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Abstract

Comparative genomics has established itself as a fundamental discipline to unravel evolutionary
biology. The first challenge to overcome a mere descriptive knowledge of comparative genomics
data is to develop a higher-level description of the content of a genome. For this purpose we
employed the modular representation of genomes to explore quantitative laws that regulate how
genomes are built from elementary functional and evolutionary ingredients.

The first part of the work sets o↵ from the observation that the number of domains sharing
the same functional annotation of a genome increases as a power law of the genome size. Since
functional categories are aggregates of domain families, we asked how the abundance of domains
performing a specific function emerges from evolutionary moves at the family level. We found
that domain families are also characterized by family-dependent scaling laws, supporting the idea
that genome evolution occurred under the interplay of constraints over functional and evolutionary
families.

The following chapter aims to provide a general theoretical framework for the emergence
of shared components from dependency in empirical component systems with non-binary abun-
dances. In order to do this, we defined a positive model that builds a realization from a set of
components linked in a dependency network. The ensemble of resulting realizations reproduces
both the distribution of shared components and the law for the growth of the number of distinct
families with genome size.

Finally, the last chapter attempts to extend the component systems approach to microbial
ecosystems, i.e., sets of genomes sharing the same environments. Using our findings about do-
main families scaling laws, we analyzed how the abundance of domain families in a metagenome
is a↵ected by the constraint of power-law scaling of family abundance in individual genomes. The
result is the definition of an observable, whose functional form contains access quantitative infor-
mation on the original composition of the metagenome.
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Chapter 1
Introduction

The first complete bacterial genome, that of Haemophilus influenzae Rd, was sequenced in 1995 [21]
followed by the genome of Mycoplasma genitalium in the same year [24]. Subsequently, the
collection of sequenced genomes rapidly progressed and reached in 1999 a steady exponential
growth [43]. This massive information was essential to the development of comparative genomics
since it allowed to identify sets of of orthologs (genes that evolved from the same ancestral gene)
and to determine which gene families are present or absent in a particular genome [44]. The com-
parative analysis of genomes has opened new perspectives in evolutionary biology, to the point that
it has been defined as “the only route to satisfactory reconstructions of evolution” [43].

However, the abundant information from the many available genome sequences may be very
di�cult to understand. The first step to overcome a mere descriptive knowledge is to develop
a higher-level description of the content of a genome. Using gene families as a choice for the
constitutive building blocks has led to the notable finding of several simple quantitative laws [43].
These empirical laws allows to get some insight into the “recipes” by which genomes are built from
elementary functional and evolutionary ingredients. Specifically, it has been bound that the number
of families associated with the same biological function scales as a power law of the genome
size, calculated as the total count of domains [82]. Depending on the function examined, the
scaling exponent varies from 0 to 2. The power-law distribution characterizes also other genomic
quantities such as the total number of families found on a genome [16] and the distribution of
family sizes [36, 45, 16], as well as the distribution of family occurrence, i.e. the fraction of
genomes sharing a given fraction of families [65].

Hence, the exploitation of such modular representations of genomes has opened new perspec-
tives for the understanding of genome evolution. The explanation of these empirical regularities
requires models that mimic basic steps of genome evolution, such as gene loss and duplication[45,
16, 30, 65]. From the viewpoint of statistical physics, there is an opportunity to explore new models
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Chapter 1. Introduction

whose scope is to capture the salient ingredients of the empirical laws as null or positive features
(and thus improve our understanding of genome composition.)

The same set of studies suggest that a possible general framework [16, 30] is to represent
genomes as “component systems” i.e. modular architectures considered as sets of elementary units.
Here, we will take this approach, and we will consider some statistical features of the set of pro-
teins found on all sequenced genomes, in terms of structural protein domains [63]. Protein domains
are the modular sub-shapes forming the building blocks for proteins. They constitute independent
thermodynamically stable structures, and are not expected to split over the course of evolution [75],
because of their physical stability and function. Hence, domains may be used as convenient “evo-
lutionary atoms” [45], because they typically do not split into smaller units or form by fusing
multiple copies of other domains [10], as proteins can do. A domain also determines a set of po-
tential biochemical or functions and interactions for a protein, such as binding and participation in
well-defined classes of chemical reactions [63].

Combining information about shapes, functions and sequences of protein domains, it is possible
to generate a systematic hierarchical classification of protein domains [2, 19, 62]. Generally, this
classification comprises three layers. At the lowest level, domains are grouped into families on the
basis of significant sequence similarity. Families with lower sequence identity but whose structures
and functional features suggest a common evolutionary origin, are grouped into superfamilies.
Finally, domains belonging to superfamilies or families are defined as having a common fold if
they share the same major secondary structures. The repertoire of basic secondary structures for
domains seems to be relatively small [45].

In brief, protein domains are a convenient coarse-grained representation of proteins, which
contains information on their evolution and function. Describing proteins in terms of domains is
very useful, and has become almost commonplace in biology. The “component system” approach
extrapolates this coarse-grained representation to the description of whole genomes and sets of
genome. The modular structure shown in Fig. 1.1 will be the core of this thesis.

This work is divided into three main chapters, where di↵erent questions are asked and where
the same data structure is considered from di↵erent viewpoints. The first one (Chapter 2) sets
o↵ from the observation that the number of domains sharing the same functional annotation of
a genome increases as a power law of the genome size [57, 71, 82]. The scaling exponents are
function-dependent and are directly linked with the probability that the addition/deletion of a do-
main would be fixed over evolutionary times. Since functional categories are aggregates of domain
families, we asked how the abundance of domains performing a specific function emerges from
evolutionary moves at the family level. We found that domain families are also characterized by
family-dependent scaling laws, supporting the idea that genome evolution occurred under the in-
terplay of constraints over functional and evolutionary families.

The goal of Chapter 3 is to provide a general theoretical rationale for the emergence of shared
components from dependency in empirical component systems with redundancy, i.e., where com-
ponents can appear more than once in realizations, as is the case for protein domains in genomes.
In order to develop this theoretical framework, we extended the ideas of Pang and Maslov [65]
to the case of components with non-binary abundance, and defined a positive model that builds a
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Chapter 1. Introduction

realization from a set of components linked in a dependency network. The ensemble of resulting
realizations reproduces both the distribution of shared components and the law for the growth of
the number of distinct families with genome size.

Finally, Chapter 4 attempts to extend the component systems approach to microbial ecosystems,
i.e., sets of genomes sharing the same environments. Using our findings about domain families
scaling laws (described in Chapter 2), we analyzed how the abundance of domain families in a
metagenome is a↵ected by the constraint of power-law scaling of family abundance in individual
genomes. The result is the definition of an observable, whose functional form contains access
quantitative information on the original composition of the metagenome, specifically the moments
of the distribution of genome sizes.
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Chapter 2
Family-specific scaling laws in bacterial genomes.

2.1 Introduction

2.1.1 High-level functional categories of genes follows quantitative laws

As demonstrated by van Nimwegen [82] and confirmed by a series of follow-up studies [57, 58, 13,
30, 11], striking quantitative laws exist for high-level functional categories of genes. Specifically,
the number of genes within individual functional categories exhibit clear power-laws, when plotted
as a function of genome size measured in terms of its number of protein-coding genes or, at a finer
level of resolution, of their constitutive domains (see Fig. 2.1).

In prokaryotes, such scaling laws appear well conserved across clades and lifestyles [58], sup-
porting the simple hypothesis that these scaling laws are universally shared by this group. From the
evolutionary genomics viewpoint [42], these laws have been explained as a byproduct of specific
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Figure 2.1: Functional category scaling laws This plot shows the
mean number of protein-domains associated with functional cate-
gories (y-axis) “translation” (green squares), “metabolism” (blue cir-
cles), and “transcription regulation” (red triangles) as a function of
the total number of domains in the genome (x-axis). Both axes are
shown on a logarithmic scale. The straight lines show power-law fits.
Each functional category has a well defined power law scaling with
function specific exponent: regulation of transcription scales quadrat-
ically, metabolic domains increase linearly with the genome size and
translation remains constant.

9



Chapter 2. Family-specific scaling laws in bacterial genomes.

“evolutionary potentials”, i.e., per-category-member rates of additions/deletions fixed in the pop-
ulation over evolution. As predicted by quantitative arguments, estimates of such rates correlate
well with the category scaling exponents [82, 57].

A complementary point of view [55, 64, 30] focuses on the existence of universal “recipes”
determining ratios of proteins between di↵erent functions necessary for genome functionality .
Such recipes should mirror the “dependency structure” or network operating within genomes as
well as other complex systems [65]. According to this point of view the usefulness, and thus the
occurrence, of a given functional component depends on the presence of a set of other components,
which are necessary for it to be operational.

2.1.2 The analysis of quantitative laws at the domain-family level may explain how the scal-
ing of functional categories emerges from the evolutionary dynamics.

Beyond functional categories, protein coding genes can be classified in “evolutionary families”
defined by the homology of their sequences. Functional categories usually contain genes from tens
or more of distinct evolutionary families.

The statistics of gene families also exhibits quantitative laws and regularities starting from a
universal distribution of their per-genome abundance [36], explained by evolutionary models ac-
counting for birth, death, and expansion of individual families [69, 38, 16]. While some earlier
work connects per-genome abundance statistics of families with functional scaling laws [30], the
link between functional category scaling and evolutionary expansion of gene families that build
them remains relatively unexplored. Clearly, selective pressure is driven by functional constraints,
and thus selection cannot in principle recognize families with identical functional roles. On the
other hand, slight di↵erences in the functional spectrum of di↵erent protein domains, and interde-
pendency of di↵erent functions can make the scenario more complex. Thus, one central question
is how the abundance of genes performing a specific function emerges from the evolutionary dy-
namics at the family level. Two alternative extreme scenarios can be put forward:

(i) The high-level scaling laws could emerge only at the level of functions, and be “combina-
torially neutral” at the level of the evolutionary families building up a particular function.
In this case all or most of the families performing a particular function would be mutually
interchangeable.

(ii) Functional categories scaling could be the result of the sum family-specific scaling laws.
Therefore the evolutionary potentials would be family-specific and coincide with family evo-
lutionary expansion rates, possibly emerging from the complex dependency structure cited
above, and from fine-tuned functional specificity of distinct families.

An intermediate possibility is that an interplay of constraints acts on both functional and evolution-
ary families. The following sections address the question of which is the most likely scenario by
providing a systematic analysis of scaling laws at the family level and their interplay with func-
tional category scaling. We will focus only on bacteria.
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Chapter 2. Family-specific scaling laws in bacterial genomes.

2.2 Families have individual scaling exponents, reflected by family-specific
scaling laws

We started by addressing the question of whether individual families show scaling laws, and thus
can be associated to specific scaling exponents. In this section we will first present the methods
and then discuss the first result, that is the existence of family scaling laws.

2.2.1 Data analysis

symbol category code category name symbol category code category name

C C Energy OA Proteases
E Amino acids met./tr. P Ion met./tr.
F Nucleotide met./tr. RA Redox
G Carbohydrate met./tr. RB transferase
H Coenzyme met./tr. RC Other enzymes
J Translation RF Transport
L DNA replication S Unknown function

LA DNA binding T Signal transduction
O Protein modification

Table 2.1: Symbols and codes used to identify functional categories.

We considered bacterial proteomes retrieved from the SUPERFAMILY (release 1.75 downloaded
in October 2014, [27]) and PFAM (release 27.0 downloaded in October 2014, [7, 19]) database.
Evolutionary families were defined from the domain assignments of 1535 superfamilies (SU-
PERFAMILY database) and 446 clans (PFAM database) on all protein sequences in completed
genomes. We focused the analysis on the 1112 bacterial proteomes used as species reference in the
SUPERFAMILY database. For the functional annotations of the SUPERFAMILY data, we consid-
ered annotation of SCOP domains as a scheme of 50 more detailed functional categories, mapped
to 7 more general function categories, developed by C. Vogel [84]. Functional categories will be
usually identified by a one- or two-letter code that we retrieved from [84]. In Table 2.1 we listed the
functional category descriptive name, its code and the symbol associated. PFAM clans were anno-
tated on the same scheme of 50 functional categories, using the mapping of clans into superfamilies
available from the PFAM website http://pfam.xfam.org/clan/browse#numbers [20].

For each evolutionary domain family (or a functional category consisting of multiple evolu-
tionary families), genome sizes (measured in the overall number of domains) were logarithmically
binned. For each bin we calculated mean and standard deviation of the given family abundance
(number of domains) within the bin. The estimated scaling exponent �i for family i is the result
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Chapter 2. Family-specific scaling laws in bacterial genomes.

of the non-linear least squares fitting of the binned data weighted by the standard error of family
abundance. Genome size bins containing less than 10 genomes were not taken into account.

Many domain families are found only in a few genomes and/or in very few copies. For this
reason, they might not show clear scaling properties. We excluded such families from the anal-
ysis with some filtering criteria. In order to filter out these families, we used three independent
parameters.

(i) Occurrence. The occurrence of the family i is defined as:

oi =
N(i)

G

NG
, (2.1)

while N(i)
G is the number of genomes in which family i is present and NG is the total number

of genomes in the sample.

(ii) Correlation. We defined ⇢i as the Pearson correlation coe�cient ⇢i between the logarithm of
the family abundance and the logarithm of the genome size.

(iii) Goodness of fit. First let’s define the quantity LS i as

LS i =
1

N(i)
G

N(i)
G

X

g=1

h

y f it,i � yi
i2

y f it
,

where yi is the logarithm of the empirical abundance of family i and y f it,i is the abundance
calculated with the fit parameters, i.e.,

y f it,i = Ai + �i log

0

B

B

B

B

B

B

@
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i=1

ng
i

1

C

C

C

C

C

C

A

.

The goodness of fit index si was defined as

si =
1

1 +
p

LS i

so that the values of si close to 1 correspond to the minimum value of the average squared
deviation between the fit and the empirical values.

It should be noted that the correlation ⇢i and the goodness of fit si are independent from oi as shown
in Fig. 2.2A-B. The filter over the occurrence assures that each family is present in the majority
of the genomes and thus that there are enough points to infer a scaling behavior. The correlation
⇢i quantifies the existence of a relation between family abundance and genome size. However,
considering families with clear but shallow scaling or constant abundance across genomes, ⇢i gives
values close to zero, or slightly negative, therefore another parameter is required to assess the ac-
curacy of the fit results. The index si puts on the same ground families with di↵erent exponents,
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Chapter 2. Family-specific scaling laws in bacterial genomes.

but generally decreases as the scaling exponent increases, in accordance with the growth of fluctu-
ations in families with higher exponents observed in ref. [31]. Hence, we decided to use it only for
low exponents, where the Pearson correlation is a bad proxy of scaling.

We considered only the families with oi > 0.6. If the fitted scaling exponent is higher than 0.2
then we excluded the families with ⇢i < 0.4, while, for exponents lower than 0.2, only families
with si > 0.9 were taken into account. After this thresholding, we removed 1179 families out of
1536. While the fraction of such small and sparse families is large, we verified that they do not
contribute significantly to the category scaling (see Figure 2.2C).
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Figure 2.2: The parameters used to filter out families are not correlated and the removal of filtered families does
not influence the functional category scaling.(A) The plot reports the goodness of fit index si, which is the average
squared deviation between the empirical family abundance and the one derived from the fit, as a function of family
occurrence. Each point represents a family whose exponent is lower than 0.2 . (B) Pearson correlation between family
abundance (number of domain belonging to a given family) and genome size, calculated across the genomes where the
family is present as a function of family occurrence. Each point represents a family whose exponent is higher than 0.2 .
The lack of clear correlation visible in the plots shows that the three indices are all relevant in the filters. (C) The plot
compares the category exponent obtained by considering all the domains and the exponent obtained by removing from
the category count the domains belonging to families filtered out by our criteria for unclear scaling. The exponents before
(x-axis) and after thresholding (y-axis) are compatible within their errors. The solid line is the y = x line. The panel
on the right shows the association between symbols and category codes (see Table 2.1 for the corresponding category
name).

2.2.2 Comparison with a null model supports the existence of scaling laws at the family level
is not simply due to sampling e↵ects.

The families that pass the quality filtering procedure all show a clearly identifiable individual scal-
ing when plotted as a function of genome size. As an example, Fig. 2.3 shows the scaling of a set of
chosen families in four selected functional categories. It is worth noting that some low-abundance
families that occur in all genomes with a very consistent number of copies show definite scaling
with exponents close to zero [31], being clearly constant with size, with little or no fluctuations.

Additionally, Fig. 2.3 shows that the presence of “outlier families” is common among func-
tional categories. In most categories, we found families where the deviations from the category
exponents is clear, beyond the uncertainty due to the errors from the fits. Fig. 2.3 shows some
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examples where in each of the shown categories �i is higher, lower or comparable to �c. A table
containing all the family and category exponents is available at appendix A.

Given that functional categories follow specific scaling laws, likely related to function-specific
evolutionary trends [82, 57], there remain di↵erent open possibilities for the behavior of the evolu-
tionary families composing the functional categories. One simple scenario is that family scalings
are family-specific, thus validating the existence of family evolutionary expansion rates that are
quantitatively di↵erent to the one of their functional category. In the opposite extreme scenario
the scaling is only function-specific, and individual families performing similar functions are inter-
changeable. If this were the case, the observed family diversity in scaling exponent would be only
due to sampling e↵ects. To assess the influence of sampling e↵ects, we defined a null model, in
which we randomized the families within a category conserving their occurrence patterns and the
category average abundance. In more detail, the null model is based on the following ingredients:

(i) The number of domains belonging to a category c in genome g, ng
i , is conserved.

(ii) For each genome, domains are not assigned to families that are not present in that genome.

(iii) The average frequency fc(i) for each family i with respect to the category c is conserved.
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This quantity is defined as:

fc(i) =
1

N(i)
G

X

g

ng
i

ng
c
, (2.2)

where the family index i belongs to the set in category c and the sum over g is carried over
all the genomes, while N(i)

G is the number of genomes in which family i is present, ng
i is

the abundance of family i in genome g and ng
c =

P

i2c ng
i is the abundance of category c in

genome g.

Note that the occurrence and the average frequency are uncorrelated in the data, hence we chose to
conserve both. Given a genome g, each realization of the null model redistributes randomly the ng

c
domains of the functional category c arranged in the Fg

c families belonging to category c in genome
g. Each one of the ng

c domains is assigned to family i with probability

pc(i) =

8

>

>

>

>

<

>

>

>

>

:

fc(i)
P

i2c fc(i)
, if ng

i , 0

0, if ng
i = 0 .

(2.3)

The randomized families always show very similar scaling as the one of the corresponding cate-
gory (see Fig. 2.4). Hence, this analysis strongly supports the existence of family-specific scaling
exponents that do not simply descend from the category scaling.
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Figure 2.4: Family exponents di↵er signif-
icantly from the null expectation set by the
scaling of the associated functional cate-
gory. In order to account for random fluctua-
tions in family composition within a category,
the family-exponents (empty symbols with
error bars) were compared with the ones cal-
culated randomizing the data accordingly to
the null model presented in this section (black
squares, error bars are variability across 1000
realizations). The variability obtained from
the null model is extremely low and is not
su�cient to explain the variability of scaling
exponents of di↵erent families within a cate-
gory. Each panel corresponds to a di↵erent
functional category, its scaling exponent is
shown as the black horizontal line. Families
within each category are sorted in decreasing
order of abundance, i.e. total domain count in
the category.
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2.2.3 Family exponents correlate with diversity of biochemical functions but not with con-
tact order or evolutionary rate of domains.

Finally, we considered the correlation of family scaling exponents with relevant biological and evo-
lutionary parameters. We tested the diversity of EC-numbers associated with families, quantifying
the functional plasticity of a given family. The Enzyme Commission (EC) number is a classifica-
tion scheme for enzyme-catalyzed chemical reactions. It is built as a four-levels tree where the top
nodes are six main groups of reactions, namely Oxidoreductases, Transferases, Hydrolases, Lyases,
Isomerases and Ligases [6]. We used the mapping between Superfamilies and EC terms [27], to
investigate the correlation between the Superfamily scaling and the number of di↵erent reactions in
which the family is involved. This quantity is the count of distinct EC numbers corresponding to the
finest level of the EC classification. Table 2.2 shows the correlations with other parameters such as
foldability (quantified by size-corrected contact order, SMCO [17]), selective pressure (quantified
by the ratio of nonsynonymous to synonymous Ka/Ks substitution rates [61]) and overall family
abundance.

The results are summarized in Table 2.2. Foldability and Ka/Ks appears to have little correla-
tion with scaling exponents. Instead, we found a significant positive correlation of exponents with
family abundance, and both quantities are correlated with diversity of EC-numbers in metabolic
families. This suggests that, at least for metabolism, functional properties of a fold play a role in
family scaling, and that beyond metabolism, abundance and scaling are, on average, not unrelated.

database parameters �i Ai haii fi/oi

SUPFAM

SMCO �0.06 0.07 0.04 0.04

EC numbers diversity 0.22 �0.14 0.40 0.35
(not met. families)

EC numbers diversity 0.64 �0.50 0.77 0.74
(met. families)

PFAM Hmm length 0.13 �0.13 0.10 0.10

Ka/Ks 0.11 �0.12 0.03 0.05

Table 2.2: Spearman correlations among family parameters. The table reports Spearman correlation coe�cients
between sets of family parameters, comparing biological/evolutionary and abundance properties. Each row describes
biological parameters: for the Superfamily database we used the foldability and the diversity of EC-numbers associated
with families. For Pfam families, we considered the Hidden Markov Model sequence length (Hmm length) and the
evolutionary rate Ka/Ks. The parameters listed in columns are the exponent and prefactor of the family scaling law (�i

and Ai respectively), the mean family abundance calculated over all genomes (haii) and the ratio between the average
relative abundance (see definition of frequency in Section 2.2.2) and family occurrence ( fi/oi). Relevant correlations are
found for the diversity in EC numbers restricted to metabolic families and the scaling exponent �i, as well as with the
mean and relative family abundance. Family abundance and scaling exponent are also correlated (Spearman 0.72).
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2.3 The heterogeneity in scaling exponents is function-specific.

The analyses presented in the previous section support the hypothesis that functional categories
contain families with specific scaling exponents. Indeed, the scaling exponents �i of the families
can be significantly di↵erent from the category exponent �c, with deviations that are much larger
than predicted by randomizing the categories according to the null model (see Fig. 2.4).

In order to quantify this “scaling heterogeneity” of functional categories, we computed for each
family i the distance between its scaling exponent �i and the category exponent �c:

hi = |�c � �i|,
Finally, we defined an index Hc quantifying the heterogeneity of the scaling of the families within
a category by averaging this distance over the families associated to a given category c:

Hc =
1
Fc

X

i

hi,

where Fc is the number of families in category c.
Figure 2.5A shows the relation between the heterogeneity Hc and the category exponent �c.

Interestingly, these two quantities are correlated, with categories with larger values of �c being
more heterogeneous. Intuitively, categories with small exponents are incompatible with extremely
large fluctuations of family exponents, while categories with larger exponents can contain families
with small �i. Indeed, this trend of heterogeneity with exponents is also observed in the null model,
where the heterogeneity of null categories is much smaller than empirical ones, since all families
tend to take the exponent category (Fig. 2.4).

Figure 2.5B allows a direct comparison of the heterogeneity of di↵erent categories by subtract-
ing the mean trend. It is noteworthy that the Signal Transduction functional category, which also
has clear superlinear scaling, has much lower heterogeneity than DNA-binding/transcription fac-
tors. Among the categories with linear scaling, Transferases is one of the least heterogeneous ones,
while the categories Protein Modification and Ion metabolism and Transport show a large variabil-
ity in the exponents of the associated families. For Protein Modification, this signal is essentially
due to the Gro-ES superfamily and to the HFSP90 ATP-ase domain, which have a clear superlinear
scaling, while other chaperone families, such as FKBP, HSP20-like and J-domain are clearly sub-
linear with exponents close to zero. Interestingly, the Gro-EL domains, functionally associated to
the Gro-EL, are part of this second class (exponent close to 0.2), showing very di↵erent abundance
scaling to the Gro-EL partner domains. Conversely, the category Ion Metabolism and Transport is
divided equally into linearly scaling (e.g., Ferritin-like Iron homeostasis domains) and markedly
sublinear families, such as SUF (sulphur assimilation) / NIF (nitrogen fixation) domains. On the
other hand, categories with small values of heterogeneity are made of families with exponents close
to the one of the category, as shown in Table 2.3 in the case of, e.g., Transferases.

We also observe that, since the total abundance of a category is the sum of the abundances of
the corresponding families, one may see a conceptual inconsistency in stating that both families
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and categories are well described by power laws. Indeed, a sum of power-laws can only be a power
law if all the exponents are identical. On the other hand, these constraints describe a mean behavior.

The inclusion of the fluctuation terms around the means makes the two scalings not formally
inconsistent. Additionally, the narrower the distribution of family exponents within a category, the
better the power-law approximation should hold at the functional categories level. Consequently,
we tested the connection of category heterogeneity in exponents to goodness of fit. We found that
the Spearman correlation coe�cient between category heterogeneity and mean residual of the fit is
equal to 0.43, indicating that more heterogeneous categories give slightly worse fits as expected by
these considerations.
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Figure 2.5: (A) Functional categories with faster scaling laws contain families with more heterogeneous scaling ex-
ponents. Heterogeneity is quantified by the mean deviation between the family scaling exponents and the category
exponent. The plot reports heterogeneity scores for di↵erent functional categories, plotted as a function of the category
exponents. The black line is the linear fit between heterogeneity and exponents (slope 0.3, intercept 0.1). (B) Compari-
son of heterogeneities subtracted from the linear trend. By this comparison, the least heterogeneous categories are Signal
Transduction (T) and Transferase (RB), and the most heterogenous are DNA Binding (LA) and protein modification (O).
Translation (J) is slightly above the trend for its low exponent. The legend (right panel) shows the association between
symbols and category codes (see Table 2.1 for the corresponding category name).
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2.4 Determinants of the scaling exponent of a functional category

We have shown that scaling exponents of individual families may correspond to a variable extent
to the exponent of the corresponding functional category. However, since categories are groups of
families, the scaling of the former cannot be independent of the scaling of the latter. This section
explores systematically the connection between the two. As detailed below, we find that in some
cases the scaling exponent of functional categories is determined by few outlier families, while in
other cases most of the families within a category contribute to the category scaling exponent.

While many families have a clear power-law scaling, functional categories may contain many
low-abundance families with unclear scaling properties. When considered individually, these fam-
ilies do not contribute much to the total number of domains of a category, but their joined e↵ect
on the scaling of the category could be potentially important. Fig. 2.7 shows that the sum of these
low-abundance families does not su↵er from sampling problems and shows a clear scaling. Inter-
estingly, the scaling exponents for these sums once again does not necessarily coincide with the
category exponents.

Figure 2.6A illustrates the systematic procedure that we used in order to understand how the
scaling of categories emerges from the scaling of the associated families. Families were ranked
by total abundance across all genomes (from the most to the least abundant) and removed one by
one from the category. At each removal step in this procedure, both the scaling exponent of the
removed family and the exponent of the remainder of the category are considered. In other words,
the i-th step evaluates the exponent of the i-th ranking family (in order of overall abundance) and
of the set of families obtained by removing the i top-ranking families (with highest abundance)
from the category. The resulting exponents quantify the contribution of each family to the global
category scaling, as well as the collective contribution of all the families with increasingly lower
overall abundance.

The results (Fig. 2.6B), show how the heterogeneity features described above are related to
family abundance. Pooled together, the low-abundance families within a functional category may
show very di↵erent scaling than their category. Additionally, single families follow scaling laws
that deviate from the one of the corresponding functional categories. One notable example of this
are Transcription-Factor DNA-binding domains. If the abundance of the outliers families is large
enough in terms of the fraction of domains in the functional category, they might be responsible
for determining the scaling of the entire category, as it happens in the case of DNA-binding (which
is more extensively discussed in the following section).

Overall, one can distinguish between two main behaviors, either a category scaling is driven by
a low number of highly populated “outlier” families (e.g. DNA binding and Protein Modification in
Fig. 2.6B), or the category scaling is coherent, and robust to family subtraction (e.g. Transferases
and Translation in Fig. 2.6B). While the first behavior appears to be more common for functional
categories with higher scaling exponent, there are some exceptions. Notably, the scaling of strongly
super-linear categories is not always driven by a few families. For example, the functional category
Signal Transduction has an exponent �c = 1.7, which remains stable after the removal of the
largest families (Fig. 2.7). Both behaviors are clearly visible for intermediate exponents (in order
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to appreciate this, compare the Transferases and Protein Modification categories in Fig. 2.6B).
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Figure 2.6: Systematic removal of families (ranked by
abundance) inside functional categories reveals how
individual families build up functional category scal-
ing. (A) Illustration of the procedure. Families belonging
to a given functional category are ranked by overall abun-
dance on all genomes and removed one by one from the
most abundant. The scaling of the removed family and
the remainder of the category is evaluated after each re-
moval. The plots are a stylized example of the first two
steps (using values for the category DNA binding). �c is
the category exponent, �i are family exponents and �c\{i}
are the stripped-category exponents, computed after the
removals. (B) Results of this analysis for four functional
categories. Grey circles represent the exponents �i (and
their errors) for the scaling law of each family belonging
to the functional category (in order of rank in total abun-
dance). Colored circles are the scaling exponents of func-
tional categories without the domains of the i least abun-
dant families. The size of each symbol is proportional to
the fraction of domains in the family or family-stripped
category. Error bars are uncertainties of the fits.

2.4.1 Super-linear scaling of transcription factors is determined by the behavior of a few
specific highly populated families.

We considered, in particular, the case of DNA-binding / transcription factors [11], which are known
to exhibit peculiar scaling in bacteria [71, 55]. The abundance of domains in this functional cate-
gory increases superlinearly (almost quadratically) with the total domain counts [82, 64, 31]. As
shown in the first row of Fig. 2.3B, not all the families in this functional category display a su-
perlinear scaling [11], and the collective scaling of the low-abundance families with genome size
is much slower (see Fig. 2.6). Fig. 2.6B shows that only the most 5-6 abundant families display
a super-linear scaling (�i > 1). These are Winged helix DNA-binding domains (34.8% of abun-
dance), Homeodomain-like (23.3 %) lambda repressor-like DNA-binding domains (9.5%) bipartite
Response regulators (7.7%) Periplasmic binding protein-like (6.2%), and FadR-like (2.4%). The
remaining 16.1% of the DNA-binding regulatory domains follows a clear sublinear scaling with
genome size (exponent 0.7, see Fig. 2.7).
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2.5 Grouping families with similar scaling exponents shows known as-
sociations with biological function and reveals new ones.

The above analyses show that the range of scaling exponents of families within the same functional
categories is generally wide and that the scaling behavior of some families sensibly deviates from
their category. At the same time, functional categories show clear characteristic scaling laws, with
well-defined exponents �c [57]. We, therefore, asked to what extent a range of family scaling
exponents �i is peculiar to a functional category and how this compares to the category exponent
�c. To this end, we grouped families based on their scaling exponents. We then used those groups
to test how much specific range of exponents define specific functions by an enrichment test of
functional annotations. Let’s see in more detail how we performed the analysis.
All families passing the filters described in section 2.2.1 were divided into three groups based on
the values of their exponent �i:

(i) sub-linearly scaling families, �i  0.6

(ii) linearly scaling families, 0.6 < �i < 1.4

(iii) super-linearly scaling families, �c � 1.4

We used hypergeometric tests to asses over- or under-representation of functional categories in
these family groups. Given that Fc is the number of families that belong to the category c, Fbin is
the number of families in either of the three groups defined above and Ftot is the total number of
families involved in this analysis, the mean and the variance of the hypergeometric distribution are:

µbin,c = Fbin · Fc

Ftot
,

�2
bin,c = Fbin · Fc

Ftot
·
 

1 � Fc

Ftot

!

·
 

1 � Fbin � 1
Ftot � 1

!

,
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For each combination of functional category and family group, the quantity xbin,c is the number of
families that lie in the intersection of category c with family group bin. The functional category c
is under-represented in the group bin if Zbin,c < �1.96, over-represented if Zbin,c > �1.96, where
Zbin,c is the Z-score:

Zbin,c =
xbin,c � µbin,c

�bin,c
,

In order to prove that the results are independent from the chosen interval of the exponents, we
substituted the three groups with sliding intervals of amplitude 0.4 and step 0.1 and repeated the
same process. Only intervals with more than 10 families are considered.

The resulting intersection values xbin,c and the significant Z-scores are reported in Table 2.3.
This table shows that in most cases functional categories are over-represented in the exponent
range where their scaling exponents �c is found. This confirms and puts in a wider perspective
the previously reported strong association between abundance scaling with size and functional
annotation. As can be expected from previous results, the functional category Protein Modification
is an exception: this category is under-represented in the linear region even though its category
exponent is ⇠ 1.06, since it contains two strongly superlinear families and a bulk of families with
sublinear scaling. This strong heterogeneity in scaling exponents is also visible in Fig. 2.6B.

The exponent corresponding to the maximum Z-score defines a representative exponent for
each functional category, and can be compared to the exponent �c measured directly from the
plot of category abundance vs genome size (see Fig. 2.8). Interestingly, this analysis also shows
that in many cases a single functional category is enriched for multiple groups of families with
well-defined exponents, as in the case of the Protein Modification category. The cases of Ion
Metabolism and Transport (already discussed), Coenzyme Metabolism and Transport, Redox also
shows clear indications of enrichment for two or more exponent groups. For the category Coen-
zyme Metabolism and Transport this is due to the presence of a single abundant family with scaling
exponent close to 2, the acyl-CoA dehydrogenase NM domain-like, whose functional annotation is
still not well defined. In the case of Redox, the most abundant families (Thioredoxin-like, 4Fe-4S
ferredoxins, Metallo-hydrolase/Oxydoreductase) scale linearly, but there is a wide range of fam-
ilies with exponents between 0.5 and 1, and once again two fairly abundant outlier families with
superlinear scaling (Glyoxalase/Bleomycin resistance protein/Dioxygenase, and ALDH-like), both
with a fairly wide range of functional annotations.

2.6 The main results of our analysis hold also for PFAM clans

We chose PFAM clans as an alternative database to test the robustness of our results. PFAM clans
were annotated on the same scheme of 50 functional categories used for superfamilies, using the
mapping of clans into superfamilies available from the PFAM website http://pfam.xfam.org/
clan/browse#numbers [20]. The scaling laws for functional categories are recovered also for
clans (Table A.3) and are consistent with previous results [82, 57, 58, 13, 30, 11]. The following
main results were recovered for Pfam clans.
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Detailed function �i  0.6 0.6 < �i < 1.4 �i � 1.4 �c ± ��c

Translation 20( 4.3 ) 1( �3.7 ) 0 0.16 ± 0.03
DNA replication/repair 11 7 0 0.51 ± 0.07

Transport 5 9 1 1.1 ± 0.2
Proteases 7 9 0 0.9 ± 0.1

Protein modification 8 1( �2.3 ) 2 1.06 ± 0.09
Ion m/tr 11 3 3( �2.2 ) 1.3 ± 0.1

Other enzymes 29 32 2 1.04 ± 0.06
Coenzyme m/tr 17( 2.2 ) 6 1 0.85 ± 0.09

Redox 4( �3.3 ) 18( 3.1 ) 2 1.2 ± 0.1
Energy 11 7 0 0.86 ± 0.09

Nucleotide m/tr 16( 3.1 ) 3( �2.5 ) 0 0.53 ± 0.08
Carbohydrate m/tr 4 8 0 1.0 ± 0.2

Transferases 5 11 1 1.05 ± 0.07
Amino acids m/tr 7 6 0 0.8 ± 0.2

DNA-binding 5 4 4( 3.3 ) 1.5 ± 0.1
Signal transduction 1( �2.7 ) 5 5( 5.0 ) 1.6 ± 0.2

Unknown function 9 7 0 0.98 ± 0.09

Table 2.3: Family scaling exponents can be associated to specific biological functions. Each cell in the table indicates
the number of families that functional categories (rows) share with groups of families whose scaling exponents fall in
pre-defined intervals (columns). The table also shows the Z-scores for a standard hypergeometric test (shown in green
for over-representation and in red for under-representation, only |Z| >1.96 are shown).

0.0 0.8 1.60.0

0.5

1.0

1.5

2.0

RC

RA
RB

RF
S
T

OA
P

O

F

C
E

L
K

LA

H
G

J

ex
p.

 w
ith

 m
ax

 Z
-s

co
re

 

category exponent

Figure 2.8: Comparison of the category exponent with
the exponent corresponding to the maximum Z-score
in the enrichment test (see Sec. 2.5). The black line is
the y = x line. Correspondence with this line indicates
clear association between the functional category and the
scaling exponent range. The panel on the right shows
the association between symbols and category codes (see
Table 2.1 for the corresponding category name).

(i) For each clan, the abundance across genomes scales as a power law of the genome size.
Equally to SCOP superfamilies, Pfam clans have individual scaling exponents that may or
may not follow the one of the associated functional category (Table. A.3). The fitting method
and threshold values are the same used for superfamilies (sec. 2.2.1). 178 clans out of 446
passed the filters and were employed for further analysis.
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(ii) The heterogeneity (average of the distance between the category exponent and the clan ex-
ponent), positively correlates with the category exponent (Fig. 2.9). Functional categories
with superlinear scaling tend to be more heterogeneous and, as found for superfamilies, the
functional category Signal Transduction is less heterogeneous than DNA-binding, although
having the largest exponent. Unlike the case of superfamilies, Protein Modification does
not have high heterogeneity score, but the di↵erence in scaling between the (strongly su-
perlinear) outlier family Gro-ES and the remaining ones is observed. For clans, the scaling
of Protein Modification is once again strongly biased by the clan “GroES-like superfamily”
(20% of the total domains).
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Figure 2.9: Functional categories of Pfam clans with
faster scaling exponents contain clans with more het-
erogeneous scaling laws. Same as Figure 2.5A, for Pfam
clans. Heterogeneity is quantified by the mean deviation
between the clan scaling exponents and the category ex-
ponent. The plot reports heterogeneity scores for di↵erent
functional categories, plotted as a function of the category
exponents. Each symbol corresponds to a di↵erent func-
tional category. Only categories with more than 5 clans
are shown. The right panel shows the association between
symbols and category codes (see Table 2.1 for the corre-
sponding category name).

(iii) Either few or most of the clans determine the scaling exponent of the functional category
they belong to. Figure 2.10 is coherent with what observed for superfamilies, in particular
the functional category of DNA-binding is dominated by one clan (the “Helix-turn-helix”
clan) that accounts for 83% of the total domains. As for superfamilies, Signal Trasduction is
robust to the progressive removal of families confirming that the presence of dominant clans
is not related to the superlinear scaling of the category.

(iv) Grouping clans with similar scaling exponents recovers known associations between the cat-
egory exponent and the biological function (Fig. 2.11).
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Figure 2.11: Functional enrichment of sets of Pfam
clans with similar scaling exponents. Same as Fig. 2.8
for Pfam clans. Comparison of the category exponent
with the exponent corresponding to the maximum Z-
score in the enrichment test (see Sec. 2.5). Clans are
grouped into sliding bins according to the value of their
scaling exponent and tested for enrichment against each
functional category. The exponent corresponding to the
maximal value of Z-score (y-axis) is compared to the cat-
egory scaling exponent (x-axis). The black line is the
y = x line. Correspondence with this line indicates clear
association between the functional category and the scal-
ing exponent range. The right panel shows the associa-
tion between symbols and category codes (see Table 2.1
for the corresponding category name).
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2.7 Discussion

Our results gather a critical mass of evidence in the direction of family-specific expansion rules
for the families of protein domains found in a genome. Although previous work had focused on
individual transcription factor families [11], finding in some cases some definite scaling, no at-
tempts were made to address this question systematically. The scaling laws for domain families
appear to be very robust, despite of the limited sampling of families compared to functional an-
notations (which are super-aggregates of families and hence have by definition higher abundance).
In particular, the results are consistent between the di↵erent classifications of families we tested
(SUPERFAMILY and PFAM, see section 2.6).

Overall, our results indicate that scaling laws are measurable at the family level, and, given
the heterogeneous scaling of families with the same functional annotations, families are likely a
more reliable description level for the scaling laws than functional annotations. The interpretation
of these scaling laws is related to the evolutionary dynamics of family expansion by horizontal
transfer or gene duplication, and gene loss [42, 82, 28]. Scaling exponents are seen as “evolutionary
potentials” [57], is based on a model of function-specific (multiplicative) family expansion rates.
Assuming this interpretation, then our result that these rates may be di↵erent for di↵erent domain
families having the same functional annotation may seem puzzling. Clearly, selective pressure
can only act at the functional level, and if two folds were functionally identical, there should be
reasonably no advantage selecting one with respect to the other, and doing so at di↵erent specific
rates. For example, a transcription factor using one fold to bind DNA rather than another one should
be indistinguishable from one using a di↵erent fold, provided binding specificity and regulatory
action are the same.

In view of these considerations, we believe that our findings support a more complex scenario
for the interplay between domain families and their functions. Specifically, we put forward two
complementary rationalizations. The first is that functional annotations group together di↵erent
domains whose abundance is linked in di↵erent ways to genome size because of their di↵erent
biochemical and biological functional roles. Such di↵erences may range from slight biochemical
specificities of di↵erent folds to plain misannotations. This is possible, e.g., with enzymes, where
the biochemical range of two di↵erent folds is generally di↵erent. This observation might be
related to the positive correlation we found between the number of EC numbers corresponding
to a metabolic domain and its scaling exponent. However, such interpretation might be less likely
applicable to, e.g., transcription factor DNA-binding domains, where functional annotation is fairly
straightforward [53], but di↵erent scaling behaviors with genome size are nevertheless found.

The second potential explanation assumes the point of view where scaling laws are the result of
functional interdependency between di↵erent domain families [55, 29], then correlated fluctuations
around the mean of family pairs should carry memory of such dependency structures [65]. More
in detail, there may be specific dependencies connecting the relative proportions of domains with
both di↵erent and equal functional annotations that are present in the same genome, which might
determine the family-specific behavior [30]. While further analysis is required to elucidate these
trends, we believe that gaining knowledge on functional dependencies would be an important step
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to understand the functional design principles of genomes. It is not possible at this stage to distin-
guish between these two explanations, and we surmise that they may both be relevant to explain
the data.

Of notable importance is the case of the superlinear scaling of transcription factors, which has
created notable debate in the past [72, 55]. For the first time, we look into how this trend is subdi-
vided between the di↵erent DNA binding domains [53]. Our analysis indicates that the superlinear
scaling is driven by the few most abundant superfamilies (mostly winged-helix, homeodomain,
lambda repressor). However, the remaining 10-20% of the functional category gives a clear sub-
linear scaling with genome size, which emerges beyond any sampling problems. We speculate that
these other regulatory DNA-binding domains may be functionally di↵erent or behave di↵erently
over evolutionary time scales. Hence, the scaling of transcription factors with size in bacteria is
driven by a small set of domain families with scaling exponent close to two, which take up most of
the abundance, but does not appear to be peculiar of all transcription factors. A “toolbox” model
considering the role of transcription factors as regulator of metabolic pathways and the finite uni-
verse of metabolic reactions [55, 64] predicts scaling exponents close to two for transcription factor
families. According to our results, such model should be applicable to the leading TF families. In-
terestingly, the heterogeneity in the behavior in transcription factor DNA-binding domains is much
higher than that of the other notable superlinear functional category, signal transduction, where re-
moval of the leading families does not significantly a↵ect the observed scaling of abundance with
genome size. Given the clarity and uniformity of the scaling exponent, we speculate that possibly
a toolbox-like model may be applicable to understand the overall scaling of this category.

Other categories clearly contain multiple sets of families with coherent exponents or single
outlier families. In some cases, two main groups of families with di↵erent scaling behavior clearly
emerge, and higher observed scaling exponents may be related to a wider range of functional anno-
tations. We propose that such easily detectable trends can be used to revise and refine functional an-
notations of protein domains. Such functional annotations are currently largely curated by humans,
and based on subjective and/or biased criteria. The analysis of family scaling gives an additional
objective test to define the coherence of the families that are annotated under the same function.
While yet-to-be-developed automated inference methods based on our observations could serve
this purpose, the quantitative scores defined here already provide useful information. The hetero-
geneity of a functional category is an indication of how likely that group of domain families follows
a coherent expansion rate over evolution. The enrichment scores for sets of families with a given
range of scaling exponent helps to pinpoint the sets of families within the functional category that
expand coherently with genome size.
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Chapter 3
Dependency networks shape frequencies and abun-
dances in component systems

3.1 Introduction

3.1.1 The emergence of universal regularities in empirical component systems may be the
e↵ect of underlying dependency structures of the components.

The partitioning of a system into components is a general architectural pattern present in many
physical, biological, and artificial systems. For example genomes can be regarded as sets of genes,
operating systems such as Linux can be thought of as sets of packages, texts can be analyzed as sets
of words. Modular representations of component systems emerge in diverse fields (e.g. quantitative
geography [8, 51], linguistics [22], software [65]. Such a “toolbox” structure [8, 22, 23, 51, 55, 65]
extends the classic partitions that are a core subject of statistical mechanics, such as equilibrium
statistics of particles in energy states [47] or non-equilibrium occupancy, for example in driven
di↵usive systems [18] or general duplication-innovation models [3, 16].

A variety of quantitative laws have been uncovered studying di↵erent systems, some of which
are system-specific, while some others are common to multiple systems. In some cases, scale-
invariance (and universality) emerges as a consequence of criticality [77], either due to evolutionary
tuning or self-organization, as is well understood via the renormalisation group in statistical me-
chanics. However, more and more often scale-free features are recognized as non-universal conse-
quences of collective behavior, non-linear dynamics, preferential attachment, etc. [76]. Prominent
examples are the followings:

- Zipf’s law that concerns the distribution of component frequencies [67];
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- the power-law distribution of component occurrences;

- the sublinear scaling of the number of component classes with system size, often referred to
as Heaps’ law [34].

In Chapter 2 we saw that the concept of component systems has helped unveiling emergent
“laws” or quantitative invariants pointing to relevant underlying evolutionary and architectural
properties of genomes [30, 49, 55, 65, 82], as well as to the value of an “emergent” description
of genome architecture [42]. Due to the interest in field-specific studies, it is important to gain a
theoretical understanding of the traits emerging from the common architecture of component sys-
tems, and of their implications in a Interesting results have been obtained in the context of history-
dependent processes, where the state space changes (co-evolves) with the realizations [32]. Two
divergent mechanisms have been proposed, where the state space expands [79] or reduces [15, 14]
while it is explored by the system.

Dependency structures (DS) have emerged recently as a promising framework for the ratio-
nalization and organization of the regularities observed in systems lying outside the traditional
scope of statistical mechanics [65]. Dependency structures have been proposed in various contexts
and forms, and have helped achieving remarkable results, for instance in the scope of preference
prediction [33], or for addressing causality in financial data [40].

A DS is a directed graph (most often, but not necessarily, acyclic), whose nodes are the compo-
nents (e.g. Linux packages, or genes [65]) and whose links are the dependency relations occurring
between them. A component depends on another one if it is not functional unless the latter is
present. A realization in such a component system is then constructed as the choice of a node
and all its direct and indirect dependencies. This simple model links quantitative laws in the mod-
ular representations to topological properties of the DS (and hence to the evolutionary processes
sculpting it). For instance, a broad ensemble of DSs has the property that the number of total
dependencies of each node is scale free in the thermodynamic limit (notice that this is a weaker
condition than the power-law distribution of degrees, i.e., of direct dependencies). This topological
property explains the fat-tailed distribution of component occurrences across realizations, both in
genomes and operating systems [65].

This model constrains the components to have binary abundances in its realization, i.e., to either
be present in one copy or to be absent. Such a description is expected to be accurate for some
components (e.g., for software packages) but is a rough approximation for those systems where
components appear with non-negligible abundances (e.g., coarse-grained evolutionary families of
genes such as superfamilies, and words in a text).

This chapter extends the model proposed in [65] to a case where components appear with non-
trivial abundances. This allows us to explore how dependency structures a↵ect abundance-related
features, such as Heaps’ and Zipf’s laws.
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3.2 Model: description of the dependency structure and the algorithm
that defines a realization.

This section discusses the definition of the model. Let U be the set of all unique components
(the universe), and let U = |U| denote its cardinality. A realization of this component system is
a set r = {ci} of components ci 2 U, with i = 0, . . . ,Nr, where Nr is the size of the realization.
Such a simplification separates the relational constraints existing between the components, such as
dependency and incompatibility, from their functional correlations, such as synergy, co-occurrence,
interchangeability, conflict, and so on. The constraints are realized by a network of dependencies,
as we explain below. For what concerns the functional correlations, our model is the simplest null
model, where no correlations between components are dictated, other than those arising from the
dependencies.

A dependency structure is a directed acyclic graph G on U, which encodes the dependencies
between the components. An edge i ! j between two nodes i and j represents the relation “i de-
pends on j”. A component i is said to depend on another component j if i is not functional without
j. Such a relation can be more or less strict depending on the system; for instance it is enforced
in software operating systems, where a package cannot function unless all its dependencies are
installed, but not in metabolic networks, where alternative pathways can be followed to the same
metabolite [23, 55]. We assume here strict unbroken dependencies. Notice that acyclicity of G is
not stringently necessary; however, as will be clear in the following, a cycle in G would behave as
a single node in the model.

The topology of the dependency structure is conceptually separated from the procedure that
generates realizations satisfying the dependency constraints. Here we use the DS introduced in [65]
and define a novel method to build the realizations. Specifically, as sketched in Fig. 3.1A, the
growth process that creates the dependency network is a very simple incremental node-addition
process that generates structures with power-law distributed sizes of a nodes’ direct and indirect
dependencies (such property is crucial to reproduce the Zipf’s law, see section 3.3). Let us fix an
average outdegree D � 1, i.e., an average number of direct dependencies that a given component
has. Starting with an initial graph consisting of a single node, the full graph is built node by node,
by attaching the new node to d + 1 randomly chosen existing nodes (possibly with repetitions),
where d is a Poissonian random variable of mean D � 1. The process is stopped when the network
reaches the predetermined size U. A graph grown with these rules is directed and acyclic, and
hence a good dependency structure, as can be seen by labelling each node by the time t = 1, . . . ,U
it was added to the network, and noticing that there can be no links t ! t0 with t < t0.

Once a dependency structure G is established, realizations of the model, i.e., sets of compo-
nents, are generated by the following procedure (see also Fig. 3.1A). Before explaining the details
of the algorithm, it is crucial to state the following definitions:

- Given a node c, ^(c) ✓ U is defined as the set of all nodes c0 such that there exists at least
one directed path in G starting from c and arriving at c0. We will call the set ^(c) the forward
cone of c.
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- We define the backward cone _(c) of c as the set of all nodes c0 such that there exists a path
from c0 to c.

In other words, ^(c) is the set of all components required be the (direct and indirect) dependencies
of c, whereas _(c) is the set of the nodes that depend (directly or indirectly) on c.

Let us fix a positive integer k, which represents the number of “precursor” components deter-
mining a realization. The k precursors

n

p j
o

, j = 1, . . . , k, are chosen randomly and independently
among the nodes of G. Then the corresponding realization is produced by taking all components
belonging to the forward cones of the precursors. To complete the model specification one needs a
rule to choose the multiplicities of the components. We allow a component belonging to multiple
cones to appear in multiple copies. Let us imagine that precursors are added one at a time to the
realization. At the j-th step the existing realization r j�1 (possibly empty, when j = 1) is extended,
by the addition of elements from the cone ^(p j) of the precursor p j:

r j = r j�1 [ � j, � j ✓ ^(t j). (3.1)

The choice of the incrementing set � j must be done so as to satisfy the dependency relations, i.e.,
r j ◆ ^(t j). Doing this at every step ensures that the final realization rk will not have any unsatisfied
dependency. Other than that, � j is in principle unconstrained, and it may be a random variable
even at fixed p j and r j�1. Here we make the simplest choice � j = ^(t j). This makes the process
Markovian, in the sense that r j \ r j�1 ⌘ � j is independent of r j�1. With a slight abuse of notation,
we will write ^(t) and _(t) for the forward and backward cones of the t-th node. The case k = 1,
when a realization is specified by a single precursor, reproduces the model of [65].

An advantage of this model is its analytical tractability. The forms of Zipf’s law and the dis-
tribution of component occurrence are the same as those in the binary model, and the mean-field
analysis is the same as that in [65]. The main additional output of our extension is a non-trivial
Heaps’ law, which is derived analytically in section 3.4.

3.3 Our positive model recovers the empirical regularities of component
systems, namely the Zipf’s law and the Heaps’ law.

Given a set of N realizations of a component system, the “popularity” of a component i can be
measured in two ways: by its abundance ai and by its occurrence oi. The relative abundance
counts the number of times that i appears in all realizations (with multiplicities):

ai =
1

kN

X

r

X

c2r
�c,i. (3.2)

In the model, the maximum abundance of a component i corresponds to drawing i each time a
cone is selected, for each realization. In such a case, the double sum in (3.2) is kN. Therefore, the
abundance ai is normalized so that 0  ai  1. It is important to stress that the relative abundance
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Figure 3.1: Illustration of the model and main ob-
servables. (A) The model is composed of three steps.
The first step creates a dependency structure by an in-
cremental node-addition process with mean out-degree
D. The second step builds realizations drawing at ran-
dom k precursors and taking all components belonging
to their forward cones. The final step assigns multiplic-
ities to the components. The model establishes that the
selected components have abundance equal to the num-
ber of forward cones that contain them. (bottom panel)
Each realization constitutes the row of a matrix in which
columns are components, therefore the matrix element
mi j is the multiplicity of component j in realization i.
The component’s abundance is the multiplicity, whereas
the occurrence refers to the presence or absence of the
component. The system constituted by an ensemble of
realizations features known empirical laws: sublinear
scaling of the number of distinct components with re-
alization size (top panel), zipfian distribution of compo-
nents abundance (central panel) and power law distribu-
tion of components occurrence.

is an intensive quantity, not to be mistaken for the absolute abundance that coincides with the
components’ multiplicity (the latter is the definition of abundance used in Chapter 2).

The mean occurrence oi measures the fraction of realizations containing the component, re-
gardless of its abundance:

oi =
1
N

X

r

2

6

6

6

6

6

4

1 �
Y

c2r

�

1 � �c,i
�

3

7

7

7

7

7

5

. (3.3)

With this definition, the mean occurrence is normalized so that 0  oi  1.

3.3.1 The analytical derivation of the components abundance distribution matches simula-
tions and satisfies the Zipf’s law

Zipf’s law is an empirical law about the rank-frequency relation of components. It states that
the frequency of any components across realizations is inversely proportional to its rank. This
behavior was first identified in linguistics, but appears to be a feature of very diverse systems, all
of which have a component-realization structure. Many attempts have been made to explain the
emergence of such regularity [25], in the spirit of the paper by Pang and Maslov [65] we show here
that our model generates component with a zipfian abundance distribution as a consequence of the
dependency structure.

The Zipf relation, i.e., the rank plot of the abundance, is expected to be independent of the
number of cones k (at least for large systems). In fact, the abundance ai of a given component in
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N realizations constructed with k cones each has the same distribution as that in kN single-cone
realizations, since the choices of the cones are independent. ai can be estimated as the probability
of choosing a cone that contains i, which is proportional to the size |_(i)| of the backward cone of
i:

ai =
|_(i)|

U
. (3.4)

Let us call rank(i) the rank of component i when all components are ranked by their abundance.
Following [65], an approximate relation can be derived between |_(i)| and rank(i), which will allow
to obtain an analytical estimate of Zipf’s law. The t-th node in the network (the one added at the t-th
step of the construction, when a network of size t�1 has already been generated) has approximately
(U/t)D nodes that depend on it. This result can be obtained by writing an equation based on the
observation that the backward cone of the t-th node is the union of the backward cones of all
the nodes that, at later times t0, will directly attach to the t-th node. Neglecting the intersections
between these cones allows to write the recursion

|_(t)| = 1 +
N

X

t0=t+1

D
t0

�

�

�_(t0)
�

�

� , (3.5)

where the factor D/t0 estimates the probability that the t0-th node attaches to the t-th node. By
approximating the sum by an integral and taking a derivative with respect to t, one obtains a di↵er-
ential equation that is solved by |_(t)| = (U/t)D.

For small t, however, (U/t)D is greater than the size of the network U. In fact, the relation can
hold only down to a cuto↵ tmin, which can be estimated by the condition that the whole network
depends on the tmin-th node, i.e., (U/tmin)D = U, which gives tmin = U1�1/D. For any node below
tmin, the size of its backward cone is ⇡ U:

|_(t)| ⇡
8

>

>

<

>

>

:

U t < U1�1/D

(U/t)D t � U1�1/D (3.6)

Equations (3.4) and (3.6) imply that if node i is the t-th node in the network growth process, then
t = rank(i). (This identification does not hold for the first U1�1/D components, but this does
not influence the result since the size of their backward cones are equal in this approximation.)
Therefore, one obtains

ai ⇡
8

>

>

<

>

>

:

1 rank(i) < U1�1/D

rank(i)�DUD�1 rank(i) � U1�1/D.
(3.7)

This relation has the form of a Zipf power-law (with exponent �D) with an initial “core” consisting
of U1�1/D components having similar abundances.

Figure 3.2A compares the analytical form (3.7) with the results of simulations, showing good
accord, especially in the behavior of the fat tail. The transition between the core and the tail,
instead, is less sharp than predicted. This is tied to the fact that the relation |_| = (U/t)D starts to
break down before reaching U, and saturates more smoothly than in the approximation made above.
Importantly, the relation between rank and relative abundance does not depend on the number of
cones k, in agreement with the above prediction.
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3.3.2 The power-law distribution of components occurrence is a “null” result of our model

The occurrence-abundance relation predicted by our model turns out to be universal (or “null”),
meaning that it is insensitive to the explicit form of Zipf’s law, to the detailed structure of the
network, and even to the size U of the component universe. In fact, we show here that a simple
probabilistic argument gives a relation that is consistent with simulations of the full model.

In the limit of large N, we can assume that the occurrence of a component i is equal to the
probability of choosing i at least once in a single realization: oi = 1 � (1 � ai)k, hence

ai = 1 � (1 � oi)1/k . (3.8)

For realizations with a single precursor (k = 1) abundance and occurrence are equal. While k in-
creases, more and more components (with larger and larger occurrence) assume small abundances.
In the large-k limit, all components have zero (relative) abundance, except those with occurrence
1. Figure 3.2C shows that a scatterplot of abundance versus occurrence in simulations perfectly
matches the theoretical curve (3.8). The figure shows results for a single choice of D and U, but
we verified that these parameters have no e↵ect on the curves.
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Figure 3.2: Simulations match the analytical
form of the Zipf’s law and of the abundance-
occurrence relation. From the top-left corner: the
rank-plot of components abundance, the rank-plot
of components occurrence and the scatterplot of
components abundance (y-axis) versus components
occurrence (x-axis). Colored symbols represents
simulations with varying number of precursors k,
the dashed line is the analytical prediction. The sim-
ulation parameters are U = 1000, D = 1.5 and the
number of realizations is fixed to 1000.
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3.4 The analytical mean-field expression of the Heaps’ law matches the
results of numerical simulations of the model.

We now set out to estimate analytically the Heaps’ law from the model. The calculation of the
number F(N) of unique components in a realization of size N can be performed in a mean-field
approximation, where the correlations between nodes are neglected. We consider a process where
a realization is generated by extracting N nodes independently. The probability

p(t) =
1
⌦
|_(t)| (3.9)

of drawing the node t is proportional to the size |_(t)| of the node’s backward cone. In a continuous
approximation, the normalization ⌦ can be fixed by the condition

R 1
0 p(t) dt = 1, which yields

⌦ = U
DU1�1/D � 1

D � 1
. (3.10)

Note that ⌦ > U whenever U > 1 and D > 1. Let p1(t, n) be the probability that the t-th node in
the network is drawn for the first time when the system being constructed has size n:

p1(t, n) = p(t)
⇥

1 � p(t)
⇤n�1 . (3.11)

A mean-field estimate of F can then be obtained as

F(N) =
N

X

n=1

U
X

t=1

p1(t, n) ⇡
Z U

0
dt

N
X

n=1

p1(t, n) (3.12)

The geometric sum in n gives simply the probability 1 � [1 � p(t)]N that the t-th node has been
drawn at least once after N steps. The mean-field expression for Heaps’ law is then given by the
following integral:

F(N) =
Z U

0
dt

n

1 � ⇥

1 � p(t)
⇤N

o

= U � U1�1/D
✓

1 � U
⌦

◆N
� I(N),

(3.13)

where the first term (U) comes from the integral of 1, and the second and third terms are the
contributions of the two regions in (3.6). The remaining integral

I(N) =
Z U

U1�1/D
dt

"

1 � 1
⌦

✓U
t

◆D#N

(3.14)

can be evaluated with the change of variables z = (U/t)D/⌦, which gives

I(N) =
U
D
⌦�1/D

Z U/⌦

1/⌦
(1 � z)Nz�1�1/Ddz. (3.15)
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By remembering that the primitive of (1 � z)↵z� is z�+1
2F1(�↵, � + 1, � + 2, z)/(� + 1), where 2F1

is the Gauss hypergeometric function, one finally obtains

F(N) = U � U1�1/D
✓

1 � U
⌦

◆N

� 2F1

 

�N,� 1
D
, 1 � 1

D
,

1
⌦

!

U

+ 2F1

 

�N,� 1
D
, 1 � 1

D
,

U
⌦

!

U1�1/D

(3.16)

Fig. 3.3 shows that the analytical mean-field expression (3.16) nicely matches the results of numer-
ical simulations of the model.

3.4.1 The analytical expression of the Heaps’ law shows three di↵erent regimes

If a realization is constructed by incremental addition of randomly chosen components, one expects
F(N) to be approximately linear for small N, as it is unlikely to draw the same component twice.
Intuitively, the probability to do so increases with N, up to a point where approximately all compo-
nents in the universe will have been included, and F(N) will saturate to U. This behavior is clearly
visible by plotting F(N) in log-log scale (see Fig. 3.3A). There emerge three distinct regimes: a
linear increase for small N, a saturation to U for large N, and an intermediate regime where the
sub-linear increase of F(N) appears to be well described by a power law. Two transition points
can be identified, Nc and Ns, respectively at the crossover between the linear and the sub-linear
regimes, and at the onset of saturation. A few analytical estimates about the di↵erent regimes and
observations are possible.

It is clear from expression (3.13) that, since p(t) > 0 for a finite universe,

lim
N!1 F(N) = U. (3.17)

This is a consequence of the definition of the model, whereby F(N) is monotonic by construction
and F(N)  U. However, this limit is not apparent from the final formula (3.16). What happens
is that the (essential) singularities of the two hypergeometric functions cancel out in the large-N
limit. This makes it di�cult to compute values of F(N) numerically in this regime (see below).

An estimate of the point Ns where the saturation regime sets in can be obtained from (3.13). The
term with (1 � U/⌦)N is significantly di↵erent from zero when U/⌦ . 1/N, i.e., when N . ⌦/U.
The integral I(N), instead, can be evaluated for large N in a saddle point approximation. The
integrand [Eq. (3.14)] attains its minimum at t = U, where it is equal to (1 � 1/⌦)N ; hence, it is
significantly di↵erent from zero when N . ⌦. Therefore, both N-dependent terms in (3.13) are
negligible when N & Ns = ⌦, where ⌦ is given by (3.10).

The small-N behavior at finite U can be obtained in principle from Eq. (3.13) as well, by
expanding in N before performing the integral in I(N). However, it is easier to analyze the onset
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of sublinearity in the large-U regime, by expanding Eq. (3.16) in powers of 1/U1�1/D. This can be
done by using the definition of the hypergeometric function:

2F1(a, b, c, z) =
1
X

k=0

(a)k(b)k

(c)kk!
zk, (3.18)

where (↵)k = ↵(↵+ 1)(↵+ 2) · · · (↵+ k � 1) is the Pochhammer symbol. The two terms of the form
2F1(...) in (3.16) can be expanded in powers of z; Eq. (3.18) shows that the term of order z j in such
an expansion is a polynomial of order j in N. The same property holds for the small-z expansion
of the first N-dependent term in (3.16), of the form (1� z)N . It is then easy to see, by keeping track
of the analytical and non-analytical powers of U, that in the limit U ! 1 the only non-vanishing
term is N, and Heaps’ law reduces to the identity

lim
U!1 F(N) = N. (3.19)

A linear onset is expected for small N even when U is finite. Performing explicitly the expansion
to first order in U�1+1/D yields

F(N) ⇡ N � 1
2

N(N � 1)
2(D � 1)2

D(2D � 1)
U�1+1/D. (3.20)

The crossover point Nc separating the linear and sublinear regimes can be estimated by the point
where (3.20) reaches its maximum:

Nc =
D(2D � 1)
2(D � 1)2 U1�1/D. (3.21)

This expression is expected to become inaccurate when D ⇡ 1 (where in fact it diverges), because
all terms of order U� j+ j/D with j > 1, which are neglected in (3.20), approach constants for D! 1.

In order to bring out the transition points more sharply from the data, one can plot the e↵ective
exponent

�e↵(N) =
d log F(N)

d log N
(3.22)

which is easily computed from numerical data as a discrete derivative. �e↵(N) measures the ap-
parent exponent that is obtained by approximating the function F(N) locally by a power-law N�e↵ .
Figure 3.3 shows the e↵ective exponent for a range of values of U. For small U, the regimes are
somewhat intertwined, and no sharp transitions appear. For larger U, �e↵ shows three plateaux,
corresponding to �e↵ = 1, �e↵ = 0, and an intermediate value �e↵ = �.

The figure also shows that the transition points computed above, i.e., Nc given by (3.21), and

Ns = U
DU1�1/D � 1

D � 1
, (3.23)

are reasonable estimates of the sizes where the two regime shifts occur. Unexpectedly, the estimate
of Ns turns out to correspond to an approximately U-independent value of the e↵ective exponent.
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Figure 3.3: Simulations of the model repro-
duce the characteristic three-regimes structure
of Heaps’ law. (top) This plot highlights the char-
acteristics three regimes of Heaps’ law generated by
the model. The colored circles result from the sim-
ulations, lighter shades of blue correspond to higher
values of precursors k. The red dashed line is the
analytical prediction. The scale is logarithmical for
both axis. (bottom left) The plot shows the function
F(N) in lin-lin scale for three values of the mean
out-degree D: 1 (dark blue), 1.5 (blue) and 2 (light
blue). The area of the solid curves represents the
90% variability interval. The red dashed lines are
the analytical predictions. (bottom right) The e↵ec-
tive exponent is plotted against the realization size.
In this plot the mean out-degree is fixed at D = 2.
Parameters: U = 500, k ranges from 1 to 3000 and
the number of realizations is 13000.

3.4.2 The stretched-exponential saturation is a remarkably good approximation of the sim-
ulated data.

As pointed out above, the asymptotically flat behavior of F(N) results from the cancellation of two
infinities in the analytical formula. This subtlety makes it numerically challenging to evaluate F(N)
especially for large U and N. Such a di�culty prevents the use of Eq. (3.16) for fitting against
empirical data. However, the analytical expression (3.15) suggests a simple phenomenological
expression, which can be useful for fitting. Since the integration variable z is small for large U, one
can attempt to approximate the integrand in I(N) by z�1�1/D exp(�zN)dz. In this form, the integral
is similar to a representation of the stretched exponential function  �,a(x) = exp(�ax�) in terms of
exponential decays

 �,a(x) =
Z 1

0
P�,a(z)e�zxdz (3.24)

The asymptotic behavior of P�,a(z) is known to be

P�,a(z) ⇠ z�+1 (3.25)

for large z, and an exponential decrease for small z [37]. This suggests the following phenomeno-
logical expression:

Fph(N) = U
⇥

1 � exp
��aN��⇤ (3.26)
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Figure 3.4 shows that the stretched-exponential saturation, Eq. (3.26), is a remarkably good
approximation of the simulated data. The log-linear scale reveals that the accord is tight on the
whole range of N. However, the phenomenological expression fails at capturing the transient linear
increase at small sizes (see Sec. 3.4.1). Indeed, the small-N behavior of Fph is Fph(N) ⇠ UaN�.
Interestingly, if one extracts � by matching the large-z power-law scaling in Eq. (3.25) with the
factor z�1�1/D in Eq. (3.15), one obtains � = 1/D. This same exponent can be derived in the
framework of the Zipfian ensemble computations by a simple scaling argument by considering a
pure power-law behavior of F(N) . Note, however, that the integration range in (3.16) is very
di↵erent from the one in the integral representation (3.24) of  �,a, that is (0,1). As a consequence,
the fitted exponents � can deviate from the simple scaling relation � = 1/D. Altogether, it is quite
surprising that the stretched exponential can be such a good approximation.
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Figure 3.4: The stretched exponential is a good ap-
proximation of the Heaps’ law generated by the
model. (main panel) The plot shows the number of
components (F(N) on the y-axis, linear scale) as a
function of the realization size (n on the x-axis, loga-
rithmic scale). F(N) has been calculated for three dif-
ferent values of U . Simulations are the solid curves
(dark blue U = 100, blue U = 200 and light blue
U = 500) where the area of the curve reflect the 90%
variability interval. The dashed red lines are the an-
alytical predictions. The mean out-degree is fixed at
D = 1.5 and the number of precursors k goes from 1
to 5000. (inset) The inset shows the variability of the
stretched exponential exponent � with the size of the
universe U. Dots in darker shades of purple represent
increasing values of D.

3.5 Conclusion

In conclusion, this Chapter provides the simplest generative mechanism of realizations of non-
binary component systems from a dependency structure. The model extends the one proposed
in [65] to the case of components with non-binary abundance, and it is the only possible exten-
sion that is not history-dependent. Indeed, other possible generalizations need to specify how the
dependency cone of the next move intersects with previously generated cones, making each move
depend from all previous ones. The additive choice taken here, where each selected component
determines the addition of one element to itself as well as to all the components in its dependency
cone, provides a minimal model that is memoryless, and therefore still accessible analytically.

The main results are derivations of the universe components abundance (corresponding to
Zipf’s law [67]) and the (corresponding to Heaps’ law [34]). The distribution of components abun-
dances a power-law tail with an initial core, as in the case of the model of ref. [65]. However, in our
case the situation is more complex, as the distribution of component abundance and the distribution
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of shared components do not coincide, due to the non-binary nature of the occurrence of compo-
nents in realizations []. We also found that the scaling of component number with the realization
size (analogous to the scaling of family number with genome size in genomes) is sublinear, and its
analytical form, which we were able to derive, is well approximated with a stretched exponential.
Both analytical calculations and simulation show the characteristic three regimes of Heaps’ law.

Since a wide variety of systems can be represented as component-systems ensembles, the model
defined here has a general applicability, but the interesting case for the scopes of these thesis is that
of genomes. For genomes, a dependency structure represents the recipes binding the functional
roles of di↵erent protein families, thereby determining their usefulness in the same genome. For
example, a gene could depend on another one if it is found downstream in the same metabolic path-
way [65]. The topology of such dependency has not been fully characterized. Likely, it comprises
both feedforward and feedback structures, as well as non-directed exclusion principles (whereby a
domain might not be necessary or useful if another one is present). Therefore, it is unlikely that
its structure is similar to the simple random graphs considered in this study. Future investigations
could aim at defining more stringently from data the minimal features of a dependency structure
that could realistically describe genomes. This could be inferred by the correlation structure of
domain abundances from sets of entirely sequenced genomes.

The other simplifying hypothesis that needs to be discussed for the case of genomes is the rule
used for duplicating domains, which assumes that the whole dependency cone of a chosen compo-
nent increases its abundance by one. As explained above, this rule makes the process memoryless,
and makes analytical calculations possible. However, in the empirical situation, it is possible (and
likely) that not all gene families in the dependency cone of a chosen one need to double, and likely
the pre-existence of domains in the cone plays a role. For the above two reasons, it is di�cult
to compare the model results directly to data. However, comparing the scaling of the theoretical
prediction of the number of distinct families with genome size, we clearly noticed that a fit with
a stretched exponential (or with the direct analytical prediction of the model) works much better
than a power law or logarithmic growth. The joint prediction of Heaps’ law and the universe distri-
bution of components is more di�cult to reproduce, and requirer more precise knowledge of both
the evolutionary rules and the dependency structure of the empirical system.
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Chapter 4
Signature of gene-family scaling laws in microbial
ecosystems

4.1 Introduction

Metagenomics is defined as the direct analysis of genomes contained within an environmental
sample [78]. Since the DNA analyzed comes directly from the uncultured microbial community,
metagenomics has given us an unprecedented view on the diversity, composition, and dynamics of
microbial ecosystems [68, 12, 56, 73, 9]. It has brought considerable insight into intra-species inter-
action in varying habitats [86], which is not possible in clonal communities, therefore establishing
its complementary role to single-organism genome studies. The access to uncultured ecosystems
discloses new taxa or protein families [60] that reference databases can not capture.

However, there is still a considerable imbalance between the large amount of available data and
the quantitative grasp we are able to consolidate on these systems. The incomplete and fragmentary
nature of metagenomic data presents challenges at every step of the typical workflow, which can be
summarized into three stages: sampling, sequencing and annotation. The technical issues related
with all of them influence the downstream analysis [70], making crucial the accurate tracking of
sample metadata [60].

Metagenomic studies characterize both the composition of samples and the diversity across
samples. One central problem in this context is to quantify the di↵erences between environments
and to correlate these di↵erences with physical and biological properties. Finding optimal solutions
to this problem has a wide potential impact in a range of environmental and medical applications.
Classic approaches consider phylogeny of taxa found in di↵erent environments. For example,
one reference is the UniFrac algorithm [52] and its variants, which currently represent the default
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approach for comparing communities through high-throughput rRNA datasets. UniFrac uses a ref-
erence phylogenetic tree to define a distance between each pair of environments represented in the
tree. Combined with a clustering algorithm or with principal component analysis, this method has
achieved considerable results, allowing for example to discover that mammalian gut communities
cluster primarily by diet and that the gut community is a highly distinct environment from other
mammal microbiota [48].

In comparative metagenome analysis, the average genome size has served as a barcode to
identify and compare metagenomes. A first attempt to estimate the AGS [70] is based on the
calculation of the density of a set of marker genes that typically occur only once per genome. The
prediction of the AGS directly from raw shotgun sequencing data establishes a relationship between
genome size and environment, suggesting a clear correlation between environmental complexity
and the diversity of the cellular repertoire that is required to cope with various external challenges.
A number of recent publications [4, 41, 59] have described methods for estimating the AGS and
have demonstrated substantial variations among communities, that reflect di↵erent geographical
locations or depths in marine environments and also metabolic lifestyle [85]. From an evolutionary
perspective, it is associated with genetic drift in small populations and genome streamlining in
large one [46, 26].

In light of the central role of the average microbial genome size as an ecological parameter, we
propose in this chapter an analytical argument to derive it. Our method is based on the interplay
between genomic regularities in the form of scaling laws and the modeling of metagenomes. We
will derive a metagenomic invariant that gives access to the moments of the probability distribution
of genome sizes in a metagenome, the 0-moment being the number of organisms and the first
moment being the AGS. The test of our prediction with simulated metagenomes gives satisfying
results that we will further apply in empirical metagenomes.

4.2 Methods

All sections that contribute to the chapter refer to family scaling laws. To calculate them we used
a set of “reference genomes” and their annotations in terms of domain family. We considered 981
bacterial species excluding from the data set all strains, as their presence would bias the family
abundance profiles. The domain compositions of all analyzed bacterial genomes and the family
annotations have been retrieved from the Pfam database release 27.0, specifically from the manu-
ally curated Pfam-A classification of proteins, a total of 8675 Pfam families appear in the reference
bacterial genomes. Using the same procedure described in section 2.2.1, we verified that also Pfam
families have scaling laws with family specific exponents and the relationship with the functional
categories scaling is consistent with the previous findings.

The theoretical predictions about the functional form of the rescaled family abundance in
metagenomes will be tested against a set of simulated metagenomes. To build them, we used
the ensemble of 3568 bacteria provided by PFAM in the release 28.0. Compared to the release 27.0
from which the reference genomes have been obtained, 1445 new families have been added and 46
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families have been killed.
The last section of the chapter investigates empirical metagenomes. Their functional and taxo-

nomical annotations have been retrieved from the EBI database (Updated to 20/01/2016) employ-
ing the RESTful URLs to programmatically download the files of five Human Gut Microbiome
projects, here addressed by their ID. A total of 248 metagenomes have been obtained, distributed
between the projects as follows: 146 from ERP002469, 53 from ERP001956, 19 from SRP002423,
18 from SRP000319, and 12 from ERP001038. The files downloaded are the output results of the
EBI pipeline 1.0 described in Ref.[35]. From the functional annotation files, only the matches of
Pfam are retained. Among these, certain showed mutual overlapping. Hence, to avoid a wrong
count of domains, the overlapping sequences are removed, keeping the matches with the highest
score. The Pfam score selection is automatically applied by the EBI pipeline, therefore no further
score cuto↵ has been applied. Since the pipeline 1.0 uses the release 24.0 of Pfam, we manually
updated the family assignment to the release 28.0 by removing killed families and eventually merg-
ing them with others, following the evolution of Pfam family assignments over the years. While
new families that descend from killed ones are forwarded, the ones newly created after the release
24.0 are absent. 5 families among the ones selected to calculate the moments of the genome size
distribution in a metagenome are lost because of this. Specifically, 3 families with exponent � ' 1
(PF13365, PF13419, PF12704), and two with exponent � ' 2 (PF12681, PF12802). The total
number of 16S sequences found in each metagenome is extracted from the files of taxonomic anal-
ysis, including also archaea and unassigned sequences. Archaea sequences constitute usually less
than 1% of the total, reaching the 2.7% only in one sample. On the other hand, the percentage of
unassigned 16S sequences is higher, reaching respectively an average of 16% and 8% in projects
SRP002423 and ERP001038, although staying below 6% in every other metagenome. In addition,
the number of 16S sequences belonging to Firmicutes and Bacteroidetes are calculated grouping
the counts by phylum assignments and their relative abundances are calculated dividing by the total
number of phylum-assigned sequences.

.......

x N1

x N2

x NS

x 435 x 26

x 34x 90

x 182 x 102

Ecosystem Metagenome

Figure 4.1: Illustration of a metagenome as a sample of environmental DNA. Metagenomics is defined as the
analysis of genomes contained within an environmental sample [78]. After collecting the sample, the next step is
sequencing the filtered DNA fragments and assigning protein annotations (di↵erent shapes in the figure) as well as
functional annotation (colors of symbols). The DNA analyzed comes directly from the uncultured microbial community
and belongs to di↵erent species (N1 to NS ), but the assignment of DNA fragments to the correct taxa is one of the major
challenges in metagenomics. In light of family-specific regularities in single genomes, we will express the the abundance
of a protein family in the metagenome as a linear combination of the family abundances in single genomes.
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4.3 The analytical implementation of family scaling laws results in the
definition of a metagenome invariant.

In this section we will define the abundance of domain families in a metagenome aMG( f ,m) inte-
grating the known scaling laws that a↵ect the abundance of domain families across single genomes
(see Chapter 2). The family abundance aMG( f ,m) rescaled by the pre-factor of the family-specific
scaling laws and by the total number of organisms in the metagenome, should, on average, be solely
a function of family exponent. As a consequence of that, we predict the existence of genomics in-
variants in metagenomics that allows the estimate of the moments of the genome size distribution
(up to the second one).

Before starting the calculation about the family abundance in metagenomes, we will briefly
discuss some useful properties of family scaling laws that were not presented in Chapter 2.

As mentioned in section 2.3, family scaling laws describe a mean behavior. The following
equation holds :

aG( f , g) = A f n
� f
g + �̄ f ,g (4.1)

where aG( f , g) indicates the number of domains assigned to family f in genome g, ng is the total
number of domains in the genomes, the parameters A f and � f are family-specific and �̄ f ,g is the
family-specific fluctuation term. Ref. [31] shows that the fluctuations �̄ f ,g among genomes with
similar sizes follow a distribution with zero mean and a variance proportional to the average size
A f n

� f
g , with a family-specific proportionality constant exp(Q f ). The observable Q f is as an order

parameter that measures the deviation from the Poisson behavior of the cross-species abundance
distribution of family f , in particular it evaluates the mean to variance ratio of the abundance
distribution. Q f is defined as:

Q f =
X

b

Q f ,bw f ,b.

The sum runs over the bins b of genome grouped by size and the elements in the sum are Q f ,b, which
evaluates the deviation from Poisson behavior of the abundance distribution, and the sampling
weight w f ,b. They are defined respectively as:

Q f ,b = (1 � �Varb(a f ),0) log
ha f ib

Varb(a f )
+ �Varb(a f ),0

✓

max
b

log
ha f ib

Varb(a f )

◆

w f ,b =
nbn+b
P

b n2
b

where �k, l is the Kroeneker’s delta, a f is the family abundance, nb is the number of genomes in
the bin b and n+b is the number of non-zero entries of the family in the bin. It is noteworthy that Q f
exhibits a roughly linear anti-correlation with the scaling exponent � f , meaning that the abundances
that grow more with the genome size have larger fluctuations (see Fig. 4.2).

Since the family abundances are necessarily smaller than the the genome size we expect that
for exponents � f larger than 1, the prefactor A f must be smaller than 1. Figure 4.3 shows that
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Figure 4.2: Higher scaling families have broader abundance dis-
tributions. The scaling exponent � f anti-correlates with the order
parameter Qf (Spearman correlation is �0.85). To assure that scaling
exponents are meaningful, only families with a Pearson correlation
coe�cient higher than 0.4 are displayed in this figure (the coe�cient
is calculated between the log of the genome size and the log of the
family abundance with the same procedure described in 2.2.1.

in fact they are anti-correlated and, more precisely, the prefactor decreases exponentially with the
exponent. An interesting consequence is that the prefactor can be expressed as a function of the
exponent A f = k�� f , with k independent on f . Finally, the only dependence of aG( f , g) on the
family f is through � f

aG( f , g) = (n/k)� f (4.2)

The interpretation of this result is that scaling laws for domain families actually revolve around
a pivot point and evaluating scaling laws in a reference system centered in this pivot point may
disentangle the interdependence between A f and � f . The estimated value for the constant k is of
the order of 103.

10−10

10−6

10−2

102

0 1 2 3
βf

Af

Figure 4.3: The scaling exponent of domain families is anti-
correlated with the prefactor. This plot shows the prefactor Af

(y-axis) as a function of the scaling exponent � f (x-axis) and the
lin-log scales highlights that Af decreases exponentially. Each dot
corresponds to a Pfam family, only families with Pearson correla-
tion coe�cient higher than 0.4 are retained (see section 2.2.1 for
the details).

4.3.1 Analytical derivation of the abundance of a protein family in a metagenome

This section will use the regularities of genome composition to analytically study the abundance of
a domain family in a metagenome. The first point is finding a convenient way to express aMG( f ,m)
in terms of the abundances of domain families in single genomes. The development of the re-
sulting expression leads to the discovery of a new family-invariant observable closely related to
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the size distribution of constituent genomes. A metagenomic sample is composed by an ensem-
ble of Ntot microbial genomes belonging to S di↵erent species. The taxonomic composition of a
metagenome is in principle not known, this is due to the sampling procedure and the subsequent
DNA fragmentation necessary to sequence and annotate the sample. Assuming that the S species
are represented with abundances N1, . . . ,NS (with

PS
i Ni = Ntot), the abundance of a generic family

f in a metagenome m can be written as:

aMG( f ,m) =
S

X

g=1

aG( f , g)Ng (4.3)

This equation requires the following implicit hypothesis to be true:

(i) organisms of the same species have identical genomes;

(ii) the family f is present in each genome contained in the metagenome;

(iii) no gene subsampling took place.

Equation 4.3 combined with eq. 4.1 about the scaling of domain families, defines the abundance of
a scaling family inside a metagenome as

aMG( f ,m) =
S

X

g=1

(A f n
� f
g + �̄ f ,g)Ng

The first term of the sum depends on the genome g only by the size ng, so the terms of the sums
can be grouped by species genome size

aMG( f ,m) =
1
X

n=1

A f n� f
X

g,ng=n
Ng +

1
X

n=1

X

g,ng=n
�̄ f ,gNg

After dividing by A f and Ntot, the previous equation becomes:

�( f ,m) = Gm(� f ) + �( f ,m) (4.4)

where we defined three new quantities as:

�( f ,m) ⌘ aMG( f ,m)
NtotA f

(4.5)

Gm(� f ) ⌘
1
X

n=1

n� f Pm(n) (4.6)

�( f ,m) ⌘ 1
A f

1
X

n=1

X

g,ng=n
�̄ f ,gP̃m(g) (4.7)

where P̃m(g) ⌘ Ng/Ntot is the distribution of species and Pm(n) ⌘ P

g,ng=n P̃m(g) is the distribution
of genome sizes inside the metagenome m.
We will now examine in detail the properties of these three functions.
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�(f,m). This quantity depends on the total number of genomes Ntot that constitutes the metagenome.
Ntot is a priori not known, therefore in case of empirical metagenome we will use the rescaled ver-
sion Ntot�( f ,m) and simply refer to it as the rescaled family abundance. If hypothesis (ii) in eq. 4.3
is violated, that is the family f is present in N? < Ntot genomes, then the rescaled family abundance
will be underestimated.

Gm(�f). The functional form of Gm(�) is determined by the genome size composition of the
metagenome and this fact makes Gm(�) a good candidate as a metagenomic barcode. Moreover, the
transformed size distribution Gm(� f ) is a family-invariant, since its dependence on the family f is
reduced to the value of its scaling exponent �. Hence, when the term of noise �( f ,m) is negligible,
we expect the rescaled family abundances �( f ,m) to follow the well-defined functional form of
Gm(�), thus giving access to the information about the genome size distribution.

�(f,m). The fluctuations of the family abundance depend on P̃m(g), the distribution of species
mixed in the metagenome, since the fluctuations �̄ f ,g are genome-specific. Hence, we cannot a�rm
anything general about �( f ,m), since it depends on the specific composition of each metagenome.
We can however examine two particular cases of metagenome composition and their e↵ect on the
fluctuations.

(i) Uniform species sampling. Assuming that the distribution of species composing a metagenome
samples uniformly the space of genomes with similar sizes n, the fluctuations should cancel
out, since we know that the fluctuations � f ,m have zero mean value among reference genomes
with similar sizes. In this case Eq.4.4 reduces once again to the equivalence between �( f ,m)
and Gm(� f ). This hypothesis models a metagenome taken from an environment with high
diversity.

(ii) Hypothesis of single species sampling. We now make the opposite assumption: a metagenome
composed solely by genomes of a single species g with size ng, i.e. a delta-like species dis-
tributions P̃m(g) = �g,g0�n,ng . In this case the fluctuations sum up constructively and the term
of noise becomes

�( f ,m) =
�̄g, f

A f

This deviation is genome-specific and is not necessarily large. In the worst cases, anyway,
�̄g, f can be of the order of (e�Q f A f n

� f
g )1/2 and consequentially

�max( f ,m) ⇠
0

B

B

B

B

B

B

@

n� f
g

eQ f A f

1

C

C

C

C

C

C

A

1/2

Since both Q f and A f are decreasing functions of � (see section 4.3), we expect this fluctua-
tion to increase with the value of the exponent.
This hypothesis models metagenomes with very low diversity, such as those taken from a
bacterial colony.
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Equation 4.4 is valid in the hypothesis that metagenomes are not subject to gene subsampling.
This is clearly an approximation that allow us to derive in a few steps the metagenome invariant
Gm(�). To test the robustness of eq. 4.4, we now discuss three di↵erent scenarios, that presume the
existence of biases during the sequencing and annotation of metagenomes.

A first possible bias on eq. 4.4 is due to removal of identical sequences. In certain analysis
pipelines, almost identical sequences are identified and copies are removed from the sample prior to
being annotated. The extent of this subsampling depends on the particular pipeline: if no assembly
of randomly fragmented sequences into genes is performed, it is unlikely that two small sequences
result identical. If instead identical genes are removed, this implies that Ng identical genomes are
counted as 1. This fact changes the composition of the metagenome at a species level, changing
P̃m(g). However, it does not a↵ect the calculations of �( f ,m) but only the form of Gm(�). The
sequencing of environmental samples is particularly di�cult [60, 86], because of the fragmented
and partial nature of the protein coding sequences. Therefore it is legitimate to assume that a
fraction of the original sequences may get lost. We can model this by saying that each domain
among the nm contained in the mix of genomes is kept with probability p. This leads to a binomial-
distributed metagenome size k

f (k; nm, p) = Pr(X = k) =
 

nm

k

!

pk(1 � p)nm�k (4.8)

Each domain among the k retained might belong to the family f with probability p f = aMG( f ,m)/nm.
Therefore, the k domains are partitioned in the F families with multinomial probability

g(a1, . . . , aF ; k, p1, . . . , pF) =
k!

a1! · · · aF!
pa1

1 · · · paF
F

Assuming that the probability p is small and nm is large, it is possible to approximate the bino-
mial of eq. 4.8 with a Poissonian distribution with average pnm. Under this assumption, the joint
probability becomes

h(k, a1, . . . , aF) =
(pnm)ke�pnm

k!
k!

a1! · · · aF!
pa1

1 · · · paF
F

Moreover, by exploiting the fact that k =
P

i ai, p f = aMG( f ,m)/nm and nm =
P

i aMG( f ,m), the
joint probability can be factorized in

h(k, a1, . . . , aF) =
F

Y

i

(paMG( f ,m))ai

ai!
e�paMG( f ,m)

implying that each family abundance is sampled independently, following a Poissonian distribution
with mean paMG( f ,m). Thus each sampled family abundance a f is, on average, a fraction p of the
original abundance aMG( f ,m). The e↵ective rescaled family abundance is then

�̃( f ,m) ' paMG( f ,m)
A f Ntot

(4.9)
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As a consequence, when plotted in lin-log scale, �̃( f ,m) is only a vertical translation of the original
rescaled abundance �( f ,m), thus maintaining its functional form.

In the typical metagenome analysis workflow, the annotation procedure follows the sequencing
of DNA fragments. This step presents major computational challenges and is inevitably a source of
bias. Annotation begins with the identification of features of interest, like genes, and continues by
assigning to these features functional and taxonomical units based on homology searches against
available data [78]. The matches are associated with a score representing their likelihood of not
having been emitted by chance. Matches with a score too low are usually rejected. The score
depends also on the length of analyzed sequences and shorter ones are more likely to have a low
score. Since the protein coding sequences in metagenomic data sets tend to be fragmentary, it is
quite likely that many of the sequences coding for these proteins are too short to make significant
matches. Moreover, the length of domain coding sequences can vary between di↵erent families,
thus leading to their di↵erential subsampling caused by fragmentary sequences. This implies that
the e↵ective rescaled family abundance can diversely underestimate the original value depending
on the considered family.

4.3.2 The metagenomic invariant gives access to the moment of the distribution of genomes
size in the metagenome

Under the assumption that the fluctuation term �( f ,m) is negligible, eq. 4.4 establishes a direct
relation between the term Gm(�) and the metagenome invariant �( f ,m)

�( f ,m) = Gm(� f ). (4.10)

Provided that there are domain families that scale with an integer exponent � = k, the function
Gm(�) gives exactly the k-th moment µm

k of the genome size distribution

Gm(� = k) =
1
X

n=1

nkPm(n) ⌘ µm
k (4.11)

Since �( f ,m) can be extracted from empirical data, we have that eq. 4.10 estimates the moments
µm

k of the probability distribution of genome sizes in the metagenome. The distribution Pm(n) is
usually unknown in sampled metagenones, but later on we will study two cases, where analytical
calculations are feasible and derive the moments of the distribution.
In general, a metagenome is composed of S species with l di↵erent sizes ni. According to eq. 4.11
the transformed genome size distribution Gm(�) is a weighted sum of exponentials in �

Gm(�) = Pm(n0)n�0 + · · · + Pm(nl)n
�
l (4.12)

Sorting ni by increasing size and grouping n0, we get

Gm(�) = n�0

0

B

B

B

B

B

B

@

Pm(n0) +
l

X

i=1

 

ni

n0

!�

Pm(ni)

1

C

C

C

C

C

C

A

(4.13)
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For � large enough, the coe�cient reduces to Pm(n0) and Gm(�) reduces to a single exponential in
�. In principle it is possible to fit the tail of �( f ,m) to get Pm(n0). However the closer n0 and ni are,
the slower Pm(ni) disappears and the range of empirical exponents � is limited between 0 and 3.
For highly peaked distributions, approximating Gm(�) with an exponential is correct even for small
values of �.

To simplify the analytical calculations we now consider the genome size n as continuous, thus
substituting the sums with integrals and the size distribution with a probability density function
pm(n). Under this approximation, the transformed genome size distribution becomes

Gm(�) =
Z 1

0
n�pm(n)dn. (4.14)

which corresponds exactly to the Mellin’s transform of pm(n).
We then consider two possible distributions whose Mellin’s transform has a simple analytical

form. As first example, we consider pm(n) equal to the uniform distribution of width �n centered
in n̄

pm(n) =
1
�n

[✓(n � (n̄ � �n/2)) + ✓((n̄ + �n/2) � n)]

Since the genomes size are necessarily positive, the relation n̄ � �n/2 must be true. Under this
condition the transform of pm(n) is

Gm(�) =
n̄�+1

�n(� + 1)

2

6

6

6

6

6

4

 

1 +
�n
2n̄
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!�+13
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5

Through a series expansion of (1 + ✏)� up to the fourth order in ✏, the transformed size distribution
can be approximated as

Gm(�) = n̄�
2
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6

4

1 + �(� � 1)
 

�n
2n̄

!2

+ o(�n/2n̄)4
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(4.15)

which reduces to the transform of pm(n) = �(n � n̄) as �n! 0.
An other easily tractable case is the one of delta distribution. Assuming that the genome size

distribution is particularly peaked, we can approximate pm(n) with the Dirac’s delta centered in n̄,
whose transform Gm(�) is the exponential in � with base n̄

pm(n) = �(n � n̄)

Gm(�) = n̄� (4.16)

To sum up, equations 4.15 and 4.16 represent two possibilities for the analytical form of the
metagenome invariant Gm(�). In the following paragraphs, we present two di↵erent strategies
to access the moments of the genome size distribution.
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Selection of families for � ' k. Since eq. 4.11 states that the metagenome invariant Gm(�) gives
the k� th moment when � is an integer value, it is possible to isolate scaling families with exponent
close to 0, 1 or 2 and to estimate the number of genome Ntot, the average genome size n̄ and the
variance Var(n). With this method, one can obtain reliable values of the rescaled family abundance
�( f ,m) with which approximate the theoretical value of Gm(�).

Fit of an assumed transformed size distribution. When log-transformed and multiplied by N,
eq. 4.15 and eq. 4.16 become respectively:

NG2
log(�; log N, log n̄, ✏) = log N + � log n̄ + log(1 + �(� � 1)✏2) (4.17)

NG1
log(�; log N, log n̄) = log N + � log n̄ (4.18)

Bearing in mind that NGm(�) equals N�( f ,m) (eq. 4.10) and that N�( f ,m) is measurable, it is
possible to fit the above equations with parameters N and n̄.
To implement the fitting procedure, we first removed families with negative �. Then, the values of
�( f ,m) are partitioned by � in bins of width w = 0.01 and centered in

xl = �min + (l + 0.5)w

and finally the logarithm of N�( f ,m) is fitted against the logarithms of the binned, averaged values.
We repeated the fit for thirty di↵erent occurrence cuto↵s, from 0.7 to 0.99, with steps of 0.01 and
averaged the resulting parameters. In case of the first equation the width of the uniform distribution
is obtained as �n = 2✏n̄.

4.4 The mean genome size and the number of genomes in a metagenome
are estimated reliably in simulated metagenomes.

.......

x N1

x N2

x NS

x 435 x 26

x 34x 90

x 182 x 102

Metagenome

Δn

⟨n⟩
Sizes

Figure 4.4: Illustration of procedure to simulate a metagenome. We fixed the distribution of genome size as the
uniform distribution with width �n and mean hni. We randomly extracted NS sizes and matched them with genomes
of the same size in our database. The selected genomes, along with their domain annotations, will build the simulated
metagenome. Di↵erent symbols correspond to di↵erent domain families, their color represents the functional assign-
ment.
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This section tests the theoretical predictions made in section 4.3.2 one about the estimation of the
moments of the genome size distribution in a metagenome. in order to test the e↵ectiveness and
reliability of this estimate, we created artificial metagenomes assembling genome annotation of
randomly selected bacterial species. The first step to build a metagenome, is to fix the simulation
parameters, that are the number of genomes that will build each metagenomes Ntrue and the genome
size distribution Qm(n). A simple choice for Qm(n) is the uniform distribution with mean n̄ and
variance �2 ' 12�n2:

Qm(n; n̄,�n) =
1
�n

[✓ (n � (n̄ � �n/2)) + ✓ ((n̄ + �n/2) � n)]

where ✓(x � x̄) is the Heaviside step function. In this way we are able to calculate the Mellin’s
transform of Qm(n) and this allows analytical calculations of Gm(�). For each metagenome we
draw the mean size n̄ from the interval [nmin+�n/2, nmax��n/2] with equal probability. Then Ntrue
values of genome size are extracted with probability Qm(n; n̄,�2) and associated with a genome of
equal size. In case of more than one genome with the picked size, one of these correspondences is
chosen randomly with uniform probability. In order to pick di↵erent genomes uniformly, the Ntrue
random sizes are extracted independently. We created 1500 metagenomes an used this set to test
our predictions.

4.4.1 The rescaled family abundance in simulated metagenomes shows clear scaling with
family exponent.

As already mentioned in sec. 4.3.1, the value of N in empirical metagenomes is not known and
we can only calculate N�( f ,m) as aMG( f ,m)/A f . For the sake of brevity, here we will refer to it
simply as �( f ,m) as in lin-log scale the only di↵erence between them is a constant vertical shift.
For all the simulated metagenomes �( f ,m) has a well defined functional form in the scaling expo-
nent � (see Fig. 4.5). The exponential-like behavior is not an artifact due to the interdependence
between the prefactor A f and the scaling exponent � f (eq. 4.2), since 1/A f does not depend on the
metagenome. In the next paragraph, other observations will confirm that the dependency of �( f ,m)
on � is genuinely shaped by the family abundance aMG( f ,m).

In order to obtain a reliable rescaled family abundance �( f ,m) that will serve to obtain the
transformed size distribution Gm(�), it is necessary to select carefully the data to keep. Figure 4.5
shows that the rescaled family abundance underestimates the theoretical value of Gm(� f ) when the
family f has a low occurrence, i.e. when it is absent in a large fraction of genomes composing
the metagenome m, as predicted in sec. 4.3.1. Since we cannot know the true occurrence of f
in empirical metagenomes, it is not possible to use it as a selecting parameter for the families
that better align with Gm(�). A good strategy, however, is to impose a threshold on the minimum
occurrence of f among reference genomes. This choice causes an e↵ective cuto↵ on the true
occurrence, since it selects families that are more likely to appear in a generic bacterial genome.
The exponent � f and the occurrence in reference genomes are completely uncorrelated and this
guarantees that imposing a general cuto↵ of occurrence will maintain the same proportions of
families having di↵erent exponents.
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Figure 4.5: The rescaled family abundances scales clearly with the family exponent, although a low family oc-
currence causes the underestimation of the transformed size distribution. Binned log-values of rescaled family
abundances N�( f ,m) (y-axis) are plotted as function of the family scaling exponent � f (x-axis). All plotted data de-
scribe a well defined straight line, exhibiting an exponential-like behavior. When no selection is applied (green squares),
the values underestimate the theoretical transformed distribution Gm(� f ) (black line) because of the low occurrence of
some families in the metagenome. Considering only families that appear in more than 80% of the reference genomes
(blue triangles) we obtain an e↵ective cuto↵ on the true occurrence in the metagenome and the theoretical behavior is
found. Metagenome info: N = 100, hni = 5819 , � = 102

Since the rescaled family abundances �( f ,m) should describe the transformed size distribution
Gm(�), its plot in � should reflect the di↵erent composition of metagenomes. Here we confirm this
fact, observing the di↵erences between metagenomes with diverse average size and variance.
Considering similarly disperse distributions of sizes with di↵erent mean values hni, the scaling of
the rescaled family abundance �( f ,m) changes visibly (Fig.4.6). In fact, the average genome size
is the base of the exponential that constitutes Gm(�) and in lin-log scale this translates into two
straight lines with well distinct slopes.

On the contrary, when almost identical values of hni and di↵erent values of � are considered,
size distributions correspond to barely discernible �( f ,m). Notably, we would expect a deviation
around � ⇠ 2, where the variance adds to hni2 giving hn2i ⇠ �( f ,m|� f = 2). Unfortunately the
variances are, in most cases, of the same order of �( f ,m|� f = 2) fluctuations or even smaller. In
addition, the logarithmic scale of the y-axis tends to hide di↵erences between quantities if they are
of smaller orders of magnitude. In general, the variations of �( f ,m) are caused by fluctuations of
aMG( f ,m) and are therefore in units of 1/A f (fig.4.3). The prefactor scales exponentially in � and
the variations of �( f ,m) inherit the same behavior.

4.4.2 The total number of sampled genomes can be estimated reliably in simulated metagenomes

We carried out the calculation with both methods described in sec. 4.3.2. First we present the results
obtained through the selection of families with 0 scaling exponent and then fitting the function
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Figure 4.6: Two metagenomes with di↵erent average
genome size hni are easily discernible by the scaling of their
rescaled family abundances. Considering two metagenomes
with almost identical � and di↵erent hni, �( f ,m) follows well
distinct curves. The lines are the theoretical transformed dis-
tribution Gm(� f ) for the two metagenomes. Metagenomes info:
N = 100, hni = 13617, � = 101 (pink triangles and solid line)
and N = 100, hni = 3713, � = 101 (blue triangles and dashed
line). Occurrence threshold: 0.8.
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with identical hni and very di↵erent � are hardly dis-
cernible. The rescaled abundances (y-axis) binned and aver-
aged by scaling exponent (x-axis) for two metagenomes with
di↵erent variance of sizes �2: � = 45 (pink triangles) and � =
443 (blue triangles). The solid black lines are the theoretical
transformed distribution Gm(� f ) for the two metagenomes and
clearly coincide. Metagenomes info: N = 100, hni = 15135,
� = 45 and N = 100, hni = 15329, � = 443. Occurrence
threshold: 0.8.

Gm(�). In both cases the simulations match with the predicted values.
Under our assumption eq. 4.10 holds, which written extensively is:

aMG( f ,m)
A f N

=

1
X

n=1

n� f Pm(n). (4.19)

Because of the normalization of the size distribution, this equation evaluated in � = 0 gives access
to the number of genomes N, hence we selected families with reliable scaling law, and whose
exponent is close to zero.

The high number of families with � ' 0 allows us to be highly selective in picking them. Only
the families with exponent values in [�10�3, 10�3] are considered and the ones with occurrence
lower than 0.99 among reference genomes are rejected. Then, only those that have a “goodness of
fit” index s f

LS higher than 0.999 are kept (for the details of the calculation of the parameter s f
LS see

section 2.2.1 of the thesis). 13 families overcome the selection, noticeably they all have an average
abundance among genomes extremely close to 1. For this reason, the prefactors A f of the power
laws are manually set to 1, avoiding the propagation of the existing, although small, errors.
For each selected family, we calculate the empirical value of N�( f ,m|� f = 0) that in eq. 4.19 gives
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the number of genomes. The final estimation of N is the averaged value.
In general, the rescaled family abundance �( f ,m) of selected single-copy families gives an incred-
ibly good estimate of the number of genomes in the metagenome.

The strategy of obtaining N by fitting the exponential Gm(�) (precisely eq. 4.18) reveals to
be good, although it gives worse results than the manual selection of families with � ' 0. The
estimates of the number of genomes generally improves as the occurrence threshold grows (fig.
4.8B). This depends on the fact that reducing the incidence of low occurring families make �( f ,m)
more similar to Gm(�) (fig.4.5). The errors associated with each occurrence threshold are calculated
as the mean squared error of the estimated N among the metagenomes

MSEocc =
1
M

M
X

m=0

(NGi
log(0; pi

f it,m) � Nm)2

where pi
f it,m are the parameters of the i-th function NGi

log, fitted with the �( f ,m) filtered by occur-
rence and M is the number of simulated metagenomes.
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Figure 4.8: (A) Both the selection of families with �f = 0 and the fit give a very good estimate of the number
of genomes. Distributions of relative errors of N for the fit (green) and the average abundance of single-copy families
(black).(B) The error in the estimate of the number of genomes given by fit decreases as the occurrence threshold
increases. Mean squared error of the estimate (y-axis) as a function of the occurrence threshold (x-axis). Simulations
info: 1500 metagenomes, N = 1000, � = 100.

4.4.3 The average genome size can be estimated reliably in simulated metagenomes.

We carried out the calculation with both methods described in sec. 4.3.2. First we present the results
obtained through the selection of families with 1 scaling exponent and then fitting the function
Gm(�). In both cases the simulations match with the predicted values.

The lower number of families with � ' 1 imposes to be less selective than the previous case.
Firstly only the families with value of � in [0.95, 1.05] are considered. Then, a lower cuto↵ on
occurrence is imposed, removing every family that occurs in less than 90% of reference genomes.
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With these constraints, only 12 families are retrieved. The estimate of the average genome size
associated with a selected linear family f is calculated as

hni f = aMG( f ,m)
A f N

where N is the total number of genomes calculated selecting families with � = 0. Selected families
have rescaled abundances �( f ,m) that fluctuate with di↵erent intensities around the true average
genome size but their values averaged give a good estimate of hni (fig. 4.9A).

The estimates of the average genome size obtained by fitting the exponential equation 4.18)
describe well the true values (figs.4.9A). For a large range of occurrence thresholds, the deviations
from the theoretical behavior remain the same but increase rapidly as the cuto↵ surpasses 0.95
(figs.4.9B), i.e. when the maximum exponent of the retained families decreases due to the scarce
number of families with high �. Since the average genome size hni corresponds approximatively to
the slope of the straight line described by NGi

log vs. � in lin-log scale, its value is easy to measure
just as long as the range of � is large. The deviations are calculated as

MSEocc =
1
M

M
X

m=0

(NGi
log(1; pi

f it,m) � hni)2
m

where pi
f it,m are the parameters of the i-th function NGi

log, fitted with the rescaled family abun-
dances �( f ,m) filtered by occurrence and M is the number of simulated metagenomes.
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Figure 4.9: (A) Both the selection of linear families (� ⇠ 1) and the fit give a very good estimate of the average
genome size. Distributions of relative errors in the estimate of the average genome size obtained by the fit (magenta)
and averaging the rescaled abundances of selected families (blue). (B) The mean errors in the estimate of the average
genome size are are almost constant for a wide range of occurrence thresholds but increase rapidly for values
> 0.95 Simulations info: 1500 metagenomes, N = 1000, � = 100.

4.4.4 The variance of the genome size distribution deviates from the predicted behavior.

Again, both methods described in sec. 4.3.2 will be applied to estimate the variance of the genome
size distribution. Neither selecting families with exponent equal to 2 nor the fit of Gm(�) give
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satisfying results and we are forced to conclude that the variance can not be reliably estimated.
The low number of families with � ' 2 imposes particularly loose selection conditions. Ap-

plying an occurrence cuto↵ for of 0.5 and considering only families with � 2 [1.9, 2.1], only 10
families are retained. The estimates of the variance are calculated as

Var f =
aMG( f ,m)

A f Ntrue
� hni2true

where Ntrue and < n >true are respectively the true number of genomes mixed in the metagenome
and the true average genome size. When the scaling exponent � f is exactly 2, the rescaled family
abundance �( f ,m) follows qualitatively the theoretical behavior of the transformed size distribution
Gm(2) predicting the value hn2i and thus the variance Var(n), although showing large fluctuations.
However, as the distance of the exponent � f from 2 grows, the estimated values diverge from the
true value (fig.4.10). It is important to notice that for exponents close to 2, 1/A f has values of order
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Figure 4.10: Only one selected family gives a fairly good estimate of the variance, while the others strongly
correlate with the distance from 2 of their exponent. The signed relative error of the estimated variance related to
the selected families (y-axis) averaged over all the simulated metagenomes, shows a clear correlation with the family
exponent (x-axis). Among the 10 selected families (black dots), the one with exponent closer to 2 (orange dot) exhibits
a particularly small signed error. Simulations info: 1500 metagenomes, N = 1000, � = 3000.

106 � 107 (fig 4.3). Hence deviations of aG( f , g) imply fluctuations at least of the same magnitude
in hn2i. This fact has a drastic e↵ect on the precision with which the variance can be calculated.
Whenever the variance is of smaller order of magnitude than 107, it is dominated by the noise and
its true value remains impossible to determinate. For this reason, we will not apply our theoretical
prediction to the calculation of the variance in real metagenomes.

The fit of the transformed uniform distribution fails badly in estimating the value of the vari-
ance, even for high values of Var(n), that according to what we discussed above, could be over
the noise threshold. One possible reason to explain it could lay in the use of NG2

log, which is an
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approximation of the original transformed size distribution. This choice, however, is done in order
to make the fit feasible and thus cannot be changed.

4.5 The mean genome size and the number of genomes are estimated
reliably in real metagenomes.

The calculation on simulated metagenomes made in sec. 4.4 confirmed the theoretical predictions
about the number of genomes Ntot and the average genome size hni in a metagenome. This section
tests our methods in real metagenomes. The first check involves the rescaled family abundances
�( f ,m), which in empirical metagenomes exhibits the same, well-defined, exponential dependency
in � observed in simulated metagenomes. After verifying that �( f ,m) follows the predicted be-
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Figure 4.11: The rescaled family abundance exhibits a perfectly exponential dependency in � also in empirical
metagenomes. The rescaled family abundance (y-scale) plotted in lin-log scale as a function of � (black dots). Data
are from the metagenomics sample (sample id-code ERR056990) collected from the gut microbiota of three-month-old
infants [74]. The mean values per bin of � (red dots) are perfectly fitted by an exponential (red line).

havior, the goal is to estimate the total number of genomes and the average genome size of the
empirical metagenomes. As explained in section 4.3.2, two di↵erent methods proved to be e�-
cient: the selection of families with integer scaling exponent and the fit of the theoretical Gm(�).

However, since we are dealing with real metagenomes, it is important to consider if they may be
a↵ected by biases happened at the stage of sequencing. Section 4.3.1 explained how the sampling
of coding sequences might take place during the sequencing process, thus leading to a change in the
family abundances. The present paragraph shows that sampling probably took place in considered
empirical metagenomes, leaving the family proportions intact. This fact will then be used to easily
extend the calculations of the rescaled family abundance to the present case. The EBI pipeline v1.0
applies quality controls on analyzed sequences, removing sequences that are too short or have a
low complexity and clustering identical copies [35]. Throughout this process it is thus high likely
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that a sampling of families took place. An evidence of the sampling appears comparing the number
of 16S sequences and the abundances of the 13 selected single-copy families (scaling exponent
� ' 0) in a metagenome. These two quantities appear to be proportional (Fig.4.12), with 16S
matches that are constantly more than single-families by an average factor of ⇠ 10 across projects.
Since 16S genes in complete bacterial genomes appear in a low number of copies, constant within
species [83], the number of 16S sequences in a metagenome should be proportional to the total
number of genomes contained, while the abundance of single-copy families should correspond
exactly to this number. However, the number of 16S copies per genome is usually between 1 and
7 [83] and thus it is not compatible with the observed disproportion. This fact suggests that 16S
and the 13 families must have been sampled and that the process acted di↵erently on the two kind
of sequences. The di↵erentiation might rise from the annotation process, which is done with two
di↵erent tools for 16S and other sequences [35].
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Figure 4.12: The number of genomes estimated through 16S analysis is systematically higher than the value
obtained through the selection of families with � ⇠ 0. (A) This plot displays the comparison between the number
of genomes in the metagenome Ntot estimated through the selection of families with � ⇠ 0 (blue dots) and the 16S
annotation counting all di↵erent taxa (red diamonds) or just bacterial species (black crosses). The values of N available
through EBI are one order of magnitude higher that our estimation, suggesting the presence of uniform sampling for
families. (B) Scatterplot of the estimated number of genomes using 16S annotations (y-axis) versus the total number
of genomes estimated using a set of constant-scaling families. Red dots are the estimations made using all taxa, black
circles with only bacteria and the dashed line represents the bisect. Data displayed are gut metagenomes of european
women [39].

We expect that if families were sampled with equal probability p, the family abundance in the
metagenome aMG( f ,m) and the total number of domains would be reduced by the same fraction.
The selection of families with exponent � f ' 1, not only estimates reliable the average genome
size, but also confirms our prediction, aMG( f ,m)/A f indeed gives values that dispose around the
total number of domains in the metagenome (referred to as the ‘metagenome size’) in every project
(Fig.4.13).

Unlike for simulated metagenomes, the genome size distribution Pm(n) is not known and we
are forced to make assumption on its shape. The simplest hypothesis is using the exponential of
eq. 4.16 for the transformed size distribution Gm(�). Also assuming that family abundances in
a metagenome are equally sampled with a constant probability p, the rescaled abundance is on
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Figure 4.13: Each selected family with exponent � ⇠ 1 has a rescaled abundance that reproduces the size
of sampled metagenomes. The graph shows for each metagenome, the rescaled family abundance aMG( f ,m)/Af (y-
axis) as a function of the metagenome size

P

f2m aMG( f ,m) (x-axis). The black dots correspond to the rescaled family
abundance calculated with the 9 selected families with exponent � ⇠ 1. Red points represent the averaged value of
N�( f ,m) over the 9 families and the red line is the bisecting line. The plot is in log-log scale in order to better visualize
the small metagenomes. In this project, the families places around the bisecting line, which aligns well with their mean
values. Data displayed in this plot are samples from the human gut microbioma collected in five di↵erent projects: 12
three-months old infants (ERP001038 [74]) , 147 samples from 145 70-years old european women with normal, impaired
or diabetic glucose control (ERP002469 [39]), 18 samples from 6 European families, each one composed by two twins
and the mother 9 of which are obese, 6 lean and 3 overweight (SRP000319 [80]), 45 samples from patients with diarrhea
during the 2011 outbreak of Shiga-toxigenic Escherichia coli (STEC) O104:H4 in Germany (ERP001956 [50]), 19
samples, twelve of them are from patients with Chron’s disease (SRP002423 [66]).

average

hNtot�( f ,m)i = paMG( f ,m)
A f

⇠ pNtotGm(� f ) (4.20)

implying that, in lin-log scale, hNtot�( f ,m)i describes the same curve of NtotGm(� f ), only shifted
vertically by a constant value log p. Since the assumed exponential nature of Gm(�), we expect that
the logarithms of the averages of Ntot�( f ,m) binned by exponent � describe a straight line in �

log(hNtot�( f ,m)i) ⇠ log(Ns) + � f loghni (4.21)

with the logarithm of the average genome size hni as slope and the logarithm of the sampled number
of genomes Ns = pNtot as intercept. Figure 4.11 confirms this prediction. From each empirical
metagenome among the 248 considered, we have obtained these two parameters by fitting the
straight line, following the same procedure described in section 4.3.2 and then averaging the values
Ns and hni obtained for di↵erent occurrence cuto↵s. The assumption made on the sampling of
families implies that also the total size of the metagenome should be reduced by a fraction p.
Therefore, applying the definition of mean, the average sampled metagenome size ns is written as

hnsi = pnm = pNtothni (4.22)
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This necessary condition is verified observing the product of the values Ns and hni obtained with
the fit reproduces well the size of the metagenome (Fig.4.14). This fact is non-trivial, since the
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Figure 4.14: The number of genomes N and the average genome size hni obtained by the fit reproduce well the
metagenome size. The product of average genome size hni and number of genomes N obtained by the fit (y-axis) is
plotted against the metagenome size (x-axis) for each metagenome (black dots), aligning well with the line x=y (red
line). This plot displays all metagenomes from all the examined EBI projects [39, 50, 66, 74, 80].

fitted parameters depend only on the selected scaling families (437 families over the 8675 in ref-
erence genomes) and do not depend directly on the total number of domains in the metagenome.
Moreover, the accordance improved in every project by reducing the range of occurrence cuto↵s to
[0.75, 0.79], which has been thus adopted to calculate Ns and hni.

Figure 4.14 is an important indication that the average genome size and the number of genomes
in real metagenomes are estimated reliably. To further test the validity of our method, we focused
on five metagenomics projects (details about how we retrieved empirical data are described in
section 4.2).

Each project analyzes a set of human fecal samples characterized by di↵erent metabolic dis-
eases (type 2 diabete in project ERP002469 [39], diarrhea caused by Shiga-toxigenic Escherichia
coli (STEC) O104:H4 in project ERP001956 [50], Crohn’s disease in project SRP002423 [66],
obesity in project SRP000319 [80]) or by di↵erent diet (infants fed with breast milk or formula in
project ERP001038 [74]). Examining the taxonomic annotations provided by the EBI database, we
observed that the taxonomic composition of samples shows that projects whose samples contain a
higher percentage of Firmicutes, exhibit a lower average genome size (Fig. 4.15) and this is con-
sistent with reports that Firmicutes possess smaller genomes than Bacteroidetes [54]. Specifically,
the average genome sizes show an overall, roughly linear decrease with the relative abundance of
Firmicutes in metagenomes. Since a high number of 16S sequences are not assigned to a specific
phylum (an average of 48% in SRP002423 samples), by calculating the relative abundances we
are assuming that the proportions are kept for assigned sequences. The diversity of the sampling
between projects and the clear diversity of taxonomic composition observed may depend partially
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on the di↵erent DNA extraction protocols used by each study, as pointed out in [59]. The next
paragraph will therefore analyze the diversity of metagenomic samples within the projects, where
the protocols applied are the same.
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Figure 4.15: The estimated average genome size reflects the taxonomic composition of metagenomes across
projects. (A) Boxplot of the estimated relative abundance of Firmicutes in each of the five projects analyzed, here
indicated by their EBI accession code. (B) Roughly linear correlation between the average genome size (y-axis) and the
relative abundance of Firmicutes (x-axis). Metagenomes of the same project have the same color: ERP001038 [74] in
red, SRP002423 [66] in yellow, ERP001956 [50], in purple, SRP000319 [80] in green and ERP002469 [39] in blue.

As already mentioned in the introduction of the Chapter, the average genome size is an use-
ful observable to compare di↵erent metagenomes. We selected three out of the five project to
check if the average genome size could distinguish metagenome samples from individuals with
di↵erent health conditions or diet. We didn’t analyze project SRP002423 [66] because it is poorly
documented and project ERP001956 [50] because it employs two di↵erent protocols for DNA ex-
traction. Before discussing the result, the following paragraphs presents the details of the analyzed
projects.

Project ERP002469 [39] lists 147 metagenomes relative to the gut microbiome of 145 70-
year-old european women with normal, impaired or diabetic glucose control (2 samples have been
analyzed twice by the EBI pipeline). Among the metagenomes, 50 belong to patients with impaired
glucose control (IGT), 43 with normal glucose control (NGT) and 53 with type 2 diabetes (T2D).
The use of metagenomics analysis allows to develop a mathematical model that predicts which
women with impaired glucose tolerance have a diabetes-like metabolism. Diabetes, as well as
other metabolic diseases, is influenced by socio-demographic and environmental factors more than
by human genetics, for this reason the analysis of the gut microbiota as an environmental factor
reveals to be particularly successful.

The 18 samples of project SRP000319 [80] derive from 6 European families, each one com-
posed by two twins and the mother. The patients are divided in three groups: 9 obese, 6 lean and
3 overweight. This project is focused on determining how host genotype, environmental exposure
and host adiposity influence the gut microbiome. The emerging result is that sampled individu-
als share a “core microbiome” at the gene level and deviation from this core determine di↵erent
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physiological states.
The last project examined is ERP001038. There are only 12 metagenomes, which are relative

to the fecal samples of 3 month-old infants di↵erently fed: 6 of them were breast fed (BF) while
the other 6 were exclusively nourished with a formula (FF) [74]. The study provides evidence
that di↵erences in diet can a↵ect, via gut colonization, host expression of genes associated with the
innate immune system. This study, published in April 2012, does not contradict a more recent study
about the taxonomic composition of infant gut microbiota [81]. As a matter of fact, the taxonomic
composition of infant fecal samples shows a high level of Actinobacteria.

For what concerns samples from project SRP000319, the average genome sizes assume similar
values between obese and lean patients, exhibiting instead particularly high values in overweight
ones (Fig.4.16A). The low statistic, however, does not allow to infer a clear trend. Similarly, in
the case of project ERP002469, the average genome size has close values between patients with
variable glucose control, exhibiting comparable distributions (Fig.4.16C). In addition, the average
genome size does not show a clear correlation with the body mass index (BMI), spanning di↵erent
values evenly both in case of lean patients (18.5 < BMI < 24.9) and obese ones (BMI > 30).
Figure 4.16B shows that the average genome size distribution allows to distinguish between breast-
feed infants (BF) and formula-feed infants (FF). Specifically, the metagenomes of BF infants can
have extremely variable average genome sizes while the ones FF have a more peaked distribution
(Fig.4.16B). This result is in agreement with the observation made by the original study [74],
which showed that BF samples had a more heterogeneous phylogenetic composition than FF, a
larger fraction of Bacteroidetes and a smaller fraction of Firmicutes.
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Figure 4.16: The average genome size in the gut microbiome depends strongly on the diet, diabetes and obesity
on the contrary do not influence the average genome size. (A) Distributions of the average genome sizes of 18 human
gut microbiomes deriving from project SRP000319 and divided in 9 obese patients (blue box), 3 overweight (green
box) and 6 lean (brown box). (B) Distributions of the average genome sizes of 12 stool metagenomes deriving from
project ERP001038 and divided by diet: 6 breast fed samples (magenta box) and 6 formula fed samples (yellow box).
The metagenomes of breast-fed infants show a highly variable average genome size while the ones fed with a formula
have a more specific value. (C) Distributions of the average genome sizes of 147 stool metagenomes deriving from
project ERP002469 and divided by glucose control condition: 43 with normal glucose control (NGT, blue box), 50 with
impaired glucose control (IGT, red box) and 53 with Type 2 diabetes (T2D, green box).

Only in the case of project ERP002469 [39], we found an independent estimation of the average
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genome size (AGS) of samples carried out by Nayfach [59]. Figure 4.17 shows the scatter plot
between our estimation of the average genome size and the one from [59]. The two sets of values
are linearly correlated, with a Pearson correlation coe�cient equal to 0.65. However, the AGS
calculated fitting equation 4.21 is systematically lower than the one from Nayfach. The fact that
Nayfach’s AGS has been converted from basepairs to number of domains may have influenced this
result.
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Figure 4.17: Comparison between the average genome size calculated fitting equation 4.21 and the average
genome size derived in [59] for metagenomes of project ERP002469. The data displayed are metagenomic sam-
ples from project ERP002469, that is 147 fecal samples from women with normal, impaired or diabetic glucose control.
Values of the average genome size calculated fitting equation 4.21 are linearly correlated with estimates of the average
genome size from [59]. Both sets of values are measured in number of domains.

4.6 Conclusions

The abundance of di↵erent domain families in genomes is constrained by family-specific scaling
laws. This result (fully exploited in Chapter 2) a↵ects the abundance of domain families in a
metagenome leading to the definition of a new observable which acts as a metagenome signature.
The functional form of the newly defined metagenome invariant reflects the composition of the
sample and when evaluated at integer scaling exponents, it gives access to the moments of the
size distribution of genomes. In case of uniform or peaked genome size distribution, analytical
calculations are possible and we can predict the theoretical value of the total number of genome in
the sample, the mean and the variance of the genome size distribution.

We tested our results for simulated metagenomes, produced by random linear combinations of
a set of O(1000) reference genomes. The analysis supports the accuracy of theoretical predictions,
but also highlighted their limitations. The estimation of the original number of microbes mixed in
the sample and the average genome size are correct, however the same do not hold for the variance
of the genome sizes. Only under certain conditions it is possible to access the variance, that is when

66



Chapter 4. Signature of gene-family scaling laws in microbial ecosystems

the range of scaling exponent are restricted to values equal to 2. Unfortunately high fluctuations
of the rescaled abundance for large exponents make the estimate of the variance unreliable in most
cases.

Finally we employed the tools developed in the first sections on 248 human gut microbiomes.
Our theoretical predictions confirmed their validity, indeed the metagenome invariant for empirical
samples shows the expected exponential dependency on the scaling exponent. Analyzed data show
the evidence of domains sampling, that results in changes of the original abundances of families.
Although this phenomenon does not follow the expected Poisson distribution, the reduction of
domain abundances is uniform among families, thus limiting the change in the functional form
of the scaling to a prefactor. This fact preserves the role of the rescaled abundance as signature
of the composition of the metagenome, allowing in particular to obtain an estimate of its original
average genome size. The comparison of these estimates evidenced the diversity between samples,
reflecting the di↵erences in the e↵ective relative abundance of a particular class of bacteria.
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Chapter 5
Conclusions and perspectives

In conclusion, the common underlying trait of the investigations described in this thesis is the
representation of genomes as component systems. i.e. systems where modules, in our case the
protein domains, can occur in di↵erent realizations, the genomes, with varying abundance. Such
representation is useful to highlight several invariants found in the structure of the protein-coding
part of genomes [16, 30, 31], but may also be useful for other [8, 22, 51, 65]. Example of other
systems that can successfully be represented as component systems are ecosystems (where species
are components), texts, software architectures (e.g. programs or operating systems), and in general
all projects involving clear modules such as houses, lego sets, IKEA boxes, etc. Thus, the quanti-
tative invariants and the theoretical tools developed here may be useful beyond genomes. Indeed,
several notable quantitative laws can be identified in the composition of component systems of
very di↵erent nature. For example, in linguistics, the notorious “Zipf’s law” [87] describing the
word frequency distribution (or its equivalent rank plot) in a text has been the subject of extensive
investigations [67]. The existence of quantitative “universal” laws in texts may in principle provide
insights on the cognitive mechanisms of text production, and can have practical applications in data
mining and data search techniques [1].

While unifying traits may be common to di↵erent component systems, most investigations
will be interested in the specificities leading to the systems peculiar architecture and behavior.
Thus, we need to have a clear idea of the general behavior of component systems in general cases.
This is by itself a challenging task, as such systems show a large degree of non-trivial universal
properties [1, 42, 16] that could in principle a↵ect the occurrence statistics. For example, the
heterogeneous usage of di↵erent components, can be seen as a hallmark of the complexity of a
component However, the ubiquity of this emergent behavior raises the question of whether (and to
what extent) empirical laws like Zipf’s law are pervasive statistical patterns that transcend system-
specific mechanisms [42, 5]. In this spirit, the analysis of radically di↵erent systems can help the
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discovery of patterns that descend from pure statistical e↵ects or general principles [5, 65].
The systematic analysis of the abundance of domain families across a large sample of bacterial

genomes performed in Chapter 2, revealed that family abundances increase as a power-law of the
genome size. It is unclear whether other component systems may also exhibit this peculiar statisti-
cal laws. Surely, this kind of behavior is not reported for texts, which have been studied extensively,
and therefore is likely not to hold in that context. With the help of a null model, we proved that
these scaling laws are not simply due to sampling e↵ects, thus bringing evidence against the hy-
pothesis of combinatorially neutral scaling. The existence of family-specific scaling laws opens
new perspectives on the evolutionary constraints that regulate the composition of genomes, and in
particular on the interplay between domain families and their functions. In addition, the observed
heterogeneity in the values of the scaling exponent across families in the same functional category,
may provide new methods to suggest the need to revise or refine the functional annotations of
protein domains.

Component systems, regardless of the field to which they belong, are characterized by a series
of quantitative laws. A very ambitious goal is to unify all the observed regularities under a robust
theoretical framework able to explain the mechanisms causing their emergence. In line with this
idea, Chapter 3 presents a positive model that shows how the existence of a dependency structure
linking components is responsible for the zipfian rank-frequency relation and also for the sublinear
scaling of the number of unique components (Heaps’ law). Mean-field calculations recovered the
detailed structure of Heaps’ law, i.e. the existence of three distinct scaling regimes and suggested
the stretched exponential function as a good approximation of Heaps’ law. Simulations based on
our model matched the analytical predictions. Our analysis confirms the central role of dependency
structures in shaping the properties of component systems. To be able to reach a deep understanding
of empirical systems, the network should include constraints specific to the field examined, which
are usually very hard to encode.

Finally, we studied (Chapter 4) the family abundance profiles in a metagenome, i.e. the sets of
sequences found in a microbial ecosystem. In this study, we defined a di↵erent component system,
i.e. the set of all the families found in the same ecosystem, with their abundances. However, since
the defining modules (components) are identical to the one used for genomes, we could exploit
the knowledge of the invariants valid in comparative genomics to study this system. In particular,
we asked how the family-specific scaling laws valid for genomes translate into invariant quantities
for the microbial community. The key result is that the rescaled abundance of a domain family
in a metagenome has a functional form that is determined by the genome size composition of the
metagenome.

Using both simulated and real metagenomes, we were able to calculate the total number of
genomes that are combined in a metagenomic sample and more interestingly the average genome
size. The average genome size is not readily available in metagenome studies, since all the DNA is
pooled together and fragmented. Clearly, reconstructing this information is useful for comparing
metagenomes sampled in di↵erent environments or within the same one. The newly discovered
metagenomic invariant theoretically could give access to the moments of the genome size distribu-
tion. The fact that scaling exponents range up to 2, makes it impossible to estimate moments higher
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than the second. We also encountered major di�culties even with the second moments, preventing
us to evaluate the variance of the genome sizes. This is likely due to deviations of the rescaled
family abundance, which are of the same magnitude in hn2i. One possible way to reduce the fluc-
tuations could be to disentangle the interdependency between the exponent and the prefactor in the
family scaling laws.
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Supplementary tables

Table A.1: Scaling exponent of functional categories. The table reports the scaling exponent �c of all functional
categories examined, both for superfamilies (SUPFAM column) and clans (PFAM column). The error associated with
the exponent is calculated as the root mean square deviation of the logarithm of the category abundance across all
genomes from the estimated scaling law.

cat. code category name Ac ± �Ac (Supfam) �c ± ��c (Supfam) Ac ± �Ac (Pfam) �c ± ��c (Pfam)

A RNA binding, met./tr. 0.8 ± 0.5 0.4 ± 0.1 1.7 ± 0.2 0.21 ± 0.10
B Chromatin structure 0.019 ± 0.099 0.6 ± 0.3 �� ��
C Energy 0.08 ± 0.03 0.8 ± 0.1 0.02 ± 0.01 0.94 ± 0.09

CA E-transfer 0.00002 ± 0.01565 1.8 ± 0.3 0.00001 ± 0.02549 1.73 ± 0.34
CB Photosynthesis 0.002 ± 0.051 0.9 ± 0.4 0.02 ± 0.08 0.56 ± 0.28
D Cell cycle, Apoptosis 0.0007 ± 0.0272 1.2 ± 0.2 �� ��
E Amino acids m/tr 0.05 ± 0.12 0.9 ± 0.2 0.0021 ± 0.052 1.09 ± 0.17

EA Nitrogen m/tr 0.000004 ± 0.009263 1.8 ± 0.2 �� ��
F Nucleotide m/tr 1.4 ± 0.3 0.5 ± 0.1 0.15 ± 0.08 0.70 ± 0.17
G Carbohydrate m/tr 0.02 ± 0.05 1.0 ± 0.2 0.0003 ± 0.0372 1.38 ± 0.31

GA Polysaccharide m/tr 0.005 ± 0.039 1.1 ± 0.2 0.003 ± 0.022 1.13 ± 0.20
H Coenzyme m/tr 0.12 ± 0.05 0.9 ± 0.1 0.0009 ± 0.0204 1.27 ± 0.18

HA Small molecule binding 0.21 ± 0.04 0.9 ± 0.1 0.55 ± 0.09 0.74 ± 0.06
HD Receptor activity 0.0002 ± 0.0425 1.3 ± 0.5 0.3 ± 0.1 0.25 ± 0.20
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HE Ligand binding 0.3 ± 0.1 0.3 ± 0.1 0.0007 ± 0.0301 1.19 ± 0.31
I Lipid m/tr 0.0009 ± 0.0176 1.2 ± 0.2 0.0002 ± 0.0135 1.31 ± 0.20

IA Phospholipid m/tr 0.02 ± 0.04 0.6 ± 0.3 0.004 ± 0.027 0.77 ± 0.25
J Translation 39.131 ± 0.006 0.16 ± 0.03 9.71 ± 0.02 0.17 ± 0.05
K Transcription 0.02 ± 0.03 0.9 ± 0.1 0.003 ± 0.033 0.98 ± 0.19
L DNA replication/repair 2.01 ± 0.05 0.5 ± 0.1 0.46 ± 0.04 0.63 ± 0.07

LA DNA-binding 0.0007 ± 0.0143 1.5 ± 0.1 0.0009 ± 0.016 1.49 ± 0.13
LB RNA processing 0.9 ± 1.3 0.2 ± 0.1 4.89 ± 0.08 0.07 ± 0.12
M Cell envelope m/tr 0.02 ± 0.06 0.7 ± 0.4 �� ��

MA Cell adhesion 0.0006 ± 0.0310 1.3 ± 0.3 0.0001 ± 0.0354 1.49 ± 0.29
N Cell motility 0.02 ± 0.07 0.7 ± 0.3 0.10 ± 0.08 0.48 ± 0.20
O Protein modification 0.01 ± 0.03 1.1 ± 0.1 0.006 ± 0.025 0.99 ± 0.13

OA Proteases 0.04 ± 0.02 1.0 ± 0.1 0.02 ± 0.02 1.01 ± 0.10
OB Kinases/phosphatases 0.0008 ± 0.0321 1.3 ± 0.2 0.0007 ± 0.0479 1.02 ± 0.31
P Ion m/tr 0.005 ± 0.023 1.3 ± 0.1 0.003 ± 0.034 1.04 ± 0.17
Q Secondary metabolism 0.00009 ± 0.01176 1.5 ± 0.2 0 ± 0.02 2.01 ± 0.29
R General 0.001 ± 0.013 1.2 ± 0.2 0.00002 ± 0.0164 1.61 ± 0.23

RA Redox 0.008 ± 0.026 1.2 ± 0.1 0.006 ± 0.036 1.19 ± 0.13
RB Transferases 0.04 ± 0.02 1.1 ± 0.1 0.01 ± 0.02 1.13 ± 0.09
RC Other enzymes 0.07 ± 0.03 1.1 ± 0.1 0.04 ± 0.02 1.13 ± 0.06
RD Protein interaction 0.02 ± 0.07 1.0 ± 0.2 0.04 ± 0.05 0.93 ± 0.19
RF Transport 0.02 ± 0.04 1.1 ± 0.2 0.004 ± 0.023 1.10 ± 0.16
S Unknown function 0.04 ± 0.02 1.0 ± 0.1 0.03 ± 0.04 0.89 ± 0.13

SB Toxins/defence 0.001 ± 0.068 1.1 ± 0.3 0.00006 ± 0.04413 1.28 ± 0.29
T Signal transduction 0.0002 ± 0.0303 1.6 ± 0.2 0.00007 ± 0.03247 1.74 ± 0.20

TA Other regulatory function 0.005 ± 0.035 1.1 ± 0.2 0.02 ± 0.05 0.55 ± 0.24
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Table A.2: Scaling exponent of superfamilies from the SUPERFAMILY database. The abundance of a (super)family
scales as a power law of the genome size with family-dependent scaling exponents �i. Each row corresponds to a domain
family and shows its scaling exponent along with its error and the category to which the family belongs (category
code). Families corresponding to the same functional category are ordered in decreasing order of abundance. The error
associated with the exponent is calculated as the root mean square deviation of the logarithm of the category abundance
across all genomes from the estimated scaling law.

cat. code family name Ai ± �Ai �i ± ��i

A Alpha-L RNA-binding motif 1.07 ± 1.71 0.2 ± 0.1
A PUA domain-like 0.01 ± 0.04 0.7 ± 0.2
C 6-phosphogluconate dehydrogenase C-terminal domain-like 0.0005 ± 0.0186 1.2 ± 0.2

C Glyceraldehyde-3-phosphate dehydrogenase-like, 0.004 ± 0.037 1.0 ± 0.2
C-terminal domain

C Phosphoenolpyruvate/pyruvate domain 0.0004 ± 0.0185 1.0 ± 0.2
C SIS domain 0.004 ± 0.037 0.7 ± 0.2
C LeuD/IlvD-like 0.002 ± 0.034 0.9 ± 0.2
C Enolase C-terminal domain-like 0.02 ± 0.07 0.8 ± 0.2
C Transmembrane di-heme cytochromes 0.003 ± 0.036 0.5 ± 0.3
C Aconitase iron-sulfur domain 0.004 ± 0.046 0.5 ± 0.2
C Cytochrome c oxidase subunit I-like 0.06 ± 0.09 0.5 ± 0.2

C UDP-glucose/ 0.03 ± 0.03 0.5 ± 0.2
GDP-mannose dehydrogenase C-terminal domain

C Citrate synthase 0.009 ± 0.061 0.6 ± 0.2
C PEP carboxykinase-like 0.24 ± 0.07 0.2 ± 0.2
C Cytochrome c oxidase subunit III-like 0.07 ± 0.07 0.4 ± 0.2
C PK C-terminal domain-like 0.17 ± 0.06 0.2 ± 0.1

C Enzyme I of the PEP:sugar phosphotransferase 0.05 ± 0.05 0.4 ± 0.2system HPr-binding (sub)domain
CA Cytochrome c 0.002 ± 0.067 1.0 ± 0.5
CA Acyl-CoA dehydrogenase C-terminal domain-like 0.0 ± 0.02 2.0 ± 0.4
CA FMN-dependent nitroreductase-like 0.004 ± 0.040 0.8 ± 0.3
CA ISP domain 0.0003 ± 0.0495 1.2 ± 0.3
CA Sulfite reductase hemoprotein (SiRHP), domains 2 and 4 0.002 ± 0.048 0.9 ± 0.2

CA Succinate dehydrogenase/fumarate reductase flavoprotein, 0.01 ± 0.03 0.7 ± 0.2catalytic domain
CB PRC-barrel domain 0.008 ± 0.069 0.7 ± 0.3
D Rhodanese/Cell cycle control phosphatase 0.0006 ± 0.0242 1.1 ± 0.3
E ACT-like 0.02 ± 0.17 0.8 ± 0.2
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E Tryptophan synthase beta subunit-like 0.002 ± 0.038 1.0 ± 0.2
PLP-dependent enzymes

E Carbamate kinase-like 0.08 ± 0.10 0.5 ± 0.1
E PLP-binding barrel 0.02 ± 0.07 0.7 ± 0.1
E Glutamine synthetase/guanido kinase 0.02 ± 0.04 0.7 ± 0.2
E L-aspartase-like 0.01 ± 0.03 0.7 ± 0.2
E Diaminopimelate epimerase-like 0.04 ± 0.09 0.5 ± 0.2
E Alanine racemase C-terminal domain-like 0.03 ± 0.07 0.5 ± 0.2
E Aspartate/glutamate racemase 0.3 ± 0.2 0.3 ± 0.2
E Arginase/deacetylase 0.005 ± 0.035 0.8 ± 0.2
E Aspartate/ornithine carbamoyltransferase 0.21 ± 0.07 0.3 ± 0.1
E Serine metabolism enzymes domain 0.11 ± 0.04 0.3 ± 0.2
E Chorismate mutase II 0.06 ± 0.05 0.4 ± 0.2

EA RmlC-like cupins 0.000006 ± 0.016133 1.8 ± 0.2
F Ribonuclease H-like 0.06 ± 0.05 0.7 ± 0.3
F Adenine nucleotide alpha hydrolases-like 0.008 ± 0.030 0.9 ± 0.1
F Nucleotidylyl transferase 0.2 ± 0.2 0.17 ± 0.05
F PRTase-like 0.03 ± 0.08 0.4 ± 0.1
F Nucleotidyltransferase 0.6 ± 0.3 0.7 ± 0.2
F Pseudouridine synthase 0.1 ± 0.2 0.3 ± 0.1
F Ribulose-phoshate binding barrel 0.11 ± 0.05 0.5 ± 0.2
F Tetrahydrobiopterin biosynthesis enzymes-like 0.17 ± 0.07 0.4 ± 0.2
F Purine and uridine phosphorylases 0.5 ± 0.3 0.3 ± 0.2
F Nucleotidyltransferase substrate binding subunit/domain 0.06 ± 0.04 0.2 ± 0.2
F Nicotinate/Quinolinate PRTase C-terminal domain-like 0.08 ± 0.10 0.4 ± 0.2

F Nucleoside phosphorylase/ 0.09 ± 0.06 0.3 ± 0.2phosphoribosyltransferase catalytic domain

F Nucleoside phosphorylase/ 0.04 ± 0.04 0.4 ± 0.2phosphoribosyltransferase N-terminal domain
G (Trans)glycosidases 0.0002 ± 0.0441 1.4 ± 0.4
G Aldolase 0.007 ± 0.043 0.9 ± 0.2
G Phosphoglucomutase, first 3 domains 0.3 ± 0.1 0.4 ± 0.1
G Galactose-binding domain-like 0.007 ± 0.103 0.8 ± 0.5
G Six-hairpin glycosidases 0.0003 ± 0.0413 1.2 ± 0.4
G Duplicated hybrid motif 0.08 ± 0.05 0.5 ± 0.2
G Xylose isomerase-like 0.001 ± 0.062 1.0 ± 0.3
G Carbohydrate phosphatase 0.02 ± 0.05 0.6 ± 0.2
G HIT-like 0.01 ± 0.04 0.6 ± 0.2
G Phosphoglucomutase, C-terminal domain 0.11 ± 0.07 0.4 ± 0.1
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G PK beta-barrel domain-like 0.001 ± 0.019 0.9 ± 0.2
G HPr-like 0.2 ± 0.1 0.2 ± 0.2

GA UDP-Glycosyltransferase/glycogen phosphorylase 0.007 ± 0.037 1.0 ± 0.2
GA Pectin lyase-like 0.0001 ± 0.0516 1.3 ± 0.4
GA Glycosyl hydrolase domain 0.005 ± 0.053 0.8 ± 0.3
GA Barwin-like endoglucanases 0.02 ± 0.03 0.5 ± 0.2
H Glutathione synthetase ATP-binding domain-like 0.01 ± 0.03 0.9 ± 0.1
H Acyl-CoA dehydrogenase NM domain-like 0.00 ± 0.02 2.0 ± 0.4
H PreATP-grasp domain 0.04 ± 0.06 0.7 ± 0.1
H Single hybrid motif 0.01 ± 0.03 0.8 ± 0.2
H FMN-binding split barrel 0.0003 ± 0.0429 1.2 ± 0.2
H Riboflavin synthase domain-like 0.001 ± 0.025 1.0 ± 0.2
H Succinyl-CoA synthetase domains 0.07 ± 0.06 0.5 ± 0.2
H YrdC/RibB 0.04 ± 0.03 0.5 ± 0.2
H Molybdenum cofactor biosynthesis proteins 0.03 ± 0.06 0.6 ± 0.2
H Dihydrofolate reductase-like 0.02 ± 0.07 0.6 ± 0.2
H UROD/MetE-like 0.05 ± 0.08 0.5 ± 0.3
H Dihydropteroate synthetase-like 0.07 ± 0.08 0.4 ± 0.2
H Cobalamin (vitamin B12)-binding domain 0.06 ± 0.06 0.4 ± 0.3
H Activating enzymes of the ubiquitin-like proteins 0.07 ± 0.04 0.4 ± 0.2
H Nicotinate/Quinolinate PRTase N-terminal domain-like 0.01 ± 0.05 0.4 ± 0.2
H Glutamine synthetase, N-terminal domain 0.3 ± 0.1 0.6 ± 0.2
H Peptide deformylase 0.06 ± 0.12 0.2 ± 0.2
H RibA-like 0.2 ± 0.1 0.4 ± 0.2
H MoeA C-terminal domain-like 0.08 ± 0.06 0.2 ± 0.2
H ApbE-like 0.001 ± 0.017 0.3 ± 0.2

HA P-loop containing nucleoside triphosphate hydrolases 0.001 ± 0.010 0.71 ± 0.08
HA NAD(P)-binding Rossmann-fold domains 0.01 ± 0.03 1.4 ± 0.1
HA FAD/NAD(P)-binding domain 0.002 ± 0.042 1.3 ± 0.2
HA Thiamin diphosphate-binding fold (THDP-binding) 0.005 ± 0.026 0.9 ± 0.1
HA FAD-binding domain 0.02 ± 0.12 1.0 ± 0.2
HA Nucleotide-binding domain 0.0002 ± 0.0441 0.8 ± 0.2
HA Sensory domain-like 0.007 ± 0.043 0.7 ± 0.4

HD Methyl-accepting chemotaxis protein (MCP) 0.002 ± 0.080 1.0 ± 0.5
signaling domain

HD PhoU-like 0.2 ± 0.1 0.3 ± 0.2
HE TGS-like 0.3 ± 0.1 0.3 ± 0.1

I Thioesterase/thiol ester dehydrase-isomerase 0.00006 ± 0.02319 1.5 ± 0.2

I Probable ACP-binding domain of 0.0005 ± 0.0721 1.0 ± 0.3
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malonyl-CoA ACP transacylase
I Creatinase/prolidase N-terminal domain 0.03 ± 0.03 0.5 ± 0.2

I Prokaryotic lipoproteins and 0.09 ± 0.06 0.4 ± 0.2
lipoprotein localization factors

IA PLC-like phosphodiesterases 0.02 ± 0.06 0.6 ± 0.2
J Ribosomal protein S5 domain 2-like 1.8 ± 0.2 0.30 ± 0.07
J Translation proteins 1.43 ± 0.09 0.26 ± 0.06
J EF-G C-terminal domain-like 0.7 ± 0.2 0.30 ± 0.09
J Sm-like ribonucleoproteins 0.005 ± 0.040 0.8 ± 0.3
J Triger factor/SurA peptide-binding domain-like 0.3 ± 0.1 0.3 ± 0.2
J Release factor 0.14 ± 0.12 0.2 ± 0.1
J L30e-like 0.04 ± 0.03 0.3 ± 0.2
J EF-Tu/eEF-1alpha/eIF2-gamma C-terminal domain 0.2 ± 0.1 0.5 ± 0.2
J S13-like H2TH domain 0.14 ± 0.06 0.3 ± 0.2
J NusB-like 0.06 ± 0.04 0.3 ± 0.1
J ClpS-like 0.08 ± 0.06 0.4 ± 0.1
J Ribosome binding protein Y (YfiA homologue) 0.01 ± 0.01 0.3 ± 0.1
K Tetracyclin repressor-like, C-terminal domain 0.03 ± 0.05 2.4 ± 0.3
K LexA/Signal peptidase 0.3 ± 0.1 0.6 ± 0.2
K Poly A polymerase C-terminal region-like 0.25 ± 0.10 0.2 ± 0.2
K GreA transcript cleavage protein, N-terminal domain 0.10 ± 0.09 0.2 ± 0.1
K CYTH-like phosphatases 2.87 ± 0.05 0.3 ± 0.1
L Nucleic acid-binding proteins 0.0006 ± 0.0184 0.31 ± 0.07
L DNA breaking-rejoining enzymes 0.2 ± 0.1 1.0 ± 0.3
L Nudix 0.01 ± 0.06 1.2 ± 0.2
L RuvA domain 2-like 0.004 ± 0.026 0.4 ± 0.1
L Restriction endonuclease-like 0.01 ± 0.05 0.8 ± 0.3
L DNA/RNA polymerases 0.005 ± 0.036 0.8 ± 0.2
L DNA-glycosylase 0.02 ± 0.06 0.7 ± 0.2
L DNase I-like 1.8 ± 0.2 0.8 ± 0.2

L DNA polymerase III clamp loader subunits, 0.5 ± 0.2 0.2 ± 0.1
C-terminal domain

L Resolvase-like 0.07 ± 0.12 0.4 ± 0.4
L Uracil-DNA glycosylase-like 0.02 ± 0.04 0.6 ± 0.2
L GIY-YIG endonuclease 0.08 ± 0.05 0.4 ± 0.2
L DNA ligase/mRNA capping enzyme, catalytic domain 0.007 ± 0.072 0.7 ± 0.2
L HRDC-like 0.08 ± 0.07 0.4 ± 0.2
L N-terminal domain of MutM-like DNA repair proteins 0.07 ± 0.07 0.4 ± 0.2
L TRCF domain-like 0.00002 ± 0.03128 0.02 ± 0.03
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LA Winged helix DNA-binding domain 0.000001 ± 0.026499 1.8 ± 0.2
LA Homeodomain-like 0.0002 ± 0.0262 2.2 ± 0.3
LA lambda repressor-like DNA-binding domains 0.07 ± 0.12 1.4 ± 0.3

LA C-terminal e↵ector domain of 0.000006 ± 0.010207 1.8 ± 0.2
the bipartite response regulators

LA Periplasmic binding protein-like I 0.0001 ± 0.0287 1.4 ± 0.4

LA Fatty acid responsive transcription factor FadR, 0.000001 ± 0.028036 1.9 ± 0.3C-terminal domain
LA Glucocorticoid receptor-like (DNA-binding domain) 0.23 ± 0.09 0.4 ± 0.2
LA TrpR-like 0.10 ± 0.06 0.4 ± 0.3
LA Ribbon-helix-helix 0.006 ± 0.055 0.8 ± 0.3
LA IHF-like DNA-binding proteins 0.2 ± 0.2 0.3 ± 0.3
LA ParB/Sulfiredoxin 0.02 ± 0.04 0.6 ± 0.3
LA KorB DNA-binding domain-like 0.05 ± 0.06 0.4 ± 0.3
LB EPT/RTPC-like 0.2 ± 0.1 0.3 ± 0.1
M OmpA-like 0.003 ± 0.047 0.9 ± 0.4

MA vWA-like 0.0002 ± 0.0255 1.2 ± 0.3
MA Pili subunits 0.010 ± 0.105 0.8 ± 0.4
MA PGBD-like 0.01 ± 0.07 0.7 ± 0.3
MA Hedgehog/DD-peptidase 0.05 ± 0.05 0.5 ± 0.2

O ATPase domain of HSP90 chaperone/ 0.0001 ± 0.0209 1.5 ± 0.2DNA topoisomerase II/ histidine kinase
O GroES-like 0.00002 ± 0.02546 1.6 ± 0.3
O FKBP-like 0.06 ± 0.06 0.6 ± 0.2
O Chaperone J-domain 0.07 ± 0.07 0.5 ± 0.2
O Cyclophilin-like 0.003 ± 0.021 0.9 ± 0.2
O Double Clp-N motif 0.02 ± 0.04 0.6 ± 0.2
O HSP20-like chaperones 0.02 ± 0.04 0.6 ± 0.2
O GroEL equatorial domain-like 0.2 ± 0.1 0.2 ± 0.2
O GroEL apical domain-like 0.2 ± 0.2 0.2 ± 0.2
O Peptide methionine sulfoxide reductase 0.25 ± 0.07 0.2 ± 0.2
O GroEL-intermediate domain like 0.2 ± 0.1 0.2 ± 0.1

OA ClpP/crotonase 0.003 ± 0.047 1.0 ± 0.2
OA Zn-dependent exopeptidases 0.003 ± 0.034 1.0 ± 0.2
OA Metallo-dependent phosphatases 0.002 ± 0.029 1.0 ± 0.2
OA Metalloproteases ("zincins"), catalytic domain 0.007 ± 0.029 0.8 ± 0.3
OA LuxS/MPP-like metallohydrolase 0.1 ± 0.2 0.5 ± 0.3
OA Cysteine proteinases 0.002 ± 0.039 1.0 ± 0.3
OA Bacterial exopeptidase dimerisation domain 0.0006 ± 0.0236 1.1 ± 0.3
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OA Trypsin-like serine proteases 0.001 ± 0.039 1.0 ± 0.3
OA Creatinase/aminopeptidase 0.05 ± 0.03 0.5 ± 0.1
OA HSP40/DnaJ peptide-binding domain 0.35 ± 0.09 0.3 ± 0.2
OA DPP6 N-terminal domain-like 0.01 ± 0.11 0.6 ± 0.4
OA Subtilisin-like 0.003 ± 0.060 0.8 ± 0.3
OA Rhomboid-like 0.04 ± 0.07 0.5 ± 0.2
OA Macro domain-like 0.10 ± 0.09 0.3 ± 0.2
OA Tricorn protease N-terminal domain 0.07 ± 0.11 0.4 ± 0.2
OB Protein kinase-like (PK-like) 0.0006 ± 0.0577 1.2 ± 0.3
OB PP2C-like 0.005 ± 0.068 0.8 ± 0.3
OB Phosphohistidine domain 0.009 ± 0.026 0.7 ± 0.2
OB Phosphotyrosine protein phosphatases I 0.02 ± 0.04 0.6 ± 0.2
OB Acylphosphatase/BLUF domain-like 0.15 ± 0.08 0.3 ± 0.2
P Periplasmic binding protein-like II 0.00007 ± 0.02273 1.6 ± 0.3
P MFS general substrate transporter 0.0003 ± 0.0379 1.4 ± 0.3
P Multidrug resistance e✏ux transporter EmrE 0.0003 ± 0.0310 1.3 ± 0.3
P HlyD-like secretion proteins 0.00006 ± 0.03092 1.5 ± 0.4
P Ferritin-like 0.002 ± 0.016 1.0 ± 0.2
P Cupredoxins 0.0009 ± 0.0273 1.1 ± 0.3
P Calcium ATPase, transduction domain A 0.05 ± 0.08 0.6 ± 0.2
P Calcium ATPase, transmembrane domain M 0.05 ± 0.07 0.6 ± 0.2
P TrkA C-terminal domain-like 0.03 ± 0.08 0.6 ± 0.3
P HMA, heavy metal-associated domain 0.1 ± 0.2 0.4 ± 0.2
P Band 7/SPFH domain 0.06 ± 0.15 0.5 ± 0.2
P Fe-S cluster assembly (FSCA) domain-like 0.06 ± 0.06 0.4 ± 0.2
P Voltage-gated potassium channels 0.02 ± 0.04 0.6 ± 0.2
P Magnesium transport protein CorA, transmembrane region 0.03 ± 0.05 0.5 ± 0.2
P CorA soluble domain-like 0.04 ± 0.05 0.5 ± 0.2
P Clc chloride channel 0.1 ± 0.2 0.3 ± 0.2
Q Dimeric alpha+beta barrel 0.00 ± 0.02 2.1 ± 0.3
Q Clavaminate synthase-like 0.00001 ± 0.03341 1.6 ± 0.3
Q Concanavalin A-like lectins/glucanases 0.007 ± 0.086 0.8 ± 0.4
Q Terpenoid synthases 0.01 ± 0.04 0.7 ± 0.2

Q Homo-oligomeric flavin-containing 0.08 ± 0.04 0.4 ± 0.2
Cys decarboxylases, HFCD

R Bet v1-like 0.00002 ± 0.03706 1.5 ± 0.4
R Helical backbone metal receptor 0.004 ± 0.051 0.9 ± 0.3
R ADC-like 0.001 ± 0.050 1.0 ± 0.3
R ARM repeat 0.02 ± 0.07 0.6 ± 0.3

82



Appendix A. Supplementary tables

R Peripheral subunit-binding domain of 2-oxo 0.2 ± 0.1 0.3 ± 0.2acid dehydrogenase complex
R Pentein 0.04 ± 0.07 0.4 ± 0.2
R JAB1/MPN domain 0.19 ± 0.06 0.2 ± 0.2

RA Thioredoxin-like 0.002 ± 0.034 1.1 ± 0.2
RA 4Fe-4S ferredoxins 0.02 ± 0.08 0.8 ± 0.4
RA Metallo-hydrolase/oxidoreductase 0.002 ± 0.022 1.1 ± 0.2

RA Glyoxalase/Bleomycin resistance protein/ 0 ± 0.01 2.1 ± 0.3Dihydroxybiphenyl dioxygenase
RA ALDH-like 0.00003 ± 0.01758 1.5 ± 0.2
RA 2Fe-2S ferredoxin-like 0.001 ± 0.064 1.0 ± 0.3
RA Flavoproteins 0.005 ± 0.044 0.9 ± 0.3
RA alpha-helical ferredoxin 0.004 ± 0.063 0.9 ± 0.3
RA FAD-linked reductases, C-terminal domain 0.00007 ± 0.04992 1.4 ± 0.3
RA Formate/glycerate dehydrogenase catalytic domain-like 0.001 ± 0.026 1.0 ± 0.2
RA NAD(P)-linked oxidoreductase 0.0001 ± 0.0495 1.3 ± 0.3
RA Isocitrate/Isopropylmalate dehydrogenase-like 0.03 ± 0.04 0.6 ± 0.2
RA Aminoacid dehydrogenase-like, N-terminal domain 0.02 ± 0.02 0.7 ± 0.1

RA FAD/NAD-linked reductases, 0.02 ± 0.05 0.7 ± 0.2
dimerisation (C-terminal) domain

RA Formate dehydrogenase/DMSO reductase, domains 1-3 0.0009 ± 0.0403 1.0 ± 0.3
RA Ferredoxin reductase-like, C-terminal NADP-linked domain 0.0009 ± 0.0463 1.0 ± 0.3
RA Dehydroquinate synthase-like 0.01 ± 0.05 0.7 ± 0.3
RA Inosine monophosphate dehydrogenase (IMPDH) 0.03 ± 0.05 0.5 ± 0.2
RA Acid phosphatase/Vanadium-dependent haloperoxidase 0.009 ± 0.040 0.7 ± 0.2
RA FAD-linked oxidases, C-terminal domain 0.0007 ± 0.0303 1.0 ± 0.3

RA Succinate dehydrogenase/ 0.03 ± 0.02 0.5 ± 0.2
fumarate reductase flavoprotein C-terminal domain

RA LDH C-terminal domain-like 0.2 ± 0.1 0.3 ± 0.2
RA FAD-linked oxidoreductase 0.04 ± 0.03 0.6 ± 0.2
RB S-adenosyl-L-methionine-dependent methyltransferases 0.002 ± 0.038 0.9 ± 0.1
RB PLP-dependent transferases 0.00003 ± 0.03022 1.2 ± 0.1
RB Acyl-CoA N-acyltransferases (Nat) 0.01 ± 0.06 1.7 ± 0.2
RB Nucleotide-diphospho-sugar transferases 0.004 ± 0.032 0.9 ± 0.2
RB Class I glutamine amidotransferase-like 0.001 ± 0.080 1.0 ± 0.1
RB CoA-dependent acyltransferases 0.001 ± 0.024 1.0 ± 0.5
RB NagB/RpiA/CoA transferase-like 0.02 ± 0.05 1.1 ± 0.2
RB TK C-terminal domain-like 0.0006 ± 0.0540 0.7 ± 0.2
RB FabD/lysophospholipase-like 0.002 ± 0.029 1.1 ± 0.3
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RB Tetrapyrrole methylase 0.009 ± 0.055 1.0 ± 0.3
RB Glycerol-3-phosphate (1)-acyltransferase 0.03 ± 0.03 0.7 ± 0.2
RB Formyltransferase 0.04 ± 0.03 0.6 ± 0.1
RB D-aminoacid aminotransferase-like PLP-dependent enzymes 0.02 ± 0.05 0.5 ± 0.2
RB 4’-phosphopantetheinyl transferase 0.2 ± 0.1 0.5 ± 0.2

RB Methylated DNA-protein cysteine methyltransferase, 0.004 ± 0.027 0.8 ± 0.2C-terminal domain
RB Methylated DNA-protein cysteine methyltransferase domain 0.02 ± 0.05 0.6 ± 0.2
RC alpha/beta-Hydrolases 0.00005 ± 0.02412 1.6 ± 0.3
RC Actin-like ATPase domain 0.12 ± 0.04 0.7 ± 0.1
RC HAD-like 0.01 ± 0.08 0.9 ± 0.2
RC Thiolase-like 0.0004 ± 0.0460 1.3 ± 0.3
RC Radical SAM enzymes 0.06 ± 0.15 0.7 ± 0.3
RC Acetyl-CoA synthetase-like 0.000002 ± 0.019005 1.9 ± 0.3
RC Metallo-dependent hydrolases 0.0003 ± 0.0250 1.3 ± 0.2
RC HD-domain/PDEase-like 0.04 ± 0.11 0.7 ± 0.3
RC beta-lactamase/transpeptidase-like 0.005 ± 0.022 0.9 ± 0.2
RC Trimeric LpxA-like enzymes 0.04 ± 0.06 0.7 ± 0.2
RC Lysozyme-like 0.002 ± 0.027 1.0 ± 0.2
RC Composite domain of metallo-dependent hydrolases 0.00008 ± 0.01467 1.4 ± 0.2
RC N-terminal nucleophile aminohydrolases (Ntn hydrolases) 0.001 ± 0.032 1.1 ± 0.2
RC Ribokinase-like 0.005 ± 0.041 0.9 ± 0.2
RC Alkaline phosphatase-like 0.002 ± 0.039 1.0 ± 0.3
RC DHS-like NAD/FAD-binding domain 0.0002 ± 0.0226 1.2 ± 0.2
RC Phospholipase D/nuclease 0.007 ± 0.059 0.8 ± 0.2
RC Glycoside hydrolase/deacetylase 0.0004 ± 0.0145 1.1 ± 0.2
RC Cytidine deaminase-like 0.04 ± 0.06 0.6 ± 0.1
RC LysM domain 0.4 ± 0.7 0.3 ± 0.4
RC SGNH hydrolase 0.003 ± 0.056 0.9 ± 0.3
RC PurM N-terminal domain-like 0.7 ± 0.2 0.2 ± 0.1
RC PurM C-terminal domain-like 0.6 ± 0.2 0.2 ± 0.1
RC Phosphoglycerate mutase-like 0.003 ± 0.038 0.9 ± 0.3
RC Galactose mutarotase-like 0.04 ± 0.07 0.6 ± 0.3
RC Carbon-nitrogen hydrolase 0.005 ± 0.019 0.8 ± 0.2
RC PHP domain-like 0.02 ± 0.06 0.6 ± 0.2
RC Enolase N-terminal domain-like 0.002 ± 0.057 0.9 ± 0.3
RC Quinoprotein alcohol dehydrogenase-like 0.002 ± 0.051 0.9 ± 0.3
RC all-alpha NTP pyrophosphatases 0.06 ± 0.12 0.5 ± 0.2
RC FAH 0.00006 ± 0.02999 1.3 ± 0.3
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RC PFL-like glycyl radical enzymes 0.2 ± 0.3 0.3 ± 0.3
RC Amidase signature (AS) enzymes 0.003 ± 0.066 0.8 ± 0.3
RC Isochorismatase-like hydrolases 0.0002 ± 0.0469 1.2 ± 0.3
RC L,D-transpeptidase catalytic domain-like 0.002 ± 0.036 0.9 ± 0.3
RC Chorismate lyase-like 0.005 ± 0.076 0.8 ± 0.3
RC MoCo carrier protein-like 0.03 ± 0.03 0.5 ± 0.2
RC NAD kinase 0.03 ± 0.04 0.5 ± 0.2
RC ADC synthase 0.07 ± 0.05 0.4 ± 0.2
RC Folate-binding domain 0.02 ± 0.06 0.6 ± 0.2
RC AraD-like aldolase/epimerase 0.007 ± 0.044 0.7 ± 0.2
RC FMT C-terminal domain-like 0.2 ± 0.1 0.3 ± 0.2
RC IlvD/EDD N-terminal domain-like 0.007 ± 0.070 0.7 ± 0.2
RC Chelatase 0.06 ± 0.04 0.4 ± 0.2
RC Aminomethyltransferase beta-barrel domain 0.009 ± 0.031 0.6 ± 0.2

RC 2-isopropylmalate synthase LeuA, 0.16 ± 0.09 0.3 ± 0.2
allosteric (dimerisation) domain

RC CNF1/YfiH-like putative cysteine hydrolases 0.3 ± 0.1 0.2 ± 0.2
RC Nqo1 middle domain-like 0.3 ± 0.1 0.2 ± 0.2
RC beta-carbonic anhydrase, cab 0.007 ± 0.049 0.7 ± 0.2
RC N-acetylmuramoyl-L-alanine amidase-like 0.2 ± 0.2 0.3 ± 0.2
RC post-HMGL domain-like 0.05 ± 0.06 0.4 ± 0.2
RC Nqo1C-terminal domain-like 0.2 ± 0.1 0.2 ± 0.2
RC DmpA/ArgJ-like 0.04 ± 0.05 0.4 ± 0.2
RC LigT-like 0.10 ± 0.06 0.3 ± 0.2
RD TPR-like 0.001 ± 0.051 1.2 ± 0.4
RD FMN-linked oxidoreductases 0.002 ± 0.019 1.0 ± 0.1
RD Nqo1 FMN-binding domain-like 0.13 ± 0.07 0.3 ± 0.2
RF Multidrug e✏ux transporter AcrB transmembrane domain 0.0009 ± 0.0281 1.2 ± 0.3

RF Multidrug e✏ux transporter AcrB pore domain; 0.0005 ± 0.0449 1.2 ± 0.4PN1, PN2, PC1 and PC2 subdomains

RF Multidrug e✏ux transporter AcrB TolC docking domain; 0.0004 ± 0.0467 1.2 ± 0.4DN and DC subdomains
RF CBS-domain 0.007 ± 0.032 0.9 ± 0.2
RF ABC transporter transmembrane region 0.02 ± 0.05 0.7 ± 0.3
RF NTF2-like 0.00001 ± 0.06132 1.6 ± 0.3
RF Outer membrane e✏ux proteins (OEP) 0.0003 ± 0.0323 1.2 ± 0.3
RF ABC transporter involved in vitamin B12 uptake, BtuC 0.007 ± 0.054 0.8 ± 0.3
RF Rudiment single hybrid motif 0.008 ± 0.024 0.8 ± 0.2

RF Mechanosensitive channel protein MscS (YggB), 0.01 ± 0.06 0.6 ± 0.3
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C-terminal domain

RF Mechanosensitive channel protein MscS (YggB), 0.02 ± 0.06 0.6 ± 0.2transmembrane region
RF Proton glutamate symport protein 0.2 ± 0.1 0.3 ± 0.3
RF Ammonium transporter 0.18 ± 0.07 0.3 ± 0.2
S Sigma2 domain of RNA polymerase sigma factors 0.0002 ± 0.0290 1.4 ± 0.3
S ACP-like 0.0001 ± 0.0585 1.3 ± 0.4
S alpha/beta knot 0.6 ± 0.3 0.3 ± 0.1
S E set domains 0.002 ± 0.063 1.0 ± 0.3
S MOP-like 0.001 ± 0.063 1.0 ± 0.3
S PIN domain-like 0.009 ± 0.045 0.7 ± 0.3
S Anti-sigma factor antagonist SpoIIaa 0.0006 ± 0.0557 1.1 ± 0.3
S YjgF-like 0.00008 ± 0.02611 1.3 ± 0.2
S HCP-like 0.1 ± 0.2 0.4 ± 0.4
S ITPase-like 0.08 ± 0.07 0.4 ± 0.1
S MoaD/ThiS 0.04 ± 0.04 0.5 ± 0.2
S YbaK/ProRS associated domain 0.02 ± 0.05 0.6 ± 0.2
S Sporulation related repeat 0.1 ± 0.2 0.3 ± 0.2
S GatB/YqeY motif 0.19 ± 0.09 0.3 ± 0.1

SB AhpD-like 0.00002 ± 0.03103 1.5 ± 0.3
T CheY-like 0.00003 ± 0.02882 1.7 ± 0.2
T PYP-like sensor domain (PAS domain) 0.000002 ± 0.052582 2.0 ± 0.5
T Homodimeric domain of signal transducing histidine kinase 0.00003 ± 0.02859 1.6 ± 0.3
T Nucleotide cyclase 0.00002 ± 0.02994 1.6 ± 0.4
T GAF domain-like 0.00001 ± 0.03280 1.7 ± 0.3
T PDZ domain-like 0.10 ± 0.08 0.5 ± 0.2
T EAL domain-like 0.003 ± 0.084 0.9 ± 0.4
T cAMP-binding domain-like 0.00007 ± 0.01964 1.4 ± 0.3
T Histidine-containing phosphotransfer domain, HPT domain 0.0001 ± 0.0394 1.2 ± 0.3
T GlnB-like 0.02 ± 0.09 0.6 ± 0.2
T Mss4-like 0.01 ± 0.06 0.6 ± 0.3

TA Sigma3 and sigma4 domains of 0.001 ± 0.042 1.1 ± 0.2
RNA polymerase sigma factors

TA OsmC-like 0.0008 ± 0.0295 1.0 ± 0.2
TA CinA-like 0.14 ± 0.07 0.3 ± 0.1
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Table A.3: Scaling exponent of Pfam clans. The abundance of a clan scales as a power law of the genome size with
family-dependent scaling exponents �i. Each row of the table corresponds to a clan and shows its scaling exponent
along with its error and the corresponding functional category (category code). Clans associated to the same functional
category are ordered in decreasing order of abundance. The error associated with the exponent is calculated as the root
mean square deviation of the logarithm of the category abundance across all genomes from the estimated scaling law.

cat. code clan name Ai ± �Ai �i ± ��i

A S4 domain superfamily 0.5 ± 0.3 0.29 ± 0.15
C Pyruvate kinase-like TIM barrel superfamily 0.0005 ± 0.0298 1.16 ± 0.19
C 6-phosphogluconate dehydrogenase C-terminal-like superfamily 0.0007 ± 0.0163 1.10 ± 0.16
C SIS domain fold 0.01 ± 0.06 0.76 ± 0.21
C Transmembrane di-heme cytochrome superfamily 0.007 ± 0.056 0.82 ± 0.24
C Enolase like TIM barrel 0.0003 ± 0.0474 1.13 ± 0.28
C PFK-like superfamily 0.05 ± 0.06 0.50 ± 0.23
C LeuD/IlvD-like 0.03 ± 0.03 0.52 ± 0.16

CA Cytochrome c superfamily 0.005 ± 0.067 0.88 ± 0.45
CA Acyl-CoA dehydrogenase, C-terminal domain-like 0.00 ± 0.02 1.95 ± 0.42
CA Rieske-like iron-sulphur domain 0.0002 ± 0.05 1.15 ± 0.30
CA FMN-dependent nitroreductase-like 0.005 ± 0.053 0.78 ± 0.24
CB PRC-barrel like superfamily 0.01 ± 0.08 0.57 ± 0.28
E ACT-like domain 0.03 ± 0.12 0.70 ± 0.20
E gamma-glutamylcysteine synthetase/glutamine synthetase clan 0.002 ± 0.026 0.91 ± 0.23
E DAP epimerase superfamily 0.04 ± 0.09 0.51 ± 0.17
E Arginase/deacetylase superfamily 0.005 ± 0.056 0.74 ± 0.24
E Aspartate/glutamate racemase superfamily 0.004 ± 0.063 0.74 ± 0.23
F Ribonuclease H-like superfamily 0.031 ± 0.047 0.78 ± 0.29
F Nucleotidyltransferase superfamily 0.02 ± 0.06 0.73 ± 0.19
F PRPP synthetase-associated protein 1 0.2 ± 0.2 0.43 ± 0.15
F Tetrahydrobiopterin biosynthesis-like enzyme superfamily 0.10 ± 0.09 0.43 ± 0.20
F Nucleotidyltransferase substrate binding domain 0.1 ± 0.1 0.37 ± 0.26
F Purine and uridine phosphorylase superfamily 0.07 ± 0.06 0.44 ± 0.21
F dUTPase like superfamily 0.24 ± 0.07 0.22 ± 0.15
G Tim barrel glycosyl hydrolase superfamily 0.0002 ± 0.0523 1.32 ± 0.42
G Six-hairpin glycosidase superfamily 0.0004 ± 0.0425 1.13 ± 0.36
G Galactose-binding domain-like superfamily 0.003 ± 0.112 0.84 ± 0.46
G inositol polyphosphate 1 phosphatase like superfamily 0.01 ± 0.06 0.65 ± 0.24
G HIT superfamily 0.02 ± 0.08 0.55 ± 0.23

GA Glycosyl transferase clan GT-B 0.008 ± 0.036 0.98 ± 0.19
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GA Pectate lyase-like beta helix 0.00002 ± 0.0538 1.49 ± 0.52
GA Glycosyl hydrolase domain superfamily 0.003 ± 0.060 0.87 ± 0.26
GA Double Psi beta barrel glucanase 0.02 ± 0.04 0.55 ± 0.19
H ATP-grasp superfamily 0.008 ± 0.048 0.88 ± 0.15
H Acyl-coenzyme A oxidase/dehydrogenase N-terminal 0.000001 ± 0.024165 1.86 ± 0.42
H Riboflavin synthase/Ferredoxin reductase FAD binding domain 0.003 ± 0.055 0.90 ± 0.23
H FMN-binding split barrel superfamily 0.00001 ± 0.02020 1.52 ± 0.27
H Dihydrofolate reductase-like 0.01 ± 0.05 0.65 ± 0.23
H Release factor superfamily 0.21 ± 0.07 0.29 ± 0.09
H Succinyl-CoA synthetase flavodoxin domain superfamily 0.16 ± 0.08 0.34 ± 0.18

HA P-loop containing nucleoside 0.7 ± 0.2 0.70 ± 0.07
triphosphate hydrolase superfamily

HA PCMH-like FAD binding 0.00005 ± 0.0249 1.37 ± 0.25
HD PhoU-like superfamily 0.09 ± 0.12 0.41 ± 0.20
HE Ubiquitin superfamily 0.0004 ± 0.0341 1.24 ± 0.31
I HotDog superfamily 0.00002 ± 0.01312 1.60 ± 0.24
I Creatinase/prolidase N-terminal domain superfamily 0.02 ± 0.05 0.54 ± 0.20

IA PLC-like phosphodiesterases 0.02 ± 0.06 0.53 ± 0.23
J Ribosomal protein S5 domain 2-like superfamily 1.05 ± 3.94 0.32 ± 0.08
J Transcription elongation factor G C-terminal 0.56 ± 0.2 0.28 ± 0.11
J Helix-two-turns-helix superfamily 0.5 ± 0.1 0.20 ± 0.17
J DALR superfamily 0.5 ± 0.2 0.20 ± 0.12
K Peptidase clan SF 0.01 ± 0.05 0.71 ± 0.20
L OB fold 0.9 ± 0.8 0.45 ± 0.07
L PD-(D/E)XK nuclease superfamily 0.1 ± 0.1 0.58 ± 0.23
L NUDIX superfamily 0.0004 ± 0.0212 1.19 ± 0.21
L DNA breaking-rejoining enzyme superfamily 0.002 ± 0.022 0.97 ± 0.25
L His-Me finger endonuclease superfamily 0.005 ± 0.038 0.78 ± 0.28
L DNase I-like 0.006 ± 0.047 0.75 ± 0.24
L GIY-YIG endonuclease superfamily 0.10 ± 0.07 0.36 ± 0.22
L DNA/RNA ligase superfamily 0.02 ± 0.09 0.55 ± 0.20
L HRDC-like superfamily 0.07 ± 0.06 0.36 ± 0.16

LA Helix-turn-helix clan 0.0002 ± 0.0216 1.64 ± 0.14
LA Periplasmic binding protein like 0.00004 ± 0.02710 1.49 ± 0.38

LA Fatty acid responsive transcription factor FadR, 0 ± 0.03 1.98 ± 0.34
C-terminal domain

LA lambda integrase N-terminal domain 0.06 ± 0.05 0.49 ± 0.22
LA MetJ/Arc repressor superfamily 0.03 ± 0.10 0.56 ± 0.34
LA ParB-like superfamily 0.008 ± 0.030 0.70 ± 0.26
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LA IHF-like DNA-binding protein supewrfamily 0.08 ± 0.13 0.39 ± 0.28
LB EPT/RTPC-like superfamily 0.1 ± 0.1 0.33 ± 0.13
MA Ig-like fold superfamily (E-set) 0.00004 ± 0.02909 1.49 ± 0.43
MA von Willebrand factor type A 0.0003 ± 0.0271 1.17 ± 0.30
MA Pilus subunit 0.005 ± 0.084 0.83 ± 0.41
MA PGBD superfamily 0.005 ± 0.061 0.75 ± 0.33
MA Peptidase MD 0.04 ± 0.06 0.48 ± 0.24
N Flagellar motor switch family 0.1 ± 0.2 0.34 ± 0.30
O GroES-like superfamily 0.00002 ± 0.02079 1.56 ± 0.28
O FKBP-like superfamily 0.02 ± 0.04 0.62 ± 0.28
O Chaperone J-domain superfamily 0.07 ± 0.08 0.45 ± 0.24
O Cyclophilin-like superfamily 0.006 ± 0.024 0.74 ± 0.19
O HSP20-like chaperone superfamily 0.008 ± 0.048 0.65 ± 0.24

OA Peptidase clan MA 0.005 ± 0.031 0.97 ± 0.15
OA ClpP/Crotonase superfamily 0.002 ± 0.047 1.06 ± 0.21
OA Peptidase clan MH/MC/MF 0.002 ± 0.033 1.03 ± 0.19
OA Calcineurin-like phosphoesterase superfamily 0.002 ± 0.023 1.00 ± 0.18
OA Peptidase clan CA 0.0008 ± 0.0260 1.09 ± 0.24
OA LuxS/MPP-like metallohydrolase 0.09 ± 0.10 0.48 ± 0.26
OA Peptidase clan PA 0.005 ± 0.078 0.79 ± 0.26
OA MACRO domain superfamily 0.10 ± 0.07 0.33 ± 0.18
OB PP2C-like superfamily 0.0008 ± 0.0557 0.97 ± 0.34
P Ferritin-like Superfamily 0.001 ± 0.022 1.05 ± 0.20
P Multicopper oxidase-like domain 0.002 ± 0.046 0.93 ± 0.30
P SPFH superfamily 0.2 ± 0.2 0.34 ± 0.23
P SufE/NifU superfamily 0.2 ± 0.1 0.23 ± 0.16
Q Dimeric alpha/beta barrel superfamily 0 ± 0.02 2.01 ± 0.29
R Bet V 1 like 0.00002 ± 0.03971 1.50 ± 0.37
R Acetyl-decarboxylase like superfamily 0.0005 ± 0.0511 1.06 ± 0.29
R Helical backbone metal receptor superfamily 0.004 ± 0.068 0.81 ± 0.34
R GME superfamily 0.04 ± 0.09 0.44 ± 0.21

RA 4Fe-4S ferredoxins 0.008 ± 0.133 0.94 ± 0.35
RA Thioredoxin-like 0.002 ± 0.026 1.16 ± 0.20
RA VOC superfamily 0.00 ± 0.01 2.11 ± 0.32
RA Metallo-hydrolase/oxidoreductase superfamily 0.0008 ± 0.0236 1.13 ± 0.17
RA ALDH-like superfamily 0.000009 ± 0.009462 1.64 ± 0.25
RA 2Fe-2S iron-sulfur cluster binding domain 0.001 ± 0.060 1.05 ± 0.26
RA Transthyretin superfamily 0.002 ± 0.074 0.94 ± 0.53
RA Flavoprotein 0.003 ± 0.049 0.89 ± 0.27
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RA Isocitrate/Isopropylmalate dehydrogenase-like superfamily 0.03 ± 0.04 0.64 ± 0.17

RA Formate/glycerate dehydrogenase 0.001 ± 0.030 0.99 ± 0.19
catalytic domain-like superfamily

RA Ferredoxin / Ferric reductase-like NAD binding 0.0007 ± 0.0564 1.02 ± 0.26
RA Dehydroquinate synthase-like superfamily 0.01 ± 0.05 0.68 ± 0.29
RA FAD-linked oxidase C-terminal domain superfamily 0.0001 ± 0.0283 1.21 ± 0.25
RA Acid phosphatase/Vanadium-dependent haloperoxidase 0.004 ± 0.050 0.77 ± 0.24
RA LDH C-terminal domain-like superfamily 0.24 ± 0.10 0.23 ± 0.25
RA FAD-linked oxidoreductase 0.02 ± 0.04 0.52 ± 0.16
RB PLP dependent aminotransferase superfamily 0.001 ± 0.040 1.22 ± 0.13
RB N-acetyltransferase like 0.00001 ± 0.02720 1.70 ± 0.23
RB Glycosyl transferase clan GT-A 0.01 ± 0.06 0.91 ± 0.20
RB Class-I Glutamine amidotransferase superfamily 0.003 ± 0.032 0.99 ± 0.14

RB Isomerase,CoA transferase & 0.001 ± 0.026 1.04 ± 0.22
Translation initiation factor Superfamily

RB CoA-dependent acyltransferase superfamily 0.001 ± 0.098 0.96 ± 0.39
RB Patatin/FabD/lysophospholipase-like superfamily 0.0003 ± 0.0525 1.12 ± 0.26
RB Acyltransferase clan 0.02 ± 0.08 0.67 ± 0.28
RC FAD/NAD(P)-binding Rossmann fold Superfamily 0.02 ± 0.01 1.12 ± 0.08
RC Alpha/Beta hydrolase fold 0.00007 ± 0.03443 1.54 ± 0.29
RC Actin-like ATPase Superfamily 0.04 ± 0.03 0.75 ± 0.14
RC Thiolase-like Superfamily 0.0006 ± 0.0464 1.22 ± 0.25
RC HAD superfamily 0.03 ± 0.10 0.79 ± 0.19
RC Amidohydrolase superfamily 0.002 ± 0.039 1.07 ± 0.17
RC Hexapeptide repeat superfamily 0.13 ± 0.05 0.58 ± 0.19
RC ANL superfamily 0.000001 ± 0.013365 1.91 ± 0.30
RC Serine beta-lactamase-like superfamily 0.006 ± 0.033 0.90 ± 0.18
RC HD/PDEase superfamily 0.06 ± 0.12 0.60 ± 0.27
RC NTN hydrolase superfamily 0.001 ± 0.036 1.06 ± 0.17
RC Ribokinase-like superfamily 0.005 ± 0.054 0.87 ± 0.20
RC Alkaline phosphatase-like 0.001 ± 0.039 1.01 ± 0.30
RC Lysozyme-like superfamily 0.003 ± 0.032 0.89 ± 0.26
RC LysM-like domain 0.06 ± 0.16 0.53 ± 0.34
RC DHS-like NAD/FAD-binding domain 0.0002 ± 0.0101 1.20 ± 0.18
RC Cytidine deaminase-like (CDA) superfamily 0.03 ± 0.07 0.60 ± 0.14
RC Phospholipase D superfamily 0.04 ± 0.11 0.55 ± 0.28
RC Histidine phosphatase superfamily 0.006 ± 0.062 0.77 ± 0.26
RC Glycoside hydrolase/deacetylase superfamily 0.0008 ± 0.0250 1.01 ± 0.25
RC Galactose Mutarotase-like superfamily 0.002 ± 0.038 0.86 ± 0.31
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RC SGNH hydrolase superfamily 0.002 ± 0.058 0.91 ± 0.32
RC PFL-like glycyl radical enzyme superfamily 0.3 ± 0.3 0.26 ± 0.31
RC Enolase N-terminal domain-like superfamily 0.0003 ± 0.0477 1.06 ± 0.27

RC Fumarylacetoacetate hydrolase, 0.00003 ± 0.02993 1.34 ± 0.29
C-terminal domain, superfamily

RC L,D-transpeptidase catalytic domain 0.001 ± 0.030 0.94 ± 0.30
RC Chorismate lyase/UTRA superfamily 0.003 ± 0.080 0.82 ± 0.31
RC MoCo carrier protein-like superfamily 0.06 ± 0.06 0.44 ± 0.16
RC Chelatase Superfamily 0.04 ± 0.04 0.45 ± 0.24

RC Fumarate reductase respiratory 0.1 ± 0.1 0.31 ± 0.19
complex transmembrane subunits

RD Tetratrico peptide repeat superfamily 0.005 ± 0.083 1.07 ± 0.44
RD Common phosphate binding-site TIM barrel superfamily 0.02 ± 0.06 0.91 ± 0.11
RF Membrane and transport protein 0.003 ± 0.041 1.01 ± 0.30
RF ABC transporter membrane domain clan 0.007 ± 0.037 0.84 ± 0.26
RF NTF2-like superfamily 0.0007 ± 0.1039 1.07 ± 0.36
S Zinc beta-ribbon 0.06 ± 0.04 0.63 ± 0.20
S ACP-like superfamily 0.000004 ± 0.062939 1.68 ± 0.41
S SPOUT Methyltransferase Superfamily 0.5 ± 0.2 0.31 ± 0.11
S PIN domain superfamily 0.004 ± 0.032 0.87 ± 0.27
S STAS domain superfamily 0.0002 ± 0.0337 1.17 ± 0.30
S YjgF-like superfamily 0.00004 ± 0.02870 1.32 ± 0.24

S Phenylalanine- and lysidine-tRNA 0.18 ± 0.08 0.26 ± 0.17
synthetase domain superfamily

S YqeY-like superfamily 0.17 ± 0.083 0.27 ± 0.14
S Maf/Ham1 superfamily 0.1 ± 0.1 0.30 ± 0.17

SB AhpD-like superfamily 0.00005 ± 0.05671 1.31 ± 0.28
ST Type III antifreeze and spore coat polysaccharide 0.01 ± 0.05 0.62 ± 0.23
T His Kinase A (phospho-acceptor) domain 0.00003 ± 0.02576 1.72 ± 0.19
T CheY-like superfamily 0.00002 ± 0.02374 1.72 ± 0.23
T PAS domain clan 0.000002 ± 0.029792 1.92 ± 0.44
T Nucleotide cyclase superfamily 0.00001 ± 0.02925 1.63 ± 0.44
T GAF domain-like 0.00 ± 0.01 2.15 ± 0.29
T PDZ domain-like peptide-binding superfamily 0.04 ± 0.05 0.59 ± 0.18
T GlnB-like superfamily 0.008 ± 0.060 0.71 ± 0.25
T Src homology-3 domain 0.3 ± 0.2 0.25 ± 0.36
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