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Abstract

Over the past few years years, technological advances in the field of silicon micro-
machining have initiated the industrial growth of Micro/Nano Electro Mechanical
Systems (M/NEMS) for fabricating sensors or actuators.
In the field of NEMS with sub-micron sizes, the properties allow targeting applica-
tions in biomedical or biochemical analyses. It has been demonstrated that these
nano mass (or force) sensors achieve resolutions of the order of zeptogram (10−21 g)
or picoNewton, hence allowing early diagnosis of certain cancers.
Transduction schemes of these systems are currently based on electrical principles:
many teams have nevertheless shown that photonics operates and detects tiny dis-
placement in the order of femtometer. This hybrid technology, photonic circuit
associated with M/NEMS, potentially offers a significant improvement compared to
electrical transduction.
The purpose of the thesis consists in developing the optomechanical transduction
for NEMS resonators displacement. A simple analytical model is presented together
with a numerical simulation. The performance of optical detection is compared to
electrical detection features. The comparison is based on objective criteria (sensitiv-
ity, noise, crowding) for designing original optomechanical structures. A dedicated
bench has been developed for the optical and mechanical characterizations of the
samples placed in a controlled environment. Measurements on fabricated devices
allow a better understanding of the design constrains and, more in general, of the
optomechanical detection applied to NEMS.
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Résumé

Au cours de ces dernières années, les progrès technologiques dans le domaine du
micro-usinage sur silicium ont permis le développement de Micro/Nano Systèmes

Électro Mécaniques (M/NEMS) pour réaliser des capteurs ou des actionneurs.
Dans le domaine des NEMS, dont les dimensions sont par définition submicroniques,
les propriétés obtenues permettent de viser des applications en analyse biochimique
ou biomédicale. Il a été démontré que ces nano capteurs de masse (ou de force)
atteignent des résolutions de l’ordre du zeptogramme (10−21 g) ou du picoNewton
ce qui permet d’envisager des diagnostics précoces de certains cancers.
Tous ces systèmes utilisent à l’heure actuelle des moyens d’actionnement et de
détection électriques: de nombreuses équipes ont néanmoins démontré que la pho-
tonique actionne et détecte des mouvements de très faibles amplitudes, de l’ordre
du femtomètre. Cette technologie hybride, circuit photonique associé au M/NEMS,
offre potentiellement un gain de performance important par rapport aux moyens de
transduction électromécanique.
L’objectif de la thèse est le développement de la transduction optomécanique afin
de détecter le déplacement de résonateurs NEMS. Un simple modèle analytique est
proposé avec le support d’un simulation numérique. Les performances de transduc-
tion optique sont comparées aux caractéristiques de la transduction électrique. La
comparaison se base sur des critères objectifs (sensibilité, bruit, encombrement) puis
de proposer des structures optomécaniques originales. Un banc de caractérisation
optique et mécanique est développé pour la caractérisation des échantillons dans un
environnement contrôlé. Des mesures sur des composants fabriqués permettent de
mieux appréhender les contraintes de dimensionnement et, de façon plus générale,
la transduction optomécanique appliquée aux dispositifs NEMS.
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Thesis presentation

This thesis has been realised within the Laboratoire Composants Micro-Capteurs1

(LCMC ) of CEA-Leti in Grenoble. The core expertise of the laboratory consists in
the full realisation of M/NEMS sensors comprising the conception, the fabrication
and the characterisation. For 30 years, the efforts of this group have produced mass
sensors, accelerometers, gyroscopes, magnetometers, pressure sensors, hygrometer
and microphones based on M/NEMS technology.
Given the topics of this thesis, a collaboration was established with the Département
d’optoélectronique2 (DOPT ) which is present in the same institute. This allowed
to benefit from their expertise on simulation and fabrication of photonic elements,
furthermore they provided some preliminary characterisations and an endorsed test
bench as reference.

This work has been supervised by Laurent Duraffourg, currently chief of the
Optical Sensors & Nanophotonics laboratory, and by Guillaume Jourdan, staff sci-
entist of LCMC involved in the OLYMPIA project. Sébastien Hentz collaborated
daily and funded the experimental setup thanks to the European Research Grant
ENLIGHTENED. Although I was the first on this activity, the presence of Geoffroy
Scherrer and Marc Sansa Perna greatly contributed to the setup development and
to sample characterisation. The fabrication of the devices was possible thanks to
the professionalism of Jean Marc Fedeli and Marc Gely. Philippe Grosse and Karen
Ribaud provide equipments and preliminary optical characterisations. Numerical
simulations were performed by Daivid Fowler, Geoffroy Scherrer and Taurel Boris.

1MEMS sensors laboratory
2Optics and photonics department
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Thesis presentation

Goal of the thesis

This work aims at developing a new transduction method for measuring the dis-
placement of NEMS devices. Whereas traditional readout methods do not tolerate
the downscaling and struggle in the GHz domain, the optomechanical detection is
the perfect candidate for a high responsivity and high bandwidth transduction of
M/NEMS displacement.
Although the optomechanical detection has a wide range of applications, we focused
on the neutral mass sensing based on nanomechanical resonators [1]. The recent
demonstration of neutral mass spectrometry [2] and high-resolution inertial imagers
[3] opens up new avenues for portable analytical instruments. These applications
however, require the resonator to be operated on several modes simultaneously. Even
today, the combination of very high frequencies, small readout signals and multi-
mode operation remains a challenge for most electrical transduction techniques.
New transduction schemes with high bandwidth and high displacement sensitivity
are required.
Nano-optomechanics exhibits these features, and the progress made in the last
decade now allows simple on-chip integration [4]. Extremely high displacement
sensitivities are attained with devices that are both optically and mechanically res-
onating [5] in which case the optomechanical coupling is exquisite. Mass sensing
applications however, require low-mass mechanical resonators such as 1D devices; in
this case, the optomechanical coupling is less impressive, and integrated realizations
are scarce, in particular for force [6], or mass sensing applications [7]. Multi-mode
operation required for mass sensing implies high-frequency readout signals of low
amplitude, which remain delicate to handle in the GHz range.
The optomechanical detection benefits from the virtues of the photonics such as a
large bandwidth, the wavelength division multiplexing and the immunity to electro-
magnetic interferences, providing a near-field detection which is limited theoretically
by the shot noise of the light.

Leti approaches the optomechanical readout by merging two technologies on
the same substrate: the M/NEMS technology together with the silicon on-chip
photonics (fig. 1). The fabrication of new devices went together with a dedicated
test bench: different requirements have to be fulfilled in order to test hybrid devices
which cover optical, mechanical and electrical domains.
This thesis faced many aspects: the design of NEMS and photonic elements, the
fabrication of the devices, the instrumentation and the test bench assembly which all
together allowed to perform experimental measurements on optomechanical devices.
The optomechanical transduction developed in this thesis will be a powerful tool in
the LCMC laboratory. It may be the basis of new generations of optomechanical
accelerometers, gyroscopes or gas sensors with enhanced performances.
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Figure 1: This thesis addresses the challenge of merging of two technologies on the
same substrate: the M/NEMS together with the silicon on-chip photonics.

Outline of the manuscript

Chapter 1 introduces the state-of-the-art of integrated photonics and M/NEMS sen-
sors. The merging of these two technologies improves the transduction performance
in terms of bandwidth and resolution.

Chapter 2 introduces the challenge of neutral mass sensing with nanoresonators.
The downscaling of the cantilever and the multimode operation require a transduc-
tion at very high frequency preserving a good signal-to-noise ratio and stability.
Furthermore the simplified multiplexing offered by the photonics improves the sur-
face of detection via a network of NEMS.

Chapter 3 introduces the theory of the ring resonators which forms the basis of
optomechanical transduction. It aims to introduce the correct glossary and the right
tools to the reader.

Chapter 4 gives an overview of the optomechanical theory. More concretely, the
interaction between the ring resonator and an oscillating cantilever is studied for
the purpose of developing the nanoresonator readout.

Chapter 5 shows the design of the optomechanical devices and their fabrication
process. Once the photonic elements have been endorsed, we coupled the ring to a

3



Thesis presentation

NEMS resonator such as a cantilever or a membrane. A well-studied piezoresistive
detection is also available for a smooth technology transition and for in-situ compar-
ison between different transductions. A fair comparison between piezoresistive and
optomechanical transduction will be done establishing similarities and differences
and limits of these techniques.

Chapter 6 describes the design of the experimental setup: the sample, placed
inside a vacuum chamber, has to be connected to external instrumentation. The
test bench description is followed by the noise characterisation of the setup and of
the equipments.

Chapter 7 concerns the experimental characterisation of the device: preliminary
experiments test the mechanical and photonic parts separately, then, the optome-
chanical transduction is investigated deeply.
The mechanical response, the thermomechanical noise and the Allan deviation of
the cantilever are obtained by the means of the optomechanical detection and com-
pared in-situ thanks to a parallel piezoresistive detection. The optomechanical cou-
pling factor and the transduction responsivity are evaluated experimentally. The
optomechanical downmixing technique, presented here, removes some limits of the
optomechanical transduction. The optical actuation is performed as well on the
cantilever by the means of the optical gradient force.

4



Chapter 1

Introduction

NanoElectroMechanical Systems (NEMS) are mechanical systems at the nanoscale
which suit well as sensors. By virtue of their small dimensions, the are extremely
sensitive and reactive to the external stimulus which we want to measure. They can
be considered as the natural evolution of MEMS : with the progresses of microelec-
tronics, one or more dimensions are reduced to the sub-micron range (see fig. 1.1).

(a) A mite. (b) MEMS. (c) M/NEMS. (d) NEMS.

Figure 1.1: Evolution of mechanical system: from micrometric to nanometric scale.
(a)(b) Courtesy of Sandia National Laboratories, (c) from [8] and (d) from [9].

From their appearance in the early 2000, M/NEMS are applied in different fields:
gas detection, atomic force microscopy, inertial sensing, magnetometry, pressure
detection, biological sensing and mass spectrometry.
M/NEMS are tools also for more fundamental investigation, they can be considered
like a sort of gym for testing phenomena at the nano and mesoscopic scales.

1.1 M/NEMS sensors

The mechanical system is formed by a mobile element which is subject to the external
perturbations. The mobile part is a mechanical oscillator such as a cantilever, a

5



Chapter 1. Introduction

membrane or more in general a suspended proof mass for inertial sensors.
The M/NEMS operate mainly in resonance mode in order to realize mechanical
oscillators which act as force or mass sensor. The underlying principle of detection of
resonant sensors is based on the gravimetric effect: the system is driven to resonance
and the resonance frequency is monitored in real time. The presence of an additional
mass or an acceleration shifts the resonance frequency and, as consequence, the
amplitude and the phase response of the oscillator are modified (see fig. 1.2). The
mass addition could be the consequence of a gas abortion or caused by a particle
landed on the cantilever, whereas an inertial force originates from an acceleration
or from a sample-tip interaction.
It is easy to understand that in the former case, we obtain a gas or mass sensor
whereas the second situation deals with acceleration or force sensing.

Figure 1.2: The principle of the gravimetric effect: an additional mass shifts the
mechanical resonance frequency of the NEMS. Extracted from [10]

.

To track the resonance frequency, we have to readout the displacement of the
NEMS. Traditionally the transduction and the excitation are performed electrically,
that explains the name electromechanical system.
In the search for better transduction performances, the NEMS sizes are scaled down
by applying an homothetic reduction: in this way the responsivity to the external
perturbation is extremely enhanced. However, some drawbacks show up: the res-
onance frequency increases and the NEMS displacement becomes smaller. In the
frame of mass sensing, the detection of single particle requires the detection of higher
modes (at higher frequencies) in addition to the fundamental resonance. Capaci-
tive, piezoresistive and magnetomotive detections are well established techniques
but they became inefficient or difficult to integrate as the device scales down. The
combination of very high frequencies, small readout signal and multimode operation
still remains a challenge for most electrical transduction techniques.
Optomechanical transduction instead, overcomes naturally all these limits thanks

6



1.2. Silicon photonics and optical cavities

to the virtues of photonics. Unlike the electrical signals, the optical signals do not
suffer from parasitic capacitances which limit the transduction bandwidth. The de-
tection of NEMS displacement at very high frequency and the access to higher order
modes is easily available with the optomechanical detection.
Tiny displacements of downscaled NEMS are not an issue for the optomechanical
detection: the absence of electromagnetic interferences does not require any signal
amplification in the proximity of the device, furthermore the weak optical signals are
transmitted over long distances by the means of waveguides which have negligible
losses.
The downscaling presents a further problem: the NEMS offers a smaller surface to
the flux of particles decreasing, as consequence, the number of detectable events.
The Very Large Scale Integration (VLSI ) offers a solution by deploying a matrix
of devices. However, piezoresistive technique requires up to three electric contacts
for the transduction and one for the electrostatic actuation, so the matrix size is
soon limited for design reasons. The electrical paths of several devices would be
hard to manage on the wafer. By using the wavelength division multiplexing, several
wavelengths coexist into the same waveguide and each of them addresses a single
NEMS device. In this way, the matrix of NEMS is not limited any more and the
capture surface is easily enhanced by a factor from 20 to 100.

1.2 Silicon photonics and optical cavities

The optical fibers already replaced the electrical cables in the telecommunication
lines over long distances, similarly, the silicon photonics aims to substitute the mi-
croelectronics in the signal processing or in the inter-chip communication. Unlike
electrical signals, optical signals do not suffer from the parasitic capacitances or the
electromagnetic interferences, this means that photonic devices have a larger signal
bandwidth and a reduced power consumption compared to electronic devices.
The silicon photonics integrates the industry of microelectronics which already offers
an endorsed CMOS technology and the possibility of a VLSI. In the last decade, the
progress made in fabrication allow a simple on-chip integration of photonic elements
[11]. Nowadays the light is coupled and managed along the wafer by using couplers,
waveguides, filters, splitters and multiplexers. The photonics becomes complete
with the emerging of active elements like lasers, modulators [12] and photodetectors
which are integrated on the wafer.

The light can be confined in optical cavities which play an important role in the
success of photonics because they are already employed for on-chip lasers or wave-
length demultiplexers. The simplest optical cavity is the Fabry-Perot cavity but
more practical on-chip realisations consist in the whispering gallery resonators: a
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Chapter 1. Introduction

looped waveguide, a disk or a sphere is coupled evanescently to the external world
via a bus waveguide. Similarly to a Fabry-Perot cavity, a whispering gallery hosts
only wavelengths which are submultiples of the circular optical path. Photonic crys-
tals are a third solution to confine the light into a cavity. The most common optical
cavities are gathered in fig. 1.3:

Figure 1.3: Different optical cavities geometry according to the confinement method:
Fabry-Perot, whispering gallery and photonic crystal. Q is the optical quality factor
and V the volume of the cavity. Extracted from [13]

The standard tools of the CMOS technology provide on-chip whispering galleries
with interesting quality factors, and stable monomode bus waveguides which are
prealigned with the cavity (see section 5.7). Furthermore the light coupling is easily
implemented using the grating couplers (see section 5.3).
Since the fabrication technology enables the wafer integration of photonics and
NEMS devices, we employ one of this photonic resonators to perform the opto-
mechanical transduction of the NEMS displacement.

1.3 Optomechanical detection

In this work, photonics is a tool to ameliorate the state of the art of NEMS sensors:
the improved readout displacement of a NEMS is obtained coupling the mechanical
resonator to the optical cavity. Since the light circulates several times inside the
cavity before leaving it, any perturbation of the cavity impacts the light several
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1.3. Optomechanical detection

times and the effect of this perturbation cumulates. Compared to a single reflection
technique, the optical cavity detection has a responsivity improved by the cavity
finesse. In this way, also a weak cavity perturbation is easily detectable.
Furthermore, the light stocked inside the cavity achieves enough power to actuate
the NEMS by the means of the radiation pressure or optical gradient force.

The most intuitive example is a Fabry-Perot resonator whose one of the two
mirrors is free to move: any displacement of the mobile mirror modifies the wave-
length (or the frequency) of the standing lightwave which resonates in between (see
fig. 1.4).

Figure 1.4: A Fabry-Perot resonator having a mobile mirror. Extracted from [14]

By analogy, the optical properties of the whispering gallery are perturbed by the
presence of a NEMS which is placed within the evanescent tail of the intra-cavity
propagating wave. If a whispering gallery or a photonic crystal is free to oscillate,
it acts as mechanical and optical resonator simultaneously.
Fig. 1.5 offers a short-list of experimental achievements: a cantilever close to a
cleaved optical fiber (fig. 1.5a) forms a Fabry-Perot resonator very similar to schema
in fig. 1.4. A whispering gallery is perturbed by a in-plane cantilever (fig. 1.5b) or by
a torsional oscillator (fig. 1.5c) but it can also oscillate when it is released from the
substrate being an optical and a mechanical resonator at the same time (fig. 1.5d and
fig. 1.5e). In a similar way, a released photonic crystal serves as an optomechanical
resonator (fig. 1.5f).
Best optomechanical couplings are attained with devices which are both optically
and mechanically resonating (see fig. 1.5d, 1.5e and 1.5f). However, the mass sensing
applications require low-mass mechanical resonators such as a cantilever or thin
membrane (see fig. 1.5a, 1.5b and 1.5c).
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Chapter 1. Introduction

(a) (b) (c)

(d)
(e) (f)

Figure 1.5: A short-list of experimental optomechanical system: (a) a Fabry-Perot
realised between a cantilever and an optical fiber from [15], (b) an in-plane cantilever
coupled to ring resonator from [7], (c) a torsional oscillator into coupled to a disk
from [16], (d) a suspended double disk resonator from [17], (e) breath mode detection
of a disk from [5], (f) a photonic crystal released from the substrate from [18].

For this work, we choose an optical ring resonator for the optomechanical trans-
duction of an in-plane cantilever (see section 5.4.1). The fabricated device reminds
the system in fig. 1.5b.
Aiming at mass sensing applications, a more original design was attempted in order
to improve the capture surface: a membrane, which vibrates out of plane, is placed
over the ring resonator (see section 5.4.2).
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Chapter 2

Mechanical resonator as mass

transducer

Without being exhaustive, this chapter shows the theory of a cantilever in the regime
of small oscillation. We investigate the in-plane displacement u(x, t) along the beam
in the time domain finding the resonance frequency and the shape for each flexural
mode.
The goal is to show the cantilever performances for mass sensing applications and to
evaluate the pros and cons of cantilever downscaling. As we will see, the optomecha-
nical detection solves some problems for NEMS displacement readout, particularly
within the frame of neutral mass spectrometry [1][2].

Figure 2.1: Single clamped cantilever having thickness t, width w and length L.

11



Chapter 2. Mechanical resonator as mass transducer

2.1 Cantilever theory

For small deflection along the y-axis (u ≪ w), the motion of a thin homogeneous
cantilever (t ≪ L) is described by the equation of Euler-Bernoulli [19]

EI
∂4u(x, t)

∂x4
+ ρS

∂2u(x, t)

∂t2
= 0 (2.1)

where E is the young modulus, I = t · w3/12 the momentum of inertia, ρ is the
density and S = w · t the cross section area.
Following the Galerkin procedure, we separate the spatial and temporal dependency
of the displacement

u(x, t) =
∞
∑

n=1

un(t) · ψn(x) (2.2)

so the beam deformation is given by the contribution of infinite modes having a
shape ψn(x) and a temporal oscillation un(t).
The mode shapes ψn(x) form a orthogonal base satisfying

∫ L

0
ψn(x)ψm(x) dx = 0 if n 6= m (2.3)

and they are normalised to the maximum amplitude

max[ψn(x)] = 1 (2.4)

The resonance frequencies are obtained inserting the equation 2.2 in equation 2.1,

EIun(t)
∂4ψn(x)

∂x4
+ ρSψn(x)

∂2un(t)

∂t2
= 0 (2.5)

for each mode n we have

EI

ρS

1

ψn(x)

∂4ψn(x)

∂x4
= − 1

un(t)

∂2un(t)

∂t2
(2.6)

and, looking for solution of type un(t) = Une
−iωnt, we find

EI

ρS

1

ψn(x)

∂4ψn(x)

∂x4
= − 1

un(t)

∂2un(t)

∂t2
≡ ω2

n (2.7)

so, ψn(x) are eigensolutions of equation 2.1 satisfying

∂4ψn(x)

∂x4
= λ4

nψn(x) (2.8)
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2.1. Cantilever theory

The resonance frequencies fn = ωn/2π for all the modes are

⇒ fn =
λ2

n

2π

√

EI

ρS
=

(λnL)2w

4πL2

√

E

3ρ
(2.9)

The eigenvalues λn are obtained by solving the equation 2.8 with the help of the
boundary conditions. The general solution for the mode shape is

ψn(x) = An sinh(λnx) +Bn cosh(λnx) + Cn sin(λnx) +Dn cos(λnx) (2.10)

and the boundary condition for a single-clamped cantilever are

ψn(0) = 0 (2.11a)

ψ′
n(0) = 0 (2.11b)

ψ′′
n(L) = 0 (2.11c)

ψ′′′
n (L) = 0 (2.11d)

This leads to the system























Bn +Dn = 0 (2.12a)

An + Cn = 0 (2.12b)

An sinh(λnL) +Bn cosh(λnL) − Cn sin(λnL) −Dn cos(λnL) = 0 (2.12c)

An cosh(λnL) +Bn sinh(λnL) − Cn cos(λnL) +Dn sin(λnL) = 0 (2.12d)

which accepts non-null solutions only if λnL verifies the following condition

cosh(λnL) cos(λnL) + 1 = 0 (2.13)

We can find the values of λnL via a graphic solution combined with the numerical
bisection method as shown in fig. 2.2.

Figure 2.2: Graphic solution for transcendental equation in (2.13)
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Chapter 2. Mechanical resonator as mass transducer

The eigenvalues λnL are listed up to the 4-th mode in the table 2.1. The values
for the doubly-clamped cantilever are obtained solving the system with different
boundary conditions so that ψn(0) = ψ′

n(0) = ψn(L) = ψ′
n(L) = 0.

λ1L λ2L λ3L λ4L

Cantilever 1.875 4.694 7.854 10.995
Doubly clamped 4.73 7.853 10.995 14.14

Table 2.1: Eigenvalues of ψn(x) up to the 4-th mode.

A further effort is required to find the analytic expression of the mode shape
ψn(x) and the parameter An. From eq. (2.10) and (2.12d), we obtain

ψn(x) = An

{

[sinh(λnx) − sin(λnx)] − [sinh(λnx) + sin(λnx)] [cosh(λnx) − cos(λnx)]

cosh(λnx) + cos(λnx)

}

(2.14)

where An is fixed by the mode normalisation condition in eq. (2.4)

An =
cosh(λnL) + cos(λnL)

[sinh(λnL) − sin(λnL)] [cosh(λnL) + cos(λnL)] − [sinh(λnL) + sin(λnL)] [cosh(λnL) − cos(λnL)]
(2.15)

A1 A2 A3 A4

-0.367047756802 0.509233659366 -0.499612248377 0.500016779064

Table 2.2: Values for An up to the 4-th mode.

We can finally plot the mode shapes ψn(x) in fig. 2.3 introducing the scaled
variable ξ = x/L along the beam length.

Figure 2.3: Mode shapes for a free end cantilever. The x-axis is normalised to the
beam length.
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2.2. Driven harmonic oscillator

2.2 Driven harmonic oscillator

We are going to describe the cantilever displacement by the means of a unidimen-
sional harmonic oscillator model.
Differently from the previous section, the cantilever is now subject to a damping b
caused by a viscous environment. If we drive the cantilever with an arbitrary force
per unit length f(x, t), the Euler-Bernoulli equation in eq. (2.1) results as

EI
∂4u(x, t)

∂x4
+ ρS

∂2u(x, t)

∂t2
+ b

∂u(x, t)

∂t
= f(x, t) (2.16)

Projecting the equation on the n-mode, we find

EI
∫ L

0

∞
∑

m=1

ψn(x)λ4
nψm(x)um(t) dx+ ρS

∫ L

0

∞
∑

m=1

ψn(x)ψm(x)
∂2um(t)

∂t2
dx

+ b
∫ L

0

∞
∑

m=1

ψn(x)ψm(x)
∂um(t)

∂t
dx =

∫ L

0
ψn(x)f(x, t) dx (2.17)

un(t)λ4
nEI

∫ L

0
ψ2

n(x) dx+
∂2un(t)

∂t2
ρS

∫ L

0
ψ2

n(x) dx

+
∂un(t)

∂t
b
∫ L

0
ψ2

n(x) dx =
∫ L

0
ψn(x)f(x, t) dx (2.18)

Rearranging the above equation in a more compact form, we obtain the equation of
a harmonic oscillator

Mnün(t) + γu̇n(t) + knun(t) = Fn(t) (2.19)

where the modal mass is

Mn = M
∫ 1

0
ψ2

n(ξ) dξ = αnM (2.20)

the modal stiffness is

kn = (λnL)4EI

L3

∫ 1

0
ψ2

n(ξ) dξ = αn(λnL)4EI

L3
(2.21)

and the damping coefficient is equal to

γ = bL
∫ 1

0
ψ2

n(ξ) dξ = αnbL (2.22)
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Chapter 2. Mechanical resonator as mass transducer

To simplify the equations, we introduced the scaled variable ξ = x/L along
the beam length. Numerical calculation provides the values for the factors αn =
∫ 1

0 ψ
2
n(ξ) dξ shown in table 2.3.

α1 α2 α3 α4

0.25 0.25 0.25 0.25

Table 2.3: Values for αn up to the 4-th mode for a cantilever.

The force Fn(t) driving the oscillator has to be calculated depending on the
actuation force in the following way

Fn(t) =
∫ L

0
ψn(x)f(x, t) dx (2.23)

For a sinusoidal drive force Fn(t) = Fne
−iωt, the harmonic oscillator which describes

the n-th mode has a magnitude and a phase (fig. 2.4)

Rn(ω) =
Fn

Mn

√

(ω2
n − ω2)2 + ω2γ2

(2.24)

φn(ω) = arctan

(

γω

ω2
n − ω2

)

(2.25)
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Figure 2.4: Magnitude and phase of the harmonic oscillator with the change in
damping γ1 < γ2 < γ3 < γ4.

When the cantilever is under vacuum, the damping is negligible (γ/ωn ≪ 1), so
the resonance frequency of the damped oscillator is almost unchanged

ωr = ωn

√

1 − γ/ωn ≃ ωn (2.26)
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2.3. Neutral mass sensing

and the mechanical quality factor of the resonator is

Qmech =
ωn

γ
=

energy stored

energy lost per cycle
(2.27)

The cantilever displacement at the generic point x will be

u(x, t) =
∞
∑

n=1

ψn(x)Rn(ω)e−i(ωt+φn(ω)) =
∞
∑

n=1

ψn(x)
Fne

−i(ωt+φn(ω))

Mn

√

(ω2
n − ω2)2 + ω2γ2

(2.28)

thus the cantilever displacement in x is the result of infinite harmonic oscillators,
one for each mode, having different amplitudes and phases.

2.3 Neutral mass sensing

Modelling the cantilever mode as a damped harmonic oscillator of mass Mn and
stiffness kn (see section 2.2), the resonance frequency for the n-mode results

fn =
1

2π

√

kn

Mn

(2.29)

If now a mass ∆m is added to the cantilever, it applies on the cantilever an additional
force [20]. We have to update the harmonic oscillator equation in eq. (2.19) adding
a term F∆m

n (t) due to the supplementary mass ∆m on the cantilever.
In the following subsections, we will deal with two typical mass sensing scenarios:
the uniform mass deposition and the particle stick on the cantilever.

2.3.1 Uniform mass deposition

For a uniform mass deposition, the cantilever is subject to a force per unit length

funiform(x, t) = −∆m

L
ün(t)ψn(x) ⇒ F∆m

n (t) = −αn ∆mün(t) (2.30)

as a result, the equation of the harmonic oscillator for the n-mode in eq. (2.19)
becomes

Mnün(t) + γu̇n(t) + knun(t) = Fn(t) − αn ∆mün(t) (2.31)

so the resonance frequency shifts down from fn to f ∗
n where

f ∗
n =

1

2π

√

kn

Mn + αn∆m
(2.32)
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Chapter 2. Mechanical resonator as mass transducer

In the hypothesis that the mass addiction does not modify the stiffness and the
additional mass is minute (∆m ≪ Mn), it is possible to develop the previous formula
at the first order in ∆m

f ∗
n − fn = ∆fn ≃ − 1

2π

√

kn

Mn

∆m

2M
(2.33)

we obtain in this way the responsivity for the mass sensing

Rn ≡ ∆fn

∆m
= − fn

2M
(2.34)

Within the NEMS mass sensing context, the deposited mass ∆m is obtained mea-
suring the shift of the cantilever resonance frequency ∆fn.
The smallest mass detectable by the cantilever is directly linked to its frequency
stability which is estimated by the Allan deviation [21][22][23]. The mass resolution
δm results as

δm = 2M
δfn

fn

= 2M σfn
(τ) (2.35)

where σfn
(τ) is the Allan deviation of the resonance frequency signal calculated for

an integration time of the measurement τ .
The Allan deviation is a statistical tool which evaluates the frequency fluctuations
of a resonator over a given interval of time τ . For a generic signal y(t), the Allan
deviation is calculated as follows

σy(τ) =

√

√

√

√

1

2(N − 1)

N−1
∑

i=1

(

yi+1 − yi

)2
(2.36)

where yi is a generic sample of the signal y(t) averaged over a time τ . N is the
number of independent samples large enough for a correct statistics.

This principle opens the way for mass sensing of neutral particles [2][24][25].
Classical mass spectroscopy demands ionized particles measuring only the m/q ra-
tio; it fails for mass values bigger than few kDalton [26] and the presence of multiples
ionisation levels complicates the data interpretation. Furthermore, the mass of bi-
ological species which cannot be ionized (unless destroy them) is now accessible
[27][28].

2.3.2 Punctual mass addition and multimode operation

In the case of single particle detection, the frequency shift strongly depends on
the landing position. Intuitively, the deposited point-mass ∆m affects more the
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2.3. Neutral mass sensing

cantilever dynamics if it lands where the mode shape has a wider amplitude. We
have to modify the eq. (2.34) taking into account that the mass addition is localised
in a position x1.
For a punctual mass addiction in x1, the cantilever is subject to a force per unit
length

fparticle(x, t) = −δ(x− x1) ∆mün(t)ψn(x1) ⇒ Fn(t) = −∆mün(t)ψ2
n(x1) (2.37)

as a result, the equation of the harmonic oscillator for the n-mode in eq. (2.19)
becomes

Mnün(t) + γu̇n(t) + knun(t) = Fn(t) − ∆mün(t)ψ2
n(x1) (2.38)

and consequently, the new resonance frequency is

f ∗
n =

1

2π

√

kn

Mn + ∆mψ2
n(x1)

(2.39)

Developing to the first order, as done before in eq. (2.33), we find the resonance
frequency shift due to a localised mass addition

∆fn ≃ − fn

2Mn

∆mψ2
n(x1) (2.40)

The above equation is consistent with the intuition, if the particle lands in a node
of the mode shape, the resulting frequency shift will be null.
We also note that two different particles give rise to the same frequency shift if the
following condition is fulfilled

∆m1

∆m2

=
ψ2

n(x2)

ψ2
n(x1)

(2.41)

To decorrelate the mechanical frequency shift from the landing position, we have
to simultaneously track three modes for a free-end cantilever [29][30] and only two
modes for a doubly clamped beam [3].
The cantilever transduction bandwidth must be large enough to detect not only the
fundamental mode but higher modes. It results that for a cantilever at 60MHz, the
third resonance frequency achieves the GHz domain, being almost 17 times higher
than the fundamental one. Since piezoresistive transduction struggles as the signal
frequencies exceed 200-300MHz, the optomechanical readout is a valid alternative
for this application.
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2.4 Scaling down effects

The most important advantage of the downscaling is the mass responsivity im-
provement. For the sake of simplicity, we limit ourselves to the case of uniform mass
deposition.
Applying a homothetic reduction to the cantilever, we find from eq. (2.34) that the
mass responsivity scales as l−4

Rn ≡ ∆fn

∆m
= − fn

2M
=

(λnL)2

8πtL3

√

E

3ρ3
∝ 1

l4
(2.42)

this means that a modest size reduction of the devices causes a huge improvement
of the mass responsivity Rn for the all modes.
On the other hand, from eq. (2.9), the resonance frequencies scale as

fn =
(λnL)2w

4πL2

√

E

3ρ
∝ 1

l
(2.43)

thus the transduction technique must be fast enough to detect the cantilever dis-
placement at higher and higher frequencies. If we add the fact that we need to track
up to the third mode, the transduction bandwidth is a key for the mass sensing. As
stated above, classical transduction methods (e.g. piezoresistive one) become tricky
for frequencies above 200-300MHz.
But that is not all, compared to the fundamental mode, the cantilever stiffness
increases for the higher modes

kn = k1
αn

α1

(

λn

λ1

)4

(2.44)

This means that the readout technique must have a good responsivity in order to
detect smaller and smaller displacement of higher modes which are stiffer than the
fundamental one.
The last inconvenience of the downscaling is the reduced surface of capture (L ·w):
less landing area is offered to the flux of particles, fewer events are detected. A
solution is to deploy a matrix of NEMS much closer as possible to each other. (See
fig. 2.5)

A successful attempt was already done with NEMS having a piezoresistive read-
out, but the requirement of three electrical contacts for each device limits the matrix
dimension and complicates the fabrication (see fig. 2.5a). In that case, the multi-
plexing was done in the frequency domain tuning the cantilever resonance via the
beam length.
By the means of photonics, instead, we can address many optomechanical devices
on the same bus waveguide tuning the resonance wavelengths of the optical rings
(see fig. 2.5b).

20



2.5. Conclusions

(a) Matrix of piezo NEMS from [31] (b) Wavelength multiplexing from [32]

Figure 2.5: NEMS multiplexing complexity: comparison between the two readout
techniques.

2.5 Conclusions

Along the chapter, we have defined all the useful properties of a cantilever in the con-
text of mass sensing application (resonance frequency, effective mass, mass respon-
sivity...). Simple consideration about dimensional relations leads to clear conclusions
summed up in table 2.4: scaling down the sizes improves the mass responsivity but
it increases as well the cantilever resonance frequency and reduces the landing area.

Parameters Law scale Typical values

Mass ∝ l3 1 pg − 10 fg

Resonance frequency ∝ l−1 10MHz − 1GHz

Mass responsivity ∝ l−4 1019 − 1023 Hz/g

Stiffness ∝ l 0.1 − 100N/m

Surface of capture ∝ l2 0.5 − 5µm2

Table 2.4: Resuming the downscale effects for a homotethic miniaturisation of the
cantilever.

All these disadvantages (higher mechanical frequencies, small displacement and
limited multiplexing) are neutralised by an appropriate transduction technique: the
optomechanical transduction has an improved displacement responsivity, a larger
bandwidth and a simplified possibility of multiplexing.
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Chapter 3

Optical ring resonator

As we will see in chapter 4, the optomechanical transduction results from the sensi-
tivity of the photonic circuit faced to the external perturbations. For example, the
evanescent wave of the light travelling through a waveguide is sensitive to scatter-
ing: as a result, the light transmission is modified when an object approaches the
waveguide [33][34]. This makes the readout of the relative displacement possible.
Similarly, the phase velocity of the light is modified by the presence of the external
object such as a cantilever. Measuring the phase delay via an interferometric tech-
nique, we obtain an image of the cantilever displacement [35].
By using a optical resonator instead of a simple waveguide, we obtain an amplifying
effect: on average, a photon travels across the cavity F times before to leave it; we
call finesse this cavity parameter described in section 3.3.2. This means that the
action of the perturbation on each photon is multiplied by F : for example, the phase
delay of the photon into the ring cumulates each round-trip making its detection
easier [7]. That is why it is possible to achieve the best performances in terms of
displacement readout only by using an optical cavity.
The optical cavity fits also for the actuation of the NEMS, the light power is stocked
in a small volume enhancing the optical actuation on the cantilever (see section 4.4).

For this work, we chose a cavity made up with an optical ring: by the virtue of
easy on-chip integration and interesting quality factors, the ring resonator is a good
tool for the NEMS displacement readout.
This chapter aims to recall the characteristics of the optical ring resonator, especially
those which have a particular relevance for optomechanical applications. The model
described here provides the optical spectrum of the ring on the basis of the geometry
and the material optical properties.
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Chapter 3. Optical ring resonator

3.1 All pass resonator

A generic ring resonator consists of an optic waveguide which is looped back on
itself, such that a resonance occurs when the optical path length of the resonator is
exactly a whole number of wavelengths [36]

neff · L = m · λr ⇒ λr =
neff · L

m
with m = 1, 2, 3 . . . (3.1)

where L is the circumference of the ring, neff is the effective index of the ring and
λr the resonance wavelength.
A ring resonator as stand alone device only becomes useful when it is coupled to the
outside world. The most common coupling mechanism is the codirectional evanes-
cent coupling between the ring and an adjacent bus waveguide [36].
The simplest configuration is a ring coupled with a single waveguide (fig. 3.1):

Ei1 Et1
t

α

t∗

Et2Ei2

−κ∗
κ

Figure 3.1: Model of a all pass ring resonator

If the evanescent coupling between the guide and the ring is lossless and only
single polarization is considered, the interaction can be described by the matrix
relation [37]:

(

Et1

Et2

)

=

(

t κ
−κ∗ t∗

)(

Ei1

Ei2

)

(3.2)

Et1, Et2, Ei1, Ei2 are the complex mode amplitudes in the different parts of the sys-
tem; since they are normalized, their squared magnitude corresponds to the modal
power. The coupler parameters t and κ are unit-less and represent the amount of
light transmitted or coupled into the ring.
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For a lossless coupler the matrix is unitary, so

|κ|2 + |t|2 = 1 (3.3)

In order to simplify the model, we will choose Ei1 equal to 1 so all the field amplitudes
will be normalised to the input wave.
Equation (3.2) and (3.3) are supplemented by the circulation condition of the ring

Ei2 = α · eiθEt2 (3.4)

where α is the loss coefficient of the ring (zero loss means α = 1) and θ = 2πνL/vph

is the phase shift of the light due to a round trip.
For the sake of clarity:

• L = 2πr is the circumference of the ring with r the radius of the ring

• α = 10−AL/20 is the round-trip loss coefficient (A is the attenuation in dB/m)

• c is the speed of the light in vacuum

• vph = c/neff is the phase velocity of the ring mode

• k = 2π/λ is the vacuum wavenumber

• ν = k c/2π is the light frequency

• β = k · neff =
2π·neff

λ
is the propagation constant

With simple steps, it is possible to introduce the effective index neff into the
ring coupling relations by

θ =
2πν L

vph

=
k cL

vph

= k · neff · L =
2π neff · L

λ
(3.5)

From eq. (3.2) and (3.4), we obtain:






































Et1 =
−α+ te−iθ

−αt∗ + e−iθ
(3.6a)

Ei2 =
−ακ∗

−αt∗ + e−iθ
(3.6b)

Et2 =
−κ∗

1 − αt∗eiθ
(3.6c)

this leads to the output power which is reflected from the ring R

R = |Et1|2 = 1 − (1 − α2)(1 − |t|2)
1 + α2|t|2 − 2α|t| cos(θ − φt)

(3.7)
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where t = |t|eiφt . (Details in eq. (A.1))
|t| represents the portion of light which is not coupled into the ring and φt the phase
shift of the coupler.
The circulating power P inside the ring is given by (see eq. (A.2))

P = |Ei2|2 =
α2(1 − |t|2)

1 + α2|t|2 − 2α|t| cos(θ − φt)
(3.8)

On resonance, (θ − φt) = 2πm, where m is an integer, the through and the internal
ring power result as

R|resonance =
α2 + |t|2 − 2α|t|
1 + α2|t|2 − 2α|t| =

(α− |t|)2

(1 − α|t|)2
(3.9)

P|resonance =
α2|κ|2

1 + α2|t|2 − 2α|t| =
α2(1 − |t|2)
(1 − α|t|)2

(3.10)

A special case happens when the internal losses are equal to the coupling efficiency,
this means α = |t| which forces to zero the through power R. This is known as
the critical coupling, which is due to destructive interference between the wave
transmitted directly and the wave which had a round trip and is coupled again
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Figure 3.2: Wavelength response of the all pass resonator at critical coupling with
r = 10µm and neff = 3.

From eq. (3.9) and (3.10), we notice that R|resonance ≪ 1 and P|resonance ≫ 1
when α and |t| tend towards the unity. As we will see better in section 3.3.5, the
light power stocked into the ring is proportional to the finesse of the optical ring
resonator.
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3.2. Add-drop resonator

3.2 Add-drop resonator

In this configuration, a second waveguide is coupled on the other side of the ring.
The four ports of the ring are referred to in the following as input port, through
port, drop port and add port, as shown in the fig. 3.3:

Ei1 Et1

t1

Input Through

Ei2Et2
t2

Drop Add

t∗1

t∗2

Er1Er4

Er2Er3

α1, θ1α2, θ2

−κ∗
1κ1

−κ∗
2

κ2

Figure 3.3: Model of a basic add-drop ring resonator

As before, we describe the system by matrix relations
(

Et1

Er1

)

=

(

t1 κ1

−κ∗
1 t∗1

)(

Ei1

Er4

)

(3.11a)

(

Et2

Er3

)

=

(

t2 κ2

−κ∗
2 t∗2

)(

Ei2

Er2

)

(3.11b)

together with the condition of looseless couplers

|κ1|2 + |t1|2 = 1 (3.12a)

|κ2|2 + |t2|2 = 1 (3.12b)

and circulation phase shift

Er2 = α1 · eiθ1Er1 (3.13a)

Er4 = α2 · eiθ2Er3 (3.13b)

α = α1 · α2 (3.13c)

θ = θ1 + θ2 (3.13d)
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For the sake of simplicity, Ei1 is normalised to the unity, and Ei2 is equal to zero.
So we rewrite the two matrix relations in eq. (3.11) in the following system:























Et1 = t1 + κ1Er4 (3.14a)

Er1 = −κ∗
1 + t∗1Er4 (3.14b)

Et2 = κ2Er2 (3.14c)

Er3 = t∗2Er2 (3.14d)

Applying the conditions eq. (3.13a) and (3.13b), the system evolves in


































































Et1 =
t1 − t∗2αe

iθ

1 − t∗1t
∗
2αe

iθ
(3.15a)

Er1 =
−κ∗

1

1 − t∗1t
∗
2αe

iθ
(3.15b)

Et2 =
−κ∗

1κ2α1e
iθ1

1 − t∗1t
∗
2αe

iθ
(3.15c)

Er3 =
−κ∗

1t
∗
2α1e

iθ1

1 − t∗1t
∗
2αe

iθ
(3.15d)

Details of calculation are in appendix A.2.
We obtain the mode amplitude at the through and drop ports respectively from
equations (3.15a) and (3.15c).

Let is now calculate the normalised output power at the through:

R = |Et1|2 = 1 − (1 − |t1|2)(1 − α2|t2|2)
1 + α2|t1|2|t2|2 − 2α|t1||t2| cos(θ − φt1

− φt2
)

(3.16)

where t1 = |t1|eiφt1 and t2 = |t2|eiφt2 .
Similar steps for T , the normalised power at the drop port:

T = |Et2|2 =
α2

1(1 − |t1|2)(1 − |t2|2)
1 + α2|t1|2|t2|2 − 2α|t1||t2| cos(θ − φt1

− φt2
)

(3.17)

From eq. (3.15), we calculate the normalised power stocked into the ring:

P = |Er1|2 =
|κ1|2

1 + α2|t1|2|t2|2 − 2α|t1||t2| cos(θ − φt1
− φt2

)
(3.18)

For the following chapters, it is more convenient to write R, T and P in a better
form introducing the power transmission coefficients

Ki = |κi|2 = 1 − |ti|2 (3.19a)

Γ = α2 (3.19b)
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Figure 3.4: Wavelength response of the add-drop resonator at critical coupling with
r = 10µm, neff = 3, α = 0.8, t1 = 0.72 and t2 = 0.9

the total power amplitude attenuation coefficient

Z =
√

(1 −K1)(1 −K2)Γ = α|t1||t2| (3.20)

and the total cavity detuning

ϕ = θ − φt1
− φt2

(3.21)

Rewriting the equations (3.16), (3.17) and (3.18), the normalised powers result

R = 1 − K1[1 − (1 −K2)Γ]

1 + Z2 − 2Z cos(ϕ)
(3.22a)

T =
K1K2

√
Γ

1 + Z2 − 2Z cos(ϕ)
(3.22b)

P =
K1

1 + Z2 − 2Z cos(ϕ)
∝ T (3.22c)

The power circulating inside the ring will be proportional to the power at the drop
port. From here a practical convenience to use the drop port as a probe for the
optical power inside the ring.
A small last effort for writing the two output powers in a form similar to the Airy
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functions (fig. 3.5), remembering that cos(ϕ) = 1 − 2 sin2(ϕ/2):

R = 1 − R0

1 + M sin2(ϕ/2)

T =
T0

1 + M sin2(ϕ/2)

P =
P0

1 + M sin2(ϕ/2)

(3.23a)

(3.23b)

(3.23c)

with R0, T0, P0 and M defined as


































































R0 =
K1[1 − (1 −K2)Γ]

(1 − Z)2
(3.24a)

T0 =
K1K2

√
Γ

(1 − Z)2
(3.24b)

P0 =
K1

(1 − Z)2
(3.24c)

M =
4Z

(1 − Z)2
(3.24d)

On resonance (ϕ = 2mπ), the drop output power achieves the maximum whereas
the through output power is minimum

Rmin = 1 − R0 (3.25a)

Tmax = T0 (3.25b)

Pmax = P0 (3.25c)

from eq. (3.25a), in a lossless ring (Γ = 1) the through port will be zero only for
symmetrical couplingK1 = K2. For a realistic ring (Γ < 1), the possibility to achieve
complete filtering (Rmin = 0) is obtained only adjusting the coupling parameters as
follows

Γ =
1 −K1

1 −K2

(3.26)

Conversely, on the anti-resonance ϕ = (2m+ 1)π, we have

Rmax = 1 − R0

1 + M (3.27a)

Tmin =
T0

1 + M (3.27b)

Pmin =
P0

1 + M (3.27c)
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Figure 3.5: Response of the add drop resonator with Γ = 0.7, K1 = K2 = 0.3

3.3 Spectral characteristics

In this section we link the parameters K1, K2 and Γ to some spectral properties like
the optical quality factor Q, the free spectral range FSR, the finesse F and the con-
trast C. These are much more intuitive and more accessible from the experimental
curves.

3.3.1 The Free Spectral Range

The distance between two subsequent resonance peaks is called the free spectral
range (FSR). Bearing in mind the resonance condition in eq. (3.1),

ϕm =
2π

λm

neffL = βmL = 2πm (3.28)

a simple evaluation of FSR can be obtained approximating β at the first order:

βm−1 =
2(m− 1)π

L
= βm − 2π

L
≈ βm +

∂β

∂λ

∣

∣

∣

∣

∣

m

∆λ (3.29)

⇒ FSRλ = ∆λ = −2π

L

(

∂β

∂λ

∣

∣

∣

∣

∣

m

)−1

(3.30)

If now we calculate
∂β

∂λ
as follows,

∂β

∂λ
= −2π neff

λ2
+

2π

λ

∂neff

∂λ
= −β

λ
+ k

∂neff

∂λ
(3.31)
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∂β

∂λ
= −k

λ

(

β

k
− λ

∂neff

∂λ

)

= −k

λ

(

neff − λ
∂neff

∂λ

)

= −k

λ
ng (3.32)

the free spectral range results as:

FSRλ =
λ2

ngL

FSRν =
c

ngL

(3.33a)

(3.33b)

where ng is the group refractive index.

3.3.2 The Finesse

An important parameter is the finesse F which identifies how much the cavity is
selective. The finesse is defined as the separation of two consecutive peaks (FSR)
over the full width at half maximum of the peak (δλ):

F =
FSRλ

δλ
=

FSR

FWHM
(3.34)

Equivalently, in the phase domain, the finesse is

F =
2π

2ϕ1/2

=
π

ϕ1/2

(3.35)

Using the expressions (3.23b), (3.25b) and (3.27b) for the drop port, we impose:

T (ϕ1/2) =
Tmax + Tmin

2
(3.36)

and we obtain
1

1 + M sin2

(

ϕ1/2

2

) =
2 + M

2(1 + M)
(3.37)

sin2
(

ϕ1/2

2

)

=
1

2 + M (3.38)

thanks to the trigonometric relation tan2 x = sin2 x/(1 − sin2 x)

tan2
(

ϕ1/2

2

)

=
sin2

(

ϕ1/2

2

)

1 − sin2

(

ϕ1/2

2

) =
1

1 + M (3.39)
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3.3. Spectral characteristics

from equation (3.24d) it is also true that

1

1 + M =
(

1 − Z

1 + Z

)2

(3.40)

so finally

F =
π

2 arctan
(

1−Z
1+Z

) (3.41)

3.3.3 The quality factor

As in other fields of physics, the optical quality factor is defined as the ratio between
the resonance frequency and the full width at half maximum:

Qopt =
νr

δν
=
λr

δλ
(3.42)

From equation (3.33a), (3.34) and (3.41), we obtain

⇒ Qopt =
λr

FSRλ

F =
ngL

λr

π

2 arctan
(

1−Z
1+Z

) (3.43)

3.3.4 The contrast

Differently from the finesse, the contrast may differ for the drop and through ports.
It is defined as

CR =
Rmax − Rmin

Rmax

(3.44a)

CT =
Tmax − Tmin

Rmax

(3.44b)

and, thanks to the equations (3.25) and (3.27), it becomes

CR =
MR0

1 + M − R0

CT =
MT0

1 + M − R0

(3.45a)

(3.45b)
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3.3.5 Small ring losses and weak symmetrical coupling

In the very practical case of small ring looses (Γ ≃ 1) and symmetrical weak coupling
(K1 = K2 ≪ 1), Rmax and Tmin can be approximated as

Rmax ≃ 1 − K2

4
≃ 1 (3.46)

Tmin ≃ K2

4
≪ 1 (3.47)

so, out of resonance, the through power is almost equal to the input power, while
almost no light comes out from the drop port.
On resonance instead:

Rmin ≃ 0 (3.48)

Tmax ≃ 1 (3.49)

This means that the contrast is 100% for both output.
Under these conditions, the finesse is well approximated by

F ≃ π/K (3.50)

whereas on resonance the normalised power inside the ring is

P0 ≃ 1/K =
F
π

(3.51)

on resonance, the power circulating around the ring is proportional to the finesse.
Injecting a input power equal to Plaser, the power into the ring will results

Pring = Plaser · P0 ≃ Plaser · F
π

(3.52)

where Plaser is easily accessible from a measurement of the through port when the
laser is out of resonance since Rmax ≃ 1.
The plot in fig. 3.6 shows the trend for through and drop power. As expected, the
peaks are very thin and the contrast is almost 100%.
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Figure 3.6: Response of the add-drop resonator for weak symmetrical coupling and
small losses. (Here Γ = 0.999 and K1 = K2 = 0.01)

3.4 C ·Q improvement

As we will see in chapter 4, the optomechanical transduction responsivity is propor-
tional to the slope of the optical resonance peak. To improve it, we will look for a
set of K and Γ parameters which maximize the C ·Q value.
Considering an add-drop resonator with symmetrical coupling (K = K1 = K2), we
generate in fig. 3.7 the cartography for C ·Q values from equations (3.43) and (3.45).
At first sight, the best choice is a coupling efficiency weaker than 0.2% together with
ring losses lower than 2 dB/cm. The darker spot in fig. 3.7 shows the performances
of the experimental devices in section 5.2: there is a good room for improvement
with a correct tuning of the parameters K and Γ. In particularly, having a ring with
linear losses smaller than 3 dB/cm, a modest reduction of the coupling efficiency
impacts remarkably the C ·Q value.
The tuning of the coupling efficiency is obtained by the waveguide-ring gap and by
the coupling area. The optical indexes of the ring, of the gap medium and of the
waveguide play as well an important role. Regarding the losses, the fabrication has
to guarantee low ring losses reducing the light absorption and the light scattering.
To do that, we have to play on the purity of the material and on the roughness
side of the ring (see section 5.7.2). The curvature losses are often negligible for ring
radius bigger than 5µm but the curvature tends to increase the losses due to the
diffusion [38].
This evaluation fixes the upper limit for the C · Q: the coupling of a mechanical
element (e.g. NEMS cantilever) may cause a significant degradation of the optical
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Q-factor.

Figure 3.7: Cartography for C · Q values as function of coupling K = K1 = K2

and linear ring losses. The darker spot shows the performances of the experimental
devices in section 5.2. Courtesy of Geoffroy Scherrer.

3.5 Conclusions

From this chapter, we have to retain that the ring resonator is a wavelength filter
whose spectrum is a series of peaks. The peaks shape (spacing, width, amplitude)
depends on the ring geometry (radius, optic gap, waveguides) and on the optical
properties (neff , Γ). In the near future, all these parameters have to be optimised
to get the best peak slope.

The optical resonator concentrates the optical energy inside the cavity in which
the injected power is amplified by the finesse factor. Since, on average, a photon
travels around the ring F times, the effect of an external perturbation is multiplied
as well by the same factor. That is why, compared to simple a waveguide, the optical
resonator is extremely sensitive to a light phase shift which is caused, for example,
by the presence of an external object.
In the following chapter, we observe how the ring spectrum is modified by external
perturbations, focusing on NEMS readout application.
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Optomechanical theory

The propagation of the light in a waveguide is affected by the perturbations from
the external environment. The light path changes for a waveguide bending whereas
the phase velocity and the optical losses of the light change with the evanescent
coupling of an external object such as a second waveguide, a cantilever or a sticking
particle.
We call dispersive a coupling mechanism which introduces only a phase delay of the
light and does not affect the light power transmission. This phase delay arises from
a local perturbation of the light phase velocity or from a light path modification
due, for example, to a mechanical bending of the waveguide. A dissipative cou-
pling, instead, impacts also the transmission of the light introducing supplementary
waveguide losses.
As already discussed, the optical resonator amplifies the effects of the external per-
turbations because the phase delay and the absorption of the light accumulate for
each roundtrip of the light into the ring.

From the resonance condition of the optical ring in eq. (3.1), the resonance po-
sition is modified by varying L, the circumference of the resonator, or varying neff ,
the average effective index of the ring.
The circumference of the resonator is simply perturbed by a mechanical deformation
of the ring, such as the breath mode vibration of a released disk [5][39].
The effective index of the ring, instead, changes for different reasons: when the
resonator is subject to a temperature variation [40] or when the intrinsic carrier
concentration is altered [41]. Moreover, an object coupled to the evanescent wave of
the ring modifies the effective index of the ring within the coupling area. Function-
alised ring changes locally its effective index due to an interaction with biological
particles like virus [42] or proteins [43].
Another perturbation mechanism origins from the bus waveguides: if the coupling
waveguide moves away or close to the ring resonator, the coupler parameters t and
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κ in eq. (3.2) or (3.11) change together with the coupling gap. In the hypothesis
of dispersive coupling, the parameter t conserves the modulus |t| ≃ |t′| whereas the
coupler phase shift is modified from φt → φ′

t. The hypothesis of dispersive coupling
is reasonable for a small waveguide displacement.

The influence of above-listed perturbations is resumed by the parameter ϕ, the
total detuning of the ring (see eq. (3.21))

ϕ = θ − φt1
− φt2

=
2π neff L

λ
− φt1

− φt2
(4.1)

Being ϕ the variable of the Airy equations in eq. (3.23), the spectral response of the
ring is simply shifted proportionally to any variation of L, neff , φti

or a combination
of them.

4.1 Optomechanical coupling

Given the topics of this thesis, we applied the above considerations to a NEMS
which interacts with a ring resonator by the means of dispersive coupling. In our
case, the on-chip waveguides are fixed to the substrate which means that L and φti

are constant. Placing a NEMS within the evanescent field of the ring, we modify
locally its effective index and, as consequence, the light phase velocity is perturbed.
The phase shift of the light per round trip now depends on the NEMS position x:

θ(x) =
∫ L

0
β dl =

2π ν

c

∫ L

0
[neff + ∆neff (x, l)] dl = θ +

2π ν

c

∫ L

0
∆neff (x, l) dl (4.2)

where ∆neff is the local variation of the effective index at position l which is the
variable along the ring circumference L. For the specific case of a cantilever dis-
placement detection, the integral will be non-null only inside the coupling area.
The variation of the effective index induces a supplementary phase delay due to the
optomechanical coupling

φom(x) = −2π ν

c

∫ L

0
∆neff (x, l) dl (4.3)

so, the total detuning of the ring ϕ which is the argument of the sinus inside the
Airy functions becomes

ϕ(x) =
2π neff L

c
ν − φt1

− φt2
− φom(x) (4.4)

As final consequence of the ring detuning due to NEMS displacement, the optical
spectrum of the ring, which is described by the Airy functions, shifts proportionally
to φom (see fig. 4.1).
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Figure 4.1: Shift of the through response to an additional phase delay due to a NEMS
displacement. For graphical reason, the value of φom is over boosted. (Γ = 0.7,
K1 = K2 = 0.3)

Making the differential of equation (4.4) for a small cantilever displacement, we
find:

dφom

dx
=

2π neff L

c

dν

dx
=
neff L

c
gom (4.5)

where gom is named as the optomechanical coupling factor

gom = 2π
dν

dx
(4.6)

which defines the light angular frequency shift of the spectrum for a unity of can-
tilever displacement. Over large cantilever displacement, gom is not linear at all
since the phase shift φom depends strongly on superposition of the evanescent wave
tails.

In the specific case of the in-plane cantilever coupled to the ring resonator, we
can model the optomechanical coupling in a more intuitive way: the cantilever acts
exactly like a third bus waveguide which has a weak coupling modulus |tom| ≃ 1 and
coupler phase shift φom(x) which depends on the beam position x.

For the sake of more intuitive approaches, we represent the optomechanical cou-
pling in the frequency domain. From fig. 4.2, we see that the unperturbed ring
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spectrum (in blue) is shifted to a new spectrum (in red) by the effect of cantilever
approach. This shift is proportional to the optomechanical coupling factor gom, and
the new resonance frequency is

ν⋆
r = νr + dν = ν +

gom

2π
dx (4.7)

dx

P0 R

ν⋆r
νr

P0

dν

Light frequency

R

Figure 4.2: The in-plane cantilever oscillates in the evanescent field of the ring. The
spectrum shifts from blue to red curve because of the cantilever displacement.

For a membrane placed over the optical resonator, the model has to be modified:
as before, the membrane acts as a layer having a different optical index which mod-
ifies the effective index of the ring and induces a ring detuning. With a membrane
covering the entire ring, the coupling surface is important, so the portion of the light
coupled into the membrane could not be negligible anymore. As results of a dissi-
pative coupling, the Airy function does not shift rigidly, but the peaks width and
the contrast are modified as well. A more complicated interpretation is demanded.

4.2 Optomechanical factor simulation

We roughly evaluate the optomechanical coupling factor gom by the means of a two-
dimensional numerical simulation. Thanks to the software RSOFT-Fullwave, we can
simulate the optical spectrum of a add-drop ring resonator.
The geometry of the simulation is identical to the devices which will be described
in section 5.4.1 and successively characterised in chapter 7: a ring resonator with
radius R = 5µm is coupled to the add and drop waveguides with a optical gap of
200nm. Close to the ring, we also added a cantilever having a optomechanical gap
of 200nm. The 2D-approximation is based on effective indexes calculated formerly

40



4.2. Optomechanical factor simulation

taking into account the silicon substrate and air superstrate.
Afterwards, we run different simulations tuning the optomechanical gap from 195nm
to 205nm. The results are resumed in fig. 4.3.

Figure 4.3: Optical spectra of the ring obtained from RSOFT simulation. Two
simulations are performed: the gap between the cantilever passes from 195nm to
205nm.

Zooming on a single resonance peak (fig. 4.4), we clearly observe the wavelength
shift that we described in section 4.1: for the through spectrum, the resonance
wavelength passes from λ1 = 1547.8845 to λ2 = 1547.8810nm.
Neglecting for the moment the weak spectrum deformation, the frequency shift is
equal to

∆ν =
c

λ2

− c

λ1

=
2.99792458 · 108 m/s

1547.8810 · 10−9 m
− 2.99792458 · 108 m/s

1547.8845 · 10−9 m
≃ 0.43794GHz

(4.8)
Being the cantilever displacement equal to 10nm, we estimate the optomechanical
coupling factor as follows

gom = 2π
∆ν

∆x
= 2π

0.43794GHz

10nm
≃ 0.2752

Grad

s · nm (4.9)

Although the 2D-simulation has intrinsic limits, we find a value for gom which is
compatible with the experimental evaluation shown in section 7.3.5.
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Figure 4.4: Zoom on a resonance peak of fig. 4.3: the optical spectrum shifts because
of cantilever movement. The shift is not completely rigid already for a cantilever
oscillation amplitude of 10nm.

With a oscillation amplitude of only 5nm, the cantilever approach shifts the
two spectra together with a weak deformation: we are already at the limit of the
hypothesis of small cantilever displacement. The cantilever modifies not only the
phase of the light into the ring but also the amplitude. Although the peak amplitude
changes slightly, here the optomechanical coupling is not completely dispersive but
partially dissipative. This is a source of non-linearity in the transduction which is
investigated in section 7.3.6 and 7.3.7.

This section is the result of a close collaboration with Geoffroy Scherrer and Boris
Taurel who respectively wrote the code and ran the simulations. Further details in
[44].

4.3 Optomechanical transduction

Once being known that the ring optical spectrum shifts proportionally to the can-
tilever displacement, we make use of this phenomenon to perform the optome-
chanichal transduction.
Tuning a laser on a resonance peak side, the output power is modulated by the can-
tilever oscillation. The mechanical displacement will be amplified by the local slope
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of the optical peak (see fig. 4.5). The output optical signal will have an alternating
component at the cantilever oscillation frequency over a continuous component.
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Light frequency
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Figure 4.5: The optomechanical transduction concept: the laser which is tuned on
the peak side is modulated by the cavity shift. If the shift is proportional to the
cantilever displacement, the light modulation is a image of the cantilever oscillation.

Although the optical spectrum is described by the Airy function in eq. (3.23), we
can approximate locally a single optical resonance peak with a Lorentzian function.
Doing that, it is easier to estimate the order of magnitude of the signal that we
expect from the optomechanical transduction.
We therefore model the optical response of the device as negative Lorentzian peak
centred at νr and having a FWHM = 2γ = νr/Qopt (see fig. 4.6). Let CR be
contrast and P0 be the out-of-resonance light power, the peak amplitude is equal to
P0 CR:

L(ν) = P0

(

1 − CRγ
2

(ν − νr)2 + γ2

)

(4.10)

with the derivation at first and second order, we find for which frequency the response
has the maximum slope and the best linearity:

L′(ν) = 2P0CRγ
2 (ν − νr)

[(ν − νr)2 + γ2]2
(4.11)

L′′(ν) = −2P0CRγ
2 3(ν − νr)

2 − γ2

[(ν − νr)2 + γ2]3
(4.12)
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Since L′′(ν) = 0 at ν⋆ = νr ±
√

3

3
γ, we evaluate L and L′ at this point:

L′(ν = νr ±
√

3

3
γ) = ±3

√
3

8

P0CR

γ
(4.13)

L(ν = νr ±
√

3

3
γ) = P0

(

1 − 3

4
CR

)

(4.14)
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Figure 4.6: Lorentzian peak approximation for the optical resonator. The red line
is a linear approximation for the peak slope around ν⋆ = νr −

√
3

3
γ. (For the sake of

simplicity, CR = 1.)

For a small frequency shift ∆ν ≪ γ due to the mechanical coupling, it is possible
to apply a linear approximation around ν⋆. According to eq. (4.13), the output light
power is modulated at the mechanical frequency of the cantilever with an amplitude

∆P = L′(ν⋆) · ∆ν =
3
√

3

8

P0CR

γ
· ∆ν (4.15)

If the system has a optomechanical coupling factor gom = dω
dx

= 2π dν
dx

, we write the
output power modulation as function of the cantilever displacement ∆x

∆P =
3
√

3

4

P0CRQopt

νr

· ∆ν =
3
√

3

4

P0CRQopt

νr

· gom

2π
· ∆x (4.16)
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4.3. Optomechanical transduction

This formula is valid for small cantilever displacement ∆x ≪ γ/gom.
A graphical representation for the light power modulation in the time domain is
provided in fig. 4.7: the output signal at the through port has a continuous com-
ponent plus a modulation which occurs at frequency ωm, the mechanical oscillation
frequency of the cantilever. The amplitude of this modulation is ∆P from eq. (4.16).
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Figure 4.7: Output signal from the device: displacement signal at ωm over a contin-
uous component. Pout = 1/4P0 + ∆P cos(ωmt) (For the sake of simplicity, CR = 1.)

It is evident from eq. (4.16), that the transduction responsivity is proportional
to the input power P0 and to the product Qopt · CR. Maybe less intuitive, it is
the dynamic range of transduction which is proportional Qopt. In fact, for a very
narrow optical peak, the linear approximation around ν∗ is not valid any more as
the cantilever moves at wide amplitudes.
By the virtue of photonic signals, the optomechanical transduction is not affected by
electromagnetic interferences or parasitic capacitances which limit the transduction
bandwidth. However the Airy functions properly describe the optical spectrum
only if the ring resonator is in the steady state, therefore the bandwidth of the
transduction is limited by the inverse of the time response of the optical resonator.
This detection scheme remains valid for mechanical frequencies ωm ≪ νr

Qopt
. In

this work, the transduction bandwidth is limited experimentally by photodetector
bandwidth.
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To give an idea of the orders of magnitude, we introduce some numbers from the
experience:

• with a Plaser = 1mW , we obtain usually a P0CR ≃ 15µW

• Qopt ≃ 10000

• Qm ≃ 8000

• λr = 1550nm ⇒ νr = 192THz optical resonance frequency (ν = c/λ)

• γopt = νr/2Qopt = 9.6 · 109Hz is the HWHM

• gom

2π
=
dν

dx
= 0.1GHz/nm is the optomechanical coupling factor. [45][7][4]

• X(ω) = 0.1fm/
√
Hz is the sensitivity that we want to achieve

• Mn = αn ·M ≃ 0.25 · 1 pg = 0.25 · 10−15 kg is the modal mass of the cantilever

• fm = ωm/2π ∼ 1-100MHz is the mechanical resonance frequency of the
cantilever

• Xth(ω) =
√

4kbT Qm

Mnω3
m

=
√

4·4.11·10−21·8000
0.25·10−15·(2π·108)3 ≃ 46 fm/

√
Hz is the thermomechan-

ical motion of the cantilever tip at room temperature (see section 6.5.2)

We then compute the light power variation induced by the signal and by the
thermomechanical noise: according to the above values, the light power variation at
the through port for a cantilever displacement X(ω) is equal to

δP (ω) =
3
√

3

8

P0CR

γopt

· gom

2π
·X(ω) =

=
3
√

3

8

15 · 10−6

9.6 · 109
· 1017 · 10−16 ≃ 10−14 W/

√
Hz (4.17)

Thanks to the same formula in eq. (4.15), we calculate also the noise power due to
the thermomechanical noise of the cantilever:

δPth(ω) =
3
√

3

8

P0CR

γopt

· gom

2π
·Xth(ω) =

=
3
√

3

8

15 · 10−6

9.6 · 109
· 1017 · 4.6 · 10−14 ≃ 4.7 · 10−12 W/

√
Hz (4.18)

In other words, the thermomechanical noise of the cantilever is detectable only
if the photodetector at the through output has a noise equivalent power lower than
4.7 pW/

√
Hz. Even in the case of ideal photodetector, the shot noise of the light sets

the ultimate limit for the displacement resolution. Further details are in section 6.5.3
confirmed by experimental characterisation in section 6.6.1.
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4.4. Optical gradient force

4.4 Optical gradient force

The photonics applied to M/NEMS is not limited only to detection. Despite the
optical forces being weak in the macroscopic world, they fit for the actuation of
objects at the micro/nanoscale [45].
The most popular application of optical gradient force is the optical tweezers [46]:
a particle is confined inside a laser beam having an inhomogeneous intensity profile.
The optical gradient force is applied to an object which is placed in a electromagnetic
field having a non-zero gradient. The high confinement of the light into a waveguide
combined with the the exponential decay of the evanescent wave ensure a significant
gradient of the electromagnetic field [47]. Moreover, for resonance wavelengths, the
amount of light power stored into the ring is enhanced by the finesse, that gives rise
to an improved optical force.
The optical gradient force is not at all intuitive like the light pressure force which
could be understood actually via a simple wind-on-sail model. However, Pernice
offers the analogy of the mirror charge in electrostatics [48].
Two parallel waveguides are subject to transverse optical forces as light travels
through them (see fig. 4.8a). This force depends strongly on the gap, since the
evanescent fields decrease exponentially with the distance. The optical gradient
force can be attractive or repulsive depending on the modes symmetry, it increases
with the light power and it is proportional to the optomechanical coupling factor
(see fig. 4.8b).

(a) Light travelling through two parallel
waveguides (λ = 1.5 µm, P = 100 mW ).

(b) Force trend according to the gap and
symmetry modes. Extracted from [49].

Figure 4.8: The optical gradient force between two parallel waveguides.
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We can see fig. 4.8b that the optical gradient force has an order of magnitude of
pN/µm/mW [49], large enough to actuate nanoscales devices.

While analytical models [50] and simulations [49][51][52] are well developed, only
few articles show experimental observation of the optical gradient force applied to
microsystem [53][54][55][56]. In the section 7.5 of this work, we propose a readout
scheme suitable for a more comprehensive study of the phenomenon. The optical
gradient force is used to excite an in-plane cantilever placed in the evanescent field of
the ring resonator. The piezoresistive readout of the cantilever offers an uncorrelated
and reliable detection which is appropriate for a quantitative investigation of the
optical gradient force.

4.5 Conclusions

The optical spectrum of the ring resonator is modified by several perturbations
such as temperature, mechanical deformation, carrier concentration and NEMS ap-
proaching. All of them can be described by an effective index variation, a deformed
light path or a different coupling phase shift.
Under the condition of dispersive coupling, the ring spectrum shifts rigidly and pro-
portionally to the optomechanical coupling factor gom.
The optomechanical detection makes use of this phenomenon: a laser tuned on the
resonance peak will be modulated by the cantilever oscillation. For small cantilever
oscillations, the amplitude of the light power modulation is amplified by a factor
which is proportional to the local slope of the peak.
High Q-factor for the ring not only assures a huge optical peak slope, but stocks
high light power into a small volume. Under these circumstances, the optical gra-
dient force is large enough to actuate objects at the microscale such as the cantilever.

At this point of the manuscript, we have now all the elements to understand the
experimental part of this work: the fabrication of the device (chapter 5), the test
bench setup (chapter 6) and the characterisation of the sample (chapter 7).
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The devices

As we saw in section 2.5, the M/NEMS mass sensing evolves with the optomechani-
cal transduction: the basic idea behind our devices is a NEMS whose transduction
and actuation is performed by the means of photonics as just described in chapter 4.
The device fabrication has to provide a M/NEMS whose displacement readout is
optomechanical by the virtue of a coupling with a photonic resonator.
To smoothly carry out this transition, we preserve the geometry of previous NEMS
mechanics and we couple it to a separate ring resonator. In the next future, we en-
visage a device formed by a mechanical resonator which is simultaneously an optical
resonator (e.g. whispering disk).

The design of the photonic elements was based on the wide experience about inte-
grated photonics of CEA optical department. We took advantage of waveguides, ring
resonators and grating couplers which are already reliable and well tested [57][58][59].
From our side, M/NEMS based sensors are the main activity of the LCMC labora-
tory.

Though this work focuses on the mass sensing application [2][60], the optome-
chanical transduction could be easily applied to every displacement readout.
We started from the simplest M/NEMS ever: an in-plane single clamped cantilever.
The cantilever mechanics is already fully investigated and we chose layout dimen-
sions similar to a successful project [61][60] in order to minimize the risk and focus
on the optomechanical transduction.
Since we were new to optomechanics, we kept the piezoresistive readout of the can-
tilever via a single nanogauge. It turned out to be a practical debugging tool during
the devices fabrication. Moreover, the parallel detection provides an independent
displacement readout for in-situ comparison and linearity investigation.
Always for reasons of prudence, a drive electrode provides a electrostatic actuation
of the cantilever. Anyway an optical actuation is possible for these devices.
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Chapter 5. The devices

A device with a suspended membrane over the ring was designed as well, it aims
to improve the capture surface and the optomechanical coupling at the same time.
Unluckily some errors in the fabrication process made a correct release of the mem-
brane impossible.

All the elements which form the devices such as couplers, waveguides, cantilever
(and related release) are described in the following pages. The presence of these
endorsed bricks minimizes the risk letting us focusing on the real topic of the thesis:
the development of the optomechanical transduction.

5.1 Waveguides

The crystalline silicon is transparent for telecommunication wavelengths around
1550nm, in addition, the silicon oxide and the air have a lower optical index. This
makes possible the realisation of on-chip waveguides with a strong confinement of
the light and weak losses. The significant index difference ensures also acceptable
waveguide bend radius down to some µm.

nSi nSiO2
nAir

3.476 1.444 1.00026825

Table 5.1: Optical indexes of silicon, silicon oxide and air for λ = 1550nm.

For this work, we chose waveguides with a rectangular section, 500nm wide and
220nm thick in order to have a single mode waveguide with a TE polarisation.
The presence of multiple modes would have complicated the interpretation of the
spectrum of the optical resonator.

SiO2/Air

waveguide

BOX

Figure 5.1: Waveguides section geometry.

The waveguide material is crystalline silicon < 100 > of the top layer of the SOI
wafer. However, the optical propagation properties of the silicon are anisotropic.
From some tests, the losses are estimated around 3 dB/cm but variations can occur
from different wafers. Most of the time, the losses are dominated by other parameters
like the roughness of the waveguide (see section 5.7.2).
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5.2 Ring resonator

For the optical resonator, we opted for a ring resonator having a add-drop geometry
(see section 3.2). The fabrication of the ring is done together with the waveguides
and, thanks to the wafer integration, we obtain a resonator which is robust and it
does not require any alignment. The easier realisation of the ring compared to disk
or photonic crystal explains its large utilisation for telecommunication purposes.
Despite other materials offer higher Q-factors, the silicon is more than adequate for
our optomechanical transduction purposes. Moreover choosing the silicon as mate-
rial, we can benefit from all the tools which are typical of CMOS technology.

The ring resonator waveguide has the same section of the coupling waveguides
(220 × 500nm). The high purity of crystalline silicon assures low losses (Γ) and a
consequent high optical Q-factors.
Many variants were designed to investigate the properties of the system like the FSR
and the optical Q-factor according to the theoretical evaluation made in chapter 3.
Three different ring radius (R) are chosen: 5, 10 and 25µm. The optical gap
between the rings and waveguides (gopt) is tuned between 140 and 200nm and some
racetracks are present as well with straight parts (h,v) up to to 6µm. (See fig. 5.2)

gopt

gopt

v

h

R

Figure 5.2: Ring resonator parameters

For the optomechanical devices, we set the dimensions of the optical resonator
and we tuned other parameters like the optomechanical gap and the cantilever (or
membrane) sizes. This avoids a countless number of variants, given that the target
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of the run is the validation of the optomechanical transduction although not per-
fectly optimised.

The ring resonator used for the mechanical transduction has always a radius of
5um and coupling gaps of 200nm for the through and for the add waveguides.
In some cases, the add waveguide is moved to the right side of the ring to leave room
for the mechanical resonator.

gopt = 200nm

gopt = 200nm

R = 5µm

Figure 5.3: Ring resonator geometry chosen for the optomechanical devices.

The presence of the add output is a matter of debate: it introduces external losses
(K2 6= 0) which degrade the optical Q-factor. At the same time, coupling the add
waveguide with a proper gap improves the contrast of the ring spectrum especially
when internal losses are non-negligible (see eq. (3.26)). Moreover, collecting the light
at the add is trickier since during the alignment, the laser has to be tuned exactly at
the resonance. For these reasons, all the optomechanical experiments are performed
using the in and through ports only. During the phase of mask design, we did not
remove the add port because we wanted to have a supplementary monitor to probe
the system.

5.3 Grating coupler

The injection of light into the device is performed using a grating coupler etched on
the substrate [62][63][64].
A grating coupler is a periodic pattern on the substrate with two different optical
indexes: due to constructive interference, the light coming from a fiber is forced
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to enter in the planar waveguide (see fig. 5.4). This grating coupler replaces other
coupling techniques like prism-based or edge coupling technique which oblige to cut
the wafer.

Figure 5.4: Optical fiber aligned to a grating coupler.

The main advantage of this technique is the possibility to perform tests under
probe over a large number of devices across the wafer similarly to an electrical prober.
Differently from an electric test, where the simple contact between the probe and
the pad is sufficient, there are some requirements to fulfil in term of alignment: for
the coupler integrated in our devices, the optical fiber has a coupling angle between
8◦ and 12◦ with respect to the normal and an alignment accuracy of 1µm on the
three axes.
In addition, the grating coupler is sensitive to light polarisation: in our case, it is
optimised for TE polarisation whereas it acts as a filter for any different polarisation.
As shown in section 5.7, the couplers are obtained from a partial etching (70nm) of
the top silicon layer of the waveguides with a pitch of 310nm. The index pattern
is obtained from the index difference between silicon and air (or silicon oxide when
the device is wrapped).
The grating coupler allows many inputs and outputs, an easier alignment compared
to edge coupling since the coupling angle is fixed. This is convenient for vacuum and
cryogenic application or for automatic alignment. However the coupling efficiency is
not exquisite, it is bandwidth limited (usually 100nm) and the transmission depends
on the light wavelength and polarisation.

In fig. 5.5, we observe a simulated spectrum of the transmitted light power for
a grating coupler. The blue curve is obtained for a coupler in vacuum and the red
curve for a grating wrapped into silicon oxide: the coupling losses are estimated 1.5
and 1.8 dB (for λ = 1550nm). In both cases, the coupling efficiency depends on the
light wavelength and this coupler is optimized for 1550nm with a Gaussian window
of 80-100 nm.
A real coupler, instead, has a typical loss value of 6.2 dB at the end of the fabrication

process (for λ = 1550nm). This estimation is obtained from the experimental
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Figure 5.5: RSOFT simulation of the grating coupler efficiency for a fiber at 11.5◦ un-
der vacuum or under a SiO2 layer. Courtesy of Daivid Fowler (CEA/LETI/DOPT ).

transmission spectrum of two couplers (input and output) shown in fig. 5.6: we
have to subtract from 14.5 dB all the losses due to the setup (2.1 dB) and then
divide by 2, the number of couplers. The setup losses, measured experimentally, are
compatible with the values of manufacturers (see table 5.2).

Figure 5.6: Experimental spectrum of two grating couplers. Here the optical reso-
nance peaks are superposed to the couplers response.
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Optical configuration Losses [dB]
1-m fiber 0.0005

1-m polarisation maintaining (PM) fiber < 0.5
APC connector or feedthrough 0.3

PM fiber - polarization controller - APC feedtrough -
vacuum fiber - APC feedtrough - fiber

2.1

PM fiber - polarization controller - APC feedtrough - vacuum
fiber - device - vacuum fiber - APC feedtrough - fiber

14.5

Table 5.2: Optical losses for different configuration. (Plaser = 1mW , λ = 1550nm)

It is obvious that the main losses come from the grating couplers of the device.
The degradation of transmission coefficient is probably due to residues generated by
the fabrication steps which follow the photonics (see section 5.7). Metal deposition
and M/NEMS release are the main suspects but further investigations are required
for matching the envisaged performances with the simulations.
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5.4 Mechanical resonator

LCMC laboratory has been working on mechanical resonators for years. Previ-
ous projects already investigated the cantilever mechanics for gas and mass sensing
applications [61][65][31][60]. From these experiences, we bequeath an endorsed lay-
out for a single clamped cantilever equipped with a piezoresistive detection and a
electrostatic actuation (see fig. 5.7).

(a) from [61] (b) from [31]

Figure 5.7: SEM picture of the in-plane cantilever: both devices have drive electrodes
and two gauges for a differential detection of the cantilever displacement.

From chapter 4, we know that a mechanical resonator placed in the evanescent
field of the ring shifts the resonance wavelength as a result of its movement. That is
why we fabricate a M/NEMS in proximity of the optical ring to perform the opto-
mechanical transduction. Thanks to the innovative readout, the M/NEMS benefits
from the advantages of photonics and circumvents the constraints described in sec-
tions 2.3.2 and 2.4.
The layout of two mechanical resonators is shown in the following pages.

5.4.1 In-plane cantilever resonator

The device is a crystalline silicon cantilever which interacts with the evanescent field
of the light propagating in the ring resonator (fig. 5.8). The in-plane mechanical
oscillation can be forced by an electrode placed next to the cantilever end. The
cantilever readout is performed also via the piezoresistive nanogauge which is sus-
pended close to the beam base. With the advantage of two completely independent
readout, the device enables in-situ comparison between piezoresistive and optome-
chanical transduction. On the other hand, the fabrication complicates because of
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local doping which is mandatory to obtain piezoresistive nanogauges and ohmic
contacts but lethal for photonic elements.

0.15 × l

l

gmech

w

ge

gopt = 200nm

gopt = 200nm

R = 5µm

Figure 5.8: Cantilever devices: all the elements are patterned on the top silicon
layer. The released parts are marked by the transparency.

The geometrical variations for the in-plane cantilever are collected in table 5.3
while the gauge and the electrode are described more in details in the following
sections 5.5 and 5.6. To limit the number of variations, the electric gap ge is fixed
at 200nm, the gauge length is always 400nm and the gauge width is 120nm.

Device Length Width Thickness
Optomechanical

gap

1st resonance

frequency
(l) (w) (t) (gmech) (fr)

[µm] [nm] [nm] [nm] [MHz]
# 1 5 150 220 200 ≃ 8
# 2 5 300 220 140 ≃ 16
# 3 5 300 220 200 ≃ 16
# 4 5 300 220 300 ≃ 16
# 5 10 150 220 200 ≃ 2
# 6 10 300 220 200 ≃ 4

Table 5.3: Parameters for cantilever devices.

A preview of the sample is offered by the SEM picture in fig. 5.9: the challenge
of this device is the selective release and doping applied only to the cantilever. The
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electrical contacts between the device and the pads are provided by the means of
three metal paths and some via (see section 5.7.3).

Figure 5.9: SEM picture of the in-plane cantilever device # 3.

5.4.2 Membrane resonator

This is an out-of-plane resonator made up of a membrane suspended over the ring
resonator (see fig. 5.10). With a view to mass sensing application, this device is
conceived to maximise the capture surface where the particles can land. At the
same time, the interaction between the membrane and the ring occurs over a larger
area compared to the cantilever device.
Piezoresistive transduction is omitted and the electrostatic actuation is proposed by
the means of a metal electrode below the membrane.
The membrane release requires the presence of holes even though it reduces the
capture surface.

The first resonance frequency is evaluated via the analytical formula for a four
point supported membrane [66]. A more exhaustive description would take into
account the holes and the real size of the anchors point. All the membranes have a
hole side of 0.5um, a hole pitch of 0.8um and a membrane support of 2 × 2um
The geometrical variants are collected in table 5.4:
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a

b

Figure 5.10: Membrane devices: the membrane (in red) is suspended over the ring
resonator (cyan). The electrode (in blue) provides the actuation.

Device Length Width Thickness
1st resonance

frequency
(a) (b) (fr)

[µm] [µm] [nm] [MHz]
# 1 11.5 20.3 200 ≃ 1.7
# 2 8.3 8.3 200 ≃ 8.3
# 3 4.3 9.8 200 ≃ 7.9
# 4 20.3 20.3 200 ≃ 1.4
# 5 0.5 5.0 200 ≃ 69
# 6 1.0 5.0 200 ≃ 69
# 7 1.0 10.0 200 ≃ 17
# 8 2.0 10.0 200 ≃ 17
# 9 4.0 10.0 200 ≃ 17
# 10 3.0 15.0 200 ≃ 8

Table 5.4: Parameters for membrane devices.
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5.5 Piezoresistive gauges

The crystalline silicon acquires piezoresistive properties as it is rightly doped [67].
Piezoresistive transduction is a standard technique to read out the NEMS dis-
placement [68]. It shows good performances in terms of signal-to-background ratio
(SBR) and dynamic range (DR) [69][70][65][61]. The displacement of the proof mass
stretches the piezoresistive gauges which are suspended between the resonator and
an anchor point. By virtue of piezoresistive property, the resistance of these gauges
varies proportionally to the stress, so a detection of the resistance provides an image
of the cantilever displacement.

A piezoresistive transduction, in parallel to the optomechanical one, enables mea-
surement of the cantilever displacement via an unrelated electrical channel which is
perfectly mastered. From a practical point of view, it was very useful especially for
testing the devices in an endorsed electrical setup: the localisation of devices which
work properly helps to debug the critical fabrication step of the release.
With these devices, the transduction properties (linearity, dynamic range, etc.) can
be compared on the same cantilever, simultaneously and for identical actuation.
Moreover, the possibility of a double detection opens the way to innovative experi-
ments like the in-situ comparison of Allan deviation (section 7.3.6) and the detection
of optical gradient force (section 7.5).

5.6 Drive electrode

As seen in section 4.4, the optical actuation is awesome because it opens up the
possibility of making a completely photonic device. However, the efficacy of the
optical actuation could be scarce compared to electrostatic actuation, especially for
non-optimised devices. Another consequence is that the setup gets more compli-
cated with the addition of a second laser, a light modulator, a 50:50 coupler and a
wavelength filter [7].
For these reasons, an electrode is patterned on the top silicon layer and doped like
the gauges. Some Via, a metal path and a pad provide the electrical continuity
(see fig. 5.9). The actuation is performed electrostatically applying a potential Va

between the electrode and the cantilever.

We can model the cantilever and the electrode as a capacitance C = ǫ0ǫrA
d

,
created by two surfaces A separated by a gap d having a relative permittivity ǫr.
Being the energy stored in the capacitance equal to E = 1

2
CV 2

a , the force applied
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on the mechanical beam is the derivative of this energy along the position:

F = −dE

dy

∣

∣

∣

∣

∣

Q

=
1

2

dC

dy
V 2

a =
1

2

ǫ0ǫrA

(d− y)2
V 2

a =
1

2

ǫ0ǫrA

d2

(

1 − y

d

)2V
2

a (5.1)

In the small displacement approximation (y << d), we simplify the previous formula
obtaining

F ≃ 1

2

ǫ0ǫrA

d2
V 2

a (5.2)

If we consider the general case of Va(t) = VDC + Vd cos(ωt), the force results as

F (t) =
1

2

ǫ0ǫrA

d2

(

V 2
DC +

V 2
d

2
+ 2VDCVd cos(ωt) +

V 2
d

2
cos(2ωt)

)

(5.3)

Unless otherwise specified, we used only the component at 2ω for all the experi-
ments. Compared to actuation at ω, the actuation at 2ω has a lower background
signal since the cross-talk with gauges polarisation is quasi absent. For the sake of
simplicity, we eliminated also a variable parameter, fixing VDC to zero.

When the drive voltage is important and the gap is small, the approximation
made before is not any more valid. We have to develop the force up to the first
order

F ≃ 1

2

ǫ0ǫrA

d2
V 2

a

(

1 + 2
y

d

)

(5.4)

Inserting this force in the motion equation of the oscillator in eq. (2.19), we can
rearrange a term of negative stiffness. This effect is observed experimentally in
fig. 7.14, the resonance frequency of the cantilever shifts for higher drive voltages.
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5.7 Fabrication process

The fabrication of the devices is performed with the modern CMOS tools widely
applied in microelectronics.
During this thesis, different runs were made in the clean room of Leti except some
steps at STMicroelectronics of Crolles. The run AD790 aims at the improvement of
the optical Q-factor of the ring resonator, whereas the run AD607 is dedicated to
the optomechanichal devices.

The first goal was the fabrication of the photonic elements with good perfor-
mances in terms of light coupling, light losses and optical Q-factor. Then the efforts
were focused on the fabrication of a mechanical resonator closed to the ring res-
onator avoiding any damaging of the photonic elements. The doping is mandatory
for the NEMS operations but it has to be localised. Otherwise bore implantation
would increase irremediably the light absorption in the waveguides. Similarly, the
etching for the NEMS release has to be tuned in order to release only the cantilever
and not the waveguides.

The starting point of the design was an existing process used for brokerage
ePIXfab1. This process was created for the resonance tuning of ring resonators: a
metal heater is placed over the ring resonator to modify the effective index via the
temperature. In this way, it is possible to compensate the technological dispersion
and tune a large number of resonator exactly on the same resonance wavelength.
For this work, we kept the same photonics part and we used the metal layer as
membrane or as pad. Some fabrication steps were added for the release of the
mechanical resonator and for the doping of piezoresistive gauges.
The device is fabricated from silicon-on-insulator (SOI) wafers (200mm): the top
silicon layer is etched with reactive ion etching to pattern the geometry of the device.
The waveguides, the ring, the cantilever and the electrode are on the same layer.
Then, a partial etching of the buried oxide layer (BOX) releases the mechanical
resonator. Since the waveguide and the ring section are wider than the cantilever,
the photonic elements remain anchored to the substrate via a pedestal. Knowing
with accuracy the etching rate of the BOX (here 8 nm/min), the etching process
is stopped as the mechanical resonator is released. The lateral etching is visible
through the silicon layer by means of SEM images. The etching rate is calculated
thanks to a preliminary partial etching lasting a fixed amount of time.

The process for photonic elements (couplers, waveguides and rings) is identical
for all devices. A split of run AD607 made possible the fabrication of two optome-
chanichal devices: the in-plane cantilever and the membrane.

In the following pages we detailed technological process for each variation.

1http://www.epixfab.eu/

62



5.7. Fabrication process

5.7.1 On-chip photonics

Here is the description of the technological process for the fabrication of photonic
elements:

1. SOI substrate 220nm/2µm (fig. 5.11a)

2. Alignment mark fabrication

3. Grating coupler realisation (fig. 5.11b):

3.1. BARC deposition

3.2. Resist deposition

3.3. DUV (193nm) photolithography of resist

3.4. Stripping resist

3.5. BARC etching

3.6. Partial etching of Si (70nm)

3.7. Stripping resist and BARC

4. Waveguides realisation (fig. 5.11c):

4.1. Hard mask deposition SiO2 (80nm)

4.2. BARC deposition

4.3. Resist deposition

4.4. DUV (193nm) photolithography of resist

4.5. BARC and hard mask etching

4.6. Stripping resist and BARC

4.7. Silicon etching down to the box (220nm)

4.8. Polymer removal

4.9. Thermal oxidation (≃ 5nm) (fig. 5.11d)
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Figure 5.11: Fabrication process for on-chip waveguides.
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5.7.2 Optical Q-factor improvement

Fourteen wafers of run AD790 were dedicated to the improvement of the optical
Q-factor via minimizing the losses Γ in the ring resonator.
The parameter Γ sums up different contributions: the light absorption, the sur-
face/volume diffraction and the radiation. The light absorption is fixed by the
silicon properties and the radiation losses depend on the radius of curvature. Once
the geometry and the material are chosen, we can still minimize the surface diffrac-
tion losses reducing the roughness of the waveguides.
After the waveguide patterning described in section 5.7.1, the wafer underwent to
additional steps of creeping, deoxidation-reoxidation and partial etching of the BOX.
Thanks to the creeping or the deoxidation-reoxidation of the waveguide, the rough-
ness of the ring surface should decrease reducing the scattering losses. The aim of
the under-etching, instead, is to isolate the ring from the BOX, reducing in this way
the losses due to the coupling with the substrate. The coupling efficiency K1 and
K2 change as well due to the presence of air between the ring and the waveguides.
Some results are shown in the following images: the Q-factor values are averaged
over different peaks on the same device or over different dies on the same wafer.

Figure 5.12: The effect of creeping on the optical Q-factor for different devices.

As we can see from fig. 5.12 and 5.13, the creeping turns out to be counter-
productive whereas the process of deoxidation-reoxidation provides only modest op-
tical quality factors around 15 000. Indeed, we saw from fig. 3.7 that the Q-factor
weakly depends on the losses when the ring is overcoupled to bus waveguides. A
variation of the ring internal losses (Γ) impacts the optical Q-factor only in the
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Figure 5.13: The effect of deoxidation-reoxidation on the opticalQ-factor for different
devices along the wafer columns.

Figure 5.14: The effect of BOX etching (150nm) on the optical Q-factor for different
devices along the wafer columns.

undercoupled regime.
With under-etching (fig. 5.14), we obtained a significant improvement of the opti-
cal Q-factor achieving values between 75000 and 95000. This means that the BOX
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etching, not only releases the mechanical resonator, but increases the quality factor
of the ring resonator. The higher difference between air and silicon optical indexes
confines the light better and reduces the coupling factors K1 and K2. As we can see
from fig. 3.7, when the ring is overcoupled, the optical Q-factor strongly depends on
the waveguide coupling factors K1 and K2 via the formula in eq. (3.43).

5.7.3 In-plane cantilever fabrication

Once the parameters for the photonic part were optimised, the run AD607 was
dedicated to optomechanical devices: the split AD607A concerns the membrane
suspended over the ring whereas the split AD607B is dedicated to the in-plane can-
tilever placed near the optical ring. We will start from it.
The cantilever, the ring, the electrode and the gauges are made of crystalline silicon
and patterned together on the same layer [61]. The originality of this device is the
piezoresistive detection of the cantilever: this added some difficulties to the fabrica-
tion process.
The doping implantation has to be localized only to the cantilever, nano-gauges and
electrode; any doping of the ring increases the absorption degrading irreparably the
optical Q-factor. The mask alignment for this step was tricky because the border
of the doping area has to fall in the middle of the optomechanical gap gmech (see
fig. 5.8).
We must provide as well an electric path from three metal pads up to the device.
The electrical contacts are mandatory to polarise the actuation electrode and for
the nano-gauges biasing.
These efforts brought to the fabrication of hybrid devices where the mechanical,
electrical and optical requirements have to be fulfilled.

Here is the enumeration of the technological steps:

1. Patterning of couplers, waveguides, ring, cantilever, gauges and electrode
(fig. 5.15a). (Details in section 5.7.1 and fig. 5.11)

2. Local doping of the gauges (fig. 5.15b):

2.1. Resist deposition (820nm) and DUV photolitography

2.2. Implant Bore (5 · 1019 at/cm3)

2.3. Stripping of photoresist

2.4. Annealing for doping activation

3. HDP deposition of silane oxide (700nm)

4. CMP to reach 200 nm of oxide on the top of waveguide (fig. 5.15c).
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5. Creation of VIA (fig. 5.15d):

5.1. Photolithography of VIA

5.2. Etching VIA down to electrode, cantilever and gauges

5.3. Filling with Ti (30nm), TiN (60nm) and W (600nm)

5.4. CMP for top metal removal

6. Creation of pads and electric paths (fig. 5.15e):

6.1. Deposition of AlSi for the pads and electrical paths (200nm)

6.2. DUV lithography of pads and electrical paths

6.3. Etching AlSi (200nm)

7. Cantilever release:

7.1. Photoresist for ring protection

7.2. Dry etching RIE of oxide 400nm (fig. 5.15f)

7.3. Desoxidation back side

7.4. Stripping resist

7.5. HF vapour etching for gauge and cantilever release (fig. 5.15g)
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Figure 5.15: Fabrication of cantilever device
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5.7.4 Membrane fabrication

These devices come from a split of run AD607: a membrane is suspended above the
ring and vibrates out of planes. This geometry has two advantages: the wide mem-
brane surface provides a large surface of capture and an improved optomechanical
coupling.

Here is the technological steps:

1. Patterning of couplers, waveguides, and ring. (See sec.5.7.1 and fig. 5.11)

2. Deposition of 40nm of TEOS oxide

3. Actuation electrode fabrication (fig. 5.16a):

3.1. Deposition of an adhesion layer: Ti (10nm) and TiN (30nm)

3.2. Deposition of actuation electrode in AlCu (180nm)

3.3. Opening of the global mark (litho, etching, stripping)

3.4. Photolitography of the electrode

3.5. Etching 180nm of AlCu with stop on TEOS oxide

3.6. Stripping

4. HDP deposition of 700nm silane oxide

5. CMP to reach 100-200nm of oxide on top of waveguide (fig. 5.16b)

6. VIA fabrication (fig. 5.16c):

6.1. Lithography of VIA:

6.2. Etching VIA down to electrode or down to substrate

6.3. Filling with Ti (30nm), TiN (60nm) and W (600nm)

6.4. CMP for top metal removal

7. Membrane fabrication (fig. 5.16d):

7.1. Deposition of AlSi membrane 200nm

7.2. Lithography

7.3. Etching 200nm of AlSi

8. Membrane releasing with HF etching (100-200nm) (fig. 5.16e)

9. Remaining oxide measurement
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5.7.5 Fabrication problems

In-plane cantilever issues

Since the cantilever is less wide than the photonics, the anisotropic etching in
fig. 5.15g releases the NEMS structure before the ring and the waveguides. If the
etching rate or the etching time is not well known, it occurs a complete release of
the photonic elements (fig. 5.17a).
Upon the occurrence of a correct release, the BOX under the ring is partially re-
moved letting the photonic structure on a pedestal. Moreover, as seen in section
5.7.2, a partial BOX etching under the ring improves the optical Q-factor. Since the
ring is overcoupled to the bus waveguides, decreasing the coupling factors K1 and
K2 affects positively the optical Q-factor more than attenuating ring losses Γ.
The silane oxide is etched 2-3 times faster than BOX, this means that the silane
oxide which covers the ring, the waveguides and the couplers is completely etched
before having a complete cantilever release (see fig. 5.15c and 5.15g). The absence
of the silane oxide layer modifies the performance of the grating couplers: the cou-
pling angle is slightly modified and the efficiency is probably compromised by the
presence of residuals due to HF etching process.
The last inconvenience is that the AlSi electrical paths on the oxide float as the
SiO2 is etched during the release step. This compromises the electrical continuity
between the pads and the drive electrode or the gauges (fig. 5.17b).

(a) Released photonic elements. (b) Damaged electric path.

Figure 5.17: Typical fabrication problems.

So the existing process has to be improved to be more compatible with HF etching
release. A different approach is chosen for the next run: the electrical conductivity
from the pads up to the device is assured by a metal layer deposited directly on
the crystalline silicon. In the lasts nano-meters, between the end of metal and the
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device, the silicon is already highly doped during the step devoted to gauges. This
makes the VIA fabrication useless taking out a fragile and floating metal path.

When this technology will be really applied for mass sensing, a protection layer
on the ring is recommended. A landing mass on the optical ring resonator modifies
the resonance wavelength according to the contact area and to the particle optical
index. A shifted optical resonance modifies the responsivity of the optomechanical
transduction since the laser would be tuned now in a point where the local slope is
different (in the worst case null).
It is true as well that the mass sensing requires only the NEMS oscillation frequency
and not the amplitude. Even if the signal detection is affected only at second order,
the protection layer over the ring would facilitate the operations.

Membrane issues

The fail of the AlSi patterning produced blind holes on the membrane as shown in
fig. 5.18a. In this situation, a complete release was impossible since the HF could not
etch the oxide below the membrane. Several attempts were done until the etching
process released the bus waveguides in fig. 5.18b; as a result, the devices were out
of service.

(a) (b)

Figure 5.18: Membrane fabrication error: (a) blind holes avoid the membrane re-
lease, the HF etching started only from the edges, (b) multiple HF etchings result
in waveguide release.

But all is not lost: since we released only a quarter of the wafer, an additional
AlSi patterning could be attempted to solve this problem on the other devices. The
mask alignment and the photolithography on a rough surface are anyway tricky op-
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erations.

5.8 Conclusions

On the basis of endorsed bricks (such as couplers, waveguides, ring resonators, can-
tilevers, membranes, and piezo-gauges), we designed and fabricated two electro-
optomechanical devices coupling a NEMS to an optical ring resonator.
The uniqueness of these devices is the electrical actuation and a parallel piezoresi-
stive detection which assures an independent readout of the cantilever displacement.
This device is more than a NEMS mass sensor prototype but it is a tool to investigate
the optomechanical transduction and the frequency noise in NEMS resonator.

Despite the wafer yield is low, we got enough in-plane cantilever devices for this
work but, most importantly, we identified the sources of fabrication issues.
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Chapter 6

Design and setup of test bench

The amazing phenomena at nanoscale have to be detected from our macroscopic
world. For this reason, a big effort was done to build a dedicated experimental
bench around the optomechanical samples above described in chapter 5.
Once the design of the masks was complete and the fabrication of devices was in
progress, we started to design a custom optomechanical test bench. As it often
happens, the characterization of an innovative technology needs an innovative ex-
perimental setup, this obliges physicists to a further effort in terms of creativity with
the reward of obtaining results from scratch.
We anticipated possible upgrades in order to bequeath to the laboratory a flexible
setup for future experiments.
The last step before measurements on the devices was to characterize the instru-
mentation around the chamber to evaluate the limits of the equipment and accuracy
of the transduction.

6.1 Specifications and solutions

The starting point of the test bench design is the experimental setup currently used
at the optics department of CEA-Grenoble, it enables to test photonic devices in air
according to the standards of this laboratory. Two optical fibers are placed close to
the wafer in order to inject and collect the light from the device. Although I draw
inspiration by different test benches, the basic concept is an optical fiber fixed in the
extremity of an arm which is displaced with 3-axis stage. The coupling angle is set
by the geometry of the notch that hosts the fiber. Differently from previous systems,
the optomechanical sample is placed in a vacuum chamber and linked electrically
and optically to the equipments via sealed feedthroughs.

We fixed some ambitious targets for the optomechanical test bench:
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• maximum sample size 3.5 cm× 3.5 cm

• alignment of two fibers (1µm accuracy, tilt of 11.5◦)

• test of devices in a area of 13mm× 13mm (without venting the chamber)

• from 1 to 3 electrical contacts for each device

• chamber pressure around 10−6 mbar (< 10−4 mbar)

• easy cryostat upgrade

Since the devices are hybrid (they have optical, electrical and mechanical ele-
ments), we need electrical connections between the device and the external equip-
ments in order to perform the electric actuation and the piezoresistive detection.
However the real challenge occurs when we combine these requirements with the
need to work under vacuum. As a matter of fact, the cantilever has an improved
mechanical quality factor at low pressure (at least 10−5 mbar).

We designed two solutions:

• Vacuum chamber with internal motorized stages driven from outside (fig. 6.1)

• Vacuum chamber with external manual stages moving a travelling flange on a
bellow (fig. 6.2)

The first solution has a relatively big chamber which hosts inside two 3-axis
stages with related motors (fig. 6.1). Since the sample, the fibers and the stages
are under vacuum, the alignment between the fiber and the coupler is very accurate
and stable. We can say that this solution is the vacuum compatible version of the
setup already built at the optical department, with the difference that, for obvious
reasons, the positioners are driven electrically from outside.
The second solution has a smaller chamber (fig. 6.2), ideally, of the same size of
the sample holder. The two fiber arms are welded to travelling flanges displaced
by XYZ micrometer manipulators; the vacuum bellow is necessary to compensate
the relative movement between the chamber and the flange. The alignment now
is quite user-friendly (just screwing stage with hand) but the huge force on the
flange demands strong micrometric screws with a not so accurate pitch. This means
probably difficulties or long time spent for the alignment. The travelling flange is
subject to two forces, the force due to pressure difference between outside and inside
the chamber and the spring force of the mechanical deformation of the bellow. Since
the minimum length of a bellow is fixed for mechanical stroke reasons, the length
of the arms is significant; the thermal drift between sample and optical fiber arms
could be an experimental setup problem.
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Figure 6.1: First solution scheme: the stages are vacuum compatible and driven
from outside.

Figure 6.2: Second solution scheme: the external stages are under stress and probe
arms are very long.
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Finally, we chose the first solution: the risk of a low quality alignment due to
thermal drift and poor accuracy of the manual stages was too big with respect to the
difference in term of price between the two solutions. In addition, motorized stages
allow automatic alignment so it would be possible to perform from now automatic
tests over several devices.

6.2 Vacuum chamber, stages and fiber alignment

High vacuum is achieved in a semi-custom cylindrical chamber (400mm diameter,
220mm height). On the lateral side, seven ports of different sizes are present for
hosting the pump, the flanges with feedthroughs, the sample holder and the venting.
On the top, the big port (250mm of diameter) is for the sample charging and it is
closed by a flanged viewport for the camera-assisted alignment. Whenever possible
we used ISO flanges respect to CF type: they are less expensive, the fixation is
performed quickly and the gasket are reusable.

At the bottom, ten tapped holes are in place to clench two breadboards and offer
a versatile stand where the alignment system will operate. The alignment is per-
formed by different steps: thanks to a system of rails, the two stages are displaced
manually on the XY plane until the fiber holder is close to the sample holder, then
the micrometric screws move narrowly the fibers toward the grating couplers. Then
the fiber approaches the substrate until the contact and then it is retracted of 5-
6µm. Now Z-axis is locked and we move the fiber exactly on top of the coupler.
This operation is done with the help of the camera which provides a top view of the
sample. Finally, the ultimate alignment is achieved injecting light into the device
and maximizing the outcoming light signal. In this phase, the fibers are moved with
an accuracy of 1µm. The vacuum modifies slightly the geometry of the chamber
and the relative fiber-sample distance. If the experiment requires vacuum, the pump
must be switched on between the coarse and fine alignment.

Many sealed feedtroughs are necessary: we need to bias the motors and connect
one or more devices to the external equipment.
The 6 × 2 = 12 wires for the motors go through a flanged SubD connector and
are linked directly to control electronics. The electric contacts are made via wire
bonding from device pads to the PCB card where sample is glued. This card fits
into the sample holder which linked to the electric feedthroughs via 5 SMA cables.
The optical fibers enter or exit from the chamber thanks to two flanged FC-APC
feedthroughs.

The sample holder is put at the end of a cylindrical bar which is screwed on a

80



6.3. Measurement equipments

flange. This solution could look strange but this simplifies the upgrade when we
want to add a cryostat to the test bench. In fact, the cold finger of the cryostat
will replace the bar and cool down the sample holder. Temperature control avoids
a thermal drift of the optical resonance and it is crucial for experiment concerning
noise investigation and mass deposition in MEMS. The upgrade with the cryostat
is currently under running.

6.3 Measurement equipments

Once the device is aligned and bonded, we plugged some equipments to the feedthroughs
around the chamber: the injected light is provided by a laser and the output light is
collected on a photodetector. A Lock-In Amplifier processes in parallel the signals
from the photodetector and from piezoresistive gauge.

6.3.1 Laser

For all experiments, we used tunable laser from Yenista (T100S-HP CL). The main
characteristics are resumed in the table 6.1:

Wavelength range 1500-1620nm
Wavelength stability ±5 pm/h (±3 pm/h; ±5 pm/24h typical)

Output power 6 10 dBm
Output power stability ±0.01 dB/h (±0.025 dB/24h typical)

Relative intensity noise (RIN) −145 dB/Hz (≥ 0 dBm / 100MHz)
Spectral width (FWHM) 400 kHz typical

Absolute wavelenght stability ±20 pm
Wavelength setting repeatability 5 pm typical

Wavelength setting resolution 1 pm
Continuous sweep speed 1-100nm/s

High frequency modulation 30 kHz-200MHz
Auxiliary λ output 0-5V TLL

Table 6.1: Laser characteristics.

This laser is driven from remote via a GPIB/Python protocol. We can set,
change and save any parameter value (λ, power, sweep speed, etc etc) in any mo-
ment of the experiment.
As we will see in section 7.2.1, the λ auxiliary output is fundamental for the contin-
uous optical characterisation: the signal passes from 0 to 5 V when the laser cavity
is sweeping. This gives us the start and stop instant of the wavelength sweep.
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For the step-by-step characterisation (section 7.2.2), the ultimate resolution is lim-
ited to 1 pm.

6.3.2 Photodetectors

The photodetector is the element which converts the light signal into an electrical
signal compatible with the LIA input. For this work, we used models built from a
photodiode p-i-n and equipped with an integrated transimpedance amplifier.
The signal coming out from an integrated photodetector is:

Vout = G · R(λ) · Pin (6.1)

where Pin is the incident light power, R(λ) responsivity in [A/W ] and G is the
transimpedance gain in [V/A].

During the experiments, we used two photodetectors depending on the situation:
the model 1881-FC-AC from Newport and the model OE-200-IN2 from Femto.
We chose the 1811-FC-AC for reasons of workability: the DC output signal is ac-
quired during the fiber alignment and during the optical characterisation. Once the
setup is tuned, we use the AC output for the optomechanical detection. The high-
pass filter cuts the DC component coming from the laser avoiding the saturation of
the LIA input (see section 7.3).
The model OE-200-IN2 fits well for the optomechanical downmixing (see section 7.4).
The interesting noise performance at low frequencies assures a detection limited only
by the laser shot noise.

The main characteristics for both photodetectors are summed up in table 6.2:

Newport 1881-FC Newport 1881-FC Femto OE-200-IN2

(DC output) (AC output)
Gain [V/W ] 104 4 · 104 104

Bandwidth DC-50 kHz 25 kHz-125MHz DC-500 kHz

NEP [pW/
√
Hz] x 22.5 at 17MHz 2.5 at 10 kHz

Saturation power > 0.5mW 55µW 1mW
Wavelength range 900 − 1700nm 900 − 1700nm 900 − 1700nm

Table 6.2: Photodetectors characteristics.

6.3.3 Lock-In Amplifier

For all the experiments we used a Lock-In Amplifier (LIA) from Zurich Instru-
ments. The UHFLI model is a completely digital lock-in amplifier for signals up to
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600 MHZ. The two independent inputs (±1.5V ) suit well for the double detection
whereas the two outputs (±1.5V ) are used for the cantilever actuation, the gauge
biasing or the light modulation. The signals are generated from the internal oscilla-
tors of the LIA.
The auxiliary inputs (±10V ) are useful for the optical characterisation of the ring
resonator.
All the results were obtained driving the LIA from remote thanks to libraries and
scripts in Python.

6.4 The complete setup

From sections 6.2 and 6.3, all the setup elements are chosen. The complete test
bench is shown in fig. 6.3:

Figure 6.3: Complete scheme setup: the LIA, the stages and the laser are driven
from the computer. The two optical fibers are aligned by the stages whereas the
wire bonding assures the electric contacts. The electrical components are in blue,
the optical components are in orange and the mechanical components are in green.
The dashed lines indicate the remote control cables.
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the sample inside the vacuum chamber is linked to the the external equipments via
wire bonding and the aligned optical fibers. The laser, the LIA and the stages are
remote controlled via the computer.
During his stage, Sébastien Dos Santos developed the Python code to drive the
stages and designed a graphic user interface. His contribution simplifies the stages
displacement operations and makes possible a semi-automatic alignment of the fibers
with a view to automatic characterisation of several devices.
The LIA and the laser are driven via Python libraries and home-made scripts be-
cause most of the measurement would have been impossible only via LIA software
or with manual set of the laser. The initial time spent in coding paid back in terms
of versatility, measurement reproducibility and user comfort.

Last details of this setup are a polarisation maintaining fiber (PMF) and polari-
sation controller (PC) between the laser and the device. Between the laser and the
optic table, we used a polarisation maintaining fiber since it avoids polarisation fluc-
tuations due to fiber deformations caused by air currents or user movements (See
sections 6.5.4 and 6.6.2). The polarisation controller, instead, provides a correct
light polarisation at the input of the grating coupler (see section 5.3).
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6.5 Test bench noise evaluation

Once the setup was complete, we calibrated the test bench and we evaluated its
performances in terms of noise.
We classify here the noise sources which we expect along the transduction chain:

• Laser

– Intensity noise

– Wavelength fluctuation

• Mechanical resonator

– Thermomechanical noise

– Johnson noise of gauges

• Instrumentation

– Lock-In Amplifier

– Photodetector

• Light injection

– Light polarisation fluctuation

– Coupling misalignment

Only the thermomechanical noise and LIA noise are both present for optomechanical
and piezoresistive transduction methods.

6.5.1 Laser noise

Since the NEMS displacement is measured by the means of a light signal, the laser
noise power and its wavelength stability fix the resolution for the optomechanical
transduction.

Out of resonance

Far away from the resonance, the power at the drop port is zero whereas at the
through port is P0 = αcPlaser independently from the wavelength of the laser. (αc

are the coupling losses described in section 5.3).
The power noise density at the through port is:

SR = P 2
0 · SR

P 2
0

= P 2
0 · 10RIN/10 [W 2/Hz] (6.2)
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where RIN is the relative intensity noise expressed in dB/Hz.
From data sheet of the laser, the RIN is equal to −145 dB/Hz at 100MHz for
P ≥ 1mW but at through port, the light power is usually lower than 50µW .
For a laser power of 50µW , the RIN is limited by the shot noise:

Sγ

P 2
0

=
2hνP0

P 2
0

=
2hc

λP0

=
2 · 6.626 · 10−34 · 3 · 108

1550 · 10−9 · 50 · 10−6
= 5.13 · 10−15 Hz−1

⇒ RINγ = −143 dB/Hz > −145 dB/Hz (6.3)

Attenuating a laser beam, we attenuate at the same time the noise coming from the
laser until the shot noise dominates:

Sγ = 2hνP0 =
2hcP0

λ
=

2 · 6.626 · 10−34 · 3 · 108 · 50 · 10−6

1550 · 10−9
= 1.28 · 10−23 W 2/Hz

(6.4)

Let us notice that
√

Sγ = 3.578 pW/
√
Hz could be higher or lower than the noise

equivalent power of the photodetector (see eq. (6.19) in section 6.5.3).

On resonance

When the laser is tuned on the optical peak, any wavelength fluctuation is turned
into a intensity fluctuation by virtue of the local peak slope. (See chapter 4)
In the best configuration, during an optomechanical transduction, the laser is set at
the maximum slope of the Lorentzian response of the optical resonator as in fig. 6.4.

Assuming that the laser has a power noise density and a wavelength fluctuation
completely independent, we add up the two contributions and estimate the power
noise density at the drop or through port.

At the through output of the optical resonator we obtain a light power of

PR(λ, P0) = P0

(

1 − CR γ2
opt

(λ− λr)2 + γ2
opt

)

(6.5)

where CR is the contrast for the through port, λr is the resonance wavelength and
Qopt = λr/2γopt is the optical quality factor. Qopt and λr are fixed since are parame-
ters of optical resonator and the laser power is attenuated by the couplers losses as
follows P0 = αc · Plaser (see section 5.3).

During the experiment, λlaser = λr −
√

3
3
γopt, so PR(λlaser) = P0 − 3

4
P0CR.

The total noise at the through port has two components, one from the intensity noise
(in this case, the shot noise) and another due to the wavelength fluctuation.

SR =





∂PR

∂λ

∣

∣

∣

∣

∣

λlaser

· δλ




2

+
2hcPR

λlaser

(6.6)
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Figure 6.4: Lorentzian peak of the optical resonator with linear approximation
around λ⋆ = λr −

√
3

3
γ. For simplicity, the plotted peaks have unitary contrast.

SR =

(

−3
√

3QoptP0CR

4λr

· δλ
)2

+
2hcP0

λlaser

(

1 − 3

4
CR

)

(6.7)

The laser noise transmitted through the ring resonator now depends also on the
laser wavelength stability δλ.
Unfortunately, we do not have values for δλ and the laboratory is not equipped for a
direct measurement. We just observe an increased noise density at the photodetector
output when the laser is tuned on the optical resonance peak. (Figure 6.10 in
section 6.6.1)

6.5.2 Mechanical resonator noise

Thermomechanical Noise

Thermomechanical (or Brownian) noise is due to the Brownian motion of the par-
ticles which impact the cantilever and to internal processes like the phonon-phonon
interaction. It could be explained as stochastic force acting in every direction but
we observe it only in the direction of the beam deflection. This noise is a real me-
chanical displacement which is transduced by the piezoresistive and optomechanical
detections. Sf (ω) is defined as a thermomechanical force spectral density with a
white spectrum being equal to

Sf (ω) =
4MnωrkBT

Qm

[N2/Hz] (6.8)
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where Mn is modal mass of the cantilever mode, ωr the resonance frequency, kB the
Boltzmann constant, T the temperature and Qm the mechanical quality factor of
the beam.
The mechanical resonator acts as a filter, so the spectral density of the cantilever
displacement is obtained from the transfer function of a harmonic oscillator [71].
By limiting to the first mode, the cantilever displacement at the position x will
result as

Sth(ω) =
ψ2

1(x)

M1Qm

4ωrkBT

(ω2 − ω2
r)2 +

(

ωωr

Qm

)2 [m2/Hz] (6.9)

where ψ1(x) is the shape of the fundamental cantilever mode.
On resonance (ω = ωr), the thermomechanical noise at the cantilever end (ψ1(L) =
1) has an amplitude equal to

Sth(ω) =
4kBTQm

M1ω3
r

[m2/Hz] (6.10)

Johnson-Nyquist noise

It arises from the thermal agitation of electrical carriers in electrical conductors and
it depends on resistance R and temperature T . It is a white noise whose power
spectral density (PSD) is written as

SJ(ω) = 4kBTR [V 2/Hz] (6.11)

Being a resistor, the piezoresistive gauge is affected by the Johnson noise whereas
this noise is not present for the optomechanical detection. From a direct measure,
the resistance of the gauges plus the wire bonding is around 50kΩ. It gives rise a
noise of:

SJ(ω) = 4 · 1.3806488 · 10−23 · 298 · 50 · 103 ≃ 8.23 · 10−16 V 2/Hz

6.5.3 Instrumentation noise

The equipments which read the signal coming from the devices (i.e. Lock-In or
photodetector) are responsible for the instrumentation noise. A good experimenter
works to minimize this noise until it becomes negligible respect to intrinsic noises
like the shot noise, the thermomechanical noise or the Johnson noise which are due
respectively to the laser, to the cantilever and to the gauges.
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Lock-In Amplifier noise

The digital Lock-In Amplifier has an analog-to-digital converter for each high fre-
quency input. From the datasheet, the best noise level is 4 nV/

√
Hz but it depends

on the frequency, on the input range and on the input impedance, as we can see
from fig. 6.5.

(a) 50 Ω input impedance (b) 1 MΩ input impedance

Figure 6.5: Voltage noise density at the LIA input

For piezoresistive and optomechanical detections, the instrumentation noise com-
ing from the LIA is always negligible compared to the other noise sources.
For the optical characterisation of the ring instead, we use the auxiliary inputs as
describe in section 7.2. We did not have noise information from the manufacturer
but we will measure it experimentally in section 6.6.2.

Photodetector noise

The light collected from the device contains the signal of the NEMS displacement
readout. The light signal has to be converted into an electrical signal before being
processed by the LIA. That is why the photodetector noise is a key parameter
which fixes the resolution of the optomechanical transduction. Most of the time,
the photodetector is the limiting element of the transduction chain because its noise
contribution is dominant compared to the light shot noise and to the LIA input
noise. However, the optomechanical downmixing technique enables a transduction
using photodetectors with interesting noise level (see section 7.4).
The noise sources in a photodetector are mainly three:

• Noise from internal resistance
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• Noise from biasing

• I/V amplifier noise

A photodiode in the dark without biasing exhibits Johnson noise due to finite
resistance of the depletion layer of the p-i-n junction. This current noise spectral
density is

SSH(f) =
4kBT

RSH

[A2/Hz] (6.12)

In presence of biasing, the dark current Id generates shot noise, so the current noise
density results

Si(f) =
4kBT

RSH

+ 2eId [A2/Hz] (6.13)

Finally, the current signal is converted to a voltage signal thanks to the I/V amplifier,
so the voltage noise density at the photodetector output results

SV (f) = |G(f)|2 ·
(

4kBT

RSH

+ 2eId + Sa(f)

)

[V 2/Hz] (6.14)

being Sa(f) the noise spectral density at the input of the I/V amplifier and G(f)
the transfer function of the I/V amplifier. Since the I/V amplifier is integrated in
our photoreceivers, we have an experimental access only to SV (f) and not to single
noise terms.
If we bring back SV (f) to the photodetector input, we obtain the noise equivalent
power (NEP):

NEP(f) =

√

SV (f)

|G(f)| · R(λ)
=

√

4kBT

RSH

+ 2eId + Sa(f)

R(λ)
[W/

√
Hz] (6.15)

Often happens that the limiting noise comes from the I/V amplifier term Sa(f). In
our case, we will find out a measured NEP which is not flat (see 6.6.1). This means
that the shot or the Johnson noise cannot be the dominant noises since their spectra
are flat by definition.

Now, if we light the diode with a light beam, the current photogenerated will
add an extra shot noise

Si(f) =
4kBT

RSH

+ 2e(Id + IL) [A2/Hz] (6.16)

SV (f) = |G(f)|2 ·
(

4kBT

RSH

+ 2e(Id + IL) + Sa(f)

)

[V 2/Hz] (6.17)
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IL + Id In RSH C I/V

Figure 6.6: The equivalent circuit for a photoreceiver: IL is photogenerated signal,
Id the dark current, In the source of noise calculated integrating eq. (6.16) over the
measurement bandwidth. R and C are the resistance and the capacitance of the
depletion layer of the diode, they act as a low-pass filter reducing the photodetector
bandwidth. Actually the photodetector bandwidth is limited by the I/V amplifier.

The signal-to-noise ratio for a noise equivalent bandwidth NEBW will result:

S

N
=

V 2
out

∫

BW SV (f) df
=

R2 · P 2
in

[

4kBT

RSH

+ 2e(Id + R · Pin) + Sa(f)

]

·NEBW
(6.18)

Increasing the incident light power Pin, the shot noise coming from incident light will
be the dominant noise and the signal-to-noise ratio scales linearly with the power.
The upper limit for incident power comes from non linearities (or saturation) of the
transimpendance amplifier. In practice, the beam power is limited by thermal effects
occurring in the optical ring which lead to a non-linear optomechanical transduction
as we will see in section 7.2.

From the datasheet, the noise equivalent power (NEP ) of the 1811-FC-AC pho-
todetector is

NEP (f) =







2.5 pW/
√
Hz for 0 < f < 10 MHz

22.5 pW/
√
Hz for 10 < f < 200 MHz

(6.19)

If we multiply these values for the transimpedance gain G = 40 000 V/W , we obtain
a voltage noise density at the output of the detector equal to

√

SV (f) =







100 nV/
√
Hz for 0 < f < 10 MHz

900 nV/
√
Hz for 10 < f < 200 MHz

(6.20)

For a light beam of 50µW , the shot noise is around 3.6 pW/
√
Hz. The noise

contribution coming from the photodetector (i.e. the NEP) is expected higher than
the shot noise around the mechanical resonance frequency (∼ 17MHz).
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6.5.4 Light injection

Other noises arise from the light coupling mechanism and by the mechanical insta-
bility of the setup. To be precise, they turn up when light passes through the two
couplers even if the optical or mechanical resonators are not present. A packaging
of the device with optical bonding removes this sources of noise but obliges a single
device preparation. This solution is suitable only for a small number of devices made
with a mature process where the yield is high.

Light polarisation fluctuation

The grating couplers on the wafer are sensible to light polarization since they are
optimised for TE mode (see section 5.3). Every bending of the fibers changes the
light polarization inside the fiber core, and since the coupler acts like a polarisation
filter, the result is an attenuation of the light signal injected into the device.
The fiber bending is due to the pump vibrations, to air currents and to user move-
ments and it causes a light modulation detected from the photodetector.
The solution is to use a polarization-maintaining fiber (PMF) between the laser
and the polarization controller (PC) and to fix mechanically the fiber between the
polarisation controller and the input coupler.
The output fiber is not affected because the photodetector is not sensible to light
polarization.

Coupling misalignment

The fiber and the light coupler are aligned with the help of micrometric stages
which move a fiber holder. During an experiment, a thermal drift modifies the
relative position between fiber and coupler. This gives rise to an attenuation of the
power light injected or collected into and from the device. Thermal drift effect is
significant at the scale of hours. (See fig. 6.7)

Figure 6.7: Fiber-coupler misalignment due to thermal drift over 220 minutes.
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A similar misalignment occurs at higher frequency: especially under vacuum,
the end of the fiber vibrates like a single clamped cantilever. This induces a light
modulation at the mechanical resonance frequencies of the system formed by the
fiber holder plus the fiber. (See fig. 6.8). The magnitude of this noise could be
evaluated performing two different measures: a normal alignment and a special one
having the fiber in full contact with the substrate.

Figure 6.8: Oscillations of the fiber clamped into the fiber holder.

In presence of a damper which isolates the pump vibration from the vacuum
chamber, this noise is partially reduced but further optimisations on the fiber align-
ing system are advisable.
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6.6 Test bench noise measurements

In the following pages we will characterize experimentally the noise contributions
in the optomechanical setup. Whenever possible, we compared the experimental
values to the expected noises described in the previous section 6.5.
In the next subsection 6.6.1, we test the AC output of the photodetector NewPort
plugged to the high frequency input of the Lock-In Amplifier. This test is performed
to evaluate the noise level during the optomechanical transduction (section 7.3).
The subsection 6.6.2 tests the DC output of the photodetector NewPort plugged
to the auxiliary input of the Lock-In Amplifier. It aims to evaluate the noise level
during the acquisition of the optical spectrum on a ring resonator (section 7.2).

6.6.1 Noise investigation for the optomechanical detection

First of all, we evaluate the noise level of the analog to digital converter of the LIA:
performing a power spectral density with a 50 Ω plug, we find out a noise level
around 6.5 nV/

√
Hz (black curve in fig. 6.9), in agreement with specification in

fig. 6.5a.

Figure 6.9: Voltage noise density of the system made up of LIA, PD, attenuator and
laser: LIA noise is order of magnitudes smaller than the NEP. The laser shot noise
shows up in particular for frequencies where the NEP is smaller.
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Then we plug the AC output of photodetector NewPort, first in the dark to
measure the NEP and then with an increasing DC light power. Between the laser and
the photodetector, there is a passive 16dB-attenuator to avoid saturation simulating
the coupling losses of the device.
From the figure 6.9, we notice that the analog to digital converter at the LIA input
has a noise which is orders of magnitude lower than the photodetector and the laser.
The measured NEP (red curve) shows clearly the bandwidth of the photodetector
limited at 125MHz. Between 0 and 10 MHz we observe a noise of 250 nV/

√
Hz,

then it grows up to 600 nV/
√
Hz for higher frequencies. The photodetector noise

is in partial agreement with the nominal NEP in eq. (6.20) which is shown by the
dashed red line.
From red, cyan and green curves, we can discern the shot noise of the light beam
from the photodetector noise. It is evident only for frequencies in between 0.7 and
10MHz, where the NEP contribution to the total noise is smaller. For 50µW on
the photodetector, the total noise density will be:

√

Stot =
√

Sγ +NEP 2 =
√

1432 + 2502 = 288nV/
√
Hz (6.21)

a value compatible with the green curve in fig. 6.9.
The laser adds to the noise spectrum also a series of harmonics in the ranges of
0.2-2MHz and 30-125MHz.

We replace now the light attenuator with the device placed into the vacuum
chamber in a pressure around of 10−5 mbar. The light is coupled into the device
thanks to the fiber alignment system shown in fig. 6.1.
From the cyan and blue curves in fig. 6.10, we notice that the presence of the device

increases the noise density further in the range 1-20MHz, where the NEP does not
dominate. This noise is probably due to oscillations of the fiber ends in proximity
of grating coupler.
If now, we tune the laser wavelength on an optical resonance peak (purple curve),
we notice two things: the noise density increases again and a peak shows up at
17MHz. Since the optical cavity is a narrow wavelength filter, any wavelength os-
cillation is translated in intensity fluctuation, so the additional noise could originate
from a wavelength noise of the laser described in section 6.5.1. In any case, further
investigation is required.

Figure 6.11 is a zoom on the peak at 17MHz: as soon the wavelength is correctly
tuned, we are able to detect the cantilever displacement via the optomechanical
transduction. This peak is the first and involuntary signature of the thermome-
chanical noise of the cantilever described in section 6.5.2. Despite the frequency
resolution being rough, the peak position, the amplitude and the noise floor are
compatible with a more accurate measurement in fig. 7.16.
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Figure 6.10: Voltage noise density of the system made up of laser, device, PD and
LIA: the presence of the device increases the noise density due to the NEP and
to the shot noise. A further noise source comes on top if the laser is tuned on the
resonance peak.

Figure 6.11: First (involuntary) detection of thermomechanical noise.
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6.6.2 Noise investigation for the optical characterisation

A noiseless optical characterisation of the device allows a good knowledge of the op-
tical ring and a good choice of the wavelength for the optomechanical transduction.
As we will see in section 7.2, the optical characterisation of the device is performed
via the DC output of the photodetector NewPort plugged to the auxiliary input of
the Lock-In Amplifier.

As in the previous subsection, we start recording the voltage noise density of the
Auxiliary Input with a 50 Ω plug, then we add, in the order, the photodetector, the
laser (attenuated of 16dB) and finally the device.
From the plot in fig. 6.12, we have the noise density of the auxiliary input (black
curve) quite flat around to 10−5 V/

√
Hz. The NEP (in red) is slightly higher than

the input noise, especially in between 1 and 10 kHz, where a lot of harmonics are
added. The 50 kHz-bandwidth of the DC output is consistent with the datasheet.

Figure 6.12: Voltage noise density at the auxiliary input: the noise level is set by
the NEP of the photodetector DC output.

In this case, the shot noise from the laser beam is insignificant for power up to
50µW , so cyan and green curves are superimposed to the NEP data in red.

We replace now the light attenuator with the device placed into the vacuum
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chamber in a pressure around of 10−5 mbar. The light is coupled into the device
thanks to the fiber alignment system shown in fig. 6.1. When the optical attenuator
is replaced by the device and its grating couplers, the situation changes drastically
(see fig. 6.13):

Figure 6.13: Voltage noise density at the auxiliary input: the presence of the device
and the couplers adds low frequency noise and a peak at 8 kHz.

Now the biggest contribution to noise comes from the presence of the device,
especially at very low frequency where the optical characterisation is performed.
The probable responsible of this noise is the oscillation of the fiber alignment system
relative to the grating couplers. Some clear peaks around 100Hz, 500Hz, 8 kHz
and 10.5 kHz are detected, the origin is today unexplored but these frequencies
should match the in-vacuum resonance frequencies of the fiber clamped into the
holder (see fig. 6.8).
The pump seems not to be the cause of these vibrations, because switching off the
pump the noise spectrum is not modified.

These last two sections (6.6.1 and 6.6.2) fix the noise level which affects all the
optomechanical detections and all ring characterisations in the following chapter.

From fig. 6.11, we expected an optomechanical transduction at 17MHz having
a noise floor of 0.4µV/

√
Hz. The main responsible is the photodetector noise but
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smaller contributions come from the laser and the coupling system.

The optical characterisation is affected by low frequency noise (1mV/
√
Hz) due

to drift and vibration of the fiber holders (see fig. 6.13). The immediate solution is
to reduce the measurement bandwidth as much as possible via a low-pass filter or
to perform a step-by-step characterisation shown in section 7.2.2.

For future works, a proper packaging of the devices could eliminate the align-
ment step and cancel the noise introduced by the oscillation of free-end fibers under
vacuum.

6.7 Conclusions

We developed a complete test bench for testing the opto-electromechanical devices
under vacuum. This setup enables the characterisation of tens of devices injecting
and collecting the light by the means of two optical fibers aligned to the wafer.
Electrical connections are in place to perform the electrical actuation and the pie-
zoresistive detection of the cantilever.
The hybrid nature of the devices obliged us to reflect long time on fibers alignment,
electrical cabling, space constraint and vacuum compatibility of the components.
Also a good understanding of the laser and photodetector physics was key. All
these aspects make the optomechanical test bench an interesting instrumentation
challenge.

Once the system was complete, we evaluated and measured the noise perfor-
mance of the entire setup: this configuration offers an optomechanical transduction
with a noise level of 0.4µV/

√
Hz within the typical frequency range of these devices

(1 − 30MHz). This noise level is more than adequate to detect the thermomechan-
ical noise displacement of the cantilever.
However, the alignment system and the free-end fibers suffer from low frequency
vibrations which preclude a long-term and stable device coupling. A proper pack-
aging could easily solve this issue.

By having this experimental setup, we are ready for the characterisation of the
optomechanical devices.
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Chapter 7

Experimental characterization of

the device

This chapter reports the experimental characterisation of the in-plane cantilever de-
vice described in section 5.4.1. The efforts in device fabrication (chapter 5) and in
the test bench setup (chapter 6) are rewarded with the results which are shown in
the following pages. Unless otherwise indicated, all the measurements are performed
on the device #3 illustrated in fig. 5.9.
The general purpose of this chapter is to demonstrate the performances of our opto-
mechanical system: the ultimate goal is to develop a NEMS devices similar to [61]
and [2] which benefit from the optomechanics better performances and a simplified
multiplexing.

Preliminary measurements are performed to test the mechanical and photonic
parts separately. Then, the optomechanical transduction of the cantilever is studied
for different drive voltages and for different wavelengths.
The detection of thermomechanical noise of the resonator proves the performance of
the optomechanical transduction. Moreover, it makes possible a calibration of the
transduction and an evaluation of the optomechanical coupling factor.
An in-situ comparison between transductions is possible only by having a parallel
detection on the same mechanical resonator: this is the innovative aspect of these
devices. By the means of the double detection, we investigate not only the linearity
of the optomechanicanical detection but the frequency stability of the cantilever:
the two completely independent readouts accredit the hypothesis of a mechanical
origin for frequency fluctuations in silicon resonators [8].
Since a limiting noise for the readout is the photodetector NEP, the optomecha-
nical downmixing technique is developed to shift the transduction signal to an
arbitrary low frequency: now we can detect up to the third resonance mode us-
ing low-bandwidth photodetectors which have interesting performances in terms of
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noise. The optomechanical downmixing fits for the NEMS mass spectrometry which
requires the tracking of higher mechanical modes at risen frequencies. (See sections
2.3.2 and 2.4).
We test as well the possibility of an optical actuation of the cantilever via the op-
tical gradient force. Despite the actuation efficiency being weaker with respect to
electrostatic actuation, we can measure the cantilever displacement thanks to the
piezoresistive detection. At longer term, we aim to obtain a transduction and an
actuation which are simultaneously performed by the means of optomechanics.
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7.1 Piezoresistive detection

Since the release is the trickiest step of technological fabrication, the first experiment
aims to check the status of the devices with a purely electrical characterisation. As
described in section 5.5, in-plane cantilevers have a parallel piezoresistive detection
and an electrostatic actuation.
The aim is to inspect if the mechanical resonator moves in a proper way and to find
its resonance frequency.

As for an usual M/NEMS characterisation, we excite the cantilever through the
electrode and we measure the displacement thanks to the piezoresistive gauge. In
this case, we have a single gauge device where the variation of resistance δR is
proportional to the deflection of the cantilever. The downmixing technique [70][69]
increases the signal-to-noise background (SNB) of the transduction and bypasses the
cut-off frequency of the cables and the NEMS resistor which form a low-pass filter.

7.1.1 Cut-off frequency of the system

The equivalent electrical scheme for the piezoresistive detection setup is shown in
figure 7.1. Calculating the transfer function H(ω) of the voltage divider formed by
the device resistance and the setup impedance, we can evaluate the cut-off frequency
fc of the system.

We consider the device impedance as purely resistive: Rg is the resistance of
the unstressed gauge and δR is the variation of resistance which is proportional to
cantilever displacement. By the means of piezoresistive properties of the nanogauge,
δR is always negligible with respect to Rg.
Then we calculate the setup impedance Zsetup formed by the LIA impedance plus
the cable capacitance. The cable resistance is considered negligible with respect to
RLIA.

Zsetup =
RLIA

1 + jRLIACsetup ω
(7.1)

where Csetup = Ccable + CLIA.
From the formula of a voltage divider,the transfer function of the system results as

H(ω) =
Vout

Vbias

=
RLIA

RLIA +Rg

1

1 + j
RgRLIACsetup

Rg +RLIA

ω
(7.2)

In other words, the setup acts a low-pass filter having a cut-off frequency equal to

ωc =
Rg +RLIA

RgRLIACsetup

(7.3)
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Vdrive

Vbias

Rg + δR

Vout

CLIA RLIACcable

Zsetup

Figure 7.1: The equivalent circuit for the piezoresistive detection: the device resis-
tance Rg + δR and the setup impedance Zsetup form a voltage divider. δR is the
variation of the gauge resistance as a consequence of the cantilever displacement.

From a two-terminal measurement, we obtain Rg = 74.7 kΩ and we know Ccable =
100 pF/m, RLIA = 1MΩ and CLIA = 16 pF from the specifications.
Using a cable 1m long, we estimate the cut-off frequency as follows:

ωc =
74.7 · 103 + 106

74.7 · 103 · 106 · 116 · 10−12
≃ 124 · 103 rad/s (7.4)

fc = ωc/2π = 19.74 kHz (7.5)

It means that the transduction signal components above fc are attenuated by the
low-pass filter built by the parasitic capacitance of the setup. Since our devices os-
cillate at several MHz (see table 5.3), a direct detection of NEMS displacement may
be impossible. For the piezoresistive detection, we have to adopt the downmixing
approach described in the following section.
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7.1.2 The piezoresistive downmixing

To deal with the cut-off frequency of the system in eq. (7.5), we implement the
downmixing scheme for the piezoresistive gauge readout [72][70].
We actuate the cantilever at frequency ω or ω/2 applying a sinusoidal drive voltage
to the electrode

Vdrive(t) = Vdrive cos(ωt) or Vdrive cos(ωt/2) (7.6)

with ω ≫ ωc. The generic drive frequency ω is much higher than the cut-off fre-
quency in eq. (7.4) because the mechanical resonance frequency for such cantilever
is in the order of tens of MHz. In both cases, from section 5.6, the applied force has
a component at frequency ω and the cantilever oscillates at frequency ω, modifying,
as consequence, the gauge resistance

δR(t) = δR cos [ωt+ φ(ω)] ∝ x(ω) cos [ωt+ φ(ω)] (7.7)

x(ω) and φ(ω) are the magnitude and phase response of the cantilever for an ex-
citation at frequency ω. The resistance variation δR is an image of the cantilever
displacement. From eq. (5.3), the cantilever response x(ω) is proportional to Vdrive

or to V 2
drive depending on the ω or ω/2 excitation.

Applying the basics of the the electrical downmixing, we polarize the gauge with a
bias voltage at frequency slightly different from the drive frequency, such as ω+∆ω,
where ∆ω ≪ ωc ≪ ω

Vbias(t) = Vbias cos[(ω + ∆ω)t] (7.8)

Like the drive frequency, the bias frequency is well above the cut-off (ω+∆ω ≫ ωc),
so Vout will be negligible compared to Vbias since H(ω + ∆ω) ≪ 1. The current
flowing through the gauge results as

Ig =
Vbias − Vout

Rg + δR
≃ Vbias

Rg + δR
≃ Vbias

Rg

(

1 − δR

Rg

)

(7.9)

It means that the output voltage at the first order in δR is

Vout = Vbias −RgIg = Vbias
δR

Rg

(7.10)

The output signal is the result of a mixing between the bias signal and the signal
due to the gauge compression. Thanks to eq. (7.7) and (7.8), we write the explicit
expression for the output voltage

Vout(t) = Vbias
δR(ω)

Rg

cos[(ω + ∆ω)t] · cos [ωt+ φ(ω)] (7.11)
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applying the Werner formula, we obtain

Vout(t) = Vbias
δR(ω)

Rg

cos[∆ωt− φ(ω)] + cos[(2ω + ∆ω)t+ φ(ω)]

2
(7.12)

Focusing on the first term of eq. (7.12), we note that the magnitude and phase of the
cantilever, which vibrates at frequency ω, are moved to the downmixing frequency
∆ω. For cantilevers having a resonance frequency in the order of MHz, only the
component at ∆ω passes through the low-pass filter in eq. (7.2) and it is measured
via synchronous detection by the LIA:

|VLIA,∆ω(ω)| =
Vbias

2
√

2Rg

δR(ω) ∝ Vbias

2
√

2Rg

x(ω) (7.13)

The factor
√

2 is due to the fact that the LIA measure a RMS value of the signal
amplitude.
The electrical downmixing technique is presented by the scheme in fig. 7.2:

Figure 7.2: Piezoresistive downmixing setup. DUT: device under test, MR: mechan-
ical resonator, LIA: LockIn amplifier. In blue the electric elements, in orange the
optics and in green the mechanical domain.

Experimentally, we obtain the mechanical response in magnitude x(ω) and phase
φ(ω) scanning the drive frequency around the mechanical resonance. Each point of
the mechanical spectrum is the result of the signal demodulation at frequency ∆ω.
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7.1. Piezoresistive detection

7.1.3 Optimisation of the downmixing frequency

We characterize the piezoresistive downmixing setup varying the downmixing fre-
quency ∆f from 4 to 150 kHz (fig. 7.3) and we notice that over 45 kHz the signal
amplitude is attenuated by the cable impedance (fig. 7.4).

Figure 7.3: Piezoresistive detection for different downmixing frequencies ∆f : (a)
magnitude and (b) phase response of the cantilever. For values of ∆f over 45 kHz,
the signal amplitude is attenuated by cable impedance.

Comparing the expression in eq. (7.13) and the fitted parameter A0 in fig. 7.4,
we estimate the relative resistance variation δR/Rg at resonance for a Vdrive = 0.5V :

A0 ≡ |VLIA|
Vbias

=
δR(ωr)

2
√

2Rg

⇒ δR(ωr)

Rg

= 2
√

2A0 ≃ 6.6 · 10−4 (7.14)

The fit in fig. 7.4 also provides an experimental cut-off frequency around 45 kHz, a
value two times higher than what we expect from eq. (7.5).
Despite the low-pass transfer function in fig. 7.4 could advise a downmixing fre-
quency ∆f lower than 45 kHz, we have to remind that the LIA input is affected by
1/f noise up to 100 kHz (see fig. 6.5b). This means that choosing a downmixing
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Figure 7.4: Low pass transfer function for different downmixing frequencies ∆f : the
mechanical peak amplitude in fig. 7.3a decreases as ∆f goes over 45 kHz.

frequency ∆f too low could be wrong as well: we are looking for the best signal-
to-noise ratio and not for the higher signal amplitude. In order to optimize the
signal-to-noise ratio, we have to take into account the total noise of the system, and
not only that related to the device. For this reason, we calculate the Allan deviation
for each ∆f and we found that over 75 kHz the signal and noise are attenuated by
the same factor. (See fig. 7.5)

Figure 7.5: Allan deviation of the cantilever for different ∆f
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7.1. Piezoresistive detection

The dashed red line is a theoretical evaluation of the Allan deviation according
to the Robin’s formula [21][22][23]

∆f

f
=

1

2Qm

N

S

√

1

2τ
(7.15)

where Qm is the mechanical Q-factor, N the noise level at resonance, S is the signal
at resonance of the driven cantilever and τ the integration time.
At the light of this result, all the piezoresistive detections in the following chapters
are performed with a downmixing frequency of 105.133 kHz.

In this section we verify that the release process in fig. 5.15g is done correctly,
we identify the first mechanical resonance of the cantilever already predicted in
table 5.3 and we optimise a key parameter for the piezoresistive detection such as
the downmixing frequency ∆f .
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7.2 Optical spectrum

Once we are sure of the good state of mechanics, we deal with the photonic parts.
To perform the optomechanical transduction, we need a clear measurement of the
optical spectrum of the ring resonator in order to find the resonance wavelength and
the optical Q-factor. A good knowledge of optical peak shape is a key to correctly
tune the laser and evaluate the responsivity of the transduction (for further details,
see section 7.3.7). We use two methods to characterize the optical response of the
ring: the continuous and the step-by-step wavelength scanning.

7.2.1 Continuous wavelength scanning

The light is injected into the device after being correctly polarised since the couplers
accept only TE polarisation. (See section 5.3). The laser wavelength is shifted
linearly from λmin to λmax and, simultaneously, the output power is recorded in the
time domain. The setup is shown in fig. 7.6:

Figure 7.6: Continuous wavelength scanning setup. PC: polarization controller,
DUT: device under test, PD: photodetector. In blue the electrical elements and in
orange the optics.

Assuming a constant scanning speed vsweep, we can associate each point in the
time domain to a precise wavelength by the means of

λ = λmin + (t− t0) · vsweep (7.16)
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where t0 is the starting instant of the scan provided by the trigger.
The higher the sampling rate and the lower the scan speed, better the wavelength
resolution.

Resolutionλ =
vsweep

Sampling Rate
(7.17)

A sampling rate acquisition of 1 kSa/s over 100 s, it is adequate to target a resolu-
tion of 1 pm over a range of 100nm, with a scan speed of 1nm/s.
If we want to improve the resolution in λ, we just decrease the wavelength scanning
speed or increase the sampling rate at a cost of an increased noise in the measure-
ment.
Uncertainties originate from an imperfect scan speed which could be non-constant
or different from the nominal value. Whereas for the wavelength sweep linearity we
have to trust the laser manufacturer, we can recalculate for each measurement a real
sweep speed as

vsweep =
λmax − λmin

tf − t0
(7.18)

It is possible to detect when the laser cavity starts and stops (t0 and tf ) thanks to
an auxiliary signal from the laser.
Since, in this case, the optical spectrum is a sequence of thin peaks, the bandwidth
of the photodetector has to be large enough to follow the signal, especially for high-
speed wavelength scanning. But large bandwidth means more noise superimposed
to the spectrum, for this reason a scan speed between 1 and 10nm/s is advisable.

A typical optical spectrum is shown in fig. 7.7: three optical resonances with
a FSR of 17nm are superposed to the response of the grating couplers shown in
section 5.3.

Figure 7.7: An example of optical spectrum obtained with a continuous wavelength
scanning: the ring response is superposed to the grating coupler response.

This technique provides in a short time a preliminary ring optical spectrum. Once
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the peaks position is detected, a step-by-step scanning is performed to characterize
a selected peak with more details.

7.2.2 Step by step wavelength scanning

The step-by-step optical characterisation is performed as follows: the light tuned to
a given wavelength is injected into the device and the optical power is measured at
the through or at the drop ports. Then a new wavelength is set and a new power
value is recorded, this routine is repeated for the entire wavelength range.

Figure 7.8: Step-by-step scanning setup. PC: polarization controller, DUT: device
under test, PD: photodetector. In blue the electric elements and in orange the
optics.

This method is quite accurate because it is possible to average the output power
in order to decrease noises due to the photodetector and due to the free-end fiber
oscillation. On the other hand, the step-by-step routine is really time-consuming
and becomes quickly inapplicable for wide wavelength scanning.
Having a 1 pm step, an averaging time of 100ms and a delay time due to the laser
cavity displacement and to the remote control, the scanning speed results around
1.16 pm/s. That means a 24h scanning for a 100nm wavelength range. Obviously
this delay is unacceptable because the fibers alignment is affected by the thermal
drift and because the optical resonance shifts with temperature variations.
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The step-by-step scanning is applied only around a single resonance peak, usually
in a wavelength range of 300-400 pm. When the photodetector has a dedicated DC
output, it is preferable to use it since the high frequencies are automatically filtered
out.

Figure 7.9 shows the optical peak for the device #3 (see section 5.4.1) that
will be used in the following sections for the optomechanical transduction. The
presence of the double peak instead of a single peak is explained by a degeneration of
clockwise and anti-clockwise modes of light propagation which arises from roughness
and defects of the ring or from the presence of the cantilever [73][74][75][76].

Figure 7.9: Typical optical spectrum of the ring from step by step scan.

Fitting the data with a double Lorentzian function, we obtain the resonance
wavelength, the optical Q-factor and the amplitude for both peaks. Thanks to
eq. (3.43) we calculate the finesse for the left and the right peak:

F =
FSRλ ·Qopt

λr

=







17·65743
1557.489

≃ 717.6 for left peak
17·100878
1557.525

≃ 1101 for right peak
(7.19)

From the definition in eq. (3.44a), the contrast for the through port is

CR =
Rmax − Rmin

Rmax

=







1.24
3.55

≃ 0.35 for left peak
1.66
3.55

≃ 0.48 for right peak
(7.20)

As shown in fig. 7.10, for an input power higher than 6µW , the peaks show a
non-Lorentzian shape due to the thermo-optical effect [38] or to the Kerr effect [77].
Differently from [78], we did not observe hysteresis when the scanning is performed
on both directions (fig. 7.11).
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Figure 7.10: Optical spectrum of the ring for different laser power: as the out-of-
resonance power is higher than of 6µW , the right peak shows a non-linearity due
to the thermo-optical effect [38] or to the Kerr effect [77].

Figure 7.11: Optical spectrum of the ring for direct and inverse wavelength sweep:
despite the right peak is in the non-linear regime, no hysteresis is detected for this
ring.

Although the degeneration of propagating modes and the thermo-optical effect
are very interesting phenomena, we stay focused on the optomechanical detection:
we will use the left side of the left peak which never shows a non-linear behaviour
up to 45µW of out-of-resonance power. (The power stocked on the left resonance
is probably lower because of a lower optical Q-factor).
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As predicted in section 4.3 and investigated in section 7.3.7, the optomechanical
transduction responsivity strongly depends on the slope of the optical peak. Assum-
ing a Lorentzian spectrum of the ring, we estimate the peak slope at the optimal
wavelength point by the means of fitted values in fig. 7.9:

dP

dλ

∣

∣

∣

∣

∣

λ=1557.485 nm

=
3
√

3

4

P0CRQopt

λr

≃ 68µW/nm (7.21)

The magenta line in fig. 7.9 shows the linear approximation of the optical peak
around a wavelength of 1557.485nm.

At this point, the optical spectrum of the ring is properly characterised and we
are ready to perform the optomechanical detection of the cantilever displacement.
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7.3 Optomechanical direct detection

From section 4.3, we know that the direct optomechanical detection is performed
with the laser wavelength tuned on the side of the optical resonance. A correct
wavelength is set thanks to a step-by-step scanning in fig. 7.12: the laser wavelength
is swept manually until the output power achieved approximately 3/4 of the peak
amplitude. Unfortunately, the choice of the best operating point (good linearity
and steepest slope) is subjective. That is why the comparison between different
transductions is hard whenever the laser is retuned or the optical spectrum shifts
because of thermal drift.

Figure 7.12: Optical resonance spectrum: the laser wavelength is tuned in correspon-
dence of the steepest slope on the left side of the peak. Here λlaser = 1557.482nm.

7.3.1 Transduction scheme

The experimental setup is shown in fig. 7.13: the laser power has only a DC com-
ponent of magnitude Plaser usually between 1 and 3mW depending on the quality
of grating couplers (see section 5.3).
The cantilever, placed into the evanescent field of the ring, modulates the spectrum
shift of the optical resonator (details in chapter 4). The photodetector collects the
light which is modulated at frequency f , the same frequency of the mechanical os-
cillation, and provides an electrical signal to the LIA.
The actuation is performed electrically by applying to the electrode a sinusoidal
signal of amplitude Vdrive at frequency f/2: as we saw in section 5.6, the cantilever
oscillates at frequency f . The LIA uses the same oscillator to generate the actuation
at f/2 and for the demodulation at f , in this way, we obtain the phase information
of the mechanical oscillator.
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7.3. Optomechanical direct detection

Figure 7.13: Optomechanichal direct setup. PC: polarization controller, DUT: de-
vice under test, MR: mechanical resonator, PD: photodetector, LIA: Lock-In Ampli-
fier. In blue the electric elements, in orange the optics and in green the mechanical
domain.

If the cantilever does not move, the power coming out from the through port and
collected on the photodetector will be

Ppd = T (λlaser) · αc · Plaser = T (λlaser) · P0 (7.22)

where P0 is the laser power attenuated by the coupling losses αc (section 5.3) and
T (λ) is the optical spectrum of the ring in fig. 7.12.
T (λ) is described analytically by the Airy function detailed in chapter 3 but it can
be approximated locally by a negative Lorentzian peak as we did in section 4.3:

T (λ) =

(

1 − CR γ2
opt

(λ− λr)2 + γ2
opt

)

(7.23)

CR is the contrast, λr is the resonance wavelength and γopt = λr/2Qopt is the HWHM
of the peak.

Now, any displacement of the cantilever modifies the resonant wavelength via
the optomechanical coupling described in section 4.1. The optical spectrum shifts
accordingly to the resonance and a variation of light power occurs on the photode-
tector. As we saw in the section 4.3, this variation is proportional to the slope of
the optical peak and proportional to the optomechanical coupling factor gom.
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Since the cantilever oscillates at frequency f , the resulting signal on the photode-
tector is calculated by the means of eq. (4.16):

Ppd(t) = T (λlaser) · P0 +
3
√

3

4

P0CRQoptλr

c
· gom

2π
· x(f) cos[2πft+ φ(f)] (7.24)

where x(f) and φ(f) are the magnitude and phase response of the cantilever.
The continuous background T (λlaser)P0 is automatically filtered by the photodetec-
tor (NewPort 1811-FC-AC ) and the component at frequency f is measured by the
Lock-In Amplifier via synchronous detection.
According to the eq. (7.24), the signal magnitude from the LIA detection is

|VLIA, f (f)| = Gpd · 3
√

3

4

P0CRQoptλr

c
· gom

2π
· x(f)√

2
(7.25)

The factor
√

2 is due to the fact that LIA measures the RMS value of the signal
component at frequency f .

The fig. 7.14 shows the optomechanical transduction for different drive voltages
on the electrode: each of these 500 points results from the demodulation of the
photodetector signal at frequency f with a time constant of 1ms. If we add a time
delay between two points to reach the harmonic regime (8-10 times the LIA time
constant) and some USB communication delay, a mechanical spectrum is recorded
in 15-20 seconds.
The mechanical resonance frequency at 16.91MHz matches that from the prelimi-
nary piezoresistive transduction in fig. 7.3 and it is compatible with the theoretical
evaluation in table 5.3. A small shift of the mechanical resonance towards low fre-
quencies is observed especially from the phase response of the cantilever: this is
due to the negative stiffness effect acting on the resonator as Vdrive increases (see
section 5.6). The Q-factor values in fig. 7.14 decrease for larger actuations because
of a deformation in the mechanical response.
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Figure 7.14: Optomechanical detection for different actuations: magnitude and
phase response of the mechanical cantilever. For higher Vdrive, the resonance fre-
quency slightly shifts because of the negative stiffness effect whereas the Q-factor
decreasing denotes a peak deformation.

Plotting the peak amplitude versus the power of the drive voltage in fig. 7.15, we
can establish that the transduction shows signs of saturation for Vdrive > 1.0V . From
eq. (5.3), the actuation force is proportional to V 2

drive whilst here the transduction
deviates from the expected law for larger actuations. We consider the transduction
as non-linear whenever the deviation from the expected value is bigger than the 10%.
With the help of fig. 7.15, we fixed here the upper limit of the linearity transduction
to an actuation voltage equal to 1.0V .
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Figure 7.15: Peak amplitudes of fig. 7.14 versus the drive voltage: for Vdrive higher
than 1V the transduction deviates from the expected law. From eq. (5.3), the
actuation force is proportional to V 2

drive.

Thanks to the double transduction (section 7.3.6), we will demonstrate that the
non-linearity originates from the optomechanical readout and not from the mechan-
ical domain. To properly explain this non-linearity, we have to know the amplitude
of oscillation and evaluate the optomechanical coupling factor gom. With these two
values, we estimate that the resonance wavelength shift, due to cantilever oscillation,
is comparable to the FWHM of the optical peak. (See section 7.3.7).
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7.3.2 Thermomechanical noise and dynamic range

As explained in section 6.5.2, the minimum motion of the resonator is limited by
thermomechanical noise. A good transduction must be able therefore to readout the
thermomechanical motion of the cantilever.
Setting Vdrive to zero, we demodulate the signal from the photodetector at frequency
f as done before. In order to properly estimate the mean value of the noise, each
point of the plot is averaged over 1 s before passing to the next point.
To limit the measurement time to 4-5 minutes, the number of points in the plot
is reduced to 250. In a 30-minute time frame, the thermal drift of ring resonance
could already impact the sensitivity of the measurement. The presence of the cryo-
stat or any sample temperature control system would probably solve this issue. If
the measurement session lasts more than 1-2 hours, the thermal drift causes also
input/output fibers misalignment. The result is a variation of the injected power P0

as shown in section 6.5.4.
As we can see from fig. 7.16, the Brownian motion of the cantilever is transduced

by the means of the optomechanical detection: the thermomechanical peak is centred
to the resonance frequency having an amplitude of 2.69µV/

√
Hz.

Figure 7.16: Power spectral density of the transduction signal around the resonance
frequency. The Brownian motion of the resonator exceeds the instrumentation noise.
In this plot, the thermomechanical noise has been normalised to 1Hz-bandwidth.

The detection threshold of 0.4µV/
√
Hz, obtained from the background value,

corresponds to the laser shot noise plus the instrumentation noise (i.e. NEP and
LIA input noise). The expected value is slightly lower than the measured one:

√

G2
pd(Sshot +NEP 2) + SLIA ≃ 0.27 < 0.4µV/

√
Hz (7.26)

121



Chapter 7. Experimental characterization of the device

where Sshot is 8.6788 · 10−24 W 2/Hz from eq. (6.4), the measured NEP at 17MHz

is 6.25 · 10−12 W/
√
Hz from fig. 6.9 and

√

SLIA(20MHz) is 10nV/
√
Hz from the

specification in fig. 6.5a.
The value for the background noise in fig. 7.16 is also coherent with the power noise
density measured during the setup characterisation in section 6.6.1. (See fig. 6.11).

To find the dynamic range of the transduction, we plot in fig. 7.17 the thermo-
mechanical noise together with the mechanical spectra of the driven cantilever. We
define the dynamic range of the transduction as the ratio between the largest and
the smallest detectable signal in the linear regime. In this case, at resonance, the
largest signal in the linear regime is the mechanical peak amplitude for the actuation
voltage of 0.86V . Always at resonance, the smallest detectable signal is limited by
the thermomechanical noise over the instrumentation noise, here 2.72µV/Hz.
As illustrated by the arrow in fig. 7.17, we obtain a dynamic range of 86 dB.

Figure 7.17: Dynamic range of the optomechanical detection: fixing the non-linear
threshold at Vdrive = 0.86V , the dynamic range is 86 dB. The thermomechanical
noise from fig. 7.16 is always normalised to 1Hz-bandwidth.
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7.3.3 Allan deviation

Since the mainframe of this work is the neutral mass sensing (see section 2.3), we
evaluated the cantilever frequency stability by the means of optomechanical trans-
duction.
We drive the cantilever at its resonance and we track the resonance frequency over
100 s by monitoring the phase signal in open-loop. The resonance frequency fluctua-
tion is obtained from the phase fluctuation using the phase response of the resonator,
or better, its linear approximation close to resonance frequency

∆f ≃ −∆φ
fr

2Qm

(7.27)

Once we have the frequency fluctuation signal, we can calculate and plot the Allan
deviation in fig. 7.18.

Figure 7.18: Allan deviation of the cantilever with optomechanical detection: for
low drive voltages and short integration times, the data follows the dynamic range
formula in eq. (7.28) (dashed lines). For higher drive voltages and longer integration
times, the curves meet a lower bound.

The curves in fig. 7.18 show the Allan deviation of the cantilever for different drive
voltages: we observe a plateau due to resonance frequency fluctuations, similarly to
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the one in [8].
As we will see better in section 7.3.6, this measurement endorses the hypothesis of
a mechanical origin of cantilever frequency fluctuation.
The dashed lines are theoretical evaluations of the Allan deviation according to the
Robin’s formula [21][22][23]

∆f

f
=

1

2Qm

N

S

√

1

2τ
(7.28)

where Qm is the mechanical Q-factor, N is the noise voltage, S is the signal at
resonance of the driven cantilever and τ the integration time. The values for S, N
and Qm are obtained directly from fig. 7.17.

From fig. 7.18, using this system as mass sensor, we would achieve a mass res-
olution lower than 100 zg for an integration time between 10 and 100ms. The
drive voltage is a key parameter for the cantilever stability but an actuation larger
than 0.61V does not improve the Allan deviation because of anomalous frequency
fluctuations [8].
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7.3.4 Readout calibration

The detection of the thermomechanical noise (section 7.3.2) is not only a proof of a
good sensitivity but provides a way to calibrate the detection chain. Thanks to the
calibration, it is possible to know how many (micro)volts the LIA reads out for one
(pico)meters of cantilever displacement, quantifying in this way the optomechanical
transduction responsivity.
First we calculate theoretically the amplitude of the mechanical oscillation due to
the Brownian motion, then we compare this value to the peak amplitude of a ther-
momechanical spectrum obtained experimentally.

From theory (see section 6.5.2), the motion of the free end of the cantilever under
thermal excitation has the following spectrum

Sth(ω) =
1

M1Qm

4ωrkBT

(ω2 − ω2
r)2 +

(

ωωr

Qm

)2 [m2/Hz] (7.29)

on resonance (ω = ωr), the thermomechanical noise reaches an amplitude equal to

Sth(ωr) =
4kBTQm

M1ω3
r

[m2/Hz] (7.30)

In this condition, the amplitude of the motion is well known and we use it as ref-
erence value to calibrate the detection chain. From eq. (7.25), the thermomechanical
peak amplitude Ath which is expected results

√

Ath = Gpd · 3
√

3

4

P0CRQoptλr

c
· gom

2π
·
√

Sth [V/
√
Hz] (7.31)

Since the thermal noise is already expressed in terms of RMS value, the factor
√

2
does not appear in the above equation.
Finally the global responsivity for the optomechanical transduction Ropto is written
as follows

Ropto =

√

Ath

Sth

[V/m] (7.32)

Experimentally, we measure the thermomechanical noise spectrum of the device
via the optomechanical transduction, exactly like we already done in section 7.3.2.
As always, the measurement is performed with the cantilever under vacuum.
After tuning the laser according to the optical characterisation in fig. 7.19, we acquire
the thermomechanical motion of the cantilever illustrated in fig. 7.20: we obtain a
mechanical peak at 16.951 MHz with a Q-factor around 4429 and an amplitude
Ath of 4.784µV 2/Hz.
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Figure 7.19: Double Lorentzian fit on the optical ring spectrum.

Figure 7.20: Brownian motion of the cantilever under vacuum. In this plot, the
thermomechanical noise is normalised to 1Hz-bandwidth.

From eq. (7.30), the Brownian motion of the cantilever at resonance is estimated
as follows

Sth(ωr) =
4 · 1.3806488 · 10−23 · 298 · 4429

0.25 · 0.8 · 10−15 · (2π · 16.951 · 106)3
≃ 0.301 pm2/Hz (7.33)

so that we can calculate the transduction responsivity

Ropto =

√

Ath

Sth

=

√

4.784µV 2/Hz
√

0.301 pm2/Hz
≃ 4µV/pm (7.34)
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To confirm this result, we perform the thermomechanical detection of the can-
tilever at ambient pressure and we obtain a similar transduction responsivity. Differ-
ently from before, we perform the thermomechanical noise spectrum of the cantilever
in air (see fig. 7.21): obviously, at ambient pressure the mechanical Q-factor drops
to 27 and the peak amplitude Ath is reduced to 0.04µV 2/Hz.

Figure 7.21: Brownian motion of the cantilever at ambient pressure. In this plot,
the thermomechanical noise is normalised to 1Hz-bandwidth.

Following the same procedure, the theoretical Brownian motion at atmospheric
pressure has an amplitude (at resonance) of

Sth(ωr) =
4 · 1.3806488 · 10−23 · 298 · 27

0.25 · 0.8 · 10−15 · (2π · 17.058 · 106)3
≃ 1.804 · 10−3 pm2/Hz (7.35)

and the transduction responsivity in air is equal to

R
air
opto =

√

Ath

Sth

=

√

0.04µV 2/Hz
√

1.804 · 10−3 pm2/Hz
≃ 4.7µV/pm (7.36)

The responsivity of the optomechanical transduction is similar for a cantilever in
air and under vacuum. The difference around the 18% can be explained as follows:
a new fiber alignment and a new optical characterisation were done between the
two experiments, this means that the laser wavelength could be in a zone where the
slope is slightly different. Another cause of mismatch comes from the fit incertitude
on the mechanical peak data.

127



Chapter 7. Experimental characterization of the device

7.3.5 Optomechanical factor evaluation

The calibration of the readout chain is useful for defining a total responsivity of our
device but it does not investigate what happens at each transduction step.
We already have all the elements to estimate the optomechanical coupling factor of
the system (see section 4.1). From equation 7.31, let us focus now on gom

gom =
8π

3
√

3

c

GpdP0CRQoptλr

·
√

Ath

Sth

(7.37)

we know the amplitude of the mechanical peak Ath from fig. 7.20 and we know the
cantilever oscillation from the eq. (7.33). The wavelength resonance, the optical
Q-factor and the optical peak amplitude P0CR are obtained from the fit of optical
characterisation in fig. 7.19.
Consequently we evaluate the optomechanical coupling factor gom as follows

gom =
8π

3
√

3

2.99792 · 108

40 000 · 13.5 · 10−6 · 34547 · 1574.350 · 10−9

√

4.784 · 10−12

3.01 · 10−25
(7.38)

⇒ gom ≃ 1.968 · 1017 rad

s ·m = 0.1968
Grad

s · nm (7.39)

This value is coherent with the simulation shown in section 4.2. However, sim-
ilar optomechanical systems (i.e. a cantilever coupled to a waveguide) shows gom

values which are 3-4 orders of magnitude larger [35][7]. Besides, the tested device
has a larger optomechanical gap compared to the above-cited articles (200nm vs
70-160nm, see device #3 in table 5.3). Just remember that the optomechanical
coupling strongly depends on the optomechanical gap because the evanescent wave
decreases exponentially outside the waveguide. Furthermore, our optomechanical
device has a minimal coupling zone since the optical ring has no straight waveguide
part. This fact also contributes to the discrepancy in the gom values.

Dries Van Thourhout and Joris Roels reviewed other optomechanical systems
which show a range of coupling factor values from 0.13 to 773GHz/nm [45]. A
similar gom measurement is shown in [79].
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7.3.6 Comparison with piezoresistive detection

The originality of these devices is the presence of a parallel piezoresistive trans-
duction of the cantilever displacement. In-situ comparison is now possible between
piezoresistive and optomechanical readout (see sections 5.5 and 7.1).
This configuration is very useful for studying the intrinsic properties of the nanocan-
tilever independently from the transduction method.
The setup, shown in fig. 7.22, is the result of a combination of the two previous
setups in figures 7.2 and 7.13. In response to the electrical excitation (Vdrive), the
cantilever oscillates stressing the gauge and perturbing the optical ring simultane-
ously. Both readout methods are already described in the sections 7.1 and 7.3.

Figure 7.22: Parallel transduction setup. PC: polarization controller, DUT: device
under test, MR: mechanical resonator, PD: photodetector, LIA: Lock-In Amplifier.
In blue the electric elements, in orange the optics and in green the mechanical
domain.

Similarly to previous sections, we performed the transduction for different drive
voltages, the results are gathered in fig. 7.23.
At first sight, for equal cantilever displacement, we observe that the optomechanical
readout provides a considerable signal, around 50 times higher than the piezoresi-
stive one. To be fair, the large optical signal is due to the transimpedance gain of
the photodetector and it is not an intrinsic quality of the optomechanical transduc-
tion. By adding a voltage amplifier between the nanogauge and the LIA, the two
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transductions would provide equivalent signals.
However, the optomechanical transduction has already some advantages: the optical
signal can travel over long distances with negligible attenuation and it is immune to
electromagnetic interferences or parasitic capacitances.

Figure 7.23: Comparison of two transductions: (a) magnitude and (c) phase of
the cantilever by means of optomechanical transduction and (b) magnitude and (d)
phase of the cantilever by means of piezoresistive transduction.

In the following pages, we will compare the linearity and the dynamic range of
the two transduction techniques.

Optomechanical non-linearity

Paying attention to the Q-factor values in fig. 7.23, we can already predict a non-
linear transduction only for the optomechanical readout technique: from fig. 7.23(a),
the mechanical Q-factor decreases considerably for larger actuation voltages due
to a peak deformation. The same thing does not happen for the piezoresistive
transduction in fig. 7.23(b).
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7.3. Optomechanical direct detection

The fig. 7.24 is obtained plotting the peaks amplitudes in figures 7.23(a) and 7.23(b)
versus the drive voltage:

Figure 7.24: Peak amplitude versus the drive voltage for (a) optomechanical detec-
tion and (b) piezoresistive detection.

The green circle highlights the saturation of the optomechanical signal for larger
cantilever displacement (Vdrive = 1.5V ). Conversely, the piezoresistive detection
follows the expected trend given in section 5.6 for f/2 excitation.
If the cantilever had been in the non-linear regime, we would have detect an identical
non-linear trend for both detection. This proves that the non-linearity arises from
the optomechanical transduction and not from the cantilever mechanics.
This parallel detection excludes a mechanical origin of the non-linearity already
observed in fig. 7.14 and 7.15. An explanation of this phenomenon will be provided
in section 7.3.7.

Dynamic range and responsivity

Using the same setup (fig. 7.22), we detect now the thermomechanical movement of
the cantilever by the means of the double detection.
Figure 7.25 shows, on the same plot, the thermomechanical noise (red points) and
the mechanical response of the driven cantilever (blue points) for both transductions.
From fig. 7.24, we consider that the optomechanical readout is linear up to a drive
voltage of 1V : we obtain in this way a dynamic range of 89.8 dB. For the same
drive voltage, the piezoresistive readout shows a dynamic range of 85 dB but since
it does not suffer from non-linearity, it could be higher.
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Figure 7.25: Dynamic range comparison between the two detections: (a) optome-
chanical and (b) piezoresistive. For a thermomechanical noise normalised to 1Hz-
bandwidth, the dynamic range is respectively 89.8 dB and 85 dB.

The piezoresistive detection in fig. 7.25(b) suffers from a higher detection thresh-
old compared to the optomechanical transduction: the Brownian motion of the
cantilever is less solved with respect to the optomechanical detection in fig. 7.25(a).
The background noise for the piezoresistive detection is due to the Johnson noise
of the nanogauge plus the instrumentation noise of the LIA; the measured value for
the detection threshold of 5.3 · 10−8 V/

√
Hz is slightly higher than expected:

√

SJ + SLIA ≃ 4 · 10−8 < 5.3 · 10−8 V/
√
Hz (7.40)

where SJ is 1.2291·10−15 V 2/Hz from eq. (6.11) and
√

SLIA(105kHz) is 20nV/
√
Hz

from fig. 6.5b.

As done in section 7.3.4, we calculate the responsivity of the transductions by
knowing the amplitude of thermal motion.
From the fits on experimental thermomechanical spectra (red curves in fig. 7.25),
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we obtain the peak amplitudes:

Aopto
th = 3.48142776µV 2/Hz (7.41a)

Apiezo
th = 0.001429771µV 2/Hz (7.41b)

and by the means of eq. (7.30), we calculate the theoretical noise spectrum ampli-
tude:

Sth =
4kBTQm

M1ω3
r

≃ 0.295 pm2/Hz (7.42)

Let remind that the thermomechanical noise does not depend on the transduction.
According to eq. (7.32), the responsivity for both methods will result as

Ropto =

√

√

√

√

Aopto
th

Sth

≃ 3.44µV/pm (7.43a)

Rpiezo =

√

√

√

√

Apiezo
th

Sth

≃ 0.07µV/pm (7.43b)

As already noted, for equal cantilever displacement, the optomechanics provides a
larger readout signal. For this particular setup configuration, the optomechanical
transduction responsivity is evaluated 50 times higher compared to piezoresistive
detection. Furthermore, we get a more interesting result: with respect to the pie-
zoresistive detection, the optomechanical detection has a lower threshold detection
which is well below the thermomechanical noise of the cantilever. The weak point
of the optomechanical detection is a limited linearity, its cause is investigated in the
section 7.3.7.

Allan deviation in parallel

Following the same procedure described in section 7.3.3, we record the Allan vari-
ance simultaneously for both transductions and we plot them in fig. 7.26: because
the piezoresistive transduction presents a non-negligible detection noise threshold
produced by instrumentation, the optomechanical transduction shows a lower Allan
variance for short integration times, where the Robin’s formula in eq. (7.28) is well
respected.
For higher drive voltages and longer integration times, all the curves meet again a
lower bound as in fig. 7.18. This rigid wall is exactly the same for both transduc-
tions: this means that the anomalous frequency noise investigated in [8] does not
depend on the readout technique.
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Figure 7.26: Comparison between Allan variances performed with (a) optomecha-
nical detection and with (b) piezoresistive detection. For higher drive voltages, both
methods show an identical lower bound caused by the anomalous phase noise.

As above discussed in section 2.3.2 and 2.4, with the introduction of the optome-
chanics, the transduction benefits already from a larger bandwidth and a simplified
multiplexing. Furthermore, in comparison with the piezoresistive readout, we ob-
tain also an improved responsivity and a lower detection threshold which leads to a
smaller Allan variance. On the other hand, the transduction linearity is limited for
the optomechanical readout.
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7.3.7 Transduction for different wavelengths

To test the dependence of optomechanical transduction on the measurement wave-
length, we perform it for different wavelengths. We check here if the transduction
responsivity R depends on the local slope of the optical peak around the measure-
ment wavelength as predicted in section 4.3.
Using the calibrations done in section 7.3.4 and 7.3.5, we formulate also a hypothesis
about the non-linearity of the optomechanical transduction which is highlighted in
fig. 7.15 and 7.24.

We perform four different optomechanical transductions tuning the laser at four
different wavelengths: out of resonance (λ1), at the base of the optical peak (λ2), at
the best slope (λ3) and on resonance (λ4). (See fig. 7.27).

Figure 7.27: The transduction is performed tuning the laser at four different wave-
lengths: out of resonance, at the base of the peak, at the best slope and on resonance.

The setup configuration does not change from fig. 7.13 in section 7.3. An identical
drive voltage of 1.5V is applied each time to the actuation electrode in order to
compare the transduction signals for equal cantilever displacement.
The four different transductions are plotted in fig. 7.28(a): the transduction signal
is almost null for the laser in λ1, weak for λ2 and maximum for the laser tuned at
λ3. It proves that the readout responsivity is linked to the slope of optical peak, as
stated in section 4.3.
The mechanical response for λ4 is quite unexpected: theoretically, the slope on
optical resonance is null but, in practice, we observe a mechanical peak having
an amplitude of 50mV . A dissipative coupling could explain this trend; if the
optomechanical coupling is not completely dispersive as found in section 4.2, the
ring spectrum is not simply shifted but deformed too. The data points are quite
noisy probably due to the non-linearity of the right side of the optical peak.
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Figure 7.28: Mechanical response for different wavelengths: (a) the transduction
responsivity depends on the laser wavelength tuning, (b) the signal component at
2f is a signature of the non-linearity of the transduction.

Thanks to the UHF-LIA, we demodulated the signal from the photodetector also
at frequency 2f in order to check the non-linearity of the transduction (fig. 7.28(b)):
the highest cyan peak comes from the measurement with the laser tuned at reso-
nance (λ4).
The cantilever displacement shifts the cavity at frequency f but the light is modu-
lated at frequency 2f since the laser is tuned exactly at resonance. Although not
linear at all, it could be considered a new type of transduction which provides a good
signal level for applications demanding the laser on resonance. We can imagine a
setup configuration where the optical actuation (see section 7.5) and the optical
detection are performed by the means of a single laser which is tuned on the optical
resonance.
The transduction performed at λ3 shows as well a non-linearity which is coherent
with the non-linearities already shown in the previous sections. The ratio between
the amplitudes of the red peaks in fig. 7.28(a) and 7.28(b) states a non-linearity
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around the 10% which has been already found in fig. 7.15. Calibrating the trans-
duction via the detection of the thermomechanical spectrum, we are able to show
in the following pages the source of this non-linearity.

For each wavelength, we acquired the thermomechanical spectrum of the can-
tilever (fig. 7.29) with the same procedure described in section 7.3.2. Having enough
sensitivity only for λ3 and λ4, we obtain respectively a thermomechanical peak am-
plitude of 7.4690µV 2/Hz and 0.6295µV 2/Hz and the Q-factors of 3901 and 3551.

Figure 7.29: Thermomechanical noise spectra for different laser wavelengths. In this
plot, the thermomechanical noise is normalised to 1Hz-bandwidth.

As already done in section 7.3.4, we use the thermomechanical noise to calibrate
the transduction chain obtaining the cantilever displacement in nm.
According to eq. (7.32), the responsivity for the transduction performed at λ3 is

R3 =

√

Ath

Sth

= 5.172µV/pm (7.44)

and similarly, the responsivity for λ4 results as

R4 =

√

Ath

Sth

= 1.574µV/pm (7.45)

Once the transduction is calibrated, we can plot again red curve from fig. 7.28(a)
which describes the mechanical response performed at λ3 for the driven cantilever.
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As you can see from fig. 7.30, now the scale on the y-axis is nm.
For an actuation of 1.5V at the mechanical resonance frequency, the cantilever has
an RMS oscillation amplitude of 18.983nm. From the simulation in section 4.2,
we estimated that for a cantilever oscillation of only 5nm, the optical spectrum
is already slightly deformed by a (partially) dissipative coupling. The optomecha-
nical transduction has non-linear components because we are already out of the
approximation of small cantilever displacement.

Figure 7.30: Calibrated transduction for λ3: at resonance, the cantilever oscillates
with an RMS amplitude of 18.983nm.

However, neglecting for a moment the optical spectrum deformation, a second
source of non-linearity arises from the linear approximation of the optical peak slope
around the laser wavelength. (See section 4.3).
Knowing the optomechanical coupling factor from section 7.3.5, we calculate the
optical spectrum shift in frequency and then convert it to wavelength. In the hy-
pothesis that the gom is constant over the displacement range, we have

∆ν =
gom · ∆x

2π
=
gom · 2

√
2A

2π
=

0.1968 Grad
s·nm

· 2
√

2 · 18.983nm

2π
= 1.682GHz

(7.46)
The

√
2 factor converts the RMS amplitude, measured by the LIA, in the absolute

oscillation amplitude. Converting the light frequency shift in a wavelength shift, we
obtain a optical spectrum shift equal to

|∆λ| ≃ λ2

c
∆ν =

(1557.481 · 10−9)
2

2.99792 · 108
· 1.682 · 109 ≃ 14 pm (7.47)

A wavelength shift of the ring spectrum around 14 pm is comparable with the optical
peak width. This means that, during the transduction, an important portion of the
peak is scanned; we can see it graphically from fig. 7.31.
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Figure 7.31: The wavelength shift covers almost completely the peak side. For this
cantilever oscillation the transduction results affected by non-linearity.

For a 14 pm spectrum shift around λ3, the linear approximation for the optical
peak slope is not completely adequate any more.
Designing an optical ring having a lower Q-factor results in a wider peak upon which
the linear approximation remains valid for wider ranges. As it often happens, we
have to partially sacrifice the responsivity performances to improve the transduction
linearity.

These simple evaluations find two possible sources of the non-linearity which
affects the optomechanical transduction. For large oscillation amplitudes, the can-
tilever couples the optical ring too much modifying the shape of the optical spectrum.
In this way, the optomechanical coupling factor results partially dissipative over the
oscillation range. Furthermore, for thin optical peaks, the linear approximation
around the laser wavelength becomes quickly inaccurate as soon as the optical ring
is detuned of an amount comparable with the FWHM of the peak.
Playing on the device design parameters, a weaker coupling between the cantilever
and the optical ring together with a lowered optical Q-factor are two possible solu-
tions for the transduction non-linearities. On the other hand, according to eq. (4.16),
the transduction responsivity is affected because of the reduction of gom and Qopt.
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7.4 Optomechanical downmixing

In this section, we report a measurement method for nanomechanical resonators
which enables the readout of mechanical resonance frequencies beyond the photo-
detector bandwidth.
The proposed technique, called optomechanical downmixing, represents an experi-
mental solution to transport the measurement signal at arbitrary low frequencies.
We show that this method can easily readout the Brownian noise of the device, with-
out degrading the performance of the system with respect to direct measurement
shown in the previous section 7.3. In the case that the transduction performance is
limited by the photodetector, this technique allows employing low-bandwidth/low-
noise photodetectors, leading to higher resolution for sensing applications.
This is a key in particular for mass spectrometry applications where both high dis-
placement sensitivity and multi-mode operation are required. (See sections 2.4 and
2.3.2).

We present a solution to bring the interested optical signal at lower frequency in
order to detect it with a low NEP/low BW photodetector. At the same time, the
signal-to-noise ratio is preserved with respect to direct optomechanical detection.
We detect NEMS displacements which occur at frequencies higher than the photo-
detector bandwidth and, at the same time, we take advantage of low NEP typical of
low bandwidth photodetectors. In other words, the transduction bandwidth is not
limited by the photodetector bandwidth any more. Removing this limit, the higher
mechanical modes are easily accessible, even if they occur at frequencies higher than
photodetector bandwidth.

7.4.1 Transduction scheme

In the downmixing scheme (fig. 7.32), the laser optical power Plaser is modulated at
a frequency close to f , the mechanical actuation frequency

Plaser(t) = Plaser + Plaser ·M cos[2π(f + ∆f)t] (7.48)

where M is the modulation index between 0 and 1.
As long as the cantilever does not move, the power coming out from the through
port and collected on the photodetector will be

Ppd(t) = T (λlaser) · P0 + T (λlaser) · P0 ·M cos[2π(f + ∆f)t] (7.49)

where P0 = αcPlaser is the laser power attenuated by the coupling losses αc (sec-
tion 5.3) and T (λ) is the optical spectrum of the ring from eq. (7.23).

When the cantilever oscillates at frequency f , the optical power on the photo-
detector is the result of the mixing of the laser intensity with the resonator motion.
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Figure 7.32: Optomechanical downmixing setup. EOM: electro-optic modulator,
PC: polarization controller, DUT: device under test, MR: mechanical resonator,
PD: photodetector, LP Filter: low-pass filter, LIA: Lock-In Amplifier. In blue the
electric elements, in orange the optics and in green the mechanical domain.

In some steps, we can isolate the DC component, the components at ∆f , f , f + ∆f
and 2f + ∆f :

Ppd(t) = T (λlaser) · P0 + T (λlaser) · P0 · cos[2π(f + ∆f)t]

+
3
√

3

4

P0Qoptλr

c
· gom

2π
· x(f) cos[2πft+ φ(f)]

+
3
√

3

4

P0Qoptλr

c
· gom

2π
· x(f) · M

2
· cos[2π(2f + ∆f)t+ φ(f)]

+
3
√

3

4

P0Qoptλr

c
· gom

2π
· x(f) · M

2
· cos[2π∆ft− φ(f)] (7.50)

where x(f) and φ(f) are respectively the magnitude and phase response of the
cantilever.
The DC component is automatically filtered by the photodetector (NewPort 1811-
FC-AC section 6.3.2) and the component at frequency ∆f is measured by the Lock-
In Amplifier via a synchronous detection.
The low-pass filter in fig. 7.32 eliminates all the frequencies above ∆f . This avoids
the saturation of the ADC of the input of the LIA, in this way we can use the
best input range benefiting from the best LIA sensitivity. All the other components
would have been filtered anyway by the Lock-In detection.
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The mechanical response (amplitude and phase) is thus transduced at an arbitrary
modulation frequency ∆f (here typically 100 kHz). Focusing on the component at
∆f of eq. (7.50), the transduction signal on the photodetector is

P∆f
pd (t) =

3
√

3

4

P0Qoptλr

c
· gom

2π
· x(f) · M

2
· cos[2π∆ft− φ(f)] (7.51)

consequently, the magnitude of the cantilever oscillation from the LIA detection
results as

|VLIA, ∆f (f)| = Gpd · 3
√

3

4

P0Qoptλr

c
· gom

2π
· M

2
· x(f)√

2
(7.52)

The factor
√

2 is due to the fact that LIA measures the RMS value of the signal
component at frequency ∆f .
Compared to direct detection in eq. (7.25), the signal is decreased by a factor M/2
but the same happens for the the thermomechanical noise. For this reasons the
dynamic range of the measurement is preserved when the dominating noise in down-
mixing is the thermomechanical noise.
M is maximised until the non-linearities appear in the electro-optic modulator and
the modulation can not be considered harmonic any more.

7.4.2 Comparison with direct transduction

Driving the cantilever with a voltage Vdrive, we perform both methods concurrently
in order to compare the transduction efficiency. We remove the low-pass filter at the
LIA input and we measure simultaneously the third and the fifth terms of eq. (7.50)
demodulating the photodetector signal at frequencies f and ∆f . For a preliminary
validation, the photodetector Newport is used for both techniques but in the next
section we will use the photodetector Femto to benefit from the downmixing.
Fig. 7.33 demonstrates that the downmixing technique successfully transduces the
mechanical motion of the resonator and, like the direct technique, provides a large
signal level. The latter is decreased by a factor of roughly 3, due to the fact that
M ≃ 0.66. For sensing applications, the dynamic range is a key to obtain a good
frequency stability and hence a good limit of detection (see section 7.3.3). Although
someone might be concerned by the signal decreasing, data in fig. 7.33 shows that
the dynamic range obtained with the downmixing technique is very similar to that
one obtained with the direct method. This happens because the thermomechanical
noise of the mechanical resonator is easily resolved with both techniques. For the
downmixing, the dynamic range on resonance is slightly degraded because the ther-
momechanical noise is closer to the detection threshold. However, choosing a low
bandwidth/low NEP photodetector, the downmixing technique should offer a lower
detection threshold.
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Figure 7.33: Mechanical peak of the 1st resonance obtained from (a) direct and (b)
downmixing technique. TM stands for thermomechanical noise, which is normalized
to 1Hz. The dynamic range is very similar for the two techniques.

For mass sensing application, the mass resolution is proportional to the frequency
stability of the resonator. We measured the Allan deviation (as done in section 7.3.3)
with both techniques obtaining comparable values shown in fig. 7.34. Everything is
coherent since, at the mechanical resonance, we are limited by the thermomechanical
noise which is the dominating noise in both technique. As always, we observe the
lower bound which does not depend on the transduction, as discussed in section 7.3.6.
Just to give an idea of performances, using this system as mass sensor, we would
achieve a mass resolution of 100 zg.
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Figure 7.34: Allan deviation of the cantilever at resonance frequency: comparison
between direct and downmixing technique.

7.4.3 Higher-order modes

Up to now, the two techniques are comparable in terms of dynamic range and fre-
quency stability. Differently from direct detection, the optomechanical downmixing
has an advantage: the frequency at which the transduction occurs is independent
from the mechanical frequency of the cantilever. Increasing the actuation frequency,
we now investigate higher mechanical modes having always a component of the
transduction signal at frequency ∆f .

We are able now to substitute the current photodetector from NewPort with a
dedicated one from Femto. (Specifications in section 6.3.2).
We show in fig. 7.35 the cantilever readout up to the third resonance mode: we
are detecting the first, the second and the third mechanical mode, respectively at
16.9, 104 and 278MHz, using a photodetector which has only a 500 kHz band-
width. For this particular case, the photodetector Femto OE-200-IN2 has a NEP of
2.5 pW/

√
Hz, ten times smaller than the previous photodetector used for the direct

detection. Thanks to the downmixing, the transduction is largely limited by the
shot noise of the light, in contrast to previous measurement shown in section 6.6.1.
Just remember that for a light power of P = 50µW , the shot noise which affects

the beam is
√
Sshot =

√

2hcP/λ = 3.58 pW/
√
Hz >NEP.

144



7.4. Optomechanical downmixing

Figure 7.35: Mechanical response of the cantilever up to the third resonance: we
are detecting resonance frequencies up to 278MHz with a photodetector having a
bandwidth of 500 kHz.

As further benefits, the photodetector provides an electrical signal at the de-
modulation frequency ∆f which is handily processed by standard low frequency
electronics. Moreover, this electrical signal does not suffer from the parasitic capac-
itances of transmission line cables.

We found a good solution to detect higher order resonances without being limited
by the photodetector or by the electronics bandwidth anymore. The performance in
terms of transduction is preserved or, in some cases, improved since, in general, the
low-bandwidth photodetectors show better NEP values. The downmixing technique
fits very well for the mass sensing application which demands the detection of higher
mechanical modes at high frequencies further increased by the NEMS downscaling.

While the downmixing technique solves the issues associated with the high-
frequency transduction of the resonator, the electrical actuation of the device presents
the same issues: cantilever actuation still remains at very high frequencies because
of NEMS downscaling trend. For this reason, the optical actuation is investigated
and performed in the following section.
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7.5 Optical actuation

From section 4.4, we know that the light travelling into a waveguide applies a force
to elements in the evanescent field. Here we use this force to excite the cantilever
and we detect its mechanical response via the piezoresistive transduction from sec-
tion 7.1.

The response time of the ring resonator has an order of magnitude 6 times smaller
than the response time of the mechanical resonator. Knowing the typical values of
the characterised devices, the following relation is always valid

Qm

fm

≃ 0.2ms ≫ Qopt

νopt

≃ 0.3ns (7.53)

In this regime, it is impossible to meet back-action effects [14]. So we always consider
the action of the light as instantaneous compared to any mechanical response.

The setup for the optical actuation is shown in fig. 7.36: the light injected into
the ring is modulated at frequency f while the cantilever readout is performed with
the standard piezoresistive technique from section 7.1. The frequency f is swept
around the mechanical resonance frequency of the cantilever in order to obtain its
mechanical response.

Figure 7.36: Optical actuation setup. EOM: electro-optic modulator, PC: polariza-
tion controller, DUT: device under test, MR: mechanical resonator, LIA: Lock-In
Amplifier. In blue the electric elements, in orange the optics and in green the me-
chanical domain.
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Differently from the transduction in sections 7.3 and 7.4, the laser wavelength
is tuned exactly at the optical resonance as illustrated in fig. 7.37. In this way, we
inject the maximum amount of power into the ring improving the force applied to
the cantilever.

Figure 7.37: Optical spectrum of the ring: to improve the actuation the laser is
tuned exactly on resonance. Neglecting other losses, the coupling losses are around
14.7 dB for two grating couplers (see section 5.3). CR is around 0.34, F = 716.6
and λr = 1557.488nm

Differently from the optomechanical downmixing in section 7.4, the drive voltage,
provided by the LIA output, tunes the modulation factor M of the injected light:

Plaser(t) = Plaser +M(Vdrive) · Plaser · cos(2πft) (7.54)

From the plot in fig. 7.38, we observe the mechanical spectrum for different Vdrive:
the modest optomechanical coupling factor [7][45] and the relatively low power in
the ring are responsible for the weak cantilever actuation (see fig. 4.8). The value for
the optomechanical coupling factor is fixed by the small coupling zone (no racetrack)
and the optomechanical gap of 200nm. Anyway, the usual mechanical resonance
peak at 16.9MHz is clearly detected by the means of the piezoresistive detection.
For this particular device, the efficiency of the optical actuation is about 30 times
smaller than the electrostatic actuation. This is evaluated from the comparison be-
tween the purple peak in fig. 7.38 and the blue peak in fig. 7.23(b) in which both
transductions are performed with a gauge polarisation Vbias of 1.5V and a Vdrive of
0.5V .
It is not completely correct to compare in absolute the two actuations for an equal
Vdrive: the optical actuation depends on external factors (e.g electro-optic modula-
tor) and on device parameters (e.g. coupling losses, gom and optical ring finesse),
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Figure 7.38: Cantilever mechanical response for different optical actuations. The
detection is performed via the piezoresistive gauge. Solid lines correspond to the fits
done on the experimental data points.

whereas the electrostatic actuation depends on the electrode shape. They have com-
pletely different natures and trends, but the factor 30 gives us an idea, at least for
this device and for the specific drive voltage of 0.5V .

The specification for the electro-optical modulator does not provide an accurate
value for the modulation factor M . For a given Vdrive, it is difficult to know exactly
the amplitude of the laser beam modulation: that is why we prefer to measure it.
The through port is monitored and the signal from the photodetector is demodulated
at f (see fig. 7.36). We evaluate directly the amplitude of the light modulation in
the following way:

M(Vdrive)Plaser =
|VLIA, f | ·

√
2 · αc

Gpd · (1 − CR)
(7.55)

where αc ≃ 30 are the coupling losses for both couplers, CR is the contrast for the
through port and Gpd is the photodetector gain. The factor

√
2 comes from the

demodulation process since a LIA measures the RMS value of the amplitude.
With the help of eq. (3.52), we estimate the power inside the ring on resonance.

148



7.5. Optical actuation

We have to attenuate the laser power by the first coupler and then multiply it by
contrast and the finesse:

Pring(t) = Plaser(t) · CR√
αc

· F
π

(7.56)

By the means of equations (7.54), (7.55) and (7.56), we find the explicit expression
for the light power circulating in the ring resonator:

Pring(t) =
Plaser√
αc

· CR · F
π

+
|VLIA, f | ·

√
2 · √

αc

Gpd · (1 − CR)
· CR · F

π
· cos(2πft) (7.57)

During the experiment, we get |VLIA, f | from the LIA for each Vdrive, then we calculate
the amplitude of the laser power modulation thanks to eq. (7.55). Similarly, the
modulation of the light power inside the ring is obtained by the means of second
term in eq. (7.57).
In table 7.1, we listed the amplitude of the modulations for the laser (3rd column)
and the amplitude of the modulation for the light into the ring (4th column):

Drive voltage
Through

signal at f
Amplitude of laser

light modulation

Amplitude of ring

light modulation

Vdrive |VLIA, f | M(Vdrive)Plaser M(Vdrive)Plaser · CR√
αc

F
π

[V ] [mV ] [µW ] [mW ]
0.1 45 85.23 1.56
0.2 90 170.5 3.13
0.3 135 255.7 4.69
0.4 175 311.5 6.08
0.5 220 416.7 7.64

Table 7.1: Estimation of the optical power modulations for each drive voltage Vdrive.

Let us recall that, for this device, F = 716.6 and CR = 0.34. As already shown in
eq. (7.19) and (7.20), these values are obtained from the fitted spectrum in fig. 7.9.
In this way, not only do we estimate the amplitude of light modulation inside the
ring but we also verify that the opto-electrical modulator is (almost) linear for Vdrive

up to 0.5V .

The last step for a quantitative analysis of the optical gradient force is the
calibration of the cantilever displacement in pm units. Fortunately, the piezoresistive
readout is really repeatable since it does not require any discretionary preparation
such as the laser tuning or the fiber alignment. The electrical bonding assures stable
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device contacts and the demodulation frequency ∆f is always equal to 105 kHz, from
section 7.1. We can reuse the calibration made in section 7.3.6, considering it as
reliable. Conversely, it is difficult to compare the optomechanical detections from
different experiments since every measurement session requires a new fiber alignment
and a new laser tuning.
From the eq. (7.43b), we know the responsivity for the piezoresistive transduction
(Rpiezo = 0.07µV/pm) and we use it to calibrate the y-axis of plot in fig. 7.38. We
can now plot in fig. 7.39 the mechanical peak amplitudes (at resonance) versus the
amplitude of the light modulation into the ring:

Figure 7.39: Cantilever oscillation amplitude (at resonance) for different optical
actuations: on the x-axis, the values of the modulated light power inside the ring
(4th column of table 7.1) and on the y-axis, the mechanical peak amplitude from
fig. 7.38 after being converted in pm.

We demonstrated that the cantilever oscillation amplitude is proportional to the
light modulation power. The optical gradient force increases linearly with the light
power which is coherent with the theoretical description made in section 4.4.
Beyond this result, the parallel opto/piezo transduction shows once more its useful-
ness: since the piezoresistive detection is a repeatable and well established technique,
this device is a unique tool to investigate quantitatively the optical gradient force.
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7.6 Conclusions

In this chapter, we performed the optomechanical detection of an in-plane cantilever
investigating the dynamic range and the linearity of the transduction. Through the
detection of the Brownian motion, we calibrate the responsivity of the transduction
in air and under vacuum. Furthermore, we evaluate experimentally the optomecha-
nical coupling factor between ring and cantilever.
The parallel piezoresistive transduction is more than a practical debugging tool:
it enables a simultaneous comparison between transduction techniques in-situ. It
contributes to the investigation of non-linearity and frequency stability. For equal
displacement, the optomechanical transduction has better performances but it be-
comes non-linear before the cantilever mechanical response enters in the non-linear
regime.
We endorse as well the mechanical origin of frequency fluctuations for NEMS res-
onators. Since the Allan variances for both techniques have the same absolute value,
the anomalous noise for long integration time does not originate from the cantilever
transduction.

In the frame of mass sensing, we developed the optomechanical downmixing
to track higher resonance modes which occur at very high frequencies because of
NEMS downscaling. Thanks to this technique, the displacement signal is trans-
ferred at arbitrary low frequency and it can be detected by low-NEP photodetectors
and processed by low-bandwidth electronics. In other words, we are not limited
anymore by the transduction bandwidth but only by the actuation.

To close the loop of the optomechanics applied to NEMS, we explore the opti-
cal actuation in order to remove a further obstacle for neutral mass sensing. Since
optical signals are not limited by parasitic capacitances, the optical actuation has
a bandwidth which is limited only by the time response of the optical cavity. We
excite the cantilever by the means of the optical gradient force and we detect the dis-
placement via the piezoresistive detection. Taking advantage of multiplexing offered
by the photonics, the next step is a optical actuation combined with the optome-
chanical detection. This is known in literature as the pump/probe setup.
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Chapter 8

Conclusion

Optomechanical detection improves the NEMS transduction in terms of responsiv-
ity, bandwidth and multiplexing with regards to most electrical methods. A readout
having these performances opens the way for a boosted NEMS downscaling: the
next generation of devices will take advantage of downscale benefits preserving at
the same time the transduction efficiency.

From a technological point of view, the challenge of the project was merging
photonics, piezoresistive gauges, electrical actuation and released mechanics. The
efforts led to a sufficient number of in-plane cantilever devices whereas the mem-
brane devices are still waiting for a successful release.
Despite the first fabrication process being unreliable, we identified the technological
issues and we solved them: the next run has been simplified removing the via metal
path, the piezoresistive detection and adopting an all pass ring geometry. The elec-
trical actuation is maintained by virtue of its simple implementation and efficacy.
A further optimisation of the ring resonator could improve the responsivity and the
dynamic range of the transduction via a correct tuning of the optical quality factor
and the contrast.

We developed here a test bench for the optomechanical devices under vacuum:
the light is injected and collected by the means of two optical fibers aligned with the
sample inside a vacuum chamber. The laser beam travels through the device and it
is measured by a photodetector, then the signal processing is performed by a Lock-In
Amplifier. Additional electrical contacts enable the piezoresistive detection and the
electrostatic actuation. The instrumentation which forms the setup is coordinated
by the means of a dedicated software.
A deeper investigation of the test bench is required especially about light injecting
noise: the optical characterisation presents higher than expected noise levels and
Allan deviation is affected by harmonics which still have a unknown origin. When
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the wafer yield is improved, a correct packaging will tackle the fiber alignment issue
at its source.
Anyway, all the below listed results are obtained thanks to this setup which is today
a solid reference for electro-optomechanical experiments under vacuum. Moreover,
the experimental system is open to easy upgrades which are already under way. A
cryostat would enable low-temperature experiments which investigate further the
NEMS mass sensing and the cantilever frequency fluctuation.

The test bench enables the characterisation of the fabricated devices delivering
interesting results. In the first instance, the piezoresistive transduction is a practical
tool to debug the fabrication technology. After that, it excludes the hypothesis of a
mechanical non-linearity of the cantilever. Finally, the parallel transduction proves
to be useful for a more fundamental investigation concerning the NEMS frequency
stability: the Allan deviation shows a lower bound which is identical for both trans-
duction method; it endorses the hypothesis that the anomalous frequency noise has
a mechanical origin.
We developed the optomechanical downmixing which extends the NEMS detection
at very high frequencies: since the displacement is transduced at arbitrary low fre-
quency, the photodetector bandwidth ceases being a limiting factor and the obtained
signal is processed by standard electronics. Considering the favourable noise level of
low-bandwidth photodetectors, the transduction resolution is therefore limited only
by the laser shot noise.
Once the NEMS resonance frequencies will achieve the GHz domain, the electrical
actuation will be a further limiting factor. For this reason, the optical actuation
has been explored with encouraging results: the cantilever moves under the action
of the optical gradient force and the displacement is proportional to laser power
modulation.

This work introduced the optomechanics at LCMC laboratory making the Leti
a new scientific actor in the optomechanical NEMS domain.
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Ring Resonators

In this appendix are collected the details of calculation for the ring resonator prop-
erties shown in chapter 3.

A.1 All pass resonator

From eq. (3.6a), the normalised power R in the through waveguide is

R = |Et1|2 = Et1 ·E∗
t1 =

−α+ te−iθ

−αt∗ + e−iθ
· −α+ t∗eiθ

−αt+ eiθ
=

α2 + |t|2 − α(t∗eiθ + te−iθ)

1 + α2|t|2 − α(t∗eiθ + te−iθ)
=

=
α2 + |t|2 − α|t|[ei(θ−φt) + e−i(θ−φt)]

1 + α2|t|2 − α|t|[ei(θ−φt) + e−i(θ−φt)]
=

α2 + |t|2 − 2α|t| cos(θ − φt)

1 + α2|t|2 − 2α|t| cos(θ − φt)
(A.1)

where t = |t|eiφt .
t represents the portion of light which is not coupled into the ring and φt the phase
shift of the coupler. (t∗ = |t|e−iφt)

The circulating power P in the ring is calculated from eq. (3.6b)

P = |Ei2|2 = Ei2 ·E∗
i2 =

−ακ∗

−αt∗ + e−iθ
· −ακ

−αt+ eiθ
=

α2|k|2
1 + α2|t|2 − α(t∗eiθ + te−iθ)

=

=
α2(1 − |t|2)

1 + α2|t|2 − α|t|[ei(θ−φt) + e−i(θ−φt)]
=

α2(1 − |t|2)
1 + α2|t|2 − 2α|t| cos(θ − φt)

(A.2)

Concerning the phase shift between input and output, from the equation (3.6a)
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we can also calculate the effective phase shift Φ induced by the ring resonator:

Φ = arg(Et1) = arg

(

eiπeiθ · α− te−iθ

1 − αt∗eiθ

)

=

= arg(ei(π+θ)) + arg(α− te−iθ) − arg(1 − αt∗eiθ) =

= π + θ + arctan

(

Im (α− te−iθ)

Re (α− te−iθ)

)

− arctan

(

Im (1 − αt∗eiθ)

Re (1 − αt∗eiθ)

)

=

= π + θ + arctan

(

|t| sin(θ − φt)

α− |t| cos(θ − φt)

)

− arctan

(

−α|t| sin(θ − φt)

1 − α|t| cos(θ − φt)

)

= π + θ + arctan

(

|t| sin(θ − φt)

α− |t| cos(θ − φt)

)

+ arctan

(

α|t| sin(θ − φt)

1 − α|t| cos(θ − φt)

)

(A.3)

The phase response for a ring with no intrinsic losses (α = 1) is plotted in figure
(A.1a) for different values of the coupling coefficient |t|. In figure (A.1b), we see
that for critical coupling (α = |t|) the phase jumps of π on resonance, for over and
undercoupling, the phase shift is continuous near the resonance.
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(a) Phase delay Φ for different values of
|t| and with α = 1
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(b) Phase delay Φ for different values of
α and with |t| = 0.85

Figure A.1: Phase delay of a all pass resonator.
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A.2 Add-Drop resonator

Applying the conditions (3.13a) and (3.13b), the system in (3.14) evolves in:


























Et1 = t1 + κ1α2e
iθ2Er3 (A.4a)

Er1 = −κ∗
1 + t∗1α2e

iθ2Er3 (A.4b)

Et2 = κ2α1e
iθ1Er1 (A.4c)

Er3 = t∗2α1e
iθ1Er1 (A.4d)

if we substitute (A.4b) in (A.4c) and (A.4d),


























Et1 = t1 + κ1α2e
iθ2Er3 (A.5a)

Er1 = −κ∗
1 + t∗1α2e

iθ2Er3 (A.5b)

Et2 = κ2α1e
iθ1(−κ∗

1 + t∗1α2e
iθ2Er3) (A.5c)

Er3 = t∗2α1e
iθ1(−κ∗

1 + t∗1α2e
iθ2Er3) (A.5d)

then we solve (A.5d) for Er3,


































Et1 = t1 + κ1α2e
iθ2Er3 (A.6a)

Er1 = −κ∗
1 + t∗1α2e

iθ2Er3 (A.6b)

Et2 = −κ∗
1κ2α1e

iθ1 + κ2t
∗
1α1α2e

i(θ1+θ2)Er3 (A.6c)

Er3 =
−κ∗

1t
∗
2α1e

iθ1

1 − t∗1t
∗
2α1α2ei(θ1+θ2)

=
−κ∗

1t
∗
2α1e

iθ1

1 − t∗1t
∗
2αe

iθ
(A.6d)

and then we substitute it in the other equations


































































Et1 = t1 + κ1α2e
iθ2

−κ∗
1t

∗
2α1e

iθ1

1 − t∗1t
∗
2αe

iθ
(A.7a)

Er1 = −κ∗
1 + t∗1α2e

iθ2
−κ∗

1t
∗
2α1e

iθ1

1 − t∗1t
∗
2αe

iθ
(A.7b)

Et2 = −κ∗
1κ2α1e

iθ1 + κ2t
∗
1αe

iθ −κ∗
1t

∗
2α1e

iθ1

1 − t∗1t
∗
2αe

iθ
(A.7c)

Er3 =
−κ∗

1t
∗
2α1e

iθ1

1 − t∗1t
∗
2αe

iθ
(A.7d)



































































Et1 = t1 +
−κ1κ

∗
1t

∗
2αe

iθ

1 − t∗1t
∗
2αe

iθ
=
t1 − t1t

∗
1t

∗
2αe

iθ − κ1κ
∗
1t

∗
2αe

iθ

1 − t∗1t
∗
2αe

iθ
(A.8a)

Er1 = −κ∗
1 +

−κ∗
1t

∗
1t

∗
2αe

iθ

1 − t∗1t
∗
2αe

iθ
(A.8b)

Et2 = −κ∗
1κ2α1e

iθ1 +
−κ∗

1κ2t
∗
1t

∗
2αα1e

iθeiθ1

1 − t∗1t
∗
2αe

iθ
(A.8c)

Er3 =
−κ∗

1t
∗
2α1e

iθ1

1 − t∗1t
∗
2αe

iθ
(A.8d)
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Et1 =
t1 − t∗2αe

iθ(|t1|2 + |κ1|2)
1 − t∗1t

∗
2αe

iθ
(A.9a)

Er1 =
−κ∗

1 + κ∗
1t

∗
1t

∗
2αe

iθ − κ∗
1t

∗
1t

∗
2αe

iθ

1 − t∗1t
∗
2αe

iθ
(A.9b)

Et2 =
−κ∗

1κ2α1e
iθ1 + κ∗

1κ2t
∗
1t

∗
2αα1e

iθeiθ1 − κ∗
1κ2t

∗
1t

∗
2αα1e

iθeiθ1

1 − t∗1t
∗
2αe

iθ
(A.9c)

Er3 =
−κ∗

1t
∗
2α1e

iθ1

1 − t∗1t
∗
2αe

iθ
(A.9d)



































































Et1 =
t1 − t∗2αe

iθ

1 − t∗1t
∗
2αe

iθ
(A.10a)

Er1 =
−κ∗

1

1 − t∗1t
∗
2αe

iθ
(A.10b)

Et2 =
−κ∗

1κ2α1e
iθ1

1 − t∗1t
∗
2αe

iθ
(A.10c)

Er3 =
−κ∗

1t
∗
2α1e

iθ1

1 − t∗1t
∗
2αe

iθ
(A.10d)

We obtain the mode amplitude at the through and drop ports respectively from
equations (A.10a) and (A.10c).

Let’s now calculate the output power in through R

R = |Et1|2 =
t1 − t∗2αe

iθ

1 − t∗1t
∗
2αe

iθ
· t

∗
1 − t2αe

−iθ

1 − t1t2αe−iθ
=

=
|t1|2 + α2|t2|2 − α(t∗1t

∗
2e

iθ + t1t2e
−iθ)

1 + α2|t1|2|t2|2 − α(t∗1t
∗
2e

iθ + t1t2e−iθ)
=

=
|t1|2 + α2|t2|2 − α|t1||t2|(ei(θ−φt1

−φt2
) + e−i(θ−φt1

−φt2 )

1 + α2|t1|2|t2|2 − α|t1||t2|(ei(θ−φt1
−φt2

) + e−i(θ−φt1
−φt2

))
=

=
|t1|2 + α2|t2|2 − 2α|t1||t2| cos(θ − φt1

− φt2
)

1 + α2|t1|2|t2|2 − 2α|t1||t2| cos(θ − φt1
− φt2

)
=

= 1 − (1 − |t1|2)(1 − α2|t2|2)
1 + α2|t1|2|t2|2 − 2α|t1||t2| cos(θ − φt1

− φt2
)

(A.11)

where t1 = |t1|eiφt1 and t2 = |t2|eiφt2 .
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Similar steps for the drop power T :

T = |Et2|2 =
−κ∗

1κ2α1e
iθ1

1 − t∗1t
∗
2αe

iθ
· −κ1κ

∗
2α1e

−iθ1

1 − t1t2αe−iθ
=

=
α2

1|κ1|2|κ2|2
1 + α2|t1|2|t2|2 − α(t∗1t

∗
2e

iθ + t1t2e−iθ)
=

=
α2

1(1 − |t1|2)(1 − |t2|2)
1 + α2|t1|2|t2|2 − α|t1||t2|(ei(θ−φt1

−φt2
) + e−i(θ−φt1

−φt2
))

=

=
α2

1(1 − |t1|2)(1 − |t2|2)
1 + α2|t1|2|t2|2 − 2α|t1||t2| cos(θ − φt1

− φt2
)

(A.12)

And from eq. (A.10), we get the internal ring power P :

P = |Er1|2 =
−κ∗

1

1 − t∗1t
∗
2αe

iθ
· −κ1

1 − t1t2αe−iθ
=

=
|κ1|2

1 + α2|t1|2|t2|2 − α(t∗1t
∗
2e

iθ + t1t2e−iθ)
=

=
|κ1|2

1 + α2|t1|2|t2|2 − α|t1||t2|(ei(θ−φt1
−φt2

) + e−i(θ−φt1
−φt2

))
=

=
|κ1|2

1 + α2|t1|2|t2|2 − 2α|t1||t2| cos(θ − φt1
− φt2

)
(A.13)
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