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Introduction

Texture analysis is one of the major topics in the field of computer vision and has many important applications including face recognition, object detection, image filtering, segmentation and content-based access to image databases [1]. Texture classification can be defined as a step to assign a texture image into one of a set of predefined categories. This step requires to define a efficient descriptors in order to represent and discriminate the different texture classes.

In the past decades, texture analysis has been extensively studied and a wide variety of description approaches have been proposed. Among these approaches, Local Binary Pattern (LBP) proposed by Ojala et al. is known as one of the most successful statistical approaches due to its efficacy, robustness against illumination intensity changes and relative fast calculation [2]. It has been successfully applied to the applications as diverse as texture classification. In order to encode LBP, the gray level of each pixel is compared with those of its neighbors and the results of these comparisons are weighted and summed in order to give a binary number. The obtained texture features is the LBP histogram whose bin count depends on the number of neighbors. However, when the number of considered neighboring pixels increases, the feature dimensionality will increase exponentially.

Texture analysis methods and descriptor like LBP were firstly designed for dealing with gray-scale images. Otherwise, it has been demonstrated that color information is very important to represent the texture, especially natural textures [3]. Several extensions of LBP to color have been proposed and this leads to consider several LBP histograms to represent a texture. The number of feature is so increase but only some of which are relevant for texture classification [4]. That is the reason why many approaches have been proposed to reduce the dimension of the feature space based on the LBP histogram in order to improve the classification performances. The following section presents the problem and goals of the thesis.

Problems and goals

Usually, color images are acquired by devices that code the colors in the RGB color space. However, the color of pixels can be represented in different color spaces which respect different properties. Many authors have compared the classification performances reached by these color spaces in order to determine the "best" color space for texture analysis [START_REF] Bianconi | Theoretical and experimental comparison of different approaches for color texture classification[END_REF]. Nevertheless, the synthesis of these works illustrates that the choice of the color space depends on the considered texture images. Moreover, the prior determination of a color space which is well suited to the considered class discrimination is still an open question.

We propose to consider a multi color space approach designed for color texture classification. Instead of searching the best color space for color image analysis, this approach propose to combine different color spaces in order to improve the performances reached by classification schemes. It consists in selecting, among a set of color texture features extracted from images coded in different color spaces, those which are the most discriminating for the considered color textures.

Feature selection is a procedure of finding a set of most compact and informative original features [START_REF] Guyon | An introduction to variable and feature selection[END_REF]. It is known that some features describing a dataset can be either redundant or irrelevant. They can decrease the performances of the classification. Moreover, removing such useless features generally allow to decrease the processing time of the classifiers. Thus, applying color LBP in multiple color spaces will tend to produce high-dimensional feature vectors with irrelevant features. Thus, a dimensionality reduction method is needed to address this problem. Many authors have attempted to obtain more discriminative, robust and compact LBP-based features in order to reduce feature space dimensionality. The first strategy consists in identifying the most informative pattern groups based on some rules or the predefinition of patterns of interest. The second strategy consists in applying feature selection methods in order to find the most discriminative patterns [START_REF] Huang | Local binary patterns and its application to facial image analysis: a survey[END_REF].

Porebski et al. firstly proposed a different approach which selects the most discriminant whole LBP histograms [START_REF] Porebski | LBP histogram selection for supervised color texture classification[END_REF]. In this approach, the most discriminant LBP histograms are selected in their entirety, out of the different LBP histograms extracted from a color texture. Recently, Kalakech et al. propose to adapt the supervised Laplacian score used in the literature for feature ranking and selection, to select and rank histograms in the supervised context, namely "Adapted Supervised Laplacian" (ASL-score) [START_REF] Kalakech | A new LBP histogram selection score for color texture classification[END_REF].

Contributions

In this thesis, we mainly focus on the LBP histogram and bin selection approaches in a multi color space framework. Our contributions are summarized as follows.

• The first contribution is the proposed novel histogram score, namely "Sparse Adapted Supervised Laplacian" (SpASL-score). We propose to extend the ASL-score to SpASLscore by using a sparse representation.

• Our second contribution is the extension of the LBP histogram selection proposed by Porebski et al. for a single color space to multiple color space. Applying a multi color space strategy avoids the difficulty of choosing a relevant color space. However, the LBP descriptor produce high dimensional feature vectors, especially when several color spaces is combined to represent the texture. A selection method helps to reduce the number of LBP histograms in order to reduce the processing times and improve the classification.

• The third contribution is the extension to color of the LBP histogram bin selection proposed by Guo et al. for a gray level analysis to color by applying a multi color space strategy [START_REF] Guo | Descriptor learning based on fisher separation criterion for texture classification[END_REF]. Instead of selecting the most discriminating histograms, this approach selects the most discriminate LBP histograms bin.

• The fourth contribution is the introduction of the combination of bin and histogram selection in the multi color space framework. The histogram selection step selects the whole relevant histograms which are used for the classification step. We observe that, the selected histogram might contains some redundant or irrelevant LBP histogram bins and the filtered histogram might contains some informative bins. This approach is achieved by firstly applying a ranking histogram method and then by applying a bin selection procedure.

Structure of the thesis

The remainder of this thesis is organized as follows:

The first chapter introduces several notions related to the color texture classification. The principal families of color spaces are presented as well as the main color descriptors. The LBP descriptors and its extensions to color are briefly reviewed. We introduced the general framework of texture classification in different learning context. We focus on the supervised color texture classification by presenting the most commonly classifier used in this context. Next, several popular benchmarks datasets are introduced for color texture classification tasks that will be used to carry out experiments in the following chapters.

The second chapter summarizes basic principles of the feature selection by introducing its general framework. The categorization of feature selection methods which are based on the evaluation strategies and the learning context are then discussed. Several notations and terminologies used over the thesis are provided in this chapter. Two main ranking-based approaches are briefly reviewed. These approaches can be achieved by associating a score for each feature or by applying an algorithm which gives weights for a feature subset. Then, two feature selection approaches applied to LBP are discussed: LBP bin selection and LBP histogram selection. This chapter also presents our first contribution by introducing the SpASL-score for histogram selection.

The third chapter is devoted to our main contribution of this thesis. The contribution of the multi color space strategies for texture classification are firstly presented. The extensions of histogram selection and bin selection to a multi color space framework is then introduced. Next, two novel strategies of combination of histogram ranking and bin selection are proposed. The results of these approaches are first illustrated on a benchmark color texture database in a single and multiple color spaces.

The comparison of the color texture classification results reached by different proposed approaches of bin selection and histogram selection are presented in chapter 4. The experimental evaluation is carried out on four benchmark texture databases in the multi color space framework. We first study the impact of the distance used for measuring the similarity between two histograms during the computation of the proposed SpASL-score. The results obtained by this score is then compared with other scores. Next, the results of different proposed approaches are compared with the results obtained in the state-of-the-art.

Finally, we conclude this thesis by highlighting our contributions and discussing possible future work.

Chapter 1

Color texture classification This chapter provides some background concepts for color texture classification. Section 1.1 outlines the color texture representation with the introduction of color spaces, the definition of color texture and the way to characterize it thanks to color texture features. Several notions of classification are then introduced in section 1.2: a brief review of the most commonly used classifiers and evaluation methods is provided in this section. Four benchmark texture databases usually used in the framework of color texture classification are also presented. Finally, section 1.3 contains a summary of the key topics presented in this chapter.

1.1. Color texture representation

Color texture representation

Color is an important element in human vision and so in digital image processing. Color images contain more discriminative informations than grayscale images and it has been demonstrated that considering the color in the images significantly improves the performance for many tasks in pattern recognition [3,[START_REF] Drimbarean | Experiments in colour texture analysis[END_REF]12,[START_REF] Mäenpää | Classification with color and texture: jointly or separately?[END_REF][START_REF] Banerji | LBP and color descriptors for image classification[END_REF][START_REF] Khan | Discriminative color descriptors[END_REF][START_REF] Khan | Evaluating the impact of color on texture recognition[END_REF]. To characterize the color texture, it is necessary to take an interest in the representation of color and texture in the images. This section thus firstly presents the different classical color spaces used in image analysis, the definition of color texture and reviews the main color texture features used in color texture analysis.

Color spaces

Color is the perceptual result of light in the visible region of the electromagnetic spectrum. The human retina has three types of color photoreceptor cells, which respond to incident radiation with somewhat different spectral response curves [START_REF] Wyszecki | Color Science: concepts and methods, quantitative data and formulae[END_REF]. Because there are exactly three types of color photoreceptor, three numerical components are necessary and theoretically sufficient to represent a color. A digital color image is thus composed of three component images and the color of each pixel is specified in a three dimensional color space, which defines a color coordinate system. That is the reason why most of color images are acquired by devices that code the colors in the RGB space. A point in this space is characterized by the three components of the corresponding pixel which are the red (R), the green (G) and the blue (B). Figure 1.1 illustrates an example of a color image (from the USPTex database that will be introduced in section 1.2.4) with its three corresponding component images. Other color spaces can be computed from the RGB space by means of either linear or nonlinear transformations and in the last few years, numerous color spaces, which take into account different physical, physiologic and psycho-visual properties have been defined. They can be grouped into four families [START_REF] Vandenbroucke | Unsupervised color-image segmentation by multicolor space iterative pixel classification[END_REF]:

1. The primary color spaces are based on the trichromatic theory, which assumes that it is possible to match any color by mixing appropriate amounts of three primary colors.

They can be divided into:

• the real primary spaces, for which the primary colors can be physically reproduced.

The RGB spaces use the red, the green and the blue as primary colors and are device dependent.

• the imaginary primary spaces, whose primaries do not physically exist. Each of the RGB spaces can be transformed into the single CIE XYZ virtual primary space which is device independent [START_REF]Colorimetry[END_REF].

Primary spaces can be normalized by dividing each color component value by the sum of the three ones in order to obtain normalized coordinate spaces, like the rgb [START_REF] Berry | Colour recognition using spectral signatures[END_REF] and xyz [START_REF]Colorimetry[END_REF] color spaces.

2. The luminance-chrominance color spaces are composed of one component that represents an achromatic information (here called "luminance") and two components, that quantify a chromatic information (here called "chrominance"). They can be grouped into the following subfamilies:

• the antagonist (or opponent color) spaces, which aim at reproducing the model of the opponent color theory proposed by Hering, like AC 1 C 2 [START_REF] Garbay | Application of colored image analysis to bone marrow cell recognition[END_REF] and b w r g b y [START_REF] Swain | Color indexing[END_REF].

• the television color spaces, which separate the achromatic signal and the chromatic signals for the television signal transmission, like Y IQ, YUV and YC b C r [START_REF] Swain | Color indexing[END_REF].

• the perceptually uniform color spaces, which propose a metric to establish a correspondence between a color difference perceived by a human observer and a distance measured in the color space, like L * a * b * , L * u * v * and UVW [START_REF]Colorimetry[END_REF].

• others luminance-chrominance color spaces, like Irg [START_REF] Ohta | Color Information for Region Segmentation[END_REF], CIE Yxy [START_REF]Colorimetry[END_REF] and the Carron's LCh 1 Ch 2 color space [START_REF] Lambert | Symbolic fusion of luminance-hue-chroma features for region segmentation[END_REF].

3. The independent axis color spaces result from different statistical methods (like Karhunen-Loeve Transform (KLT) or Principal Component Analysis (PCA), which provide the less 1.1. Color texture representation correlated components as possible, like the well-known I 1 I 2 I 3 color space proposed by Ohta [START_REF] Ohta | Color Information for Region Segmentation[END_REF].

4. The perceptual color spaces attempt to quantify the subjective human color perception by using the intensity, the hue and the saturation components. They can be categorized into:

• the polar (or cylindrical) coordinate spaces that correspond to expressions in polar coordinates of the luminance-chrominance components, like • the perceptual coordinate spaces that are directly evaluated from primary color spaces, like the HSI triangle model (or M-HSI modified triangle model), the HSV hexcone model, the HLS double hexcone model [START_REF] Shih | The reversibility of six geometric color spaces[END_REF], the I-HLS improved HLS model [START_REF] Hanbury | A 3d-polar coordinate colour representation suitable for image analysis[END_REF] and the CIE L * S * uv h uv space [START_REF]Colorimetry[END_REF]. A color image can thus be represented in these different color spaces. Figure 1.2 illustrates the image of leaves of the figure 1.1 that has been coded in the RGB (a), L*a*b* (b), I 1 I 2 I 3 (c) and HSV (d) spaces. Figure 1.3 illustrates the 3D distribution of this image in these color spaces. Under the human vision system, the RGB space reflects the leaves in the real world better than the other. In these 3D distributions, each axe represents one of the three color components, coded in this example from 0 to 255. Each pixel of the image is coded by three color component values according to the considered color space. The pixels with same coordinates are grouped thanks to a quantization scheme and represented thanks a ball. The number of pixels belonging to each group is visualized by the size of ball and the color of the ball represents the mean color of the pixels of the group. Visually and graphically, we can see that the different color spaces give different representations of the same image. These differences could be interesting since they allow to analyze a same texture under different viewpoints, that increases the possibilities to accurately represent the color textures. As, there is a wide range of color spaces with different properties, we have proposed an approach detailed in chapter 3 which uses the properties of several color spaces in the following of this thesis. In this approach, images are first coded in different color spaces, then color texture features are extracted from these so coded images to characterize the texture.

AC C 1 C 2 h C 1 C 2 ,
Before representing the features which allow to characterize the color textures in the subsection 1.1.3, we propose to briefly introduce this and its principal properties. The human visual system is extremely effective at characterizing textures using adjectives such as smooth or rough, fine or coarse, granular or fibrous, isotropic or with preferred directions, regular or irregular, contrasting and so on. However, it is difficult to define what is texture while it is easy to identify by a human. There is no definition of a texture that would universally be recognized and accepted, and many definitions have been proposed in the computer vision literature:

-"Texture is a fundamental characteristic of the appearance of virtually all natural surfaces and plays a major role in computer vision systems. Image texture may provide information about the physical properties of objects, such as smoothness or roughness, or differences in surface reflectance, such as color" [START_REF] Tuceryan | Texture analysis. Handbook of pattern recognition and computer vision[END_REF].

-"Texture can be viewed as a global pattern arising from the repetition of local subpatterns" [START_REF] Zucker | Toward a model of texture[END_REF].

-"A region in an image has a constant texture if a set of local statistics or other local properties of the picture function are constant, slowly varying, or approximately periodic" [START_REF] Sklansky | Image segmentation and feature extraction[END_REF].

-"Texture can be defined as the set of local neighborhood properties of the gray levels of an image region" [START_REF] Livens | Wavelets for texture analysis, an overview[END_REF].
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-"A color texture can be regarded as a pattern described by the relationship between its chromatic and spatial distribution" [START_REF] Drimbarean | Experiments in colour texture analysis[END_REF].

The various definitions of texture leads to a variety of different ways to analyse texture. How to efficiently represent the texture patterns is a fundamental problem in computer vision and this problem depends on the observation conditions of the considered texture.

Influence of the observation conditions

The characterization of a texture depends on several parameters including the perception level and the acquisition conditions.

Concerning the perception level, there are in practice two main observational scales on which a texture can be defined [START_REF] Haralick | Computer and robot vision[END_REF]:

-Microscopic observation reveals the irregular or disordered structure of pixel colors within the image. The texture is considered on the reduced neighborhood of a given pixel. It is then defined using a probabilistic or statistical approach. The fine structure of plastic illustrated in Figure 1.5a corresponds to a microscopic texture.

-Macroscopic observation involves the concept of either an elementary pattern or a privileged direction. In the presence of an elementary pattern, also known as texton [START_REF] Julesz | Textons, the elements of texture perception, and their interactions[END_REF], the macroscopic texture is viewed as a repetitive or periodic spatial distribution of this pattern. The macroscopic texture is then defined using a deterministic or structural approach. This is illustrated by the image in figure 1.5b, which shows the plastic image in which the elementary pattern is a block that is repeated in a structured manner.

Besides the perception level influences the characterization of texture, texture information can also depend on the acquisition conditions. Indeed, when the conditions differ from an acquisition to another, the resulting images may reveal different textures. The image in figure 1.5c represents a change in orientation of the texture of the figure 1.5b with a 90-degree rotation. The image in figure 1.5d illustrates an illumination change by using the simulated illumination source 4000K fluorescent TL84, instead of the horizon light source.

Acquisition conditions and levels of perception may thus influence the choice of the features to be used to describe the texture information. For example, an irregular texture will be better characterized by statistical features, whereas a regular texture will be well described in terms of frequency-based and geometric features. Feature that are invariant to rotation or illumination change can also be relevant in certain applications. In the next subsection, we propose to review the main color texture features which have been used in the framework of color texture analysis.

Color texture features

Color and texture are two naturally related characteristics of the image, but these characteristics are often analyzed separately. Many authors demonstrate that texture features incorporating color information can improve the discrimination (especially when dealing with natural textures observed under fixed illumination conditions) [START_REF] Drimbarean | Experiments in colour texture analysis[END_REF]12,[START_REF] Bianconi | An appendix to "Texture databases -A comprehensive survey[END_REF]. According to Mäenpää and Pietikäinen, the color texture analysis can be roughly divided into two categories as seen in the next subsection [START_REF] Mäenpää | Classification with color and texture: jointly or separately?[END_REF].

Color and texture combination

Two main categories of approaches can be considered to combine the color and the texture information: methods that process color and texture information separately and those that consider color and texture jointly [START_REF] Mäenpää | Classification with color and texture: jointly or separately?[END_REF][START_REF] Cusano | Combining local binary patterns and local color contrast for texture classification under varying illumination[END_REF].

In the first approach, texture features representing the spatial distribution of the luminance image are used in conjunction with other features describing the color distribution in a given color space [START_REF] Permuter | A study of Gaussian mixture models of color and texture features for image classification and segmentation[END_REF][START_REF] Palm | Color texture classification by integrative Co-occurrence matrices[END_REF][START_REF] Hernandez | Classification of color textures with random field models and neural networks[END_REF]. Let us consider the general notation of a given 3D color space (C 1 ,C 2 ,C 3 ). Figure 1.6 illustrates this first approach where color and texture are separately processed.

Color image

Luminance image There exists other strategies for color and texture combination by incorporating the classifier to compute the similarity between the texture feature vector and the color feature [START_REF] Permuter | A study of Gaussian mixture models of color and texture features for image classification and segmentation[END_REF].

In the second approach, this is the distribution of the color components of the pixels that is analyzed. It allows to jointly characterized the spatial and the color distribution. In the past few years, several studies have been directed to the problem of joint representation of texture and color and three different strategies have been proposed:

• The first one consists in evaluating the texture features within each color component of an image (within-component relationship) independently, without considering the spatial interactions between the levels of two distinct color components. In this case, the texture features defined for luminance images are applied to each of the three color components independently [START_REF] Vertan | Compact color-texture run-length description for ornamental stones recognition and indexing[END_REF][START_REF] Mäenpää | Optimising colour and texture features for real-time visual inspection[END_REF][START_REF] Permuter | A study of Gaussian mixture models of color and texture features for image classification and segmentation[END_REF][START_REF] López | Performance evaluation of soft color texture descriptors for surface grading using experimental design and logistic regression[END_REF]. Figure 1.7 illustrates this approach.

• The second strategy consists in considering the spatial distribution both within each color component of a given color space and also between these different color components (within and between-component relationship) [START_REF] Arvis | Generalization of the cooccurrence matrix for colour images: application to colour texture classification[END_REF][START_REF] Polzleitner | Real-time color-based texture analysis for sophisticated defect detection on wooden surfaces[END_REF][START_REF] Martinez-Alajarin | Automatic system for quality-based classification of marble textures[END_REF][START_REF] Xie | TEXEMS: Texture Exemplars for Defect Detection on random textured surfaces[END_REF][START_REF] Akhloufi | A new color-texture approach for industrial products inspection[END_REF]. • Finally, the third strategy consists in analyzing the spatial interactions between the colors of pixels, that relies on considering a color order relation that defines the inferiority/superiority between colors [START_REF] Porebski | Haralick feature extraction from LBP images for color texture classification[END_REF][START_REF] Ledoux | Color local binary patterns: compact descriptors for texture classification[END_REF].

The methods developed in the context of our work are based on the second strategy (figure 1.8). However, this strategy increases the number of attributes, especially when within and between-component relationships are considered with one or more color spaces. The methods that we propose are therefore for the purpose of reducing the dimension of attributes and overcome this disadvantage.

Many features, initially defined for analyzing gray level images, have been extended to one or several strategies of color and texture combination. We propose in the next section to describe the main color texture descriptors, in the general framework of color texture classification, independently of the color and texture combination strategy. 
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Color texture attributes

Texture analysis has been a topic of intensive research and, over the years, a wide variety of color description approaches for discriminating textures have been proposed. A comprehensive evaluation of color texture attributes is presented in [START_REF] Sande | Evaluating color descriptors for object and scene recognition[END_REF][START_REF] Vandenbroucke | Color texture attributes[END_REF]. Typically, texture attributes can be divided into three categories defined in terms of geometrical, spatio-frequential and statistical features [START_REF] Tuceryan | Texture analysis. Handbook of pattern recognition and computer vision[END_REF].

• Geometrical features: These features take into account the structural and contextual of the image. They are well adapted to describe the texture observed at the macroscopic level. The geometrical description of a texture includes the extraction of several primitives features (corners, edges, points, lines, curves or surfaces) and the placement rules for those primitives. Zheng et al. proposed a set of specific geometrical features for color textures that are sensitive to the regular texture of meat [START_REF] Zheng | A new region-primitive method for classification of colour meat image texture based on size, orientation, and contrast[END_REF]. However, this type of features does not allow to characterize the irregular textures which are usually found in the natural images.

• Spatio-frequential features: The spatio-frequential features can be divided into three 1.1. Color texture representation domains: spatial domain, frequency domain and spatio-frequential domain.

1. Spatial domain involves features which aim to characterize the texture in terms of the number of transitions per unit area, in contrast to coarser textures. Cumani, Laplace and Sobel filters are all examples of filters widely used for the detection of color edges [START_REF] Koschan | A comparative study on color edge detection[END_REF]. However, this kind of feature has never yet been applied to the classification of color texture images.

2. Fourier transform or discrete cosine transform gives an alternative texture representation that is purely based in the frequency domain. These attributes are particularly well suited to the case of images containing coarse textures, where there is considerable continuity between the levels of each pixel color component. Since high frequencies are restricted to local changes in component levels, it is possible to express all the information present in the image using just a small number of coefficients, corresponding to low frequencies. Drimbarean et al. used the gray level discrete cosine transform and its color extension to characterize textures in their experiments [START_REF] Drimbarean | Experiments in colour texture analysis[END_REF].

3. Spatio-frequential domain involves features that combine the two different representations previously discussed. The Gabor transform and the wavelet transform are the most widely used in color texture classification, since they are effective for the analysis of both macrotextures and microtextures. Several authors have investigated the use of Gabor filters on color images and showed that the consideration of color texture features could improve classification results over those obtained through the use of gray level features [START_REF] Drimbarean | Experiments in colour texture analysis[END_REF]12,[START_REF] Sinha | Novel color Gabor-LBP-PHOG (GLP) descriptors for object and scene image classification[END_REF]. However, this method presents two disadvantages: the need to set parameters for the filters and the long computation time to characterize certain textures. Wavelet transform has the advantage of giving a multiscale characterization of a texture by considering both global and local information content within the image. Moreover, wavelet-based features have parallels with the process of human vision, which performs a systematic frequency decomposition of the images falling onto the retina [START_REF] Van De Wouwer | Wavelet correlation signatures for color texture characterization[END_REF]. Several authors have studied problems of color texture classification through the use of the wavelet transform [START_REF] Xu | Color texture analysis using the wavelet-based hidden Markov model[END_REF][START_REF] Hiremath | Wavelet based features for color texture classification with application to CBIR[END_REF]. In spite of the many advantages of this transform, Iakovidis et al. revealed that the features obtained from wavelets are not always the most suitable for texture characterization.

• Statistical features can be used to characterize any type of texture. For this kind of feature, a texture is defined in terms of its gray level or color variation in a neighborhood, and it is the relationship between a pixel and its neighbors that is examined. A large range of statistical features are used for color texture classification. These include image CHAPTER 1. COLOR TEXTURE CLASSIFICATION statistics, image histograms, chromatic co-occurrence matrices and sum and difference histograms, local binary patterns. These different descriptors can be grouped into a number of categories based on their order, where the order of the attribute depends on the type of spatial interaction between the pixels in question. Image histograms are an example of first order statistical features. They describe the distribution of color component levels in the input image [START_REF] Pietikäinen | Color texture classification with color histograms and local binary patterns[END_REF][START_REF] Mäenpää | Classification with color and texture: jointly or separately?[END_REF]. In contrast, co-occurrence matrices, for example, consider pairs of pixels, which means that they are second order attributes. This descriptor, introduced by Haralick et al. in 1973, was initially implemented for gray level images [START_REF] Haralick | Textural features for image classification[END_REF]. Since the use of color can improve texture classification results, Palm proposed to extend the concept of co-occurrence matrices to color images, starting from the definition of multichannel co-occurrence matrices proposed by Rosenfeld [START_REF] Rosenfeld | Multispectral texture[END_REF]. The Haralick features obtained from the chromatic co-occurrence matrices have been used by different authors in the context of color texture classification [START_REF] Drimbarean | Experiments in colour texture analysis[END_REF][START_REF] Palm | Color texture classification by integrative Co-occurrence matrices[END_REF][START_REF] Pydipati | Identification of citrus disease using color texture features and discriminant analysis[END_REF]. Sum and difference histograms, which also belong to the second order strategy, have an almost identical discrimination ability to the chromatic co-occurrence matrix, with the advantage that their calculation are much less demanding in terms of memory requirements [START_REF] Münzenmayer | Multispectral texture analysis using interplane sum-and difference-histograms[END_REF][START_REF] Martinez-Alajarin | Automatic system for quality-based classification of marble textures[END_REF]. Another second order descriptor is the color Local Binary Pattern, which has been used repeatedly by many authors in their studies of the joint use of texture and color for image classification purposes [START_REF] Mäenpää | Separating color and pattern information for color texture discrimination[END_REF][START_REF] Mäenpää | Classification with color and texture: jointly or separately?[END_REF][START_REF] Lee | Local color vector binary patterns from multichannel face images for face recognition[END_REF][START_REF] Cusano | Combining local binary patterns and local color contrast for texture classification under varying illumination[END_REF][START_REF] Ledoux | Color local binary patterns: compact descriptors for texture classification[END_REF].

In the recent years, a various discriminative and computationally efficient local and global texture descriptors have been introduced, which has led to significant progress in the analysis of color texture for many computer vision problems. Several of color texture analysis methods based on global feature, include color Gabor filtering [START_REF] Sinha | Novel color Gabor-LBP-PHOG (GLP) descriptors for object and scene image classification[END_REF], Markov random field model [START_REF] Vácha | Colour and rotation invariant textural features based on Markov random fields[END_REF]. Some of the effective local feature methods are color Scale Invariant Feature Transform (SIFT) [START_REF] Bosch | Scene classification via pLSA[END_REF], color Pyramid of Histograms of Oriented Gradients (PHOG) [START_REF] Sinha | New color GPHOG descriptors for object and scene image classification[END_REF], Discriminative Color Descriptors (DCD) [START_REF] Khan | Discriminative color descriptors[END_REF], Three-Dimensional Adaptive Sum and Difference Histograms (3D-ASDH) [START_REF] Sandid | Robust color texture descriptor for material recognition[END_REF], Color Local Binary Pattern [START_REF] Mäenpää | Separating color and pattern information for color texture discrimination[END_REF][START_REF] Mäenpää | Classification with color and texture: jointly or separately?[END_REF] and many more.

Among the proposed texture descriptors as shown in the table A.1 of the appendix A where a state-of-the-art of the color texture descriptors used in the framework of color texture classification is presented, the Local Binary Pattern (LBP) operator is one of the most successful descriptor to characterize texture images. The distinctive advantages of LBP are its ease of implementation, its invariance to monotonic illumination changes and its low computational complexity [START_REF] Liu | Local binary features for texture classification: Taxonomy and experimental study[END_REF]. In the following, we will discuss the definition of LBP, its variants and its extensions to color. 

The original LBP descriptor

In the original definition of LBP, proposed by Ojala et al., the local neighborhood structure used to characterize the texture around each pixel of the image is simply a set of pixels taken from a square neighborhood of 3×3 pixels [2]. LBP features capture microscopic local image texture. Figure 1.9 illustrates an example of the LBP computation for the pixel labeled as gray. The gray level values of each neighboring pixel is first thresholded by the value of the central pixel, that allows to extract a binary vector of 8 bits. This binary vector is called "local binary pattern". For each neighboring pixel, the result of the comparison is set to one if its value is greater or equal than the value of the central pixel, otherwise the result is set to zero. The LBP code of the pixel labeled as gray is then obtained by multiplying the results of the thresholding with weights given by powers of two and summing them up together. The histogram of the binary patterns computed over a region is generally used as LBP feature.

Threshold

The definition of the original LBP operator has then been generalized to explore intensity values of points on a circular neighborhood. The circular neighborhood is defined by considering the values of radius R and P neighbors around the central pixel. The LBP P,R (x c , y c ) code of each pixel (x c , y c ) is computed by comparing the gray value g c of the central pixel with the gray values {g i } P-1 i=0 of its P neighbors , as follows:

LBP P,R (x c , y c ) = P-1 ∑ i=0 Φ(g i -g c ) × 2 i (1.1)
where Φ is the threshold function which is defined as:

Φ(g i -g c ) =    1 if (g i -g c ) ≥ 0, 0 otherwise. (1.2)
By modifying R and P, one can compute LBP features for dealing with the texture at different scales. For example, LBP 16,2 refers to 16 neighbors in a circular neighborhood of radius 2. The LBP feature produces 2 P different output values, and gives rise to a 2 P -dimensional histogram. Figure 1.10 shows examples of neighborhoods with different radii and numbers of neighbors. The number of bins of the LBP histogram will be 256 or 65536 if 8 or 16 neighboring pixels are considered, respectively. Although LBP has several advantages previously cited, the original LBP also has significant disadvantages: it is sensitive to image rotation and noise, it captures only the very local structure of the texture and fails to detect large-scale textural structures [START_REF] Tan | Enhanced local texture feature sets for face recognition under difficult lighting conditions[END_REF]. Since Ojala's work, many variants of LBP operator have been proposed in the literature to improve its robustness to noise and increase its discriminative power and applicability to different types of problems including, facial image analysis, biometrics, medical image analysis, motion and activity analysis and content-based retrieval [START_REF] Heikkilä | Description of interest regions with local binary patterns[END_REF][START_REF] Wang | Pixel to patch sampling structure and local neighboring intensity relationship patterns for texture classification[END_REF][START_REF] Calonder | BRIEF: Computing a local binary descriptor very fast[END_REF][START_REF] Li | BRINT: Binary Rotation Invariant and Noise Tolerant Texture classification[END_REF][START_REF] Liu | Extended local binary patterns for texture classification[END_REF][START_REF] Baochang | Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor[END_REF][START_REF] Liu | Median robust extended Local Binary Pattern for texture classification[END_REF][START_REF] Vu | Face recognition using the POEM descriptor[END_REF][START_REF] Zhao | Rotation-Invariant Image and Video Description With Local Binary Pattern Features[END_REF][START_REF] Kannala | Bsif: Binarized statistical image features[END_REF].

The extensions of LBP

More recently, Liu et al., propose a detailed review of the LBP variant based on a gray scale analysis which can be grouped into several categories [START_REF] Liu | Local binary features for texture classification: Taxonomy and experimental study[END_REF].

• Traditional extensions of LBP: Ojala et al. observed that some LBP patterns occur more frequently in texture images than others. They proposed to define the "LBP uniform pattern" LBP u2 P,R which is a subset of the original LBP [4]. For this, they consider a uniformity measure of a pattern which analyzes the number of bitwise transitions from 0 to 1 or vice versa when a circular bit pattern is considered. A local binary pattern is called uniform if its uniformity measure is at most 2. For example, the patterns 00000000 (0 transitions), 00011110 (2 transitions) and 11100111 (2 transitions) are uniform whereas the patterns 00110010 (4 transitions) and 01010011 (6 transitions) are not. Figure 1.11 illustrates an example of uniform and non uniform LBP patterns where the black points denote 1-bit and white points denote 0-bit. For the computation of the uniform LBP 1.1. Color texture representation histogram, the uniform patterns are used such as each uniform pattern has an individual code and the non-uniform patterns are all assigned to a separate code. The LBP u2 P,R has (P(P -1) + 3) output values compared with 2 P of original LBP.

Non-uniform

Uniform 00101100 01111000 Another traditional extension of LBP was created to respond to the limit that the original LBP descriptor is not rotationally invariant, which is a important requirement for many real-world applications. If the image is rotated, the surrounding pixels in each neighborhood will correspondingly move along the perimeter of the circle, resulting in a different LBP value, except patterns with only 1-bit and 0-bit. Figure 1.12 gives an example of image with two different rotated versions. In order to address this limitation, Pietikäinen et al. proposed a rotation invariant version LBP ri P,R of LBP by grouping together the LBP that are actually rotated versions of a same pattern [START_REF] Pietikäinen | Rotation-invariant texture classification using feature distributions[END_REF]. They also illustrate the 36 unique rotation invariant LBP that can occur in the case of P = 8.

The rotation invariant uniform LBP descriptor, LBP riu2 P,R is then proposed to improve the rotation invariance and reduce the feature dimensionality which is defined as follows [4]:

LBP riu2 P,R (x c , y c ) =    ∑ P-1 i=0 Φ(g i -g c ) if U(LBP P,R ) ≤ 2, P + 1 otherwise. (1.3)
where U(LBP P,R ) is a function to determine the number of bitwise changes in LBP pattern from 0 to 1 (or vice-versa). The LBP riu2 P,R has (P + 2) output values. In summary, with P = 8 neighboring pixels, the feature dimensionality of the original LBP 8,R , LBP u2 8,R , LBP ri 8,R and LBP riu2 8,R are 256, 59, 36, 10, respectively.

• Neighborhood topology and sampling: The traditional LBP method identifies a neighborhood as a set of pixels on a circular ring. In order to increase the discriminative power, many neighborhood topologies have been proposed, such as elliptical neighborhoods in Elliptical Binary Patterns [START_REF] Liao | Face recognition by using elongated local binary patterns with average maximum distance gradient magnitude[END_REF] and also generalized in [START_REF] Nanni | Local binary patterns variants as texture descriptors for medical image analysis[END_REF] to parabolic, hyperbolic and spiral neighborhood topologies.

The original LBP methods and several variants have also been reviewed to only encode local microtextures and be unable to capture nonlocal macrotextures. Patch-based LBP variants, including the Local Binary Pattern Filtering [START_REF] Mäenpää | Multi-scale binary patterns for texture analysis[END_REF], Multiscale Block LBP [START_REF] Zhang | Face detection based on multi-block LBP representation[END_REF], Three Patch LBP [START_REF] Wolf | Effective unconstrained face recognition by combining multiple descriptors and learned background statistics[END_REF], Four Patch LBP [START_REF] Wolf | Effective unconstrained face recognition by combining multiple descriptors and learned background statistics[END_REF], Pixel to Patch [START_REF] Wang | Pixel to patch sampling structure and local neighboring intensity relationship patterns for texture classification[END_REF] and Median Robust Extended LBP [START_REF] Liu | Median robust extended Local Binary Pattern for texture classification[END_REF], aim to overcome this problem by integrating over larger areas.

• Thresholding and quantization: The original LBP operator is sensitive to noise due to the thresholding operation that directly compares pixel values. Many authors have proposed several LBP variants by changing the thresholding scheme or the number of quantization level to gain noise robustness and discrimination power, including Neighborhood Intensity LBP [START_REF] Liu | Extended local binary patterns for texture classification[END_REF], Improved LBP [START_REF] Jin | Face detection using improved LBP under Bayesian framework[END_REF], Local Median LBP [START_REF] Hafiane | Median binary pattern for textures classification[END_REF] and Threshold Modified LBP [START_REF] Heikkila | A texture-based method for modeling the background and detecting moving objects[END_REF]. Among these approaches, the Local Ternary Patterns (LTP), proposed by Tan et al., have achieved a great success [START_REF] Tan | Enhanced local texture feature sets for face recognition under difficult lighting conditions[END_REF]. In this approach, an additional parameter is used to define a tolerance for similarity between different gray intensities to be robust to noise and reduce the dimensionality. Each ternary is then split into positive and negative parts, which are subsequently treated as two separate LBP component for which histograms are computed and finally concatenated.

• Combining with complementary features: In order to improve the texture characterization, many authors have combined LBP with other complementary features. A rotation 1.1. Color texture representation invariant measure of the local variance can be defined as [4]:

VAR P,R = 1 P P-1 ∑ i=0 (g i -u) with: u = 1 P P-1 ∑ i=0 g i (1.4)
Ojala et al. propose to use the joint distribution of VAR P,R /LBP riu2 P,R for a better characterize of the local texture instead of using LBP riu2 P,R alone. Another combination can be found as the fusion of LBP variants and Gabor features has been explored, with applications in texture classification [START_REF] Liao | Dominant Local Binary Patterns for texture classification[END_REF] and face recognition [START_REF] Zhang | Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition[END_REF][START_REF] Tan | Enhanced local texture feature sets for face recognition under difficult lighting conditions[END_REF]. Wang et al. combine Histogram of Gradients (HOG) with LBP, performing a good result in human detection [START_REF] Wang | An HOG-LBP human detector with partial occlusion handling[END_REF]. Hussain and Triggs combine LTP and LBP [START_REF] Hussain | Feature sets and dimensionality reduction for visual object detection[END_REF]. Klare and Jain exploit the combination of LBP and Scale Invariant Feature Transform (SIFT) for heterogeneous face recognition [START_REF] Klare | Heterogeneous face recognition using kernel prototype similarities[END_REF]. Roy et al., combine Haar and LBP features for an illumination invariant face detection [START_REF] Roy | Haar Local Binary Pattern Feature for Fast Illumination Invariant Face Detection[END_REF].

Among the local rotation invariant LBP features, LBP Histogram Fourier features (LBP-HF) is proposed by Ahonen et al. to combine LBP and the Discrete Fourier Transform (DFT) [START_REF] Ahonen | Rotation invariant image description with local binary pattern histogram fourier features[END_REF]. Unlike the existing local rotation invariant LBP features, the LBP-HF descriptor is produced by computing an LBP histogram over the whole region and then constructing rotationally invariant features from the histogram with DFT. In order to apply LBP descriptor for a specific application, we used LBP-HF features for lace texture images classification in the beginning of this work. The LBP tuning, including radius and number of neighbors, have been adjusted to reveal the lace structure in [START_REF] Hoang | LBP parameter tuning for texture analysis of lace images[END_REF]. This work is presented in appendix B.

A comprehensive literature survey introduced by Brahnam et al. has revealed the huge diversity of LBP [START_REF] Brahnam | Local Binary Patterns: New variants and applications[END_REF] that is confirmed by [START_REF] Liu | Local binary features for texture classification: Taxonomy and experimental study[END_REF]. In comparison with other grayscale LBP variants, color variants have received significantly less attention in the literature. The next subsection details the different ways that have been proposed to extend LBP to color.

The color LBP

The original LBP computation is based on grayscale images. However, it has been demonstrated that color information is very important to represent the texture, especially in natural textures [3,[START_REF] Drimbarean | Experiments in colour texture analysis[END_REF]12,[START_REF] Kandaswamy | Comparison of texture analysis schemes under nonideal conditions[END_REF][START_REF] González-Rufino | Exhaustive comparison of colour texture features and classification methods to discriminate cells categories in histological images of fish ovary[END_REF]. In literature, the extension of LBP to color follows the strategies of color and texture combination presented in section 1.1.3.1.

• In the first strategy, the original LBP operator is computed from the luminance image and combined with color features. For example, Mäenpää or Ning proposed to characterize the color texture by concatenating the 3D color histogram of the color image and the LBP histogram of the corresponding luminance image [START_REF] Mäenpää | Classification with color and texture: jointly or separately?[END_REF][START_REF] Ning | Robust object tracking using joint colortexture histogram[END_REF]. [START_REF] Lee | Local color vector binary patterns from multichannel face images for face recognition[END_REF]. In the proposed approach, each color texture image is characterized by the concatenation of four LBP histograms, namely one LBP extracted from the luminance image and three for the angles between the possible pairs of different color components.

• The second strategy consists in applying the original LBP operator independently on each of the three components of the color image, without considering the spatial interactions between the levels of two different color components. The texture descriptor is obtained by concatenating the three resulting LBP histograms. Figure 1.13 illustrates this strategy of color LBP computation by considering the (C 1 ,C 2 ,C 3 ) color space. This within component strategy has been applied by several authors [START_REF] Pietikäinen | Color texture classification with color histograms and local binary patterns[END_REF][START_REF] Han | A scene images classification method based on local binary patterns and nearest-neighbor classifier[END_REF][START_REF] Choi | Using colour local binary pattern features for face recognition[END_REF][START_REF] Banerji | LBP and color descriptors for image classification[END_REF][START_REF] Zhu | Image region description using orthogonal combination of local binary patterns enhanced with color information[END_REF].

• The third strategy consists in taking into account the spatial interactions within and between color components. In order to describe color texture, Opponent Color LBP (OCLBP) was defined [START_REF] Mäenpää | Classification with color and texture: jointly or separately?[END_REF]. For this purpose, the LBP operator is applied on each pixel and for each pair of components

(C k ,C ′ k ), k, k ′ ∈ {1, 2, 3}.
In this definition, opposing pairs such as (C 1 ,C 2 ) and (C 2 ,C 1 ) are considering to be highly redundant, and so, one of each pair is used in the analysis. This leads to characterize a texture with only six histograms pairs ((C 1 ,C 1 ), (C 2 ,C 2 ), (C 3 ,C 3 ), (C 1 ,C 2 ), (C 1 ,C 3 ), (C 2 ,C 3 )) out of the nine available ones. However, these a priori chosen six histograms are not always the most relevant according to the different considered data sets [START_REF] Porebski | LBP histogram selection for supervised color texture classification[END_REF] and it is preferable to consider the Extended Opponent Color LBP (EOCLBP). This way to describe the color textures thanks LBP has been proposed by Pietikäinen in 2002 [START_REF] Pietikäinen | Color texture classification with color histograms and local binary patterns[END_REF]. It consists in taking into account each color component independently and each possible pair of color components, leading to nine different histograms: three within-component ((C 1 ,C 1 ), (C 2 ,C 2 ), (C 3 ,C 3 )) and six between-component ((C 1 ,C 2 ), (C 2 ,C 1 ), (C 1 ,C 3 ), (C 3 ,C 1 ), (C 2 ,C 3 ), (C 3 ,C 2 )) LBP histograms. These nine histograms are finally concatenated so that a color texture image is represented in a (9 × 2 P )-dimensional feature space. Figure 1.14 illustrates the computation steps achieved to obtain the LBP values for the pairs of color components (C 1 ,C 1 ), (C 1 ,C 2 ), (C 2 ,C 1 ) and (C 1 ,C 3 ) and shows that the pair (C 1 ,C 2 ) is different to (C 2 ,C 1 ). The OCLBP and EOCLBP have often been considered to classify color texture images [START_REF] Mäenpää | Classification with color and texture: jointly or separately?[END_REF][START_REF] Chan | Multispectral local binary pattern histogram for component-based color face verification[END_REF][START_REF] Chelali | CSLBP and OCLBP local descriptors for speaker identification from video sequences[END_REF][START_REF] Porebski | A fast embedded selection approach for color texture classification using degraded LBP[END_REF][START_REF] Porebski | LBP histogram selection for supervised color texture classification[END_REF][START_REF] Kalakech | A new LBP histogram selection score for color texture classification[END_REF].

• The fourth strategy consists in analyzing the spatial interactions between the colors of the neighboring pixels based on the consideration of an order relation between colors. Instead of comparing the color components of pixels, Porebski et al. represent the color of pixels by a vector and compare the color vectors of the neighboring pixels with the color vector of the central one [START_REF] Porebski | Haralick feature extraction from LBP images for color texture classification[END_REF]. They use a partial color order relation based on the Euclidean distance for comparing the rank of color. As a result a single color LBP histogram is obtained instead of the 6 or 9 provided by OCLBP or EOCLBP respectively [START_REF] Porebski | LBP histogram selection for supervised color texture classification[END_REF][START_REF] Kalakech | A new LBP histogram selection score for color texture classification[END_REF]. Another possible way consists in defining a suitable total ordering in the color space and using it as a replacement for the natural gray level ordering in LBP definitions. This strategy has recently been investigated by Ledoux et al. whose propose the Mixed Color Order LBP (MCOLBP) [START_REF] Ledoux | Color local binary patterns: compact descriptors for texture classification[END_REF].

In order to give a single code by color LBP, quaternion representation can be used. )

) color by all color components at one time. Under this representation, the dimension of QLBP is equal to the dimension of a grayscale LBP. QLBP has been used for person re-identification problems by Lan and Chahla in [START_REF] Lan | Person reidentification using quaternionic local binary pattern[END_REF][START_REF] Chahla | Discriminant quaternion local binary pattern embedding for person re-identification through prototype formation and color categorization[END_REF].
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1.2. Supervised texture classification Among the different extension strategies of LBP to color, MCOLBP and QLBP have the advantage of providing a texture descriptor whose dimension is equal to gray level LBP histogram, what allows a low computation time. However, the classification results obtained with these descriptors on two benchmark texture databases are not as good as those obtained thanks to OCLBP [START_REF] Ledoux | Color local binary patterns: compact descriptors for texture classification[END_REF][START_REF] Lan | Quaternion-Michelson descriptor for color image classification[END_REF].

Another possible way to obtain a good compromise between classification results and computation time is to consider a higher dimensional descriptor, such as OCLBP or EOCLBP, and to proceed to a dimensionality reduction. This is the strategy that we propose to explore in our works. Before presenting the subject of LBP selection, we will see how the characterization of the color texture fits in the classification scheme.

Supervised texture classification

Texture classification is a task which allows to assign a given texture to one of several texture classes. It is a fundamental issue of texture analysis, playing a significant role in many applications such as biomedical image analysis, industrial inspection, analysis of satellite or aerial imagery, document analysis, face analysis, biometrics and many more. Color texture classification has become a challenging topic in computer vision because the real world images often exhibit a high degree of complexity, randomness and irregularity. For example, two images containing the same color with different texture patterns or the same texture pattern but different colors are considered as different color textures [START_REF] Drimbarean | Experiments in colour texture analysis[END_REF]. Figure 1.15 (a-b) illustrates an example of two images (from the USPTex database) with the same color but different textures of granite and figure 1.15 (c) and 1.15 (d) show the texture of stones with different colors.

Color texture classification is typically categorized into two subproblems of representation and classification [START_REF] Bianconi | Theoretical and experimental comparison of different approaches for color texture classification[END_REF][START_REF] Tuceryan | Texture analysis. Handbook of pattern recognition and computer vision[END_REF] as shown in figure 1. [START_REF] Khan | Evaluating the impact of color on texture recognition[END_REF]. The feature generation step allows to characterize the image thanks to a texture feature and the decision step assigns the feature to one of the available texture classes. Our work focuses on the first subproblem.

In this section, we briefly review the three principal categories of classification context, introduce several standard color texture databases available for color texture classification tasks and present the most commonly classifiers used for color texture classification.

Context

According to the prior knowledge of class label, there are three major types of classification contexts: the supervised, unsupervised and semi-supervised classification. A comprehensive literature survey of classification approaches is proposed by Jain et al. [START_REF] Jain | Statistical pattern recognition: A review[END_REF]. 

Supervised classification

In the supervised classification, we have a class label for each input prototype image and use it to predict the label of a new unseen image. In practice, this process can be evaluated into two steps: training and decision. In the training step, feature generation is applied on a certain number of prototype color texture images with known class labels. In the decision step, feature generation is applied on unknown input image (as in the training step). Then, a prediction on the class label assignment for this image, based on a similarity measure computed between the training feature vector and the feature vector of the input image. Figure 1.17 illustrates a general framework of supervised classification.

Unsupervised classification

On the other hand, unsupervised classification (or clustering) does not provide any prior knowledge about the class labels. The classification automatically discovers the different classes (or clusters) from input textures, based on various types of criteria of feature descriptors such as distance, information or correlation. 

Semi-supervised classification

Semi-supervised classification falls between unsupervised and supervised classification. The label training images is often limited or expensive to be obtained. When a small portion of data is labeled, the classification in this context can take advantages of both labeled data and unlabeled data. 

Dimensionality reduction

We briefly presented three classification contexts. Before the decision step (figure 1.16), the set of generated features can be modified by a dimensionality reduction technique in order to have a better representation of data (as illustrated in figure 1.20). For example, in the color texture classification framework, each texture image is characterized by nine LBP histograms which lead to a concatenated feature vector of 256 × 9 = 2304 bins (features) for a single color space when 8 neighbors are used. It is clear that all the features contribute unequally in the classification task that leads to decrease the classification performance. So, the dimensionality reduction is needed to address this problem. Many authors have developed LBP-based features by many approaches in order to reduce the feature dimensionality. According to whether the original features space information is changed or not, dimensionality reduction methods can be categorized into feature extraction and feature selection. The following of this work is conducted by the dimensionality reduction methods for color texture classification in a supervised context. These methods are detailed in the chapter 2. The next subsection thus presents the most commonly used classifiers for color texture classification problems in the supervised context.

Classifiers

A classifier is a function which takes the features as inputs and gives the texture classes as outputs. There is a large number of methods for constructing a classifier [START_REF] Tjen | A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms[END_REF]. Here, we briefly introduce the three classifiers widely used in the supervised color texture classification context:

1. Linear Disciminant Analysis 2. Support Vector Machines

K-Nearest Neighbors

Linear disciminant analysis

Linear Discriminant Analysis (LDA) is a supervised statistical method that allows to classify an image between two or more classes [START_REF] Fukunaga | Introduction to statistical pattern recognition[END_REF][START_REF] Johnson | Applied multivariate statistical analysis[END_REF]. Given the training images, the LDA tries 1.2. Supervised texture classification to find a new feature space where the distances between the class centers are maximized and the distances between the images of a same class are simultaneously minimized. This new feature space is obtained thanks to linear combinations of the original features. This can be achieved through the analysis of the within-class and between-class scatter matrices. The new features are found by solving the generalized eigenvalue problem. Figure 1.21 illustrates the separation of two classes before LDA (a) and after LDA (b). After the projection, the distances between the images of a same class is minimized (V ′ 1 < V 1 and V ′ 2 < V 2 ) whereas the distance between the class centers is maximized (D 2 > D 1 ). To classify a testing image, LDA estimates the probability that the considered image belongs to each class. The class that gets the highest probability is the output class. The LDA classifier has been used by several authors in order to validate the performance of their color texture classification approach [START_REF] Casanova | Texture analysis using fractal descriptors estimated by the mutual interference of color channels[END_REF][START_REF] Florindo | Texture analysis by fractal descriptors over the wavelet domain using a best basis decomposition[END_REF][START_REF] Da Silva | Improved texture image classification through the use of a corrosion-inspired cellular automaton[END_REF][START_REF] Backes | Color texture analysis based on fractal descriptors[END_REF].

Support vector machines

The standard Support Vector Machines (SVM) proposed by Cortes et al. [START_REF] Cortes | Support-vector networks[END_REF] are a type of linear discriminant binary classifier. A linear boundary between two classes is represented by a hyperplane. The optimal hyperplane is the boundary that maximizes the margin of separation between the classes (i.e., maximizes the distance between the boundary and the images that are close to the boundary). An example of separation hyperplanes is illustrated in Figure 1.22. From this figure, we see that H 2 is the separating hyperplane with the maximum margin contrary to H 1 . The SVM classification is performed by determining on which side of the decision boundary a given testing image falls into and then by assigning the corresponding class label.

In addition to performing linear classification, SVM can efficiently perform non-linear classification using different kernel functions by performing a non-linear mapping from the input space to the transformed space, a straight separating line in the transformed space may correspond to non-linear decision boundary in the original space [START_REF] Boser | A training algorithm for optimal margin classifiers[END_REF]. The choice of this kernel function and the tuning of its parameters will directly impact the final result.

The standard SVM is a two-class classifier, whereas many real world classification problems involve several classes. There are two strategies to extend SVM for dealing with multiclass problems: one-versus-all and one-versus-one strategies. The first strategy constructs one two-class SVM classifier for each class. An image would be classified under a certain class if and only if that class's SVM accepts it and all other classes's SVMs reject it. The second strategy constructs one SVM binary classifier for each pair of classes and the classification phase is realized by a voting way: the image is assigned to the class that is selected by the majority of the classifiers. An extensive comparison of multi-class SVM approach is discussed in [START_REF] Wang | Multi-class support vector machine[END_REF][START_REF] Chih | A comparison of methods for multiclass support vector machines[END_REF].

SVM classification approach has been used by Iakovidis and Sandid [START_REF] Iakovidis | A comparative study of color-texture image features[END_REF][START_REF] Sandid | Robust color texture descriptor for material recognition[END_REF] to classify color texture images.

K-nearest neighbors

The K-Nearest Neighbors (K-NN) classifier is among the simplest classifiers of all machine learning algorithms and it is frequently used in pattern recognition. In the K-NN approach, the testing images are classified based on the closest training images in the feature space [START_REF] Cover | Nearest neighbor pattern classification[END_REF][START_REF] Aha | Instance-based learning algorithms[END_REF]. The distance between each testing images and each training image is first computed. The testing image is then assigned to the class that is most common among its K-nearest neighbors. K is a user-defined constant. In the case of K = 1, each testing image is assigned to the class of its nearest neighbor. The optimum value of K depends upon the data. Generally, larger values of K decrease the effect of noise on the classification. An example of K-NN classification is illustrated in Figure 1 There are various authors that have used K-NN to validate the performance of their proposed method in the framework of color texture classification [12,[START_REF] Pietikäinen | Color texture classification with color histograms and local binary patterns[END_REF][START_REF] Münzenmayer | Multispectral texture analysis using interplane sum-and difference-histograms[END_REF][START_REF] Mäenpää | Classification with color and texture: jointly or separately?[END_REF][START_REF] Palm | Color texture classification by integrative Co-occurrence matrices[END_REF][START_REF] Arvis | Generalization of the cooccurrence matrix for colour images: application to colour texture classification[END_REF][START_REF] Xu | Color texture analysis using the wavelet-based hidden Markov model[END_REF][START_REF] He | Local triplet pattern for content-based image retrieval[END_REF]126,[START_REF] Alvarez | Texton theory revisited: A bag-of-words approach to combine textons[END_REF][START_REF] Backes | Color texture analysis based on fractal descriptors[END_REF][START_REF] Hammouche | Fuzzy aura matrices for texture classification[END_REF][START_REF] Ahmadvand | Invariant texture classification using a spatial filter bank in multi-resolution analysis[END_REF][START_REF] Ledoux | Color and multiscale texture features from vectorial mathematical morphology[END_REF][START_REF] Ledoux | Color local binary patterns: compact descriptors for texture classification[END_REF][START_REF] Bello-Cerezo | Experimental comparison of color spaces for material classification[END_REF][START_REF] Cernadas | Influence of normalization and color space to color texture classification[END_REF][START_REF] Lan | Quaternion-Michelson descriptor for color image classification[END_REF]. The table A.1 in the appendix A shows that there is about 80% of studies in color texture classification that use the K-NN in their experiments. The value of K that is commonly used is 1 while the typically considered distance metrics are L1 [START_REF] Pietikäinen | Color texture classification with color histograms and local binary patterns[END_REF][START_REF] Mäenpää | Classification with color and texture: jointly or separately?[END_REF][START_REF] Ledoux | Color local binary patterns: compact descriptors for texture classification[END_REF][START_REF] Ledoux | Color and multiscale texture features from vectorial mathematical morphology[END_REF][START_REF] Lan | Quaternion-Michelson descriptor for color image classification[END_REF], Euclidean [START_REF] Münzenmayer | Multispectral texture analysis using interplane sum-and difference-histograms[END_REF][START_REF] Xu | Color texture analysis using the wavelet-based hidden Markov model[END_REF][START_REF] Bello-Cerezo | Experimental comparison of color spaces for material classification[END_REF], Mahalanobis [12,[START_REF] Ahmadvand | Invariant texture classification using a spatial filter bank in multi-resolution analysis[END_REF], and χ 2 [127, 128, 132].

Evaluation methods

In order to validate the performance of a classification scheme, there are several evaluation methods that divide an available dataset into training and testing sets: bootstrap, resubstitution and cross validation methods as presented in [START_REF] Jain | Statistical pattern recognition: A review[END_REF]. Generally, there are three kinds of validation techniques which are widely used in the framework of color texture classification [START_REF] Bishop | Neural networks for pattern recognition[END_REF]:

-Holdout method is the simplest cross validation approach. The dataset is here divided into two exclusive sets. The proportion of the training and testing sets is usually equal to 1/2. Many authors have used this method to split the dataset in order to validate the proposed approach in color texture images classification [START_REF] El Maliani | Color texture classification method based on a statistical multi-model and geodesic distance[END_REF][START_REF] Martínez | Alternative to colour feature classification using colour contrast ocurrence matrix[END_REF][START_REF] Porebski | A fast embedded selection approach for color texture classification using degraded LBP[END_REF][START_REF] Porebski | Iterative feature selection for color texture classification[END_REF][START_REF] Porebski | LBP histogram selection for supervised color texture classification[END_REF][START_REF] Porebski | A multi color space approach for texture classification: experiments with Outex, Vistex and Barktex image databases[END_REF][START_REF] Porebski | A new benchmark image test suite for evaluating colour texture classification schemes[END_REF][START_REF] Porebski | Supervised texture classification: color space or texture feature selection?[END_REF][START_REF] Sandid | Robust color texture descriptor for material recognition[END_REF][START_REF] Kalakech | Constraint scores for semi-supervised feature selection: A comparative study[END_REF][START_REF] Kalakech | A new LBP histogram selection score for color texture classification[END_REF][START_REF] Ledoux | Color local binary patterns: compact descriptors for texture classification[END_REF][START_REF] Ledoux | Color and multiscale texture features from vectorial mathematical morphology[END_REF][START_REF] Guo | Discriminative features for texture description[END_REF][START_REF] Florindo | Texture analysis by fractal descriptors over the wavelet domain using a best basis decomposition[END_REF][START_REF] Pietikäinen | Color texture classification with color histograms and local binary patterns[END_REF][START_REF] Mäenpää | Classification with color and texture: jointly or separately?[END_REF][START_REF] Arvis | Generalization of the cooccurrence matrix for colour images: application to colour texture classification[END_REF][START_REF] Iakovidis | A comparative study of color-texture image features[END_REF]126,[START_REF] Alvarez | Texton theory revisited: A bag-of-words approach to combine textons[END_REF][START_REF] Hammouche | Fuzzy aura matrices for texture classification[END_REF][START_REF] Guo | Image retrieval using indexed histogram of Void-and-Cluster Block Truncation Coding[END_REF][START_REF] Casanova | Texture analysis using fractal descriptors estimated by the mutual interference of color channels[END_REF].

-K-fold cross validation is an extension of the holdout method. The dataset is spitted into K subsets and the holdout method is repeated K times. Each time, one of the K subsets is used as the testing set and the other K -1 subsets are put together to form the training set. In order to evaluate the performance, several authors used this technique to split the color texture image database into training and testing sets [START_REF] Bello-Cerezo | Experimental comparison of color spaces for material classification[END_REF][START_REF] Paci | An ensemble of classifiers based on different texture descriptors for texture classification[END_REF][START_REF] Fernández | Texture description through histograms of equivalent patterns[END_REF][START_REF] Sá | ELM based signature for texture classification[END_REF][START_REF] Bianconi | Improved opponent colour Local Binary Patterns for colour texture classification[END_REF].
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-Leaving-one-out cross validation is a special case of K-fold cross validation, with K equal to N, the number of images in the dataset. This technique is used by several authors [START_REF] Münzenmayer | Multispectral texture analysis using interplane sum-and difference-histograms[END_REF][START_REF] Palm | Color texture classification by integrative Co-occurrence matrices[END_REF][START_REF] Chen | Local convex-and-concave pattern: An effective texture descriptor[END_REF][START_REF] Cernadas | Influence of normalization and color space to color texture classification[END_REF][START_REF] Xu | Color texture analysis using the wavelet-based hidden Markov model[END_REF].

After creating the partition of the dataset, the classifier uses the training set to predict the output labels for the images of the testing set. The classification performance is calculated by comparing the predicted class labels obtained by the classifier with the true class labels. Accuracy is estimated as the sum of correct classified images divided by the total number of testing images. Most of the authors used Accuracy to measure the performance of the classifier in the color texture image classification applications. Other evaluation criteria such as Precision and F-measure are used in [START_REF] El Maliani | Color texture classification method based on a statistical multi-model and geodesic distance[END_REF][START_REF] Naresh | Classification of medicinal plants: An approach using modified LBP with symbolic representation[END_REF].

Benchmark color texture image databases

In order to evaluate the performance of different texture analysis methods and to compare their performance, various image databases have been proposed in the literature [START_REF] Hossain | Texture databases -A comprehensive survey[END_REF][START_REF] Bianconi | An appendix to "Texture databases -A comprehensive survey[END_REF]. In the framework of color texture classification, several datasets of color textures have been categorized and critically surveyed by Porebski et al. [START_REF] Porebski | A new benchmark image test suite for evaluating colour texture classification schemes[END_REF]. We introduce here, four benchmark color texture databases that are used in our experimentations in chapter 4: OuTex-TC-00013, USP-Tex, STex and BarkTex.

-OuTex-TC-00013: The test suite OuTex-TC-00013 is provided by the OuTex texture database [START_REF] Ojala | Outexnew framework for empirical evaluation of texture analysis algorithms[END_REF]. The images of this database are acquired with a three-CCD color camera under the same illumination conditions. This database is a collection of heterogeneous materials such as cardboard, fabric, paper, wool, etc. It contains 68 texture images of 746 × 538 pixels. The test suite is constructed by splitting each one of the original texture image into 20 sub-images (128 × 128 pixels) without overlapping, thus resulting in a dataset containing 1360 images. Figure . 1.24 illustrates the images of this dataset where each image represent each class of texture. The specificity of this database is that it contains several categories with similar colors and textures, resulting in a high inter-class similarity. This database is publicly available at http://www.outex.oulu.fi.

-USPTex: The USPTex database consists of a set of 191 color texture images acquired using a digital camera under an unknown but fixed light source. The considered 191 texture classes are typically daily found, such as beans, rice, tissues, road scenes, various types of vegetation, walls, clouds and soils [START_REF] Backes | Color texture analysis based on fractal descriptors[END_REF]. Each image has a size of 512×384 pixels from which 12 sub-images with a size of 128×128 pixels are extracted without overlapping, so that a total of 2292 images is obtained. -BarkTex : The BarkTex database has been proposed by Lakmann at the University of Koblenz-Landau, Germany [START_REF] Lakmann | Barktex benchmark database of color textured images[END_REF]. The images of the BarkTex database represent natural color each of the six tree bark classes of this database. Since the images are not restricted to the bark texture and also show background structures, the image border is excluded defining a Region-of-Interest of fixed size 300×200 located at the image center. This database is publicly To build the New-Barktex set, a region of interest, centered on the bark and whose size is 128 × 128 pixels, is first defined. Then, four sub-images whose size is 64 × 64 pixels are extracted from each region. We thus obtain a set of 68 × 4 = 272 sub-images per class. To ensure that color texture images used for the training and the testing images are less correlated as possible, the four sub-images extracted from a same original image all belong either to the training subset or to the testing one: 816 images are thus used as training images and the remaining 816 as testing images. The evaluation methods and four benchmark databases have been introduced1 . All the recent studies related to those databases are now rewiewed in the following section.

Review of the considered databases

In this section, we synthesize the recent works on color texture classification which are carried out in the literature on the four databases previously presented. The goal of this review is to highlight the test suits that are most frequently used, in order to compare our work with the maximum of previous studies. Indeed, each database can be partitioned to different test suites according to the size of images, the number of training or testing images and evaluation method. This synthesis will allow us to follow the most used partition for each database.

Table 1.1, 1.2, 1.3 and 1.4 summary respectively the characteristics of OuTex-TC-00013, New BarkTex, USPTex and STex databases, when they have been used in the framework of color texture classification. The first column of those tables gives the original name of the image database. The second column shows the name of the test suite. The third column gives the number of classes of the test suite. The fourth column presents the number of images per class. The fifth column indicates the size of the images. The sixth column mentions the cross validation method used to split the image databases into training and testing sets. The last column presents the name of the authors, the year of publication and their references.

In each table, the most frequently used test suite is highlighted. In the following, we will use these test suites to evaluate the performance of our approach and compare our results with those of other works. For example, in the Table 1.2, there are 4 different test suites used for the BarkTex dataset, according to the number of images per class, the size of images and the cross CHAPTER 1. COLOR TEXTURE CLASSIFICATION validation method and the most used test suite is New BarkTex. El Maliani, 2014 [START_REF] El Maliani | Color texture classification method based on a statistical multi-model and geodesic distance[END_REF] Porebski, 2014 [START_REF] Porebski | A new benchmark image test suite for evaluating colour texture classification schemes[END_REF] Cusano, 2014 [START_REF] Cusano | Combining local binary patterns and local color contrast for texture classification under varying illumination[END_REF] Kalakech, 2015 [START_REF] Kalakech | A new LBP histogram selection score for color texture classification[END_REF] Martinez, 2015 [START_REF] Martínez | Alternative to colour feature classification using colour contrast ocurrence matrix[END_REF] Hammouche, 2015 [START_REF] Hammouche | Fuzzy aura matrices for texture classification[END_REF] Guo, 2016 [START_REF] Guo | Image retrieval using indexed histogram of Void-and-Cluster Block Truncation Coding[END_REF] Casanova, 2016 [START_REF] Casanova | Texture analysis using fractal descriptors estimated by the mutual interference of color channels[END_REF] Ledoux, 2016 [START_REF] Ledoux | Color local binary patterns: compact descriptors for texture classification[END_REF] Sandid, 2016 [START_REF] Sandid | Robust color texture descriptor for material recognition[END_REF] Naresh, [START_REF] Naresh | Classification of medicinal plants: An approach using modified LBP with symbolic representation[END_REF] 68 20 128×128 K-fold Paci, 2013 [START_REF] Paci | An ensemble of classifiers based on different texture descriptors for texture classification[END_REF] Fernandez, 2013 [START_REF] Fernández | Texture description through histograms of equivalent patterns[END_REF] Sá Junior, 2016 [START_REF] Sá | ELM based signature for texture classification[END_REF] Bello-Cerezo, 2016 [START_REF] Bello-Cerezo | Experimental comparison of color spaces for material classification[END_REF] Bianconi, 2017a [START_REF] Bianconi | Improved opponent colour Local Binary Patterns for colour texture classification[END_REF] Bianconi 

Conclusion

Texture classification is a fundamental topic in computer vision, playing a significant role in various applications. Texture descriptors have early been applied on grayscale images and have thereby ignored the color information. Many authors demonstrate that color texture features could enhance the performance of texture classification. In this chapter, we have described the key concept of color texture classification. The principal families of color spaces have been presented as well as the main color texture descriptors. The most commonly used classifiers (LDA, SVM, K-NN) in the supervised context have been presented. Four color texture databases have been introduced: OuTex-TC-00013, USPTex, STex and BarkTex and we have reviewed recent works related on those databases to show the most frequently test suites used in the state-of-the-art.

The LBP operator is one of most popular descriptors in texture classification due to its simplicity and good performances. With the objective of improving the performance of texture classification, an extension of LBP to color is proposed. However, color LBP still has some limitations because it lies in high-dimensional feature space. In order to overcome this drawback, many dimensionality reduction approaches have been proposed to reduce the LBP dimension space. The next chapter introduce the feature selection which is an important and frequently used technique for dimension reduction. As described in chapter 1, the LBP operators is a good candidate for local image texture descriptor. However, this operator tends to produce high dimensional feature vectors, especially when the number of considered neighboring pixels increases or when it is applied to color images. Thus, a dimensionality reduction method for LBP is needed to address this problem. Various approaches are proposed to obtain more discriminative, robust LBP-features with reduced feature dimensionality.

Indeed, many machine learning problems in computer vision and several related domains need to deal with very high dimensional data. Many of these features may not be relevant 2.1. Taxonomy of feature selection methods for the final prediction task and degrade the classification performance. Multiple studies have shown that the classification performance can be improved by eliminating these features. These issues can be solved by the method of the dimensionality reduction. For this purpose, the dimensionality reduction can be achieved either by feature extraction or feature selection to a low dimensional space. Feature extraction refers to the methods that create a set of new features based on the linear or non-linear combinations of the original features. Further analysis is problematic since we cannot get the physical meanings of these features in the transformed space.

Examples of feature extraction methods include Principal Component Analysis (PCA) [START_REF] Fukunaga | Introduction to statistical pattern recognition[END_REF], Locality Preserving Projections (LPP) [START_REF] He | Locality preserving projections[END_REF]... In contrast, the feature selection methods aims at finding adequate subsets of features by keeping some original features and therefore maintains the physical meanings of the features. The use of both methods have the advantage of improving performance of classification and increasing computational efficiency. Recently, feature selection has gained increasing interest in the field of machine learning [START_REF] Shevade | A simple and efficient algorithm for gene selection using sparse logistic regression[END_REF][START_REF] Li | A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression[END_REF][START_REF] Yang | A novel feature selection algorithm based on hypothesismargin[END_REF][START_REF] Megchelenbrik | Relief-Based feature selection in bioinformatics: detecting functional specificity residues from multiple sequence alignments[END_REF], data analysis [START_REF] Dash | Feature selection for classification[END_REF][START_REF] Sun | Local-learning-based feature selection for highdimensional data analysis[END_REF][START_REF] Dernoncourt | Analysis of feature selection stability on high dimension and small sample data[END_REF], and successfully applied in computer vision such as information retrieval [START_REF] Roffo | Reading between the turns: statistical modeling for identity recognition and verification in chats[END_REF][START_REF] Roffo | Statistical analysis of personality and identity in chats using a keylogging platform[END_REF][START_REF] Roffo | Online feature selection for visual tracking[END_REF] or visual object tracking [START_REF] Roffo | Trusting skype: Learning the Way People Chat for Fast User Recognition and Verification[END_REF][START_REF] Yuan | Robust object tracking via online informative feature selection[END_REF][START_REF] Zhang | Real-Time Object Tracking Via Online Discriminative Feature Selection[END_REF]. In this work, we focus on the application of feature selection methods to LBP-based features in the framework of color texture classification. This chapter is organized as follow. We first present background information on the concept of feature selection and review works related to our research. We introduce the taxonomy of feature selection methods in section 2.1 by summarizing basic principles applied in feature selection and the context of feature selection. We present the data and knowledge representation by presenting the definitions and notations related to the feature selection methods in section 2.2. We then, review the related literature of the ranking-based approaches, including the ranking-based scores and ranking-based algorithms in section 2.3. Next, the feature selection applied to the local binary pattern is briefly reviewed in section 2.4. The bin selection and histogram selection approaches are discussed, including our first contribution for histogram selection. Finally, in section 2.5, we summarize the principal topics presented in this chapter.

Taxonomy of feature selection methods

Feature selection is defined as a process of selecting the features that best describe a dataset out of a larger set of candidate features. Typically, there are two types of features: relevant and irrelevant features [START_REF] John | Irrelevant features and the subset selection problem[END_REF]. In the framework of classification, relevant features are the features that contain discriminative information about the classes (supervised context) or clusters (unsupervised context). In contrast, irrelevant features are noisy and redundant features that cannot discriminate samples from different classes. Thus, removing irrelevant features reduces computational cost and improves the classification performance. For the classification prob-lems, feature selection aims to select subsets of highly discriminant features while retaining a suitably high accuracy in representing the original features. In other words, it selects relevant features that are capable of discriminating data that belong to different classes. For example, in figure 2.1 (a), f 2 is a relevant feature because it can discriminate class A and class B while f 1 is irrelevant feature. In figure 2.1 (b) f 3 and f 4 are noisy features because they do not allow to discriminate the classes. In figure 2.1 (c), f 5 and f 6 are redundant features because they are highly correlated, we only need one of them to discriminate the class A and B. The terms of "feature selection" can be replaced by different synonyms in the literature: "variable selection", "attribute selection" and "feature ranking". 1. A generation step which is based on a search method generates subsets of features to be evaluated. A subset search strategy generates candidate feature subsets in order to find the optimal subset. Usually, search strategies are usually categorized into complete, sequential, and random models [START_REF] Liu | Toward integrating feature selection algorithms for classification and clustering[END_REF]:

• Complete search among all possible feature subsets. If the input data have D features, the most direct search strategy is the exhaustive search, i.e., search among all possible feature subsets (2 D in total). However, this approach might become computationally very expensive for high dimensional problems, because the size of the explored space corresponds to the number of all possible combinations of features.

• Sequential: Starting with an empty set and subsequent addition of features is referred to as a bottom-up approach like the Sequential Forward Selection (SFS) approach. Or using the full set of features at the beginning and subsequent features removal is called a top-down approach like the Sequential Backward Selection (SBS) approach.

• Random: Starting with a randomly selected feature set and adds randomly selected features or removes them from the set.

2. An evaluation function then calculates the relevance of the feature subset built during the generation step. It compares this with the previous best candidate subset, and then replacing it if found to be better. It can be either classifier independent (i.e., filter approach) or classifier dependent (i.e., wrapper approach or hybrid method) [START_REF] Kohavi | Wrappers for feature subset selection[END_REF].

3.

A stopping criterion decides when to stop. This step is executed every iteration to determine whether the feature selection process should continue or not. Without a suitable stopping criterion the feature selection process may run exhaustively through feature subset space. Generation step and evaluation functions can influence the choice of the stopping criterion. The stopping criteria based on a generation step include: (i) whether a predefined number of features is selected, and (ii) whether a predefined number of repetitions is reached. Stopping criteria based on an evaluation function include: (i) whether addition (or removal) of any features does not produce a better subset; and (ii) whether an optimal subset based on evaluation function is obtained.

4.

A validation step verifies whether the feature subset is valid. Once the stopping criterion has been satisfied, the loop will be stopped and the resulting feature subset may be validated.

Feature selection methods can be categorized into one of two categories according to the context or the evaluation strategy, as shown in figure 2.3a and figure 2.3b, respectively. The subsequent sections will describe each strategy in detail. 

Context of feature selection

In terms of availability of supervised information, feature selection techniques can be roughly classified into three groups: supervised, unsupervised and semi-supervised methods [START_REF] Benabdeslem | Constrained laplacian score for semi-supervised feature selection[END_REF]. Most of supervised and semi-supervised feature selection methods assess the relevances of features by the information of class label.

• Supervised methods: The availability of label information allows supervised feature selection algorithms able to discriminate samples from different classes. There are several literature reviews discussed on supervised feature selection [START_REF] Tang | Feature selection for classification: A review. Data Classification: Algorithms and Applications[END_REF][START_REF] Ang | Supervised, unsupervised and semisupervised feature selection: A review on gene selection[END_REF]. A general framework of supervised feature selection is illustrated in figure 2.4. The training step of the classification depends on the feature selection method. After splitting the data into training and testing sets, classifier is trained. This training step based on a subset of features selected by a feature selection method. It is worth to notice that the feature selection step can either be independent of classifier (filter methods), or it may take into account the performance of a classifier to assess the quality of selected features (wrapper methods). Finally, the classifier predicts class labels of the testing set based on the selected features. One challenge of this approach is the process of labeling the data given by the human user which is expensive and may be unreliable [START_REF] Kalakech | Constraint scores for semi-supervised feature selection: A comparative study[END_REF].

• [START_REF] Dash | Feature selection for classification[END_REF][START_REF] Zhao | Spectral feature selection for supervised and unsupervised learning[END_REF][START_REF] Liu | An unsupervised feature selection algorithm: laplacian score combined with distance-based entropy measure[END_REF][START_REF] He | Laplacian score for feature selection[END_REF]. After the feature selection step, a clustering algorithm gives the output of cluster structure. The main drawbacks of the unsupervised approach are it neglects the possible correlation between different features and it relies on some criteria without the guarantee that the principles are universally valid for all types of data. 

Feature selection evaluation

Based on the different strategies of evaluation, feature selection can be classified into three groups: filter, wrapper and hybrid methods [START_REF] Guyon | An introduction to variable and feature selection[END_REF].

• Filter methods select the subset of features as pre-processing step without involving the classifiers. Typical filter methods consist of two steps. In the first step, feature relevance is ranked by a feature score according to some feature evaluation criteria which can be either univariate or multivariate. In the univariate case, each feature is ranked individually regardless of other features, while the multivariate scheme ranks multiple features simultaneously. The methods rely solely on the inherent characteristics of data such as variance [START_REF] Bishop | Neural networks for pattern recognition[END_REF], correlation [START_REF] Guyon | An introduction to variable and feature selection[END_REF], mutual information [START_REF] Yu | Feature selection for high-dimensional data: A fast correlation-based filter solution[END_REF][START_REF] Zhao | Spectral feature selection for supervised and unsupervised learning[END_REF], consistency [START_REF] Dash | Feature selection for classification[END_REF]. In the second step, lowly ranked features are filtered out and the remaining features are kept. Figure 2.7 describes a generalized form of a filter algorithm. Filter methods are fast and easy solutions, since they can be combined with any classifiers after the filtering is complete. However, they may miss features that are relevant for the target classifiers. Famous filter methods are based on Variance [START_REF] Bishop | Neural networks for pattern recognition[END_REF], Laplacian [START_REF] He | Laplacian score for feature selection[END_REF], Fisher scores [START_REF] Gu | Generalized fisher score for feature selection[END_REF] for univariate scheme and maximum Relevance (mRmR) [START_REF] Peng | Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[END_REF], Inconsistency criterion [START_REF] Dash | Feature selection for clustering[END_REF] for multivariate scheme.

• Wrapper methods evaluate each candidate feature subset through the classification algorithm and using the estimated accuracy of the classification algorithm as its evaluation metric as shown in figure 2.8. They then select the most discriminative subset of features by minimizing the prediction error rate of a particular classifier. This step is a combinatorial problem, with an objective function that is costly to compute for high dimensional • Hybrid methods combine both filter and wrapper methods into a single framework, in order to provide a more efficient solution to the feature selection problem [START_REF] Monirul Kabir | A new wrapper feature selection approach using neural network[END_REF].

A filter evaluation can be applied to discard some features before going to the wrapper step. The key idea of this combination is to lower the complexity of a wrapper, but keeping its high accuracy. Figure 2.9 shows an illustration of the hybrid method. Dash and Liu proposed a first hybrid method that uses a measure based on the entropy of the similarity of the data (filter step) [START_REF] Dash | Feature selection for clustering[END_REF]. Then (wrapper step), they use a clustering algorithm and a scatter separability criterion for evaluating feature subsets. Recently, Solorio-Fernández et al. propose a method based on the Laplacian score ranking jointly with a modification of the Calinski-Harabasz index [START_REF] Solorio-Fernández | A new hybrid filter-wrapper feature selection method for clustering based on ranking[END_REF]. Hybrid methods have the disadvantage that they depend on the evaluation of filter methods used for determining the best feature subset.

The feature selection methods and their categorization have been introduced. Among of the feature selection approaches, we are interest in the hybrid methods which takes advantage of both the filters and the wrappers. In the following of this work, we propose a feature selection approach based on this approach for color texture classification in the supervised context.

Before introducing the state-of-the-art of feature selection methods, we will give some definitions and notations used for the representation of data and knowledge in the next section. 

Data and knowledge representation

In the feature selection context related to our problem, we dispose a dataset of N color texture images defined in a D-dimensional feature space. Italic letters are used to denote scalars, bold letters to denote vectors or matrices (e.g., x, x, X). We denote X = (x r i ), i ∈ {1, ..., N}; r ∈ {1, ..., D}; the associated data matrix represented by equation 2.1, where x r i is the r th feature value of the i th color image I i .

X =         x 1 ... x i ... x N         =         x 1 1 ... x r 1 ... x D 1 ... ... ... ... ... x 1 i ... x r i ... x D i ... ... ... ... ... x 1 N ... x r N ... x D N         = f 1 ... f r ... f D (2.1)
Each of the N rows of the matrix X represents a color texture x i = (x 1 i , ..., x r i , ..., x D i ) ∈ R D , while each of the D columns of X represents the feature vector f r , defined as follows:

f r =         x r 1 ... x r i ... x r N         =         f r 1 ... f r i ... f r N         (2.2)
In supervised learning, all the information about the class labels of the training images are available. Let us denote the vector y the class labels of the different images defined by:

y =         y 1 ... y i ... y N         (2.3)
where y i ∈ {1, .., c, ...,C}, C is the number of classes of the data. For each color image I i , its feature vector x i is associated with a class label y i .

Several studies have shown that graphs constructed in original feature space reflect some intrinsic properties of data, and thus can be used for dimension reduction [START_REF] Yan | Graph embedding and extensions: a general framework for dimensionality reduction[END_REF][START_REF] Lu | Exhaustive and efficient constraint propagation: a graph-based learning approach and its applications[END_REF]. Moreover, the spectral graph theory represents a solid theoretical framework which has been the basis of many effective existing feature selection methods. The feature selection methods that we present in this section are based in large part on spectral graph theory [START_REF] Chung | Spectral Graph Theory[END_REF] including Laplacian score [START_REF] He | Laplacian score for feature selection[END_REF][START_REF] Cai | Document clustering using locality preserving indexing[END_REF], spectral methods [START_REF] Zhao | Spectral feature selection for supervised and unsupervised learning[END_REF] and sparsity score [START_REF] Liu | Sparsity score: a novel graph-preserving feature selection method[END_REF] and so on. All of these methods used the application of graph matrix in the objective of feature selection. In the next section, we introduce several of graph construction related to those approaches.

Graph data representation

Given a dataset X, let G = (V , E) be the undirected graph constructed from X, where V = {v 1 , ..., v N } is its vertex set and E is the set of edges. Each vertex v i in this graph represents an image x i and each edge between two vertices v i and v j carries a non-negative weight s i j ≥ 0. The similarity matrix of the graph is the matrix S = (s i j ) i, j=1,...,N . As G is an undirected graph, s i j = s ji . There are many approaches to transform a given dataset with the pairwise similarities s i j into a graph. The most common graph construction methods including ε-neighborhood graph, k-nearest neighbor graph and fully connected graph [START_REF] Luxburg | A tutorial on spectral clustering[END_REF][START_REF] Belkin | Laplacian eigenmaps for dimensionality reduction and data representation[END_REF][START_REF] Cortes | On transductive regression[END_REF].

• ε-neighborhood graph: The neighbors of a given instance x i are the instances that belong to a sphere centered at x i and having ε as radius. In ε-neighborhood graph the data which have the distance (similarity) less than the threshold ε.

• k-nearest neighbor graph: An edge between two vertices v i and v j is constructed if the corresponding instances x i and x j are close, i.e. x i is among the k-nearest neighbors of x j or x j is among the k-nearest neighbors of x i .

• Fully connected graph: We connect all images with positive similarity with each other and we weight all edges by s i j . As the graph should represent the local neighborhood relationships, this construction is only useful if the similarity function itself models local neighborhoods.

There are several choices for this similarity. Belkin and Niyogi use the heat kernel with different Gaussian variance σ values, as follows [START_REF] Belkin | Laplacian eigenmaps for dimensionality reduction and data representation[END_REF]:

s i j = e - x i -x j 2 2σ 2 (2.4)
where the parameter σ is a constant to be set which controls the width of the neighborhood and x ix j denotes the the distance between x i and x j . In the extreme case where σ → ∞ the weights will become 1.

Cortes and Mohri propose the use of inverse of distance as weight [START_REF] Cortes | On transductive regression[END_REF] as follows:

s i j = 1 x i -x j , x i x j (2.5)
The similarity function can also be expressed under cosine function. It is used to measure the similarity between two vectors by computing the cosine of the angle between them as defined as follows:

s i j = |cos(x i , x j )| = |x T i x j | x i x j (2.6)
The degree d i of a vertex v i ∈ V is equal to the sum of weights of all edges linked to this vertex. It is defined the diagonal matrix D = (d i ) i=1...N should be noted as follows:

d i = N ∑ j=1 s i j (2.7)
It is worth to note that the degree d i of a node i can be considered as a local density measure at x i . The Laplacian matrix L of X is defined by:

L = D -S (2.8)
The drawback of all the graphs mentioned above is their dependence on the value of the parameters ε, k, or σ . Without the optimum value of these parameters, the similarity matrix constructed could not reflect the real similarity among data points. For example, the adjustable parameter σ in equation 2.4 plays an important role in the performance of the function, and should be carefully tuned by hand according to the problem. If overestimated, the exponential will behave almost linearly, and the projection will lose its nonlinear power. In contrast, if underestimated, the function will lack the regularization and will be highly sensitive to noise so that it might change the graph structure. Recently, to address the limitations of classical graph construction methods, sparse representation has been successfully used for graph construction [START_REF] Xu | L1 graph based on sparse coding for feature selection[END_REF][START_REF] Cheng | Learning with l-1 -Graph for image analysis[END_REF]. In the following, we will briefly present the sparse graph construction.

Sparse graph construction

Sparse representation has received a great deal of attention in computer vision, especially in image representation in the recent years. It has many effective applications such as image compression and coding [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF][START_REF] Wright | Robust face recognition via sparse representation[END_REF][START_REF] Sun | Sparse representation with multi-manifold analysis for texture classification from few training images[END_REF][START_REF] Yang | Image super-resolution as sparse representation of raw image patches[END_REF], pattern recognition, image and signal processing [START_REF] Huang | Sparse representation for signal classification[END_REF][START_REF] Davenport | The smashed filter for compressive classification and target recognition[END_REF][START_REF] Cai | Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices[END_REF]. Generally, sparse representation helps to find the most compact representation of the original data.

Recently, Qiao et al. presented a new method to design the similarity matrix based on the modified sparse representation [START_REF] Qiao | Sparsity preserving projections with applications to face recognition[END_REF]. The graph adjacency structure and corresponding graph weights are built simultaneously by the l 1 -norm minimization problem. This is, in fact, a new way that is fundamentally different from the traditional ones (like Euclidean distance, cosine distance, etc.) to measure the similarity between different data points. By introducing sparsity in the linear reconstruction process, it identifies the most relevant data points as well as their estimated similarity to the reconstructed data point. Moreover, many empirical results have shown that a sparse graph is preferred, because sparse graphs have much less spurious connections between dissimilar points and lead to exhibit high quality for data representation [START_REF] Xie | Discriminative subspace learning with sparse representation view-based model for robust visual tracking[END_REF][START_REF] Qiao | Sparsity preserving projections with applications to face recognition[END_REF][START_REF] Liu | Sparsity score: a novel graph-preserving feature selection method[END_REF][START_REF] Liu | Sparsity Score: A new filter feature selection method based on graph[END_REF][START_REF] Xu | L1 graph based on sparse coding for feature selection[END_REF][START_REF] Xu | Sparse-representation-based classification with structure-preserving dimension reduction[END_REF].

Given a data matrix X = [x 1 , ..., x i , .., x N ] T ∈ R D×N including all the instances in its columns, we want to reconstruct each instance x i , e.g., a color texture image, using as few entries of X as possible. This problem can be expressed mathematically as follows:

min s i s i 0 s.t. x i = Xs i , (2.9) 
where s i = [s i1 , ..., s i(i-1) , 0, s i(i+1) , ..., s iN ] T is an N-dimensional coefficients vector in which the i th element is equal to zero (implying that x i is removed from X) and the elements s i j (i j) denotes the contribution of each x j to reconstruct x i , . 0 denotes the l 0 -norm, which is equal to the number of non-zero components in s i .

It is worth to note that the solution of equation 2.9 is NP-hard in general case. A sparse vector s i can be approximately solved by the following modified l 1 -minimization problem:

min s i s i 1 s.t. x i = Xs i , 1 = 1 T s i , (2.10) 
where, . 1 denotes the l 1 -norm, ; 1 ∈ R N is a vector of all ones values. In reality, the constraint x i = Xs i in equation 2.10 does not always hold due to the presence of noises. The modified objective function is defined as follows [START_REF] Wright | Robust face recognition via sparse representation[END_REF] :

min s i s i 1 s.t. x i -Xs i 2 < ξ , 1 = 1 T s i , (2.11) 
where ξ represents a given error tolerance. The sparse vector s i is computed for each sample x i . The optimal solution of equation. 2.11 for each sample x i is a sparse vector ŝi , that allows to build the sparse similarity matrix S = ( ŝi, j ) N×N , defined by: S = [ŝ 1 , ..., ŝi , ..., ŝN ] T

(2.12)

The l 1 -minimization problem can be solved in polynomial time by standard linear programming method [START_REF] Shaobing | Basis pursuit[END_REF] using publicly available packages such as l 1 -toolbox1 . As the vector ŝi is sparse and a lot of its components are zero and few of them have non zero values, the instances in the dataset which are far from the input signal will have very small or zero coefficients. This solution might reflect the intrinsic geometric properties of original data. In cases of the absence of the class label information, the discriminative information can be naturally preserved in the matrix S.

We have presented the definitions and notations related to the following of this chapter. Different strategies have been proposed over the last years for feature selection: filter, wrapper and hybrid methods. Among of them, hybrid methods attempt to have a reasonable compromise between efficiency (computational effort) and effectiveness (by selecting the relevance features). To combine the filter and wrapper methods into a hybrid methods, we are interest the filterbased approach in the univariate scheme by using some criteria to assess each feature sorting them into a list (ranking). The next section is entirely dedicated to ranking-based approaches.

Ranking-based approaches

The aim of feature ranking is to measure the relevance of features in order to find the most discriminative feature. Among a huge literature on feature ranking methods, we will briefly review several well-known approaches. These approaches can be achieved by associating a score for each feature or by applying an algorithm which gives weights for a feature subset. In the first case, the features are independently evaluated, whereas in the second case, the weight of each feature is determined using all attributes.

Ranking based on scores

The filter approaches selects the relevant features by looking at the inherent properties of the data. In most cases, feature relevance score is individually calculated. In this section, we introduce several score functions based on feature ranking methods according to the learning context in supervised, unsupervised and semi-supervised.

Unsupervised feature selection

The unsupervised feature selection methods evaluate the relevance of features based on various types of criteria such as distance, information, correlation, dependency and so on. These 2.3. Ranking-based approaches methods include Variance, Laplacian and Unsupervised sparsity scores.

• Variance score uses the variance along a dimension to reflect its representative power and selects the features with the maximum variance. Let f r i denote the r th feature of the i th image. The mean of the r th feature f r is defined as:

µ r = 1 N N ∑ i=1 f r i (2.13)
The variance of the r th feature denoted as Variance r , which should be maximized, is calculated as follows [START_REF] Bishop | Neural networks for pattern recognition[END_REF]:

Variance r = 1 N N ∑ i=1 ( f r i -µ r ) 2 (2.14)
The features are sorted according to the ascending order of Variance r to select the most relevant ones.

• Laplacian score assumes that instances from the same class are close to each other and the local geometric structure is crucial for discrimination [START_REF] He | Laplacian score for feature selection[END_REF]. This score selects features with larger variances which have more representative power and stronger locality preserving ability. The Laplacian score of the r th feature denoted Laplacian r which should be minimized, is computed as follows:

Laplacian r = ∑ N i=1 ∑ N j=1 ( f r i -f r j ) 2 s i j ∑ N i=1 ( f r i -µ r ) 2 d i = fr T L fr fr T D fr (2.15)
where s i j is defined by the similarity relationship between two images I i and I j as defined in section 2.2 and fr is defined as:

fr = f r - f rT D1 f rT D1 1 (2.16)
where 1 ∈ R N is a vector of all ones.

After calculating the Laplacian score for each feature, they are sorted in the ascending order of Laplacian r to select the relevant ones.

• Unsupervised sparsity score is another feature ranking algorithm proposed by Liu et al. [START_REF] Liu | Sparsity score: a novel graph-preserving feature selection method[END_REF]. This approach is based on sparse similarity matrix construction. The proposed unsupervised sparsity score of the r th feature denoted U nsupSparse r , which should be minimized, is defined as follows:

U nsupSparse r = ∑ N i=1 ( f r i -∑ N j=1 ŝi j f r j ) 2 1 N ∑ N i=1 ( f r i -µ r ) 2 = f r T (I -S -S T + SS T )f r f r T (I -1 N 11 T )f r (2.17)
where I is an identity matrix and ŝi j is the entry of the sparse similarity matrix S constructed using all images which is presented in section 2.2.2.

The sparsity score for each feature is sorted in the ascending order of U nsupSparse r in order to select the relevant ones.

Supervised feature selection

Supervised feature selection evaluates the relationship between the features and their class labels information. Given data matrix X = [x 1 , ..., x i , .., x N ], x i ∈ R D×N , each image I i is associated with a class label y i , {x i , y i }, y i ∈ {1, .., c, ..,C}, where C is the number of classes and N c denotes the number of instances in the class c. Based on that notation, we introduce several feature selection methods in the supervised context.

• Fisher score is one of the most widely used supervised feature selection score. The principal idea of Fisher score is to identify a subset of features so that the distances between samples in different classes are as large as possible, while the distances between samples in the same class are as small as possible.

Let µ r denotes the mean of all instances on the r th feature, µ rc and (σ rc ) 2 the mean and variance of class c corresponding to the r th feature, respectively. The Fisher score of the r th feature, which should be maximized, is calculated as follows [START_REF] Bishop | Neural networks for pattern recognition[END_REF]:

Fisher r = ∑ C c=1 N c (µ rc -µ r ) 2 ∑ C c=1 N c (σ rc ) 2 (2.18)
where, the numerator is the between-class variance considering the r th feature and the denominator is the within-class variance considering the r th feature.

After calculating the Fisher score for each feature, they are sorted in the ascending order to select the relevant ones.

• Supervised Laplacian score: The Laplacian score which is based on concepts from spectral feature selection, identifies relevant features by measuring their capability of preserving instance similarity. Spectral feature selection also provides a framework for supervised and unsupervised feature selection [START_REF] Zhao | Spectral feature selection for supervised and unsupervised learning[END_REF]. When class label information is available, the similarity matrix can be directly formed from label information. The following function is usually used for constructing a similarity matrix S in a supervised way [START_REF] Cai | Document clustering using locality preserving indexing[END_REF]:
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s i j =    1 if y i = y j = c, 0 otherwise (2.19)
We obtain the supervised Laplacian score of the r th feature denoted SupLaplacian r from equation 2.15 by using the similarity matrix defined by equation 2.19.

Moreover, the relationship between supervised Laplacian and Fisher score can be formulated as follows:

SupLaplacian r = 1 1 + Fisher r (2.20)
where Fisher r is the Fisher score defined by equation 2. In this case, the supervised Laplacian score of the r th feature, denoted SupLaplacian r 2 , is given by:

SupLaplacian r 2 = ∑ N i=1 ∑ N j=1 ( f r i -f r j ) 2 (W b ) i j ∑ N i=1 ∑ N j=1 ( f r i -f r j ) 2 (W w ) i j = f r T L b f r f r T L w f r (2.21)
where L b and L w are the Laplacian matrices of the graphs G b and G w , respectively.

• Supervised sparsity score: Liu et al. extend the unsupervised sparsity score to supervised context by utilizing the class label information [START_REF] Liu | Sparsity score: a novel graph-preserving feature selection method[END_REF]. Let f rc i denotes the r th feature of i th intance in class c, ŝc i j is the element of sparse similarity matrix S c which is constructed within the class c, e c is a N-dimensional vector with e c (i) = 1, if I i belongs to the class c and 0 otherwise. The proposed supervised sparsity score of the r th feature, denoted SupSparse r , which should be minimized, is defined as follows:

SupSparse r = ∑ C c=1 ∑ N c i=1 ( f rc i -∑ N c j=1 ŝc i j f rc j ) 2 ∑ C c=1 ∑ N c i=1 ( f rc i -µ rc ) 2 = ∑ C c=1 f rc T (I -S c -S T c + S c S T c )f rc f T r (I -∑ C c=1 1 N c e c e c T )f r (2.22)
After calculating the score for each feature, they are sorted in the ascending order of SupSparse r to select the relevant ones. In the classification experiments, Liu et al. have demonstrated that this score outperforms other methods in most cases, especially for multi-class problems [START_REF] Liu | Sparsity score: a novel graph-preserving feature selection method[END_REF].

Semi-supervised feature selection

In reality, the full class label is often difficult to obtain. In semi-supervised learning, a dataset of N color texture images X consists of two subsets depending on the label availability: X U = {x l+1 , x l+2 , ..., x l+u } u 0 , which are unlabeled and X L = {x 1 , x 2 , ..., x l } l 0 for which the labels y L = {y 1 , y 2 , ..., y l } are provided and N = l + u. On the other hand, there is another semisupervised information such as pairwise constraints. The pairwise constraints specify whether a pair of two images belong to the same class (must-link constraints) or different classes (cannotlink constraints). The set of must-link constraints (M) and the set of cannot-link constraints (C) of the dataset X are defined as follows in [START_REF] Zhang | Constraint Score: A new filter method for feature selection with pairwise constraints[END_REF]:

• M = {(x i , x j ) | x i and x j belong to the same class}

• C = {(x i , x j ) | x i and x j belong to different classes}
Semi-supervised feature selection methods based on pairwise constraints use both pairwise constraints described in Section 2.2 to evaluate the relevance of features according to their constraint and locality preserving the local data structure. Two graphs G M and G C are constructed by using the instances of M and C respectively. If two nodes are must-link (or cannot-link), an edge is created in the graph G M (or G C ). The similarity matrix of G M and G C is defined as follows:

s M i j =    1 if (x i , x j ) ∈ M 0 otherwise
(2.23)

s C i j =    1 if (x i , x j ) ∈ C 0 otherwise (2.24)
Two constraint scores are proposed including constraint score-1 (CS 1 ) and constraint score-2 (CS 2 ) by Zhang et al [START_REF] Zhang | Constraint Score: A new filter method for feature selection with pairwise constraints[END_REF]. The constraint scores of the r th feature denoted CS r 1 and CS r 2 , which should be minimized, are calculated as follows [START_REF] Zhang | Constraint Score: A new filter method for feature selection with pairwise constraints[END_REF]:

CS r 1 = ∑ (x i ,x j )∈M ( f r i -f r j ) 2 ∑ (x i ,x j )∈C ( f r i -f r j ) 2 = f r T L M f r f r T L C f r (2.25) CS r 2 = ∑ (x i ,x j )∈M ( f r i -f r j ) 2 -λ ∑ (x i ,x j )∈C ( f r i -f r j ) 2 = f r T L M f r -λ f r T L C f r (2.26)
where λ is a parameter to balance the two terms in 2.26. Kalakech et al. propose another semi-supervised score which uses both pairwise constraints and the local properties of the unlabeled data [START_REF] Kalakech | Constraint score for semi-supervised selection of color texture features[END_REF][START_REF] Kalakech | Constraint scores for semi-supervised feature selection: A comparative study[END_REF]. The Laplacian and Fisher scores have also been extended in the semi-supervised learning context in [START_REF] Doquire | A graph Laplacian based approach to semi-supervised feature selection for regression problems[END_REF]. More recently, Liu and
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Zhang propose a pairwise constraint-guided sparse learning method for feature selection, where the must-link and the cannot-link constraints are used as discriminative regularization terms that directly concentrate on the local discriminative structure of data [START_REF] Liu | Pairwise constraint-guided sparse learning for feature selection[END_REF]. A comprehensive survey of feature selection methods in the semi-supervised context is introduced by Sheikhpour et al [START_REF] Sheikhpour | A survey on semi-supervised feature selection methods[END_REF].

The filter methods based on scores are introduced. The following section presents the two well-known algorithms Relief and Simba for features ranking which are principally based on the largest margin concept.

Ranking based on weighting algorithms

Largest margin concept is very important in the statistical pattern recognition, because it measures confidence of a classifier with respect to its predictions. There are two approaches of describing a margin [START_REF] Crammer | Margin analysis of the LVQ algorithm[END_REF]:

• The sample-margin measures the distance between an instance and a decision boundary induced by the classifier. For example Support Vector Machines [START_REF] Cortes | Support-vector networks[END_REF] is a classification algorithm that represents the images as points in space, mapped so that the images of different classes are divided by a clear gap (sample-margin) that is as wide as possible.

• The hypothesis-margin: Let X = [x 1 , ..., x i , ..., x N ] be a training data set where x i = (x 1 i , ...x 2 i , ..., x D i ) T is the i th representation of an image that contains D features and y i its related label.

The concepts of nearhit and nearmiss were used in general before the notion of margin. nearhit or NH(x i ) of an image x i is the nearest image to x i having the same label and the nearmiss or NM(x i ) of an image x i is nearest image to x i having a different label. CHAPTER 2. FEATURE SELECTION Hypothesis margin of x i denoted by ρ i is calculated as the difference between the distance to its NM(x i ) and the distance to its NH(x i ). When multiple images have large margin, they can move considerably in the feature space without altering the labeling structure of the data set. Hence, a large margin insures high confidence when a classifier is making its decision. Moreover, a feature's contribution to the maximization of hypothesis margin reflects its ability to discriminate the data into different classes.

Recently, various feature selection algorithms have been developed under the large margin principles including SVM-based feature selection and Relief family (1-NN based) algorithms. The feature selection methods based on sample-margin need high computational cost for a highdimensional data sets [START_REF] Yang | A novel hypothesis-margin based approach for feature selection with side pairwise constraints[END_REF]. So, we focus on feature selection algorithms developed under the hypothesis margin concept. Two most discussed hypothesis margin methods are the Relief algorithm [START_REF] Kira | A practical approach to feature selection[END_REF] and Simba algorithm [START_REF] Gilad-Bachrach | Margin based feature selection-theory and algorithms[END_REF] that will be presented in the following. Given a distance function . , a margin ρ i of x i is computed as:

ρ i = x i -NM(x i ) -x i -NH(x i ) (2.27)
Similarly the margin over the dataset X is computed as:

ρ = N ∑ i=1 ρ i (2.28)
One natural idea is to scale each feature by a non-negative vector w to obtain a weighted feature space such that a margin-based function in this induced feature space is maximized.

ρ i (w) = x i -NM(x i ) w -x i -NH(x i ) w (2.29)
Thus the weighted margin over the dataset X is computed as

ρ(w) = N ∑ i=1 ρ i (w) (2.30)

Relief algorithm

The Relief algorithm is based on a measure of relevance of each feature by maximizing a margin-based objective function [START_REF] Kira | A practical approach to feature selection[END_REF]. If we specify the distance function . by L1-norm (or Manhattan distance), we obtain the well-known Relief algorithm. The hypothesis margin of an instance x i is defined as:

ρ i = x i -NM(x i ) 1 -x i -NH(x i ) 1 (2.31)
where L1-norm is defined as:
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z 1 = D ∑ r=1 |z r | = |z 1 | + ... + |z r |... + |z D | (2.32)
The hypothesis margin over the whole dataset X is computed as:

ρ = N ∑ i=1 ρ i (2.33)
The weighted margin of an instance x i is defined as:

ρ i (w) = x i -NM(x i ) w -x i -NH(x i ) w (2.34)
where,

z w = D ∑ i=1 w r |z r | = w 1 |z 1 | + ... + w r |z r | + ... + w D |z D | (2.35)
The weighted margin over the whole dataset X is computed as

ρ(w) = N ∑ i=1 ρ i (w) (2.36)
The objective is to find a weighted vector w, which maximizes the evaluation function defined as the weighted hypothesis margin. If we consider the following notation:

M =    |x 1 i -NM(x 1 i )| ... |x D i -NM(x D i )|    -    |x 1 i -NH(x 1 i )| ... |x D i -NH(x D i )|    =    M 1 ... M D    (2.37) 
The evaluation function related to the weighted margin of the image x i becomes:

ρ i (w) = w T M = w 1 M 1 + ...w r M r + ... + w D M D (2.38)
The gradient of the evaluation function is given by: ∂ ρ i (w)

∂ w r = ∂ w T M ∂ w r = M r (2.39)
And the updating equation is:

w r new = w r old + ∂ ρ i (w) ∂ w r (2.40)
The basic Relief algorithm is given by algorithm 1. The method randomly select T images from the training set and updates the relevance of each feature based on the difference between the selected image and the two nearest instances of the same and different classes. The expected weight is large for relevant features and small for irrelevant ones under some assumptions.

The output is a weight vector, with a weight w r corresponding of the r th feature. This vector is a ranking list of the features. The threshold value τ can be defined by user to select the most discriminant features. Moreover, Kira et al proposed a relevancy threshold τ to get a subset selection algorithm by a a statistical mechanism which ensures the probability that a given irrelevant feature will be chosen is small [START_REF] Kira | A practical approach to feature selection[END_REF]. 

∆ r = |x r -NM(x r )| -|x r -NH(x r )| w r = w r + ∆ r End For
End For 3. The chosen feature set is {r|w r > τ} where τ is a fixed threshold

Simba algorithm

Simba algorithm is an iterative algorithm proposed by Gilad-Bachrach et al. [START_REF] Gilad-Bachrach | Margin based feature selection-theory and algorithms[END_REF]. If we specify the distance function . by l 2 norm (or Euclidean distance) like the one used in Simba algorithm, we obtain the following margin of an instance x i

ρ i = 1 2 ( x i -NM(x) i 2 -x i -NH(x) i 2 ) (2.41)
where the l 2 norm is defined as

z 2 = D ∑ r=1 z r2 (2.42)
The margin based on Euclidean distance over the whole dataset X is computed as:

ρ = N ∑ i=1 ρ i = N ∑ i=1 1 2 ( x i -NM(x i ) 2 -x i -NH(x i ) 2 ) (2.43)
The weighted margin of an image x i is computed as:

ρ i (w) = 1 2 ( x i -NM(x i ) 2 -x i -NH(x i ) 2 ) (2.44) 69 
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z w = D ∑ r=1 w r2 z r2 (2.45)
The gradient of the evaluation function is given by:

∂ ρ i (w) ∂ w r = 1 2 (x r i -NM(x r i )) 2 x i -NM(x i ) w - (x r i -NH(x r i )) 2 x i -NH(x i ) w w r (2.46)
And the updating equation is:

w r new = w r old + 1 2 (x r i -NM(x r i )) 2 x i -NM(x i ) w - (x r i -NH(x r i )) 2 x i -NH(x i ) w w r
(2.47)

The difference of distances between samples and their nearest neighbors are weighted by coefficients linked to the quality of features. Those weights are found by maximizing the margin. Simba algorithm embeds stochastic gradient ascent into the Relief algorithm that is slightly modified. The Simba algorithm for feature selection is given by algorithm 2. 

Algorithm 2 Simba Algorithm

(x r -NM(x) r ) 2 x-NM(x) w - (x r -NH(x) r ) 2 x-NH(x) w w r w r = w r + ∆ r End For End For 3. w ← w 2 w 2 ∞
where, w 2 = (w 1 2 , ..., w r2 , ..., w D 2 ) and w 2 ∞ = max(w 1 2 , ..., w r2 , ..., w D 2 )

The major advantage of Simba compared to Relief is that it re-evaluates the margin with respect to the updated weight vector. The computational complexity of Simba is O(T DN), where T is the number of iterations, D the number of features and N the size of the dataset X.

The numerical experiments show that Simba outperforms Relief [START_REF] Kira | A practical approach to feature selection[END_REF].

The feature selection based on ranking approaches by the score computation and by the algorithm based on hypothesis margin are introduced. The following section presents the exploitation of feature selection methods applied to LBP-based features.

Feature selection applied to LBP

We classify the LBP-features dimensionality reduction techniques into two strategies: (1) the first one is to reduce the feature length based on some rules or the predefinition of patterns of interest (like uniform patterns) and (2) the second one exploits feature selection methods to identify the discriminative patterns with similar motivations as the beam search LBP variants [START_REF] Huang | Local binary patterns and its application to facial image analysis: a survey[END_REF]. The latter has a better performance but usually requires an off-line training. In this work, we are interesting to the learning discriminative LBP features based on feature selection approaches (see section 2.4.1).

Moreover, we take an interesting in a different approach proposed by Porebski, which selects the most discriminant whole LBP histograms (see section 2.4.2). This section thus briefly reviews several methods related to the LBP bin selection and LBP histogram selection approaches.

LBP bin selection

Smith and Windeatt apply the Fast Correlation-Based Filtering (FCBF) algorithm [START_REF] Yu | Feature selection for high-dimensional data: A fast correlation-based filter solution[END_REF] to select the LBP patterns that are the most correlated to the target class [START_REF] Smith | Facial expression detection using filtered local binary pattern features with ECOC classifiers and platt scaling[END_REF]. FCBF is a feature selection method which starts with the full set of features, uses Symmetrical Uncertainty (SU) to calculate dependences of features and finds the best subset using backward selection technique with sequential search strategy. It has an inside stopping criterion that makes it stop when there are no features left to eliminate. In the FCBF method, Y is the vector of data labels and f r is the vector of r th feature value for all data. Let p( f r i ) be the prior probability for all values of f r . The entropy of f r is:

E(f r ) = - N ∑ i=1 p( f r i )log 2 (p( f r i )) (2.48)
and the entropy of f r knowing the class labels Y is defined as:

E(f r |Y) = - C ∑ c=1 p(y c ) N ∑ i=1 p( f r i |y c )log 2 (p( f r i |y c )) (2.49)
where p( f r i |y c ) is the posterior probability of f r given the class label Y. Symmetrical Uncertainty (SU) is calculated as follows:

SU (f r |Y) = 2 E(f r ) -E(f r |Y) E(f r ) + E(Y) (2.50)
Based on the SU value and a threshold value defined by user, FCBF operates by repeatedly choosing the feature that is the most correlated with the class, excluding those features already chosen, and rejecting any features that are more correlated with it than with the class. In [START_REF] Smith | Facial expression detection using filtered local binary pattern features with ECOC classifiers and platt scaling[END_REF], 2.4. Feature selection applied to LBP they split the image into multi blocks and then extract LBP features with different radii. The final histogram with 107000 features is reduced to 120 by using FCBF.

Lahdenoja et al. define a discrimination concept of symmetry for uniform patterns to reduce the feature dimensionality [START_REF] Lahdenoja | Reducing the feature vector length in local binary pattern based face recognition[END_REF]. The level of symmetry S of a LBP code is defined as the minimum of the sums of each individual binary element in that pattern and its complement which is defined as:

S = min{ P-1 ∑ i=0 b i , P-1 ∑ i=0 bi } (2.51)
where b i is the i th bit of the LBP code and bi is its complement. For example, for patterns 00111111 and 00011000, the level of symmetry S equals to 2. The patterns with a higher level of symmetry are shown to have more discriminative power.

Maturana et al. use heuristic algorithm to select the neighbors used in the computation of LBP [START_REF] Maturana | Learning discriminative local binary patterns for face recognition[END_REF]. Within a square neighborhood given by a R, there are (2R + 1) 2 -1 possible neighbors. They thus propose to select among the (2R + 1) 2 -1 neighbors the subspace of P neighbors which maximizes the Fisher-like class separability criterion.

Liao et al. introduce Dominant Local Binary patterns (DLBP) which consider the most frequently occurred patterns in a texture image [START_REF] Liao | Dominant Local Binary Patterns for texture classification[END_REF]. To compute the DLBP feature vectors from an input image, the pattern histogram which considers all the patterns in the input image is constructed and the histogram bins are sorted in descending order. The occurrence frequencies corresponding to the most frequently occurred patterns in the input image are served as the feature vectors.

Guo et al. propose a Fisher Separation Criterion (FSC) to learn the most reliable and robust patterns by using intra-class and inter-class distances [START_REF] Guo | Descriptor learning based on fisher separation criterion for texture classification[END_REF]. The most reliable patterns for each class are determined, and then merged to form the global dominant set. This model is generalized and can be integrated with existing LBP variants such as LBP uniform, rotation-invariant patterns or LTP.

It is worth to note that there exist another approach for deriving compact and discriminative LBP-based feature vectors consist of applying subspace methods for learning and projecting the LBP features from the original high-dimensional space into a lower dimensional space. For example, a first approach proposed by Chan et al. uses linear discriminant analysis to project high-dimensional color LBP bins into a discriminant space [START_REF] Chan | Multispectral local binary pattern histogram for component-based color face verification[END_REF]. Banerji et al. apply PCA to reduce the feature dimensionality of the concatenating LBP features extracted from different color spaces. Zhao et al. compare different dimensionality reduction methods on LBP features, e.g. PCA, kernel PCA and Laplacian PCA [START_REF] Zhao | Laplacian PCA and its applications[END_REF]. Hussain et al. exploit the complementarity of three sets of features, namely, HOG, LBP, and LTP, and applies partial least squares for improving their visual object detection approach [START_REF] Hussain | Feature sets and dimensionality reduction for visual object detection[END_REF]. Nanni and Lumini extract the LBP uniform from the multi blocks of facial image. The concatenated feature vector constructed is adopted by Sequential Forward Floating Selection (SFFS) to select the discriminant LBP CHAPTER 2. FEATURE SELECTION feature [START_REF] Nanni | RegionBoost learning for 2d+3d based face recognition[END_REF].

LBP histogram selection

Porebski et al. firstly proposed an approach which selects the most discriminant whole LBP histograms [START_REF] Porebski | Supervised texture classification: color space or texture feature selection?[END_REF]. In this approach, the most discriminant LBP histograms are selected in their entirety, out of the different LBP histograms extracted from a color texture. It fundamentally differs from all the previous approaches which select the bins of the LBP histograms or project them into a discriminant space.

Histogram selection approaches can be grouped in three ways: filters, wrappers and hybrid. The latter combines the reduction of processing time of a filter approach and the high performances of a wrapper approach. Filter approaches consist in computing a score for each histogram in order to measure its efficiency. Then, the histograms are ranked according to the proposed score. In wrapper approaches, histograms are evaluated thanks to a specific classifier and the selected ones are those which maximize the classification rate. The next section reviews three scores proposed in the literature and one is our contribution.

Intra-Class Similarity score

We first extend the notation that is introduced in section 2.2 and section 2.4.2 to histogram. In the considered LBP histogram selection context, the database is composed of N color texture images. Each image I i , i ∈ {1, ..., N} is characterized by δ histograms (δ = 9) in a single 3D color space. Let H r is the r th histograms to evaluate. The data is summarized by the matrix H H H r is defined as: 

H H H r = H r 1 ...H r i ...H r N =         H r 1 ( 
D int (H r i , H r j ) = Q ∑ k=1 min(h r i (k), h r j (k)) (2.53)
The following measure SIM c is then considered to determine the intra-class similarity of a texture class C:

SIM c = 2 N c (N c -1) N c -1 ∑ i=1 N c ∑ j=i+1 D int (H r i , H r j ), (2.54) 
where N c is the number of images belonging to the class c. Porebski et al. suppose that the higher the measure SIM c of intra-class similarity is, the more relevant the histogram H r is.

The score S r ICS of the histogram H r , which includes all intra-class similarities, is finally defined as follows:

S r ICS = 1 C C ∑ c=1 SIM c , (2.55) 
where C is the number of considered classes. S r ICS ranges from 0 to 1. The most discriminant histogram maximizes the score S r ICS .

Adapted Supervised Laplacian score

Inspired by the approach proposed by Porebski, Kalakech et al. propose to Adapt the Supervised Laplacian (ASL) score used in the literature for feature ranking and selection, to select and rank histograms in the supervised context [START_REF] Kalakech | A new LBP histogram selection score for color texture classification[END_REF]. The ASL-score evaluates the relevance of a histogram using the local properties of the image data. The basic idea is to assume that the input histogram pairwise similarity measures in the original histogram space are preserved in the relevant histogram subspace. So, similar images with same class labels have to be close when they are represented by one relevant histogram.

For this score, the considered distance measure between two histograms is the Jeffrey divergence, which is defined as follows:

D Je f (H r i , H r j ) = Q ∑ k=1 H r i (k)log H r i (k) H r i (k)+H r j (k) 2 + Q ∑ k=1 H r j (k)log H r j (k) H r i (k)+H r j (k) 2 (2.56)
The value of the Jeffrey divergence between two histograms is low when their corresponding images are similar to each other.

Using this measure, the ASL-score of the histogram H r is then defined as follows:

CHAPTER 2. FEATURE SELECTION S r ASL = ∑ N i=1 ∑ N j=1 D Je f (H r i , H r j )s i j ∑ N i=1 D Je f (H r i , H r )d i (2.57)
where:

• N is the total number of images,

• s i j is an element of the similarity matrix S. In a supervised context, for each image I i , a class label y i is associated. The similarity between two images I i and I j is defined by:

s i j =    1 if y i = y j , 0 otherwise (2.58)
• d i is the degree of the image I i :

d i = N ∑ j=1 s i j , (2.59) 
• H r is the histogram weighted average:

H r = ∑ N i=1 H r i d i ∑ N i=1 d i (2.60)
The histograms are sorted according to the ascending order of the ASL-score in order to select the most relevant ones.

Given a database of N texture images belonging to C classes. Under this representation, we reformulate the ASL-score in equation 2.57 as follows:

S ′r ASL = ∑ C c=1 ∑ N c i, j=1 D Je f (H rc i , H rc j )s c i j ∑ C c=1 ∑ N c i=1 D Je f (H rc i , H rc )d c i (2.61)
where:

• N c is the number of images of the c th class,

• S c = s c i j is the similarity matrix within the class c, defined by equation 2.58. In this case, S c is an all-ones matrix and the matrix diagonal D c = d c ii = I c is an identity matrix. [START_REF] Kalakech | A new LBP histogram selection score for color texture classification[END_REF]. This matrix is deduced from the class labels. It is a hard value which is 0 or 1. In this section, we propose to extend the ASL-score by using sparse representation to build a soft similarity matrix that takes values between 0 and 1. Moreover, a value between 0 and 1 will measure the similarity in a subtle way, instead of being binary with just two values 0 and 1. This may lead to more powerful discriminating information. Instead of using the value 1 or 0, we proposed to construct the sparse similarity matrix based on the sparse representation. This leads to our fist contribution is the proposition the novel histogram score, namely Sparse Adapt the Supervised Laplacian (SpASL).

The sparse representation of H r i is constructed by using a few entries of H H H r as possible. It is defined as follows:

min s i s i 1 , s.t. H r i -H H H r s i 2 < ξ , 1 = 1 T s i , (2.62) 
where:

• . 1 is the l 1 -norm of a vector

• . 2 denotes l 2 -norm of a vector.

• s i is an N-dimensional vector in which the i th element is equal to zero implying that H r i is removed from H H H r . It is defined as:

s i = [s i1 , ..., s i(i-1) , 0, s i(i+1) , ..., s iN ] T (2.63)
• 1 ∈ R N is a vector of all ones.

• ξ represents the error tolerance For each histogram H r i , we can compute the similarity vector ŝi , and then get the sparse similarity matrix:

S = [ŝ 1 , ŝ2 , ..., ŝN ] T , (2.64)
where ŝi is the optimal solution of equation (2.62). The matrix S determines both graph adjacency structure and sparse similarity matrix simultaneously. Note that, the sparse similarity matrix is generally asymmetric. We propose to integrate the sparse similarity matrix obtained by equation 2.64 into the equation 2.61. For each class, we construct the sparse similarity matrix S c using images within the class c by equation (2.64), the SpASL-score is defined as follows:

CHAPTER 2. FEATURE SELECTION S r SpASL = ∑ C c=1 ∑ N c i, j=1 D Je f (H rc i , H rc j ) ŝc i j ∑ C c=1 ∑ N c c=1 D Je f (H rc i , H rc )d c i (2.65)
The histogram selection consists to compute for each histogram H r an associated S r SpASL score and rank these scores in ascending order.

It is interesting to note that the sparse similarity matrix can be constructed by using all histogram globally. In this case, the class label does not incorporate to the construction and we are in the case of unsupervised learning.

Adapted version of the margin-based iterative search algorithm

More recently, Moujahid et al. propose an adapted version of the margin-based iterative search algorithm (that so called Simba-2) where the resulting weight vector is used for a selection of histograms in the application of face recognition [START_REF] Moujahid | Feature extraction using block-based Local Binary Pattern for face recognition[END_REF]. The resulting weight vector of Simba-2 is used for a selection of histograms in the supervised context.

Instead of using the weighted Euclidean distance to compute the weight distance, the Simba-2 algorithm use χ 2 distance to identify dissimilarities between histograms. This dis- tance is also used for calculating nearmiss(x), nearhit(x).

Given two images I i and I j which are characterized by two histograms H r i and H r j , respectively and each vector is composed by Q bins. The histogram-weighted χ 2 distance between these two vectors defined as:

D χ 2 w r (H r i , H r j ) = Q ∑ k=1 w r (H r i (k) -H r j (k)) 2 H r i (k) + H r j (k) (2.66)
The adapted version of the Simba algorithm based on χ 2 distance is given by algorithm 3

Algorithm 3

The adapted version of Simba χ 2 distance (Simba-2)

1. initialize w = (1, 1, ..., 1)

2. For t = 1, ..., T do (a) Pick randomly an image I characterized by a vector x from X (b) Calculate nearmiss(x) and nearhit(x) with respect to X\{x}and the weight vector w (c) For r = 1, ..., δ calculate

∆ r = 1 2 D χ 2 (H r , NM(H r )) -D χ 2 (H r , NH(H r ))
End for

(d) w = w + ∆ ∆ ∆ End for 3. w ← w 2 w 2 ∞
where, w 2 = (w 1 2 , ..., w r2 , ..., w δ 2 ) and w 2 ∞ = max(w 1 2 , ..., w r2 , ..., w δ 2 )

The increment ∆ r inside the Simba algorithm also changes, since it is based on the hypothesis margin which depends on the distance. The resulting Simba weight vector has a size equal with δ histogram. The histograms are sorted according to the descending order of the weight elements in order to select the most relevant ones.

Histogram selection procedure

According to the feature evaluation, the histogram selection can be achieved by filter, wrapper or hybrid methods (see section 2.1.2). An hybrid histogram selection approach which requires the learning stage. During this stage, candidate histograms are generated from training images and ranked thanks to a score which measures the efficiency of each candidate histogram independently. Then, the performance of the different D-dimensional histogram subspace are measured by the classification accuracy reached by the chosen classifier in order to select the most discriminating histogram subspace. The selected color texture subspace is the one which maximizes the rate of well-classified testing images.

Conclusion

In this chapter we reviewed the literature of feature selection as a dimensionality reduction tool. A brief introduction of the feature selection taxonomy is presented. We first introduce the different step of feature selection. Then, we discussed two feature selection strategies which are based on the evaluation (i.e., filters, wrappers and hybrid methods) and based on the availability of class label lead to consider different learning context (i.e., supervised, unsupervised and semi-supervised).

The data and knowledge representation have been presented and graph data representation, especially the sparse similarity graph as well. Next, we provided several feature ranking methods in different learning contexts which are focus on feature selection based on the score computing and based on algorithms. We organized the compact overview for of the feature selection methods applied in LBP-based features by presenting briefly the LBP histogram bin selection and LBP histogram selection. We also introduce our proposed SpASL-score for histogram ranking.

Furthermore, there exists various color spaces and it is difficult to determine which one give the best performance for color texture classification. We propose a method to extract the color LBP-features on different color spaces in the following. The next chapter is mainly based on the LBP-based feature selection methods in the framework of multi color space. 

Chapter 3 Multi color space LBP-based features selection

Introduction

Several extensions of LBP to color have been proposed since 2002 [START_REF] Pietikäinen | Computer vision using Local Binary Patterns[END_REF]. In order to take advantage of all the color texture information contained in the image, the LBP descriptor is applied on each color component independently and sometimes, on pairs of color components conjointly. It leads to a high dimensional feature vector is required to represent a texture. Moreover, we know that there exist numerous color spaces and that the color space choice impacts the classification accuracy [START_REF] Porebski | A new benchmark image test suite for evaluating colour texture classification schemes[END_REF]. Each color space takes into account specific physical, physiologic and psycho-visual properties but none is well-suited to the discrimination of all texture databases [START_REF] Porebski | Supervised texture classification: color space or texture feature selection?[END_REF]. The selection of the most discriminating color space has been an open question in recent years [126,[START_REF] Porebski | A multi color space approach for texture classification: experiments with Outex, Vistex and Barktex image databases[END_REF]. Instead of using one color space, the multi color space approaches have emerged in the last few years [START_REF] Cointault | In field Triticum aestivum ear counting using color texture image analysis[END_REF][START_REF] Chindaro | Texture classification system using colour space fusion[END_REF][START_REF] Nanni | Fusion of color spaces for ear authentication[END_REF][START_REF] Vandenbroucke | Unsupervised color-image segmentation by multicolor space iterative pixel classification[END_REF][START_REF] Banerji | LBP and color descriptors for image classification[END_REF][START_REF] Zhu | Image region description using orthogonal combination of local binary patterns enhanced with color information[END_REF]. These approaches allow, on the one hand, to avoid the difficulty of choosing a relevant color space and, on the other hand, to take advantage of the specific properties of several color spaces by combining them.

In this work, we propose to study the advantages and the drawbacks of the LBP histogram selection and the LBP bin selection presented in chapter 2. Our first contribution consists in extending to color the bin selection approach proposed by Guo et al. [START_REF] Guo | Descriptor learning based on fisher separation criterion for texture classification[END_REF] and the bin ranking by sparsity score [START_REF] Liu | Sparsity score: a novel graph-preserving feature selection method[END_REF]. These approaches are then compared with the whole LBP histogram selection approach proposed by Porebski [START_REF] Porebski | LBP histogram selection for supervised color texture classification[END_REF]. The second originality is founded on the current development of multi color space approaches. As there is a wide range of color spaces with different properties, we have proposed an approach which uses the properties of several color spaces simultaneously. In this approach, images are first coded in different color spaces, then color texture features are extracted from these so coded images to represent the texture. It actually seems interesting to compare the strategies of LBP histogram selection and LBP bin selection in a multi color space framework. Two first approaches are thus proposed and compared in this work, a Multi Color Space Histogram Selection (MCSHS) approach and a Multi Color Space Bin Selection (MCSBS) approach.

In addition, we propose to improve the histogram selection method that selects a whole LBP histogram. Indeed it is clear that not all bins of the selected histograms are meaningful for modeling the characteristics of textures. As it selects the most discriminating histogram and filter out the rest, we think that it might have some redundant bins in the selected histograms and a loss of some meaningful bins of the discarded histograms. This leads to our third contribution that performs a combination of bin and histogram selection.

The rest of this chapter is organized as follows. In section 3.2, we present the color space combination approach. Then, we present the multi color space LBP selection in section 3.3. Section 3.4 presents the proposed MCSHS approach. We introduce the MCSBS approach in section 3.5. Next, we present novel strategies that combine bin and histogram selection in section 3.6. At the end of each proposition, we present the first results obtained on the New BarkTex benchmark database. Finally, we summarize our work.

Color space combination

Usually, color images are acquired by devices that code the colors in the RGB color space. However, there are many other color spaces with different specific properties presented in section 1.1.1 and it is known that the classification performances depend on the choice of the color spaces in which a classifier operates [START_REF] Porebski | Supervised texture classification: color space or texture feature selection?[END_REF]. That is why numerous authors propose to use other color spaces to discriminate the textures as better as possible. Table A.1 in the appendix A presents the different color texture classification approaches that have been proposed in the literature. The analysis of this table confirms the relevance of considering other color spaces than the acquisition space since many other color spaces have been used in these studies to improve the classification results. However, the prior determination of a color space which is well-suited to a specific classification problem is not easy. In order to determine this space, many authors propose to apply their classification approach in different color spaces singly considered and compare the performances reached in each of these spaces, following a single color space approach described in section 3.2.1. In color image analysis, another strategy has emerged: it consists in simultaneously exploiting the properties of several color spaces. This multi color space approach is presented in section 3.2.2.

Single color space approach

Many authors have lead studies about color space for different applications: machine vision, face recognition, texture analysis, etc. In the framework of color texture classification, they try to determine the "best" color space in order to improve the performances of the proposed classification approach. For this purpose, the classifier is applied to images whose colors are coded in different color spaces which are singly considered and the performances reached with each of them are compared. This single color space approach selects the color space that provides the best classification accuracy.

Table 3.1 focuses on some studies that appear in table A.1 and carried out on the BarkTex and OuTex-13 databases. Since the OuTex-13 database has been used repeatedly for color texture classification in the literature while the New BarkTex is recently proposed to overcome the limit of OuTex-13 and BarkTex (more details are presented in section 1.2.4), we select these databases for this study. This table shows the most suitable color space among several different color spaces compared for the classification of the texture on these two databases. The first column of this table indicates the reference of the study with the color texture descriptor used by the authors. The second column states which image database was used. The third 3.2. Color space combination column enumerates the compared color spaces whereas the last one gives the color space that provides the best classification accuracy. The synthesis of these experimental comparisons does not allow to conclude on the definition of a single color space which is well-suited to the discrimination of all texture databases, whatever the considered texture features. For example, the work of Sandid et al. reveals that the choice of the best color space depends on the used image database, and hence the considered application [START_REF] Sandid | Robust color texture descriptor for material recognition[END_REF]. They used the same method and the same features to classify the color textures of the BarkTex and OuTex-13 databases, and showed that the best results were obtained using different color spaces for each of these two databases. Similarly, the synthesis of the works of Cusano, Casanova and Cernadas show that the color space that yields the best results may be different depending on which features are used [START_REF] Cusano | Illuminant invariant descriptors for color texture classification[END_REF][START_REF] Casanova | Texture analysis using fractal descriptors estimated by the mutual interference of color channels[END_REF][START_REF] Cernadas | Influence of normalization and color space to color texture classification[END_REF]. This confirms that the best color space depends on the considered application and approach [START_REF] Porebski | Supervised texture classification: color space or texture feature selection?[END_REF] Table 3 
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In addition, the single color space approach has also been applied by various authors on specific industrial applications in order to find out the best color space. For example, the control and the classification of the wood surface is improved by applying the defect detection and classification approaches in different color spaces [START_REF] Adel | Evaluation of colour spaces in computer vision application of wood defects detection[END_REF][START_REF] Bianconi | Performance analysis of colour descriptors for parquet sorting[END_REF][START_REF] Brunner | An evaluation of color spaces fordetecting defects in Douglas-fir veneer[END_REF]. On the other hand, Bianconi et al. compare of the performances of automated classification of natural stone in different color spaces [START_REF] Bianconi | Automatic classification of granite tiles through colour and texture features[END_REF][START_REF] Bianconi | On comparing colour spaces from a performance perspective: Application to automated classification of polished natural stones[END_REF].

A wide range of color spaces exists, all with different properties and it is difficult to determine a priori the best color space in developing a successful application of color texture classification. For this reason, an alternative approach uses the properties of several different color spaces simultaneously. This multi color space approach is presented in the next section.

Multi color space approach

Instead of searching the best color space for color image analysis, recent works propose to combine different color spaces in order to improve the performances reached by classification schemes. These works can be categorized into three main strategies:

• Color space fusion: this strategy involves fusing the results from several classifiers, each one operating in a different color space;

• Color space selection: this strategy involves selecting the most well suited color spaces which are based on some specific criterion;

• Color texture feature selection: this strategy involves evaluating the texture features over different color spaces and selecting the features that provide the best discrimination between the different textures classed by using a supervised feature selection approach;

The following explains in detail theses strategies.

Color space fusion

In these approaches, the color texture features are evaluated in several color spaces and a classification scheme is performed in each of these different spaces independently such as each classifier operates in a specific color space. Thus, for each texture to be classified, several decisions coming from different classifiers are available. The final labeling is obtained thanks to a fusion rule of these decisions.

For texture classification, Chindaro et al. propose a color space fusion scheme by considering six color spaces [START_REF] Chindaro | Texture classification system using colour space fusion[END_REF][START_REF] Chindaro | ICA-based multi-colour space texture classification system[END_REF]. Each color space is used to independently design a k-nearest neighbor (k-NN) classier during a learning scheme. The output of each of the six k-NN classifiers are combined thanks to a fusion rule in order to make the decision. A similar approach is proposed by Charrier et al. for microscopic color image segmentation by pixel classification [START_REF] Charrier | Evidential segmentation of microscopic color images with pixel classification posterior probabilities[END_REF]. The first step of the proposed method is to classify pixels with five independent Support Vector Machine (SVM) classifiers, each of them operating in different color spaces. The second step is to categorize pixels in coherent pixels when all the classifiers select the same class or incoherent pixels when at least one classifier output differs from the others. Only incoherent pixels are processed through a fusion method to select their final class. The final segmentation result is obtained from the union of the two pixel sets. Mignotte proposes a segmentation approach based on a fusion procedure which aims at combining several segmentation maps [START_REF] Mignotte | A de-texturing and spatially constrained K-means approach for image segmentation[END_REF]. The segmentation maps to be fused are given by the k-means clustering technique applied to an input image coded in six different color spaces.

Color space selection

Another strategy consists in automatically selecting color spaces among a set of available ones.

Busin et al. propose an approach that iteratively selects, among 11 color spaces, those which are well suited to automatically segment a color image by pixel classification [START_REF] Busin | Color spaces and image segmentation[END_REF]. This approach is extended by Vandenbroucke et al. with 28 color spaces in order to iteratively identify pixel classes by taking into account both the pixel color distributions in several color spaces and their spatial arrangement in the image [START_REF] Vandenbroucke | Unsupervised color-image segmentation by multicolor space iterative pixel classification[END_REF]. In order to overcome the difficult problem of the color space choice, the algorithm selects the color space that is well suited to construct the class, at each iteration step. An adaptive color space switching strategy has been developed by Stern et al. in order to perform face skin tracking from video under varying illumination [START_REF] Stern | Adaptive color space switching for tracking under varying illumination[END_REF]. For a given task, the idea is to dynamically select, among all conventional color spaces, the best color space depending on the illumination conditions. The authors apply their adaptive color space switching algorithm to a human face detection and tracking system based on the skin color and show that the performance of the tracking is increased. A similar automatic color space selection and switching approach is also proposed by Laguzet et al. in order to improve the performances of pedestrian visual tracking [START_REF] Laguzet | Automatic color space switching for robust tracking[END_REF][START_REF] Laguzet | Color tracking with contextual switching: real-time implementation on CPU[END_REF]. The automatically and continuously selection of the color space is based on the good separability between the target and its close background.

Color texture feature selection

Rather than selecting color spaces, another strategy is to automatically select color texture features computed in several color spaces. In these approaches, the pixel colors are transformed into different color spaces and texture features are computed from the so converted images. A feature selection procedure selects the most discriminating color texture features for the texture classification.

Vandenbroucke et al. propose a pixel classification algorithm that analyzes the texture in the neighborhood of a pixel, in different color spaces [START_REF] Vandenbroucke | Color image segmentation by pixel classification in an adapted hybrid color space. Application to soccer image analysis[END_REF]. Among a multidimensional set of first order statistic features evaluated for each color component, the most discriminating ones are selected by means of an iterative feature selection procedure. Pixels are then classified in the so-selected texture feature space for soccer image segmentation purposes. For texture classification, Porebski et al. propose an approach that selects the most discriminating Haralick features extracted from chromatic co-occurrence matrices of color images coded in 28 different color spaces thanks to a sequential forward selection (SFS) scheme [START_REF] Porebski | Haralick feature extraction from LBP images for color texture classification[END_REF][START_REF] Porebski | Supervised texture classification: color space or texture feature selection?[END_REF]. A similar approach is used by Cointault et al. with 23 color components for a wheat ear counting system based on color image segmentation [START_REF] Cointault | In field Triticum aestivum ear counting using color texture image analysis[END_REF]. Nanni et al. use 13 different color spaces from which a set of Gabor features is extracted [START_REF] Nanni | Fusion of color spaces for ear authentication[END_REF]. For each color component, a Gabor feature vector is first defined. The most relevant feature vectors are then selected thanks to a sequential forward floating selection (SFFS) scheme. Several nearest neighbor (1-NN) classifiers constructed with each selected feature vector fusion are finally combined in order to authenticate ears for biometric applications. Banerji et al. propose the Color LBP Fusion descriptor for color texture classification [START_REF] Banerji | LBP and color descriptors for image classification[END_REF]. This descriptor is firstly constructed by concatenating LBP descriptors extracted from six color spaces and then applied PCA to reduce the feature dimensionality. Table 3.2 synthesizes the studies about multi color space approaches which are grouped into the three strategies previously presented with the different used color spaces and descriptors. It seems interesting to wonder which one could be the most relevant. However, there exists no study that has compared the performances of these color space combination strategies and it could be a great prospect to compare these strategies. Our work proposes here to use the color texture feature selection to compare the approaches of LBP histogram selection and LBP bin selection in a multi color space framework. 
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L * a * b * , L * u * v * , AC 1 C 2 , I 1 rg I 1 I 2 I 3 , b w r g b y , I 1 S 1 H 1 , I 1 S 2 H 1 , I 4 S 3 H 2 , I 5 S 4 H 2 , I 1 S 1 H 3 , L * S * uv h uv , AC C1C2 h C1C2 , b w C rgby h rgby , YC IQ hIQ, YC UV h UV , L * C * uv h uv , L * C * ab h ab , I 1 C I2I3 h I2I3 , LC UV h UV Morphological information [229] RGB, rgb, HSL, L * a * b * , I 1 I 2 I 3 , L * IV 1 ,
Gabor Filters [START_REF] Nanni | Fusion of color spaces for ear authentication[END_REF] RGB, YUV, YIQ, HSV, HSL, XYZ, LCH ,

L * a * b * , L * u * v * , YC b C r , Y P b P r , Y D b D r , JPEG -YC b C r
The next section details the color texture feature selection in multiple color spaces.

Multi color space LBP selection

Multi color space LBP selection

Considered color spaces

In order to show the interest of the multi color space approaches for color texture classification, N S = 9 color spaces among the spaces have been presented in section 1.1.1 are considered for experiments:

• RGB and rgb, which belong to the primary space family,

• YC b C r and b w r g b y , which are luminance-chrominance spaces,

• I 1 I 2 I 3 , which is an independent color component space,

• HSV, HSI, HLS and I-HLS, which belong to the perceptual space family.

We have chosen these nine color spaces since they do not require to know illumination and image acquisition conditions, like L * a * b * or L * u * v * for instance. They also allow a good representation of the four different color space families, even if a majority of perceptual spaces have been chosen because these spaces are known to obtain a good classification accuracy [126,[START_REF] Porebski | Supervised texture classification: color space or texture feature selection?[END_REF].

Candidate color texture descriptors

To compute the color LBP histograms or bins that are candidate for the selection, each image is first coded in each of the N S = 9 color spaces previously introduced. Then, the δ max = 9 different LBP histograms of EOCLBP descriptors described in section 1.1.4.3 are computed from the so-coded images. A color texture is thus represented by δ max × N S = 9 × 9 = 81 candidate LBP histograms. When the number of bins Q is equal to 256 for each histogram, the total number of bins is Q × δ max × N S = 256 × 9 × 9 = 20736 bins. Figure 3.1 illustrates the representation of a texture in multiple color spaces by the EOCLBP descriptor. The considered image is coded in 9 different color spaces in which the EOCLBP is applied separately to compute their histograms and obtain the texture feature vector. Finally, the concatenation of these vectors is achieved in order to provide a multi color space representation of a texture.

We present here the first results obtained on the New BarkTex set by the single color space and the multiple color space approaches. The New BarkTex set is divided into a half for training set and a half for testing set by holdout method. Table 3.3 presents the classification results obtained on the testing set of this database. The purpose of this work being to show the contribution of the multi color space approach, independently of the considered classifier and its parameters (like the metric), the nearest neighbor classifier associated with the L1 distance as a similarity measure is here considered. Obviously, more sophisticated methods such as SVM The first column of this table shows the considered color spaces. The second column indicates the rate of well-classified images with the dimension of the subspace. Here no selection is performed. The dimension is thus 9 × 256 = 2304 when a single color space is considered, and 9 × 9 × 256 = 20736 when the multi color approach is applied. The results without any selection vary from 70.1% to 74.4% when a single color space is considered. The rgb color space gives the best rate (value in box) and the average rate among the different color spaces singly considered is 71.9%. The last row shows that the accuracy obtained in multiple color spaces is 78.2% . We can observe that the multi space approach allows to significantly improve the classification accuracy (+ 6.3% compared with the average value) however at the cost of a nine times longer feature space. Table 3.3: The classification results of New BarkTex database in nine single color space and in multi color space when no selection method is used.

Color spaces

Without selection Rate Dimension It is well-known that the performance of a classifier is generally dependent on the dimension of the feature space due to the curse of dimensionality (see chapter 2) [START_REF] Jain | Feature selection: evaluation, application, and small sample performance[END_REF]. To reach a satisfying classification accuracy while decreasing the computation time of the on-line classification, we propose to reduce the dimension of the feature space by selecting the most discriminating features during a supervised learning stage.

( D = δ max × Q × N S )

Dimensionality reduction

To reduce the dimensionality of the feature space, two main strategies are proposed: feature extraction and feature selection. And in order to evaluate the relevance of the feature subspaces by feature selection methods, different approaches are proposed: filter, wrapper and hybrid [START_REF] Dash | Feature selection for classification[END_REF] (see chapter 2). Among these approaches, hybrid approaches are preferred [START_REF] Liu | Toward integrating feature selection algorithms for classification and clustering[END_REF]. These approaches combine a filter approach to select the most discriminating feature subspaces at different dimensions and a wrapper approach to determine the dimension of the selected subspace [START_REF] Tang | Feature selection for classification: A review. Data Classification: Algorithms and Applications[END_REF]. To operate a supervised feature selection, it is necessary to extract learning and testing image subsets from the studied database. The learning subset is used to build a low dimensional discriminating feature space during a supervised learning stage and the testing subset is used during the classification stage to evaluate the performances of the proposed approach. Since wrapper approach is a feature selection procedure that uses the classification rate as discrimination power of a feature subspace, it needs to classify the images of a learning subset for all the candidate feature subspaces, that involves an important learning time and classifier-dependent results. When a classifier such as the nearest neighbor is considered, it requires of decomposing the learning subset into a training and a validation subsets.

Applying a multi color space strategy avoids the difficulty of choosing a relevant color space that depends on the considered application and allows to take advantage of the discrimination quality of several color spaces by combining them. It seems thus interesting to compare the approaches of LBP histogram selection and LBP bin selection in a multi color space framework. The first approach is a multi color space extension of the LBP histogram selection proposed by Porebski et al. for a single color space [START_REF] Porebski | LBP histogram selection for supervised color texture classification[END_REF]. The second proposed approach is the extension to color of the LBP histogram bin selection proposed by Guo et al. for a gray level analysis by applying a multi color space strategy [START_REF] Guo | Descriptor learning based on fisher separation criterion for texture classification[END_REF]. The third approach is the extension of the sparsity score to LBP histogram bin ranking in multiple color spaces [START_REF] Liu | Sparsity score: a novel graph-preserving feature selection method[END_REF]. The following sections detail these original approaches.

Multi color space histogram selection

The Multi Color Space Histogram Selection (MCSHS) approach analyzes LBP histograms computed from texture images coded into several color spaces. Indeed, rather than looking for 3.4. Multi color space histogram selection the best color space, these approaches first compute LBP histograms from several color spaces (see sections 3.3.1 and 3.3.2) and then selects, out of the different candidate LBP histograms, those which are the most discriminant for the considered application in a supervised context.

The MCSHS approach proposed in this section, whose flow chart is represented by figure 3.2, is an extension to the multi-color space domain of the histogram selection approach proposed in 2013 by Porebski et al. [START_REF] Porebski | LBP histogram selection for supervised color texture classification[END_REF]. MCSHS is an hybrid histogram selection approach that requires to split up the initial image dataset in order to build a training, a validation and a testing image subset, according to a holdout decomposition. During the learning stage, candidate histograms are generated from training images. Let us note that most of considered texture benchmark databases are composed of only two image subsets, whereas the MCSHS approach needs three subsets. In order to compare our experimental results with the same condition of other works, we thus propose to use one subset as the training subset and the second both as the validation and testing subset in order to evaluate and compare the performances of the MCSHS approach.

Then, the proposed histogram selection procedure uses a "feature ranking" algorithm. The selection is based on the histogram score evaluated for each of the 81 available histograms. In this work, four different scores are considered and compared:

• the Intra-Class Similarity score (ICS-score), proposed by Porebski et al. [START_REF] Porebski | LBP histogram selection for supervised color texture classification[END_REF] and presented in section 2.4.2.1, which is based on an intra-class similarity measure.

• the Adapted Supervised Laplacian score (ASL-score), proposed by Kalakech et al. [START_REF] Kalakech | A new LBP histogram selection score for color texture classification[END_REF] and presented in section 2.4.2.2, which evaluates the relevance of a histogram using the local properties of the image data.

• the Simba-2 score, proposed by Mouhajid et al. [START_REF] Moujahid | Feature extraction using block-based Local Binary Pattern for face recognition[END_REF] and presented in section 2.4.2.4, which is based on the hypothesis margin and the χ 2 distance.

• the Sparse Adapted Supervised Laplacian score (SpASL-score), presented in section 2.4.2.3, which is based on ASL-score and sparse representation [START_REF] Hoang | LBP histogram selection based on sparse representation for color texture classification[END_REF].

Once the score has been computed for each of the δ max × N S = 81 candidate histograms, a ranking is performed. The candidate subspaces -composed, at the first step of the procedure, of the histogram with the best score, at the second step, of the two first ranked histograms and so on -are then evaluated to determine the relevant histogram subspace (see Figure 3.2). The stopping criterion of the histogram selection procedure is based on the classification accuracy. For this purpose, a classifier operates in each candidate subspace in order to classify the validation images. The selected subspace, whose dimension is δ × Q, is the one which maximizes the rate R δ of well-classified validation images noted:

δ = argmax 1≤δ ≤δ max ×N S R δ (3.1)
During the classification stage, the relevant histograms previously selected are computed for each testing image and compared to the training images in the so-selected relevant histogram subspace to determine the testing image label. Table 3.4 presents the results obtained by using histogram selection in a single color space and in multiple color spaces. The first column of this table represents the color spaces used to code image. The second column recalls the results obtained in table 3.3 without any selection. The third column is divided to four sub-columns corresponding to the four considered scores: ICS, Simba-2, ASL and SpASL-score. By analyzing this table, we see that the histogram selection clearly improves the classification performance when a single or multiple color spaces are considered. These approaches also reduce the number of histograms used in the classification stage. The best rate is 88.0%. It is obtained by ICS-score in multiple color spaces with a nearly reduced half number of used histograms. It improves nearly 10% of the rate obtained when no selection is applied. This result shows that the relevance of considering a histogram selection approach in a single and in multiple color spaces.

We have presented the Multi Color Space Histogram Selection approach. The next section details the proposed Multi Color Space Bin Selection approach. 

Multi color space bin selection

Multi color space bin selection

We first briefly recall the notations that are introduced in section 2.4.2. In the considered LBP histogram selection context, the database is composed of N color texture images. Each image I i , i = {1, ..., N} is characterized by δ max × N S = 9 × 9 = 81 histograms in the multi color space approach and represented by a concatenated histogram H H H i . The available data is summarized by the matrix T T T defined as:

T T T =         H H H 1 ... H H H i ... H H H N         = H H H 1 ... H H H r ... H H H δ max ×N S (3.2)
where T T T is composed by 81 matrix {H H H r } 81 r=1 that represents the data of r th histogram. Let H r be one of the 81 histograms to evaluate, the matrix H H H r defined as:

H H H r =         H r 1 ... H r i ... H r N         =         H r 1 (1) ... H r 1 (k) ... H r 1 (Q) ... ... ... ... ... H r i (1) ... H r i (k) ... H r i (Q) ... ... ... ... ... H r N (1) ... H r N (k) ... H r N (Q)         (3.3) 
where, Q = 2 P is the quantization level that depends on the number of neighbors used to code the local binary patterns of the image. H r i (k) represents the values of the k th bin, (k ∈ {1, ..., Q}) of the r th histogram of the i th LBP image among N color texture images.

Like the MCSHS approach, the Multi Color Space Bin Selection (MCSBS) analyses LBP histograms computed from texture images coded into several color spaces. Instead of selecting the most discriminating histograms, the MCSBS approach selects the most discriminating bins of these histograms. The first approach, presented in section 3.5.1, is an extension to the multi color space domain of the bin selection approach proposed in 2010 by Guo et al. for gray level image analysis [START_REF] Guo | Descriptor learning based on fisher separation criterion for texture classification[END_REF]. In the second approach, we consider that the bin of an histogram corresponds to a feature of a vector, and we propose to apply the feature ranking algorithm presented in section 2.3.1 for bin selection. Among the effective supervised filter ranking methods, the supervised sparsity score is outperformed other scores as shown in [START_REF] Liu | Sparsity score: a novel graph-preserving feature selection method[END_REF], so we extend this score as the second bin selection approach in the multi color space domain (see section 3.5.2).

The flow chart of the MCSBS approach is represented by figure 3.3. It is a filter bin selection approach which requires to split up the initial image dataset to build a training and a testing image subset. The bin selection procedure is based on a "feature 3.5. Multi color space bin selection ranking" algorithm while the score is based on pattern occurrence frequency by Guo's method or based on the sparsity score. The stopping criterion of bin selection approach depends on a threshold defined by the user. This approach consists in determining the global dominant bin set J global among the Q ×δ max ×N S = 256 ×9 ×9 = 20736 candidate LBP bins of the δ max ×N S concatenated histograms (see figure 3.1).

The following subsections present the bin selection based on pattern occurrence and sparsity score.

Occurrence based ranking

During the learning stage, histograms are first generated from each training image I i . The most reliable and robust dominant bins are then determined among the candidate bins of each concatenated histogram. The dominant bin set J i of an image I i is the minimum set of bins which can cover T% of all bin occurrences of I i :

J i = argmin |J i | ∑ k∈J i H H H i (k) ∑ Q k=1 H H H i (k) ≥ T% (i = 1...N) (3.4) 
where |J i | denotes the number of elements in the set J i and Q, the number of bins. Guo proposes to set the threshold T as 90% [START_REF] Guo | Descriptor learning based on fisher separation criterion for texture classification[END_REF].

Then, the most reliable and robust dominant bins for each class c are determined. The dominant bin set J C c of a class c is constituted of the bins that consistently belong to all the dominant bin sets J i of each image I i of the class c. It is the intersection of all sets J i of the images of the class c:

J C c = I i ∈c J i (3.5)
Finally, the global dominant bin set J global for the whole database is determined. It is composed of all dominant bins belonging to the sets J C c (c = 1...C). It is the union of all sets J C c :

J global = C c=1 J C c (3.6)
During the classification stage, the dominant bins are calculated for each testing image based on the global dominant bin set J global determined during the learning stage. The testing image is then compared to the training images in the relevant bin subspace to determine its label thanks to the nearest neighbor classifier based on the L1 distance.

The following section introduces the bin selection method based on sparsity score.

Sparsity based ranking

The sparsity based ranking approach uses the sparse graph construction approach presented in section 2.3.1. During the learning stage, each training image is represented by a vector composed of the 20736 features (or bins) of the 81 concatenated histograms. The novel proposed method applies the sparsity ranking according two strategies:

• Strategy A: Candidate histograms are generated from training images and concatenated to form a vector with 20736 features. For each class, the sparse similarity matrix is first calculated by using the class label through equation 2.12. Then, the score is assigned for each feature by equation 2.22. The ranked bins are obtained by sorting all bins according to their score in ascending order.

• Strategy B: For each candidate histogram generated from training images, the sparsity score is computed for the Q bins of this histogram. This differs from the strategy A where the sparsity score is computed for the Q × δ max × N S bins of the concatenated histogram. The final ranked bins of all candidate histograms are obtained by sorting those bins according to their score in ascending order.

Note that the difference between these two strategies is the dimensional-features input to construct the sparse similarity matrix within each class. So, the score value of each bin within each histogram and the score value of each bin of the concatenated histograms are different. The experimental results conducted in the following section allow us to see this difference.

In order to illustrate the proposed method, we introduce an example with three sample histograms H 1 i , H 2 i and H 3 i , i ∈ {1, ..., N} of the N training images represented by three matrices H H H 1 , H H H 2 and H H H 3 , respectively, as shown in Figure 3.4. To represent the bins of each histogram, we use three symbols: a square, a circle and a triangle. We consider that each histogram has 6 bins which are numbered from 1 to 6. For example, the square numbered as 1 is represented the first bin of histogram H 1 i . For the strategy A, three histograms are firstly concatenated to form a feature vector with 18 features. We assume the score value of each bin is estimated and illustrated below each symbol. The associated score is computed for each bin by the sparsity score and the bins are ranked in ascending order according to their value as illustrated in figure 3.4a. For the strategy B, the sparsity score is applied on each histogram to compute a score for each bin. For example, the 6 th bin of H 1 i has a smallest sparsity score value and it is more relevant than others. The bins of all histograms are examined in order to be sorted depending on their score value. The illustration of the final ranked bins is at the bottom of the figure 3.4b. We see that all the bins with smallest score values are ranked first, i.e 3 th and 5 th bin of H 3 i and 6 th bin of H 2 i are more relevant than others. The order of the bins with the same score value is not considered in this case. After the bin ranking is finished, the relevant bin subspace can be selected by a threshold defined by user according to the score value. During the classification stage, the features of testing images are determined according to the bin ranked and the threshold defined by user during the learning stage. The decision step is realized as previously presented.

Moreover, the bin selection procedure can be based on the filter or hybrid approaches. For the filter approaches, we can use the threshold parameter T as Guo does in [START_REF] Guo | Descriptor learning based on fisher separation criterion for texture classification[END_REF]. On the other hand, the hybrid approaches allow evaluating the relevance of the feature subspaces without using any parameter. That is why we choose hybrid approaches to evaluate our proposed approaches. The following section presents this procedure which is based on sparsity ranking.

Bin selection procedure

The flow chart of an hybrid LBP bin selection approach is represented by figure 3.5. It requires to split up the initial image dataset in order to build a training, a validation and a testing image subset, according to a holdout decomposition. The parts labeled as gray are the differences compared with MCSBS approach shown by figure 3.3. As we mentioned in the previous section, the testing and validation subsets are the same in most of available image database.

During the learning stage, candidate histograms are generated from training images and bin ranking is applied (by the strategy A or B) thanks to the supervised sparsity score presented in section 2.3.1. Once the bin ranking strategy is applied, the final ranked bins are selected to find the relevant subspace and the most discriminant bins have to be selected. The discriminant power of candidate bin subspaces with different dimensions are evaluated to determine the most relevant subspace. At the first step, the candidate subspace composed of the first ranked bin is considered. Then, at the second step, the candidate subspace composed of the two first ranked bins is considered and so on. For this purpose, a nearest neighbor classifier is also considered with the L1 distance. This classifier operates in each candidate subspace to classify the validation images represented by the prototype bins. The selected subspace, whose dimension is D, is the one which maximizes the rate of well-classified validation images denoted R D :

D = argmax 1≤D≤Q×δ max ×N S R D . (3.7)
During the classification stage, the relevant bins previously selected are computed for each testing image and compared to the training images in the relevant bin subspace to determine the testing image label by the nearest neighbor classifier.

Results

Table 3.5 presents the results by the color bin selection approach based on occurrence and sparsity based ranking. We also compare the results obtained in single color space and in multiple color spaces with and without selection. The third column of this table is divided into three sub-columns corresponding three previously proposed approaches: the occurrence and the two sparsity based ranking strategies. We propose to set the threshold as 90% to select the dominant bins for occurrence based ranking [START_REF] Guo | Descriptor learning based on fisher separation criterion for texture classification[END_REF]. For the two sparsity ranking approaches, we use the bin selection based on hybrid approaches (figure 3.5) to select the relevant bin subspace. The LBP bin selection approaches improve the classification performance in any cases when a single color space or a multiple color space approaches are considered. The best rate is obtained by occurrence based ranking: 82.5% (with HSI space) and 87.8% (with multiple color spaces). The two strategies A and B of the sparsity based ranking give different rates and dimensions. By analyzing the average results in a single color space and in multiple color spaces, we see that the sparsity based ranking with the strategy B gives better results than the strategy A whereas the number of selected bins are also higher. An extended comparison of these strategies will be proposed in the next chapter.

We have presented the LBP bin selection based on the sparsity score. When two bins with the same score, they are ranked randomly. It is interesting to identify which one is more discriminant LBP bins for a better representation. The histogram selection procedure selects the relevant histogram according to their scores. As whole LBP histograms are selected, it is clear that some bins of these histograms are either redundant or even totally uninformative. They can decrease the performances of the learning algorithms. Thus, a dimensionality reduction method for selecting relevant histogram bins of relevant histograms is needed to address these problems. The following section introduces our proposed original approach that combines histogram ranking and bin selection for classification task.

Combination of histogram ranking and bin selection

We consider that the LBP histogram ranking is important to rank bins as mentioned above. The purpose of this proposition is to filter out the irrelevant bins of the relevant histograms and oppositely find out the relevant bins of the irrelevant histograms. The flow chart of this approach is illustrated by figure 3 • Strategy C: A score for each candidate histogram is computed and the histograms are then ranked according to their score. Next, a bin ranking is achieved for each histogram individually thanks to the sparsity score. We finally concatenate the ranked bins of the ranked histograms.

• Strategy D: We assume that the first bin of the most relevant histograms are more relevant than the other bins. So, we propose to rank at first, the group of all the first bins of each histogram in the order of the ranked histograms, then the group of all the second bins are ranked in the second and continuously until the last bin of each histogram. The final bin ranking is a Q × δ max uplet vector, where Q is the number of bins of each histogram. The order of the bin in each δ max uplet is based on the ranked histogram.

In order to illustrate the combination of histogram ranking and bin selection approaches (cf. figure 3.7), let us take the same example as in previous section. In this illustration, we assume the histograms are ranked by a consider histogram score as H 3 i , H 1 i and H 2 i . The bin ranking is achieved for each histogram by the supervised sparsity score. For the strategy C, the bin ranking is obtained by concatenating the three histograms H 3 i , H 1 i and H 2 i with previously bin ranking within each histogram as shown in figure 3.7a. The bin ranking obtained by strategy D is a vector composed of the 6 triplet-bins as shown in figure 3.7b. The first triplet is composed by the three first bins of H 3 i , H 1 i and H 2 i , respectively. This procedure continues to the last triplet is composed by the three last bins of H 1 i , H 3 i and H 2 i , respectively. In order find the relevant bin subspace the bin selection procedure is carried out as the same in section 3.5.3.

Table 3. This table confirms that the combination of histogram ranking and bin selection significantly improves the classification compared with the results obtained without applying the selection scheme in both single color space (+ 9.1%) and in multiple color spaces (+ 10.8%). The best results obtained are 84.2% witht the RGB space by the strategy C when a single color space is considered, and 89.0% in multiple color spaces with the strategy D by combining ICS-score and bin selection. 

CHAPTER 3. MULTI COLOR SPACE LBP-BASED FEATURES SELECTION

Conclusion

In this chapter, a multi color space approach is proposed to overcome the drawback of choosing the single color space best suited for the considered application. We firstly proposed to code images with nine different color spaces and to extract EOCLBP descriptor to characterize the color textures. However, this multi color space approach encountering the problem of high-dimensional feature space, we propose to extend the histogram selection and bin selection approaches to the multi color space domain. These approaches consist in selecting discriminating LBP histograms or bins computed from images coded in several color spaces and thus allow to overcome the difficulty of choosing a well-suited color space to discriminate the considered color texture classes. Four histogram scores are considered for LBP histogram selection in multiple color spaces. Two approaches based on the occurrence and sparsity score are then extended for multi color space bin selection.

In addition, we have proposed to combine the histogram ranking and bin selection according to two selection strategies. These methods aims to select the discriminant LBP bins by using the histogram ranking. In order to illustrate our original approach, we have presented first results obtained on the New BarkTex database. These results show that the multi color space approach clearly improve classification rate instead of using a single color space. Secondly, the proposed selection approaches not only improve the classification in both single and in multiple color spaces but also reduce the dimension of the feature space.

The complete experimental results on other databases are further presented and analyzed in the following chapter. In this chapter, we propose to compare the strategies of LBP histogram selection and LBP bin selection in the multi color space framework. The approaches presented in the previous chapter will be applied and analyzed thanks to four image databases: New BarkTex, OuTex-TC-00013, USPTex and STex (presented in section 1.1.3). Each database is divided into a half for the training set and a half for the testing set by the holdout method. Let us summarize theses databases by table 4.1.

Table 4.2 lists the methods that will be analyzed. We divide those methods in four categories: no selection, histogram selection, bin selection and combination of histogram ranking and bin selection. In a single color space approach, each texture is coded by N δ = 9 histograms while N δ = 9 × 9 = 81 histograms are considered in the multiple color space approach. In chapter 3, we have shown that this last approach clearly improves the classification rates compared with a single color space approach on the New BarkTex database. Furthermore, when we have compared the result of the multi color space selection approach with those obtained without applying any selection method, we have shown that the multi color space selection not only improves the classification performance but also reduces the dimension of the feature space. In this chapter, we propose to continue to analyze the proposed approaches by applying them on three additional databases, in addition to New BarkTex.

Although OuTex-TC-00013 is widely used, this image set presents a major drawback like USPTex and STex sets. The partitioning used to build these three sets consists in extracting training and testing sub-images from a same original image. However, such a partitioning, when it is combined with a classifier such as the nearest neighbor classifier, leads to biased classification results [START_REF] Porebski | Supervised texture classification: color space or texture feature selection?[END_REF]. Indeed, testing images are spatially close to training images. They are thus correlated and a simple 3D color histogram reaches a high classification accuracy whereas it only characterizes the color distribution within the color space and does not take into account the spatial relationships. On the other hand, the New BarkTex has been create to overcome that drawback (see section 1.2.4). That is the reason why more details and analysis will be proposed in the following on the New BarkTex database. This chapter is organized in as follows. We first study the impact of the distance used for measuring the similarity between two histograms during the computation of the proposed SpASL-score in order to choose the appropriate distance (see section 4.1). In section 4.2, we evaluate the impact of the histogram scores on the four considered databases to validate the relevance of the proposed SpASL-score. Next, the different strategies are evaluated, analyzed and compared with the results of the state-of-the-art in section 4.3. Finally, we summarize and conclude the chapter in section 4.4.

Impact of similarity measure

The ICS-score uses histogram intersection to evaluate the similarity between two histograms, while ASL uses the Jeffrey distance and Simba-2 uses χ 2 , respectively. In order to keep the same condition as ASL-score, the proposed SpASL uses the Jeffrey distance to measure the similarity. However, there is an open question regarding the considered distance:"Does the selected distance has an impact on the histogram score ?". We propose here to study this question for the SpASL-score.

In order to study the robustness of the SpASL-score, three common distances such as histogram intersection, χ 2 and Jeffrey are compared. For each of the four considered database, the training set is used for the histogram ranking procedure by applying equation 2.65. Then, ranked histograms are used as inputs of the classification process which is performed on the testing set. The L1-distance is associated with the 1-NN classifier while the classification performance is evaluated by the accuracy rate. It is worth to note that our works focus on the feature selection step so that is why we use a basic and non-parametric classifier with a simple distance frequently used. Table 4.3 shows the classification rates obtained with the different distances associated with the MCSHS-SpASL approach. The first column represents the name of the used database. The second column is divided into three sub-columns corresponding to the three associated distances. The value δ , that represents the number of selected LBP histograms for which the well-classified image rate is reached, is also shown in this table. Note that the best results of each row are shown in boldface. This table globally shows that the SpASL-score associated with histogram intersection does not give good results compared with the two other distances whatever the datasets. This is due to the fact that, to extend the distance ( f r if r j ) 2 to the histogram selection context, Kalakech et al. shows that it is necessary to consider a measure which has to be minimized to select the most relevant histograms [START_REF] Kalakech | A new LBP histogram selection score for color texture classification[END_REF]. The histogram intersection, which has to be maximized, is thus not relevant to compute the ASL-score, and so the SpASL-score. The average result on the four databases also indicates that Jeffrey and χ 2 distance reach the same performance. As Jeffrey and χ 2 give the results close, we propose to use Jeffrey for the proposed SpASL-score hereafter.

We have presented the impact of the similarity measure to the SpASL-score. The next section is dedicated to illustrate the impact of the histogram score. By analyzing this table with the best rate of each row, we can see that the MCSHS approaches improves (+ 0.6%), (+ 9.8%), (+ 3.9%), (+ 3.5%) for OuTex-TC-00013, New Bark-Tex, USPTex and STex respectively. The best result reached on New BarkTex is obtained by MCSHS-ICS which uses only 42 histograms instead of 81 histograms when no selection is applied. Similarly for other databases, this can confirm that the MCSHS approach not only improves the classification rate but also reduces the subspace dimension. Moreover, the obtained results validate the relevance of the proposed SpASL-score. Indeed, based on the average results obtained on the four databases, this table shows that the SpASL-score improves the results compared with the three other scores and the number of histograms selected by SpASL is each time among the lower. After having presented the results obtained with the multi space histogram selection by the four considered histogram scores, the following section analyses the impact of the LBP-based feature selection approaches.

Impact of the LBP-based feature selection strategy

This section presents the results reached by the different strategies proposed in chapter 3 and is organized as follows. Section 4.3.1 details the classification results obtained on the New Bark-Tex database. Section 4.3.2 compares the results reached by our approach with those obtained in the state-of-the-art on the further OuTex-TC-00013, USPTex and STex databases. Finally, the processing times of the proposed approaches is presented and analyzed in section 4.3.3. compared with the highest rate of the bin selection category. This rate is obtained by MCSBS-Occurrence which is less good with (-0.2%). However, MCSBS-Occurrence selects a feature space with a lower dimension than the MCSHS approaches. MCSBS-Sparsity (A) and (B) improve the classification rate compared with the MCWS approach, nevertheless these two approaches give the lowest rates. Based on the average results in the last column, we can observe that the combination of histogram ranking and bin selection gives the best result. It improves (+ 0.9%) and (+ 2.5%) compared with the MCSHS and MCSBS approach, respectively. The combination of histogram ranking and bin selection guarantees to obtain a rate always greater or equal than those obtained by histogram selection. For example, the MCSHS-ICS approach gives at 88.0% when we combine this score with bin selection, the results obtained by strategies C and D are 88.1% and 89.0%, respectively. We find the same conclusion for the combination with the other scores. The best results depend on the choice of the histogram score used for the combination. Regarding the number of selected bins, the combination methods do not reduce the dimension compared with MCSBS and MCSHS approaches. For example, the combination of SpASL-score and bin selection achieves a rate of 88.4% with the strategy D ad with the number of bins equal to 11985. It improves the rate obtained by MCSHS-SpASL + 1.1% but uses more 2513 bins. This can be explained by the fact that the combination approaches seek the relevant bins for all ranked bins while the MCSHS seeks only the relevant histogram and might miss some relevant bins of the irrelevant histograms. That is the reason why we can improve the rate and sometimes the dimension does not reduce. Globally, we can observe that the combination by the strategy D gives better rates than those obtained by strategy C.

Classification results detailed on the New BarkTex

The classification results obtained on the New BarkTex by our proposed approaches are then compared with those obtained by the different studies of the state-of-the-art in table 4.6. The rows labeled as gray correspond to experiments that are carried out in this work whereas the other rows correspond to results published by other authors. The first column refers to the related papers and indicates the used selection method. The considered color spaces used to classify the images are presented in the second column of the table. The third column shows the descriptors which have been analyzed to discriminate the different color texture classes. Finally, the last column shows the rate of well-classified testing images obtained with the classifier presented in the fourth column. The classification rate obtained by other authors ranges from 58.6% to 82.1%. This table indicates that our approaches outperform the state-of-the-art results, improving (+ 6.9%) on New BarkTex database by the combination of ICS-score and LBP bin selection methods. 

Processing times

We select several approaches from each category to compare the processing times required by the learning and the classification stages on the New-BarkTex set. Tables 4.10 and 4.11 show the processing times of the two stages, respectively. These times are obtained by using the Matlab software and a PC cadenced at 3.20 GHz with 24 Gb RAM. Note that we classify these approaches by the ascending of total times. When a selection is performed, the learning stage consists in the computation of all available histograms (generation phase) and a selection phase.

For the MCSHS approach, the dimension of the discriminating histogram subspace is determined thanks to several classifications (see figure 3.2). This approach thus requires to compute all the histograms for the training (48.0 s) and the validation (48.0 s) images, and to evaluate the rate of well-classified validation images for the candidate histogram subspaces with different dimensions (630.3 s with the ICS-score). It is thus computationally costly (726.3 s), contrary to the MCSBS approach (78.1 s), which do not require any classification to determine the relevant subspace. Indeed, it only consists in extracting all the histograms for the training images (48.0 s) and determining the dominant bins (30.1 s) as shown in figure 3 When no selection is performed, the learning stage only consists in computing the histograms from the training images (48.0 s) in order to compare them to the histograms extracted during the classification stage from the testing images with the nearest neighbor classifier.

The classification stage consists in the computation of the previously selected histograms or bins from testing images (generation phase) and a decision phase.

When no selection is performed, the images are characterized by all available histograms, that is to say in a 81 × 256 = 20736 dimensional feature space. This high dimension leads to a high computation time for generation (48.0 s) and decision (15.8 s).

When the MCSHS-ICS approach is considered, a low dimensional histogram subspace is determined during the learning stage. The images are thus characterized by a reduced number of histograms (42 instead of 81) during the classification stage. Operating a selection allows here to reduce the generation and the decision times of the classification stage (31.5 s instead of 63.8 s with the ICS-score).

When MCSBS-Sparsity approach is performed, a low dimensional subspace is also determined during the learning stage and used for classification (754 bins are computed instead of 20736). The dimension of the relevant feature subspace is lower than the dimension obtained with the MCSHS-ICS approach (754 instead of 10752). It allows to assign more quickly the images to the estimated classes (0.7 s instead of 8.2 s) during the classification stage.

In order to compare the efficiency of the proposed approaches, we select three approaches and compare the rate obtained and the processing time by the table 4.12.

According to the accuracy reached and the processing times of learning stage represented in table 4.12, we are interested in the MCSBS-Occurrence and MCSHS-ICS approaches. These approaches allow thus to obtain similar classification performances for the New-BarkTex set, whether in accuracy or classification computation time, with a slight advantage for the MCSHS approach. Obviously, the selection provided by MCSHS is achieved at the price of a costly learning time. However, this learning computation time can be reduced as shown in [START_REF] Porebski | A fast embedded selection approach for color texture classification using degraded LBP[END_REF]. Indeed, a way to speed up the histogram selection approach is presented in this paper. It consists in considering during the learning stage a reduced neighborhood or a combination of reduced neighborhoods to compute LBP histogram. The results show that this approach gives as good results as those obtained with the full neighborhood while reducing the learning time, that reinforces the interest of the proposed MCSHS approach.

There is another way to reduce the times of the learning stage by operating the selection of the bin-uplets. Instead of operating the selection bin to bin by the combination of histogram ranking and bin selection with strategy D, we might think that it can be done by operating a selection of bin-uplets. This approach can reduce the number of classifications operated to determine the optimal subspace in the multi color space.

Conclusion

This chapter presents the results obtained on the four considered databases (New BarkTex, OuTex-TC-00013, USPTex, STex) by LBP-based features selection in the framework of multi color spaces. We first presented the impact factor of the distance measure between two histograms for the proposed SpASL-score. We then presented the validation of the proposed SpASL-score. The obtained results show that the SpASL-score improves the classification results compared with the three other scores. The detailed results for the four of LBP-based feature selection approach categories are then presented and analyzed. The results obtained are very encouraging since the LBP-based feature selection approaches proposed in this work improve the rates of well-classified images compared to the approaches which consider a single color space or the approach which does not perform any selection.

Finally, we have selected several approaches to analyze the processing times of the learning and classification stage. Our proposed approaches outperform other methods in the state-ofthe-art on three benchmark databases, however the combination of histogram and bin selection approaches are costly to compute due to a large classification steps operated. 

Conclusion and perspectives

In this work we present our research on feature selection for supervised color texture classification problem. The main contribution is the development of different strategies for LBP histogram and LBP bin histogram selection in the framework of a multi color space. We briefly summarized our contribution in the following:

• In chapter 1, the current state-of-the-art of color texture classification in supervised context was organized in order to provide a quick and compact overview for the reader. The principal families of color spaces have been presented as well as the main color texture descriptors. The LBP operator and its variants to color have been discussed. We introduced several key concept of supervised texture classification such as: the context, the commonly supervised classifier and the evaluation methods. Several color texture databases used to carried out in the experiments have been reviewed.

• In chapter 2, the literature review of feature selection methods related to our research have been introduced. The taxonomy of feature selection methods is briefly reviewed according two main axes: the learning contexts and the evaluation strategies. Two main ranking-based approaches are briefly reviewed. These approaches can be achieved by associating a score for each feature or by applying an algorithm which gives weights for a feature subset. Then, the feature selection methods applied to LBP are discussed depending on two groups: LBP bins selection and histogram selection. We present our first contribution in this chapter by proposing a novel histogram score which is based on the sparse similarity matrix.

• In chapter 3, a multi color space approach is designed for color texture classification. The textures are characterized by EOCLBP extracted from images coded in N S = 9 different color spaces and the corresponding histograms defined a color texture feature space. The most discriminating color texture features have then been selected thanks to a feature selection procedure performed during a supervised learning. We extended the LBP histogram selection and LBP bin selection from a single color space to multiple color spaces by two approaches MCSHS and MCSBS. Two strategies of selection are then proposed by the combination of histogram ranking and bin selection. In order to show the contribution of the proposed approaches, we presented the results on the New BarkTex database in a single color space and in multiple color spaces.

• In chapter 4, all proposed methods in this thesis are evaluated on several benchmark texture databases. We first study the impacts of several measured histogram distances to select the relevant ones. We then validate the SpASL-score on four benchmark texture databases. The results show that this score improved the classification performance in a single and multiple color spaces. The comparison of classification results by different approaches of bin selection and histogram selection are presented and compared with those obtained in the state-of-the-art. The results obtained with the proposed approaches are very encouraging since these methods improve the rates compared to the approaches which consider a single color space or the approach which does not perform any selection. We then compared the processing time of the proposed approaches in order to find a compromise between the performances and the time processing of the proposed approaches.

Based on the results presented in this thesis, we are planning several perspectives for future research directions. The further experimentations can be realized in the short term perspective:

• Although the combination histogram ranking and bin selection has outperformed other methods, it introduces a few limitations about the time processing which should be reduced in the future work. By the first observation, we can improve the proposed strategy D by the bin-uplet selection (c.f section 3.6). This will reduce the number of classification operations to determine the optimal subspace from 20736 to 256.

• In the current work, based on the general graph-preserving feature selection framework, we proposed to use the sparse similarity matrix based on l1 graphs for histogram selection, there are other kinds of graphs (e.g. l2 graph) that can also be used under general graph-based feature selection framework. It is interesting to investigate whether using other kinds of graphs can also lead to performance improvement.

• Motivated from the developments and utilizations of the different distances to measure similarity between two histograms by the SpASL-score, the comparative work empirically should be explore in order to address the issue: Which distance is appropriate for histogram selection ?

In the long-term perspective, there are two ideas can be explored:

• Many well-known color spaces exist and each one presents specific properties. Moreover, an hybrid color space is defined by selecting a set of three color components from different color space and used in color pixel classification for the segmentation task [START_REF] Vandenbroucke | Color pixels classification in an hybrid color space[END_REF]. We would like to extend this work by using the hybrid color space in order to compare the results obtained in a hybrid color space and in a single color space.

• The first aim of the proposed score is the improvement of ASL-score. Moreover, we notice that the sparse similarity matrix can be constructed in an unsupervised way without using class label, integrated into the ASL-score. In reality, the task of feature selection became more challenging with the so-called "small labeled-sample" problem, in which the amount of data that is unlabeled could be much larger than the amount of labeled data. This allows us to extend this work in the other learning context (semi-supervised or unsupervised) in the framework of feature selection. the parameters of LBP descriptors in order to improve texture representation in the lace image.

Preprocessing step and feature extraction

The specificity of lace samples of museum registers is that the scanned images contain paper background. In order to characterize the lace texture, it is necessary to segment the images to remove background and consequently only keep the material. The well-known Otsu's method is then used for this purpose [START_REF] Otsu | A threshold selection method from gray-level histograms[END_REF]. Features are then extracted from those processed images in order to analyze the different textures.

Preprocessing step

Note that before the image processing step, color images are transformed into gray level images. Otsu's segmentation method assumes that the image contains two groups of pixels following a bi-modal histogram. It then calculates the optimum threshold separating the two groups so that their combined spread (within-class variance) is minimal. 

Feature extraction

In order to represent the texture of lace in the images, we propose to use LBP descriptors. The definition of the original LBP operator has then been generalized to explore intensity values of points on a circular neighborhoods. Thus, LBP P,R is able to take any radius R and P neighbors around the central pixel, using a circular neighborhood. For an input image, texture statistics are obtained from LBP codes of all pixels represented by a histogram H. Histogram bins are denoted by H(q), n = 0, 1, ..., Q -1, where Q = 2 P . In order to extract texture features that are invariant to rotation, Discrete Fourier Transform (DFT) V is applied on the LBP histogram:

V (k) = Q-1 ∑ q=0 H(q) × exp -i2πkq/Q , 0 ≤ k ≤ Q -1 (B.1)
The extracted features denoted LBP-HF are obtained by the magnitude spectrum and given by the equation HF(k) = V (k) ×V (k) where, V (k) is the complex conjugate of V (k). HF = [HF(0), ..., HF (Q -1)] T is the rotation invariant feature vector which will be used for texture analysis.

It is interesting to note that LBP-HF features are generated by the LBP P,R descriptors and their performance depends on parameters R and P which have to be appropriately adjusted. 

Lace images classification

In order to assess the relevance of the extracted features, we propose to measure the classification performances of lace images obtained with these features using 1-NN classifier.

Experimental setup

We consider a small labeled database which consists of 492 images belonging to 41 classes of basic pattern laces (see figure B.2). Each class is composed of 12 images whose size is (150 × 150) pixels. The considered images are firstly processed in order to eliminate the paper background. The LBP-HF features are then extracted from the considered images.

In the supervised context, we need a database of K classes with a learning set and a testing set. We considered the 1-NN algorithm due to its performance and simplicity. The image dataset is divided into training and testing sets. For each one, we randomly select 6 images for training and 6 ones for testing per class. This process is repeated 20 times in order to evaluate classification performances using the cross-validation technique. The classification performance rate is calculated by comparing the predicted class labels obtained after application of classification algorithm with the true class labels.

Classification results

We propose to find the appropriate value of R and P which condition the performance of LBP-HF features. The classification performances of the 1-NN algorithm are computed with different values of R ∈ {1, 2, 3..., 14} and P ∈ {4, 8, 12, 14, 16, 20} applied on images after processing. From this figure, we can see that the highest accuracy is obtained when R = 6 for all values of P. Table B.1 summarizes the performance of LBP-HF P,6 . We can notice that their value change slightly when the values of P are higher than 4, this value being the spatial resolution of a lace thread. So, we set R = 6 and P = 8 hereafter.

Based on these adjusted values of R and P, we compare the classification performances of 1-NN algorithm applied on the database before and after image processing (Table B.2). This table confirms that the elimination of the paper background significantly improves the classification performances. Résumé L'analyse de texture a été largement étudiée dans la littérature et une grande variété de descripteurs de texture ont été proposés. Parmi ceux-ci, les motifs binaires locaux (LBP) occupent une part importante dans la plupart des applications d'imagerie couleur ou de reconnaissance de formes et sont particulièrement exploités dans les problèmes d'analyse de texture. Généralement, les images couleur acquises sont représentées dans l'espace colorimétrique RGB. Cependant, il existe de nombreux espaces couleur pour la classification des textures, chacun ayant des propriétés spécifiques qui impactent les performances. Afin d'éviter la difficulté de choisir un espace pertinent, la stratégie multi-espace couleur permet d'utiliser simultanément les propriétés de plusieurs espaces. Toutefois, cette stratégie conduit à augmenter le nombre d'attributs, notamment lorsqu'ils sont extraits de LBP appliqués aux images couleur. Ce travail de recherche est donc axé sur la réduction de la dimension de l'espace d'attributs générés à partir de motifs binaires locaux par des méthodes de sélection d'attributs. Dans ce cadre, nous considérons l'histogramme des LBP pour la représentation des textures couleur et proposons des approches conjointe de sélection de bins et d'histogrammes multi-espace pour la classification supervisée de textures. Les nombreuses expériences menées sur des bases de référence de texture couleur, démontrent que les approches proposées peuvent améliorer les performances en classification comparées à l'état de l'art.

Mots-clés: Classification de textures, espaces couleur, opérateur LBP, sélection d'attributs, sélection d'histogramme, sélection de bins, apprentissage supervisé.
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 11 Figure 1.1: An example of a color image coded in the RGB color space and its three corresponding component images.
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 12 Figure 1.2: An example of an image coded in different color spaces.
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 13 Figure 1.3: Color distributions of the image of leaves coded in four color spaces.

  Texture image usually contains a material or an object which presents a texture information. Figure1.4 illustrates an example of four color texture images from the USPTex database that represent textures of stone, brick, sand and granit. So, texture is an important element of human vision.

  Figure 1.4: A variety of textures
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 115 Figure 1.5: Different observation conditions of a texture from the OuTex database (that will be introduced in section 1.2.4).
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 16 Figure 1.6: Representation of color texture by extracting texture features from the luminance image and by associated them with features describing the color distribution.
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 17 Figure 1.7: Representation of color texture by extracting features that are evaluated within each component of the (C 1 ,C 2 ,C 3 ) space.

  Figure 1.8 illustrates this strategy. Note that the texture features extracted from the component image C 1 and C 2 are different with those extracted from the component image C 2 and C 1 by a several descriptors [13].
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 18 Figure 1.8: Representation of color texture by extracting features that are evaluated within and between the components of the (C 1 ,C 2 ,C 3 ) space.
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 4419 Figure 1.9: An example of the original LBP computation.
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 110 Figure 1.10: Circular neighborhoods of the center pixel with different neighbors : (a) LBP 8,1 and (b) LBP 16,2
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 111 Figure 1.11: An example of non-uniform and uniform patterns LBP
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 112 Figure 1.12: An example of the influence of image rotation on points in a circular neighborhood.
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 113 Figure 1.13: Illustration of the within component color LBP computation.
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 114 Figure 1.14: The different steps to obtain the LBP values for the pairs of color components (C 1 ,C 1 ), (C 1 ,C 2 ), (C 2 ,C 1 ) and (C 1 ,C 3 ) for the analyzed pixel. For example, to compute the LBP value (C 1 ,C 2 ) of the analysed pixel, the color component C 2 of each of the 8 neighboring pixels is compared with the color component C 1 of the considered pixel. This step is realized as demonstrated in Figure 1.9.
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 1151 Figure 1.15: Exemple of two different textures with the same color (a-b) and the same texture of stone with different colors (c-d).
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 111 Figure 1.17: A general framework of a supervised classification.
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 11 Figure 1.19: A general framework of a semi-supervised classification.
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 1 Figure 1.20: A scheme of texture classification with dimensionality reduction step.
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 121 Figure 1.21: An illustration of LDA.
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 122 Figure 1.22: Illustration of different hyperplanes. H 1 separates the two classes with a small margin, whereas H 2 separates them with the maximum margin.

  .23. Based on the value of K, the testing image (represented by a green star) will be classified into the class A or the class B. If K = 3 (dashed line circle), this image is 1.2. Supervised texture classification assigned to the class B, whereas if K = 5 (solid line circle), this image is assigned to the class A.
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 123 Figure 1.23: Example of 3-NN and 5-NN classification.

  Figure. 1.25 shows some examples of texture of the USPTex database.
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 2 Figure 1.24: The OuTex-TC-00013 dataset includes 68 different texture classes.
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 125 Figure 1.25: Selected textures among 191 classes from the USPTex database (one image per class).
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 126 Figure 1.26: Selected textures among 476 classes from STex database (one image per class).
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 127 Figure 1.27: Examples of images of the BarkTex database.

  Figure. 1.28 illustrates the images of New BarkTex test suite where each row represents each kinds of trees.
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 2 Figure 1.28: Example of New BarkTex color test suite: each row represents a class of texture.
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 21 Figure 2.1: Examples to illustrate the concept of relevant, noisy and redundant features. (a) f 2 is a relevant feature which can discriminate the two classes A and B while f 1 is an irrelevant feature. (b) f 3 and f 4 are noisy features. (c) f 5 and f 6 are redundant features.
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 22 Figure 2.2: The different steps of feature selection [162].
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 23 Figure 2.3: Categorization of feature selection (a) context and (b) evaluation strategy.
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 24 Figure 2.4: A general framework of supervised feature selection
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 2526 Figure 2.5: A general framework of unsupervised feature selection
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 2728 Figure 2.7: An illustration of filter method
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 29 Figure 2.9: An illustration of hybrid method
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 18 Recently, Dornaika and Bosaghzadeh propose another supervised Laplacian score based on locality discrimination [215]. Two undirected weighted graphs G w and G b are constructed. The graph G w reflects the within-class relationship, i.e., it encodes the pairwise similarity and relation associated with samples having the same label. The graph G b reflects the between-class or global similarity relationship. It encodes the pairwise similarity and relation among heterogeneous samples. The graphs G w and G b are characterized by the weight matrices W w and W b , respectively.
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 2210 Figure 2.10: Illustration of the nearhit and nearmiss concepts.

Algorithm 1

 1 Relief algorithm 1. Initialize the weight vector to zero w = (0, 0, ..., 0) 2. For t = 1, ..., T (a) Pick randomly an instance x from X (b) Find NH(x) and NM(x) (c) For r = 1, ..., D, calculate

1 .

 1 Initialize w = (1, 1, ..., 1) 2. For t = 1...T (a) Pick randomly an instance x from X (b) Calculate NM(x) and NH(x) with respect to X\{x}and the weight vector w (c) For r = 1, ..., D calculate ∆ r = 1 2
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 32 Figure 3.2: An illustration of the multi color space histogram selection aprroach.
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 33 Figure 3.3: An illustration of multi color space bin selection approach.
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 341023 Figure 3.4: An illustration of bin selection by strategy B.
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 535 Figure 3.5: Multi color space bin selection approach.

  6 presents the results obtained with the two strategies C and D. For the purpose of combination of bin and histogram selection of each strategy C or D, four different histogram scores have been used in the combination of the bin selection (BS) by supervised sparsity score: 1. ICS score and sparsity score, 2. ASL score and sparsity score, 3. SpASL score and sparsity score, 4. Simba-2 score and sparsity score.
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 36 Figure 3.6: The combination of histogram ranking and bin selection in the multiple color spaces.
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 442 EXPERIMENTAL EVALUATION Table 4.2: Summary of the proposed methods used in experiments. continued... 2 & BS-(C) Multi color space bin selection by combining Simba-2-score and bin selection by strategy C 12 ASL & BS-(C) Multi color space bin selection by combining ASL-score and bin selection by strategy C 13 SpASL & BS-(C) Multi color space bin selection by combining SpASL-score and bin selection by strategy C 14 ICS & BS-(D) Multi color space bin selection by combining ICS-score and bin selection by strategy D 15 Simba-2 & BS-(D) Multi color space bin selection by combining ICS-score and bin selection by strategy D Continued on next page . . . Summary of the proposed methods used in experiments. continued...

119 4. 3 .

 1193 Impact of the LBP-based feature selection strategy

  .3. MCSHS-SpASL 4.3. Impact of the LBP-based feature selection strategy takes longer times than others histogram score (797.8 s) since it has to compute the sparse similarity matrix. MCSBS-Sparsity and the ICS & BS-(D) are approaches that need a learning computation time even more important. Indeed, they take approximately 39 hours to determine the bin subspace because they have to carry out 20736 classifications in order to determine the dimension of the feature space instead of 81 for MCSHS approaches. We only illustrate the processing times of the combination approach ICS & BS-(D) since other combination approaches (i.e ASL & BS, Simba-2& BS, SpASL & BS) is nearly the same.

Figure B. 1 :

 1 Figure B.1: Examples of lace images in collection with geometric decorations (a) and flower (b).

  Figure B.3 shows lace image before processing (a) and after processing (b).

  Figure B.3 (d) shows that background mode has been removed from the histogram B.3 (c).

Figure B. 2 :

 2 Figure B.2: Similarity between basic pattern of laces (a)-(b) and (c)-(d).

Figure B. 3 :

 3 Figure B.3: Example of laces tissues before and after the image processing (a)-(b), and their histograms (c)-(d).

Figure B. 4

 4 Figure B.4 illustrates LBP 8,6 image (a) and its histogram (b).

Figure B. 4 :

 4 Figure B.4: LBP 8,6 image (a) and its histogram (b).

  Figure B.5 displays accuracy for these different values.

Figure B. 5 :

 5 Figure B.5: AC vs. R for different values of P after image processing step in supervised context.

  SpASL-score of r th histogram SupLaplacian r Supervised Laplacian score of r th feature Variance r

	Notations
	L		Laplacian matrix with L = D -S
	Laplacian r	Laplacian score of r th feature
	NM(x i )		nearmiss of x i
	ASL r NH(x i ) C µ r C 1 µ c r C 2 M C 3 P C Q D R D ρ D int S D Je f S c D χ 2 σ δ SpASL r	nearhit of x i ASL-score of r th histogram Mean of r th feature Number of classes Mean of r th feature within the class c Color component C 1 Set of must-link constraints Color component C 2 Number of LBP neighbor pixels Color component C 3 Quantization level Set of cannot-link constraints Radius size of LBP Number of candidates features Hypothesis margin Diagonal matrix Similarity matrix Histogram instersection distance Similarity matrix of data within class c Jeffrey distance Gaussian variance values χ 2 distance Number of candidates histograms
	Fisher r Fisher score of r th feature
	f r	r th feature vector
	f rc	r th feature vector of the class c
	G	Undirected graph
	H H H i	Concatenated histogram to represent image I i
	H r i	r th histogram of color image I i
	H r i (k)	k th bin of histogram H r i
	I i	i th of color image I i
	ICS r	ICS-score of r th histogram
	J i	Domimant bins set
	J global	Domimant bins set for the whole dataset
	N	Number of images
	N c	Number of images in the class c
	N S	Number of color spaces c
			iii

  L * C * ab h ab , b w C r g b y h r g b y , YC IQ h IQ , YC UV h UV and LC Ch 1 Ch 2 h Ch 1 Ch 2 .

Table 1 .

 1 1: Characteristics of OuTex-TC-00013 dataset used in texture classification.

	Database Name	Number of classes	Number per class of images	images Size of	method Validation	Reference
							Pietikäinen, 2002 [56]
							Mäenpää, 2004 [13]
							Arvis, 2004 [41]
							Iakovidis, 2005 [122]
							Xu, 2005 [54]
							Alvarez, 2012 [127]
							Cusano, 2013 [152]
							Qazi, 2013 [126]
	OuTex	OuTex-	68	20	128×128 Holdout (1/2 -1/2)
		TC-00013				

Table 1 .

 1 2: Characteristics of BarkTex dataset used in texture classification.

	, 2017b [153]

Table 1 .

 1 

	Database	Name	Number of classes	Number of images per class	Size of images	Validation method

3: Characteristics of USPTex dataset used in texture classification.

Table 1 .

 1 4: Characteristics of STex dataset used in texture classification.

	Database	Name	Number of classes	Number of per class images	images Size of	method Validation	Reference
			476	16	128×128 Holdout (1/2 -1/2)	El Maliani, 2014 [134]
	STex	STex					Martinez, 2015 [135]
			476	16	128×128 K-fold	Bello-Cerezo, 2016 [131]

  Unsupervised methods: Unsupervised feature selection is a more challenging problem due to the absence of class label information used for guiding the search of discriminative features. Nevertheless, it has one advantage that it is unbiased by the labeling of data by human experts or data analysts. A general framework of unsupervised feature selection is illustrated in figure 2.5. Different from supervised feature selection, unsuper-

vised feature selection usually uses all available data in the feature selection step. The feature selection step is either independent of the unsupervised learning algorithms (filter methods), or it relies on the learning algorithm to select features (wrapper methods). Unsupervised feature selection methods seek alternative criteria such as data similarity

  = 2 P being the quantization level. H r i (k) represents the values of the k th bin, k ∈ {1, ..., Q}, of the i th image histogram among N color images. The Intra-Class Similarity score (ICS-score), proposed by Porebski et al., is based on an intra-class similarity measure. Let h r be the corresponding normalized histogram 2 of the r th histogram H r . H r i and H r j are the r th histograms that characterize respectively two training 2.4. Feature selection applied to LBP images I i and I j . In order to evaluate the similarity between two images of a same class, Porebski et al. utilize the histogram intersection:

	1) ... H r i (1) ... H r N (1)	
	...	...	...	...	...	 
	H r 1 (k) ... H r i (k) ... H r N (k)	  	(2.52)
	...	...	...	...	...	 
	H r 1 (Q) ... H r i (Q) ... H r N (Q)	
	where, Q					

3 Sparse representation for histogram selection

  Kalakech et al. introduced a histogram selection score, named "Adapted Supervised Laplacian score" (ASL-score) based on Jeffrey distance and a similarity matrix

• H rc is the histogram weighted average of the class c 75 2.4. Feature selection applied to LBP 2.4.2.

  .1: Studies about color space comparison for classification.

	Color Descriptor	Database	Color Space used	Best space
	3D histogram [56]	OuTex-13	RGB, I 1 I 2 I 3	RGB
	3D histogram [13]	OuTex-13	RGB, HSV, I 1	

Table 3 .

 3 1: Studies about color space comparison for classification continued... Ch 2 , I 1 S 2 H 1 ,

	Color Descriptor	Database	Color Space used	Best space
			RGB, XYZ, UVW, HSV, LUV	
			AC 1 C 2 , b w r g b y , YC b C r ,	
			L Y'U'V',HSI, HLS, L*u*v*,	
	Reduced Size			
	Chromatic Co-occurrence	OuTex-13	I 1 rg, Yxy, LCh 1	
	Matrices [139]			

* C uv h uv ,Y'I'Q', L * a * b *

Table 3 .

 3 1: Studies about color space comparison for classification continued...

	HLS

* a * b * L * a * b * Soft color descriptors [131] OuTex-13 RGB, HSV, YUV, I 1 I 2 I 3 , YCbCr, L * a * b * , Y IQ, * a * b * , * a * b * , HSV, I 1 I 2 I 3 L * a * b *

Table 3 .

 3 2: Studies about multi color space approach.I 1 I 2 I 3 , H 1 H 2 H 3 , YC b C r

	Multi color	
		Descriptors	Color Space used
	space approach	
		Markov random fields [230],
		Independent component
		analysis [238]
	Color space	
	fusion	Markov random field [246, 240] RGB, XYZ, HSI, YIQ, TSL, L Color LBP Fusion [247],
		Color Grayscale LBP Fusion,
			RGB, rgb, oRGB, HSV , YC b C r
		Pyramid of Histograms of
		Orientation Gradients [14]
			Continued on next page . . .

RGB, rgb, HSV, YIQ, YUV , L * a * b * Denoeux's model

[START_REF] Charrier | Evidential segmentation of microscopic color images with pixel classification posterior probabilities[END_REF] 

RGB, XYZ, HSL, YUV,

HSI, L * a * b * , YC b C r * a * b * , L * u * v * ,

Table 3 .

 3 2: Studies about multi color space approach continued... , I 1 I 2 I 3

	Multi color	
	Descriptors	Color Space used
	space approach	
		RGB, oRGB, HSV, YIQ,
	H-descriptor [248]	
		DCS, YC b C r , I 1 I 2 I 3
	Color Gabor-LBP [52]	RGB, oRGB, HSV, YIQ, DCS, YC b C r
	Histograms of oriented	
		RGB, oRGB, HSV , YC b C r
	gradients [249]	
	Markowitz model [250] Histogram multi RGB, rgb, HSV, iHLS, L Color space thresholding [251]
	selection	
		LC Ch1Ch2 h Ch1Ch2 , I 1 C I2I3 h I2I3
	Switching model [252]	RGB, HSV, YC b C r
	Switching color space models [242] RGB, rgb, HSI, YIQ, XYZs, YC b C Markov random field [253] RGB, HSI, rg, L 90

* a * b * , YC b C r RGB, rgb, XYZ, xyz, YIQ, YUV, w b r g b y ,

YC 1 C2, L * a * b * , L * u * v * , I 1 I 2 I 3

Multi Color Space

Segmentation

[START_REF] Vandenbroucke | Unsupervised color-image segmentation by multicolor space iterative pixel classification[END_REF] 

RGB, rgb, XYZ, xyz, YIQ, YUV, Yxy, w b r g b y ,

AC 1 C2, L * a * b * , L * u * v * , I 1 I 2 I 3 , YCh 1 Ch 2 , I 1 rg, I 1 S 1 H 1 , I 1 S 2 H 2 , I 4 S 3 H 2 , I 5 S 4 H 2 , I 6 S 5 H 1 , L * S * uv h uv AC C1C2 h C1C2 , b w C rgby h rgby , YC IQ hIQ, YC * ab h ab , YC UV h UV , L * C * ab h ab ,L * C * uv h uv , r , L * a * b * , L * u * v * * a * b * , L * u * v *

Continued on next page . . .

Table 3 .

 3 2: Studies about multi color space approach continued...RGB, HSV, rgb XYZ, YCb C r , L * a * b * , c 1 c 2 c 3 , l 1 l 2 l 3

	Multi color	
	Descriptors	Color Space used
	space approach	
	Color space models based on Mean-Shift [243, 244]	RGB, rgb, XYZ, HSI, YUV, L I 1 I 2 I 3
	Shadow eliminating	
	operator [254]	
	Gaussian low-pass filter [255] Color pixels RGB, HSV, HSI, L Color texture classification [256]
	feature	
	selection	

* a * b * , YC b C r , * a * b * , YC b C r RGB, rgb, ISH, XYZ, xyz, YIQ, YUV, AC 1 C 2 ,

Table 3 .

 3 4: Comparison of classification rates obtained with and without LBP histogram selection in a single color space and in multi spaces on the New BarkTex database. The values in boxes represent the best rates obtained with each color space and the boldface indicates the best rate obtained of each approach.

		Without			Histogram selection		
	Color spaces	selection	ICS		Simba-2	ASL		SpASL
		Rate	δ	Rate	δ	Rate	δ	Rate	δ	Rate	δ
	RGB	73.2	9	81.3	4	81.3 4	81.3 4	81.3 4
	rgb	74.4	9	76.8	7	74.4	9	77.1 3	77.1 3
	I 1 I 2 I 3	71.7	9	79.5	7	75.4	8	79.5 7	79.5 7
	HSV	70.5	9	81.0	3	76.8	4	81.0 3	81.0 3
	b w r g b y	72.1	9	80.0	7	72.1	9	80.6 6	80.6 6
	HLS	70.1	9	81.0	3	71.2	8	81.0 3	81.0 3
	I-HLS	72.1	9	75.9	6	72.1	9	77.1	5	78.8 2
	HSI	71.7	9	79.8	3	73.9	7	79.8 3	79.8 3
	YC b C r	71.6	9	79.3	7	71.6	9	79.3 7	79.3 7
	Average in	71.9	9	79.4	5	74.3	7	79.6	4	79.8	4
	single space	± 1.3		± 1.8		± 3.2		± 1.5		± 1.3	
	Multi spaces 78									

.2 81 88.0 42 85.2 40 86.8 29 87.3 37

  

Table 3 .

 3 5: The classification results of LBP bin selection approaches in a single and multiple color spaces on the New BarkTex database. The values in boxes represent the best rates obtained with each color space and the boldface indicates the best rate obtained of each combination approach.

		Without selection			LBP Bin selection	
	Color spaces			Occurence	Sparsity (A)	Sparsity (B)
		Rate	D	Rate	D	Rate	D	Rate	D
	RGB	73.2	2304	81.5	281	79.0	1109 78.7	2033
	rgb	74.4	2304	74.9	132	74.4	2242 76.0 2274
	I 1 I 2 I 3	71.7	2304	74.8	78	74.4	1198 77.2 2011
	HSV	70.5	2304	81.0	179	79.5	500	77.6	1544
	b w r g b y	72.1	2304	74.4	78	77.5	836	78.3 1435
	HLS	70.1	2304	81.1	167	78.0	319	76.7	1910
	I-HLS	72.1	2304	77.8	129	72.7	1813 78.9 1883
	HSI	71.7	2304	82.5	172	79.2	533	79.0	1929
	YC b C r	71.6	2304	74.5	81	77.0	370	80.6 2116
	Average in	71.9	2304	78.0	144	76.9	991	78.1	1903
	single space	± 1.3		± 3.4		± 2.3		± 1.3	
	Multi spaces 78.2	20736	87.8	1502 83.6	754	84.4	16491

  .6. It is also a hybrid selection method, however the bin ranking strategies are applied after the histogram ranking in this case. Here, we assume that 105 3.6. Combination of histogram ranking and bin selection the bins of discriminant histograms are more relevant than others. During the learning stage, candidate histograms are generated from training images and histogram ranking is applied for each candidate histogram thanks to one of the four scores that are that presented and used in section 2.4.2 and 3.4 (ICS, ASL, SpASL, Simba-2). The differences between figure 3.6 and figure3.5 are the histogram ranking strategy is applied before bin ranking. In this framework, two more strategies are proposed as follows:

Table 3 .

 3 6: The classification results of the combination of histogram ranking and bin selection approaches in a single and multiple color spaces on the New BarkTex database. The values in boxes represent the best rates obtained of each color space and the boldface indicates the best rate obtained of each approach

	Without	Strategy C
	Color	
	selection	
	spaces	

Table 4 .

 4 4.2. Impact of the histogram score 3: The classification obtained by SpASL-score with three measurements of similarity between two histograms by histogram intersection, χ 2 , Jeffrey on four texture databases. The value in boldface indicates the best obtained rate of each row.

			Distance	
	Database	Histogram	χ 2	Jeffrey
		intersection		
		Rate δ	Rate δ	Rate	δ
	New BarkTex	78.4 77	87.3 38 87.3 37
	OuTex-TC-00013	95.2 68	95.6 62 95.6 62
	USPTex	93.7 78	97.6 39 97.4 31
	STex	93.2 81	96.6 29 96.8 32

Average on the four databases 90.1 ± 7.8 94.3 ± 4.7 94.3 ± 4.7 4.

2 Impact of the histogram score

  

Table 4 .

 4 4 presents the results obtained by MCSHS and MCWS on OuTex-TC-00013, New BarkTex, USPTex and STex database. The first column of this table shows the name of the database. The second column shows the results when no selection is applied. The last column is divided into four sub-columns corresponding to the four histogram scores ICS, Simba-2, ASL and SpASL. The average rate obtained for each approach on the four databases is presented in the last row.

Table 4 .

 4 4: The classification results of the multi color space approach without and with histogram selection, on the four texture databases. The value in boldface indicates the best rate obtained for each row.

				MCSHS	
		MCWS				
	Database		ICS	Simba-2	ASL	SpASL
		Rate δ	Rate δ	Rate δ	Rate δ	Rate	δ
	OuTex-13	95.0 81 95.6 59 95.0 79 95.3 62 95.6 62
	New BarkTex	78.2 81 88.0 42 85.2 40 86.8 29 87.3 37
	USPTex	93.7 81 93.7 40 93.8 80 97.6 41 97.4 31
	STex	93.3 81 94.1 47 95.8 31 96.1 38 96.8 32
	Average on the					
		90.				
	four databases					

0 ± 7.9 92.8 ± 3.2 92.4 ± 4.9 93.9 ± 4.8 94.3 ± 4.7

Table 4 .

 4 5 shows the classification results obtained by the different proposed approaches on the New BarkTex database. The first and second columns represent the categories and the approach 4.3. Impact of the LBP-based feature selection strategy names. The third and fourth column indicate the rate of well-classified images reached and the subspace dimension. The last column shows the average result of each category.

Table 4 .

 4 5: Classification results of the proposed approaches in the multi color space framework on the New BarkTex database. The value in box indicates the highest rate within each category while the value in boldface indicates the best rate obtained among all approaches. By analyzing this table, we can see that the classification rate range from 78.2% to 89.0%. The highest rate obtained by a MCSHS approach is 88.0% with the ICS-score. This rate is then

	Category	Approach	Rate	D	Average
	No selection	MCWS	78.2 20736 78.2
		MCSHS-ICS	88.0 10752	
	Histogram	MCSHS-Simba-2	85.2 10240 86.8 ± 1.1
	selection	MCSHS-ASL	86.8 7424	
		MCSHS-SpASL	87.3 9472	
		MCSBS-Occurrence	87.8 1502	
	Bin selection	MCSBS-Sparsity (A) 83.6 754	85.2 ± 2.2
		MCSBS-Sparsity (B) 84.4 16491	
		ICS & BS-(C)	88.1 11501	
		Simba-2 & BS-(C)	85.4 10251	
		ASL & BS-(C)	87.0 7460	
	Combination of				
		SpASL & BS-(C)	87.5 9580	
	histogram ranking				
		ICS & BS-(D)	89.0 11457 87.7 ± 1.1
	and bin selection				
		Simba-2 & BS-(D)	87.4 9912	
		ASL & BS-(D)	88.1 12466	
		SpASL & BS-(D)	88.4 11985	

Table 4 . 6 :

 46 Comparison between the well-classified image rates reached with the New BarkTex set. The italic values indicate the results obtained based on our implementation while the underlined values indicate the results extracted from[START_REF] Ledoux | Color local binary patterns: compact descriptors for texture classification[END_REF].

	Reference	Color space	Features	Classifiers Accuracy
	ICS & BS-(D)	9 color spaces	EOCLBP	1-NN	89.0
	ICS & BS-(C)	9 color spaces	EOCLBP	1-NN	88.1
	MCSHS-ICS	9 color spaces	EOCLBP	1-NN	88.0
	MCSBS-Occurrence	9 color spaces	EOCLBP	1-NN	87.8
	MCSBS-Sparsity (B)	9 color spaces	EOCLBP	1-NN	84.4
	[154]	RGB	CLBC	1-NN	84.3
	MCSBS-Sparsity (A)	9 color spaces	EOCLBP	1-NN	83.6
	[66]	RGB	3D-ASDH	SVM	82.1
	[8] (with selection method)	RGB	EOCLBP	1-NN	81.4
	[9] (with selection method)	RGB	EOCLBP	1-NN	81.4
	[62]	RGB	LBP and local	1-NN	80.2
			color contrast		
	[56]	RGB	Between color	1-NN	79.9
			component LBP		
	MCWS	9 color spaces	EOCLBP	1-NN	78.2
	[47]	RGB	Mix color order	1-NN	77.7
			LBP histogram		
	[138] (with selection method) 20 color spaces RSCCM	1-NN	75.9
	[259]	RGB	CLBP	1-NN	72.8
	[34]	RGB	Color angles LBP 1-NN	71.0
	[260]	RGB	DRLBP	1-NN	61.4
	[13]	RGB	Color histograms 1-NN	58.6

2 Validation on STex, OuTex-TC-00013 and USPTex sets

  

Table 4 .

 4 7, 4.9 and 4.8 present the classification results obtained by our proposed approaches and those obtained by the different studies which have applied a color texture classification algorithm on STex, OuTex-TC-00013 and USPTex respectively.

Table 4 .

 4 7: Comparison between the well-classified image rates reached with the STex database. The italic values indicate the results obtained based on our implementation.For the three databases, the best rates obtained are given by the combination of the SpASLscore and bin selection with the strategy D. Our approaches outperform all other methods for USPTex and STex by improving the classification rate by (+ 2.4%) and (+ 8.7%), respectively.On the other hand, our approaches do not outperform two works on OuTex-TC-00013 [138, 121 4.3. Impact of the LBP-based feature selection strategy

	Reference	Color space	Features	Classifiers Accuracy
	SpASL & BS-(D)	9 color spaces EOCLBP	1-NN	98.1
	SpASL & BS-(C)	9 color spaces EOCLBP	1-NN	96.9
	ASL & BS-(C)	9 color spaces EOCLBP	1-NN	96.8
	MCSHS-SpASL	9 color spaces EOCLBP	1-NN	96.7
	MCSBS-Occurrence 9 color spaces EOCLBP	1-NN	96.7
	MCSBS-Sparsity (A) 9 color spaces EOCLBP	1-NN	94.7
	MCSBS-Sparsity (B) 9 color spaces EOCLBP	1-NN	94.7
	MCWS	9 color spaces EOCLBP	1-NN	93.7
	[260]	RGB	DRLBP	1-NN	89.4
	[134]	L * a * b *	Wavelet coefficients	Bayes	77.6
			Color contrast		
	[135]	RGB		1-NN	76.7
			occurrence matrix		
	[131]	L * a * b *	Soft color descriptors 1-NN	55.3

Table 4 .

 4 9: Comparison between the well-classified image rates reached with the OuTex-TC-00013 set.

	Reference	Color space	Features	Classifier Accuracy
	[138] (with selection method) 28 color spaces RSCCM	1-NN	96.6
	[66]	HSI	3D-ASDH	SVM	95.8
	SpASL & BS-(D)	9 color spaces	EOCLBP	1-NN	95.7
	SpASL & BS-(C)	9 color spaces	EOCLBP	1-NN	95.7
	MCSHS-SpASL	9 color spaces	EOCLBP	1-NN	95.6
	MCSHS-ICS	9 color spaces	EOCLBP	1-NN	95.6
	[13]	HSV	3D Color histogram	1-NN	95.4
	SpASL & BS-(C)	9 color spaces	EOCLBP	1-NN	95.3
	MCSBS-Sparsity (A)	9 color spaces	EOCLBP	1-NN	95.2
	MCSBS-Sparsity (B)	9 color spaces	EOCLBP	1-NN	95.2
	MCWS	9 color spaces	EOCLBP	1-NN	95.0
	[114]	RGB	Fractal descriptors	LDA	95.0
	[41]	RGB	Haralick features	5-NN	94.9
	[56]	RGB	3D Color histogram	3-NN	94.7
	[126]	I-HLS	3D Color histogram	1-NN	94.5
	[41]	RGB	Haralick features	1-NN	94.1
	[122]	HSV	EOCLBP	SVM	93.5
	[9] (with selection method)	RGB	EOCLBP	1-NN	93.4
				Continued on next page . . .
			122		

Table 4 .

 4 9: Comparison between the well-classified image rates reached with the OuTex-TC-00013 set continued...

	Reference	Color space	Features	Classifier Accuracy
	[8] (with selection method)	RGB	EOCLBP	1-NN	92.9
	MCSBS-Occurrence	9 color spaces	EOCLBP	1-NN	92.9
	[139] (with selection method) HLS	RSCCM	1-NN	92.5
			Between color		
	[13]	RGB	component LBP	1-NN	92.5
			histogram		
			Quaternion-Michelson		
	[109]	RGB		1-NN	91.3
			Descriptor		
	[127]	RGB	Texton	1-NN	90.3
			Combine color and		
	[261]	RGB		1-NN	90.2
			LBP-based features		
	[134]	L * a * b *	Wavelet coefficients	Bayes	89.7
			Intensity-Color		
	[152]	RGB		1-NN	89.3
			Contrast Descriptor		
	[260]	RGB	DRLBP	1-NN	89.0
			Autoregressive models		
	[126]	I-HLS		1-NN	88.9
			and 3D color histogram		
			Continued on next page . . .
			123		

Table 4 .

 4 9: Comparison between the well-classified image rates reached with the OuTex-TC-00013 set continued...

	Reference	Color space	Features	Classifier Accuracy
			Halftoning Local		
	[142]	RGB	Derivative Pattern and	1-NN	88.2
			Color Histogram		
	[232]	L * a * b *	Autoregressive models 1-NN	88.0
			Within color		
	[13]	RGB	component LBP	1-NN	87.8
			histogram		
			Mix color order		
	[47]	RGB		1-NN	87.1
			LBP histogram		
	[62]	RGB	Color angles LBP	1-NN	86.2
			LBP and local color		
	[34]	RGB		1-NN	85.3
			contrast		
			Features from wavelet		
	[54]	RGB		7-NN	85.2
			transform		
	[259]	RGB	CLBP	1-NN	84.4
			Color contrast		
	[135]	RGB		1-NN	82.6
			occurrence matrix		
	[131]	HSV	Soft color descriptors	1-NN	81.4
			Continued on next page . . .
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Table 4 .

 4 9: Comparison between the well-classified image rates reached with the OuTex-TC-00013 set continued... Porebski et al. use Haralick features extracted from Reduced Size Chromatic Co-occurrence Matrices (RSCCMs) by using 28 color spaces compared with 9 color spaces by our proposed approach. In[START_REF] Sandid | Robust color texture descriptor for material recognition[END_REF], Sandid et al. use the SVM classifier and characterize the texture by the three-dimensional adaptive sum and difference histograms descriptors. Our results are close to those obtained in[START_REF] Sandid | Robust color texture descriptor for material recognition[END_REF] (the difference is equal to 0.1%) whereas we use a simple 1-NN classifier. Other studies give results range from 67.3% to 95%. Note that the MCSBS-Occurrence gives in this case a less good result with the rate obtained of 92.9%.In the next subsection, we propose to compare the computing time of the proposed approaches.

	Reference	Color space	Features	Classifier Accuracy
	[144]	RGB	HEP	1-NN	80.9
	[128]	RGB	Fuzzy aura matrices	1-NN	80.2
	[148]	RGB	Modified LBP	1-NN	67.3
	66]. In [138],				

Table 4 .

 4 8: Comparison between the well-classified image rates reached with the USPTex database. The italic values indicate the results obtained based on our implementation.

	Reference	Color space	Features	Classifiers Accuracy
	SpASL & BS-(D)	9 color spaces EOCLBP	1-NN	98.1
	ASL & BS-(C)	9 color spaces EOCLBP	1-NN	97.6
	MCSHS-ASL	9 color spaces EOCLBP	1-NN	97.6
	MCSHS-SpASL	9 color spaces EOCLBP	1-NN	97.4
	MCSBS-Occurrence 9 color spaces EOCLBP	1-NN	97.3
	[261]	RGB	Fusion Color texture and	SVM	95.7
			LBP-based features		
	MCSBS-Sparsity (A) 9 color spaces EOCLBP	1-NN	94.8
	MCSBS-Sparsity (B) 9 color spaces EOCLBP	1-NN	94.7
	[116]	Luminance	Local jet and LBP	LDA	94.3
	[109]	RGB	Quaternion-Michelson	1-NN	94.2
			Descriptor		
	[142]	RGB	Halftoning Local Derivative	1-NN	93.9
			Pattern and Color Histogram		
	MCSHS-Simba-2	9 color spaces EOCLBP	1-NN	93.8
	MCWS	9 color spaces EOCLBP	1-NN	93.7
	[260]	RGB	DRLBP	1-NN	89.4
	[262, 115]	Luminance	Fractal descriptors	LDA	85.6
	[62]	RGB	Color angles	1-NN	88.8
	[156]	Luminance	Local multi-resolution	1-NN	86.7
			patterns		
	[47]	RGB	Mix color order	1-NN	84.2
			LBP histogram		
	[34]	RGB	LBP and local color contrast 1-NN	82.9
	[259]	RGB	CLBP	1-NN	72.3
	[131]	L * a * b *	Soft color descriptors	1-NN	58.0

Table 4 .

 4 10: Processing times of the learning stage for 816 images whose size is 64 × 64 pixels.

			Learning stages (s)	
		Generation		
				Selection	Total
	Approach	from training	from validation		
		images	images		
	No selection	48.0	-	-	48.0
	MCSBS-Occurrence	48.0	-	30.1	78.1
	MCSHS-ICS	48.0	48.0	630.3	726.3
	MCSHS-ASL	48.0	48.0	648.1	744.1
	MCSHS-Simba-2	48.0	48.0	665.2	761.2
	MCSHS-SpASL	48.0	48.0	701.8	797.8
	MCSBS-Sparsity	48.0	48.0	143252.4 143348.4
	ICS & BS-(D)	48.0	48.0	144462.2 144548.2

Table 4 .

 4 11: Processing times for classifying 816 images whose size is 64 × 64 pixels.

		Classification stages (s)	
	Generation from testing		
			Decision Total
	Approach	images		
	MCSBS-Sparsity ( D = 754)	9.1	0.7	9.8
	MCSHS-ASL ( D = 27 × 256 = 6912)	17.8	5.6	23.4
	MCSHS-SpASL ( D = 37 × 256 = 9472)	21.2	7.2	28.4
	MCSHS-Simba-2 ( D = 40 × 256 = 10240)	23.2	7.8	31.0
	MCSBS-Occurrence ( D = 1502)	30.3	1.2	31.5
	MCSHS-ICS ( D = 42 × 256 = 10752)	24.3	8.2	32.5
	ICS & BS-(D) ( D = 11457)	31.4	9.1	40.5
	No selection ( D = 81 × 256 = 20736)	48.0	15.8	63.8
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 4 12: The summary of selected approaches.

	Time

Table A .

 A 1: A summary of studies on color texture classification.

	Ref.	Color texture features	Color space used	Database	Classifier
	Palm,				
		Gabor features	RGB, HSL	BarkTex	5-NN
	2002 [12]				
	Pietikäinen,	Image histogram, LBP, Gabor features	RGB, I 1 I 2 I 3	Outex-TC-00013 3-NN
	2002 [56]				
	Munzenmayer,				
	2002 [60]				

Table B .

 B 1: Classification performances after image processing step for different numbers of neighbors P with R = 6. LBP-HF P,6 Accuracy Table B.2: Classification performances before and after image processing step with LBP-HF 8,6 .In addition the classification performances obtained thanks to this tuning are clearly higher(98.8) than those reached in[START_REF] Ben Soltana | Texture analysis of lace images using histogram and local binary patterns under rotation variation[END_REF] (92.5). Table C.1: The comparison of classification obtained of LBP histogram selection in a single color space and in multi space without and with histogram selection approaches on the OuTex-TC-00013 database. The value in boxes represent the best rates obtained with each color space and the boldface indicates the best rate obtained of each approach. Multi spaces 95.0 81 95.3 59 95.0 79 95.3 62 95.6 62 Table C.2: The comparison of classification obtained of LBP histogram selection in a single color space and in multi space without and with histogram selection approaches on the USPTex database. The value in boxes represent the best rates obtained with each color space and the boldface indicates the best rate obtained of each approach. Table C.3: The comparison of classification obtained of LBP histogram selection in a single color space and in multi spaces without and with histogram selection approaches on the STex database. The value in boxes represent the best rates obtained with each color space and the boldface indicates the best rate obtained of each approach.

		Without Without Without			Histogram selection Histogram selection Histogram selection
	Color spaces Color spaces Color spaces	selection selection selection	ICS ICS ICS		Simba-2 Simba-2 Simba-2	ASL ASL ASL		SpASL SpASL SpASL
		P = 4 Rate Rate Rate δ Rate δ Rate δ δ Rate δ δ Rate 93.4 Rate Rate	δ δ δ	Rate Rate Rate	δ δ δ	Rate Rate Rate	δ δ δ
	RGB RGB RGB	P = 8 92.9 93.3 91.9 9 91.9 9 92.9 9 9 93.0 9 5 93.1 8 98.8 92.9 6 93.4 5	93.2 93.6 93.2	8 6 5	93.4 93.6 93.2	6 5
	rgb rgb rgb	P = 12 87.1 9 89.5 3 82.5 9 98.9 87.5 4 85.2 9 85.2 6 87.1 9 82.5 9 85.6 8	87.4 89.5 87.8	8 3 5	87.4 89.5 87.8	3 5
	I 1 I 2 I 3 I 1 I 2 I 3 I 1 I 2 I 3	P = 16 89.0 8 94.1 3 84.6 9 99.0 88.5 9 82.8 9 89.6 4 88.5 9 84.6 9 85.9 6	88.7 94.1 91.3	8 3 3	88.5 94.1 91.3	3 3
	HSV HSV HSV	P = 20 91.0 3 92.2 7 88.1 9 98.9 90.4 9 88.5 9 90.0 7 90.4 9 88.1 9 91.8 4	91.3 94.3 93.9	7 3 3	91.3 94.3 93.9	3 3
	b w r g b y b w r g b y b w r g b y	P = 24 89.9 9 94.9 3 85.1 9 99.0 89.9 9 81.5 9 90.0 4 89.6 9 85.1 9 84.5 7	91.8 94.9 92.7	8 3 3	91.8 94.9 92.7	3 3
	HLS HLS HLS	92.4 9 87.2 9 89.6 9 90.6 7 92.4 9 91.6 7 87.2 9 92.4 9 92.2 5	93.4 94.4 93.2	6 4 3	93.4 94.8 93.2	3 3
	I-HLS I-HLS I-HLS	89.7 9 88.0 9 90.6 9 91.3 8 89.7 9 92.5 7 88.0 9 89.7 9 94.2 4	89.7 95.0 94.0	9 4 3	90.3 95.1 94.0	3 3
	HSI HSI HSI	Feature 92.9 9 88.1 9 89.4 9 90.6 7 Before processing After processing 92.9 9 92.9 9 93.1 8 92.6 7 88.1 9 94.9 3 93.6 3 93.6 3	93.1 94.9 93.6	3 3
	YC b C r YC b C r YC b C r	LBP-HF 8,6 89.6 9 85.3 9 82.2 9 89.5 4 95.2 89.6 9 95.7 3 85.3 9 89.6 9 88.6 5	98.8 90.6 95.7 92.2	8 3 3	90.6 95.7 92.2	3 3
		90.8 89.6 89.6		91.0 92.9		90.4 86.9		91.0 94.0		91.1 94.1
	Average in Average in Average in								
		± ±	9 9	± ±	8 5	± ±	8 9	± ±	7 4	± ±
	single space single space single space								
		2.0 3.0		2.1 1.8		1.9 3.0		2.1 1.8		2.1 1.8

All the image test suites can be downloaded at https://www-lisic.univ-littoral.fr/~porebski/Recherche

1.3. Conclusion

The web site (http://www.ece.ucr.edu/sasif/homotopy/index.html) provides many practical toolboxes and several research works to solve the sparse representation problem. In our experiments, l 1 -toolbox is used due to its simplicity.

To normalize the histogram, the number of counts in each bin is divided by the total count, so that the normalized values sum to 1 across all bins.

Multi spaces 93.3 81 94.1 47 95.8 31 96.1 38 96.8 32

-The first column of this table gives the name of the author, the year of publication and the reference.

-The second column mentions the color texture features used in the experimentation.

-The third column gives the color spaces used in the experimentation.

-The fourth column presents the name of the test suites.

-The last column indicates the classifiers used in the experimentation. In the recent years, there is an increasing need to digitize museum lace textile collections.

The aim is to preserve and promote the regional industrial heritage by making available to the public, designers and artists, large lace image databases. Calais's International Center for Lace and Fashion is a museum located at Calais in France. This center preserves the history of industrial lace production. The collection of lace consists of about 100,000 production samples which are divided into 253 different volumes. In order to assist the access to these databases, it is necessary to characterize the texture of lace.

In addition, lace is a soft and extensible material and can be easily deformed which makes the texture analysis a challenging problem. Moreover, lace contains a large range of decorative motifs. The lace texture analysis needs to firstly remove the background of the basic patterns since no information about the texture is contained in the background. Due to orientation changes of the laces, their texture has to be represented by rotation invariant descriptors.

In texture analysis literature, the local binary pattern descriptors (LBP) are widely used. However, the parameters of LBP descriptors have to be carefully chosen in order to reveal the texture structure of lace images. In [START_REF] Ben Soltana | Texture analysis of lace images using histogram and local binary patterns under rotation variation[END_REF], the lace texture is represented by descriptors based on LBP histograms in order to classify lace basic patterns. They used the Fourier Transform applied on LBP histograms, named LBP-HF [START_REF] Ahonen | Rotation invariant image description with local binary pattern histogram fourier features[END_REF]. Following this work, we propose to adjust Supplementary results 
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Abstract

Texture analysis has been extensively studied and a wide variety of description approaches have been proposed. Among of them, Local Binary Pattern (LBP) takes an essential part of most of color image analysis and pattern recognition applications. Usually, devices acquire images and code them in the RGB color space. However, there are many color spaces for texture classification, each one having specific proprieties. In order to avoid the difficulty of choosing a relevant space, the multi color space strategy allows using the properties of several spaces simultaneously. However, this strategy leads to increase the number of features extracted from LBP applied to color images. This work is focused on the dimensionality reduction of LBPbased features by feature selection methods. In this framework, we consider the LBP histogram and bin selection approaches for supervised texture classification. Extensive experiments are conducted on several benchmark color texture databases. They demonstrate that the proposed approaches can improve the state-of-the-art results.

Keywords: Texture classification, color spaces, LBP operator, feature selection, histogram selection, bin selection, supervised learning.