l'hydrologie nivale sous climat méditerranéen, en 

mettant l'accent sur les facteurs climatiques et topographiques. 

 

Nous avons décrit et mis en évidence l'importance d’un réseau d'observation de la neige 

et des conditions météorologiques dans les bassins montagneux du Mont-Liban où les 

données sont rares (altitude entre 1300-2900 m a.s.l.). La publication des données est la 

première étape vers une recherche plus poussée et un suivi plus opérationnel de la 

ressource nivale. 
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Enfin nous avons simulé pour la première fois le SWE sur le Mont-Liban. Contrairement 

aux études précédentes, ces estimations sont spatialement et temporellement distribuées. 

Le modèle développé est une première étape vers une représentation intégrée du système 

hydrologique depuis le manteau neigeux jusqu’au système karstique des eaux 

souterraines qui permettra de mieux connaitre la disponibilité de l'eau pendant les mois 

secs en temps présent et sous climat futur. 

 

V. 3. Perspectives 

Il est recommandé de poursuivre les mesures afin de respecter la norme recommandée 

de 5 à 10 ans (Mizukami et Perica, 2008 Meromy et al., 2013). Malgré leur coût 

relativement élevé,  les stations ou les mesures sur le terrain présentent un intérêt 

particulier pour le Liban étant donné la persistance de la pénurie d'eau pendant la période 

estivale et l'impact du réchauffement climatique attendu sur l'accumulation et la fonte. 

Mieux comprendre l’effet de la pluie sur l'évolution de la densité de la neige est un sujet 

de recherche futur important. Une évaluation plus poussée de l'albédo modélisé est 

également une voie de recherche importante car le dépôt de poussières n’a pas été pris 

en compte ; mais il faudra faire attention aux biais d’observations liés à la position du 

pyranomètre. Enfin, une meilleure séparation entre la pluie et les chutes de neige est 

importante, surtout dans les régions de moyenne altitude. Compte tenu de la spécificité 

du climat méditerranéen et du réchauffement attendu, nous croyons que ce domaine 

mérite une attention particulière. Les observatoires hydroclimatiques de montagne 

l'objet du Réseau international pour l'hydrologie des bassins de recherche alpins 

(INARCH). INARCH (http://www.usask.ca/inarch/) est un effort collaboratif pour 

fournir une stratégie cohérente de mesure, partager les données et les outils pour 

améliorer la compréhension des processus hydrométéorologiques en montagne. Nous 

suggérons que notre observatoire de la neige libanais (bien que récent) se joigne à 

INARCH pour accroître sa visibilité et bénéficier des développements les plus récents 

dans le domaine de la désagrégation des modèle climatiques. 

 

La neige étant une des variables les plus sensibles du cycle hydrologique à la 

température de l'air, le réchauffement climatique projeté pour les prochaines décennies 
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est susceptible d'avoir des implications profondes sur les ressources en eau régionales 

qui sont déjà surexploitées. Le modèle validé présenté dans cette thèse fournit un point 

de départ pour l'utilisation des données de réanalyse climatiques et des scénarios de 

changement climatique futur afin d’évaluer à plus long terme la vulnérabilité des 

systèmes hydrologiques libanais. 

 

Pour cela, le défi principal reste de trouver une méthode adéquate pour simuler les 

transferts d’eau de fonte dans le karst. Une première approche pourrait être d'alimenter 

un modèle karstique simple tel que KARSTMOD avec notre fonte de neige simulée. Il 

reste un long chemin (peut-être une autre thèse?) pour aborder cette question, 

notamment pour quantifier les incertitudes étant donné la complexité du système 

karstique. 
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s u m m a r y

Snow cover contributes to the definition of the hydrologic system of most River Basins in Lebanon.

Despite its importance little is known about the proper quantification of snow cover extent and snow

water equivalent (SWE), as well as the snow contribution to the hydrologic budget at the national scale.

By taking advantage of the moderate-resolution optical sensors (MODIS) from both Terra and Aqua sat-

ellites it was possible to generate enhanced, eight-days, Terra-Aqua Combined (TAC) product set at a spa-

tial resolution of 500 m. An innovative method that combines the AMSR-E SWE data (�25 km spatial

resolution) and the enhanced TAC dataset was developed to derive a SWE product at a sub-pixel spatial

resolution of 500 m. Both the enhanced TAC and the downscaled SWE were developed for the entire Leb-

anon. The enhanced TAC dataset was found to reduce cloud cover area by �13% when compared to the

original MOD10A2 dataset. Snow cover area was validated against ETM+ data and the SWE was assessed

against in situ measurements; the overall accuracy of the snow cover maps was �85%, whereas, the com-

parison between ground points measured and remotely sensed derived SWE indicates a poor correlation.

This study concluded that while the use of TAC is well suited for the assessment of snow cover extent

nationwide, the derived SWE from AMSR-E is not fully deployable in Lebanon. Meanwhile, a snow melt

method that takes advantage from the remotely sensed SWE is needed to better achieve results suitable

for hydrologic studies.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Lebanese mountains chains (i.e. Mount and the Anti-Leba-

non) play a unique role in the distribution of rainfall and snow

and eventually controlling the hydrologic behaviors of most river

systems. The country’s climate is characterized by the prevailing

Mediterranean in the coastal and mountain areas and semi-arid

to arid in the inland areas. The climate system and the topography

of the country results in high differences and seasonal variability of

precipitation and temperature. Precipitation ranges from 300 mm/

year in the inland arid areas to more than 1200 mm/year over

Mount Lebanon. Snow is more frequent at altitudes higher than

1200 m and has an estimated annual snowpack volume between

1200 and 2000 MCM/year (�30% to 40% of the annual precipita-

tion) (Shaban et al., 2004; Aouad Rizk et al., 2005).

Snowmelt which usually occurs during spring, at the time

where there is little contribution from rainfall, has great influence

on the observed spring and river discharges. Despite their impact

on the hydrologic regimes of most rivers, little is known about

the snowpack dynamics in Lebanon. Same applies to snow accu-

mulation and melting.

Remote sensing technology provides a mean to acquire infor-

mation on the spatial distribution and thickness of snow cover at

a relatively low cost. Satellite remote sensing primary data prod-

ucts used in this study are the snow cover area (SCA) and the snow

water equivalent (SWE). Optical sensors are being used to derive

accurate SCA and snow extent estimates at higher spatial resolu-

tion. The advantage of these sensors is attributed to the fact that

snow contrasts greatly with its surroundings due to its high albedo

(Gafurov and Bardossy, 2009). Despite their advantage, optical sen-

sors such as MODIS and SPOT observations are limited to day time

and are usually subject to cloud cover. Both snow cover area and

snow extent lack the information about snow depth or water vol-

ume contained in the snowpack. In contrast to the optical sensors,

passive microwave satellite remote sensors are known to provide

snow thickness where there is no access to in situ snow depth

measurements (Foster et al., 2005; Gao et al., 2010). These sensors

are well known to provide SWE estimates, at regional scale, due to

the coarser resolution offered (Clifford, 2010).

Previous researches suggest that remotely sensed SCA, snow

extent, and SWE can enhance our understanding of snowpack

http://dx.doi.org/10.1016/j.jhydrol.2014.03.058
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distribution and improve the quantification of available water re-

sources in remote areas (Yang et al., 2009). SCA has been success-

fully used in many studies to model snowmelt at the basin scale

(Immerzeel et al., 2009; Powel et al., 2011; Gurung et al., 2011).

The successful use of passive microwave SWE is usually subject

to the study area topography and roughness and the snowpack

depth (Andreadis and Lettenmaier, 2006).

Many literatures addressed the limitation found in the remotely

derived SCA and SWE data products. Main focus areas, in the opti-

cal domain, concentrated on finding new algorithm to enhance the

accuracy of snow products. For instance, Sirguey et al. (2009)

developed a new methodology for the monitoring of the snow cov-

er from MODIS NDSI data. Ault et al. (2006) and Gao et al. (2010)

investigated new methods to enhance the accuracy of the MODIS

data by minimizing cloud contamination. The combination be-

tween the two MODIS products Terra and Aqua was found to be

useful in decreasing cloud effects (Xie et al., 2009). Studies in the

microwave domain focused on finding new ways to improve

SWE derived from the AMSR-E sensor using ground SWE measure-

ments (Derksen, 2008; Langlois et al., 2008). Other studies focused

on comparing and/or combining data from the AMSR-E with data

from other sensors such as the SSM/I (Pulliainen, 2006; Vuyovich

and Jacobs, 2011).

In order to better enhance the spatial resolution of SWE, differ-

ent studies focused on integrating the optical and passive micro-

wave sensors (Liang et al., 2008; Gao et al., 2010). Gao et al.

(2010) used an enhanced method in order to derive cloud-free

snow cover from the Terra-Aqua MODIS data and then developed

a methodology in order to derive sub-pixel SWE data from the

combined AMSR-E and MODIS systems.

This paper focuses on applying an algorithm for combining the

Terra-Aqua MODIS data products into a single TAC (i.e. Terra-Aqua

Combined) dataset. The development of TAC relies on methodolo-

gies such as the one used by Liang et al. (2008) and Gao et al.

(2010). The new TAC product is validated against snow data prod-

uct derived from Landsat ETM+. A new algorithm is developed in

order to downscale the AMSR-E data using the MODIS newly de-

rived TAC dataset. In contrast to the approach developed by Gao

et al. (2010) where the AMSR-E data were equally distributed over

the MODIS data, the proposed methodology accounts for statistical

distribution of snow using a weighting factor based on the number

of snow day(s) per year. This combination is sought to provide an

enhanced dataset for Lebanon by combining snow cover area, snow

extent, and SWE at a downscaled spatial resolution of 500 m. In

situ measurements for snow depth and density are used in order

to evaluate the accuracy of the sub-pixel derived SWE.

2. Study area

Lebanon, with an area of about 10,400 km2, receives between

800 and 1500 mm of precipitation each year. The climate variabil-

ity is highly influenced by the orographic effect of the country’s

topography and the prevailing Mediterranean climate which limits

precipitation to the winter season. Lebanon is divided into four dis-

tinct physiographic regions – the coastal zone, the Mount Lebanon,

the Bekaa Plain and the Anti-Lebanon. Fig. 1 illustrates the coun-

try’s topography were the gradual increase in altitude is known

to produce colder winters, increased precipitation and snow fall

(UNEP, 2007). Snow cover remains for more than four months on

mountain crests. Around 25% of the country’s total area is covered

by snow each year (Shaban et al., 2004). The snow cover area con-

tributes to the feeding of 15 main river basin systems and more

than 2000 springs. Snow also contributes to groundwater recharge

via a number of aquiferous formations and karstic galleries

(Shaban, 2010).

3. Datasets

Four data sets are used in this study. (i) The eight-day MODIS

snow products of MOD10A2 (Terra) and MYD10A2 (Aqua) at a spa-

tial resolution of 500 m are used to extract cloud free TAC product;

(ii) the Enhanced Landsat Thematic Mapper-plus (ETM+) data with

30 m spatial resolution is used to validate the TAC algorithm; (iii)

the AMSR-E/Aqua 5-day L3 SWE at 25 km spatial resolution is used

to extract SWE and the combined MODIS and AMSR-E data are

used to generate the SWE at sub-pixel scale; and (iv) in situ snow

data are used to validate the SWE values.

3.1. MODIS snow cover products

The MODIS sensor is operational onboard two Earth Observa-

tion System (EOS) satellites, Terra and Aqua. The MODIS snow

and ice products are being derived and provided through the Dis-

tributed Active Archive Center (DAAC) of the National Snow and

Ice Data Center (NSIDC) since September 2000 for Terra and July

2002 for Aqua. The MOD10A2 and MYD10A2 8-Day L3 snow cover

data consist of 1200 km by 1200 km tiles at a spatial resolution of

500 m gridded using a sinusoidal map projection. Data sets contain

a data fields for maximum snow cover extent over an eight-day

compositing period and a chronology of snow occurrence observa-

tions in compressed Hierarchical Data Format-Earth Observing

System (HDF-EOS) format. The MODIS snow cover data for both

sensors is based on a snow mapping algorithm that make use of

the Normalized Difference Snow Index (NDSI) (Hall and

Salomonso, 2004). MODIS snow cover images are coded raster.

The maximum snow extent coded integer values include: 0

(missing data), 1 (no decision), 11 (night), 25 (land – no snow

detected), 37 (lakes – inland water), 39 (ocean), 50 (cloud), 100

(lake ice), 200 (snow), 254 (saturated MODIS sensor detector),

and 255 (fill – no data expected for pixel) (Hall and Salomonso,

2004).

3.2. AMSR-E SWE products

The AMSR-E instrument is a multi-frequency, dual-polarized

passive microwave radiometer launched on onboard the NASA

Earth Observing System (EOS) Aqua satellite in May 2002. AMSR-

E provides global measurements of terrestrial, oceanic, and atmo-

spheric variables for the investigation of water and energy cycles.

The algorithms for the retrieval of SWE have been developed and

improved by Tong and Velicogna (2010) and are based on the

brightness temperature (Tb) difference between channels due to

the attenuation of snow on the microwave radiation from the snow

and underlying ground. The AMSR-E/Aqua 5-day L3 Global SWE

EASE-Grid data were downloaded from the National Snow and

Ice Data Center (NSIDC) in Boulder, Colorado (ftp://sidads.colo-

rado.edu/pub/DATASETS/brightness-temperatures/polar-stereo/

tools/). These Level-3 snow water equivalent (SWE) data sets con-

tain SWE data and quality assurance flags mapped at 25 km Equal-

Area Scalable Earth Grids (EASE-Grids) and covers the time period

between June 2002 and October 2011. Data are stored in Hierarchi-

cal Data Format – Earth Observing System (HDF-EOS) format. The

pixel values for SWE include: 0–240 (SWE values divided by 2 in

(mm)), 247 (incorrect spacecraft altitude), 248 (off-earth), 252

(land or snow impossible), 253 (ice sheet), 254 (water), and 255

(missing data) (Tedesco et al., 2004).

3.3. Landsat ETM+ satellite data

Eighteen multispectral images were acquired from the En-

hanced Landsat Thematic Mapper-plus (ETM+) instrument, avail-
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able free of charge from the landsat.usgs.gov website. Each image

contains eight bands representing one panchromatic band at

15 m spatial resolution, six bands covering the visible and short-

wave infrared regions at 30 m spatial resolution, and one thermal

infrared band at 60 m spatial resolution. Table 1 lists the ETM+

images that are used in this study along with their acquisition date.

Snow cover is derived using Band 2 and Band 5 mainly because the

snow reflects maximum in the visible part of the spectrum (i.e.

Band 2 with wavelength centered at 0.56 lm) and has a reflectance

near zero in the short-wave infrared part of the spectrum (i.e. band

5 with wavelength centered at 1.65 lm).

3.4. Field data

In situ snow depths and SWE calculations and were carried at

seven different sites. To measure the depth of snow, a thin-walled

tube with a sharp leading edge and a known diameter (10 cm) was

Fig. 1. Zonal classification of elevations in Lebanon.
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used. For each sample, the volume of snow is measured and the

SWE is derived as function of the melted snow volume.

4. Methodology

The proposed methodology to combine MODIS and AMSR-E

snow products includes four steps. The overall methodology and

processing algorithms are provided in Fig. 2. The first step covered

the preprocessing and the conversion of the original MODIS snow

products into unified snow maps and then interpolating the

AMSR-E data from the original 5-day to 8-day composite in order

to time-overlay with the MODIS products. The second step con-

sisted of combining the weekly Terra and Aqua MODIS snow cover

product to generate the combined TAC snow cover products that

maximizes snow extent and limits cloud coverage. The third step

involved the calculation of the average snowing days per year from

the snow cover dataset. The last step focused on implementing an

algorithm to combine the MODIS and AMSR-E data set in order to

downscale the raw AMSR-E SWE to a 500 m sub-pixel spatial

resolution.

4.1. Data preprocessing

Eight day maximum snow extent and eight day snow cover

variables were extracted from the MOD10A2 and MYD10A2 prod-

ucts. Daily snow cover was retrieved from the coded 8-day snow

data. Actually, each daily snow cover image was coded in eight-

bit ordered from right to left, meaning that the corresponding bit

is set to on whenever snow was detected on that day (i.e. across

a byte the bit 0 corresponds to day 1, bit 1 corresponds to day

2. . . and bit 7 to day 8 in the eight-day period). Information retrie-

val was achieved automatically using scripts developed under both

MATLAB and ERDAS Imagine. To reduce the noise in the AMSR-E

time series data median filter was applied. This data was then con-

verted from five to eight-days using a spline interpolation (de Boor,

1978).

4.2. Generating the Terra Aqua Combined (TAC)

The development of the Terra Aqua Combined (TAC) was

achieved by combining the two MODIS products MOD10A2 and

MYD10A2 using the maximum snow coded integer values. Priority

was assigned to the MOD10A2 obtained from the Terra Satellite

namely because Terra snow product had a slightly better accuracy

than the Aqua snow product (Xie et al., 2009). The new generated

data set is a TAC snow cover time series extending from 2002 to

2012 at 500 m spatial resolution.

4.3. Mapping average snowy days per year

The TAC eight-day snow cover dataset was used to generate the

yearly composite that represents the Snow Day per Year (SDY)

product. These maps indicate the number of snow day(s) per year

for each pixel.

4.4. Generating sub-pixel SWE data from the combined AMSR-E and

TAC

In order to generate SWE at a 500 m spatial resolution MODIS

and AMSR-E datasets were combined using spatial distribution in

function of the probability and occurrence of days with snow cover

over the entire year. The probability distribution is based on using

the AMSR-E as a reference grid, and where Lebanon is represented

by 56 pixels. The TAC was subdivided into 56 zones representing

the same spatial extent of the AMSR-E grids. Since MODIS data is

available at 500 m spatial resolution each AMSR-E pixel was over-

laid by 2500 pixel representing the snow cover extent. The general

equation is given as:

SWEsp ¼

0 if MODIS SCA ¼ 0
2�SWEAMSR-E�SDY�2500

SDT
else

(

where SWEAMSR-E is the AMSR-E SWE value, SDY is the average

snow days per year for each MODIS pixel, and SDT is the sum of to-

tal snowing days per year combined for each AMSR-E pixel.

For each MODIS zone the sum of pixels with snow cover was

calculated first, the outcome is a ‘‘Snow Day Total’’ map. The prob-

ability of the occurrence of snowy days for each pixel is then calcu-

lated by dividing the SDY by SDT. Noting that while the AMSR-E

map gives the mean value of snow water equivalent in this pixel,

there is 2500 values in MODIS for each AMSR-E pixel. Each

AMSR-E SWE sub-pixel was derived by multiplying the pixel prob-

ability by the AMSR-E SWE at 25 km. Fig. 3 illustrates the compar-

ison between probability distribution and mean value downscaling

of AMSR-E data. The result is a 10 years (2002–2011), eight-days,

SWE data set at a spatial resolution of 500 m.

5. Results

5.1. Accuracy assessment

5.1.1. Validation of TAC product

Fig. 4 shows the raw MOD10A2 product, which is usually asso-

ciated with cloud contaminated areas and the derived TAC product

for the year 2010. It can be easily distinguished how the accuracy

increased between the MOD10A2 and the derived TAC product.

Assessment revealed that the TAC dataset had �13% reduced cloud

coverage when compared to the MOD10A2 dataset (average over

the time period between 2002 and 2011). In December 2010, the

maximal cloud reduction was estimated at �30%.

Snow surface derived for the high resolution ETM+ data at a

spatial resolution of 30 m was compared to the derived TAC prod-

ucts. The result of the comparison is provided in Table 1. The com-

parison shows 98.5% correlation between the two products (i.e.

ETM+ and TAC). The PBIAS revealed that the TAC product was

underestimating the snow cover extent by 12.9% when compared

to the ETM+ dataset. The aerial difference between the two data-

sets was estimated at �15% with an STD of 20%. The results also

Table 1

Validation of MODIS against high spatial resolution Landsat ETM+ data.

Date Snow area

(landsat ETM+)

in km2

Snow area

(MODIS)

in km2

Aerial

difference

(%)

December 26, 2004 1348 1358 0.8

January 11, 2005 1421 1439 1.2

January 27, 2005 1785 1666 �6.7

February 12, 2005 2038 1683 �17.4

March 16, 2005 735 455 �37.9

January 30, 2006 1388 1170 �15.7

January 1, 2007 1464 1559 6.5

January 17, 2007 1311 1162 �11.4

March 6, 2007 715 390 �45.5

March 22, 2007 582 305 �47.6

January 20, 2008 829 853 2.9

February 5, 2008 2964 2809 �5.2

February 21, 2008 3061 2696 �11.9

January 22, 2009 734 632 �13.9

February 7, 2009 492 333 �32.4

November 6, 2009 243 225 �7.4

January 12, 2011 606 535 �11.7

February 13, 2011 366 292 �20.1

Overall aerial difference �15.2
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indicated that the TAC products had a better accuracy when the

snow extent was large enough. In contrast when snow cover

became scarce the accuracy of the TAC product reduced. This is jus-

tified by the fact that in sparse snow areas the probability of a pixel

to be mapped as snow at a spatial resolution of 500 m (TAC) is less

than that of a pixel mapped at a spatial resolution of 30 m (ETM+).

Fig. 2. Methodology for the derivation of TAC and sub-pixel SWE.

Fig. 3. Sub-pixel AMSR-E data extraction using probability distribution.
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5.1.2. Validation of the combined AMSR-E/TAC new product

While producing the eight-day AMSR-E dataset from the origi-

nal five-day SWE using the ‘‘spline’’ function part of Matlab 2012,

we noticed to have noisy values. As mentioned before, in order

to minimize the noise, a ‘‘Median Filtering’’ was used. Fig. 5 shows

the evaluation of four filters. It was obvious that level 5 is the best

choice and was consequently used to filter the eight-day AMSR-E

data.

Field measurements of SWE were carried over seven different

locations in order to validate the eight-days AMSR-E SWE dataset.

Results indicated poor correlation between AMSR-E SWE and

ground measurements and a large PBIAS. The great variability be-

tween these observations is attributed to the fact that field mea-

sures were not fully representative of the topography and the

extent of the study area; this conforms to other studies in the field

(Gao et al., 2010). The retrieved SWE from regional scale passive

microwave systems such as the AMSR-E is associated with the spa-

tial heterogeneity, snow water content, and roughness which

highly impacts the polarization effect and thus leads to increased

bias. It is recommended that further studies investigate the impact

of these factors in order to better understand their impact of the

predicted SWE. Accordingly, it is difficult to directly make use of

the SWE from AMSR-E. More ground sampling points and a cou-

pled snow model are compulsory in order to capture snow

accumulation.

5.2. Spatial and temporal variability of snow in Lebanon

Fig. 6 shows that the snow extent over the Lebanese mountains

would remain for a maximum of �89 days per year (average over

13 years between 2000 and 2012). Results revealed great variability

in the spatial extent in function of the region. Table 2 summarizes

snow cover extent by region calculated as the average over the time

period between 2002 and 2012. It is obvious that at lower altitudes,

between 0 and 500m, the average snowing days is �1 day per year.

This value is more frequent in the coastal zones, the Northeast of Be-

kaa, and the South. Average snowing days at altitudes between 2500

and 3000 m was estimated at 65 days per year. Average snowing

days reached their peaks over the mountain chains, namely at the

Kornat El Sawda (3088 m). Snowing days were found to decrease

gradually as the altitude declines on either sides of this peak – a clear

example is found at the mountain of Jabal El Sheikh in the south of

Lebanon. It was also evident that the mountain chains in Lebanon re-

ceive the largest amount of snow. Fig. 7 illustrates the snow cover ex-

tent with similar patterns over the Mount-Lebanon and the Anti-

Lebanon ranges. The number of snowing days also dependent on

the type of snow storm including its direction and source. Thus, trop-

ical storms are often associated with large area coverage – for in-

stance the snow storm during winter season 2001–2002. In

contrast, regional snow storms are usually associated with short

snowing days and less snow coverage.
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Fig. 4. Comparison between TAC snow, MOD10A2 raw data, and cloudextent in 2010.

Fig. 5. Comparison between median filtered SWE and raw SWE in 2010.
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Fig. 8 shows that the year 2004 had the largest snow surface

area estimated at 1400 km2. Meanwhile, the year 2000 had the

smallest snow cover area estimated at �550 km2.

Fig. 9 illustrates snow fall occurrence on a monthly time scale. It

was clear that snow usually occurs between October and June. The

maximum snow coverage increases during the winter season.

Snow cover peaks in early February (maximum extent

�3000 km2) and usually remains to the middle of the spring season

and in less scenarios until mid-June.

Fig. 10 shows the snow contribution to the overall hydrologic

budget (i.e. inputs to surface runoff and groundwater recharge)

and was compared to the total volume of precipitation between

Fig. 6. Average number of snow day(s) per year between 2000 and 2012.

Table 2

Average of snow day per year considering altitude taken during twelve years, from

year 2000 till 2012.

Altitude in meters Number of day(s)

<500 <1

500–1000 1–2

1000–1500 3–4

1500–2000 15–16

2000–2500 37–38

>2500 65–66

Fig. 7. Snow covers area (SCA) in Mount and Anti Lebanon in 2008.
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2002 and 2011. It was clear that snow melt contributes to around

26% of the total hydrologic budget. The maximum snow contribu-

tion was found to be �35% (2002–2003).

6. Discussion and conclusion

Both Terra and Aqua MODIS instruments can generate snow

cover area with an acceptable spatial resolution of 500 m. AMSR-

E instrument produces SWE data at a low spatial resolution of

25,000 m. Therefore, the aim of the research was to derive an en-

hanced snow extent area (TAC) data set and to measure snow

water equivalent (SWE) over Lebanon. The TAC dataset minimized

cloud contamination and the accuracy assessment of the TAC was

validated against snow product derived using eighteen ETM+ snow

products. Results revealed great correlation between the two data-

sets. The processing of the AMSR-E data using median filtering was

used to generate eight-day noise-free curve from original five-day

SWE data. The combination of both instruments was found to be

practical in the derivation of sub-pixel SWE at 500 m spatial

resolution.

Eight-day snow cover area and snow extent at 500 m spatial

resolution over the time period between 2002 and 2012, as well

as snow day(s) per year, were generated. The correlation between

the volumes and spatial extent of snow in function of altitude was

evaluated. It was evident that snow accounts, on the average, to

around 26% of the total hydrologic budget in Lebanon. Such contri-

bution represent feedbacks to the spring discharge mechanism

during months were there is no precipitation. These outputs are
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Fig. 8. Average yearly distribution of snow surface between 2000 and 2011.
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Fig. 10. Snow contribution to the hydrologic budget (i.e. surface runoff and groundwater recharge) compared to the total volume of precipitation.
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believed to help in the quantification of the hydrologic budget tak-

ing into consideration of the snow melt impacts on such system.
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Group Category Indicator Abreviation

1. Science  
1.1. Meteorology & climatology in 
mountains Climate change & variability Clim. Chan.

Trends in climate & hydrology Trend. Clim. Hyd.

Trends in snowpack & hydrology Trend. S.

Clim. & meteo. in mountains Clim. Met. Mnt. 

Climate and meteorological extremes Clim. meteo. ext.

1.2. Snow Snow hydrometeorology S. Hydm.

Snowpack properties S. Prop.

Snow in forested regions S. Forset

Snowpack dynamics S. Dyn. 

Glaciers Gla.

1.3. Hydrology Hydrology in mountain regions Hyd. Mnt. 

Hydrological processes in snow basins 
(inc. snow hydrology) Hyd. Proc. S. 

Hydrological processes in mountains Hyd. Proc. Mnt. 

Soil moisture and evapotranspiration Soil Moist. ET.

Snowmelt & runoff in mountains S. Melt Runoff

Hydrochemistry Hydrochemistry 

Hydrogeology Hyg.

Hydrogeology in karst Hyg. Karst

Hydrology of extremes Hyd. Ext.

2. Methods 2.1. Spatial distribution of snowpack Remote sensing of snow RSS

Remote sensing application in meteo. & 
hydro. Rem. Sen. Hyd,

2.2. Snow indicators Snow water equivalent SWE

Snow distribution S. Dist.

Snow obs. & measurements S. Obs. 

2.3. Snow modeling & simulation Energy & mass balance modeling EBM

Snow modeling S. Mod.

2.4. Hydrological modeling & 
simulation Hydrological modeling and simulation Hyd. Mod.

Data assimilation & land surface modeling Ass. Land Surf. Mod.

3. Data 3.1. Length of data used Temporal extent and collection rate -

3.2. Source and type of data
Ground observations, projections, and 
reanalysis datasets -

Data assimilation (inc. data comparison 
from models) -

Global and national datasets -

3.3. Spatial scales Extent of the study area -

Mountain elevation range -

Location of the study area -


