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Introduction

Texture analysis is one of the major topics in the field of computer vision and has many im-

portant applications including face recognition, object detection, image filtering, segmentation

and content-based access to image databases [1]. Texture classification can be defined as a step

to assign a texture image into one of a set of predefined categories. This step requires to define

a efficient descriptors in order to represent and discriminate the different texture classes.

In the past decades, texture analysis has been extensively studied and a wide variety of

description approaches have been proposed. Among these approaches, Local Binary Pattern

(LBP) proposed by Ojala et al. is known as one of the most successful statistical approaches due

to its efficacy, robustness against illumination intensitychanges and relative fast calculation [2].

It has been successfully applied to the applications as diverse as texture classification. In order

to encode LBP, the gray level of each pixel is compared with those of its neighbors and the

results of these comparisons are weighted and summed in order to give a binary number. The

obtained texture features is the LBP histogram whose bin count depends on the number of

neighbors. However, when the number of considered neighboring pixels increases, the feature

dimensionality will increase exponentially.

Texture analysis methods and descriptor like LBP were firstly designed for dealing with

gray-scale images. Otherwise, it has been demonstrated that color information is very impor-

tant to represent the texture, especially natural textures[3]. Several extensions of LBP to color

have been proposed and this leads to consider several LBP histograms to represent a texture.

The number of feature is so increase but only some of which arerelevant for texture classifica-

tion [4]. That is the reason why many approaches have been proposed to reduce the dimension

of the feature space based on the LBP histogram in order to improve the classification perfor-

mances. The following section presents the problem and goals of the thesis.
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Problems and goals

Usually, color images are acquired by devices that code the colors in theRGBcolor space.

However, the color of pixels can be represented in differentcolor spaces which respect different

properties. Many authors have compared the classification performances reached by these color

spaces in order to determine the “best” color space for texture analysis [5]. Nevertheless, the

synthesis of these works illustrates that the choice of the color space depends on the considered

texture images. Moreover, the prior determination of a color space which is well suited to the

considered class discrimination is still an open question.

We propose to consider a multi color space approach designedfor color texture classifica-

tion. Instead of searching the best color space for color image analysis, this approach propose to

combine different color spaces in order to improve the performances reached by classification

schemes. It consists in selecting, among a set of color texture features extracted from images

coded in different color spaces, those which are the most discriminating for the considered

color textures.

Feature selection is a procedure of finding a set of most compact and informative original

features [6]. It is known that some features describing a dataset can be either redundant or

irrelevant. They can decrease the performances of the classification. Moreover, removing such

useless features generally allow to decrease the processing time of the classifiers.

Thus, applying color LBP in multiple color spaces will tend to produce high-dimensional

feature vectors with irrelevant features. Thus, a dimensionality reduction method is needed

to address this problem. Many authors have attempted to obtain more discriminative, robust

and compact LBP-based features in order to reduce feature space dimensionality. The first

strategy consists in identifying the most informative pattern groups based on some rules or the

predefinition of patterns of interest. The second strategy consists in applying feature selection

methods in order to find the most discriminative patterns [7].

Porebski et al. firstly proposed a different approach which selects the most discriminant

whole LBP histograms [8]. In this approach, the most discriminant LBP histograms are selected

in their entirety, out of the different LBP histograms extracted from a color texture. Recently,

Kalakech et al. propose to adapt the supervised Laplacian score used in the literature for feature

ranking and selection, to select and rank histograms in the supervised context, namely “Adapted

Supervised Laplacian” (ASL-score) [9].

Contributions

In this thesis, we mainly focus on the LBP histogram and bin selection approaches in a multi

color space framework. Our contributions are summarized asfollows.
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• The first contribution is the proposed novel histogram score, namely “Sparse Adapted

Supervised Laplacian” (SpASL-score). We propose to extendthe ASL-score to SpASL-

score by using a sparse representation.

• Our second contribution is the extension of the LBP histogram selection proposed by

Porebski et al. for a single color space to multiple color space. Applying a multi color

space strategy avoids the difficulty of choosing a relevant color space. However, the

LBP descriptor produce high dimensional feature vectors, especially when several color

spaces is combined to represent the texture. A selection method helps to reduce the

number of LBP histograms in order to reduce the processing times and improve the clas-

sification.

• The third contribution is the extension to color of the LBP histogram bin selection pro-

posed by Guo et al. for a gray level analysis to color by applying a multi color space

strategy [10]. Instead of selecting the most discriminating histograms, this approach se-

lects the most discriminate LBP histograms bin.

• The fourth contribution is the introduction of the combination of bin and histogram selec-

tion in the multi color space framework. The histogram selection step selects the whole

relevant histograms which are used for the classification step. We observe that, the se-

lected histogram might contains some redundant or irrelevant LBP histogram bins and

the filtered histogram might contains some informative bins. This approach is achieved

by firstly applying a ranking histogram method and then by applying a bin selection

procedure.

Structure of the thesis

The remainder of this thesis is organized as follows:

The first chapter introduces several notions related to the color texture classification. The

principal families of color spaces are presented as well as the main color descriptors. The LBP

descriptors and its extensions to color are briefly reviewed. We introduced the general frame-

work of texture classification in different learning context. We focus on the supervised color

texture classification by presenting the most commonly classifier used in this context. Next,

several popular benchmarks datasets are introduced for color texture classification tasks that

will be used to carry out experiments in the following chapters.

The second chapter summarizes basic principles of the feature selection by introducing its

general framework. The categorization of feature selection methods which are based on the

9



evaluation strategies and the learning context are then discussed. Several notations and termi-

nologies used over the thesis are provided in this chapter. Two main ranking-based approaches

are briefly reviewed. These approaches can be achieved by associating a score for each feature

or by applying an algorithm which gives weights for a featuresubset. Then, two feature selec-

tion approaches applied to LBP are discussed: LBP bin selection and LBP histogram selection.

This chapter also presents our first contribution by introducing the SpASL-score for histogram

selection.

The third chapter is devoted to our main contribution of thisthesis. The contribution of

the multi color space strategies for texture classificationare firstly presented. The extensions

of histogram selection and bin selection to a multi color space framework is then introduced.

Next, two novel strategies of combination of histogram ranking and bin selection are proposed.

The results of these approaches are first illustrated on a benchmark color texture database in a

single and multiple color spaces.

The comparison of the color texture classification results reached by different proposed ap-

proaches of bin selection and histogram selection are presented in chapter 4. The experimental

evaluation is carried out on four benchmark texture databases in the multi color space frame-

work. We first study the impact of the distance used for measuring the similarity between two

histograms during the computation of the proposed SpASL-score. The results obtained by this

score is then compared with other scores. Next, the results of different proposed approaches

are compared with the results obtained in the state-of-the-art.

Finally, we conclude this thesis by highlighting our contributions and discussing possible

future work.
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Chapter 1
Color texture classification

Contents
1.1 Color texture representation . . . . . . . . . . . . . . . . . . . . . .. . . 12

1.1.1 Color spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.2 Color texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.3 Color texture features . . . . . . . . . . . . . . . . . . . . . . . . . .18

1.1.4 Local binary patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2 Supervised texture classification . . . . . . . . . . . . . . . . . .. . . . . 32

1.2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.2.2 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.2.3 Evaluation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.2.4 Benchmark color texture image databases . . . . . . . . . . .. . . . 39

1.2.5 Review of the considered databases . . . . . . . . . . . . . . . .. . 44

1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

This chapter provides some background concepts for color texture classification. Sec-

tion 1.1 outlines the color texture representation with theintroduction of color spaces, the

definition of color texture and the way to characterize it thanks to color texture features. Sev-

eral notions of classification are then introduced in section 1.2: a brief review of the most

commonly used classifiers and evaluation methods is provided in this section. Four bench-

mark texture databases usually used in the framework of color texture classification are also

presented. Finally, section 1.3 contains a summary of the key topics presented in this chapter.
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1.1. Color texture representation

1.1 Color texture representation

Color is an important element in human vision and so in digital image processing. Color images

contain more discriminative informations than grayscale images and it has been demonstrated

that considering the color in the images significantly improves the performance for many tasks

in pattern recognition [3, 11, 12, 13, 14, 15, 16]. To characterize the color texture, it is necessary

to take an interest in the representation of color and texture in the images. This section thus

firstly presents the different classical color spaces used in image analysis, the definition of color

texture and reviews the main color texture features used in color texture analysis.

1.1.1 Color spaces

Color is the perceptual result of light in the visible regionof the electromagnetic spectrum. The

human retina has three types of color photoreceptor cells, which respond to incident radiation

with somewhat different spectral response curves [17]. Because there are exactly three types

of color photoreceptor, three numerical components are necessary and theoretically sufficient

to represent a color. A digital color image is thus composed of three component images and

the color of each pixel is specified in a three dimensional color space, which defines a color

coordinate system. That is the reason why most of color images are acquired by devices that

code the colors in theRGBspace. A point in this space is characterized by the three components

of the corresponding pixel which are the red (R), the green (G) and the blue (B). Figure 1.1

illustrates an example of a color image (from the USPTex database that will be introduced

in section 1.2.4) with its three corresponding component images. Other color spaces can be

computed from theRGBspace by means of either linear or nonlinear transformations and in the

last few years, numerous color spaces, which take into account different physical, physiologic

and psycho-visual properties have been defined. They can be grouped into four families [18]:

1. Theprimary color spacesare based on the trichromatic theory, which assumes that it

is possible to match any color by mixing appropriate amountsof three primary colors.

They can be divided into:

• the real primary spaces, for which the primary colors can be physically reproduced.

TheRGBspaces use the red, the green and the blue as primary colors and are device

dependent.

• the imaginary primary spaces, whose primaries do not physically exist. Each of

theRGBspaces can be transformed into the single CIEXYZvirtual primary space

which is device independent [19].

Primary spaces can be normalized by dividing each color component value by the sum

12



CHAPTER 1. COLOR TEXTURE CLASSIFICATION

Red image component

Green image component

Color image

Blue image component

Figure 1.1: An example of a color image coded in theRGBcolor space and its three corre-

sponding component images.

of the three ones in order to obtain normalized coordinate spaces, like thergb [20] and

xyz[19] color spaces.

2. The luminance-chrominance color spacesare composed of one component that rep-

resents an achromatic information (here called “luminance”) and two components, that

quantify a chromatic information (here called “chrominance”). They can be grouped into

the following subfamilies:

• theantagonist (or opponent color) spaces, which aim at reproducing the model of

the opponent color theory proposed by Hering, likeAC1C2 [21] andbwrgby [22].

• the television color spaces, which separate the achromatic signal and the chromatic

signals for the television signal transmission, likeYIQ, YUV andYCbCr [22].

• theperceptually uniform color spaces, which propose a metric to establish a corre-

spondence between a color difference perceived by a human observer and a distance

measured in the color space, likeL∗a∗b∗ , L∗u∗v∗ andUVW [19].

• others luminance-chrominance color spaces, like Irg [23], CIE Yxy [19] and the

Carron’sLCh1Ch2 color space [24].

3. Theindependent axis color spacesresult from different statistical methods (like Karhunen-

Loeve Transform (KLT) or Principal Component Analysis (PCA), which provide the less

13



1.1. Color texture representation

correlated components as possible, like the well-knownI1I2I3 color space proposed by

Ohta [23].

4. Theperceptual color spacesattempt to quantify the subjective human color perception

by using the intensity, the hue and the saturation components. They can be categorized

into:

• thepolar (or cylindrical) coordinate spacesthat correspond to expressions in polar

coordinates of the luminance-chrominance components, likeACC1C2hC1C2, L∗C∗abhab,

bwCrgbyhrgby, YCIQhIQ, YCUVhUV andLCCh1Ch2hCh1Ch2.

• the perceptual coordinate spacesthat are directly evaluated from primary color

spaces, like theHSI triangle model (orM-HSI modified triangle model), theHSV

hexcone model, theHLS double hexcone model [25], theI -HLS improvedHLS

model [26] and the CIEL∗S∗uvhuv space [19].

(a) RGB (b) L*a*b* (c) (d) HSV
1  2 3
I  I  I

Figure 1.2: An example of an image coded in different color spaces.

A color image can thus be represented in these different color spaces. Figure 1.2 illustrates

the image of leaves of the figure 1.1 that has been coded in theRGB (a), L*a*b* (b), I1I2I3
(c) andHSV (d) spaces. Figure 1.3 illustrates the 3D distribution of this image in these color

spaces. Under the human vision system, theRGBspace reflects the leaves in the real world

better than the other. In these 3D distributions, each axe represents one of the three color com-

ponents, coded in this example from 0 to 255. Each pixel of theimage is coded by three color

component values according to the considered color space. The pixels with same coordinates

are grouped thanks to a quantization scheme and representedthanks a ball. The number of

pixels belonging to each group is visualized by the size of ball and the color of the ball rep-

resents the mean color of the pixels of the group. Visually and graphically, we can see that

the different color spaces give different representationsof the same image. These differences

could be interesting since they allow to analyze a same texture under different viewpoints, that

increases the possibilities to accurately represent the color textures.
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Figure 1.3: Color distributions of the image of leaves codedin four color spaces.

As, there is a wide range of color spaces with different properties, we have proposed an

approach detailed in chapter 3 which uses the properties of several color spaces in the following

of this thesis. In this approach, images are first coded in different color spaces, then color

texture features are extracted from these so coded images tocharacterize the texture.

Before representing the features which allow to characterize the color textures in the sub-

section 1.1.3, we propose to briefly introduce this and its principal properties.
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1.1. Color texture representation

1.1.2 Color texture

1.1.2.1 Definition

Texture image usually contains a material or an object whichpresents a texture information.

Figure 1.4 illustrates an example of four color texture images from the USPTex database that

represent textures of stone, brick, sand and granit. So, texture is an important element of human

vision.

(a) Texture of stone (b) Texture of brick (c) Texture of sand (d) Texture of granit

Figure 1.4: A variety of textures

The human visual system is extremely effective at characterizing textures using adjectives

such as smooth or rough, fine or coarse, granular or fibrous, isotropic or with preferred direc-

tions, regular or irregular, contrasting and so on. However, it is difficult to define what is texture

while it is easy to identify by a human. There is no definition of a texture that would universally

be recognized and accepted, and many definitions have been proposed in the computer vision

literature:

- “Texture is a fundamental characteristic of the appearance of virtually all natural surfaces

and plays a major role in computer vision systems. Image texture may provide information

about the physical properties of objects, such as smoothness or roughness, or differences in

surface reflectance, such as color” [27].

- “Texture can be viewed as a global pattern arising from the repetition of local sub-

patterns” [28].

- “A region in an image has a constant texture if a set of local statistics or other local prop-

erties of the picture function are constant, slowly varying, or approximately periodic” [29].

- “Texture can be defined as the set of local neighborhood properties of the gray levels of

an image region” [30].
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CHAPTER 1. COLOR TEXTURE CLASSIFICATION

- “A color texture can be regarded as a pattern described by the relationship between its

chromatic and spatial distribution” [11].

The various definitions of texture leads to a variety of different ways to analyse texture.

How to efficiently represent the texture patterns is a fundamental problem in computer vision

and this problem depends on the observation conditions of the considered texture.

1.1.2.2 Influence of the observation conditions

The characterization of a texture depends on several parameters including the perception level

and the acquisition conditions.

Concerning the perception level, there are in practice two main observational scales on

which a texture can be defined [31]:

- Microscopic observation reveals the irregular or disordered structure of pixel colors

within the image. The texture is considered on the reduced neighborhood of a given pixel.

It is then defined using a probabilistic or statistical approach. The fine structure of plastic illus-

trated in Figure 1.5a corresponds to a microscopic texture.

- Macroscopic observationinvolves the concept of either an elementary pattern or a priv-

ileged direction. In the presence of an elementary pattern,also known as texton [32], the

macroscopic texture is viewed as a repetitive or periodic spatial distribution of this pattern.

The macroscopic texture is then defined using a deterministic or structural approach. This is

illustrated by the image in figure 1.5b, which shows the plastic image in which the elementary

pattern is a block that is repeated in a structured manner.

Besides the perception level influences the characterization of texture, texture information

can also depend on the acquisition conditions. Indeed, whenthe conditions differ from an ac-

quisition to another, the resulting images may reveal different textures. The image in figure 1.5c

represents a change in orientation of the texture of the figure 1.5b with a 90-degree rotation.

The image in figure 1.5d illustrates an illumination change by using the simulated illumination

source 4000K fluorescent TL84, instead of the horizon light source.

Acquisition conditions and levels of perception may thus influence the choice of the features

to be used to describe the texture information. For example,an irregular texture will be better

characterized by statistical features, whereas a regular texture will be well described in terms of

frequency-based and geometric features. Feature that are invariant to rotation or illumination

change can also be relevant in certain applications.
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1.1. Color texture representation

(a) Microscopic observation of plastic (b) Macroscopic observation of plastic

(c) Change in orientation of plastic (d) Change in illumination of plastic

Figure 1.5: Different observation conditions of a texture from the OuTex database (that will be

introduced in section 1.2.4).

In the next subsection, we propose to review the main color texture features which have

been used in the framework of color texture analysis.

1.1.3 Color texture features

Color and texture are two naturally related characteristics of the image, but these characteristics

are often analyzed separately. Many authors demonstrate that texture features incorporating

color information can improve the discrimination (especially when dealing with natural tex-

tures observed under fixed illumination conditions) [11, 12, 33]. According to Mäenpää and

Pietikäinen, the color texture analysis can be roughly divided into two categories as seen in the

next subsection [13].

1.1.3.1 Color and texture combination

Two main categories of approaches can be considered to combine the color and the texture

information: methods that process color and texture information separately and those that con-

sider color and texture jointly [13, 34].

In the first approach, texture features representing the spatial distribution of the luminance
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CHAPTER 1. COLOR TEXTURE CLASSIFICATION

image are used in conjunction with other features describing the color distribution in a given

color space [35, 36, 37]. Let us consider the general notation of a given 3D color space

(C1,C2,C3). Figure 1.6 illustrates this first approach where color and texture are separately

processed.

Color image Luminance image

C
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0
250

200
150

100
50
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150

C

1

2
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Color distribution in 

Features describing

 

the color distribution

the

features extracted
Texture

from the luminance image

C ,C  ,C1 2 3(               ) color space

Figure 1.6: Representation of color texture by extracting texture features from the luminance

image and by associated them with features describing the color distribution.

There exists other strategies for color and texture combination by incorporating the classi-

fier to compute the similarity between the texture feature vector and the color feature [35].

In the second approach, this is the distribution of the colorcomponents of the pixels that

is analyzed. It allows to jointly characterized the spatialand the color distribution. In the past

few years, several studies have been directed to the problemof joint representation of texture

and color and three different strategies have been proposed:

• The first one consists in evaluating the texture features within each color component of

an image (within-component relationship) independently,without considering the spatial

interactions between the levels of two distinct color components. In this case, the texture

features defined for luminance images are applied to each of the three color components

independently [38, 39, 35, 40]. Figure 1.7 illustrates thisapproach.

• The second strategy consists in considering the spatial distribution both within each color

component of a given color space and also between these different color components
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Figure 1.7: Representation of color texture by extracting features that are evaluated within each

component of the(C1,C2,C3) space.

(within and between-component relationship) [41, 42, 43, 44, 45]. Figure 1.8 illustrates

this strategy. Note that the texture features extracted from the component imageC1 and

C2 are different with those extracted from the component imageC2 andC1 by a several

descriptors [13].

• Finally, the third strategy consists in analyzing the spatial interactions between the col-

ors of pixels, that relies on considering a color order relation that defines the inferior-

ity/superiority between colors [46, 47].

The methods developed in the context of our work are based on the second strategy (fig-

ure 1.8). However, this strategy increases the number of attributes, especially when within and

between-component relationships are considered with one or more color spaces. The meth-

ods that we propose are therefore for the purpose of reducingthe dimension of attributes and

overcome this disadvantage.

Many features, initially defined for analyzing gray level images, have been extended to

one or several strategies of color and texture combination.We propose in the next section to

describe the main color texture descriptors, in the generalframework of color texture classifi-

cation, independently of the color and texture combinationstrategy.
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Figure 1.8: Representation of color texture by extracting features that are evaluated within and

between the components of the(C1,C2,C3) space.

1.1.3.2 Color texture attributes

Texture analysis has been a topic of intensive research and,over the years, a wide variety of

color description approaches for discriminating textureshave been proposed. A comprehensive

evaluation of color texture attributes is presented in [48,49]. Typically, texture attributes can be

divided into three categories defined in terms of geometrical, spatio-frequential and statistical

features [27].

• Geometrical features: These features take into account the structural and contextual of

the image. They are well adapted to describe the texture observed at the macroscopic

level. The geometrical description of a texture includes the extraction of several primi-

tives features (corners, edges, points, lines, curves or surfaces) and the placement rules

for those primitives. Zheng et al. proposed a set of specific geometrical features for color

textures that are sensitive to the regular texture of meat [50]. However, this type of fea-

tures does not allow to characterize the irregular textureswhich are usually found in the

natural images.

• Spatio-frequential features: The spatio-frequential features can be divided into three
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domains: spatial domain, frequency domain and spatio-frequential domain.

1. Spatial domain involves features which aim to characterize the texture in terms of

the number of transitions per unit area, in contrast to coarser textures. Cumani,

Laplace and Sobel filters are all examples of filters widely used for the detection of

color edges [51]. However, this kind of feature has never yetbeen applied to the

classification of color texture images.

2. Fourier transform or discrete cosine transform gives an alternative texture represen-

tation that is purely based in the frequency domain. These attributes are particularly

well suited to the case of images containing coarse textures, where there is consid-

erable continuity between the levels of each pixel color component. Since high

frequencies are restricted to local changes in component levels, it is possible to

express all the information present in the image using just asmall number of coef-

ficients, corresponding to low frequencies. Drimbarean et al. used the gray level

discrete cosine transform and its color extension to characterize textures in their

experiments [11].

3. Spatio-frequential domain involves features that combine the two different repre-

sentations previously discussed. The Gabor transform and the wavelet transform

are the most widely used in color texture classification, since they are effective for

the analysis of both macrotextures and microtextures. Several authors have inves-

tigated the use of Gabor filters on color images and showed that the consideration

of color texture features could improve classification results over those obtained

through the use of gray level features [11, 12, 52]. However,this method presents

two disadvantages: the need to set parameters for the filtersand the long compu-

tation time to characterize certain textures. Wavelet transform has the advantage

of giving a multiscale characterization of a texture by considering both global and

local information content within the image. Moreover, wavelet-based features have

parallels with the process of human vision, which performs asystematic frequency

decomposition of the images falling onto the retina [53]. Several authors have stud-

ied problems of color texture classification through the useof the wavelet trans-

form [54, 55]. In spite of the many advantages of this transform, Iakovidis et al.

revealed that the features obtained from wavelets are not always the most suitable

for texture characterization.

• Statistical featurescan be used to characterize any type of texture. For this kindof fea-

ture, a texture is defined in terms of its gray level or color variation in a neighborhood,

and it is the relationship between a pixel and its neighbors that is examined. A large

range of statistical features are used for color texture classification. These include image
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statistics, image histograms, chromatic co-occurrence matrices and sum and difference

histograms, local binary patterns. These different descriptors can be grouped into a num-

ber of categories based on their order, where the order of theattribute depends on the type

of spatial interaction between the pixels in question. Image histograms are an example of

first order statistical features. They describe the distribution of color component levels in

the input image [56, 13]. In contrast, co-occurrence matrices, for example, consider pairs

of pixels, which means that they are second order attributes. This descriptor, introduced

by Haralick et al. in 1973, was initially implemented for gray level images [57]. Since

the use of color can improve texture classification results,Palm proposed to extend the

concept of co-occurrence matrices to color images, starting from the definition of mul-

tichannel co-occurrence matrices proposed by Rosenfeld [58]. The Haralick features

obtained from the chromatic co-occurrence matrices have been used by different authors

in the context of color texture classification [11, 36, 59]. Sum and difference histograms,

which also belong to the second order strategy, have an almost identical discrimination

ability to the chromatic co-occurrence matrix, with the advantage that their calculation

are much less demanding in terms of memory requirements [60,43]. Another second

order descriptor is the color Local Binary Pattern, which has been used repeatedly by

many authors in their studies of the joint use of texture and color for image classification

purposes [61, 13, 62, 34, 47].

In the recent years, a various discriminative and computationally efficient local and global

texture descriptors have been introduced, which has led to significant progress in the anal-

ysis of color texture for many computer vision problems. Several of color texture analysis

methods based on global feature, include color Gabor filtering [52], Markov random field

model [63]. Some of the effective local feature methods are color Scale Invariant Feature

Transform (SIFT) [64], color Pyramid of Histograms of Oriented Gradients (PHOG) [65], Dis-

criminative Color Descriptors (DCD) [15], Three-Dimensional Adaptive Sum and Difference

Histograms (3D-ASDH) [66], Color Local Binary Pattern [61,13] and many more.

Among the proposed texture descriptors as shown in the tableA.1 of the appendix A where

a state-of-the-art of the color texture descriptors used inthe framework of color texture clas-

sification is presented, the Local Binary Pattern (LBP) operator is one of the most successful

descriptor to characterize texture images. The distinctive advantages of LBP are its ease of

implementation, its invariance to monotonic illuminationchanges and its low computational

complexity [67]. In the following, we will discuss the definition of LBP, its variants and its

extensions to color.
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1.1. Color texture representation

1.1.4 Local binary patterns

1.1.4.1 The original LBP descriptor

In the original definition of LBP, proposed by Ojala et al., the local neighborhood structure

used to characterize the texture around each pixel of the image is simply a set of pixels taken

from a square neighborhood of 3×3 pixels [2]. LBP features capture microscopic local image

texture. Figure 1.9 illustrates an example of the LBP computation for the pixel labeled as gray.
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Figure 1.9: An example of the original LBP computation.

The gray level values of each neighboring pixel is first thresholded by the value of the

central pixel, that allows to extract a binary vector of 8 bits. This binary vector is called “local

binary pattern”. For each neighboring pixel, the result of the comparison is set to one if its value

is greater or equal than the value of the central pixel, otherwise the result is set to zero. The LBP

code of the pixel labeled as gray is then obtained by multiplying the results of the thresholding

with weights given by powers of two and summing them up together. The histogram of the

binary patterns computed over a region is generally used as LBP feature.

The definition of the original LBP operator has then been generalized to explore intensity

values of points on a circular neighborhood. The circular neighborhood is defined by consider-

ing the values of radiusR andP neighbors around the central pixel. The LBPP,R(xc,yc) code

of each pixel(xc,yc) is computed by comparing the gray valuegc of the central pixel with the

gray values{gi}
P−1
i=0 of itsP neighbors , as follows:

LBPP,R(xc,yc) =
P−1

∑
i=0

Φ(gi −gc)×2i (1.1)

whereΦ is the threshold function which is defined as:

Φ(gi −gc) =







1 if (gi−gc) ≥ 0,

0 otherwise.
(1.2)

By modifyingR andP, one can compute LBP features for dealing with the texture atdif-

ferent scales. For example, LBP16,2 refers to 16 neighbors in a circular neighborhood of radius
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2. The LBP feature produces 2P different output values, and gives rise to a 2P-dimensional

histogram. Figure 1.10 shows examples of neighborhoods with different radii and numbers of

neighbors. The number of bins of the LBP histogram will be 256or 65536 if 8 or 16 neighbor-

ing pixels are considered, respectively.

0
1

2

3

46

(a) LBP8,1 (b) LBP16,2

Figure 1.10: Circular neighborhoods of the center pixel with different neighbors : (a) LBP8,1

and (b) LBP16,2

Although LBP has several advantages previously cited, the original LBP also has significant

disadvantages: it is sensitive to image rotation and noise,it captures only the very local structure

of the texture and fails to detect large-scale textural structures [68]. Since Ojala’s work, many

variants of LBP operator have been proposed in the literature to improve its robustness to noise

and increase its discriminative power and applicability todifferent types of problems including,

facial image analysis, biometrics, medical image analysis, motion and activity analysis and

content-based retrieval [69, 70, 71, 72, 73, 74, 75, 76, 77, 78].

1.1.4.2 The extensions of LBP

More recently, Liu et al., propose a detailed review of the LBP variant based on a gray scale

analysis which can be grouped into several categories [67].

• Traditional extensions of LBP: Ojala et al. observed that some LBP patterns occur more

frequently in texture images than others. They proposed to define the “LBP uniform

pattern” LBPu2
P,R which is a subset of the original LBP [4]. For this, they consider a

uniformity measure of a pattern which analyzes the number ofbitwise transitions from 0

to 1 or vice versa when a circular bit pattern is considered. Alocal binary pattern is called

uniform if its uniformity measure is at most 2. For example, the patterns 00000000 (0

transitions), 00011110 (2 transitions) and 11100111 (2 transitions) are uniform whereas

the patterns 00110010 (4 transitions) and 01010011 (6 transitions) are not. Figure 1.11

illustrates an example of uniform and non uniform LBP patterns where the black points

denote 1-bit and white points denote 0-bit. For the computation of the uniform LBP
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histogram, the uniform patterns are used such as each uniform pattern has an individual

code and the non-uniform patterns are all assigned to a separate code. The LBPu2
P,R has

(P(P−1)+3) output values compared with 2P of original LBP.

Non-uniform Uniform

00101100 01111000

Figure 1.11: An example of non-uniform and uniform patternsLBP

Another traditional extension of LBP was created to respondto the limit that the original

LBP descriptor is not rotationally invariant, which is a important requirement for many

real-world applications. If the image is rotated, the surrounding pixels in each neighbor-

hood will correspondingly move along the perimeter of the circle, resulting in a different

LBP value, except patterns with only 1-bit and 0-bit. Figure1.12 gives an example of

image with two different rotated versions. In order to address this limitation, Pietikäinen

et al. proposed a rotation invariant version LBPri
P,R of LBP by grouping together the LBP

that are actually rotated versions of a same pattern [79]. They also illustrate the 36 unique

rotation invariant LBP that can occur in the case ofP= 8.

The rotation invariant uniform LBP descriptor, LBPriu2
P,R is then proposed to improve the

rotation invariance and reduce the feature dimensionalitywhich is defined as follows [4]:

LBPriu2
P,R(xc,yc) =







∑P−1
i=0 Φ(gi −gc) if U(LBPP,R) ≤ 2,

P+1 otherwise.
(1.3)

whereU(LBPP,R) is a function to determine the number of bitwise changes in LBP

pattern from 0 to 1 (or vice-versa). The LBPriu2
P,R has (P+2) output values.

In summary, withP = 8 neighboring pixels, the feature dimensionality of the original

LBP8,R, LBPu2
8,R, LBPri

8,R and LBPriu2
8,R are 256, 59, 36, 10, respectively.

• Neighborhood topology and sampling: The traditional LBP method identifies a neigh-

borhood as a set of pixels on a circular ring. In order to increase the discriminative power,

many neighborhood topologies have been proposed, such as elliptical neighborhoods in

Elliptical Binary Patterns [80] and also generalized in [81] to parabolic, hyperbolic and

spiral neighborhood topologies.

The original LBP methods and several variants have also beenreviewed to only encode

local microtextures and be unable to capture nonlocal macrotextures. Patch-based LBP
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Rotate 45°

Rotate 90°

00001110

00111000

00011100

Figure 1.12: An example of the influence of image rotation on points in a circular neighbor-

hood.

variants, including the Local Binary Pattern Filtering [82], Multiscale Block LBP [83],

Three Patch LBP [84], Four Patch LBP [84], Pixel to Patch [70]and Median Robust

Extended LBP [75], aim to overcome this problem by integrating over larger areas.

• Thresholding and quantization: The original LBP operator is sensitive to noise due

to the thresholding operation that directly compares pixelvalues. Many authors have

proposed several LBP variants by changing the thresholdingscheme or the number of

quantization level to gain noise robustness and discrimination power, including Neigh-

borhood Intensity LBP [73], Improved LBP [85], Local MedianLBP [86] and Threshold

Modified LBP [87]. Among these approaches, the Local TernaryPatterns (LTP), pro-

posed by Tan et al., have achieved a great success [68]. In this approach, an additional

parameter is used to define a tolerance for similarity between different gray intensities to

be robust to noise and reduce the dimensionality. Each ternary is then split into positive

and negative parts, which are subsequently treated as two separate LBP component for

which histograms are computed and finally concatenated.

• Combining with complementary features: In order to improve the texture characteri-

zation, many authors have combined LBP with other complementary features. A rotation
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invariant measure of the local variance can be defined as [4]:

VARP,R =
1
P

P−1

∑
i=0

(gi −u) with: u=
1
P

P−1

∑
i=0

gi (1.4)

Ojala et al. propose to use the joint distribution ofVARP,R/LBPriu2
P,R for a better character-

ize of the local texture instead of using LBPriu2
P,R alone. Another combination can be found

as the fusion of LBP variants and Gabor features has been explored, with applications in

texture classification [88] and face recognition [89, 68]. Wang et al. combine Histogram

of Gradients (HOG) with LBP, performing a good result in human detection [90]. Hus-

sain and Triggs combine LTP and LBP [91]. Klare and Jain exploit the combination

of LBP and Scale Invariant Feature Transform (SIFT) for heterogeneous face recogni-

tion [92]. Roy et al., combine Haar and LBP features for an illumination invariant face

detection [93].

Among the local rotation invariant LBP features, LBP Histogram Fourier features (LBP-

HF) is proposed by Ahonen et al. to combine LBP and the Discrete Fourier Transform (DFT) [94].

Unlike the existing local rotation invariant LBP features,the LBP-HF descriptor is produced

by computing an LBP histogram over the whole region and then constructing rotationally in-

variant features from the histogram with DFT. In order to apply LBP descriptor for a specific

application, we used LBP-HF features for lace texture images classification in the beginning of

this work. The LBP tuning, including radius and number of neighbors, have been adjusted to

reveal the lace structure in [95]. This work is presented in appendix B.

A comprehensive literature survey introduced by Brahnam etal. has revealed the huge

diversity of LBP [96] that is confirmed by [67]. In comparisonwith other grayscale LBP

variants, color variants have received significantly less attention in the literature. The next

subsection details the different ways that have been proposed to extend LBP to color.

1.1.4.3 The color LBP

The original LBP computation is based on grayscale images. However, it has been demon-

strated that color information is very important to represent the texture, especially in natural

textures [3, 11, 12, 97, 98]. In literature, the extension ofLBP to color follows the strategies of

color and texture combination presented in section 1.1.3.1.

• In the first strategy, the original LBP operator is computedfrom the luminance image and

combined with color features. For example, Mäenpää or Ning proposed to characterize

the color texture by concatenating the 3D color histogram ofthe color image and the LBP

histogram of the corresponding luminance image [13, 99]. Cusano et al. propose a texture
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descriptor which combines a luminance LBP histogram with color features based on the

local color contrast [34]. Recently, Lee et al. propose another color LBP variant for face

recognition tasks, the Local Color Vector Binary Pattern [62]. In the proposed approach,

each color texture image is characterized by the concatenation of four LBP histograms,

namely one LBP extracted from the luminance image and three for the angles between

the possible pairs of different color components.

• The second strategy consists in applying the original LBP operator independently on each

of the three components of the color image, without considering the spatial interactions

between the levels of two different color components. The texture descriptor is obtained

by concatenating the three resulting LBP histograms. Figure 1.13 illustrates this strat-

egy of color LBP computation by considering the(C1,C2,C3) color space. This within

component strategy has been applied by several authors [56,100, 101, 14, 102].

• The third strategy consists in taking into account the spatial interactions within and

between color components. In order to describe color texture, Opponent Color LBP

(OCLBP) was defined [13]. For this purpose, the LBP operator is applied on each pixel

and for each pair of components(Ck,C′k), k,k′ ∈ {1,2,3}. In this definition, opposing

pairs such as(C1,C2) and(C2,C1) are considering to be highly redundant, and so, one

of each pair is used in the analysis. This leads to characterize a texture with only six his-

tograms pairs((C1,C1), (C2,C2), (C3,C3), (C1,C2), (C1,C3), (C2,C3)) out of the nine

available ones. However, thesea priori chosen six histograms are not always the most

relevant according to the different considered data sets [8] and it is preferable to consider

the Extended Opponent Color LBP (EOCLBP). This way to describe the color textures

thanks LBP has been proposed by Pietikäinen in 2002 [56]. It consists in taking into ac-

count each color component independently and each possiblepair of color components,

leading to nine different histograms: three within-component((C1,C1),(C2,C2),(C3,C3))

and six between-component((C1,C2), (C2,C1), (C1,C3), (C3,C1), (C2,C3), (C3,C2))

LBP histograms. These nine histograms are finally concatenated so that a color texture

image is represented in a(9×2P)-dimensional feature space. Figure 1.14 illustrates the

computation steps achieved to obtain the LBP values for the pairs of color components

(C1,C1),(C1,C2),(C2,C1) and (C1,C3) and shows that the pair(C1,C2) is different to

(C2,C1). The OCLBP and EOCLBP have often been considered to classifycolor texture

images [13, 103, 104, 105, 8, 9].

• The fourth strategy consists in analyzing the spatial interactions between the colors of

the neighboring pixels based on the consideration of an order relation between colors.

Instead of comparing the color components of pixels, Porebski et al. represent the color

of pixels by a vector and compare the color vectors of the neighboring pixels with the
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Figure 1.13: Illustration of the within component color LBPcomputation.

color vector of the central one [46]. They use a partial colororder relation based on

the Euclidean distance for comparing the rank of color. As a result a single color LBP

histogram is obtained instead of the 6 or 9 provided by OCLBP or EOCLBP respec-

tively [8, 9]. Another possible way consists in defining a suitable total ordering in the

color space and using it as a replacement for the natural graylevel ordering in LBP defi-

nitions. This strategy has recently been investigated by Ledoux et al. whose propose the

Mixed Color Order LBP (MCOLBP) [47].

In order to give a single code by color LBP, quaternion representation can be used.

Quaternion is shown as a efficient mathematical tool for representing color images based

on a hypercomplex representation [106]. Lan et al. have thusproposed the Quater-

nionic Local Binary Pattern (QLBP) that makes use of quaternion to represent each pixel
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Figure 1.14: The different steps to obtain the LBP values forthe pairs of color components

(C1,C1),(C1,C2),(C2,C1) and (C1,C3) for the analyzed pixel. For example, to compute the

LBP value(C1,C2) of the analysed pixel, the color componentC2 of each of the 8 neighboring

pixels is compared with the color componentC1 of the considered pixel. This step is realized

as demonstrated in Figure 1.9.

color by all color components at one time. Under this representation, the dimension of

QLBP is equal to the dimension of a grayscale LBP. QLBP has been used for person

re-identification problems by Lan and Chahla in [107, 108].
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Among the different extension strategies of LBP to color, MCOLBP and QLBP have the

advantage of providing a texture descriptor whose dimension is equal to gray level LBP his-

togram, what allows a low computation time. However, the classification results obtained with

these descriptors on two benchmark texture databases are not as good as those obtained thanks

to OCLBP [47, 109].

Another possible way to obtain a good compromise between classification results and com-

putation time is to consider a higher dimensional descriptor, such as OCLBP or EOCLBP, and

to proceed to a dimensionality reduction. This is the strategy that we propose to explore in our

works. Before presenting the subject of LBP selection, we will see how the characterization of

the color texture fits in the classification scheme.

1.2 Supervised texture classification

Texture classification is a task which allows to assign a given texture to one of several tex-

ture classes. It is a fundamental issue of texture analysis,playing a significant role in many

applications such as biomedical image analysis, industrial inspection, analysis of satellite or

aerial imagery, document analysis, face analysis, biometrics and many more. Color texture

classification has become a challenging topic in computer vision because the real world images

often exhibit a high degree of complexity, randomness and irregularity. For example, two im-

ages containing the same color with different texture patterns or the same texture pattern but

different colors are considered as different color textures [11]. Figure 1.15 (a-b) illustrates an

example of two images (from the USPTex database) with the same color but different textures

of granite and figure 1.15 (c) and 1.15 (d) show the texture of stones with different colors.

Color texture classification is typically categorized intotwo subproblems of representation

and classification [5, 27] as shown in figure 1.16. The featuregeneration step allows to charac-

terize the image thanks to a texture feature and the decisionstep assigns the feature to one of

the available texture classes. Our work focuses on the first subproblem.

In this section, we briefly review the three principal categories of classification context,

introduce several standard color texture databases available for color texture classification tasks

and present the most commonly classifiers used for color texture classification.

1.2.1 Context

According to the prior knowledge of class label, there are three major types of classification

contexts: the supervised, unsupervised and semi-supervised classification. A comprehensive

literature survey of classification approaches is proposedby Jain et al. [110].
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(a ) (b )

(c ) (d )

Figure 1.15: Exemple of two different textures with the samecolor (a-b) and the same texture

of stone with different colors (c-d).
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Figure 1.16: A basic scheme of texture classification.

1.2.1.1 Supervised classification

In the supervised classification, we have a class label for each input prototype image and use

it to predict the label of a new unseen image. In practice, this process can be evaluated into

two steps: training and decision. In the training step, feature generation is applied on a certain

number of prototype color texture images with known class labels. In the decision step, feature

generation is applied on unknown input image (as in the training step). Then, a prediction on

the class label assignment for this image, based on a similarity measure computed between

the training feature vector and the feature vector of the input image. Figure 1.17 illustrates a

general framework of supervised classification.

1.2.1.2 Unsupervised classification

On the other hand, unsupervised classification (or clustering) does not provide any prior knowl-

edge about the class labels. The classification automatically discovers the different classes (or

clusters) from input textures, based on various types of criteria of feature descriptors such as

distance, information or correlation. Figure 1.18 illustrates a general framework of unsuper-
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Figure 1.17: A general framework of a supervised classification.
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Figure 1.18: A general framework of an unsupervised classification.

1.2.1.3 Semi-supervised classification

Semi-supervised classification falls between unsupervised and supervised classification. The

label training images is often limited or expensive to be obtained. When a small portion of

data is labeled, the classification in this context can take advantages of both labeled data and

unlabeled data. Figure 1.19 illustrates a general framework of supervised classification.

Training images

Pa tial cla label

Input image

Unknown label

Final evaluation

Predict label

Texture features Semi-supervised

classification

Feature

generation

Feature

generation

Figure 1.19: A general framework of a semi-supervised classification.
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1.2.1.4 Dimensionality reduction

We briefly presented three classification contexts. Before the decision step (figure 1.16), the

set of generated features can be modified by a dimensionalityreduction technique in order to

have a better representation of data (as illustrated in figure 1.20). For example, in the color

texture classification framework, each texture image is characterized by nine LBP histograms

which lead to a concatenated feature vector of 256×9= 2304 bins (features) for a single color

space when 8 neighbors are used. It is clear that all the features contribute unequally in the

classification task that leads to decrease the classification performance. So, the dimensionality

reduction is needed to address this problem. Many authors have developed LBP-based features

by many approaches in order to reduce the feature dimensionality.

nput Feature TextureTexture ecision
generation features

nensionalit

reduction label

educed number

of texture featuresimage

Figure 1.20: A scheme of texture classification with dimensionality reduction step.

According to whether the original features space information is changed or not, dimension-

ality reduction methods can be categorized into feature extraction and feature selection. The

following of this work is conducted by the dimensionality reduction methods for color texture

classification in a supervised context. These methods are detailed in the chapter 2. The next

subsection thus presents the most commonly used classifiersfor color texture classification

problems in the supervised context.

1.2.2 Classifiers

A classifier is a function which takes the features as inputs and gives the texture classes as

outputs. There is a large number of methods for constructinga classifier [111]. Here, we

briefly introduce the three classifiers widely used in the supervised color texture classification

context:

1. Linear Disciminant Analysis

2. Support Vector Machines

3. K-Nearest Neighbors

1.2.2.1 Linear disciminant analysis

Linear Discriminant Analysis (LDA) is a supervised statistical method that allows to classify

an image between two or more classes [112, 113]. Given the training images, the LDA tries
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to find a new feature space where the distances between the class centers are maximized and

the distances between the images of a same class are simultaneously minimized. This new

feature space is obtained thanks to linear combinations of the original features. This can be

achieved through the analysis of the within-class and between-class scatter matrices. The new

features are found by solving the generalized eigenvalue problem. Figure 1.21 illustrates the

separation of two classes before LDA (a) and after LDA (b). After the projection, the distances

between the images of a same class is minimized (V ′1 < V1 andV ′2 < V2) whereas the distance

between the class centers is maximized (D2 > D1). To classify a testing image, LDA estimates

the probability that the considered image belongs to each class. The class that gets the highest

probability is the output class.

Figure 1.21: An illustration of LDA.

The LDA classifier has been used by several authors in order tovalidate the performance of

their color texture classification approach [114, 115, 116,117].

1.2.2.2 Support vector machines

The standard Support Vector Machines (SVM) proposed by Cortes et al. [118] are a type of

linear discriminant binary classifier. A linear boundary between two classes is represented by a

hyperplane. The optimal hyperplane is the boundary that maximizes the margin of separation

between the classes (i.e., maximizes the distance between the boundary and the images that are

close to the boundary). An example of separation hyperplanes is illustrated in Figure 1.22.

From this figure, we see thatH2 is the separating hyperplane with the maximum margin con-

trary toH1. The SVM classification is performed by determining on whichside of the decision

boundary a given testing image falls into and then by assigning the corresponding class label.

In addition to performing linear classification, SVM can efficiently perform non-linear clas-

sification using different kernel functions by performing anon-linear mapping from the input
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1

2

Figure 1.22: Illustration of different hyperplanes.H1 separates the two classes with a small

margin, whereasH2 separates them with the maximum margin.

space to the transformed space, a straight separating line in the transformed space may corre-

spond to non-linear decision boundary in the original space[119]. The choice of this kernel

function and the tuning of its parameters will directly impact the final result.

The standard SVM is a two-class classifier, whereas many realworld classification prob-

lems involve several classes. There are two strategies to extend SVM for dealing with multi-

class problems: one-versus-all and one-versus-one strategies. The first strategy constructs one

two-class SVM classifier for each class. An image would be classified under a certain class

if and only if that class’s SVM accepts it and all other classes’s SVMs reject it. The second

strategy constructs one SVM binary classifier for each pair of classes and the classification

phase is realized by a voting way: the image is assigned to theclass that is selected by the

majority of the classifiers. An extensive comparison of multi-class SVM approach is discussed

in [120, 121].

SVM classification approach has been used by Iakovidis and Sandid [122, 66] to classify

color texture images.

1.2.2.3 K-nearest neighbors

The K-Nearest Neighbors (K-NN) classifier is among the simplest classifiers of all machine

learning algorithms and it is frequently used in pattern recognition. In theK-NN approach, the

testing images are classified based on the closest training images in the feature space [123, 124].

The distance between each testing images and each training image is first computed. The testing

image is then assigned to the class that is most common among its K-nearest neighbors.K is

a user-defined constant. In the case ofK = 1, each testing image is assigned to the class of

its nearest neighbor. The optimum value ofK depends upon the data. Generally, larger values

of K decrease the effect of noise on the classification. An example of K-NN classification is

illustrated in Figure 1.23. Based on the value ofK, the testing image (represented by a green

star) will be classified into the class A or the class B. IfK = 3 (dashed line circle), this image is
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assigned to the class B, whereas ifK = 5 (solid line circle), this image is assigned to the class

A.

Figure 1.23: Example of 3-NN and 5-NN classification.

There are various authors that have usedK-NN to validate the performance of their pro-

posed method in the framework of color texture classification [12, 56, 60, 13, 36, 41, 54, 125,

126, 127, 117, 128, 129, 130, 47, 131, 132, 109]. The table A.1in the appendix A shows that

there is about 80% of studies in color texture classificationthat use theK-NN in their exper-

iments. The value ofK that is commonly used is 1 while the typically considered distance

metrics areL1 [56, 13, 47, 130, 109], Euclidean [60, 54, 131], Mahalanobis [12, 129], and

χ2 [127, 128, 132].

1.2.3 Evaluation methods

In order to validate the performance of a classification scheme, there are several evaluation

methods that divide an available dataset into training and testing sets: bootstrap, resubstitution

and cross validation methods as presented in [110]. Generally, there are three kinds of valida-

tion techniques which are widely used in the framework of color texture classification [133]:

- Holdout method is the simplest cross validation approach. The dataset is here divided into

two exclusive sets. The proportion of the training and testing sets is usually equal to 1/2. Many

authors have used this method to split the dataset in order tovalidate the proposed approach in

color texture images classification [134, 135, 105, 136, 8, 137, 138, 139, 66, 140, 9, 47, 130,

141, 115, 56, 13, 41, 122, 126, 127, 128, 142, 114].

- K-fold cross validation is an extension of the holdout method. The dataset is spittedinto

K subsets and the holdout method is repeatedK times. Each time, one of theK subsets is used

as the testing set and the otherK−1 subsets are put together to form the training set. In order

to evaluate the performance, several authors used this technique to split the color texture image

database into training and testing sets [131, 143, 144, 145,146].
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- Leaving-one-out cross validationis a special case ofK-fold cross validation, withK

equal toN, the number of images in the dataset. This technique is used by several authors

[60, 36, 147, 132, 54].

After creating the partition of the dataset, the classifier uses the training set to predict the

output labels for the images of the testing set. The classification performance is calculated

by comparing the predicted class labels obtained by the classifier with the true class labels.

Accuracyis estimated as the sum of correct classified images divided by the total number of

testing images. Most of the authors usedAccuracyto measure the performance of the classifier

in the color texture image classification applications. Other evaluation criteria such asPrecision

andF-measureare used in[134, 148].

1.2.4 Benchmark color texture image databases

In order to evaluate the performance of different texture analysis methods and to compare their

performance, various image databases have been proposed inthe literature [149, 33]. In the

framework of color texture classification, several datasets of color textures have been catego-

rized and critically surveyed by Porebski et al. [138]. We introduce here, four benchmark color

texture databases that are used in our experimentations in chapter 4: OuTex-TC-00013, USP-

Tex, STex and BarkTex.

- OuTex-TC-00013: The test suite OuTex-TC-00013 is provided by the OuTex texture

database [150]. The images of this database are acquired with a three-CCD color camera

under the same illumination conditions. This database is a collection of heterogeneous mate-

rials such as cardboard, fabric, paper, wool, etc. It contains 68 texture images of 746× 538

pixels. The test suite is constructed by splitting each one of the original texture image into

20 sub-images (128× 128 pixels) without overlapping, thus resulting in a dataset containing

1360 images. Figure. 1.24 illustrates the images of this dataset where each image represent

each class of texture. The specificity of this database is that it contains several categories with

similar colors and textures, resulting in a high inter-class similarity. This database is publicly

available at http://www.outex.oulu.fi.

- USPTex: The USPTex database consists of a set of 191 color texture images acquired

using a digital camera under an unknown but fixed light source. The considered 191 texture

classes are typically daily found, such as beans, rice, tissues, road scenes, various types of veg-

etation, walls, clouds and soils [117]. Each image has a sizeof 512×384 pixels from which 12

sub-images with a size of 128×128 pixels are extracted without overlapping, so that a total of

2292 images is obtained. Figure. 1.25 shows some examples oftexture of the USPTex database.

39



1.2. Supervised texture classification

Figure 1.24: The OuTex-TC-00013 dataset includes 68 different texture classes.

This database is publicly available at http://fractal.ifsc.usp.br/dataset/USPtex.php

- STex: The Salzburg Texture Image Database (STex) is a large collection of color textures

image. It is publicly available at http://wavelab.at/sources/Stex. It is more homogeneous than

the other databases proposed for texture classification purposes. There is unavailable infor-

mation about the type of acquisition device used and the lighting conditions. STex contained

a total of 476 texture images of 512×512 pixels. For experimental purpose, each texture is

subdivided into 16 non overlapping sub-images of 128×128 pixels. The database thus consists

of 7616 color texture images belonging to 476 different classes. Figure. 1.26 illustrates some

examples of texture of this database.

- BarkTex : The BarkTex database has been proposed by Lakmann at the University of

Koblenz-Landau, Germany [151]. The images of the BarkTex database represent natural color
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Figure 1.25: Selected textures among 191 classes from the USPTex database (one image per

class).

textures which have been acquired under non-controlled illumination conditions. Each image

of size 256× 384 displays the bark of a certain tree. The BarkTex databaseis composed of

six different kinds of trees, with 68 images per class. Figure 1.27 illustrates an example of
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Figure 1.26: Selected textures among 476 classes from STex database (one image per class).

each of the six tree bark classes of this database. Since the images are not restricted to the

bark texture and also show background structures, the imageborder is excluded defining a

Region-of-Interest of fixed size 300×200 located at the image center. This database is publicly
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Figure 1.27: Examples of images of the BarkTex database.

available at ftp://ftphost.uni-koblenz.de/outgoing/vision/Lakmann/BarkTex

The OuTex-TC-00013, USPTex and STex databases have the common limitation that the

sub-images of a same class are extracted from the same acquired original image. Porebski

et al. have shown that the partitioning which builds a training and a testing subset from an

initial image set can lead to biased classification results.This partitioning could provide high

classification accuracy whatever the considered features when it is combined with a classifier

such as the nearest neighbor classifier. In order to overcomethis drawback, Porebski et al.

propose a modified version of Barktex, namely New Barktex [138].

To build the New-Barktex set, a region of interest, centeredon the bark and whose size

is 128×128 pixels, is first defined. Then, four sub-images whose sizeis 64× 64 pixels are

extracted from each region. We thus obtain a set of 68×4 = 272 sub-images per class. To

ensure that color texture images used for the training and the testing images are less correlated

as possible, the four sub-images extracted from a same original image all belong either to the

training subset or to the testing one: 816 images are thus used as training images and the

remaining 816 as testing images. Figure. 1.28 illustrates the images of New BarkTex test suite

where each row represents each kinds of trees.
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Figure 1.28: Example of New BarkTex color test suite: each row represents a class of texture.

The evaluation methods and four benchmark databases have been introduced1. All the

recent studies related to those databases are now rewiewed in the following section.

1.2.5 Review of the considered databases

In this section, we synthesize the recent works on color texture classification which are carried

out in the literature on the four databases previously presented. The goal of this review is to

highlight the test suits that are most frequently used, in order to compare our work with the

maximum of previous studies. Indeed, each database can be partitioned to different test suites

according to the size of images, the number of training or testing images and evaluation method.

This synthesis will allow us to follow the most used partition for each database.

Table 1.1, 1.2, 1.3 and 1.4 summary respectively the characteristics of OuTex-TC-00013,

New BarkTex, USPTex and STex databases, when they have been used in the framework of

color texture classification. The first column of those tables gives the original name of the

image database. The second column shows the name of the test suite. The third column gives

the number of classes of the test suite. The fourth column presents the number of images per

class. The fifth column indicates the size of the images. The sixth column mentions the cross

validation method used to split the image databases into training and testing sets. The last

column presents the name of the authors, the year of publication and their references.

In each table, the most frequently used test suite is highlighted. In the following, we will

use these test suites to evaluate the performance of our approach and compare our results with

those of other works. For example, in the Table 1.2, there are4 different test suites used for the

BarkTex dataset, according to the number of images per class, the size of images and the cross

1All the image test suites can be downloaded at https://www-lisic.univ-littoral.fr/~porebski/Recherche
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validation method and the most used test suite is New BarkTex.

Table 1.1: Characteristics of OuTex-TC-00013 dataset usedin texture classification.

Database Name
Number

of classes

Number

of images

per class

Size of

images

Validation

method
Reference

OuTex
OuTex-

TC-00013

68 20 128×128 Holdout (1/2 - 1/2)

Pietikäinen, 2002 [56]

Mäenpää, 2004 [13]

Arvis, 2004 [41]

Iakovidis, 2005 [122]

Xu, 2005 [54]

Alvarez, 2012 [127]

Cusano, 2013 [152]

Qazi, 2013 [126]

El Maliani, 2014 [134]

Porebski, 2014 [138]

Cusano, 2014 [34]

Kalakech, 2015 [9]

Martinez, 2015 [135]

Hammouche, 2015 [128]

Guo, 2016 [142]

Casanova, 2016 [114]

Ledoux, 2016 [47]

Sandid, 2016 [66]

Naresh, [148]

68 20 128×128 K-fold

Paci, 2013 [143]

Fernandez, 2013 [144]

Sá Junior, 2016 [145]

Bello-Cerezo, 2016 [131]

Bianconi, 2017a [146]

Bianconi, 2017b [153]

68 20 128×128 Holdout (2/3 - 1/3) Lan, 2016 [109]

68 20 128×128 Leaving-one-out Cernadas, 2017 [132]
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Table 1.2: Characteristics of BarkTex dataset used in texture classification.

Database Name

Number

of

classes

Number

of images

per class

Size of

images

Validation

method
Reference

BarkTex

New

BarkTex
6 136 64×64 Holdout (1/2 - 1/2)

Porebski, 2013 [8]

Kalakech, 2015 [9]

Ledoux, 2016 [47]

Sandid, 2016 [66]

Wang, 2017 [154]

BarkTex

6 68 300×200 Leaving-one-out Palm, 2004 [36]

6 272 64×64 Leaving-one-out
Münzenmayer,

2002 [60]

6 68 64×64 Holdout (0.47–0.53)
Porebski,

2007 [136]

Table 1.3: Characteristics of USPTex dataset used in texture classification.

Database Name
Number

of classes

Number of

images

per class

Size of

images

Validation

method
Reference

USPTex USPTex

180 12 128×128 Leaving-one-out Backes, 2012 [117]

191 12 128×128 Holdout (1/2 - 1/2)

Oliveira, 2015 [155]

Guo, 2016 [142]

Ledoux, 2016 [47]

Florindo, 2016 [115]

332 12 312×384 Holdout (1/2 - 1/2) Casanova, 2016 [114]

191 12 128×128 K-fold

Bianconi, 2017 [146]

Bello-Cerezo, 2016 [131]

Gonçalves, 2016 [156]

191 12 128×128 Holdout (2/3 - 1/3) Lan, 2016 [109]

191 12 128×128 Leaving-one-out
Chen, 2016 [147]

Cernadas, 2017 [132]
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Table 1.4: Characteristics of STex dataset used in texture classification.

Database Name
Number

of classes

Number of

images

per class

Size of

images

Validation

method
Reference

STex STex

476 16 128×128 Holdout (1/2 - 1/2)
El Maliani, 2014 [134]

Martinez, 2015 [135]

476 16 128×128 K-fold Bello-Cerezo, 2016 [131]

1.3 Conclusion

Texture classification is a fundamental topic in computer vision, playing a significant role in

various applications. Texture descriptors have early beenapplied on grayscale images and have

thereby ignored the color information. Many authors demonstrate that color texture features

could enhance the performance of texture classification. Inthis chapter, we have described

the key concept of color texture classification. The principal families of color spaces have

been presented as well as the main color texture descriptors. The most commonly used clas-

sifiers (LDA, SVM, K-NN) in the supervised context have been presented. Four color texture

databases have been introduced: OuTex-TC-00013, USPTex, STex and BarkTex and we have

reviewed recent works related on those databases to show themost frequently test suites used

in the state-of-the-art.

The LBP operator is one of most popular descriptors in texture classification due to its

simplicity and good performances. With the objective of improving the performance of tex-

ture classification, an extension of LBP to color is proposed. However, color LBP still has

some limitations because it lies in high-dimensional feature space. In order to overcome this

drawback, many dimensionality reduction approaches have been proposed to reduce the LBP

dimension space. The next chapter introduce the feature selection which is an important and

frequently used technique for dimension reduction.
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As described in chapter 1, the LBP operators is a good candidate for local image texture

descriptor. However, this operator tends to produce high dimensional feature vectors, espe-

cially when the number of considered neighboring pixels increases or when it is applied to

color images. Thus, a dimensionality reduction method for LBP is needed to address this prob-

lem. Various approaches are proposed to obtain more discriminative, robust LBP-features with

reduced feature dimensionality.

Indeed, many machine learning problems in computer vision and several related domains

need to deal with very high dimensional data. Many of these features may not be relevant
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for the final prediction task and degrade the classification performance. Multiple studies have

shown that the classification performance can be improved byeliminating these features. These

issues can be solved by the method of the dimensionality reduction. For this purpose, the di-

mensionality reduction can be achieved either by feature extraction or feature selection to a low

dimensional space. Feature extraction refers to the methods that create a set of new features

based on the linear or non-linear combinations of the original features. Further analysis is prob-

lematic since we cannot get the physical meanings of these features in the transformed space.

Examples of feature extraction methods include Principal Component Analysis (PCA) [112],

Locality Preserving Projections (LPP) [157]...

In contrast, the feature selection methods aims at finding adequate subsets of features by

keeping some original features and therefore maintains thephysical meanings of the features.

The use of both methods have the advantage of improving performance of classification and

increasing computational efficiency. Recently, feature selection has gained increasing interest

in the field of machine learning [158, 159, 160, 161], data analysis [162, 163, 164], and suc-

cessfully applied in computer vision such as information retrieval [165, 166, 167] or visual

object tracking [168, 169, 170]. In this work, we focus on theapplication of feature selection

methods to LBP-based features in the framework of color texture classification.

This chapter is organized as follow. We first present background information on the con-

cept of feature selection and review works related to our research. We introduce the taxonomy

of feature selection methods in section 2.1 by summarizing basic principles applied in feature

selection and the context of feature selection. We present the data and knowledge represen-

tation by presenting the definitions and notations related to the feature selection methods in

section 2.2. We then, review the related literature of the ranking-based approaches, including

the ranking-based scores and ranking-based algorithms in section 2.3. Next, the feature selec-

tion applied to the local binary pattern is briefly reviewed in section 2.4. The bin selection and

histogram selection approaches are discussed, including our first contribution for histogram

selection. Finally, in section 2.5, we summarize the principal topics presented in this chapter.

2.1 Taxonomy of feature selection methods

Feature selection is defined as a process of selecting the features that best describe a dataset

out of a larger set of candidate features. Typically, there are two types of features: relevant

and irrelevant features [171]. In the framework of classification, relevant features are the fea-

tures that contain discriminative information about the classes (supervised context) or clusters

(unsupervised context). In contrast, irrelevant featuresare noisy and redundant features that

cannot discriminate samples from different classes. Thus,removing irrelevant features reduces

computational cost and improves the classification performance. For the classification prob-
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lems, feature selection aims to select subsets of highly discriminant features while retaining a

suitably high accuracy in representing the original features. In other words, it selects relevant

features that are capable of discriminating data that belong to different classes. For example,

in figure 2.1 (a),f2 is a relevant feature because it can discriminate class A andclass B while

f1 is irrelevant feature. In figure 2.1 (b)f3 and f4 are noisy features because they do not allow

to discriminate the classes. In figure 2.1 (c),f5 and f6 are redundant features because they are

highly correlated, we only need one of them to discriminate the class A and B. The terms of

“feature selection” can be replaced by different synonyms in the literature: “variable selection”,

“attribute selection” and “feature ranking”.

1

2 6

5

4

3

Figure 2.1: Examples to illustrate the concept of relevant,noisy and redundant features. (a)f2
is a relevant feature which can discriminate the two classesA and B while f1 is an irrelevant

feature. (b)f3 and f4 are noisy features. (c)f5 and f6 are redundant features.

There are many feature selection approaches proposed in theliterature. According to Dash

and Liu, they generally involve four steps (as shown in figure2.2) [162]:

Figure 2.2: The different steps of feature selection [162].
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1. A generation stepwhich is based on a search method generates subsets of features to

be evaluated. A subset search strategy generates candidatefeature subsets in order to

find the optimal subset. Usually, search strategies are usually categorized into complete,

sequential, and random models [172]:

• Completesearch among all possible feature subsets. If the input datahaveD fea-

tures, the most direct search strategy is the exhaustive search, i.e., search among all

possible feature subsets (2D in total). However, this approach might become com-

putationally very expensive for high dimensional problems, because the size of the

explored space corresponds to the number of all possible combinations of features.

• Sequential: Starting with an empty set and subsequent addition of features is re-

ferred to as a bottom-up approach like the Sequential Forward Selection (SFS) ap-

proach. Or using the full set of features at the beginning andsubsequent features re-

moval is called a top-down approach like the Sequential Backward Selection (SBS)

approach.

• Random: Starting with a randomly selected feature set and adds randomly selected

features or removes them from the set.

2. An evaluation function then calculates the relevance of the feature subset built during

the generation step. It compares this with the previous bestcandidate subset, and then re-

placing it if found to be better. It can be either classifier independent (i.e., filter approach)

or classifier dependent (i.e., wrapper approach or hybrid method) [173].

3. A stopping criterion decides when to stop. This step is executed every iteration to

determine whether the feature selection process should continue or not. Without a suit-

able stopping criterion the feature selection process may run exhaustively through feature

subset space. Generation step and evaluation functions caninfluence the choice of the

stopping criterion. The stopping criteria based on a generation step include: (i) whether

a predefined number of features is selected, and (ii) whethera predefined number of rep-

etitions is reached. Stopping criteria based on an evaluation function include: (i) whether

addition (or removal) of any features does not produce a better subset; and (ii) whether

an optimal subset based on evaluation function is obtained.

4. A validation step verifies whether the feature subset is valid. Once the stopping crite-

rion has been satisfied, the loop will be stopped and the resulting feature subset may be

validated.

Feature selection methods can be categorized into one of twocategories according to the

context or the evaluation strategy, as shown in figure 2.3a and figure 2.3b, respectively. The

subsequent sections will describe each strategy in detail.
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Figure 2.3: Categorization of feature selection (a) context and (b) evaluation strategy.

2.1.1 Context of feature selection

In terms of availability of supervised information, feature selection techniques can be roughly

classified into three groups: supervised, unsupervised andsemi-supervised methods [174].

Most of supervised and semi-supervised feature selection methods assess the relevances of

features by the information of class label.

• Supervised methods: The availability of label information allows supervised feature se-

lection algorithms able to discriminate samples from different classes. There are several

literature reviews discussed on supervised feature selection [175, 176]. A general frame-

work of supervised feature selection is illustrated in figure 2.4. The training step of the

classification depends on the feature selection method. After splitting the data into train-

ing and testing sets, classifier is trained. This training step based on a subset of features

selected by a feature selection method. It is worth to noticethat the feature selection step

can either be independent of classifier (filter methods), or it may take into account the

performance of a classifier to assess the quality of selectedfeatures (wrapper methods).

Finally, the classifier predicts class labels of the testingset based on the selected features.

One challenge of this approach is the process of labeling thedata given by the human

user which is expensive and may be unreliable [140].

• Unsupervised methods: Unsupervised feature selection is a more challenging problem

due to the absence of class label information used for guiding the search of discrimina-

tive features. Nevertheless, it has one advantage that it isunbiased by the labeling of

data by human experts or data analysts. A general framework of unsupervised feature

selection is illustrated in figure 2.5. Different from supervised feature selection, unsuper-

vised feature selection usually uses all available data in the feature selection step. The

feature selection step is either independent of the unsupervised learning algorithms (fil-

ter methods), or it relies on the learning algorithm to select features (wrapper methods).

Unsupervised feature selection methods seek alternative criteria such as data similarity

53



2.1. Taxonomy of feature selection methods

Training set

ecision

ata

elevant Predicted

labels

selection

Learning stage

Classification stage

generation

Feature

lass labels

ata

Testing set

generation

Feature
features

Feature

Selected

features
nstruction

classifier

Figure 2.4: A general framework of supervised feature selection

and local discriminative information to define feature relevance [162, 177, 178, 179]. Af-

ter the feature selection step, a clustering algorithm gives the output of cluster structure.

The main drawbacks of the unsupervised approach are it neglects the possible correla-

tion between different features and it relies on some criteria without the guarantee that

the principles are universally valid for all types of data.
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result

onstruction
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Figure 2.5: A general framework of unsupervised feature selection

• Semi-supervised methods: Semi-supervised feature selections are the extensions ofsu-

pervised and unsupervised feature selections. In reality,the label training data is often

limited or expensive to be obtained. When a small portion of data is labeled, we can

utilize semi-supervised feature selection which can take advantages of both labeled data

and unlabeled data. The general framework of semi-supervised feature selection is illus-

trated in figure 2.6. The only difference with the supervisedfeature selection method is

the partial label information used as input. Usually, the labeled data is used to maximize

the margin between data points of different classes, and theunlabeled data is used to

discover the geometrical inherent structure of the data [162, 180, 181, 182, 183].
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Figure 2.6: A general framework of semi-supervised featureselection

2.1.2 Feature selection evaluation

Based on the different strategies of evaluation, feature selection can be classified into three

groups: filter, wrapper and hybrid methods [6].

• Filter methods select the subset of features as pre-processing step without involving the

classifiers. Typical filter methods consist of two steps. In the first step, feature relevance

is ranked by a feature score according to some feature evaluation criteria which can be

either univariate or multivariate. In the univariate case,each feature is ranked individu-

ally regardless of other features, while the multivariate scheme ranks multiple features

simultaneously. The methods rely solely on the inherent characteristics of data such as

variance [133], correlation [6], mutual information [184,177], consistency [162]. In the

second step, lowly ranked features are filtered out and the remaining features are kept.

Figure 2.7 describes a generalized form of a filter algorithm. Filter methods are fast and

easy solutions, since they can be combined with any classifiers after the filtering is com-

plete. However, they may miss features that are relevant forthe target classifiers. Famous

filter methods are based on Variance [133], Laplacian [179],Fisher scores [185] for uni-

variate scheme and maximum Relevance (mRmR) [186], Inconsistency criterion [187]

for multivariate scheme.

• Wrapper methods evaluate each candidate feature subset through the classification al-

gorithm and using the estimated accuracy of the classification algorithm as its evaluation

metric as shown in figure 2.8. They then select the most discriminative subset of features

by minimizing the prediction error rate of a particular classifier. This step is a combina-

torial problem, with an objective function that is costly tocompute for high dimensional
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features, but often give better results than other methods [188, 189, 190].
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Figure 2.8: An illustration of wrapper method

• Hybrid methods combine both filter and wrapper methods into a single framework, in

order to provide a more efficient solution to the feature selection problem [191].

A filter evaluation can be applied to discard some features before going to the wrapper

step. The key idea of this combination is to lower the complexity of a wrapper, but

keeping its high accuracy. Figure 2.9 shows an illustrationof the hybrid method. Dash

and Liu proposed a first hybrid method that uses a measure based on the entropy of

the similarity of the data (filter step) [187]. Then (wrapperstep), they use a clustering

algorithm and a scatter separability criterion for evaluating feature subsets. Recently,

Solorio-Fernández et al. propose a method based on the Laplacian score ranking jointly

with a modification of the Calinski–Harabasz index [192]. Hybrid methods have the

disadvantage that they depend on the evaluation of filter methods used for determining

the best feature subset.

The feature selection methods and their categorization have been introduced. Among of the

feature selection approaches, we are interest in the hybridmethods which takes advantage of

both the filters and the wrappers. In the following of this work, we propose a feature selection

approach based on this approach for color texture classification in the supervised context.

Before introducing the state-of-the-art of feature selection methods, we will give some def-

initions and notations used for the representation of data and knowledge in the next section.
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Figure 2.9: An illustration of hybrid method

2.2 Data and knowledge representation

In the feature selection context related to our problem, we dispose a dataset ofN color texture

images defined in aD-dimensional feature space. Italic letters are used to denote scalars,

bold letters to denote vectors or matrices (e.g.,x, x, X). We denoteX = (xr
i ), i ∈ {1, ...,N};

r ∈ {1, ...,D}; the associated data matrix represented by equation 2.1, wherexr
i is therth feature

value of theith color imageIi.

X =
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(2.1)

Each of theN rows of the matrixX represents a color texturexi = (x1
i , ...,xr

i , ...,x
D
i ) ∈RD,

while each of theD columns ofX represents the feature vectorfr , defined as follows:
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(2.2)

In supervised learning, all the information about the classlabels of the training images are

available. Let us denote the vectory the class labels of the different images defined by:

y =














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y1

...
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...

yN
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
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







(2.3)
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whereyi ∈ {1, ..,c, ...,C}, C is the number of classes of the data. For each color imageIi , its

feature vectorxi is associated with a class labelyi .

Several studies have shown that graphs constructed in original feature space reflect some

intrinsic properties of data, and thus can be used for dimension reduction [193, 194]. Moreover,

the spectral graph theory represents a solid theoretical framework which has been the basis

of many effective existing feature selection methods. The feature selection methods that we

present in this section are based in large part on spectral graph theory [195] including Laplacian

score [179, 196], spectral methods [177] and sparsity score[197] and so on. All of these

methods used the application of graph matrix in the objective of feature selection. In the next

section, we introduce several of graph construction related to those approaches.

2.2.1 Graph data representation

Given a datasetX, let G = (V,E) be the undirected graph constructed fromX, whereV =

{v1, ...,vN} is its vertex set andE is the set of edges. Each vertexvi in this graph represents an

imagexi and each edge between two verticesvi andv j carries a non-negative weightsi j ≥ 0.

The similarity matrix of the graph is the matrixS= (si j )i, j=1,...,N. As G is an undirected graph,

si j = sji . There are many approaches to transform a given dataset withthe pairwise similarities

si j into a graph. The most common graph construction methods including ε-neighborhood

graph,k-nearest neighbor graph and fully connected graph [198, 199, 200].

• ε-neighborhood graph: The neighbors of a given instancexi are the instances that be-

long to a sphere centered atxi and havingε as radius. Inε-neighborhood graph the data

which have the distance (similarity) less than the threshold ε.

• k-nearest neighbor graph: An edge between two verticesvi andv j is constructed if the

corresponding instancesxi andx j are close, i.e.xi is among thek-nearest neighbors of

x j or x j is among thek-nearest neighbors ofxi .

• Fully connected graph: We connect all images with positive similarity with each other

and we weight all edges bysi j . As the graph should represent the local neighborhood

relationships, this construction is only useful if the similarity function itself models local

neighborhoods.

There are several choices for this similarity. Belkin and Niyogi use the heat kernel with

different Gaussian varianceσ values, as follows [199]:

si j = e−
‖xi−x j‖

2

2σ2 (2.4)

58



CHAPTER 2. FEATURE SELECTION

where the parameterσ is a constant to be set which controls the width of the neighbor-

hood and‖xi−x j‖ denotes the the distance betweenxi andx j . In the extreme case where

σ → ∞ the weights will become 1.

Cortes and Mohri propose the use of inverse of distance as weight [200] as follows:

si j =
1

‖xi−x j‖
, xi , x j (2.5)

The similarity function can also be expressed under cosine function. It is used to measure

the similarity between two vectors by computing the cosine of the angle between them

as defined as follows:

si j = |cos(xi ,x j)|=
|xT

i x j |

‖xi‖‖x j‖
(2.6)

The degreedi of a vertexvi ∈V is equal to the sum of weights of all edges linked to this

vertex. It is defined the diagonal matrixD = (di)i=1...N should be noted as follows:

di =
N

∑
j=1

si j (2.7)

It is worth to note that the degreedi of a nodei can be considered as a local density measure at

xi .

The Laplacian matrixL of X is defined by:

L = D−S (2.8)

The drawback of all the graphs mentioned above is their dependence on the value of the pa-

rametersε, k, or σ . Without the optimum value of these parameters, the similarity matrix

constructed could not reflect the real similarity among datapoints. For example, the adjustable

parameterσ in equation 2.4 plays an important role in the performance ofthe function, and

should be carefully tuned by hand according to the problem. If overestimated, the exponential

will behave almost linearly, and the projection will lose its nonlinear power. In contrast, if

underestimated, the function will lack the regularizationand will be highly sensitive to noise

so that it might change the graph structure.

Recently, to address the limitations of classical graph construction methods, sparse repre-

sentation has been successfully used for graph construction [201, 202]. In the following, we

will briefly present the sparse graph construction.

2.2.2 Sparse graph construction

Sparse representation has received a great deal of attention in computer vision, especially in

image representation in the recent years. It has many effective applications such as image
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compression and coding [203, 204, 205, 206], pattern recognition, image and signal process-

ing [207, 208, 209]. Generally, sparse representation helps to find the most compact represen-

tation of the original data.

Recently, Qiao et al. presented a new method to design the similarity matrix based on the

modified sparse representation [210]. The graph adjacency structure and corresponding graph

weights are built simultaneously by thel1-norm minimization problem. This is, in fact, a new

way that is fundamentally different from the traditional ones (like Euclidean distance, cosine

distance, etc.) to measure the similarity between different data points. By introducing spar-

sity in the linear reconstruction process, it identifies themost relevant data points as well as

their estimated similarity to the reconstructed data point. Moreover, many empirical results

have shown that a sparse graph is preferred, because sparse graphs have much less spurious

connections between dissimilar points and lead to exhibit high quality for data representa-

tion [211, 210, 197, 212, 201, 213].

Given a data matrixX = [x1, ...,xi , ..,xN]T ∈RD×N including all the instances in its columns,

we want to reconstruct each instancexi , e.g., a color texture image, using as few entries ofX

as possible. This problem can be expressed mathematically as follows:

min
si
‖si‖0 s.t. xi = Xsi , (2.9)

wheresi = [si1, ...,si(i−1),0,si(i+1), ...,siN]T is an N-dimensional coefficients vector in which

the ith element is equal to zero (implying thatxi is removed fromX) and the elementssi j (i , j)

denotes the contribution of eachx j to reconstructxi , ‖.‖0 denotes thel0-norm, which is equal

to the number of non-zero components insi .

It is worth to note that the solution of equation 2.9 is NP-hard in general case. A sparse

vectorsi can be approximately solved by the following modifiedl1-minimization problem:

min
si
‖si‖1 s.t. xi = Xsi ,1= 1Tsi , (2.10)

where,‖.‖1 denotes thel1-norm, ;1∈R
N is a vector of all ones values.

In reality, the constraintxi = Xsi in equation 2.10 does not always hold due to the presence

of noises. The modified objective function is defined as follows [204] :

min
si
‖si‖1 s.t. ‖xi−Xsi‖2 < ξ ,1= 1Tsi , (2.11)

whereξ represents a given error tolerance. The sparse vectorsi is computed for each sample

xi . The optimal solution of equation. 2.11 for each samplexi is a sparse vector̂si , that allows

to build the sparse similarity matrixS= (ŝi, j)N×N, defined by:

S= [ŝ1, ...,ŝi , ...,ŝN]
T (2.12)
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Thel1-minimization problem can be solved in polynomial time by standard linear program-

ming method [214] using publicly available packages such asl1-toolbox1. As the vector̂si is

sparse and a lot of its components are zero and few of them havenon zero values, the instances

in the dataset which are far from the input signal will have very small or zero coefficients. This

solution might reflect the intrinsic geometric properties of original data. In cases of the absence

of the class label information, the discriminative information can be naturally preserved in the

matrixS.

We have presented the definitions and notations related to the following of this chapter. Dif-

ferent strategies have been proposed over the last years forfeature selection: filter, wrapper and

hybrid methods. Among of them, hybrid methods attempt to have a reasonable compromise be-

tween efficiency (computational effort) and effectiveness(by selecting the relevance features).

To combine the filter and wrapper methods into a hybrid methods, we are interest the filter-

based approach in the univariate scheme by using some criteria to assess each feature sorting

them into a list (ranking). The next section is entirely dedicated to ranking-based approaches.

2.3 Ranking-based approaches

The aim of feature ranking is to measure the relevance of features in order to find the most

discriminative feature. Among a huge literature on featureranking methods, we will briefly

review several well-known approaches. These approaches can be achieved by associating a

score for each feature or by applying an algorithm which gives weights for a feature subset. In

the first case, the features are independently evaluated, whereas in the second case, the weight

of each feature is determined using all attributes.

2.3.1 Ranking based on scores

The filter approaches selects the relevant features by looking at the inherent properties of the

data. In most cases, feature relevance score is individually calculated. In this section, we

introduce several score functions based on feature rankingmethods according to the learning

context in supervised, unsupervised and semi-supervised.

2.3.1.1 Unsupervised feature selection

The unsupervised feature selection methods evaluate the relevance of features based on vari-

ous types of criteria such as distance, information, correlation, dependency and so on. These

1The web site (http://www.ece.ucr.edu/sasif/homotopy/index.html) provides many practical toolboxes and sev-

eral research works to solve the sparse representation problem. In our experiments,l1-toolbox is used due to its

simplicity.
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methods include Variance, Laplacian and Unsupervised sparsity scores.

• Variance scoreuses the variance along a dimension to reflect its representative power

and selects the features with the maximum variance. Letf r
i denote therth feature of the

ith image. The mean of therth featurefr is defined as:

µ r =
1
N

N

∑
i=1

f r
i (2.13)

The variance of therth feature denoted asVariancer , which should be maximized, is

calculated as follows [133]:

Variancer =
1
N

N

∑
i=1

( f r
i −µ r )2 (2.14)

The features are sorted according to the ascending order ofVariancer to select the most

relevant ones.

• Laplacian scoreassumes that instances from the same class are close to each other and

the local geometric structure is crucial for discrimination [179]. This score selects fea-

tures with larger variances which have more representativepower and stronger locality

preserving ability. The Laplacian score of therth feature denotedLaplacianr which

should be minimized, is computed as follows:

Laplacianr =
∑N

i=1∑N
j=1( f r

i − f r
j )

2si j

∑N
i=1( f r

i −µ r )2di
=

f̃rT

L f̃r

f̃rT
Df̃r

(2.15)

wheresi j is defined by the similarity relationship between two imagesIi andI j as defined

in section 2.2 and̃fr is defined as:

f̃r = fr −
frTD1

frTD1
1 (2.16)

where1∈RN is a vector of all ones.

After calculating the Laplacian score for each feature, they are sorted in the ascending

order ofLaplacianr to select the relevant ones.

• Unsupervised sparsity scoreis another feature ranking algorithm proposed by Liu et

al. [197]. This approach is based on sparse similarity matrix construction. The proposed

unsupervised sparsity score of therth feature denotedUnsupSparser, which should be

minimized, is defined as follows:
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UnsupSparser =
∑N

i=1( f r
i −∑N

j=1 ŝi j f r
j )

2

1
N ∑N

i=1( f r
i −µ r )2 =

frT
(I −S−ST +SST)fr

frT
(I − 1

N11T)fr
(2.17)

whereI is an identity matrix and̂si j is the entry of the sparse similarity matrixS con-

structed using all images which is presented in section 2.2.2.

The sparsity score for each feature is sorted in the ascending order ofUnsupSparser in

order to select the relevant ones.

2.3.1.2 Supervised feature selection

Supervised feature selection evaluates the relationship between the features and their class la-

bels information. Given data matrixX = [x1, ...,xi , ..,xN], xi ∈RD×N, each imageIi is associ-

ated with a class labelyi , {xi ,yi}, yi ∈ {1, ..,c, ..,C}, whereC is the number of classes andNc

denotes the number of instances in the classc. Based on that notation, we introduce several

feature selection methods in the supervised context.

• Fisher score is one of the most widely used supervised feature selection score. The

principal idea of Fisher score is to identify a subset of features so that the distances

between samples in different classes are as large as possible, while the distances between

samples in the same class are as small as possible.

Let µ r denotes the mean of all instances on therth feature,µ rc and(σ rc)2 the mean and

variance of classc corresponding to therth feature, respectively. The Fisher score of the

rth feature, which should be maximized, is calculated as follows [133]:

Fisherr =
∑C

c=1Nc(µ rc−µ r )2

∑C
c=1Nc(σ rc)2

(2.18)

where, the numerator is the between-class variance considering therth feature and the

denominator is the within-class variance considering therth feature.

After calculating the Fisher score for each feature, they are sorted in the ascending order

to select the relevant ones.

• Supervised Laplacian score: The Laplacian score which is based on concepts from

spectral feature selection, identifies relevant features by measuring their capability of

preserving instance similarity. Spectral feature selection also provides a framework for

supervised and unsupervised feature selection [177]. Whenclass label information is

available, the similarity matrix can be directly formed from label information. The fol-

lowing function is usually used for constructing a similarity matrix S in a supervised

way [196]:
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si j =







1 if yi = y j = c,

0 otherwise
(2.19)

We obtain the supervised Laplacian score of therth feature denotedSupLaplacianr from

equation 2.15 by using the similarity matrix defined by equation 2.19.

Moreover, the relationship between supervised Laplacian and Fisher score can be formu-

lated as follows:

SupLaplacianr =
1

1+Fisherr
(2.20)

whereFisherr is the Fisher score defined by equation 2.18.

Recently, Dornaika and Bosaghzadeh propose another supervised Laplacian score based

on locality discrimination [215]. Two undirected weightedgraphsGw andGb are con-

structed. The graphGw reflects the within-class relationship, i.e., it encodes the pairwise

similarity and relation associated with samples having thesame label. The graphGb re-

flects the between-class or global similarity relationship. It encodes the pairwise similar-

ity and relation among heterogeneous samples. The graphsGw andGb are characterized

by the weight matricesWw andWb, respectively. In this case, the supervised Laplacian

score of therth feature, denotedSupLaplacianr2, is given by:

SupLaplacianr2 =
∑N

i=1∑N
j=1( f r

i − f r
j )

2(Wb)i j

∑N
i=1∑N

j=1( f r
i − f r

j )
2(Ww)i j

=
frT

Lbfr

frT
Lwfr

(2.21)

whereLb andLw are the Laplacian matrices of the graphsGb andGw, respectively.

• Supervised sparsity score: Liu et al. extend the unsupervised sparsity score to su-

pervised context by utilizing the class label information [197]. Let f rc
i denotes therth

feature ofith intance in classc, ŝc
i j is the element of sparse similarity matrixSc which is

constructed within the classc, ec is aN-dimensional vector withec(i) = 1, if Ii belongs

to the classc and 0 otherwise. The proposed supervised sparsity score of therth feature,

denotedSupSparser , which should be minimized, is defined as follows:

SupSparser =
∑C

c=1 ∑Nc
i=1( f rc

i −∑Nc
j=1 ŝc

i j f rc
j )

2

∑C
c=1∑Nc

i=1( f rc
i −µ rc)2

=
∑C

c=1 frcT
(I −Sc−ST

c +ScST
c )f

rc

fT
r (I −∑C

c=1
1

Nc
ececT )fr

(2.22)

After calculating the score for each feature, they are sorted in the ascending order of

SupSparser to select the relevant ones. In the classification experiments, Liu et al. have

demonstrated that this score outperforms other methods in most cases, especially for

multi-class problems [197].
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2.3.1.3 Semi-supervised feature selection

In reality, the full class label is often difficult to obtain.In semi-supervised learning, a dataset

of N color texture imagesX consists of two subsets depending on the label availability: XU =

{xl+1,xl+2, ...,xl+u}u,0, which are unlabeled andXL = {x1,x2, ...,xl}l,0 for which the labels

yL = {y1,y2, ...,yl} are provided andN = l + u. On the other hand, there is another semi-

supervised information such as pairwise constraints. The pairwise constraints specify whether a

pair of two images belong to the same class (must-link constraints) or different classes (cannot-

link constraints). The set of must-link constraints (M) and the set of cannot-link constraints (C)

of the datasetX are defined as follows in [180]:

• M= {(xi,x j) | xi andx j belong to the same class}

• C= {(xi ,x j) | xi andx j belong to different classes}

Semi-supervised feature selection methods based on pairwise constraints use both pairwise

constraints described in Section 2.2 to evaluate the relevance of features according to their con-

straint and locality preserving the local data structure. Two graphsGM andGC are constructed

by using the instances ofM andC respectively. If two nodes are must-link (or cannot-link),

an edge is created in the graphGM (or GC). The similarity matrix ofGM andGC is defined as

follows:

sMi j =







1 if (xi ,x j) ∈M

0 otherwise
(2.23)

sCi j =







1 if (xi ,x j) ∈ C

0 otherwise
(2.24)

Two constraint scores are proposed including constraint score-1(CS1) and constraint score-

2 (CS2) by Zhang et al [180]. The constraint scores of therth feature denotedCSr
1 andCSr

2,

which should be minimized, are calculated as follows [180]:

CSr
1 =

∑(xi ,x j )∈M( f r
i − f r

j )
2

∑(xi ,x j )∈C( f r
i − f r

j )
2 =

frT
LMfr

frT
LCfr

(2.25)

CSr
2 = ∑

(xi ,x j )∈M

( f r
i − f r

j )
2−λ ∑

(xi ,x j )∈C

( f r
i − f r

j )
2 = frT

LMfr −λ frT
LCfr (2.26)

whereλ is a parameter to balance the two terms in 2.26.

Kalakech et al. propose another semi-supervised score which uses both pairwise constraints

and the local properties of the unlabeled data [181, 140]. The Laplacian and Fisher scores have

also been extended in the semi-supervised learning contextin [216]. More recently, Liu and
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Zhang propose a pairwise constraint-guided sparse learning method for feature selection, where

the must-link and the cannot-link constraints are used as discriminative regularization terms

that directly concentrate on the local discriminative structure of data [217]. A comprehensive

survey of feature selection methods in the semi-supervisedcontext is introduced by Sheikhpour

et al [183].

The filter methods based on scores are introduced. The following section presents the two

well-known algorithms Relief and Simba for features ranking which are principally based on

the largest margin concept.

2.3.2 Ranking based on weighting algorithms

Largest margin concept is very important in the statisticalpattern recognition, because it mea-

sures confidence of a classifier with respect to its predictions. There are two approaches of

describing a margin [218]:

• The sample-marginmeasures the distance between an instance and a decision boundary

induced by the classifier. For example Support Vector Machines [118] is a classification

algorithm that represents the images as points in space, mapped so that the images of

different classes are divided by a clear gap (sample-margin) that is as wide as possible.

• The hypothesis-margin: Let X = [x1, ...,xi, ...,xN] be a training data set wherexi =

(x1
i , ...x2

i , ...,xDi )
T is theith representation of an image that containsD features andyi its

related label.

The concepts ofnearhitandnearmisswere used in general before the notion of margin.

nearhit or NH(xi) of an imagexi is the nearest image toxi having the same label and

the nearmissor NM(xi) of an imagexi is nearest image toxi having a different label.

Figure 2.10 illustrated the NH and NM concepts.

hit(x)

x

x)

Figure 2.10: Illustration of thenearhitandnearmissconcepts.
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Hypothesis margin ofxi denoted byρi is calculated as the difference between the distance

to its NM(xi) and the distance to itsNH(xi). When multiple images have large margin,

they can move considerably in the feature space without altering the labeling structure of

the data set. Hence, a large margin insures high confidence when a classifier is making

its decision. Moreover, a feature’s contribution to the maximization of hypothesis margin

reflects its ability to discriminate the data into differentclasses.

Recently, various feature selection algorithms have been developed under the large margin

principles including SVM-based feature selection and Relief family (1-NN based) algorithms.

The feature selection methods based on sample-margin need high computational cost for a high-

dimensional data sets [219]. So, we focus on feature selection algorithms developed under the

hypothesis margin concept. Two most discussed hypothesis margin methods are the Relief

algorithm [220] and Simba algorithm [221] that will be presented in the following. Given a

distance function‖.‖, a marginρi of xi is computed as:

ρi = ‖xi−NM(xi)‖−‖xi−NH(xi)‖ (2.27)

Similarly the margin over the datasetX is computed as:

ρ =
N

∑
i=1

ρi (2.28)

One natural idea is to scale each feature by a non-negative vector w to obtain a weighted

feature space such that a margin-based function in this induced feature space is maximized.

ρi(w) = ‖xi−NM(xi)‖w−‖xi−NH(xi)‖w (2.29)

Thus the weighted margin over the datasetX is computed as

ρ(w) =
N

∑
i=1

ρi(w) (2.30)

2.3.2.1 Relief algorithm

The Relief algorithm is based on a measure of relevance of each feature by maximizing a

margin-based objective function [220]. If we specify the distance function‖.‖ by L1-norm (or

Manhattan distance), we obtain the well-known Relief algorithm. The hypothesis margin of an

instancexi is defined as:

ρi = ‖xi−NM(xi)‖1−‖xi−NH(xi)‖1 (2.31)

where L1-norm is defined as:

67



2.3. Ranking-based approaches

‖z‖1 =
D

∑
r=1
|zr |= |z1|+ ...+ |zr |...+ |zD| (2.32)

The hypothesis margin over the whole datasetX is computed as:

ρ =
N

∑
i=1

ρi (2.33)

The weighted margin of an instancexi is defined as:

ρi(w) = ‖xi−NM(xi)‖w−‖xi−NH(xi)‖w (2.34)

where,

‖z‖w =
D

∑
i=1

wr |zr |= w1|z1|+ ...+wr |zr |+ ...+wD|zD| (2.35)

The weighted margin over the whole datasetX is computed as

ρ(w) =
N

∑
i=1

ρi(w) (2.36)

The objective is to find a weighted vectorw, which maximizes the evaluation function defined

as the weighted hypothesis margin. If we consider the following notation:

M =







|x1
i −NM(x1

i )|

...

|xDi −NM(xDi )|






−







|x1
i −NH(x1

i )|

...

|xDi −NH(xDi )|






=







M1

...

MD






(2.37)

The evaluation function related to the weighted margin of the imagexi becomes:

ρi(w) = wTM = w1M1+ ...wrMr + ...+wDMD (2.38)

The gradient of the evaluation function is given by:

∂ρi(w)
∂wr =

∂wTM
∂wr = Mr (2.39)

And the updating equation is:

wr
new= wr

old +
∂ρi(w)

∂wr (2.40)

The basic Relief algorithm is given by algorithm 1. The method randomly selectT images

from the training set and updates the relevance of each feature based on the difference between

the selected image and the two nearest instances of the same and different classes. The expected

weight is large for relevant features and small for irrelevant ones under some assumptions.

The output is a weight vector, with a weightwr corresponding of therth feature. This

vector is a ranking list of the features. The threshold valueτ can be defined by user to select

the most discriminant features. Moreover, Kira et al proposed a relevancy thresholdτ to get

a subset selection algorithm by a a statistical mechanism which ensures the probability that a

given irrelevant feature will be chosen is small [220].
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Algorithm 1 Relief algorithm

1. Initialize the weight vector to zerow = (0,0, ...,0)

2. Fort = 1, ...,T

(a) Pick randomly an instancex from X

(b) FindNH(x) andNM(x)

(c) Forr = 1, ...,D, calculate

∆
r = |xr −NM(xr )|− |xr −NH(xr )|

wr = wr +∆
r

End For

End For

3. The chosen feature set is{r|wr
> τ} whereτ is a fixed threshold

2.3.2.2 Simba algorithm

Simba algorithm is an iterative algorithm proposed by Gilad-Bachrach et al. [221]. If we spec-

ify the distance function‖.‖ by l2 norm (or Euclidean distance) like the one used in Simba

algorithm, we obtain the following margin of an instancexi

ρi =
1
2
(‖xi−NM(x)i‖2−‖xi−NH(x)i‖2) (2.41)

where thel2 norm is defined as

‖z‖2 =

√

√

√

√

D

∑
r=1

zr2 (2.42)

The margin based on Euclidean distance over the whole dataset X is computed as:

ρ =
N

∑
i=1

ρi =
N

∑
i=1

1
2
(‖xi−NM(xi)‖2−‖xi−NH(xi)‖2) (2.43)

The weighted margin of an imagexi is computed as:

ρi(w) =
1
2
(‖xi−NM(xi)‖2−‖xi−NH(xi)‖2) (2.44)
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where,

‖z‖w =

√

√

√

√

D

∑
r=1

wr 2zr2 (2.45)

The gradient of the evaluation function is given by:

∂ρi(w)

∂wr =
1
2

[

(xr
i−NM(xr

i ))
2

‖xi−NM(xi )‖w
−

(xr
i−NH(xr

i ))
2

‖xi−NH(xi )‖w

]

wr (2.46)

And the updating equation is:

wr
new= wr

old +
1
2

[

(xr
i−NM(xr

i ))
2

‖xi−NM(xi )‖w
−

(xr
i−NH(xr

i ))
2

‖xi−NH(xi )‖w

]

wr (2.47)

The difference of distances between samples and their nearest neighbors are weighted by

coefficients linked to the quality of features. Those weights are found by maximizing the

margin. Simba algorithm embeds stochastic gradient ascentinto the Relief algorithm that is

slightly modified. The Simba algorithm for feature selection is given by algorithm 2.

Algorithm 2 Simba Algorithm

1. Initializew = (1,1, ...,1)

2. Fort = 1...T

(a) Pick randomly an instancex from X

(b) CalculateNM(x) andNH(x) with respect toX\{x}and the weight vectorw

(c) Forr = 1, ...,D calculate

∆
r = 1

2

(

(xr−NM(x)r )2

‖x−NM(x)‖w
−

(xr−NH(x)r )2

‖x−NH(x)‖w

)

wr

wr = wr +∆
r

End For

End For

3. w← w2

‖w2‖∞
where,w2 = (w12

, ...,wr2, ...,wD2
) and

∥

∥w2
∥

∥

∞ = max(w12
, ...,wr2, ...,wD2

)

The major advantage of Simba compared to Relief is that it re-evaluates the margin with

respect to the updated weight vector. The computational complexity of Simba isO(TDN),

whereT is the number of iterations,D the number of features andN the size of the datasetX.

The numerical experiments show that Simba outperforms Relief [220].

The feature selection based on ranking approaches by the score computation and by the

algorithm based on hypothesis margin are introduced. The following section presents the ex-

ploitation of feature selection methods applied to LBP-based features.
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2.4 Feature selection applied to LBP

We classify the LBP-features dimensionality reduction techniques into two strategies: (1) the

first one is to reduce the feature length based on some rules orthe predefinition of patterns

of interest (like uniform patterns) and (2) the second one exploits feature selection methods

to identify the discriminative patterns with similar motivations as the beam search LBP vari-

ants [7]. The latter has a better performance but usually requires an off-line training. In this

work, we are interesting to the learning discriminative LBPfeatures based on feature selection

approaches (see section 2.4.1).

Moreover, we take an interesting in a different approach proposed by Porebski, which se-

lects the most discriminant whole LBP histograms (see section 2.4.2). This section thus briefly

reviews several methods related to the LBP bin selection andLBP histogram selection ap-

proaches.

2.4.1 LBP bin selection

Smith and Windeatt apply the Fast Correlation-Based Filtering (FCBF) algorithm [184] to se-

lect the LBP patterns that are the most correlated to the target class [222]. FCBF is a feature

selection method which starts with the full set of features,uses Symmetrical Uncertainty (SU)

to calculate dependences of features and finds the best subset using backward selection tech-

nique with sequential search strategy. It has an inside stopping criterion that makes it stop when

there are no features left to eliminate. In the FCBF method,Y is the vector of data labels and

fr is the vector ofrth feature value for all data. Letp( f r
i ) be the prior probability for all values

of fr . The entropy offr is:

E(f r) = −
N

∑
i=1

p( f r
i )log2(p( f r

i )) (2.48)

and the entropy offr knowing the class labelsY is defined as:

E(fr |Y) = −
C

∑
c=1

p(yc)
N

∑
i=1

p( f r
i |yc)log2(p( f r

i |yc)) (2.49)

wherep( f r
i |yc) is the posterior probability offr given the class labelY. Symmetrical Uncer-

tainty (SU) is calculated as follows:

SU(fr |Y) = 2
E(f r)−E(f r |Y)

E(f r)+E(Y)
(2.50)

Based on theSUvalue and a threshold value defined by user, FCBF operates by repeatedly

choosing the feature that is the most correlated with the class, excluding those features already

chosen, and rejecting any features that are more correlatedwith it than with the class. In [222],
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they split the image into multi blocks and then extract LBP features with different radii. The

final histogram with 107000 features is reduced to 120 by using FCBF.

Lahdenoja et al. define a discrimination concept of symmetryfor uniform patterns to reduce

the feature dimensionality [223]. The level of symmetryS of a LBP code is defined as the

minimum of the sums of each individual binary element in thatpattern and its complement

which is defined as:

S = min{
P−1

∑
i=0

bi ,
P−1

∑
i=0

b̄i} (2.51)

wherebi is theith bit of the LBP code and̄bi is its complement. For example, for patterns

00111111 and 00011000, the level of symmetryS equals to 2. The patterns with a higher level

of symmetry are shown to have more discriminative power.

Maturana et al. use heuristic algorithm to select the neighbors used in the computation

of LBP [224]. Within a square neighborhood given by aR, there are(2R+ 1)2−1 possible

neighbors. They thus propose to select among the(2R+1)2−1 neighbors the subspace ofP

neighbors which maximizes the Fisher-like class separability criterion.

Liao et al. introduce Dominant Local Binary patterns (DLBP)which consider the most

frequently occurred patterns in a texture image [88]. To compute the DLBP feature vectors

from an input image, the pattern histogram which considers all the patterns in the input image is

constructed and the histogram bins are sorted in descendingorder. The occurrence frequencies

corresponding to the most frequently occurred patterns in the input image are served as the

feature vectors.

Guo et al. propose a Fisher Separation Criterion (FSC) to learn the most reliable and robust

patterns by using intra-class and inter-class distances [10]. The most reliable patterns for each

class are determined, and then merged to form the global dominant set. This model is general-

ized and can be integrated with existing LBP variants such asLBP uniform, rotation-invariant

patterns or LTP.

It is worth to note that there exist another approach for deriving compact and discriminative

LBP-based feature vectors consist of applying subspace methods for learning and projecting

the LBP features from the original high-dimensional space into a lower dimensional space. For

example, a first approach proposed by Chan et al. uses linear discriminant analysis to project

high-dimensional color LBP bins into a discriminant space [103]. Banerji et al. apply PCA to

reduce the feature dimensionality of the concatenating LBPfeatures extracted from different

color spaces. Zhao et al. compare different dimensionalityreduction methods on LBP features,

e.g. PCA, kernel PCA and Laplacian PCA [225]. Hussain et al. exploit the complementarity

of three sets of features, namely, HOG, LBP, and LTP, and applies partial least squares for

improving their visual object detection approach [91]. Nanni and Lumini extract the LBP

uniform from the multi blocks of facial image. The concatenated feature vector constructed

is adopted by Sequential Forward Floating Selection (SFFS)to select the discriminant LBP
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feature [226].

2.4.2 LBP histogram selection

Porebski et al. firstly proposed an approach which selects the most discriminant whole LBP

histograms [139]. In this approach, the most discriminant LBP histograms are selected in their

entirety, out of the different LBP histograms extracted from a color texture. It fundamentally

differs from all the previous approaches which select the bins of the LBP histograms or project

them into a discriminant space.

Histogram selection approaches can be grouped in three ways: filters, wrappers and hy-

brid. The latter combines the reduction of processing time of a filter approach and the high

performances of a wrapper approach. Filter approaches consist in computing a score for each

histogram in order to measure its efficiency. Then, the histograms are ranked according to the

proposed score. In wrapper approaches, histograms are evaluated thanks to a specific classifier

and the selected ones are those which maximize the classification rate. The next section reviews

three scores proposed in the literature and one is our contribution.

2.4.2.1 Intra-Class Similarity score

We first extend the notation that is introduced in section 2.2and section 2.4.2 to histogram. In

the considered LBP histogram selection context, the database is composed ofN color texture

images. Each imageIi, i ∈ {1, ...,N} is characterized byδ histograms(δ = 9) in a single 3D

color space. LetHr is therth histograms to evaluate. The data is summarized by the matrix

HHH r is defined as:

HHH
r =

[

Hr
1...Hr

i ...H
r
N

]

=

















Hr
1(1) ... Hr

i (1) ... Hr
N(1)

... ... ... ... ...

Hr
1(k) ... Hr

i (k) ... Hr
N(k)

... ... ... ... ...

Hr
1(Q) ... Hr

i (Q) ... Hr
N(Q)

















(2.52)

where,Q = 2P being the quantization level.Hr
i (k) represents the values of thekth bin,

k∈ {1, ...,Q}, of theith image histogram amongN color images.

The Intra-Class Similarity score (ICS-score), proposed byPorebski et al., is based on an

intra-class similarity measure. Lethr be the corresponding normalized histogram2 of the rth

histogramHr . Hr
i andHr

j are therth histograms that characterize respectively two training

2To normalize the histogram, the number of counts in each bin is divided by the total count, so that the

normalized values sum to 1 across all bins.
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imagesIi and I j . In order to evaluate the similarity between two images of a same class,

Porebski et al. utilize the histogram intersection:

Dint(Hr
i ,H

r
j) =

Q

∑
k=1

min(hr
i (k),h

r
j (k)) (2.53)

The following measureSIMc is then considered to determine the intra-class similarityof a

texture classC:

SIMc =
2

Nc(Nc−1)

Nc−1

∑
i=1

Nc

∑
j=i+1

Dint(Hr
i ,H

r
j), (2.54)

whereNc is the number of images belonging to the classc. Porebski et al. suppose that the

higher the measureSIMc of intra-class similarity is, the more relevant the histogramHr is.

The scoreSr
ICS of the histogramHr , which includes all intra-class similarities, is finally

defined as follows:

Sr
ICS=

1
C

C

∑
c=1

SIMc, (2.55)

whereC is the number of considered classes.Sr
ICS ranges from 0 to 1. The most discriminant

histogram maximizes the scoreSr
ICS.

2.4.2.2 Adapted Supervised Laplacian score

Inspired by the approach proposed by Porebski, Kalakech et al. propose to Adapt the Super-

vised Laplacian (ASL) score used in the literature for feature ranking and selection, to select

and rank histograms in the supervised context [9]. The ASL-score evaluates the relevance of

a histogram using the local properties of the image data. Thebasic idea is to assume that the

input histogram pairwise similarity measures in the original histogram space are preserved in

the relevant histogram subspace. So, similar images with same class labels have to be close

when they are represented by one relevant histogram.

For this score, the considered distance measure between twohistograms is the Jeffrey di-

vergence, which is defined as follows:

DJe f(Hr
i ,H

r
j) =

Q

∑
k=1

Hr
i (k)log

(

Hr
i (k)

Hr
i (k)+Hr

j (k)
2

)

+
Q

∑
k=1

Hr
j (k)log

(

Hr
j (k)

Hr
i (k)+Hr

j (k)
2

)

(2.56)

The value of the Jeffrey divergence between two histograms is low when their correspond-

ing images are similar to each other.

Using this measure, the ASL-score of the histogramHr is then defined as follows:
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Sr
ASL=

∑N
i=1∑N

j=1DJe f(Hr
i ,H

r
j)si j

∑N
i=1DJe f(Hr

i ,H
r)di

(2.57)

where:

• N is the total number of images,

• si j is an element of the similarity matrixS. In a supervised context, for each imageIi, a

class labelyi is associated. The similarity between two imagesIi andI j is defined by:

si j =







1 if yi = y j ,

0 otherwise
(2.58)

• di is the degree of the imageIi :

di =
N

∑
j=1

si j , (2.59)

• Hr is the histogram weighted average:

H
r
=

∑N
i=1Hr

i di

∑N
i=1di

(2.60)

The histograms are sorted according to the ascending order of the ASL-score in order to

select the most relevant ones.

Given a database ofN texture images belonging toC classes. Under this representation, we

reformulate the ASL-score in equation 2.57 as follows:

S′rASL=
∑C

c=1∑Nc
i, j=1DJe f(Hrc

i ,Hrc
j )s

c
i j

∑C
c=1∑Nc

i=1DJe f(Hrc
i ,H

rc
)dc

i

(2.61)

where:

• Nc is the number of images of thecth class,

• Sc = sc
i j is the similarity matrix within the classc, defined by equation 2.58. In this case,

Sc is an all-ones matrix and the matrix diagonalDc = dc
ii = I c is an identity matrix.

• Hrc is the histogram weighted average of the classc
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2.4.2.3 Sparse representation for histogram selection

Kalakech et al. introduced a histogram selection score, named "Adapted Supervised Laplacian

score" (ASL-score) based on Jeffrey distance and a similarity matrix [9]. This matrix is deduced

from the class labels. It is a hard value which is 0 or 1. In thissection, we propose to extend

the ASL-score by using sparse representation to build a softsimilarity matrix that takes values

between 0 and 1. Moreover, a value between 0 and 1 will measurethe similarity in a subtle

way, instead of being binary with just two values 0 and 1. Thismay lead to more powerful

discriminating information. Instead of using the value 1 or0, we proposed to construct the

sparse similarity matrix based on the sparse representation. This leads to our fist contribution

is the proposition the novel histogram score, namely SparseAdapt the Supervised Laplacian

(SpASL).

The sparse representation ofHr
i is constructed by using a few entries ofHHH r as possible. It

is defined as follows:

min
si
‖si‖1 , s.t. ‖Hr

i −HHH
rsi‖2 < ξ , 1= 1Tsi , (2.62)

where:

• ‖.‖1 is thel1-norm of a vector

• ‖.‖2 denotesl2-norm of a vector.

• si is anN-dimensional vector in which theith element is equal to zero implying thatHr
i

is removed fromHHH r . It is defined as:

si = [si1, ...,si(i−1),0,si(i+1), ...,siN]
T (2.63)

• 1∈RN is a vector of all ones.

• ξ represents the error tolerance

For each histogramHr
i , we can compute the similarity vectorŝi , and then get the sparse

similarity matrix:

S= [ŝ1, ŝ2, ...,ŝN]
T , (2.64)

whereŝi is the optimal solution of equation (2.62). The matrixS determines both graph ad-

jacency structure and sparse similarity matrix simultaneously. Note that, the sparse similarity

matrix is generally asymmetric.

We propose to integrate the sparse similarity matrix obtained by equation 2.64 into the

equation 2.61. For each class, we construct the sparse similarity matrixSc using images within

the classc by equation (2.64), the SpASL-score is defined as follows:
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Sr
SpASL=

∑C
c=1∑Nc

i, j=1DJe f(Hrc
i ,Hrc

j )ŝ
c
i j

∑C
c=1∑Nc

c=1DJe f(Hrc
i ,H

rc
)dc

i

(2.65)

The histogram selection consists to compute for each histogram Hr an associatedSr
SpASL

score and rank these scores in ascending order.

It is interesting to note that the sparse similarity matrix can be constructed by using all

histogram globally. In this case, the class label does not incorporate to the construction and we

are in the case of unsupervised learning.

2.4.2.4 Adapted version of the margin-based iterative search algorithm

More recently, Moujahid et al. propose an adapted version ofthe margin-based iterative search

algorithm (that so called Simba-2) where the resulting weight vector is used for a selection of

histograms in the application of face recognition [227]. The resulting weight vector of Simba-2

is used for a selection of histograms in the supervised context.

Instead of using the weighted Euclidean distance to computethe weight distance, the

Simba-2 algorithm useχ2 distance to identify dissimilarities between histograms.This dis-

tance is also used for calculatingnearmiss(x), nearhit(x).

Given two imagesIi andI j which are characterized by two histogramsHr
i andHr

j , respec-

tively and each vector is composed byQ bins. The histogram-weightedχ2 distance between

these two vectors defined as:

Dχ2
wr
(Hr

i ,H
r
j) =

Q

∑
k=1

wr (H
r
i (k)−Hr

j (k))
2

Hr
i (k)+Hr

j (k)
(2.66)

The adapted version of the Simba algorithm based onχ2 distance is given by algorithm 3
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Algorithm 3 The adapted version of Simbaχ2 distance (Simba-2)

1. initializew = (1,1, ...,1)

2. Fort = 1, ...,T do

(a) Pick randomly an imageI characterized by a vectorx from X

(b) Calculatenearmiss(x) andnearhit(x) with respect toX\{x}and the weight vector

w

(c) Forr = 1, ...,δ calculate

∆
r = 1

2

[

Dχ2(Hr ,NM(Hr))−Dχ2(Hr ,NH(Hr))
]

End for

(d) w = w+∆∆∆

End for

3. w← w2

‖w2‖∞
where,w2 = (w12

, ...,wr2, ...,wδ 2
) and

∥

∥w2
∥

∥

∞ = max(w12
, ...,wr2, ...,wδ 2

)

The increment∆r inside the Simba algorithm also changes, since it is based onthe hypoth-

esis margin which depends on the distance. The resulting Simba weight vector has a size equal

with δ histogram. The histograms are sorted according to the descending order of the weight

elements in order to select the most relevant ones.

2.4.2.5 Histogram selection procedure

According to the feature evaluation, the histogram selection can be achieved by filter, wrapper

or hybrid methods (see section 2.1.2). An hybrid histogram selection approach which requires

the learning stage. During this stage, candidate histograms are generated from training images

and ranked thanks to a score which measures the efficiency of each candidate histogram in-

dependently. Then, the performance of the differentD-dimensional histogram subspace are

measured by the classification accuracy reached by the chosen classifier in order to select the

most discriminating histogram subspace. The selected color texture subspace is the one which

maximizes the rate of well-classified testing images.
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2.5 Conclusion

In this chapter we reviewed the literature of feature selection as a dimensionality reduction

tool. A brief introduction of the feature selection taxonomy is presented. We first introduce the

different step of feature selection. Then, we discussed twofeature selection strategies which are

based on the evaluation (i.e., filters, wrappers and hybrid methods) and based on the availability

of class label lead to consider different learning context (i.e., supervised, unsupervised and

semi-supervised).

The data and knowledge representation have been presented and graph data representa-

tion, especially the sparse similarity graph as well. Next,we provided several feature ranking

methods in different learning contexts which are focus on feature selection based on the score

computing and based on algorithms. We organized the compactoverview for of the feature

selection methods applied in LBP-based features by presenting briefly the LBP histogram bin

selection and LBP histogram selection. We also introduce our proposed SpASL-score for his-

togram ranking.

Furthermore, there exists various color spaces and it is difficult to determine which one give

the best performance for color texture classification. We propose a method to extract the color

LBP-features on different color spaces in the following. The next chapter is mainly based on

the LBP-based feature selection methods in the framework ofmulti color space.
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3.1 Introduction

Several extensions of LBP to color have been proposed since 2002 [228]. In order to take

advantage of all the color texture information contained inthe image, the LBP descriptor is

applied on each color component independently and sometimes, on pairs of color components

conjointly. It leads to a high dimensional feature vector isrequired to represent a texture.

Moreover, we know that there exist numerous color spaces andthat the color space choice

impacts the classification accuracy [138]. Each color spacetakes into account specific physical,

physiologic and psycho-visual properties but none is well-suited to the discrimination of all

texture databases [139]. The selection of the most discriminating color space has been an open

question in recent years [126, 137]. Instead of using one color space, the multi color space

approaches have emerged in the last few years [229, 230, 231,18, 14, 102]. These approaches

allow, on the one hand, to avoid the difficulty of choosing a relevant color space and, on the

other hand, to take advantage of the specific properties of several color spaces by combining

them.

In this work, we propose to study the advantages and the drawbacks of the LBP histogram

selection and the LBP bin selection presented in chapter 2. Our first contribution consists in

extending to color the bin selection approach proposed by Guo et al. [10] and the bin ranking

by sparsity score [197]. These approaches are then comparedwith the whole LBP histogram

selection approach proposed by Porebski [8]. The second originality is founded on the current

development of multi color space approaches. As there is a wide range of color spaces with

different properties, we have proposed an approach which uses the properties of several color

spaces simultaneously. In this approach, images are first coded in different color spaces, then

color texture features are extracted from these so coded images to represent the texture. It

actually seems interesting to compare the strategies of LBPhistogram selection and LBP bin

selection in a multi color space framework. Two first approaches are thus proposed and com-

pared in this work, a Multi Color Space Histogram Selection (MCSHS) approach and a Multi

Color Space Bin Selection (MCSBS) approach.

In addition, we propose to improve the histogram selection method that selects a whole

LBP histogram. Indeed it is clear that not all bins of the selected histograms are meaningful for

modeling the characteristics of textures. As it selects themost discriminating histogram and

filter out the rest, we think that it might have some redundantbins in the selected histograms and

a loss of some meaningful bins of the discarded histograms. This leads to our third contribution

that performs a combination of bin and histogram selection.

The rest of this chapter is organized as follows. In section 3.2, we present the color space

combination approach. Then, we present the multi color space LBP selection in section 3.3.

Section 3.4 presents the proposed MCSHS approach. We introduce the MCSBS approach in

section 3.5. Next, we present novel strategies that combinebin and histogram selection in
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section 3.6. At the end of each proposition, we present the first results obtained on the New

BarkTex benchmark database. Finally, we summarize our work.

3.2 Color space combination

Usually, color images are acquired by devices that code the colors in theRGBcolor space.

However, there are many other color spaces with different specific properties presented in sec-

tion 1.1.1 and it is known that the classification performances depend on the choice of the color

spaces in which a classifier operates [139]. That is why numerous authors propose to use other

color spaces to discriminate the textures as better as possible. Table A.1 in the appendix A

presents the different color texture classification approaches that have been proposed in the lit-

erature. The analysis of this table confirms the relevance ofconsidering other color spaces than

the acquisition space since many other color spaces have been used in these studies to improve

the classification results. However, the prior determination of a color space which is well-suited

to a specific classification problem is not easy. In order to determine this space, many authors

propose to apply their classification approach in differentcolor spaces singly considered and

compare the performances reached in each of these spaces, following a single color space ap-

proach described in section 3.2.1. In color image analysis,another strategy has emerged: it

consists in simultaneously exploiting the properties of several color spaces. This multi color

space approach is presented in section 3.2.2.

3.2.1 Single color space approach

Many authors have lead studies about color space for different applications: machine vision,

face recognition, texture analysis, etc. In the framework of color texture classification, they

try to determine the “best” color space in order to improve the performances of the proposed

classification approach. For this purpose, the classifier isapplied to images whose colors are

coded in different color spaces which are singly consideredand the performances reached with

each of them are compared. This single color space approach selects the color space that

provides the best classification accuracy.

Table 3.1 focuses on some studies that appear in table A.1 andcarried out on the BarkTex

and OuTex-13 databases. Since the OuTex-13 database has been used repeatedly for color

texture classification in the literature while the New BarkTex is recently proposed to overcome

the limit of OuTex-13 and BarkTex (more details are presented in section 1.2.4), we select

these databases for this study. This table shows the most suitable color space among several

different color spaces compared for the classification of the texture on these two databases. The

first column of this table indicates the reference of the study with the color texture descriptor

used by the authors. The second column states which image database was used. The third
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column enumerates the compared color spaces whereas the last one gives the color space that

provides the best classification accuracy. The synthesis ofthese experimental comparisons

does not allow to conclude on the definition of a single color space which is well-suited to the

discrimination of all texture databases, whatever the considered texture features. For example,

the work of Sandid et al. reveals that the choice of the best color space depends on the used

image database, and hence the considered application [66].They used the same method and

the same features to classify the color textures of the BarkTex and OuTex-13 databases, and

showed that the best results were obtained using different color spaces for each of these two

databases. Similarly, the synthesis of the works of Cusano,Casanova and Cernadas show

that the color space that yields the best results may be different depending on which features

are used [152, 114, 132]. This confirms that the best color space depends on the considered

application and approach [139]

Table 3.1: Studies about color space comparison for classification.

Color Descriptor Database Color Space used Best space

3D histogram [56] OuTex-13 RGB, I1I2I3 RGB

3D histogram [13] OuTex-13 RGB, HSV, I1I2I3, L∗a∗b∗ HSV

Cooccurrence matrix

and Haralick features [41]
OuTex-13 RGB, HSV, YCbCr HSV

Wavelet features [54] OuTex-13 HSV, I1I2I3 HSV

Morphological covariance

[232]
OuTex-13 RGB, YUV, L*a*b* L*a*b*

Local triplet patterns [125] OuTex-13 RGB, YCbCr YCbCr

Textons feature [127] OuTex-13 HSI, HSV HSV

Intensity-Color Contrast [152] OuTex-13 RGB, HSV, L*a*b*, I1I2I3 HSV

Parametric stochastic

models [126]
OuTex-13 RGB, I-HLS, L*a*b*, I1I2I3 L*a*b*

Continued on next page . . .
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Table 3.1: Studies about color space comparison for classification continued...

Color Descriptor Database Color Space used Best space

Reduced Size

Chromatic Co-occurrence

Matrices [139]

OuTex-13

RGB, XYZ, UVW, HSV, LUV

AC1C2, bwrgby, YCbCr ,

L∗Cuvhuv,Y’I’Q’ , L∗a∗b∗

Y’U’V’ ,HSI, HLS, L*u*v*,

I1rg, Yxy, LCh1Ch2, I1S2H1,

ACC1C2hC1C2, bwCrgbyhrgby,

LCCh1Ch2hCh1Ch2, I1S1H3,

L∗Cabhab, L∗Suvhuv,

Y′C′IQh′IQ, Y′C′UVh′UV ,

I1CI2I3hI2I3

HLS

EOCLBP [8, 9]
OuTex-13

RGB, HSV, YUV, I1I2I3
RGB

New BarkTex RGB

Multi-model distance [134] OuTex-13 RGB, HSV, L∗a∗b∗ L∗a∗b∗

Soft color descriptors [131] OuTex-13

RGB, HSV, YUV, I1I2I3,

YCbCr,

L∗a∗b∗, YIQ,

L*u*v* , XYZ

HSV

Fractal [114] OuTex-13
RGB, HSV, I-HLS, L∗a∗b∗,

I1I2I3
RGB

Intensity texture [132] OuTex-13 RGB, L∗a∗b∗ , HSV, I1I2I3 L∗a∗b∗

Gabor features [12] BarkTex RGB, HSL HSL

3D histogram [36] BarkTex RGB, L*u*v* L*u*v*

Continued on next page . . .
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Table 3.1: Studies about color space comparison for classification continued...

Color Descriptor Database Color Space used Best space

Haralick from color

co-occurrence

matrices [136]

BarkTex

RGB, XYZ, xyz, Irg, Y’I’Q’,

Y’U’V’ , r*b*b* , L∗a∗b∗,

L∗u∗v∗, I1I2I3, RFGFBF ,

AC1C2, REGEBE, RCGCBC,

bwrgby

L∗a∗b∗

Three-dimensional

adaptive sum

and difference

histograms [66]

OuTex-13 RGB, XYZ, UVW, HSV, LUV,

AC1C2, bwrgby, YCbCr ,

L∗Cuvhuv,Y’I’Q’, Y’U’V’ , I1rg,

HSI, HLS, L*u*v*, Yxy,

I1S2H1, ACC1C2hC1C2,

LCCh1Ch2hCh1Ch2, I1S1H3,

L∗Cabhab,

L∗Suvhuv, LCh1Ch2

HSV

New BarkTex

RGB

In addition, the single color space approach has also been applied by various authors on

specific industrial applications in order to find out the bestcolor space. For example, the con-

trol and the classification of the wood surface is improved byapplying the defect detection and

classification approaches in different color spaces [233, 234, 235]. On the other hand, Bianconi

et al. compare of the performances of automated classification of natural stone in different

color spaces [236, 237].

A wide range of color spaces exists, all with different properties and it is difficult to de-

terminea priori the best color space in developing a successful applicationof color texture

classification. For this reason, an alternative approach uses the properties of several different

color spaces simultaneously. This multi color space approach is presented in the next section.
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3.2.2 Multi color space approach

Instead of searching the best color space for color image analysis, recent works propose to

combine different color spaces in order to improve the performances reached by classification

schemes. These works can be categorized into three main strategies:

• Color space fusion: this strategy involves fusing the results from several classifiers, each

one operating in a different color space;

• Color space selection: this strategy involves selecting the most well suited color spaces

which are based on some specific criterion;

• Color texture feature selection: this strategy involves evaluating the texture features

over different color spaces and selecting the features thatprovide the best discrimination

between the different textures classed by using a supervised feature selection approach;

The following explains in detail theses strategies.

3.2.2.1 Color space fusion

In these approaches, the color texture features are evaluated in several color spaces and a clas-

sification scheme is performed in each of these different spaces independently such as each

classifier operates in a specific color space. Thus, for each texture to be classified, several de-

cisions coming from different classifiers are available. The final labeling is obtained thanks to

a fusion rule of these decisions.

For texture classification, Chindaro et al. propose a color space fusion scheme by consid-

ering six color spaces [230, 238]. Each color space is used toindependently design ak-nearest

neighbor (k-NN) classier during a learning scheme. The output of each ofthe sixk-NN clas-

sifiers are combined thanks to a fusion rule in order to make the decision. A similar approach

is proposed by Charrier et al. for microscopic color image segmentation by pixel classifica-

tion [239]. The first step of the proposed method is to classify pixels with five independent

Support Vector Machine (SVM) classifiers, each of them operating in different color spaces.

The second step is to categorize pixels in coherent pixels when all the classifiers select the

same class or incoherent pixels when at least one classifier output differs from the others. Only

incoherent pixels are processed through a fusion method to select their final class. The final

segmentation result is obtained from the union of the two pixel sets. Mignotte proposes a seg-

mentation approach based on a fusion procedure which aims atcombining several segmentation

maps [240]. The segmentation maps to be fused are given by thek-means clustering technique

applied to an input image coded in six different color spaces.
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3.2.2.2 Color space selection

Another strategy consists in automatically selecting color spaces among a set of available ones.

Busin et al. propose an approach that iteratively selects, among 11 color spaces, those

which are well suited to automatically segment a color imageby pixel classification [241].

This approach is extended by Vandenbroucke et al. with 28 color spaces in order to iteratively

identify pixel classes by taking into account both the pixelcolor distributions in several color

spaces and their spatial arrangement in the image [18]. In order to overcome the difficult

problem of the color space choice, the algorithm selects thecolor space that is well suited to

construct the class, at each iteration step. An adaptive color space switching strategy has been

developed by Stern et al. in order to perform face skin tracking from video under varying

illumination [242]. For a given task, the idea is to dynamically select, among all conventional

color spaces, the best color space depending on the illumination conditions. The authors apply

their adaptive color space switching algorithm to a human face detection and tracking system

based on the skin color and show that the performance of the tracking is increased. A similar

automatic color space selection and switching approach is also proposed by Laguzet et al. in

order to improve the performances of pedestrian visual tracking [243, 244]. The automatically

and continuously selection of the color space is based on thegood separability between the

target and its close background.

3.2.2.3 Color texture feature selection

Rather than selecting color spaces, another strategy is to automatically select color texture

features computed in several color spaces. In these approaches, the pixel colors are transformed

into different color spaces and texture features are computed from the so converted images. A

feature selection procedure selects the most discriminating color texture features for the texture

classification.

Vandenbroucke et al. propose a pixel classification algorithm that analyzes the texture in

the neighborhood of a pixel, in different color spaces [245]. Among a multidimensional set of

first order statistic features evaluated for each color component, the most discriminating ones

are selected by means of an iterative feature selection procedure. Pixels are then classified in

the so-selected texture feature space for soccer image segmentation purposes. For texture clas-

sification, Porebski et al. propose an approach that selectsthe most discriminating Haralick

features extracted from chromatic co-occurrence matricesof color images coded in 28 differ-

ent color spaces thanks to a sequential forward selection (SFS) scheme [46, 139]. A similar

approach is used by Cointault et al. with 23 color componentsfor a wheat ear counting system

based on color image segmentation [229]. Nanni et al. use 13 different color spaces from which

a set of Gabor features is extracted [231]. For each color component, a Gabor feature vector is

first defined. The most relevant feature vectors are then selected thanks to a sequential forward
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floating selection (SFFS) scheme. Several nearest neighbor(1-NN) classifiers constructed with

each selected feature vector fusion are finally combined in order to authenticate ears for bio-

metric applications. Banerji et al. propose the Color LBP Fusion descriptor for color texture

classification [14]. This descriptor is firstly constructedby concatenating LBP descriptors ex-

tracted from six color spaces and then applied PCA to reduce the feature dimensionality.

Table 3.2 synthesizes the studies about multi color space approaches which are grouped into

the three strategies previously presented with the different used color spaces and descriptors.

It seems interesting to wonder which one could be the most relevant. However, there exists no

study that has compared the performances of these color space combination strategies and it

could be a great prospect to compare these strategies. Our work proposes here to use the color

texture feature selection to compare the approaches of LBP histogram selection and LBP bin

selection in a multi color space framework.

Table 3.2: Studies about multi color space approach.

Multi color

space approach
Descriptors Color Space used

Color space

fusion

Markov random fields [230],

Independent component

analysis [238]

RGB, rgb, HSV, YIQ, YUV, L∗a∗b∗

Denoeux’s model [239]
RGB, XYZ, HSL, YUV,

HSI, L∗a∗b∗, YCbCr

Markov random field

[246, 240]

RGB, XYZ, HSI, YIQ, TSL, L∗a∗b∗, L∗u∗v∗,

I1I2I3, H1H2H3, YCbCr

Color LBP Fusion [247],

Color Grayscale LBP Fusion,

Pyramid of Histograms of

Orientation Gradients [14]

RGB, rgb, oRGB, HSV, YCbCr

Continued on next page . . .
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3.2. Color space combination

Table 3.2: Studies about multi color space approach continued...

Multi color

space approach
Descriptors Color Space used

H-descriptor [248]
RGB, oRGB, HSV, YIQ,

DCS, YCbCr , I1I2I3

Color Gabor-LBP [52] RGB, oRGB, HSV, YIQ, DCS, YCbCr

Histograms of oriented

gradients [249]
RGB, oRGB, HSV, YCbCr

Markowitz model [250] RGB, rgb, HSV, iHLS, L∗a∗b∗, YCbCr

Color space

selection

Histogram multi

thresholding [251]

RGB, rgb, XYZ, xyz, YIQ, YUV, wbrgby,

YC1C2, L∗a∗b∗, L∗u∗v∗, I1I2I3

Multi Color Space

Segmentation [18]

RGB, rgb, XYZ, xyz, YIQ, YUV, Yxy, wbrgby,

AC1C2, L∗a∗b∗, L∗u∗v∗, I1I2I3, YCh1Ch2,

I1rg, I1S1H1, I1S2H2, I4S3H2,

I5S4H2, I6S5H1, L∗S∗uvhuv ACC1C2hC1C2,

bwCrgbyhrgby, YCIQhIQ, YC∗abhab,

YCUVhUV , L∗C∗abhab,L∗C∗uvhuv,

LCCh1Ch2hCh1Ch2, I1CI2I3hI2I3

Switching model [252] RGB, HSV, YCbCr

Switching color space

models [242]

RGB, rgb, HSI, YIQ, XYZs, YCbCr , L∗a∗b∗,

L∗u∗v∗, I1I2I3

Markov random field [253] RGB, HSI, rg, L∗a∗b∗, L∗u∗v∗

Continued on next page . . .
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Table 3.2: Studies about multi color space approach continued...

Multi color

space approach
Descriptors Color Space used

Color space models based

on Mean-Shift [243, 244]

RGB, rgb, XYZ, HSI, YUV, L∗a∗b∗, YCbCr ,

I1I2I3

Shadow eliminating

operator [254]

RGB, HSV, rgb XYZ, YCbCr , L∗a∗b∗,

c1c2c3, l1l2l3

Gaussian low-pass

filter [255]
RGB, HSV, HSI, L∗a∗b∗, YCbCr

Color texture

feature

selection

Color pixels

classification [256]

RGB, rgb, ISH, XYZ, xyz, YIQ, YUV, AC1C2,

I1I2I3, L∗a∗b∗, L∗u∗v∗, L∗abC
∗
abh

o
ab, L∗uvC

∗
uvh

o
uv,

L∗uvS
∗
uvh

o
uv

Haralick features [46],

Reduced Size Chromatic

Co-occurrence

Matrices [139]

RGB, YUV, YIQ, XYZ, xyz, Yxy, rgb, LUV,

L∗a∗b∗, L∗u∗v∗, AC1C2, I1rg I1I2I3, bwrgby,

I1S1H1, I1S2H1, I4S3H2, I5S4H2, I1S1H3,

L∗S∗uvhuv, ACC1C2hC1C2, bwCrgbyhrgby,

YCIQhIQ, YCUVhUV , L∗C∗uvhuv, L∗C∗abhab,

I1CI2I3hI2I3, LCUVhUV

Morphological

information [229]
RGB, rgb, HSL, L∗a∗b∗, I1I2I3, L∗IV1 ,

Gabor Filters [231]

RGB, YUV, YIQ, HSV, HSL, XYZ, LCH,

L∗a∗b∗, L∗u∗v∗, YCbCr , YPbPr , YDbDr ,

JPEG−YCbCr

The next section details the color texture feature selection in multiple color spaces.
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3.3. Multi color space LBP selection

3.3 Multi color space LBP selection

3.3.1 Considered color spaces

In order to show the interest of the multi color space approaches for color texture classification,

NS= 9 color spaces among the spaces have been presented in section 1.1.1 are considered for

experiments:

• RGBandrgb, which belong to the primary space family,

• YCbCr andbwrgby, which are luminance-chrominance spaces,

• I1I2I3 , which is an independent color component space,

• HSV, HSI, HLSandI-HLS, which belong to the perceptual space family.

We have chosen these nine color spaces since they do not require to know illumination and

image acquisition conditions, likeL∗a∗b∗ or L∗u∗v∗ for instance. They also allow a good repre-

sentation of the four different color space families, even if a majority of perceptual spaces have

been chosen because these spaces are known to obtain a good classification accuracy [126, 139].

3.3.2 Candidate color texture descriptors

To compute the color LBP histograms or bins that are candidate for the selection, each image is

first coded in each of theNS= 9 color spaces previously introduced. Then, theδmax= 9 differ-

ent LBP histograms of EOCLBP descriptors described in section 1.1.4.3 are computed from the

so-coded images. A color texture is thus represented byδmax×NS= 9×9= 81 candidate LBP

histograms. When the number of binsQ is equal to 256 for each histogram, the total number of

bins isQ×δmax×NS= 256×9×9= 20736 bins. Figure 3.1 illustrates the representation of a

texture in multiple color spaces by the EOCLBP descriptor. The considered image is coded in 9

different color spaces in which the EOCLBP is applied separately to compute their histograms

and obtain the texture feature vector. Finally, the concatenation of these vectors is achieved in

order to provide a multi color space representation of a texture.

We present here the first results obtained on the New BarkTex set by the single color space

and the multiple color space approaches. The New BarkTex setis divided into a half for train-

ing set and a half for testing set by holdout method. Table 3.3presents the classification results

obtained on the testing set of this database. The purpose of this work being to show the con-

tribution of the multi color space approach, independentlyof the considered classifier and its

parameters (like the metric), the nearest neighbor classifier associated with the L1 distance as

a similarity measure is here considered. Obviously, more sophisticated methods such as SVM

92



CHAPTER 3. MULTI COLOR SPACE LBP-BASED FEATURES SELECTION

EOCLBP

EOCLBP

EOCLBP EOCLBP

EOCLBP

EOCLBP

EOCLBP

EOCLBP

Histograms of EOCLBP composed from images coded in 9 color spaces

...

...

...

...

...

...

...

...

... ... ... ... ... ... ... ... ... ...

Figure 3.1: An illustration of EOCLBP feature extraction from 9 color spaces.
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and other metrics may provide better results, but at the costof difficult complicated tuning

procedures.

The first column of this table shows the considered color spaces. The second column indi-

cates the rate of well-classified images with the dimension of the subspace. Here no selection

is performed. The dimension is thus 9×256= 2304 when a single color space is considered,

and 9×9×256= 20736 when the multi color approach is applied. The results without any

selection vary from 70.1% to 74.4% when a single color space is considered. Thergb color

space gives the best rate (value in box) and the average rate among the different color spaces

singly considered is 71.9%. The last row shows that the accuracy obtained in multiple color

spaces is 78.2% . We can observe that the multi space approachallows to significantly improve

the classification accuracy (+ 6.3% compared with the average value) however at the cost of a

nine times longer feature space.

Table 3.3: The classification results of New BarkTex database in nine single color space and in

multi color space when no selection method is used.

Color spaces
Without selection

Rate
Dimension

(D̂ = δmax×Q×NS)

RGB 73.2

rgb 74.4

I1I2I3 71.7

HSV 70.5

bwrgby 72.1 9×256×1= 2304

HLS 70.1

I-HLS 72.1

HSI 71.7

YCbCr 71.6

Average in

single space
71.9± 1.3

Multi spaces 78.2 9×256×9= 20736

94



CHAPTER 3. MULTI COLOR SPACE LBP-BASED FEATURES SELECTION

It is well-known that the performance of a classifier is generally dependent on the dimension

of the feature space due to the curse of dimensionality (see chapter 2) [257]. To reach a satisfy-

ing classification accuracy while decreasing the computation time of the on-line classification,

we propose to reduce the dimension of the feature space by selecting the most discriminating

features during a supervised learning stage.

3.3.3 Dimensionality reduction

To reduce the dimensionality of the feature space, two main strategies are proposed: feature

extraction and feature selection. And in order to evaluate the relevance of the feature sub-

spaces by feature selection methods, different approachesare proposed: filter, wrapper and

hybrid [162] (see chapter 2). Among these approaches, hybrid approaches are preferred [172].

These approaches combine a filter approach to select the mostdiscriminating feature subspaces

at different dimensions and a wrapper approach to determinethe dimension of the selected

subspace [175]. To operate a supervised feature selection,it is necessary to extract learning

and testing image subsets from the studied database. The learning subset is used to build a

low dimensional discriminating feature space during a supervised learning stage and the test-

ing subset is used during the classification stage to evaluate the performances of the proposed

approach. Since wrapper approach is a feature selection procedure that uses the classification

rate as discrimination power of a feature subspace, it needsto classify the images of a learn-

ing subset for all the candidate feature subspaces, that involves an important learning time and

classifier-dependent results. When a classifier such as the nearest neighbor is considered, it

requires of decomposing the learning subset into a trainingand a validation subsets.

Applying a multi color space strategy avoids the difficulty of choosing a relevant color space

that depends on the considered application and allows to take advantage of the discrimination

quality of several color spaces by combining them. It seems thus interesting to compare the

approaches of LBP histogram selection and LBP bin selectionin a multi color space framework.

The first approach is a multi color space extension of the LBP histogram selection proposed by

Porebski et al. for a single color space [8]. The second proposed approach is the extension to

color of the LBP histogram bin selection proposed by Guo et al. for a gray level analysis by

applying a multi color space strategy [10]. The third approach is the extension of the sparsity

score to LBP histogram bin ranking in multiple color spaces [197]. The following sections

detail these original approaches.

3.4 Multi color space histogram selection

The Multi Color Space Histogram Selection (MCSHS) approachanalyzes LBP histograms

computed from texture images coded into several color spaces. Indeed, rather than looking for
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3.4. Multi color space histogram selection

the best color space, these approaches first compute LBP histograms from several color spaces

(see sections 3.3.1 and 3.3.2) and then selects, out of the different candidate LBP histograms,

those which are the most discriminant for the considered application in a supervised context.

The MCSHS approach proposed in this section, whose flow chartis represented by fig-

ure 3.2, is an extension to the multi-color space domain of the histogram selection approach

proposed in 2013 by Porebski et al. [8].
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Figure 3.2: An illustration of the multi color space histogram selection aprroach.

MCSHS is an hybrid histogram selection approach that requires to split up the initial image

dataset in order to build a training, a validation and a testing image subset, according to a

holdout decomposition. During the learning stage, candidate histograms are generated from

training images. Let us note that most of considered texturebenchmark databases are composed

of only two image subsets, whereas the MCSHS approach needs three subsets. In order to

compare our experimental results with the same condition ofother works, we thus propose to

use one subset as the training subset and the second both as the validation and testing subset in

order to evaluate and compare the performances of the MCSHS approach.

Then, the proposed histogram selection procedure uses a “feature ranking” algorithm. The

selection is based on the histogram score evaluated for eachof the 81 available histograms. In

this work, four different scores are considered and compared:

• the Intra-Class Similarity score (ICS-score), proposed by Porebski et al. [8] and presented

in section 2.4.2.1, which is based on an intra-class similarity measure.
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• the Adapted Supervised Laplacian score (ASL-score), proposed by Kalakech et al. [9]

and presented in section 2.4.2.2, which evaluates the relevance of a histogram using the

local properties of the image data.

• the Simba-2 score, proposed by Mouhajid et al. [227] and presented in section 2.4.2.4,

which is based on the hypothesis margin and theχ2 distance.

• the Sparse Adapted Supervised Laplacian score (SpASL-score), presented in section 2.4.2.3,

which is based on ASL-score and sparse representation [258].

Once the score has been computed for each of theδmax×NS= 81 candidate histograms, a

ranking is performed. The candidate subspaces - composed, at the first step of the procedure,

of the histogram with the best score, at the second step, of the two first ranked histograms and

so on - are then evaluated to determine the relevant histogram subspace (see Figure 3.2). The

stopping criterion of the histogram selection procedure isbased on the classification accuracy.

For this purpose, a classifier operates in each candidate subspace in order to classify the vali-

dation images. The selected subspace, whose dimension isδ̂ ×Q, is the one which maximizes

the rateRδ of well-classified validation images noted:

δ̂ = argmax
1≤δ≤δmax×NS

Rδ (3.1)

During the classification stage, the relevant histograms previously selected are computed for

each testing image and compared to the training images in theso-selected relevant histogram

subspace to determine the testing image label.

Table 3.4 presents the results obtained by using histogram selection in a single color space

and in multiple color spaces. The first column of this table represents the color spaces used to

code image. The second column recalls the results obtained in table 3.3 without any selection.

The third column is divided to four sub-columns corresponding to the four considered scores:

ICS, Simba-2, ASL and SpASL-score. By analyzing this table,we see that the histogram selec-

tion clearly improves the classification performance when asingle or multiple color spaces are

considered. These approaches also reduce the number of histograms used in the classification

stage. The best rate is 88.0%. It is obtained by ICS-score in multiple color spaces with a nearly

reduced half number of used histograms. It improves nearly 10% of the rate obtained when no

selection is applied. This result shows that the relevance of considering a histogram selection

approach in a single and in multiple color spaces.

We have presented the Multi Color Space Histogram Selectionapproach. The next section

details the proposed Multi Color Space Bin Selection approach.
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Table 3.4: Comparison of classification rates obtained withand without LBP histogram selec-

tion in a single color space and in multi spaces on the New BarkTex database. The values in

boxes represent the best rates obtained with each color space and the boldface indicates the best

rate obtained of each approach.

Color spaces

Without

selection

Histogram selection

ICS Simba-2 ASL SpASL

Rate δ̂ Rate δ̂ Rate δ̂ Rate δ̂ Rate δ̂

RGB 73.2 9 81.3 4 81.3 4 81.3 4 81.3 4

rgb 74.4 9 76.8 7 74.4 9 77.1 3 77.1 3

I1I2I3 71.7 9 79.5 7 75.4 8 79.5 7 79.5 7

HSV 70.5 9 81.0 3 76.8 4 81.0 3 81.0 3

bwrgby 72.1 9 80.0 7 72.1 9 80.6 6 80.6 6

HLS 70.1 9 81.0 3 71.2 8 81.0 3 81.0 3

I-HLS 72.1 9 75.9 6 72.1 9 77.1 5 78.8 2

HSI 71.7 9 79.8 3 73.9 7 79.8 3 79.8 3

YCbCr 71.6 9 79.3 7 71.6 9 79.3 7 79.3 7

Average in

single space

71.9

± 1.3
9

79.4

± 1.8
5

74.3

± 3.2
7

79.6

± 1.5
4

79.8

± 1.3
4

Multi spaces 78.2 81 88.0 42 85.2 40 86.8 29 87.3 37

3.5 Multi color space bin selection

We first briefly recall the notations that are introduced in section 2.4.2. In the considered LBP

histogram selection context, the database is composed ofN color texture images. Each image

Ii , i = {1, ...,N} is characterized byδmax×NS= 9×9= 81 histograms in the multi color space

approach and represented by a concatenated histogramHHHi . The available data is summarized

by the matrixTTT defined as:

TTT =

















HHH1

...

HHHi

...

HHHN

















=
[

HHH
1 ... HHH

r ... HHH
δmax×NS

]

(3.2)
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whereTTT is composed by 81 matrix{HHH r}81
r=1 that represents the data ofrth histogram. LetHr

be one of the 81 histograms to evaluate, the matrixHHH r defined as:

HHH
r =

















Hr
1

...

Hr
i

...

Hr
N

















=

















Hr
1(1) ... Hr

1(k) ... Hr
1(Q)

... ... ... ... ...

Hr
i (1) ... Hr

i (k) ... Hr
i (Q)

... ... ... ... ...

Hr
N(1) ... Hr

N(k) ... Hr
N(Q)

















(3.3)

where,Q = 2P is the quantization level that depends on the number of neighbors used

to code the local binary patterns of the image.Hr
i (k) represents the values of thekth bin,

(k∈ {1, ...,Q}) of therth histogram of theith LBP image amongN color texture images.

Like the MCSHS approach, the Multi Color Space Bin Selection(MCSBS) analyses LBP

histograms computed from texture images coded into severalcolor spaces. Instead of selecting

the most discriminating histograms, the MCSBS approach selects the most discriminating bins

of these histograms. The first approach, presented in section 3.5.1, is an extension to the multi

color space domain of the bin selection approach proposed in2010 by Guo et al. for gray level

image analysis [10]. In the second approach, we consider that the bin of an histogram corre-

sponds to a feature of a vector, and we propose to apply the feature ranking algorithm presented

in section 2.3.1 for bin selection. Among the effective supervised filter ranking methods, the

supervised sparsity score is outperformed other scores as shown in [197], so we extend this

score as the second bin selection approach in the multi colorspace domain (see section 3.5.2).

The flow chart of the MCSBS approach is represented by figure 3.3.
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Figure 3.3: An illustration of multi color space bin selection approach.

It is a filter bin selection approach which requires to split up the initial image dataset to

build a training and a testing image subset. The bin selection procedure is based on a “feature
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ranking” algorithm while the score is based on pattern occurrence frequency by Guo’s method

or based on the sparsity score. The stopping criterion of binselection approach depends on a

threshold defined by the user. This approach consists in determining the global dominant bin

setJglobal among theQ×δmax×NS= 256×9×9= 20736 candidate LBP bins of theδmax×NS

concatenated histograms (see figure 3.1).

The following subsections present the bin selection based on pattern occurrence and sparsity

score.

3.5.1 Occurrence based ranking

During the learning stage, histograms are first generated from each training imageIi . The

most reliable and robust dominant bins are then determined among the candidate bins of each

concatenated histogram. The dominant bin setJi of an imageIi is the minimum set of bins

which can coverT% of all bin occurrences ofIi :

Ji = argmin
|Ji |

∑k∈Ji
HHHi(k)

∑Q
k=1HHHi(k)

≥ T% (i = 1...N) (3.4)

where|Ji| denotes the number of elements in the setJi andQ, the number of bins. Guo

proposes to set the thresholdT as 90% [10].

Then, the most reliable and robust dominant bins for each class c are determined. The

dominant bin setJCc of a classc is constituted of the bins that consistently belong to all the

dominant bin setsJi of each imageIi of the classc. It is the intersection of all setsJi of the

images of the classc:

JCc =
⋂

Ii∈c

Ji (3.5)

Finally, the global dominant bin setJglobal for the whole database is determined. It is

composed of all dominant bins belonging to the setsJCc (c= 1...C). It is the union of all sets

JCc:

Jglobal =
C
⋃

c=1

JCc (3.6)

During the classification stage, the dominant bins are calculated for each testing image based

on the global dominant bin setJglobal determined during the learning stage. The testing image is

then compared to the training images in the relevant bin subspace to determine its label thanks

to the nearest neighbor classifier based on the L1 distance.

The following section introduces the bin selection method based on sparsity score.
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3.5.2 Sparsity based ranking

The sparsity based ranking approach uses the sparse graph construction approach presented in

section 2.3.1. During the learning stage, each training image is represented by a vector com-

posed of the 20736 features (or bins) of the 81 concatenated histograms. The novel proposed

method applies the sparsity ranking according two strategies:

• Strategy A: Candidate histograms are generated from training images and concatenated

to form a vector with 20736 features. For each class, the sparse similarity matrix is first

calculated by using the class label through equation 2.12. Then, the score is assigned for

each feature by equation 2.22. The ranked bins are obtained by sorting all bins according

to their score in ascending order.

• Strategy B: For each candidate histogram generated from training images, the sparsity

score is computed for theQ bins of this histogram. This differs from the strategy A

where the sparsity score is computed for theQ× δmax×NS bins of the concatenated

histogram. The final ranked bins of all candidate histogramsare obtained by sorting

those bins according to their score in ascending order.

Note that the difference between these two strategies is thedimensional-features input to

construct the sparse similarity matrix within each class. So, the score value of each bin within

each histogram and the score value of each bin of the concatenated histograms are different.

The experimental results conducted in the following section allow us to see this difference.

In order to illustrate the proposed method, we introduce an example with three sample

histogramsH1
i , H2

i andH3
i , i ∈ {1, ...,N} of the N training images represented by three ma-

tricesHHH 1, HHH 2 andHHH 3, respectively, as shown in Figure 3.4. To represent the binsof each

histogram, we use three symbols: a square, a circle and a triangle. We consider that each his-

togram has 6 bins which are numbered from 1 to 6. For example, the square numbered as 1 is

represented the first bin of histogramH1
i .

For the strategy A, three histograms are firstly concatenated to form a feature vector with

18 features. We assume the score value of each bin is estimated and illustrated below each

symbol. The associated score is computed for each bin by the sparsity score and the bins are

ranked in ascending order according to their value as illustrated in figure 3.4a. For the strategy

B, the sparsity score is applied on each histogram to computea score for each bin. For example,

the 6th bin of H1
i has a smallest sparsity score value and it is more relevant than others. The

bins of all histograms are examined in order to be sorted depending on their score value. The

illustration of the final ranked bins is at the bottom of the figure 3.4b. We see that all the bins

with smallest score values are ranked first, i.e 3th and 5th bin of H3
i and 6th bin of H2

i are more

relevant than others. The order of the bins with the same score value is not considered in this

case.
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Figure 3.4: An illustration of bin selection by strategy B.
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After the bin ranking is finished, the relevant bin subspace can be selected by a threshold

defined by user according to the score value. During the classification stage, the features of

testing images are determined according to the bin ranked and the threshold defined by user

during the learning stage. The decision step is realized as previously presented.

Moreover, the bin selection procedure can be based on the filter or hybrid approaches. For

the filter approaches, we can use the threshold parameterT as Guo does in [10]. On the other

hand, the hybrid approaches allow evaluating the relevanceof the feature subspaces without

using any parameter. That is why we choose hybrid approachesto evaluate our proposed ap-

proaches. The following section presents this procedure which is based on sparsity ranking.

3.5.3 Bin selection procedure

The flow chart of an hybrid LBP bin selection approach is represented by figure 3.5. It re-

quires to split up the initial image dataset in order to builda training, a validation and a testing

image subset, according to a holdout decomposition. The parts labeled as gray are the differ-

ences compared with MCSBS approach shown by figure 3.3. As we mentioned in the previous

section, the testing and validation subsets are the same in most of available image database.

During the learning stage, candidate histograms are generated from training images and bin

ranking is applied (by the strategy A or B) thanks to the supervised sparsity score presented

in section 2.3.1. Once the bin ranking strategy is applied, the final ranked bins are selected to

find the relevant subspace and the most discriminant bins have to be selected. The discrimi-

nant power of candidate bin subspaces with different dimensions are evaluated to determine the

most relevant subspace. At the first step, the candidate subspace composed of the first ranked

bin is considered. Then, at the second step, the candidate subspace composed of the two first

ranked bins is considered and so on. For this purpose, a nearest neighbor classifier is also con-

sidered with the L1 distance. This classifier operates in each candidate subspace to classify the

validation images represented by the prototype bins. The selected subspace, whose dimension

is D̂, is the one which maximizes the rate of well-classified validation images denotedRD:

D̂= argmax
1≤D≤Q×δmax×NS

RD. (3.7)

During the classification stage, the relevant bins previously selected are computed for each

testing image and compared to the training images in the relevant bin subspace to determine

the testing image label by the nearest neighbor classifier.

3.5.4 Results

Table 3.5 presents the results by the color bin selection approach based on occurrence and

sparsity based ranking. We also compare the results obtained in single color space and in
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Figure 3.5: Multi color space bin selection approach.

multiple color spaces with and without selection. The thirdcolumn of this table is divided into

three sub-columns corresponding three previously proposed approaches: the occurrence and

the two sparsity based ranking strategies. We propose to setthe threshold as 90% to select the

dominant bins for occurrence based ranking [10]. For the twosparsity ranking approaches, we

use the bin selection based on hybrid approaches (figure 3.5)to select the relevant bin subspace.

The LBP bin selection approaches improve the classificationperformance in any cases when a

single color space or a multiple color space approaches are considered. The best rate is obtained

by occurrence based ranking: 82.5% (withHSI space) and 87.8% (with multiple color spaces).

The two strategies A and B of the sparsity based ranking give different rates and dimensions.

By analyzing the average results in a single color space and in multiple color spaces, we see that

the sparsity based ranking with the strategy B gives better results than the strategy A whereas

the number of selected bins are also higher. An extended comparison of these strategies will be

proposed in the next chapter.

We have presented the LBP bin selection based on the sparsityscore. When two bins

with the same score, they are ranked randomly. It is interesting to identify which one is more

discriminant LBP bins for a better representation. The histogram selection procedure selects the

relevant histogram according to their scores. As whole LBP histograms are selected, it is clear

that some bins of these histograms are either redundant or even totally uninformative. They
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CHAPTER 3. MULTI COLOR SPACE LBP-BASED FEATURES SELECTION

Table 3.5: The classification results of LBP bin selection approaches in a single and multi-

ple color spaces on the New BarkTex database. The values in boxes represent the best rates

obtained with each color space and the boldface indicates the best rate obtained of each com-

bination approach.

Color spaces
Without selection

LBP Bin selection

Occurence Sparsity (A) Sparsity (B)

Rate D̂ Rate D̂ Rate D̂ Rate D̂

RGB 73.2 2304 81.5 281 79.0 1109 78.7 2033

rgb 74.4 2304 74.9 132 74.4 2242 76.0 2274

I1I2I3 71.7 2304 74.8 78 74.4 1198 77.2 2011

HSV 70.5 2304 81.0 179 79.5 500 77.6 1544

bwrgby 72.1 2304 74.4 78 77.5 836 78.3 1435

HLS 70.1 2304 81.1 167 78.0 319 76.7 1910

I-HLS 72.1 2304 77.8 129 72.7 1813 78.9 1883

HSI 71.7 2304 82.5 172 79.2 533 79.0 1929

YCbCr 71.6 2304 74.5 81 77.0 370 80.6 2116

Average in

single space

71.9

± 1.3
2304

78.0

± 3.4
144

76.9

± 2.3
991

78.1

± 1.3
1903

Multi spaces 78.2 20736 87.8 1502 83.6 754 84.4 16491

can decrease the performances of the learning algorithms. Thus, a dimensionality reduction

method for selecting relevant histogram bins of relevant histograms is needed to address these

problems. The following section introduces our proposed original approach that combines

histogram ranking and bin selection for classification task.

3.6 Combination of histogram ranking and bin selection

We consider that the LBP histogram ranking is important to rank bins as mentioned above.

The purpose of this proposition is to filter out the irrelevant bins of the relevant histograms

and oppositely find out the relevant bins of the irrelevant histograms. The flow chart of this

approach is illustrated by figure 3.6. It is also a hybrid selection method, however the bin

ranking strategies are applied after the histogram rankingin this case. Here, we assume that
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3.6. Combination of histogram ranking and bin selection

the bins of discriminant histograms are more relevant than others. During the learning stage,

candidate histograms are generated from training images and histogram ranking is applied for

each candidate histogram thanks to one of the four scores that are that presented and used in

section 2.4.2 and 3.4 (ICS, ASL, SpASL, Simba-2). The differences between figure 3.6 and

figure 3.5 are the histogram ranking strategy is applied before bin ranking. In this framework,

two more strategies are proposed as follows:

• Strategy C: A score for each candidate histogram is computed and the histograms are

then ranked according to their score. Next, a bin ranking is achieved for each histogram

individually thanks to the sparsity score. We finally concatenate the ranked bins of the

ranked histograms.

• Strategy D: We assume that the first bin of the most relevant histograms are more relevant

than the other bins. So, we propose to rank at first, the group of all the first bins of each

histogram in the order of the ranked histograms, then the group of all the second bins are

ranked in the second and continuously until the last bin of each histogram. The final bin

ranking is aQ×δmax uplet vector, whereQ is the number of bins of each histogram. The

order of the bin in eachδmax uplet is based on the ranked histogram.

In order to illustrate the combination of histogram rankingand bin selection approaches (cf.

figure 3.7), let us take the same example as in previous section. In this illustration, we assume

the histograms are ranked by a consider histogram score asH3
i , H1

i andH2
i . The bin ranking

is achieved for each histogram by the supervised sparsity score. For the strategy C, the bin

ranking is obtained by concatenating the three histogramsH3
i , H1

i andH2
i with previously bin

ranking within each histogram as shown in figure 3.7a. The binranking obtained by strategy D

is a vector composed of the 6 triplet-bins as shown in figure 3.7b. The first triplet is composed

by the three first bins ofH3
i , H1

i andH2
i , respectively. This procedure continues to the last

triplet is composed by the three last bins ofH1
i , H3

i andH2
i , respectively.

In order find the relevant bin subspace the bin selection procedure is carried out as the same

in section 3.5.3.

Table 3.6 presents the results obtained with the two strategies C and D. For the purpose of

combination of bin and histogram selection of each strategyC or D, four different histogram

scores have been used in the combination of the bin selection(BS) by supervised sparsity score:

1. ICS score and sparsity score,

2. ASL score and sparsity score,

3. SpASL score and sparsity score,

4. Simba-2 score and sparsity score.
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Figure 3.6: The combination of histogram ranking and bin selection in the multiple color

spaces.

This table confirms that the combination of histogram ranking and bin selection signif-

icantly improves the classification compared with the results obtained without applying the

selection scheme in both single color space (+ 9.1%) and in multiple color spaces (+ 10.8%).

The best results obtained are 84.2% witht theRGBspace by the strategy C when a single color

space is considered, and 89.0% in multiple color spaces withthe strategy D by combining

ICS-score and bin selection.
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Figure 3.7: An illustration of the histogram ranking and binselection approaches.
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Table 3.6: The classification results of the combination of histogram ranking and bin selection approaches in a single and multiple color

spaces on the New BarkTex database. The values in boxes represent the best rates obtained of each color space and the boldface indicates

the best rate obtained of each approach

Color

spaces

Without

selection

Strategy C Strategy D

ICS & BS Simba-2

& BS

ASL &

BS

SpASL &

BS

ICS & BS Simba-2

& BS

ASL &

BS

SpASL &

BS

Rate D̂ Rate D̂ Rate D̂ Rate D̂ Rate D̂ Rate D̂ Rate D̂ Rate D̂ Rate D̂

RGB 73.2 2304 84.2 822 84.2 822 84.2 822 84.2 1016 83.7 822 83.7 1016 83.7 1016 83.7 1016

rgb 74.4 2304 77.2 1789 74.4 2303 77.8 709 77.8 709 77.8 1785 74.6 2286 77.9 1530 77.9 1530

I1I2I3 71.7 2304 81.4 1581 75.6 2021 80.8 857 80.2 1803 80.6 1564 78.6 2016 80.5 1764 80.5 1764

HSV 70.5 2304 81.6 779 77.6 1165 82.5 851 82.5 851 81.0 768 79.5 1250 81.0 768 81.0 768

bwrgby 72.1 2304 81.0 1721 73.0 2004 81.1 1490 81.1 1490 81.9 1708 77.8 1521 82.1 1524 82.1 1524

HLS 70.1 2304 81.5 824 72.1 2098 81.5 824 81.7 782 81.0 768 81.0 768 81.0 768 81.0 768

I-HLS 72.1 2304 77.4 1575 72.2 2297 78.3 1288 80.8 427 76.8 2032 76.7 729 77.3 1270 79.1 762

HSI 71.7 2304 81.1 793 74.6 1756 81.1 793 81.3 781 79.8 768 77.9 1456 79.8 768 79.8 768

YCbCr 71.6 2304 82.0 1639 72.0 2300 80.2 824 79.4 1793 82.5 1778 79.8 1575 82.5 1778 82.5 1778

Average

in

single

space

71.9

±

1.3

2304

80.8

±

2.2

1280

75.1

±

3.9

1862

80.8

±

1.9

939

81.0

±

1.8

1072

80.5

±

2.1

1332

78.9

±

2.6

1401

80.6

pm

2.0

1242

80.8

±

1.7

1186

Multi

spaces
78.2 20736 88.1 11501 85.4 10251 87.0 7460 87.5 9580 89.0 11457 87.4 9912 88.1 12466 88.4 11985

1
0
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3.7. Conclusion

3.7 Conclusion

In this chapter, a multi color space approach is proposed to overcome the drawback of choos-

ing the single color space best suited for the considered application. We firstly proposed to

code images with nine different color spaces and to extract EOCLBP descriptor to character-

ize the color textures. However, this multi color space approach encountering the problem of

high-dimensional feature space, we propose to extend the histogram selection and bin selection

approaches to the multi color space domain. These approaches consist in selecting discrimi-

nating LBP histograms or bins computed from images coded in several color spaces and thus

allow to overcome the difficulty of choosing a well-suited color space to discriminate the con-

sidered color texture classes. Four histogram scores are considered for LBP histogram selection

in multiple color spaces. Two approaches based on the occurrence and sparsity score are then

extended for multi color space bin selection.

In addition, we have proposed to combine the histogram ranking and bin selection according

to two selection strategies. These methods aims to select the discriminant LBP bins by using the

histogram ranking. In order to illustrate our original approach, we have presented first results

obtained on the New BarkTex database. These results show that the multi color space approach

clearly improve classification rate instead of using a single color space. Secondly, the proposed

selection approaches not only improve the classification inboth single and in multiple color

spaces but also reduce the dimension of the feature space.

The complete experimental results on other databases are further presented and analyzed in

the following chapter.
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In this chapter, we propose to compare the strategies of LBP histogram selection and LBP

bin selection in the multi color space framework. The approaches presented in the previous

chapter will be applied and analyzed thanks to four image databases: New BarkTex, OuTex-

TC-00013, USPTex and STex (presented in section 1.1.3). Each database is divided into a half

for the training set and a half for the testing set by the holdout method. Let us summarize theses

databases by table 4.1.

Table 4.2 lists the methods that will be analyzed. We divide those methods in four cate-

gories: no selection, histogram selection, bin selection and combination of histogram ranking

and bin selection.
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Table 4.1: Summary of image databases used in experiments.

Dataset name Image size # class # training # testing Total

New BarkTex 64× 64 6 816 816 1632

OuTex-TC-00013 128× 128 68 680 680 1360

USPTex 128× 128 191 1146 1146 2292

STex 128× 128 476 3808 3808 7616

Table 4.2: Summary of the proposed methods used in experiments.

No Name Method Category

1 MCWS Multi color space without selection No selection

2 MCSHS-ICS
Multi color space histogram

selection based on ICS-score
Histogram selection

(c.f section 3.4)3 MCSHS-Simba-2
Multi color space histogram

selection based on Simba-2-score

4 MCSHS-ASL
Multi color space histogram

selection based on ASL-score

5 MCSHS-SpASL
Multi color space histogram

selection based on SpASL-score

6 MCSBS-Occurrence
Multi color space bin selection

based on occurrence (c.f section 3.5.1)

Bin selection

7 MCSBS-Sparsity (A)

Multi color space bin selection

based on sparsity-score by strategy A

(c.f section 3.5.2)

Continued on next page . . .
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Table 4.2: Summary of the proposed methods used in experiments. continued...

No Name Method Category

8 MCSBS-Sparsity (B)

Multi color space bin selection

based on sparsity-score by strategy B

(c.f section 3.5.2)

10 ICS & BS-(C)

Multi color space bin selection

by combining ICS-score and bin

selection by strategy C

Combination of

histogram ranking

and bin selection

(c.f section 3.6)

11 Simba-2 & BS-(C)

Multi color space bin selection

by combining Simba-2-score and

bin selection by strategy C

12 ASL & BS-(C)

Multi color space bin selection

by combining ASL-score and

bin selection by strategy C

13 SpASL & BS-(C)

Multi color space bin selection

by combining SpASL-score and

bin selection by strategy C

14 ICS & BS-(D)

Multi color space bin selection

by combining ICS-score and

bin selection by strategy D

15 Simba-2 & BS-(D)

Multi color space bin selection

by combining ICS-score and

bin selection by strategy D

Continued on next page . . .
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Table 4.2: Summary of the proposed methods used in experiments. continued...

No Name Method Category

16 ASL & BS-(D)

Multi color space bin selection

by combining ASL-score and

bin selection by strategy D

17 SpASL & BS-(D)

Multi color space bin selection

by combining SpASL-score and

bin selection by strategy D

In a single color space approach, each texture is coded byNδ = 9 histograms whileNδ =

9×9 = 81 histograms are considered in the multiple color space approach. In chapter 3, we

have shown that this last approach clearly improves the classification rates compared with a sin-

gle color space approach on the New BarkTex database. Furthermore, when we have compared

the result of the multi color space selection approach with those obtained without applying any

selection method, we have shown that the multi color space selection not only improves the

classification performance but also reduces the dimension of the feature space. In this chapter,

we propose to continue to analyze the proposed approaches byapplying them on three addi-

tional databases, in addition to New BarkTex.

Although OuTex-TC-00013 is widely used, this image set presents a major drawback like

USPTex and STex sets. The partitioning used to build these three sets consists in extracting

training and testing sub-images from a same original image.However, such a partitioning,

when it is combined with a classifier such as the nearest neighbor classifier, leads to biased

classification results [139]. Indeed, testing images are spatially close to training images. They

are thus correlated and a simple 3D color histogram reaches ahigh classification accuracy

whereas it only characterizes the color distribution within the color space and does not take

into account the spatial relationships. On the other hand, the New BarkTex has been create to

overcome that drawback (see section 1.2.4). That is the reason why more details and analysis

will be proposed in the following on the New BarkTex database.

This chapter is organized in as follows. We first study the impact of the distance used

for measuring the similarity between two histograms duringthe computation of the proposed

SpASL-score in order to choose the appropriate distance (see section 4.1). In section 4.2, we

evaluate the impact of the histogram scores on the four considered databases to validate the
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relevance of the proposed SpASL-score. Next, the differentstrategies are evaluated, analyzed

and compared with the results of the state-of-the-art in section 4.3. Finally, we summarize and

conclude the chapter in section 4.4.

4.1 Impact of similarity measure

The ICS-score uses histogram intersection to evaluate the similarity between two histograms,

while ASL uses the Jeffrey distance and Simba-2 usesχ2, respectively. In order to keep the

same condition as ASL-score, the proposed SpASL uses the Jeffrey distance to measure the

similarity. However, there is an open question regarding the considered distance:“Does the

selected distance has an impact on the histogram score?”. We propose here to study this

question for the SpASL-score.

In order to study the robustness of the SpASL-score, three common distances such as his-

togram intersection,χ2 and Jeffrey are compared. For each of the four considered database,

the training set is used for the histogram ranking procedureby applying equation 2.65. Then,

ranked histograms are used as inputs of the classification process which is performed on the

testing set. The L1-distance is associated with the 1-NN classifier while the classification per-

formance is evaluated by the accuracy rate. It is worth to note that our works focus on the

feature selection step so that is why we use a basic and non-parametric classifier with a simple

distance frequently used.

Table 4.3 shows the classification rates obtained with the different distances associated with

the MCSHS-SpASL approach. The first column represents the name of the used database. The

second column is divided into three sub-columns corresponding to the three associated dis-

tances. The valuêδ , that represents the number of selected LBP histograms for which the

well-classified image rate is reached, is also shown in this table. Note that the best results of

each row are shown in boldface. This table globally shows that the SpASL-score associated

with histogram intersection does not give good results compared with the two other distances

whatever the datasets. This is due to the fact that, to extendthe distance( f r
i − f r

j )
2 to the

histogram selection context, Kalakech et al. shows that it is necessary to consider a measure

which has to be minimized to select the most relevant histograms [9]. The histogram inter-

section, which has to be maximized, is thus not relevant to compute the ASL-score, and so

the SpASL-score. The average result on the four databases also indicates that Jeffrey andχ2

distance reach the same performance. As Jeffrey andχ2 give the results close, we propose to

use Jeffrey for the proposed SpASL-score hereafter.

We have presented the impact of the similarity measure to theSpASL-score. The next

section is dedicated to illustrate the impact of the histogram score.
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Table 4.3: The classification obtained by SpASL-score with three measurements of similarity

between two histograms by histogram intersection,χ2, Jeffrey on four texture databases. The

value in boldface indicates the best obtained rate of each row.

Database

Distance

Histogram

intersection

χ2 Jeffrey

Rate δ̂ Rate δ̂ Rate δ̂

New BarkTex 78.4 77 87.3 38 87.3 37

OuTex-TC-00013 95.2 68 95.6 62 95.6 62

USPTex 93.7 78 97.6 39 97.4 31

STex 93.2 81 96.6 29 96.8 32

Average on the four databases90.1± 7.8 94.3± 4.7 94.3± 4.7

4.2 Impact of the histogram score

Table 4.4 presents the results obtained by MCSHS and MCWS on OuTex-TC-00013, New

BarkTex, USPTex and STex database. The first column of this table shows the name of the

database. The second column shows the results when no selection is applied. The last column

is divided into four sub-columns corresponding to the four histogram scores ICS, Simba-2, ASL

and SpASL. The average rate obtained for each approach on thefour databases is presented in

the last row.

By analyzing this table with the best rate of each row, we can see that the MCSHS ap-

proaches improves (+ 0.6%), (+ 9.8%), (+ 3.9%), (+ 3.5%) for OuTex-TC-00013, New Bark-

Tex, USPTex and STex respectively. The best result reached on New BarkTex is obtained by

MCSHS-ICS which uses only 42 histograms instead of 81 histograms when no selection is

applied. Similarly for other databases, this can confirm that the MCSHS approach not only im-

proves the classification rate but also reduces the subspacedimension. Moreover, the obtained

results validate the relevance of the proposed SpASL-score. Indeed, based on the average re-

sults obtained on the four databases, this table shows that the SpASL-score improves the results

compared with the three other scores and the number of histograms selected by SpASL is each

time among the lower.
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Table 4.4: The classification results of the multi color space approach without and with his-

togram selection, on the four texture databases. The value in boldface indicates the best rate

obtained for each row.

Database
MCWS

MCSHS

ICS Simba-2 ASL SpASL

Rate δ̂ Rate δ̂ Rate δ̂ Rate δ̂ Rate δ̂

OuTex-13 95.0 81 95.6 59 95.0 79 95.3 62 95.6 62

New BarkTex 78.2 81 88.0 42 85.2 40 86.8 29 87.3 37

USPTex 93.7 81 93.7 40 93.8 80 97.6 41 97.4 31

STex 93.3 81 94.1 47 95.8 31 96.1 38 96.8 32

Average on the

four databases

90.0± 7.9 92.8± 3.2 92.4± 4.9 93.9± 4.8 94.3± 4.7

After having presented the results obtained with the multi space histogram selection by the

four considered histogram scores, the following section analyses the impact of the LBP-based

feature selection approaches.

4.3 Impact of the LBP-based feature selection strategy

This section presents the results reached by the different strategies proposed in chapter 3 and is

organized as follows. Section 4.3.1 details the classification results obtained on the New Bark-

Tex database. Section 4.3.2 compares the results reached byour approach with those obtained

in the state-of-the-art on the further OuTex-TC-00013, USPTex and STex databases. Finally,

the processing times of the proposed approaches is presented and analyzed in section 4.3.3.

4.3.1 Classification results detailed on the New BarkTex

Table 4.5 shows the classification results obtained by the different proposed approaches on the

New BarkTex database. The first and second columns representthe categories and the approach
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names. The third and fourth column indicate the rate of well-classified images reached and the

subspace dimension. The last column shows the average result of each category.

Table 4.5: Classification results of the proposed approaches in the multi color space framework

on the New BarkTex database. The value in box indicates the highest rate within each category

while the value in boldface indicates the best rate obtainedamong all approaches.

Category Approach Rate D̂ Average

No selection MCWS 78.2 20736 78.2

Histogram

selection

MCSHS-ICS 88.0 10752

MCSHS-Simba-2 85.2 10240 86.8± 1.1

MCSHS-ASL 86.8 7424

MCSHS-SpASL 87.3 9472

Bin selection

MCSBS-Occurrence 87.8 1502

MCSBS-Sparsity (A) 83.6 754 85.2± 2.2

MCSBS-Sparsity (B) 84.4 16491

Combination of

histogram ranking

and bin selection

ICS & BS-(C) 88.1 11501

Simba-2 & BS-(C) 85.4 10251

ASL & BS-(C) 87.0 7460

SpASL & BS-(C) 87.5 9580

ICS & BS-(D) 89.0 11457 87.7± 1.1

Simba-2 & BS-(D) 87.4 9912

ASL & BS-(D) 88.1 12466

SpASL & BS-(D) 88.4 11985

By analyzing this table, we can see that the classification rate range from 78.2% to 89.0%.

The highest rate obtained by a MCSHS approach is 88.0% with the ICS-score. This rate is then
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compared with the highest rate of the bin selection category. This rate is obtained by MCSBS-

Occurrence which is less good with (- 0.2%). However, MCSBS-Occurrence selects a feature

space with a lower dimension than the MCSHS approaches. MCSBS-Sparsity (A) and (B)

improve the classification rate compared with the MCWS approach, nevertheless these two ap-

proaches give the lowest rates. Based on the average resultsin the last column, we can observe

that the combination of histogram ranking and bin selectiongives the best result. It improves

(+ 0.9%) and (+ 2.5%) compared with the MCSHS and MCSBS approach, respectively.

The combination of histogram ranking and bin selection guarantees to obtain a rate always

greater or equal than those obtained by histogram selection. For example, the MCSHS-ICS

approach gives at 88.0% when we combine this score with bin selection, the results obtained

by strategies C and D are 88.1% and 89.0%, respectively. We find the same conclusion for the

combination with the other scores. The best results depend on the choice of the histogram score

used for the combination. Regarding the number of selected bins, the combination methods do

not reduce the dimension compared with MCSBS and MCSHS approaches. For example, the

combination of SpASL-score and bin selection achieves a rate of 88.4% with the strategy D

ad with the number of bins equal to 11985. It improves the rateobtained by MCSHS-SpASL

+ 1.1% but uses more 2513 bins. This can be explained by the fact that the combination

approaches seek the relevant bins for all ranked bins while the MCSHS seeks only the relevant

histogram and might miss some relevant bins of the irrelevant histograms. That is the reason

why we can improve the rate and sometimes the dimension does not reduce. Globally, we can

observe that the combination by the strategy D gives better rates than those obtained by strategy

C.

The classification results obtained on the New BarkTex by ourproposed approaches are

then compared with those obtained by the different studies of the state-of-the-art in table 4.6.

The rows labeled as gray correspond to experiments that are carried out in this work whereas

the other rows correspond to results published by other authors. The first column refers to the

related papers and indicates the used selection method. Theconsidered color spaces used to

classify the images are presented in the second column of thetable. The third column shows

the descriptors which have been analyzed to discriminate the different color texture classes.

Finally, the last column shows the rate of well-classified testing images obtained with the clas-

sifier presented in the fourth column. The classification rate obtained by other authors ranges

from 58.6% to 82.1%. This table indicates that our approaches outperform the state-of-the-art

results, improving (+ 6.9%) on New BarkTex database by the combination of ICS-score and

LBP bin selection methods.
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4.3. Impact of the LBP-based feature selection strategy

Table 4.6: Comparison between the well-classified image rates reached with the New BarkTex

set. The italic values indicate the results obtained based on our implementation while the

underlined values indicate the results extracted from [47].

Reference Color space Features Classifiers Accuracy

ICS & BS-(D) 9 color spaces EOCLBP 1-NN 89.0

ICS & BS-(C) 9 color spaces EOCLBP 1-NN 88.1

MCSHS-ICS 9 color spaces EOCLBP 1-NN 88.0

MCSBS-Occurrence 9 color spaces EOCLBP 1-NN 87.8

MCSBS-Sparsity (B) 9 color spaces EOCLBP 1-NN 84.4

[154] RGB CLBC 1-NN 84.3

MCSBS-Sparsity (A) 9 color spaces EOCLBP 1-NN 83.6

[66] RGB 3D-ASDH SVM 82.1

[8] (with selection method) RGB EOCLBP 1-NN 81.4

[9] (with selection method) RGB EOCLBP 1-NN 81.4

[62] RGB
LBP and local

color contrast
1-NN 80.2

[56] RGB
Between color

component LBP
1-NN 79.9

MCWS 9 color spaces EOCLBP 1-NN 78.2

[47] RGB
Mix color order

LBP histogram
1-NN 77.7

[138] (with selection method) 20 color spaces RSCCM 1-NN 75.9

[259] RGB CLBP 1-NN 72.8

[34] RGB Color angles LBP 1-NN 71.0

[260] RGB DRLBP 1-NN 61.4

[13] RGB Color histograms 1-NN 58.6
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4.3.2 Validation on STex, OuTex-TC-00013 and USPTex sets

Table 4.7, 4.9 and 4.8 present the classification results obtained by our proposed approaches

and those obtained by the different studies which have applied a color texture classification

algorithm on STex, OuTex-TC-00013 and USPTex respectively.

Table 4.7: Comparison between the well-classified image rates reached with the STex database.

The italic values indicate the results obtained based on ourimplementation.

Reference Color space Features Classifiers Accuracy

SpASL & BS-(D) 9 color spaces EOCLBP 1-NN 98.1

SpASL & BS-(C) 9 color spaces EOCLBP 1-NN 96.9

ASL & BS-(C) 9 color spaces EOCLBP 1-NN 96.8

MCSHS-SpASL 9 color spaces EOCLBP 1-NN 96.7

MCSBS-Occurrence 9 color spaces EOCLBP 1-NN 96.7

MCSBS-Sparsity (A) 9 color spaces EOCLBP 1-NN 94.7

MCSBS-Sparsity (B) 9 color spaces EOCLBP 1-NN 94.7

MCWS 9 color spaces EOCLBP 1-NN 93.7

[260] RGB DRLBP 1-NN 89.4

[134] L∗a∗b∗ Wavelet coefficients Bayes 77.6

[135] RGB
Color contrast

occurrence matrix

1-NN 76.7

[131] L∗a∗b∗ Soft color descriptors 1-NN 55.3

For the three databases, the best rates obtained are given bythe combination of the SpASL-

score and bin selection with the strategy D. Our approaches outperform all other methods for

USPTex and STex by improving the classification rate by (+ 2.4%) and (+ 8.7%), respectively.

On the other hand, our approaches do not outperform two workson OuTex-TC-00013 [138,
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4.3. Impact of the LBP-based feature selection strategy

Table 4.9: Comparison between the well-classified image rates reached with the OuTex-TC-

00013 set.

Reference Color space Features Classifier Accuracy

[138] (with selection method) 28 color spaces RSCCM 1-NN 96.6

[66] HSI 3D-ASDH SVM 95.8

SpASL & BS-(D) 9 color spaces EOCLBP 1-NN 95.7

SpASL & BS-(C) 9 color spaces EOCLBP 1-NN 95.7

MCSHS-SpASL 9 color spaces EOCLBP 1-NN 95.6

MCSHS-ICS 9 color spaces EOCLBP 1-NN 95.6

[13] HSV 3D Color histogram 1-NN 95.4

SpASL & BS-(C) 9 color spaces EOCLBP 1-NN 95.3

MCSBS-Sparsity (A) 9 color spaces EOCLBP 1-NN 95.2

MCSBS-Sparsity (B) 9 color spaces EOCLBP 1-NN 95.2

MCWS 9 color spaces EOCLBP 1-NN 95.0

[114] RGB Fractal descriptors LDA 95.0

[41] RGB Haralick features 5-NN 94.9

[56] RGB 3D Color histogram 3-NN 94.7

[126] I-HLS 3D Color histogram 1-NN 94.5

[41] RGB Haralick features 1-NN 94.1

[122] HSV EOCLBP SVM 93.5

[9] (with selection method) RGB EOCLBP 1-NN 93.4

Continued on next page . . .
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Table 4.9: Comparison between the well-classified image rates reached with the OuTex-TC-

00013 set continued...

Reference Color space Features Classifier Accuracy

[8] (with selection method) RGB EOCLBP 1-NN 92.9

MCSBS-Occurrence 9 color spaces EOCLBP 1-NN 92.9

[139] (with selection method) HLS RSCCM 1-NN 92.5

[13] RGB

Between color

component LBP

histogram

1-NN 92.5

[109] RGB
Quaternion-Michelson

Descriptor

1-NN 91.3

[127] RGB Texton 1-NN 90.3

[261] RGB
Combine color and

LBP-based features

1-NN 90.2

[134] L∗a∗b∗ Wavelet coefficients Bayes 89.7

[152] RGB
Intensity-Color

Contrast Descriptor

1-NN 89.3

[260] RGB DRLBP 1-NN 89.0

[126] I-HLS
Autoregressive models

and 3D color histogram

1-NN 88.9

Continued on next page . . .
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Table 4.9: Comparison between the well-classified image rates reached with the OuTex-TC-

00013 set continued...

Reference Color space Features Classifier Accuracy

[142] RGB

Halftoning Local

Derivative Pattern and

Color Histogram

1-NN 88.2

[232] L∗a∗b∗ Autoregressive models 1-NN 88.0

[13] RGB

Within color

component LBP

histogram

1-NN 87.8

[47] RGB
Mix color order

LBP histogram

1-NN 87.1

[62] RGB Color angles LBP 1-NN 86.2

[34] RGB
LBP and local color

contrast

1-NN 85.3

[54] RGB
Features from wavelet

transform

7-NN 85.2

[259] RGB CLBP 1-NN 84.4

[135] RGB
Color contrast

occurrence matrix

1-NN 82.6

[131] HSV Soft color descriptors 1-NN 81.4

Continued on next page . . .
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Table 4.9: Comparison between the well-classified image rates reached with the OuTex-TC-

00013 set continued...

Reference Color space Features Classifier Accuracy

[144] RGB HEP 1-NN 80.9

[128] RGB Fuzzy aura matrices 1-NN 80.2

[148] RGB Modified LBP 1-NN 67.3

66]. In [138], Porebski et al. use Haralick features extracted from Reduced Size Chromatic

Co-occurrence Matrices (RSCCMs) by using 28 color spaces compared with 9 color spaces

by our proposed approach. In [66], Sandid et al. use the SVM classifier and characterize

the texture by the three-dimensional adaptive sum and difference histograms descriptors. Our

results are close to those obtained in [66] (the difference is equal to 0.1%) whereas we use a

simple 1-NN classifier. Other studies give results range from 67.3% to 95%. Note that the

MCSBS-Occurrence gives in this case a less good result with the rate obtained of 92.9%.

In the next subsection, we propose to compare the computing time of the proposed ap-

proaches.

4.3.3 Processing times

We select several approaches from each category to compare the processing times required by

the learning and the classification stages on the New-BarkTex set. Tables 4.10 and 4.11 show

the processing times of the two stages, respectively. Thesetimes are obtained by using the

Matlab software and a PC cadenced at 3.20 GHz with 24 Gb RAM. Note that we classify these

approaches by the ascending of total times.

When a selection is performed, the learning stage consists in the computation of all available

histograms (generation phase) and a selection phase.

For the MCSHS approach, the dimension of the discriminatinghistogram subspace is deter-

mined thanks to several classifications (see figure 3.2). This approach thus requires to compute

all the histograms for the training (48.0 s) and the validation (48.0 s) images, and to evaluate the

rate of well-classified validation images for the candidatehistogram subspaces with different

dimensions (630.3 s with the ICS-score). It is thus computationally costly (726.3 s), contrary

to the MCSBS approach (78.1 s), which do not require any classification to determine the rel-

evant subspace. Indeed, it only consists in extracting all the histograms for the training images

(48.0 s) and determining the dominant bins (30.1 s) as shown in figure 3.3. MCSHS-SpASL
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4.3. Impact of the LBP-based feature selection strategy

takes longer times than others histogram score (797.8 s) since it has to compute the sparse

similarity matrix. MCSBS-Sparsity and the ICS & BS-(D) are approaches that need a learning

computation time even more important. Indeed, they take approximately 39 hours to determine

the bin subspace because they have to carry out 20736 classifications in order to determine the

dimension of the feature space instead of 81 for MCSHS approaches. We only illustrate the pro-

cessing times of the combination approach ICS & BS-(D) sinceother combination approaches

(i.e ASL & BS, Simba-2& BS, SpASL & BS) is nearly the same.

When no selection is performed, the learning stage only consists in computing the his-

tograms from the training images (48.0 s) in order to comparethem to the histograms extracted

during the classification stage from the testing images withthe nearest neighbor classifier.

The classification stage consists in the computation of the previously selected histograms

or bins from testing images (generation phase) and a decision phase.

When no selection is performed, the images are characterized by all available histograms,

that is to say in a 81×256= 20736 dimensional feature space. This high dimension leadsto a

high computation time for generation (48.0 s) and decision (15.8 s).

When the MCSHS-ICS approach is considered, a low dimensional histogram subspace is

determined during the learning stage. The images are thus characterized by a reduced number

of histograms (42 instead of 81) during the classification stage. Operating a selection allows

here to reduce the generation and the decision times of the classification stage (31.5 s instead

of 63.8 s with the ICS-score).

When MCSBS-Sparsity approach is performed, a low dimensional subspace is also deter-

mined during the learning stage and used for classification (754 bins are computed instead of

20736). The dimension of the relevant feature subspace is lower than the dimension obtained

with the MCSHS-ICS approach (754 instead of 10752). It allows to assign more quickly the

images to the estimated classes (0.7 s instead of 8.2 s) during the classification stage.

In order to compare the efficiency of the proposed approaches, we select three approaches

and compare the rate obtained and the processing time by the table 4.12.

According to the accuracy reached and the processing times of learning stage represented in

table 4.12, we are interested in the MCSBS-Occurrence and MCSHS-ICS approaches. These

approaches allow thus to obtain similar classification performances for the New-BarkTex set,

whether in accuracy or classification computation time, with a slight advantage for the MCSHS

approach. Obviously, the selection provided by MCSHS is achieved at the price of a costly

learning time. However, this learning computation time canbe reduced as shown in [105].

Indeed, a way to speed up the histogram selection approach ispresented in this paper. It consists

in considering during the learning stage a reduced neighborhood or a combination of reduced

neighborhoods to compute LBP histogram. The results show that this approach gives as good

results as those obtained with the full neighborhood while reducing the learning time, that
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reinforces the interest of the proposed MCSHS approach.

There is another way to reduce the times of the learning stageby operating the selection of

the bin-uplets. Instead of operating the selection bin to bin by the combination of histogram

ranking and bin selection with strategy D, we might think that it can be done by operating

a selection of bin-uplets. This approach can reduce the number of classifications operated to

determine the optimal subspace in the multi color space.

4.4 Conclusion

This chapter presents the results obtained on the four considered databases (New BarkTex,

OuTex-TC-00013, USPTex, STex) by LBP-based features selection in the framework of multi

color spaces. We first presented the impact factor of the distance measure between two his-

tograms for the proposed SpASL-score. We then presented thevalidation of the proposed

SpASL-score. The obtained results show that the SpASL-score improves the classification re-

sults compared with the three other scores. The detailed results for the four of LBP-based

feature selection approach categories are then presented and analyzed. The results obtained

are very encouraging since the LBP-based feature selectionapproaches proposed in this work

improve the rates of well-classified images compared to the approaches which consider a single

color space or the approach which does not perform any selection.

Finally, we have selected several approaches to analyze theprocessing times of the learning

and classification stage. Our proposed approaches outperform other methods in the state-of-

the-art on three benchmark databases, however the combination of histogram and bin selection

approaches are costly to compute due to a large classification steps operated.
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Table 4.8: Comparison between the well-classified image rates reached with the USPTex

database. The italic values indicate the results obtained based on our implementation.

Reference Color space Features Classifiers Accuracy

SpASL & BS-(D) 9 color spaces EOCLBP 1-NN 98.1

ASL & BS-(C) 9 color spaces EOCLBP 1-NN 97.6

MCSHS-ASL 9 color spaces EOCLBP 1-NN 97.6

MCSHS-SpASL 9 color spaces EOCLBP 1-NN 97.4

MCSBS-Occurrence 9 color spaces EOCLBP 1-NN 97.3

[261] RGB
Fusion Color texture and

LBP-based features
SVM 95.7

MCSBS-Sparsity (A) 9 color spaces EOCLBP 1-NN 94.8

MCSBS-Sparsity (B) 9 color spaces EOCLBP 1-NN 94.7

[116] Luminance Local jet and LBP LDA 94.3

[109] RGB
Quaternion-Michelson

Descriptor
1-NN 94.2

[142] RGB
Halftoning Local Derivative

Pattern and Color Histogram
1-NN 93.9

MCSHS-Simba-2 9 color spaces EOCLBP 1-NN 93.8

MCWS 9 color spaces EOCLBP 1-NN 93.7

[260] RGB DRLBP 1-NN 89.4

[262, 115] Luminance Fractal descriptors LDA 85.6

[62] RGB Color angles 1-NN 88.8

[156] Luminance
Local multi-resolution

patterns
1-NN 86.7

[47] RGB
Mix color order

LBP histogram
1-NN 84.2

[34] RGB LBP and local color contrast 1-NN 82.9

[259] RGB CLBP 1-NN 72.3

[131] L∗a∗b∗ Soft color descriptors 1-NN 58.0
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Table 4.10: Processing times of the learning stage for 816 images whose size is 64× 64 pixels.

Learning stages (s)

Generation
Selection Total

Approach
from training

images

from validation

images

No selection 48.0 - - 48.0

MCSBS-Occurrence 48.0 - 30.1 78.1

MCSHS-ICS 48.0 48.0 630.3 726.3

MCSHS-ASL 48.0 48.0 648.1 744.1

MCSHS-Simba-2 48.0 48.0 665.2 761.2

MCSHS-SpASL 48.0 48.0 701.8 797.8

MCSBS-Sparsity 48.0 48.0 143252.4 143348.4

ICS & BS-(D) 48.0 48.0 144462.2 144548.2

Table 4.11: Processing times for classifying 816 images whose size is 64× 64 pixels.

Classification stages (s)

Generation from testing

images
Decision Total

Approach

MCSBS-Sparsity (̂D= 754) 9.1 0.7 9.8

MCSHS-ASL (D̂= 27×256= 6912) 17.8 5.6 23.4

MCSHS-SpASL (̂D= 37×256= 9472) 21.2 7.2 28.4

MCSHS-Simba-2 (̂D= 40×256= 10240) 23.2 7.8 31.0

MCSBS-Occurrence (̂D= 1502) 30.3 1.2 31.5

MCSHS-ICS (̂D= 42×256= 10752) 24.3 8.2 32.5

ICS & BS-(D) (D̂= 11457) 31.4 9.1 40.5

No selection (̂D= 81×256= 20736) 48.0 15.8 63.8
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4.4. Conclusion

Table 4.12: The summary of selected approaches.

Time

Approach Rate Learning Classification

ICS & BS-(D) 89.0 39 h 40.5 s

MCSHS-ICS 88.0 726 s 32.5 s

MCSBS-Occurrence 87.8 78.1 s 31.5 s
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Conclusion and perspectives

In this work we present our research on feature selection forsupervised color texture classi-

fication problem. The main contribution is the development of different strategies for LBP

histogram and LBP bin histogram selection in the framework of a multi color space.

We briefly summarized our contribution in the following:

• In chapter 1, the current state-of-the-art of color texture classification in supervised con-

text was organized in order to provide a quick and compact overview for the reader. The

principal families of color spaces have been presented as well as the main color texture

descriptors. The LBP operator and its variants to color havebeen discussed. We in-

troduced several key concept of supervised texture classification such as: the context,

the commonly supervised classifier and the evaluation methods. Several color texture

databases used to carried out in the experiments have been reviewed.

• In chapter 2, the literature review of feature selection methods related to our research

have been introduced. The taxonomy of feature selection methods is briefly reviewed

according two main axes: the learning contexts and the evaluation strategies. Two main

ranking-based approaches are briefly reviewed. These approaches can be achieved by

associating a score for each feature or by applying an algorithm which gives weights

for a feature subset. Then, the feature selection methods applied to LBP are discussed

depending on two groups: LBP bins selection and histogram selection. We present our

first contribution in this chapter by proposing a novel histogram score which is based on

the sparse similarity matrix.

• In chapter 3, a multi color space approach is designed for color texture classification. The

textures are characterized by EOCLBP extracted from imagescoded inNS= 9 different

color spaces and the corresponding histograms defined a color texture feature space. The

most discriminating color texture features have then been selected thanks to a feature

selection procedure performed during a supervised learning. We extended the LBP his-

togram selection and LBP bin selection from a single color space to multiple color spaces
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by two approaches MCSHS and MCSBS. Two strategies of selection are then proposed

by the combination of histogram ranking and bin selection. In order to show the contribu-

tion of the proposed approaches, we presented the results onthe New BarkTex database

in a single color space and in multiple color spaces.

• In chapter 4, all proposed methods in this thesis are evaluated on several benchmark tex-

ture databases. We first study the impacts of several measured histogram distances to

select the relevant ones. We then validate the SpASL-score on four benchmark texture

databases. The results show that this score improved the classification performance in

a single and multiple color spaces. The comparison of classification results by different

approaches of bin selection and histogram selection are presented and compared with

those obtained in the state-of-the-art. The results obtained with the proposed approaches

are very encouraging since these methods improve the rates compared to the approaches

which consider a single color space or the approach which does not perform any se-

lection. We then compared the processing time of the proposed approaches in order to

find a compromise between the performances and the time processing of the proposed

approaches.

Based on the results presented in this thesis, we are planning several perspectives for future

research directions. The further experimentations can be realized in the short term perspective:

• Although the combination histogram ranking and bin selection has outperformed other

methods, it introduces a few limitations about the time processing which should be re-

duced in the future work. By the first observation, we can improve the proposed strategy

D by the bin-uplet selection (c.f section 3.6). This will reduce the number of classification

operations to determine the optimal subspace from 20736 to 256.

• In the current work, based on the general graph-preservingfeature selection framework,

we proposed to use the sparse similarity matrix based onl1 graphs for histogram selec-

tion, there are other kinds of graphs (e.g.l2 graph) that can also be used under general

graph-based feature selection framework. It is interesting to investigate whether using

other kinds of graphs can also lead to performance improvement.

• Motivated from the developments and utilizations of the different distances to measure

similarity between two histograms by the SpASL-score, the comparative work empiri-

cally should be explore in order to address the issue: Which distance is appropriate for

histogram selection ?

In the long-term perspective, there are two ideas can be explored:



• Many well-known color spaces exist and each one presents specific properties. Moreover,

an hybrid color space is defined by selecting a set of three color components from differ-

ent color space and used in color pixel classification for thesegmentation task [256]. We

would like to extend this work by using the hybrid color spacein order to compare the

results obtained in a hybrid color space and in a single colorspace.

• The first aim of the proposed score is the improvement of ASL-score. Moreover, we

notice that the sparse similarity matrix can be constructedin an unsupervised way without

using class label, integrated into the ASL-score. In reality, the task of feature selection

became more challenging with the so-called “small labeled-sample” problem, in which

the amount of data that is unlabeled could be much larger thanthe amount of labeled

data. This allows us to extend this work in the other learningcontext (semi-supervised or

unsupervised) in the framework of feature selection.
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Appendix A
A summary of studies on color texture

classification

Table A.1 summaries the different color texture classification approaches experimented on the

four texture databases presented in section 1.2.4:

- The first column of this table gives the name of the author, the year of publication and the

reference.

- The second column mentions the color texture features usedin the experimentation.

- The third column gives the color spaces used in the experimentation.

- The fourth column presents the name of the test suites.

- The last column indicates the classifiers used in the experimentation.
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Table A.1: A summary of studies on color texture classification.

Ref. Color texture features Color space used Database Classifier

Palm,

2002 [12]
Gabor features RGB, HSL BarkTex 5-NN

Pietikäinen,

2002 [56]
Image histogram, LBP, Gabor features RGB, I1I2I3 Outex-TC-00013 3-NN

Munzenmayer,

2002 [60]
Sum and Difference Histograms RGB, HSV, L*u*v* BarkTex 1-NN

Mäenpää,

2004, [13]
Image histogram, OCLBP RGB, HSV Outex-TC-00013 1-NN

Palm,

2004, [36]
Image histogram RGB, L*u*v* BarkTex 5-NN

Arvis

2004, [41]

Haralick features from color

co-occurence matrices.
RGB, HSV, YCbCr Outex-TC-00013 5-NN

Xu,

2005, [54]
Wavelet features HSV, I1I2I3 Outex-TC-00013 7-NN

Continued on next page . . .



Table A.1: A summary of studies on color texture classification continued...

Ref. Color texture features Color space used Database Classifier

Iakovidis,

2005, [122]
LBP histogram HSV Outex-TC-00013 SVM

Aptoula

2007, [232]
Morphological covariance RGB, L*a*b*, YUV Outex-TC-00013 1-NN

Porebski

2007, [136]

Haralick features from color

co-occurrence matrices

RGB, XYZ, xyz, Irg, L*u*v*,

L*a*b*, Y’I’Q’, Y’U’V’, r*b*b* ,

I1I2I3, RFGFBF , REGEBE,

RCGCBC, AC1C2, bwrgby

BarkTex 1-NN

He,

2009 [125]
LTP histogram RGB, YCbCr Outex-TC-00013 3-NN

Qazi

2011, [126]
Color spectral analysis RGB, IHLS, L*a*b* Outex-TC-00013 1-NN

Alvarez

2012, [127]
Texton features HSI, HSV Outex-TC-00013 1-NN

Continued on next page . . .



Table A.1: A summary of studies on color texture classification continued...

Ref. Color texture features Color space used Database Classifier

Backles

2012, [117]
Fractal descriptors RGB Outex-TC-00013 LDA

Cusano

2013, [152]
Intensity-Color Contrast Descriptor RGB, HSV, L*a*b*, I1I2I3 Outex-TC-00013 1-NN

Qazi

2013, [263]
Color spectral analysis RGB, IHLS, L*a*b*, I1I2I3 Outex-TC-00013 3-NN

Porebski

2013, [8]
E-OCLBP RGB, HSV, YUV, I1I2I3

Outex-TC-00013

BarkTex
1-NN

Continued on next page . . .



Table A.1: A summary of studies on color texture classification continued...

Ref. Color texture features Color space used Database Classifier

Porebski

2013, [139]

Haralick features from

Reduced Size Chromatic

Co-occurrence Matrices

RGB, XYZ, UVW, HSV, LUV, AC1C2

bwrgby, YCbCr , L∗Cuvhuv, L*u*v*

Y’I’Q’, Y’U’V’, HSI, HLS, Yxy,

I1rg, LCh1Ch2, I1S2H1, , L*a*b*

ACC1C2hC1C2, LCCh1Ch2hCh1Ch2,

I1S1H3, L∗Cabhab, L∗Suvhuv, I1CI2I3hI2I3

Y′C′IQh′IQ, Y′C′UVh′UV , bwCrgbyhrgby

Outex-TC-00013 1-NN

El Maliani

2014, [134]

Statistical multi-model

and geodesic distance
RGB, HSV, L*a*b*

Outex-TC-00013

STex

Bayesian

Naives

Hammouche

2015, [128]
Fuzzy gray-level aura matrices RGB

Outex-TC-00013

STex
1-NN

Kalakech

2015, [9]
E-OCLBP RGB, HSV, YUV, I1I2I3

Outex-TC-00013

BarkTex
1-NN

Continued on next page . . .



Table A.1: A summary of studies on color texture classification continued...

Ref. Color texture features Color space used Database Classifier

Martínez

2015, [135]
Color contrast ocurrence matrix L*a*b*

Outex-TC-00013

STex
5-NN

Da silva

2015, [116]
Corrosion-Inspired Texture Analysis RGB USPTex LDA

Oliveira

2015, [155]
Local jet space RGB USPTex LDA

ahmadvand

2016, [129]
Spatial filter banks RGB Outex-TC-00013 k-NN

Florindo

2016, [264]
Local connectivity index RGB Outex-TC-00013 LDA

Guo

2016, [142]

Halftoning Local Derivative Pattern

and Color Histogram
RGB

Outex-TC-00013

USPTex
1-NN

Ledoux

2016, [130]
Color morphological texture features RGB Outex-TC-00013 3-NN

Continued on next page . . .



Table A.1: A summary of studies on color texture classification continued...

Ref. Color texture features Color space used Database Classifier

Ledoux

2016, [47]
Compact descriptors color LBP RGB

Outex-TC-00013

BarkTex

USPTex

1-NN

Sandid

2016, [66]

Three-dimensional adaptive

sum and difference

histograms

RGB, XYZ, UVW, HSV, LUV, AC1C2,

bwrgby, YCbCr , L∗Cuvhuv, Yxy,

Y’I’Q’, Y’U’V’,HSI, HLS, L*u*v* ,

I1rg, LCh1Ch2, I1S2H1,

ACC1C2hC1C2, LCCh1Ch2hCh1Ch2,

I1S1H3, L∗Cabhab, L∗Suvhuv,

Y′C′IQh′IQ, Y′C′UVh′UV , bwCrgbyhrgby,

I1CI2I3hI2I3, L*a*b*, LMS, O1O2O3

Outex-TC-00013

BarkTex
SVM

Bello-cerezo

2016, [131]
Soft color descriptors

RGB, HSV, YUV, YCbCr, L*a*b*

YIQ, L*u*v*, XYZ, I1I2I3

Outex-TC-00013

USPTex

STex

1-NN

Continued on next page . . .



Table A.1: A summary of studies on color texture classification continued...

Ref. Color texture features Color space used Database Classifier

Casanova

2016, [114]
Fractal descriptors RGB, L*a*b*, HSV, IHLS, I1I2I3

Outex-TC-00013

USPTex
LDA

Lan

2016, [109]
Quaternion-Michelson descriptors RGB

Outex-TC-00013

USPTex
1-NN

Naresh

2016, [148]
Modified Local binary patterns RGB Outex-TC-00013 1-NN

Cernadas

2017, [132]
Intensity texture RGB, L*a*b*, Lab2000HL, HSV, I1I2I3

Outex-TC-00013

USPTex
1-NN



Appendix B
Application of LBP-based features for lace

images classification

In the recent years, there is an increasing need to digitize museum lace textile collections.

The aim is to preserve and promote the regional industrial heritage by making available to

the public, designers and artists, large lace image databases. Calais’s International Center for

Lace and Fashion is a museum located at Calais in France. Thiscenter preserves the history of

industrial lace production. The collection of lace consists of about 100,000 production samples

which are divided into 253 different volumes. In order to assist the access to these databases, it

is necessary to characterize the texture of lace.

In addition, lace is a soft and extensible material and can beeasily deformed which makes

the texture analysis a challenging problem. Moreover, lacecontains a large range of decorative

motifs. Figure B.1 illustrates examples of lace with flower and geometric decorative motifs.

This figure shows that lace is composed of two parts, a decorative motif (1) on a basic pattern

(2).

Although there is a wide range of decorative motifs, there isa limited number of basic

patterns. So, we firstly propose to analyze the texture of lace basic patterns. Figure B.2shows

examples of these lace basic texture patterns. It is interesting to note that the figures B.2 (a)-

(b) and (c)-(d) show basic textures that appear similar although they have different shapes.

The lace texture analysis needs to firstly remove the background of the basic patterns since no

information about the texture is contained in the background. Due to orientation changes of the

laces, their texture has to be represented by rotation invariant descriptors.

In texture analysis literature, the local binary pattern descriptors (LBP) are widely used.

However, the parameters of LBP descriptors have to be carefully chosen in order to reveal the

texture structure of lace images. In [265], the lace textureis represented by descriptors based

on LBP histograms in order to classify lace basic patterns. They used the Fourier Transform

applied on LBP histograms, named LBP-HF [94]. Following this work, we propose to adjust
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decoration

basic pattern

decoration

basic pattern

Figure B.1: Examples of lace images in collection with geometric decorations (a) and flower

(b).

the parameters of LBP descriptors in order to improve texture representation in the lace image.

Preprocessing step and feature extraction

The specificity of lace samples of museum registers is that the scanned images contain paper

background. In order to characterize the lace texture, it isnecessary to segment the images to

remove background and consequently only keep the material.The well-known Otsu’s method

is then used for this purpose [266]. Features are then extracted from those processed images in

order to analyze the different textures.

Preprocessing step

Note that before the image processing step, color images aretransformed into gray level images.

Otsu’s segmentation method assumes that the image containstwo groups of pixels following a

bi-modal histogram. It then calculates the optimum threshold separating the two groups so that

their combined spread (within-class variance) is minimal.Figure B.3 shows lace image before

processing (a) and after processing (b). Figure B.3 (d) shows that background mode has been

removed from the histogram B.3 (c).



(a) (b)

(c) (d)

Figure B.2: Similarity between basic pattern of laces (a)-(b) and (c)-(d).

Feature extraction

In order to represent the texture of lace in the images, we propose to use LBP descriptors. The

definition of the original LBP operator has then been generalized to explore intensity values of

points on a circular neighborhoods. Thus, LBPP,R is able to take any radiusR andP neighbors

around the central pixel, using a circular neighborhood. For an input image, texture statistics

are obtained from LBP codes of all pixels represented by a histogramH. Histogram bins are

denoted byH(q),n= 0,1, ...,Q−1, whereQ= 2P. In order to extract texture features that are

invariant to rotation, Discrete Fourier Transform (DFT)V is applied on theLBP histogram:

V(k) =
Q−1

∑
q=0

H(q)×exp−i2πkq/Q, 0≤ k≤Q−1 (B.1)

The extracted features denotedLBP-HF are obtained by the magnitude spectrum and given

by the equationHF(k) =
√

V(k)×V(k) where,V(k) is the complex conjugate ofV(k). HF =

[HF(0), ...,HF(Q−1)]T is the rotation invariant feature vector which will be used for texture

analysis.

It is interesting to note that LBP-HF features are generatedby the LBPP,R descriptors and

their performance depends on parametersR andP which have to be appropriately adjusted.
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Figure B.3: Example of laces tissues before and after the image processing (a)-(b), and their

histograms (c)-(d).

Figure B.4 illustrates LBP8,6 image (a) and its histogram (b).
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Figure B.4: LBP8,6 image (a) and its histogram (b).



Lace images classification

In order to assess the relevance of the extracted features, we propose to measure the classifica-

tion performances of lace images obtained with these features using 1-NN classifier.

Experimental setup

We consider a small labeled database which consists of 492 images belonging to 41 classes

of basic pattern laces (see figure B.2). Each class is composed of 12 images whose size is

(150× 150) pixels. The considered images are firstly processed in order to eliminate the paper

background. The LBP-HF features are then extracted from theconsidered images.

In the supervised context, we need a database ofK classes with a learning set and a test-

ing set. We considered the 1-NN algorithm due to its performance and simplicity. The image

dataset is divided into training and testing sets. For each one, we randomly select 6 images

for training and 6 ones for testing per class. This process isrepeated 20 times in order to

evaluate classification performances using the cross-validation technique. The classification

performance rate is calculated by comparing the predicted class labels obtained after applica-

tion of classification algorithm with the true class labels.

Classification results

We propose to find the appropriate value ofR andP which condition the performance of LBP-

HF features. The classification performances of the 1-NN algorithm are computed with differ-

ent values ofR∈ {1,2,3...,14} andP∈ {4,8,12,14,16,20} applied on images after processing.

Figure B.5 displays accuracy for these different values.
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Figure B.5:ACvs. R for different values ofP after image processing step in supervised context.



From this figure, we can see that the highest accuracy is obtained whenR= 6 for all values

of P. Table B.1 summarizes the performance of LBP-HFP,6. We can notice that their value

change slightly when the values ofP are higher than 4, this value being the spatial resolution

of a lace thread. So, we setR= 6 andP= 8 hereafter.

Based on these adjusted values ofR andP, we compare the classification performances

of 1-NN algorithm applied on the database before and after image processing (Table B.2).

This table confirms that the elimination of the paper background significantly improves the

classification performances.

Table B.1: Classification performances after image processing step for different numbers of

neighborsP with R= 6.

LBP-HFP,6 Accuracy

P= 4 93.4

P= 8 98.8

P= 12 98.9

P= 16 99.0

P= 20 98.9

P= 24 99.0

Table B.2: Classification performances before and after image processing step with LBP-HF8,6.

Feature Before processing After processing

LBP-HF8,6 95.2 98.8

In addition the classification performances obtained thanks to this tuning are clearly higher

(98.8) than those reached in [265] (92.5).



Appendix C
Supplementary results

Table C.1, C.2 and C.3 present the classification obtained ofLBP histogram selection ap-

proaches by different histogram score in a single color space and in multi space on Outex-

TC-00013, USPTex and STex respectively. The first column indicates the color space used to

code image. The second column represents the results when noselection is applied. The third

column is divided into four sub-columns corresponding to the histogram score used.
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Table C.1: The comparison of classification obtained of LBP histogram selection in a single

color space and in multi space without and with histogram selection approaches on the OuTex-

TC-00013 database. The value in boxes represent the best rates obtained with each color space

and the boldface indicates the best rate obtained of each approach.

Color spaces

Without

selection

Histogram selection

ICS Simba-2 ASL SpASL

Rate δ̂ Rate δ̂ Rate δ̂ Rate δ̂ Rate δ̂

RGB 92.9 9 92.9 9 92.9 6 93.2 8 93.4 8

rgb 87.1 9 87.1 9 87.5 4 87.4 8 87.4 6

I1I2I3 88.5 9 89.0 8 88.5 9 88.7 8 88.5 9

HSV 90.4 9 91.0 3 90.4 9 91.3 7 91.3 7

bwrgby 89.6 9 89.9 9 89.9 9 91.8 8 91.8 8

HLS 92.4 9 92.4 9 92.4 9 93.4 6 93.4 6

I -HLS 89.7 9 89.7 9 89.7 9 89.7 9 90.3 7

HSI 92.9 9 92.9 9 92.9 9 93.1 8 93.1 8

YCbCr 89.6 9 89.6 9 89.6 9 90.6 8 90.6 8

Average in

single space

90.8

±

2.0

9

91.0

±

2.1

8

90.4

±

1.9

8

91.0

±

2.1

7

91.1

±

2.1

7

Multi spaces 95.0 81 95.3 59 95.0 79 95.3 62 95.6 62



Table C.2: The comparison of classification obtained of LBP histogram selection in a single

color space and in multi space without and with histogram selection approaches on the USPTex

database. The value in boxes represent the best rates obtained with each color space and the

boldface indicates the best rate obtained of each approach.

Color spaces

Without

selection

Histogram selection

ICS Simba-2 ASL SpASL

Rate δ̂ Rate δ̂ Rate δ̂ Rate δ̂ Rate δ̂

RGB 93.0 9 93.3 5 93.1 8 93.6 6 93.6 6

rgb 82.5 9 89.5 3 82.5 9 89.5 3 89.5 3

I1I2I3 84.6 9 94.1 3 84.6 9 94.1 3 94.1 3

HSV 88.1 9 92.2 7 88.1 9 94.3 3 94.3 3

bwrgby 85.1 9 94.9 3 85.1 9 94.9 3 94.9 3

HLS 87.2 9 91.6 7 87.2 9 94.4 4 94.8 3

I-HLS 88.0 9 92.5 7 88.0 9 95.0 4 95.1 3

HSI 88.1 9 92.6 7 88.1 9 94.9 3 94.9 3

YCbCr 85.3 9 95.7 3 85.3 9 95.7 3 95.7 3

Average in

single space

89.6

±

3.0

9

92.9

±

1.8

5

86.9

±

3.0

9

94.0

±

1.8

4

94.1

±

1.8

3

Multi spaces 93.7 81 93.7 40 93.8 80 97.6 41 97.4 31



Table C.3: The comparison of classification obtained of LBP histogram selection in a single

color space and in multi spaces without and with histogram selection approaches on the STex

database. The value in boxes represent the best rates obtained with each color space and the

boldface indicates the best rate obtained of each approach.

Color spaces

Without

selection

Histogram selection

ICS Simba-2 ASL SpASL

Rate δ̂ Rate δ̂ Rate δ̂ Rate δ̂ Rate δ̂

RGB 91.9 9 91.9 9 93.4 5 93.2 5 93.2 5

rgb 85.2 9 85.2 6 85.6 8 87.8 5 87.8 5

I1I2I3 82.8 9 89.6 4 85.9 6 91.3 3 91.3 3

HSV 88.5 9 90.0 7 91.8 4 93.9 3 93.9 3

bwrgby 81.5 9 90.0 4 84.5 7 92.7 3 92.7 3

HLS 89.6 9 90.6 7 92.2 5 93.2 3 93.2 3

I-HLS 90.6 9 91.3 8 94.2 4 94.0 3 94.0 3

HSI 89.4 9 90.6 7 93.6 3 93.6 3 93.6 3

YCbCr 82.2 9 89.5 4 88.6 5 92.2 3 92.2 3

Average in

single space

89.6

±

3.0

9

90.5

±

1.9

6

90.0

±

3.9

5

92.4

±

1.9

4

92.4

±

1.9

4

Multi spaces 93.3 81 94.1 47 95.8 31 96.1 38 96.8 32
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Abstract

Texture analysis has been extensively studied and a wide variety of description approaches have

been proposed. Among of them, Local Binary Pattern (LBP) takes an essential part of most

of color image analysis and pattern recognition applications. Usually, devices acquire images

and code them in theRGBcolor space. However, there are many color spaces for texture clas-

sification, each one having specific proprieties. In order toavoid the difficulty of choosing a

relevant space, the multi color space strategy allows usingthe properties of several spaces si-

multaneously. However, this strategy leads to increase thenumber of features extracted from

LBP applied to color images. This work is focused on the dimensionality reduction of LBP-

based features by feature selection methods. In this framework, we consider the LBP histogram

and bin selection approaches for supervised texture classification. Extensive experiments are

conducted on several benchmark color texture databases. They demonstrate that the proposed

approaches can improve the state-of-the-art results.

Keywords: Texture classification, color spaces, LBP operator, feature selection, histogram

selection, bin selection, supervised learning.
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Résumé

L’analyse de texture a été largement étudiée dans la littérature et une grande variété de de-

scripteurs de texture ont été proposés. Parmi ceux-ci, les motifs binaires locaux (LBP) oc-

cupent une part importante dans la plupart des applicationsd’imagerie couleur ou de recon-

naissance de formes et sont particulièrement exploités dans les problèmes d’analyse de tex-

ture. Généralement, les images couleur acquises sont représentées dans l’espace colorimétrique

RGB. Cependant, il existe de nombreux espaces couleur pour la classification des textures, cha-

cun ayant des propriétés spécifiques qui impactent les performances. Afin d’éviter la difficulté

de choisir un espace pertinent, la stratégie multi-espace couleur permet d’utiliser simultanément

les propriétés de plusieurs espaces. Toutefois, cette stratégie conduit à augmenter le nombre

d’attributs, notamment lorsqu’ils sont extraits de LBP appliqués aux images couleur. Ce travail

de recherche est donc axé sur la réduction de la dimension de l’espace d’attributs générés à

partir de motifs binaires locaux par des méthodes de sélection d’attributs. Dans ce cadre, nous

considérons l’histogramme des LBP pour la représentation des textures couleur et proposons

des approches conjointe de sélection de bins et d’histogrammes multi-espace pour la classifica-

tion supervisée de textures. Les nombreuses expériences menées sur des bases de référence de

texture couleur, démontrent que les approches proposées peuvent améliorer les performances

en classification comparées à l’état de l’art.

Mots-clés: Classification de textures, espaces couleur, opérateur LBP, sélection d’attributs,

sélection d’histogramme, sélection de bins, apprentissage supervisé.
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