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Introduction

Texture analysis is one of the major topics in the field of catapvision and has many im-
portant applications including face recognition, objeetettion, image filtering, segmentation
and content-based access to image databéses [1]. Texdas#ichtion can be defined as a step
to assign a texture image into one of a set of predefined cagsgd his step requires to define
a efficient descriptors in order to represent and discritsitfze different texture classes.

In the past decades, texture analysis has been extensiveligd and a wide variety of
description approaches have been proposed. Among thesgaapps, Local Binary Pattern
(LBP) proposed by Ojala et al. is known as one of the most sstekstatistical approaches due
to its efficacy, robustness against illumination intensitgnges and relative fast calculation [2].
It has been successfully applied to the applications agsbws texture classification. In order
to encode LBP, the gray level of each pixel is compared witdséhof its neighbors and the
results of these comparisons are weighted and summed intordeve a binary number. The
obtained texture features is the LBP histogram whose bimtcdapends on the number of
neighbors. However, when the number of considered neiginppixels increases, the feature
dimensionality will increase exponentially.

Texture analysis methods and descriptor like LBP were Yird#signed for dealing with
gray-scale images. Otherwise, it has been demonstrateddiwa information is very impor-
tant to represent the texture, especially natural tex{i3jeSeveral extensions of LBP to color
have been proposed and this leads to consider several LBRyfams to represent a texture.
The number of feature is so increase but only some of whichedegant for texture classifica-
tion [4]. That is the reason why many approaches have begroped to reduce the dimension
of the feature space based on the LBP histogram in order tmweghe classification perfor-
mances. The following section presents the problem andgddhe thesis.
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Problems and goals

Usually, color images are acquired by devices that code dh@cin theRGB color space.
However, the color of pixels can be represented in diffecefdr spaces which respect different
properties. Many authors have compared the classificaidninances reached by these color
spaces in order to determine the “best” color space for texdnalysis|[5]. Nevertheless, the
synthesis of these works illustrates that the choice of thar space depends on the considered
texture images. Moreover, the prior determination of acefiace which is well suited to the
considered class discrimination is still an open question.

We propose to consider a multi color space approach designedlor texture classifica-
tion. Instead of searching the best color space for cologa@aalysis, this approach propose to
combine different color spaces in order to improve the perémces reached by classification
schemes. It consists in selecting, among a set of colorrexéatures extracted from images
coded in different color spaces, those which are the mostidigating for the considered
color textures.

Feature selection is a procedure of finding a set of most congral informative original
features|[6]. It is known that some features describing as#dtcan be either redundant or
irrelevant. They can decrease the performances of thefatasen. Moreover, removing such
useless features generally allow to decrease the progassia of the classifiers.

Thus, applying color LBP in multiple color spaces will teredproduce high-dimensional
feature vectors with irrelevant features. Thus, a dimeraity reduction method is needed
to address this problem. Many authors have attempted tonoftare discriminative, robust
and compact LBP-based features in order to reduce feataee sfimensionality. The first
strategy consists in identifying the most informative pattgroups based on some rules or the
predefinition of patterns of interest. The second stratemgists in applying feature selection
methods in order to find the most discriminative patterns [7]

Porebski et al. firstly proposed a different approach wheleas the most discriminant
whole LBP histograms [8]. In this approach, the most discrant LBP histograms are selected
in their entirety, out of the different LBP histograms extexd from a color texture. Recently,
Kalakech et al. propose to adapt the supervised Laplac@e ssed in the literature for feature
ranking and selection, to select and rank histograms intpersised context, namely “Adapted
Supervised Laplacian” (ASL-score) [9].

Contributions

In this thesis, we mainly focus on the LBP histogram and blaci®n approaches in a multi
color space framework. Our contributions are summarized|bsvs.
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» The first contribution is the proposed novel histogram scaamely “Sparse Adapted
Supervised Laplacian” (SpASL-score). We propose to extead\SL-score to SpASL-
score by using a sparse representation.

» Our second contribution is the extension of the LBP hisdagiselection proposed by
Porebski et al. for a single color space to multiple colorcgpaApplying a multi color
space strategy avoids the difficulty of choosing a relevahircspace. However, the
LBP descriptor produce high dimensional feature vect@pgeeially when several color
spaces is combined to represent the texture. A selectiohaadtelps to reduce the
number of LBP histograms in order to reduce the processmgsiand improve the clas-
sification.

» The third contribution is the extension to color of the LBBthgram bin selection pro-
posed by Guo et al. for a gray level analysis to color by apgiya multi color space
strategy|[10]. Instead of selecting the most discrimirgatirstograms, this approach se-
lects the most discriminate LBP histograms bin.

» The fourth contribution is the introduction of the combioa of bin and histogram selec-
tion in the multi color space framework. The histogram sabecstep selects the whole
relevant histograms which are used for the classificatiep.sYWe observe that, the se-
lected histogram might contains some redundant or irratelBP histogram bins and
the filtered histogram might contains some informative bifisis approach is achieved
by firstly applying a ranking histogram method and then bylypg a bin selection
procedure.

Structure of the thesis

The remainder of this thesis is organized as follows:

The first chapter introduces several notions related to b texture classification. The
principal families of color spaces are presented as welhasnain color descriptors. The LBP
descriptors and its extensions to color are briefly reviewdd introduced the general frame-
work of texture classification in different learning corteXVe focus on the supervised color
texture classification by presenting the most commonlysdi@s used in this context. Next,
several popular benchmarks datasets are introduced for iture classification tasks that
will be used to carry out experiments in the following chapte

The second chapter summarizes basic principles of theréeasllection by introducing its
general framework. The categorization of feature selaati@thods which are based on the

9



evaluation strategies and the learning context are theussed. Several notations and termi-
nologies used over the thesis are provided in this chapier.riiain ranking-based approaches
are briefly reviewed. These approaches can be achieved byiatasg a score for each feature
or by applying an algorithm which gives weights for a featsmbset. Then, two feature selec-
tion approaches applied to LBP are discussed: LBP bin seteghd LBP histogram selection.
This chapter also presents our first contribution by intamolgy the SpASL-score for histogram
selection.

The third chapter is devoted to our main contribution of thissis. The contribution of
the multi color space strategies for texture classificatimnfirstly presented. The extensions
of histogram selection and bin selection to a multi colorcgpiramework is then introduced.
Next, two novel strategies of combination of histogram ragland bin selection are proposed.
The results of these approaches are first illustrated on ehbeark color texture database in a
single and multiple color spaces.

The comparison of the color texture classification reseléshed by different proposed ap-
proaches of bin selection and histogram selection are pie$é chapter 4. The experimental
evaluation is carried out on four benchmark texture daedbasthe multi color space frame-
work. We first study the impact of the distance used for meaguhe similarity between two
histograms during the computation of the proposed SpASirescThe results obtained by this
score is then compared with other scores. Next, the resuttgferent proposed approaches
are compared with the results obtained in the state-okthe-

Finally, we conclude this thesis by highlighting our cobtiions and discussing possible
future work.
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Chapter

Color texture classification

Contents

This chapter provides some background concepts for coldure classification. Sec-
tion [1.1 outlines the color texture representation with ititeoduction of color spaces, the
definition of color texture and the way to characterize intk&ato color texture features. Sev-
eral notions of classification are then introduced in sedfid@: a brief review of the most
commonly used classifiers and evaluation methods is prdvi¢his section. Four bench-
mark texture databases usually used in the framework of ¢ekture classification are also
presented. Finally, sectign 1.3 contains a summary of thieédgcs presented in this chapter.
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1.1. Color texture representation

1.1 Color texture representation

Color is an important elementin human vision and so in digitage processing. Color images
contain more discriminative informations than grayscatages and it has been demonstrated
that considering the color in the images significantly inyeothe performance for many tasks
in pattern recognition [3, 11, 12,113,/14, 15, 16]. To charaze the color texture, it is necessary
to take an interest in the representation of color and textuthe images. This section thus
firstly presents the different classical color spaces use@dage analysis, the definition of color
texture and reviews the main color texture features usedlor texture analysis.

1.1.1 Color spaces

Color is the perceptual result of light in the visible regadrthe electromagnetic spectrum. The
human retina has three types of color photoreceptor celisshwrespond to incident radiation
with somewhat different spectral response curves [17].aBse there are exactly three types
of color photoreceptor, three numerical components aregsacy and theoretically sufficient
to represent a color. A digital color image is thus compodetthr@e component images and
the color of each pixel is specified in a three dimensionabicspace, which defines a color
coordinate system. That is the reason why most of color isyage acquired by devices that
code the colors in thRGBspace. A pointin this space is characterized by the thre@oaents

of the corresponding pixel which are the rd®),(the green G) and the blue B). Figure[1.1
illustrates an example of a color image (from the USPTex legta that will be introduced
in section_1.2}4) with its three corresponding componersiges. Other color spaces can be
computed from th&@GBspace by means of either linear or nonlinear transformaimal in the
last few years, numerous color spaces, which take into atabffierent physical, physiologic
and psycho-visual properties have been defined. They carobpep into four families [18]:

1. Theprimary color spacesare based on the trichromatic theory, which assumes that it
is possible to match any color by mixing appropriate amoohtkree primary colors.
They can be divided into:

* the real primary spacedor which the primary colors can be physically reproduced.
TheRGBspaces use the red, the green and the blue as primary cotbaseadevice
dependent.

 theimaginary primary spacesvhose primaries do not physically exist. Each of
the RGBspaces can be transformed into the single ¥ virtual primary space
which is device independent [19].

Primary spaces can be normalized by dividing each color compt value by the sum

12



CHAPTER 1. COLOR TEXTURE CLASSIFICATION

Red image component

Green image component

AY

Color image

Blue image component

Figure 1.1: An example of a color image coded in R@B color space and its three corre-
sponding component images.

of the three ones in order to obtain normalized coordinateesn like thegb [2C] and
xyz[19] color spaces.

2. Theluminance-chrominance color spacesire composed of one component that rep-
resents an achromatic information (here called “lumingnaed two components, that
quantify a chromatic information (here called “chrominaf)c They can be grouped into
the following subfamilies:

 theantagonist (or opponent color) spaceghich aim at reproducing the model of
the opponent color theory proposed by Hering, #@&C, [21] andbyrgby [22].

« the television color spacesvhich separate the achromatic signal and the chromatic
signals for the television signal transmission, MEQ, YUV andY G,C, [22].

« theperceptually uniform color spacgwhich propose a metric to establish a corre-
spondence between a color difference perceived by a hunsamay and a distance
measured in the color space, likea*b* , L*u*v* andUVW [19].

 others luminance-chrominance color spackise Irg [23], CIE Yxy[19] and the
Carron’sLChyChy color space [24].

3. Theindependent axis color spacesesult from different statistical methods (like Karhunen-
Loeve Transform (KLT) or Principal Component Analysis (PCwhich provide the less

13



1.1. Color texture representation

correlated components as possible, like the well-knbM#is color space proposed by
Ohta ].

4. Theperceptual color spacesttempt to quantify the subjective human color perception
by using the intensity, the hue and the saturation compendititey can be categorized
into:

« thepolar (or cylindrical) coordinate spacebat correspond to expressions in polar
coordinates of the luminance-chrominance componen&sAlk, c,hc,c,, L*C;hap,

BwCr by, Nrghy» Y Gohiq, Y Cuvhuv andLCepych,hchchy,-

* the perceptual coordinate spacdbat are directly evaluated from primary color
spaces, like thélSI triangle model (oM-HSI modified triangle model), thelSV
hexcone model, thélLS double hexcone modéﬂZS], tHeHLS improvedHLS
model ] and the CIE*S huy space@9].

(a) RGB (b) L*a*b* (d) HSV

Figure 1.2: An example of an image coded in different col@cgs.

A color image can thus be represented in these different splaces. Figurle 1.2 illustrates
the image of leaves of the figure 1.1 that has been coded iR&®(a), L*a*b* (b), 11213
(c) andHSV (d) spaces. Figurle 1.3 illustrates the 3D distribution @ ttnage in these color
spaces. Under the human vision system, Rit&B space reflects the leaves in the real world
better than the other. In these 3D distributions, each gxesents one of the three color com-
ponents, coded in this example from 0 to 255. Each pixel ofitfage is coded by three color
component values according to the considered color spdue pikels with same coordinates
are grouped thanks to a quantization scheme and represhatekts a ball. The number of
pixels belonging to each group is visualized by the size difda the color of the ball rep-
resents the mean color of the pixels of the group. Visually graphically, we can see that
the different color spaces give different representatafrite same image. These differences
could be interesting since they allow to analyze a samenexituder different viewpoints, that
increases the possibilities to accurately represent tloe taxtures.
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CHAPTER 1. COLOR TEXTURE CLASSIFICATION
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Figure 1.3: Color distributions of the image of leaves coubeiur color spaces.

As, there is a wide range of color spaces with different priogee we have proposed an
approach detailed in chapter 3 which uses the propertiessefal color spaces in the following
of this thesis. In this approach, images are first coded ierint color spaces, then color
texture features are extracted from these so coded imagésitacterize the texture.

Before representing the features which allow to charaz#ete color textures in the sub-
sectior . 1.1.13, we propose to briefly introduce this and itsggal properties.
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1.1. Color texture representation

1.1.2 Color texture
1.1.2.1 Definition

Texture image usually contains a material or an object wpigsents a texture information.

Figure[1.4 illustrates an example of four color texture ismfom the USPTex database that
represent textures of stone, brick, sand and granit. Smreeks an important element of human
vision.

(a) Texture of stone (b) Texture of brick (¢) Texture of sand (d) Texture of granit

Figure 1.4: A variety of textures

The human visual system is extremely effective at charaatertextures using adjectives
such as smooth or rough, fine or coarse, granular or fibroosofsc or with preferred direc-
tions, regular or irregular, contrasting and so on. Howgverdifficult to define what is texture
while it is easy to identify by a human. There is no definitida texture that would universally
be recognized and accepted, and many definitions have bepogad in the computer vision
literature:

- “Texture is a fundamental characteristic of the appeaafwirtually all natural surfaces
and plays a major role in computer vision systems. Imageitexinay provide information
about the physical properties of objects, such as smoahoreoughness, or differences in
surface reflectance, such as coI[27].

- “Texture can be viewed as a global pattern arising from #yetition of local sub-

patterns” ].

- “Aregion in an image has a constant texture if a set of lotatistics or other local prop-
erties of the picture function are constant, slowly varyimgapproximately periodic’@g].

- “Texture can be defined as the set of local neighborhoodepti@s of the gray levels of
an image region’EO].

16



CHAPTER 1. COLOR TEXTURE CLASSIFICATION

- “A color texture can be regarded as a pattern described dyelationship between its
chromatic and spatial distribution” [11].

The various definitions of texture leads to a variety of défe ways to analyse texture.
How to efficiently represent the texture patterns is a funelaiad problem in computer vision
and this problem depends on the observation conditionseatdhsidered texture.

1.1.2.2 Influence of the observation conditions

The characterization of a texture depends on several pseagrniecluding the perception level
and the acquisition conditions.

Concerning the perception level, there are in practice tvaonnobservational scales on
which a texture can be defined [31]:

- Microscopic observation reveals the irregular or disordered structure of pixel lo
within the image. The texture is considered on the reducéghberhood of a given pixel.
It is then defined using a probabilistic or statistical agygia The fine structure of plastic illus-
trated in Figuré_1]5a corresponds to a microscopic texture.

- Macroscopic observationinvolves the concept of either an elementary pattern ona pri
ileged direction. In the presence of an elementary patt@sg known as texton [32], the
macroscopic texture is viewed as a repetitive or periodatigpdistribution of this pattern.
The macroscopic texture is then defined using a deterngroststructural approach. This is
illustrated by the image in figute 1.5b, which shows the ptastage in which the elementary
pattern is a block that is repeated in a structured manner.

Besides the perception level influences the charactesizafi texture, texture information
can also depend on the acquisition conditions. Indeed, wheenonditions differ from an ac-
quisition to another, the resulting images may reveal difietextures. The image in figureIl.5¢
represents a change in orientation of the texture of thedi@ubb with a 90-degree rotation.
The image in figuré_1]5d illustrates an illumination changeising the simulated illumination
source 4000K fluorescent TL84, instead of the horizon lightse.

Acquisition conditions and levels of perception may thidkignce the choice of the features
to be used to describe the texture information. For exanaplérregular texture will be better
characterized by statistical features, whereas a regx{aure will be well described in terms of
frequency-based and geometric features. Feature that\aeant to rotation or illumination
change can also be relevant in certain applications.

17



1.1. Color texture representation

(a) Microscopic observation of plastic (b) Macroscopic observation of plastic
(c) Change in orientation of plastic (d) Change in illumination of plastic

Figure 1.5: Different observation conditions of a textuani the OuTex database (that will be
introduced in section 1.2.4).

In the next subsection, we propose to review the main coldute features which have
been used in the framework of color texture analysis.

1.1.3 Color texture features

Color and texture are two naturally related charactessif¢che image, but these characteristics
are often analyzed separately. Many authors demonstrateekture features incorporating
color information can improve the discrimination (esp#giahen dealing with natural tex-
tures observed under fixed illumination conditio d_’I!j . According to Maenpaa and
Pietikainen, the color texture analysis can be roughlydgidiinto two categories as seen in the
next subsectimmS].

1.1.3.1 Color and texture combination

Two main categories of approaches can be considered to nentfseé color and the texture
information: methods that process color and texture inédgrom separately and those that con-
sider color and texture jointlmgbq.

In the first approach, texture features representing thigaspigstribution of the luminance

18



CHAPTER 1. COLOR TEXTURE CLASSIFICATION

image are used in conjunction with other features des@ithe color distribution in a given
color space|[35, 36, 37]. Let us consider the general notatioa given 3D color space
(C1,C,C3). Figure[L6 illustrates this first approach where color andure are separately
processed.

Features describing
the color distribution

i Texture
. — features extracted

from the luminance image

Color image Luminance image

Figure 1.6: Representation of color texture by extractadure features from the luminance
image and by associated them with features describing tbe distribution.

There exists other strategies for color and texture contieimdy incorporating the classi-
fier to compute the similarity between the texture featuareand the color feature [35].

In the second approach, this is the distribution of the cotamponents of the pixels that
is analyzed. It allows to jointly characterized the spadiad the color distribution. In the past
few years, several studies have been directed to the pratfignmt representation of texture
and color and three different strategies have been proposed

» The first one consists in evaluating the texture featurésimveach color component of
an image (within-component relationship) independemtithout considering the spatial
interactions between the levels of two distinct color comgrgs. In this case, the texture
features defined for luminance images are applied to eadtedhtee color components
independently [38, 39, 35, 40]. Figure 1.7 illustrates #pproach.

» The second strategy consists in considering the spasiaitalition both within each color
component of a given color space and also between theseediffeolor components
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Figure 1.7: Representation of color texture by extractegjures that are evaluated within each
component of théCy,C,,C3) space.

(within and between-component relationshB [@@@3@] Figurd 1B illustrates
this strategy. Note that the texture features extracted tree component imagé; and
C, are different with those extracted from the component in@gandC, by a several
descriptorsHS].

» Finally, the third strategy consists in analyzing the gpatteractions between the col-
ors of pixels, that relies on considering a color order retathat defines the inferior-

ity/superiority between coIorELlEIM].

The methods developed in the context of our work are basetdesdcond strategy (fig-
ure[1.8). However, this strategy increases the numbermibaties, especially when within and
between-component relationships are considered with omeooe color spaces. The meth-
ods that we propose are therefore for the purpose of redtieendimension of attributes and
overcome this disadvantage.

Many features, initially defined for analyzing gray levelages, have been extended to
one or several strategies of color and texture combinaWigea.propose in the next section to
describe the main color texture descriptors, in the gerfexalework of color texture classifi-
cation, independently of the color and texture combinasioategy.
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Figure 1.8: Representation of color texture by extractgagures that are evaluated within and

between the components of t{e;,C,,C3) space.

1.1.3.2 Color texture attributes

Texture analysis has been a topic of intensive researchoaed the years, a wide variety of
color description approaches for discriminating textinage been proposed. A comprehensive
evaluation of color texture attributes is presente&h@, Typically, texture attributes can be
divided into three categories defined in terms of geomé{rgatio-frequential and statistical

featu res].

» Geometrical features These features take into account the structural and cturatesf
the image. They are well adapted to describe the texturenadxbat the macroscopic
level. The geometrical description of a texture includeseaktraction of several primi-
tives features (corners, edges, points, lines, curvesréacas) and the placement rules
for those primitives. Zheng et al. proposed a set of speatferetrical features for color

textures that are sensitive to the regular texture of

t [Bowever, this type of fea-

tures does not allow to characterize the irregular textu@sh are usually found in the

natural images.

» Spatio-frequential features The spatio-frequential features can be divided into three
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1.1. Color texture representation

domains: spatial domain, frequency domain and spatiai&etial domain.

1. Spatial domain involves features which aim to charaotettie texture in terms of
the number of transitions per unit area, in contrast to @aextures. Cumani,
Laplace and Sobel filters are all examples of filters wideldu®r the detection of
color edges|[51]. However, this kind of feature has neverbgsn applied to the
classification of color texture images.

2. Fourier transform or discrete cosine transform givedt@nreative texture represen-
tation that is purely based in the frequency domain. Thdasgbuates are particularly
well suited to the case of images containing coarse textudesre there is consid-
erable continuity between the levels of each pixel color ponent. Since high
frequencies are restricted to local changes in componeatsleit is possible to
express all the information present in the image using jsshall number of coef-
ficients, corresponding to low frequencies. Drimbarean.etised the gray level
discrete cosine transform and its color extension to cherae textures in their
experiments [11].

3. Spatio-frequential domain involves features that comatihe two different repre-
sentations previously discussed. The Gabor transform lamavavelet transform
are the most widely used in color texture classificationcesitihey are effective for
the analysis of both macrotextures and microtextures. r8egathors have inves-
tigated the use of Gabor filters on color images and showedhbaconsideration
of color texture features could improve classification hssaver those obtained
through the use of gray level features![11, 12, 52]. Howeawes, method presents
two disadvantages: the need to set parameters for the #ltershe long compu-
tation time to characterize certain textures. Waveletsfiaim has the advantage
of giving a multiscale characterization of a texture by ¢desng both global and
local information content within the image. Moreover, Watdased features have
parallels with the process of human vision, which perforrsgstematic frequency
decomposition of the images falling onto the retina [53)veé3al authors have stud-
ied problems of color texture classification through the osthe wavelet trans-
form [54,/55]. In spite of the many advantages of this tramafdakovidis et al.
revealed that the features obtained from wavelets are natyalthe most suitable
for texture characterization.

« Statistical featurescan be used to characterize any type of texture. For thisdifel-
ture, a texture is defined in terms of its gray level or colaiatéon in a neighborhood,
and it is the relationship between a pixel and its neighbloas is examined. A large
range of statistical features are used for color texturesdfi@ation. These include image
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CHAPTER 1. COLOR TEXTURE CLASSIFICATION

statistics, image histograms, chromatic co-occurrencigicea and sum and difference
histograms, local binary patterns. These different dpsms can be grouped into a num-
ber of categories based on their order, where the order a@ittibute depends on the type
of spatial interaction between the pixels in question. lenaigtograms are an example of
first order statistical features. They describe the digtidn of color component levels in
the inputimage [56, 13]. In contrast, co-occurrence masior example, consider pairs
of pixels, which means that they are second order attrib(teis descriptor, introduced
by Haralick et al. in 1973, was initially implemented for gravel images|[57]. Since
the use of color can improve texture classification res&l#m proposed to extend the
concept of co-occurrence matrices to color images, stpftom the definition of mul-
tichannel co-occurrence matrices proposed by Rosenief]. [bhe Haralick features
obtained from the chromatic co-occurrence matrices haga bsed by different authors
in the context of color texture classification [11, 36, 59)nsand difference histograms,
which also belong to the second order strategy, have an aldergtical discrimination
ability to the chromatic co-occurrence matrix, with the agtage that their calculation
are much less demanding in terms of memory requirements4f#j0, Another second
order descriptor is the color Local Binary Pattern, whicls baen used repeatedly by
many authors in their studies of the joint use of texture asdrdor image classification
purposes [61, 13, 62, 34,147].

In the recent years, a various discriminative and compriatly efficient local and global
texture descriptors have been introduced, which has ledgtofisant progress in the anal-
ysis of color texture for many computer vision problems. e€al of color texture analysis
methods based on global feature, include color Gabor fige[52], Markov random field
model [63]. Some of the effective local feature methods aiercScale Invariant Feature
Transform (SIFT)\[64], color Pyramid of Histograms of Otied Gradients (PHOG) [65], Dis-
criminative Color Descriptors (DCD) [15], Three-Dimensa Adaptive Sum and Difference
Histograms (3D-ASDH) [66], Color Local Binary Pattern [@T5] and many more.

Among the proposed texture descriptors as shown in the[fallef the appendikx A where
a state-of-the-art of the color texture descriptors usethenframework of color texture clas-
sification is presented, the Local Binary Pattern (LBP) afmris one of the most successful
descriptor to characterize texture images. The distiacigvantages of LBP are its ease of
implementation, its invariance to monotonic illuminatiomanges and its low computational
complexity [67]. In the following, we will discuss the defilmn of LBP, its variants and its
extensions to color.
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1.1. Color texture representation

1.1.4 Local binary patterns
1.1.4.1 The original LBP descriptor

In the original definition of LBP, proposed by Ojala et al.e local neighborhood structure
used to characterize the texture around each pixel of thgansasimply a set of pixels taken
from a square neighborhood 0k3 pixels [2]. LBP features capture microscopic local image
texture. Figur@_1]9 illustrates an example of the LBP corafpor for the pixel labeled as gray.

Gray level pixel Binary pattern
and its 3x3 neighborhood 00110100 Weigh mask LBP=4+8+32 =44
313132 0] 011 1 12| 4 0]01]4
6 | 10 |23 0 1 128 8 0 8
1 |13 ] 8 0 110 64132 | 16 0132]0
Threshold v Multiply

Figure 1.9: An example of the original LBP computation.

The gray level values of each neighboring pixel is first thotded by the value of the
central pixel, that allows to extract a binary vector of &bithis binary vector is called “local
binary pattern”. For each neighboring pixel, the resulbef¢tomparison is set to one if its value
is greater or equal than the value of the central pixel, @tlserthe result is setto zero. The LBP
code of the pixel labeled as gray is then obtained by multiglyhe results of the thresholding
with weights given by powers of two and summing them up togetihe histogram of the
binary patterns computed over a region is generally used&sfeature.

The definition of the original LBP operator has then been gdized to explore intensity
values of points on a circular neighborhood. The circulagimeorhood is defined by consider-
ing the values of radiu® and? neighbors around the central pixel. The LBR X, Yc) code
of each pixel(xc yc) Is computed by comparing the gray valgeof the central pixel with the
gray values{g. of its P neighbors , as follows:

LBPyp x (X, Ye) = %CD —0c) X 2 (1.1)

where® is the threshold function which is defined as:

1 if(g— >0,
O(gi —gc) = @ _gC)_ (1.2)
0 otherwise.

By modifying R and®, one can compute LBP features for dealing with the textubfat
ferent scales. For example, LB refers to 16 neighbors in a circular neighborhood of radius
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CHAPTER 1. COLOR TEXTURE CLASSIFICATION

2. The LBP feature produces 2lifferent output values, and gives rise to &d@mensional
histogram. Figuré 1.10 shows examples of neighborhoodsdiffierent radii and numbers of
neighbors. The number of bins of the LBP histogram will be 8665536 if 8 or 16 neighbor-
ing pixels are considered, respectively.

e
o1’ Te
e7|e |8 ¢| |o| [o
e
\‘*‘/
(@) LBPRg 1 (b) LBPg 2

Figure 1.10: Circular neighborhoods of the center pixehwiifferent neighbors : (a) LB,
and (b) LBH_G,Z

Although LBP has several advantages previously cited, fiilgenal LBP also has significant
disadvantages: itis sensitive to image rotation and nitisgptures only the very local structure
of the texture and fails to detect large-scale texturakcstmes [63]. Since Ojala’s work, many
variants of LBP operator have been proposed in the litegdtuimprove its robustness to noise
and increase its discriminative power and applicabilitglifeerent types of problems including,
facial image analysis, biometrics, medical image analysigtion and activity analysis and
content-based retrieval [69, 70, 71| 72,73, 74,75, 76, &](, 7

1.1.4.2 The extensions of LBP

More recently, Liu et al., propose a detailed review of thePL¥&ariant based on a gray scale
analysis which can be grouped into several categaries [67].

» Traditional extensions of LBP: Ojala et al. observed that some LBP patterns occur more
frequently in texture images than others. They proposedefmel the “LBP uniform
pattern” LBF%J‘)?92 which is a subset of the original LBRP![4]. For this, they calesia
uniformity measure of a pattern which analyzes the numbbitaise transitions from 0
to 1 or vice versa when a circular bit pattern is considerelkbcAl binary pattern is called
uniform if its uniformity measure is at most 2. For example patterns 00000000 (0
transitions), 00011110 (2 transitions) and 11100111 (&sitens) are uniform whereas
the patterns 00110010 (4 transitions) and 01010011 (6itiams) are not. Figure 1.11
illustrates an example of uniform and non uniform LBP paigerhere the black points
denote 1-bit and white points denote 0-bit. For the computadf the uniform LBP
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1.1. Color texture representation

histogram, the uniform patterns are used such as each mmgfattern has an individual
code and the non-uniform patterns are all assigned to aatepasde. The LB%Z“92 has
(P(P —1) + 3) output values compared with’ df original LBP.

00101100 01111000
Q@
Non-uniform Uniform

Figure 1.11: An example of non-uniform and uniform pattdrB&

Another traditional extension of LBP was created to resporttie limit that the original
LBP descriptor is not rotationally invariant, which is a iorpant requirement for many
real-world applications. If the image is rotated, the sunding pixels in each neighbor-
hood will correspondingly move along the perimeter of thelej resulting in a different
LBP value, except patterns with only 1-bit and 0-bit. Figilt®2 gives an example of
image with two different rotated versions. In order to addrthis limitation, Pietikdinen
et al. proposed a rotation invariant version Lgl%Eof LBP by grouping together the LBP
that are actually rotated versions of a same pattern [73y &@fso illustrate the 36 unique
rotation invariant LBP that can occur in the caséPof 8.

The rotation invariant uniform LBP descriptor, Lgﬁﬁ is then proposed to improve the
rotation invariance and reduce the feature dimensionatitigh is defined as follows [4]:

sPd®(gi—g) if U(LBPpg) <2,

LBPIZ (X, Ye) = .
P+1 otherwise.

(1.3)
whereU(LBPy ) is a function to determine the number of bitwise changes i LB
pattern from O to 1 (or vice-versa). The Lg}% has (P + 2) output values.

In summary, with? = 8 neighboring pixels, the feature dimensionality of thegioral
LBPgx, LBPYZ,, LBP] ,, and LBF}4Z are 256, 59, 36, 10, respectively.

Neighborhood topology and sampling The traditional LBP method identifies a neigh-
borhood as a set of pixels on a circular ring. In order to iaseghe discriminative power,
many neighborhood topologies have been proposed, suchpgal neighborhoods in
Elliptical Binary Patterns [80] and also generalized in/][@lparabolic, hyperbolic and
spiral neighborhood topologies.

The original LBP methods and several variants have also teeewed to only encode
local microtextures and be unable to capture nonlocal niexares. Patch-based LBP
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00011100

00001110

Rotate 45°

00111000

Rotate 90°

Figure 1.12: An example of the influence of image rotation oim{s in a circular neighbor-
hood.

variants, including the Local Binary Pattern Filtering/[8Rlultiscale Block LBP [83],
Three Patch LBP.[84], Four Patch LBP [84], Pixel to Palch [@68 Median Robust
Extended LBP.[75], aim to overcome this problem by integigabver larger areas.

» Thresholding and quantization. The original LBP operator is sensitive to noise due
to the thresholding operation that directly compares puadlies. Many authors have
proposed several LBP variants by changing the thresholsthgme or the number of
guantization level to gain noise robustness and discrinongower, including Neigh-
borhood Intensity LBP [73], Improved LBP [85], Local MediaBP [86] and Threshold
Modified LBP [87]. Among these approaches, the Local TerrRatterns (LTP), pro-
posed by Tan et al., have achieved a great success [68].slapproach, an additional
parameter is used to define a tolerance for similarity batvadggerent gray intensities to
be robust to noise and reduce the dimensionality. Eachriersighen split into positive
and negative parts, which are subsequently treated as pavate LBP component for
which histograms are computed and finally concatenated.

» Combining with complementary features In order to improve the texture characteri-
zation, many authors have combined LBP with other compleéangfeatures. A rotation
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invariant measure of the local variance can be defined as [4]:
1 P-1 1 P-1

VAR == Y (g—u) with: u== Y g (1.4)
7 2, 7 2,

Ojala et al. propose to use the joint distributior\/diRp,gzlLBPgif‘f for a better character-
ize of the local texture instead of using L%E alone. Another combination can be found
as the fusion of LBP variants and Gabor features has beeorexpwith applications in
texture classification [88] and face recognition [82, 68hnY et al. combine Histogram
of Gradients (HOG) with LBP, performing a good result in humatketection|[90]. Hus-
sain and Triggs combine LTP and LBP [91]. Klare and Jain ekphe combination
of LBP and Scale Invariant Feature Transform (SIFT) for tegeneous face recogni-
tion [92]. Roy et al., combine Haar and LBP features for amilination invariant face
detection|[93].

Among the local rotation invariant LBP features, LBP Histog Fourier features (LBP-
HF) is proposed by Ahonen et al. to combine LBP and the Disdfetirier Transform (DFT) [94].
Unlike the existing local rotation invariant LBP featurése LBP-HF descriptor is produced
by computing an LBP histogram over the whole region and tlesitucting rotationally in-
variant features from the histogram with DFT. In order tolggBP descriptor for a specific
application, we used LBP-HF features for lace texture insadgssification in the beginning of
this work. The LBP tuning, including radius and number ofghdiors, have been adjusted to
reveal the lace structure in [95]. This work is presentedojpesndiXB.

A comprehensive literature survey introduced by Brahnaral.ethas revealed the huge
diversity of LBP [96] that is confirmed by [67]. In comparisevith other grayscale LBP
variants, color variants have received significantly legsnéion in the literature. The next
subsection details the different ways that have been peaptasextend LBP to color.

1.1.4.3 The color LBP

The original LBP computation is based on grayscale imageswveder, it has been demon-
strated that color information is very important to repregée texture, especially in natural
textures|[3} 11, 12, 97, 98]. In literature, the extensiohBP to color follows the strategies of
color and texture combination presented in sedtion 1.1.3.1

* Inthe first strategy, the original LBP operator is computed the luminance image and
combined with color features. For example, Maenpaa or Nmog@sed to characterize
the color texture by concatenating the 3D color histograthetolor image and the LBP
histogram of the corresponding luminance imagel[13, 99§aDo et al. propose a texture
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descriptor which combines a luminance LBP histogram witbicieatures based on the
local color contrast [34]. Recently, Lee et al. propose laaotolor LBP variant for face
recognition tasks, the Local Color Vector Binary Pattera][6n the proposed approach,
each color texture image is characterized by the concabenat four LBP histograms,
namely one LBP extracted from the luminance image and tltmethé angles between
the possible pairs of different color components.

» The second strategy consists in applying the original LB&rator independently on each
of the three components of the color image, without considethe spatial interactions
between the levels of two different color components. Tieute descriptor is obtained
by concatenating the three resulting LBP histograms. Eidui3 illustrates this strat-
egy of color LBP computation by considering tf@;,C,,C3) color space. This within
component strategy has been applied by several author$(96101, 14, 102].

» The third strategy consists in taking into account the iapatteractions within and
between color components. In order to describe color text@pponent Color LBP
(OCLBP) was defined [13]. For this purpose, the LBP operaapplied on each pixel
and for each pair of component€y,C, ), k.k' € {1,2,3}. In this definition, opposing
pairs such a$C;,Cy) and (Cy,C;) are considering to be highly redundant, and so, one
of each pair is used in the analysis. This leads to charaetartexture with only six his-
tograms pairg(C1,C1), (Cp,Cy), (Cs,C3), (C1,Cy), (C1,Cs), (Cp,Cs)) out of the nine
available ones. However, theagriori chosen six histograms are not always the most
relevant according to the different considered data s¢e@it is preferable to consider
the Extended Opponent Color LBP (EOCLBP). This way to désctine color textures
thanks LBP has been proposed by Pietikdinen in 2002 [56prisists in taking into ac-
count each color component independently and each possibilef color components,
leading to nine different histograms: three within-comgatt(C;,C1), (C2,Cz), (C3,Cs))
and six between-componeft{C;,Cz), (C2,C1), (C1,C3), (C3,C1), (C2,Cs), (C3,C2))
LBP histograms. These nine histograms are finally concttdrso that a color texture
image is represented in(@ x 2% )-dimensional feature space. Figlre1.14 illustrates the
computation steps achieved to obtain the LBP values for & pf color components
(C1,C1),(C1,C2),(Cy,C1) and (Cy,C3) and shows that the paiCy,C,) is different to
(C2,C1). The OCLBP and EOCLBP have often been considered to classlify texture
images|[13, 103, 104, 105,'8, 9].

» The fourth strategy consists in analyzing the spatialradigons between the colors of
the neighboring pixels based on the consideration of anroedation between colors.
Instead of comparing the color components of pixels, Pd&iedisal. represent the color
of pixels by a vector and compare the color vectors of thehimgng pixels with the
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Figure 1.13: Illustration of the within component color LB&mputation.

color vector of the central one [46]. They use a partial calater relation based on
the Euclidean distance for comparing the rank of color. Assalt a single color LBP
histogram is obtained instead of the 6 or 9 provided by OCLBEOCLBP respec-
tively [8, 19]. Another possible way consists in defining atahie total ordering in the
color space and using it as a replacement for the naturallgvayordering in LBP defi-
nitions. This strategy has recently been investigated lnplug et al. whose propose the
Mixed Color Order LBP (MCOLBP) |[47].

In order to give a single code by color LBP, quaternion repméstion can be used.
Quaternion is shown as a efficient mathematical tool foras@nting color images based
on a hypercomplex representation [106]. Lan et al. have gnaposed the Quater-
nionic Local Binary Pattern (QLBP) that makes use of quaberto represent each pixel
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Figure 1.14: The different steps to obtain the LBP valuedlierpairs of color components
(C1,C1),(C1,C2),(Cy,C1) and (Cyq,C3) for the analyzed pixel. For example, to compute the
LBP value(Cy,Cy) of the analysed pixel, the color componéntof each of the 8 neighboring
pixels is compared with the color componéhitof the considered pixel. This step is realized
as demonstrated in Figure11.9.

color by all color components at one time. Under this repregen, the dimension of
QLBP is equal to the dimension of a grayscale LBP. QLBP has losed for person
re-identification problems by Lan and Chahlalin [107,/108].
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1.2. Supervised texture classification

Among the different extension strategies of LBP to color, M®P and QLBP have the
advantage of providing a texture descriptor whose dimensi@qual to gray level LBP his-
togram, what allows a low computation time. However, thesifecation results obtained with
these descriptors on two benchmark texture databasesteaie good as those obtained thanks
to OCLBP [47,109].

Another possible way to obtain a good compromise betweeasidieation results and com-
putation time is to consider a higher dimensional descrjstech as OCLBP or EOCLBP, and
to proceed to a dimensionality reduction. This is the stjatbat we propose to explore in our
works. Before presenting the subject of LBP selection, wkesee how the characterization of
the color texture fits in the classification scheme.

1.2 Supervised texture classification

Texture classification is a task which allows to assign argiexture to one of several tex-
ture classes. It is a fundamental issue of texture analgkging a significant role in many
applications such as biomedical image analysis, indlistispection, analysis of satellite or
aerial imagery, document analysis, face analysis, biooseaind many more. Color texture
classification has become a challenging topic in compustoribecause the real world images
often exhibit a high degree of complexity, randomness amgjidarity. For example, two im-
ages containing the same color with different texture paster the same texture pattern but
different colors are considered as different color texdld]. Figure 1.15 (a-b) illustrates an
example of two images (from the USPTex database) with the sator but different textures
of granite and figure_1.15 (c) arid_1115 (d) show the textureéafes with different colors.

Color texture classification is typically categorized itte subproblems of representation
and classification [%, 27] as shown in figlre 1.16. The feagereeration step allows to charac-
terize the image thanks to a texture feature and the decssggassigns the feature to one of
the available texture classes. Our work focuses on the titgireblem.

In this section, we briefly review the three principal categ® of classification context,
introduce several standard color texture databases hleita color texture classification tasks
and present the most commonly classifiers used for colauttexdassification.

1.2.1 Context

According to the prior knowledge of class label, there ared¢imajor types of classification
contexts: the supervised, unsupervised and semi-supdrelassification. A comprehensive
literature survey of classification approaches is proptsethin et al.|[110].
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Figure 1.15: Exemple of two different textures with the samolr (a-b) and the same texture
of stone with different colors (c-d).

Feature Texture features

Input Decici
generation ecision 3

image

Texture label

Figure 1.16: A basic scheme of texture classification.

1.2.1.1 Supervised classification

In the supervised classification, we have a class label it egut prototype image and use
it to predict the label of a new unseen image. In practices, phocess can be evaluated into
two steps: training and decision. In the training step ueEageneration is applied on a certain
number of prototype color texture images with known clabglig In the decision step, feature
generation is applied on unknown input image (as in theitrgistep). Then, a prediction on

the class label assignment for this image, based on a sityitaeasure computed between
the training feature vector and the feature vector of thetimmage. Figuré 1.17 illustrates a
general framework of supervised classification.

1.2.1.2 Unsupervised classification

On the other hand, unsupervised classification (or clusiedoes not provide any prior knowl-

edge about the class labels. The classification automigtitiatovers the different classes (or
clusters) from input textures, based on various types ¢érigi of feature descriptors such as
distance, information or correlation. Figure 1.18 illasés a general framework of unsuper-
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Figure 1.17: A general framework of a supervised classifioat

vised classification.
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Figure 1.18: A general framework of an unsupervised clasditn.

1.2.1.3 Semi-supervised classification

Semi-supervised classification falls between unsupehasel supervised classification. The
label training images is often limited or expensive to beaot®#d. When a small portion of
data is labeled, the classification in this context can takeiatages of both labeled data and
unlabeled data. Figufe 1119 illustrates a general frameafosupervised classification.

Training images
—>

Partial class labels

Feature

Texture features

generation

Input image
—>

Unknown label

Feature

—

Semi-supervised
classification

generation

Final evaluation

Predict label

Figure 1.19: A general framework of a semi-supervised dlaaton.
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CHAPTER 1. COLOR TEXTURE CLASSIFICATION

1.2.1.4 Dimensionality reduction

We briefly presented three classification contexts. Befoeedecision step (figufe 1]16), the
set of generated features can be modified by a dimensiomadityction technique in order to

have a better representation of data (as illustrated indigu20). For example, in the color

texture classification framework, each texture image isattarized by nine LBP histograms
which lead to a concatenated feature vector of 296= 2304 bins (features) for a single color
space when 8 neighbors are used. It is clear that all theré=satontribute unequally in the

classification task that leads to decrease the classificpgdformance. So, the dimensionality
reduction is needed to address this problem. Many autheesdeveloped LBP-based features
by many approaches in order to reduce the feature dimengjona

. . . Reduced number
Input Texture Dinensionali fQ Texture
Inp > Featu.re > . ty »| Decision ol
image generation | features reduction | of texture features ape

Figure 1.20: A scheme of texture classification with dimenality reduction step.

According to whether the original features space infororats changed or not, dimension-
ality reduction methods can be categorized into featureaetibn and feature selection. The
following of this work is conducted by the dimensionalitygtetion methods for color texture
classification in a supervised context. These methods dagletein the chapter 2. The next
subsection thus presents the most commonly used clasgtiec®lor texture classification
problems in the supervised context.

1.2.2 Classifiers

A classifier is a function which takes the features as inpotk gives the texture classes as
outputs. There is a large number of methods for construdintpssifier [111]. Here, we
briefly introduce the three classifiers widely used in theesuiged color texture classification
context:

1. Linear Disciminant Analysis
2. Support Vector Machines

3. K-Nearest Neighbors

1.2.2.1 Linear disciminant analysis

Linear Discriminant Analysis (LDA) is a supervised statiat method that allows to classify
an image between two or more classes [112, 113]. Given tir@rtgaimages, the LDA tries
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1.2. Supervised texture classification

to find a new feature space where the distances between #seodaters are maximized and
the distances between the images of a same class are sienulty minimized. This new
feature space is obtained thanks to linear combinationeeobtiginal features. This can be
achieved through the analysis of the within-class and batwatass scatter matrices. The new
features are found by solving the generalized eigenvalabl@m. Figuré 1.21 illustrates the
separation of two classes before LDA (a) and after LDA (b}eAthe projection, the distances
between the images of a same class is minimixga<(V, andV; < \,) whereas the distance
between the class centers is maximizBd ¢ D1). To classify a testing image, LDA estimates
the probability that the considered image belongs to easscIThe class that gets the highest
probability is the output class.

(a) Before LDA (a) After LDA

Figure 1.21: An illustration of LDA.

The LDA classifier has been used by several authors in ordalitdate the performance of
their color texture classification approach [114,/115, N1&).

1.2.2.2 Support vector machines

The standard Support Vector Machines (SVM) proposed byeSaet al.|[[118] are a type of
linear discriminant binary classifier. A linear boundaryvibeen two classes is represented by a
hyperplane. The optimal hyperplane is the boundary thaimmags the margin of separation
between the classes (i.e., maximizes the distance betlvedrotindary and the images that are
close to the boundary). An example of separation hyperpl@élustrated in Figure_1.22.
From this figure, we see thél is the separating hyperplane with the maximum margin con-
trary toH;. The SVM classification is performed by determining on wisake of the decision
boundary a given testing image falls into and then by assggtiie corresponding class label.

In addition to performing linear classification, SVM can &gntly perform non-linear clas-
sification using different kernel functions by performing@n-linear mapping from the input
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B ClassA
@® ClassB

Figure 1.22: Illustration of different hyperplanebl; separates the two classes with a small
margin, whereasl, separates them with the maximum margin.

space to the transformed space, a straight separatingnlthe itransformed space may corre-
spond to non-linear decision boundary in the original sgat¢€]. The choice of this kernel
function and the tuning of its parameters will directly inspthe final result.

The standard SVM is a two-class classifier, whereas manywedd classification prob-
lems involve several classes. There are two strategiest¢n@&VM for dealing with multi-
class problems: one-versus-all and one-versus-oneggatel he first strategy constructs one
two-class SVM classifier for each class. An image would besifeed under a certain class
if and only if that class’s SVM accepts it and all other class&VMs reject it. The second
strategy constructs one SVM binary classifier for each paclasses and the classification
phase is realized by a voting way: the image is assigned tol#ss that is selected by the
majority of the classifiers. An extensive comparison of mcllss SVM approach is discussed
in [120,121].

SVM classification approach has been used by lakovidis andi&4122, 66] to classify
color texture images.

1.2.2.3 K-nearest neighbors

The K-Nearest NeighborK(-NN) classifier is among the simplest classifiers of all maehi
learning algorithms and it is frequently used in patterroggation. In theK-NN approach, the
testing images are classified based on the closest tramiaggs in the feature space [123,/124].
The distance between each testing images and each traamaggiis first computed. The testing
image is then assigned to the class that is most common artekenearest neighbor« is

a user-defined constant. In the casekof= 1, each testing image is assigned to the class of
its nearest neighbor. The optimum valuekofiepends upon the data. Generally, larger values
of K decrease the effect of noise on the classification. An exawidK-NN classification is
illustrated in Figuré_ 1.23. Based on the valuegfthe testing image (represented by a green
star) will be classified into the class A or the class B K= 3 (dashed line circle), thisimage is
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1.2. Supervised texture classification

assigned to the class B, whereaKif= 5 (solid line circle), this image is assigned to the class
A.

Class A

@® ClassB

Figure 1.23: Example of 3-NN and 5-NN classification.

There are various authors that have uketN to validate the performance of their pro-
posed method in the framework of color texture classificafid, 56, 60, 13, 36, 41, 54, 125,
126,127,117, 128, 129, 130, 47, 131,12132,109]. The fablamtie appendik A shows that
there is about 80% of studies in color texture classificatiat use thd-NN in their exper-
iments. The value oK that is commonly used is 1 while the typically consideredatise
metrics arel1 [56,113, 47/ 130, 109], Euclidean [60,/ 54, 131], Mahalaaqbg, 129], and
X2 [127,128, 132].

1.2.3 Evaluation methods

In order to validate the performance of a classification sehethere are several evaluation
methods that divide an available dataset into training astirtg sets: bootstrap, resubstitution
and cross validation methods as presented in [110]. Géyndradre are three kinds of valida-
tion techniques which are widely used in the framework obctéxture classification [133]:

- Holdout method is the simplest cross validation approach. The eatakere divided into
two exclusive sets. The proportion of the training and bessets is usually equal to 1/2. Many
authors have used this method to split the dataset in ordalittate the proposed approach in
color texture images classificatian [134, 135,/105, 136,33,138, 139, 66, 140, 9, 47, 130,
141,115, 56, 13,41, 122, 126, 127,128,142, 114].

- X-fold cross validationis an extension of the holdout method. The dataset is spitted
X subsets and the holdout method is repedfdtmes. Each time, one of tHiE€ subsets is used
as the testing set and the otl¥ér 1 subsets are put together to form the training set. In order
to evaluate the performance, several authors used thisiteehto split the color texture image
database into training and testing sets [131, 143,144 1444,
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CHAPTER 1. COLOR TEXTURE CLASSIFICATION

- Leaving-one-out cross validationis a special case dk-fold cross validation, withK
equal toN, the number of images in the dataset. This technique is ugesd\eral authors
[60,136, 147, 132, 54].

After creating the partition of the dataset, the classifegsuthe training set to predict the
output labels for the images of the testing set. The claasibic performance is calculated
by comparing the predicted class labels obtained by thei@kswith the true class labels.
Accuracyis estimated as the sum of correct classified images divigegtidototal number of
testing images. Most of the authors ugerturacyto measure the performance of the classifier
in the color texture image classification applications.egd#valuation criteria such &ecision
andF-measurere used in[134, 148].

1.2.4 Benchmark color texture image databases

In order to evaluate the performance of different textur@ysis methods and to compare their
performance, various image databases have been propo#wal literature([149, 33]. In the
framework of color texture classification, several da@eétcolor textures have been catego-
rized and critically surveyed by Porebski et al. [138]. Weeaduce here, four benchmark color
texture databases that are used in our experimentatiotapter 4: OuTex-TC-00013, USP-
Tex, STex and BarkTex.

- OuTex-TC-00013 The test suite OuTex-TC-00013 is provided by the OuTexutext
database | [150]. The images of this database are acquirbdawtiree-CCD color camera
under the same illumination conditions. This database wllacation of heterogeneous mate-
rials such as cardboard, fabric, paper, wool, etc. It costéB texture images of 746 538
pixels. The test suite is constructed by splitting each dnghe original texture image into
20 sub-images (12& 128 pixels) without overlapping, thus resulting in a datasataining
1360 images. Figuré._1.R4 illustrates the images of thiasgdtwhere each image represent
each class of texture. The specificity of this database tgtthantains several categories with
similar colors and textures, resulting in a high inter-slasnilarity. This database is publicly
available at http://www.outex.oulu.fi.

- USPTex The USPTex database consists of a set of 191 color textiagamacquired
using a digital camera under an unknown but fixed light saufidee considered 191 texture
classes are typically daily found, such as beans, ricejdggsoad scenes, various types of veg-
etation, walls, clouds and soils [117]. Each image has axdis&2x 384 pixels from which 12
sub-images with a size of 12828 pixels are extracted without overlapping, so that d tdta
2292 images is obtained. Figure. 1.25 shows some examptesofe of the USPTex database.
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1.2. Supervised texture classification

Figure 1.24: The OuTex-TC-00013 dataset includes 68 diffetexture classes.

This database is publicly available at http://fractat.ifsp.br/dataset/USPtex.php

- STex The Salzburg Texture Image Database (STex) is a largectiolteof color textures
image. It is publicly available at http://wavelab.at/soes/Stex. It is more homogeneous than
the other databases proposed for texture classificatigmopas. There is unavailable infor-
mation about the type of acquisition device used and thditiglconditions. STex contained
a total of 476 texture images of 5312 pixels. For experimental purpose, each texture is
subdivided into 16 non overlapping sub-images of:2288 pixels. The database thus consists
of 7616 color texture images belonging to 476 differentsdas Figurd,_1.26 illustrates some
examples of texture of this database.

- BarkTex : The BarkTex database has been proposed by Lakmann at therkity of
Koblenz-Landau, GermanﬂSl]. The images of the BarkTealzkse represent natural color
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CHAPTER 1. COLOR TEXTURE CLASSIFICATION

Figure 1.25: Selected textures among 191 classes from tRIé&Sdatabase (one image per
class).

textures which have been acquired under non-controllachiliation conditions. Each image
of size 256x 384 displays the bark of a certain tree. The BarkTex datalsasemposed of
six different kinds of trees, with 68 images per class. FedgliZ7 illustrates an example of
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1.2. Supervised texture classification

Figure 1.26: Selected textures among 476 classes from Sifekake (one image per class).

each of the six tree bark classes of this database. Sincentiges are not restricted to the
bark texture and also show background structures, the irhagder is excluded defining a
Region-of-Interest of fixed size 3&R00 located at the image center. This database is publicly
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Figure 1.27: Examples of images of the BarkTex database.

available at ftp://ftphost.uni-koblenz.de/outgoingien/Lakmann/BarkTex

The OuTex-TC-00013, USPTex and STex databases have theaoimtation that the
sub-images of a same class are extracted from the same extquiginal image. Porebski
et al. have shown that the partitioning which builds a tragnand a testing subset from an
initial image set can lead to biased classification resdltss partitioning could provide high
classification accuracy whatever the considered featunenwt is combined with a classifier
such as the nearest neighbor classifier. In order to over¢bimerawback, Porebski et al.
propose a modified version of Barktex, namely New Bar@lm

To build the New-Barktex set, a region of interest, centeedhe bark and whose size
is 128x 128 pixels, is first defined. Then, four sub-images whoseisifd x 64 pixels are
extracted from each region. We thus obtain a set ok @8= 272 sub-images per class. To
ensure that color texture images used for the training amtetting images are less correlated
as possible, the four sub-images extracted from a samenarignage all belong either to the
training subset or to the testing one: 816 images are thud asdraining images and the
remaining 816 as testing images. Figlre. 11.28 illustrdtesrhages of New BarkTex test suite
where each row represents each kinds of trees.
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1.2. Supervised texture classification

Figure 1.28: Example of New BarkTex color test suite: eaghnmEpresents a class of texture.

The evaluation methods and four benchmark databases haveimieoduceﬂ All the
recent studies related to those databases are now rewiawleg following section.

1.2.5 Review of the considered databases

In this section, we synthesize the recent works on coloutextlassification which are carried
out in the literature on the four databases previously mtese The goal of this review is to
highlight the test suits that are most frequently used, @eoto compare our work with the
maximum of previous studies. Indeed, each database carrtitepad to different test suites
according to the size ofimages, the number of training dinggmages and evaluation method.
This synthesis will allow us to follow the most used partitior each database.

Table[IT.1[ 1.2 1]3 ari[d 1.4 summary respectively the cheniatits of OuTex-TC-00013,
New BarkTex, USPTex and STex databases, when they have Bednruthe framework of
color texture classification. The first column of those talij@ves the original name of the
image database. The second column shows the name of thaitestl$e third column gives
the number of classes of the test suite. The fourth columsepits the number of images per
class. The fifth column indicates the size of the images. Ttite solumn mentions the cross
validation method used to split the image databases inioirignand testing sets. The last
column presents the name of the authors, the year of publicand their references.

In each table, the most frequently used test suite is higtddj In the following, we will
use these test suites to evaluate the performance of ouagpand compare our results with
those of other works. For example, in the Tdble 1.2, therd alifferent test suites used for the
BarkTex dataset, according to the number of images per, ¢lessize of images and the cross

LAll the image test suites can be downloaded at https://wisie-Univ-littoral.fr~porebski/Recherche
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validation method and the most used test suite is New BarkTex

Table 1.1: Characteristics of OuTex-TC-00013 dataset ustxkture classification.

Databas

e Name

Number

of classes

Number
of images

per class

Size of

images

Validation
method

Reference

OuTex

OuTex-
TC-00014

68

20

128x128,

Holdout (1/2 - 1/2)

Pietikainen, 2002 [56]
Maenpéaé, 2004 [13]
Arvis, 2004 [41]
lakovidis, 2005 [122]
Xu, 2005 [54]
Alvarez, 2012 [127]
Cusano, 2013 [152]
Qazi, 2013 [126]

El Maliani, 2014 [134]
Porebski, 2014 [138]
Cusano, 2014 [34]
Kalakech, 2015 [9]
Martinez, 2015 [135]
Hammouche, 2015 [128
Guo, 2016 [142]
Casanova, 2016 [114]
Ledoux, 2016 [47]
Sandid, 2016 [66]
Naresh, [148]

]

68

20

128x128

K-fold

Paci, 2013 [143]
Fernandez, 2013 [144]
Sa Junior, 2016 [145]
Bello-Cerezo, 2016 [131]
Bianconi, 2017a[146]
Bianconi, 2017b [153]

68

20

128x128

Holdout (2/3 - 1/3)

Lan, 2016 [109]

68

20

128x128

Leaving-one-out

Cernadas, 2017 [132]
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Table 1.2: Characteristics of BarkTex dataset used in texdkassification.

Number | Number
Size of Validation
Databasel Name of of images Reference
images method
classes| per class
Porebski, 2013 [8]
Kalakech, 2015 [9]
New
6 136 64x 64 Holdout (1/2 - 1/2) | Ledoux, 2016 [47]
BarkTex i
Sandid, 2016 [66]
BarkTex

Wang, 2017 [154]

6 68 300x200 | Leaving-one-out | Palm, 2004 [36]

BarkTex ) Milnzenmayer,

6 272 64x64 Leaving-one-out
2002 [60]
Porebski,

6 68 64x64 | Holdout (0.47-0.53)
2007 [136]

Table 1.3: Characteristics of USPTex dataset used in &xtassification.

Number of
Number Size of Validation
Databasel Name images Reference
of classes| images method
per class
180 12 128x128 | Leaving-one-out | Backes, 2012 [117]
Oliveira, 2015 [155]
Guo, 2016 [142]
191 12 128x128 | Holdout (1/2 - 1/2)
Ledoux, 2016 [47]
USPTex | USPTex Florindo, 2016 [115]
332 12 312x384 | Holdout (1/2 - 1/2) | Casanova, 2016 [114]
Bianconi, 2017 [146]
191 12 128x128| XK-fold Bello-Cerezo, 2016 _[131]
Gongalves, 2016 [156]
191 12 128x128 | Holdout (2/3 - 1/3)| Lan, 2016 [109]
. Chen, 2016 [147]
191 12 128x128 | Leaving-one-out
Cernadas, 2017 [132]
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Table 1.4; Characteristics of STex dataset used in textassification.

Number of
Number Size of Validation
Databasel Name images Reference
of classes images method
per class
El Maliani, 2014 [134]
476 16 128x128 | Holdout (1/2 - 1/2)
Martinez, 2015 [135]
STex STex
476 16 128x128 | K-fold Bello-Cerezo, 2016 [131]

1.3 Conclusion

Texture classification is a fundamental topic in computeron, playing a significant role in
various applications. Texture descriptors have early lap@tied on grayscale images and have
thereby ignored the color information. Many authors denaes that color texture features
could enhance the performance of texture classificationthiichapter, we have described
the key concept of color texture classification. The priatif@amilies of color spaces have
been presented as well as the main color texture descriptdes most commonly used clas-
sifiers (LDA, SVM, K-NN) in the supervised context have beeesented. Four color texture
databases have been introduced: OuTex-TC-00013, USPTex,&hd BarkTex and we have
reviewed recent works related on those databases to shawdsiefrequently test suites used
in the state-of-the-art.

The LBP operator is one of most popular descriptors in textlassification due to its
simplicity and good performances. With the objective of impng the performance of tex-
ture classification, an extension of LBP to color is proposE@wever, color LBP still has
some limitations because it lies in high-dimensional feagpace. In order to overcome this
drawback, many dimensionality reduction approaches haee proposed to reduce the LBP
dimension space. The next chapter introduce the featueets®i which is an important and
frequently used technique for dimension reduction.
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Chapter 2

Feature selection

Contents
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As described in chapter 1, the LBP operators is a good catedidalocal image texture
descriptor. However, this operator tends to produce highedsional feature vectors, espe-
cially when the number of considered neighboring pixelseases or when it is applied to
colorimages. Thus, a dimensionality reduction method BPlis needed to address this prob-
lem. Various approaches are proposed to obtain more disaiive, robust LBP-features with
reduced feature dimensionality.

Indeed, many machine learning problems in computer vistmhseveral related domains
need to deal with very high dimensional data. Many of thes¢ufes may not be relevant
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for the final prediction task and degrade the classificatemopmance. Multiple studies have
shown that the classification performance can be improveditnynating these features. These
issues can be solved by the method of the dimensionalityctentu For this purpose, the di-
mensionality reduction can be achieved either by featutraeton or feature selection to a low
dimensional space. Feature extraction refers to the msttinad create a set of new features
based on the linear or non-linear combinations of the ocalgeatures. Further analysis is prob-
lematic since we cannot get the physical meanings of thedarts in the transformed space.
Examples of feature extraction methods include Princigah@onent Analysis (PCA) [112],
Locality Preserving Projections (LPP) [157]...

In contrast, the feature selection methods aims at findirgjaate subsets of features by
keeping some original features and therefore maintainphlysical meanings of the features.
The use of both methods have the advantage of improving npesface of classification and
increasing computational efficiency. Recently, featutect®mn has gained increasing interest
in the field of machine learning [158, 159, 160, 161], datayss [162, 163, 164], and suc-
cessfully applied in computer vision such as informatiomieeal [165, 166/ 167] or visual
object tracking![168, 169, 170]. In this work, we focus on #pplication of feature selection
methods to LBP-based features in the framework of coloutextlassification.

This chapter is organized as follow. We first present baakgianformation on the con-
cept of feature selection and review works related to owaeh. We introduce the taxonomy
of feature selection methods in sectionl 2.1 by summarizasidprinciples applied in feature
selection and the context of feature selection. We presendata and knowledge represen-
tation by presenting the definitions and notations relatethé feature selection methods in
section 2.P. We then, review the related literature of tmkirey-based approaches, including
the ranking-based scores and ranking-based algorithnestioa[2.8. Next, the feature selec-
tion applied to the local binary pattern is briefly reviewadéectiori 2.4. The bin selection and
histogram selection approaches are discussed, includindret contribution for histogram
selection. Finally, in sectidn 2.5, we summarize the ppatiopics presented in this chapter.

2.1 Taxonomy of feature selection methods

Feature selection is defined as a process of selecting thedeahat best describe a dataset
out of a larger set of candidate features. Typically, theest@ao types of features: relevant

and irrelevant features [171]. In the framework of clasatfn, relevant features are the fea-
tures that contain discriminative information about thesekes (supervised context) or clusters
(unsupervised context). In contrast, irrelevant feataresnoisy and redundant features that
cannot discriminate samples from different classes. Tiemsoving irrelevant features reduces
computational cost and improves the classification perdfowe. For the classification prob-
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lems, feature selection aims to select subsets of hightyridighant features while retaining a
suitably high accuracy in representing the original feagurn other words, it selects relevant
features that are capable of discriminating data that lgelordifferent classes. For example,
in figure[2.1 (a),f; is a relevant feature because it can discriminate class Alkasd B while

f1 is irrelevant feature. In figufe 2.1 (B} and f4 are noisy features because they do not allow
to discriminate the classes. In figlrel2.1 (&) and fg are redundant features because they are
highly correlated, we only need one of them to discriminatedlass A and B. The terms of
“feature selection” can be replaced by different synonymibe literature: “variable selection”,
“attribute selection” and “feature ranking”.

- | - B ClassA B ClassA B ClassA
fz :.... :. @ ClassB f4 ® ClassB f6 ® ClassB -.......l
el B =
mgEm
°® =S, o ]
[
JTRN e il -
0ee’ Leeenn’ al
1 /. /.
(@) (b)° (c)

Figure 2.1: Examples to illustrate the concept of relevaoisy and redundant features. (@)
is a relevant feature which can discriminate the two clagsasd B while f1 is an irrelevant
feature. (b)f3 and f4 are noisy features. (d} and fg are redundant features.

There are many feature selection approaches proposedlitetia¢ure. According to Dash
and Liu, they generally involve four steps (as shown in figgig8 [162]:

Candidate features

—>

Feature

Generation

Subset
relevance

Stopping
criterion

Validation

Figure 2.2: The different steps of feature selection[162].
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1. A generation stepwhich is based on a search method generates subsets oetesdur
be evaluated. A subset search strategy generates cantiidaiee subsets in order to
find the optimal subset. Usually, search strategies ardlysagegorized into complete,
sequential, and random models [172]:

« Complete search among all possible feature subsets. If the inputrdatad fea-
tures, the most direct search strategy is the exhaustivelsez., search among all
possible feature subsetsan total). However, this approach might become com-
putationally very expensive for high dimensional problebecause the size of the
explored space corresponds to the number of all possibléications of features.

« Sequential Starting with an empty set and subsequent addition of featis re-
ferred to as a bottom-up approach like the Sequential For®atection (SFS) ap-
proach. Or using the full set of features at the beginningsamdequent features re-
moval is called a top-down approach like the Sequential Bactt Selection (SBS)
approach.

« Random: Starting with a randomly selected feature set and addoralydselected
features or removes them from the set.

2. An evaluation function then calculates the relevance of the feature subset builtiglu
the generation step. It compares this with the previousdaexstidate subset, and then re-
placing it if found to be better. It can be either classifief@pendent (i.e., filter approach)
or classifier dependent (i.e., wrapper approach or hybrithoa) [173].

3. A stopping criterion decides when to stop. This step is executed every iteration t
determine whether the feature selection process shoulthceror not. Without a suit-
able stopping criterion the feature selection process magxhaustively through feature
subset space. Generation step and evaluation functionsitaence the choice of the
stopping criterion. The stopping criteria based on a geiweratep include: (i) whether
a predefined number of features is selected, and (ii) whetpezdefined number of rep-
etitions is reached. Stopping criteria based on an evaluéinction include: (i) whether
addition (or removal) of any features does not produce &bstibset; and (ii) whether
an optimal subset based on evaluation function is obtained.

4. A validation step verifies whether the feature subset is valid. Once the shgpgite-
rion has been satisfied, the loop will be stopped and thetinegdeature subset may be
validated.

Feature selection methods can be categorized into one ofavegories according to the
context or the evaluation strategy, as shown in figure 2.8&fignre[Z.8b, respectively. The
subsequent sections will describe each strategy in detail.
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Supervised Filter

Context of

Feature selection Wrapper

Semi-supervised evaluation strategy

feature selection

Hybrid

Unsupervised

(a) (b)

Figure 2.3: Categorization of feature selection (a) cardexl (b) evaluation strategy.

2.1.1 Context of feature selection

In terms of availability of supervised information, featigelection techniques can be roughly
classified into three groups: supervised, unsupervisedsand-supervised methods [174].
Most of supervised and semi-supervised feature selectiethads assess the relevances of
features by the information of class label.

» Supervised methods The availability of label information allows supervisegiture se-
lection algorithms able to discriminate samples from défe classes. There are several
literature reviews discussed on supervised feature sahgdi’5, 176]. A general frame-
work of supervised feature selection is illustrated in fejidr4. The training step of the
classification depends on the feature selection methoer Afilitting the data into train-
ing and testing sets, classifier is trained. This trainirg $tased on a subset of features
selected by a feature selection method. It is worth to ndotiaethe feature selection step
can either be independent of classifier (filter methods)t oray take into account the
performance of a classifier to assess the quality of seldéet#dres (wrapper methods).
Finally, the classifier predicts class labels of the tes$igijoased on the selected features.
One challenge of this approach is the process of labelingldéit@ given by the human
user which is expensive and may be unreliable|[140].

» Unsupervised methods Unsupervised feature selection is a more challenginglenob
due to the absence of class label information used for ggitia search of discrimina-
tive features. Nevertheless, it has one advantage thauitbgased by the labeling of
data by human experts or data analysts. A general framewarksupervised feature
selection is illustrated in figuie 2.5. Different from sugised feature selection, unsuper-
vised feature selection usually uses all available dataerféature selection step. The
feature selection step is either independent of the unsigeerlearning algorithms (fil-
ter methods), or it relies on the learning algorithm to Sefleatures (wrapper methods).
Unsupervised feature selection methods seek alternattegia such as data similarity
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Figure 2.4: A general framework of supervised feature sielec

and local discriminative information to define feature valece [162, 177, 173, 179]. Af-
ter the feature selection step, a clustering algorithmggikie output of cluster structure.
The main drawbacks of the unsupervised approach are iteteglee possible correla-
tion between different features and it relies on some ¢aiterthout the guarantee that
the principles are universally valid for all types of data.

Data 3 Featur§ | Feature |3  Selected > Construction
generation selection |— features classifier

v v

> Relevant

Clustering
— Decision [Pt

features

Figure 2.5: A general framework of unsupervised featurecsiin

Semi-supervised methodsSemi-supervised feature selections are the extensias of
pervised and unsupervised feature selections. In rediigylabel training data is often

limited or expensive to be obtained. When a small portionaifds labeled, we can

utilize semi-supervised feature selection which can takeatages of both labeled data
and unlabeled data. The general framework of semi-supetvesature selection is illus-

trated in figuré_2J6. The only difference with the supervitEture selection method is
the partial label information used as input. Usually, tHeelad data is used to maximize
the margin between data points of different classes, andinbebeled data is used to
discover the geometrical inherent structure of the data,[180, 181, 182, 183].
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Figure 2.6: A general framework of semi-supervised feasetection

2.1.2 Feature selection evaluation

Based on the different strategies of evaluation, featulecgen can be classified into three
groups: filter, wrapper and hybrid methods [6].

* Filter methods select the subset of features as pre-processing step Wwitivalving the
classifiers. Typical filter methods consist of two steps himfirst step, feature relevance
is ranked by a feature score according to some feature éi@aiuaiteria which can be
either univariate or multivariate. In the univariate casach feature is ranked individu-
ally regardless of other features, while the multivariatieesne ranks multiple features
simultaneously. The methods rely solely on the inherentadtaristics of data such as
variance|[133], correlation [6], mutual information [18477], consistency [162]. In the
second step, lowly ranked features are filtered out and ti@ireng features are kept.
Figure[2.7 describes a generalized form of a filter algoritkitier methods are fast and
easy solutions, since they can be combined with any classéfeer the filtering is com-
plete. However, they may miss features that are relevathéotarget classifiers. Famous
filter methods are based on Variance [133], Laplacian/[1F8@her scores [185] for uni-
variate scheme and maximum Relevance (mMRmR)/ [186], Instersy criterion|[187]
for multivariate scheme.

* Wrapper methods evaluate each candidate feature subset through the dassifi al-
gorithm and using the estimated accuracy of the classibicaigorithm as its evaluation
metric as shown in figuie 2.8. They then select the most diseative subset of features
by minimizing the prediction error rate of a particular difier. This step is a combina-
torial problem, with an objective function that is costlydompute for high dimensional
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features, but often give better results than other metht®gts|[L89, 190].
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Figure 2.8: An illustration of wrapper method

» Hybrid methods combine both filter and wrapper methods into a single franmkewo
order to provide a more efficient solution to the featurect@a problem|[191].

A filter evaluation can be applied to discard some featurésréeoing to the wrapper
step. The key idea of this combination is to lower the comipfeaf a wrapper, but
keeping its high accuracy. Figure 2.9 shows an illustratibtihe hybrid method. Dash
and Liu proposed a first hybrid method that uses a measurel lmaséhe entropy of
the similarity of the data (filter step) [187]. Then (wrappéep), they use a clustering
algorithm and a scatter separability criterion for evahmfeature subsets. Recently,
Solorio-Fernandez et al. propose a method based on thediaplscore ranking jointly
with a modification of the Calinski-Harabasz index [192]. bdg methods have the
disadvantage that they depend on the evaluation of filtehodstused for determining

the best feature subset.

The feature selection methods and their categorizatioa baen introduced. Among of the
feature selection approaches, we are interest in the hyleitiods which takes advantage of
both the filters and the wrappers. In the following of this kyawe propose a feature selection
approach based on this approach for color texture clagsificen the supervised context.

Before introducing the state-of-the-art of feature séd@ctethods, we will give some def-
initions and notations used for the representation of datiekaowledge in the next section.

56



CHAPTER 2. FEATURE SELECTION

_ : ] Search

: Sear.ch : ! algorithm :
Candidate features : algorithm ‘Selected. . Feature Estimated :  Selected
—> Featurei T Information W; subset / \performance ;_’features

: subset content : 3 _ i

: Feature Feature — Classifier i

. : | evaluation algorithm
evaluation :
| [
Filter Wrapper

Figure 2.9: An illustration of hybrid method

2.2 Data and knowledge representation

In the feature selection context related to our problem, ispake a dataset of color texture
images defined in &-dimensional feature space. lItalic letters are used to tdescalars,
bold letters to denote vectors or matrices (exgx, X). We denoteX = (X ), i € {1,...N};
r € {1,...,D}; the associated data matrix represented by equafibn 2etewhis ther'" feature
value of theit color imagel;.

(x1 | [ . X XD ]
X=1|x |[=|x .. X .. x :[fl RV LN o (2.1)
XN | D e X X

Each of theN rows of the matrixX represents a color texturg= (xt,...x/,...x") € R?,
while each of theéD columns ofX represents the feature vecfordefined as follows:

'R
fF=1{x |=|f (2.2)
a1 LR

In supervised learning, all the information about the clabgls of the training images are
available. Let us denote the veciothe class labels of the different images defined by:

Y1

Y= |Vi (2.3)

| YN
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wherey; € {1, ..c,...,.C}, Cis the number of classes of the data. For each color ihage
feature vectok; is associated with a class lahgl

Several studies have shown that graphs constructed imalifgature space reflect some
intrinsic properties of data, and thus can be used for dimameduction|[193, 194]. Moreover,
the spectral graph theory represents a solid theoretiaatdwork which has been the basis
of many effective existing feature selection methods. Téadure selection methods that we
present in this section are based in large part on specaphdgheory/[195] including Laplacian
score [179] 196], spectral methods [177] and sparsity sfi®€é] and so on. All of these
methods used the application of graph matrix in the objeativfeature selection. In the next
section, we introduce several of graph construction rdleaehose approaches.

2.2.1 Graph data representation

Given a dataseX, let G = (V,E) be the undirected graph constructed frdmwhereV =
{v1,...,un} is its vertex set an& is the set of edges. Each vertgxn this graph represents an
imagex; and each edge between two vertiggandv; carries a non-negative weiggf > 0.
The similarity matrix of the graph is the matiS< (sj )i’j:]_’__N. As Gis an undirected graph,
Sj = sji. There are many approaches to transform a given datasetheiiairwise similarities
sj into a graph. The most common graph construction methodsdimg £-neighborhood
graph k-nearest neighbor graph and fully connected graph [198,20.

» &-neighborhood graph The neighbors of a given instanggeare the instances that be-
long to a sphere centeredxatand havinge as radius. Ire-neighborhood graph the data
which have the distance (similarity) less than the threshol

 k-nearest neighbor graph An edge between two verticesandyv; is constructed if the
corresponding instances andx; are close, i.ex; is among the&-nearest neighbors of
Xj or Xj is among the&-nearest neighbors of.

* Fully connected graph We connect all images with positive similarity with eachet
and we weight all edges bgj. As the graph should represent the local neighborhood
relationships, this construction is only useful if the damty function itself models local
neighborhoods.

There are several choices for this similarity. Belkin angldgii use the heat kernel with
different Gaussian varianae values, as follows [199]:

I —x; |12
Sj=¢€ 2 (2.4)
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where the parameter is a constant to be set which controls the width of the neighbo
hood and|x; —xj|| denotes the the distance betwaeandx;. In the extreme case where
o — oo the weights will become 1.

Cortes and Mohri propose the use of inverse of distance agw¢200] as follows:

Sj:m, Xj # Xj (2.5)
The similarity function can also be expressed under cosinetion. It is used to measure
the similarity between two vectors by computing the cosihthe angle between them
as defined as follows:
sj = |cogxi, xj)| = il (2.6)
il [

The degred); of a vertexv; €V is equal to the sum of weights of all edges linked to this
vertex. Itis defined the diagonal matfix= (d;);—1..n should be noted as follows:

N
di = z Sij 2.7)
=

It is worth to note that the degrele of a node can be considered as a local density measure at
Xj.
The Laplacian matrix of X is defined by:

L=D-S (2.8)

The drawback of all the graphs mentioned above is their digrege on the value of the pa-
rameterse, k, or g. Without the optimum value of these parameters, the siitylanatrix
constructed could not reflect the real similarity among gatats. For example, the adjustable
parametero in equatior. 24 plays an important role in the performanctheffunction, and
should be carefully tuned by hand according to the problémvédrestimated, the exponential
will behave almost linearly, and the projection will lose itonlinear power. In contrast, if
underestimated, the function will lack the regularizatesrd will be highly sensitive to noise
so that it might change the graph structure.

Recently, to address the limitations of classical graprstaction methods, sparse repre-
sentation has been successfully used for graph constnj@@d., 202]. In the following, we
will briefly present the sparse graph construction.

2.2.2 Sparse graph construction

Sparse representation has received a great deal of attentcmmputer vision, especially in
image representation in the recent years. It has many efeapplications such as image
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compression and coding [203, 204, 205,/206], pattern ratognimage and signal process-
ing [207, 208, 209]. Generally, sparse representationsitelfind the most compact represen-
tation of the original data.

Recently, Qiao et al. presented a new method to design thiastgnmatrix based on the
modified sparse representation [210]. The graph adjacengstgre and corresponding graph
weights are built simultaneously by thenorm minimization problem. This is, in fact, a new
way that is fundamentally different from the traditionalesn(like Euclidean distance, cosine
distance, etc.) to measure the similarity between diffedata points. By introducing spar-
sity in the linear reconstruction process, it identifies tihest relevant data points as well as
their estimated similarity to the reconstructed data poMbreover, many empirical results
have shown that a sparse graph is preferred, because spap$s (have much less spurious
connections between dissimilar points and lead to exhilgih lguality for data representa-
tion [211,210, 197, 212, 201, 213].

Given a data matriX = [Xq, ...,Xi, ..,XN]T e RPxN including all the instances in its columns,
we want to reconstruct each instangee.g., a color texture image, using as few entrieX of
as possible. This problem can be expressed mathematisdityiaws:

rr;in||s]|O st. xj=Xsj, (2.9)

wheres = [s1, ...,si(i_l),o,sq(iﬂ),...,sN]T is an N-dimensional coefficients vector in which
theith element is equal to zero (implying thatis removed fronX) and the elements; (i = j)
denotes the contribution of eagh to reconstruck;, ||.||, denotes thég-norm, which is equal
to the number of non-zero componentsin

It is worth to note that the solution of equation]2.9 is NPehar general case. A sparse
vectors can be approximately solved by the following modifleaninimization problem:

rr;ianH1 st. xi=Xs,1=1"s, (2.10)

where,||.||; denotes thés-norm, ;1 € RN is a vector of all ones values.
In reality, the constraint; = Xs; in equatiori 2.10 does not always hold due to the presence
of noises. The modified objective function is defined as Wd¢204] :
n;in||si||1 st. ||xi—Xsill, < &,1=1Ts, (2.11)

whereé represents a given error tolerance. The sparse vgetawomputed for each sample
Xj. The optimal solution of equation. 2111 for each samgplis a sparse vectd, that allows
to build the sparse similarity matr@= (4§ j)nxn, defined by:

S=[8,...5,..&]" (2.12)
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Theli-minimization problem can be solved in polynomial time bgrstard linear program-
ming method|[214] using publicly available packages suchasolbo@. As the vectol§ is
sparse and a lot of its components are zero and few of themmaveero values, the instances
in the dataset which are far from the input signal will havenamall or zero coefficients. This
solution might reflect the intrinsic geometric propertiésiginal data. In cases of the absence
of the class label information, the discriminative infotioa can be naturally preserved in the
matrix S.

We have presented the definitions and notations relate@ tollowing of this chapter. Dif-
ferent strategies have been proposed over the last yedeatare selection: filter, wrapper and
hybrid methods. Among of them, hybrid methods attempt t@lzareasonable compromise be-
tween efficiency (computational effort) and effectiven@gssselecting the relevance features).
To combine the filter and wrapper methods into a hybrid methag are interest the filter-
based approach in the univariate scheme by using someatibeassess each feature sorting
them into a list (ranking). The next section is entirely @atied to ranking-based approaches.

2.3 Ranking-based approaches

The aim of feature ranking is to measure the relevance ofifestin order to find the most
discriminative feature. Among a huge literature on featargking methods, we will briefly
review several well-known approaches. These approachebeachieved by associating a
score for each feature or by applying an algorithm which giweights for a feature subset. In
the first case, the features are independently evaluatesteat in the second case, the weight
of each feature is determined using all attributes.

2.3.1 Ranking based on scores

The filter approaches selects the relevant features byrigakt the inherent properties of the
data. In most cases, feature relevance score is individagaltulated. In this section, we
introduce several score functions based on feature ramkegtgods according to the learning
context in supervised, unsupervised and semi-supervised.

2.3.1.1 Unsupervised feature selection

The unsupervised feature selection methods evaluate ldvanee of features based on vari-
ous types of criteria such as distance, information, catie, dependency and so on. These

1The web site (http://www.ece.ucr.edu/sasiffhomotomiginhtml) provides many practical toolboxes and sev-
eral research works to solve the sparse representatiofteproln our experimentd;-toolbox is used due to its
simplicity.
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methods include Variance, Laplacian and Unsupervisedgpacores.

» Variance scoreuses the variance along a dimension to reflect its reprdsentower
and selects the features with the maximum variance.fLeenote the'" feature of the
ith image. The mean of thé" featuref" is defined as:

w—ifo (2.13)
N2 '

The variance of the'" feature denoted a¢ariancé, which should be maximized, is
calculated as follows [133]:

; _ 1 A r ry2
Variancé = Ni;(fi —u") (2.14)

The features are sorted according to the ascending ordéradnce to select the most
relevant ones.

 Laplacian scoreassumes that instances from the same class are close totkachrmd
the local geometric structure is crucial for discriminat{d79]. This score selects fea-
tures with larger variances which have more representptiveer and stronger locality
preserving ability. The Laplacian score of tHé feature denotedlaplaciad which
should be minimized, is computed as follows:

SRS (ff = )3 B LT 215
Z'N (fr —ur)2d; I (2.15)
i=1\7j i f

Df
wheres;; is defined by the similarity relationship between two imalgesd|; as defined
in sectiof 2.2 and is defined as:

Laplaciard =

a_g f'TD1

= 2.16
D1 (2.16)

wherel € RN is a vector of all ones.

After calculating the Laplacian score for each featurey e sorted in the ascending
order ofLaplaciar to select the relevant ones.

» Unsupervised sparsity scords another feature ranking algorithm proposed by Liu et
al. [197]. This approach is based on sparse similarity matnstruction. The proposed
unsupervised sparsity score of tHe feature denotetd nsupSparse which should be
minimized, is defined as follows:
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SN =3N08 )% (1 -S-ST+ s

UnsupSparse= =
AN (f—pr)? (1 — F1an)f"

(2.17)

wherel is an identity matrix and; is the entry of the sparse similarity mati$con-
structed using all images which is presented in se€fio@2.2.

The sparsity score for each feature is sorted in the ascgmdder ofU nsupSparsein
order to select the relevant ones.

2.3.1.2 Supervised feature selection

Supervised feature selection evaluates the relationgtipden the features and their class la-
bels information. Given data matrX = [Xg,...,Xi, ..,.Xn], Xi € RP*N each image; is associ-
ated with a class labst, {x;,yi}, vi € {1,...c,..,C}, whereC is the number of classes aid
denotes the number of instances in the clasBased on that notation, we introduce several
feature selection methods in the supervised context.

* Fisher scoreis one of the most widely used supervised feature selectores The
principal idea of Fisher score is to identify a subset of dead so that the distances
between samples in different classes are as large as pysgible the distances between
samples in the same class are as small as possible.

Let u" denotes the mean of all instances onitfideature u" and(o™)? the mean and
variance of class corresponding to the" feature, respectively. The Fisher score of the
rth feature, which should be maximized, is calculated as fal{i83]:

C rc__ ,,r\2
Fishef — ZCZ}:NC(“ H) (2.18)
>c-1Ne(0™)?

where, the numerator is the between-class variance coimgjdiert" feature and the
denominator is the within-class variance considering théeature.

After calculating the Fisher score for each feature, theysarted in the ascending order
to select the relevant ones.

» Supervised Laplacian score The Laplacian score which is based on concepts from
spectral feature selection, identifies relevant featusesnbasuring their capability of
preserving instance similarity. Spectral feature sebectilso provides a framework for
supervised and unsupervised feature selection [177]. Veless label information is
available, the similarity matrix can be directly formedrrdabel information. The fol-
lowing function is usually used for constructing a simitanmatrix S in a supervised
way [196]:
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1 ifyy=vy;=c,
sj = 4 Y’ (2.19)
0 otherwise

We obtain the supervised Laplacian score ofrfideature denote8upLaplaciahfrom
equatio 2,15 by using the similarity matrix defined by eoprd.19.

Moreover, the relationship between supervised LaplaamFésher score can be formu-

lated as follows: 1

1+ Fisher
whereFisher is the Fisher score defined by equafion 2.18.

SupLaplaciah= (2.20)

Recently, Dornaika and Bosaghzadeh propose another ssg@baplacian score based
on locality discrimination/ [215]. Two undirected weightgthphsG,, andGy are con-
structed. The grapB,, reflects the within-class relationship, i.e., it encodespgairwise
similarity and relation associated with samples havingsdnae label. The grapB, re-
flects the between-class or global similarity relationshipncodes the pairwise similar-
ity and relation among heterogeneous samples. The gaplasdGy, are characterized
by the weight matrice®V,, andW,, respectively. In this case, the supervised Laplacian
score of the'" feature, denoteBupLaplaciab, is given by:

Sa3joa(f = )2 Mb)ii 7 Lef!
SRS (= f)2Wa)ij 7 Lyf"

whereL, andL,y are the Laplacian matrices of the graghsandGy, respectively.

SupLaplaciah =

(2.21)

Supervised sparsity score Liu et al. extend the unsupervised sparsity score to su-
pervised context by utilizing the class label informatid®T]. Let f® denotes theth
feature ofit" intance in class, éﬁ is the element of sparse similarity mat@k which is
constructed within the class €° is aN-dimensional vector witle®(i) = 1, if I; belongs

to the class and 0 otherwise. The proposed supervised sparsity scone of'tfeature,
denotedSupSparse which should be minimized, is defined as follows:

Sea¥ica(f -3 9% 587 (1 - Se— ST+ SSDF
Seavie(fe—pe)2 (-3 e )
(2.22)
After calculating the score for each feature, they are darethe ascending order of
SupSparseto select the relevant ones. In the classification experispé&iu et al. have
demonstrated that this score outperforms other methodsost nases, especially for
multi-class problems [197].

SupSparse=
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2.3.1.3 Semi-supervised feature selection

In reality, the full class label is often difficult to obtaiim semi-supervised learning, a dataset
of N color texture imageX consists of two subsets depending on the label availabXity =
{Xi+1, X142, .- Xi +u} yz0, Which are unlabeled and, = {x1,X2,...,X| }i0 for which the labels
YL = {Yy1,¥2,....yi} are provided andN = | + u. On the other hand, there is another semi-
supervised information such as pairwise constraints. &im@jse constraints specify whether a
pair of two images belong to the same class (must-link camgs) or different classes (cannot-
link constraints). The set of must-link constrairik§)(and the set of cannot-link constraing (

of the dataseX are defined as follows in [180]:

« M= {(x,xj) | xi andx; belong to the same class
« C={(xi,xj) | xiandx; belong to different classés

Semi-supervised feature selection methods based on paioenstraints use both pairwise
constraints described in Section]2.2 to evaluate the netevaf features according to their con-
straint and locality preserving the local data structureo GraphsG™ andG® are constructed
by using the instances 6fl and € respectively. If two nodes are must-link (or cannot-link),
an edge is created in the gra@ii' (or G®). The similarity matrix ofG* andG° is defined as
follows:

1 if (x,Xij)eM

= (4 '_) (2.23)
0 otherwise
1 if (xi,xj) €C

g = (i ‘_> (2.24)
0 otherwise

Two constraint scores are proposed including constragrest(CS; ) and constraint score-
2 (CS) by Zhang et all[180]. The constraint scores of tHefeature denote€@S, andCS,
which should be minimized, are calculated as follows [180]:

Z(Xi,Xj)EM(fir - fjr)z . frTLMfr

ce = - 2.25

Si Z(Xi,Xj)Ge(fir - fll’)Z frTLefr ( )

CH= § (FF—2-r Y (- 2= LM —AfLEF (2.26)
(xixj)eM (xi.xj)el

whereA is a parameter to balance the two termsin 2.26.

Kalakech et al. propose another semi-supervised scordwwbgs both pairwise constraints
and the local properties of the unlabeled datal[181), 1403. Jdplacian and Fisher scores have
also been extended in the semi-supervised learning comt¢X16]. More recently, Liu and
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Zhang propose a pairwise constraint-guided sparse lepnm@thod for feature selection, where
the must-link and the cannot-link constraints are used swidiinative regularization terms
that directly concentrate on the local discriminative stuve of datal[217]. A comprehensive
survey of feature selection methods in the semi-supengsetext is introduced by Sheikhpour
et al [183].

The filter methods based on scores are introduced. The fiolgpgection presents the two
well-known algorithms Relief and Simba for features ragkivhich are principally based on
the largest margin concept.

2.3.2 Ranking based on weighting algorithms

Largest margin concept is very important in the statisfedtern recognition, because it mea-
sures confidence of a classifier with respect to its predistiolhere are two approaches of
describing a margin [218]:

* The sample-marginmeasures the distance between an instance and a decisiahebpu
induced by the classifier. For example Support Vector Mah[a 18] is a classification
algorithm that represents the images as points in spacepedagp that the images of
different classes are divided by a clear gap (sample-mpgtiggh is as wide as possible.

» The hypothesis-margin Let X = [x4,...,X;,...,.Xn] be a training data set wherg =
(xt,..x2,...x7)T is theit" representation of an image that containgeatures ang its
related label.

The concepts ofiearhitandnearmisswere used in general before the notion of margin.
nearhitor NH(x;) of an imagex; is the nearest image tq having the same label and
the nearmissor NM(x;) of an imagex; is nearest image tg having a different label.
Figure[2.10 illustrated the NH and NM concepts.

Instance x

nearmiss(x) ,D\ nearhit(x)
/”

~
Ss
~~
~

.’ . .

Figure 2.10: lllustration of theearhitandnearmissconcepts.
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Hypothesis margin of; denoted byp; is calculated as the difference between the distance
to its NM(x;) and the distance to itdH(x;). When multiple images have large margin,
they can move considerably in the feature space withouiratéhe labeling structure of
the data set. Hence, a large margin insures high confidenea willassifier is making

its decision. Moreover, a feature’s contribution to the mazation of hypothesis margin
reflects its ability to discriminate the data into differetdasses.

Recently, various feature selection algorithms have beeeldped under the large margin
principles including SVM-based feature selection and &dtimily (1-NN based) algorithms.
The feature selection methods based on sample-margin rgfeddmputational cost for a high-
dimensional data sets [219]. So, we focus on feature seteatgorithms developed under the
hypothesis margin concept. Two most discussed hypothesigimmethods are the Relief
algorithm [220] and Simba algorithm [221] that will be prassd in the following. Given a
distance functiorl.||, a marginp; of x; is computed as:

pi = [1xi = NM(xi)[| = [Ixi = NH ()| (2.27)

Similarly the margin over the datasétis computed as:

N
p=73n (2.28)
i=1

One natural idea is to scale each feature by a non-negatoterwe to obtain a weighted
feature space such that a margin-based function in thicadlteature space is maximized.

i (W) = [|xi —NM(xi)lly, — [Ixi = NH(xi)l,y (2.29)
Thus the weighted margin over the datases computed as
N
pw) = 3 pi(w) (2.30)

2.3.2.1 Relief algorithm

The Relief algorithm is based on a measure of relevance df gsature by maximizing a
margin-based objective function [220]. If we specify thstdince function.|| by L1-norm (or
Manhattan distance), we obtain the well-known Relief athan. The hypothesis margin of an
instance; is defined as:

pi = [1xi = NM(xi)[l; — [[xi — NH(xi) | (2.31)
where L1-norm is defined as:

67



2.3. Ranking-based approaches

D
Izlly =Y 12 = |2+ ..+ 2]+ 27 (2.32)
r=1
The hypothesis margin over the whole dataset computed as:

N
p=73n (2.33)
i=1

The weighted margin of an instanggis defined as:

pi(W) = [[xi = NM(xi)|l, — [Ixi — NH(xi) (2.34)

lw w

where,
D
= wazf\ =W+ . WL+ WP P (2.35)
i=
The weighted margin over the whole data¥as computed as
N
p(w) =S pi(w) (2.36)
2

The objective is to find a weighted vector which maximizes the evaluation function defined
as the weighted hypothesis margin. If we consider the foligmotation:

[ —NM(x)] [ —NH(x)| Mm?
M= - =1 .. (2.37)
X —NM(x")] X" = NH()| M?
The evaluation function related to the weighted margin efithagex; becomes:
pi(w)=w'M =wMl+ WM+ . +wPMP (2.38)
The gradient of the evaluation function is given by:
api(w) - ow'M T
W ow =M (2.39)
And the updating equation is:
api(w)
W%ewz old T ﬁ (2.40)

The basic Relief algorithm is given by algorithm 1. The metihandomly select images
from the training set and updates the relevance of eachréebised on the difference between
the selected image and the two nearest instances of the sadédfarent classes. The expected
weight is large for relevant features and small for irrefev@anes under some assumptions.

The output is a weight vector, with a weight corresponding of thet" feature. This
vector is a ranking list of the features. The threshold valwan be defined by user to select
the most discriminant features. Moreover, Kira et al pr@gboa relevancy thresholdto get
a subset selection algorithm by a a statistical mechanisiohwénsures the probability that a
given irrelevant feature will be chosen is small [220].
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Algorithm 1 Relief algorithm

1. Initialize the weight vector to zenw = (0,0, ...,0
2. Fort=1,..T
(a) Pick randomly an instancefrom X
(b) FindNH(x) andNM(x)
(c) Forr=1,...,D, calculate
A" = X' = NM(X')| — [X" = NH(X)|

W =w +A'
End For

End For

3. The chosen feature setfisw' > 17} wherert is a fixed threshold

2.3.2.2 Simba algorithm

Simba algorithm is an iterative algorithm proposed by Gsthrach et al. [221]. If we spec-
ify the distance functiorj.| by I, norm (or Euclidean distance) like the one used in Simba
algorithm, we obtain the following margin of an instange

pr = 51— NMX) |~ [~ NHO ) 241)

D
Izl = 4| > 22 (2.42)
r=1

The margin based on Euclidean distance over the whole dataseomputed as:

where thd, norm is defined as

N N
p= i;Pi = i;%(HXi —NM(xi)ll; = [[xi = NH(xi)ll) (2.43)

The weighted margin of an imaggis computed as:

1) = 3(Ib5 —NMOK) [~ [ — NHO6) ) (2.44)
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D
2l = | > w2z (2.45)
r=1

The gradient of the evaluation function is given by:

where,

Op(W) _ LT(q-NMO))? (4 -NH(H))?
e R = (2.46)
And the updating equation is:
_ LI-NM())2  (X-NH(X))?
Whow=Wota + 5 | GG, — oo, | W (247)

The difference of distances between samples and their stezgighbors are weighted by
coefficients linked to the quality of features. Those wesghate found by maximizing the
margin. Simba algorithm embeds stochastic gradient ascenthe Relief algorithm that is
slightly modified. The Simba algorithm for feature seleetis given by algorithm 2.

Algorithm 2 Simba Algorithm

1. Initializew = (1,1, ...,])
2. Fort=1..T

(a) Pick randomly an instancefrom X
(b) CalculateNM(x) andNH(x) with respect toX\ {x}and the weight vectawr

(c) Forr =1,...,D calculate

1 ((ENMETZ  (f - NH())2
A =3 (B — S ) w

W =w +A'
End For

End For

3. W ﬁ wherew? = (W2, ... w2, ...wP%) and|[w2||, = maxwt?, ... w2, wP?)

The major advantage of Simba compared to Relief is that @eduates the margin with
respect to the updated weight vector. The computationaptaxity of Simba isO(TDN),
whereT is the number of iterationd) the number of features amdithe size of the datast.
The numerical experiments show that Simba outperformeR220].

The feature selection based on ranking approaches by the somputation and by the
algorithm based on hypothesis margin are introduced. Th@simg section presents the ex-
ploitation of feature selection methods applied to LBPdobfeatures.
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2.4 Feature selection applied to LBP

We classify the LBP-features dimensionality reductiorhntegues into two strategies: (1) the
first one is to reduce the feature length based on some rultge @redefinition of patterns
of interest (like uniform patterns) and (2) the second onaats feature selection methods
to identify the discriminative patterns with similar maitions as the beam search LBP vari-
ants [7]. The latter has a better performance but usuallyires| an off-line training. In this
work, we are interesting to the learning discriminative Li8Rtures based on feature selection
approaches (see section 2.4.1).

Moreover, we take an interesting in a different approactppsed by Porebski, which se-
lects the most discriminant whole LBP histograms (seese@i4.2). This section thus briefly
reviews several methods related to the LBP bin selectionldf histogram selection ap-
proaches.

2.4.1 LBP bin selection

Smith and Windeatt apply the Fast Correlation-Based HilgefFCBF) algorithm|[184] to se-

lect the LBP patterns that are the most correlated to thetatgss|[222]. FCBF is a feature
selection method which starts with the full set of featutesgs Symmetrical Uncertainty (SU)
to calculate dependences of features and finds the bestt sidirsg backward selection tech-
nique with sequential search strategy. It has an insidgstgriterion that makes it stop when
there are no features left to eliminate. In the FCBF methot the vector of data labels and
f" is the vector oft" feature value for all data. Let( ) be the prior probability for all values

of f*. The entropy of" is:

N
- ; p(fi)log2(p(ff)) (2.48)

and the entropy off knowing the class label¥ is defined as:

N
E(f']Y) = Z p(Ye) le(ff\yc)logz(p(fir\yc)) (2.49)
wherep(f/|yc) is the posterior probability of given the class label'. Symmetrical Uncer-

tainty (SU) is calculated as follows:

EfT)—E(f'|Y)
EFT)+E(Y)

SU(f']Y) =2 (2.50)

Based on th&U value and a threshold value defined by user, FCBF operateplegatedly
choosing the feature that is the most correlated with thesckxcluding those features already
chosen, and rejecting any features that are more correlatked than with the class. In [222],
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they split the image into multi blocks and then extract LBRt@ees with different radii. The
final histogram with 107000 features is reduced to 120 byguSDBF.

Lahdenoja et al. define a discrimination concept of symnfetryniform patterns to reduce
the feature dimensionality [223]. The level of symme$rpf a LBP code is defined as the
minimum of the sums of each individual binary element in thattern and its complement

which is defined as:
P-1  P-

S =min{ % bi, . 15i} (2.51)

whereby is theith bit of the LBP code and; is its complement. For example, for patterns
00111111 and 00011000, the level of symmé&tgquals to 2. The patterns with a higher level
of symmetry are shown to have more discriminative power.

Maturana et al. use heuristic algorithm to select the naghlised in the computation
of LBP [224]. Within a square neighborhood given byRathere arg2R + 1)? — 1 possible
neighbors. They thus propose to select among #ie+ 1)? — 1 neighbors the subspace Bf
neighbors which maximizes the Fisher-like class sepatgbiiterion.

Liao et al. introduce Dominant Local Binary patterns (DLBM)ich consider the most
frequently occurred patterns in a texture image [88]. To pota the DLBP feature vectors
from an input image, the pattern histogram which considétsepatterns in the input image is
constructed and the histogram bins are sorted in descendieg The occurrence frequencies
corresponding to the most frequently occurred patterngeniiput image are served as the
feature vectors.

Guo et al. propose a Fisher Separation Criterion (FSC) to k& most reliable and robust
patterns by using intra-class and inter-class distands The most reliable patterns for each
class are determined, and then merged to form the globalrdornset. This model is general-
ized and can be integrated with existing LBP variants sudtB#s uniform, rotation-invariant
patterns or LTP.

It is worth to note that there exist another approach fonmitggicompact and discriminative
LBP-based feature vectors consist of applying subspackadetfor learning and projecting
the LBP features from the original high-dimensional spate & lower dimensional space. For
example, a first approach proposed by Chan et al. uses lirgaimainant analysis to project
high-dimensional color LBP bins into a discriminant spab@d]. Banerji et al. apply PCA to
reduce the feature dimensionality of the concatenating fdaRures extracted from different
color spaces. Zhao et al. compare different dimensionadyction methods on LBP features,
e.g. PCA, kernel PCA and Laplacian PCA [225]. Hussain et gblagt the complementarity
of three sets of features, namely, HOG, LBP, and LTP, andiepplartial least squares for
improving their visual object detection approach/[91]. Naand Lumini extract the LBP
uniform from the multi blocks of facial image. The concatetbfeature vector constructed
is adopted by Sequential Forward Floating Selection (SE&SElect the discriminant LBP
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feature[226].

2.4.2 LBP histogram selection

Porebski et al. firstly proposed an approach which seleetsribst discriminant whole LBP
histograms|[139]. In this approach, the most discrimind®Lhistograms are selected in their
entirety, out of the different LBP histograms extractedrira color texture. It fundamentally
differs from all the previous approaches which select tins bf the LBP histograms or project
them into a discriminant space.

Histogram selection approaches can be grouped in three: Viittgss, wrappers and hy-
brid. The latter combines the reduction of processing tifna filter approach and the high
performances of a wrapper approach. Filter approachesstamgomputing a score for each
histogram in order to measure its efficiency. Then, the bistms are ranked according to the
proposed score. In wrapper approaches, histograms aree@lthanks to a specific classifier
and the selected ones are those which maximize the classificate. The next section reviews
three scores proposed in the literature and one is our botitn.

2.4.2.1 Intra-Class Similarity score

We first extend the notation that is introduced in sediiohe?@ sectioh 2.412 to histogram. In
the considered LBP histogram selection context, the datatlsacomposed dfl color texture
images. Each imag, i € {1,...,N} is characterized by histogramgd = 9) in a single 3D
color space. LeH" is ther!" histograms to evaluate. The data is summarized by the matrix
H" is defined as:

Hi(1) HI (1) HL (1)
A" = [HLHIHY | = H{"(.k) H{.(L) H,(l.(.l;) (2.52)
| Hi(Q) H (Q) HU(Q).

where,Q = 2” being the quantization levelH! (k) represents the values of th&' bin,
ke {1,...Q}, of theit" image histogram amorig color images.

The Intra-Class Similarity score (ICS-score), proposedPbyebski et al., is based on an
intra-class similarity measure. Lbt be the corresponding normalized histogv@m‘ the rth
histogramH'. H{ andH| are therth histograms that characterize respectively two training

2To normalize the histogram, the number of counts in each $idiiided by the total count, so that the
normalized values sum to 1 across all bins.
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imagesl; andlj. In order to evaluate the similarity between two images ohme class,
Porebski et al. utilize the histogram intersection:

Dint (H] ,H z min(h{ (k k)) (2.53)

The following measur&IM is then considered to determine the intra-class similafity
texture clas€:

2 Ne—1 N o

whereN; is the number of images belonging to the clasBorebski et al. suppose that the
higher the measurgl M, of intra-class similarity is, the more relevant the histogH' is.

The scoreS¢ of the histograrH', which includes all intra-class similarities, is finally
defined as follows:

1 C
Scs= EC;SM’ (2.55)

whereC is the number of considered class8g.s ranges from 0 to 1. The most discriminant
histogram maximizes the scofg.q.

2.4.2.2 Adapted Supervised Laplacian score

Inspired by the approach proposed by Porebski, Kalakech @rapose to Adapt the Super-
vised Laplacian (ASL) score used in the literature for featanking and selection, to select
and rank histograms in the supervised context [9]. The A8iresevaluates the relevance of
a histogram using the local properties of the image data. bEse idea is to assume that the
input histogram pairwise similarity measures in the orgjinistogram space are preserved in
the relevant histogram subspace. So, similar images wittesdass labels have to be close
when they are represented by one relevant histogram.

For this score, the considered distance measure betweehistegrams is the Jeffrey di-
vergence, which is defined as follows:

Dyef(H] H S 4] H (k) S 7er(k)
sef(H{, Z )log +], zH k)log GEEHG (2.56)

2

The value of the Jeffrey divergence between two histograrma when their correspond-
ing images are similar to each other.
Using this measure, the ASL-score of the histogtdinis then defined as follows:
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ZiNzlzn'\lleJef(Hir,HE)Sj
SN 1 Dyes(Hf,H)d

ShsL= (2.57)

where:

N is the total number of images,

sj is an element of the similarity matri& In a supervised context, for each imdgea
class labey; is associated. The similarity between two imafesdl; is defined by:

1 ifyi=y;j,
sj = H=Ji (2.58)
0 otherwise
* d; is the degree of the imadge:
N
di= z Sij, (2.59)

H' is the histogram weighted average:

H = Z|N:1 H{'d;

2.60
Shd (269

The histograms are sorted according to the ascending ofdbe ASL-score in order to
select the most relevant ones.

Given a database of texture images belonging @classes. Under this representation, we
reformulate the ASL-score in equation 2.57 as follows:

Se1 Zi'\,ljcleJef(HirC’ H)s
DI Daer(H[S,H " )de

SisL= (2.61)
where:

« N is the number of images of th#' class,

* §° =g is the similarity matrix within the class defined by equatidn 2.68. In this case,
S°is an all-ones matrix and the matrix diagof¥l= d¢ = 1 is an identity matrix.

« H'¢ is the histogram weighted average of the class
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2.4.2.3 Sparse representation for histogram selection

Kalakech et al. introduced a histogram selection scoregdddapted Supervised Laplacian
score” (ASL-score) based on Jeffrey distance and a sityilaatrix [9]. This matrix is deduced
from the class labels. It is a hard value which is 0 or 1. In fi@stion, we propose to extend
the ASL-score by using sparse representation to build asguoftarity matrix that takes values
between 0 and 1. Moreover, a value between 0 and 1 will medisarsimilarity in a subtle
way, instead of being binary with just two values 0 and 1. Thasy lead to more powerful
discriminating information. Instead of using the value 10pmwe proposed to construct the
sparse similarity matrix based on the sparse representalins leads to our fist contribution
is the proposition the novel histogram score, namely Spadspt the Supervised Laplacian
(SpASL).

The sparse representationtdf is constructed by using a few entries#" as possible. It
is defined as follows:

rr;ianHl, st. |H —s#'s|, <& 1=1Ts, (2.62)
where:
* ||.||; is thel;-norm of a vector

* |l.|l, denoted,-norm of a vector.

« 5 is anN-dimensional vector in which thi&" element is equal to zero implying thif
is removed fromz#". It is defined as:

§ = [S18i(i-2), 0.8 (i), SN (2.63)

« 1 RN is a vector of all ones.

» & represents the error tolerance

For each histograril{, we can compute the similarity vectgr and then get the sparse
similarity matrix:
S=[8,%,...5]", (2.64)

where§ is the optimal solution of equatiof (2]62). The mat8ixietermines both graph ad-
jacency structure and sparse similarity matrix simultarsgo Note that, the sparse similarity
matrix is generally asymmetric.

We propose to integrate the sparse similarity matrix olethihy equation 2.64 into the
equatio 2.61. For each class, we construct the sparsasigmihatrix S° using images within
the class by equation[(2.64), the SpASL-score is defined as follows:
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Nc
Se Yi§—1Dsef(H{", H )&
5SS 1368 Due(HIS,H)de

S5pasL= (2.65)

The histogram selection consists to compute for each histogl" an associate@§ s
score and rank these scores in ascending order.

It is interesting to note that the sparse similarity matra de constructed by using all
histogram globally. In this case, the class label does roatrporate to the construction and we
are in the case of unsupervised learning.

2.4.2.4 Adapted version of the margin-based iterative seah algorithm

More recently, Moujahid et al. propose an adapted versighemargin-based iterative search
algorithm (that so called Simba-2) where the resulting Weigector is used for a selection of

histograms in the application of face recognition [227]eTasulting weight vector of Simba-2

is used for a selection of histograms in the supervised gante

Instead of using the weighted Euclidean distance to comfhéeweight distance, the
Simba-2 algorithm usg? distance to identify dissimilarities between histograri$is dis-
tance is also used for calculatingarmis$x), nearhit(x).

Given two images; andl; which are characterized by two histograkfisandH’, respec-
tively and each vector is composed @ybins. The histogram-weightexf distance between
these two vectors defined as:

(2.66)

The adapted version of the Simba algorithm basegdistance is given by algorithm 3

77



2.4. Feature selection applied to LBP

Algorithm 3 The adapted version of Simbe distance (Simba-2)

1. initializew = (1,1,...,2
2. Fort=1,...T do

(a) Pick randomly an imagecharacterized by a vectarfrom X

(b) Calculatenearmis$x) andnearhit(x) with respect toX\ {x}and the weight vector
w

(c) Forr =1,...,0 calculate

A" = 3 [Dye(H NM(H)) — Dya(H NH(H)|
End for
(dw=w+A

End for

3. W ﬁ wherem? = (W2, ...w2, ...w0%) and|[w2||, = maxwt?, ... w2, s

)

The incremeni\" inside the Simba algorithm also changes, since it is basékeomypoth-
esis margin which depends on the distance. The resulting&weight vector has a size equal
with d histogram. The histograms are sorted according to the ddsweorder of the weight
elements in order to select the most relevant ones.

2.4.2.5 Histogram selection procedure

According to the feature evaluation, the histogram sedaatan be achieved by filter, wrapper
or hybrid methods (see section 2]1.2). An hybrid histograteciion approach which requires
the learning stage. During this stage, candidate histogieamgenerated from training images
and ranked thanks to a score which measures the efficiencgcbf @ndidate histogram in-
dependently. Then, the performance of the differBatlimensional histogram subspace are
measured by the classification accuracy reached by the mltesssifier in order to select the
most discriminating histogram subspace. The selected totture subspace is the one which
maximizes the rate of well-classified testing images.
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2.5 Conclusion

In this chapter we reviewed the literature of feature saacas a dimensionality reduction
tool. A brief introduction of the feature selection taxonois presented. We first introduce the
different step of feature selection. Then, we discussedéature selection strategies which are
based on the evaluation (i.e., filters, wrappers and hybeithods) and based on the availability
of class label lead to consider different learning context,(supervised, unsupervised and
semi-supervised).

The data and knowledge representation have been preserdegraph data representa-
tion, especially the sparse similarity graph as well. Nesd,provided several feature ranking
methods in different learning contexts which are focus @tuiee selection based on the score
computing and based on algorithms. We organized the congvacview for of the feature
selection methods applied in LBP-based features by priesenitiefly the LBP histogram bin
selection and LBP histogram selection. We also introducgoaposed SpASL-score for his-
togram ranking.

Furthermore, there exists various color spaces and itfisulifto determine which one give
the best performance for color texture classification. Vdg@pse a method to extract the color
LBP-features on different color spaces in the following.eTiext chapter is mainly based on
the LBP-based feature selection methods in the framewonkudti color space.
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3.1. Introduction

3.1 Introduction

Several extensions of LBP to color have been proposed sip@2 228]. In order to take
advantage of all the color texture information containedhi& image, the LBP descriptor is
applied on each color component independently and som&tionepairs of color components
conjointly. It leads to a high dimensional feature vectoraguired to represent a texture.
Moreover, we know that there exist numerous color spacestatdhe color space choice
impacts the classification accuracy [138]. Each color spaaes into account specific physical,
physiologic and psycho-visual properties but none is weited to the discrimination of all
texture databases [139]. The selection of the most discatimg color space has been an open
guestion in recent years [126, 137]. Instead of using oner@pace, the multi color space
approaches have emerged in the last few years [229, 23018314,/ 102]. These approaches
allow, on the one hand, to avoid the difficulty of choosing levant color space and, on the
other hand, to take advantage of the specific propertiesvefalecolor spaces by combining
them.

In this work, we propose to study the advantages and the @welsglof the LBP histogram
selection and the LBP bin selection presented in chapter?.fi3t contribution consists in
extending to color the bin selection approach proposed by &w@l. [10] and the bin ranking
by sparsity score [197]. These approaches are then compdttethe whole LBP histogram
selection approach proposed by Porebski [8]. The secogadality is founded on the current
development of multi color space approaches. As there ida wange of color spaces with
different properties, we have proposed an approach whieb tne properties of several color
spaces simultaneously. In this approach, images are fidgtdcim different color spaces, then
color texture features are extracted from these so codedest represent the texture. It
actually seems interesting to compare the strategies oftiBtBgram selection and LBP bin
selection in a multi color space framework. Two first apphascare thus proposed and com-
pared in this work, a Multi Color Space Histogram Selecti®iCSHS) approach and a Multi
Color Space Bin Selection (MCSBS) approach.

In addition, we propose to improve the histogram selecti@thmd that selects a whole
LBP histogram. Indeed it is clear that not all bins of the sigd histograms are meaningful for
modeling the characteristics of textures. As it selectsniost discriminating histogram and
filter out the rest, we think that it might have some reduntharg in the selected histograms and
a loss of some meaningful bins of the discarded histogratms.l&ads to our third contribution
that performs a combination of bin and histogram selection.

The rest of this chapter is organized as follows. In sedfi@)8e present the color space
combination approach. Then, we present the multi coloresph&P selection in sectidn_3.3.
Section 3.4 presents the proposed MCSHS approach. We iedtie MCSBS approach in
section[3.b. Next, we present novel strategies that comifiimend histogram selection in
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section 3.6. At the end of each proposition, we present teerfisults obtained on the New
BarkTex benchmark database. Finally, we summarize our.work

3.2 Color space combination

Usually, color images are acquired by devices that code elescin theRGB color space.
However, there are many other color spaces with differeetifip properties presented in sec-
tion[1.1.1 and it is known that the classification perfornemdepend on the choice of the color
spaces in which a classifier operates [139]. That is why naoseauthors propose to use other
color spaces to discriminate the textures as better ashpesstable Al in the appendix] A
presents the different color texture classification apghmea that have been proposed in the lit-
erature. The analysis of this table confirms the relevancemsidering other color spaces than
the acquisition space since many other color spaces hawveused in these studies to improve
the classification results. However, the prior determaratif a color space which is well-suited
to a specific classification problem is not easy. In order terdeine this space, many authors
propose to apply their classification approach in diffei@ior spaces singly considered and
compare the performances reached in each of these spat®sirfg a single color space ap-
proach described in sectibn 32.1. In color image analgsisther strategy has emerged: it
consists in simultaneously exploiting the properties eksal color spaces. This multi color
space approach is presented in sedfion 83.2.2.

3.2.1 Single color space approach

Many authors have lead studies about color space for diffexeplications: machine vision,
face recognition, texture analysis, etc. In the framewdrkador texture classification, they
try to determine the “best” color space in order to improve plerformances of the proposed
classification approach. For this purpose, the classifiapdied to images whose colors are
coded in different color spaces which are singly considaratithe performances reached with
each of them are compared. This single color space appradebts the color space that
provides the best classification accuracy.

Table[3.1 focuses on some studies that appear in[table A.taandd out on the BarkTex
and OuTex-13 databases. Since the OuTex-13 database hasidezkrepeatedly for color
texture classification in the literature while the New BagkTs recently proposed to overcome
the limit of OuTex-13 and BarkTex (more details are presgesection 1.2}4), we select
these databases for this study. This table shows the maabkucolor space among several
different color spaces compared for the classification etéxture on these two databases. The
first column of this table indicates the reference of the wtuidh the color texture descriptor
used by the authors. The second column states which imagba$& was used. The third
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column enumerates the compared color spaces whereas ttlhadagives the color space that
provides the best classification accuracy. The synthesihesfe experimental comparisons
does not allow to conclude on the definition of a single copace which is well-suited to the
discrimination of all texture databases, whatever the idensd texture features. For example,
the work of Sandid et al. reveals that the choice of the bdst gpace depends on the used
image database, and hence the considered application T6&ly used the same method and
the same features to classify the color textures of the Barlahd OuTex-13 databases, and
showed that the best results were obtained using diffel@nt spaces for each of these two
databases. Similarly, the synthesis of the works of Cus@asanova and Cernadas show
that the color space that yields the best results may bereliffelepending on which features
are used [152, 114, 132]. This confirms that the best colocespapends on the considered
application and approach [139]

Table 3.1: Studies about color space comparison for cleagdn.

Color Descriptor Database Color Space used Best space
3D histogram [56] OuTex-13 RGRB I41l2l3 RGB
3D histogram [13] OuTex-13 RGB, HSVI4l»l3, L*a*b* HSV
Cooccurrence matrix

OuTex-13 RGB, HSV, Y&, HSV
and Haralick features [41]
Wavelet features [54] OuTex-13 HSV, 111513 HSV
Morphological covariance

OuTex-13 RGB, YUV, L*a*b* L*a*b*
[232]
Local triplet patterns [125] OuTex-13 RGB, YGC, Y GG
Textons feature [127] OuTex-13 HSI, HSV HSV
Intensity-Color Contrast_[152] OuTex-13 RGB, HSV, L*a*b*, il2l3 HSV

Parametric stochastic
OuTex-13 RGB, I-HLS, L*a*b*, hl,l3 L*a*b*
models [126]

Continued on next page . ..
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Table 3.1: Studies about color space comparison for cleas8dn continued...

Color Descriptor Database Color Space used Best space
RGB, XYZ, UVW, HSV, LUV
ACICz, burgby, YG,Cr,
L*Cuvhun, Y'I'Q’, L*a*b*
Y'U'V' HSI, HLS, L*u*v*,
Reduced Size
larg, Yy LChiChyp, 11SH;,
Chromatic Co-occurrence OuTex-13 HLS
) ACClCZhC1C2, b\/\/Cr(_:lbyhrgby,
Matrices [139]
LCcrcrehchicre, 11S1Hs,
I—*Cabhab, L*Suwhuv,
Y'Cighiq: Y'Chvhuy
11Ci23h1213
OuTex-13 RGB
EOCLBP [8, 9] RGB, HSV, YUM1l5l3
New BarkTex RGB
Multi-model distance [134] OuTex-13 RGB, HSYL*a*b* L*a*b*
RGB, HSV, YUM1l>l3,
_ YCbCr,
Soft color descriptors [131] | OuTex-13 HSV
L*a*b*, Y1Q,
L*u*v*, XY Z
RGB, HSV, I-HLSL*a*b*,
Fractal [114] OuTex-13 RGB
l1l2l3
Intensity texture [132] OuTex-13 RGB, L¥a*b* , HSV, I112l3 L*a*b*
Gabor features [12] BarkTex RGB, HSL HSL
3D histogram [36] BarkTex RGB, L*u*v* L*u*v*

Continued on next page . ..
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Table 3.1: Studies about color space comparison for cleas8dn continued...

LCcricrehcrache, 11S1Hs,
I—*Cabhab,
L* SJvhuv, LC hlC hz

Color Descriptor Database Color Space used Best space

RGB, XYZ, xyz, Irg, Y'I'Q’
Haralick from color Y'U'V', r'b*b* , L*a*b*,
co-occurrence BarkTex L*u*Vv*, 11513, Re G B, L*a"b*
matrices [136] ACCy, ReGEBEg, ReGcBc,

bt gby
Three-dimensional OuTex-13 RGB, XYZ, UVW, HSV, LUV, | HSV
adaptive sum New BarkTex| ACiCo, burgby, Y GC;,
and difference L*Cuvhu, Y'T'Q’, Y'U'V' | 110,
histograms [66] HSI, HLS, L*u*v* Yxy,

11SH1, ACcic2heice,

RGB

In addition, the single color space approach has also begredpy various authors on
specific industrial applications in order to find out the leedor space. For example, the con-
trol and the classification of the wood surface is improveapylying the defect detection and
classification approaches in different color spaces [238, 235]. On the other hand, Bianconi
et al. compare of the performances of automated classdicati natural stone in different

color spaces [236, 237].

A wide range of color spaces exists, all with different pnbjes and it is difficult to de-
terminea priori the best color space in developing a successful applicatiamolor texture
classification. For this reason, an alternative approaehl tiee properties of several different
color spaces simultaneously. This multi color space ambraapresented in the next section.
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3.2.2 Multi color space approach

Instead of searching the best color space for color imaglysiearecent works propose to
combine different color spaces in order to improve the perémces reached by classification
schemes. These works can be categorized into three maiegsést

» Color space fusion this strategy involves fusing the results from severasileers, each
one operating in a different color space;

» Color space selectionthis strategy involves selecting the most well suited cefmces
which are based on some specific criterion;

» Color texture feature selection this strategy involves evaluating the texture features
over different color spaces and selecting the featureptioaide the best discrimination
between the different textures classed by using a supdrfesg¢ure selection approach;

The following explains in detail theses strategies.

3.2.2.1 Color space fusion

In these approaches, the color texture features are egdliraseveral color spaces and a clas-
sification scheme is performed in each of these differentespandependently such as each
classifier operates in a specific color space. Thus, for eadhre to be classified, several de-
cisions coming from different classifiers are availablee Tihal labeling is obtained thanks to
a fusion rule of these decisions.

For texture classification, Chindaro et al. propose a cglacs fusion scheme by consid-
ering six color spaces [230, 238]. Each color space is usedigpendently designlanearest
neighbor k-NN) classier during a learning scheme. The output of eacheixk-NN clas-
sifiers are combined thanks to a fusion rule in order to mag&el#cision. A similar approach
is proposed by Charrier et al. for microscopic color imaggnsentation by pixel classifica-
tion [239]. The first step of the proposed method is to clggsikels with five independent
Support Vector Machine (SVM) classifiers, each of them ajpagan different color spaces.
The second step is to categorize pixels in coherent pixelEnwail the classifiers select the
same class or incoherent pixels when at least one classitiguidiffers from the others. Only
incoherent pixels are processed through a fusion methodl¢éatstheir final class. The final
segmentation result is obtained from the union of the twelmserts. Mignotte proposes a seg-
mentation approach based on a fusion procedure which aicosrdtining several segmentation
maps[240]. The segmentation maps to be fused are given liyrtteans clustering technique
applied to an input image coded in six different color spaces
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3.2.2.2 Color space selection

Another strategy consists in automatically selecting csp@ces among a set of available ones.

Busin et al. propose an approach that iteratively selectming 11 color spaces, those
which are well suited to automatically segment a color imbgepixel classification| [241].
This approach is extended by Vandenbroucke et al. with 2& eplaces in order to iteratively
identify pixel classes by taking into account both the po@br distributions in several color
spaces and their spatial arrangement in the image [18]. derdo overcome the difficult
problem of the color space choice, the algorithm selectstha space that is well suited to
construct the class, at each iteration step. An adaptiva splace switching strategy has been
developed by Stern et al. in order to perform face skin tragkrom video under varying
illumination [242]. For a given task, the idea is to dynanicaelect, among all conventional
color spaces, the best color space depending on the illtimineonditions. The authors apply
their adaptive color space switching algorithm to a humae fdetection and tracking system
based on the skin color and show that the performance ofdlkitrg is increased. A similar
automatic color space selection and switching approaclsaspaoposed by Laguzet et al. in
order to improve the performances of pedestrian visuakinad243, 244]. The automatically
and continuously selection of the color space is based ogdbd separability between the
target and its close background.

3.2.2.3 Color texture feature selection

Rather than selecting color spaces, another strategy isttmatically select color texture
features computed in several color spaces. In these ap@®abe pixel colors are transformed
into different color spaces and texture features are coegpiubm the so converted images. A
feature selection procedure selects the most discrinmgablor texture features for the texture
classification.

Vandenbroucke et al. propose a pixel classification algrithat analyzes the texture in
the neighborhood of a pixel, in different color spaces [245hong a multidimensional set of
first order statistic features evaluated for each color aomept, the most discriminating ones
are selected by means of an iterative feature selectioredure. Pixels are then classified in
the so-selected texture feature space for soccer imagessegton purposes. For texture clas-
sification, Porebski et al. propose an approach that salleetsost discriminating Haralick
features extracted from chromatic co-occurrence matoteslor images coded in 28 differ-
ent color spaces thanks to a sequential forward selectiB8)(Scheme _[46, 139]. A similar
approach is used by Cointault et al. with 23 color componfemta wheat ear counting system
based on color image segmentation [229]. Nanni et al. usdféBanht color spaces from which
a set of Gabor features is extracted [231]. For each colopoment, a Gabor feature vector is
first defined. The most relevant feature vectors are theotsel¢hanks to a sequential forward
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floating selection (SFFS) scheme. Several nearest neighidN) classifiers constructed with

each selected feature vector fusion are finally combinedderao authenticate ears for bio-
metric applications. Banerji et al. propose the Color LBRi&n descriptor for color texture

classification|[14]. This descriptor is firstly constructadconcatenating LBP descriptors ex-
tracted from six color spaces and then applied PCA to recheéetature dimensionality.

Table[3.2 synthesizes the studies about multi color spgu®aphes which are grouped into
the three strategies previously presented with the difteaused color spaces and descriptors.
It seems interesting to wonder which one could be the mostaet. However, there exists no
study that has compared the performances of these coloe sgagbination strategies and it
could be a great prospect to compare these strategies. Qkipnaposes here to use the color
texture feature selection to compare the approaches of Li#Bgnam selection and LBP bin
selection in a multi color space framework.

Table 3.2: Studies about multi color space approach.

Multi color _
Descriptors Color Space used

space approach

Markov random fields [230],
Independent component RGB, rgh, HSV, YIQYUV, L*a*b*

analysis [238]

RGB, XYZ, HSL, YUV
Denoeux’s model [239]
HSI, L*a*b*, Y GG
Color space

s Markov random field RGB, XYZ, HSI, YIQ, TSL*a*b*, L*u*v*,
usion

[246, 240] l1l213, HiHoH3, Y GGy

Color LBP Fusion [247],
Color Grayscale LBP Fusion,
RGB, rgh, oRGB, HSVY G,C;
Pyramid of Histograms of

Orientation Gradients [14]

Continued on next page ...
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Table 3.2: Studies about multi color space approach coadinu

Multi color

space approac

Descriptors

Color Space used

H-descriptor [248]

RGB, oRGB, HSV, YIQ

DCSYGG, l1l2l3

Color Gabor-LBP [52]

RGB, oRGB, HSV, YIPCS Y GC,

Histograms of oriented

gradients [249]

RGB, oRGB, HSYY G,C;

Markowitz model [250]

RGB, rgb, HSV, iHLS_*a*b*, Y G,C,

Color space

selection

Histogram multi

thresholding [251]

RGB, rgb, XYZ, xyz, YIQ, YUMprgby,

YCC2, L*a*b*, L*u*v*, |1|2|3

Multi Color Space

Segmentation [18]

RGB, rgh, XYZ, xyz, YIQ, YUV, Yxyr by,
ACC2, L*a*b*, L*u*v*, 111,13, YChChy,
l1rg, 11S1H1, 11SH2, 14S3H2,

I5S4H2, 16S5H1, L* Sjyhuv ACcacaheace,

b Crgbyhrgby, Y GohlQ, Y Gphap,

Y Guvhuy, L*Cophan, L™ Civhuy,

LCcracrehcrche, 11Cia3hi213

Switching model [252]

RGB, HSVY GG,

Switching color space

models [242]

RGB, rgb, HSI, YIQ, XYZ¥ GC;, L*a*b*,

L*u*v*, |1|2|3

Markov random field [253]

RGB, HSI, rgL*a*b*, L*u*v*

Continued on next page ...

90




CHAPTER 3. MULTI COLOR SPACE LBP-BASED FEATURES SELECTION

Table 3.2: Studies about multi color space approach coadinu

Multi color

space approac

Descriptors

Color Space used

Color space models based

on Mean-Shift [243, 244]

RGB, rgh, XYZ, HSI, YU\L*a*b*, Y G,C;,

l11213

Shadow eliminating

operator [254]

RGB, HSV, rgb XY G,C,, L*a*b,

C1CC3, l1l2l3

Gaussian low-pass

filter [255]

RGB, HSV, HSIL*a*b*, Y G,C

Color texture
feature

selection

Color pixels

classification [256]

RGB, rgb, ISH, XYZ, xyz, YIQ, YUAC,Cy,
11213, L*a*b®, L*u*v*, L5, Cih2y, LinCivhSy,

LivSivhiy

Haralick features [46],
Reduced Size Chromatic
Co-occurrence

Matrices [139]

RGB, YUV, YIQ, XYZ, xyz, Yxy, rgh, LUV
L*a*b*, L*u*v*, AC,Cy, I1rg 111213, burgby,
11S1H1, 11SH1, 1aS3H2, s&H2, 1151 Hs,
L*Svhuv: ACcicahcic2, buCrgoyhirgby:s

Y GghlQ, Y Gyvhyy, L*Ci hyy, L*C;hap,

[1Ci213h1213, LCuv huy

Morphological

information [229]

RGB, I’gb, HSI,_L*a*b*, |1|2|3, L*|V1 ,

Gabor Filters [231]

RGB, YUV, YIQ, HSV, HSL, XYZ, LCH
L*a*b*, L*u*v*, YGCr, Y RP, Y DyDr,

JPEG-YGC,

The next section details the color texture feature seledtionultiple color spaces.
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3.3 Multi color space LBP selection

3.3.1 Considered color spaces

In order to show the interest of the multi color space apgreador color texture classification,
Ns = 9 color spaces among the spaces have been presented imdetilbare considered for
experiments:

RGBandrgb, which belong to the primary space family,

Y G,Cr andbyrgby, which are luminance-chrominance spaces,

l1l2l3 , which is an independent color component space,

HSV, HSI, HLS andI-HLS, which belong to the perceptual space family.

We have chosen these nine color spaces since they do notereéqunow illumination and
image acquisition conditions, liKe"a*b* or L*u*v* for instance. They also allow a good repre-
sentation of the four different color space families, efenmajority of perceptual spaces have
been chosen because these spaces are known to obtain a@gsifibeltion accuracy [126, 139].

3.3.2 Candidate color texture descriptors

To compute the color LBP histograms or bins that are candidathe selection, each image is
first coded in each of thids = 9 color spaces previously introduced. Then, dhgx= 9 differ-
ent LBP histograms of EOCLBP descriptors described ineedil.4.B are computed from the
so-coded images. A color texture is thus representalipyx Ns = 9 x 9= 81 candidate LBP
histograms. When the number of bi@ss equal to 256 for each histogram, the total number of
bins isQ x dnaxx Ns= 256x 9 x 9 = 20736 bins. Figure 3|1 illustrates the representation of a
texture in multiple color spaces by the EOCLBP descriptbie ¢onsidered image is coded in 9
different color spaces in which the EOCLBP is applied seefydo compute their histograms
and obtain the texture feature vector. Finally, the conatien of these vectors is achieved in
order to provide a multi color space representation of aitext

We present here the first results obtained on the New Barkdidxysthe single color space
and the multiple color space approaches. The New BarkTdg datided into a half for train-
ing set and a half for testing set by holdout method. TablgB83ents the classification results
obtained on the testing set of this database. The purposesofvork being to show the con-
tribution of the multi color space approach, independeaotithe considered classifier and its
parameters (like the metric), the nearest neighbor classifisociated with the L1 distance as
a similarity measure is here considered. Obviously, mophisticated methods such as SVM
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Figure 3.1: An illustration of EOCLBP feature extractionorin 9 color spaces.
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and other metrics may provide better results, but at the @odifficult complicated tuning
procedures.

The first column of this table shows the considered colorepathe second column indi-
cates the rate of well-classified images with the dimensfahesubspace. Here no selection
is performed. The dimension is thux256= 2304 when a single color space is considered,
and 9x 9 x 256 = 20736 when the multi color approach is applied. The resuitisout any
selection vary from 70.1% to 74.4% when a single color spaadnsidered. Thegb color
space gives the best rate (value in box) and the averagematiegethe different color spaces
singly considered is 71.9%. The last row shows that the acguobtained in multiple color
spaces is 78.2% . We can observe that the multi space appabaeis to significantly improve
the classification accuracy (+ 6.3% compared with the aeevafue) however at the cost of a
nine times longer feature space.

Table 3.3: The classification results of New BarkTex datalyasine single color space and in
multi color space when no selection method is used.

Without selection
Color spaces
Dimension
Rate A

(® = Omaxx Q X NS)
RGB 73.2
rgb
l1l213 71.7
HSV 70.5
bwr gby 72.1 9x 256x 1= 2304
HLS 70.1
[-HLS 72.1
HSI 71.7
Y GG 71.6
Average in

_ 719+ 1.3

single space
Multi spaces| 78.2 9x 256x 9= 20736
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It is well-known that the performance of a classifier is gatigidependent on the dimension
of the feature space due to the curse of dimensionality (s&gter 2)/[25/7]. To reach a satisfy-
ing classification accuracy while decreasing the computdtme of the on-line classification,
we propose to reduce the dimension of the feature space égtisgl the most discriminating
features during a supervised learning stage.

3.3.3 Dimensionality reduction

To reduce the dimensionality of the feature space, two maategies are proposed: feature
extraction and feature selection. And in order to evaluagerelevance of the feature sub-
spaces by feature selection methods, different approaateeproposed: filter, wrapper and
hybrid [162] (see chapter 2). Among these approaches, thgpproaches are preferred [172].
These approaches combine a filter approach to select thedmostinating feature subspaces
at different dimensions and a wrapper approach to deterthma&imension of the selected

subspace [175]. To operate a supervised feature seledtigmecessary to extract learning

and testing image subsets from the studied database. Timnigaubset is used to build a

low dimensional discriminating feature space during a stiped learning stage and the test-
ing subset is used during the classification stage to ewathatperformances of the proposed
approach. Since wrapper approach is a feature selecti@equee that uses the classification
rate as discrimination power of a feature subspace, it needsssify the images of a learn-

ing subset for all the candidate feature subspaces, thalivesan important learning time and

classifier-dependent results. When a classifier such asetrest neighbor is considered, it
requires of decomposing the learning subset into a traiampba validation subsets.

Applying a multi color space strategy avoids the difficulfgboosing a relevant color space
that depends on the considered application and allows toadkantage of the discrimination
quality of several color spaces by combining them. It sedmas tnteresting to compare the
approaches of LBP histogram selection and LBP bin selectiamulti color space framework.
The first approach is a multi color space extension of the LB®gram selection proposed by
Porebski et al. for a single color space [8]. The second mepa@approach is the extension to
color of the LBP histogram bin selection proposed by Guo efal a gray level analysis by
applying a multi color space strateqy [10]. The third apploe the extension of the sparsity
score to LBP histogram bin ranking in multiple color spacEsi]. The following sections
detail these original approaches.

3.4 Multi color space histogram selection

The Multi Color Space Histogram Selection (MCSHS) approanhlyzes LBP histograms
computed from texture images coded into several color spdcdeed, rather than looking for
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the best color space, these approaches first compute LBRfasts from several color spaces
(see sectionls 3.3.1 ahd 313.2) and then selects, out offfeesdit candidate LBP histograms,

those which are the most discriminant for the considerediGgijon in a supervised context.
The MCSHS approach proposed in this section, whose flow chaepresented by fig-

ure[3.2, is an extension to the multi-color space domain efhilstogram selection approach
proposed in 2013 by Porebski et al. [8].

Learning stage

Validation
lmages ........ S .
coded in| ; Histogram _|Candidate R
N&9 i generation ; |histograms > Optimal :
color [ R ‘dimension;
space Histogram : i determi- :
— : ranking ‘nation
"ljrammg -------------------------------- : thanks to : thanks to : Relevant
1rr(11a%e.s 'Histogram . |Candidate | : histogram . | Ranked | :the I-NN: histogram
Neo [ -on | histograms| : selection >|histograms[™ classifier | |
Ns: 9 : generation stograms| : :  classifier ;| gubspace
color | T i sore £
space
"""""" l oy TTTTTTTmmmmTTTTT
' Relevant Decision
Testing L, histogram N Belevant K thanks to N Class labels
Images | generation histograms . the I—NN of testing images
e H classifier

Classification stage

Figure 3.2: An illustration of the multi color space histagr selection aprroach.

MCSHS is an hybrid histogram selection approach that requo split up the initial image
dataset in order to build a training, a validation and a mgstmage subset, according to a
holdout decomposition. During the learning stage, cariditiésstograms are generated from
training images. Let us note that most of considered textenehmark databases are composed
of only two image subsets, whereas the MCSHS approach nkegis subsets. In order to
compare our experimental results with the same conditiartluér works, we thus propose to
use one subset as the training subset and the second boghagdidation and testing subset in
order to evaluate and compare the performances of the MC$piSach.

Then, the proposed histogram selection procedure usestaréeranking” algorithm. The
selection is based on the histogram score evaluated forafdahk 81 available histograms. In
this work, four different scores are considered and contpare

* the Intra-Class Similarity score (ICS-score), proposgBdarebski et al. |8] and presented
in sectior 2.4.2]1, which is based on an intra-class siitylareasure.

96



CHAPTER 3. MULTI COLOR SPACE LBP-BASED FEATURES SELECTION

» the Adapted Supervised Laplacian score (ASL-score), quegp by Kalakech et al. [9]
and presented in section 2.4]2.2, which evaluates theamtevof a histogram using the
local properties of the image data.

« the Simba-2 score, proposed by Mouhajid etlal. [227] andered in section 2.4.2.4,
which is based on the hypothesis margin andxfheistance.

* the Sparse Adapted Supervised Laplacian score (SpASies@esented in section 2.4.2.3,
which is based on ASL-score and sparse representation .[258]

Once the score has been computed for each obtagx Ns = 81 candidate histograms, a
ranking is performed. The candidate subspaces - compostt first step of the procedure,
of the histogram with the best score, at the second stepedfib first ranked histograms and
so on - are then evaluated to determine the relevant histoguspace (see Figure3.2). The
stopping criterion of the histogram selection proceduteaised on the classification accuracy.
For this purpose, a classifier operates in each candidaspaob in order to classify the vali-
dation images. The selected subspace, whose dimensdon @3, is the one which maximizes
the rateRy of well-classified validation images noted:

5= argmax Rjs (3.1)
1<6<dmaxxNs

During the classification stage, the relevant histogramgipusly selected are computed for
each testing image and compared to the training images isdfselected relevant histogram
subspace to determine the testing image label.

Table[3.4 presents the results obtained by using histogetent®n in a single color space
and in multiple color spaces. The first column of this tabj@esents the color spaces used to
code image. The second column recalls the results obtandblie 3.8 without any selection.
The third column is divided to four sub-columns correspagdb the four considered scores:
ICS, Simba-2, ASL and SpASL-score. By analyzing this tavkesee that the histogram selec-
tion clearly improves the classification performance whemgle or multiple color spaces are
considered. These approaches also reduce the numberagrhaists used in the classification
stage. The best rate is 88.0%. It is obtained by ICS-scorauitipte color spaces with a nearly
reduced half number of used histograms. It improves ne&% &f the rate obtained when no
selection is applied. This result shows that the relevafoemsidering a histogram selection
approach in a single and in multiple color spaces.

We have presented the Multi Color Space Histogram Seleeppnoach. The next section
details the proposed Multi Color Space Bin Selection apgroa
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Table 3.4: Comparison of classification rates obtained wiith without LBP histogram selec-
tion in a single color space and in multi spaces on the New Barklatabase. The values in
boxes represent the best rates obtained with each colae apddhe boldface indicates the best
rate obtained of each approach.

Without Histogram selection
Color spaces selection ICS Simba-2 ASL SpASL

Rate |6 |Rate |6 |Rate |6 |Rate | & | Rate | &
RGB 732 |9 |[8L3 |4 4 |[81.3 |4 |[81.3 |4
rgb 744 |19 768 |7 | 744 |9 77.1 | 3 77.1 | 3
11513 717 |9 7 |754 |8 7 7
HSV 705 | 9 3 |768 |4 3 3
bur gby 721 |9 |80.0 |7 |721 |9 6 6
HLS 70.1 |9 3 |71.2 |8 3 3
[-HLS 721 |9 | 759 |6 |721 |9 (771 |5 ||78.8 ]2
HSI 717 |9 ||79.8 |3 | 739 |7 ||79.8 |3 |]|79.8 |3
Y GCr 716 |9 |[793 |7 | 716 |9 ||793 |7 7
Averagein | 71.9 g 79.4 . 74.3 ; 79.6 4 79.8 4
single space| + 1.3 +1.8 +3.2 +15 +1.3
Multi spaces| 78.2 | 81 421852 | 40| 86.8 |29|87.3 | 37

3.5 Multi color space bin selection

We first briefly recall the notations that are introduced ictiem[2.4.2. In the considered LBP
histogram selection context, the database is composhldcofor texture images. Each image
li,i ={1,...,N} is characterized b¥naxx Ns= 9 x 9 = 81 histograms in the multi color space
approach and represented by a concatenated histddfamhe available data is summarized
by the matrixJ defined as:

H,q

T—| 3| =t .. s .. %%xst] (3.2)
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whereJ is composed by 81 matrig#" rgi 1 that represents the datard? histogram. LeH"
be one of the 81 histograms to evaluate, the ma#ik defined as:

][ M o HEK e HEQ
=] W= Ho R . H© 33)
M L@ e MR - H(Q)

where,Q = 27 is the quantization level that depends on the number of beighused
to code the local binary patterns of the imagd/ (k) represents the values of th& bin,
(ke {1,....Q}) of ther'" histogram of thé'" LBP image among color texture images.

Like the MCSHS approach, the Multi Color Space Bin Selec{dCSBS) analyses LBP
histograms computed from texture images coded into segel@al spaces. Instead of selecting
the most discriminating histograms, the MCSBS approadatiethe most discriminating bins
of these histograms. The first approach, presented in aé€&ftnl, is an extension to the multi
color space domain of the bin selection approach propos2dlifi by Guo et al. for gray level
image analysis [10]. In the second approach, we considéethbain of an histogram corre-
sponds to a feature of a vector, and we propose to apply theée@anking algorithm presented
in section 2.3.11 for bin selection. Among the effective sused filter ranking methods, the
supervised sparsity score is outperformed other scoresasnsin [197], so we extend this
score as the second bin selection approach in the multi spkxre domain (see section 315.2).

The flow chart of the MCSBS approach is represented by figie 3.

Learning stage

Training CHiistogram” \ Guo's dominant :
1mages generation Candidate . bin selection Relevant
coIc\lleii 19n —> and > bins |~ : approach or > bin
S ‘concatenation . . sparsity score subspace
color space :
............... t-------------T:..-..-..T.T:‘.E:.-..:------------.
v ~ Decision
Testin X Relevant : thanks to Class labels
g : bll’l ] — > : —» f : .
- 5 o bins : the .NN | of testing images
1mages { generation : : ) :
S i : classifier

Classification stage

Figure 3.3: An illustration of multi color space bin selectiapproach.

It is a filter bin selection approach which requires to spittbe initial image dataset to
build a training and a testing image subset. The bin selegtiocedure is based on a “feature
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3.5. Multi color space bin selection

ranking” algorithm while the score is based on pattern aernge frequency by Guo’s method
or based on the sparsity score. The stopping criterion oélection approach depends on a
threshold defined by the user. This approach consists imrdigtieg the global dominant bin
setJgiobal aMong the) x dmaxx Ns = 256x 9 x 9 = 20736 candidate LBP bins of tidgaxx Ns
concatenated histograms (see figurée 3.1).

The following subsections present the bin selection basgxtiern occurrence and sparsity
score.

3.5.1 Occurrence based ranking

During the learning stage, histograms are first generatad #ach training imagg. The
most reliable and robust dominant bins are then determinexhg the candidate bins of each
concatenated histogram. The dominant binJketf an imagel; is the minimum set of bins
which can covefT% of all bin occurrences df:

ZkGJi :}Ci (k)

J=argmincs—~———>7% (i=1..N) (3.4)
3 T3k

where|J;| denotes the number of elements in the eind Q, the number of bins. Guo
proposes to set the threshadldas 90% [[10].

Then, the most reliable and robust dominant bins for eacésclare determined. The
dominant bin seflc, of a classc is constituted of the bins that consistently belong to al th
dominant bin setg; of each imagd; of the classc. It is the intersection of all set} of the
images of the class

.= (3.5)
liec

Finally, the global dominant bin selona for the whole database is determined. It is
composed of all dominant bins belonging to the seis(c = 1..C). It is the union of all sets

N
C
ngobal = U Je, (3.6)
c=1

During the classification stage, the dominant bins are Gatled for each testing image based
on the global dominant bin séfjona determined during the learning stage. The testing image is
then compared to the training images in the relevant bingadesto determine its label thanks
to the nearest neighbor classifier based on the L1 distance.

The following section introduces the bin selection methasdal on sparsity score.
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CHAPTER 3. MULTI COLOR SPACE LBP-BASED FEATURES SELECTION

3.5.2 Sparsity based ranking

The sparsity based ranking approach uses the sparse gnagthuction approach presented in
sectior 2.3]1. During the learning stage, each traininggaria represented by a vector com-
posed of the 20736 features (or bins) of the 81 concatena&abhams. The novel proposed
method applies the sparsity ranking according two stragegi

» Strategy A: Candidate histograms are generated from training imagésancatenated
to form a vector with 20736 features. For each class, theseamilarity matrix is first
calculated by using the class label through equation 2.h2nTthe score is assigned for
each feature by equation 2122. The ranked bins are obtajngarting all bins according
to their score in ascending order.

» Strategy B: For each candidate histogram generated from training @és\aitpe sparsity
score is computed for th@ bins of this histogram. This differs from the strategy A
where the sparsity score is computed for Qe dnax X Ns bins of the concatenated
histogram. The final ranked bins of all candidate histogramesobtained by sorting
those bins according to their score in ascending order.

Note that the difference between these two strategies idithensional-features input to
construct the sparse similarity matrix within each class.tBe score value of each bin within
each histogram and the score value of each bin of the coratatthistograms are different.
The experimental results conducted in the following secslbow us to see this difference.

In order to illustrate the proposed method, we introduce xample with three sample
histogramsH?!, HZ? andH3, i € {1,...N} of the N training images represented by three ma-
tricess#, #2 and 3, respectively, as shown in Figure 3.4. To represent the dfiesich
histogram, we use three symbols: a square, a circle andnalgiaWe consider that each his-
togram has 6 bins which are numbered from 1 to 6. For exantpesquare numbered as 1 is
represented the first bin of histogr&mﬁ.

For the strategy A, three histograms are firstly concatenatdéorm a feature vector with
18 features. We assume the score value of each bin is estiraatkillustrated below each
symbol. The associated score is computed for each bin byp#rsisy score and the bins are
ranked in ascending order according to their value as ilitesdl in figuré 34a. For the strategy
B, the sparsity score is applied on each histogram to congostere for each bin. For example,
the 6" bin of Hil has a smallest sparsity score value and it is more relevantdthers. The
bins of all histograms are examined in order to be sortedrttipg on their score value. The
illustration of the final ranked bins is at the bottom of theufig3.4b. We see that all the bins
with smallest score values are ranked first, 'ea®id 8" bin of H? and é" bin of H? are more
relevant than others. The order of the bins with the samees@due is not considered in this
case.
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1 2 3
H Hy H;
H: H? H
1 1
1 2 3
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H 3?2 3?3

Concatenate three histograms and compute the score for each bin
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(a) Bin rank obtained by strategy A
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(b) Bin rank obtained by strategy B

Figure 3.4: An illustration of bin selection by strategy B.
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CHAPTER 3. MULTI COLOR SPACE LBP-BASED FEATURES SELECTION

After the bin ranking is finished, the relevant bin subspaae lze selected by a threshold
defined by user according to the score value. During theiilzegfon stage, the features of
testing images are determined according to the bin rankddrenthreshold defined by user
during the learning stage. The decision step is realizedeasqusly presented.

Moreover, the bin selection procedure can be based on teedilthybrid approaches. For
the filter approaches, we can use the threshold parameterGuo does in [10]. On the other
hand, the hybrid approaches allow evaluating the relevahtiee feature subspaces without
using any parameter. That is why we choose hybrid approaoh@gsluate our proposed ap-
proaches. The following section presents this procedurehwh based on sparsity ranking.

3.5.3 Bin selection procedure

The flow chart of an hybrid LBP bin selection approach is repnéed by figuré 315. It re-
quires to split up the initial image dataset in order to bailwlaining, a validation and a testing
image subset, according to a holdout decomposition. This fbeled as gray are the differ-
ences compared with MCSBS approach shown by figute 3.3. Asemtiomed in the previous
section, the testing and validation subsets are the sameshahavailable image database.

During the learning stage, candidate histograms are geukiram training images and bin
ranking is applied (by the strategy A or B) thanks to the suged sparsity score presented
in sectior 2.3]1. Once the bin ranking strategy is appliee final ranked bins are selected to
find the relevant subspace and the most discriminant bins tealee selected. The discrimi-
nant power of candidate bin subspaces with different dinoassare evaluated to determine the
most relevant subspace. At the first step, the candidatgpaabsomposed of the first ranked
bin is considered. Then, at the second step, the candidaspace composed of the two first
ranked bins is considered and so on. For this purpose, astearighbor classifier is also con-
sidered with the L1 distance. This classifier operates ih eandidate subspace to classify the
validation images represented by the prototype bins. Tleetsel subspace, whose dimension
is D, is the one which maximizes the rate of well-classified \atlish images denotey:

D= argmax Rp. (3.7)
1<D<QX dmaxxNs

During the classification stage, the relevant bins preWyosslected are computed for each
testing image and compared to the training images in theaeteoin subspace to determine
the testing image label by the nearest neighbor classifier.

3.5.4 Results

Table[3.5 presents the results by the color bin selectiomoagp based on occurrence and
sparsity based ranking. We also compare the results obtansingle color space and in
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Figure 3.5: Multi color space bin selection approach.

multiple color spaces with and without selection. The tlgiotlmn of this table is divided into
three sub-columns corresponding three previously prapapproaches: the occurrence and
the two sparsity based ranking strategies. We propose tbe#treshold as 90% to select the
dominant bins for occurrence based ranking [10]. For thedparsity ranking approaches, we
use the bin selection based on hybrid approaches (figuréo3B)ect the relevant bin subspace.
The LBP bin selection approaches improve the classificgg@formance in any cases when a
single color space or a multiple color space approachesasedered. The best rate is obtained
by occurrence based ranking: 82.5% (wWitB1 space) and 87.8% (with multiple color spaces).
The two strategies A and B of the sparsity based ranking giierent rates and dimensions.
By analyzing the average results in a single color spaceramalitiple color spaces, we see that
the sparsity based ranking with the strategy B gives bettarlts than the strategy A whereas
the number of selected bins are also higher. An extended @aesom of these strategies will be
proposed in the next chapter.

We have presented the LBP bin selection based on the spacsitg. When two bins
with the same score, they are ranked randomly. It is intexg$t identify which one is more
discriminant LBP bins for a better representation. Thedgistm selection procedure selects the
relevant histogram according to their scores. As whole LBRograms are selected, it is clear
that some bins of these histograms are either redundanteortetally uninformative. They
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CHAPTER 3. MULTI COLOR SPACE LBP-BASED FEATURES SELECTION

Table 3.5: The classification results of LBP bin selectioprapches in a single and multi-
ple color spaces on the New BarkTex database. The valueaslyepresent the best rates
obtained with each color space and the boldface indicatebeht rate obtained of each com-
bination approach.

Without selection -BP Bin selection
Color spaces Occurence | Sparsity (A) | Sparsity (B)

Rate | D Rate | D Rate | D Rate | D
RGB 73.2 | 2304 281 | 79.0 | 1109| 78.7 | 2033
rgb 74.4 | 2304 749 | 132 | 74.4 | 2242 2274
I112l3 71.7 | 2304 748 |78 74.4 | 1198 2011
HSV 70.5 | 2304 179 | 79.5 | 500 |77.6 | 1544
bl gby 72.1 | 2304 744 |78 | 775 |836 1435
HLS 70.1 | 2304 167 | 78.0 | 319 | 76.7 | 1910
[-HLS 72.1 | 2304 77.8 | 129 | 72.7 | 1813||78.9] | 1883
HSI 71.7 | 2304 172 | 79.2 | 533 | 79.0 | 1929
Y GCr 71.6 | 2304 745 |81 77.0 | 370 2116
Averagein | 71.9 5304 78.0 144 76.9 991 78.1 1903
single space| + 1.3 + 34 +2.3 +1.3
Multi spaces| 78.2 | 20736 1502| 83.6 | 754 | 84.4 | 16491

can decrease the performances of the learning algorithrhas,Ta dimensionality reduction
method for selecting relevant histogram bins of relevasiidgirams is needed to address these
problems. The following section introduces our proposeddimal approach that combines
histogram ranking and bin selection for classification task

3.6 Combination of histogram ranking and bin selection

We consider that the LBP histogram ranking is important ttkrains as mentioned above.
The purpose of this proposition is to filter out the irrelevbims of the relevant histograms
and oppositely find out the relevant bins of the irrelevastdgrams. The flow chart of this
approach is illustrated by figufe 8.6. It is also a hybrid sié& method, however the bin
ranking strategies are applied after the histogram rankirtgis case. Here, we assume that

105



3.6. Combination of histogram ranking and bin selection

the bins of discriminant histograms are more relevant ththers. During the learning stage,
candidate histograms are generated from training imaggiatogram ranking is applied for
each candidate histogram thanks to one of the four scorésthdhat presented and used in
section 242 and 3.4 (ICS, ASL, SpASL, Simba-2). The diffees between figufe 3.6 and
figure[3.5 are the histogram ranking strategy is appliedredfn ranking. In this framework,
two more strategies are proposed as follows:

» Strategy C. A score for each candidate histogram is computed and thegnegns are
then ranked according to their score. Next, a bin rankinglnsexed for each histogram
individually thanks to the sparsity score. We finally coecette the ranked bins of the
ranked histograms.

» Strategy D: We assume that the first bin of the most relevant histograensare relevant
than the other bins. So, we propose to rank at first, the grbap the first bins of each
histogram in the order of the ranked histograms, then themod all the second bins are
ranked in the second and continuously until the last bin ohdastogram. The final bin
ranking is aQ x dmnax uplet vector, wher€ is the number of bins of each histogram. The
order of the bin in eachyax uplet is based on the ranked histogram.

In order to illustrate the combination of histogram rankamgl bin selection approaches (cf.
figure[3.T), let us take the same example as in previous sedtidghis illustration, we assume
the histograms are ranked by a consider histogram scdg dd andH?. The bin ranking
is achieved for each histogram by the supervised sparsinesd~or the strategy C, the bin
ranking is obtained by concatenating the three histogtdfngi! andH? with previously bin
ranking within each histogram as shown in figurd 3.7a. Thednking obtained by strategy D
is a vector composed of the 6 triplet-bins as shown in figurfl.3The first triplet is composed
by the three first bins oHiS, Hil and Hiz, respectively. This procedure continues to the last
triplet is composed by the three last bingf, HZ andH?Z, respectively.

In order find the relevant bin subspace the bin selectionguhaie is carried out as the same
in sectior 3.5.8.

Table[3.6 presents the results obtained with the two siet€gyand D. For the purpose of
combination of bin and histogram selection of each strateégy D, four different histogram
scores have been used in the combination of the bin seld&®)yby supervised sparsity score:

1. ICS score and sparsity score,
2. ASL score and sparsity score,
3. SpASL score and sparsity score,

4. Simba-2 score and sparsity score.
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Figure 3.6: The combination of histogram ranking and birest#bn in the multiple color
spaces.

This table confirms that the combination of histogram ragkamd bin selection signif-
icantly improves the classification compared with the rssabtained without applying the
selection scheme in both single color space (+ 9.1%) and itipteucolor spaces (+ 10.8%).
The best results obtained are 84.2% withtR@Bspace by the strategy C when a single color

space is considered, and 89.0% in multiple color spaces thélstrategy D by combining
ICS-score and bin selection.
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Figure 3.7: An illustration of the histogram ranking and belection approaches.
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Table 3.6: The classification results of the combinationiefdgram ranking and bin selection approaches in a singlenauitiple color
spaces on the New BarkTex database. The values in boxeseaptbe best rates obtained of each color space and thetelaidicates
the best rate obtained of each approach

Without Strategy C Strategy D
Color

selection ICS & BS Simba-2 ASL & SpASL & ICS & BS Simba-2 ASL & SpASL &
spaces &BS BS BS &BS BS BS

Rate | D Rate | D Rate | D Rate | D Rate | D Rate | D Rate | D Rate | D Rate | D

RGB 73.2 | 2304 1016 | 83.7 | 822 83.7 | 1016| 83.7 | 1016 | 83.7 | 1016

822 822 822

rgb 74.4 | 2304 1789 | 74.4 | 2303 | 77.8 | 709 709 | 77.8 | 1785 | 74.6 | 2286 1530 1530

80.6 | 1564 | 78.6| 2016| 80.5 | 1764 | 80.5 | 1764

HSV 70.5 | 2304 851 | 81.0 | 768 79.5| 1250| 81.0 | 768 81.0 | 768
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TAverage 71.9 80.8 75.1 80.8 80.5 78.9 80.6 80.8

|r? + 2304 | + 1280 | + 1862 | + 939 | 4+ 1072 | + 1332 | + 1401 | pm 1242 | + 1186
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3.7. Conclusion

3.7 Conclusion

In this chapter, a multi color space approach is proposeadoccome the drawback of choos-
ing the single color space best suited for the consideretcagipn. We firstly proposed to
code images with nine different color spaces and to extresIEBP descriptor to character-
ize the color textures. However, this multi color space apph encountering the problem of
high-dimensional feature space, we propose to extend shegnam selection and bin selection
approaches to the multi color space domain. These appreacimsist in selecting discrimi-
nating LBP histograms or bins computed from images codeeé\versl color spaces and thus
allow to overcome the difficulty of choosing a well-suitedarsspace to discriminate the con-
sidered color texture classes. Four histogram scores asgdswed for LBP histogram selection
in multiple color spaces. Two approaches based on the @werand sparsity score are then
extended for multi color space bin selection.

In addition, we have proposed to combine the histogram reydand bin selection according
to two selection strategies. These methods aims to sekedigbriminant LBP bins by using the
histogram ranking. In order to illustrate our original apgch, we have presented first results
obtained on the New BarkTex database. These results shothéraulti color space approach
clearly improve classification rate instead of using a @mglor space. Secondly, the proposed
selection approaches not only improve the classificationoith single and in multiple color
spaces but also reduce the dimension of the feature space.

The complete experimental results on other databasesrénerfpresented and analyzed in
the following chapter.
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Chapter |

Experimental evaluation

Contents

In this chapter, we propose to compare the strategies of Li&Bdram selection and LBP
bin selection in the multi color space framework. The apphea presented in the previous
chapter will be applied and analyzed thanks to four imageldetes: New BarkTex, OuTex-
TC-00013, USPTex and STex (presented in se¢tion]1.1.3h &aabase is divided into a half
for the training set and a half for the testing set by the haldeethod. Let us summarize theses
databases by takle 4.1.

Table[4.2 lists the methods that will be analyzed. We divideseé methods in four cate-
gories: no selection, histogram selection, bin selectimh@mbination of histogram ranking
and bin selection.
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Table 4.1: Summary of image databases used in experiments.

Dataset name Image size| # class| # training | # testing| Total
New BarkTex 64 x 64 6 816 816 1632
OuTex-TC-00013 128 x 128 | 68 680 680 1360
USPTex 128 x 128 | 191 1146 1146 2292
STex 128x 128 | 476 3808 3808 7616

Table 4.2: Summary of the proposed methods used in expeismen

No Name Method Category
1 | MCWS Multi color space without selection | No selection
Multi color space histogram
2 | MCSHS-ICS
selection based on ICS-score ) )
Histogram selectior]
_ Multi color space histogram _
3 | MCSHS-Simba-2 (c.f section 3.14)
selection based on Simba-2-score
Multi color space histogram
4 | MCSHS-ASL
selection based on ASL-score
Multi color space histogram
5 | MCSHS-SpASL
selection based on SpASL-score
Multi color space bin selection
6 | MCSBS-Occurrence
based on occurrence (c.f section 3.5.1)
Multi color space bin selection Bin selection
7 | MCSBS-Sparsity (A)| based on sparsity-score by strategy |A

(c.f section 3.512)

Continued on next page ...
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Table 4.2: Summary of the proposed methods used in expeismeaantinued...

No Name Method Category

Multi color space bin selection
8 | MCSBS-Sparsity (B) based on sparsity-score by strategy B
(c.f section 3.512)

Multi color space bin selection
10 | ICS & BS-(C) by combining ICS-score and bin

selection by strategy C

Multi color space bin selection Combination of

11 | Simba-2 & BS-(C) | by combining Simba-2-score and | histogram ranking

bin selection by strategy C and bin selection
Multi color space bin selection (c.f sectiori 3.6)
12 | ASL & BS-(C) by combining ASL-score and

bin selection by strategy C

Multi color space bin selection
13 | SpASL & BS-(C) by combining SpASL-score and

bin selection by strategy C

Multi color space bin selection
14 | ICS & BS-(D) by combining ICS-score and

bin selection by strategy D

Multi color space bin selection

15 | Simba-2 & BS-(D) | by combining ICS-score and

bin selection by strategy D

Continued on next page ...
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Table 4.2: Summary of the proposed methods used in expeismeaantinued...

No Name Method Category

Multi color space bin selection
16 | ASL & BS-(D) by combining ASL-score and

bin selection by strategy D

Multi color space bin selection
17 | SpASL & BS-(D) by combining SpASL-score and

bin selection by strategy D

In a single color space approach, each texture is codadsby 9 histograms whiléNs =

9 x 9 = 81 histograms are considered in the multiple color spaceoagp. In chapter 3, we
have shown that this last approach clearly improves theifieetion rates compared with a sin-
gle color space approach on the New BarkTex database. Fuithe, when we have compared
the result of the multi color space selection approach witisé¢ obtained without applying any
selection method, we have shown that the multi color spaeetgan not only improves the
classification performance but also reduces the dimengithedeature space. In this chapter,
we propose to continue to analyze the proposed approachaggbying them on three addi-
tional databases, in addition to New BarkTex.

Although OuTex-TC-00013 is widely used, this image set@nésa major drawback like
USPTex and STex sets. The partitioning used to build the®se thets consists in extracting
training and testing sub-images from a same original imadewever, such a partitioning,
when it is combined with a classifier such as the nearest hergtiassifier, leads to biased
classification results [139]. Indeed, testing images aa#ialty close to training images. They
are thus correlated and a simple 3D color histogram reacheghaclassification accuracy
whereas it only characterizes the color distribution witthe color space and does not take
into account the spatial relationships. On the other hdrelNeew BarkTex has been create to
overcome that drawback (see secfion 1.2.4). That is themesky more details and analysis
will be proposed in the following on the New BarkTex database

This chapter is organized in as follows. We first study theaoimf the distance used
for measuring the similarity between two histograms duthiy computation of the proposed
SpASL-score in order to choose the appropriate distanees@setiori4]1). In sectidn 4.2, we
evaluate the impact of the histogram scores on the four dereil databases to validate the
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relevance of the proposed SpASL-score. Next, the diffesgategies are evaluated, analyzed
and compared with the results of the state-of-the-art itiaeld.3. Finally, we summarize and
conclude the chapter in section4.4.

4.1 Impact of similarity measure

The ICS-score uses histogram intersection to evaluatentiasty between two histograms,
while ASL uses the Jeffrey distance and Simba-2 ygegespectively. In order to keep the
same condition as ASL-score, the proposed SpASL uses tfreyddfstance to measure the
similarity. However, there is an open question regardireggdbnsidered distanc&®bes the
selected distance has an impact on the histogram seareWe propose here to study this
question for the SpASL-score.

In order to study the robustness of the SpASL-score, threeean distances such as his-
togram intersectiony? and Jeffrey are compared. For each of the four consideredbase,
the training set is used for the histogram ranking procebtyrapplying equatioh 2.65. Then,
ranked histograms are used as inputs of the classificatmeeps which is performed on the
testing set. The L1-distance is associated with the 1-NBisdiar while the classification per-
formance is evaluated by the accuracy rate. It is worth te mloat our works focus on the
feature selection step so that is why we use a basic and mampdic classifier with a simple
distance frequently used.

Tablel 4.8 shows the classification rates obtained with tiierdint distances associated with
the MCSHS-SpASL approach. The first column represents time rd the used database. The
second column is divided into three sub-columns correspgnid the three associated dis-
tances. The valué, that represents the number of selected LBP histograms liachwthe
well-classified image rate is reached, is also shown in bt Note that the best results of
each row are shown in boldface. This table globally showsttiea SpASL-score associated
with histogram intersection does not give good results aregb with the two other distances
whatever the datasets. This is due to the fact that, to extemdistance( f{ — f; )2 to the
histogram selection context, Kalakech et al. shows that teicessary to consider a measure
which has to be minimized to select the most relevant histogr[9]. The histogram inter-
section, which has to be maximized, is thus not relevant topege the ASL-score, and so
the SpASL-score. The average result on the four databasesnalicates that Jeffrey and
distance reach the same performance. As Jeffreyx&mgive the results close, we propose to
use Jeffrey for the proposed SpASL-score hereatfter.

We have presented the impact of the similarity measure t&SpRESL-score. The next
section is dedicated to illustrate the impact of the histagscore.
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Table 4.3: The classification obtained by SpASL-score witké measurements of similarity
between two histograms by histogram intersectjoh,Jeffrey on four texture databases. The
value in boldface indicates the best obtained rate of eagh ro

Distance

Database Histogram
V& Jeffrey

intersection
Rate| 5 |Rate|d |Rate|§d
New BarkTex 78.4 | 77 87.3|38 | 87.3 |37
OuTex-TC-00013 95.2 | 68 95.6| 62 | 95.6 | 62
USPTex 93.7| 78 976|139 (974 | 31
STex 93.2| 81 96.6 |29 |96.8 | 32

Average on the four database90.1+ 7.8 | 94.3+ 4.7 | 94.3+ 4.7

4.2 Impact of the histogram score

Table[4.4 presents the results obtained by MCSHS and MCWS wiexaTC-00013, New
BarkTex, USPTex and STex database. The first column of this hows the name of the
database. The second column shows the results when na@eliscpplied. The last column
is divided into four sub-columns corresponding to the fastdgram scores ICS, Simba-2, ASL
and SpASL. The average rate obtained for each approach douhdatabases is presented in
the last row.

By analyzing this table with the best rate of each row, we @mthat the MCSHS ap-
proaches improves (+ 0.6%), (+ 9.8%), (+ 3.9%), (+ 3.5%) faiféx-TC-00013, New Bark-
Tex, USPTex and STex respectively. The best result reachédew BarkTex is obtained by
MCSHS-ICS which uses only 42 histograms instead of 81 hiatag when no selection is
applied. Similarly for other databases, this can confirm i@ MCSHS approach not only im-
proves the classification rate but also reduces the subsiraeasion. Moreover, the obtained
results validate the relevance of the proposed SpASL-sdndeed, based on the average re-
sults obtained on the four databases, this table showd&IASL-score improves the results
compared with the three other scores and the number of hestegselected by SpASL is each
time among the lower.
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Table 4.4: The classification results of the multi color papproach without and with his-
togram selection, on the four texture databases. The valbeldface indicates the best rate

obtained for each row.

MCSHS
MCWS
Database ICS Simba-2 ASL SpASL
Rate| 5 | Rate| 8 |Rate|d |Rate|d |Rate|d

OuTex-13 95.0{ 81 |956|59 | 95.0|79 |95.3|62 |95.6 |62

New BarkTex | 78.2| 81 | 88.0( 42 |852|40 |86.8|29 |87.3 |37

USPTex 03.7|81 | 93.7|40 | 93.8|80 | 97.6|41 (974 |31

STex 93.3(81 | 94147 | 958|331 |96.1|38 |96.8 |32

Average on the
90.0+7.9|92.84+3.2| 924+ 49| 93.9+4.8| 94.3+4.7

four databasesg

After having presented the results obtained with the mphice histogram selection by the
four considered histogram scores, the following secticalyaes the impact of the LBP-based
feature selection approaches.

4.3 Impact of the LBP-based feature selection strategy

This section presents the results reached by the diffenextégies proposed in chapter 3 and is
organized as follows. Sectign 4.B.1 details the classifioatsults obtained on the New Bark-

Tex database. Sectign 4.3.2 compares the results reachmd bpproach with those obtained

in the state-of-the-art on the further OuTex-TC-00013, TSfPand STex databases. Finally,
the processing times of the proposed approaches is prdssamdeanalyzed in section 4.8.3.

4.3.1 Classification results detailed on the New BarkTex

Table[4.5 shows the classification results obtained by tifereint proposed approaches on the
New BarkTex database. The first and second columns reprisardategories and the approach
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names. The third and fourth column indicate the rate of whal$sified images reached and the
subspace dimension. The last column shows the averagéoéesakh category.

Table 4.5: Classification results of the proposed appraaichide multi color space framework
on the New BarkTex database. The value in box indicates tteekt rate within each category
while the value in boldface indicates the best rate obtaamedng all approaches.

Category Approach Rate | p Average

No selection MCWS 20736/ 78.2
MCSHS-ICS 10752

Histogram MCSHS-Simba-2 85.2 | 10240| 86.8+ 1.1

selection MCSHS-ASL 86.8 | 7424
MCSHS-SpASL 87.3 | 9472

MCSBS-Occurrence 1502

Bin selection MCSBS-Sparsity (A) 83.6 | 754 | 85.2+2.2

MCSBS-Sparsity (B) 84.4 | 16491

ICS & BS-(C) 88.1 | 11501

Simba-2 & BS-(C) 85.4 | 10251

ASL & BS-(C) 87.0 | 7460

Combination of
SpASL & BS-(C) 87.5 | 9580

histogram rankin
ICS & BS-(D) 11457| 87.7+ 1.1

and bin selection
Simba-2 & BS-(D) 87.4 | 9912

ASL & BS-(D) 88.1 | 12466

SpPASL & BS-(D) 88.4 | 11985

By analyzing this table, we can see that the classificatitsmremnge from 78.2% to 89.0%.
The highest rate obtained by a MCSHS approach is 88.0% watla8-score. This rate is then
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compared with the highest rate of the bin selection categdns rate is obtained by MCSBS-
Occurrence which is less good with (- 0.2%). However, MCSBS®urrence selects a feature
space with a lower dimension than the MCSHS approaches. NCSirsity (A) and (B)
improve the classification rate compared with the MCWS aggiipnevertheless these two ap-
proaches give the lowest rates. Based on the average nesthieslast column, we can observe
that the combination of histogram ranking and bin seleafjives the best result. It improves
(+ 0.9%) and (+ 2.5%) compared with the MCSHS and MCSBS ap,agaspectively.

The combination of histogram ranking and bin selection gotes to obtain a rate always
greater or equal than those obtained by histogram seleckon example, the MCSHS-ICS
approach gives at 88.0% when we combine this score with Ihéttsen, the results obtained
by strategies C and D are 88.1% and 89.0%, respectively. \WeHfensame conclusion for the
combination with the other scores. The best results depetizeochoice of the histogram score
used for the combination. Regarding the number of seledte] the combination methods do
not reduce the dimension compared with MCSBS and MCSHS appes. For example, the
combination of SpASL-score and bin selection achieveseaobB8.4% with the strategy D
ad with the number of bins equal to 11985. It improves the oatained by MCSHS-SpASL
+ 1.1% but uses more 2513 bins. This can be explained by thelfatthe combination
approaches seek the relevant bins for all ranked bins wig®tCSHS seeks only the relevant
histogram and might miss some relevant bins of the irrefelietograms. That is the reason
why we can improve the rate and sometimes the dimension ddesduce. Globally, we can
observe that the combination by the strategy D gives beites than those obtained by strategy
C.

The classification results obtained on the New BarkTex bypvaposed approaches are
then compared with those obtained by the different studi¢giseostate-of-the-art in table 4.6.
The rows labeled as gray correspond to experiments thaaaned out in this work whereas
the other rows correspond to results published by otheasitiThe first column refers to the
related papers and indicates the used selection methodcadrissdered color spaces used to
classify the images are presented in the second column aélie The third column shows
the descriptors which have been analyzed to discriminaaliffierent color texture classes.
Finally, the last column shows the rate of well-classifietite) images obtained with the clas-
sifier presented in the fourth column. The classification mditained by other authors ranges
from 58.6% to 82.1%. This table indicates that our approacheperform the state-of-the-art
results, improving (+ 6.9%) on New BarkTex database by thalgpation of ICS-score and
LBP bin selection methods.
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Table 4.6: Comparison between the well-classified imagesnaached with the New BarkTex
set. The italic values indicate the results obtained basedus implementation while the
underlined values indicate the results extracted from.[47]

Reference Color space Features Classifiers| Accuracy
ICS & BS-(D) 9 color spaces| EOCLBP 1-NN 89.0
ICS & BS-(C) 9 color spaces| EOCLBP 1-NN 88.1
MCSHS-ICS 9 color spaces| EOCLBP 1-NN 88.0
MCSBS-Occurrence 9 color spaces| EOCLBP 1-NN 87.8
MCSBS-Sparsity (B) 9 color spaces | EOCLBP 1-NN 84.4
[154] RGB CLBC 1-NN 84.3
MCSBS-Sparsity (A) 9 color spaces| EOCLBP 1-NN 83.6
[66] RGB 3D-ASDH SVM 82.1
[8] (with selection method) | RGB EOCLBP 1-NN 81.4
[9] (with selection method) | RGB EOCLBP 1-NN 81.4
62] RGB LBP and local 1NN 80.2

color contrast

Between color
[56] RGB 1-NN 79.9

component LBP

MCWS 9 color spaces| EOCLBP 1-NN 78.2

Mix color order
[47] RGB 1-NN 77.7

LBP histogram

[138] (with selection method) 20 color spaces RSCCM 1-NN 75.9
[259] RGB CLBP 1-NN 72.8
[34] RGB Color angles LBP 1-NN 71.0
[260] RGB DRLBP 1-NN 61.4
[13] RGB Color histograms| 1-NN 58.6
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4.3.2 Validation on STex, OuTex-TC-00013 and USPTex sets

Table[4.7[ 4.9 and_4.8 present the classification resulardd by our proposed approaches
and those obtained by the different studies which have egy@li color texture classification
algorithm on STex, OuTex-TC-00013 and USPTex respectively

Table 4.7: Comparison between the well-classified imagesr&ached with the STex database.
The italic values indicate the results obtained based omaplementation.

Reference Color space | Features Classifiers| Accuracy
SpASL & BS-(D) 9 color spaceg EOCLBP 1-NN 98.1
SpASL & BS-(C) 9 color spaces EOCLBP 1-NN 96.9
ASL & BS-(C) 9 color spaceg EOCLBP 1-NN 96.8
MCSHS-SpASL 9 color spaces EOCLBP 1-NN 96.7
MCSBS-Occurrence| 9 color spacey EOCLBP 1-NN 96.7
MCSBS-Sparsity (A) 9 color spacey EOCLBP 1-NN 94.7
MCSBS-Sparsity (B)| 9 color spaces EOCLBP 1-NN 94.7
MCWS 9 color spacey EOCLBP 1-NN 93.7
[260] RGB DRLBP 1-NN 89.4
[134] L*a*b* Wavelet coefficients | Bayes 77.6
Color contrast
[135] RGB 1-NN 76.7
occurrence matrix
[131] L*a*b* Soft color descriptors 1-NN 55.3

For the three databases, the best rates obtained are gitlea bymbination of the SpASL-
score and bin selection with the strategy D. Our approachgsedorm all other methods for
USPTex and STex by improving the classification rate by (#&.dnd (+ 8.7%), respectively.

On the other hand, our approaches do not outperform two vaork3uTex-TC-00013 [138,
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Table 4.9: Comparison between the well-classified imagesregached with the OuTex-TC-
00013 set.

Reference Color space Features Classifier| Accuracy
[138] (with selection method) 28 color spaces RSCCM 1-NN 96.6
[66] HSI 3D-ASDH SVM 95.8
SpASL & BS-(D) 9 color spaces | EOCLBP 1-NN 95.7
SpASL & BS-(C) 9 color spaces | EOCLBP 1-NN 95.7
MCSHS-SpASL 9 color spaces | EOCLBP 1-NN 95.6
MCSHS-ICS 9 color spaces | EOCLBP 1-NN 95.6
[13] HSV 3D Color histogram 1-NN 95.4
SpASL & BS-(C) 9 color spaces | EOCLBP 1-NN 95.3
MCSBS-Sparsity (A) 9 color spaces | EOCLBP 1-NN 95.2
MCSBS-Sparsity (B) 9 color spaces | EOCLBP 1-NN 95.2
MCWS 9 color spaces | EOCLBP 1-NN 95.0
[114] RGB Fractal descriptors LDA 95.0
[41] RGB Haralick features 5-NN 94.9
[56] RGB 3D Color histogram 3-NN 94.7
[126] I-HLS 3D Color histogram 1-NN 94.5
[41] RGB Haralick features 1-NN 94.1
[122] HSV EOCLBP SVM 93.5
[9] (with selection method) | RGB EOCLBP 1-NN 93.4

Continued on next page ...
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Table 4.9: Comparison between the well-classified imagesregached with the OuTex-TC-
00013 set continued...

Reference Color space Features Classifier| Accuracy
[8] (with selection method) | RGB EOCLBP 1-NN 92.9
MCSBS-Occurrence 9 color spaces | EOCLBP 1-NN 92.9
[139] (with selection method) HLS RSCCM 1-NN 92.5

Between color

[13] RGB component LBP 1-NN 92.5

histogram

Quaternion-Michelson
[109] RGB 1-NN 91.3

Descriptor

[127] RGB Texton 1-NN 90.3

Combine color and
[261] RGB 1-NN 90.2

LBP-based features

[134] L*a*b* Wavelet coefficients Bayes 89.7

Intensity-Color
[152] RGB 1-NN 89.3

Contrast Descriptor

[260] RGB DRLBP 1-NN 89.0

Autoregressive modelg
[126] I-HLS 1-NN 88.9

and 3D color histogram

Continued on next page ...
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Table 4.9: Comparison between the well-classified imagesregached with the OuTex-TC-
00013 set continued...

Reference Color space Features Classifier| Accuracy

Halftoning Local
[142] RGB Derivative Pattern and | 1-NN 88.2

Color Histogram

[232] L*a*b* Autoregressive modelg 1-NN 88.0
Within color

[13] RGB component LBP 1-NN 87.8
histogram

Mix color order
[47] RGB 1-NN 87.1

LBP histogram

[62] RGB Color angles LBP 1-NN 86.2
LBP and local color

[34] RGB 1-NN 85.3
contrast

Features from wavelet
[54] RGB 7-NN 85.2

transform

[259] RGB CLBP 1-NN 84.4

Color contrast
[135] RGB 1-NN 82.6

occurrence matrix

[131] HSV Soft color descriptors | 1-NN 81.4

Continued on next page ...
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Table 4.9: Comparison between the well-classified imagesregached with the OuTex-TC-
00013 set continued...

Reference Color space Features Classifier| Accuracy
[144] RGB HEP 1-NN 80.9
[128] RGB Fuzzy aura matrices | 1-NN 80.2
[148] RGB Modified LBP 1-NN 67.3

66]. In [138], Porebski et al. use Haralick features exgddrom Reduced Size Chromatic
Co-occurrence Matrices (RSCCMSs) by using 28 color spacegpaced with 9 color spaces
by our proposed approach. In [66], Sandid et al. use the S\ddsdier and characterize
the texture by the three-dimensional adaptive sum andrdrifee histograms descriptors. Our
results are close to those obtained.in [66] (the differesaagual to 0.1%) whereas we use a
simple 1-NN classifier. Other studies give results rangenf¥.3% to 95%. Note that the
MCSBS-Occurrence gives in this case a less good result hathate obtained of 92.9%.

In the next subsection, we propose to compare the computirey af the proposed ap-
proaches.

4.3.3 Processing times

We select several approaches from each category to conipapedcessing times required by
the learning and the classification stages on the New-Barkge Table§ 4.10 and 4]11 show
the processing times of the two stages, respectively. Ttiess are obtained by using the
Matlab software and a PC cadenced at 3.20 GHz with 24 Gb RANE M@t we classify these
approaches by the ascending of total times.

When a selection is performed, the learning stage considiieicomputation of all available
histograms (generation phase) and a selection phase.

For the MCSHS approach, the dimension of the discrimindtisgpgram subspace is deter-
mined thanks to several classifications (see figure 3.2f djyroach thus requires to compute
all the histograms for the training (48.0 s) and the val@a{48.0 s) images, and to evaluate the
rate of well-classified validation images for the candidagtogram subspaces with different
dimensions (630.3 s with the ICS-score). It is thus comjpratly costly (726.3 s), contrary
to the MCSBS approach (78.1 s), which do not require any ifleestson to determine the rel-
evant subspace. Indeed, it only consists in extractindialhistograms for the training images
(48.0 s) and determining the dominant bins (30.1 s) as shoviigure[3.8. MCSHS-SpASL
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takes longer times than others histogram score (797.8 sg $irhas to compute the sparse
similarity matrix. MCSBS-Sparsity and the ICS & BS-(D) appeoaches that need a learning
computation time even more important. Indeed, they takecequpately 39 hours to determine
the bin subspace because they have to carry out 20736 dassifis in order to determine the
dimension of the feature space instead of 81 for MCSHS appesa We only illustrate the pro-
cessing times of the combination approach ICS & BS-(D) sotber combination approaches
(i.,e ASL & BS, Simba-2& BS, SpASL & BS) is nearly the same.

When no selection is performed, the learning stage onlyistsg computing the his-
tograms from the training images (48.0 s) in order to comf@m to the histograms extracted
during the classification stage from the testing images thig#hmearest neighbor classifier.

The classification stage consists in the computation of theipusly selected histograms
or bins from testing images (generation phase) and a dagiiase.

When no selection is performed, the images are charadiebizall available histograms,
that is to say in a 8% 256= 20736 dimensional feature space. This high dimension lesals
high computation time for generation (48.0 s) and decisidng s).

When the MCSHS-ICS approach is considered, a low dimenkiosimgram subspace is
determined during the learning stage. The images are ttaraderized by a reduced number
of histograms (42 instead of 81) during the classificati@yst Operating a selection allows
here to reduce the generation and the decision times of dissifitation stage (31.5 s instead
of 63.8 s with the ICS-score).

When MCSBS-Sparsity approach is performed, a low dimersisubspace is also deter-
mined during the learning stage and used for classificafiéd pins are computed instead of
20736). The dimension of the relevant feature subspacevisrithan the dimension obtained
with the MCSHS-ICS approach (754 instead of 10752). It afléavassign more quickly the
images to the estimated classes (0.7 s instead of 8.2 spdterclassification stage.

In order to compare the efficiency of the proposed approacheselect three approaches
and compare the rate obtained and the processing time batilee4.1P.

According to the accuracy reached and the processing tifdesaroing stage represented in
table[4.1P, we are interested in the MCSBS-Occurrence an8HBZICS approaches. These
approaches allow thus to obtain similar classificationqrentinces for the New-BarkTex set,
whether in accuracy or classification computation timehwislight advantage for the MCSHS
approach. Obviously, the selection provided by MCSHS iseselul at the price of a costly
learning time. However, this learning computation time banreduced as shown in [105].
Indeed, a way to speed up the histogram selection appropoksented in this paper. It consists
in considering during the learning stage a reduced neididmat or a combination of reduced
neighborhoods to compute LBP histogram. The results shatthis approach gives as good
results as those obtained with the full neighborhood whelducing the learning time, that
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reinforces the interest of the proposed MCSHS approach.

There is another way to reduce the times of the learning siggperating the selection of
the bin-uplets. Instead of operating the selection bin tollyi the combination of histogram
ranking and bin selection with strategy D, we might thinktthacan be done by operating
a selection of bin-uplets. This approach can reduce the suwflclassifications operated to
determine the optimal subspace in the multi color space.

4.4 Conclusion

This chapter presents the results obtained on the four deresi databases (New BarkTex,
OuTex-TC-00013, USPTex, STex) by LBP-based featurestsatein the framework of multi
color spaces. We first presented the impact factor of tharmlist measure between two his-
tograms for the proposed SpASL-score. We then presentedalitation of the proposed
SpASL-score. The obtained results show that the SpASLesogproves the classification re-
sults compared with the three other scores. The detailadtsef®r the four of LBP-based
feature selection approach categories are then presentednalyzed. The results obtained
are very encouraging since the LBP-based feature selempiproaches proposed in this work
improve the rates of well-classified images compared topipecaches which consider a single
color space or the approach which does not perform any gatect

Finally, we have selected several approaches to analyzeabessing times of the learning
and classification stage. Our proposed approaches outpediter methods in the state-of-
the-art on three benchmark databases, however the conobishhistogram and bin selection
approaches are costly to compute due to a large classificsteéps operated.
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Table 4.8: Comparison between the well-classified imagesratached with the USPTex
database. The italic values indicate the results obtaiaeddon our implementation.

Reference Color space | Features Classifiers| Accuracy
SpASL & BS-(D) 9 color spaceg EOCLBP 1-NN 98.1
ASL & BS-(C) 9 color spaceg EOCLBP 1-NN 97.6
MCSHS-ASL 9 color spaceg EOCLBP 1-NN 97.6
MCSHS-SpASL 9 color spaceg EOCLBP 1-NN 97.4
MCSBS-Occurrence, 9 color spacey EOCLBP 1-NN 97.3
Fusion Color texture and
[261] RGB SVM 95.7
LBP-based features
MCSBS-Sparsity (A) 9 color spacey EOCLBP 1-NN 94.8
MCSBS-Sparsity (B) 9 color spacey EOCLBP 1-NN 94.7
[116] Luminance Local jet and LBP LDA 94.3
Quaternion-Michelson
[109] RGB 1-NN 94.2
Descriptor
Halftoning Local Derivative
[142] RGB 1-NN 93.9
Pattern and Color Histogram
MCSHS-Simba-2 9 color spaceg EOCLBP 1-NN 93.8
MCWS 9 color spaceg EOCLBP 1-NN 93.7
[260] RGB DRLBP 1-NN 89.4
[262, 115] Luminance Fractal descriptors LDA 85.6
[62] RGB Color angles 1-NN 88.8
) Local multi-resolution
[156] Luminance 1-NN 86.7
patterns
Mix color order
[47] RGB 1-NN 84.2
LBP histogram
[34] RGB LBP and local color contrast 1-NN 82.9
[259] RGB CLBP 1-NN 72.3
[131] L*a*b* Soft color descriptors 1-NN 58.0
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Table 4.10: Processing times of the learning stage for 8 8§ @s whose size is 64 64 pixels.

Learning stages (S)
Generation _
Selection| Total
from training | from validation
Approach
images images

No selection 48.0 - - 48.0
MCSBS-Occurrence 48.0 - 30.1 78.1
MCSHS-ICS 48.0 48.0 630.3 726.3
MCSHS-ASL 48.0 48.0 648.1 744.1
MCSHS-Simba-2 48.0 48.0 665.2 761.2
MCSHS-SpASL 48.0 48.0 701.8 797.8
MCSBS-Sparsity 48.0 48.0 143252.4| 143348.4
ICS & BS-(D) 48.0 48.0 144462.2| 144548.2

Table 4.11: Processing times for classifying 816 imagesselsize is 64< 64 pixels.

Classification stages (S)
Generation from testing
Decision| Total
Approach images

MCSBS-SparsityD = 754) 9.1 0.7 9.8
MCSHS-ASL (D = 27 x 256= 6912) 17.8 5.6 23.4
MCSHS-SpASL ) = 37 x 256 = 9472) 21.2 72 | 284
MCSHS-Simba-2 = 40x 256= 10240) 23.2 7.8 31.0
MCSBS-Occurrencelf = 1502) 30.3 1.2 31.5
MCSHS-ICS (O = 42 x 256= 10752) 24.3 8.2 325
ICS & BS-(D) (D = 11457) 31.4 9.1 | 405
No selection D = 81x 256= 20736) 48.0 15.8 63.8
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Table 4.12: The summary of selected approaches.

Time
Approach Rate| Learning| Classification
ICS & BS-(D) 89.0{ 39h 40.5s
MCSHS-ICS 88.0| 726 s 325s
MCSBS-Occurrence 87.8 | 78.1s 315s
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Conclusion and perspectives

In this work we present our research on feature selectiosdpervised color texture classi-
fication problem. The main contribution is the developmendifierent strategies for LBP
histogram and LBP bin histogram selection in the framewdi& imulti color space.

We briefly summarized our contribution in the following:

* In chapter 1, the current state-of-the-art of color texttlassification in supervised con-
text was organized in order to provide a quick and compaatvoew for the reader. The
principal families of color spaces have been presented dswée main color texture
descriptors. The LBP operator and its variants to color Hzeen discussed. We in-
troduced several key concept of supervised texture cleasdn such as: the context,
the commonly supervised classifier and the evaluation ndsth&everal color texture
databases used to carried out in the experiments have baewed.

* In chapter 2, the literature review of feature selectiorthods related to our research
have been introduced. The taxonomy of feature selectiohadstis briefly reviewed
according two main axes: the learning contexts and the atialustrategies. Two main
ranking-based approaches are briefly reviewed. These agpes can be achieved by
associating a score for each feature or by applying an atgorwhich gives weights
for a feature subset. Then, the feature selection methqulgeddo LBP are discussed
depending on two groups: LBP bins selection and histogrdetisen. We present our
first contribution in this chapter by proposing a novel hggon score which is based on
the sparse similarity matrix.

* In chapter 3, a multi color space approach is designed for texture classification. The
textures are characterized by EOCLBP extracted from imegésd inNg = 9 different
color spaces and the corresponding histograms defined ietertare feature space. The
most discriminating color texture features have then bedected thanks to a feature
selection procedure performed during a supervised leguiive extended the LBP his-
togram selection and LBP bin selection from a single colacsgo multiple color spaces
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by two approaches MCSHS and MCSBS. Two strategies of sefeate then proposed
by the combination of histogram ranking and bin selectiorortder to show the contribu-
tion of the proposed approaches, we presented the resute dtew BarkTex database
in a single color space and in multiple color spaces.

* In chapter 4, all proposed methods in this thesis are etedumn several benchmark tex-
ture databases. We first study the impacts of several mehbis®gram distances to
select the relevant ones. We then validate the SpASL-saofews benchmark texture
databases. The results show that this score improved thsifatation performance in
a single and multiple color spaces. The comparison of ¢leag8on results by different
approaches of bin selection and histogram selection asepred and compared with
those obtained in the state-of-the-art. The results obthvith the proposed approaches
are very encouraging since these methods improve the ratgsaced to the approaches
which consider a single color space or the approach whicls doé perform any se-
lection. We then compared the processing time of the prapapproaches in order to
find a compromise between the performances and the time gzingeof the proposed
approaches.

Based on the results presented in this thesis, we are ppeaueral perspectives for future
research directions. The further experimentations cae&leed in the short term perspective:

» Although the combination histogram ranking and bin seéb&chas outperformed other
methods, it introduces a few limitations about the time psstng which should be re-
duced in the future work. By the first observation, we can meprthe proposed strategy
D by the bin-uplet selection (c.f section 3.6). This will ueg the number of classification
operations to determine the optimal subspace from 2073660 2

* In the current work, based on the general graph-presefesigre selection framework,
we proposed to use the sparse similarity matrix baseld @maphs for histogram selec-
tion, there are other kinds of graphs (el8.graph) that can also be used under general
graph-based feature selection framework. It is intergsiininvestigate whether using
other kinds of graphs can also lead to performance impromeme

» Motivated from the developments and utilizations of thiéedent distances to measure
similarity between two histograms by the SpASL-score, thgarative work empiri-
cally should be explore in order to address the issue: Whigtiarnkce is appropriate for
histogram selection ?

In the long-term perspective, there are two ideas can be@reqhl



» Many well-known color spaces exist and each one preseatsfgpproperties. Moreover,
an hybrid color space is defined by selecting a set of threse components from differ-
ent color space and used in color pixel classification foisggamentation task [256]. We
would like to extend this work by using the hybrid color spat®rder to compare the
results obtained in a hybrid color space and in a single cgace.

» The first aim of the proposed score is the improvement of A8are. Moreover, we
notice that the sparse similarity matrix can be construictas unsupervised way without
using class label, integrated into the ASL-score. In rgalite task of feature selection
became more challenging with the so-called “small labsl@aiple” problem, in which
the amount of data that is unlabeled could be much larger titr@mount of labeled
data. This allows us to extend this work in the other learcimigtext (semi-supervised or
unsupervised) in the framework of feature selection.
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Appendix l \

A summary of studies on color texture
classification

Table[A.1 summaries the different color texture classificatpproaches experimented on the
four texture databases presented in se¢fionl1.2.4:

- The first column of this table gives the name of the autheryiar of publication and the
reference.

- The second column mentions the color texture features ingbeé experimentation.

- The third column gives the color spaces used in the expetimtien.

- The fourth column presents the name of the test suites.

- The last column indicates the classifiers used in the exqaariation.
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Table A.1: A summary of studies on color texture classifaati

Ref. Color texture features Color space used Database Classifier
Palm,
Gabor features RGB, HSL BarkTex 5-NN
2002 [12]
Pietikainen,
Image histogram, LBP, Gabor features RGB 11213 Outex-TC-00013 3-NN
2002 [56]
Munzenmayer
Sum and Difference Histograms RGB, HSV, L*u*v* BarkTex 1-NN
2002 [60]
Méaenpaa,
Image histogram, OCLBP RGB, HSV Outex-TC-00013 1-NN
2004, [13]
Palm,
Image histogram RGB L*u*v* BarkTex 5-NN
2004, [36]
Arvis Haralick features from color
RGB, HSVYG,C Outex-TC-00013 °-NN
2004, [41] co-occurence matrices.
Xu,
Wavelet features HSV, ll2l3 Outex-TC-00013 7-NN
2005, [54]

Continued on next page ...




Table A.1: A summary of studies on color texture classifaatontinued...

Ref. Color texture features Color space used Database Classifier
lakovidis,
LBP histogram HSV Outex-TC-00013 SVM
2005, [122]
Aptoula
Morphological covariance RGB, L*a*b*, YUV Outex-TC-00013 1-NN
2007, [232]
RGB, XYZ, xyz, Irg, L*u*v*,
Porebski Haralick features from color L*a*b*, Y'I'Q’, Y'U'V’, r*b*b* |
BarkTex 1-NN
2007, [136] co-occurrence matrices [11213, ReGgBE, REGEBE,
He,
LTP histogram RGB YGC Outex-TC-00013 3-NN
2009 [125]
Qazi
Color spectral analysis RGB, IHLS, L*a*b* Outex-TC-00013 1-NN
2011, [126]
Alvarez
Texton features HSI, HSV Outex-TC-00013 1-NN
2012, [127]

Continued on next page ...




Table A.1: A summary of studies on color texture classifaatontinued...

Ref. Color texture features Color space used Database Classifier
Backles
Fractal descriptors RGB Outex-TC-00013 LDA
2012, [117]
Cusano
Intensity-Color Contrast Descriptor RGB, HSV, L*a*b* 111213 Outex-TC-00013 1-NN
2013, [152]
Qazi
Color spectral analysis RGB, IHLS, L*a*b* 1112l3 Outex-TC-00013 3-NN
2013, [263]
Porebski Outex-TC-00013
E-OCLBP RGB, HSV, YUM1l2l3 1-NN
2013, [8] BarkTex

Continued on next page ...




Table A.1: A summary of studies on color texture classifaatontinued...

Ref. Color texture features Color space used Database Classifier
RGB, XYZ, UVW, HSV, LUYC,C,
b\Nrgby, Yc:bCr, L*Cuvhuv, L*U*V*
Haralick features from Y'IQ’, Y'U'V', HSI, HLS, Yxy;
Porebski
Reduced Size Chromatic l1rg, LChChy, 11SH1, , L¥a*b* Outex-TC-00013 1-NN
2013, [139]
Co-occurrence Matrices ACcicohcic2, LCchicrehehiche,
11SH3, L*Caphan, L*Swhuy, 11Ci213hi213
Y'Clghig: Y'Chvhhv: BuCrgbyhrghy
El Maliani Statistical multi-model Outex-TC-00013 Bayesian
RGB, HSV, L*a*b*
2014, [134] and geodesic distance STex Naives
Hammouche Outex-TC-00013
Fuzzy gray-level aura matrices RGB 1-NN
2015, [128] STex
Kalakech Outex-TC-00013
E-OCLBP RGB, HSV, YUM1l>l3 1-NN
2015, [9] BarkTex

Continued on next page ...




Table A.1: A summary of studies on color texture classifaatontinued...

Ref. Color texture features Color space used Database Classifier
Martinez Outex-TC-00013
Color contrast ocurrence matrix L*a*b* 5-NN
2015, [135] STex
Da silva
Corrosion-Inspired Texture Analysis RGB USPTex LDA
2015, [116]
Oliveira
Local jet space RGB USPTex LDA
2015, [155]
ahmadvand
Spatial filter banks RGB Outex-TC-00013 k-NN
2016, [129]
Florindo
Local connectivity index RGB Outex-TC-00013 LDA
2016, [264]
Guo Halftoning Local Derivative Pattern Outex-TC-00013
RGB 1-NN
2016, [142] and Color Histogram USPTex
Ledoux
Color morphological texture features RGB Outex-TC-00013 3-NN
2016, [130]

Continued on next page ...




Table A.1: A summary of studies on color texture classifaatontinued...

Ref. Color texture features Color space used Database Classifier
Outex-TC-00013
Ledoux
Compact descriptors color LBP RGB BarkTex 1-NN
2016, [47]
USPTex
RGB, XYZ, UVW, HSV, LUVYC,C,,
burgby, Y GCr, L*Cuvhuy, YXY;
Y'IQ’, YUV’ HSI, HLS, L*u*v*,
Three-dimensional adaptive
Sandid l1rg, LChiChyp, 11SH1, Outex-TC-00013
sum and difference SVM
2016, [66] _ ACcicaohcicz, LCchcrehchcte, BarkTex
histograms
|1SLH3, L*Cabhab; L*S.Nhuv;
Y’ I,thQ’ Y'Chvhy, BwCrgbyhrgby:
|]_C| 2|3h|2|3, L*a*b*, LMS, 010203
Outex-TC-00013
Bello-cerezo RGB, HSV, YUV, YCbCr, L*a*b*
Soft color descriptors USPTex 1-NN
2016, [131] YIQ, L*u*v*, XYZ l1l2l3
STex

Continued on next page ...




Table A.1: A summary of studies on color texture classifaatontinued...

Ref. Color texture features Color space used Database Classifier
Casanova Outex-TC-00013
Fractal descriptors RGB, L*a*b*, HSV, IHLS 11513 LDA
2016, [114] USPTex
Lan Outex-TC-00013
Quaternion-Michelson descriptors RGB 1-NN
2016, [109] USPTex
Naresh
Modified Local binary patterns RGB Outex-TC-00013 1-NN
2016, [148]
Cernadas Outex-TC-00013
Intensity texture RGB, L*a*b*, Lab2000HL, HSM1l»l3 1-NN

2017, [132]

USPTex




Appendix B

Application of LBP-based features for lace
Images classification

In the recent years, there is an increasing need to digitzeenm lace textile collections.
The aim is to preserve and promote the regional industriatdge by making available to
the public, designers and artists, large lace image dagab&alais’s International Center for
Lace and Fashion is a museum located at Calais in Francec@iiger preserves the history of
industrial lace production. The collection of lace corsdtabout 100,000 production samples
which are divided into 253 different volumes. In order toiststhe access to these databases, it
IS necessary to characterize the texture of lace.

In addition, lace is a soft and extensible material and cagasdy deformed which makes
the texture analysis a challenging problem. Moreover, tacgains a large range of decorative
motifs. Figure B.1 illustrates examples of lace with flowadaeometric decorative motifs.
This figure shows that lace is composed of two parts, a deeenaotif (1) on a basic pattern
2).

Although there is a wide range of decorative motifs, thera Isnited number of basic
patterns. So, we firstly propose to analyze the texture & lesic patterns. Figure B.2shows
examples of these lace basic texture patterns. It is intege® note that the figurés B.2 (a)-
(b) and (c)-(d) show basic textures that appear similaroalgh they have different shapes.
The lace texture analysis needs to firstly remove the backgrof the basic patterns since no
information about the texture is contained in the backgdoudue to orientation changes of the
laces, their texture has to be represented by rotationiaaslescriptors.

In texture analysis literature, the local binary pattersadgtors (LBP) are widely used.
However, the parameters of LBP descriptors have to be dprehwsen in order to reveal the
texture structure of lace images. In [265], the lace texisirepresented by descriptors based
on LBP histograms in order to classify lace basic patterrgeyTused the Fourier Transform
applied on LBP histograms, named LBP-HF![94]. Followingstivork, we propose to adjust
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Figure B.1: Examples of lace images in collection with getsroelecorations (a) and flower

(b).

the parameters of LBP descriptors in order to improve textepresentation in the lace image.

Preprocessing step and feature extraction

The specificity of lace samples of museum registers is tleastanned images contain paper
background. In order to characterize the lace texture netessary to segment the images to
remove background and consequently only keep the mat&hal well-known Otsu’s method
is then used for this purpo@%]. Features are then ¢ett&iom those processed images in
order to analyze the different textures.

Preprocessing step

Note that before the image processing step, color imagesasformed into gray level images.
Otsu’s segmentation method assumes that the image conairggoups of pixels following a
bi-modal histogram. It then calculates the optimum thr&skeparating the two groups so that
their combined spread (within-class variance) is minirkaure[B.3 shows lace image before
processing (a) and after processing (b). Figurée B.3 (d) shtbat background mode has been
removed from the histogram B.3 (c).



Figure B.2: Similarity between basic pattern of laces (g)and (c)-(d).

Feature extraction

In order to represent the texture of lace in the images, wega®to use LBP descriptors. The
definition of the original LBP operator has then been gemadlto explore intensity values of
points on a circular neighborhoods. Thus, IsBPis able to take any radiug and? neighbors
around the central pixel, using a circular neighborhood. &woinput image, texture statistics
are obtained from LBP codes of all pixels represented by tadmiamH. Histogram bins are
denoted byH(q),n=0,1,...Q — 1, whereQ = 2”. In order to extract texture features that are
invariant to rotation, Discrete Fourier Transform (DRT)s applied on thé.BP histogram:

Q-1

V(k) = S H(a) xexp KYQ o<k<Q-1 (B.1)
q=0

The extracted features denoteflP-HF are obtained by the magnitude spectrum and given
by the equatiom F (k) = 4/V (k) x V (k) whereV (k) is the complex conjugate bf(k). HF =
[HF(0),...,HF (Q—1)]T is the rotation invariant feature vector which will be usedtexture
analysis.

It is interesting to note that LBP-HF features are generhtethe LBP, ¢ descriptors and
their performance depends on paramefRrand P which have to be appropriately adjusted.
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Figure B.3: Example of laces tissues before and after thgenperocessing (a)-(b), and their

histograms (c)-(d).

Figure[B.4 illustrates LB®s image (a) and its histogram (b).
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Figure B.4: LBR g image (a) and its histogram (b).

200

250



Lace images classification

In order to assess the relevance of the extracted featuegsropose to measure the classifica-
tion performances of lace images obtained with these featusing 1-NN classifier.

Experimental setup

We consider a small labeled database which consists of 488ambelonging to 41 classes
of basic pattern laces (see figure IB.2). Each class is cordpafsé2 images whose size is
(150 x 150) pixels. The considered images are firstly processedtiar o eliminate the paper
background. The LBP-HF features are then extracted fromdhsidered images.

In the supervised context, we need a databad¢ dfsses with a learning set and a test-
ing set. We considered the 1-NN algorithm due to its perferteaand simplicity. The image
dataset is divided into training and testing sets. For eaa) we randomly select 6 images
for training and 6 ones for testing per class. This processpgated 20 times in order to
evaluate classification performances using the crosdatadin technique. The classification
performance rate is calculated by comparing the predideestdabels obtained after applica-
tion of classification algorithm with the true class labels.

Classification results

We propose to find the appropriate valuefodnd?P which condition the performance of LBP-
HF features. The classification performances of the 1-NNrétlgn are computed with differ-
entvaluesofR € {1,2,3...,14 and? € {4,8,12, 14,16, 2Papplied on images after processing.
Figure[B.5 displays accuracy for these different values.
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Figure B.5:ACvs. Rfor different values oP after image processing step in supervised context.



From this figure, we can see that the highest accuracy isr@atavherk = 6 for all values
of P. Table[B.1 summarizes the performance of LBPyplgF We can notice that their value
change slightly when the values Bfare higher than 4, this value being the spatial resolution
of a lace thread. So, we s&t= 6 and? = 8 hereatfter.

Based on these adjusted valuesiband P, we compare the classification performances
of 1-NN algorithm applied on the database before and aftagamnprocessing (Table B.2).
This table confirms that the elimination of the paper backgtbsignificantly improves the
classification performances.

Table B.1: Classification performances after image pracgsstep for different numbers of
neighborsP with R = 6.

LBP-HFp ¢ | Accuracy

P=4 93.4

P=8 98.8

P=12 98.9

P=16 99.0

P=20 98.9

P=24 99.0

Table B.2: Classification performances before and aftegenaocessing step with LBP-HE.

Feature | Before processing After processing

LBP-HFsg 6 95.2 98.8

In addition the classification performances obtained tedakhis tuning are clearly higher
(98.8) than those reached in [265] (92.5).



Appendix C

Supplementary results

Table[C1[C.P and_C.3 present the classification obtainedB®f histogram selection ap-

proaches by different histogram score in a single color esam in multi space on Outex-

TC-00013, USPTex and STex respectively. The first columicatds the color space used to
code image. The second column represents the results whexlewtion is applied. The third

column is divided into four sub-columns corresponding ®Hhistogram score used.
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Table C.1: The comparison of classification obtained of LBRRdgram selection in a single
color space and in multi space without and with histograract&n approaches on the OuTex-
TC-00013 database. The value in boxes represent the besofatained with each color space
and the boldface indicates the best rate obtained of eacbagp

Without Histogram selection
Color spaces selection ICS Simba-2 ASL SpASL

Rate| 6 | Rate| 5 | Rate | 6 | Rate | 6 | Rate | &
RGB 92.9| 9| 929 | 9 | 929 | 6 | 93.2 | 8 8
rgh 87.1| 9| 87.1| 9 4| 874|8|874|6
11213 88.5| 9 8|885|9|887|8|885]|9
HSV 90.4| 9 | 91.0| 3 | 904 | 9 7 7
bur gby 89.6| 9| 89.9| 9| 8999 8 8
HLS 92.4| 9| 924 | 9 | 924 | 9 6 6
I-HLS 89.7| 9| 89.7| 9| 89.7| 9| 89.7| 9 7
HSI 92.9| 9 | 929 | 9 | 929 | 9 |(93.1]| 8 |[93.1| 8
YGC 89.6| 9| 896 | 9 | 896 | 9 8 8

| 908 91.0 90.4 91.0 91.1

Average in

+ 9| + 8 | + 8| + 7|+ 7
single space

2.0 2.1 1.9 2.1 2.1
Multi spaces| 95.0 81| 95.3 | 59| 95.0 | 79| 95.3 | 62 62




Table C.2: The comparison of classification obtained of LBRRdgram selection in a single
color space and in multi space without and with histogramac&n approaches on the USPTex
database. The value in boxes represent the best ratesaabtaitihh each color space and the
boldface indicates the best rate obtained of each approach.

Without Histogram selection
Color spaceg selection ICS Simba-2 |  ASL SpASL

Rate| | Rate | | Rate| 6 | Rate | 6 | Rate | &
RGB 93.0| 9| 933 | 5| 93.1| 8 |[93.6/| 6 ||93.6/| 6
rgb 82.5| 9 38259 3 3
11213 84.6| 9 | 941 | 3 |84.6| 9 |[94.1]| 3 |[941]| 3
HSV 88.1| 9 | 922 | 7 |881| 9 3 3
bur gby 85.1| 9| 949 | 3 |851| 9 |[949| 3 3
HLS 87.2| 9| 916 | 7 [872]| 9| 944 | 4 3
I-HLS 88.0| 9| 925 | 7 | 88.0| 9| 950 | 4 3
HSI 88.1| 9| 926 | 7 | 881| 9 |[949 | 3 ||949 | 3
YGC 85.3| 9 3|853|9/[957| 3 3

| 896 92.9 86.9 94.0 94.1

Average Iin

+ 9| + S | & 9| & 4 | 4 3
single space

3.0 1.8 3.0 1.8 1.8
Multi spaces| 93.7 | 81| 93.7 | 40 | 93.8 | 80 41| 97.4 |31




Table C.3: The comparison of classification obtained of LBRRdgram selection in a single
color space and in multi spaces without and with histograecten approaches on the STex
database. The value in boxes represent the best ratesaabtaitihh each color space and the
boldface indicates the best rate obtained of each approach.

Without Histogram selection
Color spaces selection | ICS Simba-2 ASL SpASL

Rate| 6 |Rate| 6 | Rate| 6 | Rate | § | Rate | &
RGB 91.9| 9 | 91.9| 9 51932|5|932|5
rgb 85.2| 9 [85.2| 6 | 85.6 | 8 5 5
11213 82.8| 9 [ 89.6| 4 | 859 | 6 |[91.3]| 3 |[91.3| 3
HSV 88.5| 9 [ 90.0| 7 | 91.8 | 4 3 3
bur gby 81.5| 9 | 90.0| 4 | 845 | 7 3 3
HLS 89.6| 9 [90.6| 7 | 922 | 5 3 3
I-HLS 90.6| 9 | 91.3| 8 4940 | 3| 940 3
HSI 89.4| 9 | 90.6| 7 |[93.6/]| 3 ||93.6/| 3 ||93.6| 3
YGCr 82.2| 9 | 895| 4 | 886 | 5 3 3

| 89.6 90.5 90.0 92.4 92.4

Average in

+ 9 | + 6| + 5| + 4 | 4 4
single space

3.0 1.9 3.9 1.9 1.9
Multi spaces| 93.3| 81| 94.1| 47| 95.8 | 31| 96.1 | 38 32
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Abstract

Texture analysis has been extensively studied and a witstyaf description approaches have
been proposed. Among of them, Local Binary Pattern (LBPg¢dadn essential part of most
of color image analysis and pattern recognition applicetidJsually, devices acquire images
and code them in thRGBcolor space. However, there are many color spaces for exgtas-
sification, each one having specific proprieties. In ordeavioid the difficulty of choosing a
relevant space, the multi color space strategy allows usiagroperties of several spaces si-
multaneously. However, this strategy leads to increasatineber of features extracted from
LBP applied to color images. This work is focused on the disi@mality reduction of LBP-
based features by feature selection methods. In this framewe consider the LBP histogram
and bin selection approaches for supervised texture Gtzggn. Extensive experiments are
conducted on several benchmark color texture databasey. ddmonstrate that the proposed
approaches can improve the state-of-the-art results.

Keywords: Texture classification, color spaces, LBP operator, feagelection, histogram
selection, bin selection, supervised learning.
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Résumeé

L'analyse de texture a été largement étudiée dans la littérat une grande variété de de-
scripteurs de texture ont été proposés. Parmi ceux-ci, sbinaires locaux (LBP) oc-
cupent une part importante dans la plupart des applicatdbmsgerie couleur ou de recon-
naissance de formes et sont particulierement exploités @snproblemes d’analyse de tex-
ture. Généralement, les images couleur acquises sonsegpées dans I'espace colorimétrique
RGB Cependant, il existe de nombreux espaces couleur powadsifitation des textures, cha-
cun ayant des propriétés spécifiques qui impactent lesrpeafaces. Afin d’éviter la difficulté
de choisir un espace pertinent, la stratégie multi-espadear permet d’utiliser simultanément
les propriétés de plusieurs espaces. Toutefois, cettégigaconduit & augmenter le nombre
d’attributs, notamment lorsqu’ils sont extraits de LBP lappés aux images couleur. Ce travail
de recherche est donc axé sur la réduction de la dimensioesfgmte d’attributs générés a
partir de motifs binaires locaux par des méthodes de séfedtattributs. Dans ce cadre, nous
considérons I'histogramme des LBP pour la représentatsntextures couleur et proposons
des approches conjointe de sélection de bins et d’histagesmulti-espace pour la classifica-
tion supervisée de textures. Les nombreuses expérienceEemsur des bases de référence de
texture couleur, démontrent que les approches proposéesmeaméliorer les performances
en classification comparées a I'état de l'art.

Mots-clés Classification de textures, espaces couleur, opérately d¢ddection d’attributs,
sélection d’histogramme, sélection de bins, apprentessagervisé.
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