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Abstract / Résumé

Abstract

Computing platforms increasingly grow in power and complexity. Numerous chal-
lenges remain to build next generations of platforms, but exploiting the platforms is
a challenge per se. Constraints such as energy consumption, data movements and
resilience risk to initiate breaking points in the way that the platforms are managed
— especially with the convergence of the different types of distributed platforms.

Resource and Jobs Management Systems (RJMSs) are critical middlewares that
allow users to exploit the resources of such platforms. They must evolve to make
the best use of the computing platforms while complying with these new constraints.
Each evolution ideally require many iterations, but conducting them in vivo is not
reasonable due to huge overhead. Simulation is an efficient way to tackle the
subsequent problems, but particular caution must be taken when drawing results
from simulation as using ill-suited models may lead to invalid results.

The first contribution of this dissertation is the proposition of a modular simulation
methodology to study RJMSs and their evolution realistically — and the related
simulator Batsim. The main idea is to strongly separate the simulation from the
decision-making algorithms. This allows separation of concerns as any algorithm
can benefit from a validated simulation with multiple levels of realism (features,
accuracy of the models). This methodology improves the production launch of new
policies since both academic prototypes and production RJMSs can be studied in the
same context.

Batsim is used in the second part of this dissertation, which focuses on online and
non-clairvoyant resource management policies to save energy. Several algorithms
are first proposed and analyzed to maximize performances under an energy budget
for a given time period. This dissertation then explores more generally possible
energy and performances trade-offs that can be obtained with node shutdown
techniques.
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Résumé

Les plateformes de calcul se multiplient, grandissent en taille et gagnent en com-
plexité. De nombreux défis restent à relever pour construire les prochaines géné-
rations de plateformes, mais exploiter cesdites plateformes est également un défi
en soi. Des contraintes comme la consommation énergétique, les mouvements de
données ou la résilience risquent de devenir prépondérantes et de s’ajouter à la com-
plexité actuelle de la gestion des plateformes. Les méthodes de gestion de ressources
peuvent également évoluer avec la convergence des différents types de plateformes
distribuées.

Les gestionnaires de ressources sont des systèmes critiques au cœur des plateformes
qui permettent aux utilisateurs d’exploiter les ressources. Les faire évoluer est né-
cessaire pour exploiter au mieux les ressources en prenant en compte ces nouvelles
contraintes. Ce processus d’évolution est risqué et nécessite de nombreuses itéra-
tions qu’il semble peu raisonnable de réaliser in vivo tant les coûts impliqués sont
importants. La simulation, beaucoup moins coûteuse, est généralement préférée
pour faire ce type d’études mais pose des questions quant au réalisme des résultats
ainsi obtenus.

La première contribution de cette thèse est de proposer une méthode de simulation
modulaire pour étudier les gestionnaires de ressources et leur évolution — ainsi que
le simulateur résultant nommé Batsim. L’idée principale est de séparer fortement
la simulation et les algorithmes de prise de décision. Cela permet une séparation
des préoccupations puisque les algorithmes, quels qu’ils soient, peuvent bénéficier
d’une simulation validée proposant différents niveaux de réalisme. Cette méthode
simplifie la mise en production de nouvelles politiques puisque des codes issus à
la fois de gestionnaires de ressources de production et de prototypes académiques
peuvent être étudiés dans le même contexte.

La méthode de simulation proposée est illustrée dans la seconde partie de cette
thèse, qui s’intéresse à des problèmes de gestion de ressources non clairvoyants
mêlant optimisation des performances et de la consommation énergétique. Différents
algorithmes sont d’abord proposés et étudiés afin de respecter un budget d’énergie
pendant une période de temps donnée. Nous étudions ensuite plus généralement les
différents compromis réalisables entre performances et énergie grâce à différentes
politiques d’extinction de nœuds de calcul.
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Introduction 1
1.1 Background

Computing platforms increasingly grow in power and complexity. High Performance
Computing (HPC) systems continue their evolution towards bigger and more pow-
erful platforms — future supercomputers are likely to reach exascale by offering a
computing power of 1018 flop/s. Properly building and exploiting platforms of that
scale is very challenging, as current designs and technologies draw near to their
breaking point regarding several constraints [Don+11] — e.g., energy consumption,
data movements and resilience. Simultaneously, the popularization of data centers
and smaller-scale clusters broadens the computing platforms spectrum and raises
new questions and challenges in terms of resource management.

The exploitation of the computing platforms is traditionally conducted within
Resources and Jobs Management Systems (RJMSs). These complex middlewares
are the very core of the platform management and play many roles, which can be
grouped into two main classes. They are firstly in charge of doing the numerous
technical procedures that occur on the system, whether they are related to the
management of the users, of the jobs or of the different types of resources — e.g.,
processors, computing nodes, network switches or the storage system. These man-
agement procedures notably include the launching of the jobs, the monitoring of the
various resources, the handling of the users’ submissions and data, and the reporting
of the platform current state and expected schedule. They secondly determine
how the resources are shared among the different users. RJMSs are therefore the
place to take management decisions and to implement management policies and
algorithms.

RJMSs must evolve regarding both aforementioned aspects to continue to make the
best use of the computing platforms. Several RJMSs design choices are not expected
to scale any longer if the platforms continue to grow in size [Don+11], such as the
quasi-non-distributed decision-making approach adopted by most of the RJMSs used
in the TOP500 [@top500] supercomputers. Furthermore, some problems already
visible on current supercomputers become increasingly important and are expected
to become predominant [Luc+14]. In particular, building an exascale supercomputer
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with current technology and design would lead to a tremendous power consumption
— in the order of 100 MW if a power efficiency similar to the Piz Daint1 platform’s is
achieved. Such immense needs are not reasonable and are likely to initiate breaking
points in the way that supercomputers are both managed and designed [Ash+10].
Energy can be taken into account by the RJMSs, as it can be considered as a resource
just as CPUs, memory or communication channels [Geo+15; Cha+01]. We focus on
this particular aspect during this dissertation.

Making changes in RJMSs is very complex, as many other aspects must be considered.
For example, scalability, heterogeneity and dynamicity keep making RJMSs ever
more complicated. Another phenomenon to consider is the convergence of the
different types of distributed systems that are HPC, Cloud and Big Data platforms.
The underlying resource management strategies may simultaneously converge and
allow more and more dedicated features to optimize the platform usage and the user
quality of service. Moreover, making subsequent modifications on production RJMSs
is even harder, as these critical systems should remain highly reliable. Each evolution
ideally requires many real-scale test iterations, but conducting related experiments
in vivo is most of the time impossible because of the enormous time — and energy —
costs that would be involved. The most efficient manner to tackle these problems is
simulation, which is faster than real experiments by multiple orders of magnitude,
thus allowing the reproducible exploration of a multitude of parameters. However,
particular caution must be taken when drawing conclusions from simulation [Flo06],
as using ill-suited models or neglecting the models calibration may lead to invalid
results.

1.2 Simulating RJMSs

A lot of studies have been devoted to the simulation of RJMSs at various stages.
Most of them focus on resource management strategies and especially on scheduling
and allocating jobs [KR10; Ngo+16]. Other specifically target networks [PM05;
@ns3] or power management strategies [Ell+17]. Most of the existing simulators
are developed by local teams for dedicated purposes and are assessed on synthetic
or random data. We believe that they are too specialized to study the big picture
about the evolution of RJMSs.

1As June 2017, the Piz Daint supercomputer is both ranked as the third most powerful platform of
the TOP500 and the sixth greenest platform of the GREEN500. It develops nearly 20 petaflops per
second and achieves a 10.398 Gflop/J power efficiency [@pizdaint].

2 Chapter 1 Introduction



Most HPC RJMSs increasingly gather features and eventually become convoluted
systems with sprawling colossal amounts of source code whose modification is
complex and costly. New resource management approaches and tools emphasize
modularity, notably from industry [Bur+16; Hin+11; Vav+13] but also from the
HPC community [Ahn+14]. Even if previous generations of RJMSs are likely
to subsist for some time we believe that modular approaches will be adopted in
HPC centers once mature and efficient enough — as they can drastically reduce
maintenance costs. Modularity facilitates the assessment of RJMSs by simulation.
Flux [Ahn+14] for example directly includes a simulator, while some RJMSs can be
assessed by external tools [Liu+15]. However, implementing RJMSs and simulating
the underneath computing platforms are very distinct and complex problems. We
believe that coupling too strongly these problems together leads to naive simulation
models that cannot reflect realistic phenomena. The first contribution of this
dissertation is to propose a modular simulation methodology to study RJMSs
and their evolutions realistically — and the related simulator Batsim.

RJMS
simulator

scheduler
jobs
manager

resources
manager

communication
protocol

orchestrator

platform
simulator

decision maker

Figure 1.1: Overview of the proposed simulation methodology. The decision making is
strongly decoupled from the simulation. The simulator itself can be built upon
existing distributed platforms simulation frameworks.

As depicted on figure 1.1, the main idea of this methodology is to maximize separa-
tion of concerns by strongly separating the platform simulation from the decision-
making procedures that decide how the platform is managed. This separation
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prevents duplication of effort regarding simulation, as many decision-making pro-
cedures can be assessed with the same simulator — whether they come from real
RJMSs or academic prototypes. We therefore believe that the approach can improve
the use in production of new functionalities or algorithms, as academic prototypes de-
veloped with it are very likely to be compatible with real RJMSs. In fact, production
RJMSs can be adapted to use the simulation side of the proposed communication
protocol and therefore use any compatible decision-making algorithm. This ap-
proach is also convenient to develop new functionalities as the decoupling allows
one to implement the algorithms in any programming language. The methodology
additionally allows to take full advantage of existing work about the simulation of
distributed systems. We strongly believe that this is the way to go to build general-
purpose sound simulators, as it avoids the classical error of poorly reimplementing
how complex objects should be simulated.

As said previously, we implemented the proposed simulation methodology in the
Batsim simulator. Batsim is completely open source and available online2. It is
based on the SimGrid [Cas+14] simulation framework, which allows to observe
various phenomena soundly thanks to several adequate simulation models. Batsim
clearly separates the way jobs are simulated from their external description, which
allows multiple levels of realism with exactly the same workload descriptions —
at least from the decision-making component point of view. We rely on current
software engineering techniques to enhance confidence in the simulation results. In
other words, substantial investment has been made in Batsim’s implementation and
the working state of its features is regularly and automatically tested thoroughly.
Batsim is used in the second part of this dissertation, which focuses on online and
non-clairvoyant resource management policies to save energy. Notice that Batsim
is a general-purpose tool that can be used to conduct manifold studies involving
distributed platforms and their management, and is therefore not limited to energy-
related use cases. It is used to conduct several experiments in our team and outside
it — e.g., in Darmstadt, Hawai‘i and Lyon. As I write these lines one external article
relying on Batsim for its experimental part has been published [NS17].

2Batsim is distributed under the LGPL-3.0 license. The project source code and documentation are
available on Github [@batgit1] and on Inria’s Gitlab [@batgit2]. Release versions can directly be
used with the oarteam/batsim docker container.
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1.3 Energy and Performances

As computing platforms grow in size, this is the same for their power consumption.
Only little interest has been shown in power consumption of older generations
of platforms [OLG08], notably because the involved amounts of energy remained
reasonable and because the institutions in charge of such systems have the financial
and technical means to manage this issue. This situation however started to change
because the energy consumption of current systems becomes significant enough to be
a limit to build bigger platforms. For example, the Sunway TaihuLight supercomputer
— current leading system of the TOP500 — develops 93 petaflop/s and consumes
15.4 megawatts (MW) [@sunwaytl]. The second ranked system of the TOP500
is the Tianhe-2 supercomputer, which develops 33 petaflop/s and consumes 17.8
MW [@tianhe2]. Building an exascale platform with such power efficiency would
lead to tremendous power consumption — a quick computation gives 165 MW from
Sunway TaihuLight’s power efficiency and 525 MW from Tianhe-2’s. Fortunately,
huge improvements on power efficiency have been conducted over the last 10 years
but it is still a big challenge.

Initiated in 2007, the GREEN500 [@green500] ranks the platforms of the TOP500 by
their power efficiency. As depicted in figure 1.2, the power efficiency of the TOP500
greenest platforms — the most efficient ones in terms of power efficiency — has been
multiplied by 28 since 2007. These improvements affect all the types of platforms of
the TOP500. For example, as June 2017, the Piz Daint supercomputer [@pizdaint]
is simultaneously the third most powerful TOP500 platform and the sixth greenest
one. Most recent energy efficiency improvements directly result from the hardware
technology choice of including accelerators — notably General-Purpose Graphics
Processing Units (GPGPUs) — as seen on figure 1.3. The recent 2.3x increase jump
from June 2016 to June 2017 is for example mostly due to the adoption of Nvidia
P100 GPGPUs [@greenlap2017]. Such accelerators can compute massively parallel
code with a way higher energy efficiency than classical CPUs but are not adapted to
all types of computations.

Reducing the power consumption of platforms can be done at several levels —
namely at the hardware level, at the application level and at the platform manage-
ment level. As mentioned previously, the first way to reduce energy consumption is
to build platforms with more efficient hardware components. This can be done by
selecting more efficient CPUs or dedicated accelerators such as GPGPUs. The other
ways to reduce the energy consumption are mostly related to the resources manage-
ment. This management firstly appears at the job level, as jobs must be able to make
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Figure 1.2: Evolution of the power efficiency of the top 10 GREEN500 platforms since 2008.
The mean power efficiency is labeled in black for each year. Data has been
retrieved from the GREEN500 website [@green500].
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the most of all the resources that are allocated to them. Many job-level optimizations
are possible such as reducing the job execution time or using different types of
available resources when profitable. We also place the fine management of processor
states — speed scaling a.k.a. Dynamic Voltage and Frequency Scaling (DVFS) — into
the job-level optimizations category. As some applications consume more energy —
integral of power over the job execution time — in lower-consumption states than in
a classical state, we do not believe that DVFS is applicable efficiently without precise
knowledge about the applications [SRH05] — information that is only available
at the job level. This dissertation addresses the problem of reducing energy
at the platform management level. At this level saving energy can be achieved
by selecting where, when and how the jobs should be executed, or by taking the
decision to let resources idle or to shutdown them. We think that saving energy at
this level is very promising, as the possible energy savings are significant and fully
compatible with hardware and job-level energy optimizations.

The first energy-related problem addressed in this dissertation consists in the
maximization of the system performances under an energy budget constraint.
This constraint is close to power capping, which consists in limiting the maximum
instantaneous power consumption of the system. The difference is that here the
amount of available energy is limited during a given time period rather than the
instantaneous power consumption, which lets allows more room for optimizations.
The resource management strategies we propose save energy by choosing not to use
certain resources — by either keeping them idle or by switching them off. These
strategies are extensions to the backfilling mechanism commonly implemented on
HPC schedulers [MF01]. They are valid regarding the energy budget constraint
while allowing better performances than a rigid power cap over the constrained time
period.

This dissertation then explores more generally possible energy and perfor-
mances trade-offs that can obtained with node shutdown techniques. We pro-
pose to this end different extensions to the EASY backfilling algorithm [MF01] that
combine two energy saving techniques. The first technique — said opportunistic
— consists in switching-off any node that remains idle for too long. The second
technique explicitly chooses how many machines should remain on or off. Both
techniques — and their combination — allow energy savings of the order of 20
% without significant deterioration of the performances. Our experiments show
that the second technique is very promising if the number of switched-off nodes is
dynamically adjusted to the system load. This technique has the major advantage of
being predictable, which is not the case for the opportunistic one.
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1.4 Content

The remainder of this dissertation is organized as follows. Chapter 2 first gives
an overview of the different problems studied during this dissertation, presents
scheduling models and objectives, and defines most of the notations used in the
other chapters. Chapter 3 discusses the existing approaches to simulate RJMSs and
motivates what led us to develop a new simulation methodology. The proposed
simulation methodology and its associated simulator Batsim are presented in chap-
ter 4, as well as a validation experiment that compares Batsim to the real RJMS
OAR. Chapter 5 exhibits a first use of Batsim and points out that insights gained
while studying theoretical models are sometimes at odd with the practical results
due to shortcomings in the models. Chapter 6 includes our work about the problem
of maximizing the system performances subject to an energy constraint for a given
period of time. Chapter 7 analyzes the energy and performance trade-offs that can be
obtained via shutdown techniques on top of the EASY backfilling algorithm. Finally,
chapter 8 concludes this dissertation and gives perspectives for future work.

Each of the previous results have been published — see details in the Bibliography
at the end of the manuscript.
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Problems, Models and
Notations

2

Work on several resource management problems is conducted in this dissertation.
This chapter sketches the context of the problems and centralizes common notations
and models about them.

We are interested in online resource management problems on computing platforms.
Users want to use the platform to compute work, which is divided into jobs directly
submitted by the users. In most distributed platforms, as shown on figure 2.1,
a Resource and Jobs Management System — RJMS in short — collects data on
the submitted jobs, analyzes them and finally makes decisions thanks to an online
scheduling algorithm. Such scheduling algorithms are called in response to events
coming from the platform — e.g., resources become available — or the users — e.g.,
a new job is submitted.

RJMS

Compute
nodes

User
submits
jobs

Platform

Scheduling
Algorithm

Figure 2.1: Simplified view of a HPC-like platform. Users communicate with the RJMS,
which orchestrates how the resources are used.
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The decisions made by the scheduling algorithm include the allocation of jobs to
resources and the management of the resource states, notably by switching-off or
switching-on the computation nodes. Since in the HPC context the computational
resources are affected to unique jobs, only idle computational resources can be
selected to compute new jobs. The result of the execution of a scheduling algorithm
on a suite of events can be visualized as a Gantt chart, as seen on figure 2.2. Gantt
charts represent the allocation of resources to jobs over time.
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Figure 2.2: Gantt chart example. Machine utilization is plotted against time. Contiguous
machine allocations are represented by rectangles. Jobs whose allocation is a
set of contiguous resources — e.g., jobs 1 and 56 — are therefore represented
as unique rectangles. Several rectangles sharing their time slot are used to
represent non-contiguous allocations — e.g., for jobs 28, 38 and 88.

2.1 Job Characteristics

In the context of this dissertation, a job is a schedulable amount of work. Executing
a job may require several computational resources. The users submit the jobs
on-the-fly, stating the fixed amount of resources the jobs require. In other words,
according to notations from book [Fei15], we consider parallel and rigid jobs that
are submitted online.

Jobs are indexed by j in a set J . Jobs are characterized by their release time (denoted
by rj), their number of requested computing resources (qj), and their wall-time
(wallj). Both qj and wallj are specified by the users and are not known to the
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scheduler before rj . The processing time (denoted by pj) remains unknown until the
job is completed. Depending on the job computation model (cf. section 4.4), pj can
either be a fixed amount of time or depend on the execution context — depending on
the selected allocation of resources and the computational and network saturation
of the resources while the job is running. Job j is killed if it reaches its wall-time,
without any penalty on the scheduler — in this case we simply define pj as equal to
wallj . The jobs are not preemptive, which means that once started a job cannot be
interrupted until its completion. Figure 2.3 outlines the main job notations.

time

machines

j

pj

wallj

qj

Figure 2.3: Job j requests qj resources for a wallj amount of time.
The scheduler is unaware that j finishes after a pj amount of time.

time

machines

j

rj startj Cj

waitj

turnaroundj

allocation

Figure 2.4: Representation of some job-level metrics available after job j completion. The
resources allocated to job j are contiguous on the figure, but this is not always
the case — as seen on Figure 2.2.

Once the jobs have been executed, more information about them can be defined. We
denote by startj the time at which j starts being executed, and Cj the time at which
it completes (Cj = startj+pj). The job waiting time waitj = startj−rj (in seconds)
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denotes the amount of time j stayed in the system before being executed. The job
turnaround time turnaroundj = Cj − rj = waitj + pj (in seconds) denotes the total
amount of time j stayed in the system. Figure 2.4 summarizes these notations.

The waiting time waitj can be seen as a user satisfaction metrics, as users most of
the time want their jobs to start rapidly. However, users commonly consider different
waiting times as acceptable depending on the job duration: Jobs that require a
small amount of time should not wait for long, whereas bigger waiting times are
tolerable for longer jobs. The job slowdown slowdownj metrics has been introduced
for this purpose [Fei01], is defined in equation 2.1 and is expressed with no unit.
The slowdown is sometimes named stretch in the literature. However, one can notice
that slowdownj skyrockets if pj is very small. The bounded slowdown avoids this
problem thanks to a processing time threshold τ as seen in equation 2.2.

slowdownj = turnaroundj
pj

(2.1)

bslowdownτj = max

(
turnaroundj
max(pj , τ) , 1

)
(2.2)

2.2 About the Platform

The platforms studied in this dissertation are composed of computational resources
connected via a network of any topology. Both computational and network resources
can be heterogeneous. The computational resources may simply be referred to as
machines.

Machines are indexed by i in a set M . The number of machines is denoted by
m = |M |. Machines may have multiple power states, with a computing speed and a
power consumption associated to each power state. Computing speeds are denoted
by cs and expressed in number of floating-point operations per second (flop/s).
Notations may vary within chapters depending on the type of resources whose
computing speed or power consumption is given — e.g., a single power state, a
machine with one single computation power state or a cluster of homogeneous
machines. The power states can model various ACPI states, such as performance
states used for Dynamic Voltage and Frequency Scaling (DVFS), processor states
which allows to support multiple types of processor idleness, or global states used for
powering-off the machine completely or partially — e.g., suspend to RAM. Machines
are in one and only one power state at a given time. Switching from one power state
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to another may take some time and consume some energy. Precise information and
notation about power states is given in section 4.5.

The network can be seen as a graph whose nodes either are machines or network
devices (routers, switches...). Nodes are connected with edges (network links).
Network devices and links have a latency denoted by lat and expressed in seconds
(s), and a bandwidth denoted by bw and expressed in bytes per second (B/s).
Depending on the job computation model (cf. section 4.4) network information can
either be taken into account to compute the duration of the jobs or be ignored.

We consider that the scheduler has limited information about the platform. The
scheduling algorithms used in chapter 4 are oblivious to the platform. In chapter 5,
some scheduling heuristics are oblivious to the platform, some others only assume
that the order in which the machines are indexed somewhat follows its topology,
and finally some heuristics assume that machines are grouped in clusters (non-
recursively) and knows the cluster into which each machine is. In chapters 6 and 7
we suppose that the resource management algorithms have an estimation of the
power consumption of machines in each state, and an estimation the duration of
boot and shutdown operations on each machine.

2.3 Energy

The power consumption is denoted by P and expressed in watts (W). The power
consumption of machine i at time t is denoted by Pi(t). The energy consumption
of machine i from time t0 to time t1 is computed by

∫ t1
t0
Pi(t) dt and is expressed in

joules (J).

This paragraph gives the energy model considered for chapters 6 and 7, which
only consider homogeneous machines with computation-only jobs. In this case, the
machines have various states S = { computing, idle, off , on→ off , off → on }. At
a given time t, machine i is in one and only one of the states of S. Idle machines can
be switched-off, which takes a time ton→off . Off machines can be switched-on, which
takes a time toff→on. The power consumption of machine i is fully determined by its
state. A fixed power consumption is associated to each state. Explicitly, the power
consumption of states are denoted by Pcomputing, Pidle, Poff , Pon→off and Poff→on.
Figure 2.5 outlines how the model is instantiated (section 6.5.1 explains how these
values have been obtained).
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Figure 2.5: Instantiation of the energy model used in chapters 6 and 7. A machine that is
computing a job always consumes 190 W. An idle machine always consume
95 W. Switching-on a machine always consumes 125 W for 2.5 minutes —
therefore 18750 J.

2.4 Objectives

Different objectives are considered in the dissertation. Chapter 4 and 5 analyzes
the makespan, which is denoted by Cmax and corresponds to the schedule duration
(in seconds). The makespan is defined by Cmax = maxj Cj when the first job is
submitted at time 0, or more generally in equation 2.3.

Cmax = max
j∈J

(Cj)−min
j∈J

(rj) (2.3)

Chapters 4, 6 and 7 consider user quality of service (QoS) metrics. The first QoS ob-
jective is the mean waiting time defined by 1

|J |
∑
j waitj . We also consider the mean

(bounded) slowdown, which normalize the waiting time by the job processing time.
The mean slowdown is defined by 1

|J |
∑
j slowdownj , and its bounded counterpart

by 1
|J |
∑
j bslowdown

τ
j where τ is the processing time bound.
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Chapter 7 also consider the maximum counterparts of the previously defined metrics.
The maximum waiting time is defined by maxj (waitj), the maximum slowdown by
maxj (slowdownj) and the maximum bounded slowdown by maxj (bslowdownτj ).

Chapters 6 and 7 consider the total consumed energy. It is defined by the power
consumption of the machines during the period of interest as seen on equation 2.4,
as only the power consumption of the machines is considered.

∑
i

∫ maxj Cj

minj rj

Pi(t) dt (2.4)

Finally, chapter 7 considers the total number of power switches. The objective
is defined by

∑
i #switchi, where #switchi denotes the total number of power

switches (switch-on and switch-off) done on machine i during the whole schedule.
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Why Batsim? 3
3.1 Introduction

Research about how to manage large scale distributed computing platforms effi-
ciently has been conducted for dozens of years and remains a highly active domain,
which includes a wide range of studies from pure theory to practice. Contemporary
platforms may have a tremendous number of computing resources, connected by
complex network topologies. Heterogeneity can be found in the computing resources
and in the network connecting them.

Many problems arise on current platforms and are mostly multiobjective. For
example, platform administrators often want to maximize the utilization of the
platform, while users usually desire a good quality of service. More and more
constraints must be dealt with today to make the best of the computing platforms. In
particular the system energy consumption became a limit to build bigger platforms —
but many other problems must be dealt with such as data movement and resilience.
Facing all these problems at the same time is very hard, as the problems taken alone
are already very complex.

Simulation is the most used technique to study this kind of system, as in simulo
experiments costs are much smaller than those incurred by in vivo ones. For example,
simulating the execution of a 1-month workload from a TOP500 supercomputer may
only take few minutes on a single middle-class computer, which allows extreme time
and energy savings. Furthermore, simulations are most of the time deterministic,
which is great for reproducing experiments.

However, as simulation results only include phenomena that are modeled by the
simulator, conclusion only based on such results are to be taken with caution for
two main reasons. The first reason concerns the simulation models realism. As
current computing platforms comprise several complex layers, some hypotheses that
are made by naive simulation models do not hold in practice. For example, the
hypothesis that jobs take a fixed amount of time regardless of where they have been
allocated rarely holds, unless the platform is fully homogeneous and if the network
cannot be saturated — or if all applications are insensitive to network contention.
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The second reason concerns the simulator implementation. Even if the simulation
models accurately outline the desired phenomena, implementing them correctly is
tricky. Making sure that the different types of phenomena are correctly simulated
together — and making sure that the simulator will continue to produce correct
results — involves recurring validations with in vivo experiments and good software
engineering techniques. The following section describes some pitfalls that we have
experienced or observed in the simulators of the field. Most of those pitfalls involve
an insufficient separation of concerns.

3.2 Common Simulation Pitfalls

3.2.1 Strong Simulator/Algorithm Coupling

The simulation of the resources is often strongly coupled with the resource manage-
ment algorithm — or more simply the scheduler. While strongly coupling these two
components may simplify the simulator development and allow stronger simulation
time optimizations, we think that this is more detrimental than beneficial in most
cases.

Most of the time, strong coupling imposes constraints on the algorithms — e.g., to
store jobs in queues — and strong implementation constraints — e.g., to use a specific
programming language with the supplied API. We think that these constraints lead to
a duplication of simulators for poor reasons — e.g., who never thought/said/heard
"There is no way I implement my algorithms in [language A], so I will reimplement
the whole (simulator, algorithms) couple in [language B]!". In the long run, we
think that strong coupling reduces the lifetime of simulators. This issue is all the
more important as in this case the simulator death is likely to result in the loss of
the algorithms, in the meaning that they will not be comparable to new algorithms
anymore unless they are reimplemented with another simulator.

Moreover, we think that strong coupling fosters unrealistic simulation practices.
As platform information is accessed at no cost in such approaches, one is easily
tempted to directly use precise information to take decisions. However, resources are
monitored at low frequencies in the real world unless the platform administrators
agree to hinder the platform main use case for monitoring purpose — or agree to
invest in a dedicated network. This forces the decisions to be taken with partial
and delayed information in production. Therefore, this hypothesis makes difficult
the adaptation of such algorithms for production use — or even impossible if the
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information cannot be acquired at all in practice. We also think that strong coupling
tends to reduce the soundness of evaluation results, as the exact same models are
more likely to be used in simulation and in the decision-making process.

On the other hand, a loose coupling approach allows many more researchers to
use the simulator, as no one would be forced to use any language nor API. This
design choice highly decreases the risk of the algorithm implementations to disap-
pear, as even if the simulator is not maintained anymore, modularity ensures that
such implementations can be used within other simulators or even in production
systems.

As the modular algorithms implementations are less likely to disappear, we think
that comparing them to new policies is sounder and easier. In most cases, one need
to reimplement non-modular algorithms from the literature if one wants to compare
them to one’s new policies. However, reimplementing these policies properly may
be tough, as implementation details — that are hardly ever included in research
papers — may comprise critical information without which the algorithm efficiency
may be threatened. Hence, we think that loose coupling may improve the fairness
of comparisons between existing and new resource management policies, as the risk
of poorly reimplementing existing policies would be avoided.

3.2.2 Restricted Simulation Models

Another pitfall when designing simulators is to only focus on specific simulation
models. Section 3.2.1 depicted that a too strong coupling between the simulator and
the algorithm could be detrimental. This section takes the separation of concerns
reflection further and discusses about the modularity of simulation models.

Most simulators are implemented with a unique simulation model in mind. This
model is naive most of the time. As an example, we can think about the numerous
scheduling simulators that only operate fixed-length jobs. These simulators are used
to observe and assess how theoretical scheduling algorithms behave in practice —
in addition to worst-case or average-case analyses/guarantees/proofs. However, as
naive models ignore most of the phenomena that may occur on real platforms, one
may lack confidence about the realism of such results.

Simulators with multiple simulation models can partly solve this confidence issue.
In this case, if the naive simulation model is considered too unrealistic in certain
scenarios, a more realistic one could be used instead in these cases. The simulation
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model modification can be completely transparent to the resource management
algorithm if the simulator is modular enough.

More generally, simulators with interchangeable simulation models allow the users
to choose how to simulate each type of phenomenon, thus allowing a customizable
level of realism. As more realistic simulation models can be significantly longer to
simulate than naive ones, this approach allows to first assess the algorithms quickly,
then to study more realistically particular scenarios.

Additionally, simulators that comprises models for different types of phenomena can
be very convenient for the users. Novel policies are often proposed to solve very
specific problems, but as the real problems are multiobjective and involve multiple
types of phenomena, one may be interested in the bigger picture. One may for
example propose and evaluate different placement algorithms, considering that
the jobs communicate internally and taking the platform topology and parameters
into account. As most real jobs read input data and write output data, it would
be interesting to know whether the previous results would be the same if I/O
phenomena were taken into account. The possibility to toggle on the simulation of
I/O in the simulator would be interesting and convenient for the user in this case.

3.2.3 Publish And Perish

Many simulators are developed to reach short-term objectives. They are used to
experiment new policies and to write some articles, but they often lapse afterward.
The rest of this section details why we think this philosophy should be avoided as
far as possible.

The duplication of simulators may at first glance look profitable for research re-
producibility, as the results coming from the different simulators can be compared
with each other. However, as many simulators do not subsist long enough to be
assessed against in vivo phenomena, we think that the effect is rather the opposite.
Some simulators are never released to the public, others have been lost and their
implementation cannot be found anymore. Only limited confidence can be given
to results coming from non-validated simulators. Even if the selected simulation
models have already been validated, making sure that no embarrassing bug is hidden
somewhere in their implementation takes time. Forsaking a simulator quickly after
retrieving results from it increases the risk of occurrence of undetected errors in the
scientific results, as there is little chance that the simulation output will be looked at
ever again.
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We think that investing time in a robust simulator is more time-efficient than the
common quick and dirty approach. A greater initial effort is needed if one wishes
to develop a robust and modular simulator, as many factors need to be taken
into account to make sure that future evolutions will not incur dramatic changes.
However, future users — e.g., new PhD students — will not need to reimplement the
whole simulation base again, which will avoid wasting time. Newcomers would then
benefit from the existing confidence into the simulator and will improve it, either
by conducting validation experiments or simply by using the simulator, as bugs are
more likely to be detected if the simulator is heavily used. As the improvements
made by the different users can be shared, we think that this approach is beneficial
for the quality of results but also for productivity.

Some simulators that falls into the publish and perish category model specific phe-
nomena in great details. We think that this design choice lowers the chance of
adoption of the proposed simulation models, even if the simulated phenomena
interest a large proportion of the community. Some phenomena are very specific
and may be hard to integrate into general purpose simulation frameworks, but we
think that the vast majority of phenomena can be included in such frameworks.
This would allow many researchers to use these results, to (in)validate them and
therefore would help understanding the phenomena.

3.3 Goals

Batsim main goals are shared with most of the simulators of the field: To allow
the comparison of different resource management policies, in a reproducible and
efficient manner. However, Batsim has been designed with many other goals in mind.
This section aims at describing them.

We realized that the algorithms coming from theory differ greatly from those imple-
mented in production systems. This gap between theory and practice has multiple
causes, which are partly caricatured in the following paragraph. Theoretical re-
searchers usually do not bother to implement their algorithms in production systems,
as making production-compatible algorithm takes a considerable amount of time,
which would not be used to produce scientific results. On the other side, engineers
operate complex production systems that include many features. As some theoretical
algorithm are based on models far from reality or may not look compatible with
existing features, engineers might not see what they would gain by including novel
policies in the systems they manage. One consequence of this situation is that the

3.3 Goals 21



scheduling algorithms in production systems are mostly outdated, while they would
probably benefit from state-of-the-art management policies.

Reducing the gap between theory and practice is one Batsim goal. Batsim design
forces the modularity of the decision making procedures, by placing them into
separate modules that can be implemented in any programming language. The
decoupling obviously allows the management algorithms to be used with Batsim,
but also allows them to be connected to other simulators or to be integrated in
production systems. Consequently, this approach improves the production launch of
algorithms, as the algorithms that are first developed and analyzed by researchers
can then be used within real systems as is. The modularity can also be used the other
way around: Existing production algorithms can be connected to Batsim, which
allows the exploration of many scenarios in simulation. This type of connection
eases the parameter tuning of production algorithms, as in simulo exploration is
faster and cheaper.

Another Batsim goal is to be customizable regarding simulation models. Our main
focus is to allow multiple levels of realism about how the jobs are computed, from
naive fixed-length black boxes to the replay of MPI applications, passing by time-
agnostic communication matrices. We also want to take as much phenomena as
possible into account, while letting the user choose which phenomena should be
simulated. The idea behind this approach is to allow a wide area of experiments
thanks to the simulator, and to be modular enough so that other phenomena can be
annexed to it later on. For example, we want to be able to simulate the behaviour of
different computing platforms, with different job models including network or I/O
contention, while simulating how much energy the platform consumes.

Finally, we want Batsim results to be reliable. To do so, we first chose to base Batsim
upon SimGrid rather than implementing the simulator from scratch. SimGrid is a
state-of-the-art simulation toolkit that allows to study applications in distributed
environments. This choice increases the confidence we have in Batsim results, as
SimGrid is a long-term project that contains deeply validated models. This choice
also increases Batsim life expectancy, as Batsim will benefit from the improvements
done within SimGrid, such as corrections in existing models or the addition of
simulated phenomena. We also want to invest time in Batsim implementation,
notably by using regression tests and continuous integration to make sure existing
features will continue to function as expected. Batsim and SimGrid are fully open
source, which avoids the risk of losing the work conducted and increases confidence
and reliability — as anyone is free to explore and improve the implementations.
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Batsim: a Realistic
Language-Independent
RJMS Simulator

4

4.1 Related Work

Many scheduling algorithms are assessed by simulation in the literature. Unfortu-
nately, most of the simulators used are never released to the public. Many reasons
can be suggested to explain this. The authors may just not want to maintain released
software, as it is time-consuming. The simulator implementation may also have been
done the quick and dirty way, and the authors do not want anyone to look at the
code they produced. Regardless of the authors rationale, we think that this causes
substantial reproducibility problems, as even merely trying to repeat the conducted
simulation processes requires a lot of investment. This related work section is about
existing simulators that can be used to evaluate jobs and resources management
systems. To be precise, we chose to only consider simulators interested in the realism
of the produced results and whose source code can be found. This last criterion
drastically reduces the number of candidates, as many simulators either have never
been released to the public or fell into disuse and cannot be found anymore.

To the best of our knowledge, most scheduling simulators are either very domain
specific — e.g., Realtss — or do not primarily focus on realism of results, as com-
parisons to real existing systems are hardly ever done. This can be explained by
the financial and ecological cost of such evaluations, but this is quite hazardous as
models may be irrelevant in unevaluated scenarios.

Alea [KR10] is probably the closest approach to ours. This simulator is based on the
GridSim simulation toolkit and allows to compare different scheduling algorithms.
Both Alea and Batsim chose to rely on existing simulation frameworks instead of
rebuilding everything from scratch. Alea however does not essentially focuses on
separation of concerns, which does not allow straightforward comparisons to real
RJMS code, nor allow freedom regarding programming language. At the best of our
knowledge, this simulator has not been validated in a real environment yet.
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Another interesting approach can be found in article [PML15]. This approach
consists in using the INSEE [PM05] fine-grained network simulator offline to obtain
very precise execution time in all possible job configurations. Article [PML15]
proposes job placement policies that guarantee that no network interference can
occur between the jobs, allowing to use offline execution times while simulating an
online workload. This approach is realistic in the studied scenario but cannot be
used when jobs may interfere, which happens in wider scenarios.

A previous initiative of building a scheduling simulator on top of SimGrid has been
done in Simbatch [CG09]. The project was unmaintained from 2007 to 2015, but
has recently been updated so that up-to-date SimGrid versions can be used with
it. As Simbatch has not been implemented with separation of concerns in mind, it
cannot be used in conjunction with production code nor with algorithms written in
any language.

Some existing RJMSs can be used in simulation. This is for example the case for
the Flux RJMS [Ahn+14], in which a simulation mode is included. Slurm [YJG03]
has not been designed with simulation in mind but work has been conducted to
allow the tuning of parameters in simulation [Luc11]. Such simulators use naive
models and do not focus on simulation realism but on the assessment of real code in
simulation. There are therefore complementary to ours. A Batsim adapter could for
example be incorporated in the work conducted in [Luc11] to use Slurm’s code with
Batsim — just as we did for the OAR RJMS [Cap+05] in the present chapter.

4.2 Batsim General Description

Batsim is an open source1 RJMS simulator. It allows to simulate the behavior of a
computational platform on which workloads are executed according to the rules of a
scheduling algorithm. As depicted in chapter 3, Batsim promotes separation of con-
cerns and thence is itself built on top of the SimGrid simulation framework [Cas+14].
This choice benefits Batsim, as it widely broadens the scope of the possible experi-
ments, increases the simulation results soundness and will allow Batsim to profit
from future SimGrid features or improvements.

Batsim aims at improving practice in the implementation of resource management
algorithms. For this purpose, separation of concerns is applied on the RJMS itself.

1Batsim is distributed under the LGPL-3.0 license. The project source code and documentation are
available on Github [@batgit1] and on Inria’s Gitlab [@batgit2]. Release versions can directly be
used with the oarteam/batsim docker container.
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Figure 4.1: Batsim simulation overview.
Simulation logic is split into two components. Batsim orchestrates the sim-
ulation, manages the platform and handles inputs and outputs. The other
component is in charge of making most decisions and may therefore include
parts from real RJMSs. This figure does not detail how Batsim works internally.

request

reply

execute j2
computes...

do execute j2

computes...

do execute j3

computes...

Decision
Function

Orchestrator

Request
Reply

Manager

something
happened

Other
Batsim

Processes

execute j3

decisions
finished

exchanges
are not
detailed

Figure 4.2: Portion of a Batsim simulation sequence diagram.
The Batsim component is composed of concurrent processes that communicate
with each other. In this example, the decision-making component makes deci-
sions that should be injected on-the-fly — i.e., it first takes time to think, decides
to execute job 2, thinks again, decides to execute job 3, thinks again then finally
finishes. Batsim dictates how the simulation time progresses. As soon as the
decisions are received, Batsim injects them into the simulation at the specified
times. Concurrent calls to the decision function are forbidden.
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A typical Batsim simulation involves two components, as seen on figure 4.1. The
Batsim component orchestrates the simulation and manages the computational
resources, while the decision-making component makes decisions — as the name
suggests. The two components interact through an event-based protocol.

This clear separation allows to use decision making procedures coming from real
RJMSs in simulation, as seen on figure 4.1. To do so, the RJMS must implement a
small adaptation layer to mock the regular platform communication layer — orders
must be sent through the Batsim protocol and not directly applied on the resources,
and reading the events received from the Batsim protocol must be done instead of
the usual monitoring of the platform. Batsim therefore eases the modification and
the tuning of real RJMS codes, as such changes can be tested easily in simulo.

Please note that this adaptation can also be done the other way around, such that
any Batsim-compatible decision-making component can be connected to a real RJMS.
This other type of adaptation improves the production launch of new algorithms,
as Batsim-compatible decision making procedures can easily be used in production.
It also improves the algorithms life expectancy, as modularity allows them to be
connected to other simulators or real systems. In this case, the small adaptation
layer to apply to real RJMSs consist in forwarding the events through the Batsim
protocol and to apply the received decisions, instead of calling the regular RJMS
decision-making layer.

Another asset of this separation is that the decision-making procedures can be
implemented in any programming language. This may look like a detail, but
we think that freedom regarding programming languages drastically reduces the
likelihood of unneeded reimplementations. It allows to use almost any existing
event-based resource and jobs management code thanks to an adaptation layer —
whose cost may vary depending on the existing code modularity. In addition, this
feature allows newcomers to use the simulator and to compare their algorithms to
the existing ones, even if they only wear by rare, obscure or esoteric languages.

Batsim simulates what happens on the platform and calls the decision-making compo-
nent as soon as interesting events are captured — on condition that the component
is available. As I write these lines, the two components are instantiated as processes
— within the Operating System processes meaning — and communicate through
a ZeroMQ [Hin13] socket. Messages are formatted in JSON. Details about the
messages content can be found in the Batsim protocol documentation [@batproto].
The call to the decision-making component is in fact a network request done thanks
to the common request-reply pattern. The simulation is stopped while Batsim waits
for the decision-making component reply. Once the reply is received, the decisions
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are injected in the simulation at the specified times. The decisions are mostly about
the execution or rejection of jobs, or about the management of machines — e.g.,
switching-on some machines, switching-off them or changing their DVFS state. The
protocol also includes other features, such as calling the decision-making component
at a specified time or the dynamic injection of jobs in the simulation. Please refer to
the Batsim protocol documentation [@batproto] for a complete list of the available
decisions and the associated information.

As real decision-making procedures take time and are not always interruptible,
Batsim implements a generic way to take into account the times at which the
decisions are taken. This allows many scenarios: 1. the decision-making time can
be ignored 2. the decisions can be applied after the decision-making procedure
3. the decisions can be applied when they are taken 4. the decision maker can
take advantage of this to avoid being called prematurely. Batsim dictates how
the simulation time progresses. When a call to the decision-making component is
conducted, Batsim tells the current time tc and the times te at which each event e
occurred. The events are either in the past or the present: ∀e, te ≤ tc. The reply
consists in the time tr at which the decision-making component replied and in a
series of decisions — with a time td associated to each decision d. These times allow
several ways to take the decision-making time into account.

This paragraph details how Batsim manages time dilation, as the two components
are temporarily in different time lines when a decision-making call is realized. First,
the decision-making time can be completely ignored if all the replied times are done
at the present time: tr = tc and ∀d, td = tc. Second, the decisions can be applied
when the decision-making procedure completes. To do so, the reply is sent in the
future and all the decisions are made at the same time: tr > tc and ∀d, td = tr.
Third, the decisions can be applied on-the-fly, as seen on figure 4.2. To do so, the
decisions are made in the future at different times: tr > tc and ∀d, td ∈ [tc, tr]. In all
cases, please note that time consistency is enforced by forbidding concurrent calls to
the decision-making procedures. This implies that the decision-making component
may not be notified of events as soon as they occur, but only once the component is
available — just as it would happen on a centralized real RJMS.

4.3 Batsim and SimGrid

As Batsim is built on top of SimGrid [Cas+14], a brief and simplified overview
of SimGrid is conducted in this section. This section also enumerates the small
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differences that exist between Batsim and SimGrid, which may be useful for readers
already familiar with SimGrid. Please notice that this section only describes the MSG
SimGrid API and that other vocabulary and models might be more relevant if other
SimGrid APIs were considered. A host is a resource that can compute floating-point
operations (flop). According to the notations of chapter 2.2, a host corresponds
to a machine. Hosts are connected via a network whose links have a latency (in
seconds) and a bandwidth (in bytes per second). Links are hyperedges that can
either represent a network node — a switch or a router — or a network link — a
connection between two nodes. Hosts and links compose a platform that can be of
virtually any topology.

SimGrid processes are executed on hosts. At a given time, a SimGrid process is on
one and only one host. SimGrid processes are user-given source code executed within
the simulation. They can execute arbitrary instructions — that do not consume
simulation time — or call functions from the SimGrid API that cause simulation time
increases. For example, computing a task, sending or receiving messages from/to
another SimGrid process, spawning another SimGrid processes or just sleeping are
time-consuming operations.

A SimGrid-based simulator is therefore a set of SimGrid processes that compute user-
given functions. SimGrid orchestrates how the functions are executed by executing
one function at a time. To be precise, SimGrid executes the current function as long
as possible, and stops when an instruction that impacts the simulation time is found.
SimGrid then solves which function should be called next, at which time, and how
the simulated operations progress — notably computations and network transfers.

The resources studied in a SimGrid simulation are described in a platform file. Batsim
uses exactly the same platform format. However, Batsim adds little constraints such
that platforms may require a little adjustment to work with Batsim. Batsim uses a set
of hosts to compute the jobs, while other hosts are reserved for specific operations.
For example, most of the resource-management SimGrid processes are executed on
a host called the master host. The platform must allow two-ways communication
between the master host and the computation hosts. Additionally, jobs that require
internal communications can only be allocated on hosts that can reach each other
— in the network route meaning. Other specific hosts may be needed depending
on what one wants to simulate, such as hosts for managing a parallel file system.
Finally, as described in section 4.5, Batsim platforms may require more information
than regular SimGrid platforms when one wants to simulate the platform energy
consumption.
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4.4 Job Computation Models

Batsim workloads are divided into a set of jobs and a set of simulation profiles.
While jobs describe user-level job information, the profiles describe how the jobs
are simulated. A job essentially consists in the user request and in the associated
simulation profile. Explicitly, each job j has a unique identifier idj , a release time
rj (the time at which the job is submitted into the system), an optional wall-time
wallj (the user-specified execution time bound such that j is killed if its execution
time exceeds wallj), a number of requested resources qj and the profile profj the
job executes. As the Batsim workload format is extensible, please do note that more
information can be included in the jobs depending on the users’ needs — and that
this information is forwarded to the decision-making component.

Separating the simulation profile from the jobs avoids data duplication when many
jobs are computed in the same way, and makes workload generation easier and more
modular. Different types of jobs profiles are available in Batsim and correspond to
different job computation models.

To start with, the delay profile type only consists in a fixed amount of time. A host
executing this profile type only sleeps for the specified amount of time. Such profiles
completely ignore the job execution context and do not lead the reserved hosts to
use more energy than when being idle, as no work is computed on the hosts. They
are however easy to instantiate as most traces contain the jobs duration.

The parallel task profile type can be used if one desires to take the the job execution
context into account or is interested in energy consumption. Such tasks combine
computations and communications and are executed on a set of hosts. To be precise,
they are defined by a computation vector comp and a communication matrix comm.
Each compk represents the amount of computation (in flop) that must be computed
on the kth host. Each element comm[s, d] of the communication matrix represents
the amount of communication (in bytes) to achieve from the sth host to the dth one.
All the sub-operations encapsulated into a parallel task — computations and point-
to-point communications — are strongly connected. The execution of a parallel task
can be seen as a cursor that starts at 0 and finishes at 1. That cursor sets the already
achieved fraction of all the sub-operations. Let us for example consider a parallel
task that only includes two computations of 10 and 20 flops. At the middle of the
task execution, it is mandatory that 5 flops have been computed on the first host
and that 10 flops have been computed on the second one. Please do note that the
rate at which the cursor progresses depends on the execution context, as SimGrid
updates it to match the current bottleneck. Parallel tasks models jobs in coarse grain,
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as the way they are executed supposes that the underlying applications are executed
smoothly.

SMPI traces can be used if one is interested in fine-grain simulation. Such profiles
consists in replaying an existing SimGrid time-independent trace. The trace contains
a suite of operations for each host, which are either computations (in flop) or
MPI function calls. Such profiles therefore define some dependencies between the
operations, which allow to observe more precise phenomena than parallel tasks. For
example, we can observe that slowing down an application during a critical phase
leads to higher time increases than in a non-critical phase. However, finer-grain
simulations take longer than coarse-grain ones.

As I write these lines, profiles can be composed sequentially but not in parallel yet.
Other profile type exist such as wrappers to build homogeneous parallel tasks or to
operate parallel file system operations. Please refer to our implementation [@bat-
git1] for an exhaustive list of the existing profile types.

4.5 A Few Words About Energy Simulation

SimGrid computes the platform energy consumption. This paragraph details how
the energy consumption is simulated. Please note that this model only considers
the hosts energy consumption at the moment. Each host h has a set of power states
denoted by PSh. Each power state p ∈ PSh has a computational power csp (in
flop/s), a minimum electrical power consumption P⊥p (in W) and a maximum elec-
trical power consumption P>p (in W). During its usual simulation process, SimGrid
computes the load of each host — and of each link. The load of host h at time t is a
real number in [0,1] denoted by lh(t), where 0 represents an idle host and 1 a host
fully computing2 . If we denote by ph(t) the power state in which host h is at time t,
the instantaneous electrical power consumption of the host is fully determined by
ph(t) and lh(t). This instantaneous electrical power consumption is denoted by Ph(t)
and expressed in watts. It is computed as as the linear interpolation between P⊥ph(t)
and Pmax

ph(t) in function of lh(t). Explicitly, Ph(t) = P⊥ph(t) + (P>ph(t)−P
⊥
ph(t)) · lh(t). The

energy consumption of host h is therefore given by Eh =
∫
Ph(t) dt and expressed

in joules.

2 In SMPI, hosts either compute something at full speed or do not compute anything, which leads to
a binary load. However, when parallel tasks are used, the cursor constraint (cf. section 4.4) may set
the hosts load to any value in [0,1].
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Batsim adds a slight layer on top of the SimGrid energy consumption model. We
chose to split the set Ph of the power states of the host h into three disjoint sets. P ch
is the set of computation power states, P sh is the set of sleep power states and P th
is the set of transition power states. The computation power states are the only
ones that can be used to compute jobs. A sleep power state represents the state
of a machine that cannot directly compute something e.g. ACPI S1, S3, S4 or S5
states. A Batsim host can switch from one computation power state to another
instantaneously. However, entering into a sleep power state s or leaving it can take
time and cost energy. Transition power states are virtual power states that are only
used to simulate the transition into and from sleep power states. To do so, costly
transition are simulated by 1-flop computations. If transition t should take time tt (in
seconds) and consume et energy (in joules), the corresponding virtual power state pt
should have a computational speed cspt = 1

tt
and an electrical power consumption

P⊥pt
= P>pt

= et
tt

.

If one desires to simulate the energy consumption with Batsim, the platform file
to use must define the type of the hosts power states — in addition to fulfill the
requirements of regular SimGrid energy platforms. Explicitly, the user must define
for each sleep power state sh ∈ P sh the transition power state p↓sh

used to switch
into sh, and the transition power state p↑sh

used to leave sh. All other existing
power states — those that have not been marked as sleep or transition ones — are
considered as computation power states.

4.6 Implementation Details

Batsim is a C++ program that uses the C MSG SimGrid API. As described in
section 4.3, Batsim is essentially a set of concurrent processes that communicate
with each other thanks to messages, whose execution is managed by SimGrid. This
section sketches how Batsim works internally, by describing the main SimGrid
processes and how they interact. This architecture is more difficult to apprehend
than a simple event loop, as the simulator is itself a distributed application. It
is however very convenient to describe complex operations and allows a great
separation of concerns. For example, if one is not satisfied with the current simple
job launching mechanism and desires a more detailed one instead — e.g., including
an authentication procedure or data movement — one could implement it without
precise knowledge of any other simulation part. In this case, one would only need to
implement a new SimGrid process with similar external behavior than the current job
launching SimGrid process, and to spawn one’s new process instead of the current
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one. The external behavior of such process is essentially how it communicates with
the orchestrator — which is introduced in the next paragraph.

The orchestrator can be seen as the main SimGrid process. It is unique and spawned
on the master host at the beginning of the simulation. Its role is to orchestrate the
simulation — as the name says. Most of the other SimGrid processes are spawned
by the orchestrator. The orchestrator is aware of all the events that may lead to a
decision-making call, and manages when to call the decision-making component. It
is also in charge of injecting the decisions made by the decision-making component
in the simulation — e.g., perform a job launching when ordered to. The orchestrator
is implemented as a loop that reads messages — from most other SimGrid processes
— and reacts accordingly. The orchestrator stops to read messages when it detects
that the simulation should stop, which effectively end the simulation3.

The workload injector is in charge of reading a given Batsim workload and of
submitting the corresponding jobs at the right simulation times. To do so, it initially
parses the workload file, then simply iterates over the jobs in ascending submission
time order. It sends a message to the orchestrator when the submission time is
reached. If the next job submission time is strictly after the current simulation time,
the process enters a sleep phase until the aforementioned job should be submitted.
The workload injector stops when all the jobs of the workload have been injected. As
Batsim allows to simulate the interactions of several workload in the same simulation,
multiple workload injectors can be instantiated. One SimGrid process is spawned on
the master host at the beginning of the simulation for each Batsim input workload.

The request reply manager is in charge of doing a decision-making call. Please
notice that the decision-making component is in another real process — in the
operating system meaning. This SimGrid process has three main roles. The first
role is to translate the events received from the orchestrator into a valid Batsim
protocol message. The second role is to exchange messages with the decision-making
component. As I write these lines, this communication is done through a ZeroMQ
socket, which means the SimGrid process first sends a request ZeroMQ message
then reads a reply ZeroMQ message. Finally, the last role is to parse the received
ZeroMQ message and to send a message to the orchestrator for each decision at the
right time — as section 4.2 and figure 4.2 describe. This means that the SimGrid
process enters into sleep phases if needed. The process finally sends a message to
the orchestrator to announce that the decision-making process can be called again,
then finishes. This SimGrid process is spawned on the master host whenever the

3 A SimGrid simulation stops when all the SimGrid processes have finished.
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orchestrator decides to call the decision-making process. The orchestrator ensures
that at any time, at most one request reply manager is being executed.

The Batsim protocol allows the decision-making component to request calls at specific
simulation times. This procedure allows many scenarios, such as periodic calls to
the decision-making component or more complex ones. The ulterior call manager
SimGrid process role is to allow this procedure. This process is spawned on the
master host by the orchestrator as soon as the related decision is received. Multiple
instances of this process can exist at the same time. The process simply waits for
the needed amount of time, then tells the orchestrator that the decision-making
component should be called, and finally finishes.

The Batsim protocol allows to change the power states of the hosts. Switching a host
from one computation power state to another is directly realized by the orchestrator.
However, boot and shutdown operations are realized by an on/off switcher SimGrid
process. Such a process is spawned by the orchestrator on every host whose state is
requested to change. As described in section 4.5, these operations can take time and
consume energy. Such a process therefore first switches the host into a transition
power state, second computes a 1-flop task, then switches instantaneously into the
requested power state, and finally notifies the orchestrator before finishing.

Finally, the job launcher SimGrid process is in charge of launching a job and of
executing it on a set of hosts. The Batsim protocol allows the decision-making
process to execute a job on a specific allocation A. The size of A may vary depending
on the simulation profile, which allows some kind of moldability. A job launcher is
spawned by the orchestrator for each job when the order to execute it is received.
It is executed on one host in A — in practice, the first host of A. Such a process
essentially computes the job according to its profile as discussed in section 4.4. It
then notifies the orchestrator either of the job completion or the job failure, and
finally finishes.

4.7 Batsim Evaluation Experiment

We set up an experiment to compare Batsim to OAR [Cap+05] in order to evaluate
whether Batsim behavior is close to the one of a real RJMS. OAR is a RJMS notably
known for being used in the Grid’5000 [Bal+12] infrastructure. We chose OAR over
other RJMSs — e.g., Slurm — because OAR’s modular design already decouples
the scheduling component from the others parts of the system. Therefore, imple-
menting the small Batsim protocol adaptation layer in OAR is rather straightforward.
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We tested Kamelot [@kamelot], a conservative backfilling scheduling algorithm
implemented in OAR by executing in two scenarios with the same workloads. In
the first one, real OAR-managed machines on Grid’5000 are used. In the second
scenario, Kamelot is connected to Batsim thanks to a little adaptation layer named
Bataar [@bataar]. In addition to evaluate the soundness of the Batsim results, this
experiment demonstrate that the Batsim architecture can be used to test production
schedulers.

Our experimental process can be split in two major parts. The first part is about
workload generation, which is not a detail as one may need realistic job descriptions
to obtain a realistic simulation. The other part is about the workload execution in
both scenarios and the comparison of the resulting schedules. The first major part
requires real programs, their instrumentation and a methodology to create simula-
tion profiles in different job models. This is detailed in section 4.7.1. Subsequently,
the way the jobs are put together to form workloads is explained in section 4.7.2.
The second major part is described in sections 4.7.3 and 4.7.3.

Using a realistic simulator also means using a realistic simulated platform. Fortu-
nately, the Graphene cluster of the Nancy Grid’5000 site [@nancyG5K] has already
been calibrated. Consequently, we chose to use this cluster for our real and simulated
experiments. All our real experiments have been done on the Grid’5000 Graphene
cluster, reserving the nodes below one switch each time — to avoid external noise
from other Graphene users.

4.7.1 Profile Generation

As described in section 4.7, our experimental process includes a workload generation
part. The jobs in our workloads must fulfill some requirements to be executed both
in a real platform and in simulation. Batsim allows different levels of realism
depending on the desired job models, which makes the workload generation process
more complex. For example, the parallel task model needs realistic computation
vectors and communication matrices to make sense. Furthermore, instantiating the
smpi model requires traces from MPI applications.

In order to obtain realistic values for our profile models, we chose to execute real
jobs from the MPI version of the NAS Parallel Benchmarks (NPB)[NAS16]. We
instrumented the three benchmarks IS, FT and LU to obtain execution traces. The
three benchmarks have been compiled and executed for all available processor sizes
— powers of two from 1 to 32 — and for tiny to medium data sizes — B to D

34 Chapter 4 Batsim: a Realistic Language-Independent RJMS Simulator



depending on the benchmark. Considering NPB limitations, we were able to compile
47 different MPI programs.

Each application has been executed alone on the platform many times, in order to
obtain the real execution time of each application — without the instrumentation
noise. As the programs have stable execution times, this allowed us to directly
generate delay profiles.

We then instrumented the jobs using Extrae [@extrae] to obtain precise — and
heavy — execution traces. This trace has been translated to a format that SimGrid
understands — a time-independent trace — thanks to a script courtesy of Lucas
SCHNORR [@extrea2tit]. Unfortunately, the conversion script was not able to capture
all the MPI messages at the time this experiment has been conducted. This added a
profile calibration phase in our experimental process.

As SimGrid does not allow dynamic SMPI applications yet, we were not able to
evaluate the SMPI profiles in the present chapter. On the other hand, we aggregated
the time-independent traces into computation vectors and communication matrices
to generate parallel task profiles.

4.7.2 Workload Generation

The workload generation algorithm that we used is described in this paragraph. It
is greatly inspired by chapter 9.6 of book [Fei15]. Please note that our workload
generation method is not intended to be sound for comparing scheduling heuristics,
but only to evaluate how Batsim behaves compared to a real RJMS. The algorithm
generates N = 800 jobs iteratively. The interarrival submission times of the jobs is
computed randomly with a Weibull distribution of shape parameter k = 2 and scale
parameter λ = 15. Since the job sizes (the rigid number of resources a job requests)
of the real jobs at our disposal are powers of 2 (from 1 to 32), the size of each job
is computed with the formula 2buc where u is a lognormal variate of parameters
µ = 0.25 and σ = 0.5. Only variates such that buc is in [0, log2(32) = 5] are used to
match the sizes at our disposal. The generation of those workloads depends on a
random seed, simply referred to as seed in the remainder of this chapter. We chose
to generate nine different workloads.
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4.7.3 Real Workload Execution

Each workload has been executed twice in a real scenario, under two different
switches of the Graphene cluster. We chose to use two different switches of machines
to obtain more representative results, as even if the machines are theoretically fully
homogeneous, they in practice suffer from small differences. We used the repro-
ducible methodology described in section 4.9 to execute the workloads we generated
on Graphene. This methodology includes the installation and the configuration
of OAR within the nodes we reserved in Graphene. We configured OAR such that
it uses the Kamelot scheduler. We also implemented a replay tool that reads a
Batsim workload and launches real OAR job submissions at the times dictated by
the workload. The OAR submissions launch the MPI programs that were previously
generated.

4.7.4 Simulated Workload Execution

Executing the workloads in simulation simply consists in running Batsim and the
Kamelot scheduler on the aforementioned calibrated platform file. As described in
section 4.7, Kamelot is executed through the Bataar adapter.

4.8 Results

The nine different workloads we generated have been executed twice on a real
platform (on identical machines and network, but not on the exact same machines),
and twice in simulation (with delay and parallel task profile types). This section
presents the different results and analyzes them. Please note that ptask is used
instead of parallel task in the following figures.

An overview of the execution of all the workloads can be found on figure 4.3. This
figure first of all shows that simulation results are close to real ones — considering
the makespan and mean bounded slowdown metrics. Indeed, for each workload,
the difference between two real results is of the same order of magnitude than the
difference between a real result and a simulated one. This figure also shows that the
delay and parallel task simulation results are very close to each other. Contrary to
delay profiles, the execution time of a parallel task profile depends on the execution
context. The closeness of the two job models can be explained by the high platform
homogeneity and the lack of contention in this experiment.
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Figure 4.3: Mean bounded slowdown against the makespan of all workload executions.
Each point represents one workload execution. Circles are executions on the
real platform, triangles and crosses are simulated executions with respectively
delay and parallel task profiles. Each workload is associated with one color.

Figures 4.5 and 4.6 shows the differences in mean slowdown between real and
simulated executions of all the workloads. The mean slowdown of real executions is
in range [1.492, 5.876]. These two figures shows that Batsim slightly underestimates
the mean slowdown for most workloads. This is in fact explained by a clear underes-
timation of the jobs waiting times as seen on figures 4.4 and 4.7 — as the slowdown
is basically a normalized waiting time.

The Batsim waiting time underestimation — in comparison with OAR — can be
explained by the SSH job launching procedure used by OAR. As Batsim tries to
simulate the behavior of any RJMS and does not specifically focuses OAR, we
preferred to implement a more simple job launching mechanism. Overfitting OAR’s
job launching mechanism can be done by changing the job launching SimGrid
process, as explained in the beginning of section 4.6.

We can finally notice that differences exist between simulated and real schedules if
look at them with a finer grain. For example, figure 4.8 shows that the Gantt charts
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represents one workload execution. Circles are executions on the real platform,
triangles and crosses are simulated executions with respectively Delay and MSG
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of real and simulated executions of the same workload differ. However, this figure
also shows that the same differences can be observed between two real executions.

4.9 Reproducing our Work

As said in chapter 3, one of the main Batsim goals is to foster reproducibility in the
field of jobs and resources scheduling, by providing the tools needed to make more
reproducible science. The aim of this section is to explain how to reproduce most
of our evaluation process. To this end, we provide a complete environment to use
Batsim and the different schedulers that run on top of it. All the experiment tools
mentioned in the remaining of this section (Batsim, Kameleon, Execo, Grid’5000)
are necessary to repeat the experiments we have conducted.
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crosses represent the difference from the simulated execution with respectively
delay and parallel task profiles.

Environments An environment can be seen as an object that fixes a software con-
text. It typically includes an operating system and a set of programs and libraries,
specifying which version is used for each component. We used Kameleon [Rui+15]
to describe and build our environments. Kameleon allows to build environments
from template recipes and to extend them. Kameleon’s main advantages are the
management of different execution contexts — e.g., inside the environment to build,
or in the external build environment — and its breakpoint mechanism. The envi-
ronment produced by Kameleon can be exported to many formats, including virtual
machines, docker containers or tarballs, which allows deployments almost anywhere.
The Batsim complete environment and the workload generation environment recipes
are both available in the simctn Git repository [@batctn].

Experiment design and workflow Most of the time, the experiment design consists
in one or more documents that describe the purpose and the experiment with some
details and some dedicated scripts. Some domain specific tools exist to compute the
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vertical lines.

experiment on a grid from a user-defined workflow [YB05], but it is not well suited
for computer science experiments, which also need to select the underlying software
stack and OS. Hopefully, computer scientists dedicated testbeds such as Grid’5000
exist and allows this management level.

Batsim evaluation experiment has been made using Execo [@execo], a tool which
completely automates the experiment workflow. Execo is a tool which allows
Grid’5000 users to programmatically describe their experiment workflows in order
to compute them on the grid. It is a Python toolbox library that allows to run local
and remote processes easily. It also provides an engine to manage the parameters
sweeping and an interface to the Grid’5000 testbed, which allows to design fully
automated sets of experiments.

Moreover, the scripts and tools used to generate the figures of this chapter are
provided in the Git repository used for the initial Batsim article [Dut+16b]. The
Gantt chart visualization and comparison tool named Evalys is available indepen-
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dently [@evalys]. The complete experiment workflow made to conduct this chapter
experiment is also available in the initial Batsim article repository [@batexpe]. This
repository also contains a Batsim workflow description, which easily allows to repeat
the simulated executions and the results analysis.

Inputs and results The original input data are crucial in the process of reproducibil-
ity. Most of the inputs and results of the experiments we have done are available
in the aforementioned Git repository. The results that did not fit in the repository
because of their size — notably the MPI instrumentation traces (' 20Go) — have
been shared using Academic Torrent [Mer16]. Unfortunately, this original data has
been lost by lack of a persistent storage server. Similar data can be reconstructed
from the information described in this section.
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Figure 4.8: Final section of the Gantt charts of the executions of workload seed = 6. The
uppermost Gantt chart is a simulated execution while the other two are real
executions. Workload seed = 6 is the least stable workload in makespan.
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4.10 Conclusion, Limitations and Future Work

This chapter presented Batsim, a modular RJMS simulator that provides different
levels of realism. Almost any scheduling algorithms can be easily connected to
Batsim, which therefore eases the comparison of existing management algorithms.
Batsim input workloads are extensible and allow painless workload generation. For
the sake of convenience, we provide converters from SWF workloads to Batsim ones.
Batsim outputs provide clear information about scheduling metrics, job placement
and energy consumption. The CSV format allows them to be easily linked with
standard data analysis tools. Visualization tools are provided separately.

We used the OAR RJMS to evaluate whether Batsim matches the behavior of real
RJMSs. As we want to promote experiment reproducibility, all the materials neces-
sary to understand and reproduce our evaluation experiments are provided online.
This experiment did not emphasize differences between the delay and parallel task
job models, as highly homogeneous platforms have been used and no congestion
has been observed during the workloads execution. As a future work, we can think
of a validating process concerning the parallel task profile type, which may focus on
real heterogeneous platforms.

We chose not to overfit OAR’s procedures, which impacts the result realism on
different metrics such as the mean waiting time. Since our architecture allows
to model finely the different RJMS procedures, it would be beneficial to allow
Batsim users to parametrize how the different procedures should be done in order
to improve accuracy.

We are well aware that the workloads used in our evaluation process remain small
in their number of resources, their number of different jobs and in their duration.
We would like to do larger scale experiments but finding funding to conduct this
kind of study becomes problematic, as the energy and financial costs of reservations
for such experiments would skyrocket.

At the moment, Batsim allows to use a production scheduler in simulation. In this
case, Batsim is in charge of simulating the RJMS whereas the decision layer of the
real RJMS makes the decisions. The other way to connect the two components —
plugging any Batsim-compatible algorithm to a real RJMS — has not been evaluated
yet and would be an interesting future work.

The main Batsim limitation is performance. Simulators specifically optimized for
simple job models — e.g., fixed-length black boxes — and algorithms — e.g., EASY
backfilling [MF01] — are much faster than Batsim in these cases. Evaluating Batsim
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performance and optimizing it should be an interesting future work. Batsim inner
mechanics could for example be executed in a simplified and optimized version for
simple simulation cases. We could also propose an auxiliary way to connect the
decision-making component in addition to the current one if needed — through
library calls for example.

Batsim is fully operational as I wrote these lines and its modular design makes
room for many new features. We are for example interested in IO-related problems
that occur when big data workloads are used. Parallel and distributed file systems
simulation is being studied in Batsim but has not been validated yet. Batsim allows
dynamic workload generation. We plan to improve this feature to implement more
complex workload procedures — e.g., resampling with feedback [Fei16] — and thus
to allow any Batsim-compatible algorithm to benefit from them.

Batsim is an open source [@batgit1] project and we encourage any researcher or
engineer that has to deal with resources and jobs scheduling to use it. We would
be pleased to collaborate with anyone who wants to port an existing scheduling
algorithm to Batsim, or to include a Batsim-compatible algorithm support into a real
RJMS.
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Communication Models
Insights Meet Simulations

5

5.1 Introduction

Large scale high performance computing platforms are becoming increasingly more
complex. Determining efficient allocation and scheduling strategies that can adapt
to their evolutions is a strategic and difficult challenge. We are interested here
in the problem of scheduling jobs in hierarchical and heterogeneous large scale
platforms. The application developers submit their jobs in a centralized waiting
queue. The job management system aims at determining a suitable allocation for
the jobs, which all compete against each other for the available computing resources.
The performances are measured by some objectives like the maximum completion
times or the slowdown. The most common scheduling policy is First Come First
Served (FCFS), which takes the jobs one after the other according to their arrival
times with backfilling (BF), which is an improvement mechanism that allows to fill
idle spaces with smaller jobs while keeping the original order of FCFS.

In practice the job execution times depend on their allocation (due to communication
interferences and heterogeneity in both computation and communication), while
theoretical models of parallel jobs are usually considering jobs as black boxes with
a fixed execution time. Existing communications models do not fully reflect the
network complexity and thus, simulations are required to take into account the
impact of allocations.

Our goal within this work is to test existing heuristics dealing with allocation
constraints, namely contiguity and locality. Contiguity forces jobs to be allotted on
resources with a contiguous index (assuming that system administrators numbered
their resources by proximity), while locality is a stronger constraint imposing some
knowledge of the cluster structure to use allocations restricted to clusters whenever
possible.

Contributions We show in this chapter that insights gained while studying theo-
retical models are sometimes at odd with the practical results due to shortcomings
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in the models. Moreover, this work shows that connecting existing event-based
scheduling algorithms to Batsim can be done effortlessly.

More precisely, we ran wide range simulations on FCFS/BF focusing on the impact
of communications under several scenarios of locality constraints. The main result
is to show that taking communications into account matters, but contrary to the
intuition given by theoretical models, the most constrained scenarios are the best!
In other words, the constrained policies allow greater gains in performances than
the potential losses due to the cost of the locality constraint.

5.2 Related Work

Modeling the modern High Performance Computing platforms is a constantly re-
newed challenge, as the technology evolves and quickly renders obsolete the mod-
els developed for the previous generation. While interesting and powerful, the
synchronous PRAM model, delay model, LogP model and their variants (such as
hierarchical delay, see [GK07] for a description of these models) are ill-suited to
large scale parallelism on hierarchical and heterogeneous platforms.

More recent studies [SSE06] are still refining these models to take into account
contentions accurately while remaining tractable enough to provide a useful tool for
algorithm design. Even with these models, all but the simplest problems are difficult
and polynomial approximations algorithms have mixed results [Sin07].

With millions of processing cores, even polynomial algorithms are impractical when
every process and communication have to be individually scheduled. The model of
parallel tasks simplifies this problem in a way, by bundling many threads and com-
munications into single boxes, either rigid, rectangular or malleable (see [Leu04],
chapters 25 and 26). However, these models are again ill-adapted to hierarchical
and heterogeneous platforms, as the running time depends on more than simply
the number of allotted resources. Furthermore, these models hardly match the
reality when actual applications are used [Hun15], as some of the basic underlying
assumptions on the speed-up functions (such as concavity) are not often valid in
practice.

With these limitations in mind, we decided to use simulations to really take into
account the communications taking place within the jobs on large scale platforms.
While writing a simple and dedicated simulator is always possible, it appeared more
interesting to use a detailed simulator to open our work to a larger set of platforms
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and job characteristics. Among the likely candidates, SimGrid [Cas+14] fulfills all
our needs. In particular, the communications can be modeled either with a TCP-flow
level model as used in this chapter or at the packet level for a fine grained simulation.
While simulation is not always perfect [HCS11], the results we present here are
hopefully giving a better insight in the practical behavior of heuristics than the
theoretical models. This work led to the development of Batsim, which is detailed in
chapter 4.

A complementary approach to ours is to take into account the communications
within the jobs themselves by migrating processes depending on their communi-
cation affinity [Jea+13]. This approach is rooted in the application, while we are
positioning ourselves at the resource and job management system level.

Most available open-source and commercial job management systems use a heuristic
approach inspired by FCFS with backfilling algorithms [MF01]. The job priority
is determined according to the arrival times of the jobs. Then, BF (the backfilling
mechanism) allows a job to run before another job with a highest priority only if it
does not delay it. There exist several variants of this algorithm, like conservative
backfilling [Lif95] and EASY backfilling [MF01]. In the former, the job allocation
is completely recomputed at each new event (job arrival or job completion) while
in the second, the process is purely on-line avoiding costly recomputations. More
sophisticated algorithms have been proposed that consider the routing schemes of
the data (like topology aware backfilling introduced in [PNM09]). In this chapter,
we consider that the scheduler has a very limited knowledge of the platform, which
is insufficient for topology-aware algorithms.

5.3 Problem Description

In this chapter, we are interested in the problem of scheduling a set J of independent
and parallel jobs on a computing platform composed by a set M of computational
resources (nodes or processors).

Each job j ∈ J is characterized by a rigid number qj of required resources, a wall-
time wallj (which bounds the execution time: j is killed after wallj seconds) and
a release time rj . The job execution is modeled by parallel tasks (cf. section 4.4).
Parallel tasks are essentially a computation matrix compj where each compjk repre-
sents the amount of computation on the kth resource allocated to job j, and a square
communication matrix commj of size qj × qj in which each element commj [r, c]
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represents the amount of communication from the rth resource to the cth resource
of job j allocation.

Each resource i ∈M has a computing speed csi. The resources are connected via a
network. The network links have both a bandwidth and a latency. Each resource i
has a unique identification number idi between 0 and |M | − 1.

Since we are interested in the online version of this problem, the scheduler only
knows that job j exists once it is released. Two jobs cannot be processed at the
same time on the same computational resource. Each job must be computed exactly
once. The jobs cannot be preempted. The scheduling algorithms are considered
as oblivious about the jobs inner settings compj and commj . Furthermore, the
algorithms know little about the platform — i.e., they only know the number of
computational resources and their identification numbers.

5.4 Simulation Framework

As stated in section 5.2, we turned to simulations to evaluate many batch scheduling
algorithms to check whether theoretical models match the practical experience. The
added benefit over real experiments is that simulation enables reproducibility, and
can easily be extended to test a very large number of parameters. The founding
principle of our work is to use an existing platform simulation framework and to
add a scheduling layer on the top of it. This approach allows us to take advantage
of the simulation accuracy and the scalability of recognized software and allows
separation of concerns since we are not simulation experts.

The survey [Cas+14] compares state-of-the-art simulators that could interest us.
We chose to use SimGrid because it allows heterogeneity in both computing speed
and in network links latency and bandwidth, has a good TCP flow network model,
can be used easily (thanks to a good documentation and a lot of examples), is fast,
has little chance of becoming unmaintained (still actively developed after 10 years
of existence) and comprises features that we may use in the future — e.g., MPI
applications simulation. The work conducted in this chapter led to the development
of the Batsim simulator — which is described in chapter 4.
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5.5 Evaluation

5.5.1 Platform and Jobs Description

Since we want to assess how the algorithms presented in [Luc+15] behave within
realistic simulations, we use the same kind of platforms that the chapter described.
Our platforms include sets of closely located computational resources called clusters.
Each cluster c is a tree formed by a switch sc and a set of computational resources all
directly connected to sc. The cluster switch sc has an internal bandwidth bwsc and
an internal latency latsc . All resources within the cluster c have the same computing
speed csc. All the links between sc and the resources within the cluster c have the
same bandwidth bwc and latency latc. The clusters are connected together via a
unique switch b whose shared bandwidth is bwb and whose latency is latb. The
implementation of the algorithms presented in [Luc+15] constrains all the clusters
to have the same size. We chose to keep the parameters they used, which are 8
clusters of 16 computational resources each, leading to a total of 128 resources per
platform.

In the following experiments, each run instance consists of a platform, a workload
and a scheduling algorithm. Every generated workload consists of 300 jobs extracted
from the cleaned trace (in the SWF format) of the CEA-Curie supercomputer. Our
job selection criteria were to remove jobs that cannot fit entirely in one cluster and,
in order to obtain interesting workloads, to ensure the resulting schedule makespan
is not fixed by the longest job. Tiny jobs fit easily in the backfilling and very big ones
are usually in specific queues, we then decided to only keep jobs whose execution
time pj is between two bounds plower ≤ pj ≤ pupper. Typical values for the bounds
are plower = 1 hour and pupper = 1 day. The method used to select the jobs is to
first remove every job that does not fit our criteria then to randomly pick 300 jobs
depending on a given random seed.

Since the trace only contains execution times, without any detail of actual computa-
tions or communications patterns, we chose to use basic homogeneous patterns and
to create the amounts from the real jobs execution times. Let rpj denote the real
execution time of job j in the trace file. Let rwallj denote the user-given wall-time
of job j. Let Fcomp, Fcomm and Fw respectively denote the computation factor, the
communication factor and the wall-time factor. For each job j, the computation
row matrix compj is computed via compj = R1

qj
× rpj × Fcomp, where R1

qj
is a row

matrix of qj columns of 1. For each job j, the communication square matrix commj

is obtained with the following formula: commj = S1
qj
× rpj × Fcomm, where S1

qj
is a
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square matrix of size qj × qj of 1. For example, R1
3 =

(
1 1 1

)
and S1

2 =
(

1 1
1 1

)
.

For each job j, qj is read from the trace and wallj is chosen big enough to ensure
the job will not be killed via the following formula wallj = max(rwallj , rpj × Fw).
With small wall-times, the jobs allocations would not matter since jobs would not
be allowed to complete and would simply be killed after the same amount of time
in any placement. Finally, the release time of each job j is set to 0 to remain in
the same experimental setting as in [Luc+15], which will allow us to analyze the
difference between our results and the previous ones.

5.5.2 Competing Heuristics

The scheduling algorithms compared in this chapter are variants of the well-known
conservative backfilling algorithm [MF01], which targets the minimization of
makespan (completion time of the last running job). This algorithm maintains
two data structures. The first one is a list of queued jobs and the times at which they
are guaranteed to start execution. The other is a profile which stores the expected
future processor usage. This profile is usually a list of consecutive time slices, which
stores the resources status for each time slice.

When a new job jn is submitted, the profile is traversed in order to find a hole in
which jn would fit, depending on the job width walljn and height qjn . Let us suppose
that the profile traversal is done by ascending date, and that this procedure returns
the different holes in which jn may fit. When a fitting hole is found, it is either
accepted or rejected. If accepted, the scheduling algorithm must select the resources
to allocate to jn within the hole. Otherwise (if the hole is rejected) the profile
traversal continues and future fitting holes will be found until one is accepted.

The algorithms studied in this chapter differ in their last phase, which consists in
accepting or rejecting the current hole and selecting which resources to allocate to jn
in case of acceptance. A detailed description of these variants and their pseudo-code
is given in [Luc+15]. In the remaining of this section, jn will denote the newly
submitted job, H ⊆M will denote the set of available resources in the current hole,
and A ⊆ H will denote the resources allocated by the scheduler — i.e., the selection
of resources within H on which the job jn will be executed.

The basic variant always accepts the first fitting hole and selects the first resources
— i.e., A ⊆ H such that |A| = qjn and

∑
i∈A idi is minimal.
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The best effort contiguous variant always accepts the first fitting hole and selects a
continuous block of resources if possible. In this context, the contiguity of the set of
resources A means that there exist resources with contiguous indexes. If there is no
contiguous set of resources of size qjn in H, this variant selects the first resources —
just as the basic variant would do.

The best effort local variant always accepts the first fitting hole and selects a local
set of resources if possible. Otherwise, it returns the first resources as the basic
variant would do. In the context of this chapter, A is said to be a local set of resources
if all the resources in A are located in the same cluster.

The contiguous variant forces the contiguity constraint on A. Consequently, this
variant rejects the first fitting holes if they do not match the contiguity constraint.

The local variant forces the locality constraint on A. Consequently, just as in the
case of the contiguous variant, the local variant rejects the first fitting holes if they
do not match the locality constraint.

Thanks to the article [Luc+15] authors, we were able to directly use their algorithms
implementation in conjunction with Batsim.

5.5.3 Homogeneous Platform Experiment

The goal of the first experiment is to compare the behaviour of the different schedul-
ing algorithms when the job amount of communication is increased on the same
homogeneous platform. The jobs of this experiment were generated with 20 random
seeds (0 to 19), leading to 20 different base workloads. We picked Fcomp = 106 and
Fw = 103, and 40 different values for the Fcomm parameter have been used which cor-
respond to a linear variation starting from 0 with steps of 107. In order to obtain jobs
with interesting execution time — i.e., to avoid that the resulting schedule makespan
is only fixed by the longest job — we set plower = 1 hour and pupper = 4 hours. All
the clusters of the platform used in this experiment are the same and defined by the
following parameters. bwsc = 1.25 · 109, latsc = 0, bwc = 1.25 · 106, latc = 24 · 10−9.
The platform main switch parameters are bwb = 1.25 · 109 and latb = 24 · 10−9.
This platform is derived from the existing Grid’5000 Griffon cluster whose plat-
form description was available in the SimGrid examples. The combination of these
parameters created 4000 instances (800 per scheduling algorithm variant).

Figure 5.1 shows the makespan of the resulting schedule of every run instance of
the first experiment. Additionally, a linear trend line has been computed for a better
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Figure 5.1: The makespan of every run instance in function of the communication factor
Fcomm for the homogeneous platforms experiment. Each facet corresponds a
scheduling algorithm. Each point corresponds to a schedule (800 points per
scheduling algorithm).
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Figure 5.2: Grid’5000 cluster architecture in Grenoble. The red rectangles are 40 GB/s
InfiniBand switches, orange rectangles are 20 GB/s InfiniBand switches, while
the blue rectangles are three different families of computing nodes.

comparison of the heuristics. The basic algorithm (as defined in the previous section)
is completely without constraints and has the worst performance of all competing
heuristics. Imposing contiguity without any knowledge of the underlying structure
gives better performances than basic, while knowledge of locality further improves
the results. More surprisingly, the strict heuristics are outperforming the more
relaxed heuristics, even though strict heuristics delay some jobs if the constraints
cannot be matched. Furthermore, the makespan induced by the forced constraints
are much more stable than their best-effort counterparts.

5.5.4 Heterogeneous Platform Experiments

In addition to the homogeneous platform experiment, we conducted two experiments
on heterogeneous platforms. The goal of these two experiments is the same as in
the homogeneous case: Assessing how the algorithms behave when the amount of
communication within jobs is increased. However, these experiments focus on many
heterogeneous platforms instead of one homogeneous platform, to more closely
reflect the existing clusters in our computing centers. For example, Figure 5.2 gives
an idea of the layout of the Grid’5000 cluster in Grenoble1.

1For more details, a larger version of the figure is available at:
https://www.grid5000.fr/mediawiki/index.php/Grenoble:Network
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Table 5.1: The parameters of the clusters used in heterogeneous experiments. These
values are multiplication factors of our base cluster b whose values are bwsb

=
10 Gbits · s−1, latsb

= 0 s, csb = 286.097 · 103 flop · s−1, bwb = 10 Gbits · s−1,
latb = 24 · 10−9 s.

c bwsc latsc csc bwc latc
c1 2 0 1 1 1
c2 4 0 2.02 1 1
c3 1 0 2.94 1 1

c bwsc latsc csc bwc latc
c4 1 0 1.24 1 1
c5 2 0 1.61 1 1
c6 1 0 1.72 1 1

In order to remain realistic in the kind of platform heterogeneity to simulate, we an-
alyzed the network of several Grid’5000 sites and ran a linear algebra benchmarking
tool on many machines to have an idea of how much the node computing speed may
vary within one site. Our results on the Rennes and Grenoble site showed that the
network bandwidth might vary between 1 and 4 and that the node computing speed
may vary between 1 and 3. More precisely, with our benchmark the computing
speed in the Rennes site were 1, 2.02 and 2.94 times more powerful than the lowest
one. On Grenoble we obtained computing speeds of 1.24, 1.61 and 1.72 times the
lowest one. We therefore decided to create a set of lowly heterogeneous platforms
and a set of highly heterogeneous platforms and see how the different scheduling
variants behave on such platforms.

The two heterogeneous experiments use six clusters whose parameters can be found
in Table 5.1. The first heterogeneous experiment uses four platforms formed by 3
clusters c1, 3 clusters c2 and 2 clusters c3. The four platforms differ by the ordering
in which the clusters are in the platform. The used orderings are by ascending com-
puting speed o1 = (c1, c1, c1, c2, c2, c2, c3, c3), by descending computational power
o2 = (c3, c3, c3, c2, c2, c2, c1, c1) and other orderings o3 = (c1, c2, c2, c3, c3, c2, c1, c1)
and o4 = (c3, c1, c2, c3, c1, c2, c1, c2).

The workloads of this experiment have been generated with 10 random seeds (0 to
9). We used Fcomp = 106, Fw = 103, and 20 different values for the Fcomm parameter
corresponding to a linear variation starting from 0 with steps of 2·107. The processing
time bounds to pick the jobs were plower = 1 hour and pupper = 4 hours.

The second heterogeneous experiment is exactly the same as the first but its platforms
use clusters c4, c5, c6 instead respectively of clusters c1, c2 and c3. We call the first
experiment highly heterogeneous because the resource computational power varies
from 1 to 3 and the network bandwidth from 1 to 4 within it. We call the second
experiment lowly heterogeneous because these amounts does not vary as much as
in the first experiment. Each experiment consists of 4000 run instances (800 per
scheduling algorithm variant).
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Figure 5.3: The makespan of every run instance in function of the communication factor
Fcomm for the heterogeneous platforms experiment. To each facet corresponds a
scheduling algorithm. Each point corresponds to a schedule (1600 per schedul-
ing algorithm).
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Figure 5.3 shows the makespan of the different scheduling algorithm variants
when the amount of communication is increased in the heterogeneous experiments.
These graphs do not differ greatly from the homogeneous case. For the makespan,
the forced constraint variants scale better and are more stable than their best-
effort counterparts when the amount of communication within jobs is increased.
Furthermore, we did not notice any impact of the cluster ordering within one
platform on the resulting schedules makespan. We did not notice a great difference
between the slightly heterogeneous platforms and the highly heterogeneous ones
neither, that is why the results of the two experiments have been plotted together.
The most notable result is that in a heterogeneous setting, the locality knowledge is
much more important as the gap between the basic heuristic and the locality aware
is greatly increased.

5.6 Conclusion

The purpose of this work was to show through simulations if theoretical models are
giving pertinent insight on job scheduling on large scale hierarchical and heteroge-
neous platforms. The main hypothesis we tested was that enforcing contiguity or
locality would not degrade the performance. The results clearly show that the con-
straints are beneficial to the schedules, by reducing the communication times. More
broadly, this shows that models where internal communications are hidden within
parallel tasks are very ill-suited to current architectures, and should be reevaluated.
This work also showed that connecting existing event-based scheduling algorithms
to Batsim can be done easily, which allows the exploration of wider scenarios.
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Energy Budget Control in
HPC With Energy-Aware
Resource Management and
Job Scheduling

6

6.1 Introduction

Modern supercomputers run on huge amounts of electrical power. For instance
Sunway TaihuLight — the leading system of the TOP500 — develops 93 petaflop/s
and consumes a power of 15 megawatts [@sunwaytl]. The electricity bill of
such platforms can roughly equal their hardware cost if we consider their en-
tire lifespan. Energy consumption is the most important limit to build exascale
machines [Don+11].

Multiple techniques have been developed to control the energy consumption of
such huge platforms. In particular, power capping limits the instantaneous power
consumption to a certain threshold. Limiting the power during a time period leads to
controlling the energy consumption — as the energy is the integral of the power over
time. The survey provided in [Bat+15] gives a thorough analysis of related work
on power management strategies along with details upon the relationship between
supercomputing centers and electricity service providers in the US. Among the
different studied techniques, power capping in conjunction with job scheduling and
shutdown mechanisms appeared as the most promising. Employing these methods
allows to manage energy consumption through the control of the instant power
consumption. Such methods nevertheless lack in adaptability, as power is controlled
independently of the instant load.

A recent study [Pat+16a] implicating a larger group of supercomputers and electric-
ity providers — in both the US and Europe — showed that while the upper power
bound is an important parameter, power variations do not affect the final energy cost
in most use cases. In this chapter, we show that adopting flexible power adaptive
scheduling techniques by setting restriction on energy consumption instead of power
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can optimize system utilization, slowdown and even energy efficiency in comparison
with a rigid power capping strategy.

We present an adaptation of a standard job scheduling algorithm that is able to limit
the energy consumption during a time period. It is similar to power capping, with
the difference that instead of limiting execution under a maximum instantaneous
power consumption, the limit is set on the maximum energy that can be consumed
during a particular time period. The developed techniques are extensions to the
backfilling mechanism [MF01]. Instead of considering only the availability of com-
puting resources, they also take the availability of energy into account. Overall, they
enable the platform to meet a certain energy consumption budget. The reduction of
energy consumption is achieved by idling the nodes or by shutting them down op-
portunistically. Experiments through intensive simulations show that our techniques
keep high performances while respecting specific energy budget objectives.

The problem studied in this chapter is detailed in section 6.2. Existing approaches
to control power and energy are then presented in section 6.3. Section 6.4 presents
our new algorithms to support energy budgeting. Section 6.5 evaluates how the
proposed algorithms behave with actual log data in simulation. Finally, conclusions
and future works are presented in section 6.6.

6.2 Problem Description

6.2.1 Scheduling Jobs in HPC

A job is an application that a user wants to execute on a computing platform. The
scheduler relies on a scheduling algorithm to determine when and where the jobs
should be executed. Only limited information is known about the jobs in practice.
Users typically specify the number of computational resources they need and an
execution time upper bound, which is called the wall-time — jobs that reach their
wall-time are killed by the system. In this work, we define a job j by its release
time rj (the time at which the job is submitted by the user), its number of requested
processors qj , an estimation of the running time wallj . The job execution time is
denoted by pj and is not known in advance but only when j completes.

The network hierarchy existing in most HPC centers is not explicitly considered in
this chapter. More simply, we consider that all processors are totally ordered and
that a job must run on neighboring processors. This simplification supposes that the
resources are numbered by proximity and that users want their jobs to be executed
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on resources close to each other — as it is likely to to reduce the communication
times and therefore the jobs duration [Luc+15].

6.2.2 Energy and Power-saving Techniques

Various techniques can be used to save energy on different levels. Some of these
techniques are introduced by architecture manufacturers — e.g., DVFS — while
others are invariant possibilities of the infrastructure — e.g., node on/off or het-
erogeneity. In this work, we only take shutdown techniques into consideration and
consider that processors can be switched-off independently.

We are interested in homogeneous machines that have various states S = { computing,
idle, off , on→ off , off → on }. At a given time t, machine i is in one and only one
of the states of S. Idle machines can be switched-off, which takes a time ton→off . Off
machines can be switched-on, which takes a time toff→on. The power consumption
of machine i is fully determined by its state. A fixed power consumption is associated
to each state. Explicitly, the power consumption of states are denoted by Pcomputing,
Pidle, Poff , Pon→off and Poff→on.

Despite the simplicity of this model, we think that it meets our needs for two reasons.
First, the experiments that we have conducted (see section 6.5.1) show that it seems
sufficient for our use case. Second, more precise measures of energy would have
a prohibitive cost. A hardware cost as integrated energy sensors are not accurate
enough [Geo+14], but also a software architecture cost — dedicated software for
accurate energy measurements should be added over the cluster — and a data
management cost to store and analyze the data. Using basic energy measurement
reduces the cost of all these steps.

Readers may wonder why we do not take DVFS into account, as it can be used to
control the power consumption of a job. Previous studies [GGT15; Geo+15] have
shown that controlling the energy consumption of jobs with DVFS is not trivial.
Depending on the type of application, a given DVFS value may either increase or
decrease the total energy consumption of the application. Thus, without a precise
knowledge about each job, the scheduler cannot guarantee that a given DVFS value
will decrease the energy consumption. Since the scheduler usually does not have
this type of information, we think that dynamically adapting the DVFS to reduce the
energy consumption should be done within the job itself and not at the platform
scheduling level, as it will result in better energy efficiency. Our approach is totally
compatible with job-level DVFS optimizations.
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Specifically, we are interested in the problem of scheduling jobs on a large number
of resources with the following constraint. During a certain time frame — starting
at ts and ending at te — the energy consumption of the whole computing platform
cannot exceed a given limit B. The energy limit we are using here (in joules)
must be distinguished from an electrical power limit (in watts). Budget periods
can be successive but we will study only one time frame for the sake of clarity and
conciseness.

6.2.3 Scheduling Algorithms Evaluation

No perfect scheduling objective exists [FF05]. We will consider three different
metrics in this chapter. The first metrics is the utilization — i.e., the proportion
of processors that are used during a time period. This objective is mostly used by
cluster owners, as it may represent the cluster productivity.

The bounded slowdown [Fei01] is more end-user centered. It measures the satisfac-
tion of end-users. Most of the time its average is computed as defined in equation 6.1,
where waitj = startj−rj is the waiting time of job j (startj is the moment at which
job j starts to be executed) and τ is the bounding constant (generally set to 10
seconds in the literature).

AVEbsld = 1
n

∑
j

max
(waitj + pj

max(pj , τ) , 1
)

(6.1)

The third metrics is the amount of energy consumed. In this chapter we do not try
to reduce the energy consumption but to control it during a period of time.

6.3 Related Work

6.3.1 Controlling Power and Energy Consumption

Many papers focus on controlling the power consumption [Eti+12a; Rou+12;
Sar+14]. In these studies, the objective is to control the final energy cost of the
cluster while keeping good performances. PATKI et al. [Pat+15] argue that thanks to
the control of power consumption, one can buy a bigger cluster for the same annual
price. A bigger cluster improves the allocations and the scheduling performances.
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Power cap mechanisms have the two major drawbacks of requiring high knowledge
about the applications — to tune DVFS or a similar technique — and of delaying
some jobs. In our previous study [GGT15] we found that only controlling the power
increases the turnaround time of big jobs — as it is harder for them to fit in the
power cap. This is one of the reasons that led us to focus on energy budgeting, as we
want to keep the benefit of controlling the cost of the cluster without discriminating
against any type of job.

Energy budgeting has been studied for a long time in embedded systems [Bam+16]
as these systems are mainly limited by their battery capacity. Nevertheless, we
cannot use the results from this field because they are applied to real-time small-
scale systems.

In [MV15], MURALI et al. study a metascheduler that controls multiple HPC centers.
The objective is to reduce the overall cost by adapting the energy consumption
to the electricity price of each different cluster. YANG et al. [Yan+13] consider a
scheduling problem with two periods. One during which an energy limit is set, and
the other one without energy limit. While this approach is interesting, the proposed
algorithm is not scalable and is hardly extendable with other constraints. In the
study [Khe+14] KHEMKA et al. maximize a utility function in a cluster with daily
energy budget. They solve the problem thanks to an offline heuristic. Instead of
relying on an utility function, we use classical scheduling objectives as described in
section 6.2.3.

The energy consumption of a shutdown node is very small [BH07]. The technique
called opportunistic shutdown takes advantage of this power saving. This technique
consists of shutting down the nodes that are idle — nodes are monitored to this end.
As soon as a defined idle period is witnessed, the decision of shutting them down is
taken. As shown in [HHN08], such a solution could lead to non-negligible energy
savings. This solution has however some limitations. One of them is the cost — in
both time and energy — involved by switching nodes on or off. Going off and on
again can take several minutes at maximum power [OLG08].

6.3.2 Resource and Job Management Systems

Current high-performance computing centers contain thousands of computing nodes,
which can amount to millions of cores. These computational resources are managed
by one software called the Resources and Jobs Management System (RJMS). This
software is in charge of monitoring the resources and of executing parallel jobs on
them.
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Managing resources at this scale compels the scheduling algorithm to be very effi-
cient. Therefore, greedy algorithms such as EASY backfilling [MF01] are commonly
used in HPC centers. Unfortunately, these algorithms do not take energy consump-
tion into account during their decision process.

Algorithm 1: EASY backfilling algorithm

for job ∈ queue do
if system has enough processors to start job now then

launch job;
remove job from queue;

else
break;

end
end
firstJob = pop first element of queue;
Reserve processors in the future for firstJob;
for job ∈ queue do

if system has enough processors to start job now and does not overlap with
firstJob reservation then

launch job;
remove job from queue;

end
end
Remove the processor reservation of firstJob;
Push back firstJob at the top of queue;

The EASY backfilling algorithm — summarized in Algorithm 1 — is one of the
most widely used scheduling algorithms in the systems we are interested in. This
algorithm only focuses on the present time since the future is unpredictable1. The
EASY backfilling policy is rather aggressive, as all jobs but the first one in the queue
can be delayed by backfilled jobs. This behavior tends to increase the resource
utilization rate. The popularity of this algorithm can then be explained by: 1. the
ease of implementation, 2. the ease of extending the basic policy, 3. the high resource
utilization rate implied by this aggressive backfilling policy, and 4. the scalability of
being present-focused.

1In the problem studied in this chapter, most events cannot be known beforehand — such as node
failures, jobs submissions and completions.
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6.4 Proposed Algorithm

6.4.1 Desired Properties

The proposed algorithm should obviously comply with an energy budget during a
given period. This energy budget should be strictly respected. Moreover, we want
the algorithm to be modular enough to support extra features such as opportunistic
shutdown. As we target large scale platforms, we want the algorithm to be efficient
and scalable. Finally we want the algorithm to avoid dramatic changes over currently
implemented solutions — for the purpose of maximizing its adoption.

6.4.2 Algorithm Description

As EASY backfilling — summarized in Algorithm 1 — has all the desired properties
but the energy ones, we chose to base our algorithm on it. We defined two rules
that our algorithm must respect under all circumstances to comply with the energy
budget.

• Rule 1: Avoid spending the whole budget too early, as it would unbalance the
performances during the budget period. To this end, the budget’s energy is
made available gradually over time, at a rate of B/(te − ts) joules per second.

• Rule 2: Never have energy debts. Thus, before taking the decision of running a
job, we have to ensure that enough energy is available for the entire duration
of the job execution. This comprises taking the past, present and future power
consumption of the whole cluster into account.

If we replace energy by money and running jobs by buying stuff, these two rules could
describe how someone that never wants to be in debt would manage its monthly
paycheck. Figure 6.1 shows the global idea behind these two rules. Energy is first
saved by consuming less power than the power rate. The saved energy can then be
used to execute jobs that require more energy than the power rate to be executed.

These two rules are integrated within the EASY backfilling algorithm in the following
manner. A counter named Cea stores the amount of available energy — i.e., the
amount of energy that the algorithm is allowed to spend at the present time. Cea
equals to the amount of energy made available since the beginning of the budget
period (via rule 1), minus the energy which has been consumed by the cluster.
Whenever the algorithm checks whether enough processors are available to run a
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Figure 6.1: The main idea behind the proposed algorithm.
A power limit is set, but consuming less power than it results in temporary
energy savings. Such saved energy can then be used to execute jobs that exceed
the power limit. In this example, the energy saved during job 1 execution is
used to execute job 2.

job, it also checks whether enough energy is available. The energy balance should
always be positive during the entire execution time of the job — rule 2 would not be
fulfilled otherwise. The algorithm uses wallj to estimate the length of job j.

Whenever the job at the top of the queue cannot be started immediately, a processor
reservation is made for it — as in regular EASY backfilling. The backfilling rule
dictates that other jobs might be executed before the first job if they do not delay it.
Jobs cannot however be backfilled the usual fashion, as they may delay the first job
by stealing its energy and thus break our set of rules. Consequently, our algorithm
also makes energy reservation for the first job when it cannot be started immediately.
The proposed solution is presented in algorithm 2. The additions that have been
done over EASY backfilling are underlined and colored in brown.

6.4.3 Implementation details

Energy Consumption Monitoring

The counter Cea stores the amount of available energy. It is updated whenever the
algorithm is called and also at every monitoring stage.

Whenever the algorithm is called, Cea is incremented by a certain amount by
applying rule 1. Furthermore, Cea is decremented depending on the cluster’s energy
consumption since the last algorithm call. This energy consumption is coarsely
overestimated within the algorithm, by counting the number of computing and
non-computing nodes. Cea may also be decremented during the algorithm execution
when a reservation is done.
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Algorithm 2: Energy budget backfilling algorithm

for job ∈ queue do
if system has enough processors
and enough energy is available to start job now then

launch job;
remove job from queue;

else
break;

end
end
firstJob = pop first element of queue;
Reserve processors in the future for firstJob;
Reserve energy in the future for firstJob;
for job ∈ queue do

if system has enough processors and enough energy is available to start job
now and does not overlap with firstJob reservation then

launch job;
remove job from queue;

end
end
Remove the processor reservation of firstJob;
Remove the energy reservation of firstJob;
Push back firstJob at the top of queue;
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Monitoring stages allow to obtain the amount of energy which has really been
consumed by the cluster. Cea is therefore incremented during these stages, as the
algorithm always overestimates this amount of energy. The stages occur periodically.
The period value must be set considering a trade-off between precision and the
overhead of gathering energetic data. The more precise the monitoring of the energy
is, the more precisely our algorithm will respect the energy budget. Increasing
the monitoring period reduces the global costs, as 1. the algorithm is called less
frequently 2. the nodes and the network are less frequently used to gather and
transmit monitoring data.

Energy Consumption Estimation

The above explanation of the algorithm mentions that the algorithm must determine
whether the energy balance would be positive in the future. As accurately predicting
the energy consumption of a job — or a cluster — is difficult, we want our algorithm
to work even if those estimations lack precision. We assume that using overestimated
energy consumption values — for the jobs and the cluster — is enough to make our
algorithm work.

The estimation of the power consumption of one computing processor is denoted
by P̃computing and expressed in watts. The estimation of the power consumption of
one idle processor is denoted by P̃idle and expressed in watts. The algorithm will
overestimate the energy consumption of the cluster if P̃computing and P̃idle are over-
estimated. At every monitoring stage the real energy consumption is measured and
Cea is updated accordingly such that the overestimation is balanced. Overestimating
the power consumption thus saves more energy in the counter, which will allow
more jobs to be started later on.

We recommend to benchmark the cluster power consumption in certain scenarios
and to use the maximum observed value to determine the aforementioned overesti-
mations. Executing a CPU-intensive application — e.g., one from the LINPACK suite
— is recommended to estimate P̃computing, while observing the processors doing
nothing may be enough to estimate P̃idle.

Interactions with opportunistic shutdown

The proposed algorithm can be used without any modification to work with oppor-
tunistic shutdown, as off nodes consume less power than an idle ones. This leads

66 Chapter 6 Energy Budget Control in HPC With Energy-Aware Resource
Management and Job Scheduling



our algorithm to overestimate even more the cluster energy consumption, which
makes greater amounts of energy available after monitoring stages.

Differences with EASY backfilling

The EASY backfilling algorithm is called whenever a job arrives or whenever some
resources are made available. Our algorithm is executed at the same events but
also when more energy is made available — namely at every monitoring stage. The
overhead is minimal, as the full algorithm is only run if the amount of available
energy is sufficient to run the first job of the queue.

When the energy budget is unlimited (B = ∞) our algorithm produces the same
schedules as EASY backfilling. When the energy budget is very small our algorithm
will start the jobs in the order of the queue.

6.4.4 An alternative similar to power capping

The proposed algorithm is close to a power capping mechanism. Making B/(te − ts)
joules available each second is close to having a power cap limit of B/(te − ts). The
rules introduced previously can be seen as rules that allow to violate the power cap
in some cases — these cases being mostly when energy is available.

As power capping is widely studied and already implemented in several RJMSs, we
propose a slightly modified version of our energy budget algorithm that is even
closer to a power capping mechanism. In the remainder of the chapter, the already
presented algorithm will be called energyBud, while the algorithm closer to power
capping will be called reducePC.

The difference between energyBud and reducePC lies in how the jobs respect their
energy reservation. In energyBud, the reserved energy is subtracted from Cea. In
reducePC, the number of joules made available per second is reduced — as if the
power cap had been reduced. If job j makes a reservation of Ej joules at time ˜startj

— and thus guarantees to start at ˜startj — the number of joules available per second
is reduced by Ej/( ˜startj − now) during the time period between now and ˜startj .

The main difference between the two algorithms can be observed when a short job
that uses all the available processors is being backfilled while there is an ongoing
energy reservation. In energBud the job can be launched if enough energy is
available. However the job cannot be started at the present time in reducePC as
the number of joules available per second has been reduced.
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Measure Value

Pidle 95.00 W

Pcomputing 190.74 W

Poff→on 125.17 W

toff→on 151.52 s

Pon→off 101.00 W

ton→off 6.10 s

Poff 9.75 W

P̃idle 100.00 W

P̃computing 203.12 W

monitoring period 10 min

Table 6.1: The values used to calibrate the simulator and to parametrize our algorithms.

6.5 Evaluation

The aim of the evaluation is to answer the following questions:

• How better is the proposed algorithm compared to a standard power capping
mechanism?

• What is the gain of activating opportunistic shutdown?

• If the budget is reduced by 80%, are the performances also reduced by 80%?

• Which is the best between reducePC and energyBud?

All material to produce, analyze and visualize the results of our evaluation process
are available online on the following git repository [@reprEB17].

The different heuristics are evaluated with the Batsim simulator. The heuristics
and mechanisms described in this chapter have been integrated into the pybatsim
project [@pybatsim] — a collection of Batsim-compatible scheduling algorithms
implemented Python.

6.5.1 Simulation Calibration

We have made various measurements on the Taurus Grid’5000 [Bal+12] cluster to
calibrate the simulation. This cluster is composed of 16 Dell PowerEdge R720 nodes,

68 Chapter 6 Energy Budget Control in HPC With Energy-Aware Resource
Management and Job Scheduling



each with two Intel Xeon E5-2630. The nodes are equipped with wattmeters, which
allows to measure precisely their energy consumption — one value every second.

In order to obtain idle-related measurements, we reserved the nodes and left them in
an idle state for 200 seconds. The wattmeters generated series of power consumption
values for each node, whose average over time has been computed for each node.
We then computed the average and the maximum of these values over nodes to
respectively obtain Pidle and P̃idle. For the sake of simplicity we attribute the per
node measurements, calculated during the calibration, to per processor values in our
model.

We did roughly the same to obtain computation-related measurements. We just run
a LINPACK benchmark on the nodes instead of letting them idle. This allowed to
obtain values for Pcomputing and P̃computing.

In order to obtain switch-related measurements, we made 50 switch-on and 50
switch-off operations on each node. We considered a node as off when its power
consumption reached its minimum. We considered it as on once capable of starting
a new job — i.e., when all services are running and operational. This allowed us to
measure the amount of time and the amount of consumed energy of each switch
operation. We then chose to average these amounts to obtain Poff→on, toff→on,
Pon→off and ton→off .

We finally chose a monitoring period of 10 minutes as it appears to be a good
trade-off between precision and monitoring overhead. This choice is complex as
it depends on the available energy sensors and the way to gather data from the
computing nodes to the controlling node. This 10-minute value seems close to what
is commonly used in supercomputers.

6.5.2 Testset

We chose to replay 1-week-long extracts of real traces coming from the Parallel
Workload Archive [FTK14] to assess our algorithms. We chose to use 3 different
traces and to extract 10 disjoint weeks from each one of them, thus leading to 30
different input workloads for our simulator. Since scheduling decisions have more
impact when the utilization is high, the weeks have been selected with this criterion
in mind. The original traces are:

• Curie (80640 processors, dates from 2012 and lasts 3 months),

• MetaCentrum (3356 processors, dates from 2013 and lasts 6 months),
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• SDSC-Blue (1152 processors, dates from 2003 and lasts 32 months).

Every input trace is executed for its full length — 1 week in this case. However, an
energy-budgeted period is applied for three days in the middle of each trace. We
hope that this choice allows to observe the impact of the energy-budgeted period on
the metrics during the period but also after it. In the remainder of the chapter, the
energy budget is expressed as a percentage. 100% corresponds to the energy that
the cluster would have consumed if all the processors on the cluster were computing
during the three days. We run each input trace with the following budget values:
100%, 90%, 80%, 70%, 60%, 50%, 49% and 30%. 49% corresponds to the amount
of energy that the cluster would have consumed if all the processors were idle for
three days.

We evaluated 4 different algorithms. The first one is standard EASY backfilling. As
this algorithm does not support energy budget, it is only executed with a 100%
budget. The second one is a power capped EASY backfilling. A power limit is
set during the whole energy budget period, which is set to the energy budget (J)
divided by the period length (s). The platform energy consumption is estimated
with P̃platform = nidle × P̃idle + ncomputing × P̃computing, where nidle is the number of
idle nodes and ncomputing is the number of nodes which are computing jobs. This
algorithm is roughly the same as EASY backfilling, but jobs are not executed if they
cause P̃platform to be greater than the power limit. The last two algorithms are the
ones presented in section 6.4 — namely energyBud and reducePC.

Each algorithm that supports power budgeting is executed with and without oppor-
tunistic shutdown. When the opportunistic shutdown mechanism is enabled, idle
nodes are switched-off as soon as they become idle. All the 1470 configurations
comprised in our evaluation process have been executed in simulation.

6.5.3 Results

Traces do not come from the same cluster and do not have the same jobs. The
different traces thus do not present the same opportunities for the algorithms to
improve results. As a consequence, all measures are normalized to reduce the effect
of each trace so that the results are comparable. The method described in [Mor08]
normalizes the data to remove the between-subject variability. The following graphs
— namely figure 6.2, figure 6.3, figure 6.4 and figure 6.5 — present the average of
the normalized objectives, considering the traces as the between-subject variable.
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Figure 6.2: Normalized mean system utilization during the week. The black line represents
a theoretical performance baseline — as detailed in section 6.5.6.

As stated in section 6.2.3, some objectives are defined for a time period while others
are defined for a number of jobs. For the ones depending on a time period — namely
the utilization and the relative energy consumption — we used the whole week as
the time period. The jobs that have been scheduled after the end of the week are
thus not taken into account in these objectives. For the ones depending on a number
of jobs — AVEbsld and number of jobs started — all the jobs of each trace are taken
into account.

6.5.4 How better is the proposed algorithm compared to a standard
power capping mechanism?

Figure 6.2 depicts the normalized mean utilization for each experimental condition
depending on the energy budget. The black line is explained in Section 6.5.6. We
observe that energyBud outperforms the other algorithms. reducePC performs
better than energyBud when opportunistic shutdown is activated for the former
and deactivated for the latter. As expected, when the energy budget is of 49 %
or lower, all experiments without opportunistic shutdown have the same results —
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Figure 6.3: Normalized mean AVEbsld for all jobs.

PC_SHUT also has the same performance as the PC mechanism cannot benefit
from the energy saved thanks to the opportunistic shutdown.

Figure 6.3 shows the normalized mean AVEbsld for each experimental condition
depending on the energy budget. The AVEbsld are very high because we chose
traces with a high utilization. In production systems, a high utilization means that a
lot of jobs are waiting in the queue. AVEbslds increase even more when the energy
budget is low, as resources are limited during a considerable part of the week. Once
again, energyBud outperforms all other algorithms — with or without opportunistic
shutdown. Surprisingly, the powercap mechanism is not the worst. As expected, the
two powercap variants have close results since the algorithm does not benefit from
a reduced energy consumption.

Figure 6.4 presents the normalized mean energy consumed during the week relative
to the total energy consumable during the same period. When the energy budget
is set to 30 %, the algorithms without opportunistic shutdown consume more
energy than the total energy consumable — as a 30 % budget is below the energy
consumption of a fully idle cluster. The cluster clearly consumes less energy when
opportunistic shutdown is on. energyBud consumes more energy than reducePC,
which consumes more energy than powercap. Our algorithms do not try to minimize
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Figure 6.4: Normalized mean energy consumed during the week relative to the maximum
energy consumable during the same period.

the energy consumption but try to keep it under a certain value. This behavior
can be observed in figure 6.4: powercap has a very low energy consumption that
correspond to a non-utilization of the energy saved. At the opposite, energyBud is
quite successful at using saved energy as it has a high utilization while having a high
energy consumption.

6.5.5 What do we gain by employing opportunistic shutdown?

Table 6.2 shows the average performance difference of different objectives when the
opportunistic shutdown mechanism is employed. This table has been computed by
taking every experimental condition with opportunistic shutdown and by comparing
it against its idle counterpart. The comparison is done by computing the percent
change of opportunistic shutdown over idle: (ySHUT −yIDLE)/yIDLE , where ySHUT
is a normalized measure with opportunistic shutdown activated and yIDLE the
normalized measure in the exact same experimental setting — same algorithm and
same budget — as ySHUT but without opportunistic shutdown activated. This table
presents the average of these computations.
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Percentage change

Measure powercap reducePC energyBud

AVEbsld 0.16 % 0.88 % -8.61 %

Utilization -0.05 % 4.95 % 5.74 %

Number of job started -0.05 % 1.4 % 1.47 %

Energy consumed -4.74 % -1.78 % -1.42 %

Table 6.2: Average improvements on different objectives when opportunistic shutdown is
enabled. For AVEbsld and Energy, negative values are better.

As expected, activating the opportunistic shutdown mechanism decreases the energy
consumption of the powercap algorithm. Activating opportunistic shutdown also
decreases the energy consumption of the two other algorithms but less because
the saved energy is used to launch more jobs. energyBud takes the most of the
opportunistic shutdown. While reducePC and energyBud increase the number of
jobs started by the same amount, energyBud improves far more the utilization and
AVEbsld. Even more, the activation of opportunistic shutdown dramatically reduces
the AVEbsld of energyBud.

6.5.6 Does reducing the budget to 80% lowers performances to
80%?

In figure 6.2 the black line represents a theoretical performance baseline. If the
energy budget is reduced by a certain amount, one can expect the performance to
decrease by the same amount. This is what this line represents. The line is not the
identity because the energy budget only lasts 3 days during the 7 days considered.
Thus, this theoretical performance baseline is formulated as:

f(budget) = ūEASY bf .(
3
7 × budget+ 4

7)

where ūEASY bf is the mean normalized utilization when running the standard EASY
backfilling algorithm. If a point is below this line, it means that the performance has
decreased more than the energy budget have been decreased.

All the points are surprisingly above the line when the energy budget is set to 90 %.
It means that a better energy efficiency is achieved than EASY backfilling — even
with a simple powercap mechanism. Presumably, the small limitation in energy
reduces the fragmentation and thus improves the utilization. For energyBud with
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Figure 6.5: Performance/energy trade-offs against energy budget.

opportunistic shutdown, this is also true for energy budgets of 60% and above.
Without opportunistic shutdown, this is only true for 80% and above.

We can take a look at the trade-offs shaped by the different algorithms to go further
in this analysis. Figure 6.5a shows the normalized mean utilization versus the
normalized relative mean energy consumption for each experimental condition for
different energy budgets. The best points in term of energy-performance trade-off are
the most upper left ones. A clear difference appears when opportunistic shutdown
is activated: The points are in the upper left part of the graphs. energyBud with
opportunistic shutdown has the best trade-off. powercap is on the Pareto curve but
with a very low utilization.

Trade-offs between the normalized mean AVEbsld and the normalized relative energy
consumed are shown on figure 6.5b. Here the best points are the lower left ones.
Once again powercap with opportunistic shutdown has a good trade-off because
of its low energy consumption. However, energyBud with opportunistic shutdown
has the best AVEbsld trade-off. If we only look at the points without opportunistic
shutdown, powercap and energyBud have the best energy/AVEbsld trade-offs.
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6.5.7 Which one is the best between reducePC and energyBud?

We consider energyBud as the best of the two proposed algorithms. This algorithm
provides the best utilization and AVEbsld results. Even more, we have seen that
using this algorithm for not so low energy budget increases the energy efficiency of
the cluster compared to the standard EASY backfilling.

6.6 Conclusion

The purpose of this work was to extend the widely-used EASY backfilling algorithm
to comply with periods during which energy availability is limited.

We proposed two new alternatives and showed their effectiveness on a wide range of
scenarios that have been assessed through simulation. These two new algorithms not
only provide a way to control the energy consumption of computing platforms but
also optimize metrics such as system utilization and bounded slowdown. Moreover,
the proposed algorithms improve the energy efficiency of the cluster when the
amount of available energy is large.

As this work is an improvement of EASY backfilling, our algorithms still support most
existing extensions of this algorithm, such as advanced reservations, preemption
mechanisms or the establishment of a maximum power limit.

As future work we would like to implement our algorithm upon a real open-source
resource and job management system such as Slurm or OAR and study its effects
in a supercomputer in production. One limitation of our approach is that we only
considered periods with a fixed energy budget. Hence, this work could be extended
to become more dynamic: If the energy budget followed electricity price, we could
control and thus reduce a significant part of the cluster costs. This would provide
an improved solution to the remaining use cases described in [Pat+16a] where the
electricity cost varies as it partially depends on renewable sources.
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Energy vs Responsiveness
Trade-off in EASY Backfilling

7

7.1 Introduction

While the fastest High Performance Computing (HPC) systems are evolving to
extreme-scale platforms, there is a large adoption of cluster and cloud computing by
all sorts of industries for their production needs. In contrast to the research centers
at the forefront of innovation with an almost unlimited budget, these companies do
not attempt to leverage the most floating point operations per second out of their
clusters to be ranked first in a global race but to efficiently spend their computing
budget to get the most out of their necessarily limited needs.

One of the most promising way of reducing the expenses tied to a cluster is to reduce
its power consumption. To begin with, the power consumption becomes a constraint
since electricity companies set upper bounds on the power that they can provide
for clusters at different periods of time. Actually the problem not only lies in the
available power but also on the huge energy cost — several years of intensive use
may be greater than the price of the platform itself. It is therefore mandatory to
develop efficient tools to utilize new HPC clusters at a sustained performance rate
with a lower energy consumption.

While speed-scaling is the natural way to save energy while running a job, switching
down nodes is the natural way to save energy between jobs. However, most of the
existing resource management algorithms focus only on performance and energy
savings are only an afterthought. Taking into account node shutdowns at the
resource manager level while scheduling the jobs can potentially yield significant
improvements, as idle periods can be lined up to turn off fewer nodes for longer
periods of time.

Thus, we propose in this work to develop new methods for enhanced job allocations,
unlocking a potential source of energy savings — arguably the most promising one
— by creating better shutdown opportunities at the job scheduling level.
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We consider this problem as a bi-objective optimization whose purpose is to deter-
mine a good trade-off between a maximum number of switched-off processors while
keeping a good performance. Performance will be measured as it is common by
minimizing the average waiting times — this objective is defined in section 7.2.3 for
the sake of convenience and also in the main notations chapter in section 2.4.

Given this setting, we designed and compared algorithms based on two energy
saving methods. The first is an extension of the regular EASY backfilling scheduling
algorithm, where idle nodes are switched-off whenever they have been idle for a
while, and started again if they can be used for new jobs. The second method is
more actively saving energy by planning to turn off some nodes depending on the
current state of the schedule and of the queues, and keeping those nodes off as long
as it does not deteriorates our performance measure too much. As can be seen from
this first description, many parameters can be adjusted. To keep this chapter as clear
as possible, only the most meaningful results are presented.

The assessment of the proposed algorithms on real execution traces in simulation
shows that significant energy savings (up to 25%) can be achieved. The most
interesting result is that using the second method described above these savings
were possible with a relatively limited number of switches.

Chapter content. The chapter is organized as follows. A precise description of
the problem is given in section 7.2. Then section 7.3 describes the energy saving
techniques employed by our algorithms. Section 7.4 proposes and presents several
algorithms. The simulation campaign is reported in section 7.5 and its results are
analyzed in section 7.6. Related works are given in section 7.7. Finally, we conclude
and give future works in section 7.8.

7.2 Problem Description

Distributed platforms generally follow the same logic where computationally inten-
sive jobs are submitted in waiting queues. Then, the resource and job management
system — RJMS in short — collects data on these submitted jobs, analyzes them and
finally determines an allocation according to the available resources.
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7.2.1 Job characteristics

We consider parallel and rigid [Fei15] jobs that are submitted on-line. It is common
for the queue to be sorted according to the time when the jobs are submitted
(First-Come-First-Served, denoted shortly by FCFS).

Jobs are indexed by j and are characterized by their release time (denoted by rj),
their number of requested computing resources (qj), and their wall-time (wallj).
Both qj and wallj are specified by the users and are not known to the scheduler
before rj . The processing time (denoted by pj) remains unknown until the job is
completed. Job j is killed if it reaches its wall-time, without any penalty on the
scheduler (in this case we simply define pj as equal to wallj). The jobs are not
preemptive, which means that once started a job cannot be interrupted until its
completion.

Once the jobs have been executed more information about them can be defined. We
denote by startj the time at which j starts being executed, and by Cj the time at
which it completes (Cj = startj + pj). waitj = startj − rj denotes the amount of
time j stayed in the system before being executed.

7.2.2 About the platform

We focus on homogeneous computing platforms, whose computing resources will be
simply referred to as machines. A platform is defined by a set of m machines. The
interconnection network is not explicitly taken into account in this chapter.

The machines have various states S = { computing, idle, off , on→off , off→on }.
Idle machines can be switched-off, which takes a time ton→off . Off machines can be
switched-on, which takes a time toff→on. At a given time t, machine i is in one and
only one of the previous states.

Since in the HPC context the machines are affected to unique jobs, only idlemachines
can be selected to compute new jobs. An instantaneous power consumption is
associated to each state, denoted by Ps ∀s ∈ S, and it is expressed in watts.

The electrical power consumption of a machine is entirely defined by its state. With
our simulation tool, it is pretty straightforward to include many different computing
states to reflect the dynamic voltage and frequency scaling mechanism (DVFS).
However, in order to have a fair assessment of the improvements brought by our
policies, we considered that for every simulation the jobs had the exact same power
profile — i.e., every job has the same duration and power consumption regardless
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of when and where it is scheduled. Therefore, precisely modeling DVFS would only
change a constant fraction of the power consumption for every simulation.

7.2.3 Objectives

We are interested in the following bi-objective optimization problem: minimize both
the system unresponsiveness and the consumed energy of the platform. As this is
a bi-objective problem, we will provide a set of solutions that are not completely
comparable (Pareto set) [Dut+09].

What we call the responsiveness of a system represents its ability — in a given state
— to start jobs rapidly. We selected two metrics that represent the opposite of this
notion, that is the unresponsiveness. First, the jobs mean waiting time is defined by
1
n

∑
j waitj , and is expressed in seconds. We are also interested in the maximum

waiting time, defined by maxj waitj and also expressed in seconds.

The total consumed energy of the platform is defined as the sum of the consumed
energy of its machines, and is expressed in joules. The energy consumed by a
machine is defined as usual as the integral of its power over time. The time
boundaries which interest us here are between the submission time of the first job
and the completion time of the last one.

This bi-objective problem is to determine a trade-off — as both objectives are
conflicting. More precisely, the solutions that do not worsen too much the system
unresponsiveness are those which are the most relevant. Since the problem is most
likely NP-hard and that the targeted sets of jobs and platforms may be huge, we are
not looking for Pareto optimal solutions but for reasonable and useful alternatives.

7.3 Energy Minimization Techniques

Various techniques are used in the literature to save energy. These techniques can
be split in two parts. First there are techniques that aim at reducing the energy
consumption of the jobs themselves. Second, they focus on a better resource
exploitation to avoid energy wastes. In this chapter, we consider that the first kind
of techniques are fully used at the job level and we choose to study only the second
kind of techniques to improve their understanding.
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7.3.1 DVFS

The dynamic voltage and frequency scaling (DVFS) mechanism — also known as
speed-scaling — is probably the most studied technique to reduce the jobs energy
consumption, especially in theory [Alb10]. It can be used to ensure that power-
limited systems do not exceed a power threshold [GGT15]. Using DVFS at the
platform management level is risky as it can increase the overall energy consumption
of some applications [CM10].

In this chapter, we suppose that jobs are energy efficient. It means that we consider
that DVFS decisions are done within the jobs and not at the resource manage-
ment level. This approach may reduce the energy optimization space, but it also
prevents bad DVFS decisions that might result in increased jobs energy consump-
tion [SRH05].

7.3.2 Exploiting Idle Time

Idle machines consume a lot of energy on current hardware. As this part of the
energy is not used for computing jobs, we consider it as lost. Hence, reducing this
part of the energy consumption is crucial and a big source of gain.

One way to save energy is to switch idle machines into lower consumption states.
This mechanism greatly reduces the machines idle power consumption but it should
be used with caution as switching to and from lower consumption states has both
time and energy costs, and potentially ages the hardware.

Lower consumption states can be different types of sleep states or complete shut-
downs. For the sake of readability, we will simply refer to machines in lower
consumption states as off, but please notice that using other lower consumption
states does not change the approach at all.

Opportunistic Shutdown

What we call opportunistic shutdown is a type of machine shutdown technique. It
keeps track of the machines states over time. Whenever a machine remains idle for
more than tidle seconds, it is switched-off. Some constraints can be added into this
technique to prevent unintended behaviors — e.g., preventing it to hinder priority
jobs.
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We propose in this chapter to use quite directly the machines that have been switched-
off via this technique. The resource management algorithm can use these resources
to compute jobs freely, the machines just need to be switched back to a computing
state before actually executing the jobs. To limit the number of state switches and
to minimize the system unresponsiveness, idle machines should be selected with a
higher priority than off ones.

Off Reservations

Another approach is to deliberately reserve some machines as off. Contrary to
opportunistic shutdown, off reserved machines cannot be used freely to compute
jobs, the off reservation must first be cancelled or altered. Even if this approach
may conflict with the performance objective, we advocate that it allows worthwhile
energy and performance trade-offs if used wisely.

In this chapter, we will test two ways to use off reservations. First, we will consider
a static view where a fixed proportion of machines is to be used as little as possible.
In this naive approach, off reserved machines can only be switched-on if a job do
requires them, that is to say the job cannot be executed at all without these machines.
Second, we will consider to adapt the number of off reserved machines to the system
responsiveness. For this purpose, we will propose an online estimator of the system
unresponsiveness.

7.4 Algorithms

This section describes the proposed algorithms to address the problem described in
section 7.2. These algorithms make use of the techniques introduced in section 7.3.
Preliminary notions are given in section 7.4.1, the algorithms themselves are detailed
respectively in sections 7.4.2 and 7.4.3, implementation details are mentioned
in section 7.4.4 and the following paragraph defines the decision space of the
algorithms.

The algorithms studied in this chapter are event-based. The events may concern
job submissions, job completions, or state modifications of machines — e.g., some
machines just finished to be switched-off. Whenever they are called, the algorithms
take decisions, which are performed immediately after the decision making. Deci-
sions include starting the execution of a job on some machines, or switching the
state of some machines — e.g., switch-on some machines.
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7.4.1 Preliminaries

Easy Backfilling

Easy backfilling [MF01], that will simply be referred to as EASY in the remainder
of this chapter, is one of the mostly used resource management algorithm. This
popularity can be explained by the ease of implementation and the high utilization
its aggressive backfilling mechanism induces, since most HPC center administrators
often want to maximize the resource utilization.

EASY stores the pending jobs in a queue, which is ordered by job arrival time. First,
EASY scans the job queue in order as long as the jobs can be executed right away.
This part of the algorithm is the same as the First Come First Serve policy (FCFS). If
a scanned job cannot be executed right away, a reservation is done for it and the
queue scanning is stopped. Such a job is called a priority job. Second, EASY scans
the remaining jobs in the queue (still in order) and attempts to backfill them — i.e.,
execute them forthwith if and only if they do not seem to delay the starting of the
priority job.

Unresponsiveness Estimator

As stated before, what we call the responsiveness of a system represents its ability
— in a given state — to start jobs rapidly. Instead of working directly on the
responsiveness, we propose an estimator of the opposite of this notion, that is the
unresponsiveness estimator of the system at time t, and is denoted by υ(t).

More concretely, we propose a system unresponsiveness estimator called the liquid
load horizon (LLH). It estimates the needed amount of time to compute the pending
load in the queue. For this purpose, it first computes the total pending load via
l =

∑
j qj · wallj . This estimator then assumes that this load l can be distributed

freely among the computing machines. The value computed by this estimator is
the needed amount of time to consume the load l in the provisional schedule —
which depends on the running jobs, on the machine switches currently ongoing, and
on the current state of the machines. This calculation is represented on figure 7.1.
Computed values are in range [0,+∞[. The degenerated case +∞ can be obtained
when all machines are switched — or are switching — off. The variation of the LLH
over time is a piece-wise linear function with jump discontinuities on events, and is
decreasing between events.
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Figure 7.1: The liquid load horizon, a system unresponsiveness estimator. Black: switched-
off. Dashed areas is the difference between predicted and actual job processing
times.

The LLH is subject to uncertainties about times, as jobs execution times and machines
switching times are unknown in advance. It also considers the ideal situation in
which the load can be divided freely among the machines.

7.4.2 Algorithm 1: Proportional Shutdown

The Proportional Shutdown algorithm is an extension of EASY — cf. section 7.4.1.
The main idea of this algorithm is to keep a proportion of the machines in an off
state most of the time. In other words, this algorithm makes an initial off reservation
and only reduces its size when big jobs (those requesting too many machines) must
be executed.

The only parameter specific to this algorithm is ρ ∈ ]0, 1], which defines the propor-
tion of machines that can be used most of the time. The number of machines used
most of the time is bρ ·mc. This constraint is only violated when the priority job
requests more machines than bρ ·mc. This algorithm also supports the opportunistic
shutdown technique, which switches-off machines that remained idle longer than
tidle seconds.

It may be noticed that EASY is a special case of this algorithm when ρ = 1 and
when the opportunistic shutdown is disabled. Furthermore, when ρ = 1 and that the
opportunistic shutdown is enabled, the resulting instances are equivalent to EASY
with an opportunistic shutdown technique.
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Algorithm 3: Inertial Shutdown periodic decision-making procedure
Input: dtt−T , the type of the previous energy decision

#switchrealt−T , the actual number of switched machines since t− T
υt and υt−T , the mean of the LLH over ]t−T, t] and ]t−2T, t− T ]
υub, the threshold to control the unresponsiveness increase

Output: dtt, the type of the energy decision to take
#switchduet , the number of machines to switch

if υt ≥ υub then
if dtt−T = SWITCH OFF then

dtt−T ← SWITCH ON
#switchrealt−T ← 0

end
υt−T ← 0

end
if
(
(dtt−T = SWITCH ON)and(υt > υt−T )

)
or(

(dtt−T = SWITCH OFF)and(υt ≤ υt−T )
)

then
dtt ← dtt−T

#switchduet ← min
(

max
(
f(#switchrealt−T ), 1

)
, µ
)

else
dtt ← ¬dtt−T
#switchduet ← 0

end

7.4.3 Algorithm 2: Inertial Shutdown

The Inertial Shutdown algorithm is another EASY extension — cf. section 7.4.1.
Its main idea is to adjust the number of usable machines to the unresponsiveness
variation of the system. In other words, this algorithm maintains an off reservation
whose size is completely dynamic.

To do so, this algorithm uses the LLH system unresponsiveness estimator introduced
in section 7.4.1. It is also compatible with the opportunistic shutdown technique.

This algorithm makes energy decisions periodically, which limits the computations
to do at each event and allows to react when no event occur — e.g. when long jobs
are being computed. Algorithm 3 explains this decision-making procedure, which is
called at time t and decides the type of decision to make dtt — either to SWITCH
ON or to SWITCH OFF — and the number of machines to switch #switchduet . The
switches are then initiated now if possible or as soon as possible otherwise. The
following paragraphs of this section detail the different aspects of algorithm 3.
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To find out whether the system unresponsiveness is increasing or decreasing, this
algorithm compares representative values of LLH over the current period ]t−T, t]
and the previous one ]t−2T, t− T ]. We used the mean of LLH over the period as its
representative value, denoted by υt and detailed in equation (7.1), where t is the
current time and T is the period duration.

υt = 1
T

∫ t

t−T
υ(x) dx (7.1)

This algorithm keeps track of the previous energy decision it took (at time t − T )
and whether the related switches have been initiated. dtt−T is the previous decision
type and #switchrealt−T is the number of machines whose switching has been at least
initiated since t− T . Please do note that #switchrealt−T does not include the switches
resulting from the opportunistic shutdown technique — i.e., ∀t,#switchrealt ≤
#switchduet .

We introduced a threshold denoted by υub to control how high the system unrespon-
siveness is allowed to grow. If, at time t, υt ≥ υub, some machines are switched on
right away regardless of the previous decision type.

This algorithm continues to take the same type of decision if the LLH variation
remains of the same sign. Explicitly, if the algorithm decided to switch some
machines on (off) previously and that the LLH has increased (decreased), it decides
to switch machines on (off). Otherwise, the algorithm toggles its decision type
but does not take any decision instantly to avoid overreacting. The algorithm
computes #switchduet = min

(
max

(
f(#switchrealt−T ), 1

)
, µ
)

where µ is the number
of switchable machines (now or in expected future) and f is a (not strictly) increasing
N→ N function. Function f has been introduced to allow variations of the switches
aggression and should allow to control the algorithm inertia.

7.4.4 Implementation Issues

This section gives details about how we implemented the proposed algorithms. As we
promote research reproducibility, feel free to read our implementation [@batsched]
if some parts remain unclear despite our best efforts.

In our implementation, the two algorithms share the same code base to handle
usual events — i.e., job submissions, job completions and machine switches. The
algorithms only differ by their decision-making procedure when periodic calls occur.
This code base implements a modified version of EASY that allows to handle machine
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switches, the marking of machines as waiting to be switched, and the opportunistic
shutdown technique.

This code base also stores how many machines have been switched for two types
of reasons, either for being idle or because the algorithm decided not to use these
machines. When the algorithms decide to increase the off reservation size, if
machines have already been switched-off because of idleness, those machines are
stolen. This avoids to switch-off new machines for the purpose of minimizing the
number of switches. Whenever an algorithm marks some machines as waiting to
be switched it selects the soonest switchable machines according to the provisional
schedule.

The code base uses a machine priority in its backfilling procedure. Idle machines
are used with a higher priority than the machines that were switched-off by the
opportunistic shutdown technique. Off reserved machines are only switched-on if the
priority job cannot be executed: When it requires more machines than those currently
on + those being switched-on + those currently off because of the opportunistic
shutdown technique.

Finally, please remark that the parameters of the two algorithms are dynamic and
can be adjusted at any time by a system administrator — even if it is not done
in the experiments. Furthermore, the two algorithms do not strongly depend on
the periodic call mechanism detailed in this section, as any callback or timeout
mechanism may be used instead.

7.5 Evaluation Process and Reproducibility

We established a benchmark in order to assess the behavior of the algorithms
presented in section 7.4. The aim of this benchmark is to characterize the algorithms
performance — on both objectives — according to their parameters, and to know
whether one technique or combination of techniques is clearly better than the
others. Since research reproducibility is a major concern for us, our evaluation
process is detailed in the present section. Most of the required resources to replicate
this experiment can be found on repository [@reprETO17]. This includes the
controlled software environment which has been set up for this experiment thanks
to Kameleon [Rui+15], the various scripts used to produce the data and to analyze
it, an aggregated copy of our experimental data, and finally some figures that have
not been selected for this paper.
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The algorithms are assessed in simulation thanks to Batsim. All the experiments
have been executed with Batsim commit 709c160 of repository [@batgit2] and
commit 3aaa179 of our algorithms repository [@batsched].

The EASY, proportional shutdown and inertial shutdown algorithms have been
executed in various situations. These situations, that will be denoted as instances,
are defined by the used algorithm, a combination of the algorithm parameters,
the executed workload and the simulated platform. The parameter space of our
experiment is summarized in table 7.1. EASY is not shown is this table as it does
not have any parameter. The different combinations leads to 1282 instances, which
totals to more than 1800 years of simulated time and nearly 50 million jobs.

Table 7.1: Parameter space of our experimental process. All combinations are explored.

Shared by all algorithms
Workloads KTH_SP2, SDSC_SP2
Platform homogeneous240

Shared by Proportional and Inertial
T (s) 60, 120, 300, 600
tidle (s) 0, 300, 600, 6000, +∞
Make run decisions on period true, false

Proportional-specific
ρ 1.00, 0.95, 0.90, 0.85

Inertial-specific
f(n) n+ 1, n× 2
υub (s) 1 · 104, 1 · 105, 2 · 105

Allow future switches true, false

Since we are interested in fully homogeneous platforms in this chapter, we have
generated a simple SimGrid platform — a cluster of 240 computing machines. This
platform is used to compute all the instances, but only a subset of the computing
machines can be used — depending on the workload that is being executed. Energy
data of the computing machines comes from a series of measures conducted on
the Taurus Grid’5000 test-bed as detailed in section 6.5.1. The machines energy
parameters are shown in table 6.1 (page 68).

As we are interested in the utilization variation over time of real platforms, and
since we would like to evaluate how our algorithms behave in realistic scenarios,
we chose to evaluate them on workloads coming from real traces. We chose to
execute them entirely in a single block — rather than cutting them is different slices
— which allows to preserve the various utilization cycles — e.g., daily and weekly
— and to preserve some characteristics of these workloads. We chose to use the
KTH_SP2 and SDSC_SP2 workloads from the Parallel Workload Archive [FTK14;
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@pwa]. These two workloads are long (11 and 24 months), exhibit cyclic utilization
patterns and use a relatively small number of machines (100 and 128), which allows
to keep relatively short simulation times (in the order of the dozen of minutes for
each instance). We used the cleaned versions of these workloads and added another
cleaning step that discards jobs with invalid or unspecified execution time or wall-
time. Since the network is ignored in this study, the Batsim jobs generated from these
workloads only consist in an amount of computation, distributed homogeneously
between the computing machines allocated to each job.

In order to assess the behavior of the opportunistic shutdown technique with our two
algorithms, various values of the T and tidle parameters have been considered. We
also tested whether calling the usual decision making procedure after each periodic
decision making procedure call altered the algorithm behavior.

The proportional shutdown algorithm has only one specific parameter: ρ, the
proportion of machines that must remain on most of the time. Various values
between 100 % and 85 % have been tested.

More parameters have been tested for the inertial shutdown algorithm. First, three
values of υub have been tested. These values have been chosen by looking at the
evolution of the LLH on schedules resulting from EASY for the two workloads.
Preliminary results have shown us that the f function impact seemed negligible on
platforms of this size, we then only evaluated one linear and one geometric function
in this experiment. Finally, we tested whether forcing the inertial switching decisions
to be made at periodic calls or to allow them to be conducted later on changed the
algorithms results.

7.6 Results

This section shows and analyzes the results of the experiment described in sec-
tion 7.5. Section 7.6.1 gives the instance nomenclature used in the remainder of this
chapter. A result overview of the most interesting trade-offs is given in section 7.6.2.
Section 7.6.3 analyzes how much energy can be saved if great responsiveness losses
are allowed. Section 7.6.4 proposes a finer grain analysis of our results. Finally, the
impact of the most important parameters of each technique and their combination is
briefly explained in sections 7.6.5, 7.6.6 and 7.6.7.

7.6 Results 89



7.6.1 Instance Naming Convention

This section makes explicit the instance naming convention we chose to outline
our results. The EASY instances correspond to the EASY algorithm alone (without
any parameter). The OS instances correspond to the EASY algorithm used with the
opportunistic shutdown technique enabled (formally proportional shutdown with
ρ = 1 and tidle ≤ 600). The weakOS instances correspond to the EASY algorithm
used with a very weak aggressiveness (formally proportional shutdown with ρ = 1
and tidle = 6000).

The inertial instances correspond to the EASY algorithm used in conjunction with
the inertial shutdown technique, and with opportunistic shutdown disabled or
used with a very weak aggressiveness (formally inertial shutdown with tidle ∈
{6000,+∞}). The inertial+OS instances correspond to the EASY algorithm with
both opportunistic shutdown and inertial shutdown techniques enabled (formally
inertial shutdown with tidle ≤ 600).

The prop instances correspond to the EASY algorithm used in conjunction with
the proportional shutdown technique, with opportunistic shutdown disabled or
used with a very weak aggressiveness (formally proportional shutdown with ρ < 1
and tidle ∈ {6000,+∞}). The prop+OS instances correspond to the EASY algo-
rithm used with both proportional shutdown and opportunistic shutdown enabled
(formally proportional shutdown with ρ < 1 and tidle ≤ 600).

For the sake of readability, consumed energy is normalized by EASY results for each
workload (2.73 · 1011 J on KTH_SP2 and 7.66 · 1011 J on SDSC_SP2).

7.6.2 Most Interesting Trade-offs

As we said before, the solutions that do not worsen much the system responsiveness
are the most relevant. This section focuses on these solutions, which are plotted
on figures 7.2, 7.3 and 7.4. They have been obtained by setting υub = 104 for the
inertial shutdown algorithm — inertial and inertial+OS instances — and ρ = 1 for
the proportional shutdown algorithm — OS and weakOS instances.

Both inertial and opportunistic shutdown, as well as their combination, allows
energy savings of about 20 % for the two workloads — as seen on figure 7.2. The
inertial technique allows greater energy savings than the opportunistic one on the
KTH SP2 workload, but the opposite phenomenon occurs on the SDSC SP2 workload
when the opportunistic shutdown is used aggressively — OS instances. Using the
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Figure 7.2: Energy vs Mean Waiting Time of the best trade-off solutions (reasonably low
waiting time) for the KTH SP2 and SDSC SP2 workloads.

opportunistic shutdown with a weak aggressiveness does not seem very interesting
as these instances do not contain any (energy, mean waiting time) Pareto-optimal
solution in the explored parameter space. Enabling the opportunistic shutdown
technique slightly improves inertial (energy, mean waiting time) trade-off results on
both workloads.

The inertial technique allows lower mean waiting times globally and is more stable —
the points are more compact on this metric — than opportunistic shutdown, as seen
on figure 7.3. The inertial technique is clearly better on the maximum waiting time
metric on both workloads — results are only presented on SDSC SP2 but results are
even better on KTH SP2. This leads us to conclude that the inertial technique allows
to obtain a higher system responsiveness than the opportunistic technique.

The inertial technique does significantly fewer switches than the opportunistic
technique, as figure 7.4 shows. This result is important, as increasing the number
of switches is suspected to increase the failure rate and to reduce the machine
lifespan.
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Figure 7.3: Energy vs Max Waiting Time of the best trade-off solutions for the SDSC SP2
workload.

Both inertial and opportunistic shutdown allows to save significant amounts of
energy (gains are of the same order for both techniques). However, inertial shutdown
avoids high system responsiveness decreases and involves much fewer switches,
which leads us to think that the inertial technique is better than the opportunistic
one.

7.6.3 All Trade-offs

Another goal of this experiment is to determine whether, thanks to the proposed
techniques, considerable energy amounts can be saved if substantial responsiveness
losses are allowed. For this purpose, figure 7.5 shows all the trade-off solutions
resulting from our experiment. It is a bigger picture of figure 7.2, as it includes
prop and prop+OS instances, all υub values, and multiple combinations of negligible
parameters. The negligible parameters are: 1. Whether forcing the inertial switching
decisions to be taken at periodic calls or to allow them to be conducted later on
2. Whether to call the usual decision making procedure after each periodic decision
making procedure call.

The opportunistic technique does not shape clear trade-offs between energy and
mean waiting time. On the other hand, both the inertial and the proportional
techniques allow to get trade-offs, as increasing the mean waiting time allows
more energy savings. However, we can notice that only tiny energy savings can be
obtained this way, at the cost of great mean waiting time increases. This led us to
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Figure 7.4: Energy vs switch number of the best trade-off solutions (reasonably low waiting
time) for the KTH SP2 and SDSC SP2 workloads.

the conclusion that the trade-offs that should be made in practice are those which
keep a low mean waiting time, as described in section 7.6.2.

The proportional technique results are plotted on figure 7.5. When used alone (prop
instances), none of the solutions is Pareto-optimal. When used in conjunction with
the opportunistic shutdown technique — prop+OS instances — most of the energy
savings seems to come from the opportunistic technique. This can be seen on SDSC
SP2, where the prop+OS instances are split in two rows. The upper row (around 80
% energy) comes from weakOS instances (tidle = 6000), while the lower row (around
75 % energy) comes from the OS instances (tidle ≤ 600). Consequently, this leads us
to conclude that the proportional shutdown technique is not very interesting. It is
indeed always dominated by the inertial shutdown technique, which allows dynamic
variations of the off reservation size.
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Figure 7.5: Energy vs Mean Waiting Time of all trade-off solutions for the KTH SP2 and
SDSC SP2 workloads.

7.6.4 Finer Grain Analysis

As both workloads are long, they exhibit various patterns over time. This section
analyzes the results of our experiment by aggregating results by groups of 4 consec-
utive weeks — instead of aggregating them over the whole workload length. For
the sake of conciseness, groups of 4 consecutive weeks will simply be referred to as
months.

Figure 7.6 shows that the proposed algorithms can in fact achieve greater energy
savings than those presented in section 7.6.2, as up to 30% energy savings are
shown. These savings mostly depend on the load pressure, as can be seen in the
correlation between the mean utilization during a single month and the consumed
energy.

The most frequent trade-off patterns that can be observed in the months are ex-
plicited in Figure 7.7. Half of KTH months are similar to KTH’s month 2, where
the algorithms results are ordered (inertial+OS is better than inertial, which is
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better than OS, which is better than weakOS). A quarter of KTH months are similar
to KTH’s month 9, where the algorithms are different trade-offs between energy
and performance. 73% of SDSC months are similar to SDSC’s month 12, where
the algorithms have similar performance but various energy consumption (OS is
generally better than inertial+OS, which is better than inertial, which is better than
weakOS). 11% of SDSC months are similar to SDSC’s month 13, where the results
are dense and noisy on both objectives. Finally, SDSC’s month 15 is similar to 8%
of SDSC and KTH months, where the algorithms show rather close energy savings
but potential high performance drops. The latter case exhibits that the opportunistic
technique is more likely to take bad shutdown decisions in some cases (notably
when the system is heavily loaded) than the inertial one.
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Figure 7.6: Energy saving opportunities fluctuate over time. All simulation results are
shown but EASY (which is used as a reference). Months are colored separately
to underline the variety of inputs used in our experiments.

7.6.5 Opportunistic Shutdown

The main parameter of the opportunistic shutdown technique is tidle. As expected,
decreasing tidle globally decreases the energy consumption. It is clearly the case for
SDSC SP2 as seen on figure 7.8.
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Figure 7.7: Figuration of energy and performance trade-offs for some months. The pat-
terns exhibited in these examples are representative of most months in our
experiment.

7.6.6 Inertial Shutdown

The main parameter of the inertial shutdown technique is υub, as it evidences clear
trade-offs between consumed energy and mean waiting time, as seen on figure 7.9
for the SDSC SP2 workload — results are similar on KTH SP2. Increasing υub

slightly decreases the consumed energy and substantially increases the mean waiting
time. This behaviour is expected, as this parameter has been introduced to control
the mean waiting time increase. T is also an important parameter of the inertial
shutdown technique — also seen on figure 7.9. Decreasing T directly decreases the
energy consumption. The lower υub, the clearer the impact of T on the consumed
energy.
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Figure 7.8: Impact of the tidle parameter of the opportunistic shutdown technique (used
alone) for the SDSC SP2 workload.
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Figure 7.9: Impact of the υub and T parameters of the inertial shutdown technique (used
alone) for the SDSC SP2 workload.

7.6.7 Inertial+Opportunistic Shutdown

The way we mixed both techniques led the inertial+OS instances to mostly follow
the behaviour of the corresponding inertial instances. Thus, the main parameter to
describe these instances is υub, as figure 7.10 shows.

If we only consider low υub values (most interesting trade-offs, as seen in sec-
tion 7.6.2), minimizing tidle is interesting as it allows to reduce both the energy
consumption and the mean waiting time, as figure 7.10 shows. However, please
keep in mind that this combination of techniques may lead to a high number of
power switches.
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Figure 7.10: Impact of the υub and tidle parameters when both inertial shutdown and
opportunistic shutdown are used, for the SDSC SP2 workload.

7.7 Related Work

As we discussed in the introduction, the topic of energy saving in clusters received an
increasing interest from the community. There are dedicated workshops and sessions
in most conferences in the domain. However, to the best of our knowledge, there is
no similar work directly comparable to ours that consider shutdown techniques to
produce energy-performance trade-offs at the platform management level.

In particular, this subject was studied through various theoretical (idealized) models,
see for instance the nice survey of ALBERS [Alb10], which analyzed competitive
algorithms for both speed-scaling and shutdown techniques. Another direction is to
model the system by Markov chains [HK12]. However, such methods do not lead to
implementations.

On a more practical side, speed-scaling and shutdown techniques have been im-
plemented in the Slurm resource manager and used to respect a power budget
in [GGT15]. Modifications of EASY to respect an energy budget are conducted
in [Dut+16a]. Finally, at the application level, ETINSKI et al. study energy-
performance trade-offs for parallel applications in [Eti+12b].

Another view of the problem is to consider overprovisioning. SAROOD et al. maximize
the throughput of moldable jobs under a strict power budget in [Sar+14] thanks
to linear programs. PATKI et al. show in [Pat+16b] that hardware overprovisioned
systems can be economically viable.
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BENOIT et al. explore how much energy can be saved thanks to shutdown techniques
in [Ben+17]. This article models many practical (physical) constraints that must be
dealt with when large numbers of nodes are switched on and off. It evaluates how
much energy can be saved in practice while respecting the different constraints. The
approach is quite different to ours, as the job schedule is a fixed input. The potential
gains under the different constraints are evaluated in a clairvoyant offline scenario,
where the algorithms schedule off reservations with the objective of minimizing
the energy consumption without moving the jobs. This approach cannot be used
to compute an optimal solution of the problem studied in this chapter, as moving
jobs may lead to more energy savings — but it may nevertheless be used as a good
solution, as bad energy decisions are avoided.

The closest approach may be found in the general methodology proposed by ORGERIE

et al. [OLG08], which aims at reducing energy via shutdown techniques in platforms
that rely on advance reservations. In the proposed approach, the user selects a
reservation between several choices that are made by the RJMS. When a resource
becomes available, the RJMS selects whether it should be switched-off depending
on the amount of time the resource is expected to remain idle. Predictions are done
based on the recent platform usage to estimate when the next reservation will occur.
Idle resources are used with a higher priority than off ones in order to minimize the
number of switches — just as in the algorithms proposed in this chapter. Impressive
results are given on the Grid’5000 workload — up to 30 % energy savings. However,
these results are not really comparable to ours as the Grid’5000 workload greatly
differs from classical HPC workloads — most jobs are reserved in advance and the
platform utilization if very low. Evaluating how the proposed techniques behave in
the context studied in this chapter — e.g., by creating advance reservations for the
jobs submission times or without advance reservations and with the chaos produced
by EASY backfilling and badly-estimated user-given execution times — would be an
interesting future work.

7.8 Conclusion and Future Work

We have presented in this chapter two main techniques to produce energy and
performance trade-offs. A parametric opportunistic shutdown technique has been
used in combination with an off reservation technique, which led to energy gains up
to 25 % with little performance loss.
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While keeping an off reservation of almost fixed size does not seem auspicious,
adapting this size to the system responsiveness is very promising. It indeed resulted
in significant energy savings, reduced responsiveness losses, reasonable numbers of
switches and an easily predictable behavior. These advantages make this technique
a good candidate for implementations in production, as it would allow significant
energy savings at low risk.

In this work, we have considered rigid jobs whose execution time is placement
independent. As a future work we would like to take locality into account, as
placing jobs locally reduces their execution times on most clusters and therefore
their energy cost. We think that dramatic energy savings can be obtained by using
locality constraints wisely. Finally, we think that using the same type of techniques
on another basis than EASY could lead to higher energy savings — e.g., conservative
backfilling [MF01] and its variants [Lin+13]. We indeed avoided quite strongly
to hinder the priority job in our implementation and we think that lowering this
constraint while avoiding starvation may lead to interesting results.
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Conclusion 8
Need of a new simulator HPC platforms are complex distributed systems, and
they are therefore very difficult to manage. Comparing the quality of resource
management policies is arduous since each policy achieves a compromise between
several conflicting objectives and potentially deals with different constraints. As
energy consumption is a major limitation to build bigger platforms — in particular
on the road to exascale — this work focused on methods to save energy. In this
dissertation we took a holistic approach to study resource management strategies
on HPC platforms rather than proposing yet another dedicated method to look into
particular energy-related problems.

Our approach was to study how to manage HPC platforms by simulation as it
allows to explore many scenarios at reasonable cost. It considers platforms as
complex distributed systems and simulates them as such in the hope of improving
the soundness of the results. To this end we emphasized separation of concerns
in such a way that state-of-the-art distributed simulation frameworks could be
employed internally. Separation of concerns is also stressed in our approach by the
strong decoupling between the platform simulation and the decision making. First,
this allows to study management policies as a whole and avoids to confine them
to particular paradigms — e.g., queue-based job management is very popular but
other methods exist [Zhe+16]. Second, this allows to assess and compare various
implementations of resource managers — notably production RJMSs and academic
prototypes — regardless of the programming language they use.

The roots of this methodology come from the growing awareness that experiments
are generally insufficient regarding reproducibility and solidity in scientific exper-
imental fields. We believe that increasing modularity in the simulation of such
systems was a necessary step to improve further studies with less effort, especially
towards larger scales.

This work resulted in both our methodology and its implementation in the Batsim
simulator. Substantial effort has been made in this implementation as it is meant
to last. For this purpose, Batsim has been and remains heavily tested, and its
results have been evaluated against the real RJMS OAR. It is currently involved
in several experiments conducted in different teams all over the world. Batsim is

101



general-purpose and can be used in manifold scenarios with various simulation
models.

As a case study, we addressed the question of saving energy at the platform man-
agement level. To this end we first studied the problem of maximizing the system
performances with a limited available amount of energy during a given time period.
We proposed several extensions to EASY backfilling to face this problem. The main
idea behind these algorithms is to conserve unused energy and to use it later on to
execute jobs. Contrary to classical power capping algorithms, this mechanism can
schedule jobs that request a lot of energy and thus leads to better performances.
The energy is saved by either idling or switching-off machines that are not used.
As we worked on the above-mentioned problem, we felt that trade-offs between
performances and energy savings were worth further investigation. To that extent
we studied more generally the problem as a multi-objective one. In this case we were
interested in trade-off solutions that reduce the energy consumption without deteri-
orating the performances too much. This work showed that shutdown techniques
can achieve significant energy savings by itself. The main result is that deliberately
switching and keeping machines off in accordance with the current load pressure
leads to better trade-offs than switching the machines off opportunistically — i.e.,
to shutdown machines if they remain idle. The proposed algorithm has also the
advantages of being more predictable and to require many fewer switches than the
opportunistic technique.

Perspectives As most research studies on complex systems, we are aware that our
work has not addressed several aspects that deserve further attention. As evaluating
the credibility of simulators is hard and complex [MLW01; Flo06], there remains
room for improvements in the Batsim evaluation process. For instance, valida-
tions with more machines, more jobs and longer workloads would be interesting
to consider but may involve unreasonable costs. Another path to consider is to
compare Batsim results to RJMSs other than OAR. Conducting such experiments
with Slurm [YJG03] seems knotty and costly [Luc11; TB15; Gon+17] but connecting
Flux [Ahn+14] to Batsim looks promising.

More generally, Batsim does provide realistic results but their soundness is currently
mostly left to the users and depends on a combination of multiple parameters —
mainly about the computing platform, the jobs and the phenomena to consider.
While a part of this responsibility is to be placed on the simulator users, we think
that gaining more insights on the limits of the different models would be beneficial.
In particular, many open questions remain about the modeling of applications and
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deserve further study. Coarse-grained models are arguably the most pertinent at
the platform management level as one generally seeks the big picture. However,
determining the relevance of each job model depending on the phenomena one
wants to observe — and to evaluate the trade-offs between realism and simulation
speed granted by each one of them — is hard and merit future work. This is notably
the case for temporal network congestion and I/O data movements that occur on
(heterogeneous) platforms.

On the side of applying Batsim, many opportunities remain to increase energy savings
at the platform management level. Our work essentially focused on shutdown
techniques to save energy. We believe that correctly estimating — e.g., with learning
techniques — which events are likely to occur at the next moments and the associated
risks can reduce the number of bad shutdown decisions and therefore increase energy
savings. Our work considered jobs as context-independent to focus on the impact on
shutdown techniques in isolation. However, as the execution of most jobs is context-
dependent, we think that considering data movements and network communications
at this level is worth addressing as it may be a major leverage to reduce the jobs
individual energy. Taking these phenomena realistically into consideration may
however require extra studies on application modeling. Another way to reduce the
individual energy of jobs is to allow DVFS decisions at the platform level. This is risky
since such decisions can increase the jobs overall energy, but learning techniques
can be used to estimate how the applications behave since users often submit the
same applications [Wal+16].
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Abstract
Computing platforms increasingly grow in power and complexity. Numerous challenges remain to build
next generations of platforms, but exploiting the platforms is a challenge per se. Constraints such as energy
consumption, data movements and resilience risk to initiate breaking points in the way that the platforms are
managed — especially with the convergence of the different types of distributed platforms.
Resource and Jobs Management Systems (RJMSs) are critical middlewares that allow users to exploit the
resources of such platforms. They must evolve to make the best use of the computing platforms while
complying with these new constraints. Each evolution ideally require many iterations, but conducting them in
vivo is not reasonable due to huge overhead. Simulation is an efficient way to tackle the subsequent problems,
but particular caution must be taken when drawing results from simulation as using ill-suited models may
lead to invalid results.
The first contribution of this dissertation is the proposition of a modular simulation methodology to study
RJMSs and their evolution realistically — and the related simulator Batsim. The main idea is to strongly
separate the simulation from the decision-making algorithms. This allows separation of concerns as any
algorithm can benefit from a validated simulation with multiple levels of realism (features, accuracy of the
models). This methodology improves the production launch of new policies since both academic prototypes
and production RJMSs can be studied in the same context.
Batsim is used in the second part of this dissertation, which focuses on online and non-clairvoyant resource
management policies to save energy. Several algorithms are first proposed and analyzed to maximize
performances under an energy budget for a given time period. This dissertation then explores more generally
possible energy and performances trade-offs that can be obtained with node shutdown techniques.

Résumé
Les plateformes de calcul se multiplient, grandissent en taille et gagnent en complexité. De nombreux défis
restent à relever pour construire les prochaines générations de plateformes, mais exploiter cesdites plateformes
est également un défi en soi. Des contraintes comme la consommation énergétique, les mouvements de
données ou la résilience risquent de devenir prépondérantes et de s’ajouter à la complexité actuelle de la
gestion des plateformes. Les méthodes de gestion de ressources peuvent également évoluer avec la convergence
des différents types de plateformes distribuées.
Les gestionnaires de ressources sont des systèmes critiques au cœur des plateformes qui permettent aux
utilisateurs d’exploiter les ressources. Les faire évoluer est nécessaire pour exploiter au mieux les ressources en
prenant en compte ces nouvelles contraintes. Ce processus d’évolution est risqué et nécessite de nombreuses
itérations qu’il semble peu raisonnable de réaliser in vivo tant les coûts impliqués sont importants. La simulation,
beaucoup moins coûteuse, est généralement préférée pour faire ce type d’études mais pose des questions quant
au réalisme des résultats ainsi obtenus.
La première contribution de cette thèse est de proposer une méthode de simulation modulaire pour étudier
les gestionnaires de ressources et leur évolution — ainsi que le simulateur résultant nommé Batsim. L’idée
principale est de séparer fortement la simulation et les algorithmes de prise de décision. Cela permet une
séparation des préoccupations puisque les algorithmes, quels qu’ils soient, peuvent bénéficier d’une simulation
validée proposant différents niveaux de réalisme. Cette méthode simplifie la mise en production de nouvelles
politiques puisque des codes issus à la fois de gestionnaires de ressources de production et de prototypes
académiques peuvent être étudiés dans le même contexte.
La méthode de simulation proposée est illustrée dans la seconde partie de cette thèse, qui s’intéresse à
des problèmes de gestion de ressources non clairvoyants mêlant optimisation des performances et de la
consommation énergétique. Différents algorithmes sont d’abord proposés et étudiés afin de respecter un budget
d’énergie pendant une période de temps donnée. Nous étudions ensuite plus généralement les différents
compromis réalisables entre performances et énergie grâce à différentes politiques d’extinction de nœuds de
calcul.
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