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Introduction

The work presented in this manuscript has been realized from 2014 to 2017 in the
“Metrology of simple systems and fundamental tests” team of Laboratoire Kastler
Brossel, under the supervision of Francois Nez.

The team has a decades-long experience in high-resolution two-photon spectroscopy
of hydrogen and deuterium. Hydrogen spectroscopy plays a key role in the deter-
mination of the Rydberg constant, and in testing fundamental theories such as the
quantum electrodynamics theory. Recent results from the spectroscopy of muonic
hydrogen have given rise to a controversy around the value of the proton charge radius.
This has caused a renewed interest in precise measurements in electronic hydrogen.

Our experiment is focused on the measurement of the two-photon 15—3S transition
frequency of hydrogen. Several systematic effects must be taken into account, most
importantly the second-order Doppler shift, which depends on the atomic velocity.
An original method to estimate the velocity distribution of the hydrogen atoms was
implemented during the Ph.D. of Gaétan Hagel [HAGEL2001].

Using this method, Olivier Arnoult was able to measure the 1.5 — 3S transition
frequency with an uncertainty of 13 kHz, or a relative uncertainty of 4.4 x 10~'2
[ARNOULT2010]. This made it the second most precisely known optical transition
frequency in hydrogen. Nevertheless, this uncertainty is not sufficient to discriminate
between the two conflicting values of the proton radius.

During her Ph.D. realized from 2011 to 2014, Sandrine Galtier modified the
excitation laser source and performed a new measurement with a promising statistical
uncertainty of 2.1 kHz [GALTIER2014a]. However, it was impossible to conclude on the
absolute frequency value because of an unresolved question surrounding the collisional
shift and a possible pressure dependence of the velocity distribution.

In the present work, after tackling with several experimental issues, we have
estimated the velocity distribution at several pressure values and obtained a new
measure of the 1.5 — 3§ transition frequency, which contributes to the ongoing search

to solve the proton radius puzzle.

vii



viii INTRODUCTION

The outline of this manuscript is the following.

The first chapter starts with a general overview of the theory of hydrogen energy
levels. It then underlines the important role of hydrogen spectroscopy, both in the
determination of the Rydberg constant and in the context of the proton radius puzzle.
The last part of the chapter presents the principle of our 1.5 —3S5 experiment, in particu-
lar the method used to determine the atomic velocity distribution and the second-order
Doppler shift, and gives a brief review of recent experimental improvements.

The second chapter is devoted to the experimental setup. The 205-nm excitation
laser, obtained by sum frequency generation, is described, along with the frequency
stabilization and measurement system. The atomic beam, and the power build-up
cavity in which the excitation takes place, are also presented. This chapter ends with
an description of the recording process, and the observed transition signals.

In the third chapter, systematic effects are considered. After a presentation of
the theoretical line profile, which includes velocity-dependent effects, other shifting
and broadening effects are discussed. In particular, the light shift and collisional shift
are important in our experiment. The cross-damping effect is studied theoretically in
detail.

The last chapter presents the analysis of the data recorded during my Ph.D. After
correcting from various systematic effects, a new value of the 1.5 — 35 transition
frequency is obtained, which is significantly more precise than our last published
measurement. Furthermore, through a complete study of the velocity distribution for
different pressure values, this work has allowed to answer the question raised during

Sandrine Galtier’s Ph.D. and fully analyze the data recorded at the time.



Chapter 1
Context and principle

The aim of this chapter is to give a general introduction to the historical and theoretical
context of our experiment. Hydrogen is the simplest element, composed of one proton
and one electron. This allows a good theoretical description of the electronic energy
levels. The spectroscopy of hydrogen plays an important role in determining the
Rydberg constant and in testing the quantum electrodynamics (QED) theory. In this
context, a puzzle has recently arisen around the value of the proton charge radius.
Finally, I will present the general principle and a short historical review of our 1.5 — 35

experiment, which contributes to the ongoing search to solve this puzzle.

1.1 Theory of hydrogen energy levels

1.1.1 From the Bohr model to the Dirac equation

Let us start from the simple model, proposed by Niels Bohr in 1913, which describes
an electron of charge —e and mass m, orbiting around a nucleus of infinite mass. This
model predicts that the energy levels of this atom can be expressed in terms of a

quantum number n as
1
E,=—hcRy—, 1.1
n C %) ( )

where h is the Planck constant, ¢ the speed of light, and R, the Rydberg constant
mee?

Roo = o2,
7 8eghdc

(1.2)
with ¢p the vacuum permittivity.

In order to take into account the “recoil” of the nucleus, that is the motion of the
nucleus due to its finite mass my, one can simply replace, in eq. (1.1), the electron
mass by the reduced mass

MeMm
my = P

7 1.3
e (1.3)

1



2 CHAPTER 1. CONTEXT AND PRINCIPLE

where my, is the mass of the proton.

The Schrodinger equation, which describes the evolution of a wavefunction depend-
ing on three quantum numbers (n, L, m), can be applied to the case of an electron
experiencing the attractive Coulomb potential of an infinitely massive proton. It yields
the same energy levels as the Bohr model.

The theory was refined by Paul Dirac in 1928. The general equation which bears
his name takes into account the relativistic motion of the electron. The spin of the
electron appears naturally in this equation. The coupling of the magnetic moment
associated to this spin with the orbital angular momentum (described by L) of the
electron contributes to the fine structure.

The Dirac energy levels, solutions of this equation, depend on two quantum
numbers: n and J, the latter corresponding to the total angular momentum of the
electron. Including the rest energy of the electron into the total energy, they can be

written in the approximation of an infinitely massive nucleus as

Ep = mec®f(n,J), (1.4)
where /2
a 2
fnd)= (14 (ff_zs)z] , (15)

with Z = 1 the charge number of the nucleus, « the fine structure constant and

5:J+;—\/(J+;>2—(Za)2. (1.6)

The fine structure constant « is linked to the Rydberg constant R, through the
relation

1
hcRs = §m662a2. (1.7)

To take into account the recoil of the proton due to its finite mass, it is not
sufficient to simply replace the electron mass in eq. (1.4) by the reduced mass m,
defined in eq. (1.3), as we have done for the Bohr levels.

Actually, the general expression of the Dirac energy levels, taking into account
this recoil correction as well as the rest energies of the proton and electron, is defined

in [BARKER1955, SAPIRSTEIN1990] as

gmic? n (Za)*m3c® 1— 40
2M 2n3  m2 k(2L 4+ 1)
+... (1.8)

Ey = MA&E+ [f(n,J) — 1]mrc2 —[f(n,J) = 1]

with M = me +mp and i = (=1)7"72 (] + 3).
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Figure 1.1: Structure of the lowest hydrogen energy levels (n = 1,2,3). The drawing
is not to scale. The Lamb shift (see part 1.1.2) lifts the degeneracy of Dirac levels
with same n and J. Moreover, because of the hyperfine structure (see part 1.1.3),
each level is actually split in two.

Figure 1.1 shows the lowest energy levels of hydrogen. On the left hand side,
the Bohr energy levels depend only on n. The Dirac energy levels are represented
in spectroscopic notation as nLj, with the orbital momentum quantum number L
denoted by a letter (S, P, D,...).

Up to first order in recoil correction, the Dirac energy levels with different L but
same n and J are degenerate and have the same energy, as shown in Fig. 1.1. However,

in practice this degeneracy is broken.

In fact, the 25,5 — 2P, /5 splitting was first observed experimentally in 1947 by
W. E. Lamb and R. C. Retherford [LAMB1947]. These levels are about 1 GHz apart.
Actually, all levels are shifted with respect to the Dirac energy. This shift, which has
become known as the Lamb shift, is more important for S levels (L = 0) and varies

approximately as 1/n3. It will be explained in the next part.
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1.1.2 The Lamb shift

It is now a fairly common convention to define, as in [EIDES2007], the total hydrogen
energy levels (averaging over or neglecting the hyperfine structure which is quite

decoupled from other effects and will be presented later) as
Enpy=EPF + Loy, (1.9)

where EPE takes into account the solution of the Dirac equation and the first-order
recoil correction (second and third terms of eq. (1.8)), and the Lamb shift L,
includes the higher-order relativistic recoil corrections, radiative terms described by
quantum electrodynamics (QED) as well as the finite nuclear size effect.

Apart from this last term, all contributions to the Lamb shift can be written
as power series of o, Za and/or me/my. In first approximation, the Lamb shift
contributions vary as 1/n3. In the following I will give a brief overview of the different

terms, which are presented in detail elsewhere, for instance in [EIDES2007, MOHR2016].

Radiative corrections

These corrections, described by the quantum electrodynamics (QED) theory, can be
expressed as power series of o and Za. It should be noted that the coefficients of
the power series may themselves be slowly varying functions (logarithms) of these

parameters.

Self-energy The self-energy is the most important QED contribution in electronic
hydrogen. It is due to the emission and reabsorption of virtual photons by the electron,
as illustrated in Fig. 1.2. It tends to reduce the binding energy of the electron in S
states (L = 0), for which the probability of presence inside the nucleus is highest. This

increases the energy of the S levels. The leading order contribution scales as a(Za)*.

Figure 1.2: Feynman diagram of the one-loop (or one-photon) contribution to self-
energy. The electron emits and reabsorbs a virtual photon. The dashed line symbolizes
the Coulomb interaction between the electron and the proton, represented by a cross.

Vacuum polarization This term is due to the spontaneous creation of positron-

electron (ete™) pairs between the proton and electron (see Fig. 1.3). These virtual
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pairs become polarized, as the positron is repelled by the nucleus while the virtual
electron is attracted. This induces an additional attractive potential at short distance.
Hence, the electron has a higher binding energy, so that the energy levels are lowered.
For S states, as the electron is closer to the nucleus, the negative correction is more

important, with leading order a(Za)*.

Figure 1.3: Feynman diagram of the one-loop contribution to vacuum polarization.
A virtual electron-positron pair appears in the Coulomb propagator.

There are also smaller contributions due to the creation of u™u~ and hadronic

pairs.

Two-photon corrections The two-photon or two-loop corrections are second-order
QED corrections. For instance, in the two-loop contribution to self-energy, the electron
would emit, and reabsorb, two photons. These terms involve many complicated
integrals and are very hard to calculate precisely. The leading-order two-photon
correction is proportional to o?(Za)*. Three-loop corrections can also be calculated,

but four-loop contributions are considered negligible [MOHR2016].

Recoil corrections

The first-order recoil correction has already been taken into account in the Dirac
energy levels via eq. (1.8). Higher-order recoil corrections are described by a relativistic
two-body problem. They can be written as power series of Za and me/myp, with
leading order (Za)?(me/m,). There are also radiative recoil corrections, which depend
on all three parameters a, Za and me/my. These terms are complicated but small,

as the leading order is a(Za)®(me/my).

Finite nuclear size

There are several non-electromagnetic contributions due to weak and strong interac-
tions. The largest contribution arises from the fact that the proton is not a point-like
elementary particle, but is composed of three quarks interacting with a sea of gluons.

Hence, it has a spatial charge distribution pg(r). The “proton charge radius” r}, is
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defined as the square root of the second moment of the charge distribution,

B [72pp(r)dr

rp = 1/ (r2) with (r?) = Ton()dr

(1.10)

Because of this spatial distribution, the Coulomb potential of the nucleus is screened
at short distance, so that the electron feels a less attractive potential. This effect is
large only for S states where the wavefunction overlap of the proton and electron is
the largest: the binding energy is reduced as the electron penetrates the volume of

the nucleus.

The leading order contribution for S states is

3 2 2

o 2 (m:\° (Za) 9 (277Zarp>

pQ 2 (M P fiiidaii:h R Y 1.11
NS ™ 3 (me) PERLS o0 ( )

where ). is the Compton wavelength of the electron defined by A. = h/mec.
Nuclear structure also gives rise to other, much smaller effects such as the nuclear
self-energy and polarizability, and nuclear corrections to self-energy and vacuum

polarization.

1.1.3 Hyperfine structure

A final contribution to the hydrogen energy levels is the hyperfine structure, which
induces an additional splitting. It is due to the coupling between the electronic total
angular momentum J = L + S and the spin I of the nucleus. As the proton has
a spin I = 1/2, each energy level is actually split in two sublevels described by an
additional quantum number F, with F' = J —1/2,J 4+ 1/2. The energy difference
between these sublevels is called the hyperfine splitting. Each hyperfine level can itself
be decomposed in 2F + 1 sublevels, distinguished by the quantum number mg, which
have the same energy in the absence of external perturbations.

The hyperfine splittings of the 15; /5 and 25, energy levels of hydrogen have
been experimentally measured, and are listed in Table 1.1. These experimental
measurements are much more precise than the theoretical calculations which are

limited by the nuclear structure effects [KARSHENBOIM2002].

Level  Hyperfine splitting (Hz) Reference
H, 181,  1420405751.768(1) [HELLWIG1970]
H, 25, /9 177 556 785(29) [ROTHERY2000]
H, 251, 177556 834.3(6.7) [KOLACHEVSKY2009]

Table 1.1: Experimental measurements of hyperfine splittings. For these S levels, this
corresponds to the energy difference between the F' = 0 and F' = 1 sublevels.
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The hyperfine splitting of S levels scales approximately as 1/n3. To calculate the
35 hyperfine splitting, one could naively multiply the experimental value! of the 25
splitting by 8/27 to obtain

AByrs (35, /5) = 52.609 432 MHz. (1.12)

As detailed in [GALTIER2014a], the hyperfine splitting includes relativistic and

radiative corrections and can be written more accurately as
E
AByps = n—g(l +e), (1.13)

where EF is the Fermi energy, and e is a correction whose main relativistic contribution

has been calculated by Breit [ERICKSON1965] as

11n2 +9n —11
epr(nS) = - (Za)? (1.14)
203n* + 22513 — 134n% — 330n + 189
4= Teon o nt (Za)t + ...

72n4

We can determine the 35 hyperfine splitting more accurately by using eqgs. (1.13)
and (1.14). This yields

AEnrs(3S) /9) = 52.609 445 MHz, (1.15)

which differs by 13 Hz from the previous value (eq. (1.12)). This is the value that we

should use thereafter, with an uncertainty of about 10 Hz.

1.2 Hydrogen spectroscopy and the proton radius puzzle

1.2.1 High-resolution spectroscopy

As we have seen, hydrogen energy levels can be well described theoretically. Differences
between these levels can be experimentally investigated with great precision through
spectroscopy, the measure of transition frequencies.

The electron can jump from one level to another by emitting or absorbing photons.
Due to parity relations, only some transitions are allowed, while others are forbidden.
The selection rules for one-photon (electric dipole) transitions require for instance
that the levels verify AL = £1. Excited states, which can decay spontaneously to
lower energy levels, have very different lifetimes depending on the possible transitions.

For instance, the 2.5 5 state cannot decay spontaneously through a one-photon

!The weighted mean of the two values in Table 1.1.
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transition, since there is no lower energy state with L = 1. It is so-called metastable,
with a lifetime of about 120 ms. By contrast, the 2P levels have a lifetime of only
1.6 ns. To the lifetime 7 is associated a natural spectral linewidth I' = 1/277.

In practice, the transitions are usually broadened. In particular, the Doppler effect
due to the thermal agitation of the atoms induces a Gaussian broadening which can
be very large, limiting the measurement precision. To go beyond this limit, several
spectroscopy techniques have been developed.

Saturated absorption spectroscopy relies on a velocity-selective method. Atoms in
a cell are illuminated by two counter-propagating laser beams of same frequency: an
intense pump beam and a weaker probe beam. The pump induces a saturation of the
transition, depopulating the lower energy state for a given longitudinal velocity class
which depends on the laser frequency. The absorption of the probe beam is monitored
while the laser frequency is scanned. When the laser is resonant with the transition,
the pump and probe beams address the same velocity class (null longitudinal velocity)
and the probe beam is less absorbed. As an example, the saturated absorption
spectroscopy of the Balmer-« hydrogen line (n = 2 — n = 3) enabled the first optical
observation of the 25 — 2P Lamb shift [HANSCH1972].

Another important technique is the two-photon Doppler-free spectroscopy. In
two-photon transitions which link energy states of same parity (AL = 0,+2), the
atom absorbs two photons at the same time. If an atom is illuminated by two counter-
propagating laser beams of same frequency (for instance inside a power build-up
cavity), it can absorb one photon from each beam and the first-order Doppler effect
cancels out. Thanks to this technique, it is possible to achieve tremendous precision.

For instance, one of the most precise optical frequency measurements is the 1.5 — 2S5
two-photon transition frequency, measured since 1975 by the group of T. W. Hénsch
in Garching. Over the years, the experiment has been refined to reach an uncertainty
of 10 Hz, or a relative uncertainty of 4 x 10~!5 [PARTHEY2011]. This is rendered
possible by the long lifetime of the 25 level, which gives this transition a very narrow
natural linewidth of 1.3 Hz.

In Paris, our group has studied the 25 — n.S/D two-photon transitions between
1985 and 2000 [DEBEAUVOIR2000]. These transitions are crucial to the determination

of the Rydberg constant.

1.2.2 Determining the Rydberg constant

Every four years, the CODATA? Task Group on Fundamental Physical Constants
performs a global adjustment of the fundamental constants, based on the latest

experimental and theoretical results. The Rydberg constant, in particular, is obtained

2Committee on Data for Science and Technology
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by a least squares adjustment that takes into account all the available data from
hydrogen and deuterium spectroscopy, as well as QED calculations. The value of the

Rydberg constant obtained by the latest CODATA adjustment [MOHR2016] is
Roo = 10973 731.568 508(65) m ™, (1.16)

with a relative uncertainty of 5.9 x 107!2,

In this section I would like to give a flavor of how the Rydberg constant can be
determined, in a simple manner, from hydrogen spectroscopy. Let us go back to

eq. (1.9), which we can rewrite as
Enry = anjhcRoo + Lnry, (1.17)

where a,,; ~ —1/n? is an exactly known function of o and me/m.

Spectroscopy gives us access to differences between energy levels. For instance,
one could wish to determine R, directly from the 1.5 — 2 transition frequency, which
is very precisely known. The precision on the Rydberg constant obtained in this way
is limited by the knowledge of the theoretical Lamb shifts L;g, /2 and Log, /o» OF more
accurately by that of the proton radius, which would have to be determined from

scattering experiments (see next section).

Combining two transition frequencies allows to circumvent this drawback. For
instance, one could use two of the most well-known transition frequencies (1.5 — 25

and 25 — 8D) which can be written, using eq. (1.17), as

3

V18192510 = ZcROO + (LQSI/2 - L1sl/2)/h, (1.18)
15

V281/3-8D5n ~ gpCllec + (LsDy,, — L2s, 5)/h- (1.19)

At the same time, we can take advantage of the fact that many contributions to the

Lamb shift L, s follow a 1/n? scaling law, so that the deviation from this law,
Ay =1’Lys, , — L1s, 5, (1.20)

can be very precisely calculated [CZARNECKI12005]. Besides, the Lamb shift for high

n and L is known theoretically with sufficient precision.

This set of equations (egs. (1.18) to (1.20)) can be solved for three unknowns: the
Rydberg constant and the 1.5 and 2S5 Lamb shifts. A judicious linear combination of

these equations,

57
1128, 1,—8D5 )5 — V1S /5=28) 5 =~ GZCROO + 7Lspy,,/h — D2/h, (1.21)
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allows to directly determine the Rydberg constant.

1.2.3 The proton radius puzzle

Using the type of calculation sketched above, we can deduce an experimental value of
the 1S Lamb shift. In this way, a value of the proton charge radius 7, can be inferred
from hydrogen spectroscopy, if we assume that the QED calculations are correct. To
test the bound-state QED calculations, an independent determination of the proton

radius rp, is needed.

Such a value can be obtained from electron-proton scattering experiments. In a
typical experiment, electrons are sent onto a thin dihydrogen target and the scattering
cross-section is measured. This scattering cross-section can be expressed in terms
of form factors from which the proton radius is deduced. The data analysis is very
complicated. An equivalent definition of the proton radius involves the derivative
of the electric form factor at zero momentum transfer, but the electrons must have
sufficient energy to go through the target and avoid multiple scattering. This requires
to extrapolate the form factor to low energy with an unknown function, and the
difficulty of this analysis leads to a large uncertainty (about 2 %) on the resulting
proton radius. The current CODATA value of the proton radius was obtained by
including the latest results from e-p scattering into the global adjustment, along with

hydrogen and deuterium spectroscopic data.

Another way to determine 7, is the spectroscopy of muonic hydrogen. A muon is
exactly similar to an electron except for its mass my which is 207 times higher than
that of the electron. For S states, the wavefunction of the muon is more localized and
has a greater overlap with that of the proton, so that proton size effects are magnified.
In fact, the proton size contribution represents 1.8 % of the 25 — 2P Lamb splitting
in muonic hydrogen, as compared to a proportion of 0.014 % in electronic hydrogen.
This fact makes it possible to obtain a very precise determination of the proton charge
radius without requiring as much effort on the precision of the spectroscopy as in
electronic hydrogen. Direct spectroscopy of the muonic hydrogen 25 — 2P splitting
at 6 um yields a value of the proton radius that is independent from the Rydberg
constant determination.

An experiment to this purpose was set up starting in 1999 at the Paul Scherrer
Institute in Switzerland by an international collaboration called CREMA (Charge
Radius Experiment on Muonic Atoms) which includes members of our group. After
several beam times in 2002, 2003, and 2007, the 25{}31 — 2P§§2 transition was finally
observed in 2009. However, it was strangely shifted from the value predicted by the
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Figure 1.4: The proton charge radius puzzle.
theory [PoHL2010]. The resulting proton charge radius [ANTOGNINI2013],
rp = 0.84087(39) fm, (1.22)

is an order of magnitude more precise, but about 4 % smaller, than the current

CODATA value® [MOHR2016],
rp = 0.8751(61) fm. (1.23)

Conversely, this “small” value of the proton radius can be used to infer a determination
of the Rydberg constant. The Rydberg constant obtained in this way is about 105 kHz
smaller that the value from the latest CODATA adjustment.

This discrepancy, which has become known as the “proton radius puzzle”, has not
been explained yet, despite an intense research activity both in theory and experiment
[CARLSON2015]. The results of the muonic deuterium spectroscopy, which had also
been performed in 2009, have recently been published [POHL2016], deepening the
puzzle by introducing a similar discrepancy on the deuteron radius.

Several transitions of muonic helium ions (u?*Het and u*He™) have also been
measured by the same collaboration in 2013, but the results have not yet been
published. The spectroscopy of these hydrogenoid systems is useful to test theories
that attempt to explain the proton radius discrepancy.

Solving this puzzle requires new data from electronic hydrogen spectroscopy and
e-p scattering. On the spectroscopy side, several experiments are under way for this
purpose. The group of E. A. Hessels in Toronto aims at a new* direct measurement of
the 25} /5 — 2P Lamb splitting of hydrogen. In Garching, the group of T. W. Hénsch
now studies the 25 — 4P transition [BEYER2017], as well as the 1.5 — 35 transition
[YOST2016]. Our current 15 — 3S experiment also pursues this goal.

The 15 — 35 transition frequency predicted by the theory differs by about 7 kHz
depending on whether the proton radius from the CODATA adjustment, or from the
muonic experiments, is used in the calculations. Therefore, we need to measure this
frequency with an uncertainty in the kHz range in order to contribute to the resolution

of the proton puzzle.

3Because of this discrepancy, the CODATA task group decided not to include the results from the
muonic hydrogen experiment in the 2014 global adjustment.
“The most precise direct measurement of this transition dates back to 1981 [LUNDEEN1981].
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1.3 Our 1S5—3S experiment

After measuring the 25 — nS/D transitions with great precision, our team turned
to the 15 — 35 two-photon transition in the middle of the 1990’s. What began as a
comparison of the 1.5 — 35 and 25 — 65 transition frequencies to measure the Lamb
shift [BOURZEIX1995] turned into a long-term experiment, refined and improved over
time to increase the precision. We are now able to measure the frequency of the
15 — 35 hydrogen transition with an uncertainty of a few kHz.

Our experiment is based on the following setup. A 205-nm continuous-wave
excitation laser is resonant with a build-up cavity whose axis is collinear with an
effusive beam of 15 hydrogen atoms. The two-photon 15 — 3 transition is detected
through the Balmer-« fluorescence (35 — 2P) at 656 nm.

1.3.1 The second-order Doppler effect

As previously noted, two-photon transitions are particularly suited for spectroscopy
because there is no first-order Doppler effect. However, we need to take into account
the second-order Doppler effect.

Imagine a photon of frequency v encountering an atom moving with velocity v along
the same axis. Taking into account relativistic time dilatation, the Doppler-shifted

frequency v+ seen by the atom is

1+tv/c
Vy = ——— 1, 1.24
RV /c? (1.24)
where the + sign depends on the relative directions of the atom and photon.
Assuming that v < ¢, the above equation reduces to
P (1.25)
vy = -4+ — | :
* c  2c?

Thus, in the case of two-photon spectroscopy with counter-propagating laser beams,

an atom will absorb one photon from each beam and the resonance condition is

2

v
= =2 1+—. 1.26
o V++V V( +202> ( )

The first-order Doppler effect has canceled out but there remains the second-order

Doppler shift

1/0’U2

2¢2

5Dop.2 = — (127)

As we will see in Chapter 3, the velocity distribution of atoms in an effusive beam
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can in principle be written as

U2

f(v) < v? exp(—@), (1.28)

where 0 = \/kgT/m, with T the temperature and m the atomic mass. The most
probable velocity in a beam of hydrogen atoms at room temperature (7' ~ 300 K) is
given by v = v/30 ~ 2.7 km/s. An atom moving with this velocity would experience a
second-order Doppler shift of about 120 kHz. In our experiment, this Doppler shift
can thus be expected to be on the order of a hundred kHz and greatly dependent on
the velocity distribution, which has to be estimated experimentally.

Several methods could be used to this purpose. One possibility is to directly
probe the velocity distribution by monitoring the Doppler broadening of a one-photon
transition. This would however be difficult to implement in our case. The lowest
one-photon transition from the ground state (1S — 2P) requires a 121-nm laser, the
building of which represents quite a feat in itself. One could also perform the Doppler
spectroscopy measurement from the 25 level after populating this state by two-photon
excitation of the 15 — 25 transition. This solution would also require lasers that are
not currently available for our experiment. Another possible method would be to use
a beam chopper in order to perform velocity-selective spectroscopy, but this would

imply rebuilding the entire experimental setup.

Eventually, in order to characterize the velocity distribution of our atomic beam,
we use an original method [BIRABEN1991] which consists in applying a transverse

magnetic field in the interaction region.

I8
QVAVAVE S VAVAVA

Figure 1.5: The magnetic field B and motional electric field E.

In the reference frame of the moving atom, the magnetic field B creates a motional
electric field E = v x B, as shown in Fig. 1.5. The quadratic Stark effect due to this
electric field shifts the transition frequency of a quantity

E?  v?B?

5Stark XV = )
Asp  Agp

(1.29)

where Agp is the energy difference between the levels coupled by the electric field,

which are in our case the 35 /5 level and nearest 3P /o level.
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This effect is proportional to v2, like the Doppler shift. The two shifts could thus

apparently cancel each other for a well-chosen value of the magnetic field.

However, the magnetic field has another, larger effect on the energy levels: the
Zeeman splitting, which lifts the degeneracy of levels of same n, L, J, F' quantum
numbers and different mp. This splitting is shown on Fig. 1.6. In our experiment, we
study the 1.5 — 3S(F = 1) transition, because the 155/31 level is more populated. Due
to the selection rules AF = 0 and Amp = 0 for two-photon transitions between levels
of same J = 1/2 [GRYNBERG1976], only three sub-transitions are allowed between

F =1 levels, as shown on the diagram (Fig. 1.6).

As the mp = 0 sublevels are not shifted in the same way by the Zeeman effect,
the transition 15} o(F = 1,mp = 0) — 35, 2(F = 1,mp = 0) is much shifted and is
used to calibrate the magnetic field.

On the other hand, the other transitions, between levels of mp = +1, are only
slightly shifted by the magnetic field. In fact, the Landé factor gg of the bound electron,
which appears in the Zeeman hamiltonian (eq. (3.6) in Chapter 3), differs from the
free-electron g-factor g. because of relativistic effects. It is given by [BETHE1957,
CESAR2001] as

042
g5(n) = ge (1 - 3) , (1.30)

yielding for the 1.5 and 35 levels:

gs(1S) = 2.00228376,
9s(35) = 2.00231535. (1.31)

Figure 1.7 shows the theoretical position of the 1S — 3S(F = 1,mp = =+1)
transitions, as a function of the magnetic field. For a magnetic field of about 180 G
(18 mT), the Zeeman effect causes a level crossing between the 3.5 /o(F = 1, mp = —1)
and 3P, (F' = 1,mp = 0) sublevels. The quadratic Stark effect is thus large for the
15 —3S(F = 1,mp = —1) sub-transition and compensates the second-order Doppler
shift for two values of the magnetic field, labeled A and B on curve (c) of Fig. 1.7.
For the same magnetic field, the 35} 5(F' = 1, mp = +1) sublevel is far from any level

of opposite parity and is not displaced by the quadratic Stark effect (curve (a)).
However, both the Doppler and Stark shifts are much smaller than the natural

linewidth of the transition (1 MHz), so that the two sub-transitions are not distin-
guished in our experiment. Hence, the apparent displacement (curve (b)) is the average

of the two former curves, and the Doppler effect is only partially compensated.
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Figure 1.6: Zeeman splitting diagram. The levels are labeled by the quantum numbers
(F,mp). The 3S;/5(F = 1,mp = —1) sublevel crosses the 3P /5(F = 1,mp = 0)
sublevel for a magnetic field of about 180 G.
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Figure 1.7: Theoretical position of the 1.5 — 3S(F = 1, mp = %1) lines as a function
of the magnetic field, calculated for an atomic velocity of v = 3 km/s. Thanks to the
motional Stark effect, the second-order Doppler effect is compensated at points A and
B for the mp = —1 sub-transition (curve c¢). However, the mp = +1 sub-transition is
not shifted by the Stark effect (curve a). In practice we observe both sub-transitions
(curve b).
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To estimate the velocity distribution of the atoms, we record transition signals for
various values of the magnetic field, and fit them with a theoretical line profile that
takes into account both the second-order Doppler shift and the Stark effect used to
compensate it [HAGEL2001].

1.3.2 Experimental improvements

Since it began in 1995, our 1.5 — 35 experiment has evolved over time, each Ph.D.
student bringing new improvements to the setup. Two of the most striking recent

changes involve the excitation laser source and the frequency measurement system.

In order to measure a frequency, it has to be compared to a reference, the absolute
frequency reference being the cesium clock transition at 9192631 770 Hz which defines
the second (hyperfine ground state transition frequency of *3Cs). Moreover, one can
more easily compare frequencies separated by a few GHz. Hence, to measure the
optical frequency of a laser, it has to be somehow down-converted to the micro-wave
domain. In the 1990’s, this was done by means of complicated frequency chains. These
included several stages in which standard lasers stabilized on atomic transitions were
painstakingly frequency-doubled to link the optical domain to the longer wavelengths.

Nowadays, the creation of optical frequency combs, for which J. L. Hall and T. W.
Hénsch received the Physics Nobel prize in 2005, has made it much easier to measure
optical frequencies. A frequency comb is generated from a pulsed laser, which delivers
pulses at a regular period. In the frequency domain, the spectrum presents regularly
spaced modes which depend on this period and an offset frequency. The spacing
between modes, called the repetition rate, is equal to the inverse of the period. Both
the repetition rate and the offset frequency can be stabilized to a frequency reference.
To measure an optical laser frequency, one simply has to measure the frequency of the

beat note between the unknown laser and one of the comb modes.

Olivier Arnoult implemented such a laser during his Ph.D. [ARNOULT2006]. We
now use another, similar frequency comb to measure the frequencies of the various
lasers in our experiment. The principle of this measurement will be described in

part 2.3.

Another major improvement to the setup concerns the excitation laser source.
Creating a powerful continuous light source at 205 nm is a challenge in its own
right. Until 2010, the team used two successive doubling stages, starting from a
continuous-wave titanium-sapphire laser at 820 nm. This infrared laser was first

frequency doubled to 410 nm by second harmonic generation (SHG) in a lithium
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triborate (LBO) crystal. The blue light was itself doubled again in a -baryum borate
(BBO) crystal to generate the 205-nm excitation light.

The first doubling stage was quite efficient [BOURZEIx1993]. However, the second
doubling stage had a very low conversion efficiency because the BBO crystal was used
at the limit of its phase-matching angle for SHG. In fact, due to photo-refractive effects
in the crystal, it could only be used in quasi-continuous operation, producing less
than 0.1 mW of 205-nm radiation [BOURZEIX1997]. The resulting power modulation

created a distorted signal that was hard to analyze [HAGEL2002].
During her Ph.D. work starting in 2012, Sandrine Galtier built a new 205-nm laser

source based on sum frequency generation (SFG), which will be presented in detail at
the beginning of Chapter 2. Light from the same titanium-sapphire laser, modified
to emit 894-nm radiation, is combined with 266-nm laser radiation in a BBO crystal
to generate a 205-nm beam. For SFG, the phase-matching angle limit of the BBO
crystal is further in the ultraviolet. This setup is thus more favorable than SHG and
enables continuous-wave operation. Hence, we can now obtain more than 10 mW of
continuous-wave 205-nm light.

This new source has another advantage: it will allow us to reach the 15 — 4S5
two-photon transition, which lies even further in the UV, at 194 nm. To produce this
wavelength, we will simply have to shift the titanium-sapphire operating wavelength

to 724 nm.

1.3.3 Previous results and perspectives

The 15 —3S transition frequency was measured in 2010 [ARNOULT2010] with a relative

uncertainty of 4.4 x 1072, with the following centroid value,

V1g_3s = 2922743 278.678(13) MHz. (1.32)

Major improvements on the 205-nm laser source allowed Sandrine Galtier to record
new data in 2013-2014. The analysis yielded an encouraging statistical uncertainty
of 2.1 kHz, but it was hindered by the determination of the velocity distribution. A
correct estimation of this distribution, and thus of the second-order Doppler effect, is

essential to our measurement.

One of the important systematic effects in the experiment is the pressure shift.
Determining it involves measuring the transition frequency for several pressure values
and extrapolating to zero pressure. Unfortunately, the magnetic field analysis to
estimate the velocity distribution was done only for one value of the pressure. The

model used to describe this distribution was refined during the data analysis, and
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could include a possible pressure dependence (see Chapter 3, part 3.1.2 for more
details).

Therefore, one could either assume that the velocity distribution did not depend
on the pressure, or that it did. In the first case, one obtained a frequency value in
agreement with the CODATA theoretical value; in the pressure-dependent case, the re-
sult agreed fairly well with the prediction of the muonic proton radius [GALTIER2015].
It was impossible to conclude without better knowledge of the velocity distribution of

the atomic beam.

At the beginning of my Ph.D., the first thing to do was thus to estimate the
atomic velocity distribution for different pressure values in order to validate the
pressure-(in)dependent model. This has been done successfully, along with a complete
study of other systematic effects, and the results will be presented in this manuscript.
Another possible research direction is to cool the hydrogen atoms down to cryogenic
temperatures in order to reduce their velocity. This would render our measurement
much less sensitive to the second-order Doppler effect. The cooling system has been
installed at the very end of my Ph.D.

I will describe the experimental setup in detail in Chapter 2, then give in Chapter 3
a theoretical presentation of the systematic effects that must be taken into account,

before the data analysis and results in the last chapter.



Chapter 2
The 1S5—3S experimental setup

In the first chapter I have presented our experiment from a historical and theoretical
point of view. The present chapter is devoted to the experimental setup currently
used to measure the 15 — 35 transition frequency. The overall goal of this experiment
is to determine this frequency with the smallest uncertainty, which is achieved with
the best signal-to-noise ratio for the observed atomic transition.

The setup, represented very schematically in Fig. 2.1, comprises two laser sources
which provide, through second-harmonic generation (SHG) and sum frequency gen-
eration (SFG), the 205-nm radiation for the two-photon excitation of the hydrogen
atoms. The frequency of the lasers is stabilized and can be measured with the help
of a frequency comb. The 1.5 — 35 transition is detected by collecting the Balmer-o
(35S — 2P) fluorescence.

,—b—Y__
("~ frequency Sum
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Figure 2.1: Schematic diagram of the laser setup.

I will first describe our 205-nm laser source, and how its frequency can be stabilized
and measured. Then we will turn to the atomic hydrogen beam and fluorescence
detection. I will also present the coils used to produce the magnetic field necessary
for the determination of the second-order Doppler shift. A final part is devoted to the

data acquisition and observed signals.
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2.1 The 205-nm laser source

Our experiment requires a continuous-wave, tunable, frequency-stabilized laser source
at 205 nm. The current excitation laser source at 205 nm was build by Sandrine
Galtier [GALTIER2014a]. The continuous 205-nm light is obtained by sum frequency
generation (SFG) from a titanium-sapphire laser at 894 nm and a 266-nm radiation

provided by the frequency doubling of a 532-nm laser.

2.1.1 The titanium-sapphire laser

Our continuous-wave (cw) tunable titanium-sapphire (Ti:Sa) laser is a home-made laser
developed in our team following a scheme proposed by Frangois Biraben [BIRABEN1982].
It has been well described in [BOURZEIX1993]. Here I will present its main character-
istics.

The amplifying medium is a Brewster-cut Ti:Al,Ogz crystal, which is pumped
by 13 W of 532-nm light from a frequency-doubled Nd:YVOy, laser (Millennia® XV
from Spectra Physics). It has great versatility, and can be used over a wide range
of wavelengths. In its current configuration, this Ti:Sa laser delivers about 1.6 W of
894-nm radiation.

Figure 2.2 shows the optical ring cavity of this laser. The infrared light is linearly
polarized in the horizontal direction. In a ring cavity, both directions of light propaga-
tion are in principle allowed. To ensure that only one direction of lasing is allowed,
this cavity contains two elements which rotate the polarization of the laser beam.
One is a Faraday rotator. This birefringent plate, placed in a magnetic field, turns
the polarization of an angle independent from the direction of propagation, because
the rotation direction is imposed by the magnetic field. The other element is the
mirror system M4-5-6, with mirror M5 placed above the two others, that generates a
polarization rotation of an equivalent angle but whose sign depends on the propagation
direction. The two polarization changes compensate for one lasing direction but add
up for the other. The presence of other polarization-selective elements in the cavity
(e.g. plates placed at Brewster angle) creates losses for the latter direction, thus
preventing the laser from operating in that direction.

To enable single-mode operation, the Ti:Sa cavity also contains three frequency-
selective elements, which are listed here in order of increasing selectivity:

e the Lyot filter, composed of three birefringent plates that can be rotated via a

servo motor, selecting a 0.5 A wavelength range;

e the thin etalon, a silica plate that acts like an interferometer and whose ori-

entation with respect to the laser beam can be adjusted with a servo motor;
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Figure 2.2: The optical setup of the Ti:Sa laser.

e and the thick etalon, a Fabry-Perot cavity formed by the air gap between two
prisms. One of these prisms is piezo-mounted, allowing to tune the frequency

range selected by this etalon.

Finally, the scanning plates, which can be moved symmetrically, are used to modify
the optical length of the laser cavity and tune the laser frequency on a large range. It
can also be tuned using the piezo-mounted M4 mirror, and an electro-optic modulator

is used for more rapid frequency control (see stabilization description in part 2.2.2).

2.1.2 The frequency-doubled Verdi laser

Our 532-nm laser is a frequency-doubled Nd:YVOy laser developed by Coherent®
(Verdi V6 model). The frequency of this single-longitudinal-mode laser can be con-
trolled by means of a piezo-mounted mirror in the laser resonator. This mirror is
actually mounted on a piezoelectric stack with two channels, a slow one for large
translations and a rapid one for smaller fluctuations. We have added a double-pass
acousto-optic modulator (AOM) at the output of the Verdi laser to further correct
the rapid frequency fluctuations of the laser, as explained in part 2.2.2.

We use an off-the-shelf doubling cavity (MBD266, also from the Coherent firm) to
perform second harmonic generation in a -baryum borate (BBO) crystal. The length
of this cavity is locked on the laser frequency by the method of Hénsch-Couillaud
[HANSCH1980], which will be described in the next section. We have been using the

same BBO crystal since the beginning of Sandrine Galtier’s Ph.D. However, we have
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recently removed the output monitoring plate of the MBD266 cavity in order to
increase the output power.
Injecting 1.2 W of 532-nm light into the cavity, we obtain about 250 mW of

radiation at 266 nm.

2.1.3 Sum frequency generation

The sum frequency generation (SFG) system consists in two ring cavities that overlap
in a B-baryum borate (BBO) crystal [BERKELAND1997, GALTIER2014b]. The actual

geometry of the cavities is shown in Fig. 2.3.

894 nm

205 nm

BBO

|
M

Figure 2.3: Geometry of the sum frequency generation cavities. Two mirrors of each
cavity are piezo-mounted to lock the cavity length on the laser frequency.

The initial beams at 894 nm and 266 nm are shaped using lenses to improve the
mode-matching to their respective cavity. The BBO crystal is Brewster-cut for the
894-nm beam in order to minimize the losses for this frequency. Its temperature is
stabilized at 40 °C to prevent water absorption. At the output, a cylindrical lens
corrects the asymmetry of the 205-nm beam profile.

Both cavities are locked on the laser frequencies through a Hénsch-Couillaud
locking scheme [HANSCH1980]. This method relies on the presence of a polarization-
selective element inside the cavity, in our case the Brewster-cut BBO crystal which
creates losses for vertically-polarized light. The polarization of the incoming light is
slightly tilted from the horizontal direction. The vertically-polarized part of the laser
beam is reflected by the input mirror of the cavity, whereas the horizontally-polarized
beam propagates inside the cavity and the phase of the outgoing beam depends on

the cavity length. If the cavity is resonant with the laser frequency, the reflected and
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outgoing light beams are in phase. By comparing the respective phases of the those
two beams, we can build a dispersion-shaped error signal to perform a retroaction on
two piezo-mounted mirrors in each cavity: a small one for rapid length fluctuations
and a large one for slower, larger corrections. The advantage of this method is that
it does not imply modulating the frequency of the radiation inside the cavity, thus

avoiding an unwanted broadening.

Any absorbing substance in the cavity has a large impact on the power enhancement
and the SFG efficiency. Sandrine Galtier pointed out that water molecules absorb the
894-nm light from the Ti:Sa laser. Preventing this absorption required the use of a
dry air flow. Moreover, I discovered fortuitously that acetone vapor absorbs 266-nm
light. Indeed, by placing an acetone-soaked tissue near the 266-nm light beam, we can
even see the acetone fluorescence, which has been studied elsewhere [BRYANT2000].
We now avoid cleaning the 266-nm mirrors with acetone, and prefer n-hexane, that we
also use to clean the BBO crystal. Also, to avoid the presence of unwanted molecules,
we replaced the dry air flow by a nitrogen flow, recycling the nitrogen evaporating

from the liquid-nitrogen trap of our diffusion pump.

Day to day we obtain more than 10 mW of 205-nm radiation. The power sometimes
drops sharply due to a photorefractive effect in the BBO crystal. A similar effect was
observed during the Ph.D. of Gaétan Hagel when the 205-nm light was produced by
second harmonic generation in a BBO crystal, but it was even more hindering since
it prevented continuous-wave operation [HAGEL2001]. The 266-nm light triggers the
formation of color centers in the crystal. Any stray reflection can cause the formation
of a refractive index grating in the crystal, that diffracts the 266-nm beam. The
266-nm light starts propagating in the wrong direction around the ring cavity, reducing
the power enhancement and thus the efficiency of the SFG process. In an attempt to
prevent the apparition of this effect, we place the BBO crystal in a flow of oxygen.
Besides, the effect is localized and partly reversible, so that moving the crystal laterally
for a few minutes allows to recover a more normal output power. However, the BBO

crystal ages nonetheless and has to be changed every few months.

2.2 Frequency stabilization and scanning

In order to achieve frequency stability of this 205-nm source, it is necessary to ensure
the stability of both initial lasers (Ti:Sa and Verdi). The stabilization scheme involves
sequential locks onto several Fabry-Perot cavities, and requires the presence of an
additional standard laser used as a frequency reference. I will first present this standard

laser, then turn to the description of the locking process for the Ti:Sa and Verdi lasers.



24 CHAPTER 2. THE 15S-3S EXPERIMENTAL SETUP

anamorphic  optical
v2  prisms isolator 2 W
| fry-160 MHz
towards fs comb
or wavelength meter
[ —
A laser |g_|mod. 100 kHz
i - 80 MHz
diode L
Va4 towards
e s M FPR cavity
PZT e
ext. mod.
100 kHz v
Rubidium cell
PZT / 5D,
. %
4 5D3;

I 420 nm filter

‘ﬁlock—m photomultiplier
synchro 778 nm

mod.

Figure 2.4: Optical setup of the standard laser. The inset shows the n = 5 rubidium
energy levels and the relevant transitions. The 778-nm diode drives the two-photon
55533 — 5D§/§5 transition of 8Rb. The atoms subsequently decay via the 6P level,
and the 6P — 55 fluorescence at 420 nm is detected by the photomultiplier. The
laser diode represented in this drawing is in an extended-cavity configuration using
a piezo-mounted grating as the tuning element. It was replaced during my Ph.D.
by a new diode whose extended cavity consists in a piezo-mounted mirror and an
interference filter [JANNIN2015].

2.2.1 The rubidium-stabilized standard laser

The standard laser was developed, partly by our team, at the end of the 1990’s, and
is well described in [DEBEAUVOIR1997]. This 778-nm tunable extended-cavity laser
diode is stabilized on the two-photon 55’{/;3 - 5D§/§5 hyperfine transition of 8Rb.
The drawing of Fig. 2.4 gives an overview of the optical setup of this laser.

Part of the laser beam is injected in a Fabry-Perot cavity after passing through a
double-pass acousto-optic modulator (AOM), which acts as an optical isolator between
the cavity and the diode. Initially, this AOM served a more important role: it was
used to stabilize the light power seen by the Rb atoms in order to control the light
shift. Nowadays, this power control is not needed anymore. Since we are able to
measure the frequencies very precisely thanks to our frequency comb (part 2.3), the

absolute frequency of this laser does not matter, only its long-term stability.
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The cavity contains a rubidium cell, and the length of the cavity is locked onto
the incident laser frequency to keep it resonant. The 420-nm fluorescence resulting
from the decay of the 8°Rb atoms (see Fig. 2.4) is monitored via a photomultiplier.
The frequency of the diode is locked to maximize the fluorescence signal, using both
the diode current and the piezo-actuator of the grating forming the extended cavity.

Both locks (cavity length and diode frequency) use lock-in amplifiers that share
the same 100-kHz modulation.

The other part of the laser beam is then separated in two by a polarizing beam-
splitter. One beam is used for frequency measurement, either using a wavelength
meter or making a beat with the frequency comb, as described in section 2.3.3. The
other beam passes through another double-pass AOM before being sent, via an optical
fiber, to the reference Fabry-Perot cavity (FPR), the use of which is explained in the

following section.

2.2.2 Ti:Sa and Verdi frequency stabilization

Figure 2.5 offers a general view of the stabilization scheme. The Ti:Sa and Verdi laser
frequencies are both stabilized in a similar manner.

First, to correct rapid frequency fluctuations (jitter), the laser cavity length is
locked on a resonance of an auxiliary Fabry-Perot cavity. There are two such cavities,
one for each laser, that we will call FPA~;.q, and FPAvg.

Both cavities are composed of a 25-cm-long invar bar and two mirrors, one of
which is piezo-mounted. They are placed inside heavy cylinders to reduce acoustic
perturbations. The finesse of the FPAT;.q, cavity is on the order of 100, that of the
FPAyg cavity is about 400 [GALTIER2014a].

The stabilization is done using a Pound-Drever-Hall scheme [DREVER1983]. This
locking method uses an electro-optic modulator (EOM) to apply a frequency modu-
lation to the light beam before the entrance of the cavity. The two sidebands thus
created are not resonant with the cavity, but are reflected in phase if the laser is
resonant. We monitor the reflected light using a photodiode and, by mixing its signal
with the modulation driving the EOM, we obtain an error signal which presents a
very steep dispersion shape.

For the Ti:Sa laser, this error signal is used to perform a retroaction on the
piezo-mounted M4 mirror and the electro-optic modulator in the Ti:Sa cavity. For
the Verdi laser, it acts on the two piezo-actuators in the Verdi laser cavity.

In the case of the Verdi laser, the error signal is also used to modulate the frequency
applied to the double-pass acousto-optic modulator (AOM) placed at the output of the
laser. This additional correction, having a greater bandwidth than the piezo actuators,

allows to reduce the rapid frequency fluctuations and the spectral width of the laser.
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Figure 2.5: General scheme of the frequency stabilization system. Three different laser
beams are injected in the FPR cavity. At the output of the cavity, the transmitted
light beams are separated using both polarization and wavelength properties. The
778-nm beam is vertically polarized while the others are horizontally polarized. The
532-nm light is first separated from the longer wavelengths using a dichroic mirror.
Then the 894-nm and 778-nm radiations are distinguished using a polarizer and a
mirror.
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Secondly, the length of both FPA cavities is servo-locked on a third Fabry-Perot
cavity (reference Fabry-Perot or FPR) to prevent long-term drifts. The FPR cav-
ity, which is maintained under vacuum, is composed of two mirrors separated by a
50-cm-long zerodur bar. The silver-coated metallic mirrors are reflecting for a large
range of wavelengths, in the visible and near-infrared. Both mirrors are optically
adhered. The input spherical mirror is adhered directly onto the zerodur bar, but
the output plane mirror is mounted on a deformable parallelogram system which is

piezo-actuated. This allows to tune finely the length of this cavity.

Finally, in order to achieve long-term stability, the FPR cavity length is itself
stabilized by maintaining it at resonance with the Rb-stabilized standard laser de-
scribed in the previous section, also using a lock-in amplifier, thus transferring the
high stability of the standard laser to our source lasers. The transmission signals at
778 nm, 894 nm and 532 nm are separated with a combination of dichroic mirrors

and polarizing cubes.

2.2.3 Frequency scanning

The presence of a double-pass acousto-optic modulator, operating at frequency faowm,
between the Ti:Sa laser and the Fabry-Perot cavities entails a frequency difference of
2 x faom between the direct laser beam and the frequency f%PSP;L of the FPR resonance
on which it is locked. If faowm varies, the Ti:Sa laser frequency is corrected accordingly
to keep it resonant with the FPR cavity of fixed length. This allows to modify the
UV frequency of a few MHz by changing the value of faon, while keeping all lasers

stabilized.

More concretely, the frequency of the 15 — 35 transition can be related to the

Ti:Sa and Verdi laser frequencies in the following way:
fis—3s =2 x {2 X fs32 + (fgfs% —2X fAOM)] : (2.1)

where the first factor of two comes from the two-photon transition, the second from
the frequency doubling of the 532-nm laser and the third from the double-pass

acousto-optic modulator.

The FPR cavity has a free spectral range (FSR) of about frsgr ~ 299.59 MHz.
Its transmission peaks can be labeled by an integer N, corresponding to a resonance
frequency of N frsr + ®, where ® ~ 110 MHz is the Fresnel dephasing of the cavity,

due to the curvature of the mirrors [GARREAU1989].
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Figure 2.6: Position of the FPR transmission peaks used when aiming at the 1.5 — 3.5,
F =1 transition of hydrogen. Here N is the number of the FPR transmission peak.
The length of the cavity is fixed by maintaining the peak no. 1286 040 at resonance
with the Rb-stabilized standard laser. The frequency of the AOM is set at about
fAOM ~ 192 MHz.

Figure 2.6 shows the respective position, and numbering, of the FPR resonances
used for stabilization, when aiming at the hydrogen 1Sf/§1 — 35531 transition. In

this case, the AOM frequency is set at about 192 MHz.

During my Ph.D. work, I also had the opportunity to observe the deuterium
15 —3S, F=1/2 and F = 3/2 transitions, which are about 800 GHz away from the
hydrogen transition. In order to reach these transitions, it is necessary to lock the
lasers using other FPR resonances. In practice, we must find the nearest FPR peaks,
then adjust the frequency more finely by tuning the AOM frequency. This AOM is
optimized for faom = 200 MHz, but its frequency can be tuned over a few tens of
MHz below this value.

We can also take advantage of the fact that the FPR cavity is itself tunable. Indeed,
two adjacent peaks (nos. 1286040 and 1286041) can be used to lock its length at
resonance with the Rb-stabilized standard laser. When aiming at the hydrogen 15 —35
transition, the standard laser is at resonance with the FPR resonance no. 1286 040.
For the deuterium transitions, we use peak no. 1286 041 instead. This corresponds to
a change in the cavity length of about 0.39 um, or a change in FSR of 233 Hz. The
Verdi laser is locked on its usual FPR peak no. 1880191, whose frequency has shifted
by more than 400 MHz due to the FSR change. Figure 2.7 shows the position of the
Ti:Sa FPR resonance and the value of the AOM frequency used to aim at the F' = 1/2
and F' = 3/2 transitions of deuterium. The frequency difference between these two
transitions is about 315.2 MHz, corresponding to a change in the Ti:Sa frequency of
315.2/2 = 157.6 MHz.



2.3. FREQUENCY MEASUREMENT 29

2x128 MHz
<
F=32 ;
ISL
1 118 850
157.6 MHz | 2X199 MHz
F=1/2

Y

1118851

Figure 2.7: Modification of the FPR resonances for the deuterium transitions. The
FPR length is now locked by maintaining the transmission peak no. 1286041 at
resonance with the standard laser, thus changing the cavity length with respect to the
configuration used for hydrogen. For each transition, we choose the most convenient
configuration of transmission peak number and AOM frequency.

2.3 Frequency measurement

2.3.1 General principle

The frequencies of our cw lasers are measured by means of an optical frequency comb,
which is a mode-locked pulsed laser, emitting a coherent train of short pulses. The
spectrum of such a laser is composed of many regularly spaced modes, which can be
used as a sort of “optical ruler” to determine the frequency of cw lasers.

The comb spectrum can be characterized by two frequencies: the repetition rate
frep, Which is the spacing between two adjacent modes, and the carrier-envelope
offset (CEO) frequency fo, which is an overall offset due to the phase difference
between two successive pulses. The frequency of a given mode of the comb is given by
fn = nfrep £ fo, where n is a large (~ 10°) positive integer. The = sign is due to the
fact that the sign of the CEO is not known a priori; by convention, the quantity fo
is positive. A beat between this mode and a cw laser of frequency fc, will have the

frequency

Jbeat = :l:(fn - fcw) = i(nfrep + fo — fcw)- (2'2)

In practice we determine the signs in this equation by modifying the values of frep, and
fo. Our HighFinesse WS7® wavelength meter provides a convenient determination of
the cw frequency with a precision of a few tens of MHz. Plugging this into the above
equation and inverting it allows us to obtain the value of the integer number n of the
nearest mode. Once this is known, it is sufficient to measure the frequency of the beat

note to determine the frequency of our cw laser.
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2.3.2 The frequency comb

Our frequency comb is a commercial femtosecond (fs) laser made by MenloSystems. It
is composed of a mode-locked erbium-doped fiber laser at 1560 nm, that is subsequently

fed into two separate amplifiers.

One is a doubling amplifier, whose output at 780 nm is injected in a photonic
crystal fiber. Non-linear effects in this fiber broaden the spectrum envelope. The

spectral range then ideally spans from about 530 nm to 900 nm.

The other amplifier uses a highly nonlinear fiber to shift the center frequency of
the comb spectrum, and provides a high-power (3 mW in 3 nm) fiber-coupled output
at 1064 nm.

We benefit from a reference signal sent from the SYRTE! department at Observa-
toire de Paris via a 3-km-long optical fiber link. This 100-MHz signal, referenced to a
cesium clock at SYRTE, is used in our laboratory to lock a 10-MHz quartz resonator

that serves as an external reference for our frequency counters, synthesizers. . .

The repetition rate frep, is simply the beat note between two adjacent modes and
can be easily obtained using a fast-response photodiode. In order to determine the
CEO frequency fo, our comb uses an interferometric f — 2f self-referencing scheme.
A non-linear fiber is used to broaden the spectrum so that it spans more than one
octave (modes f,, and fa, are contained in the spectrum). The lower-frequency end of
the spectrum is then frequency-doubled (2f,, = 2(n frep £ fo)) to make a beat note
with the upper end f2, = 2nfrep £ fo. The frequency of this beat note is equal to fj.

The repetition rate and the CEO frequency are both stabilized and referenced to
the SYRTE signal.

e The CEO frequency (fp = 20 MHz) is controlled by acting on the pump diode
power. It is directly locked to the frequency-doubled reference signal.

e The repetition rate (frop ~ 250.1 MHz) can be modified via the laser cavity
length. The fourth harmonic of the repetition rate, down-mixed with a 980-
MHz signal, is locked to a signal of about 20.4 MHz provided by a frequency
synthesizer referenced to the SYRTE signal. We can thus tune the repetition
rate by modifying the frequency of this synthesizer.

Contrary to some other laboratories using this frequency comb model, we use the
electronic stabilization system provided by MenloSystems. This may be improved in

the next few years to have a better stabilization.

1Systémes de Référence Temps-Espace
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2.3.3 The frequency beat notes

An overview of the optical setup used to realize the beat notes is shown in Fig. 2.8.
In the following I describe each beat in turn. We measure the frequency of all beat

notes using Racal-Dana 1998 frequency counters.

Rb-stabilized standard laser

It is not necessary to know the frequency of this laser for our 1.5 — 35 measurement,
but its stable and well-known frequency makes it a good choice as a control of the
femtosecond comb operation. The beat note is realized in an optical fiber coupler,
with the spectrum-broadened 780-nm output of the frequency comb, narrowed by a
very selective band-pass filter whose orientation is adjusted using the Rb standard

laser.

The standard laser frequency, averaged over one day of recording (about 14500

1-second points), is given below with the corresponding standard deviation,
frp = 385285 142370.5 + 0.5 kHz. (2.3)

It differs by a few kHz from previously published values [TOUAHRI1997] because the
light shift is no longer carefully controlled.

Ti:Sa laser

This beat is realized in open space using a 50/50 beamsplitter to combine the cw and
pulsed beams. The combined beams are then diffracted by a grating to “select” the
proper mode of the comb. The beat is made using the direct Ti:Sa laser beam, whose
frequency depends on the value of faon. In order to count a fix frequency, we mix
the RF beat signal with 2 x faom. From this measurement, we can then extract the

frequency f%f’slz of the FPR resonance onto which the Ti:Sa laser frequency is locked.

In order to make sure that the frequency is measured in a reliable way, we split
the RF signal and measure it simultaneously in two different manners: directly and by
using a tracking oscillator, made of a voltage-controlled oscillator (VCO) phase-locked

on the beat signal, and measuring the frequency of this oscillator.

Over a typical day, the mean and standard deviation of this measurement is

fAPR — 334797896 031.2 + 1.6 kHz. (2.4)
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Figure 2.8: Optical system for beat note realization.
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Verdi laser

During the Ph.D. work of Sandrine Galtier, one of the limitations of the experiment was
the “green” frequency measurement. The frequency of the Verdi laser was measured
in the same manner as the reference laser frequency, selecting the green part of the
comb spectrum with a 532-nm interference filter and injecting it into a fiber coupler
along with the cw beam. However, the beat note obtained in this way was inexplicably
broad, and also rather weak (about 20 dB in 1 MHz at the most). Hence, it was
difficult to measure its frequency reliably, as our tracking was not able to lock on the
broad signal.

We made several attempts to improve the quality of the 532-nm beat note, but to
no avail. This beat signal was weak because it was hard to produce enough comb light
at 532 nm using the spectrum-broadening photonic crystal fiber (PCF). The same
device had to be used simultaneously to produce 894-nm light. To tune the spectrum
envelope of the PCF output, the only adjustable parameters are the comb light power
and polarization. Since the 532-nm and 894-nm wavelengths are on opposite ends of
this spectrum, it is hard to produce both efficiently at the same time. Besides, 532 nm
is close to the lowest wavelength that can be reached by this device.

Since it appeared impossible to improve the magnitude of the beat signal, we
explored ways of reducing its spectral width. Indeed, it seems that the “green” part
of the comb spectrum presents an inherent frequency noise.

We bought a new module allowing to lock the repetition rate directly to a stable
1.55-um signal, via an electro-optic modulator placed inside the femtosecond laser
cavity. This “optical lock” should be more stable and less noisy than the usual “RF
lock” (using a frequency synthesizer at 20 MHz). However, after various breakdowns
and repairs, we realized that the optical lock of the repetition rate indeed improved
the width of the Ti:Sa beat note a little, but had no effect on the green beat note!

We also tried unsuccessfully to obtain 532-nm light from the residual third har-
monic produced by the 780-nm doubling amplifier.

As a last resort, we finally settled on a setup which requires the use of an additional
“transfer” laser. This cw Nd:YAG laser (Prometheus from Innolight, on loan from Ouali
Acef at SYRTE) has two outputs: one output at 1064 nm and another, frequency-
doubled output at 532 nm. It has the advantage of having a naturally narrow spectral
linewidth of about 1 kHz.

Using this laser, we can make two beat notes. On one hand, we measure the beat
note between the 532-nm output of the transfer laser and our own Verdi laser. On the
other hand, we also make a beat between the 1064-nm output and the fs comb. By

recording simultaneously the frequency of the two beat notes, it is possible to measure
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Figure 2.9: Optical setup of the 1064/532-nm transfer laser.

the frequency of our green laser, as can be seen in the following equations,

25t = 2fi064 — fve, (2.5)
et = mao6a frep + fo — fro64, (2.6)

therefore
Fve =2 (naosafrep + fo — fioes) — fass". (2.7)

At first, to check that this solution was feasible, we tried to obtain 1064-nm light
from the 780-nm output of the frequency comb using a different spectrum-broadening
photonic crystal fiber. We made a beat note between the tiny amount of 1064-nm
light we managed to produce and the transfer laser, and were happy to see that this
beat note was much narrower than the green beat note! We therefore decided to buy

the high power 1064-nm amplifier for this purpose.

Figure 2.9 shows the optical setup of the transfer laser. In a first time, we stabilized
its frequency on a 532-nm transition of molecular iodine by a saturated absorption
scheme. To do this, I built a setup including a double-pass in an iodine cell (also on
loan from SYRTE). However, we later modified this scheme so as to lock the frequency
on a resonance of a zerodur Fabry-Perot (FPE) cavity instead. This cavity is very
similar to the reference Fabry-Perot (FPR) described in section 2.2.2, except for the
fact that its length is not tunable. Because of temperature changes, the frequency of
the FPE resonance used in the locking process drifts slowly over a few MHz, but the

exact frequency of this laser does not matter for its current purpose.
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Figure 2.10: Screen shot of the beat note between the two 532-nm lasers (Span 2 MHz,
RBW 10 kHz, VBW 10 kHz, no average).

The 532-nm beat note is realized in an optical fiber coupler. Since it involves
only narrow cw lasers of reasonable power, this beat is strong and easy to measure.
Also, as the transfer laser has a narrower spectral width than the Verdi laser, the beat

shows the RF sidebands due to the locking process of the Verdi laser (see Fig. 2.10).

At the beginning of my Ph.D., the observed 15 — 35 signals were inexplicably
broadened. Using this transfer laser, we saw that the 532-nm beat signal was also
broad, indicating that the broadening was due to the spectral width of the Verdi laser.
We then investigated and discovered that the piezo-mounted mirror of the FPAvy¢ was
not well glued and tended to wobble a little, inducing a jitter of the Verdi frequency.
After repairing the FPAy¢ and adjusting the gains of the servo-loop, both the 532-nm

beat note and the 1.5 — 35 signal recovered a smaller spectral width.

The 1064-nm beat is also done in a fiber coupler, the output of which is diffracted
by a grating to select the wavelength. We additionally mix the beat signal with the
CEO beat signal from the fs comb to reduce the noise due to the CEO.

Finally, the frequency of the Verdi laser averaged over one day of recording is

fve = 563286978 532.2 + 5.6 kHz. (2.8)
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Figure 2.11: General view of the excitation and detection zone.
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2.4 Excitation and detection

3S
Figure 2.11 presents a general view of the excitation and i \ 656 nm
detection zone. The frequency-stabilized 205-nm laser beam lf
is injected in a power build-up cavity where it excites the S °p
1S hydrogen atoms. The subsequent Balmer-« fluorescence A
at 656 nm, due to the 35 — 2P decay as shown on the level g
diagram at right, is detected by a photomultiplier. §

1S

2.4.1 The atomic beam

The hydrogen atoms are produced by a 25-MHz, 40-W radio-frequency discharge in a
dihydrogen gas. The highly excited atoms decay rapidly to the ground state and are
led to the main vacuum chamber through a Teflon nozzle. The discharge takes place
in a pyrex tube that is cooled by circulating water at 14 °C. As shown in Fig. 2.12,
the edges of this tube have to be rounded so that the Teflon nozzle fits snugly onto it.

Figure 2.12: Lucile Julien heats the end of the pyrex discharge tube to give the edge
a more rounded shape.

We use a Teflon nozzle in order to avoid recombination [HAGEL2001]. This nozzle
makes a right-angle turn to make the atomic beam collinear with the build-up cavity.
The vacuum chamber is pumped by an oil diffusion pump which is itself pumped
by a primary rotary vane pump. A liquid-nitrogen cold trap prevents the oil vapor
from reaching the cavity. The oil pump allows to pump hydrogen efficiently while

avoiding vibrations which would perturb the lock of the build-up cavity.
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The pressure in the vacuum chamber is measured using a Bayard-Alpert ionization
gauge, placed on the side of the chamber near the interaction zone. In the absence of

hydrogen atoms, we reach a ultimate vacuum of 2 x 10~ mbar.

Cooling the atoms

The second-order Doppler frequency shift is proportional to the square of the atomic
velocity, the average of which is proportional to the temperature. Thus, cooling
the hydrogen atoms from room temperature (~ 290 K) down to liquid nitrogen

temperature (77 K) would reduce the second-order Doppler shift by a factor of 4.

Figure 2.13: Schematic view of the cooling system and power build-up cavity.

We decided to cool the atoms by thermalization with a liquid-nitrogen-cooled
nozzle. In the final months of my Ph.D., I installed with Simon Thomas (the following
Ph.D. student) the cooling system, a schematic drawing of which is shown in Fig. 2.13.
At the time of this writing, the cold nozzle is in place, and after vacuum tests, we have
been able to observe the transition for the first time with cooled atoms (see Fig. 4.8

at the very end of this manuscript).

The surface reactions of hydrogen on the nozzle depend on the temperature. Near
77 K, the material that best avoids recombination is no longer Teflon but aluminum,
thanks to the formation of a protective oxide layer [WALRAVEN1982]. We also plan to
test a copper nozzle, which according to the same reference works best at even lower

temperatures.

All the frequency measurements described in the present manuscript were done at

room temperature.
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2.4.2 The power build-up cavity

The 205-nm excitation laser beam is vertically polarized and enters the vacuum
chamber through a silica Brewster window. The two spherical mirrors forming the
power build-up cavity have a curvature radius of 25 cm, and are placed 49.3 cm apart,

in a quasi-concentric configuration.

The waist wq of this Fabry-Perot resonator, which is the beam radius at the center

of the cavity, is defined by
A

5o\ d(2R. — d), (2.9)

ut =

where )\ is the wavelength of the light, d the distance between the two mirrors and R,

their radius of curvature [KOGELNIK1966]. In our case, the waist is about 44 pm.

The transmission of the cavity is monitored using a photodiode. The signal from
this photodiode is fed into a lock-in amplifier which provides a feedback loop to
maintain the cavity on resonance with the laser beam: the error signal is amplified to

drive the piezo-mounted input mirror.

This lock is not very stable, partly because it is very sensitive to vibrations. It also
drifts with temperature. Indeed when we fill the liquid-nitrogen trap of the diffusion
pump in the morning, the temperature of the whole structure slowly lowers and the
cavity contracts. This induces a large drift on the cavity stabilization, which must
then be manually corrected. I also devised a semi-automatic re-locking feature that
allows to re-lock the cavity by applying an additional, remotely-controlled voltage
offset on the piezo-mounted mirror. During the day, the drift slows, stabilizes then
reverses as the structure heats up again. Therefore, there are usually a few hours in
the afternoon when the cavity is more stable. To corroborate the link between cavity
length and temperature drifts, we placed thermistors on the metallic structure of

the cavity. They indeed indicated temperature changes of more than 1 °C over one day.

The surtension coefficient S, defined as the ratio of the light intensity inside the

cavity to the incident intensity, can be expressed theoretically as

T
(1 - VRiRy)?’

where 77 is the transmission coefficient of the input mirror and R; and Ry are the

S = (2.10)

reflection coefficients of the input and output mirrors.

Plugging into this equation the specified transmission and reflection coefficients
of our mirrors, we obtain a theoretical surtension coefficient of about 40. However,

the actual surtension coefficient is lower, because of the degradation of the mirrors
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Figure 2.14: View of the fluorescein tube and photodiode placed at the output of the
build-up cavity.

due to the UV light. In practice, it is quite hard to estimate accurately the actual
intra-cavity power. Knowing this power is crucial for the light shift analysis.

In an attempt to improve the transmitted power measurement, we modified the
photodiode, taking advantage of fluorescence properties of fluorescein. This red powder,
diluted in water, emits green light when illuminated with UV. Placing a photodiode on
the side of a small glass tube containing the fluorescein solution avoids the photodiode
deterioration due to UV light that had been noted previously. Figure 2.14 shows a
picture of the photodiode placed at the output of the build-up cavity. It allowed us to
improve the magnitude of the signal used for locking, but day-to-day reproducibility
is not so good and measuring the absolute transmitted power remains a difficult task.

We placed a silica plate at the output of the cavity to be able to measure directly
the transmitted power with a power meter while maintaining the cavity at resonance.
In principle, from this measurement, knowing the reflection coefficient of the plate and
the transmission coeflicient of the output mirror, we can derive the actual intra-cavity
power. However, it is difficult to measure the exact transmission of the output mirror,
because the UV light degrades the mirror coatings. In fact, when using a brand new
mirror, the transmitted power decreases very rapidly over the first few days, then more

slowly. And the impact point of the UV beam is clearly visible on “used” mirrors. . .

2.4.3 3S—2P fluorescence detection

The Balmer-« photons at 656 nm, resulting from the decay of the excited atoms to
the 2P level, are collected by an imaging system as shown on Fig. 2.11, and detected
by a photomultiplier (R943-02 model from Hamamatsu).

A first condenser guides the photons towards an interference filter at 656 nm.
They are then focused by another condenser onto a slit, to reduce stray light. A
third condenser images this slit, which is placed parallel to the atomic beam, on

the photocathode of the photomultiplier. Furthermore, a spherical metallic mirror
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situated below the cavity redirects photons emitted downwards, thus increasing the
total opening angle of the detection system. Since the 656-nm interference filter has an
acceptance angle of 11°, the detection region is a 12-mm-long segment of the atomic
beam, at the center of the build-up cavity. A close-up view of the detection region

will be given later (Fig. 3.5 in Chapter 3).

In order to count the number of fluorescence photons, the signal from the pho-
tomultiplier is filtered by a discriminator. This device compares the voltage of the
photomultiplier signal to a threshold value, and emits a square voltage pulse of fixed
height and duration if the signal is above the threshold. These pulses are recorded

using a Racal-Dana 1992 universal counter.

2.5 Magnetic field production

In order to estimate the atomic velocity distribution and thus the second order Doppler
shift, we apply a vertical magnetic field in the excitation region, following the method

described in Chapter 1.

2.5.1 The Helmholtz coils

This magnetic field is produced by two coils, placed in Helmholtz configuration on
either side of the detection region [HAGEL2001]. The coils, of mean diameter 34.2 cm,
are placed 11.6 cm apart. Each coil is formed of 23 turns of copper tube in which
circulates a DC current on the order of a hundred amperes. To prevent overheating,
closed-circuit cooling water flows inside the copper tubes.

In order to compensate the terrestrial magnetic field, smaller compensation coils

are placed in the other two directions.

2.5.2 Calibration of the magnetic field

In order to calibrate the magnetic field created by the Helmholtz coil, we perform the
spectroscopy of the 151 5(F = 1,mp = 0) — 351 5(F = 1,mp = 0) transition. In
fact, because the Zeeman shifting of these two sub-levels is different, this particular
transition is much shifted by the magnetic field. Figure 2.15 shows the theoretical
variation of the frequency of this transition as a function of the magnetic field applied
to the atoms.

This displacement is on the order of 1 MHz/G, for a magnetic field of a few
hundred gauss. To calibrate the magnetic field, we change the frequency of the Ti:Sa
laser (by modifying faom, see section 2.2.3) so as to aim at the expected position of

the 15,3 — 351 2(F = 1,mp = 0) transition, for several values of the electric current
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Figure 2.15: Theoretical frequency shift of the 15/, — 35i,2(F = 1,mp = 0)
transition as a function of magnetic field. This curve is used to convert the measured
mp = 0 frequency points into magnetic field values.
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Figure 2.16: Magnetic field as a function of the electric current flowing in the Helmholtz
coil. The experimental values (blue points), deduced from measurements of the
1Sy/2 = 351 /2(F = 1,mp = 0) transition frequency using the curve of Fig. 2.15, are
fitted by a linear model.
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delivered by the power supply of the Helmholtz coils. Using the protocol described in
detail in section 2.6, we measure the apparent frequency of this transition. From this
observation, we can then deduce the value of the magnetic field using the curve of
Fig. 2.15. As an example, for a current of 131 A, the position of the transition was
shifted by 193.48 MHz, corresponding to a magnetic field of 190.3 G. The obtained
data are shown in Fig. 2.16. A linear fit of this experimental data gives, with B in
gauss and [ in amperes,

B(I) =1.455 x I —0.299. (2.11)

The mp = 0 frequency points we have measured have an uncertainty of about
10 kHz, yielding a measure of the magnetic field with a 10 mG uncertainty. However,
the display of the power supply of the coils only has a 100 mA precision. Because
of this, the actual magnetic field is only known in practice with a precision of about
100 mG.

2.6 Data acquisition and signals

2.6.1 Data acquisition

The data recording process is controlled by a computer program written in Python
language. During a recording (colloquially called “run”), the frequency of the Ti:Sa
laser is scanned using the acousto-optic modulator (faonm). A run is composed of 10
“scans”, each of which contains N frequency points.

These frequency points, which are placed 40 kHz apart in units of the AOM
frequency, follow a predefined back-and-forth sequence that has been optimized to
avoid any unexpected drifts. We defined sequences for N = 31, 51 or 71 points,
corresponding to a total scan width of 1.2, 2.0 or 2.8 MHz. This scan width is also in
faowm units, and should be multiplied by 4 to get the atomic frequency scan width.
Every other scan, the sequence is followed in reverse order so as to avoid slow drifts.
The 31-point sequence is the following:
[1;7;13;19;25;31;26;20;14;8;2;6;12;18;24;30;27;21;15;9;3;
5;11;17;23;29;28;22;16; 10 ; 4].

We recorded signals using the different scan widths. During her Ph.D., Sandrine
Galtier always used a 1.2-MHz scan width. We initially defined the 2.8-MHz-wide
sequence when the signal was unexpectedly broadened because of a bad stabilization of
the 532-nm laser. When this problem was solved, we used the 2.0-MHz-wide sequence,
which allows a better determination of the wings of the line profile. However, a run
using this sequence lasts 10 minutes, as compared to 6 minutes using a 1.2-MHz scan

width. It is thus rather time-consuming, so we decided to check whether the scan
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width change had any effect on the determination of the central frequency. Having
analyzed the 51-point signals, we removed the outer 20 points to simulate a 31-point
sequence and re-analyzed the runs. The change in the average central frequency was
less than 0.2 kHz. Therefore, we decided to use the 1.2-MHz-wide sequence for the
remaining recording sessions.

For each frequency point, the computer records:

e the number of photons collected by the photomultiplier during one second;

the frequency faowm of the signal applied to the AOM of the Ti:Sa laser;

the frequencies of the various beat notes;

the light power transmitted by the UV build-up cavity;

the voltage delivered to the piezo-actuated input mirror of this cavity.
We also record manually other parameters, such as:

e the light power at the entrance of the cavity, between runs;

e the current applied to the Helmholtz coils, from which we can deduce the
magnetic field using eq. (2.11);

e and the pressure inside the vacuum cavity.

2.6.2 Observed signals

Using the experimental protocol described above, we are able to observe the 15 — 35
transition, both in hydrogen and in deuterium. However, only the hydrogen, F' =1
transition was systematically studied during my Ph.D., varying the magnetic field

applied to the atoms as well as the pressure in the cavity.

Hydrogen

Figure 2.17 shows the number of photons collected per second as a function of the
frequency faowm of the AOM used to tune the Ti:Sa frequency. It is the mean of 47
runs recorded on the same day. The signal has been fitted here by a simple Lorentzian

function,

Sy

fror(4, B, T, zo;2) = A+ (2.12)

The parameters are in the case of Fig. 2.17: A = 212 counts/s, B = 272 counts/s,
I' = 338 kHz and z¢p = 192.4 MHz.

Note that the linewidth T', given above in units of the AOM frequency, corresponds
to an atomic transition linewidth of about 1.35 MHz (as compared to the natural
linewidth of 1.0 MHz). The different causes of broadening will be explored in Chapter 3.

We observe a large background of a few hundred to a thousand fluorescence counts

per second. This background is strongly dependent on the 205-nm light power, and
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Figure 2.17: Hydrogen 15 — 35 signal. This is the mean over one day of recording
using the 1.2-MHz (31 points) scan width, corresponding to an integration time of 4
hours. No magnetic field was applied to the atoms apart from the residual offset of
—0.3 G, and the pressure was 2.7 x 107° mbar. Red points are experimental data, the
blue line is a Lorenztian fit.

also on the power build-up cavity alignment. It is probably due to laser-induced

fluorescence or photoelectric effects.

Deuterium

As explained in section 2.2.3, it is rather straightforward to modify the frequency
of our laser source so as to reach the 15 — 35, F = 1/2 and F = 3/2 transitions of
deuterium. I have been able to record signals of both transitions, as shown in Fig 2.18.
At the time they were recorded, the frequency comb was under repair, so we were not

able to measure the absolute frequency of these transitions.
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Figure 2.18: Deuterium 15 — 35 signals. Each signal is the mean over one day of
recording, corresponding to an integration time of around 3h for F' = 1/2 (upper
graph), and 2h15 for F' = 3/2 (lower graph). They were recorded using the 51-point
scan width (faom scanned over 2 MHz). As in Fig. 2.17, the signals were fitted by
Lorenztian functions (in blue).
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Conclusion

In this chapter, I have presented the different parts of our experimental setup. The
205-nm excitation laser source built by S. Galtier is still very efficient, and the frequency
measurement of our 532-nm laser has been improved. A point that remains difficult is
the measurement of the excitation light intensity seen by the hydrogen atoms.

We have recently started building the cooling system that will enable us to perform
the 1.5 — 35 spectroscopy on a colder, and slower, atomic beam in the coming months.
I was also able to record the first observation of the 15 — 35 transition in deuterium
since 1989 [VERKERK1989).

However, the present work is focused on an absolute frequency measurement of the
15 — 3S(F = 1) transition in hydrogen at room-temperature. I recorded many signals
of this transition while varying parameters such as the pressure, the light intensity
and the magnetic field, in order to characterize the various systematic effects that will

be the subject of the next chapter.
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Chapter 3

Systematic effects

The experimental signals presented in the last part of Chapter 2 are fitted using a
theoretical line profile, which includes the second-order Doppler shift as well as the
Zeeman and Stark shifts due to the magnetic field. Additional shifting effects should
be evaluated and taken into account in the data analysis. In this chapter, I will present
them theoretically, as well as broadening effects. The last part of the present chapter
is devoted to the theoretical estimation of the cross-damping shifting effect, that is

found to be small in our experiment.

3.1 The theoretical line profile

The theoretical fluorescence signal is calculated using a density matrix formalism, for
given values of the magnetic field and atomic velocity. This calculation has been well
described in [HAGEL2001, ARNOULT2010] and is presented in part 3.1.1.

The fluorescence, calculated for discrete values of the excitation frequency, is then
integrated over the atomic velocity distribution. The models we have considered for
this distribution will be detailed in part 3.1.2. Finally, I will explain how the full
fitting function is created.

The entire line profile calculation is realized by a computer program written in

the Python language.

3.1.1 Fluorescence calculation

In a first step, we calculate the SSFEI — 2Py fluorescence following the two-photon
excitation, as a function of the frequency detuning, for fixed values of the atomic
velocity and magnetic field. Because the Stark effect couples the 35 /5 level to the
3Py levels, the fluorescence from the 3P, levels to the 25 /5 also contributes to the
observed signal. The magnetic field B is along the vertical z axis, which is chosen as

the quantization axis. The polarization of the excitation laser is also along the z axis.

49
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The evolution of the density matrix p follows the equation

dp 1 dp
—=—[(H+Hp,+H — . .1
q i [( + Hp + Sta/rk)ap} + { dt }s.e. (3 )
The term {%} describes the relaxation due to spontaneous emission, and is of the

S.e.
form
dpi; } i+ Ty

=— i 3.2
i) 2 32

where I'; /27 is the natural width of level i. Hy, describes the laser-atom interaction
and Hgygrp is the perturbation due to the motional electric field. H is the hamiltonian

of a static hydrogen atom placed in a constant magnetic field and can be written as

H = Hy + ths + Hzeeman + Haiam- (33)

e Hj is the unperturbed hamiltonian, which includes the fine structure. It has a
diagonal form when written in the |L, (S, I,)J, m s, m) basis, where its eigenvalues

are the energy levels F, 1y defined in Chapter 1.

e The hyperfine structure hamiltonian Hj, s describes the coupling between the
angular momentum J = L + S and the proton spin I. It is of the form [BETHE1957,
COHEN-TANNOUDJI1973]

Mo UBUNGN [8T 3 gs (3 2
(3.4)
where up is the Bohr magneton, py the nuclear magneton, gg and gy the Landé

factors of the electron and proton.

Making the approximation gg ~ 2, the matrix elements of this hamiltonian in the

|L,(S,1,)J, F,mp) basis can be written as [JULIEN1974]

3 2 1—8,
U Hp |0 = — A UI-J) +
(W[ Hygs| V') 32 J(J+1)(L+%)< - 31w L(L+1)(L+13)

<‘I’\I-L!‘If’>] ,
(3.5)
For the levels considered here, the constant A is equal to the 35 hyperfine splitting
AFyrs (35, /2), whose numerical value has been discussed in Chapter 1, part 1.1.3.
For L = 0 levels, only the first term of eq. (3.5) is non-zero. For L = 1, a coupling

term appears between terms of same m and different J.

® Hyeeman corresponds to the Zeeman interaction of the magnetic moment of
the atom with the vertical magnetic field B. As this hamiltonian is diagonal in the

|L, (S,I,)mg, mr,my) basis, it couples levels of same mp but different F, and is
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expressed as!

m m
HZeeman = /LBB [QSSZ + (1 - e) LZ - egNIZ] . (36)
my, my

To this hamiltonian should be added the diamagnetic correction, due to the
interaction between the magnetic moment induced by the magnetic field and the field

itself. It can be written as
¢ BQTi

3.7
— (37)

Hdiam =

where r is the projection of the position operator r on the plane perpendicular to

the z quantization axis.

® Hgiqrri is the perturbation due to the motional Stark effect, defined as
H.S'tark = qE T, (38)

with E = v x B. This hamiltonian couples states of opposite parity (AL = £1). It
has a simple form when written in the |L, (S, 1,)J,m s, mr) basis, where it couples
levels of same m; with Amj; = 1. This last condition is due to the fact that the

electric field is perpendicular to the quantization axis.

In the Python program that performs the calculation, we define each hamiltonian
in the most convenient basis, then diagonalize the static hamiltonian H, yielding a
specific, “coupled” basis for each value of the magnetic field. Finally, we convert the

Stark perturbation to this new basis, in which the rest of the calculation is done.

e Hj is the hamiltonian of laser-atom interaction. Making the usual rotating wave

approximation, we can define its matrix element as
hQ
(el Hilg) = == exp(=2iwt), (3.9)
where g and e denote the ground (15) and excited (3S5) states, w/27 is the laser
frequency and 2. the two-photon Rabi pulsation

8mag Qeg I

Qe 5
mceao

(3.10)

Here @)y is the matrix element of the two-photon excitation operator. For a laser

! As noted in Chapter 1 (eq. (1.31)), the Landé factor of the electron gs depends on the considered
level.
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polarization along the z axis, it is defined as

Z(@!Z!T><7’IZ|9>

W — Wrg

Qeg = (3.11)

T

As explained in [ARNOULT2010], the rest of the calculation is done in the ro-
tating frame, replacing the density matrix by the operator o defined as o4y = pgyq,
Teg = Peg €xp(2iwt) and oge = pge exp(—2iwt). We assume that the transition is not
saturated, in other words the atoms decay much more rapidly than they are excited
(Qe < T.). In practice, this condition is indeed fulfilled, as will be explained in part
3.3.1. The populations of the excited states are thus much lower than that of the
ground state, and we can neglect them in a first step for the purpose of deriving the
following equations, where the indices g, e and f correspond respectively to the 157 /5,

3512 and 3P states,

dogg )

— _*Qe eqg — e)s A2
at 5 (0eg — 0ge) (3.12)
doe . I, Q. 7
dtg = <ZA€ - 2> O'eg — Z?O'gg - ﬁ ; ‘/;fafg, (313)
doy ) Iy 1
dtg — (mf — 2) o5~ F Zf: VieOegs (3.14)

with Voy = (e|Hgtark|f) and Ac p = 2w — (we,f — wy). We assume that o4 and oy
follow adiabatically the population of the ground state, that is, do;,/dt = 0 fori = e, f.
From the above set of equations, we can obtain the evolution of the population of
the ground state and the transition probability, as well as an expression of o4 as a

function of ogy.

From eq. (3.1) one can also derive the following set of equations

do., . .
o = _Feaee + EQe((feg - Uge) - EE (‘/efafe - Uefvfe)a (315)
dt 2 h 7

dore I'e+T . ] ]

Z{ = _%Ufe —i(wf —we)ofe + %Qegfg - %er(gee —oyg), (3.16)

do 7

7d£f = —Ffaff — ﬁ(erO'ef - O'feVef). (317)

Given the fact that the transition probability is very small compared to the natural
width of the 3S level, we can assume a stationary regime, that is, do;;/dt = 0 for
i,i' = e or f. This allows to solve eqs. (3.14-16) in order to calculate the populations

0ee and oy of all excited states, as detailed in [ARNOULT2010].

The second-order Doppler shift is included at this point by multiplying the laser
frequency by (1 + v?/2¢?).
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The fluorescence due to the excitation of a particular 357 /5 (F =1, mp) sublevel is

F(mp;w,B,v) =Teoee + Z'yfffoff, (3.18)
f
where o, is the population of this mp sublevel, f denotes all 3Py levels that are
mixed with the 35/, level by the Stark effect, and vy = 0.11834 is the branching
ratio of the 3P — 25 decay.

Finally, we sum over mr = 0,+£1 to calculate the total fluorescence

Fyot(w, B,v) =Y F(mp;w, B,v). (3.19)
mp
Note that the mp = 0 sublevel only contributes to the signal for B ~ 0, as
explained in Chapter 1.

3.1.2 The velocity distribution

The velocity distribution of atoms in a volume of gas follows a Maxwellian distribution
2

Far(v) < v?exp [ — o5 | . (3.20)
202

with o = \/kgT/m, where kp is the Boltzmann constant, T’ the temperature and
m the atomic mass. In the case of an effusive atomic beam, the above distribution
should be multiplied by a factor of v, since the probability of an atom emerging from
the source is proportional to its velocity [RAMSEY1956].

In order to determine the experimental value of o, we can analyze the data using
line profiles that are integrated over given velocity distributions. The value of o which
allows to fit the data with the smallest uncertainty would then be retained as the
optimal value.

However, the actual velocity distribution of our hydrogen atoms is more complicated.
During the Ph.D. of Sandrine Galtier, several velocity distributions were tested. As a
first step, the group explored the possibility of varying the exponent N of the following

Maxwellian-type distribution,

2
N v
e — 1, 3.21
f(w) oc v xp< 202> (321)
with N = 3 for an effusive beam. The line profile integrated over this distribution
fitted the experimental data better with N greater than 3.
Such a distribution, with an exponent IN > 3, presents a depletion of slow atoms as

compared to an effusive beam. This depletion could in part be explained by collisions
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occurring within the nozzle. Such collisions would induce a velocity dependence of the
mean free path of the atoms, reducing the number of slow atoms in the beam resulting
from the nozzle or channel. Following an argument developed in [OLANDER1970], we
can calculate the Knudsen number Kn = A\./L, where \. is the mean free path in the
reservoir and L is the channel length. If this number is small, the mean free path
inside the channel has a large velocity dependence which can give rise to depletion
effects. In our case, with a pressure of 0.3 Torr inside the discharge tube and a channel

length of 3 cm, the Knudsen number is estimated at about 0.01.

According to [OLANDER1970], the velocity distribution of the effusive beam should

then be multiplied by a perturbation function

P[¥(z) f\/erf 2(/2/?{};“], (3.22)

where ¥(z) is defined as

zex —Z2 ™ Z2 eri(z
w(z) = 20 )+(%2(1+2 Jerl®), (3.23)

with z = v/v/20.

Furthermore, to describe an additional depletion due to collisions along the atomic
beam, between the nozzle and the laser excitation, with the residual background gas, we
multiply the distribution by another factor exp(—wg/v) [GALTIER2014a, VIGUE2014].
During the Ph.D. of Sandrine Galtier, there was a serious doubt about a possible
pressure dependence of the vy coefficient, which had a great incidence on the transition
frequency. This dependence is directly investigated in this work (see Chapter 4). In

fact, the velocity distribution does not seem to depend significantly on the pressure.

Finally, the velocity distribution model used in the line profile calculation is
f(v,0,v9) xv fu(v,0) P[¥(z),Kn] exp(—vo/v). (3.24)

This distribution depends on two parameters, o and vg. As explained in Sandrine
Galtier’s manuscript, it is somehow equivalent to use the above distribution or the
one with a varying N exponent. Two adjustable parameters (o and either N or vg)

are needed to correctly describe the velocity distribution.

When integrating the fluorescence over this distribution, two other coefficients
have to be included. First, one should multiply the distribution by 1/v because slow
atoms have a higher transition probability due to a greater interaction time with the

laser.
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Additionally, the model is multiplied by another coefficient g(v) which describes
a geometric effect due to the inhomogeneous light intensity seen by the atoms
[ARNOULT2006]. This correction is based on the fact that the light intensity the
atoms experience when the excitation takes place is linked to the atomic velocity.
Indeed, atoms are detected at the waist of the Gaussian beam, but the point at which
they have been excited depends on their velocity. However, this does not have any
significant effect on the line profile, as it modifies the center frequency of only a few Hz.

It is nevertheless included in the calculation.

We can now integrate the fluorescence over the velocity distribution to obtain the

line profile

+oo 1

R(w, B, o, v) :/ - g(v) f(v,0,v9) Fior(w, B,v) dv. (3.25)

0

3.1.3 The complete fitting function

We calculate in this manner several profiles R(w, B, 0, vg) corresponding to different
values of the magnetic field B and/or different velocity distribution parameters o
and vg. Each profile, calculated for discrete frequency values, is converted into a
continuous function Sp 4.4, () of the atomic frequency detuning v by means of a spline

interpolation.

Moreover, the profile is convoluted with a Lorentzian function of width I' to
simulate broadening effects (see part 3.3), and amplitude and offset parameters are

added to create the final fitting function,

FBow,(Ve, I, A, Civ) = A X (SBowy * fror) (¥ — e, I) + C, (3.26)

where the convolution is defined as
(SBowg * fro) (1 T) = / S5 000 (@) fron(v — 2,T) dz. (3.27)

This function will be used in the next chapter to analyze the experimental data.

For each signal, we perform a fit with four parameters (v, I", A, C).

Here, the parameter 1, is not the apparent transition frequency, but is automatically
corrected from the Doppler, Zeeman and Stark effects which are already taken into
account in the line profile. In the absence of any other systematic effect, it would

correspond to the frequency of the unperturbed transition.

However, let us now take a look at the different systematic effects that are not

included in this theoretical profile and could shift or broaden the observed line shape.
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3.2 Shifting effects

Apart from the second-order Doppler shift, there are two main shifting effects in our
experiment, the light shift and the pressure shift, which both induce shifts in the kHz
range. The cross-damping effect, which is also a shifting effect but rather small in our

case, has been studied theoretically in greater detail and will be described in part 3.4.

3.2.1 Light shift

The light shift, also called ac Stark shift, is due to a coupling of the atomic states
with the excitation photons [COHEN-TANNOUDJI1962]. An electromagnetic field has
two effects on the energy levels: on resonance it induces transitions, off resonance (or
in the case of a two-photon transition, where each photon taken separately is far off
resonance) it creates shifts. The frequency shift of a given energy level nL is of the

form

Avge(nL) = Bae(nL) x I, (3.28)

where [ is the light intensity seen by the atoms and S, is a coeflicient tabulated for
hydrogen two-photon transitions in [HAAS2006].

The excitation takes place at the center of the cavity, where the waist of the
laser beam is wg = 44 um. Based on a surtension coefficient of 30, we can derive an
estimate of the light intensity inside the build-up cavity. For an incident power of
10 mW, assuming that only about 70% of the incident light is successfully coupled
in the cavity, the intra-cavity power P would be about 210 mW in each direction of
propagation.

The intensity on the axis of a Gaussian laser beam of power P and waist wyq is

2P
[ =5 ~69 MW/m®. (3.29)

Wy

The values of the coefficient (.. are given below,

Level  Bgc [Hz(W/m?)™1]
1S —3.02104 x 107°
35 9.80847 x 1075

The total shift of the 1.5 — 3.5 transition frequency would then be

Av = [Bac(35) — Bac(15)] x 21 ~ 17.7 kHz, (3.30)

where we have multiplied the intensity by two to take into account the two counter-

propagating beams.
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This was calculated for the maximal intensity at the center of a Gaussian light
beam. To take into account the light intensity distribution, we follow an argument
developed in [GIRARD1983] for atoms at rest in a Gaussian beam. The atoms situated
at the center of the beam experience a larger light shift and contribute more to the
signal. Assuming an infinitesimal linewidth, the line profile can be approximated by
a right triangle, with the highest point corresponding to the most shifted frequency.
An average value of the light shift can obtained from the barycenter of this triangle,
multiplying the result of eq. (3.30) by a factor of 2/3. This would give a light shift of
about 11.8 kHz.

It is thus important to quantify the light shift experimentally in order to correctly

take it into account in the data analysis. This will be done in Chapter 4.

3.2.2 Pressure shift

When an atom undergoes a collision with a perturbator (another atom, or a molecule
of the residual background gas), its internal state is perturbed. The induced dephasing
creates a pressure-dependent shift and broadening of the observed transition.

The sign of the pressure shift depends on the nature of the interaction potential:
if the interaction is attractive, the frequency shift will be negative [BIRABEN1974]. In
our experiment, it is crucial to determine the magnitude and sign of this shift, all the
more so because of the questions that remained unresolved at the end of Sandrine
Galtier’s Ph.D.

At the time, the pressure dependence of the velocity distribution parameter vg
had not yet been experimentally investigated.

Hence, the group first analyzed the data assuming that the velocity distribution
did not depend on pressure, obtaining a negative pressure shift. Then it was assumed
that vy depended linearly on the pressure. Surprisingly, using a pressure-dependent
velocity distribution changed the sign of the pressure shift!

In the present work, we have estimated the velocity distribution for each pressure
point. This has allowed us to determine the pressure shift with better confidence. The
results will be presented in the next chapter, here I simply wish to point out that the
pressure shift we observe is negative.

This sign is in agreement with a modelization performed by Arthur Matveev
[MATVEEV2017, Y0sT2016], in which collisions between the 35S hydrogen atoms and
either 15 atoms or Hs molecules were simulated using an attractive Van-der-Waals
potential. The pressure shift coefficient obtained from his model is on the order of
—130 kHz/Pa, or —13 MHz/mbar, the pressure being calculated from the atomic
concentration in the beam.

In our setup we can only measure the pressure in a relative way, so that the actual
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pressure inside the atomic beam is unknown. Therefore, we determine the pressure
shift experimentally by measuring the 15 — 35 frequency for several pressure values.
As will be seen in Chapter 4, the maximal pressure shift we have observed is about

—16 kHz. It indeed needs to be carefully studied.

3.3 Broadening effects

I will now turn to the different broadening effects that can play a role in our experiment.
As we have seen in Chapter 2, the width of the observed line shape is larger than the
natural linewidth of the 35 level. The aim of this section is to find an explanation to

this observed Lorentzian broadening.

3.3.1 Saturation broadening

If the excitation intensity is very high, the transition probability can become com-
parable to the natural linewidth; in this case, the transition is said to be broadened
by saturation. In order to estimate this broadening, we can compare the two-photon
Rabi pulsation to the natural linewidth of our transition.

The two-photon Rabi pulsation €2 is given in rad/s by
Q= 2(27Bge )1, (3.31)

where I is the laser intensity and fg. is another coefficient tabulated in [HAAS2006].
For the 1S — 35 transition, the value of this coefficient is B4 = 1.00333 x 107°
Hz(W/m?)~L. There is an additional factor of 2 in the definition of § to take into
account the two counter-propagating laser beams.

With a light intensity of I = 69 MW /m? as estimated in part 3.2.1, we find
/27 ~ 1.4 kHz; this value is very small compared to the 1-MHz natural linewidth of
the 3.5 level.

The saturation broadening is thus small in our experiment.

3.3.2 Transit-time broadening

Another cause of broadening is due to the finite transit time of the atoms through the

laser beam. This effect has been studied in detail by F. Biraben et al. [BIRABEN1979].

For a single atom of transverse velocity vy with respect to the laser beam axis, the

line profile becomes convoluted by a Gaussian function, giving rise to the broadening
2 V 21),5

I
Gy = YL (3.32)
W
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where wg = 44 um is the waist of the laser beam.

In practice, the atomic trajectories are constrained by diaphragms situated between
the nozzle and the detection region. The maximal angle allowed by these diaphragms
is @ ~ 0.6°. The transverse velocity of an atom along such a tilted trajectory can
be approximated by v sin 6, where v is the longitudinal velocity. Assuming a typical
velocity of 3 km/s for this order of magnitude calculation, we obtain a broadening
O ~ 380 kHz.

This transit-time effect could thus partly explain the observed broadening. A
more complete calculation of this effect would involve integrating over all possible
atomic trajectories as well as over the velocity distribution. This has not been done
yet because it is not necessary for our measurement, since there is no frequency shift

associated to this effect.

3.3.3 Collisional broadening

As mentioned earlier when discussing the pressure shift, collisions between atoms also
induce a broadening of the 1.5 — 3S transition.

Indeed, we have experimentally observed a broadening of the line at higher pressure.
Assuming a linear dependence of the broadening on the pressure, we estimate a
broadening coefficient of about 1 GHz/mbar. This would correspond to a broadening

of 30 kHz for a measured pressure of 3 x 10~° mbar.

3.3.4 Observed broadening

Going back to Fig. 2.17 in Chapter 2, the observed linewidth of the 15 — 35 transition,
at a pressure of 2.7 x 107° mbar, was about 1.35 MHz, as compared to the natural
linewidth of 1 MHz. This broadening can be explained in part by transit time
broadening. Pressure broadening could also play a role.

Moreover, another source of broadening is the spectral width of the Verdi laser.
Indeed, when the frequency of this laser was not well stabilized, the observed linewidth

of the transition increased to more than 2 MHz.

3.4 Cross-damping effect

A version of this section has been published in Phys. Rev. A under the title Cross-
damping effects in 15 —3S spectroscopy of hydrogen and deuterium [FLEURBAEY2017].

Another effect which has to be estimated in our experiment is the so-called cross-
damping effect, or quantum interference, which can occur when an optically induced

atomic transition is detected via the ensuing fluorescence [HORBATSCH2010]. It stems
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from the presence of neighboring, off-resonant states than can be coherently excited
along with the resonant transition, and whose decay is detected in a non-selective

manner.

Interference then takes place between different radiative paths sharing the same
initial and final states. The signal becomes the square modulus of a sum of amplitudes,

instead of being simply a sum of intensities, or, to write it in a mathematical form,

2

= ZyAiP + ZAiAJT“. (3.33)
i 1,7

i#j

Signal =

2 A

Hence, the observed line shape is not an incoherent sum of Lorentzian profiles
but rather a coherent sum, in which cross terms appear. These cross terms, having a
dispersion shape, induce an asymmetry of the line profile and a shift of the apparent
center frequency of the transitions, that are not taken into account in our current line
shape model. The shift of the transition frequency can be important if the off-resonant

transitions are close enough [BROWN2013].

Frequency shifts due to quantum interference have been estimated precisely for
several transitions in muonic hydrogen, deuterium and helium by P. Amaro et al.
[AMARO2015], and they have been found to be negligible. However, it is also necessary
to evaluate these shifts in the case of electronic hydrogen, especially for the 25 — 4P
[BEYER2017] and 1S5 — 3S transitions.

Besides our own experiment, the 1.5 — 35 transition of electronic hydrogen is also
studied by the group of T. W. Hénsch in Garching [Y0sT2016]. In both experiments,
the transition is detected through the Balmer-« fluorescence at 656 nm (35S — 2P).
The cross-damping effect is caused by the presence of the 3D levels, a few GHz away
from the 35 level, that can be off-resonantly excited and will also decay to the 2P
levels while emitting photons at 656 nm. In Garching, the hydrogen atoms are excited
by a picosecond pulsed laser. Evaluating the quantum interference shift for their
measurements [Y0sT2014] required the use of a density matrix formalism, leading
to complex calculations with many coupled equations. In our experiment, on the
contrary, the excitation laser at 205 nm is a continuous-wave laser. This allows us to
use a simpler method, similar to the one developed by P. Amaro et al., to estimate

the magnitude of the cross-damping effect.

Since it is possible, with our experimental setup, to observe the 1.5 — 3§ transition

in hydrogen and deuterium, both isotopes will be studied in this section.
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Figure 3.1: The relevant fine-structure energy levels of hydrogen (I = 1/2) or deuterium
(I=1).

Hydrogen Deuterium
Level F  Freq.(MHz) F  Freq.(MHz)
3512 0 —39.457 1/2 —8.084
1 13.152 3/2 4.042

3Dz, 1 2927.249 1/2  2929.542
2 2031458  3/2  2930.027

5/2  2930.835

3Dssp 2 4011639 3/2  4013.498

3 4014.344  5/2  4013.844
7/2  4014.329

Table 3.1: Energies of the n = 3 hyperfine sublevels relative to the fine structure 35
level, for hydrogen and deuterium. The linewidth '), /27 is 1.0 MHz for the 35 level
and 10.3 MHz for the 3D levels.

3.4.1 Method

In order to evaluate the shift due to this quantum interference effect, we follow the
method described in [AMARO2015], adapting it for a two-photon transition and our
experimental geometry. In the same manner, we can consider the spectroscopy as a
two-step process equivalent to Raman Stokes scattering, albeit with a two-photon
excitation.

As detailed in Fig. 3.1, we will denote i the initial energy level (15), v the
intermediate level (35 or 3D) of natural linewidth I',, and f the final level (2P). Table
3.1 gives the relative energies of the relevant hyperfine sublevels. To calculate these
energy levels, I used fine structure data from the NIST database [JENTSCHURA2005].
The hyperfine splitting was calculated in Chapter 1 for hydrogen (see also eq. (3.5)),

and has been obtained in a similar manner for deuterium [KARSHENBOIM2002].
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Assuming a near-resonant excitation, this scattering process can be described by
an equation of the Kramers-Heisenberg type, similar to eq. (2) of [AMAR0O2015], in

which the excitation operator has been replaced by a two-photon operator:

2

do Qui(Dp)"
el . 34
dQOCXf:zV:wm—2w—iI‘y/2 (3:34)

In this equation, do/dS) is the differential cross section of the scattering amplitude,
wy; the transition angular frequency, w the laser angular frequency, (},; the matrix
element of the two-photon excitation operator, and Dy, the dipole matrix element
corresponding to the one-photon decay.

The cross-damping effect involves transitions from the same initial state (J; = 1/2,
F;). For a given F;, the sum over v can be restricted to the 35S and 3D sublevels
allowed by the selection rules [GRYNBERG1976],

e for the 35,5 level: F,, = Fj, due to the selection rule AF = 0 for two-photon

transitions between J = 1/2 states;

e for the 3D levels: AF <2 with F; =0— F, =1and F; =1/2 — F, =1/2

forbidden.

In this chapter, we estimate the cross-damping shift for all possible 1.5 — 35
hyperfine transitions (F; = 0 and 1 for hydrogen, F; = 1/2 and 3/2 for deuterium).

Our experimental situation

We define here the geometry of the scattering process in accordance with our experi-
mental situation. The excitation cw laser at 205 nm is resonant in a Fabry-Perot cavity
whose axis is horizontal and collinear with the atomic beam. The laser polarization
is vertical. The 35 — 2P fluorescence at 656 nm is collected by an imaging system
situated directly above the excitation region, and detected by a photo-multiplier. We
do not detect the polarization of this fluorescence.

Figure 3.2 shows the relevant vectors and angles. The two incident photons have
the same polarization e (parallel to the z axis), and opposite wave-vectors k; = —k)
along the x axis. The wave-vector ko of the scattered photon makes an angle 6
with the vertical z axis, which is chosen as the quantization axis. As mentioned in
[BROWN2013] and [AMARO2015], the quantum interference effect depends only on
this angle 6 between the incident polarization and the scattering direction. Without
any loss of generality, we will assume that this wave-vector ks is in the plane xOz.
We also define xs as the angle between the scattered photon’s polarization €2 and the
plane zOz.

The following calculation is done first in the case of a point-like detector situated

at an angle @ from the z axis. In order to simulate more closely our experimental
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Figure 3.2: The incident photons have opposite wave-vectors ki = —k) and the same

polarization ;. The direction of the wave-vector ks of the scattered photon defines
the angle 6. This photon’s polarization €2, which lies in a plane perpendicular to kg,
makes an angle yo with the scattering plane xOz.

situation, we will then evaluate the effect for a finite angular aperture of the detection

System.

3.4.2 Details of the calculation

The polarization vectors of the incident (1) and scattered (e2) photons, as defined
above, can be written in a standard basis [CAGNAC2002].

The unit vectors ey of this basis are defined as a function of the cartesian unit
vectors (ug, uy,u,) as

u, tiu
e =1u,, eif] = $%, (3.35)

and the coordinates ay of a vector a in this basis verify

a= Z(—l))‘a,AeA. (3.36)

A

Furthermore, the inner product in this basis (equivalent to the scalar product in the

cartesian basis) is
a-b=> (=1)%a_bx = ajbx. (3.37)
A )

The coordinates of the polarization vectors in this basis are then

+1) _

55 0, 5&0) =1,

0 £ isi
ggﬂ) _ (cos x2 cos isin x2) KO

, = —cos x2sin 6. (3.38)
\/i 2
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The dipole matrix element is defined as Dy, = €3 - Dy, = (flea - r|lv). We
can expand the scalar product in the spherical basis, while taking into account the

hyperfine structure:

1
Dty = 3 (=1 ey ng Ly FymyJglraln, L Fymy, J,). (3.39)
A=-—1

The two-photon matrix element is expressed as

(e1-Dyy)(er - D) |

W — Wpr;

_ Z<V!€1 rfr)(rles - xfi)

W — Wrj

Qui: 2:

T

(3.40)

r

It can also be written as the matrix element of a k™-order tensor operator T® | with
k =0for 15—3S, k =2 for 15 —3D [GRYNBERG1976]. Since the incident polarization

€1 is along the quantization axis (this implies m, = m;), we simply have

qunn?uju (ny Ly Fymy Jy, ’T ‘nlLZFzszz> (3.41)

Defining T = r, the matrix elements on the right-hand side of egs. (3.39) and
(3.41) can be simplified by introducing the reduced matrix element, then successively
decoupling the angular momenta to separate radial and angular parts, using the
following usual relations [EDMONDS1957]:

-m A m

[ F k F
(' L'F'm 7| TP [nLFm.J) = (—1)F ™ ( ) (' L'F' | T®)||nLE.T),
JF T

(' L'F' J|[T®|nLFJ) = (—1)7 e 1R FY)
F J k

} ('L J'||T®||nLJ),

W L' J||T®||nLJ L+S+ltk Jry
{ [T InLJ) = (-1) [J, J'] I

L J s
} (' L[T®nL),
(3.42)

with the notation [J, J'] = (2J 4+ 1)(2J" + 1). One obtains

1

17 vJv _)\
Dyl = (ngLyliellng L) x 3 (=1)*es VAL (1),
A=—1

QEmid — (0, L, [[T®||ni L) x A (k), (3.43)
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where we introduced the angular coefficient Ay (k) for a k*-order tensor operator T®),

Ax(k):(—l)FLml( noe F)

—-m' A m

X(_l)J’+I+F+k [F, F/] JF 1
F J k
p L J s

x (=) E SR 1T . (3.44)
J L k

It should be noted that Ag(0) = 1, as there is no angular coefficient for the 15 — 35

excitation.

One can then rearrange the terms to separate radial and angular parts:

Emi i ( pEvmyJy * F,F,F
Qrmi, ( Ff:szf) = Spui Uy rs] (3.45)
with
Stvi = (ngLyl|r[|n, L 1/><n1/L T8 |n;Ls), (3.46)
Qo F
Q) =3 eV Ao (k) AN(1). (3.47)
my7

Replacing in eq. (3.34), one obtains:

F;F,F; |2

do Spvi Xy,
— : (3.48)
aQ FfZJf, F%,, wyi — 2w — ', /2
m;,Myf,€2

It is necessary to sum over €9 because the polarization of the scattered photon is not
detected.

As in [AMARO2015], the terms can be further rearranged to show direct and cross

terms:

F,F,
do S fm AJ gy

o = Zu (wni — 2w)% + (T, /2)?

=FiF,F,
Sfm va i = gd,

+ Re :
(F’ J’gF,j Ju) (wV’i - 2w - ZFV/Q) w]/i — 2(,(.) + ’LFV//Q)

(3.49)
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where we have defined

FF, F;F,Fs|2 —FiF,F, FiFFy (O FiF, Fp)*
Ay = > ‘QJinJf and  =;;7;7 = 2Re > Qg ( JidJg
Fy,Jy, Fy.Jy,
mgi,mg,€2 mi,Mg,€2
(3.50)

Radial part

The two matrix elements in eq. (3.46) can be evaluated in the following way.

(ngLy||r||nyLy) is the well-known reduced matrix element of the radial operator r

and can be easily calculated using the Wigner-Eckart theorem

L 1L

(nLm|ry|n'L'm'y = (-1)L—™ ( . ) (nL]||r||n'L"). (3.51)

-m A

For example, defining 1,1, as the usual electronic wave function of hydrogen, one has

COBDm— o1 — (o 12 .
(2P(m = 0)[2[3D(m = 0)) (=1) (0 0 O)<2PH 13D)

/ Vi) 2 Yan(r) dr, (3.52)

where the integral is calculated over the whole space.

The two-photon matrix element has been calculated by M. Haas et al. [HAAS2006].

It is given by )
2hceg

k k
<nVLVHT( )Hn’bL’L> = - 62 Bée)v (353)

where the coefficients ﬁf(]lé) = Bge for 1S — 35 and Bﬁ) for 15 — 3D are given in tables
IT and IIT of [HAAS2006]. These coefficients are given in Hz(W /m?)~!.

In our case, the radial part is

(35]|T||15) = 1.00333 C,

(3D||TP||18) = —6.16579 C,

(2P||r||3S) = 0.938404 aj,

(2P||r||3D) = —6.71467 ao, (3.54)

where C' = —1079 x 2}’6# and ag is the Bohr radius. Both constants are global factors

and we do not take them into account.
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In the numerical calculations, we then simply used

1.00333 x 0.938404  for v = 39
Spui = (3.55)

—6.16579 x (—6.71467) for v = 3D

Angular part

As noted earlier, the quantum interference effect depends only on the angle 6 between
the incident polarization and the scattering direction. In fact, the coefficients A and =

have a simple angular dependence and can be parametrized as follows,

Aljfi” (0) = ag + aaPa(cosb),
5§5f v (0) = baPy(cosb), (3.56)

where P, is the second-order Legendre polynomial Py(z) = (322 —1)/2.

Table 3.2 gives the coefficients of this parametrization for hydrogen: direct terms
for each hyperfine transition, and cross terms between the 1.5 — 35 transition and the
15 — 3D transitions. In deuterium, the hyperfine structure is different but the method
developed above can be directly applied: the radial part is the same (eq. (3.55)), and
the angular part should be changed accordingly (Table 3.3).

Table 3.4 presents the coefficient by, as defined in eq. (3.56), for the cross terms
between the different 3D hyperfine sublevels. These cross terms play a negligible role
in the distortion and shifting of the 1.5 — 35 line.

F, L, F, Ju ag ag by
0 0 1 1/2 2/3 0
2 2 3/2 4/315 -T/1875 4/2/75
2 2 5/2 2/125 -4/625 2/2/25
1 0 1 1/2 2 0
2 1 3/2 2/125 -7/2500 2v/2/25
2 2 3/2 2/125 -7/2500 2v/2/25
2 2 5/2 4/315 -4/1875 4/2/75
2 3 5/2 14/375 -8/625 144/2/75

Table 3.2: Angular coefficients for hydrogen, F; = 0 and 1.
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Fi LV F,, J,, aq a9 bQ

/2 0 1/2 1/2 4/3 0
2 3/2 3/2 8/1875  -14/46875  8v/2/375
2 5/2 3/2 32/1875 -224/46875 321/2/375
2 3/2 5/2 32/1875 -224/46875 321/2/375
2 5/2 5/2 28/1875 -184/46875 281/2/375

3/2 0 3/2 1/2 8/3 0
2 1/2 3/2 4/375 0 44/2/75
2 3/2 3/2 32/1875 0 32v/2/375
2 5/2 3/2 28/1875  -14/9375  281/2/375
2 3/2 5/2 8/1875 0 8v/2/375
2 5/2 5/2 32/1875 -436/459375 32v/2/375
2 7/2 5/2 16/375 -16/1225 161/2/75

Table 3.3: Angular coefficients for deuterium, F; = 1/2 and 3/2.

E Fl/ Jl/ Fz/ Jz/ b2

0 2 3/2 2 5/2 -2/625

1 1 3/2 2 3/2  -7/1250
1 3/2 2 5/2  -T/1875
1 3/2 3 5/2  -2/1875
2 3/2 2 52 1/625
2 3/2 3 5/2 -4/625
2 5/2 3 5/2  -8/1875

1/2 3/2 3/2 5/2 3/2 -112/46875
3/2 3/2 3/2 5/2 -112/46875
3/2 3/2 5/2 5/2  52/46875
5/2 3/2 3/2 5/2  -16/15625
5/2 3/2 5/2 5/2  -64/15625
3/2 5/2 5/2 5/2  -64/15625
3/2 1/2 3/2 3/2 3/2  -56/9375
1/2 3/2 5/2 3/2  -14/9375
1/2 3/2 3/2 5/2  -14/9375
1/2 3/2 5/2 5/2  -16/9375

1/2 3/2 7/2 5/2 0
3/2 3/2 5/2 3/2  -56/9375
3/2 3/2 3/2 5/2 0

3/2 3/2 5/2 5/2 -208/65625
3/2 3/2 7/2 5/2 -128/65625
5/2 3/2 3/2 5/2 2/3125
5/2 3/2 5/2 5/2  32/21875
5/2 3/2 7/2 5/2 -144/21875
3/2 5/2 5/2 5/2  -64/21875
3/2 5/2 7/2 5/2  -32/65625
5/2 5/2 7/2 5/2 -1152/153125

Table 3.4: Angular coefficients of cross terms between 3D sublevels of hydrogen
(F; =0,1) and deuterium (F; = 1/2,3/2).
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3.4.3 Results

In order to estimate the frequency shift due to the cross-damping effect, we calculate
a simulated signal taking into account the direct and cross terms using eq. (3.49). We
then fit the 1.5 — 3S line with a simple Lorentzian function, leaving all fit parameters
(position, width, amplitude) free. The shift is defined here as the difference between
the position given by the fit and the theoretical position used in the calculation.

We do not add any noise to the simulated spectrum. As we have seen in part
2.6.2, our experimental signal presents a rather large background so the noise can be
approximated by a white noise. We have checked that adding a white noise to the

simulated signal does not significantly change the result of the fit.

Point-like detector

Figure 3.3(a) shows the simulated signal for hydrogen, F; = 1, in the case of a
point-like detector situated directly above the excitation point (§ = 0). The second
term on the right-hand side of eq. (3.49) is the signature of quantum interference, and
is represented in Fig. 3.3(b). Its dispersion shape is responsible for the shift of the
transition frequency. All the results given below are shifts of the laser frequency w/2m,
and differ from the atomic transition frequency shifts by a factor of two.

Figure 3.4 shows the frequency shift as a function of the position of a point-like
detector. The shift is maximal for 6§ = 0, and is proportional to Ps(cos#), having
the same angular dependence as the amplitude of the cross terms. This fact is not
surprising, since the shift is very small compared to the natural linewidth, and can be
expected to vary linearly with the amplitude of the cross terms.

This figure is comparable to the results of D. Yost et al. (Fig. 5 of [Y0sT2014]),
that were calculated using a completely different method in which the continuous

excitation was treated as a special case.

F, Shift (Hz)

H 0 —440
1 —446

D 1/2  —444
3/2  —445

Table 3.5: Calculated shift for 8 = 0, in Hz.

Table 3.5 gives the maximal shift, calculated for § = 0, for the four possible
hyperfine transitions. It is interesting to notice that we find very similar shifts for the
different cases. This is due to the fact that the hyperfine structure of the 3D levels is
not resolved because it is smaller than the natural linewidth of these levels. The laser

frequency shift is thus at most of —0.45 kHz for all 1.5 — 3S transitions, corresponding
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Figure 3.3: (a) Simulated 15 — 35 signal for hydrogen, F; = 1, § = 0. (b) Sum of
the cross terms; the arbitrary units are the same as in (a), but the vertical scale is
amplified by a factor of 500.
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Figure 3.4: Shift of the laser frequency as a function of detector position angle 6.
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to an atomic frequency shift of less than 1 kHz. We also find this result if we ignore
the hyperfine structure in the calculations.

One can also compare this shift to a naive estimate derived from the simplified case
of a three-level atom. The calculation of the first term in eq. (25) of [HORBATSCH2010)]
would give, with I' = 1 MHz and A ~ 3000 MHz,

I'?/4A ~ 0.08 kHz. (3.57)

In fact, this equation, a derivation of which is provided in Appendix A, gives the
atomic frequency shift due to a single cross term between excited levels of linewidth I"
and separated by A, assuming that I' < A. But the difference in amplitude between
the direct and cross term is missing. In our case, there are several cross-terms, and
as we can see in eq. (3.49), these cross terms all have different amplitudes; thus, as
detailed in Appendix A, we should take into account the amplitude ratio between
each cross term and the direct term, and sum over all 3D sublevels v/ interfering with

the 3S level v, in order to calculate the total atomic frequency shift

—FF,F,

]:‘2 S i X 2y , 0
B v DT Tl ) (3.58)
) 4((«)1/@ — wl,/i) Sflll X AJZJVU

For 6 = 0, this equation gives §/27 ~ —0.9 kHz, which is indeed a very good estimate
of the shift.

Extended detector

In order to simulate more closely our experiment, we can integrate the signal over
the angular aperture of our imaging system. The point-like detector case for 6§ = 0
gives an upper bound for the frequency shift; any integration over this angle will only
reduce the effect. Furthermore, integrating over the whole space cancels the effect
altogether.

The fluorescence collection system is shown in Fig. 3.5. The scattered photons are
collected through an aspheric lens of radius 25 mm and an interference filter at 656 nm.
A spherical metallic mirror, having the same radius as the lens and situated below the
excitation region, increases the solid angle of detection by redirecting photons emitted
downwards. The 10° acceptance angle of the interference filter limits the length of the
detection region along the atomic beam, which is then a segment of length 12 mm
centered on the waist of the 205 nm Fabry-Perot cavity. The center of this detection
region is the focal point of the lens as well as the center of curvature of the spherical
mirror.

Let us assume for now that the detection region is infinitesimal and centered: in
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Figure 3.5: Side view of the fluorescence collection system.

this situation, only photons emitted at the center of the cavity are detected. We can

first integrate the simulated signal over the upper part of the collection system:

emaz

Signal = /0 f(6)27sin(6)d6, (3.59)

where f(0) is the right-hand side of eq. (3.49), and 6,4, is the half angle of the
detection cone. With 0,,,, = 45° defined by the diameter of the lens, equation (3.59)
leads to a laser frequency shift of —0.27 kHz.

Then, it is possible to calculate the signal for a given position of the emission
point along the detection region. As this calculation is rather long, it is presented
in Appendix B. The angular acceptance of the filter can be approximated by a step
function of the incident angle, so that the distribution of the emission points is assumed
to be uniform along the segment. Integrating over the length of the detection region

does not change the result significantly (<1 Hz).

We can thus simply add to the previous signal of eq. (3.59) the integral over the

downwards-emitted photons reflected by the spherical mirror, with an opening half-
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angle of 37°, neglecting the losses due to the reflection on the mirror:

45° 37°
Signal = | f(6)2rsin(0)d0 + /0 F£(6)27 sin(6)d6. (3.60)
0

This results in a laser frequency shift of —0.29 kHz.

For a given fluorescence emission direction, the propagation through the optical
elements of our detection system could partially polarize the fluorescence light and
lead to a polarization dependence of the detection. However, if we except the slanted
photocathode, the detection system is cylindrically symmetric around a vertical axis.
After integrating over the detection cone while assuming that the detection region
is infinitesimal and centered with respect to the detection system, this effect would
cancel as all the polarization directions become equally attenuated.

Actually, the photocathode of the photomultiplier makes an angle of 15° with the
vertical axis. The effect is then not entirely canceled but very reduced when averaging
over all directions. An additional polarization dependence could come from the fact
that the detection region is not a point but a horizontal segment. Eventually, taking
into account this polarization dependence would change the results obtained for the

frequency shifts by less than 10 Hz.

Finally, we obtained a theoretical estimation of the cross-damping shift of the
1.5 —3S transition in H and D. The value of the frequency shift depends on the detector
position. In the specific case of our experiment, the laser frequency shift is expected
to be of about —0.29 kHz, corresponding to an atomic frequency shift of —0.58 kHz.
This value is small compared to the current uncertainty of our measurements. We
will nonetheless take into account a shift of —0.6(2) kHz in the final result and the
uncertainty budget. The uncertainty of 0.2 kHz that we have retained is much smaller
than the other uncertainties in our measurement and has no incidence on the final

result.

Conclusion

In this chapter, we have calculated the fitting function used to analyze the experimen-
tal data. Several frequency-shifting and broadening effects have been theoretically
investigated. The light shift and pressure shift can be important and should be
experimentally estimated. The cross-damping shift is small but will be taken into

account nonetheless.
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Chapter 4
Data analysis and results

In the present chapter, I will describe how the experimental data are analyzed. Each
signal is fitted separately with the line profile described in the preceding chapter. The

parameters characterizing the velocity distribution are subsequently determined.

To obtain the absolute frequency of the 15 — 35 transition, we must apply
corrections due to the light shift, then perform a pressure extrapolation to estimate

the collisional shift.

4.1 Experimental data

4.1.1 Recordings

From September 2016 to February 2017, we have recorded about 1700 signals (“runs”)
of the 15{51 — SSfEl transition during 59 days, following the protocol described in
the last section of Chapter 2. Additional recordings of the mpr = 0 transition, used
for magnetic field calibration, were carried out in November 2016.

We performed measurements for two different pressure values, evaluated as
2.7 x 107® mbar (low pressure) and 2 x 10~* mbar (high pressure). As has been
mentioned earlier, this pressure is only known in a relative way, as the gauge is placed
on the side of the excitation chamber and not near the atomic beam. We decided to
separate the recordings in three data sets: two sets at low pressure (LP1 and LP2)
recorded before and after the high pressure set (HP).

For each pressure value, we recorded runs for zero applied magnetic field, and for
various magnetic field values around the 35 — 3P anticrossing at 180 G (18 mT). We
reversed the direction of the magnetic field from one day to the next to avoid any
stray electric field. The magnitude B of the vertical magnetic field is deduced from

the recorded current, as explained in Chapter 2 (eq. (2.11)). For the LP1 and HP

75
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data sets, the values of the magnetic field B, in gauss, were the following
B € {-0.3,170.2,—-170.8,190.3, —190.9} G. (4.1)

During the LP2 set, additional B values were used, reaching a total of 15 different

magnetic field values after taking into account the offset:

B e —0.3+{0,160.1,165.3,170.5,175.2, 185.1,190.6, 195.0} G (4.2)

Each run contains 10 scans of N measurement points, as the AOM frequency is
changed following a predefined sequence. As explained in Chapter 2, two different
scan widths have been used, corresponding to a number of points N = 31 or 51. For
each of the 10 x N points, the frequency of the excitation laser is calculated using the

different beat note frequencies and the AOM frequency.

Before using the data, we apply a filter to eliminate data points that are obviously
wrong. There are two types of problematic points. First, the frequency measure can
be inexact. This can occur if one of the laser stabilization loop unlocks, for example.
We check that the different beat note frequencies are contained in given intervals.
Besides, some beat notes are counted simultaneously on two different counters, so that
we can also check that the difference between both counters is small enough, typically
lower than 50 Hz.

Secondly, the fluorescence count can drop abnormally. An obvious reason for this
is that the lock of the detection cavity length is not very stable and sometimes unlocks
for a few seconds, so that the light intensity in the cavity drops. Another, more
obscure reason is that for some time, the counter used to record the photomultiplier
signal was not well parametered and did not always trigger correctly. This problem
was later solved, so that only a few days of recording are concerned. To ensure that
all causes are taken into account, we compare both the transmitted UV intensity and

the fluorescence count to given thresholds that are redefined for each run.

Eventually, we calculate the average of the ten scans for each of the N frequency

points. A “signal” now consists of N {frequency, photon count} points.

4.1.2 Fit with theoretical line profile

As a first step, all the signals are fitted separately with the theoretical line profile
FBov(Ve,I', A, C;v). As a reminder, this profile has been defined in Chapter 3 as

FB.ov(Ve, I, A, Civ) = A X (SB oy * fror) (v — Ve, ') + C. (4.3)
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Four parameters are adjusted: the center frequency v., the Lorentzian broadening
width I', the amplitude A and the background offset C.

The value of the magnetic field B is deduced from the measurement of the power
supply of the Helmholtz coils, using eq. (2.11). The parameters o and vy of the velocity
distribution will be specified in the next section, for the time being they can remain
undefined.

The fit is done using the optimize.leastsq routine of Python, which is based on the
least-squares method. This method consists in minimizing the quantity

N
S =3 Y~ Fpou(ve. T, A,C; Xi), (4.4)
i=1
where X; are the N frequency points, and Y; the fluorescence measured for each point.
The fit yields the optimal parameters v, opt, I'opt, Aopt, Copt and the corresponding
minimal value of S called Sp.

The parameter of interest here is the center frequency v.. To determine the

uncertainty on the optimal frequency v, op¢ obtained by the fit, two methods can be

used, giving equivalent results.

e One method makes use of the fractional covariance matrix € displayed by the
Python routine. To take into account the dispersion of the measurements, the
variance of the parameters is obtained by multiplying the diagonal terms of this

matrix by the residual variance (§Y;)?, defined as

2 S0

(6% =

(4.5)

where Sj is the minimal value of S as defined earlier, N the number of frequency
points (31 or 51 depending on the scan width), and 4 corresponds to the number
of parameters in the fit. Hence, the uncertainty on the fit parameter p,, is given
by

So

o(pn) = (| Cnn % N_14

(4.6)

where %, is the diagonal term of the fractional covariance matrix corresponding

to the parameter p,,.

e The other method consists in minimizing the sum S for different fixed values of
the parameter p, (of which we want the uncertainty) around its optimal value

opt
n

while keeping all the other parameters free. We fit the obtained S(p,,) by a
parabolic function defined by

S(pn) = a(p, —b)? +c. (4.7)
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Figure 4.1: The variation of S around the optimal parameter is fitted by a parabolic
function. The uncertainty is given by the value of the parameter for which S is
increased by an amount of Sp/(N — 4).

The uncertainty o(p,,) is then given by

= 4.8
This value corresponds to the shift in p,, for which S(p,) is increased from its
minimal value Sy by an amount of Sy/(IN — 4), as illustrated in Fig. 4.1. Here 4
is again the number of parameters in the fit. A generalization of this method

will be used in the next section, see also Appendix C.

4.2 Determination of the velocity distribution

The velocity distribution, defined in part 3.1.2, depends on two parameters, o and vy.

In a simplified form, it can be written as

,02

f(v,0,v0) o v3exp (—M> Plv/o] exp(—vo/v). (4.9)

We determine the velocity distribution separately for each data set (LP1, LP2,
HP). To find the optimal values of the velocity distribution parameters o and vy, we

perform a chi-square minimization.
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4.2.1 Chi-square minimization

First, the fitting procedure described in the previous section is repeated for various

values of the velocity distribution parameters o and vy, both given in km/s,

o € {1.2,1.4,1.6},
vo € {0.1,0.5,1,1.5,2,2.5,3,3.5,4}. (4.10)

For each pair of values (o,vg), we calculate the weighted mean of the center

frequency

—_

1=

5 (vs/0?)
= (4.11)

Vmean =

o

> (1/03)

=1
where v; is the center frequency of run ¢ and o; its uncertainty. Here, k denotes the
number of runs in a given data set. No distinction of applied magnetic field is made

at this point. We then compute the chi-square

2= Z [Wﬂmm] ) (4.12)

2
i=1 i

We fit x%(o,v0) by a polynomial function of degree 2 in o and degree 3 in v,
defined as

F(o,a,....h;0,v0) = 0+ ao + ba® + cvy + dvg + eovg + fovg + govd + hvs. (4.13)

The surface thus obtained for x?(o,vp) is somewhat bowl-shaped. We should now
find the minimum of this surface and the corresponding (o, v9) parameters. In practice,
this is done in two steps: first we minimize x? with respect to o for fixed vy, then we

find the optimum with respect to vyg.

e For 200 fixed values of vg around the apparent minimum of x?, we calculate the
value opin(vo) that minimizes x2. To this purpose, we can rewrite x2(o,vg) as a

function of the single variable o,

A = b—Fon
XQ(O') = Ao? + Bo + C with B = CL+€’UO+QU8 (4.14)
c = o—l—cvo—l—dvg —{—hvg

We easily obtain the position and magnitude of the minimum of this parabola
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for a given value of vy,

B a+evy+ gv}
min = T = T 4.1
Tmin(V0) 24~ 2(b+ fuo) (4.15)

Ximin(v0) = F(omin(v0), v0) (4.16)

e We then find the minimum of X2, (vo) with respect to vg. This gives the optimal

value of vg that we will call vopt. From this we obtain the optimal value of o:

Oopt = Omin (Uopt) .

e Finally, we get the optimal frequency vop by fitting vmean(o, v9) by a similar
polynomial (eq. (4.13)) and calculating the value of this polynomial for the

parameters (Gopt, Uopt )-

Eventually, all the runs of each data set are fitted with a profile calculated for the
corresponding optimal velocity, in the manner described in section 4.1.2. We obtain
for each data set, a set of k frequencies {v;}opt. To double-check our calculation, we
can verify that the weighted mean of these newly fitted frequencies is within 100 Hz

of the optimal frequency vqps.

Data set Vopt Oopt Vopt Xgpt k Rp
LP1 734.2(3.9) 1.515(52) 1.23(55) 593 648 0.96

LP2  730.3(2.4) 1.495(32) 1.33(31) 845 636 1.15
HP  713.2(7.1) 1.521(85) 0.87(78) 445 406 1.05

Table 4.1: Optimal values of the frequency and velocity distribution parameters
for each data set. Only the last four digits of the frequency are given in the table,
Vopt = 2922742936 xxx.x kHz. 0opt and vepy are given in km/s. The table also gives
the optimal value of the chi-square, the number of runs &, and the Birge ratio Rp
defined below (eq. (4.17)).

The optimal values for each data set are summarized in Table 4.1. Before explaining
how the uncertainties are evaluated, I would like to make a few remarks.

The last item in the table is the Birge ratio Rp, defined as

2
X opt

Re=\l1"3

(4.17)
where Xgpt = X%(0opt, Vopt) and k — 2 is the number of degrees of freedom. This ratio
should be close to 1 if the data are consistent. As can be seen in Table 4.1, it is indeed
the case. In the event when the Birge ratio is greater than 1, it will be used to correct
the uncertainties on the optimal parameters.

Another fact I would like to mention is that in the above explanation, the x?

surface was fitted using the entire grid of parameters (eq. (4.10)). However, x? can
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be approximated by a polynomial close to its minimal value, but has no reason to
behave as such for far-off values of o and vy. It would then seem preferable to fit the
polynomial (4.13) on a reduced parameter grid. For instance, I tried not using the
points calculated for vy > 3. Interestingly, the optimal velocity distribution parameters

were both modified but the optimal frequency only changed by 200 Hz.

4.2.2 Uncertainties

The method used here, which is a generalization of the parabola method described
earlier, is based on the fact that the uncertainty on a given fit parameter is given by the
value of this parameter for which y? is increased by an amount of 1 [BEVINGTON2003].
An explanation of this in a simplified case is given in Appendix C.

Here, since the parameters ¢ and vy are correlated, the uncertainty is calculated
simultaneously for the two parameters. In the (o, vg) plane, we plot the curve of
equation

XQ(O', vo) = Xgpt +1, (4.18)

which looks like an ellipse. The uncertainties are defined by the projections of this

“ellipse” on the axes, as illustrated in Fig. 4.2.

1.50

1.49

200

1.48

' 20v,

Figure 4.2: The x? = Xgpt + 1 “ellipse” plotted in the (o, vg) plane. The projection of
the ellipse on the axes defines the uncertainties on the parameters, here denoted do
and dvg. The red cross indicates the optimal values (oopt, Vopt)-
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Figure 4.3: The frequency is calculated for each (o, vg) verifying eq. (4.18), correspond-
ing to the ellipse on Fig. 4.2. The uncertainty on the frequency is dv = max(dy, d2)
(this would be important if the curve were very asymmetric, in practice dv ~ §; =~ ds).

In practice, the calculation is done as follows.

e From the 200 values of vy used earlier, we keep the values of vy for which
Xin(v0) < Xgpt + 1. This gives us the uncertainty on vgpt.

e For each vy meeting this condition, we calculate the values o4 (vy) such that
X*(0+(v0),v0) = Xopg + 1.

e The uncertainty on oo is then given by do = max(o —o_)/2, which is simply

the half projection of the “ellipse” on the o axis.

If the Birge ratio Rp, defined in the previous section, is larger than 1, the
uncertainties on oopy and vept obtained in this way are multiplied by Rp to take into
account the experimental dispersion of measurements. That is equivalent to using the

curve defined by x? = Xgpt + RQB.

To determine the uncertainty on vy, this ellipse is projected on the frequency
surface. In other words, we calculate the frequency corresponding to the parameters
(0,vp) along the ellipse, using the polynomial interpolation as before. The uncertainty
on the frequency is given by the maximal distance of this curve from the optimal
frequency. Figure 4.3 shows an example of this frequency “ellipse”, calculated for each

(0,vp) verifying eq. (4.18), and the definition of the uncertainty.
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4.3 Correction of systematic effects

We have obtained the frequency for different values of the pressure. We should then
realize an extrapolation to zero pressure to determine the frequency corrected from
the collisional shift. Beforehand, it is however necessary to correct each frequency
point from the light shift, which depends on the light intensity experienced by the

atoms.

4.3.1 Light shift

To correct the values of table 4.1 from the light shift, we apply to the frequencies
{Vi}opt, obtained with the optimal velocity distribution, a correction based on a
parameter linked to the light power inside the build-up cavity.

We have access to two such parameters. One of them is the voltage oy of the
photodiode recording the transmitted UV power. The other is the height H of the
transition profile, which is proportional to the square of the light intensity. We define
this height, expressed in photon counts per second (cnts/s), as the difference between
the maximal photon count and the background offset, for a null magnetic field.

For a given non-zero magnetic field, the height is corrected by taking into account
its theoretical variation, which is due to two different reasons. First, the mp = 0
sub-transition does not contribute to the signal for B # 0 because of the Zeeman
effect. Secondly, near the anticrossing at 180 G, the Stark mixing of the 3S(mp = —1)
sublevel with the 3P level induces a broadening of the mp = —1 sub-transition which
further reduces the signal height.

Figure 4.4 shows the square root of the signal height as a function of the UV
photodiode amplitude. Each point corresponds to one run. For the sake of clarity,
I have represented only signals recorded at zero magnetic field and low pressure. If
both parameters depended linearly on the light intensity, we would expect to see the
points aligned diagonally. It appears that it is indeed the case, but with a slope which
varies discontinuously every few days. The abrupt changes take place when the optical
alignment of the power build-up cavity is modified.

The choice of colors underlines the different slopes for each group of days. For the
first four groups (a to d), where the light intensity at the entrance of the cavity was
rather stable, the photodiode amplitude varied widely between the subsets, whereas
the height of the signal was more constant. The parameter v H seems to be a more
faithful indicator of the light intensity inside the build-up cavity.

For this reason, we decided to use the square root of the signal height, corrected
from its theoretical variation with the magnetic field, as an indicator of the light

intensity experienced by the atoms.
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Figure 4.4: Square root of signal height as a function of the UV photodiode amplitude.
FEach point corresponds to a single run, recorded at zero magnetic field and low
pressure. They have been grouped by day. a: first 2 days, b: next 3 days, c: last
day before high pressure, d: first day after high pressure, e: four last days where
the incoming light power was varied by hand to better quantify the light shift. The
build-up cavity mirrors were cleaned just before these last four days, explaining the
larger signal height.

For each data set, we must determine a light shift coefficient £ and apply a

correction to the frequencies {v; }opt,
V(&) = v — EVH. (4.19)

The weighted mean is calculated as in eq. (4.11),

k
> (7 (€)/0?)
v () = T , (4.20)
> (1/a}

and yields the corrected frequency for this data set.

To quantify the light shift and determine a correction coefficient, we varied manually
the light intensity during the last four days of recording, which are part of the LP2
data set (red points labeled e on Fig. 4.4). Figure 4.5 shows, for each run of this
subset, the center frequency with its uncertainty as a function of v/H, the square root
of the signal height. This data was fitted with a linear model. The slope of the linear
fit gives the light shift coefficient &1p = 595 + 172 Hz//cnts/s.
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Figure 4.5: Frequency as a function of the square root of signal height. The signals of
the last four days of the LP2 data set were fitted using the optimal velocity distribution
(o,v0)r.p2 = (1.495,1.33). Each color corresponds to one day. The black line is a linear
fit of the data, of slope 595 + 172 Hz/+/cnts/s.

This coefficient is used for the two low-pressure data sets (LP1 and LP2).

As the signal height depends on the pressure, the coefficient obtained at low
pressure has no reason to be valid for the high-pressure data set. For this reason, we
must determine a different coefficient for the HP set. However, the light intensity did
not vary enough during the high-pressure recordings to allow us to recover a precise
correction coefficient. Nevertheless, we decided to deduce the high-pressure correction
by minimizing the chi-square x? with respect to the light shift coefficient &. This is
actually equivalent to performing an extrapolation using the entire HP data set.

For different values of £, we calculate v5%7 (£) as defined in eq. (4.20), then the

chi-square

() = 30 [ WO v @) (421)

2
i—1 9i

The obtained y?(¢) is fitted by a parabola. The position of the minimum of
this parabola gives the optimal coefficient gp for high-pressure measurements. The
uncertainty on this coefficient is defined by the value of ¢ for which y2(€) is increased
from its minimum value by an amount of the Birge ratio Rp as defined in eq. (4.17).

In this case, Rp = 1.1. We thus obtain the coefficient for the high-pressure data set,

&ap = 531 £ 819 Hz/+/cnts/s.
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Data set Vopt dLs Veorr

LP1  734.2(3.9) —10.4(3.0) 723.8(4.9)
LP2  730.3(2.4) —12.1(3.5) 718.2(4.3)
HP  713.2(7.1) —6.3(10.2) 706.9(12.4)

Table 4.2: The uncorrected frequency, light shift correction and corrected frequency
for each data set, expressed in kHz. As in Table 4.1, only the last four digits of the
transition frequency are shown: v = 2922742 936 xxx.x kHz. The uncertainty on the
corrected frequency is obtained as explained in the text.

Eventually, the corrected frequencies v5o"

cora (&) are calculated for each data set using

the corresponding coeflicient &p or &gp. The uncertainty on the resulting frequency
shift 01,5 = Vioan — Vopt is deduced from the uncertainty on the coefficient £. The final
uncertainty on the corrected frequency can be obtained by adding in quadrature this

uncertainty and that of v, determined in the preceding section.

Table 4.2 summarizes the light shift corrections and the resulting frequencies.

4.3.2 Pressure shift

Using the frequencies corrected from the light shift, we can now perform the pressure
extrapolation to determine the absolute 1.5 — 35S frequency. The pressure here is

measured by the ionization gauge and is not the pressure “inside” the atomic beam.

We assume here that the frequency depends linearly on the pressure. This was
verified experimentally during Sandrine Galtier’s Ph.D., where the collisional shift

was determined using three different pressure values.

The extrapolation, shown on Fig. 4.6, is realized using the linear least-squares
method described in Appendix C (eq. (C.2)). We add a correlation between the two
low-pressure sets because the light shift correction was done using the same coefficient
for both sets. The covariance matrix V of the measurements is thus defined with
non-diagonal terms between the LP1 and LP2 data sets, equal to the product of the

light shift uncertainties of these two sets.

The slope of the linear fit gives a pressure shift coefficient of —77(75) MHz/mbar.
The collisional shift is negative, as predicted by the theory mentioned in Chapter 3,
part 3.2.2. The intercept yields the frequency at zero pressure

v = 2922742936 722.3(4.9) kHz. (4.22)

The uncertainties are obtained from the diagonal terms of the covariance matrix
G as defined in Appendix C.
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Figure 4.6: Pressure extrapolation. The slope of the linear fit is the pressure shift
coefficient —77(75) MHz/mbar.

4.4 Final result

4.4.1 1S-3S transition frequency

As explained in Chapter 3, the final result should be corrected from the cross-damping
shift, which has been theoretically estimated at —0.6(2) kHz. One should thus add a
positive correction of +0.6(2) kHz to the value of eq. (4.22) to obtain

vishe = 2922742936 722.9(4.9) kHz. (4.23)

The applied magnetic field is only known with an uncertainty of about 100 mG, as
mentioned in Chapter 2. The influence of this uncertainty on the measured frequency
can be estimated theoretically. Near the anticrossing at 180 G, where the theoretical
variation of the frequency with the magnetic field due to the Stark effect is largest, a
change in magnetic field of 100 mG would induce a frequency shift of about 600 Hz.
For this reason, we add in quadrature a global uncertainty of 0.6 kHz to our result.

To obtain the centroid frequency of the 1.5 — 35 transition, one must use the

hyperfine splittings whose values have been discussed in Chapter 1, part 1.1.3. One
has

: _ 1 1
veentrald — o F=l o 4 ZAEHFS(w) - ZAEHFS(?)S),

| ABups(15) = 1420405.752 kHz,
with (4.24)
AFEnrs(35) = 52609.44(1) kHz.
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Finally, the centroid frequency is
v1s—35 = 2922743278672.0(4.9) kHz. (4.25)

The 4.9 kHz uncertainty corresponds to a relative uncertainty of 1.7 x 10712,

4.4.2 Rydberg constant, Lamb shift and proton charge radius

Combining our result with the very precisely known 1S — 25 transition frequency
[PARTHEY2011], we can derive a value of the Rydberg constant and 15 Lamb shift.

The method followed here is similar to the calculation described in Chapter 1, part
1.2.2.

Using eq. (1.9), we can write the energy differences as

Ers—2s = B3y — B + Lys — Lis (4.26)
Eis_35=EPE —ERR 4 Lsg — Lig (4.27)

In order to determine the Lamb shift L5, we need to eliminate the main contribu-
tion to the Dirac-recoil term EPE. As a reminder, this contribution scales as 1/n?.

An appropriate linear combination of egs. (4.26) and (4.27) leads to
32F15 25 — 27F15_35 = 32Lag — 27L3s — 5L15 + APE (4.28)

where AT = 32D —27EDE — 5 EDE is an exactly known function of a and me/m,,
and does not depend significantly on the value of the Rydberg constant. Using the
CODATA-2014 recommended values [MOHR2016], one has

APE/h = 87470296.44(4) kHz, (4.29)

the uncertainty being due to that of the fine-structure constant a.
In the same manner as in Chapter 1, one can now make use of the fact that most

contributions to the Lamb shift vary as 1/n3. We can write
1
Lns = 5 (Lis + An), (4:30)

where the differences A, are very precisely known theoretically and have been published

in [CZARNECKI2005]. In particular, for n = 2 and 3, one has

Ay/h = 187225.70(5) kHz, (4.31)
As/h = 235070.90(7) kHz. (4.32)
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Replacing in eq. (4.28), and solving for L;g, one obtains
Lig = —16E15_95 4+ 13.5E15_35 + 25 4+ 0.5(APE — A). (4.33)

This yields
Lis/h = 8172847(66) kHz (4.34)

To find the value of the Rydberg constant R, which is hidden inside the Dirac-

recoil term EPJ one can use eq. (4.26) again. It can be rewritten as

1
By’ — B’ = Bigas + §(7L15 — Ay). (4.35)

The obtained value,
R =10973731.568 55(26) m! (4.36)

agrees with the value recommended by the latest CODATA adjustment [MOHR2016],
REOPATA — 10973 731.568 508(65) m L. (4.37)

From the 1S Lamb shift determined above, assuming that the QED calculations

are correct, one can derive a value of the proton charge radius,
rp = 0.879(25) fm. (4.38)

This is four times less precise, but in good agreement with the CODATA-2014
recommended value [MOHR2016]

rCOPATA — (0.8751(61) fm. (4.39)

4.4.3 New analysis of Sandrine Galtier’s recordings

At the end of Sandrine Galtier’s Ph.D. in 2014, there remained an unresolved question:
whether the atomic velocity distribution depends, or not, on the pressure. Depending
on the assumption that was made, the final result varied by 10 kHz. The proton radius
deduced from her measurements agreed either with the CODATA recommended value,
or with the value deduced from muonic hydrogen spectroscopy.

The measurements realized in the present work have allowed to give an answer
to this question: the velocity distribution does not seem to depend significantly on
the pressure, at least within the uncertainties of Table 4.1. To corroborate this
statement, I have fitted some of the low-pressure signals using the three optimal
velocity distributions. The obtained frequencies differ by 2 to 3 kHz at the most.

In the light of this result, it is possible to revisit Sandrine Galtier’s measure.
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During her Ph.D., she had estimated the velocity distribution for a single pressure
value. To determine the collisional shift, she had carried out measurements, in a
single day, for three pressure values at zero applied magnetic field. When analyzing
these recordings, we should now use the same velocity distribution for all pressure
values. The slope of a linear fit yields the collisional shift coefficient. To take into
account the uncertainty on the velocity distribution determination, an uncertainty of
3 kHz divided by the maximal pressure difference is added in quadrature to that of

the obtained collisional shift coefficient.

The data recorded during her Ph.D. have been entirely reanalyzed by Francois
Biraben. The collisional shift is obtained using a more complete data set than the one
she presented in her manuscript. The cross-damping effect is taken into account by
adding a correction of +0.6(2) kHz. The 1.5 — 3S transition frequency resulting from

this new analysis of S. Galtier’s data is
Vig_3s = 2922743 278 672.2(2.8) kHz. (4.40)

It is in good agreement with our new measurement given in eq. (4.25). The smaller
uncertainty is mainly due to a higher power of the 205-nm excitation laser (reaching

15 mW), yielding a better signal-to-noise ratio.

I would like to point out that although the experimental setup was essentially the
same for both measurements, several differences must be emphasized. The frequency
of the Verdi laser is now measured with two separate beat notes using an additional
laser to convert the frequency to the infrared domain, instead of making a simple beat

note with the frequency comb at 532 nm.

Moreover, the ionization gauge used to measure the pressure broke down at
the beginning of my Ph.D., and was replaced by a used gauge which was not well
calibrated. The pressure measurements cannot be compared directly. Indeed, the value,
as measured by the gauge, of the pressure for which the signal was optimal, was not
the same for the two recording sessions (8 x 1075 mbar for S. Galtier, 2.7 x 105 mbar
in our case). Besides, this type of gauge is known for not being very sensitive to

hydrogen.

Yet another difference is the way the light power in the cavity was estimated
for the light shift correction. For S. Galtier’s recordings, the transmitted power
was measured directly using a UV photodiode. Furthermore, the light power varied
sufficiently during the entire recording session to determine the light shift coefficient
by performing an extrapolation with respect to this transmitted power using the entire
data set, averaged over each day. This, along with the higher UV power, allowed a

more precise determination of the light shift.
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Figure 4.7: Comparison of our measurement (LKB 2017) with other determinations
of the 15 — 35 transition frequency.

Figure 4.7 shows our new measurement (labeled LKB 2017) along with the new
analysis of Sandrine Galtier’s data (LKB 2014), our last published result (LKB 2010,
[ARNOULT2010]), and the recently published measure in Garching with a picosecond
frequency comb excitation [Y0sT2016]. Two theoretical values are also represented,
calculated either using the CODATA-2014 recommended constants, or using the proton
radius and Rydberg constant deduced from the muonic hydrogen (up) spectroscopy.

Conclusion

We have recorded many runs over several months, while varying the magnetic field
for different pressure values. Each signal was fitted using a theoretical line profile.
We then performed a chi-square minimization to determine the velocity distribution
parameters. This was done separately for three data sets corresponding to two different
pressure values.

The light shift has then been included in the analysis, by applying a correction
derived from the variation of the frequency with the square root of the signal height. A
linear extrapolation to zero pressure yields a value of the 15 — 35 transition frequency
in good agreement with the CODATA value.

Furthermore, we have found that the velocity distribution does not depend sig-
nificantly on the pressure. Considering this result, Sandrine Galtier’s data has been
reanalyzed, yielding a transition frequency which agrees very well with our new

measurement.
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Conclusion

This work has allowed to perform a new measurement of the 15 — 3.5 transition

frequency of hydrogen, yielding the value

Vig_35 = 2922743278 672.0(4.9) kHz.

It has involved an important experimental work, including an improvement of the
frequency measurement of our green laser, which is now performed using an additional
laser to convert the measured frequency to the infrared domain. A months-long
recording session was necessary to characterize the atomic velocity distribution for
various pressure values, in order to determine both the second-order Doppler shift
and the collisional shift. Other systematic effects had to be taken into account, most
importantly the light shift, which requires to estimate the light intensity experienced
by the atoms. The cross-damping shift was studied theoretically in detail, but it is

very small in our experimental situation.

This measure has shown that the velocity distribution of the atoms does not
depend significantly on the pressure. In view of this result, it was possible to reanalyze

the data of Sandrine Galtier’s Ph.D. thesis. The resulting frequency
Vis—3s = 2922743278672.2(2.8) kHz

is in very good agreement with the one obtained in the present work, despite several
differences between the two data sets. Indeed, three years have passed between the
two recording sessions, and several changes were made on the experiment during this
time. In addition to the modification of the frequency measurement of the 532-nm
laser, the pressure gauge was replaced, so that the collisional shift cannot be directly

compared. The light power experienced by the atoms was also estimated differently.

Both the new measure and the reanalyzed data are in agreement with the value

predicted by the CODATA.
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In particular, the result of this work yields a value of the proton charge radius

rp = 0.879(25) fm

which is in good agreement with the CODATA-2014 value (r, = 0.8751(61) fm), thus

reinforcing the proton radius puzzle.

Outlook

In the coming months, we plan to start measuring the 1.5 — 35 transition frequency
again, this time using hydrogen atoms cooled to the temperature of liquid nitrogen
with the cooling system presented in Chapter 2. This would reduce the second-order
Doppler effect by a factor of 4, so that our measurement should be less sensitive to the
determination of the velocity distribution. We have installed the cooling system in the
final months of my Ph.D., and in the very last days of July 2017, we have been able to
observe the transition for the first time with cooled hydrogen. An average of 19 runs is
shown in Fig. 4.8. Our frequency measurement is only relative because the frequency
comb was switched off. Besides, the BBO crystal used for the 205-nm generation was
old and not very efficient, yielding less than 4 mW of 205-nm light. By comparing this
signal, to other recordings realized on the same day with room-temperature hydrogen,
we were nonetheless able to see the frequency shift (very roughly 100 kHz) due to the
change in velocity. Several technical issues still have to be overcome before starting a
recording session. The 15 — 35 metrology of cooled hydrogen will be performed by
Simon Thomas during his Ph.D.

Another future goal for this experiment will be the metrology of the 15 — 35
transition of deuterium. It is rather straightforward to modify the excitation laser
frequency in order to reach this transition. In this work, we have been able to observe
the deuterium 1S5 — 35 transition for the first time with a continuous-wave laser.

In a more long-term perspective, the UV laser source could be modified to reach
the two-photon 1S5 — 4S hydrogen/deuterium transition at 194 nm, which has never
been observed yet. An advantage of this transition is that it has a narrower natural
width of 700 kHz, as compared to 1 MHz for the 15 — 35 transition. Moreover, a small
part of the atoms excited to the 45 state would decay by a radiative cascade to the
metastable 25 state, from which it could be possible to probe the velocity distribution
through a one-photon transition. This would allow to cross-check our current method

of velocity distribution determination.
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Figure 4.8: The first observation of the 1.5 — 3.5 transition with cooled hydrogen. Red
points are the average of 19 runs, the blue line is a Lorentzian fit. The AOM frequency
should be multiplied by 4, and reversed, to get a relative atomic frequency scale. The
incident 205-nm light power was about 3.8 mW. The temperature of the nozzle was
estimated at about 120 K, with a pressure of 2 x 10™° mbar inside the interaction
chamber.



96

CONCLUSION




Appendix A

Estimate of cross-damping shift

In this section I derive an approximate value of the frequency shift, assuming that the
interfering levels are very far from resonance and of small linewidth. I thus show that,
under this assumption, it is possible to obtain a very good estimate of the QI shift

without any fitting procedure.

Let us assume, in a first step, that there are only two transitions of width I' and
I separated by A. Denoting w the atomic frequency detuning with respect to the

first transition, the signal can be written as

A N B 2
wHil/2  w—A—il'/2|

Signal = (A.1)
where A and B are the respective amplitudes of the two transitions. We then expand
this expression around the w = 0 resonance, assuming that w < A and I, TV < A

(c.c. means complex conjugate),

Signal = — o b + AB +
BT T2 T W A2 T2/4 " (Wil )2)(w— A i) ¢
A? N 2AB(w(w — A) +T?%/4)
W T2/4 " (W2 4 T2/4)((w — A)2 +12/4)
A? A —w
~ 1 1oAB
WQJFFQ/ALJr A2+P2/4Xw2+r2/4
N A B w (A.2)

2124 A 24124
In the last line, we have defined A = A% and B = 2AB, and assumed that

a1
A24+T2/4 A

The obtained expression (eq. (A.2)) is valid for w close to 0, and shows a Lorentzian

profile distorted by a dispersion-shaped cross term.
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Then we can follow [JENTSCHURA2002| to derive an estimate of the shift, rewriting
eq. (A.2) as

A—Bw/A
w2 +T12/4

A
[w—0(w)]?+T1?%/4

Signal ~

with
B

~ 24A

The shift of the half-maximum points is then

5(w) (w? +12/4) (A.4)

2
5(T/2) = ifA. (A.5)

Note that the shift of the maximum position is twice smaller

B2

5(0) = S a5 (A.6)

Now, we can compare eq. (A.1) and eq. (3.49) to define, with v = 3S and v/

denoting any interfering 3D sublevel,

A = S AT (A7)
—F,F,F,,

B = SfViSfV/i:‘JiJVJV/ (9) (AS)

A = Wyi — Wyt (AQ)

r =T, (A.10)

Then we sum over the different v/ levels to obtain the shift of the half-maximum points
of the 1.5 — 3§ line,
—FF,F,
r2 o Spei 20,5, (0)
(Wl/i - wy’i) Sfm' Ag}iﬁj

§(L,/2)~ > I (A.11)

V,



Appendix B

Integration of the fluorescence

over the detection region

The purpose of the following calculation is to determine how to integrate the fluo-
rescence signal emitted upwards, when the emission point is not in the center of the

system, but at a given point in the detection region.

This detection region is along the z axis. It is formally equivalent to shift the
emission point with respect to the lens or vice versa. In this calculation, we will keep
the emission point as the origin of the coordinates, and shift the center of the lens
along the z axis to a new position zg. In our case, we always have zg < R, where R

is the radius of the lens.

We assume here that the angular distribution of the emission direction is uniform,
so that the surface over which we must integrate is a portion of the unit sphere, of

area element sin(0)dfdep.

We need to integrate the signal over the range of emission angles accepted by
the lens. This range is defined by the intersection between the unit sphere and the
detection cone. The apex of the cone is the emission point, and its circular base is the

edge of the lens. If the lens is not centered, the cone becomes oblique.

Figure B.1 shows a side view of the unit sphere and the detection cone for a lens

centered in zg. The angles # and 6_ shown on this figure are defined by

+
0+ = arctan <R hx0> . (B.1)

We must integrate over the shaded region. For a symmetrically centered lens (z¢ = 0),

this integral can be written as

Omaz 27 Omax
Signal = /0 [ 1(0)sin(0)avdp = /O orf(6)sin(6)dd,  (B.2)
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Figure B.1: Side view of the unit sphere and detection cone, in the case where the
lens is centered in x = xg. The shaded region shows the integration domain.

with 0,4, = arctan(R/h). We find an equation similar to eq. (3.59).
If the lens is not centered, the maximal angle 6,4, increases with zg and is given
by

Omaz(T0) = 04 = arctan (R —; m()) . (B.3)

Furthermore, for a given emission angle 6, the angle ¢ is restricted to the portion
that is allowed by the intersection between the cone and the unit sphere. Two cases

appear, depending on the value of 6.

e For 0 < 0_, the maximal ¢ angle, that will be called «(0), is simply equal to .

e In the case where 6 € [0_,04], a(f) can be calculated in the plane z = h
containing the lens, via a homothety. Figure B.2 shows the lens edge as a circle
of radius R centered in x = zp; O’ is the point of coordinates (0,0, k). A photon
emitted from the coordinate origin O at an angle § from the z-axis would cross
the plane z = h along the circle of center O’ and radius r = htan 6. This circle
(drawn in red on Fig. B.2) intersects the lens edge in two points M; and Ma.
The angle a(#) is defined as the angle between O’M; and the z-axis.

The coordinates of the point M; are
rn=———, y1=/r2—2% z1="h (B.4)

We then have:

(B.5)

2 2 2
B B x5+ (htan®)® — R
a(f) = arccos(z1/r) = arctan ( Szl tan 0 .



101

Figure B.2: The drawing is in the plane z = h. The black circle of radius R is the
lens, centered in xg. For a given angle 6 between 6_ and 6., the red circle of center
O’ and radius r = htan 6 intersects the lens edge in points M; and Mas.

Finally, for a given g < R, the signal integrated over the angles accepted by the

lens is e (@0)
max (L0
Signal(ze) — / 20(6, o) sin(0) £ (6)d0 (B.6)
0
with
R
Omaz (o) = arctan ( —;xo) (B.7)
T if 8 < arctan (%)
a(@, x()) = a:2+(htan 9)2—R2 (BS)
arctan (W) else

We can now check that for zo = 0, a(6,0) = 7 for all values of 6 and eq. (B.6)
simplifies back to eq. (3.59).

Finally, we should integrate the function Signal(zg) along the detection region.
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Appendix C

Least-squares method and

uncertainties

We may start from the weighted linear least-squares fit in matrix notation, as explained
in Appendix E of [MOHR2000]. This consists in solving Y = AX, with Y a vector
containing N measurements, X the M parameters of the fit and A a M x N rectangular
matrix, with N > M. Let us denote V' the covariance matrix of the measurements Y.

The fit consists in minimizing the sum of squares!

S=(Y -AX)TV Y - AX). (C.1)
The solution for the parameters is given by
X =GATv Yy, (C.2)

where G = (ATV"1A)~! is the covariance matrix of the solution X. The minimal
value of S is
So= (Y —AX)TVHY — AX). (C.3)

In section 4.2.2 of Chapter 4, I have written that the uncertainty on the fit parameters
can be obtained from the size of the hypersurface (in M-dimensional space) defined
by S(X) = Sp + 1. Here, I would like to show that it can be easily understood in the
weighted linear least-squares framework.

The idea is to develop S around its minimal value Sy,

S(6X) = S+ (A6X)TVL1(AsX) (C.4)
= So+0XT(ATVIA)SX (C.5)
= So+6XTG7l6X (C.6)

1This corresponds to the chi-square x? defined in Chapter 4.
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where 6X = X — X.

I would like to show that the extremum of the hypersurface defined by
SXTG X =1 (C.7)

with respect to a given parameter (namely, the projection of the hypersurface on a
given axis) yields the uncertainty on this parameter, that is the square root of the

corresponding term of the matrix G.

Let us restrict this calculation to the simplified case of two parameters, which can

be generalized easily. We can define

T

5X = H and  f(z,y) = [z y| G (C.8)

Y

Equation (C.7) becomes
flz,y) =1 (C.9)

In this two-dimensional case, it is the equation of an ellipse. If the two parameters
and y are correlated, the ellipse is tilted with respect to the axes. An illustration of

this can be found in Fig. 4.2.

One should calculate the extremum with respect to x, that is, the value for which

of
- _ 1
By 0 (C.10)
This can be written as
-1 1 |0
o 1]¢ +z 4G =0 (C.11)
)

The two terms on the left-hand side of the previous equation are equal to each

other. One can combine egs. (C.9) and (C.10) to write:

et

The inverse of the matrix on the left-hand side of this equation is given by

—1
Ty |z —y/x
[O h = [ ] : (C.13)

0 1
Multiplying both sides of eq. (C.12) by this inverse, then by the matrix G, one
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obtains
1/x
0

Gux/T
Gay/x

~G (C.14)

[aj 1/x y/x] [1] _c _
y o 1 |]o

where [Gm ny} is the first row of the matrix G. Finally, the value of x at the

extremum verifies

z=Geo (C.15)

By definition, G, is the variance of parameter x. We have thus proven that the
extremum of the hypersurface defined by S(X) = Sy + 1 with respect to a given fit

parameter gives the uncertainty on this parameter.
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Résumé en francais

Le travail présenté dans ce manuscrit a été réalisé entre 2014 et 2017 dans I’équipe
« Métrologie des systemes simples et tests fondamentaux » du Laboratoire Kastler

Brossel, sous la direction de Francois Nez.

Contexte et principe de ’expérience

Les niveaux d’énergie de ’hydrogene

L’hydrogene est 1’élément chimique le plus simple, composé d’un proton et d'un
électron. Cela permet une bonne description théorique des niveaux d’énergie, qui
dépendent de trois nombres quantiques n, L et J. Ces niveaux d’énergie peuvent

s’écrire sous la forme d’une somme de deux termes :
DR
E..;=FE,);"+ Ly (1)

Le premier terme a une expression exacte en fonction de la constante de Rydberg
R, et d’autres constantes fondamentales. Il prend en compte la solution de I’équation
de Dirac, ainsi que l'effet de recul lié a la masse finie du noyau.

Le deuxieme terme, appelé communément « déplacement de Lamb » ou « Lamb
shift », leve la dégénérescence des niveaux de mémes n, J et de L différent. Il inclut des
contributions décrites par la théorie de 1’électrodynamique quantique (QED), dont la
plus importante est la self-énergie, suivie par la polarisation du vide, et d’autres termes
d’ordres supérieurs dont le calcul peut s’avérer tres complexe. Il contient également
un effet dii a la taille finie du proton. En effet, le potentiel coulombien ressenti par
I’électron est écranté a courte distance par la distribution de charge du proton, ce
qui a pour effet de remonter ’énergie des niveaux S, pour lesquels la probabilité de
présence de 1’électron au niveau du noyau est plus forte.

A ces niveaux d’énergie s’ajoute une correction supplémentaire dite de structure
hyperfine, décrivant le couplage du moment angulaire de 1’électron avec le spin du

noyau.
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Spectroscopie haute résolution

Les différences entre niveaux d’énergie peuvent étre mesurées expérimentalement tres
précisément grace a la spectroscopie, la mesure de fréquences de transitions. L’électron
peut passer d’un niveau d’énergie a un autre en émettant, ou absorbant, un photon
dont I’énergie correspond a la différence entre celles des niveaux. Pour des raisons de
symétrie, seules certaines transitions sont permises. Les états excités, qui peuvent se
désexciter spontanément vers des niveaux de plus basse énergie, ont de ce fait des
durées de vie tres différentes. Un niveau d’énergie de durée de vie T posseéde une
largeur spectrale naturelle I' = 1/277.

En pratique, les transitions sont souvent élargies, principalement par l'effet Doppler
di a lagitation thermique des atomes. Pour repousser la limite de précision due a cet
élargissement, plusieurs techniques de spectroscopie ont été développées. En particulier,
la spectroscopie des transitions a deux photons, reliant des niveaux de méme parité,
permet de s’affranchir de 'effet Doppler du premier ordre par absorption simultanée
de deux photons issus de deux faisceaux laser contra-propageants de méme fréquence.

La spectroscopie a deux photons de ’hydrogene joue un réle prépondérant dans
la détermination de la constante de Rydberg par le CODATA!, qui effectue tous les
quatre ans un ajustement global des constantes fondamentales prenant en compte les

dernieres avancées expérimentales.

L’énigme du rayon du proton

A partir de 'ajustement du CODATA et des données expérimentales, on peut déduire
une valeur du rayon de charge? du proton, en supposant que les calculs de QED sont
exacts. Pour tester ces calculs, il faut disposer d’une détermination indépendante du
rayon du proton. Une telle détermination peut étre obtenue par des expériences de
diffusion électron-proton. Cependant, I'analyse des données de ces expériences, tres
complexe, rend leur résultat peu précis.

Le rayon du proton peut également étre déduit de la spectroscopie de I’hydrogene
muonique, dans lequel I’électron est remplacé par un muon. Le muon étant 207 fois plus
massif que I’électron, il est d’autant plus proche du noyau, et donc plus sensible a la
taille de celui-ci. De ce fait, la contribution de I'effet de taille du noyau représente 1,8 %
de I’écart 2S5 — 2P de I’hydrogéne muonique, & comparer & une proportion de 0,014 %
dans I’hydrogene électronique. Cette particularité rend possible une détermination tres
précise du rayon du proton, indépendante de la constante de Rydberg, sans nécessiter

un effort aussi considérable sur la précision de la spectroscopie elle-méme.

!Committee on Data, for Science and Technology.
2Le rayon de charge est défini comme la racine du second moment de la distribution de charge du
proton : rp, = 1/ (r2).
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Une expérience dans ce but a été menée au Paul Scherrer Institute en Suisse, par
une collaboration internationale incluant des membres de notre équipe. La fréquence de
transition 25—2P obtenue est étrangement en désaccord avec celle prédite par la théorie.
Le rayon du proton déduit de cette expérience [ANTOGNINI2013], r, = 0,84087(39) fm,
est un ordre de grandeur plus précis, mais environ 4 % plus petit, que la valeur donnée
par le dernier ajustement du CODATA [MoOHR2016], r, = 0,8751(61) fm.

Pour tenter de résoudre cette « énigme du rayon du proton », plusieurs expériences

sont en cours. Notre expérience s’inscrit également dans cet effort.

Principe de notre expérience

La transition 1S — 35 a deux photons est excitée par un laser continu a 205 nm
dans une cavité Fabry-Perot, sur un jet effusif d’atomes d’hydrogene a température
ambiante. Elle est détectée par I'intermédiaire de la fluorescence Balmer-« (35 — 2P)
a 656 nm. L’effet Doppler du premier ordre est compensé grace a ’absorption de deux
photons contra-propageants, mais il reste un effet du deuxiéme ordre, provoquant un

déplacement de fréquence

Vo2

5Dop.2 = _F’ (2)

ou vy est la fréquence de résonance, v la vitesse atomique et c la vitesse de la lumiere.

Une méthode originale permettant d’estimer la distribution de vitesse de notre

jet atomique a été mise en place durant la these de Gaétan Hagel [HAGEL2001]. En

appliquant un champ magnétique uniforme B perpendiculairement a la direction

du jet atomique, les atomes de vitesse v percoivent un champ électrique motionnel

E = v x B (figure 1). L’effet Stark quadratique dii & ce champ électrique déplace la
fréquence de transition d’une quantité

E? v2 B2
OStar — = , 3
Stark ¢ Asp  Agp ®)

ou Agp est l'écart en énergie du niveau 35S avec le plus proche niveau 3P. Ce
déplacement est proportionnel au carré de la vitesse atomique, comme 'effet Doppler
du deuxiéme ordre. On pourrait penser que ces deux effets se compenseraient pour

une valeur bien choisie du champ magnétique.

FIGURE 1 — Le champ magnétique B et le champ électrique motionnel E.
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FIGURE 2 — Diagramme des niveaux déplacés par l'effet Zeeman. Les sous-niveaux
381 2(F = 1,mp = —1) et 3P o(F = 1,mp = 0) se croisent pour un champ
magnétique d’environ 180 G.
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FIGURE 3 — Position théorique des raies 15 —3S(F =1,mrp =1 (a) et —1 (b)) en
fonction du champ magnétique, calculées pour une vitesse atomique v = 3 km/s. La
position apparente (b) résulte de la superposition des deux sous-transitions.



Résumé en francais 111

Cependant, le champ magnétique déplace lui-méme tous les niveaux d’énergie par
effet Zeeman, en levant la dégénérescence des sous-niveaux hyperfins, comme illustré
sur la figure 2. De plus, pour la transition 15 —3S a deux photons, seules les transitions
entre niveaux de méme F' et méme mp sont permises par les regles de sélection. Nous
observons la transition entre les niveaux F' = 1 car le niveau 15; 5(F = 1) est plus
peuplé; elle se sépare donc en trois sous-transitions. La fréquence de la transition
entre les sous-niveaux mp = 0 est tres affectée par I'effet Zeeman ; elle est utilisée pour
calibrer le champ magnétique. En revanche, les autres sous-transitions sont trés peu
déplacées par leffet Zeeman. Pour un champ magnétique d’environ 180 G (18 mT),
leffet Zeeman cause un anticroisement entre les sous-niveaux 35 o(F' = 1,mp = —1)
et 3Py jo(F' = 1,mp = 0). Par conséquent, I'effet Stark motionnel est grand pour la
sous-transition mp = —1 et compense 'effet Doppler pour deux valeurs du champ
magnétique (points A et B sur la figure 3).

L’effet Doppler, et 1’effet Stark pouvant le compenser, sont tous deux de l'ordre
d’une centaine de kHz et bien inférieurs a la largeur naturelle du niveau 35 (1 MHz). Le
signal observé résulte donc de la superposition des deux sous-transitions (mp = £1). Le
déplacement de fréquence apparent est alors la moyenne des deux courbes précédentes,
et la compensation de 'effet Doppler est seulement partielle. Il est donc nécessaire
de mesurer la fréquence de transition pour différentes valeurs du champ magnétique
appliqué, afin d’en déduire la distribution de vitesse grace a un profil de raie théorique

qui tient compte a la fois de 'effet Doppler et de 'effet Stark motionnel.

Historique récent

Ces derniéres années, plusieurs améliorations ont marqué notre montage expérimental.
Au cours de la thése d’Olivier Arnoult, un dispositif de mesure de fréquence utilisant
un peigne de fréquences a été mis en place, permettant une mesure de la fréquence de
transition 1.5 — 35 avec une incertitude de 13 kHz, ou 4,4 x 107!2 en valeur relative
[ARNOULT2010]. Sandrine Galtier a ensuite modifié la source laser d’excitation &
205 nm, remplacant deux doublages successifs par une somme de fréquence, ce qui a
permis un gain notable en intensité.

Gréace a cette nouvelle source laser, Sandrine Galtier a pu effectuer une nou-
velle mesure de la fréquence 15 — 35, avec une incertitude statistique de 2,1 kHz
[GALTIER2014b]. Sa thése s’est cependant terminée sur une interrogation quant a la
valeur obtenue. En effet, un des effets systématiques entachant la mesure est un effet
de déplacement de fréquence di aux collisions subies par les atomes d’hydrogene. Pour
estimer cet effet, la fréquence est mesurée pour différentes valeurs de la pression dans
le jet atomique, afin d’effectuer une extrapolation a pression nulle. Le protocole de

détermination de la vitesse atomique, utilisant le champ magnétique, n’avait été réalisé



112 Résumé en francais

que pour une seule valeur de pression. Or, le modele de distribution de vitesse utilisé
lors de 'analyse peut inclure une dépendance en pression. Suivant si 'on supposait, ou
non, une telle dépendance en pression, la fréquence de transition obtenue par Sandrine
Galtier variait d’une dizaine de kHz! Il apparaissait donc indispensable d’estimer la
distribution de vitesse pour différentes valeurs de la pression afin de s’assurer de sa
dépendance (ou non) en pression. Cela a été réalisé au cours de mon doctorat et est

présenté dans ce manuscrit.

Le montage expérimental 1S-3S

Le laser d’excitation a 205 nm

La radiation & 205 nm nécessaire a ’excitation est produite par somme de fréquences,
d’un laser titane-saphir a 894 nm et d’une radiation a 266 nm produite par le doublage
en fréquence d’un laser Verdi a 532 nm. Tous ces lasers fonctionnent en mode continu.

Le laser titane-saphir (Ti:Sa) est un laser « fait-maison » construit selon un modele
proposé par Francois Biraben. Sa cavité en anneau comporte plusieurs éléments
sélectifs qui lui conferent une grande accordabilité. Dans sa configuration actuelle,
il délivre environ 1,6 W a 894 nm. Le doublage en fréquence d’'un laser Nd:YVOy
commercial (Verdi V6 et cavité de doublage MBD266, Coherent) produit environ
250 mW a 266 nm.

La somme de fréquences est réalisée dans un cristal de béta-borate de baryum
(BBO) a l'aide de deux cavités imbriquées dont les chemins optiques se recouvrent
dans le cristal. La géométrie de la cavité de doublage, qui a été construite par Sandrine
Galtier durant sa these, est présentée dans la figure 2.3. Elle permet d’obtenir jour a
jour environ 10 mW de radiation continue a 205 nm.

Les deux lasers, Ti:Sa et Verdi, sont stabilisés en fréquence a ’aide de plusieurs
asservissements utilisant des cavités Fabry-Perot. Par 'intermédiaire d’un modulateur
acousto-optique (AOM), la fréquence du laser Ti:Sa peut étre ajustée finement tout
en restant stabilisée. Un laser étalon, dont la fréquence est asservie sur une transition

a deux photons du rubidium, fournit la stabilité long-terme.

Mesures de fréquences

Les fréquences de ces différents lasers sont mesurées grace a un peigne de fréquences
femtoseconde, qui est un laser en impulsions & modes bloqués en phase, émettant
une suite cohérente d’impulsions courtes. Le spectre d’un tel laser est composé de
nombreux modes régulierement espacés, formant une sorte de « régle graduée » optique

permettant de déterminer avec précision la fréquence de nos lasers continus.
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Pour mesurer la fréquence d’un laser continu f., nous réalisons le battement entre
ce laser et la « dent » du peigne la plus proche, de fréquence f,, = n frep = fo. Le taux
de répétition frep et la fréquence d’offset fy qui caractérisent le spectre du peigne sont
tous deux stabilisés et référencés grace a un lien par fibre optique avec ’horloge a
césium du SYRTE.

La fréquence du laser Ti:Sa, ainsi que celle du laser étalon, sont mesurées de cette
facon. En revanche, pour pallier une insuffisance de puissance dans la partie verte
du spectre de notre peigne, nous avons modifié le dispositif permettant d’obtenir la
fréquence du laser Verdi. Aprés maints essais infructueux, la solution finalement choisie
nécessite un laser supplémentaire permettant de transférer la mesure de fréquence
dans le domaine infrarouge. Ce laser Nd:YAG continu possede deux sorties : I'une
a 1064 nm, avec laquelle nous réalisons un battement avec le peigne de fréquences;

l'autre, doublée & 532 nm, pouvant étre comparée directement au laser Verdi.

Le jet atomique et la cavité d’excitation

Les atomes d’hydrogene sont produits par dissociation de molécules de dihydrogene
dans une décharge radiofréquence. Ils sont ensuite conduits a travers une buse en Téflon
vers la cavité de détection, qui est mise sous vide par l'intermédiaire d’une pompe a
diffusion d’huile, elle-méme pompée par une pompe primaire a palettes. Le jet effusif
formé par les atomes est colinéaire avec la cavité Fabry-Perot a 205 nm qui permet
Iexcitation a deux photons. Cette cavité est placée en configuration quasi-concentrique
pour maximiser 'intensité lumineuse au niveau du col du faisceau. L’un des miroirs
est monté sur une cale piézoélectrique afin de maintenir sa longueur a résonance avec
la radiation a 205 nm par I'intermédiaire d’une détection synchrone.

La mesure de 'intensité lumineuse intra-cavité, nécessaire a 1’évaluation expéri-
mentale du déplacement lumineux, n’est pas aisée. D’une part, I’alignement optique de
la cavité est peu stable. D’autre part, le rayonnement ultraviolet dégrade les couches
réfléchissantes des miroirs, ainsi que la photodiode placée en sortie de la cavité. Dans
une tentative d’amélioration de la mesure d’intensité transmise, nous avons modifié
cette photodiode en tirant partie d’une propriété de la fluorescéine : celle-ci, placée
en solution aqueuse dans un petit tube de verre, absorbe 'UV et réémet des photons
verts, recueillis par une photodiode placée sur le coté du tube. Malgré tout, la mesure
d’intensité lumineuse demeure difficile et peu reproductible & long terme.

La fluorescence a 656 nm résultant de la désexcitation des atomes vers le niveau
2P est recueillie par un systéme de détection composé d’un condenseur situé au
dessus de la zone d’excitation (au centre de la cavité Fabry-Perot), et d’un miroir
sphérique placé en dessous de cette zone. Les photons sont ensuite conduits vers un

photomultiplicateur & travers un filtre interférentiel & 656 nm et un jeu de lentilles.
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FIGURE 4 — Vue schématique de la cavité d’excitation.

A la toute fin de ma these, nous avons mis en place un systéme permettant de
refroidir les atomes a la température de 'azote liquide (77 K), par thermalisation avec
une buse en aluminium reliée a un réservoir d’azote liquide. Cela permettra de réduire
leur vitesse, et donc 'effet Doppler du deuxiéme ordre. Toutes les mesures présentées
dans ce manuscrit ont été réalisées a température ambiante.

Deux bobines de Helmholtz, dans lesquelles peut circuler un courant d’une centaine
d’amperes, permettent de créer le champ magnétique vertical nécessaire a 1’évaluation
de la distribution des vitesses atomiques. Ce champ magnétique est calibré en mesurant
la fréquence de la transition 151/, — 35 /2(F = 1,mp = 0), qui est fortement déplacée

par l'effet Zeeman.

Signaux observés

L’acquisition des données est controlée par un programme informatique écrit en lan-
gage Python. Durant un enregistrement, la fréquence d’excitation est modifiée, par
I'intermédiaire du modulateur acousto-optique (AOM), en suivant une séquence pré-
définie d’allers-retours pour éviter d’éventuelles dérives. Pour chaque point de mesure
durant une seconde, 'ordinateur enregistre la fréquence des différents battements,
ainsi que le nombre de photons de fluorescence, et I'intensité lumineuse transmise par
la cavité. D’autres parametres, tels que la puissance lumineuse a l'entrée de la cavité
d’excitation, la pression dans cette cavité, et le courant circulant dans les bobines de
Helmholtz, sont recueillis & la main. Un exemple de signal de transition est représenté
sur la figure 5.

J’ai également eu I’occasion d’observer pour la premiére fois la transition 1.5—35 du

deutérium (voir figure 2.18 p. 46), située a environ 800 GHz de celle dans I’hydrogene.
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FIGURE 5 — Exemple de signal de la transition 1.5 — 35 de 'hydrogene, obtenu en
4 heures d’intégration, a champ magnétique nul. Le nombre de photons de fluorescence
par seconde est indiqué en fonction de la fréquence du modulateur acousto-optique
(AOM) servant a modifier la fréquence d’excitation. I’abscisse doit étre multipliée par
4, et renversée, pour obtenir une échelle relative en fréquence atomique. Les points
sont les données expérimentales, la courbe est un ajustement lorenztien. La largeur de
raie observée vaut environ 1,35 MHz, & comparer a une largeur naturelle de 1 MHz.

Les effets systématiques

Le signal enregistré est ajusté par une forme de raie théorique qui tient compte a la
fois de l'effet Doppler du deuxieéme ordre, et de l'effet Stark motionnel pouvant le

compenser en partie. D’autres effets pouvant déplacer la raie sont également considérés.

Calcul de la forme de raie théorique

Le signal de fluorescence résulte de la désexcitation du niveau 35, et du niveau 3P qui
lui est couplé par 'effet Stark. Dans un premier temps, la population de ces niveaux
est calculée en utilisant le formalisme de la matrice densité. Il s’agit de résoudre

I’équation d’évolution de la matrice densité p,

dp 1 dp
P — S+ L+ He)pl+ { ) @

ou H est le hamiltonien d’un atome d’hydrogene immobile placé dans un champ
magnétique uniforme, Hj décrit 'interaction atome-lumiere, et Hgyqrr €st la pertur-

bation due au champ électrique motionnel. Le dernier terme représente la relaxation
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par émission spontanée. La fluorescence théorique est obtenue en multipliant chaque
population par le rapport de branchement correspondant [ARNOULT2010).

Le modele de distribution de vitesse utilisé dans le calcul de forme de raie a été
raffiné au cours de la thése de Sandrine Galtier. S’appuyant sur la distribution de
vitesse « maxwellienne » d’un jet effusif, il tient compte d’une déplétion des atomes
lents. La distribution de vitesse dépend alors de deux parameétres o et vg, et est de la

forme

02
f(v,0,v0) o v3exp (—W> Plv/o] exp(—vp/v). (5)

La fluorescence calculée précédemment est donc intégrée sur cette distribution de
vitesse. Le profil de raie est ensuite convolué avec une fonction lorentzienne de largeur
I’ afin de simuler un élargissement. La fonction utilisée pour I'ajustement des données

contient des parametres supplémentaires d’amplitude (A) et d’offset (C), et s’écrit
FB,a,vo (V(h F, A, C; V) =AX (SB,J,UO * fLor)(V — Ve, F) + C. (6)

Effets de déplacement de la fréquence

Dans notre expérience, outre 'effet Doppler déja pris en compte dans le modeéle de
forme de raie, deux effets sont susceptibles de déplacer la fréquence de transition de
plusieurs kHz : le déplacement lumineux et le déplacement collisionnel. Ils nécessitent
tous deux une étude expérimentale importante. L’effet d’interférence quantique, qui

est petit dans notre cas, a fait ’objet d’une étude théorique approfondie.

Déplacement lumineux Cet effet est dii a un couplage entre les photons d’excita-
tion et les états d’énergie électroniques. Un champ électromagnétique a deux effets sur
ces niveaux d’énergie : & résonance, il induit des transitions; hors résonance (ou dans
le cas d’une transition a deux photons), il déplace les niveaux proportionnellement &
I'intensité lumineuse regue par les atomes. Dans notre cas, une estimation théorique
donne un décalage en fréquence positif de I'ordre de 12 kHz. Il était donc important

d’évaluer cet effet expérimentalement.

Déplacement collisionnel Les collisions subies par les atomes d’hydrogene peuvent
aussi induire un déplacement de la fréquence de transition, proportionnellement a la
pression dans le jet atomique. Durant la thése de Sandrine Galtier, une interrogation
était apparue quant au signe de cet effet, suivant ’existence, ou non, d’une dépendance
en pression de la distribution de vitesse. L’étude expérimentale menée durant ma
these a permis de montrer que le déplacement collisionnel est négatif. Ce signe est en
accord avec une modélisation réalisée par A. Matveev, simulant les collisions par un

potentiel attractif de Van der Waals [MATVEEV2017, Y0OST2016].
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Interférence quantique 1l est également utile d’estimer I'effet d’interférence quan-
tique, plus connu sous le nom de cross-damping, qui peut intervenir lorsqu’une
transition atomique induite optiquement est détectée via la fluorescence induite. Cet
effet est di a la présence de niveaux atomiques non résonants, mais proches du niveau
excité. Comme la fluorescence est détectée de maniére non sélective, une interférence
est possible entre les différents chemins radiatifs (15 — 35S — 2P et 1.5 — 3D — 2P)
partageant les mémes niveaux initial et final. Le signal observé devient le carré d’une

somme d’amplitudes, au lieu d’étre une simple somme d’intensités :

2
Signal =

S

= YA+ Y AAL (7)
i (2]
1#]
Il contient alors des termes croisés, dont la forme en dispersion induit une asymétrie
de la forme de raie et un déplacement de la fréquence apparente de la transition, cet
effet n’étant pas pris en compte dans le modele utilisé pour calculer la forme de raie

théorique.

En m’inspirant des travaux de P. Amaro et al., effectués dans le cadre de la spectro-
scopie des atomes muoniques [AMARO2015], j’ai estimé théoriquement le déplacement
de la fréquence 1S — 35 dans notre expérience [FLEURBAEY2017]. Ici, l'effet d’inter-
férence est dii a la présence des niveaux 3D, & quelques gigahertz du niveau 3S. La
méthode de calcul est basée sur une analogie avec une diffusion de type Raman-Stokes.
Dans notre cas, ’excitation se fait a deux photons, ce qui implique la présence d’un
opérateur tensoriel, de rang 0 ou 2 suivant la transition étudiée, remplacant I'opérateur
dipolaire électrique habituel. L’étude théorique a été effectuée pour ’hydrogene et le
deutérium, dont les niveaux d’énergie difféerent uniquement par la structure hyperfine.
Le décalage en fréquence est cependant approximativement le méme pour les deux
isotopes, car la structure hyperfine du niveau 3D est négligeable devant la largeur

naturelle de ce niveau (environ 10 MHz).

Cet effet d’interférence disparait si la fluorescence est détectée dans toutes les
directions. Dans le cas d’un détecteur ponctuel, 'amplitude des termes croisés (et
donc le déplacement de fréquence résultant) dépend simplement de 'angle entre la

polarisation des photons d’excitation et la direction de détection.

Pour la transition 15 — 35, le déplacement en fréquence maximal dans le cas d’un
détecteur ponctuel serait d’environ —0,9 kHz. En prenant en compte 1’étendue spatiale
de notre détecteur, le déplacement prédit pour la fréquence atomique devient environ
—0,58 kHz, ce qui est inférieur a notre incertitude expérimentale actuelle. Cette étude
sera néanmoins prise en compte dans le résultat final, en ajoutant une correction de

+0,6(2) kHz a la fréquence obtenue.
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Causes d’élargissement

La largeur du signal observé (figure 5) est supérieure a la largeur naturelle du niveau
3S. Bien que cette largeur ne soit pas un élément primordial pour notre mesure, il est
utile de comprendre 1’origine de 1’élargissement observé.

Plusieurs causes d’élargissement ont été considérées. Le temps de transit des atomes
a travers le faisceau laser semble étre la cause prépondérante d’élargissement. Les
collisions peuvent également jouer un role, tandis que 1’élargissement par saturation
est négligeable dans notre cas. La largeur spectrale du laser d’excitation ne limite pas
a I’heure actuelle la largeur de la transition observée. Elle peut en revanche avoir une
grande incidence sur celle-ci, comme nous en avons fait ’expérience fortuite lors d’un

probléme affectant la stabilisation en fréquence du laser Verdi.

Analyse des données

Entre septembre 2016 et février 2017, nous avons enregistré environ 1700 signaux de la
transition 15551 — 35{51, en suivant le protocole décrit page 114. Ces mesures ont été
effectuées pour deux valeurs de la pression, évaluées & 2,7 x 10~° mbar (basse pression)
et 2 x 10~% mbar (haute pression). Cette pression n’est connue que de maniére relative,
la jauge a ionisation étant placée sur le c6té de la chambre a vide et non pas au niveau
du jet atomique. Pour ’analyse, nous avons séparé ces enregistrements en trois séries
de données, deux séries a basse pression (BP1 et BP2) encadrant une série & haute
pression (HP). Pour chaque valeur de la pression, nous avons fait varier le champ
magnétique B appliqué aux atomes, observant la transition a champ magnétique nul
et pour différentes valeurs de B autour de I'anticroisement a 180 G, la ou 'effet Stark
motionnel est important.

Chaque enregistrement (« run ») est composé de 10 scans de N points de mesure
(avec N = 31 ou 51, correspondant & une largeur de balayage en fréquence atomique
de 1,2 ou 2 MHz). Pour chacun de ces points, la fréquence atomique est déduite
des différentes fréquences de battements ainsi que de la fréquence de ’AOM, qui est
modifiée au cours d’un scan suivant une séquence prédéfinie.

Un filtre est alors appliqué aux données afin de supprimer les points erronés.
Ceux-ci peuvent avoir différentes causes. La fréquence est parfois mal comptée, si une
boucle d’asservissement décroche par exemple. On vérifie donc que chaque fréquence
de battement est comprise dans un intervalle prédéfini. Le nombre de photons de
fluorescence peut également chuter de maniére anormale, principalement lorsque la
cavité de détection, qui est sensible aux vibrations, se désasservit. Le comptage de
photons, ainsi que I'intensité d’UV transmise par la cavité, sont tous deux comparés a

des seuils définis pour chaque run.
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Enfin, un « signal » est obtenu par la moyenne des 10 scans, pour les N points du
balayage en fréquence.

Dans un premier temps, chaque signal est ajusté séparément par le profil théorique
de forme de raie Fp (v, I', A, C;v) défini dans I’équation (6). Quatre parametres
sont ajustés : fréquence centrale v, élargissement ', amplitude A et offset C'. L’ajus-
tement est réalisé par la routine optimize.leastsq en langage Python, basée sur la
méthode des moindres carrés, qui consiste & minimiser la quantité

N
S =3 Y = Fpouw(ve, T, A, C; X)P, 8)

i=1
ou X; sont les IV points de fréquence, et Y; la fluorescence mesurée pour chaque point.
L’incertitude sur la fréquence centrale optimale est déduite de la matrice de

covariance créée par la routine Python.

Distribution de vitesse

Il faut alors déterminer les parametres o et vy de la distribution de vitesse, séparément
pour les différentes valeurs de la pression. L’ajustement décrit ci-dessus est réalisé
pour une grille de valeurs des parameétres (o, vg). Pour chaque série de données (BP1,
BP2, HP), on calcule la moyenne pondérée de la fréquence centrale, sans distinction

de champ magnétique,

M=

(vi/o?)
T (9)

Vmean =

(1/03)

NN Ea

-
Il

ainsi que la quantité

2 _ [ (% = Vmean)®
=2 ; : (10)

i=1 9;

La surface x2(o,vp) est ajustée par un polynome du second degré en o et du troisiéme
degré en vy. Le minimum de cette surface donne les valeurs optimales des parametres.
I1 est alors possible de calculer la fréquence correspondante vqp¢, soit en ajustant la
surface de fréquence par un polynoéme similaire, soit en ajustant a nouveau tous les
signaux pour les parameétres optimaux de la distribution de vitesse (ces deux manieéres
sont compatibles).

La méthode utilisée pour calculer les incertitudes s’appuie sur le fait que, en
I’absence de corrélations, l'incertitude sur un parametre d’ajustement est donnée par
la valeur de ce parameétre pour laquelle x? est augmenté de 1 par rapport & sa valeur
optimale Xgpt. Ici, les parametres o et vy étant corrélés, 'incertitude est calculée

simultanément pour les deux parameétres.
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Dans le plan (o, vp), nous tragons la courbe d’équation

XZ(Uv UO) = Xgpt +1, (11)

qui ressemble a une ellipse. Les incertitudes sont alors données par la projection
de cette courbe sur les axes (voir figure 4.2 p. 81). A ce stade, nous calculons le
rapport de Birge, défini par Rg = X(Q)pt /(k —2), ou k est le nombre de runs. Nous
multiplions les incertitudes par ce rapport s’il est plus grand que 1, afin de tenir
compte de la dispersion des points expérimentaux. L’incertitude sur la fréquence
s’obtient facilement en calculant 1’écart maximal entre les fréquences correspondant a

la courbe d’équation (11) et la fréquence optimale (figure 4.3).

Correction des effets systématiques

Dans un premier temps, il faut corriger du déplacement lumineux les fréquences
obtenues ci-dessus. La correction sera basée sur un parametre mesurable qui reflete
I'intensité lumineuse vue par les atomes. Or, nous avons potentiellement acces a deux
tels parametres : 'intensité lumineuse transmise par la cavité, et la hauteur du profil
de fluorescence observé. Cette dernieére, exprimée en photons/s, est proportionnelle
au carré de l'intensité lumineuse absorbée par les atomes. Cette hauteur doit étre
corrigée de sa variation théorique avec le champ magnétique appliqué aux atomes, et
est également dépendante de la pression. A premiere vue, le parameétre le plus naturel
a utiliser parait étre I'intensité transmise. Cependant, la mesure de cette intensité
n’était pas reproductible au dela de quelques jours; il semblerait qu’elle dépende de
I’alignement de la cavité d’excitation. Nous avons donc décidé d’utiliser la hauteur du
signal comme indicateur de l'intensité lumineuse regue par les atomes.

Dans le but de caractériser le déplacement lumineux, nous avons réalisé des
enregistrements (inclus dans la série BP2) en faisant varier manuellement 'intensité
lumineuse, & basse pression. La pente d’un ajustement linéaire de la fréquence en
fonction de la racine de la hauteur du signal (figure 4.5), donne un coefficient de
correction (¢pp = 595 + 172 Hz//photons/s) qui est alors appliqué a tous les signaux
enregistrés a basse pression. A haute pression, ce coefficient n’a aucune raison d’étre
valide, puisque la hauteur du signal peut dépendre de la pression. Le coefficient de
correction est obtenu en minimisant le x? de cette série, ce qui revient & faire une
extrapolation utilisant 'intégralité des signaux. L’intensité lumineuse d’excitation
ayant peu varié lors des enregistrements a haute pression, ce coefficient est peu précis.

Finalement, les valeurs de fréquence, avant et apres correction du déplacement
lumineux, ainsi que les parametres de la distribution de vitesse, sont résumées dans la

table 1.
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Série Vopt oLs Veorr ‘ o i)

BP1 734,2(3,9) -10,4(3,0) 723,8(4,9) | 1,515(52) 1,23(55)
BP2 730,3(2,4) —12,1(3,5) 718,2(4,3) | 1,495(32) 1,33(31)
HP 713,2(7,1) —6,3(10,2) 706,9(12,4) | 1,521(85) 0,87(78)

TABLE 1 — La fréquence non corrigée, la correction du déplacement lumineux, et la
fréquence corrigée, exprimées en kHz. Seuls les quatre derniers chiffres de la fréquence
sont donnés : v = 2922742936 xxx,x kHz. L’incertitude sur la fréquence corrigée est
la somme en quadrature des deux autres incertitudes. Le tableau donne également les
parametres de la distribution de vitesse obtenus par l’ajustement, en km/s.

Il est alors possible d’effectuer une extrapolation en fonction de la pression afin de
déterminer la fréquence corrigée du déplacement collisionnel (figure 4.6). Pour réaliser
I’extrapolation, une corrélation a été prise en compte entre les deux séries de données
a basse pression, pour traduire le fait que la correction de déplacement lumineux a
été déterminée avec le méme coeflicient pour ces deux séries. La fréquence a pression

nulle vaut ainsi
v = 2922742936 722,3(4,9) kHz. (12)

Comme indiqué plus haut, il faut maintenant ajouter une correction de +0,6(2) kHz
pour prendre en compte 'effet d’interférence quantique. Nous pouvons enfin utiliser
les écarts hyperfins pour obtenir la fréquence centroide de la transition 1.5 — 3.5,

. _ 1 1
l/(feslfg%de = 1/557_135 + ZAEHFS(LS) — ZAEHFS(?’S)»

AEnps(1S) = 1420405,752 kHz,
avec (13)

AFEynrs(3S) = 52609,44(1) kHz.

Conclusion

Finalement, la fréquence de la transition 1.5 — 3.5 obtenue vaut
Ms_3g = 2922743278 672,0(4,9) kHz. (14)

L’incertitude de 4,9 kHz correspond & une incertitude relative de 1,7 x 10712,
Par combinaison linéaire avec la fréquence de transition 1.5 — 2.5, mesurée avec une
trés grande précision [PARTHEY2011], on peut déduire de notre résultat une valeur de

la constante de Rydberg,
Roo = 10973 731,568 55(26) m ™!, (15)

et du rayon du proton,
rp = 0,879(25) fm. (16)
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Ces valeurs sont en bon accord avec les valeurs recommandées par le CODATA
[MOHR2016].

Par ailleurs, on remarque que la distribution de vitesse estimée semble peu dépendre
de la pression. A la lumiére de ce résultat, nous avons pu réanalyser les données
recueillies pendant la theése de Sandrine Galtier [GALTIER2014a]. Le résultat de cette

nouvelle analyse, réalisée par Francois Biraben,
v1s—35 = 2922743278 672,2(2,8) kHz, (17)

est en trés bon accord avec celui obtenu durant ma these, malgré plusieurs différences
entre les jeux de données. En effet, durant les trois ans séparant les deux sessions
d’enregistrement, plusieurs changements sont survenus dans le montage expérimental.
La fréquence du laser a 532 nm est maintenant mesurée par 'intermédiaire d’un
laser auxiliaire & 1064 nm. La jauge mesurant la pression a été remplacée, empéchant
une comparaison directe du déplacement collisionnel. Enfin, la puissance lumineuse

ressentie par les atomes était également estimée différemment.

Ces deux résultats sont en accord avec la valeur prédite par le CODATA, renforcant

ainsi I’énigme du rayon du proton.

LKB 2010 | ® |
| o |  Yostetal., 2016
LKB 2014, nouvelle analyse |——e——]
LKB 2017, ma thése |— 76} |

|—-e—| CODATA 2014
Visss a partir de pp  |e|

645 650 655 660 665 670 675 680 685 690
(Visas- 2922 743 278 MHz ) [kHz]

FIGURE 6 — Comparaison de notre mesure (LKB 2017) avec d’autres déterminations
de la fréquence de transition 15 — 35 de ’hydrogene.

La figure 6 présente une comparaison de notre mesure (LKB 2017) avec d’autres
déterminations expérimentales de la fréquence de transition 1.5—35 : la derniere mesure
publiée par I’équipe (LKB 2010, [ARNOULT2010]), les données de Sandrine Galtier
réanalysées (LKB 2014), et la mesure publiée récemment par le groupe de Garching
ou la transition est excitée par un peigne de fréquence picoseconde [Y0sT2016]. Deux
déterminations théoriques de cette fréquence sont également représentées, obtenues en
utilisant soit les valeurs recommandées par le CODATA, soit le rayon du proton et la

constante de Rydberg déduites de la spectroscopie de 'hydrogéne muonique.
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Perpectives

Dans les prochains mois, une nouvelle mesure de la fréquence de transition 15 — 35
sera effectuée, cette fois avec les atomes refroidis a une température proche de celle de
I’azote liquide grace au systéme de refroidissement mentionné page 114. En théorie, cela
réduira ’effet Doppler du deuxieme ordre d’un facteur 4, rendant notre mesure moins
sensible a la détermination de la distribution de vitesse. Le systéme de refroidissement
a été installé durant les derniers mois de mon doctorat, et nous avons pu observer la
transition pour la premiere fois avec des atomes refroidis a la toute fin du mois de
juillet 2017. La figure 4.8 (page 95) présente ainsi une moyenne de 19 runs, enregistrés
pour une température autour de 120 K. La mesure de fréquence était seulement
relative, le peigne de fréquence étant éteint. Par ailleurs, le cristal de BBO utilisé
pour la somme de fréquence était vieux et peu efficace, délivrant moins de 4 mW a
205 nm. En comparant ce signal a d’autres enregistrements réalisés le méme jour, mais
a température ambiante, nous avons néanmoins pu observer le décalage en fréquence
(de lordre d’une centaine de kHz) di a la variation de la vitesse atomique. Plusieurs
problémes techniques doivent encore étre surmontés avant de pouvoir commencer une
série d’enregistrements. La métrologie 1.5 — 35 de I'hydrogene refroidi sera effectuée
par Simon Thomas durant sa these.

La transition 15 — 35 pourra également étre étudiée dans le deutérium. En effet, la
fréquence de la source laser d’excitation peut étre modifiée simplement pour atteindre
cette transition. Durant ma these, la transition 1.5 — 35 du deutérium a été observée
pour la premiére fois avec un laser continu.

A plus long terme, la source UV pourra étre modifiée pour atteindre la transition
a deux photons 15 — 45 a 194 nm, dans ’hydrogene ou le deutérium. Un avantage de
cette transition, qui n’a jamais été observée, est sa largeur naturelle de 700 kHz, plus
faible que celle de la transition 1.5 —3S (1 MHz). De plus, une petite partie des atomes
excités retomberont par cascade radiative sur le niveau métastable 25, a partir duquel
il serait possible d’effectuer une transition & un photon pour déterminer la distribution
de vitesse. Cela permettrait de tester notre méthode actuelle de détermination de

cette distribution.
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Métrologie de la fréquence de transition 1S—3S dans I’hydrogene :
contribution au débat sur le rayon de charge du proton

Résumé : La mesure précise de la fréquence de la transition 1S-3S de 'atome d’hydrogene est
d’un grand intérét pour ’énigme du rayon de charge du proton, qui a pour origine les résultats
récents de la spectroscopie de 'hydrogene muonique. Nous excitons la transition a deux photons
15-3S, dans un jet d’atomes d’hydrogene, a ’aide d’un laser continu & 205 nm obtenu par somme
de fréquences dans un cristal non-linéaire. La fréquence de la transition est mesurée par rapport
a 'horloge a césium du LNE-SYRTE a l'aide d’un peigne de fréquence.

L’enregistrement du signal pour différentes valeurs d’'un champ magnétique appliqué permet
d’estimer la distribution de vitesse des atomes du jet et d’en déduire I'effet Doppler du deuxieme
ordre. Les autres effets systématiques qui déplacent la transition ont été pris en compte :
interférence quantique, déplacement lumineux, collisions. Une étude systématique en fonction de
la pression a permis de montrer que la distribution de vitesse ne dépend pas de la pression et de
déterminer le déplacement collisionnel.

Finalement, une valeur de la fréquence de transition 1S—-3S est obtenue avec une incertitude
d’environ 5 kHz, ou 1,7 x 1072 en valeur relative. Elle est en trés bon accord avec la valeur
recommandée par le CODATA. Cette nouvelle mesure contribue a la recherche autour de I’énigme
du rayon du proton.

Frequency metrology of the 1S-3S transition of hydrogen:
contribution to the proton charge radius puzzle

Abstract: The precise measurement of the 15-3S transition frequency of hydrogen could have a
great impact on the proton charge radius puzzle, which results from the recent spectroscopy of
muonic hydrogen. In our experiment, the two-photon 1S-3S transition is excited in a hydrogen
atomic beam, with a continuous-wave 205-nm laser which is obtained by sum frequency generation
in a non-linear crystal. The transition frequency is measured with respect to the LNE-SYRTE Cs
clock by means of a frequency comb.

Recording the signal for several values of an applied magnetic field allows to estimate the velocity
distribution of the atoms in the beam and deduce the second-order Doppler shift. Other frequency-
shifting systematic effects have been taken into account: cross-damping, light shift, collisions.
A complete study has shown that the velocity distribution does not depend significantly on the
pressure, and allowed to determine the collisional shift.

Eventually, a value of the 1S-3S transition frequency is obtained with an uncertainty of about
5 kHz, or a relative uncertainty of 1.7 x 10712, It is in very good agreement with the CODATA
recommended value. This new measurement contributes to the ongoing search to solve the proton
radius puzzle.



