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Résumé

1 Résumé de la thématique de la thèse d’université

Ma thèse de doctorat intitulée Méthodes de projections successives pour l’optimisation en-
sembliste non-convexe et élaborée sous la direction de Odile Macchi, DR CNRS au sein du
Laboratoire des Signaux et Systèmes de l’Université Paris XI - Orsay, est consacrée à l’étude
de la convergence de méthodes de projections pour trouver un point dans l’intersection
d’ensemble faiblement fermés dans un espace de Hilbert sans hypothèse de convexité.

Historique du problème
Les méthodes de projections successives ont été employées depuis les années 30 pour résoudre
itérativement les grands systèmes linéaires et semblent remonter à Kaczmarz (Angenäherte
Auflösung von Systemen linearer Gleichungen. Bulletin International de l’Académie Polon-
aise des Sciences et des Lettres. Classe des Sciences Mathématiques et Naturelles. Série A,
Sciences Mathématiques, vol. 35, pp. 355–357, 1937). Pour un système

Ax = b, (1.1)

avec A ∈ Rm×n, l’idée consiste simplement à projeter successivement sur les ensembles

Sj =
{
x | atjx = bj

}
(1.2)

j = 1, . . . ,m. Plus généralement, lorsqu’on dispose d’une famille de m ensembles Sj faible-
ment fermés dans un espace de Hilbert H, et si on dénote par PSj la projection sur Sj , en
notant qu’elle est toujours bien définie sur des ensembles faiblement fermés, un algorithme
de projections successives aura la forme

x(l+1) = P
S

(l)
σ (j)

(
x(l)
)

(1.3)

où σ(l) : {1, . . . ,m} 7→ {1, . . . ,m} est une fonction de choix permettant de selectionner
sur quelle contrainte on va projeter à l’itération l. On peut démontrer facilement que la
suite (x(l))l∈N a un point d’accumulation dans ∩mj=1Sj . Le lecteur pourra trouver plus de
résultats dans (L.G. Gurin, B.T. Polyak, and E.V. Raik. The method of projections for
finding the common point of convex sets. U.S.S.R. Computational Mathematics and Math-
ematical Physics, 7:1–24, 1967). Par contre, en général, ce point d’accumulation n’est pas
une projection du point x(0) sur ∩mj=1Sj . Le cas où les ensembles Sj sont affines et m = 2 est
très particulier et il est connu depuis Von Neumann (J. von Neumann, On rings of operators.
Reduction theory, Ann. of Math. 50 (1949) 401–485) que la suite converge vers la projection
de x(0) sur ∩mj=1Sj . Dans le cas plus général des ensembles convexes, une modification due
à Dykstra (Boyle, J. P.; Dykstra, R. L. (1986). ”A method for finding projections onto the
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intersection of convex sets in Hilbert spaces”. Lecture Notes in Statistics 37: 28–47) est con-
nue pour converger vers la projection de x(0) sur ∩mj=1Sj . Une autre méthode, due à Pierra
permet de projeter en utilisant des projections successives sur deux ensembles (G. Pierra,
Decomposition through formalization in a product space, Mathematical Programming, 28
(1984) 95–115. Le problème de traiter le cas où les ensembles Sj ne sont pas supposés
convexes était relativement ouvert avant d’entreprendre ce travail. Il était motivé princi-
palement par le cas où H est l’ensemble des matrices dans Rm×n avec le produit scalaire
〈A,B〉 = trace(ABt) et l’un des Sj étant l’ensemble des matrices d’un rang inférieur à un
rang donné. En particulier, le problème très important en modélisation et pratique des séries
temporelles, consistant à approcher un signal par une somme d’exponentielles complexes,
peut se formuler sous cette forme lorsqu’on impose que les matrices concernées soient de
plus de type Hankel.

Contributions

Dans une première partie du travail de thèse, je me suis concentré sur le problème dit de
faisabilité, c’est à dire simplement de construire une suite (x(l))l∈N ayant au moins un point
d’accumulation dans ∩mj=1Sj . J’ai adopté l’approche consistant à définir une classe un peu
plus générale que celle des ensembles convexes: les ensembles développables en convexes,
c’est à dire consistant en une union dénombrable d’ensembles convexes fermés. Avec cette
contrainte sur les ensembles Sj , j = 1, . . . ,m, on peut réussir à étendre les résultats de (L.G.
Gurin, B.T. Polyak, and E.V. Raik. The method of projections for finding the common point
of convex sets. U.S.S.R. Computational Mathematics and Mathematical Physics, 7:1–24,
1967) et garantir ainsi la convergence d’au moins une sous-suite de la suite engendrée par
les projections successives pour un schema de sélection des ensembles raisonnable comme
par exemple le défilement modulo m. Cette partie a donné lieu en partie à la publication
[alpha]. La thèse contient deux parties qui particularisent ces résultats à des ensembles
plus contraints pour lesquels on obtient une convergence vers un point de l’intersection. Ces
résultats n’ont pas fait l’objet de publication autre que dans le manuscrit de thèse.

Dans une deuxième partie, je me suis intéressé à la question de projeter un point x(0)

sur l’intersection ∩mj=1Sj . J’ai pour cela modifié la méthode de Pierra citée plus haut. J’ai
démontré avec Pascal Bondon que sous des conditions géométriquement raisonnables, la
modification proposée avait un point d’accumulation qui satisfait bie la propriété recherchée,
c’est à dire d’être une projection de x(0) sur l’intersection ∩mj=1Sj . Cette partie n’a pas été
publiée à l’époque, mais elle a récemment subi des transformations qui permettent de re-
laxer des hypothèses compliquées à vérifier en pratique. J’ai pu constater combien le recul
de quelques années sur un travail peut permettre d’en voir les faiblesses et d’en apprécier la
fraicheur. J’ai réalisé dans ce cas précis qu’un projet peut prendre des années à murir et que
les éléments manquants pour terminer un travail peuvent parfois surgir de manière inatten-
due des années plus tard. L’article remanié correspondant [A18] sera soumis prochainement
pour publication.

2 Résumé des recherches réalisées au cours de la période
post-doctorale

Les recherches effectuées au cours des années ayant succédé à l’obtention de la thèse peuvent
se diviser selon deux thématiques distinctes. Une première a consisté en une étude appro-
fondie des propriétés de convergence de l’algorithme EM très couramment utilisé en inférence
statistique. La deuxième partie des travaux effectués dans cette période s’est concentrée sur
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les propriétés de l’approche LASSO (Least Absolute Shrinkage and Selection Operator) très
couramment utilisé pour la sélection de variables dans les modèles de régression. Toutes les
citations font référence à la liste des publications se situant à la page 6.

3 Algorithme EM pour la maximisation de vraisemblance
pénalisée

Les travaux que nous allons présenter ont fait l’objet des publications (ou pré-publications)
[B], [C], [D], [E], [I], [J] et [K] (voir page 6).

Dans [A], nous nous sommes intéressés à une nouvelle description de l’algorithme EM très
couramment utilisé en inférence selon le principe du maximum de vraisemblance pénalisée.
Nous avons montré en particulier que l’algorithme EM peut se reformuler comme une
méthode de type proximale avec une pénalisation de type divergence de Kullback-Leibler.
Si l’algorithme EM est un peu difficile à décrire, la méthode proximale est très simple: elle
consiste à générer une suite (x(l))l∈N selon la récurrence suivante:

x(l+1) ∈ argminx∈X f(x) + λld(x;x(l)), (3.4)

où d(·; ·) est un terme de pénalisation, qui est souvent pris comme étant le carré de la norme
euclidienne de x − x(l). L’algorithme EM est souvent utilisé dans le cas où les données
sont ”incomplètes”. On suppose qu’on observe les données x1, . . . , xn alors qu’elles ne sont
de partielles et que les données dites ”complètes” sont du type (x1, y1), . . . , (xn, yn). Un
exemple simple est celui où l’on dispose de données sur les salaires de gar c cons et de
filles mais que l’on ne dispose pas de la donnée des sexes dans l’échantillon. Lorsqu’on
veut estimer les paramètres de la loi sous-jacente, on procède fréquemment à la max-
imisation de la log-vraisemblance. Dans le cas de données incomplètes, l’écriture de la
log-vraisemblance est malaisée et requiert des intégrales algorithmiquement coûteuses se
prêtant mal à l’incoporation dans les procédures de type Newton ou gradient conjugué
pour l’optimisation. La prise en compte des données complètes même lorsqu’elles ne sont
pas réellement disponibles, est une astuce technique qui permet de drastiquement simpli-
fier l’optimisation de la vraisemblance. Soit θtrue le vecteur des paramètres de la loi des
données, que l’on souhaiterait estimer et soit Θ un ensemble fermé auquel on sait a priori
qu’il appartient. On associe, comme fréquemment, aux données numériques x1, . . . , xn et
y1, . . . , yn, des variables aléatoires X1, . . . , Xn et Y1, . . . , Yn.

Notons lx1,...,xn(θ) la log-vraisemblance des données x1, . . . , xn et Eθ [·] l’opérateur d’espérance
conditionnelle selon la loi paramétrée par θ. On commence par écrire la log-vraisemblance des
données complètes. Celles ci n’étant pas nécessairement observées, on s’en tire en approchant
cette log-vraisemblance complète par son espérance conditionnelle sachant les données in-
complètes, qui elles sont réellement observées:

Q
(
θ; θ(l)

)
= Eθ(l)

[
l(X1,Y1),...,(Xn,Yn)(θ) | Y1, . . . , Yn

]
(3.5)

La loi conditionnelle devrait en toute logique être spécifiée par le paramètre θtrue mais comme
celui-ci est inconnu, on le remplace, comme dans toute méthode d’optimisation itérative, par
son estimé courant, dénoté θ(l) à l’itération l. On passe ensuite à l’étape de maximisation,
i.e.

θ(l+1) ∈ argmaxθ∈ΘQ
(
θ; θ(l)

)
. (3.6)
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Supposons que la famille de densités {k(x|y; θ)}θ∈Rp soit telle que k(x|y; θ)µ(x) and k(x|y; θ̄)µ(x)
soient absolument continues pour tout θ et θ̄ dans Θ. Alors, la dérivée de Radon-Nikodym
k(x|y,θ̄)
k(x|y;θ) est bien définieet on peut introduire sans problème la divergence de Kullback Leibler
entre les densités conditionnelles:

Iy(θ, θ̄) = E
[
log k(x|y, θ̄)

k(x|y; θ) |y; θ̄
]
. (3.7)

Définissons maintenant Dl comme le domaine de définition de ly, DI,θ comme le domaine
de définition de Iy(·, θ̄) et DI comme celui de Iy(·, ·). On peut maintenant présenter une
définition pour la famille des algorithmes de point proximal qui va servir de cadre d’étude
général et flexible pour les algorithmes EM et leurs généralisations.

Definition 3.1 Soit (βk)k∈N une suite de nombres réels positifs. Alors, l’algorithme du
point proximal avec pénalisation de type Kullback-proximal algorithm est défini par

θk+1 = argmaxθ∈Dl∩DI,θk ly(θ)− βkIy(θ, θk). (3.8)

Le point de départ des travaux de cette partie est le résultat suivant.

Proposition 3.2 [B] L’algorithme EM n’est rien d’autre qu’un cas particulier dans la
famille des algorithmes de type point proximal avec pénalisation de Kullback-Leibler βk = 1,
pour tout k ∈ N.

La preuve de ce résultat est extrêmement naturelle. Il suffit d’écrire:

θk+1 = argmaxθ∈Rp
{

log g(y; θ) + E
[
log f(x; θ)

g(y; θ) |y; θk
]}
.

Cette équation est équivalente à

θk+1 = argmaxθ∈Rp
{

log g(y; θ) + E
[
log f(x; θ)

g(y; θ) |y; θk
]

− E
[
log f(x; θk)

g(y; θk) |y; θk
]}

car le terme additionnel est constant en θ. En se remémorant le fait que k(x|y; θ) = f(x;θ)
g(y;θ) ,

on obtient

θk+1 = argmaxθ∈Rp
{

log g(y; θ) + E
[
log k(x|y; θ)|y; θk

]
− E

[
log k(x|y; θk)|y; θk

]}
.

On obtient donc finalement

θk+1 = argmaxθ∈Rp
{

log g(y; θ) + E
[
log k(x|y; θ)

k(x|y; θk) |y; θk
]}

ce qui conclut la preuve.
Celle formulation plus générale dans laquelle s’inscrivent les algorithmes EM va s’avérer

dans la suite très intéressante pour les raisons suivantes:
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• La ré-écriture sous forme Kullback-proximale permet de montrer très vite que la suite
des estimées (θ(l))l∈N, augmente naturellement la log-vraisemblance à chaque itération
(preuve laissée en exercice au lecteur avant de s’endormir). Ceci est un gain remar-
quable par rapport à la pratique courante en optimisation classique qui veut que l’on
ait recourt à une procédure dite de ”recherche en ligne” pour obtenir la monotonie de
la suite des valeurs de la fonction objectif.

• Le cadre Kullback proximal permet d’incorporer facilement des contraintes supplémentaires
sans avoir recourt à des multiplicateurs de Lagrange dont l’optimisation devrait être
faite en supplément à celle des θ(l). Cette potentialité sera de prime importance pour
l’incorporation des contraintes de stabilité pour l’application à l’estimation de séries
temporelles vectorielles de type GARCH dans la section 3.

• La suite de paramètres de relaxation (βk)k∈N permet une grande flexibilité de dans
le choix des pas de la méthode et on a montré dans [B], en suivant des travaux plus
anciens de Rockafellar, (R. T. Rockafellar, “Monotone operators and the proximal
point algorithm,” SIAM Journal on Control and Optimization, vol. 14, pp. 877–898,
1976) qu’une convergence superlinéaire de la méthode pouvait être obtenue dans le cas
où la limite de la suite (θ(l))l∈N se trouvait à l’intérieur de l’ensemble Θ.

Le travail que j’ai effectué sur ces algorithmes se structure de la fa c con suivante:
étude du cas concave sans contrainte, du cas de l’optimisation partielle coordonnée par
coordonnée, du cas où la suite converge vers un point du bord de Θ, du cas pénalisé par
une fonctionnelle non-différentiable, puis enfin l’étude de deux applications à des problèmes
pratique pour l’estimation de modèles généraux additifs et le cas de l’estimation des modèles
GARCH vectoriels.

Le cas concave sans contrainte
Le Théorème de convergence pour la méthode Kullback proximale de la définition 3.1 contenu
dans [B] est le suivant.

Theorem 3.3 Faisons les hypothèses suivantes.

(i) Θ ⊂ Rp.

(ii) ly(θ) est dans C2 sur int Θ et Iy(θ̄, θ) est dans C2 sur int Θ× int Θ.

(iii) lim‖θ‖→∞ ly(θ) = −∞ où ‖θ‖ est la norme euclidienne sur Rp.

(iv) ly(θ) <∞ et Λ∇2ly(θ) < 0 sur tout borné dans Θ.

(v) Pour tout θ̄ dans Θ, Iy(θ̄, θ) <∞ et 0 < λmin
(
∇2

01Iy(θ̄, θ)
)

sur tout borné de Θ.

(vi) L’unique maximiseur θ∗ de la vraisemblance sur Θ est à l’intérieur de Θ.

Supposons la suite de paramètres de relaxation {βk}k∈N positive et convergente vers β∗ ∈
[0,∞). Alors, la suite {θk}k∈N converge vers θ∗, l’unique maximiseur de la log-vraisemblance
lX1,...,Xn .

Le deuxième théorème de concerne la vitesse de convergence de la méthode pour une suite
de paramètres de relaxation convergeant vers zéro. On rappelle qu’une suite {θk} est dite
converger super-linéairement vers une limite θ∗ si:

lim
k→∞

‖θk+1 − θ∗‖
‖θk − θ∗‖

= 0, . (3.9)
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On a alors le résultat suivant.

Theorem 3.4 Supposons que les mêmes hypothèses que celles du Théorème 3.3 sont sat-
isfaites et que de plus la suite {βk}k∈N converge vers zero. Alors la suite {θk}k∈N converge
superlinéairement vers θ∗, l’unique maximiseur de la log-vraisemblance lX1,...,Xn .

Une remarque amusante pour conclure: le cas de l’estimation pour les mélanges de gaussi-
ennes, qui est l’instance où l’algorithme EM est le plus utilisé, ne vérifie pas les conditions
de ces théorèmes. Les problèmes suivants sont extrêmement délicats à prendre en compte.

• La log-vraisemblance n’est pas bornée et il est bien connu que des solutions dégénérées
existent, c’est à dire des solutions correspondant à une composante du mélange car-
actérisée par une matrice de covariance de rang défectueux. Ce problème est très
important, dans philosophiquement qu’en pratique. Cela signifie en particulier que
la maximisation de la vraisemblance n’est pas pertinente pour ce type de problème,
même si en pratique, des filouteries ad hoc permettent de s’en sortir. Nous discuterons
plus précisément de ces aspects dans la Section 3;

• La log-vraisemblance n’est pas concave. Une des manières de le voir est la considération
très naturelle du problème de ”label switching” qui dit que si θ∗ est un maximizeur, la
permutation des indices spécifiant le numéro de chaque composante donne un nouveau
maximiseur. De plus, comme le problème de dégénérescence l’indique, la suite doit
pouvoir converger vers le bord de Θ, un cas qui n’est pas considéré dans ce premier
travail; ces problèmes seront adressés dans la Section 3.

• La distance de Kullback-Leibler Iy(θ; θ̄) entre deux densités k(·; θ) et k(·; θ̄) n’est pas
satisfaisante dans le sens où Iy(θ; θ̄) = 0 n’implique pas θ = θ̄. Ce dernier problème
est examiné plus dans le travail que je présente dans la section suivante.

Le cas des mélanges gaussiens (1): utilisation de la maximisation
coordonnée par coordonnée
Le problème suppose que l’on observe des données mutlidimensionnelles x1, . . . , xn ∈ Rd
provenant d’une densité de mélange de gaussiennes donnée par

fX(x) =
J∑
j=1

πjφj(x), (3.10)

où φj est la densité gaussienne donnée par

φj(x) = 1√
(2π)ddet(Σj)

exp
(
−1

2(x− µj)tΣ−1
j (x− µj)

)
. (3.11)

L’algorithme CEMM considère une décomposition du vecteur de paramètres θ = (θj , j =
1, ..., J) avec θj = (πj , µj ,Σj). et choisit de mettre à jour une coordonnée arbitraire à
chaque itération plutôt que toutes les coordonnées d’un coup. Par simplicité, nous nous
restreindrons dans la suite à une présentation dans le cas où les indices des coordonnées
mises a jour sont choisis cycliquement, en commen c cant par j = 1, . . . , J et en répétant
cette séquence toutes les J itérations. Ainsi, la composante mise à jour à l’itération k est
j = k − k

J cJ + 1, où .c dénote la partie entière.
La maximisation coordonnée par coordonnée peut être préférée pour plusieurs raisons.

Dans le cas des mélanges gaussiens, nous avons constaté que la convergence était vraiment
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améliorée en pratique. Ceci en fait une approche très appréciée et l’article [C] est le plus
cité parmi les travaux que je présente dans ce document. L’explication du phénomène
de l’accélération de la convergence est certainement à chercher dans l’article de Hero et
Fessler (Fessler, J. A., and Hero, A. O. (1994), ”Space-Alternating generalized expectation-
maximisation algorithm”, IEEE Trans. Signal Processing, 42, 2664-2677) où une analyse
géométrique de la vitesse en fonction de la courbure de la log-vraisemblance selon la co-
ordonnée (ou plus généralement, le sous-espace) sélectionné(e) est fournie. Spécifier cette
théorie dans le cas des mélanges semble encore un peu trop difficile pour pouvoir en exploiter
toutes les finesses et c’est pour cette raison que nous nous sommes intéressés à d’autres ques-
tions. La seconde raison pour laquelle on peut préférer l’approche par coordonnée est que
dans ce cas, Iy(θ; θ̄) = 0 pour deux vecteurs θ et θ̄ ne différant que sur une composante im-
plique que θ = θ̄, ce qui, comme nous l’avons déjà souligné dans la section précédente, n’est
pas le cas pour θ et θ̄ généraux, comme cela semble être ignoré couramment. Même si les
parties de l’article pionnier de Dempster Laird et Rubin concernant les propriétés théoriques
de convergence semblent montrer quelques faiblesses (corrigées successivement pendant les
années qui suivirent par plusieurs auteurs dont Wu (Wu, C. F. (1983), On the convergence
of the EM algorithm, Annals of Statistics, 11, 95-103)), il y est tout de même préconisé de
verifier la propriété que deux itérés successifs se rapprochent asymptotiquement. Or sans la
condition ”Iy(θ; θ̄) = 0 implique θ = θ̄”, comme dans le cas des mélanges, il parait difficile de
le démontrer. L’approche composante par composante permet de prouver rigoureusement ce
type de résultat naturel. On obtient même le résultat suivant, qui est le théorème principal
concernant la convergence de l’algorithme CEMM.

Theorem 3.5 Chaque point d’accumulation de
{
θk
}
k∈N, pour lequel toutes les matrices de

covariances sont de rang plein, est un point stationnaire de la log-vraisemblance sous la

contrainte
J∑
`=1

π` = 1.

Le cas des mélanges gaussiens (2): dégénérescence de l’algorithme EM
Comme déjà mentionné dans la présentation de l’algorithme EM, la méthode peut générer
une suite d’itérés convergeant vers un point du bord de Θ. Dans le cas des mélanges
gaussiens, une telle situation arrive lorsque l’une des composantes d’un point d’accumulation
est dégénérée, c’est à dire que la matrice de covariance associée est singulière. Nous avons
étudié le cas particulier de la dimension un avec Christophe Biernacki dans [D] et démontré
le résultat suivant.

Theorem 3.6 Soit fi,k = πkφ(xi;µk, σ2
k) et soit u0 le vecteur dont les composantes sont

1/fi0,k0 et fi,k0 , i 6= i0. Il existe ε > 0, α > 0 et β > 0 tels que si ‖u0‖2 ≤ ε, alors

σ2+
k0

≤ α
exp

(
−β/σ2

k0

)
σ2
k0

. (3.12)

Ainsi, si par malheur on est proche d’une situation critique, la variance tend extrêmement
rapidement vers 0. L’idée est qu’il vaut mieux laisser l’algorithme dériver vers une telle
dégénérescence car elle est finalement très rapidement détectable. Une approche bayésienne
consistant à pénaliser la distance à la singularité des matrices de covariance semble un peu
effrayante a posteriori: pénaliser pour éviter la dégénérescence peut tout simplement créer
un maximiseur artificiel où l’algorithme risque de s’enliser sans qu’on sache qu’il s’y trouve.
S’écraser rapidement sur un point dégénéré permet de se rendre compte qu’on se dirigeait
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vers un point absurde. Il suffit alors de relancer l’algorithme EM à partir d’un nouveau
point initial jusqu’à ce que l’on constate la convergence vers un point plus raisonnable.
Ceci ne résoud pas la question de savoir si un tel point ”plus raisonnable” est effectivement
pertinent, étant donné l’existance de maximiseur non-globaux à la vraisemblance, mais nous
permet déjà de mieux comprendre le comportement de l’algorithme EM pour un problème
très important et de ne pas introduire de nouvelle bêtise dans son utilisation.

Le cas d’une log-vraisemblance non-convexe et de points d’accumulation
sur le bord
Dans l’article [E] écrit avec Alfred Hero, je me suis intéressé au cas plus général de log-
vraisemblances non-convexes et de point d’accumulation sur le bord. La non-convexité est
importante à prendre en compte car elle se rencontre très souvent dans ce domaine, avec
comme exemple important celui des mélanges de gaussiennes. Par contre, l’adaptation
théorique est très facile et on ne peut pratiquement rien prouver d’intéressant: les points
d’accumulation à l’intérieur de Θ ne sont rien d’autre a priori que des points stationnaire
de la log-vraisemblance, c’est à dire des points qui annulent le gradient. Ces points peuvent
donc être des maximiseurs locaux, des minimiseurs locaux ou encore des points selles. On
est bien avancés ! Il se trouve malgré tout que de pouvoir démontrer ce type de propriété
est déjà considéré comme un réjouissement étant donné l’écart qui reste devant l’accès à
des propriétés plus satisfaisante comme celle d’être un maximiseur global par exemple. Le
cas où les points stationnaires sont sur le bord de Θ est quand même un peu plus délicat
à étudier que le cas où ils sont à l’intérieur. Cela vient du fait que la pénalisation Iy(θ; θ̄)
”explose” sur le bord de Θ. Exploser signifie ici que limθ→θ∗ Iy(θ, θ̄) = +∞ quel que soit
θ̄ ∈ intΘ. Il n’y a que lorsque l’on a conjointement, et de manière équilibrée, rapprochement
asymptotique de θ(l) vers θ(l+1) et rapprochement de θ(l) vers le bord de Θ, que l’on peut
espérer eviter l’explosion. Pour un problème donné, on peut souvent montrer simplement
que cette explosion n’arrive pas. Cela doit donc vouloir dire que deux itérés successifs se
rapprochent tout en se rapprochant du bord, mais peut-on facilement garantir qu’un point
d’accumulation de cette suite satisfait des conditions nécéssaires rudimentaires d’optimalité
? Dans [D], je démontre que c’est le cas, en ce sens que les points d’accumulation sur le
bord de Θ satisfont bien les conditions de Karush-Kuhn-Tucker.

Le cas d’une log-vraisemblance non-convexe avec une pénalisation
non-différentiable
Dans [I], nous continuons l’étude présentée dans [E] dans le cas où on ajoute une pénalisation
non-différentiable et on maximise à chaque itération sur la restriction à un sous-espace choisi
arbitrairement. L’étude se passe presque mot pour mot comme pour [E] sauf que la non-
différentiabilité de la pénalisation crée des interférences avec le fait qu’on maximize relative-
ment à des sous-espaces et l’on n’est pas sur d’obtenir à la fin un point stationnaire verifiant
les conditions de Karush-Kuhn-Tucker (généralisée au sens des sous-gradients de Clarke).
L’intérêt de la pénalisation non-différentiable est de pouvoir dans certaines conditions pro-
mouvoir la parcimonie de la solution. L’intérêt de pouvoir optimiser le long de sous-espaces
est de rendre facile à implanter certaines versions de l’algorithme EM un peu lourdes.

Une application est développée dans [J] où je propose de résoudre le problème de
l’estimation d’un mélange de gaussiennes dans le cas où peu d’observations sont disponibles
et la dimension du problème peut être relativement élevée. L’idée est de postuler que les
gaussiennes ont pour espérance une combinaison sparse des données. On écrit alors la
vraisemblance en postulant que les espérances sont une régression des données elles-mêmes.



16 RÉSUMÉ

La parcimonie est obtenue par pénalisation de la norme `1 du vecteur de régression. La
méthode est décrite dans le cas de variances toutes multiples de l’identité, ce qui n’est pas
choquant quand peu de données sont disponibles, une situation où il est nécessaire de dimin-
uer au maximum le nombre de paramètres à estimer. Il est cependant très facile de mettre
en oeuvre la méthode dans le cas de matrices de covariances quelconques ou structurées. Les
expériences de simulations montre que la méthode est assez performante en comparaison de
EM classique pour les mélanges de gaussiennes et CEM (Classification EM).

Application des méthodes Bregman Proximales locales à l’estimation de
modèles GARCH vectoriels

Dans [M] nous avons, avec Juan Pablo Ortega, appliqué les techniques proximales étudiées
précédemment dans le cas de l’estimation par maximum de vraisemblance pour les modèles
de séries temporelles vectorielles à volatilité gouvernée par un modèle GARCH. Ce problème
était reconnu comme numériquement très difficile. Un des points très délicats était notam-
ment la prise en compte des conditions de stationarité du modèle. Il fut d’ailleurs très
cocasse de constaté lors de l’exploration méticuleuse de la littérature sur le sujet, que les
conditions n’étaient jamais très facilement exploitable d’un point de vue numérique (voir
par exemple l’ouvrage connu de Gourieroux sur le sujet). Nous avons alors introduit des
opérateurs permettant de décrire proprement des conditions suffisantes assurant que le pro-
cessus de covariance conditionnel matriciel soit bien positif semi défini et assurant aussi par
ailleur l’existance d’une solution stationnaire. Nous avons ensuite appliqué une approche de
type Bregman proximale pour optimiser la vraisemblance sous les contraintes spectrales que
nous avons introduites. Cet algorithme est robuste et rapide en comparaison avec les autres
approches que nous avons tentées pour ce problème délicat. Il est aussi le seul à maximiser
la vraisemblance pour des modèles GARCH aussi généraux sous les contraintes nécéssaires
à la bonne définition de la série temporelle. Entrons maintenant dans les détails.

Un processus {zt} à temps discret n-dimensionnel est dit conditionnellement heteroscedas-
tique s’il est déterminé par les relations

zt = H
1/2
t εt with {εt} ∼ IIDN(0, In).

Dans cette expression, {Ht} denote un processus matriciel prévisible, c’est à dire que pour
tout t ∈ N, la variable aléatoire matricielleHt est Ft−1-mesurable, etH1/2

t est la racine carrée
de Ht, c’est à dire H1/2

t (H1/2
t )T = Ht. Il est facile de voir que l’espérance conditionnelle

satisfait Et[zt] = 0 et que le processus de matrices de covariance conditionnelle {zt} est
donné par {Ht}.

Le modèle VEC-GARCH (ou simplement VEC par abus de langage) a été introduit par
Bollerslev comme une généralisation directe du modèle GARCH unidimensionnel (T. Boller-
slev, Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31
(1986), no. 3, 307–327) dans le sens où toutes les covariances conditionnelles sont des fonc-
tions des covariances conditionnelles aux instants passés ainsi que des produits croisés des
observations. Plus précisément, le modèle VEC(q,p) est donné par

ht = c+
q∑
i=1

Aiηt−i +
p∑
i=1

Biht−i,

où ht := vech(Ht), ηt := ztz
T , c est un vecteur N -dimensionnel, avec N := n(n + 1)/2 et

Ai, Bi ∈MN .
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Nous nous sommes concentrés sur le cas p = q = 1, car le modèle général est facilement
obtenu à partir de ce cas simple:{

zt = H
1/2
t εt with {εt} ∼ IIDN(0, In),

ht = c+Aηt−1 +Bht−1.
(3.13)

Pour ce modèle simple, on a déjà besoin de N(2N + 1) = 1
2 (n2 + n)(n2 + n+ 1) paramètres

pour spécifier complètement les objets.
La description générale que nous venons de présenter du modèle VEC (3.15) ne nous

garantit pas qu’il existe une solution stationnaire. De plus des contraintes additionnelles sur
c, A, et B afin de s’assurer que le processus {Ht}t∈N soit positif semi-défini. Malheureuse-
ment, il semble difficile de trouver de telles contraintes sous forme aisément implémentable
dans les ouvrages classique (comme celui de Gourieroux), et nous avons préférer intro-
duire nos propres conditions suffisantes qui se sont avéré très bien adaptées à l’optimisation
numérique.

Constraintes de positivité: Nous avons établi la propriété très pratique suivante.

Proposition 3.7 Si les paramètres c, A, et B dans (3.15) sont tels que math(c),Σ(A), et
Σ(B) sont positives semi-définie, alors les matrices de covariance conditionnelles {Ht}t∈N
le sont aussi si H0 l’est déjà elle même.

Constrainte de stationnarité du second ordre: Gourieroux a donné des conditions en ter-
mes de rayon spectral de A + B. Ces conditions étant difficile à incorporer à un scheme
d’optimisation, nous avons choisi de les rendre un peu plus contraignantes sur la base de la
proposition suivante.

Proposition 3.8 Un modèle VEC spécifié comme dans (3.15) admet une unique solution
stationnaire au second ordre si toutes les valeurs singulières de A + B sont dans le cercle
unité ouvert. C’est en particulier toujours le cas dès que σ max(A+B) est plus petite que un,
où encore, dès que IN − (A+B)(A+B)T est positive semi-définie. Si une de ces conditions
est satisfaite, alors

Γ(0) = math(E[ht]) = math((IN −A−B)−1c). (3.14)

Abordons maintenant l’optimisation proprement dite en intruisant la divergence de Breg-
man et l’algorithme proximal associé. La divergence de Bregman matricielle est définie
comme suit.

Definition 3.9 Soient X,Y des matrices symétriques réelles d’ordre n et φ une fonction
strictement convexe différentiable. La Divergence matricielle de Bregman associée à φ est
définie par

Dφ(X,Y ) := φ(X)− φ(Y )− trace
(
∇φ(Y )T (X − Y )

)
.

Les divergences de Bregman sont utilisées pour mesurer la proximité entre deux matrices.
En particulier, si φ(X) := ‖X‖2, alors, Dφ(X,Y ) := ‖X − Y ‖2. Un autre exemple est
la divergence de von Neumann qui n’est rien d’autre que la divergence de Bregman as-
sociée à l’entropie; Plus spécifiquement, si X est une matrice symétrique réelle positive
semi-définie de valeurs propres {λ1, . . . , λn}, alors φ(X) :=

∑n
i=1(λi log λi − λi). Dans

notre implémentation, nous avons utilisé la divergence de Brug (encore appelée divergence
LogDet où fonction de perte de Stein dans la litérature statistique) qui est la diver-
gence de Bregman obtenue avec le choix φ(X) := −

∑n
i=1 log λi, ou de manière équivalente
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φ(X) := − log det(X). La divergence de Bregman qui est résulte sur les matrices positives
définies est donnée par

DB(X,Y ) := trace(XY −1)− log det(XY −1)− n. (3.15)

Supposons maintenant qu’on veuille résoudre le problème d’optimisation suivant

arg min
A�0

f(A),

sous la contrainte A � 0. Une fa c con de procéder consiste à optimiser un modèle local,
pénalisé par une divergence de Bregman:

fA(n)(A) := f
(
A(n)

)
+
〈
∇f

(
A(n)

)
, A−A(n)

〉
+ L

2Dφ(A,A(n)). (3.16)

L’intérêt d’introduire la divergence de Brug, est que la solution à chacun de ces sous
problèmes locaux est elle même positive définie et que les points d’accumulation de la suite
engendrée par l’approche ne peut être, s’ils existent, que positif semi-défini. Nous renvoyons
le lecteur à l’article [I] pour les détails de l’implémentation permettant de prendre en compte
la vraisemblances et les contraintes de positivité ainsi que de stationnarité.

Application d’EM à un mélange de modèles GAM et application à la
construction d’une carte de prévalence
Avec David Pleydell, du Laboratoire de Biologie Environnementale, maintenant incorporé
à la structure Chrono-eco-environnement, nous nous sommes penché sur l’estimation d’un
certain type de modèle GAM pour la prévision de la prévalence sur une zone géographique de
la Chine proche du Tibet. Cette étude faisait partie d’un grand projet financé par la NIH et
dont le but était de comprendres les facteurs d’infection par l’echinococose alvéolaire. Nous
avons tout simplement implanté un algorithme EM pour un modèle de mélange de modèles
additifs et l’avons mis en pratique sur les données récoltée par les équipes du laboratoire de
chrono-environnement.

Les modèles de type Generalised additive models (GAMs) sont devenus récemment très
populaires en écologie de part leur capacités à prendre en compte les possibles non-linéarités.
L’approche usuelle consiste à ajouter des fonctions lisses des covariables dans le prédicteur
du modèle linéaire généralisé. On a choisi en particulier

g(µi) = β0 + β1H(xi)

avec µ ≡ E[Y ], où Y suit une distribution dans la famille exponentielle, β0 est l’ordonnée
à l’origine et H est une fonction lisse de la covariable x. Le choix le plus courant pour la
fonctionH est de prendre une fonction spline car ce type de fonction est extrêmement flexible.
Dans ce travail, nous avons fait un choix beaucoup plus simple et mieux adapté à l’application
biologique: dans notre modèle GAM H est définie comme l’application unimodale

Hα1,α2(x) =

(
x−l
u−l

)α1(
u−x
u−l

)α2(
m−l
u−l

)α1(
u−m
u−l

)α2 .

Cette transformation va permettre la détection des valeurs de x correspondant aux zones
où l’espèce biologique étudiée sera plus encline à former une niche écologique. Les paramètres
α1 et α2 peuvent prendre leurs valeurs dans (0,∞).
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Figure .1: Habitat Suitability Index derived from the NDVI using ML estimates of α̂ and
m̂1 from M3 overlayed with transect data on small mammal indices. Red and black points
repressent pressence and absence of observable small mammal indeced respectively.

Avec ce type d’approche, on a pu donner des cartes de l’indice de pertinence pour l’habitat
dont la Figure F.3 est un exemple, ainsi que d’autres éléments biologiques pour lesquels on
renvoit le lecteur à l’article.

Le travail n’a pas généré de difficulté mathématique particulière, mis à part toutes
les questions classiques que l’on se pose sur les modèles de mélange et la convergence de
l’algorithme dans les situations où la log-vraisemblance n’est pas convexe. La mise en oeu-
vre fut un peu laborieuse mais s’est mise à fonctionner après quelques mois de méticuleuses
corrections dans les moments de motivation exarcerbée. Le fait que l’implantation de tels
modèles demande beaucoup de soin et de patience lui a valu de pouvoir être publié dans un
journal internationnal à comité de lecture [G]. Je renvoie le lecteur à l’article pour plus de
détails.
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4 Le Compressed Sensing, le LASSO et les matrices aléatoires

La deuxième partie du travail post-thèse est la plus récente et marque une réorientation vers
des problèmes plus à la mode concernant les matrices aléatoires et le Compressed Sensing. Le
Compressed Sensing est un domaine qui a récemment émergé suite à une longue exploration
que l’on peut identifier comme issue de l’analyse par ondelettes créée par Morlet, Grossmann,
Meyer, Daubechies, Mallat, Donoho, Johnstone et leur collaborateurs, dans les années 80 et
l’approximation finie de cette analyse. Nous renvoyons le lecteur à l’ouvrage A Mathematical
Introduction to Wavelets, par P. Wojtaszczyk pour une introduction très pédagogique aux
ondelettes et aux propriétés des décompositions selon les espaces fonctionnels auxquelles
la fonction décomposée appartient. Une méthode possible pour approcher une fonction de
L2(Rd) est de la décomposer en ondelettes, i.e.

f =
∑
k∈Z

ckφk +
∞∑
j=1

∑
k∈Z

dj,kψj,k (4.17)

où φk(·) = φ(· − k) et ψj,k(·) = 2j/2ψ(2j · −k), φ est la fonction d’échelle et ψ est une
ondelette associée, puis de conserver les termes correspondant à toutes les échelles jusqu’à
une échelle maximale Jmax. On peut aussi se contenter des termes dj,k correspondant à
des translations petites (k dans un ensemble Kj par exemple), ce qui est naturel lorsqu’on
observe une fonction sur un intervalle compact. On obtient ainsi l’approximation

ALs (f) =
∑
k∈K0

ckφk +
Jmax∑
j=1

∑
k∈Kj

dj,kψj,k (4.18)

où s est le nombre total de termes conservés. Ce type d’approche est linéaire (d’où le
superscript ”L”) car l’operateur ALs est linéaire et les indices des coefficients conservés ne
dépendent pas de la fonction f .

Une stratégie plus adéquate pour approximer une fonction est la méthode non-linéaire
consistant à ne conserver que les coefficients ck et dj,k correspondant aux s plus grandes
valeurs de la norme de ckφk et dj,kψj,k dans Lp respectivement. On obtient alors une
approximation

ANLs (f) =
∑

k∈K0(f)

ckφk +
Jmax(f)∑
j=1

∑
k∈Kj(f)

dj,kψj,k (4.19)

de f à l’aide de s termes qui semblent particlièrement bien choisis. Cette approche est non-
linéaire car le choix des coefficients à conserver dépend de la fonction f . Les performances de
ce type d’approximation non-linéaires ont été étudiées dans l’article R. DeVore, B. Jawerth,
et V. Popov, (1992). Compression of wavelet decompositions. American Journal of Math,
114, 737–285. Un des résultats principaux de cet article est le fait que

‖f −ANLs (f)‖Lp ∼ s−r/d (4.20)

pour toute fonction f dans l’espace de Besov Brq,q avec 1/q = 1/p + r/d. D’autre part, on
peut aussi démontrer qu’une telle vitesse d’approximation n’est pas possible pour toutes les
fonctions de Brq,q avec une méthode linéaire.

De ces études sont probablement nées les idées que certaines fonctions (signaux, images,
etc ...) sont facilement approximables par s termes de leurs décompositions en ondelettes
bien choisis. L’idée que beaucoup de signaux sont compressibles à alors commencé à circuler
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couramment dans la communauté du traitement du signal et des images. On en est venue
alors à considérer que ces signaux étaient grosso modo s-sparses dans la base d’ondelettes
considérée. Dans le cas de bases orthogonales et en considérant la norme de L2 il est facile
de voir qu’il suffit pour approcher non-linéairement la fonction, de conserver les s coefficients
les plus grands. Cette méthode s’appelle le seuillage fort. Une autre méthode consiste à
appliquer un seuillage dit seuillage doux et qui consiste à enlever une quantité τ fixée à
chaque coefficient positif et de le mettre à zéro si le résultat de cette opération est négatif et
symétriquement pour les coefficients négatifs, à ajouter τ et à le mettre à zéro si le résultat
est positif. Il est alors apparu que ce seuillage doux correspondait à la solution d’un problème
de minimization:

min
(ck,dj,k)j=1,...,+∞,k∈Z

∥∥∥∥∥∥f −
∑
k∈Z

ckφk +
+∞∑
j=1

∑
k∈Z

dj,kψj,k

∥∥∥∥∥∥
2

L2

+ λ ‖(ck, dj,k)‖`1 (4.21)

pour λ bien choisi.
Puis les bases sont devenues obsolètes et on a préféré utiliser des frames ou des con-

caténations de bases. Le système dans lequel on a commencé à représenter les images et
les signaux étant redondants, on a appelé ces systèmes des ”dictionnaires”. On écrit tout
simplement la représentation de f dans un dictionnaire Φ indicé par K, comme

f =
∑
k∈K

ckφk. (4.22)

D’un autre coté, on a conservé l’approche issue du problème d’optimisation (4.23) pour
obtenir une approximation non-linéaire de f et l’étude de l’efficacité d’une telle approche à
engendré une multitude de travaux.

L’idée du Compressed Sensing est apparue en 2004 suite à des travaux de Candès et
Romberg sur le problème inverse en imagerie médicale, et plus précisément pour l’IRM. Ils
ont en effet constaté numériquement que lorsqu’on avait une fonction f exactement s sparse
dans un dictionnaire ayant de bonnes propriétés, alors la solution du problème

min
(ck)k∈K

‖(ck)‖`1 sous la contrainte f =
∑
k∈K

ckφk (4.23)

était un vecteur s-sparse qui retrouvait exactement la décomposition de f dans le dictionnaire
φ. Bien sur le cas de leur étude numérique était une situation discrétisée où f est en fait un
vecteur de Rn, le dictionnaire Φ est représenté par une matrice dans Rn×p et la décomposition
de f dans le dictionnaire Φ s’écrit

f = Φc, (4.24)

où c est le vecteur de coordonnées les ck. Ce résultat à été considéré comme très impression-
nant pour une raison très simple, fondée sur des considérations de complexité algorithmiques.
Supposons p très grand devant n, c’est à dire que le dictionnaire est vraiment très redon-
dant. Supposons aussi que s est plus petit que n/2 et représente le cardinal du plus petit
ensemble d’indices S tel qu’il existe un vecteur c∗ de support S satisfaisant (4.24). Alors
un lemme très facile (voir par exemple Cohen, Dahmen et DeVore, Compressed Sensing and
best k-term approximation, Journal of the American Mathematical Society, vol. 22 (2009),
no. 1, 211–231) dit que c∗ est l’unique solution du problème d’optimisation

min
c
‖c‖`0 sous la contrainte f = Φc. (4.25)
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où ‖ · ‖`0 denote la taille du support du vecteur ·, une fonction très fortement non-convexe.
Les résultats de Candès et Romberg ne disent rien de moins que ce problème peut être
parfois résolu en rempla c cant ‖ · ‖`0 par ‖ · ‖`1 , c’est à dire en résolvant

min
c
‖c‖`1 sous la contrainte f = Φc. (4.26)

D’un autre coté, on sait que le problème (4.25) est NP -difficile, alors que le problème
(4.26) est un problème de complexité polynomiale, ce qui peut se voir très simplement en le
réduisant à un problème de programmation linéaire.

Quelles sont les conditions sur Φ permettant ce miracle ? Depuis les premiers travaux
de Candès Romberg et Tao, Donoho et bien d’autres, les choses se sont un petit peut
éclaircies. Il a ”suffit” d’introduire la condition de quasi-Isométrie Restreinte (Restricted
(quasi-)Isometry Property=RIP). Plus précisément, on dit que la matrice Φ satisfait la
condition RIP (δ, k) si

(1− δ)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δ)‖x‖2 (4.27)

pour tout x dans Rp qui soit également k-sparse. Si la matrice Φ satisfait une telle condition
avec k = 2s et δ suffisamment petit, alors, on peut démontrer qu’elle satisfait la propriété
suivante, dite ”Null Space Property”, (NSP (s, C))

‖hT ‖`1 ≤ C‖hT c‖1 (4.28)

pour tout h dans le noyau de Φ, pour tout T ⊂ {1, . . . , p} de cardinal s, et pour C une
constante plus petite que 1. (La notation hT denote ici la restriction de h à ses composantes
indicées par T .) A partir de la propriété NSP (s, C), on prouve alors facilement que la
solution de (4.26) est le vecteur c∗. On procède de la fa c con suivante. Notons c◦ une
solution de (4.26). On a alors

‖c◦‖`1 ≤ ‖c∗‖`1 . (4.29)

Notons h = c◦−c∗. Alors, h est dans le noyau de Φ par définition de c◦ et c∗. On décompose
alors ‖c◦‖`1 comme suit:

‖c◦‖`1 = ‖c∗S + hS‖`1 + ‖c∗Sc + hSc‖`1 (4.30)

où je rappelle que S est le support de c∗. Ainsi,

‖c◦‖`1 = ‖c∗S + hS‖`1 + ‖hSc‖`1 (4.31)

et par application de l’inégalité triangulaire, on obtient que

‖c◦‖`1 ≥ ‖c∗S‖`1 − ‖hS‖`1 + ‖hSc‖`1 . (4.32)

En combinant cette dernière inégalité avec (4.29), on a

‖c∗S‖`1 − ‖hS‖`1 + ‖hSc‖`1 ≤ ‖c∗S‖`1 (4.33)

ce qui donne

‖hSc‖`1 ≤ ‖hS‖`1 . (4.34)

La propriété NSP (s, C) implique alors

‖hSc‖`1 ≤ C‖hSc‖`1 (4.35)
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avec C ∈ (0, 1) et donc ‖hSc‖`1 = 0 et ‖hS‖`1 = 0 ce qui donne finalement

c◦ = c∗. (4.36)

Une fois accordés sur le fait que la condition RIP etait la clé de la compréhension du
problème de retrouver un vecteur sparse à partir d’un faible nombre d’observations s’est
posée la question de savoir si on pouvait facilement construire des dictionnaires (i.e. dans le
cas discrétisé, des matrices) Φ vérifiant cette propriété. Il est en fait facile de voir d’après
les récents travaux sur les matrices aléatoires que si on prend Φ comme étant une matrice
dont les composantes sont indépendantes, identiquement distribuées et de loi gaussienne
N (0, 1√

n
), alors la conditon RIP est satisfaite avec forte probabilité pour s inférieur à une

quantité de l’ordre de n/ log(p/n). Ce résultat démontre donc que si on choisit bien le
dictionnaire Φ, on peut retrouver un vecteur sparse avec un nombre d’observation de l’ordre
de grandeur égal à la sparsité, à un facteur correctif de l’ordre du log de p, ce qui semble
vraiment très peu cher à payer pour résoudre un problème sensé être NP -dur dans toute
sa généralité. Ce résultat est en fait assez universel car il tient aux constantes près pour
toutes les lois sous-gaussiennes, la loi de Bernoulli ±1 incluse évidemment. On pourra lire
avec grand intérêt les notes de cours de Vershynin sur les matrices aléatoires de taille finie:
R. Vershynin, Introduction to the non-asymptotic analysis of random matrices. Chapter 5
of the book Compressed Sensing, Theory and Applications, ed. Y. Eldar and G. Kutyniok.
Cambridge University Press, 2012. pp. 210–268.

Cette théorie a ensuite été étendue au cas où f n’est pas exactement observée, mais
observée avec du bruit. On est alors dans le cadre de la statistique mathématique, en
particulier, pour suivre la terminologie en vigueur, dans le champ de la régression multivariée,
et plus précisément, dans la situation ”p plus grand que n”. Pour s’adapter aux notations
usuelles dans la communauté statistique, on remplace c∗ par β, Φ par X et f par y. Dans
ce cas, on résoud le problème d’optimisation suivant

min
b∈Rp

1
2‖y −Xb‖

2
`2 + λ‖b‖`1 . (4.37)

La solution de ce problème est souvent unique sous des conditions génériques sur la matrice
Φ. La solution, notée β̂, est appelée estimateur LASSO de β. La grande question est alors
de savoir comment choisir λ de manière à conserver certaines propriétés du cas non-bruité,
en particulier, celle qui consiste à retrouver le support de β comme étant aussi celui de β̂.
Une autre direction consiste à alléger la condition RIP qui est en fait facilement démontrable
avec forte probabilité pour des matrices aléatoires mais NP -dur à vérifier pour des matrices
présentées arbitrairement à l’utilisateur. Je vais maintenant présenter les travaux que j’ai
soumis sur ces sujets.

Le Compressed Sensing et une méthode plus efficace que la
minimisation `1

Dans l’article [H], j’ai proposé une méthode permettant d’améliorer les performances obtenues
avec la simple minimisation de la norme `1 dans le cadre du Compressed Sensing sans bruit
d’observation.

Je rappelle que le problème initial était de trouver la solution la plus sparse du système
linéaire f = Φc, c’est à dire de résoudre le problème (4.25). La magie de la relaxation
(4.26) était de rendre retrouver la solution de (4.25) avec un simple programme linéaire.
Les conditions pour réaliser un tel exploit sont par exemple la propriété de quasi-Isometrie
Restreinte, (RIP (δ, k)). Lorsque le nombre d’observation n’est pas suffisant, c’est à dire que
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n est trop petit, la condition (RIP (δ, k)) risque de ne pas être satisfaite et il faut essayer
d’améliorer la stratégie au moins d’une manière algorithmique. Pour se faire, on essaie
d’abord de réécrire le problème (4.25) de manière un peu différente. En particulier, (4.25)
est équivalent au problème

max
z, c∈Rp

etz (4.38)

subjet aux contraintes

zici = 0, zi(zi − 1) = 0 i = 1, . . . , n, et Φc = f

où e dénote le vecteur ne contenant que des 1. Ainsi, la variable zi joue le rôle de fonction
indicatrice pour l’événement ci = 0. Notons que le problème (4.-8) est clairement noncon-
vexe de par la présence des contraintes d’inégalité quandratiques zici = 0, i = 1, . . . , n. On
peut alors essayer une approche par relaxation Positive Semi-Définie (SemiDefinite Program-
ming), mais on peut facilement démontrer que l’approche naive fondée sur les constructions
standard de relaxation, ne fonctionne pas. Je renvoie à l’article [G] pour plus de détails sur
cette question. On procède alors d’une manière pragmatique en résolvant alternativement
selon z et selon c.

Entrons maintenant d’un soup c con dans les détails de la méthode. Une variante de la
formulation (4.-8) pourrait s’écrire de la manière suivante:

max
z∈{0,1}p

etz s.t. ‖D(z)c‖1 = 0, Φc = f (4.39)

où D(z) est la matrice diagonale dont le vecteur diagonal est z. Si on garde les contraintes
Φc = f et z ∈ {0, 1}p implicites dans (2), la fonction de Lagrange est donnée par

L(c, z, u) = etz − u‖D(z)c‖1. (4.40)

La fonction duale (avec valeurs dans R ∪+∞) est définie comme

θ(u) = max
z∈{0,1}p, Φc=f

L(c, z, u) (4.41)

et le problème dual est alors
inf
u∈R

θ(u). (4.42)

Evidemment, ce problème est aussi difficile que le problème original car la fonction duale
est difficile à calculer explicitement à cause de la non-convexité de la fonction de Lagrange
L.

Lorsque l’on restreint z à la valeur z = e, i.e. au vecteur dont toutes les composantes
sont égales à 1, résoudre le problème

x(u) = argmaxz=e, x∈Rn, Φc=fL(c, z, u) (4.43)

redonne exactement la solution de la relaxation `1 (4.26). On peut donc espérer légitimement
qu’en optimisant la fonction en la variable z, on pourra faire mieux qu’avec la relaxation
`1. L’algorithme que j’ai proposé est alors tout simplement un algorithme d’optimisation
alternée en les variables c et z.

Les performances de la méthode proposée sont évaluées par simulation de type Monte
Carlo sur la base de problèmes générés aléatoirement. Plus précisément, la matrice Φ est
tirée au hasard avec des composantes indépendantes gaussiennes, un vecteur c∗ s-sparse
est tiré au hasard en choisissant un support de cardinal s uniformément parmi tous les
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Algorithm 1 Alternating l1 algorithm (Alt-l1)
Require: u > 0 and L ∈ N∗
z

(0)
u = e
c
(0)
u ∈ argmaxc∈Rp, Φc=fL(c, z(0), u)
l = 1
while l 6 L do
z

(l)
u ∈ argmaxz∈{0,1}pL(c(l)u , z, u)
c
(l)
u ∈ argmaxc∈Rp, Φc=fL(c, z(l)

u , u)
l← l + 1

end while
Output z(L)

u and x
(L)
u .

sous ensembles de taille s de {1, . . . , p} et, conditionnellement à ce support, les coordonées
non nulles de c∗ sont tirées suivant une loi gaussienne. On étudie alors la proportion des
problèmes pour lesquels la méthode à retrouvé parfaitement le vecteur c∗ en fonction de s.
On obtient alors la Figure 4.
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Figure .2: Taux de succès parmi 100 expériences de type Monte Carlo pour p = 256,
n = 100, L = 4. Les componsantes non nulles de c∗ ont été tirées aléatoirement selon
la loi gaussienne N (0, 4). Les entrées de Φ ont été tirées de manière indépendantes et
identiquement distribuées selon la loi gaussienne N (0, 1), puis normalisées à la valeur 2
pour la norme euclidienne.

Les résultats obtenus sont bien meilleurs que ceux donnés par la relaxation `1 du problème
mais aussi, sont meilleurs que la relaxation Reweighted `1 de Candès, Wakin et Boyd,
Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl., (2008) 14
877-905. L’analyse théorique de cette méthode reste par contre encore hors de portée.
Depuis, d’autres méthodes ont été publiées et il faudrait comparer leurs performances avec
la méthode d’optimisation alternée proposée ici pour être sûr qu’il est encore pertinent de
s’acharner à prouver des résultats théoriques à son propos. L’article est susceptible de garder
un intérêt malgré la constante évoltion des approches pour la reconstruction des problèmes
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sparses car il contient une analyse de la relaxation SDP naturelle et explique pourquoi elle
ne marche pas. La méthode d’optimisation alternée est en elle même très intuitive et il
ne serait pas surprenant que l’on retombe sur ce type d’idée dans le futur dans le cadre
de l’amélioration de la reconstruction pour des problèmes plus délicats comme lorsqu’une
hypothèse de sparsité sectrale est imposée sur une matrice C∗ à reconstruire comme dans
le problème de Matrix Completion, très à la mode depuis le Netflix Contest en filtrage col-
laboratif et ses applications à l’effrayant marketing ciblé dont nous sommes chaque jour un
peu plus la proie désabusée.

Une facette intéressante de la prise en compte du bruit de mesure est le sujet de la
prochaine section.

Le LASSO avec variance inconnue
Le LASSO est une méthode qui produit un estimateur de type moindre carrés pénalisés pour
les problèmes de régression sparse en statistique, où le nombre p de covariables peut être
particulièrement grand devant le nombre d’observations n. Voici le contexte: on suppose
qu’on observer des données y1, . . . , yn concaténées dans un vecteur y ∈ Rn et obtenu selon
le modèle gaussien

y = Xβ + ε (4.44)

où X ∈ Rn×p est la matrice dite ”de design”, β est le vecteur de régression et ε est le buit
de mesure, supposé suivre une loi gaussienne N (0, σ2I).

L’estimateur LASSO de β est donné par

β̂ ∈ argminb∈Rp
1
2‖y −Xb‖

2
2 + λ‖b‖1 (4.45)

où on retrouve une pénalisation de type `1 comme dans le Compressed Sensing, qui sert de
supplétif à l’infâme ”norme” (qui n’en n’est pas une) `0. Lorsque p est plus grand que n,
évidemment, aucun espoir n’est permi de retrouver une bonne estimation de β. Par contre,
lorsque β est supposé suffisamment sparse, on peut d’après les le c cons tirées du Compressed
Sensing espérer pouvoir retrouver un estimateur pertinent et c’est ce qui se passe en théorie
comme en pratique. Lorsque la condition RIP est vérifiable, les approches développées pour
le Compressed Sensing sont facilement adaptable au cas bruité du modèle linéaire gaussien.
Par contre, lorsqu’on ne sait pas que X satisfait une telle condition de type RIP, l’analyse est
évidemment plus délicate. L’article de référence sur le sujet est E. J. Candès and Y. Plan.
Near-ideal model selection by l1 minimization. Annals of Statistics, 37 (2009) 2145–2177.
Cet article propose d’analyser l’estimateur LASSO dans le cas où la cohérence de la matrice
X est faible, c’est à dire, dans le cas où les produits scalaires des colonnes sont très faibles
en valeur absolue. Si on prend une matrice gaussienne dont les entrées sont i.i.d. N (0, 1√

n
),

on peut certifier facilement avec forte probabilité une cohérence

µ(X) = max
j 6=j′=1,...,p

|〈Xj , Xj′〉| (4.46)

de l’ordre de 1/ log(p) pour n aussi grand qu’une quantité de l’ordre de log(p)3. Ici, Xj dénote
la jeme colonne de X. On voit qu’on a donc de la marge et avoir des matrices très larges
ayant en même temps une cohérence très faible et tendant même vers zéro. L’avantage de la
cohérence est qu’elle est très rapidement calculable, alors que la constante RIP nécessite de
calculer les valeurs singulières de toutes les restrictions XT de X indexées par les ensembles
T ⊂ {1, . . . , n} de cardinal s et conduit à une énumération d’ordre exponentiel.
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Le théorème de Candès et Plan qui nous intéresse ici est celui concernant la reconstruction
exacte du support de β. Il s’agit de connâıtre la probabilité que β̂ ait le même support que β.
Dans le cas où la cohérence est de l’ordre de 1/ log(p) et les colonnes de X sont normalisées,
c’est à dire que leur norme euclidienne est égale à 1, le Théorème de Candès et Plan donne
que le support de β̂ est égal à celui de β avec une probabilité de l’ordre de 1/p2 lorsqu’on
suppose que le support de β est tiré au hasard avec une loi uniforme sur tous les sous-
ensembles de {1, . . . , n} de taille s et que le paramètre λ est de l’ordre de σ

√
log(p).

Dans notre article [L] avec Sébastien Darses, nous nous intéressons au cas où la variance
σ2 du bruit ε est inconnue. Cette situation est en fait on ne peut plus réaliste vu que
les cas où elle peut être considérée comme connue sont rares en statistique appliquée. La
variance est considérée connue dans le cas où X symbolise un appareil de mesure et le bruit
de mesure est spécifié par le constructeur. En statistiques appliquées, on a affaire à des
situations beaucoup plus variées et connâıtre cette variance est souvent irréaliste.

Nous avons proposé deux stratégies différentes (A) et (B) et comparé leurs performances
respectives. Pour chaque stratégie, on se donne une fa c con de choisir le paramètre λ et on
compare ce choix avec le cas où la variance est connue (et on se trouve dans le cas standard
de l’utilisation du LASSO). Plus précisément, on pourra considérer que le choix de λ est en
fait un estimateur λ̂ étant donné qu’il sera une fonction des données. La méthode d’analyse
consistera à exhiber un oracle β̃, qui n’est pas exactement β̂, auquel on associera un oracle λ̃,
qui ne sera pas exactement β̂ mais qui servent de pierre angulaire à l’étude du comportement
de l’estimateur. En particulier, ces oracles seront

(a) plus facilement calculable que l’estimateur β̂

(b) démontrés comme égaux à β̂ et λ̂ respectivement, avec forte probabilité.

La Stratégie (A) est définie dans le tableau suivant

Variance connue Variance inconnue : Strategy (A)

β̂ ∈ argminb∈Rp
‖y−Xb‖22

2 + λ‖b‖1 β̂λ ∈ argminb∈Rp
‖y−Xb‖22

2 + λ‖b‖1

Choisir λ a la valeur λ̂ t.q. λ̂ = C varλσ
√

log p
λ = cst σ

√
log p

avec: λσ2 = ‖y−Xβ̂λ̂‖
2
2

n

Probleme convexe Probleme non-convexe

Oracle β̃ Oracle (β̃, λ̃)

Conditions ayant lieu avec
forte probabilite Conditions similaires

La stratégie (B) est définie dans le tableau suivant
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Variance connue Variance inconnue: Strategie (B)

β̂ ∈ argminb∈Rp
‖y−Xb‖22

2 + λ‖b‖1 β̂λ ∈ argminb∈Rp
‖y−Xb‖22

2 + λ ‖b‖1

Choisir λ a la valeur λ̂ t.q. :
λ = cst σ

√
log p

λ̂‖β̂λ̂‖1 = C ‖y −Xβ̂λ̂‖
2
2

Problème convexe probleme non-convexe

Oracle β̃ Oracle (β̃, λ̃)

Conditions ayant lieu avec Conditions similaires
forte probabilite + Borne superieure sur ‖β‖1

Le théorème d’identification correcte du support pour la stratégie (A) est donné dans
l’article. Il dépend d’une liste d’hypothèses imitant de manière assez fidèle celles de l’article
de Candès et Plan. L’énumération de ces hypothèses étant fastidieuse et indigeste, on donne
ici une version simplement esquissée.

Theorem 4.1 (Esquisse) Soit α > 0. Supposons que le support de β soit tiré au hasard
uniformément parmi les sous ensembles de taille s de {1, . . . , n} et que

s ≤ s0 := p

log p
C spar
‖X‖2

(4.47)

n ≥ s (C◦(α) log p+ 1) . (4.48)

Alors, la probabilité que β̂ défini par la Strategie (A) avec

C var ∈
[

(1− r)2

4(1 + r)C spar

n

p
‖X‖2; (1− r)2

2(1 + r)C spar

n

p
‖X‖2

]
, (4.49)

retrouve exactement le support et la configuration de signes β avec probabilité supérieure à
1− 228/pα.

On obtient aussi un théorème similaire pour la stratégie (B). Nous renvoyons le lecteur
à l’article pour les détails.

Ces théorèmes sont fondé sur une étude fine des valeurs singulières de la matrices aléatoire
XT où T est le support aléatoire de β et X est condidérée comme déterministe. Un résultat
similaire est montré dans l’article de Candès Plan, fondé sur un résultat antérieur de Tropp,
lui même héritié des études menées récemment sur les matrices aléatoires de tailles finie
et les travaux de Bourgain et Tzafriri. Nos résultats sont meilleurs du point de vue des
constantes, mais pas des ordres de grandeurs. Nous nous approchons par la même occasion
de grandeurs de l’ordre de celles qui peuvent être effectivement rencontrées en pratique,
contrairement à l’article de Candès et Plan. Nous détaillerons cette sous partie, qui a donné
lieu à une publication indépendante, dans la partie suivante.

Une étude expérimentale est menée afin de voir si le support est correctement retrouvé
en pratique. Une des figures types parmi celles présentées dans l’article est la Figure 4. Elle
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montre les histogrammes du nombre de composantes retrouvées par β̂ dans la stratégie (B)
(à gauche), ainsi que les histogrammes du nombre de composantes détectées à tort par β̂ (à
droite) avec les valeurs C = .01, .1, .5.
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Figure .3: Histogramme du nombre de composantes retrouvées exactement par l’estimateur
β̂ (à gauche) et le nombre de composantes détectées à tort (à droite) pour la Strategie (B)
et C = .01, .1, .5 avec B = 5. dans le cas ou les composantes non nulles de β sont tirées selon
une loi gaussienne specifiee par βj = 2µj +νj , ou les µi sont des Bernoulli ±1 independantes
et νj des gaussiennes standards independantes.

Il reste à donner quelques commentaires sur ces stratégies. La stratégie (B) a été la
première que nous avons étudiée et la démontrastion du théorème associé est la plus difficile.
Par contre, une fois étudiée, la stratégie (B) nous a permi de comprendre comment mettre
en place la stratégie (A) qui semble en fait plus naturelle a posteriori. Curieusement, ces
deux stratégies n’ont pas le même comportement en pratique: la stratégie (A) fonctionne en
gros comme le LASSO avec variance connue. Elle permet de plus d’estimer la variance assez
correctement (voir les simulations dans l’article) dans les mêmes configurations d’expérience
que le LASSO. La stratégie (B) en revanche marche beaucoup mieux dans le cas où le rapport
signal sur bruit est faible (les coefficients de β ne sont pas très grands devant l’écart-type σ).
Ceci est en accord avec le fait que dans la stratégie (B), on demande de plus qu’une borne
supérieure sur la norme `1 de β soit satisfaite. Nous pensons que la stratégie (B) devrait
être étudiée plus en détail en mettant en valeur ce faible rapport signal sur bruit mais nous
n’avons pas encore trouvé les outils techniques de probabilité permettant d’approchondir les
résultats dans ce sens.
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Quasi-Isométrie Restreinte et incohérence
Le problème de retrouver le support d’un vecteur de régression par le LASSO dans le cas
de la variance connue comme dans le cas où la variance est inconnue demande d’étudier
les valeurs singulières des matrices aléatoires XT où T est un sous ensemble d’indices de
{1, . . . , n} tiré uniformément sur tous les sous-ensembles d’indices de taille s. Ce problème
a été étudié dans l’article de Candès et Plan cité dans la partie précédante a partir de
résultats tiré de l’article J. Tropp, Norms of random submatrices and sparse approximation,
C. R. Acad. Sci. Paris, Ser. I, Vol. 346, (2008), pp. 1271-1274. Nous nous sommes
penché sur l’analyse de ce problème avec Sébastien Darses, dans le cadre de notre étude
sur le LASSO avec variance inconnue, décrit dans la partie précédente, car nous avons
cru possible d’améliorer les résultats de Tropp et Candès-Plan en utilisant de nouvelles
inégalités de déviation matricielles récemment mise en valeur dans l’article de J. Tropp,
User-friendly tail bounds for sums of random matrices, Found. Comput. Math., Vol. 12,
(2012) num. 4, pp. 389–434. L’article [K] donne des résultats sur la probabilité qu’une
sous matrices XT tirée au hasard selon la loi susdécrite soit bien conditionnée qui sont les
meilleurs jusqu’à maintenant. Ils ont déjà été cités et utilisés comme brique intermédiaire
dans la littérature relative au Compressed Sensing et aux algorithmes pour les problèmes
inverses sous contrainte de sparsité.

Commen c cons par rappeler des résultats standards sur les sommes de variables aléatoires
indépendantes. Le théorème de concentration de Bernstein est bien connu et très utilisé dans
la littérature probabiliste. Il s’énonce comme suit.

Theorem 4.2 Soient X1,. . . , Xn des variables aléatoires réelles indépendantes et centrées
et telles que |Xi| ≤M presque sûrement. Alors, on a

P

(
n∑
i=1

Xi ≥ u

)
≤ exp

(
−

1
2u

2∑n
i=1 E [X2

i ] + 1
3M u

)
(4.50)

Le théorème de Hoeffding est un autre théorème de déviation qui ne tient pas compte
de la variance des termes mais simplement de la borne supérieure sur la valeur absolue de
chaque terme. Il s’énonce comme suit.

Theorem 4.3 Soient X1,. . . , Xn des variables aléatoires réelles indépendantes telles que
pour tout i = 1, . . . , n, ai ≤ Xi ≤ bi presque sûrement. Alors, on a

P

(
n∑
i=1

Xi ≥ E

[
n∑
i=1

Xi

]
+ u

)
≤ exp

(
− 2u2∑n

i=1(bi − ai)2

)
(4.51)

La preuve de ces théorèmes suit une procédure assez similaire basée sur l’inégalité de
Chernov. Posons Yi = Xi − E [Xi]. On a

P

(
n∑
i=1

Yi ≥ u

)
= P

(
exp

(
λ

n∑
i=1

Yi

)
≥ exp (λ u)

)
(4.52)

≤
E [exp (

∑n
i=1 λYi)]

exp (λ u) . (4.53)

Par indépendance, on peut ensuite développer et obtenir

P

(
n∑
i=1

Yi ≥ u

)
≤

E [
∏n
i=1 exp (λYi)]
exp (λ u) , (4.54)
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puis en utilisant l’indépendance, on obtient,

P

(
n∑
i=1

Yi ≥ u

)
≤

∏n
i=1 E [exp (λYi)]

exp (λ u) , (4.55)

et il suffit alors d’avoir une estimation de E [exp (λYi)] puis d’optimiser en λ pour obtenir
l’inégalité prévue. Selon les hypothèses, on obtient des bornes sur E [exp (λYi)] qui ont
des formes un peu différentes selon les hypothèses. Si Yi est simplement considérée comme
sous-gaussienne, alors

E [exp (λYi)] ≤ ec
2λ2

. (4.56)

pour une constante à déterminer et l’optimisation en λ est triviale.
Dans notre cas d’étude, nous avons à traiter une somme de matrices de rang 1 pondérée

par des variables de Bernoulli. On peut utiliser une approche identique à celle utilisée pour
les déviations de sommes de variables aléatoires mais il se passe un couic. En effet, pour des
matrices qui ne commutent pas, nous d’avons pas exp(A+B) = exp(A) exp(B) et l’approche
tombe a l’eau. Il est malgré tout possible de contourner le problème grâce à une inégalité
de convexité matricielle due à Lieb. Elle dit la chose suivante.

Theorem 4.4 Soit H une matrice symétrique réelle positive semi-définie. La fonction X 7→
trace exp (H + log(X)) est concave sur le cône des matrices symétriques réelles positives

semi-définies.

A partir de cette inégalité très puissante, on peut en déduire une borne très générale en
suivant la même méthode que pour le cas réel. On procède de la manière suivante: on a
d’abord pour toute matrice symétrique réelle aléatoire Y

P (λmax(Y ) ≥ u) = P (exp (θ λmax(Y ) ≥ exp(θu))) (4.57)
≤ P (exp (θ trace(Y ) ≥ exp (θ u))) (4.58)

≤ E [exp (θ trace(Y )])
exp (θ u) (4.59)

puis on pose Y =
∑p
j=1 Zj et on utilise l’inégalité de Lieb récursivement en conditionnant

par rapport aux termes successifs de la somme. On obtient alors, en optimisant par rapport
à θ,

Theorem 4.5 Soient Z1, . . . , Zp des matrices symmétriques réelles indépendantes. Alors,

P

λmax

 p∑
j=1

Zj

 ≥ u
 ≤ inf

θ>0

trace exp
(
log
(
E
[
eθZj

]))
eθu

(4.60)

Le reste de l’étude revient à borner convenablement E
[
eθZj

]
en fonction de la cohérence

µ(X). C’est à nouveau un peu technique mais nous renvoyons le lecteur à l’article pour les
détails. On aboutit alors à notre théorème principal.

Theorem 4.6 Soit r ∈ (0, 1), α ≥ 1. Supposons

µ(X) ≤ r

(1 + α) log p (4.61)

s ≤ r2

(1 + α)e2
p

‖X‖2 log p . (4.62)
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Alors, on a la borne suivante:

P
(
‖Xt

TXT − I‖ ≥ r
)
≤ 1944

pα
. (4.63)

Modèles de mélanges pour les matrices de design et performance en
prédiction
Après l’étude du problème de retrouver le support d’un vecteur de régression sparse sous
des contraintes d’incohérence, c’est à dire en supposant que la matrice X avait des colonnes
”suffisamment” orthogonales, je me suis tourné vers le problème de savoir comment traiter
le cas où la cohérence µ(X) de la matrice X ne satisfaisait pas les conditions habituelles
de petitesse. Dans ce cas, il semble difficile d’imaginer que le support de β puisse être
effectivement retrouvé avec forte probabilité. Malgré cette fatalité insurmontable, il existe
des espoirs certains sur les possibilité du LASSO à produire un estimateur raisonnable. Pour
comprendre le potentiel de cet estimateur dans des situations moins favorables, il suffit de se
tourner vers un autre critère de performance: l’erreur quadratique commise en prédiction.

L’objectif de l’article [O] est de borner l’erreur quadratique pour un modèle très parti-
culier de matrices de design où l’hypothèse de petite cohérence, comme dans le travail de
Candès et Plan sur le LASSO, n’est pas respectée. Afin de pouvoir contrôler de manière la
plus précise l’erreur de prédiction, on va avoir recours à un modèle pour la génération de la
matrice X. Le modèle que j’ai proposé est le suivant: on suppose qu’on a de manière sous-
jascente une matrice de design C dans Rn×K qui, elle verife la condition de petite cohérence
et que les colonnes de X des perturbations de ces colonnes, avec nombreuses éventuelles
répétitions permises. On obtient donc une sorte de modèle de mélange pour les colonnes de
X, les centres desquels sont les colonnes de C et K le nombre de composantes du modèle
de mélange. Avec ce type de modèle, il faut évidemment s’attendre à ce que l’estimateur
LASSO se ”trompe” de colonnes, i.e. de covariables. En effet, deux colonnes de X obtenues
par perturbation d’une même colonne de Xo pourront aisément être confondues dans leurs
effets sur y. L’idée à garder est que ce phénomène n’est pas très grave dans le modèle pro-
posé car choisir l’un ou l’autre entre les avatars d’une même colonne Xj,o de Xo est tout à
fait supportable car cela revient avec l’une ou l’autre à désigner cette colonne Xj,o comme
vraie responsable des effets sur y. Un tel modèle parâıt réaliste si l’on n’a pas d’objectif
de recherche de causalité, ce qui est bien le cas pour un modèle de régression multivariée
comme celui traité par les méthodes de type LASSO.

La matrice de design X va être supposée choisie de la manière suivante. Soit K un sous
ensemble aléatoire de {1, . . . ,K} ayant pour cardinal s∗, supposé tiré avec la loi uniforme
sur tous les sous-ensembles de {1, . . . ,K} de même cardinal. On suppose ensuite que,
conditionnellement à K, chaque colonne de Xo est tirée selon une loi de mélange gaussien
n-dimensionnel dont chaque composante est centrée sur une des colonnes de K, i.e.

Φ(x) =
∑
k∈K

πkφk(x), (4.64)

où

φk(x) = 1
(2πs2)

n
2

exp
(
−
‖x− Ck‖22

2s2

)
, (4.65)

et πk ≥ 0, k ∈ K et
∑
k∈K πk = 1. On va dénoter par nk le nombre aléatoire de colonnes

de Xo qui ont été tirée suivant la distribution N (Ck, s2I), k = 1, . . . ,Ko. Ainsi, on a



4. LE COMPRESSED SENSING, LE LASSO ET LES MATRICES ALÉATOIRES 33

obligatoirement
∑
k∈K nk = p. Après avoir obtenu la matrice Xo, la matrice X est dérivée

de X par normalisation euclidienne des colonnes, i.e. Xj = Xo,j/‖Xo,j‖2 pour chaque j
dans {1, . . . , p}.

Le résultat principal de l’article [O] est le théorème dont on peut donner l’esquisse
suivante. Les détails des hypothèses sont à regarder dans l’article.

Theorem 4.7 Soit α ∈ (0, 1). Posons λ = 2σ
√

2α log(p). Alors, avec probabilité plus
grande que 1− p−α,

1
2‖Xh‖

2
2 ≤ s∗

3
2r∗ λ

(
3
2 λ+

√
1 + r∗ δ‖CTβT ‖2

)
+ 1

2δ
2‖Xβ‖22 (4.66)

avec r∗ = 1.1 · r (1.1 + 0.11 · r) et pour n’importe quel δ tel que

δ ≥ 4s
(
√
n+

√
α

c
log(p) + 1

c
log(s)

)(
1 + 8

√
2
√
α log(p) + log(2n+ 2)

√
s∗ρC

)
+
(

12 C∫ s
√
n rmax + α log(p) µmax

) √
s∗ρC

+4s

√
n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

(
1 + 2

√
2 √ρC

√
α log(p) + log(2n+ 2))

)

+
(

24 r∗max s

√(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

C∗∫ + µ∗max α log(p)
)
√
ρC, (4.67)

où les diverses constantes et leur contraintes mutuelles sont spécifiées dans les hypothèses
de l’article.

L’énoncé du théorème ainsi que les hypothèses sont clairement très indigestes. Les hy-
pothèses ne demandent en substance que des choses très naturelles: il faut que les colonnes
de C soient très orthogonales, comme dans l’article de Candès et Plan sur le LASSO, et que
les colonnes de Xo soient tirées avec un variance très petites autour de leurs centres respec-
tifs, de manière que les clusters soient suffisamment séparés afin de ne créer une quelconque
confusion entre les centres eux mêmes qu’avec une probabilité très petite, i.e. de l’ordre de
p−α.

Une astuce pour les matrices très mal conditionnées: accoler une
matrice gaussienne
Le but du dernier travail que je présenterai ici concerne aussi, comme dans la partie précédente,
le cas du modèle de régression sparse avec grand nombre de covariables, i.e. p � n. La
stratégie est différente: on ne suppose plus de modèle sous-jascent comme par exemple un
modèle de mélange gaussien dans le travail précédent. On va procéder en utilisant une as-
tuce algorithmique: on accole à la matrice de design pré-existante dont les colonnes seront
supposées normalisées, une matrice gaussienne aux composantes i.i.d. N (0, 1√

n
), normalisée

pour la norme euclidienne. C’est en examinant les conditions d’optimalité pour le LASSO
qu’on peut se rendre compte qu’une telle astuce est possible et que l’estimateur du LASSO
jouit de propriétés équivalentes à celles du cas où la cohérence est, par design petite. En
effet, quel que soit le support de β̂, on peut trouver dans la matrice gaussienne postnor-
malisée qu’on a accolé une sous matrice de même taille et qui soit, elle, très bien conditionnée
avec forte probabilité. Il faut pour se faire choisir d’accoler une matrice gaussienne de taille
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relativement grande. Le calcul de la taille minimal prend un certain effort et tient une
bonne place dans la démonstation du théorème principal de l’article. Sans entrer dans plus
de détail, on parvient à démontrer que l’estimateur LASSO avec une matrice gaussienne
postnormalisé accolée peut commettre une erreur de prédiction du même ordre de grandeur
que si la matrice de design elle même avait initialement eu la propriété de petite cohérence.

Pour faciliter l’étude, on peut introduire une quantité intermédiaire pour caractériser la
qualité de la matrice de design.

Definition 4.8 L’indice γs,ρ−(X) associé à la matrice X est défini par

γs,ρ−(X) = sup
v∈B(0,1)

inf
I⊂Ss,ρ−

‖Xt
Iv‖∞. (4.68)

On note facilement que la fonction s 7→ γs,ρ−(X) est croissante. Un fait important à noter
est que la fonction X 7→ γs,ρ−(X) est décroissante au sens que si X ′ = [X,x] où x est un
vecteur colonne de Rn, alors γs,ρ−(X) ≥ γs,ρ−(X ′).

Un des intérêt de cette quantité est que l’on peut démontrer que pour n et s constants,
la quantité γs,ρ−(X) est très petite pour p suffisamment grand, au moins pour des matrices
aléatoires telles que les gaussiennes post-normalisées. La propriété de monotonie permet
alors de dire qu’en concaténant une matrice gaussienne à une matrice de design donnée, la
matrice qui en résulte à un indice γs,ρ− au moins aussi bon que celui de la matrice gaussienne
post-normalisée accolée.

Le théorème principal de l’article [A14] écrit sur ces travaux est esquissé dans l’énoncé
suivant.

Theorem 4.9 Soit ρ− ∈ (0, 1). Soit ν tel que

ν γνn,ρ−(X) ≤
ρ2
−

n ρ+
. (4.69)

Suposons que s ≤ νn. Supposons que β ait pour support S ∈ Ss,ρ+
−

(X) et que

λ ≥ σ
(
BX,ν,ρ−,ρ+

√
2α log(p) + log(2νn) +

√
(2α+ 1) log(p) + log(2)

)
(4.70)

avec

BX,ν,ρ−,ρ+ =
νn γνn,ρ−(X) ρ+

ρ2
− − νn γνn,ρ−(X) ρ+

. (4.71)

Alors, avec probabilité plus grande que 1− p−α, on a
1
2‖X(β̂ − β)‖22 ≤ s Cn,p,ρ−,α,ν,λ (4.72)

avec

Cn,p,ρ−,α,ν,λ =
λ+ σ

√
(2α+ 1) log(p) + log(2)

ρ2
−

(
σ
√

2α log(p) + log(2νn) + λ
)
(4.73)

Ces résultats ont été soumis dans [N] et attend son verdict . . .

5 Autres travaux

Outre les thématiques que j’ai présentes plus haut, j’ai aussi collaboré dans des directions
variées sur des problèmes pratiques en informatique et en ingénierie.
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number of processors 1 2 3 4 5 6
time 60 30 20 20 20 10

Table .1: Example of allocation for a job which originally required 6 processors

Classification d’images pour l’analyse de l’avancement des glaciers au
Spitzberg
J’ai été contacté par Jean-Michel Friedt, travaillant pour la société Senseor, afin d’analyser
des stocks très grand d’images prises à intervalles fixes par des caméras placées le long d’un
glacier au Spitzberg. Ce problème paraissa vraiment très simple de prime abord mais il s’est
avéré très délicat. J’ai voulu appliquer des méthodes de classifications pour différencier les
saisons (luminosité, jeux d’ombres) , les conditions météo (pluie, neige, beau temps), les
photos sans intérêt (brume, objectif mouillé) ... Or à ma grande suprise, les algorithmes
classiques ont eu beaucoup de mal à détecter et mettre dans des classes a part les photos
sans intérêt ... sans parler de faire quoique ce soit de plus pécis !

Après de multiples essais, une méthode basée sur l’approximation de la Tranformée de
Fourier Discrète bi-dimensionnelle par des matrices de rang faibles recodée en vecteurs puis
injectés dans une méthode de spectral clustering a pu donner des résultats enfin satisfaisants.
Ils ont été publiés dans l’article de conférence [C2].

Scheduling pour des clusters
Ce travail a commencé à l’initiatice de Jean-Marc Nicod et Laurent Philippe et Lamiel Toch
du département d’informatique à l’université de Franche-Comté. Il s’agissait de répartir
des tâches sur des processeurs de manière à obtenir le make-span le plus petit possible. Le
make-span est le temps que vont prendre les processeurs pour accomplir toutes les tâches.
On se place ici dans une optique statique, où les jobs (tâches) sont définies à l’avance et
aucune autre tâche n’arrive dans l’intervalle qui nécésssiterait de modifier la plannification.
Nous avons proposé une nouvelle représentation du problème pour mettre en valeur les
propriétés de sparsité de la solution et utiliser des techniques très reliées aux outils utilisés
en Compressed Sensing. Ces résultats ont été publiés dans [P].

Entrons maintenant un peu plus dans les détails. On considère un ensemble de jobs
J = {Ji, 1 6 i 6 n}. Les jobs sont des tâches apriori réalisables sur plusieurs processeurs en
parallèle. Les variables permettant de contrôler le traitement de chaque job sont les suiv-
antes: son temps d’execution et le nombre de processeurs qui lui sont aloués. Un job rigide
ne peut pas être exécuté sur un nombre différent de processeurs que celui demandé lors de
la requête. Un job est dit moldable s’il peut être excécuté sur un nombre flexible de pro-
cesseurs que l’on peut choisir comme variable d’optimisation. On prendra plus précisément
le modèle de DUTOT (Scheduling moldable BSP tasks Pierre-Fran c cois Dutot, Alfredo
Goldman, Fabio Kon, Marco Netto, 11th Workshop on Job Scheduling Strategies for Parallel
Processing 3834 (2005) 157–172). Soit reqtimei le temsp d’exécution du job Ji qui requiet
au plus reqproci processeurs. Soit ti(n) le temps d’exécution du job Ji si n processeurs lui
sont alloués. La relation entre ti(n) et n est :

∀i, ∀n 6 reqproci, ti(n) =
⌈reqproci

n

⌉
reqtimei

La table .1 donne un exemple avec reqtimei = 10 unités de temps et reqproci = 6
processeurs. Dans la suite, on suppose que tous les jobs sont moldables. On peut alors
se représenter un jobs comme un rectangle dont la base est le nombre d’unités de temps
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utilisés et la hauteur le nombre de processeurs utilisés. La surface du rectangle représente
alors la contrainte réelle de réalisation du job, c’est à dire le temps total processeur dont il a
besoin pour être effectué. Le but est dont de placer des rectangle qui sont déformables dans
un grand rectangle dont la hateur est une contrainte égale au nombre total de processeurs
disponibles.

Estimation de fréquence pour un RADAR

En 2012, j’ai été recontacté par Jean-Michel Friedt de la société Senseor pour un problème
d’estimation de précise de fréquences dans un appareillage RADAR. Ce problème apparâıt
de fa c con récurrente en traitement du signal mais des solutions satisfaisantes viennent
seulement d’être proposées. L’idée est simple: un théorème de Shannon dit que si on a un
signal dont le support fréquentiel est compact, alors, il suffit d’échantillonner 2 fois plus vite
pour ne perdre aucune information. Le Compressed Sensing s’est notamment fait beaucoup
de publicité en annon c cant que ce théorème pouvait être largement contourné car la
plupart du temps, les signaux ont une tranformée de Fourier très peut étendue et jouissent
de structures supplémentaires qui permettent de reconstruire des signaux à partir d’un
nombre extrêment moindre d’échantillon que le nombre prévu par le théorème de Shannnon.
Malheureusement, ce qu’on appelle échantillonnage en Compressed Sensing reviens souvent
à changer de base pour prendre les mesures, en choisissant une base incohérente avec la base
dans laquelle le signal est sparse, et à prendre quelques coefficients dans la nouvelle base.
Pour le problème que nous avons ici, cela ne servirait malheureusement à rien de changer de
base: nous disposons d’échantillons temporels régulièrement espacés du signal à étudier. Par
contre, pour le problème que m’a proposé J.-M. Friedt dans cette étude, une information
importante est à prendre en compte: nous savons a priori que le signal n’est composé que
d’une somme d’un très petit nombre de termes sinusoidaux possiblement amortis. Même si
la fréquence maximale est grande, nous pouvons espérer utiliser cette sparsité d’une manière
efficace. Pour ce travail, il fallait transformer le problème en un problème de régression. Un
mois plus tard, Ben Recht faisait une présentation sur ce type de problème de l’université
de Wisconsin, Madison, USA au European Meeting of Statisticians à Istanbul et nous avons
profité d’un code qu’il a accepté de nous fournir. Nous avons alors pu le modifier en suivant
les résultats que nous avons publiés avec Sébastien Darses dans [K] sur le problème de ne pas
connâıtre la variance a priori dans un problème de régression. Nous avons ainsi pu retrouver
des fréquences avec une précision dépassant largement ce qu’il est permis d’obtenir avec la
FFT (qui ne prennent pas en compte la sparsité) et des méthodes de type Pissarenko (qui la
prenne en compte mais d’une manière différente) . Les résultats d’application au problème
de RADAR ont été simples à fournir et un réel plaisir à transmettre, du fait de pouvoir
répondre rapidement et efficacement à une question pratique. Ils ont été publiés dans un
article que nous n’avons pas inclus, vue la contribution minime qu’il représente comparée à
celle de mes co-auteurs travaillant dans la communauté capteurs et électronique.

6 Nouvelles thématiques: perturbations spectrale de matrices
symétriques réelles

Suite aux travaux réalisés dans le cadre de l’étude du LASSO en statistique et en particulier
à l’analyse des valeurs propres extrèmes de matrices du type AtTAT où AT est une matrices
rectangulaire aléatoire, je me suis intéressé de plus en plus à la perturbation du spectre des
matrices symétriques réelles et des matrices Hermitiennes. L’objectif initial était d’attaquer
le problème de contrôler la constante d’Isométrie Restreinte dans le cas de matrices A où
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les lignes sont tirées aléatoirement comme dans le cas des matrices de Fourier discrète.
Un problème associé très connu est la conjecture Λ1 qui nous a été expliquée par Stefan
Neuwirth du Laboratoire de Besançon. Sans espéré apporter de contribution spectaculaire
à ce problème, il m’a paru passionnant de m’y plonger en collaboration avec S. Darses
afin de se donner le temps de comprendre mieux les origines de ce problème en analyse
harmonique et les résultats spectaculaires obtenus par J. Bourgain et beaucoup d’autres.
Sans ce type d’entrée, une fois de plus, la curiosité la plus simple vis à vis des questions qui
ont préoccupé de grands chercheurs serait resté inaccessible, alors qu’en consacrant un peu
de temps à un sous problème formulé simplement en termes d’algèbre linéaire nous a permis
de rencontrer beaucoup de belles idées dans le domaine et d’apprendre une bonne quantité
de jolies mathématiques provenant de toutes époques.

Perturbations de rang un et ajout de colonnes
Nous nous sommes mis en tête de comprendre comme le spectre d’une matrice était perturbé
par adjonction d’une colonne. L’idée initiale était de pouvoir appliquer une approche de type
chainage qui aurait pu nous aider en passant par le fameux résultat de Talagrand sur la
comparaison de l’espérance du suprémum d’un processus aux accroissements sous-gaussiens
avec une inégrale impliquant des quantités issus de processus purement gaussiens. Nous
n’avons pas pu mettre ce programme en oeuvre étant donnée la difficulté de la tâche mais
nous nous sommes bien régalés.

Nous avons récemment soumis un article à Linear Algebra and Applications [Q] résumant
ce que nous avons trouvé sur la perturbation des valeurs propres extrêmes. Il en sort des
inégalités toutes simples qui s’avèrent meilleures ou moins contraignantes que les inégalités
récentes sur le sujet comme celle de Li-Li et Nadler par exemple. L’article fait l’objet de la
Section 5. Ces bornes utilisent des techniques qui ressemblent d’assez près à celles utilisées
par Spielman et ses co-auteurs dans létude du problème d’inversibilité restreinte. Cela nous
a aussi donné l’occasion de lire avec plus de recul leurs travaux autour de ces sujets ainsi que
l’application aux matrices de covariances pour lesquels une riche litérature a récemment paru
autour de A. Pajor et N. Tomczak-Jeagerman, puis finalement des r’esultats impressionnants
de Koltchinski et Mendelson, résumant les résultats accumulé en un argument très simple
récemment rendu encore plus pédagogique par J. Tropp.

Soit X ∈ Rd×n une matrice et x ∈ Rd un vecteur colonne. Il y a deux approches pour
étudier la matrice (x,X) obtenue en ajoutant la colonne x à la matrice X:

(A1) On considère la matrice

A =
[
xt

Xt

] [
x X

]
=
[
xtx xtX
Xtx XtX

]
; (6.74)

(A2) On considère la matrice

Ã =
[
x X

] [ xt

Xt

]
= XXt + xxt.

Dans l’approche (A1), on considère les valeurs propres de la matrice hermitienne A qui
n’est rien d’autre que la matrice XtX augmentée d’une matrice de type ”tête de flèche”
(”arrowhead matrix” en anglais).

D’un autre côté, l’approche (A2) considère une matrice Ã de taille d × d, qui est une
perturbation de rang 1 de la matrice XXt. Les matrices A et Ã ont les mêmes valeurs
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propres non-nulles. En particulier, λmax(A) = λmax(Ã). De plus, les valeurs singulière de la
matrice (x,X) sont les racines carrées de la matrice A.

Nous nous sommes en fait amusés à étudier plus généralement le problème de comparer
les valeurs propres de

A =
[
c at

a M

]
, (6.75)

à celles de M , où a ∈ Rd, c ∈ R et M ∈ Rd×d.
Bien que partis de considérations liées au LASSO et à l’étude des matrices de covariance

et des constante d’isométrie restreintes, nous nous sommes vite rendu compte que ce type
de problème apparâıt dans une grande quantité de problèmes en analyse numŕique [4], [4],
théorie des graphes [8], théorie du contrôle [31], statistique [28], etc ...

Perturbation des valeurs singulières: quelques résultats existants

Obtenir des estimations précises sur les valeurs propres d’une somme de deux matrices (par
exemple X+P , avec P une perturbation) est une tâche très difficile en général. Les inégalités
de Weyl et Horn, par exemple, peuvent être utilisés et les bornes qui en résultent peuvent
être améliorées si la perturbation P est faible par rapport à X (voir par exemple [?, Chap.
6]). Les travaux de [2] et [3], pour ne nommer qu’eux, on permis de comprendre comment
on pouvait obtenir des résultats plus précis avec forte probabilité lorsque la perturbation
était une matrice aléatoire.

Weyl’s inequalities. La référence [35] donne de multiples résultats historiques sur les
valeurs propres de sommes de matrices hermtiennes ou symmétriques réelles. Les inégalité
de Weyl sont les résultats suivants:

Theorem 6.1 (Weyl) Soient B et B′ deux matrices symétriques Rd×d et soient λj(B),
j = 1, . . . , d, (resp. λj(B′)), les valeurs propres de B (resp. B′). Alors,

λi+j−1(B +B′) ≤ λi(B) + λj(B′),

pour i, j ≥ 1 et i+ j − 1 ≤ n.

The arrowhead perturbation. On peut alors utiliser les inégalités de Weyl pour obtenir le
résultat suivant.

Proposition 6.2 We have

λ1(A) ≤ max{c, λ1(M)}+ ‖a‖2.

Preuve: Les inégalités de Weyl donnent alors, en prenant i, j = 1,

λ1(A) ≤ λ1

([
c 0
0 M

])
+ λ1(E) (6.76)

with

E =
[

0 at

a 0

]
.

De plus, en passant par la formulation variationnelle de la valeur propres la plus grande, on
obtient λ1(E) = ‖a‖2. En combinant ceci avec (2.0), le résultat voulu tombe. 2 Le fait le
plus important à retenir de cette inégalité est que si x est orthogonal à toutes les colonnes de
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X, alors a = 0 et la perturbation n’a pas d’impact sur la valeur propre la plus grande tant
que c ≤ λ1(M). Cette observation élémentaire peut être extrapolée à des situations plus
compliquées, comme par exemple dans le modèle de spiked covariance, où une transition de
phase est observée et dont dépend la détectabilité d’un signal dans du bruit, selon le niveau
d’énergie du signal [28, Theorem 2.3].

The rank-one perturbation. Si nous ne voulons qu’ étudier la perturbation de la plus
grande valeur propre, alors nous pouvons envisager le rang d’un perturbation décrite par
(A2). dans ce cas, l’inégalité de Weyl’s donne le résultat suivant.

Proposition 6.3 We have

λ1(A) ≤ λ1(M) + ‖x‖22.

Preuve: Using that λ1(A) = λ1(Ã) and λ1(M) = λ1(M̃), we obtain from Theorem 2.1 :

λ1(A) ≤ λ1(M) + λ1(xxt).

Since λ1(xxt) = ‖x‖22, the conclusion follows. 2 Le principal inconvénient de
cette inégalité est qu’elle ne tient pas compte de la géométrie du problème et en particulier
l’angle entre X et le nouveau vecteur x que nous voulons ajouter à X.

Une inégalité de Li et Li. Ils prouvent une inégalité générale concernant la perturbation
des valeurs propres en vertu de perturbations bloc-diagonales. Nous précisons leur résultat
[24, Theorem 2], dans notre context:

|λ1(A)−max(c, λ1(M))| ≤ 2‖a‖2

η +
√
η2 + 4‖a‖2

, (6.77)

avec η = min{|c− λi(M)|, 1 ≤ i ≤ d}. dans leur article, λ̃1 est en fait max(c, λ1(M)) pour
nous. On renvoit à [24] pour l’historique de ce type d’inégalité.

une inégalité due à Ipsen et Nadler. Dans [21], les auteurs proposent une borne supérieur
aux valeurs propres de Ã pour le problème de perturbation de rang 1 (A2). Le résultat
suivant est un corollaire de leur résultat principal.

Theorem 6.4 Soit M̃ ∈ Cd×d une matrice Hermitienne et x ∈ Cd. Soit V1 (resp. V2) le
vecteur propre associé à λ1(M̃) (resp. λ2(M̃)). Soit Ã = M̃ + xxt. Alors

λ1(M̃) + δmin ≤ λ1(Ã) ≤ λ1(M̃) + δmax,

avec

δmin = 1
2

(
‖P〈(V1,V2)〉(x)‖22 − gap2 +

√
(gap2 + ‖P〈(V1,V2)〉(x)‖22)2 − 4 gap2‖P〈(V2)〉(x)‖22

)
δmax = 1

2

(
‖x‖22 − gap2 +

√
(gap2 + ‖x‖22)2 − 4 gap2‖P〈(V2,...,Vd)〉(x)‖22

)
,

où (Vi, . . . , Vj), 1 ≤ i ≤ j ≤ d, denote tl’espace vectoriel engendré par Vi, . . . , Vj et
P〈(Vi,...,Vj)〉 denote la projection othogonale sur cet espace, et

gap2 = λ1(M̃)− λ2(M̃).

Le problème de cette inégalité est qu’ell fait intervenir le trou spectral, qui n’est pas toujours
facile à estimer dans les applications.
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Resultats obtenus

Notre résultat principal est le théorème suivant, où un encadrement relativement simple est
proposé pour la valeur propre la plus grande de la matrice perturbée.

Theorem 6.5 Soit M ∈ Cd×d une matrice hermitienne, dont les valeur propres sont notées
λ1 ≥ · · · ≥ λd et leurs vecteurs propres correspondants (V1, · · · , Vd). Soient c ∈ R, a ∈ Cd.
Soit A donné par (1.1). Alors:

2〈a, V1〉2

η1 +
√
η2

1 + 4〈a, V1〉2
≤ λ1(A)−max(c, λ1) ≤ 2‖a‖2

η1 +
√
η2

1 + 4‖a‖2
, (6.78)

avec

η1 = |c− λ1|.

Remark 6.6 • L’inégalité (3.1) est assez précise: en effet, elle est atteinte pour M = I,
c = 1 et pour tout a, tel que λmax(A) = 1 + ‖a‖;

• La borne (3.1) est meilleure que (2.-2) car η1 ≥ η. Un exemple typique où on voit
bien l’amélioration est quand c est l’une des valeurs propres de M (i.e. η = 0). Par
exemple, prenons c = 1, at = (α, 0) et M = diag(2, 1). En particulier, η1 = 1. Un
calcul rapide montre que λ1(A) = 3/2 +

√
1/4 + α2 et donc

λ1(A)− λ1(M) =
√

1/4 + α2 − 1/2 = 2α2

1 +
√

1 + 4α2
,

qui est la borne supérieure de (3.1), alors que la borne (2.-2) est simplement donnée
par l’inégalité triangulaire |λ1(A)− λ1(M)| ≤ |α|.

• La borne inférieure dans (3.1) est aussi meilleure que celle de (2.-2) car:

λ1(A) ≥ max(c, λ1) + 2〈a, V1〉2

η1 +
√
η2

1 + 4〈a, V1〉2
≥ max(c, λ1)− 2‖a‖2

η +
√
η2 + 4‖a‖2

.

En particulier, notre borne inférieure est compatible avec le théorème d’entrelacement
de Cauchy, qui dit que λ1(A) ≥ λ1.

Polynomes de Laguerre et matrices de covariance
Nous nous sommes penchés alors sur l’étude des matrices de covariances. En particulier, nous
avons été vite aspirés par l’idée que si l’on connâıt les espacements entres les valeurs propres
d’une matrice de covariance, on n’en pourra que mieux contrôler les perturbations obtenues
par l’apparition d’une nouvelle donnée. C’est ce type d’approche incrémentale toute bête
qui est mise en oeuvre de manière très technique et subtile par Srivastava et Vershynin
dans leur étude récente des matrices de covariance, étude surpassée depuis par les résultats
sus-cité de Koltchinski et Mendelson. Cela s’est averé une expérience très enrichissante.
Nous avons réalisé que peu de choses sont connues sur les espacements entre valeurs propres
successives pour beaucoup de modèles naturels en probabilité. Un travail impressionnant
de P. Bourgade et G. Ben Arous a donné des résultats asymptotiques sur l’ espacement
le plus grand et le plus petit. De notre côté, nous étions intéressés par des résultats non-
asymptotiques dans l’esprit des travaux de Rudelson et Vershynin sur les valeurs propres
extrêmes. Un résultat nous a vite interpelé: le mode de la loi de Whishart est donné par le
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vecteur des zéros d’un polynôme de Laguerre. Ce résultat trouvé dans un polycopié de J.
Faraut sur les matrices aléatoires et retrouvé dans les diverses publication de Holger Dette
sur les polynômes orthogonaux, nous a incité à regarder les espacements successifs entre les
zéros des polynômes de Laguerre. Le résultat que nous avons obtenu, par une méthode simple
qui s’appuie sur le Bethe Ansatz que nous avions découvert dans un article de Krasikov,
est une borne inférieure uniforme sur ces espacement. Elle est suffisamment simple, et de
démonstration élémentaire, pour avoir été jugée favorablement, à notre grande surprise,
pour publication dans les proceedings de l’AMS, journal que nous avons choisi par curiosité,
après avoir été rejeté par Applied Mathematics Letters, appuyé du commentaire laconique
”too theoretical”. Nous nous attendions à ce que l’article soit rejeté pour des raisons enfin
plus argumentées, sur un sujet vieux comme Gauss, et sur lequel nous ne sommes encore
que de naifs spectateurs gourmands de savoir. Par chance pour notre H-index, ce que nous
avons fait n’avait pas été regardé auparavent, et avec autant de naiveté, par les experts du
domaine. L’article fait l’objet de la Section M.

Rappelons un résultat très intéressant, que l’on peut trouver dans le Lemme 1 de [11].
Soit f un polynome à coefficients réels avec des zéros simples x1 < · · · < xn, satisfaisant
l’ODE f ′′ − 2af ′ + bf = 0 où a et b sont des fonctions mŕomorphes dont les pôles sont
différents des xi’s. Alors, pour tout k ∈ {1 · · ·n} fixé,∑

j 6=k

1
(xk − xj)2 = ∆(xk)− 2a′(xk)

3 , (6.79)

avec ∆(x) = b(x) − a2(x). Ce type d’égalités est appelé équations de ”Bethe ansatz” en
anglais.

Pour α > −1, les polynômes de Laguerre L(α)
n (n indique le degré) sont des polynômes

orthogonaux par rapport aux poids xαe−x sur (0,∞). Soient xn,n(α) < · · · < xn,1(α) les
zeros de L(α)

n . On sait depuis longtemps que L(α)
n est une solution de l’équation différentielle:

u′′ −
(

1− α+ 1
x

)
u′ + n

x
u = 0.

Cela donne a(x) = 1
2
(
1− α+1

x

)
. Ainsi,

∆(x) = n

x
− (x− α− 1)2

4x2 = −x
2 + (2(α+ 1) + 4n)x− (α+ 1)2

4x2 ,

et donc,

∆(x) = (U2 − x)(x− V 2)
4x2 , (6.80)

où
U =

√
n+ α+ 1 +

√
n, V =

√
n+ α+ 1−

√
n. (6.81)

Comme le membre de gauche de (2.1) est positif et a′(x) > 0 pour x > 0, une conséquence
immédiate de (2.1) est que pour tout k, (U2 − xn,k(α))(xn,k(α)− V 2) > 0, i.e.

V 2 < xn,n(α) < xn,1(α) < U2. (6.82)

De nombreuses bornes sur les zeros extrêmes sont connues. On peut consulter par exemple
[4, 7, 10, 11, 13]. Utilisant également le Bethe ansatz, Krasikov a prouvé dans [11, Theorem
1]:

V 2 + 3V 4/3(U2 − V 2)−1/3 ≤ xn,n(α) < xn,1(α) ≤ U2 − 3U4/3(U2 − V 2)−1/3 + 2. (6.83)

Notre résultat principal est le théorème suivant.
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Theorem 6.7 On suppose α > −1. Alors, pour tout k ∈ {1, · · · , n − 1}, les espacements
successifs entre les zéros admettent la borne inférieure uniforme suivante:

xn,k(α)− xn,k+1(α) ≥
√

3 α+ 1√
n(n+ α+ 1)

. (6.84)

De puis, si α ≥ n/C pour un certain C > 0, on a

xn,k(α)− xn,k+1(α) ≥ 1√
C + 1

√
α

n
. (6.85)



Chapter A

Kullback Proximal Algorithms for
Maximum Likelihood Estimation

with Alfred O. Hero.

Abstract

Accelerated algorithms for maximum likelihood image reconstruction are essential
for emerging applications such as 3D tomography, dynamic tomographic imaging, and
other high dimensional inverse problems. In this paper, we introduce and analyze
a class of fast and stable sequential optimization methods for computing maximum
likelihood estimates and study its convergence properties. These methods are based
on a proximal point algorithm implemented with the Kullback-Liebler (KL) divergence
between posterior densities of the complete data as a proximal penalty function. When
the proximal relaxation parameter is set to unity one obtains the classical expectation
maximization (EM) algorithm. For a decreasing sequence of relaxation parameters,
relaxed versions of EM are obtained which can have much faster asymptotic convergence
without sacrifice of monotonicity. We present an implementation of the algorithm using
Moré’s Trust Region update strategy. For illustration the method is applied to a non-
quadratic inverse problem with Poisson distributed data.

1 Introduction

Maximum likelihood (ML) or maximum penalized likelihood (MPL) approaches have been
widely adopted for image restoration and image reconstruction from noise contaminated
data with known statistical distribution. In many cases the likelihood function is in a form
for which analytical solution is difficult or impossible. When this is the case iterative so-
lutions to the ML reconstruction or restoration problem are of interest. Among the most
stable iterative strategies for ML is the popular expectation maximization (EM) algorithm
[8]. The EM algorithm has been widely applied to emission and transmission computed
tomography [39, 23, 36] with Poisson data. The EM algorithm has the attractive property
of monotonicity which guarantees that the likelihood function increases with each iteration.
The convergence properties of the EM algorithm and its variants have been extensively
studied in the literature; see [42] and [15] for instance. It is well known that under strong
concavity assumptions the EM algorithm converges linearly towards the ML estimator θML.
However, the rate coefficient is small and in practice the EM algorithm suffers from slow
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convergence in late iterations. Efforts to improve on the asymptotic convergence rate of the
EM algorithm have included: Aitken’s acceleration [28], over-relaxation [26], conjugate gra-
dient [20] [19], Newton methods [30] [4], quasi-Newton methods [22], ordered subsets EM [17]
and stochastic EM [25]. Unfortunately, these methods do not automatically guarantee the
monotone increasing likelihood property as does standard EM. Furthermore, many of these
accelerated algorithms require additional monitoring for instability [24]. This is especially
problematic for high dimensional image reconstruction problems, e.g. 3D or dynamic imag-
ing, where monitoring could add significant computational overhead to the reconstruction
algorithm.

The contribution of this paper is the introduction of a class of accelerated EM algorithms
for likelihood function maximization via exploitation of a general relation between EM and
proximal point (PP) algorithms. These algorithms converge and can have quadratic rates of
convergence even with approximate updating. Proximal point algorithms were introduced
by Martinet [5] and Rockafellar [9], based on the work of Minty [31] and Moreau [33], for
the purpose of solving convex minimization problems with convex constraints. A key moti-
vation for the PP algorithm is that by adding a sequence of iteration-dependent penalties,
called proximal penalties, to the objective function to be maximized one obtains stable
iterative algorithms which frequently outperform standard optimization methods without
proximal penalties, e.g. see Goldstein and Russak [1]. Furthermore, the PP algorithm plays
a paramount role in non-differentiable optimization due to its connections with the Moreau-
Yosida regularization; see Minty [31], Moreau [33], Rockafellar [9] and Hiriart-Hurruty and
Lemaréchal [16].

While the original PP algorithm used a simple quadratic penalty more general versions of
PP have recently been proposed which use non-quadratic penalties, and in particular entropic
penalties. Such penalties are most commonly applied to ensure non-negativity when solving
Lagrange duals of inequality constrained primal problems; see for example papers by Censor
and Zenios [5], Ekstein [10], Eggermont [9], and Teboulle [19]. In this paper we show that
by choosing the proximal penalty function of PP as the Kullback-Liebler (KL) divergence
between successive iterates of the posterior densities of the complete data, a generalization
of the generic EM maximum likelihood algorithm is obtained with accelerated convergence
rate. When the relaxation sequence is constant and equal to unity the PP algorithm with KL
proximal penalty reduces to the standard EM algorithm. On the other hand for a decreasing
relaxation sequence the PP algorithm with KL proximal penalty is shown to yield an iterative
ML algorithm which has much faster convergence than EM without sacrificing its monotonic
likelihood property.

It is important to point out that relations between particular EM and particular PP
algorithms have been previously observed, but not in the full generality established in this
paper. Specifically, for parameters constrained to the non-negative orthant, Eggermont [9]
established a relation between an entropic modification of the standard PP algorithm and a
class of multiplicative methods for smooth convex optimization. The modified PP algorithm
that was introduced in [9] was obtained by replacing the standard quadratic penalty by the
relative entropy between successive non-negative parameter iterates. This extension was
shown to be equivalent to an “implicit” algorithm which, after some approximations to the
exact PP objective function, reduces to the “explicit” Shepp and Vardi EM algorithm [39]
for image reconstruction in emission tomography. Eggermont [9] went on to prove that the
explicit and implicit algorithms are monotonic and both converge when the sequence of
relaxation parameters is bounded below by a strictly positive number.

In contrast to [9], here we establish a general and exact relation between the generic
EM procedure, i.e. arbitrary incomplete and complete data distributions, and an extended
class of PP algorithms. As pointed out above, the extended PP algorithm is implemented
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with a proximal penalty which is the relative entropy (KL divergence) between successive
iterates of the posterior densities of the complete data. This modification produces a class
of algorithms which we refer to as Kullback-Liebler proximal point (KPP). We prove a
global convergence result for the KPP algorithm under strict concavity assumptions. An
approximate KPP is also proposed using the Trust Region strategy [32, 34] adapted to
KPP. We show, in particular, that both the exact and approximate KPP algorithms have
superlinear convergence rates when the sequence of positive relaxation parameters converge
to zero. Finally, we illustrate these results for KPP acceleration of the Shepp and Vardi EM
algorithm implemented with Trust Region updating.

The results given here are also applicable to the non-linear updating methods of Kivinen
and Warmuth [21] for accelerating the convergence of Gaussian mixture-model identification
algorithms in supervised machine learning, see also Warmuth and Azoury [41] and Helm-
bold, Schapire, Singer and Warmuth [14]. Indeed, similarly to the general KPP algorithm
introduced in this paper, in [14] the KL divergence between the new and the old mixture
model was added to the gradient of the Gaussian mixture-model likelihood function, ap-
propriately weighted with a multiplicative factor called the learning rate parameter. This
procedure led to what the authors of [14] called an exponentiated gradient algorithm. These
authors provided experimental evidence of significant improvements in convergence rate as
compared to gradient descent and ordinary EM. The results in this paper provide a gen-
eral theory which validate such experimental results for a very broad class of parametric
estimation problems.

The outline of the paper is as follows. In Section 2 we provide a brief review of key
elements of the classical EM algorithm. In Section 2, we establish the general relationship
between the EM algorithm and the proximal point algorithm. In section 4, we present the
general KPP algorithm and we establish global and superlinear convergence to the maximum
likelihood estimator for a smooth and strictly concave likelihood function. In section 5,
we study second order approximations of the KPP iteration using Trust Region updating.
Finally, in Section 6 we present numerical comparisons for a Poisson inverse problem.

2 Background

The problem of maximum likelihood (ML) estimation consists of finding a solution of the
form

θML = argmaxθ∈Rp ly(θ), (2.1)

where y is an observed sample of a random variable Y defined on a sample space Y and
ly(θ) is the log-likelihood function defined by

ly(θ) = log g(y; θ), (2.2)

and g(y; θ) denotes the density of Y at y parametrized by a vector parameter θ in Rp. One of
the most popular iterative methods for solving ML estimation problems is the Expectation
Maximization (EM) algorithm described in Dempster, Laird, and Rubin [8] which we recall
for the reader.

A more informative data space X is introduced. A random variable X is defined on X
with density f(x; θ) parametrized by θ. The data X is more informative than the actual data
Y in the sense that Y is a compression of X, i.e. there exists a non-invertible transformation
h such that Y = h(X). If one had access to the data X it would therefore be advantageous
to replace the ML estimation problem (3.1) by

θ̂ML = argmaxθ∈Rp lx(θ), (2.3)
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with lx(θ) = log f(x; θ). Since y = h(x) the density g of Y is related to the density f of X
through

g(y; θ) =
∫
h−1({y})

f(x; θ)dµ(x) (2.4)

for an appropriate measure µ on X . In this setting, the data y are called incomplete data
whereas the data x are called complete data.

Of course the complete data x corresponding to a given observed sample y are unknown.
Therefore, the complete data likelihood function lx(θ) can only be estimated. Given the
observed data y and a previous estimate of θ denoted θ̄, the following minimum mean
square error estimator (MMSE) of the quantity lx(θ) is natural

Q(θ, θ̄) = E[log f(x; θ)|y; θ̄],

where, for any integrable function F (x) on X , we have defined the conditional expectation

E[F (x)|y; θ̄] =
∫
h−1({y})

F (x)k(x|y; θ̄)dµ(x)

and k(x|y; θ̄) is the conditional density function given y

k(x|y; θ̄) = f(x; θ̄)
g(y; θ̄)

. (2.5)

The EM algorithm generates a sequence of approximations to the solution (2.4) starting
from an initial guess θ0 of θML and is defined by

Compute Q(θ, θk) = E[log f(x; θ)|y; θk] E Step

θk+1 = argmaxθ∈RpQ(θ, θk) M Step

A key to understanding the convergence of the EM algorithm is the decomposition of the
likelihood function presented in Dempster, Laird and Rubin [8]. As this decomposition is
also the prime motivation for the KPP generalization of EM it will be worthwhile to recall
certain elements of their argument. The likelihood can be decomposed as

ly(θ) = Q(θ, θ̄) +H(θ, θ̄) (2.6)

where
H(θ, θ̄) = −E[log k(x|y; θ)|y; θ̄].

It follows from elementary application of Jensen’s inequality to the log function that

H(θ, θ̄) > H(θ, θ) > 0, ∀θ, θ̄ ∈ Rp. (2.7)

Observe from (2.6) and (2.7) that for any θk the θ function Q(θ, θk) is a lower bound on
the log likelihood function ly(θ). This property is sufficient to ensure monotonicity of the
algorithm. Specifically, since the the M-step implies that

Q(θk+1, θk) > Q(θk, θk), (2.8)

one obtains

ly(θk+1)− ly(θk) > Q(θk+1, θk)−Q(θk, θk) (2.9)
+H(θk+1, θk)−H(θk, θk).
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Hence, using (2.8) and (2.7)
ly(θk+1) > ly(θk).

This is the well known monotonicity property of the EM algorithm.
Note that if the function H(θ, θ̄) in (2.6) were scaled by an arbitrary positive factor β

the function Q(θ, θ̄) would remain a lower bound on ly(θ), the right hand side of (2.9) would
remain positive and monotonicity of the algorithm would be preserved. As will be shown
below, if β is allowed to vary with iteration in a suitable manner one obtains a monotone,
superlinearly convergent generalization of the EM algorithm.

3 Proximal point methods and the EM algorithm

In this section, we present the proximal point (PP) algorithm of Rockafellar and Martinet.
We then demonstrate that EM is a particular case of proximal point implemented with a
Kullback-type proximal penalty.

The proximal point algorithm

Consider the general problem of maximizing a concave function Φ(θ). The proximal point
algorithm is an iterative procedure which can be written

θk+1 = argmaxθ∈Rp
{

Φ(θ)− βk
2 ‖θ − θ

k‖2
}
. (3.10)

The quadratic penalty ‖θ − θk‖2 is relaxed using a sequence of positive parameters {βk}.
In [9], Rockafellar showed that superlinear convergence of this method is obtained when the
sequence {βk} converges towards zero. In numerical implementations of proximal point the
function Φ(θ) is generally replaced by a piecewise linear model [16].

Proximal interpretation of the EM algorithm

In this section, we establish an exact relationship between the generic EM procedure and
an extended proximal point algorithm. For our purposes, we will need to consider a par-
ticular Kullback-Liebler (KL) information measure. Assume that the family of conditional
densities {k(x|y; θ)}θ∈Rp is regular in the sense of Ibragimov and Khasminskii [9], in par-
ticular k(x|y; θ)µ(x) and k(x|y; θ̄)µ(x) are mutually absolutely continuous for any θ and θ̄

in Rp. Then the Radon-Nikodym derivative k(x|y,θ̄)
k(x|y;θ) exists for all θ, θ̄ and we can define the

following KL divergence:

Iy(θ̄, θ) = E
[
log k(x|y, θ̄)

k(x|y; θ) |y; θ̄
]
. (3.11)

Proposition 3.1 The EM algorithm is equivalent to the following recursion with βk = 1,
k = 1, 2, . . . ,

θk+1 = argmaxθ∈Rp
{
ly(θ)− βkIy(θk, θ)

}
(3.12)

For general positive sequence {βk} the recursion in Proposition 2.1 can be identified as a
modification of the PP algorithm (2.5) with the standard quadratic penalty replaced by the
KL penalty (2.4) and having relaxation sequence {βk}. In the sequel we call this modified
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PP algorithm the Kullback-Liebler proximal point (KPP) algorithm. In many treatments
of the EM algorithm the quantity

Q(θ, θ̄) = ly(θ)− ly(θ̄)− I(θ̄, θ)

is the surrogate function that is maximized in the M-step. This surrogate objective function
is identical (up to an additive constant) to the KPP objective ly(θ) − βkIy(θk, θ) of (3.12)
when βk = 1.
Proof of Proposition 2.1: The key to making the connection with the proximal point

algorithm is the following representation of the M step:

θk+1 = argmaxθ∈Rp
{

log g(y; θ) + E
[
log f(x; θ)

g(y; θ) |y; θk
]}
.

This equation is equivalent to

θk+1 = argmaxθ∈Rp
{

log g(y; θ) + E
[
log f(x; θ)

g(y; θ) |y; θk
]

− E
[
log f(x; θk)

g(y; θk) |y; θk
]}

since the additional term is constant in θ. Recalling that k(x|y; θ) = f(x;θ)
g(y;θ) ,

θk+1 = argmaxθ∈Rp
{

log g(y; θ) + E
[
log k(x|y; θ)|y; θk

]
− E

[
log k(x|y; θk)|y; θk

]}
.

We finally obtain

θk+1 = argmaxθ∈Rp
{

log g(y; θ) + E
[
log k(x|y; θ)

k(x|y; θk) |y; θk
]}

which concludes the proof.

4 Convergence of the KPP Algorithm

In this section we establish monotonicity and other convergence properties of the KPP
algorithm of Proposition 2.1.

Monotonicity
For bounded domain of θ, the KPP algorithm is well defined since the maximum in (3.12) is
always achieved in a bounded set. Monotonicity is guaranteed by this procedure as proved
in the following proposition.

Proposition 4.1 The log-likelihood sequence {ly(θk)} is monotone non-decreasing and sat-
isfies

ly(θk+1)− ly(θk) > βkIy(θk, θk+1), (4.13)

Proof: From the recurrence in (3.12), we have

ly(θk+1)− ly(θk) > βkIy(θk, θk+1)− βkIy(θk, θk).

Since Iy(θk, θk) = 0 and Iy(θk, θk+1) > 0, we deduce (4.13) and that {ly(θk)} is non-
decreasing.

We next turn to asymptotic convergence of the KPP iterates {θk}.
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Asymptotic Convergence
In the sequel ∇01Iy(θ̄, θ) (respectively ∇2

01Iy(θ̄, θ)) denotes the gradient (respectively the
Hessian matrix) of Iy(θ̄, θ) in the first variable. For a square matrix M , ΛM denotes the
greatest eigenvalue of a matrix M and λM denotes the smallest.

We make the following assumptions

Assumptions 4.1 We assume the following:

(i) ly(θ) is twice continuously differentiable on Rp and Iy(θ̄, θ) is twice continuously dif-
ferentiable in (θ, θ̄) in Rp × Rp.

(ii) lim‖θ‖→∞ ly(θ) = −∞ where ‖θ‖ is the standard Euclidean norm on Rp.

(iii) ly(θ) <∞ and Λ∇2ly(θ) < 0 on every bounded θ-set.

(iv) for any θ̄ in Rp, Iy(θ̄, θ) < ∞ and 0 < λ∇2
01Iy(θ̄,θ) 6 Λ∇2

01Iy(θ̄,θ) on every bounded
θ-set.

These assumptions ensure smoothness of ly(θ) and Iy(θ̄, θ) and their first two derivatives
in θ. Assumption 5.1.iii also implies strong concavity of ly(θ). Assumption 5.1.iv implies
that Iy(θ̄, θ) is strictly convex and that the parameter θ is strongly identifiable in the family
of densities k(x|y; θ) (see proof of Lemma 4.3 below). Note that the above assumptions are
not the minimum possible set, e.g. that ly(θ) and Iy(θ̄, θ) are upper bounded follows from
continuity, Assumption 5.1.ii and the property Iy(θ̄, θ) > Iy(θ̄, θ̄) = 0, respectively.

We first characterize the fixed points of the KPP algorithm.
A result that will be used repeatedly in the sequel is that for any θ̄ ∈ Rp

∇01Iy(θ̄, θ̄) = 0. (4.14)

This follows immediately from the information inequality for the KL divergence [6, Thm.
2.6.3]

Iy(θ̄, θ) > Iy(θ̄, θ̄) = 0,

so that, by smoothness Assumption 5.1.i, Iy(θ̄, θ) has a stationary point at θ = θ̄.

Proposition 4.2 Let the densities g(y; θ) and k(x|y; θ) be such that Assumptions 5.1 are
satisfied. Then the fixed points of the recurrence in (3.12) are maximizers of the log-likelihood
function ly(θ) for any relaxation sequence βk = β > 0, k = 1, 2, . . ..

Proof: Consider a fixed point θ∗ of the recurrence relation (3.12) for βk = β = constant.
Then,

θ∗ = argmaxθ∈Rp {ly(θ)− βIy(θ∗, θ)} .

As ly(θ) and Iy(θ∗, θ) are both smooth in θ, θ∗ must be a stationary point

0 = ∇ly(θ∗)− β∇01Iy(θ∗, θ∗).

Thus, as by (4.14) ∇01Iy(θ∗, θ∗) = 0,

0 = ∇ly(θ). (4.15)

Since ly(θ) is strictly concave, we deduce that θ∗ is a maximizer of ly(θ).
The following will be useful.
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Lemma 4.3 Let the conditional density k(x|y; θ) be such that Iy(θ̄, θ) satisfies Assumption
5.1.iv. Then, given two bounded sequences {θk1} and {θk2}, limk→∞ Iy(θk1 , θk2 ) = 0 implies
that limk→∞ ‖θk1 − θk2‖ = 0.

Proof: Let B be any bounded set containing both sequences {θk1} and {θk2}. Let λ denote
the minimum

λ = min
θ,θ̄∈B

λ∇2
01Iy(θ̄,θ) (4.16)

Assumption 5.1.iv implies that λ > 0. Furthermore, invoking Taylor’s theorem with remain-
der, Iy(θ̄, θ) is strictly convex in the sense that for any k

Iy(θk1 , θk2 ) > Iy(θk1 , θk1 )+ ∇Iy(θk1 , θk1 )T (θk1 − θk2 )
+ 1

2λ‖θ
k
1 − θk2‖2.

As Iy(θk1 , θk1 ) = 0 and ∇01Iy(θk1 , θk1 ) = 0, recall (4.14), we obtain

Iy(θk1 , θk2 ) > λ

2 ‖θ
k
1 − θk2‖2.

The desired result comes from passing to the limit k →∞.
Using these results, we easily obtain the following.

Lemma 4.4 Let the densities g(y; θ) and k(x|y; θ) be such that Assumptions 5.1 are satis-
fied. Then {θk}k∈N is bounded.

Proof: Due to Proposition 5.44, the sequence {ly(θk)} is monotone increasing. Therefore,
assumption 5.1.ii implies that {θk} is bounded.

In the following lemma, we prove a result which is often called asymptotic regularity
[13].

Lemma 4.5 Let the densities g(y; θ) and k(x|y; θ) be such that ly(θ) and Iy(θ̄, θ) satisfy
Assumptions 5.1. Let the sequence of relaxation parameters {βk}k∈N satisfy 0 < lim inf βk 6
lim supβk <∞. Then,

lim
k→∞

‖θk+1 − θk‖ = 0. (4.17)

Proof: By Assumption 5.1.iii and by Proposition 5.44 {ly(θk)}k∈N is bounded and monotone.
Since, by Lemma 4.4, {θk}k∈N is a bounded sequence {ly(θk)}k∈N converges. Therefore,
limk→∞

{
ly(θk+1)− ly(θk)

}
= 0 which, from (4.13), implies that βkIy(θk, θk+1) vanishes

when k tends to infinity. Since {βk}k∈N is bounded below by lim inf βk > 0: limk→∞ Iy(θk, θk+1) =
0. Therefore, Lemma 4.3 establishes the desired result.

We can now give a global convergence theorem.

Theorem 4.6 Let the sequence of relaxation parameters {βk}k∈N be positive and converge
to a limit β∗ ∈ [0,∞). Then the sequence {θk}k∈N converges to the solution of the ML
estimation problem (3.1).

Proof: Since {θk}k∈N is bounded, one can extract a convergent subsequence {θσ(k)}k∈N
with limit θ∗. The defining recurrence (3.12) implies that

∇ly(θσ(k)+1)− βσ(k)∇01Iy(θσ(k), θσ(k)+1) = 0. (4.18)
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We now prove that θ∗ is a stationary point of ly(θ). Assume first that {βk}k∈N converges
to zero, i.e. β∗ = 0. Due to Assumptions 5.1.i, ∇ly(θ) is continuous in θ. Hence, since
∇01Iy(θ̄, θ) is bounded on bounded subsets, (4.18) implies

∇ly(θ∗) = 0.

Next, assume that β∗ > 0. In this case, Lemma 4.5 establishes that

lim
k→∞

‖θk+1 − θk‖ = 0.

Therefore, {θσ(k)+1}k∈N also tends to θ∗. Since ∇01Iy(θ̄, θ) is continuous in (θ̄, θ) equation
(4.18) gives at infinity

∇ly(θ∗)− β∗∇01Iy(θ∗, θ∗) = 0.
Finally, by (4.14), ∇01Iy(θ∗, θ∗) = 0 and

∇ly(θ∗) = 0. (4.19)

The proof is concluded as follows. As, by Assumption 5.1.iii, ly(θ) is concave, θ∗ is a
maximizer of ly(θ) so that θ∗ solves the Maximum Likelihood estimation problem (3.1).
Furthermore, as positive definiteness of ∇2ly implies that ly(θ) is in fact strictly concave,
this maximizer is unique. Hence, {θk} has only one accumulation point and {θk} converges
to θ∗ which ends the proof.

We now establish the main result concerning speed of convergence. Recall that a sequence
{θk} is said to converge superlinearly to a limit θ∗ if:

lim
k→∞

‖θk+1 − θ∗‖
‖θk − θ∗‖

= 0, . (4.20)

Theorem 4.7 Assume that the sequence of positive relaxation parameters {βk}k∈N con-
verges to zero. Then, the sequence {θk}k∈N converges superlinearly to the solution of the
ML estimation problem (3.1).

Proof: Due to Theorem 4.6, the sequence {θk} converges to the unique maximizer θML

of ly(θ). Assumption 5.1.i implies that the gradient mapping ∇θ
(
ly(θ) − βkIy(θML, θ)

)
is

continuously differentiable. Hence, we have the following Taylor expansion about θML.

∇ly(θ)−βk∇01Iy(θML, θ) = ∇ly(θML)
− βk∇01Iy(θML, θML)
+∇2ly(θML)(θ − θML) (4.21)
− βk∇2

01Iy(θML, θML)(θ − θML)
+R(θ − θML),

where the remainder satisfies

lim
θ→θML

‖R(θ − θML)‖
‖θ − θML‖

= 0.

Since θML maximizes ly(θ), ∇ly(θML) = 0. Furthermore, by (4.14), ∇01Iy(θML, θML) = 0.
Hence, (4.21) can be simplified to

∇ly(θ)− βk∇01Iy(θML, θ) = ∇2ly(θML)(θ − θML)
− βk∇2

01Iy(θML, θML)(θ − θML) +R(θ − θML). (4.22)
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From the defining relation (3.12) the iterate θk+1 satisfies

∇ly(θk+1)− βk∇01Iy(θk, θk+1) = 0. (4.23)

So, taking θ = θk+1 in (4.22) and using (4.23), we obtain

βk
(
∇01Iy(θk, θk+1)−∇01Iy(θML, θ

k+1)
)

=
+∇2ly(θML)(θk+1 − θML)− βk∇2

01Iy(θML, θML)(θk+1 − θML)
+R(θk+1 − θML).

Thus,

‖βk
(
∇01Iy(θk, θk+1)−∇01Iy(θML, θ

k+1)
)
−R(θk+1 − θML)‖ =

‖∇2ly(θML)(θk+1 − θML)− βk∇2
01Iy(θML, θML)(θk+1 − θML)‖. (4.24)

On the other hand, one deduces from Assumptions 5.1 (i) that ∇01Iy(θ̄, θ) is locally
Lipschitz in the variables θ and θ̄. Then, since, {θk} is bounded, there exists a bounded set
B containing {θk} and a finite constant L such that for all θ, θ′, θ̄ and θ̄′ in B,

‖∇01Iy(θ̄, θ)−∇01Iy(θ̄′, θ′)‖ 6 L
(
‖θ − θ′‖2 + ‖θ̄ − θ̄′‖2

) 1
2 .

Using the triangle inequality and this last result, (4.24) asserts that for any θ ∈ B

βkL‖θk − θML‖+ ‖R(θk+1 − θML)‖ > ‖
(
∇2ly(θML)

− βk∇2
01Iy(θML, θML)

)
(θk+1 − θML)‖. (4.25)

Now, consider again the bounded set B containing {θk}. Let λly and λI denote the minima

λly = min
θ∈B

{
−λ∇2ly(θ)

}
λI = min

θ,θ̄∈B

{
λ∇2

01Iy(θ̄,θ)

}
.

Since for any symmetric matrix H, xTHx/‖x‖2 is lower bounded by the minimum eigenvalue
of H, we have immediately that

‖
(
−∇2ly(θML) + βk∇2

01Iy(θML, θML)
)
(θk+1 − θML)‖2

>
(
λly + βkλI

)2‖θk+1 − θML‖2. (4.26)

By Assumptions 5.1.iii and 5.1.iv, λly +βkλI > 0 and, after substitution of (4.26) into (4.25),
we obtain

βkL‖θk − θML‖+ ‖R(θk+1 − θML)‖ >(
λly + βkλI

)
‖θk+1 − θML‖, (4.27)

for all θ ∈ B. Therefore, collecting terms in (4.27)

βkL >

(
λly + βkλI −

‖R(θk+1 − θML)‖
‖θk+1 − θML‖

)
‖θk+1 − θML‖
‖θk − θML‖

. (4.28)

Now, recall that {θk} is convergent. Thus, limk→∞ ‖θk − θML‖ = 0 and subsequently,
limk→∞

‖R(θk+1−θML)‖
‖θk+1−θML‖ = 0 due to the definition of the remainder R. Finally, as βk converges

to zero, L is bounded and λly > 0, equation (4.28) gives (4.20) with θ∗ = θML and the proof
of superlinear convergence is completed.
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5 Second order Approximations and Trust Region techniques

The maximization in the KPP recursion (3.12) will not generally yield an explicit exact
recursion in θk and θk+1. Thus implementation of the KPP algorithm methods may require
line search or one-step-late approximations similar to those used for the M-step of the non-
explicit penalized EM maximum likelihood algorithm [13]. In this section, we discuss an
alternative which uses second order function approximations and preserves the convergence
properties of KPP established in the previous section. This second order scheme is related
to the well-known Trust Region technique for iterative optimization introduced by Moré
[32].

Approximate models
In order to obtain computable iterations, the following second order approximations of ly(θ)
and Iy(θk, θ) are introduced

l̂y(θ) = ly(θk) +∇ly(θk)T (θ − θk) +
1
2(θ − θk)THk(θ − θk).

and
Îy(θ, θk) = 1

2(θ − θk)T∇2
01Ik(θ − θk).

In the following, we adopt the simple notation gk = ∇ly(θk) (a column vector). A natural
choice for Hk and Ik is of course

Hk = ∇2ly(θk)

and
Ik = ∇2

01Iy(θk, θk).

The approximate KPP algorithm is defined as

θk+1 = argmaxθ∈Rp
{
ly(θk) + gk(θ − θk)

+ 1
2(θ − θk)THk(θ − θk) (5.29)

− βk
2 (θ − θk)T Ik(θ − θk)

}
At this point it is important to make several comments. Notice first that for βk = 0,

k = 1, 2, . . ., and Hk = ∇2ly(θk), the approximate step (5.29) is equivalent to a Newton
step. It is well known that Newton’s method, also known as Fisher scoring, has superlinear
asymptotic convergence rate but may diverge if not properly initialized. Therefore, at least
for small values of the relaxation parameter βk, the approximate PPA algorithm may fail
to converge for reasons analogous in Newton’s method [37]. On the other hand, for βk > 0
the term −βk2 (θ − θk)T Ik(θ − θk) penalizes the distance of the next iterate θk+1 to the
current iterate θk. Hence, we can interpret this term as a regularization or relaxation
which stabilizes the possibly divergent Newton algorithm without sacrificing its superlinear
asymptotic convergence rate. By appropriate choice of {βk} the iterate θk+1 can be forced
to remain in a region around θk over which the quadratic model l̂y(θ) is accurate [32][7].

In many cases a quadratic approximation of a single one of the two terms ly(θ) or
Iy(θk, θ) is sufficient to obtain a closed form for the maximum in the KPP recursion (3.12).
Naturally, when feasible, such a reduced approximation is preferable to the approximation
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of both terms discussed above. For concreteness, in the sequel, although our results hold for
the reduced approximation also, we only prove convergence for the proximal point algorithm
implemented with the full two-term approximation.

Finally, note that (5.29) is quadratic in θ and the minimization problem clearly reduces
to solving a linear system of equations. For θ of moderate dimension, these equations can
be efficiently solved using conjugate gradient techniques [34]. However, when the vector θ
in (5.29) is of large dimension, as frequently occurs in inverse problems, limited memory
BFGS quasi-Newton schemes for updating Hk − βkIk may be computationally much more
efficient, see for example [34], [35], [27], [12] and [11].

Trust Region Update Strategy
The Trust Region strategy proceeds as follows. The model l̂y(θ) is maximized in a ball
B(θk, δ) =

{
‖θ − θk‖Ik 6 δ

}
centered at θk where δ is a proximity control parameter

which may depend on k, and where ‖a‖Ik = aT Ika is a norm; well defined due to positive
definiteness of Ik (Assumption 5.1.iv). Given an iterate θk consider a candidate θδ for θk+1

defined as the solution to the constrained optimization problem

θδ = argmaxθ∈Rp l̂y(θ)

subject to
‖θ − θk‖Ik 6 δ. (5.30)

By duality theory of constrained optimization [16], and the fact that l̂y(θ) is strictly concave,
this problem is equivalent to the unconstrained optimization

θδ(β) = argminθ∈RpL(θ, β). (5.31)

where
L(θ, β) = −l̂y(θ) + β

2
(
‖θ − θk‖2Ik − δ

2).
and β is a Lagrange multiplier selected to meet the constraint (3) with equality: ‖θδ(β) −
θ‖Ik = δ.

We conclude that the Trust Region candidate θδ is identical to the approximate KPP
iterate (5.29) with relaxation parameter β chosen according to constraint (3). This relation
also provides a rational rule for computing the relaxation parameter β.

Implementation
The parameter δ is said to be safe if θδ produces an acceptable increase in the original
objective ly. An iteration of the Trust Region method consists of two principal steps

Rule 1. Determine whether δ is safe or not. If δ is safe, set δk = δ and take an
approximate Kullback proximal step θk+1 = θδ. Otherwise, take a null step θk+1 = θk.

Rule 2. Update δ depending on the result of Rule 1.
Rule 1 can be implemented by comparing the increase in the original log-likelihood ly to

a fraction m of the expected increase predicted by the approximate model l̂y(θ). Specifically,
the Trust Region parameter δ is accepted if

ly(θδ)− ly(θk) > m
(
l̂y(θδ)− l̂y(θk)

)
. (5.32)

Rule 2 can be implemented as follows. If δ was accepted by Rule 1, δ is increased at the
next iteration in order to extend the region of validity of the model l̂y(θ). If δ was rejected,
the region must be tightened and δ is decreased at the next iteration.
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The Trust Region strategy implemented here is essentially the same as that proposed by
Moré [32].

Step 0. (Initialization) Set θ0 ∈ Rp, δ0 > 0 and the “curve search” parameters m, m′ with
0 < m < m′ < 1.
Step 1. With l̂y(θ) the quadratic approximation (5.29), solve

θδk = argmaxθ∈Rp l̂y(θ)

subject to
‖θ − θk‖Ik 6 δk.

Step 2. If ly(θδk) − ly(θk) > m
(
l̂y(θδk) − l̂y(θk)

)
then set θk+1 = θδk . Otherwise, set

θk+1 = θk.
Step 3. Set k = k + 1. Update the model l̂y(θk). Update δk using Procedure 5.
Step 4. Go to Step 1.

The procedure for updating δk is given below.

Step 0. (Initialization) Set γ1 and γ2 such that γ1 < 1 < γ2.
Step 1. If ly(θδk)− ly(θk) 6 m

(
l̂y(θδk)− l̂y(θk)

)
then take δk+1 ∈ (0, γ1δk).

Step 2. If ly(θδk)− ly(θk) 6 m′
(
l̂y(θδk)− l̂y(θk)

)
then take δk+1 ∈ (γ1δk, δk).

Step 3. If ly(θδk)− ly(θk) > m′
(
l̂y(θδk)− l̂y(θk)

)
then take δk+1 ∈ (δk, γ2δk).

The Trust Region algorithm satisfies the following convergence theorem

Theorem 5.1 Let g(y; θ) and k(x|y; θ) be such that Assumptions 1 are satisfied. Then,
{θk} generated by Algorithm 5 converges to the maximizer θML of the log-likelihood ly(θ)
and satisfies the monotone likelihood property ly(θk+1) > ly(θk). If in addition, the sequence
of Lagrange multipliers {βk} tends towards zero, {θk} converges superlinearly.

The proof of Theorem 5.1 is omitted since it is standard in the analysis of Trust Region
methods; see [32, 34]. Superlinear convergence for the case that limk→∞ βk = 0 follows from
the Dennis and Moré criterion [7, Theorem 3.11].

Discussion

The convergence results of Theorems 1 and 2 apply to any class of objective functions which
satisfy the Assumptions 5.1. For instance, the analysis directly applies to the penalized
maximum likelihood (or posterior likelihood) objective function l

′

y(θ) = ly(θ) + p(θ) when
the ML penalty function (prior) p(θ) is quadratic and non-negative of the form p(θ) =
(θ − θo)TR(θ − θo), where R is a non-negative definite matrix.

The convergence Theorems 1 and 2 make use of concavity of ly(θ) and convexity of
Iy(θ̄, θ) via Assumptions 5.1.iii and 5.1.iv. However, for smooth non-convex functions an
analogous local superlinear convergence result can be established under somewhat stronger
assumptions similar to those used in [15]. Likewise the Trust Region framework can also
be applied to nonconvex objective functions. In this case, global convergence to a local
maximizer of ly(θ) can be established under Assumptions 5.1.i, 5.1.ii and 5.1.iv following
the proof technique of [32].
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6 Application to Poisson data

In this section, we illustrate the application of Algorithm 5 for a maximum likelihood es-
timation problem in a Poisson inverse problem arising in radiography, thermionic emission
processes, photo-detection, and positron emission tomography (PET).

The Poisson Inverse Problem

The objective is to estimate the intensity vector θ = [θ1, . . . , θp]T governing the number of
gamma-ray emissions N = [N1, . . . , Np]T over an imaging volume of p pixels. The estimate of
θ must be based on a vector of m observed projections of N denoted Y = [Y1, . . . , Ym]T . The
components Ni of N are independent Poisson distributed with rate parameters θi, and the
components Yj of Y are independent Poisson distributed with rate parameters

∑p
i=1 Pjiθi,

where Pji is the transition probability; the probability that an emission from pixel i is
detected at detector module j. The standard choice of complete data X, introduced by
Shepp and Vardi [39], for the EM algorithm is the set {Nji}16j6m, 16i6p, where Nji denotes
the number of emissions in pixel i which are detected at detector j. The corresponding
many-to-one mapping h(X) = Y in the EM algorithm is

Yj =
p∑
i=1

Nji, 1 6 j 6 m. (6.33)

It is also well known [39] that the likelihood function is given by

log g(y; θ) =
m∑
j=1

( p∑
i=1

Pjiθi

)
− yj log

( p∑
i=1

Pjiθi

)
+ log yj ! (6.34)

and that the expectation step of the EM algorithm is (see [13])

Q(θ, θ̄) = E[log f(x; θ) | y; θ̄] = (6.35)
m∑
j=1

p∑
i=1

( yjPjiθ̄i∑p
i=1 Pjiθ̄i

log(Pjiθi)− Pjiθi
)
.

Let us make the following additional assumptions:

• the solution(s) of the Poisson inverse problem is (are) positive

• the level set
L = {θ ∈ Rn | ly(θ) > ly(θ1)} (6.36)

is bounded and included in the positive orthant.

Then, since ly is continuous, L is compact. Due to the monotonicity property of {θk}, we
thus deduce that for all k, θki > γ for some γ > 0. Then, the likelihood function and the
regularization function are both twice continuously differentiable on the closure of {θk} and
the theory developed in this paper applies. These assumptions are very close in spirit to
the assumptions in Hero and Fessler [15], except that we do not require the maximizer to
be unique. The study of KPP without these assumptions requires further analysis and is
addressed in [6].
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Simulation results
For illustration we performed numerical optimization for a simple one dimensional deblur-
ring example under the Poisson noise model of the previous section. This example easily
generalizes to more general 2 and 3 dimensional Poisson deblurring, tomographic recon-
struction, and other imaging applications. The true source θ is a two rail phantom shown in
Figure B.1. The blurring kernel is a Gaussian function yielding the blurred phantom shown
in Figure A.2. We implemented both EM and KPP with Trust Region update strategy for
deblurring Fig. A.2 when the set of ideal blurred data Yi =

∑N
j=1 Pijθj is available without

Poisson noise. In this simple noiseless case the ML solution is equal to the true source
θ which is everywhere positive. Treatment of this noiseless case allows us to investigate
the behavior of the algorithms in the asymptotic high count rate regime. More extensive
simulations with Poisson noise will be presented elsewhere.

The numerical results shown in Fig. B.2 indicate that the Trust Region implementation of
the KPP algorithm enjoys significantly faster convergence towards the optimum than does
EM. For these simulations the Trust Region technique was implemented in the standard
manner where the trust region size sequence δk in Algorithm 1 is determined implicitly
by the βk update rule: βk+1 = 1.6βk (δk is decreased) and otherwise βk+1 = 0.5βk (δk is
increased). The results shown in Fig. B.3 validate the theoretical superlinear convergence of
the Trust Region iterates as contrasted with the linear convergence rate of the EM iterates.
Figure ?? shows the reconstructed profile and demonstrates that the Trust Region updated
KPP technique achieves better reconstruction of the original phantom for a fixed number of
iterations. Finally, Figure ?? shows the iterates for the reconstructed phantom, plotted as
a function of iteration on the horizontal axis and as a function of grey level on the vertical
axis. Observe that the KPP achieves more rapid separation of the two components in the
phantom than does standard EM.

7 Conclusions

The main contributions of this paper are the following. First, we introduced a general class of
iterative methods for ML estimation based on Kullback-Liebler relaxation of the proximal
point strategy. Next, we proved that the EM algorithm belongs to the proposed class,
thus providing a new and useful interpretation of the EM approach for ML estimation.
Finally, we showed that Kullback proximal point methods enjoy global convergence and
even superlinear convergence for sequences of positive relaxation parameters that converge
to zero. Implementation issues were also discussed and we proposed second order schemes
for the case where the maximization step is hard to obtain in closed form. We addressed
Trust Region methodologies for the updating of the relaxation parameters. Computational
experiments indicated that the approximate second order KPP is stable and verifies the
superlinear convergence property as was predicted by our analysis.
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Figure A.1: Two rail phantom for 1D deblurring example.

Figure A.2: Blurred two level phantom. Blurring kernel is Gaussian with standard width
approximately equal to rail separation distance in phantom. An additive randoms noise of
0.3 was added.
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Figure A.3: Snapshot of log–Likelihood vs iteration for plain EM and KPP EM algorithm.
Plain EM initially produces greater increases in likelihood function but is overtaken by KPP
EM at 7 iterations and thereafter.

Figure A.4: The sequence log ‖θk − θ∗‖ vs iteration for plain EM and KPP EM algorithms.
Here θ∗ is limiting value for each of the algorithms. Note the superlinear convergence of
KPP.
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Chapter B

A Component-wise EM Algorithm for
Mixtures

with Gilles Celeux, Florence Forbes and Abdallah Mkhadri.

Abstract

In some situations, EM algorithm shows slow convergence problems. One possible
reason is that standard procedures update the parameters simultaneously. In this paper
we focus on finite mixture estimation. In this framework, we propose a component-
wise EM, which updates the parameters sequentially. We give an interpretation of
this procedure as a proximal point algorithm and use it to prove the convergence.
Illustrative numerical experiments show how our algorithm compares to EM and a
version of the SAGE algorithm.

1 Introduction

Estimation in finite mixture distributions is typically an incomplete data structure problem
for which the EM algorithm [3] is used (see for instance [4]). The most documented problem
occuring with the EM algorithm is its possible low speed in some situations. Many papers,
including [22], [18], [19], [21], [20] have proposed extensions of the EM algorithm based on
standard numerical tools to speed up the convergence. There are often effective, but they
do not guarantee monotone increase in the objective function. To overcome this problem,
alternatives based on model reduction ([41],[42]) and efficient data augmentation ([17], [16],
[15], [23], [24], [35], [43], see also the chapter 5 of [32]) have recently been considered. These
extensions share the simplicity and stability with EM while speeding up the convergence.
However, as far as we know, only two extensions ([44], [40]) were devoted to speeding
up the convergence in the mixture case which is one of the most important domains of
application for EM. The first one [44] is based on a restricted efficient data augmentation
scheme for the estimation of the proportions for known discrete distributions. While the
second extension [40] is concerned with the implementation of the ECME algorithm ([42])
for mixture distributions.

In this paper we propose, study and illustrate a component-wise EM algorithm (CEM2:
Component-wise EM algorithm for Mixtures) aiming at overcoming the slow convergence
problem in the finite mixture context. Our approach is based on a recent work [33], [34],
[2] which recasts the EM procedure in the framework of proximal point algorithms [9] and
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[12]. In Section 2 we present the EM algorithm for mixtures and its interpretation as a
proximal point algorithm. In Section 3, we describe our component-wise algorithm and
show, in Section 4, that it can also be interpreted as a proximal point algorithm. Using
this interpretation, convergence of CEM2 is proved in Section 5. Illustrative numerical
experiments comparing the behaviors of EM, a version of the SAGE algorithm [17, 16]
and CEM2 are presented in Section 6. A discussion section ends the paper. An appendix
carefully describes the SAGE method in the mixture context in order to provide detailed
comparison with the proposed CEM2.

2 EM-type algorithms for mixtures

We consider a J-component mixture in Rd

g(y|θ) =
J∑
j=1

pjϕ(y|αj) (2.1)

where the pj ’s (0 < pj < 1 and
∑
j = 1Jpj = 1) are the mixing proportions and where

ϕ(y|α) is a density function parametrized by α. The vector parameter to be estimated is
θ = (p1, . . . , pJ , α1, . . . , αJ).

The parametric families of mixture densities are assumed to be identifiable. This means
that for any two members of the form (2),

g(y|θ) ≡ g(y|θ′)

if and only if J = J ′ and we can permute the components labels so that pj = pj′ and
ϕ(y|αj) = ϕ(y|αj′), for j = 1, . . . , J . Most mixtures of interest are identifiable (see for
instance [4]).

For the sake of simplicity, we restrict the present analysis to Gaussian mixtures, but
extension to more general mixtures is straightforward (as long as the considered densities
are differentiable functions of the paramater α). Thus, ϕ(y|µ,Σ) denotes the density of a
Gaussian distribution with mean µ and variance matrix Σ. The parameter to be estimated
is

θ = (p1, . . . , pJ , µ1, . . . , µJ ,Σ1, . . . ,ΣJ).

In the following, we denote θj = (pj , µj ,Σj), for j = 1, . . . , J .

The EM algorithm

The mixture density estimation problem is typically a missing data problem for which the
EM algorithm appears to be useful.

Let y = (y1, . . . , yn) ∈ Rdn be an observed sample from the mixture distribution g(y|θ).
We assume that the component from which each yi arised is unknown so that the missing
data are the labels zi i = 1, . . . , n. We have zi = j if and only if j is the mixture component
from which yi arises. Let z = (z1, . . . , zn) denote the missing data, z ∈ Bn, where B =
{1, . . . , J}. The complete sample is x = (x1, . . . , xn) with xi = (yi, zi). We have x = (y, z)
and the non-invertible transformation π such that y = π(x) is the projection of Rdn × Bn
on Rdn. The observed log-likelihood is

L(θ|y) = log g(y|θ),
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where g(y|θ) denotes the density of the observed sample y. Using (2) leads to

L(θ|y) =
n∑
i=1

log


J∑
j=1

pjϕ(yi|µj ,Σj)

 .

The complete log-likelihood is
L(θ|x) = log f(x|θ),

where f(x|θ) denotes the density of the complete sample x. We have

L(θ|x) =
n∑
i=1
{log pzi + logϕ(yi|µzi ,Σzi)} . (2.2)

The conditional density function of the complete data given y

t(x|y, θ) = f(x|θ)
g(y|θ) (2.3)

takes the form

t(x|y, θ) =
n∏
i=1

tizi(θ) (2.4)

where tij(θ), j = 1, . . . , J denotes the conditional probability, given y, that yi arises from
the mixture component with density ϕ(.|µj ,Σj). ¿From Bayes formula, we have for each i
(1 6 i 6 n) and j (1 6 j 6 J)

tij(θ) = pjϕ(yi|µj ,Σj)
J∑
`=1

p`ϕ(yi|µ`,Σ`)
. (2.5)

Thus the conditional expectation of the complete log-likelihood given y and a previous
estimate of θ, denoted θ′,

Q(θ|θ′) = IE [logL(θ|x)|y, θ′]

takes the form

Q(θ|θ′) =
n∑
i=1

J∑
`=1

ti`(θ′) {log p` + logϕ(yi|µ`,Σ`)} . (2.6)

The EM algorithm generates a sequence of approximations to find the maximum observed
likelihood estimator starting from an initial guess θ0, using two steps. The kth iteration is
as follows

E-step: Compute Q(θ|θk) = IE
[
log f(x|θ)|y, θk

]
.

M-step: Find θk+1 = arg max
θ∈Θ

Q(θ|θk), where Θ = {(p1, . . . , pJ , α1, . . . , αJ)}.

In many situations, including the mixture case, the explicit computation of Q(θ|θk) in the
E-step is unnecessary and this step reduces to the computation of the conditional density
t(x|y, θk).

For Gaussian mixtures, these two steps take the form
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E-step: For i = 1, . . . , n and j = 1, . . . , J compute

tij(θk) =
pkjϕ(yi|µkj ,Σkj )
J∑
`=1

pk`ϕ(yi|µk` ,Σk` )
. (2.7)

M-step : Set θk+1 = (pk+1
1 , . . . , pk+1

J , µk+1
1 , . . . , µk+1

J ,Σk+1
1 , . . . ,Σk+1

J ) with

pk+1
j = 1

n

n∑
i=1

tij(θk)

µk+1
j =

∑
i = 1ntij(θk) yi∑
i = 1ntij(θk)

Σk+1
j =

∑
i = 1ntij(θk)(yi − µk+1

j )(yi − µk+1
j )T∑

i = 1ntij(θk) .

(2.8)

Note that at each iteration, the following properties hold

for i = 1, . . . , n,
J∑
j=1

tij(θk) = 1

and
J∑
j=1

pkj = 1. (2.9)

Proximal interpretation of the EM algorithm
The EM algorithm can be viewed as an alternating optimisation algorithm (see [35], or [25]
in the mixture context). The function to be maximized takes the form

F (p, θ) =
∫
L(θ|x)p(z)dz +H(p), (2.10)

where
H(p) = −

∫
p(z) log p(z)dz

is the entropy of the probability distribution p defined on the missing data set which is Bn
in the mixture context. Denoting T the set of probability distributions on the missing data
set, an iteration of EM can be expressed as follows:

E-step: tk+1 = arg max
t∈T

F (t, θk).

M-step: θk+1 = arg max
θ∈Θ

F (tk+1, θ).

Here we detail a presentation of EM as a proximal point algorithm with a Kullback-Leibler-
type penalty which includes the interpretation of EM as an alternating optimisation algo-
rithm. Consider the general problem of maximizing a concave function Φ(θ). Then, the
proximal point algorithm is an iterative procedure which is defined by the following recur-
rence,

θk+1 = arg max
θ∈Rp

{
Φ(θ)− 1

2‖θ − θ
k‖2
}
. (2.11)
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In other words, the objective function Φ is regularized using a quadratic penalty ‖θ− θk‖2.
The function

Y (θ̄) = max
θ∈Rp

{
Φ(θ)− 1

2‖θ − θ̄‖
2
}

(2.12)

is often called the Moreau-Yosida regularization of Φ. The proximal point algorithm was
first studied in [9]. The proximal methodology was then applied to many types of algorithms
and is still in great effervescence (see [19, 12] for instance and the literature therein).

As shown in [33], the EM procedure can be recast into a proximal point framework.
This point of view provides much insight into the algorithm convergence properties. In
particular it has already been shown in [34] that convergence holds without differentiability
assumptions, hence appropriately handling the case of Laplace distributions, and in [33]
that superlinear convergence of the iterates could be obtained under twice differentiability
assumptions, usually satisfied by most distributions in pratice except the Laplace law. In this
paper, the proximal formulation of EM for mixture densities is also of great importance and
appears to be an essential tool in the convergence proof of the CEM2 algorithm presented
in Section 3.

We first introduce an appropriate Kullback information measure. Assume that the family
of parametrized conditional densities t(x|y, θ) with θ ∈ Θ defined in (2.3) is regular in the
sense of Ibragimov and Khas’minskij [30], in particular t(x|y, θ)λ(dx) and t(x|y, θ′)λ(dx)
are absolutely continuous with respect to each other for any θ and θ′ in Θ, λ(dx) being the
product of the Lebesgue measure and the counting measure on Rnd×Bn. Then the Radon-
Nikodym derivative t(x|y, θ′)/t(x|y, θ) exists for all θ, θ′ and the following Kullback-Leibler
divergence between vectors t(x|y, θ′) and t(x|y, θ) is well defined,

I(t(x|y, θ′), t(x|y, θ)) = IE
[
log t(x|y, θ′)

t(x|y, θ) |y; θ′
]
. (2.13)

In addition, (2.4) can be used as a measure of distance D between θ and θ′ by setting

D(θ, θ′|y) = I(t(x|y, θ′), t(x|y, θ)) . (2.14)

In [33], the following proposition is established.

Proposition 2.1 (Chrétien and Hero 1998) The EM algorithm is a proximal point
algorithm with Kullback-type penalty (2.14) of the form

θk+1 = arg max
θ∈Θ

{
L(θ | y)−D(θ, θk|y)

}
. (2.15)

Hence, the EM algorithm can be interpreted as a generalized proximal point procedure where
the quadratic Moreau-Yosida regularization is replaced by a Kullback information measure
between the two conditional densities t(x|y, θ) and t(x|y, θk).

Note that in the mixture case, using (2.4), it comes

D(θ, θ′|y) =
∑

i = 1nI(ti.(θ′), ti.(θ))

=
n∑
i=1

J∑
`=1

ti`(θ′) log
(
ti`(θ′)
ti`(θ)

)
, (2.16)

where I(ti.(θ′), ti.(θ)) is the Kullback-Leibler divergence between vectors ti.(θ′) = (ti1(θ′), . . . , tiJ(θ′))
and ti.(θ) = (ti1(θ), . . . , tiJ(θ)), which can be viewed as probability measures on {1, . . . , J}
and that we further assume to be strictly positive. The ti`(θ)’s are defined in (2.5). Let t(θ)
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be the n× J probability matrix with general term ti`(θ). A question of importance here is
whether or not the following property holds,

D(θ, θ′|y) = 0 ⇒ θ′ = θ . (2.17)

This is not generally the case when θ lies in Rp since t(.) is not injective. Indeed, for θ and
θ′ in Rp such that, for j = 1, . . . , J ,

pj = α p′j
µj = µ′j
Σj = Σ′j

for some α > 0 different from one, it comes t(θ) = t(θ′) although θ 6= θ′. However, (2.17)
holds when the constraint

∑
` = 1Jp` = 1 is satisfied. Then,

Q(θ | θk) =
∑
i = 1n

∑
` = 1Jti`(θk) log p`ϕ(yi | µ`,Σ`)

ti`(θ)
+
∑
i = 1n

∑
` = 1Jti`(θk) log ti`(θ)

−
∑
i = 1n

∑
` = 1Jti`(θk) log ti`(θk)

+
∑
i = 1n

∑
` = 1Jti`(θk) log ti`(θk) .

Using (2.5), we can further write

Q(θ | θk) =
∑
i = 1n log

∑
` = 1J

{
p`ϕ(yi | µ`,Σ`)

}∑
` = 1Jti`(θk)

−D(θk, θ | y)
+
∑
i = 1n

∑
` = 1Jti`(θk) log ti`(θk) .

Since
∑
` = 1Jti`(θk) = 1, it comes

Q(θ | θk) = L(θ | y)−D(θ, θk | y) +
∑

i = 1n
∑

` = 1Jti`(θk) log ti`(θk) . (2.18)

The last term in the right-hand side does not depend on θ.

3 A Component-wise EM for mixtures

Component-wise methods have been introduced early in the computational literature. Serial
decomposition of optimization methods is a well known procedure in numerical analysis.
Assuming that θ lies in Rp, the optimization problem

max
θ∈Rp

Φ(θ)

is decomposed into a series of coordinate-wise maximization problems of the form

max
η∈R

Φ(θ1, . . . , θj−1, η, θj+1, . . . , θp).

This procedure is called a Gauss-Seidel scheme. The study of this method is standard (see
[1] for example). The proximal method and the Gauss-Seidel scheme can be merged, which
leads to the following recursion,θ

k+1
j = arg max

η∈R

{
Φ(θk1 , . . . , θkj−1, η, θ

k
j+1, . . . , θ

k
p) + 1

2‖η − θ
k
i ‖2
}

θk+1
i = θki , i 6= j.

(3.19)
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Component-wise methods aim at avoiding slow convergence situations. An intuitive idea is
that exploring the parameter space sequentially rather than simultaneously tends to pre-
vent from getting trapped in difficult situations (e.g. near saddle points). One of the most
promising general purpose extention of EM, going in this direction, is the Space-Alternating
Generalized EM (SAGE) algorithm [17]. Improved convergence rates are reached by updat-
ing the parameters sequentially in small groups associated to small hidden data spaces rather
than one large complete data space. The SAGE method is very general and flexible. In the
Appendix, more details are given in the mixture context. More specifically, since the SAGE
approach is closely related to the CEM2 algorithm, we describe, for comparison purpose, a
version of SAGE for Gaussian mixtures. This version is nearly a component-wise algorithm
except that the mixing proportions need to be updated in the same iteration, which involves
the whole complete data structure. For this reason, it may not be significantly faster than
the standard EM algorithm. This points out the main interest of the component-wise EM
algorithm that we propose for mixtures. No iteration needs the whole complete data space
as hidden-data space. It is a full component-wise algorithm and can therefore be expected
to converge faster in various situations.

Our Component-wise EM algorithm for Mixtures (CEM2) considers the decomposition of
the parameter vector θ = (θj , j = 1, ..., J) with θj = (pj , µj ,Σj). The idea is to update only
one component at a time, letting the other parameters unchanged. The order according
to which the components are visited may be arbitrary, prescribed or varying adaptively.
For simplicity, in our presentation, the components are updated successively, starting from
j = 1, . . . , J and repeating this after J iterations. Therefore the component updated at
iteration k is given by (3.20) and the kth iteration of the algorithm is as follows. For

j = k − k

J
cJ + 1, (3.20)

.c denoting the integer part, it alternates the following steps
E-step: Compute for i = 1, . . . , n,

tij(θk) =
pkjϕ(yi|µkj ,Σkj )
J∑
`=1

pk`ϕ(yi|µk` ,Σk` )
. (3.21)

M-step: Set

pk+1
j = 1

n

n∑
i=1

tij(θk)

µk+1
j =

∑
i = 1ntij(θk)yi∑
i = 1ntij(θk)

Σk+1
j =

∑
i = 1ntij(θk)(yi − µk+1

j )(yi − µk+1
j )T∑

i = 1ntij(θk) ,

(3.22)

and for ` 6= j, θk+1
` = θk` .

Note that the main difference with the SAGE algorithm presented in the Appendix is
that the updating steps of the mixing proportions cannot be regarded as maximization steps
of the form (7.55). Consequently, the SAGE standard assumptions are not satisfied and a
specific convergence analysis must be achieved. It is based on the proximal interpretation
of CEM2 given in the next section.
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4 Lagrangian and Proximal representation of CEM2

Lagrangian approach
As underlined in the previous section, the main difficulty which prevents from passing to
fully component-wise approaches resides in the treatment of the constraint

∑
` = 1Jp` = 1.

This difficulty is usually dealt with by introduction of a reduced parameter space

Ω =
{(
p1, . . . , pJ−1, µ1, . . . , µJ ,Σ1, . . . ,ΣJ

)}
, (4.23)

the remaining proportion being trivially deduced from the J − 1 others, knowing that

pJ = 1−
∑

` = 1J − 1p`, (4.24)

see [4] for instance. Obviously, this latter “reduced” representation of the parameter space
is unsatisfactory in the context of coordinate-wise methods.

The linear constraint
∑
` = 1Jp` = 1 is easily handled via Lagrange duality in the

following manner. Consider the Lagrangian function

L(θ, λ) = L(θ|y)− λ
(∑

` = 1Jp` − 1
)
. (4.25)

The original constrained maximum likelihood problem can be reduced to the following un-
constrained problem

(primal) sup
θ∈Θ

inf
λ∈R
L(θ, λ), (4.26)

where Θ = {(p1, . . . , pJ , µ1, . . . , µJ ,Σ1, . . . ,ΣJ)}. Indeed, when the constraints are not
satisfied, the value in (4.26) is −∞. Dualizing, we obtain the minimization problem

(dual) inf
λ∈R

sup
θ∈Θ
L(θ, λ). (4.27)

Although well known, the Lagrangian representation is rarely mentioned in the EM literature
of mixture estimation. In this paper, the Lagrangian approach will give much insight in the
proximal formulation below and thus, in the convergence proof of Section 5.

Generalized proximal point procedure
We first consider a Kullback proximal procedure in order to solve the maximum likelihood
problem via the Lagrangian formulation. Then, we show that CEM2 is a coordinate-wise
maximization of the primal function in the Lagrangian framework.

The Kullback proximal regularization we consider is defined by

K(θ̄) = sup
θ∈Θ

L(θ|y)−D(θ, θ̄ | y). (4.28)

The proximal point iteration associated to this Kullback regularization is given by

θk+1 = arg max
θ∈Θ

L(θ|y)−D(θ, θk | y), (4.29)

under the assumption that such a maximizer exists, which will be seen later as a natural
assumption in the EM context. Applying this Kullback proximal iteration to the Lagrange
representation (4.26) of the constrained maximum likelihood problem, we obtain

θk+1 = arg max
θ∈Θ

inf
λ∈R

L(θ|y)−D(θ, θk | y)− λ
(∑

` = 1Jp` − 1
)
. (4.30)
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Now, dualizing as in (4.27), we obtain the new Kullback proximal iteration

(λk+1, θk+1) = arg min
λ∈R

arg max
θ∈Θ

L(θ|y)−D(θ, θk | y)− λ
(∑

` = 1Jp` − 1
)

(4.31)

under the assumption that the “argmin” exists, which will be shown below. Now, using
Proposition 2.1, we obtain the following iteration

(λk+1, θk+1) = arg min
λ∈R

arg max
θ∈Θ

Q(θ|θk)− λ
(∑

` = 1Jp` − 1
)
. (4.32)

Define the function

∆(λ) = max
θ∈Θ

{
Q(θ|θk)− λ

(∑
` = 1Jp` − 1

)}
. (4.33)

Replacing Q(θ|θk) by its value deduced from (2.6), we obtain that, at the optimum in (4.33),

p` =
n∑
i=1

ti`(θk)/λ (4.34)

for all ` = 1, . . . , J . Therefore, we have

∆(λ) =
n∑
i=1

J∑
`=1

ti`(θk) log
∑n
i=1 ti`(θk)

λ
− λ

( J∑
`=1

∑n
i=1 ti`(θk)

λ
− 1
)

+R, (4.35)

where R is a remainder term independent of λ. Now, simple calculation gives the value of
λ minimizing ∆,

λk+1 =
n∑
i=1

J∑
`=1

ti`(θk). (4.36)

Since ti`(θk) is a conditional probability,
∑J
`=1 ti`(θk) = 1. Thus, we obtain that

λk+1 = n (4.37)

for all k in N. Finally, the Kullback proximal iteration applied to the Lagrangian dual
becomes

θk+1 = arg max
θ∈Θ

Q(θ|θk)− n
(∑

` = 1Jp` − 1
)
. (4.38)

This dual approach leads to the following proposition.

Proposition 4.1 The EM algorithm for mixtures is equivalent to iteration (4.38).

Proof. From (4.34) and (4.37), we have

p` = 1
n

n∑
i=1

ti`(θk) (4.39)

for all ` = 1, . . . , J , which coincide with the values obtained with the EM algorithm. On the
other hand, in view of (4.38), µ` and Σ` maximize Q(θ, θk), exactly as in EM, independently
of the constraint. 2

We now turn to CEM2.
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Proposition 4.2 The CEM2 recursion is equivalent to a coordinate-wise generalized prox-
imal point procedure of the type

θk+1 = arg max
θ∈Θk

{
L(θ | y)− n(

∑
` = 1Jp` − 1)−D

(
θ, θk | y

)}
, (4.40)

where Θk is the parameter set of the form

Θk =
{
θ ∈ Rp | θ` = θk` , ` 6= j

}
with j = k − k

J cJ + 1.

Proof. Looking at the maximization steps (3.22) and (2.8) and using formulation (4.38)
for EM, we can easily deduce that, at iteration k of CEM2, θk+1

j is equal to the jth component
of

arg max
θ∈Rp

{
Q(θ | θk)− n(

∑
` = 1Jp` − 1)

}
.

Then it is enough to note that Q(θ | θk)− n(
∑
` = 1Jp` − 1) can be decomposed into∑

` = 1J
(
Q`(θ` | θk)− n(p` −

1
J

)
)
, (4.41)

where Q`(θ` | θk) =
∑
i = 1nti`(θk) log p`ϕ(yi | α`). Each term of the sum in (4.41) only

depends on θ` so that maximizing (4.41) in θ is equivalent to maximizing in the θ`’s inde-
pendently. Therefore θk+1

j is equal to the jth component of

arg max
θ∈Θk

{
Q(θ | θk)− n(

∑
` = 1Jp` − 1)

}
.

Using (2.18), (4.40) is easily deduced for the jth component and the proof of the proposition
is achieved since for ` 6= j, CEM2 clearly satisfies (4.40). 2

Properties of the Kullback “semi-distance”
We begin with the following simple fact. Consider the quantity D(θ, θ′ | y) defined in (2.16).
Since the Kullback-Leibler divergence is strictly convex, nonnegative and is zero between
identical distributions, D vanishes iff t(θ′) = t(θ). However, the operator defined by t(.) is
not injective on the whole parameter space. Therefore, the Kullback information does not
a priori behave like a distance in all directions of the parameter space. In the following
lemma, we prove that t(.) is coordinate-wise injective which allows the Kullback measure to
enjoy some “distance like” properties at least on coordinate subspaces.

Lemma 4.3 For any ν in {1, . . . , J} the operator t(θ1, . . . , θν−1, ., θν+1, . . . , θJ) is injective.

Proof. Fix ν in {1, . . . , J}. Let v = (pvν , µvν ,Σvν) and w = (pwν , µwν ,Σwν ) be two proposed
vectors for the νth component such that

t(θ1, . . . , θν−1, v, θν+1, . . . , θJ) = t(θ1, . . . , θν−1, w, θν+1, . . . , θJ).

Define
θv = (θ1, . . . , θν−1, v, θν+1, . . . , θJ)T

and
θw = (θ1, . . . , θν−1, w, θν+1, . . . , θJ)T
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and (pvj , µvj ,Σvj ) (resp. (pwj , µwj ,Σwj )), the components of θv (resp. θw) for j = 1, . . . , J .
Then, for any j′ 6= ν, for i = 1, . . . , n,

tij′(θv) = tij′(θw) .

Since j′ 6= ν, the numerators of both terms in the last equation are equal. Thus, so are the
denominators. Therefore

J∑
j=1

pvjϕ(yi | µvj ,Σvj ) =
J∑
j=1

pwj ϕ(yi | µwj ,Σwj ) .

Since all terms corresponding to j 6= ν are equal in the sums above, it follows straightfor-
wardly that for i = 1, . . . , n

pvνϕ(yi | µvν ,Σvν) = pwν ϕ(yi | µwν ,Σwν ).

For Gaussian mixtures, and for most mixtures of interest (exponential, binomial, Pois-
son, . . . ), these equations imply that v=w as soon as n > 2, ensuring that the operator
t(θ1, . . . , θν−1, ., θν+1, . . . , θJ) is injective. For Gaussian mixtures, for example, this comes
from the fact that a polynom of order 2 is the null function as soon as it has more than two
roots. 2

¿From this lemma and the Kullback-Leibler divergence properties, the lemma below
follows straightforwardly.

Lemma 4.4 The distance-like function D(θ, θ′ | y) satisfies the following properties
(i) D(θ, θ′ | y) > 0 for all θ′ and θ in Θ,
(ii) if θ and θ′ only differ in one coordinate, D(θ, θ′ | y) = 0 implies θ′ = θ.

5 Convergence of CEM2

Assumptions 5.1 Let θ be any point in Rp. Then, the level set

Lθ =
{
θ′ | L(θ′|y) > L(θ|y)

}
(5.42)

is compact.

Let Λ(θ | y) be the modified log-likelihood function given by

Λ(θ | y) = L(θ | y)− n(
∑

` = 1Jp` − 1). (5.43)

This function first arised in the Lagrangian framework of Section 4. It is indeed the La-
grangian function L(θ, λ) taken at the value λ = n. We now establish a series of results
concerning the CEM2 iterations.

Proposition 5.1 The sequence {Λ(θk | y)}k∈N is monotone non-decreasing, and satisfies

Λ(θk+1 | y)− Λ(θk | y) > D(θk+1, θk | y). (5.44)

Proof. ¿From iteration (4.40), we have

Λ(θk+1 | y)− Λ(θk | y) > D(θk+1, θk | y)−D(θk, θk | y).

The proposition follows from D(θk+1, θk | y) > 0 and D(θk, θk | y) = 0. 2
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Lemma 5.2 The sequence
{
θk
}
k∈N is bounded and satisfies

lim
k→∞

J∑
j=1

pkj = 1 (5.45)

If in addition, {Λ(θk|y)}k∈N is bounded from above,

lim
k→∞

‖θk+1 − θk‖ = 0 . (5.46)

Proof. The fact that
{
θk
}
k∈N is bounded is straightforward from Proposition 5.1 and

Assumption 5.1.
To show (i), we consider the sequence {

∑J
j=1 p

k
j }k∈N and denote by {

∑J
j=1 p

σ(k)
j }k∈N a

converging subsequence. Let {θσ(γ(k))}k∈N be a converging subsequence of {θσ(k)}k∈N with
θ∗ its limit point. Using (3.22), it is easy to check that, for j = 1, . . . , J ,

lim
k→∞

p
σ(γ(k))
j = 1

n

n∑
i=1

tij(θ∗) ,

from which it follows directly that

lim
k→∞

J∑
j=1

p
σ(γ(k))
j = 1

n

J∑
j=1

n∑
i=1

tij(θ∗) = 1 .

It comes that {
∑J
j=1 p

σ(k)
j }k∈N converges necessarily to 1. Therefore (5.45) is satisfied for

any such converging subsequence, which proves (i) since {
∑J
j=1 p

k
j }k∈N is bounded.

The proof for 5.46 is similar. Considering a converging subsequence {‖θσ(k)+1−θσ(k)‖}k∈N
of the bounded sequence {‖θk+1−θk‖}k∈N, it is possible to extract a subsequence {θσ(γ(k))}k∈N
such that {θσ(γ(k))}k∈N and {θσ(γ(k))+1}k∈N respectively converge to θ∗∗ and θ∗. In addition,
inequality (5.44) in Proposition 5.1 and convergence of

{
Λ(θk | y)

}
k∈N

imply that

lim
k→∞

D(θk+1, θk | y) = 0. (5.47)

By continuity of D, it comes D(θ∗∗, θ∗ | y) = 0. Since θ∗ and θ∗∗ only differ in one
coordinate, it follows from Lemma 4.4 that θ∗ = θ∗∗. Then

lim
k→∞

‖θσ(γ(k))+1 − θσ(γ(k))‖ = ‖θ∗∗ − θ∗‖ = 0 ,

from which 5.46 follows easily. 2

Theorem 5.3 Every accumulation point θ∗ of the sequence
{
θk
}
k∈N satifies one of the

following two properties

• Λ(θ∗ | y) = +∞

• θ∗ is a stationary point of the modified log-likelihood function Λ(θ | y).
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Proof. Two cases are thus to be considered. In the first case, {Λ(θk | y))}k∈N is unbounded.
Since this sequence is increasing, limk→∞ Λ(θk | y) = +∞. Moreover, since {θk}k∈N is
bounded, one deduces that any accumulation point θ∗ maximizes Λ with Λ(θ∗ | y) = +∞.

Let us now assume that {∆(θk|y)}k∈N is bounded from above. For any j in {1, . . . , J}
consider the following subsequence

{
θσ(k)}

k∈N of
{
θk
}
k∈N such that

σ(k)− σ(k)
J
c+ 1 = j.

Since
{
θk
}
k∈N is bounded, one can extract a converging subsequence

{
θσ(γ(k))}

k∈N from{
θσ(k)}

k∈N with limit θ∗. The defining iteration (4.40) implies that

∂

∂θj
Λ(. | y)|θσ(γ(k))+1 −

∂

∂θj
D(., θσ(γ(k)) | y)|θσ(γ(k))+1 = 0.

Due to continuous differentiability of Λ(. | y) and D(., . | y), the partial derivative of Λ(θ | y)
is continuous in θ and the partial derivative of D(θ, θ′ | y) in the variable θ is continuous
with respect to (θ, θ′). Hence, 5.46 in Lemma 5.2 gives

∂

∂θj
Λ(. | y)|θ∗ −

∂

∂θj
D(., θ∗ | y)|θ∗ = 0 (5.48)

for all j = 1, . . . , J . On the other hand, since D(., θ∗ | y) attains its minimum at θ∗, we
have for all j = 1, . . . , J

∂

∂θj
D(., θ∗ | y)|θ∗ = 0 .

Thus, equation (5.48) gives, for all j = 1, . . . , J

∂

∂θj
Λ(. | y)|θ∗ = 0,

which concludes the proof. 2

Corollary 5.4 Assume that the constraint log-likelihood function Λ(θ | y) is strictly concave
in an open neighborhood of a stationary point of

{
θk
}
k∈N. Then, the sequence

{
θk
}
k∈N

converges and its limit is a local maximizer of Λ(θ | y).

Proof. This is a direct consequence of Corollary 4.5 in [34]. 2

We now prove the main convergence result for the CEM2 procedure.

Theorem 5.5 Every accumulation point of the sequence
{
θk
}
k∈N is a stationary point of

the log-likelihood function L(θ | y) over the set defined by the constraint
∑J
`=1 p` = 1.

Proof. Let θ∗ be an accumulation point of {θk}k∈N. Consider the affine submanifold of Θ

Θ′ =
{
θ ∈ Θ |

J∑
`=1

p` = 1
}
. (5.49)

Notice that θ∗ lies in Θ′. Take any vector δ such that θ∗ + δ lies in Θ′. Since Θ′ is affine,
any point θt = θ∗ + tδ, t ∈ R also lies in Θ′. The directional derivative of Λ at θ∗ in the
direction δ is obviously null. It is given by

(0 =)Λ′(θ∗; δ | y) = lim
t→0+

Λ(θ∗ | y)− Λ(θ∗ + tδ | y)
t

, (5.50)
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which is equal to

Λ′(θ∗; δ | y) = lim
t→0+

L(θ∗ | y)− L(θ∗ + tδ | y) + c(θ∗)− c(θ∗ + tδ)
t

, (5.51)

where c(θ) = n
(∑J

`=1 p` − 1
)

. Since θ∗ + tδ lies in Θ′ for all nonnegative t, c(θ∗ + tδ) =
c(θ∗) = 0, and we obtain

Λ′(θ∗; δ | y) = L′(θ∗; δ | y). (5.52)

Thus,
L′(θ∗; δ | y) = 0 (5.53)

6 Numerical experiments

The behaviors of EM, SAGE (as described in the Appendix) and CEM2 are compared on the
basis of simulation experiments on univariate Gaussian mixtures with J = 3 components.
First, we consider a mixture of well separated components with equal mixing proportions
p1 = p2 = p3 = 1/3, means µ1 = 0, µ2 = 3, µ3 = 6 and equal variances σ2

1 = σ2
2 = σ2

3 = 1.
We will refer to this mixture as the well-separated mixture. Secondly, we consider a mixture
of overlapping components with equal mixing proportions p1 = p2 = p3 = 1/3, means
µ1 = 0, µ2 = 3, µ3 = 3 and variances σ2

1 = σ2
2 = 1, σ2

3 = 4. This mixture will be referred to
as the overlapping mixture.

For the well-separated mixture we consider a unique sample of size n = 300 and perform
the EM, SAGE and CEM2 algorithms from the following initial position:

p0
1 = p0

2 = p0
3 = 1/3, µ0

1 = x̄− s, µ0
2 = x̄, µ0

3 = x̄+ s, σ0
1 = σ0

2 = σ0
3 = s2

where x̄ and s2 are respectively the empirical sample mean and variance. Starting from this
rather favorable initial position, close to the true parameter values, the three algorithms
converge to the same solution below

p̂1 = 0.36, µ̂1 = 0.00, σ̂2
1 = 1.10,

p̂2 = 0.29, µ̂2 = 2.96, σ̂2
2 = 0.38

p̂3 = 0.35, µ̂3 = 5.90, σ̂2
3 = 1.10

The performances of EM, SAGE and CEM2, in terms of speed, are compared on the basis
of the cycles number needed to reach the stationary value of the constraint log-likelihood.
A cycle corresponds to the updating of all mixture components. For EM, it consists of
a E-step (2.7) and a M-step (2.8). For SAGE, it is the (J+1) iterations described in the
Appendix. For CEM2, it consists of J iterations described in (3.21) and (3.22). In each
case the algebraic operations needed to achieve a cycle of iterations are of the same nature
and are in the same number, namely, J updatings of the mixing proportions, means and
variance matrices and J × n updatings of the conditional probabilities tij(θ).

Figure B.1 displays the log-likelihood versus cycle for EM, SAGE and CEM2 in the well-
separated mixture case. As expected, when starting from a good initial position in a well
separated mixture situation, EM converges rapidly to a local maximum of the likelihood.
Moreover, EM outperforms SAGE and CEM2 in this example.

For the overlapping mixture, we consider two different samples of size n = 300 and
performed the EM, SAGE and CEM2 algorithms from the following initial position:

p0
1 = p0

2 = p0
3 = 1/3, µ0

1 = 0.0, µ0
2 = 0.1, µ0

3 = 0.2, σ0
1 = σ0

2 = σ0
3 = 1.0,
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Figure B.1: Comparison of log-likelihood versus cycle for EM (full line), SAGE (dashed line)
and CEM2 (dotted line) in the well-separated mixture case.

Figure B.2: Comparison of log-likelihood versus cycle for EM (full line), SAGE (dashed line)
and CEM2 (dotted line) in the overlapping mixture case (first sample).



78 B. A COMPONENT-WISE EM ALGORITHM FOR MIXTURES

Figure B.3: Comparison of log-likelihood versus cycle for EM (full line), SAGE (dashed line)
and CEM2 (dotted line) in the overlapping mixture case (second sample).

which is far from the true parameter values. For the first sample, the three algorithms
converge to the same solution

p̂1 = 0.65, µ̂1 = 0.85, σ̂2
1 = 1.28

p̂2 = 0.19, µ̂2 = 3.32, σ̂2
2 = 0.26

p̂3 = 0.16, µ̂3 = 5.67, σ̂2
3 = 2.10

Figure B.2 displays the log-likelihood versus cycle for EM, SAGE and CEM2 for the first
sample of the overlapping mixture. In this situation, EM appears to converge slowly so that
SAGE and especially CEM2 show a significant improvement of convergence speed.

For the second sample, starting from the same position, SAGE and CEM2 both converge
to the solution below

p̂1 = 0.61, µ̂1 = 0.85, σ̂2
1 = 1.62

p̂2 = 0.13, µ̂2 = 3.00, σ̂2
2 = 0.52

p̂3 = 0.26, µ̂3 = 4.27, σ̂2
3 = 4.29,

while EM proposes the following solution, after 1000 cycles,

p̂1 = 0.61, µ̂1 = 0.83, σ̂2
1 = 1.60

p̂2 = 0.16, µ̂2 = 2.98, σ̂2
2 = 0.62

p̂3 = 0.22, µ̂3 = 4.58, σ̂2
3 = 4.29.

Figure B.3 displays the log-likelihood versus cycle for EM, SAGE and CEM2 for the second
sample of the overlapping mixture. The same conclusions hold for this sample. The CEM2

algorithm is the faster while EM is really slow, the correspondant local maximum of the
likelihood not being reached after 1000 ierations.
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Moreover, it appears that the implemented version of the SAGE algorithm is less ben-
eficial than CEM2 for situations in which EM converges slowly. A possible reason for this
median behavior of SAGE is that the (J + 1)th iteration of SAGE involves the whole com-
plete data structure, whereas CEM2 iterations never need the whole complete data space as
hidden data space.

7 Discussion

We presented a component-wise EM algorithm for finite identifiable mixtures of distributions
(CEM2) and proved convergence properties similar to that of standard EM. As illustrated
in section 6, numerical experiments suggest that CEM2 and EM have complementary per-
formances. The CEM2 algorithm is of poor interest when EM convergence is fast but shows
significant improvement when EM encounters slow convergence rate. Thus, CEM2 may be
most useful in many contexts. An intuitive explanation of our procedure performances is
that the component-wise strategy prevents the algorithm from staying too long at critical
points (typically saddle points) where standard EM is likely to get trapped. More theoretical
investigations would be interesting but are beyond the scope of the present paper.

Other futur directions of research include the use of relaxation, as in [33], for accelerating
CEM2, and the possibility of using varying/adaptative orders to update the components.
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Appendix: The SAGE algorithm

The Space-Alternating Generalized EM (SAGE) algorithm [17] is one of the most promis-
ing general purpose extention of EM. The SAGE method aims to avoid slow convergence
situations of the EM method by updating small groups of the elements of the parameter
vector associated to small hidden data spaces rather than one large complete data space.
General description and details concerning the rationale, the properties and illustrations of
the SAGE algorithm can be found in [17], [16], [15].

In this section, we restrict to maximum likelihood estimation for incomplete data para-
metric models.

We consider an incomplete data model where the parameter vector θ lies in a subset Θ of
Rp. (For a general multivariate Gaussian mixture, we have p = (J−1)+Jd+Jd(d+1)/2).)
Let S be a non empty subset of {1, . . . , p} and S̃ its complement. We denote by θS the
parameter components with indices in S. In order to describe the SAGE algorithm, we need
the following definition.

Definition: a random vector Xs with probability density function f(xs | θ) is an admissible
hidden-data space with respect to θs for g(y | θ) if the joint density of Xs and Y satisfies

f(y,xs | θ) = f(y | xs, θs̃)f(xs | θ), (7.54)

i.e. the conditional distribution f(y | xs, θ) must be independent of θs.

Let θ0 ∈ Θ be an initial parameter estimate. The kth iteration of the SAGE algorithm
is as follows.

(a) Choose an index set Sk.

(b) Choose an admissible hidden-data space XSk

(c) E-step: Compute

QS
k

(θSk | θk) = IE
[
log f(xs

k

| θSk , θkS̃k) | y, θk
]
.

(d) M-step: Find

θk+1
Sk

= arg max
θ
Sk

QS
k

(θSk | θk), (7.55)

θk+1
S̃k

= θk
S̃k
.

Fessler and Hero [17] showed convergence properties of the SAGE algorithm analogous
to that of the EM algorithm. Moreover, they showed that the asymptotic rate of the SAGE
algorithm is improved if one chooses a less informative hidden data space. Numerous nu-
merical experiments [17], [16] support this assertion.

As noted in [17], choosing index sets is as much art as science. In practical situations, a
SAGE algorithm can be decomposed in cycles of iterations according to repeated choices of
the index sets S. In the Gaussian mixture context, we propose choosing the index sets as
described below.

A SAGE algorithm cycle is composed of (J + 1) iterations. In the first J iterations,
j = 1, . . . , J , the chosen index set Sj contains the indices of the mean vector µj and variance
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matrix Σj of the jth mixture component. The associated hidden-data space is Y ×Zj , where
Zj = (Zji , i = 1, . . . , n), Z`i ∈ {0, 1} being the random variable indicating whether yi arises
from the jth component.

The E-step consists of computing

Q(µj ,Σj |θk+ j−1
J+1 ) =

n∑
i=1

tij(θk+ j−1
J+1 ) logϕ(yi|µj ,Σj),

and reduces to update the conditional probabilities, given yi, that unit i arises from com-
ponent j for i = 1, . . . , n. For j = 1, . . . , J , we introduce the notation αj = (µj ,Σj), and
consider that k − 1 + j/(J + 1) = 0 if k = 0. Therefore, the jth iteration (j = 1, . . . , J)
consists of the following E and M steps.

Compute

t
k+ j

J+1
ij (θk+ j−1

J+1 ) =
p
k+ j−1

J+1
j ϕ(yi | α

k+ j−1
J+1

j )∑
`<j p

k+ `
J+1

` ϕ(yi | α
k+ `

J+1
` ) +

∑
`≥j p

k−1+ `
J+1

` ϕ(yi | α
k−1+ `

J+1
` )

.

and set for ` 6= j and i = 1, . . . , n

t
k+ j

J+1
i` (θk+ j−1

J+1 ) = t
k+ `

J+1
i` (θk+ `−1

J+1 ) if ` < j,

t
k+ j

J+1
i` (θk+ j−1

J+1 ) = t
k−1+ `

J+1
i` (θk−1+ `−1

J+1 ) if ` > j.

The M-step consists of maximizing in µj and Σj the function Q(µj ,Σj |θk+ j−1
J+1 ) and leads

to

µ
k+ j

J+1
j =

n∑
i=1

t
k+ j

J+1
ij (θk+ j−1

J+1 )yi

n∑
i=1

t
k+ j

J+1
ij (θk+ j−1

J+1 )

Σk+ j
J+1

j =

n∑
i=1

t
k+ j

J+1
ij (θk+ j−1

J+1 )(yi − µ
k+ j

J+1
j )(yi − µ

k+ j
J+1

j )′

n∑
i=1

t
k+ j

J+1
ij (θk+ j−1

J+1 )
.

All the other parameter estimates are unchanged. Namely, for ` = 1, . . . , J ,

p
k+ j

J+1
` = p

k+ j−1
J+1

`

and for ` 6= j

µ
k+ j

J+1
` = µ

k+ j−1
J+1

`

Σk+ j
J+1

` = Σk+ j−1
J+1

` .

The (J + 1)th iteration concerns the mixing proportions. The index set is the indices of
the mixing proportions p1, . . . , pJ . The associated hidden-data space is the whole complete
data space Y × Z, where (Z = Z1, . . . , ZJ).
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The E-step of that iteration consits of computing

Q(p1, . . . , pJ |θk+ J
J+1 ) =

n∑
i=1

J∑
j=1

tij(θk+ J
J+1 ) log pj ,

which , for j = 1, . . . , J and i = 1, . . . , n, reduces to the computation of

tk+1
ij (θk+ J

J+1 ) =
p
k+ J

J+1
j ϕ(yi | α

k+ J
J+1

j )∑J
`=1 p

k+ J
J+1

` ϕ(yi | α
k+ J

J+1
` )

.

The M-step of the (J + 1)th iteration consists of updating the mixing proportions, for
j = 1, . . . , J,

pk+1
j =

n∑
i=1

tk+1
ij (θk+ J

J+1 )

n
,

letting the other parameter estimates unchanged.
As already mentioned in Section 3, this choice of the SAGE algorithm is not fully

component-wise since the mixing proportions are updated in the same iteration. The reason
why it is not possible to deal with the mixing proportions separately is that the maximiza-
tion of (7.55) cannot be ensured since the constraint (2.9) cannot be fulfilled. Notice that
our CEM2 algorithm has been conceived in the same spirit as the present SAGE algorithm,
but it is not a SAGE algorithm since the updating steps of mixing proportions cannot be
regarded as maximisation steps of the form (7.55).



Bibliography

[1] Ciarlet, Philippe G., Introduction to numerical linear algebra and optimization. With
the assistance of Bernadette Miara and Jean-Marie Thomas for the exercises. Transl.
by A. Buttigieg., Cambridge Texts in Applied Mathematics : Cambridge University
Press., (1988). (p. 68).

[2] Chretien, S. and Hero, A. O., Acceleration of the EM algorithm via proximal point it-
erations, IEEE International Symposium on Information Theory, MIT Boston, (1998).
(p. 63).

[3] Dempster, A. P. and Laird, N. M. and Rubin, D. B., Maximum likelihood for incom-
plete data via the EM algorithm (with discussion), J. Roy. Stat. Soc. Ser. B, 39 (1977),
1–38, (p. 63).

[4] Redner, R. A. and Walker, H. F., Mixture densities, maximum lilelihood and the EM
algorithm, SIAM Review, 26, (1984) 195–239. (pp. 63, 64 et 70).

[5] Martinet, B., Régularisation d’inéquation variationnelles par approximations succes-
sives, Revue Francaise d’Informatique et de Recherche Operationnelle, 3, (1970), 154–
179. (p. 44).

[6] Ostrowski, A. M., Solution of equations and systems of equations, Academic, New
York, 1966

[7] Bonnans, J. F. and Gilbert, J.-Ch. and Lemaréchal, C. and Sagastizàbal, C., Op-
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Chapter C

On EM algorithms and their proximal
generalizations

with Alfred O. Hero.

Abstract

In this paper, we analyze the celebrated EM algorithm from the point of view of
proximal point algorithms. More precisely, we study a new type of generalization of
the EM procedure introduced in [4] and called Kullback-proximal algorithms. The
proximal framework allows us to prove new results concerning the cluster points. An
essential contribution is a detailed analysis of the case where some cluster points lie on
the boundary of the parameter space.

1 Introduction

The problem of maximum likelihood (ML) estimation consists of finding a solution of the
form

θML = argmaxθ∈Θ ly(θ), (1.1)

where y is an observed sample of a random variable Y defined on a sample space Y and
ly(θ) is the log-likelihood function defined by

ly(θ) = log g(y; θ), (1.2)

defined on the parameter space Θ ⊂ Rn, and g(y; θ) denotes the density of Y at y parametrized
by the vector parameter θ.

The Expectation Maximization (EM) algorithm is an iterative procedure which is widely
used for solving ML estimation problems. The EM algorithm was first proposed by Demp-
ster, Laird and Rubin [8] and has seen the number of its potential applications increase
substantially since its appearance. The book of McLachlan and Krishnan [14] gives a com-
prehensive overview of the theoretical properties of the method and its applicability.

The convergence of the sequence of EM iterates towards a maximizer of the likelihood
function was claimed in the original paper [8] but it was later noticed that the proof contained
a flaw. A careful convergence analysis was finally given by Wu [21] based on Zangwill’s
general theory [23]; see also [14]. Zangwill’s theory applies to general iterative schemes
and the main task when using it is to verify that the assumptions of Zangwill’s theorems
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are satisfied. Since the appearance of Wu’s paper, convergence of the EM algorithm is
often taken for granted in many cases where the necessary assumptions were sometimes not
carefully justified. As an example, an often neglected issue is the behavior of EM iterates
when they approach the boundary of the domain of definition of the functions involved. A
different example is the following. It is natural to try and establish that EM iterates actually
converge to a single point θ∗, which involves proving uniqueness of the cluster point. Wu’s
approach, reported in [14, Theorem 3.4, p. 89] is based on the assumption that the euclidean
distance between two successive iterates tends to zero. However such an assumption is in
fact very hard to verify in most cases and should not be deduced solely from experimental
observations.

The goal of the present paper is to propose an analysis of EM iterates and their gen-
eralizations in the framework of Kullback proximal point algorithms. We focus on the
geometric conditions that are provable in practice and the concrete difficulties concerning
convergence towards boundaries and cluster point uniqueness. The approach adopted here
was first proposed in [4] in which it was shown that the EM algorithm could be recast as a
Proximal Point algorithm. A proximal scheme for maximizing the function ly(θ) using the
distance-like function Iy is an iterative procedure of the form

θk+1 ∈ argmaxθ∈Ωly(θ)− βkIy(θ, θk), (1.3)

where (βk)k∈N is a sequence of positive real numbers often called relaxation parameters.
Proximal point methods were introduced by Martinet [13] and Rockafellar [17] in the context
of convex minimization. The proximal point representation of the EM algorithm [4] is
obtained by setting βk = 1 and Iy(θ, θk) to the Kullback distance between some well specified
conditional densities of a complete data vector. The general case of βk > 0 was called the
Kullback Proximal Point algorithm (KPP). This approach was further developed in [5] where
convergence was studied in the twice differentiable case with the assumption that the limit
point lies in the interior of the domain. The main novelty of [5] was to prove that relaxation
of the Kullback-type penalty could ensure superlinear convergence which was confirmed by
experiment for a Poisson linear inverse problem. This paper is an extension of these previous
works that addresses the problem of convergence under general conditions.

The main results of this paper are the following. Firstly, we prove that all the clus-
ter points of the Kullback proximal sequence which lie in the interior of the domain are
stationary points of the likelihood function ly under very mild assumptions that are easily
verified in practice. Secondly, taking into account finer properties of Iy, we prove that every
cluster point on the boundary of the domain satisfies the Karush-Kuhn-Tucker necessary
conditions for optimality under nonnegativity constraints. To illustrate our results, we ap-
ply the Kullback-proximal algorithm to an estimation problem in animal carcinogenicity
introduced in [1] in which an interesting nonconvex constraint is handled. In this case, the
M-step cannot be obtained in closed form. However, the Kullback-proximal algorithm can
be analyzed and implemented. Numerical experiments are provided which demonstrate the
ability of the method to significantly accelerate the convergence of standard EM.

The paper is organized as follows. In Section 2, we review the Kullback proximal point
interpretation of EM. Then, in Section 3 we study the properties of interior cluster points.
We prove that such cluster points are in fact global maximizers of a certain penalized likeli-
hood function. This allows us to justify using a relaxation parameter β when β is sufficiently
small to permit avoiding saddle points. Section 4 pursues the analysis in the case where the
cluster point lies on a boundary of the domain of Iy.
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2 The Kullback proximal framework

In this section, we review the EM algorithm and the Kullback proximal interpretation dis-
cussed in [5].

The EM algorithm
The EM procedure is an iterative method which produces a sequence (θk)k∈N such that each
θk+1 maximizes a local approximation of the likelihood function in the neighborhood of θk.
This point of view will become clear in the proximal point framework of the next subsection.

In the traditional approach, one assumes that some data are hidden from the observer.
A frequent example of hidden data is the class to which each sample belongs in the case
of mixtures estimation. Another example is when the observed data are projection of an
unkown object as for image reconstruction problems in tomography. One would prefer to
consider the likelihood of the complete data instead of the ordinary likelihood. Since some
parts of the data are hidden, the so called complete likelihood cannot be computed and
therefore must be approximated. For this purpose, we will need some appropriate notations
and assumptions which we now describe. The observed data are assumed to be i.i.d. samples
from a unique random vector Y taking values on a data space Y. Imagine that we have
at our disposal more informative data than just samples from Y . Suppose that the more
informative data are samples from a random variable X taking values on a space X with
density f(x; θ) also parametrized by θ. We will say that the data X is more informative than
the actual data Y in the sense that Y is a compression of X, i.e. there exists a non-invertible
transformation h such that Y = h(X). If one had access to the data X it would therefore
be advantageous to replace the ML estimation problem (3.1) by

θ̂ML = argmaxθ∈Rp lx(θ), (2.4)

with lx(θ) = log f(x; θ). Since y = h(x) the density g of Y is related to the density f of X
through

g(y; θ) =
∫
h−1({y})

f(x; θ)dµ(x) (2.5)

for an appropriate measure µ on X . In this setting, the data y are called incomplete data
whereas the data x are called complete data.

Of course the complete data x corresponding to a given observed sample y are unknown.
Therefore, the complete data likelihood function lx(θ) can only be estimated. Given the
observed data y and a previous estimate of θ denoted θ̄, the following minimum mean
square error estimator (MMSE) of the quantity lx(θ) is natural

Q(θ, θ̄) = E[log f(x; θ)|y; θ̄],

where, for any integrable function F (x) on X , we have defined the conditional expectation

E[F (x)|y; θ̄] =
∫
h−1({y})

F (x)k(x|y; θ̄)dµ(x)

and k(x|y; θ̄) is the conditional density function given y

k(x|y; θ̄) = f(x; θ̄)
g(y; θ̄)

. (2.6)



2. THE KULLBACK PROXIMAL FRAMEWORK 89

Having described the notions of complete data and complete likelihood and its local
estimation we now turn to the EM algorithm. The idea is relatively simple: a legitimate
way to proceed is to require that iterate θk+1 be a maximizer of the local estimator of
the complete likelihood conditionally on y and θk. Hence, the EM algorithm generates a
sequence of approximations to the solution (2.4) starting from an initial guess θ0 of θML

and is defined by

Compute Q(θ, θk) = E[log f(x; θ)|y; θk] E Step

θk+1 = argmaxθ∈RpQ(θ, θk) M Step

Kullback proximal interpretation of the EM algorithm
Consider the general problem of maximizing a concave function Φ(θ). The original proximal
point algorithm introduced by Martinet [13] is an iterative procedure which can be written

θk+1 = argmaxθ∈DΦ

{
Φ(θ)− βk

2 ‖θ − θ
k‖2
}
. (2.7)

The quadratic penalty 1
2‖θ − θ

k‖2 is relaxed using a sequence of positive parameters {βk}.
In [17], Rockafellar showed that superlinear convergence of this method is obtained when
the sequence {βk} converges towards zero.

It was proved in [5] that the EM algorithm is a particular example in the class of proximal
point algorithms using Kullback Leibler types of penalties. One proceeds as follows. Assume
that the family of conditional densities {k(x|y; θ)}θ∈Rp is regular in the sense of Ibragimov
and Khasminskii [9], in particular k(x|y; θ)µ(x) and k(x|y; θ̄)µ(x) are mutually absolutely
continuous for any θ and θ̄ in Rp. Then the Radon-Nikodym derivative k(x|y,θ̄)

k(x|y;θ) exists for all
θ, θ̄ and we can define the following Kullback Leibler divergence:

Iy(θ, θ̄) = E
[
log k(x|y, θ̄)

k(x|y; θ) |y; θ̄
]
. (2.8)

We are now able to define the Kullback-proximal algorithm. For this purpose, let us define
Dl as the domain of ly, DI,θ the domain of Iy(·, θ) and DI the domain of Iy(·, ·).

Definition 2.1 Let (βk)k∈N be a sequence of positive real numbers. Then, the Kullback-
proximal algorithm is defined by

θk+1 = argmaxθ∈Dl∩DI,θk ly(θ)− βkIy(θ, θk). (2.9)

The main result on which the present paper relies is that EM algorithm is a special case of
(2.6), i.e. it is a penalized ML estimator with proximal penalty Iy(θ, θk).

Proposition 2.2 [5, Proposition 1] The EM algorithm is a special instance of the Kullback-
proximal algorithm with βk = 1, for all k ∈ N.

The previous definition of the Kullback proximal algorithm may appear overly general
to the reader familiar with the usual practical interpretation of the EM algorithm. However,
we found that such a framework has at least the three following benefits [5]:

• to our opinion, the convergence proof of our EM is more natural,



90 C. ON EM ALGORITHMS AND THEIR PROXIMAL GENERALIZATIONS

• the Kullback proximal framework may easily incorporate additional constraints, a
feature that may be of crucial importance as demonstrated in the example of Section
5 below,

• the relaxation sequence (βk)k∈N allows one to weight the penalization term and its
convergence to zero implies quadratic convergence in certain examples.

The first of these three arguments is also supported by our simplified treatment of the
componentwise EM procedure proposed in [3] and the remarkable recent results of [20]
based on a special proximal entropic representation of EM for getting precise estimates on
the convergence speed of EM algorithms, however, with much more restrictive assumptions
than the ones of the present paper.

Although our results are obtained under mild assumptions concerning the relaxation
sequence (βk)k∈N including the case βk = 0, several precautions should be taken when
implementing the method. However, one of the key features of EM-like procedures is to
allow easy handling of positivity or more complex constraints, such as the ones discussed in
the example of Section 5. In such cases the function Iy behaves like a barrier whose value
increases to infinity as the iterates approach the boundary of the constraint set. Hence,
the sequence (βk)k∈N ought to be positive in order to exploit this important computational
feature. On the other hand, as proved under twice differentiability assumptions in [5] when
the cluster set reduces to a unique nondegenerate maximizer in the interior of the domain
of the log-likelihood and βk converges to zero, quadratic convergence is obtained. This nice
behavior is not satisfied in the plain EM case where βk = 1 for all k ∈ N. As a drawback,
one problem in decreasing the βk’s too quickly is possible numerical ill conditioning. The
problem of choosing the relaxation sequence is still largely open. We have found however
that for most ”reasonable” sequences, our method was at least as fast as the standard EM.

Finally, we would like to end our presentation of KPP-EM by noting that closed form
iterations may not be available in the case βk 6= 1. If this is the case, solving (2.6) becomes
a subproblem which will require iterative algorithms. In some interesting examples, e.g.
the case presented in Section 5. In this case, the standard EM iterations are not available
in closed form in the first place and KPP-EM provides faster convergence while preserving
monotonicity and constraint satisfaction.

Notations and assumptions
The notation ‖ · ‖ will be used to denote the norm on any previously defined space without
more precision. The space on which it is the norm should be obvious from the context. For
any bivariate function Φ, ∇1Φ will denote the gradient with respect to the first variable. In
the remainder of this paper we will make the following assumptions.

Assumptions 2.1 (i) ly is differentiable on Dl and ly(θ) tends to −∞ whenever ‖θ‖ tends
to +∞.
(ii) the projection of DI onto the first coordinate is a subset of Dl.
(iii) (βk)k∈N is a convergent nonnegative sequence of real numbers whose limit is denoted by
β∗.

We will also impose the following assumptions on the distance-like function Iy.

Assumptions 2.2 (i) There exists a finite dimensional euclidean space S, a differentiable
mapping t : Dl 7→ S and a functional Ψ : DΨ ⊂ S × S 7→ R such that

Iy(θ, θ̄) = Ψ(t(θ), t(θ̄)),
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where Dψ denotes the domain of Ψ.
(ii) For any {tk, t)k∈N} ⊂ DΨ there exists ρt > 0 such that lim‖tk−t‖→∞ Iy(tk, t) > ρt.
Moreover, we assume that inft∈M ρt > 0 for any bounded set M ⊂ S.
For all (t′, t) in DΨ, we will also require that
(iii) (Positivity) Ψ(t′, t) > 0,
(iv) (Identifiability) Ψ(t′, t) = 0⇔ t = t′,
(v) (Continuity) Ψ is continuous at (t′, t)
and for all t belonging to the projection of DΨ onto its second coordinate,
(vi) (Differentiability) the function Ψ(·, t) is differentiable at t.

Assumptions 2.2(i) and (ii) on ly are standard and are easily checked in practical ex-
amples, e.g. they are satisfied for the Poisson and additive mixture models. Notice that
the domain DI is now implicitly defined by the knowledge of Dl and DΨ. Moreover Iy is
continuous on DI . The importance of requiring that Iy has the prescribed shape comes from
the fact that Iy might not satisfy assumption 2.2(iv) in general. Therefore assumption 2.2
(iv) reflects the requirement that Iy should at least satisfy the identifiability property up to
a possibly injective transformation. In both examples discussed above, this property is an
easy consequence of the well known fact that a log(a/b) = 0 implies a = b for positive real
numbers a and b. The growth, continuity and differentiability properties 2.2 (ii), (v) and
(vi) are, in any case, nonrestrictive.

For the sake of notational convenience, the regularized objective function with relaxation
parameter β will be denoted

Fβ(θ, θ̄) = ly(θ)− βIy(θ, θ̄). (2.10)

Finally we make the following general assumption.

Assumptions 2.3 The Kullback proximal iteration (2.6) is well defined, i.e. there exists
at least one maximizer of Fβk(θ, θk) at each iteration k.

In the EM case, i.e. β = 1, this last assumption is equivalent to the computability of
M-steps. A sufficient condition for this assumption to hold would be, for instance, that
Fβ(θ, θ̄) be sup-compact, i.e. the level sets {θ | Fβ(θ, θ̄) > α} be compact for all α, β > 0
and θ̄ ∈ Dl. However, this assumption is not usually satisfied since the distance-like function
is not defined on the boundary of its domain. In practice it suffices to solve the equation
∇Fβk(θ, θk) = 0, to prove that the solution is unique. Then assumption 2.2(i) is sufficient
to conclude that we actually have a maximizer.

General properties : monotonicity and boundedness
Using Assumptions 2.2, we easily deduce monotonicity of the likelihood values and bound-
edness of the proximal sequence. The first two lemmas are proved, for instance, in [5].

We start with the following monotonicity result.

Lemma 2.3 [5, Proposition 2] For any iteration k ∈ N, the sequence (θk)k∈N satisfies

ly(θk+1)− ly(θk) > βkIy(θk, θk+1) > 0. (2.11)

From the previous lemma, we easily obtain the boundedness of the sequence.

Lemma 2.4 [5, Lemma 2] The sequence (θk)k∈N is bounded.

The next lemma will also be useful.
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Lemma 2.5 Assume that there exists a subsequence (θσ(k))k∈N belonging to a compact set
C included in Dl. Then,

lim
k→∞

βkIy(θk+1, θk) = 0.

Proof. Since ly is continuous over C, supθ∈C ly(θ) < +∞ and (ly(θσ(k)))k∈N is therefore
bounded from above. Moreover, Lemma 3.1 implies that the sequence (ly(θk))k∈N is mono-
tone nondecreasing. Therefore, the whole sequence (ly(θk))k∈N is bounded from above and
convergent. This implies that limk→∞ ly(θk+1) − ly(θk) = 0. Applying Lemma 3.1 again,
we obtain the desired result. 2

3 Analysis of interior cluster points

The convergence analysis of Kullback proximal algorithms is split into two parts, the first
part being the subject of this section. We prove that if the accumulation points θ∗ of the
Kullback proximal sequence satisfy (θ∗, θ∗) ∈ DIy they are stationary points of the log-
likelihood function ly. It is also straightforward to show that the same analysis applies to
the case of penalized likelihood estimation.

Nondegeneracy of the Kullback penalization
We start with the following useful lemma.

Lemma 3.1 Let (αk1)k∈N and (αk2)k∈N be two bounded sequences in DΨ satisfying

lim
k→∞

Ψ(αk1 , αk2) = 0.

Assume that every couple (α∗1, α∗2) of accumulation points of these two sequences lies in DΨ.
Then,

lim
k→∞

‖αk1 − αk2‖ = 0.

Proof. First, one easily obtains that (αk2)k∈N is bounded (use a contradiction argument
and Assumption 2.2 (ii)). Assume that there exits a subsequence (ασ(k)

1 )k∈N such that
‖ασ(k)

1 − ασ(k)
2 ‖ > 3ε for some ε > 0 and for all large k. Since (ασ(k)

1 )k∈N is bounded, one
can extract a convergent subsequence. Thus we may assume without any loss of generality
that (ασ(k)

1 )k∈N is convergent with limit α∗. Using the triangle inequality, we have ‖ασ(k)
1 −

α∗1‖+‖α∗1−α
σ(k)
2 ‖ > 3ε. Since (ασ(k)

1 )k∈N converges to α∗1, there exists a integer K such that
k > K implies ‖ασ(k)

1 −α∗1‖ 6 ε. Thus for k > K we have ‖α∗1−α
σ(k)
2 ‖ > 2ε. Now recall that

(αk2)k∈N is bounded and extract a convergent subsequence (ασ(γ(k))
2 )k>K with limit denoted

by α∗2. Then, using the same arguments as above, we obtain ‖α∗1 − α∗2‖ > ε. Finally, recall
that limk→∞Ψ(αk1 , αk2) = 0. We thus have limk→∞Ψ(ασ(γ(k))

1 , α
σ(γ(k))
2 ) = 0, and, due to

the fact that the sequences are bounded and Ψ(·, ·) is continuous in both variables, we have
Iy(α∗1, α∗2) = 0. Thus assumption 2.2 (iv) implies that ‖α∗1 − α∗2‖ = 0 and we obtain a
contradiction. Hence, limk→∞ ‖αk1 − αk2‖ = 0 as claimed. 2

Cluster points
The main results of this section are the following. First, we prove that under the assumptions
2.2, 2.2 and 2.7, any cluster point θ∗ is a global maximizer of Fβ∗(θ∗, θ∗). We then use this
general result to prove that such cluster points are stationary points of the log-likelihood
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function. This result motivates a natural assumption under which θ∗ is in fact a local
maximizer of ly. In addition we show that if the sequence (βk)k∈N converges to zero, i.e.
β∗ = 0, then θ∗ is a global maximizer of log-likelihood. Finally, we discuss some simple
conditions under which the algorithm converges, i.e. has only one cluster point.

The following theorem states a result which describes the stationary points of the prox-
imal point algorithm as global maximizers of the asymptotic penalized function.

Theorem 3.2 Assume that β∗ > 0. Let θ∗ be any accumulation point of (θk)k∈N. Assume
that (θ∗, θ∗) ∈ DI . Then, θ∗ is a global maximizer of the penalized function Fβ∗(·, θ∗) over
the projection of DI onto its first coordinate, i.e.

Fβ∗(θ∗, θ∗) > F (θ, θ∗)

for all θ such that (θ, θ∗) ∈ DI .

An informal argument is as follows. Assume that Θ = Rn. From the definition of the
proximal iterations, we have

Fβσ(k)(θ
σ(k)+1, θσ(k)) > Fβσ(k)(θ, θ

σ(k))

for all subsequence (θσ(k))k∈N converging to θ∗ and for all θ ∈ Θ. Now, assume we can prove
that θσ(k) also converges to θ∗, we obtain by taking the limit and using continuity, that

Fβ∗(θ∗, θ∗) > Fβ∗(θ, θ∗)

which is the required result. There are two major difficulties when one tries to transform
this sketch into a rigorous argument. The first one is related to the fact that ly and Iy are
only defined on domains which may not to be closed. Secondly, proving that θσ(k) converges
to θ∗ is not an easy task. This issue will be discussed in more detail in the next section.
The following proof overcomes both difficulties.

Proof. Without loss of generality, we may reduce the analysis to the case where
βk > β > 0 for a certain β. The fact that θ∗ is a cluster point implies that there is
a subsequence of (θk)k∈N converging to θ∗. For k sufficiently large, we may assume that
the terms (θσ(k+1), θσ(k)) belong to a compact neighborhood C∗ of (θ∗, θ∗) included in DI .
Recall that

Fβσ(k)−1(θσ(k), θσ(k)−1) > Fβσ(k)−1(θ, θσ(k)−1)

for all θ such that (θ, θσ(k)−1) ∈ DI and a fortiori for (θ, θσ(k)−1) ∈ C∗. Therefore,

Fβ∗(θσ(k), θσ(k)−1) −(βk − β∗)Iy(θσ(k), θσ(k)−1) >
Fβ∗(θ, θσ(k)−1)− (βσ(k)−1 − β∗)Iy(θ, θσ(k)−1). (3.12)

Let us have a precise look at the ”long term” behavior of Iy. First, since βk > β∗ for all
k sufficiently large, Lemma 3.3 says that

lim
k→∞

Iy(θσ(k), θσ(k)−1) = 0.

Thus, for any ε > 0, there exits an integer K1 such that Iy(θσ(k), θσ(k)+1) 6 ε for all k > K1.
Moreover, Lemma 3.1 and continuity of t allows to conclude that

lim
k→∞

t(θσ(k)−1) = t(θ∗).
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Since Ψ is continuous, for all ε > 0 and for all k sufficienlty large we have

Iy(θ∗, θ∗) = Ψ(t(θ∗), t(θ∗))
> Ψ(t(θσ(k)), t(θσ(k)−1))− ε
= Iy(θσ(k), θσ(k)−1)− ε.

(3.13)

On the other hand, Fβ∗ is continuous in both variables on C∗, due to Assumptions 2.2(i)
and 2.2(i). By continuity in the first and second arguments of Fβ∗(·, ·), for any ε > 0 there
exists K2 ∈ N such that for all k > K2

Fβ∗(θ∗, θ) 6 Fβ∗(θσ(k), θ) + ε. (3.14)

Using (3.13), since ly is continuous, we obtain existence of K3 such that for all k > K3

Fβ∗(θ∗, θ∗) > Fβ∗(θσ(k), θσ(k)+1)− 2ε. (3.15)

Combining equations (3.14) and (3.15) with (3.9), we obtain

Fβ∗(θ∗, θ∗) > Fβ∗(θ∗, θ)− (βk − β∗)Iy(θσ(k), θ)
+(βk − β∗)Iy(θσ(k), θσ(k)+1))− 3ε. (3.16)

Now, since β∗ = limk→∞ βk, there exists an integer K4 such that βk−β∗ 6 ε for all k > K4.
Therefore for all k > max{K1,K2,K3,K4}, we obtain

Fβ∗(θ∗, θ∗) > Fβ∗(θ∗, θ)− εIy(θσ(k), θ)− ε2 − 3ε.

Since Iy is continuous and (θσ(k))k∈N is bounded, there exists a real constant K such that
Iy(θσ(k), θ) 6 K, for all n ∈ N. Thus, for all k sufficiently large

Fβ∗(θ∗, θ∗) > Fβ∗(θ∗, θ)− (4εK + ε2). (3.17)

Finally, recall that no assumption was made on θ, and that C∗ is any compact neighborhood
of θ∗. Thus, using the assumption 2.2(i), which asserts that ly(θ) tends to −∞ as ‖θ‖ tends
to +∞, we may deduce that (3.17) holds for any θ such that (θ, θ∗) ∈ DI and, letting ε tend
to zero, we see that θ∗ maximizes Fβ∗(θ, θ∗) for over all θ such that (θ, θ∗) belongs to DI as
claimed. 2

Using this theorem, we may now deduce that certain accumulation points on the strict
interior of the parameter’s space are stationary points of the log-likelihood function.

Corollary 3.3 Assume that β∗ > 0. Let θ∗ be any accumulation point of (θk)k∈N. Assume
that (θ∗, θ∗) ∈ intDI . Then, if ly is differentiable on Dl, θ∗ is a stationary point of ly(θ).
Moreover, if ly is concave, then θ∗ is a global maximizer of ly.

Proof. Since under the required assumptions ly is differentiable and Iy(θ∗, ·) is differen-
tiable at θ∗, Theorem 3.2 states that

0 ∈
{
∇ly(θ∗) + β∗∇Iy(θ∗, θ∗)

}
.

Since Iy(·, θ∗) is minimum at θ∗, ∇1Iy(θ∗, θ∗) = 0 and we thus obtain that θ∗ is a stationary
point of ly. This implies that θ∗ is a global maximizer in the case where ly is concave. 2.

Theorem 3.2 seems to be much stronger than the previous corollary. The fact that
accumulation points of the proximal sequence may not be global maximizers of the likelihood
is now easily seen to be a consequence of fact that the Kullback distance-like function Iy
perturbs the shape of the likelihood function when θ is far from θ∗. This perturbation does
not have serious consequence in the concave case. On the other hand, one may wonder
whether θ∗ cannot be proved to be at least a local maximizer instead of a mere stationary
point. The answer is given in the following corollary.
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Corollary 3.4 Let θ∗ be an accumulation point of (θk)k∈N such that (θ∗, θ∗) ∈ intDI . In
addition, assume that ly and Iy(·, θ∗) are twice differentiable in a neighborhood of θ∗ and
that the Hessian matrix ∇2ly(θ∗) at θ∗ is not the null matrix. Then, if β∗ is sufficiently
small, θ∗ is a local maximizer of ly over Dl.

Proof. Assume that θ∗ is not a local maximizer. Since ∇2ly is not the null matrix, for
β∗ sufficiently small, there is a direction δ in the tangent space to Dl for which the function
f(t) = Fβ∗(θ∗+tδ, θ∗) has positive second derivative for t sufficiently small. This contradicts
the fact that θ∗ is a global maximizer of Fβ∗(·, θ∗) and the proof is completed. 2

The next theorem establishes global optimality of accumulation points in the case where
the relaxation sequence converges to zero.

Theorem 3.5 Let θ∗ be any accumulation point of (θk)k∈N. Assume that (θ∗, θ∗) ∈ DI .
Then, without assuming differentiability of either ly or of Iy, if (βk)k∈N converges to zero,
θ∗ is a global maximizer of ly over the projection of DI along the first coordinate.

Proof. Let (θσ(k))k∈N be a convergent subsequence of (θk)k∈N with limit denoted θ∗. We
may assume that for k sufficiently large, (θσ(k+1), θσ(k)) belongs to a compact neighborhood
C∗ of θ∗. By continuity of ly, for any ε > 0, there exists K ∈ N such that for all k > K,

ly(θ∗) > ly(θσ(k))− ε.

On the other hand, the proximal iteration (1.3) implies that

ly(θσ(k))− βσ(k)−1Iy(θσ(k)−1, θσ(k)) > ly(θ)− βσ(k)−1Iy(θσ(k)−1, θ),

for all θ ∈ Dl. Fix θ ∈ Dl. Thus, for all k > K,

ly(θ∗) > ly(θ) + βσ(k)−1Iy(θσ(k)−1, θσ(k))− βσ(k)−1Iy(θσ(k)−1, θ)− ε.

Since Iy is a nonnegative function and (βk)k∈N is a nonnegative sequence, we obtain

ly(θ∗) > ly(θ)− βσ(k)−1Iy(θσ(k)−1, θ)− ε.

Recall that (θk)k∈N is bounded due to Lemma 3.2. Thus, since Iy is continuous, there exists
a constant C such that Iy(θσ(k)−1, θ) 6 C for all k. Therefore, for k greater than K,

ly(θ∗) > ly(θ)− βσ(k)−1C − ε.

Passing to the limit, and recalling that (βk)k∈N tends to zero, we obtain that

ly(θ∗) 6 ly(θ)− ε.

Using the same argument as at the end of the proof of Theorem 3.2, this latter equation
holds for any θ such that (θ, θ∗) belongs to DI , which concludes the proof upon letting ε
tend to zero. 2

Convergence of the Kullback proximal sequence
One question remains open in the analysis of the previous section: does the sequence gen-
erated by the Kullback proximal point converge? In other words: are there multiple cluster
points? In Wu’s paper [21], the answer takes the following form. If the euclidean distance
between two successive iterates tends to zero, a well known result states that the set of
accumulation points is a continuum (see for instance [16, Theorem 28.1]) and therefore, it
is connected. Therefore, if the set of stationary points of ly is a countable set, the iterates
must converge.
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Theorem 3.6 Let S∗ denote the set of accumulation points of the sequence (θk)k∈N. As-
sume that limk→∞ ‖θk+1−θk‖ = 0 and that ly(θ) is strictly concave in an open neighborhood
N of an accumulation point θ∗ of (θk)k∈N and that (θ∗, θ∗) is in intDI . Then, for any re-
laxation sequence (βk)k∈N, the sequence (θk)k∈N converges to a local maximizer of ly(θ).

Proof. We obtained in Corollary 3.3 that every accumulation point θ∗ of (θk)k∈N in
intDly and such that (θ∗, θ∗) ∈ intDIy is a stationary point of ly(θ). Since ly(θ) is strictly
concave over N , the set of stationary points of ly belonging to N reduces to singleton. Thus
θ∗ is the unique stationary point in N of ly, and a fortiori, the unique accumulation point
of (θk)k∈N belonging to N . To complete the proof, it remains to show that there is no
accumulation point in the exterior of N . For that purpose, consider an open ball B of center
θ∗ and radius ε included in N . Then, x∗ is the unique accumulation point in B. Moreover,
any accumulation point θ′, lying in the exterior of N must satisfy ‖θ∗ − θ′‖ > ε, and we
obtain a contradiction with the fact that S∗ is connected. Thus every accumulation point
lies in N , from which we conclude that θ∗ is the only accumulation point of (θk)k∈N or, in
other words, that (θk)k∈N converges towards θ∗. Finally, notice that the strict concavity of
ly(θ) over N implies that θ∗ is a local maximizer. 2

Before concluding this section, let us make two general remarks.

• Proving a priori that the set of stationary points of ly is discrete may be a hard task
in specific examples.

• In general, it is not known whether limk→∞ ‖θk+1 − θk‖ = 0 holds. In fact, Lemma
3.1 could be a first step in this direction. Indeed if we could prove in any application
that the mapping t is injective, the desired result would follow immediately. How-
ever, injectivity of t does not hold in many of the standard examples; in the case of
Gaussian mixtures, see [3, Section 2.2] for instance. Thus we are now able to clearly
understand why the assumption that limk→∞ ‖θk+1 − θk‖ = 0 is not easily deduced
from general arguments. This problem has been overcome in [3] where it is shown that
t is componentwise injective and thus performing a componentwise EM algorithm is a
good alternative to the standard EM.

4 Analysis of cluster points on the boundary

The goal of this section is to extend the previous results to the case where some cluster
points lie on the boundary of the region where computation of proximal steps is well de-
fined. Such cluster points have rarely been analyzed in the statistical literature and the
strategy developed for the interior case cannot be applied without further study of the
Kullback distance-like function. Notice further that entropic-type penalization terms in
proximal algorithms have been the subject of an intensive research effort in the mathemat-
ical programming community with the goal of handling positivity constraints; see [19] and
the references therein for instance. The analysis proposed here applies to the more gen-
eral Kullback distance-like functions Iy that occur in EM. Our goal is to show that such
cluster points satisfy the well known Karush-Kuhn-Tucker conditions of nonlinear program-
ming which extend the stationarity condition ∇ly(θ) = 0 to the case where θ is subject to
constraints. As before, it is straightforward to extend the proposed analysis to the case of
penalized likelihood estimation.

In the sequel, the distance-like function will be assumed to have the following additional
properties.
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Assumptions 4.1 The Kullback distance-like function Iy is of the form

Iy(θ, θ̄) =
∑

16i6n,16j6m
αij(yj)tij(θ)φ

( tij(θ̄)
tij(θ)

)
,

where for all i and j, tij is continuously differentiable on its domain of definition, αij is a
function from Y to R+, the set of positive real numbers, and the function φ is a non negative
convex continuously differentiable function defined for positive real numbers only and such
that φ(τ) = 0 if and only if τ = 1.

If tij(θ) = θi and αij = 1 for all i and all j, the function Iy is the well known φ divergence
defined by Csiszàr in [7]. Assumption 2.4 is satisfied in most standard examples (for instance
Gaussian mixtures and Poisson inverse problems) with the choice φ(τ) = τ log(τ).

More properties of the Kullback distance-like function
The main property that will be needed in the sequel is that under Assumption 2.4, the
function Iy satisfies the same property as the one given in Lemma 3.1 above, even on the
boundary of its domain DI . This is the result of Proposition 3.4 below. We begin with one
elementary lemma.

Lemma 4.1 Under Assumptions 2.4, the function φ is decreasing on (0, 1), is increasing on
(1,+∞) and φ(τ) converges to +∞ when τ converges to +∞. We have limk→+∞ φ(τk) = 0
if and only if limk→+∞ τk = 1.

Proof. The first statement is obvious. For the second statement, the ”if” part is trivial,
so we only prove the ”only if” part. First notice that the sequence (τk)k∈N must be bounded.
Indeed, the level set {τ | φ(τ) 6 γ} is bounded for all γ > 0 and contains the sequence
(τk)k>K for K sufficiently large. Thus, the Bolzano-Weierstass theorem applies. Let τ∗ be
an accumulation point of (τk)k∈N. Since φ is continuous, we get that φ(τ∗) = 0 and thus we
obtain τ∗ = 1. From this, we deduce that the sequence has only one cluster point, which is
equal to 1. Therefore, limk→+∞ τk = 1. 2

Using these lemmas, we are now in position to state and prove the main property of Iy.

Proposition 4.2 The following statements hold.
(i) For any sequence (θk)k∈N in R+ and any bounded sequence (ηk)k∈N in R+, the fact

that limk→+∞ Iy(ηk, θk) = 0 implies limk→+∞ |tij(ηk) − tij(θk)| = 0 for all i,j such that
αij 6= 0.

(ii) If one coordinate of one of the two sequences (θk)k∈N and (ηk)k∈N tends to infinity,
so does the other’s same coordinate.

Proof. Fix i in {1, . . . , n} and j in {1, . . . ,m} and assume that αij 6= 0.
(i) We first assume that (tij(ηki ))k∈N is bounded away from zero.
Since limk→+∞ Iy(θk, ηk) = 0, then limk→+∞ φ(tij(θk)/tij(ηk)) = 0 and Lemma 4.1

implies that limk→+∞ tij(θk)/tij(ηk) = 1. Thus, limk→+∞(tij(θk)−tij(ηk))/tij(ηk) = 0 and
since t is continuous, tij(ηk) is bounded. This implies that limk→+∞ |tij(θk)− tij(ηk)| = 0.

Next, consider the case of a subsequence (tij(ησ(k)))k∈N which tends towards zero.
For contradiction, assume the existence of a subsequence (tij(θσ(γ(k)))k∈N which remains
bounded away from zero, i.e. there exists a > 0 such that tij(θσ(γ(k)))k∈N > a for k suffi-
ciently large. Thus, for k sufficiently large we get

tij(θσ(γ(k)))
tij(ησ(γ(k)))

>
a

tij(ησ(γ(k)))
> 1,
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and due to the fact that φ is increasing on (1,+∞), we obtain

tij(ησ(γ(k)))φ
( tij(θσ(γ(k)))
tij(ησ(γ(k)))

)
> tij(ησ(γ(k)))φ

( a

tij(ησ(γ(k)))

)
. (4.18)

On the other hand, Lemma 4.1 says that for any b > 1, φ′(b) > 0. Since φ is convex, we get

φ(τ) > φ(b) + φ′(b)(τ − b).

Take τ = a/tij(ηk) in this last expression and combine with (2.-6) to obtain

tij(ησ(γ(k)))φ
( tij(θσ(γ(k)))
tij(ησ(γ(k)))

)
> tij(ησ(γ(k)))(φ(b) + φ′(b)

( a

tij(ησ(γ(k)))
− b
)
.

Passing to the limit, we obtain

0 = lim
k→+∞

tij(ησ(γ(k)))φ
( tij(θσ(γ(k)))
tij(ησ(γ(k)))

)
> aφ′(b) > 0,

which gives the required contradiction.
(ii) If (tij(θk))k∈N → +∞ then (tij(ηk))k∈N → +∞ is a direct consequence of part (i).

Indeed, if tij(ηk) remains bounded, part (i) says that limk→+∞ |tij(ηk)− tij(θk)| = 0, which
contradicts divergence of (tij(θk))k∈N.

Now, consider the case where (tij(ηk))k∈N → +∞. Then, a contradiction is easily ob-
tained if we assume that at least a subsequence (tij(θσ(k))k∈N stays bounded from above.
Indeed, in such a case, we have

lim
k→+∞

tij(θσ(k))
tij(ησ(k))

= 0,

and thus, φ(tij(θk)/tij(ηk)) > γ for some γ > 0 since we know that φ is decreasing on (0, 1)
and φ(1) = 0. This implies that

lim
k→+∞

tij(ησ(k))φ
( tij(θσ(k))
tij(ησ(k))

)
= +∞,

which is the required contradiction. 2

Cluster points are KKT points
The main result of this section is the property that any cluster point θ∗ such that (θ∗, θ∗) lies
on the boundary of DI satisfies the Karush-Kuhn-Tucker necessary conditions for optimality
on the domain of the log-likelihood function. In the context of Assumptions 2.4, DI is the
set

DI = {θ ∈ Rn | tij(θ) > 0 ∀i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}}.
We have the following theorem.

Theorem 4.3 Let θ∗ be a cluster point of the Kullback-proximal sequence. Assume that all
the functions tij are differentiable at θ∗. Let I∗ be the set of all couples of indices (i, j) such
that the constraint tij(θ) > 0 is active at θ∗, i.e. tij(θ∗) = 0. If θ∗ lies in the interior of
Dl, then θ∗ satisfies the Karush-Kuhn-Tucker necessary conditions for optimality, i.e. there
exists a family of reals λij, (i, j) ∈ I∗ such that

∇ly(θ∗) +
∑

(i,j)∈I∗
λij∇tij(θ∗) = 0.
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Proof. Let Φij(θ, θ̄) denote the bivariate function defined by

Φij(θ, θ̄) = φ
( tij(θ̄)
tij(θ)

)
.

Let {θσ(k)}k∈N be a convergent subsequence of the proximal sequence with limit equal to
θ∗. The first order optimality condition at iteration k is given by

∇ly(θσ(k)) +βσ(k)

(∑
ij αij(yj)∇tij(θσ(k))φ

(
tij(θσ(k)−1)
tij(θσ(k))

)
+
∑
ij αij(yj)tij(θσ(k))∇1Φ(θσ(k), θσ(k)−1)

)
= 0.

(4.19)

We have

tij(θσ(k))∇1Φ(θσ(k), θσ(k)−1) = − tij(θ
σ(k)−1)

tij(θσ(k))
φ′
( tij(θσ(k)−1)
tij(θσ(k))

)
∇tij(θσ(k))

for all i and j.
Claim A. For all (i, j) such that αij(yj) 6= 0, we have

lim
k→+∞

tij(θσ(k))∇1Φ(θσ(k), θσ(k)−1) = 0.

Proof of Claim A. Two cases may occur. In the first case, we have tij(θ∗) = 0.
Since the sequence {θk}k∈N is bounded due to Lemma 3.2, continuous differentiability of
φ and the tij proves that ∇1Φ(θσ(k), θσ(k)−1) is bounded from above. Thus, the desired
conclusion follows. In the second case, tij(θ∗) 6= 0 and applying Lemma 3.3, we de-
duce that Iy(θσ(k), θσ(k)−1) tends to zero. Hence, limk→+∞ Φ(θσ(k), θσ(k)−1) = 0, which
implies that limk→+∞ θσ(k)/θσ(k)−1 = 1. From this and Assumptions 2.4, we deduce
that limk→+∞ φ′(tij(θσ(k)−1)/tij(θσ(k))) = 0. Since {θσ(k)}k∈N converges to θ∗ and that
tij(θ∗) 6= 0, we obtain that the subsequence {tij(θσ(k)−1)/tij(θσ(k))}k∈N is bounded from
above. Moreover, {∇tij(θσ(k))}k∈N is also bounded by continuous differentiability of tij .
Therefore, the fact that limk→+∞ φ′(tij(θσ(k)−1)/tij(θσ(k))) = 0 establishes Claim A. 2

Using this claim, we just have to study the remaining right hand side terms in (3.13),
namely the expression

∑
ij αij(yj)∇tij(θσ(k))φ

(
tij(θσ(k)−1)
tij(θσ(k))

)
. Let I∗∗ be a subset of the

active indices I such that the family {∇tij(θ∗)}ij is linearly independent. This linear inde-
pendence is preserved under small perturbations, we may assume without loss of generality
that the family

{
∇tij(θσ(k))

}
(i,j)∈I∗∗

is linearly independent for k sufficiently large. For

such k, we may rewrite equation (3.13) as

∇ly(θσ(k)) +βσ(k)

(∑
(i,j)∈I∗∗ λ

σ(k)
ij (yj)∇tij(θσ(k))

+
∑
ij αij(yj)tij(θσ(k))∇1Φ(θσ(k), θσ(k)−1)

)
= 0.

(4.20)

Claim B. The sequence {λσ(k)
ij (yj)}k∈N is bounded.

Proof of claim B. Using the previous claim and the continuous differentiability of ly
and tij , equation (3.15) expresses that {λσ(k)

ij (yj)}ij are proportional to the coordinates of
the projection on the span of the {∇tij(θσ(k))}ij of a vector converging towards ∇ly(θ∗).
Since {∇tij(θσ(k))}ij , for (i, j) ∈ I∗∗, form a linearly independent family for k sufficiently
large, none of the coordinates can tend towards infinity. 2
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We are now in position to finish the proof of the theorem. Take any cluster point τij of
tij(θσ(k)−1)/tij(θσ(k)). Using Claim B, we know that (λσ(k)

ij (yj))(i,j)∈I∗∗ lies in a compact
set. Let (λ∗ij)(i,j)∈I∗∗ be a cluster point of this sequence. Passing to the limit, we obtain
from equation (3.13) that

∇ly(θσ(k)) + β∗
( ∑

(i,j)∈I∗∗
λ∗ij∇tij(θ∗)

)
= 0.

for every cluster point β∗ of {βσ(k)}k∈N. For all (i, j) ∈ I∗∗, set λij = β∗λ∗ij . This equation
is exactly the Karuch-Kuhn-Tucker necessary condition for optimality. 2

Remark 4.4 If the family (∇tij(θσ(k)))(i,j)∈I∗ is linearly independent for k sufficiently
large, Theorem 3.5 holds and in addition the {λij}ij are nonnegative, which proves that
θ∗ satisfies the Karush-Kuhn-Tucker conditions when it lies in the closure of DI .

5 Application

The goal of this section is to illustrate the utility of the previous theory for a nonparametric
survival analysis with competing risks proposed by Ahn, Kodell and Moon in [1].

The problem and the Kullback proximal method
This problem can be described as follows. Consider a group of N animals in an animal
carcinogenecity experiment. Sacrifices are performed at certain prescribed times denoted by
t1, t2, . . . , tm in order to study the presence of the tumor of interest. Let T1 be the time to
onset of tumor, TD the time to death from this tumor and XC be the time to death from a
cause other than this tumor. Notice that T1, TD and XC are unobservable. The quantities
to be estimated are S(t), P (t) and Q(t), the survival function of T1, TD and XC respectively.
It is assumed that T1 and TD are statistically independent of XC .

A nonparametric approach to estimation of S, P and Q is proposed in [1]: observed data
y1, . . . , yn are the number of deaths on every interval (tj , tj+1] which can be classified into
the following four categories,

• death with tumor (without knowing cause of death)

• death without tumor

• sacrifice with tumor

• sacrifice without tumor

This gives rise to a multinomial model whose probability mass is parametrized by the values
of S, P and Q at times t1, . . . , tm. More precisely, for each time interval (tj , tj+1] denote by
cj the number of deaths with tumor present, b1j the number of deaths with tumor absent,
a2j the number of sacrifices with tumor present and b2j the number of sacrifices with tumor
absent. Let Nj 6 N be the number of live animals in the population at tj , it is shown in [1]
that the corresponding log-likelihood is given by

log g(y; θ) =
∑m
j=1(Nj−1 −Nj)

∑j−1
k=1 log(pkqk) + (a2j + b2j) log(pjqj)

+cj log
(

(1− pj) + (1− πjpj)(1− qj)
)

+b1j log((1− qj)πj−1) + a2j log(1− πj) + b2j log πj + Cst,

(5.21)
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where Cst is a constant πj = S(tj)/P (tj), pj = P (tj)/P (tj−1) and qj = Q(tj)/Q(tj−1),
j = 1, . . . ,m, θ = (π1, . . . , pJ , p1, . . . , pJ , q1, . . . , qJ) and the parameter space is specified by
the constraints

Θ =
{
θ = (π1, . . . , pJ , p1, . . . , pJ , q1, . . . , qJ) | 0 6 πj 6 1,

0 6 pj 6 1, 0 6 qj 6 1, j = 1, . . . ,m and πjpj 6 πj−1 j = 2, . . . ,m
}
,

(5.22)

where the last nonconvex constraint serves to impose monotonicity of S. Note that mono-
tonicity of P and Q is a direct consequence of the constraints on the pj ’s and the qj ’s,
respectively.

Define the complete data x1, . . . , xn as a measurement that indicates the cause of death
in addition to the presence of absence of a tumor in the dead animals. Specifically, x1, . . . , xn
should fall into one of the following categories

• death caused by tumor

• death with incidental tumor

• death without tumor

• sacrifice with tumor

• sacrifice without tumor

To each time interval (tj , tj+1] among those animals dying of natural causes, there correspond
the numbers dj of deaths caused by tumor and the number a1j of deaths with incidental
tumor, neither of which are observable. The associated complete log-likelihood function is
given by

log f(x; θ) =
∑m
j=1(Nj−1 −Nj)

∑j−1
k=1 log(pkqk) + (a2j + b2j) log(pjqj)

+dj log(1− pj) + a1j log
(

(1− πjpj)(1− qj)
)

+b1j log((1− qj)πj−1) + a2j log(1− πj) + b2j log πj + Cst

(5.23)

Now, we have to compute the expectation Q(θ, θ̄) of the log-likelihood function of the com-
plete data conditionally to the parameter θ̄. The random variables dj and a1j are binomial
with parameter λj and 1− λj where λj is the probability that the death was caused by the
tumor conditioned on the presence of the tumor. Conditioned on θ̄, we have

λj = 1− p̄j
1− p̄j + (1− π̄j p̄j)(1− q̄j)

(5.24)

(see [1, Section 3] for details). From this, we obtain that the conditional mean values of dj
and a1j are given by

E[dj | y; θ̄] = λjcj and E[a1j | y; θ̄] = (1− λj)cj . (5.25)

Therefore

Q(θ, θ̄) =
∑m
j=1(Nj−1 −Nj)

∑j−1
k=1 log(pkqk) + (a2j + b2j) log(pjqj)

+λjcj log(1− pj) + (1− λj)cj log
(

(1− πjpj)(1− qj)
)

+b1j log((1− qj)πj−1) + a2j log(1− πj) + b2j log πj + Cst.

(5.26)
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From this, we can easily compute the associated Kullback distance-like function:

Iy(θ, θ̄) =
m∑
j=1

cj

(
t′j(θ)φ

( t′j(θ̄)
t′j(θ)

)
+ t′′j (θ)φ

( t′′j (θ̄)
t′′j (θ)

))
, (5.27)

with

t′j(θ) = 1− pj
1− pj + (1− πjpj)(1− qj)

and t′′j (θ) = (1− πjpj)(1− qj)
1− pj + (1− πjpj)(1− qj)

(5.28)

and φ is defined by φ(τ) = τ log(τ). It is straightforward to verify that Assumptions 2.2,
2.2, 2.7 and 2.4 are satisfied.

The main computational problem in this example is to handle the difficult nonconvex
constraints entering the definition of the parameter space Θ. The authors of [15] and [1]
use the Complex Method proposed by Box in [2] to address this problem. However, the
theoretical convergence properties of Box’s method are not known as reported in article
MR0184734 in the Math. Reviews. Using our proximal point framework, we are able to
easily incorporate the nonconvex constraints into the Kullback distance-like function and
obtain an efficient algorithm with satisfactory convergence properties. For this purpose, let
I ′y be defined by

I ′y(θ, θ̄) = Iy(θ, θ̄) +
m∑
j=2

t′′′j (θ)φ
( t′′′j (θ̄)
t′′′j (θ)

)
(5.29)

where
t′′′j (θ) = πj−1 − πjpj∑m

i=2 πi−1 − πipi
. (5.30)

Using this new function, the nonconvex constraints πjpj 6 πj−1 are satisfied for all proximal
iterations and Assumptions 2.4 still hold.

Experimental results
We implemented the Kullback proximal algorithm with different choices of relaxation se-
quence (βk)k∈N, βk = β. The M-step of the EM algorithm does not have a closed form
solution, so that nothing is lost by setting βk to a constant not equal to one.

We attempted to supplement the KPP-EM algorithm with the Newton method and other
built-in methods available in Scilab but they were not even able to find local maximizers
due to the explosive nature of the logarithms near zero, leading these routines to repetitive
crashes. To overcome this difficulty, we found it convenient to use the extremely simple
simulated annealing random search procedure; see [22] for instance. This random search
approach avoids numerical difficulties encountered using standard optimization packages
and easily handles nonconvex constraints. The a.s. convergence of this procedure is well
established and recent studies such as [11] confirm the good computational efficiency for
convex functions optimization.

Some of our results for the data of Table 1 of [15] are given in Figures 1 to 4. In
the reported experiments, we chose three constant sequences with respective values βn =
100, 1, .01. We observed the following phenomena

1. after one hundred iterations the increase in the likelihood function is less than 10−5

except for the case βn = 100 (Figure C.4) where the algorithm had not converged.
2. for βn = 100 we often obtained the best initial growth of the likelihood



6. CONCLUSIONS 103

3. for βn = .01 we always obtained the highest likelihood when the number of iterations
was limited to 50 (see Figure C.3 for the case MCL Male AL).

It was shown in [5] that penalizing with a parameter sequence (βn)n∈N converging towards
zero implies superlinear convergence in the case where the maximum likelihood estimator
lies in the interior of the constraint set. Thus, our simulations results seem to confirm
observation 3. The second observation was surprising to us but this phenomenon occured
repeatedly in our experiments. This behavior did not occur in our simulations for the Poisson
inverse problem in [5] for instance.

In conclusion, this competing risks estimation problem is an interesting test for our
Kullback-proximal method which shows that the proposed framework can provide prov-
ably convergent methods for difficult constrained nonconvex estimation problems for which
standard optimization algorithms can be hard to tune. The relaxation parameter sequence
(βn)n∈N also appeared crucial for this problem although the choice βn = 1 could not really
be considered unsatisfactory in practice.
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0 5 10 15 20 25 30 35 40 45 50 55
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Figure C.1: Evolution of the log-likelihood versus iteration number: MCL Female CR case

6 Conclusions

The goal of this paper was the study of the asymptotic behavior of the EM algorithm and its
proximal generalizations. We clarified the analysis by making use of the Kullback-proximal
theoretical framework. Two of our main contributions are the following. Firstly we showed
that interior cluster points are stationary points of the likelihood function and are local
maximizers for sufficiently small values of β. Secondly, we showed that cluster points lying
on the boundary satisfy the Karush-Kuhn-Tucker conditions. Such cases were very seldom
studied in the literature although constrained estimation is a topic of growing importance;
see for instance the special issue of the Journal of Statistical Planning and Inference [10]
which is devoted to the problem of estimation under constraints. On the negative side, the
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Figure C.2: Evolution of the log-likelihood versus iteration number: MCL Male AL case
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Figure C.3: Evolution of the log-likelihood versus iteration number: Detail of MCL Male
AL case
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Figure C.4: Evolution of the log-likelihood versus iteration number: MCL Female AL case

analysis from the Kullback-proximal viewpoint allowed us to understand why uniqueness of
the cluster point is hard to establish theoretically. On the positive side, we were able to
implement a new and efficient proximal point method for estimation in the difficult tumor
lethality problem involving nonlinear inequality constraints.
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Chapter D

Space Alternating Penalized Kullback
Proximal Point Algorithms for
Maximizing Likelihood with
Nondifferentiable Penalty

with Alfred O. Hero and Hervé Perdry.

Abstract

The EM algorithm is a widely used methodology for penalized likelihood estima-
tion. Provable monotonicity and convergence are the hallmarks of the EM algorithm
and these properties are well established for smooth likelihood and smooth penalty func-
tions. However, many relaxed versions of variable selection penalties are not smooth.
In this paper we introduce a new class of Space Alternating Penalized Kullback Prox-
imal extensions of the EM algorithm for nonsmooth likelihood inference. We show
that the cluster points of the new method are stationary points even when they lie
on the boundary of the parameter set. We illustrate the new class of algorithms for
the problems of model selection for finite mixtures of regression and of sparse image
reconstruction.

1 Introduction

The EM algorithm of Dempster Laird and Rudin (1977) is a widely applicable methodology
for computing likelihood maximizers or at least stationary points. It has been extensively
studied over the years and many useful generalizations have been proposed including, for
instance, the stochastic EM algorithm of Delyon, Lavielle and Moulines (1999) and Kuhn
and Lavielle (2004); the PX-EM accelerations of Liu, Rubin and Wu (1998); the MM gener-
alization of Lange and Hunter (2004) and approaches using extrapolation such as proposed
in Varadhan and Roland (2007).

In recent years, much attention has been given to the problem of variable selection for
multiparameter estimation, for which the desired solution is sparse, i.e. many of the param-
eters are zero. Several approaches have been proposed for recovering sparse models. A large
number of contributions are based on the use of non-differentiable penalties like the LASSO
(Tibshirani (1996) and Candès and Plan (2008)), ISLE (Friedman and Popescu (2003)) and
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”hidden variable”-type approach developed by Figueiredo and Nowak (2003). Other contri-
butions are for instance sparse Bayes learning (Tipping (2001)), information theoretic based
prior methods of Barron (1999), empirical Bayes (Johnstone and Silverman (2004)). Among
recent alternatives is the new Dantzig selector of Candès and Tao (2008). On the other
hand, only a few attempts have been made to use of non-differentiable penalization for more
complex models than the linear model; for some recent progress, see Koh, Kim, and Boyd
(2007) for the case of logistic regression; and Khalili and Chen (2007) for mixture models.

In the present paper, we develop new extensions of the EM algorithm that incorporate
a non-differentiable penalty at each step. Following previous work of the first two authors,
we use a Kullback Proximal interpretation for the EM-iterations and prove stationarity
of the cluster points of the methods using nonsmooth analysis tools. Our analysis covers
coordinate by coordinate methods such as Space Alternating extensions of EM and Kullback
Proximal Point (KPP) methods. Such component-wise versions of EM-type algorithms can
benefit from acceleration of convergence speed (Fessler and Hero (1994)). The KPP method
was applied to gaussian mixture models in Celeux et al. (2001). The main result of this
paper is that any cluster point of the Space Alternating KPP method satisfies a nonsmooth
Karush-Kuhn-Tucker condition.

The paper is organized as follows. In section 2 we review Penalized Kullback Proxi-
mal Point methods and introduce componentwise PKPP algorithms with new differentiable
penalties. In Section 3, our main asymptotic results are presented. In Section 4, we present
a space alternating implementation of the penalized EM algorithm for a problem of model
selection in a finite mixture of linear regressions using the SCAD penalty introduced in Fan
and Li (2001) and further studied in Khalili and Chen (2007).

2 The EM algorithm and its Kullback proximal generalizations

The problem of maximum likelihood (ML) estimation consists of solving the maximization

θML = argmaxθ∈Θ ly(θ), (2.1)

where y is an observed sample of a random variable Y defined on a sample space Y and
ly(θ) is the log-likelihood function defined by

ly(θ) = log g(y; θ),

on the parameter space Θ ⊂ Rp, and g(y; θ) denotes the density of Y at y parametrized by
the vector parameter θ.

The standard EM approach to likelihood maximization introduces a complete data vector
X with density f . Consider the conditional density function k(x|y; θ̄) of X given y

k(x|y; θ̄) = f(x; θ̄)
g(y; θ̄)

. (2.2)

As is well known, the EM algorithm then consists of alternating between two steps. The
first step, called the E(xpectation) step, consists of computing the conditional expectation
of the complete log-likelihood given Y . Notice that the conditional density k is parametrized
by the current iterate of the unknown parameter value, denoted here by θ̄ for simplicity.
Moreover, the expected complete log-likelihood is a function of the variable θ. Thus the
second step, called the M(aximization) step, consists of maximizing the obtained expected
complete log-likelihood with respect to the variable parameter θ. The maximizer is then
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accepted as the new current iterate of the EM algorithm and the two steps are repeated
until convergence is achieved.

Consider now the general problem of maximizing a concave function Φ(θ). The original
proximal point algorithm introduced by Martinet (1970) is an iterative procedure which can
be written

θk+1 = argmaxθ∈DΦ

{
Φ(θ)− βk

2 ‖θ − θ
k‖2
}
. (2.3)

The influence of the quadratic penalty 1
2‖θ − θ

k‖2 is controlled by the sequence of positive
parameters {βk}. Rockafellar (1976) showed that superlinear convergence of this method oc-
curs when the sequence {βk} converges to zero. A relationship between Proximal Point algo-
rithms and EM algorithms was discovered in Chrétien and Hero (2000) (see also Chrétien and
Hero (2008) for details). We review the EM analogy to KPP methods to motivate the space
alternating generalization. Assume that the family of conditional densities {k(x|y; θ)}θ∈Rp
is regular in the sense of Ibragimov and Khasminskii (1981), in particular k(x|y; θ)µ(x) and
k(x|y; θ̄)µ(x) are mutually absolutely continuous for any θ and θ̄ in Rp. Then the Radon-
Nikodym derivative k(x|y,θ̄)

k(x|y;θ) exists for all θ, θ̄ and we can define the following Kullback Leibler
divergence:

Iy(θ, θ̄) = E
[
log k(x|y, θ̄)

k(x|y; θ) |y; θ̄
]
. (2.4)

Let us define Dl as the domain of ly, DI,θ the domain of Iy(·, θ) and DI the domain of Iy(·, ·).
Using the distance-like function Iy, the Kullback Proximal Point algorithm is defined by

θk+1 = argmaxθ∈DΦ

{
Φ(θ)− βkIy(θ, θ̄)

}
. (2.5)

The following was proved in Chrétien and Hero (2000).

Proposition 2.1 [Chrétien and Hero (2000) Proposition 1]. In the case where Φ is the log-
likelihood, the EM algorithm is a special instance of the Kullback-proximal algorithm with Φ
equal to the penalized log-likelihood and βk = 1, for all k ∈ N.

The Space Alternating Penalized Kullback-Proximal method

In what follows, and in anticipation of component-wise implementations of penalized KPP,
we will use the notation Θr(θ) for the local decomposition at θ defined by Θr(θ) = Θ ∩
(θ + Sr), r = 1, . . . , R where S1, . . . ,SR are subspaces of Rp and Rp = ⊕Rr=1Sr.

Then, the Space Alternating Penalized Proximal Point Algorithm is defined as follows.

Definition 2.2 Let ψ: Rp 7→ S1 × · · · × SR be a continuously differentiable mapping and
let ψr denote its rth coordinate. Let (βk)k∈N be a sequence of positive real numbers and λ
be a positive real vector in RR. Let pn be a nonnegative possibly nonsmooth locally Lips-
chitz penalty function with bounded Clarke-subdifferential (see the Appendix for details) on
compact sets. Then, the Space Alternating Penalized Kullback Proximal Algorithm is defined
by

θk+1 = argmaxθ∈Θk−1(mod R)+1(θk)∩Dl∩DI,θk

{
ly(θ)−

R∑
r=1

λrpn(ψr(θ))− βkIy(θ, θk)
}
,

(2.6)
where Dl is the domain of ly and DI,θ is the domain of Iy(·, θ).
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The standard Kullback-Proximal Point algorithms as defined in Chrétien and Hero (2008)
is obtained as special case by selecting R = 1, Θ1 = Θ, λ = 0.

The mappings ψr will simply be the projection onto the subspace Θr, r = 1, . . . , R in
the sequel but the proofs below allow for more general mappings too.

Notations and assumptions
The notation ‖·‖ will be used to denote the norm on any previously defined space. The space
on which the norm operates should be obvious from the context. For any bivariate function
Φ, ∇1Φ will denote the gradient with respect to the first variable. For the convergence
analysis, we will make the following assumptions. For a locally Lipschitz function f , ∂f(x)
denotes the Clarke subdifferential of f at x (see the Appendix). Regular locally Lipschitz
functions are defined in the Appendix.

Assumptions 2.1 (i) ly is differentiable and ly(θ) −
∑R
r=1 λrpn(ψr(θ)) converges to −∞

whenever ‖θ‖ tends to +∞. The function pn is locally Lipschitz and regular.
(ii) The domain DI,θ of I(·, θ) is a subset of the domain Dl of l.
(iii) (βk)k∈N is a convergent nonnegative sequence of real numbers whose limit is denoted by
β∗.
(iv) The mappings ψr are such that

ψr(θ + εd) = ψr(θ)

for all θ in Θ, all d ∈ S⊥r and ε > 0 sufficiently small so that θ+ εd ∈ Θ, r = 1, . . . , R. This
condition is satisfied for linear projection operators.

We will also impose one of the two following sets of assumptions on the distance-like function
Iy in (2.4).

Assumptions 2.2 (i) There exists a finite dimensional euclidean space S, a differentiable
mapping t : Dl 7→ S and a functional Ψ : DΨ ⊂ S × S 7→ R such that KL divergence (2.4)
satisfies

Iy(θ, θ̄) = Ψ(t(θ), t(θ̄)),

where Dψ denotes the domain of Ψ.
(ii) For any {(tk, t)k∈N} ⊂ DΨ there exists ρt > 0 such that lim‖tk−t‖→∞ Iy(tk, t) > ρt.
Moreover, we assume that inft∈M ρt > 0 for any bounded set M ⊂ S.
For all (t′, t) in DΨ, we will also require that
(iii) (Positivity) Ψ(t′, t) > 0,
(iv) (Identifiability) Ψ(t′, t) = 0⇔ t = t′,
(v) (Continuity) Ψ is continuous at (t′, t)
and for all t belonging to the projection of DΨ onto its second coordinate,
(vi) (Differentiability) the function Ψ(·, t) is differentiable at t.

In the case where the Kullback divergence Iy is not defined everywhere (for instance if
its domain of definition is the positive orthant), we need stronger assumptions to prove the
desired convergence properties.

Assumptions 2.3 (i) There exists a differentiable mapping t : Dl 7→ Rn×m such that the
Kullback distance-like function Iy is of the form

Iy(θ, θ̄) =
∑

16i6n,16j6m
αij(yj)tij(θ)φ

( tij(θ̄)
tij(θ)

)
,
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where for all i and j, tij is continuously differentiable on its domain of definition, αij is a
function from Y to R+, the set of positive real numbers,
(ii) The function φ is a non negative differentiable convex function defined R+

∗ and such that
φ(τ) = 0 if and only if τ = 1.
(iii) There exists ρ > 0 such that

lim
R+3τ→∞

φ(τ) > ρ.

(iv) The mapping t is injective on each Θr.

In the context of Assumptions 2.7, DI is simply the set

DI = {θ ∈ Rp | tij(θ) > 0 ∀i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}}2.

Notice that if tij(θ) = θi and αij = 1 for all i and all j, the functions Iy turn out to reduce
to the well known φ divergence defined in Csiszàr (1967). Assumptions 2.7 are satisfied
by most standard examples (for instance Gaussian mixtures and Poisson inverse problems)
with the choice φ(τ) = τ log(τ)− 1.

Assumptions 2.2(i) and (ii) on ly are standard and are easily checked in practical exam-
ples, e.g. they are satisfied for the Poisson and additive mixture models.

Finally we make the following general assumption.

Assumptions 2.4 The Kullback proximal iteration (2.6) is well defined, i.e. there exists
at least one maximizer of (2.6) at each iteration k.

In the EM case, i.e. β = 1, this last assumption is equivalent to the computability of M-
steps. In practice it suffices to show the inclusion 0 ∈ ∇ly(θ)−λ∂pn(ψ(θ))−βk∇Iy(θ, θk) for
θ = θk+1 in order to prove that the solution is unique. Then assumption 2.2(i) is sufficient
for a maximizer to exist.

These technical assumptions play an important role in the theory developed below. As-
sumption 1 (i) on differentiability of the log-likelihood is important for establishing the
Karush-Kuhn-Tucker optimality conditions for cluster points. The fact that the objective
should decrease to negative infinity as the norm of the parameter goes to infinity is often
satisfied, or can be easily imposed, and is used later to garantee boundedness of the se-
quence of iterates. The fact that pn is regular is standard since the usual choices are the
`1-norm, the `p-quasi-norms for 0 < p < 1, the SCAD penalty, etc ... Assumption 1 (ii) is
only needed in order to simplify the analysis since, otherwise, each iterate would lie in the
intersection of Dl and DI and this would lead to asymptotic complications; this assumption
is always satisfied in the models we have encountered in practice. Assumption 1 (iii) is
standard. Assumption 1 (iv) is satisfied when ψr is a projection onto Sr and simplifies the
proofs. Assumption 2 imposes natural conditions on the ”distance” Iy. Assumption 2 (ii)
ensures that the ”distance” Iy is large between points whose euclidean distance goes to +∞,
thus weakening the assumption that Iy should grow to +∞ in such a case. Assumptions 3
are used to obtain the Karush-Kuhn-Tucker conditions in Theorem 2. For this Theorem,
we require Iy to behave like a standard Kullback-Leibler ”distance” and therefore that Iy
has a more constrained shape. Assumption 3 (iii) is a simplification of Assumption 2 (ii).
Assumption 3 (iv) is a natural injectivity requirement.
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3 Asymptotic properties of the Kullback-Proximal iterations

Basic properties of the penalized Kullback proximal algorithm

Under Assumptions 2.2, we state basic properties of the penalized Kullback Proximal Point
Algorithm. The most basic property is the monotonicity of the penalized likelihood function
and the boundedness of the penalized proximal sequence (θk)k∈N. The proofs of the following
lemmas are given, for instance, in Chrétien and Hero (2000) for the unpenalized case (λ = 0)
and their generalizations to the present context is straightforward.

We start with the following monotonicity result.

Lemma 3.1 For any iteration k ∈ N, the sequence (θk)k∈N satisfies

ly(θk+1)−
R∑
r=1

λrpn(ψr(θk+1))− (ly(θk)−
R∑
r=1

λrpn(ψr(θk))) > βkIy(θk, θk+1) > 0. (3.7)

Lemma 3.2 The sequence (θk)k∈N is bounded.

The next lemma will also be useful and its proof in the unpenalized case where λ = 0
is given in Chrétien and Hero (2008) Lemma 2.4.3. The generalization to λ > 0 is also
straightforward.

Lemma 3.3 Assume that in the Space Alternating KPP sequence (θk)k∈N, there exists a
subsequence (θσ(k))k∈N belonging to a compact set C included in Dl. Then,

lim
k→∞

βkIy(θk+1, θk) = 0.

One important property, which is satisfied in practice, is that the distance between two
successive iterates decreases to zero. This property is critical to the definition of a stopping
rule for the algorithm. This property was established in Chrétien and Hero (2008) in the
case λ = 0.

Proposition 3.4 [Chrétien and Hero (2008) Proposition 4.1.2] The following statements
hold.

(i) For any sequence (θk)k∈N in Rp+ and any bounded sequence (ηk)k∈N in Rp+, if limk→+∞ Iy(ηk, θk) =
0 then limk→+∞ |tij(ηk)− tij(θk)| = 0 for all i,j such that αij 6= 0.

(ii) If limk→+∞ Iy(ηk, θk) = 0 and one coordinate of one of the two sequences (θk)k∈N
and (ηk)k∈N tends to infinity, so does the other’s same coordinate.

Properties of cluster points

The results of this subsection state that any cluster point θ∗ such that (θ∗, θ∗) lies on the
closure of DI satisfies a modified Karush-Kuhn-Tucker type condition. We first establish
this result in the case where Assumptions 2.2 hold in addition to Assumptions 2.2 and 2.2
for the Kullback distance-like function Iy.

For notational convenience, we define

Fβ(θ, θ̄) = ly(θ)−
R∑
r=1

λrpn(ψr(θ))− βIy(θ, θ̄). (3.8)



114 D. SPACE ALTERNATING EM FOR PENALIZED ML WITH NONSMOOTH PENALTY

Theorem 3.5 Assume that Assumptions 2.2, 2.2 and 2.4 hold and if R > 1, then, for each
r = 1, . . . , R, t is injective on Θr. Assume that the limit of (βk)k∈N, β∗, is positive. Let
θ∗ be a cluster point of the Space Alternating Penalized Kullback-proximal sequence (2.6).
Assume the mapping t is differentiable at θ∗. If θ∗ lies in the interior of Dl, then θ∗ is a
stationary point of the penalized log-likelihod function ly(θ), i.e.

0 ∈ ∇ly(θ∗)−
R∑
r=1

λr∂pn(ψr(θ∗)).

Proof. We consider two cases, namely the case where R = 1 and the case where R > 1.
A. If R = 1 the proof is analogous to the proof of Theorem 3.2.1 in Chrétien and Hero

(2008). In particular, we have

Fβ∗(θ∗, θ∗) > Fβ∗(θ, θ∗)

for all θ such that (θ, θ∗) ∈ DI . Since Iy(θ, θ∗) is differentiable at θ∗, the result follows by
writing the first order optimality condition at θ∗ in (1.1).

B. Assume that R > 1 and let (xσ(k))k∈N be a subsequence of iterates of (2.6) converging
to θ∗. Moreover let r = 1, . . . , R and θ ∈ Θr ∩Dl. For each k, let σr(k) the smallest index
greater than σ(k), of the form σ(k′)− 1, with k′ ∈ N and (σ(k′)− 1) (modR) + 1 = r. Using
the fact that t is injective on every Θr, r = 1, . . . , R, Lemma 3.3 and the fact that (βk)k∈N
converges to β∗ > 0, we easily conclude that (θσr(k))k∈N and (θσr(k)+1)k∈N also converge to
θ∗.

For k sufficiently large, we may assume that the terms (θσr(k)+1, θσr(k)) and (θ, θσr(k))
belong to a compact neighborhood C∗ of (θ∗, θ∗) included in DI . By Definition 2.2 of the
Space Alternating Penalized Kullback Proximal iterations,

Fβσr(k)(θ
σr(k)+1, θσr(k)) > Fβσr(k)(θ, θ

σr(k)).

Therefore,

Fβ∗(θσr(k)+1, θσr(k)) −(βσr(k) − β∗)Iy(θσr(k)+1, θσr(k)) >
Fβ∗(θ, θσr(k))− (βσr(k) − β∗)Iy(θ, θσ(k)). (3.9)

Continuity of Fβ follows directly from the proof of Theorem 3.2.1 in Chrétien and Hero
(2008), where in that proof σ(k) has to be replaced by σr(k). This implies that

Fβ∗(θ∗, θ∗) > Fβ∗(θ, θ∗) (3.10)

for all θ ∈ Θr such that (θ, θ∗) ∈ C∗ ∩DI . Finally, recall that no assumption was made on
θ, and that C∗ is a compact neighborhood of θ∗. Thus, using the assumption 2.2(i), which
asserts that ly(θ) tends to −∞ as ‖θ‖ tends to +∞, we may deduce that (3.10) holds for
any θ ∈ Θr such that (θ, θ∗) ∈ DI and, letting ε tend to zero, we see that θ∗ maximizes
Fβ∗(θ, θ∗) for all θ ∈ Θr such that (θ, θ∗) belongs to DI as claimed.

To conclude the proof of Theorem 3.5, take d in Rp and decompose d as d = d1 + · · ·+dR
with dr ∈ Sr. Then, equation (3.10) implies that the directional derivatives satisfy

F ′β∗(θ∗, θ∗; dr) 6 0 (3.11)

for all r = 1, . . . , R. Due to Assumption 2.2 (iv), the directional derivative of
∑R
r=1 λrpn(ψr(·))

in the direction d is equal to the sum of the partial derivatives in the directions d1, . . . , dR
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and, since all other terms in the definition of Fβ are differentiable, we obtain using (3.11),
that

F ′β∗(θ∗, θ∗; d) =
R∑
r=1

F ′β∗(θ∗, θ∗; dr) 6 0.

Therefore, using the assumption that pn is regular (see Asssumption 1(i)) which says that
p◦n = p′n, together with characterization (6.22) of the subdifferential in the Appendix and
Proposition 2.1.5 (a) in [Clarke (1990)], the desired result follows. 2

Next, we consider the case where Assumptions 2.7 hold.

Theorem 3.6 Assume that in addition to Assumptions 2.2 and 2.4, Assumptions 2.7 hold.
Let θ∗ be a cluster point of the Space Alternating Penalized Kullback Proximal sequence.
Assume that all the functions tij are continuously differentiable at θ∗. Let I∗ denote the
index of the active constraints at θ∗, i.e. I∗ = {(i, j) s.t. tij(θ∗) = 0}. If θ∗ lies in the
interior of Dl, then θ∗ satisfies the following property: there exists a family of subsets
I∗∗r ⊂ I∗ and a set of real numbers λ∗ij, (i, j) ∈ I∗∗r , r = 1, . . . , R such that

0 ∈ ∇ly(θ∗)−
R∑
r=1

λr∂pn(ψr(θ∗)) +
R∑
r=1

∑
(i,j)∈I∗∗r

λ∗ijPSr (∇tij(θ∗)), (3.12)

where PSr is the projection onto Sr.

Remark 3.7 The condition (3.12) resembles the traditional Karush-Kuhn-Tucker condi-
tions of optimality but is in fact weaker since the vector

R∑
r=1

∑
(i,j)∈I∗∗r

λ∗ijPSr (∇tij(θ∗))

in equation (3.12) does not necessarily belong to the normal cone at θ∗ to the set {θ | tij >
0, i = 1, . . . , n, j = 1, . . . ,m}.

Proof of Theorem 3.6. Let Φij(θ, θ̄) denote the bivariate function defined by

Φij(θ, θ̄) = φ
( tij(θ̄)
tij(θ)

)
.

As in the proof of Theorem 3.5, let (xσ(k))k∈N be a subsequence of iterates of (2.6)
converging to θ∗. Moreover let r = 1, . . . , R and θ ∈ Θr ∩Dl. For each k, let σr(k) be the
next index greater than σ(k) such that (σr(k) − 1) (mod R) + 1 = r. Using the fact that t
is injective on every Θr, r = 1, . . . , R, Lemma 3.3 and the fact that (βk)k∈N converges to
β∗ > 0, we easily conclude that (θσr(k))k∈N and (θσr(k)+1)k∈N also converge to θ∗.

Due to Assumption 2.7 (iv), the first order optimality condition at iteration σr(k) can
be written

0 = PSr (∇ly(θσ(k)+1))− λrgσr(k)+1
r + βσr(k)

(∑
ij αij(yj)PSr (∇tij(θσr(k)+1))

Φij(θσr(k)+1, θσr(k)) +
∑
ij αij(yj)tij(θσr(k)+1)PSr (∇1Φij(θσr(k)+1, θσr(k)))

)
(3.13)

with g
σr(k)+1
r ∈ ∂pn(ψr(θσr(k)+1)).
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Moreover, Claim A in the proof of Theorem 4.2.1 in Chrétien and Hero (2008), gives
that for all (i, j) such that αij(yj) 6= 0

lim
k→+∞

tij(θσr(k)+1)∇1Φij(θσr(k)+1, θσr(k)) = 0. (3.14)

Let I∗r be a subset of indices such that the family {PSr (∇tij(θ∗))}(i,j)∈I∗r is linearly in-
dependent and spans the linear space generated by the family of all projected gradients
{PSr (∇tij(θ∗))}i=1,...,n,j=1,...,m. Since this linear independence are preserved under small
perturbations (continuity of the gradients), we may assume, without loss of generality, that
the family {

PSr (∇tij(θσr(k)+1))
}

(i,j)∈I∗r

is linearly independent for k sufficiently large. For such k, we may thus rewrite equation
(3.13) as

0 = PSr (∇ly(θσr(k)+1))− λrgσr(k)+1
r + βσr(k)

(∑
(i,j)∈I∗r

π
σr(k)+1
ij (yj)

PSr (∇tij(θσr(k)+1)) +
∑
ij αij(yj)tij(θσr(k)+1)PSr (∇1Φ(θσr(k)+1, θσr(k)))

)
,

(3.15)

where
π
σr(k)+1
ij (yj) = αij(yj)Φij(θσr(k)+1, θσr(k)). (3.16)

Claim. The sequence {πσr(k)+1
ij (yj)}k∈N has a convergent subsequence for all (i, j) in

I∗r .
Proof of the claim. Since the sequence (θk)k∈N is bounded, ψ is continuously dif-

ferentiable and the penalty pn has bounded subdifferential on compact sets, there exists a
convergent subsequence (gσr(γ(k))+1

r )k∈N with limit g∗r . Now, using Equation (3.14), this last
equation implies that {πσr(γ(k))+1

(i,j)∈I∗r
(yj)}(i,j)∈I∗r converges to the coordinates of a vector in

the linearly independent family {PSr (∇tij(θ∗))}(i,j)∈I∗r . This concludes the proof. 2

The above claim allows us to finish the proof of Theorem 3.6. Since a subsequence
(πσr(γ(k))+1
ij (yj))(i,j)∈I∗r is convergent, we may consider its limit (π∗ij)(i,j)∈I∗r . Passing to the

limit, we obtain from equation (3.13) that

0 = PSr (∇ly(θ∗))− λrg∗r + β∗
( ∑

(i,j)∈I∗r

π∗ijPSr (∇tij(θ∗))
)
. (3.17)

Using the outer semi-continuity property of the subdifferential of locally Lipschitz functions
(see Appendix) we thus obtain that g∗r ∈ ∂pn(ψr(θ∗)). Now, summing over r in (3.17), we
obtain

0 =
R∑
r=1

PSr (∇ly(θ∗))−
R∑
r=1

λrg
∗
r + β∗

R∑
r=1

( ∑
(i,j)∈I∗r

π∗ijPSr (∇tij(θ∗))
)
.

Moreover, since Φij(θσr(k)+1, θσr(k)) tends to zero if (i, j) 6∈ I∗, i.e. if the constraint on
component (i, j) is not active, equation (3.16) implies that

0 =
R∑
r=1

PSr (∇ly(θ∗))−
R∑
r=1

λrg
∗
r + β∗

R∑
r=1

( ∑
(i,j)∈I∗∗r

π∗ijPSr (∇tij(θ∗))
)



4. APPLICATION: VARIABLE SELECTION IN FINITE MIXTURES OF REGRESSION
MODELS 117

where I∗∗r is the subset of active indices of I∗r , i.e. I∗∗r = I∗r ∩ I∗. Since
∑R
r=1 λrg

∗
r ∈∑R

r=1 λr∂pn(ψr(θ∗)), this implies that

0 ∈ ∇ly(θ∗)−
R∑
r=1

λr∂pn(ψr(θ∗)) + β∗
R∑
r=1

∑
(i,j)∈I∗∗r

π∗ijPSr (∇tij(θ∗)), (3.18)

which establishes Theorem 3.6 once we define λ∗ij = λ∗π∗ij . 2

The result (3.18) can be refined to the classical Karush-Kuhn-Tucker type condition
under additional conditions such as stated below.

Corollary 3.8 If in addition to the assumptions of Theorem 3.6 we assume that either
PSr (∇tij(θ∗)) = ∇tij(θ∗) or PSr (∇tij(θ∗)) = 0 for all (i, j) ∈ I∗, i.e. such that tij(θ∗) = 0,
then there exists a set of subsets I∗∗r ⊂ I∗ and a family of real numbers λ∗ij, (i, j) ∈ I∗∗r ,
r = 1, . . . , R such that the following Karush-Kuhn-Tucker condition for optimality holds at
cluster point θ∗:

0 ∈ ∇ly(θ∗)−
R∑
r=1

λr∂pn(ψr(θ∗)) +
R∑
r=1

∑
(i,j)∈I∗∗r

λ∗ij∇tij(θ∗).

4 Application: Variable selection in finite mixtures of regression
models

Variable subset selection in regression models is frequently performed using penalization of
the likelihood function, e.g. using AIC, Akaike (1973) and BIC, Schwarz (1978) penalties.
The main drawback of these approaches is lack of scalability due to a combinatorial explosion
of the set of possible models as the number of variables increases. Newer methods use l1-
type penalties of likelihood functions, as in the LASSO, Tibshirani (1996) and the Dantzig
selector of Candès and Tao (2007), to select subsets of variables without enumeration.

Computation of maximizers of the penalized likelihood function can be performed using
standard algorithms for nondifferentiable optimization such as bundle methods, as intro-
duced in Hiriart-Urruty and Lemaréchal (1993). However general purpose optimization
methods might be difficult to implement in the situation where, for instance, log objective
functions induce line-search problems. In certain cases, the EM algorithm, or a combination
of EM type methods with general purpose optimization routines might be simpler to imple-
ment. Variable selection in finite mixture models, as described in Khalili and Chen (2007),
represents such a case due to the presence of very natural hidden variables.

In the finite mixture estimation problem considered here, y1, . . . , yn are realizations of
the response variable Y and x1, . . . , xn are the associated realizations of the P -dimensional
vector of covariates X. We focus on the case of a mixture of linear regression models sharing
the same variance, as in the baseball data example of section 7.2 in Khalili and Chen (2007),
i.e.

Y ∼
K∑
k=1

πkN (Xtβk, σ
2), (4.19)

with π1, . . . , πk > 0 and
∑K
k=1 πk = 1. The main problem discussed in Khalili and Chen

(2007) is model selection for which a generalization of the smoothly clipped absolute devia-
tion (SCAD) method of Fan and Li (2001,2002) is proposed using an MM-EM algorithm in
the spirit of Hunter and Lange (2004). No convergence property of the MM algorithm was
established. The purpose of this section is to show that the Space Alternating KPP EM
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generalization is easily implemented and that stationarity of the cluster points is garanteed
by the theoretical analysis of Section 3.

The SCAD penalty, studied in Khalili and Chen (2007) is a modification of the l1 penalty
which is given by

pn(β1, . . . , βK) =
K∑
k=1

πk

P∑
j=1

pγnk(βk,j)

where pnk is specified by

p′γnk(β) = γnk
√
n1√n|β|6γnk +

√
n(aγnk −

√
n|β|)+

a− 1 1√n|β|>γnk

for β in R.
Define the missing data as the class labels z1, . . . , zn of the mixture component from

which the observed data point yn was drawn. The complete log-likelihood is then

lc(β1, . . . , βK , σ
2) =

n∑
i=1

log(πzi)−
1
2 log(2πσ2)− (yi − xtiβzi)2

2σ2 .

Setting θ = (π1, . . . , πK , β1, . . . , βK , σ
2), the penalized Q-function is given by

Q(θ, θ̄) =
n∑
i=1

K∑
k=1

tik(θ̄)
[
log(πk)− 1

2 log(2πσ2)− (yi − xtiβk)2

2σ2

]
− pn(β1, . . . , βK)

where

tik(θ) =
πk

1√
2πσ2 exp

(
− (yi−Xβk)2

2σ2

)
∑K
l=1 πl

1√
2πσ2 exp

(
− (yi−Xβl)2

2σ2

) .
The computation of this Q-function accomplishes the E-step. Moreover, a penalty of the

form −
∑K
k=1

∑P
j=1 |max{106, |βk,j |} − 106| can be added to the log-likelihood function in

order to ensure that Assumptions 1(i) (convergence of the penalized log-likelihood to −∞
for parameter values with norm growing to +∞) is satisfied for the case where X is not
invertible. Due to the fact that the penalty pn is a function of the mixture probabilities πk,
the M-step estimate of the π vector is not given by the usual formula

πk = 1
n

n∑
i=1

tik(θ̄) k = 1, . . . ,K. (4.20)

This, however, is the choice made in Khalili and Chen (2007) in their implementation. More-
over, optimizing jointly over the variables βk and πk is clearly a more complicated task than
independently optimizing with respect to each variable. We implement a componentwise
version of EM consisting of successively optimizing with respect to the πk’s and alterna-
tively with respect to the vectors βk. Optimization with respect to the πk’s can be easily
performed using standard differentiable optimization routines and optimization with respect
to the βk’s can be performed by a standard non-differentiable optimization routine, e.g. as
provided by the function optim of Scilab using the ’nd’ (standing for ’non-differentiable’)
option.

We now turn to the description of the Kullback proximal penalty Iy defined by (2.4).
The conditional density function k(y1, . . . , yn, z1, . . . , zn | y1, . . . , yn; θ) is

k(y1, . . . , yn, z1, . . . , zn | y1, . . . , yn; θ) =
n∏
i=1

tizi(θ).
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and therefore, the Kullback distance-like function Iy(θ, θ̄) is

Iy(θ, θ̄) =
n∑
i=1

K∑
k=1

tik(θ̄) log
( tik(θ̄)
tik(θ)

)
. (4.21)

We have R = K + 1 subsets of variables with respect to which optimization will be
performed successively. All components of Assumptions 2.2 and 2.7 are trivially satisfied
for this model. Validation of Assumption 2.7 (iv) is provided by Lemma 1 of Celeux et al.
(2001). On the other hand, since tik(θ) = 0 implies that πk = 0 and πk = 0 implies

∂tik
∂βjl

(θ) = 0

for all j = 1, . . . , p and l = 1, . . . ,K and
∂tik
∂σ2 (θ) = 0,

it follows that PSr (∇tik(θ∗)) = ∇tik(θ∗) if Sr is the vector space generated by the probability
vectors π and PSr (∇tik(θ∗)) = 0 otherwise. Therefore, Corollary 3.8 applies.

We illustrate this algorithm on real data (available at
http://www.amstat.org/publications/jse/v6n2/datasets.watnik.html).
Khalili and Chen (2007) report that a model with only two components was selected

by the BIC criterion in comparison to a three components model. Here, two alternative
algorithms are compared: the approximate EM using (4.20) and the plain EM using the
optim subroutines. The results for γnk = 1 and a = 10 are given in Figures D.1.

The results shown in Figure D.1 establish that the approximate EM algorithm has similar
properties to the plain EM algorithm for small values of the threshold parameters γnk.
Moreover, the larger the values of γnk, the closer the probability of the first component is to
1. One important fact to notice is that with the plain EM algorithm, the optimal probability
vector becomes singular, in the sense that the second component has zero probability, as
shown in Figure D.2 . Figure D.3 demonstrates that the approximate EM algorithm of
Khalili and Chen (2007) does not produce optimal solutions.

5 Conclusion

In this paper we analyzed the expectation maximization (EM) algorithm with non-differentiable
penalty. By casting the EM algorithm as a Kullback Proximal Penalized (KPP) iteration,
we proved the stationarity of the cluster points and showed that any cluster point of the
Space Alternating KPP method satisfies a nonsmooth Karush-Kuhn-Tucker condition. The
theory was applied to a space alternating implementation of the penalized EM algorithm
for a problem of model selection in a finite mixture of linear regressions.

6 Appendix: The Clarke subdifferential of a locally Lipschitz
function

Since we are dealing with non differentiable functions, the notion of generalized differentiabil-
ity is required. The main references for this appendix are Clarke (1990) and Rockafellar and
Wets (2004). A locally Lipschitz function f : Rp 7→ R always has a generalized directional
derivative f◦(θ, ω): Rp × Rp 7→ R in the sense given by Clarke, i.e.

f◦(θ, ω) = lim supη∈Rp→θ, t↓0
f(η + tω)− f(η)

t
.



120 D. SPACE ALTERNATING EM FOR PENALIZED ML WITH NONSMOOTH PENALTY

0 5 10 15 20 25 30 35
−6

−4

−2

0

2

4

6

0 5 10 15 20 25 30 35
−3
−2
−1
0
1
2
3
4
5
6

0 5 10 15 20 25 30 35
−10

−5

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

Figure D.1: Baseball data of Khalili and Chen (2007). This experiment is performed with
the plain EM. The parameters are γnk = .1 and a = 10. The first plot is the vector β
obtained for the single component model. The second (resp. third) plot is the vector of the
optimal β1 (resp. β2). The fourth plot is the euclidean distance to the optimal θ∗ versus
iteration index. The starting value of π1 was .3
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Figure D.2: This experiment is performed with the plain EM for the Baseball data of Khalili
and Chen (2007). The parameters are γnk = 5 and a = 10. The plot shows the probability
π1 of the first component versus iteration index. The starting value of π1 was .3
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Figure D.3: Baseball data of Khalili and Chen (2007). This experiment is performed with the
approximate EM. The parameters are γnk = 5 and a = 10. The plot shows the probability
π1 of the first component versus iteration index. The starting value of π1 was .3

A locally Lipschitz function is called regular if it admits a directional derivative at every point
and if moreover this directional derivative coincides with Clarke’s generalized directional
derivative.

The Clarke subdifferential of f at θ is the convex set defined by

∂f(θ) = {η | f◦(θ, ω) > ηtω, ∀ω}. (6.22)

Proposition 6.1 The function f is differentiable if and only if ∂f(θ) is a singleton.

We now introduce another very important property of the Clarke subdifferential related to
generalization of semicontinuity for set-valued maps.

Definition 6.2 A set-valued map Φ is said to be outer-semicontinuous if its graph

graph Φ = {(θ, g) | g ∈ Φ(θ)}

is closed, i.e. if for any sequence (graphΦ 3) (θn, gn)→ (θ∗, g∗) as n→ +∞, then (θ∗, g∗) ∈
graphΦ.

One crucial property of the Clarke subdifferential is that it is outer-semicontinuous.
A point θ is said to be a stationary point of f if

0 ∈ ∂f(θ).

Consider now the problem
sup
θ∈Rp

f(θ)
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subject to
g(θ) = [g1(θ), . . . , gm(θ)]t > 0

where all the functions are locally Lipschitz from Rp to R. Then, a necessary condition for
optimality of θ is the Karush-Kuhn-Tucker condition, i.e. there exists a vector u ∈ Rm+ such
that

0 ∈ ∂f(θ) +
m∑
j=1

uj∂gj(θ).

Convex functions are in particular locally Lipschitz. The main references for these facts are
Rockafellar (1970) and Hiriart-Urruty and Lemaréchal (1993).
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Chapter E

Multivariate GARCH calibration via
Bregman divergences

with Juan-Pablo Ortega

Abstract

This paper presents a global matrix formulation of the VEC model calibration prob-
lem and proposes a well adapted optimization method to solve it based on Bregman
divergences. More especifically, the calibration method is articulated as an optimiza-
tion problem with constraints that are formulated as matricial positive definiteness
conditions which are sufficient requirements for the resulting model to be stationary
and to exhibit well-defined conditional covariance matrices. The resulting optimiza-
tion problem is solved by using local models that incorporate appropriate Bregman
divergences that ensure that, at each iteration, the constraints are satisfied. Details on
how to improve the performance of the method using quadratic BFGS corrections and
trust-region algorithmics are provided, as well as a preliminary estimation technique
that shows how to efficiently initialize the algorithm.

1 Introduction

Autoregressive conditionally heteroscedastic (ARCH) models [?] and their generalized coun-
terparts (GARCH) [?] are standard econometric tools to capture the leptokurticity and the
volatility clustering exhibited by financial time series. In the one dimensional situation,
a large collection of models that account for various stylized features of financial returns
is available, as well as model selection and calibration tools, and explicit characterizations
of the conditions that ensure stationarity or the existence of higher moments. One of the
advantages of GARCH models that makes them particularly useful is that once they have
been calibrated they provide an estimate of the dynamical behavior of volatility which, in
principle, is not directly observable.

The last remark makes desirable the extension of the GARCH prescription to the mul-
tivariate case since such a generalization provides a dynamical picture of the correlations
between different assets which are of major importance for pricing, asset allocation, risk
management, and hedging purposes.

This generalization is nevertheless not free from difficulties. The most general multi-
variate GARCH models are the VEC prescription proposed by Bollerslev et al [?] and the
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BEKK model by Engle et al [?]; both families of models present satisfactory properties
that match those found in univariate GARCH models, nevertheless their lack of parsimony,
even in low dimensions makes them extremely difficult to calibrate; for example, VEC(1,1)
models require n(n + 1)(n(n + 1) + 1)/2 parameters, where n is the dimensionality of the
modeling problem; BEKK(1,1,1) require n(5n + 1)/2. Indeed, due to the high number of
parameters needed, it is rare to find these models at work beyond two or three dimensions
even when ad hoc calibration techniques are used; see for example [?].

The goal of the work that we present in this paper is increasing the range of dimensions
in which VEC models can be calibrated in practice by improving the existing technology in
two directions:

• Explicit matrix formulation of the model and of the associated stationarity and pos-
itivity constraints: the existing works in the literature usually proceed by expressing
the constraints in terms of the entries of the parameter matrices [?]. A global matrix
formulation is necessary in order to obtain a dimension independent encoding of the
problem.

• Use of the optimization method developed by Nesterov in [?]. This method is of par-
ticular interest to us since it is a purely first order method. More explicitely, unlike
the Newton algorithm or other more sophisticated line search techniques, Nesterov’s
method only requires the computation of the first derivative of the target function.
This feature is of paramount importance in our situation as the high number of parame-
ters makes unviable the use of Hessians. Additionally, if k denotes the iteration number
in the optimization algorithm, the convergence rate of this method is proportional to
1/k2 instead of the 1/k rate provided by standard gradient descent techniques.

Notation and conventions: all along this paper, bold symbols like r denote column vec-
tors, rT denotes the transposed vector. Given a filtered probability space (Ω,P,F , {Ft}t∈N)
and X,Y two random variables, we will denote by Et[X] := E[X|Ft] the conditional expec-
tation, covn(X,Y ) := cov(X,Y |Fn) := Et[XY ] − Et[X]Et[Y ] the conditional covariance,
and by vart(X) := Et[X2] − Et[X]2 the conditional variance. A discrete-time stochastic
process {Xt}t∈N is predictable when Xt is Ft−1-measurable, for any t ∈ N.

2 Preliminaries on matrices and matrix operators

Matrices: Let n,m ∈ N and denote by Mn,m the space of n×m matrices. When n = m we
will just write Mn to refer to the space of n×n square matrices. Unless specified otherwise,
all the matrices in this paper will contain purely real entries. The equality A = (aij) denotes
the matrix A with components aij ∈ R. The symbol Sn denotes the subspace of Mn that
contains all symmetric matrices

Sn = {A ∈Mm | AT = A}

and S+
n (respectively S−n ) is the cone in Sn containing the positive (respectively negative)

semidefinite matrices. The symbol A � 0 (respectively A � 0) means that A is positive
(respectively negative) semidefinite.

We will consider Mn,m as an inner product space with the pairing

〈A,B〉 = trace(ABT ) (2.1)
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and denote by ‖A‖ = 〈A,A〉 1
2 the associated Frobenius norm. Given a linear operator

A : Mn,m →Mp,q we will denote by A∗ : M∗p,q →M∗n,m its adjoint with respect to the inner
product (2.1).

The vec, vech, and math operators and their adjoints: The symbol vec : Mn → Rn2

denotes the operator that stacks all the columns of a matrix into a vector. Let N = 1
2n(n+1)

and let vech : Sn → RN be the operator that stacks only the lower triangular part, including
the diagonal, of a symmetric matrix into a vector. The inverse of the vech operator will be
denoted by math : RN → Sn.

Given n ∈ N andN = 1
2n(n+1), let S = {(i, j) ∈ {1, . . . , n}×{1, . . . , n} | i > j} we define

σ : S → {1, . . . , N} as the map that yields the position of component (i, j), i > j, of any
symmetric matrix in its equivalent vech representation. The symbol σ−1 : {1, . . . , N} → S
will denote its inverse and σ̃ : {1, . . . , n}×{1, . . . , n} → {1, . . . , N} the extension of σ defined
by:

σ̃(i, j) =
{
σ(i, j) i > j
σ(j, i) i < j.

(2.2)

The proof of the following result is provided in the Appendix.

Proposition 2.1 Given n ∈ N and N = 1
2n(n+ 1), let A ∈ Sn and m ∈ RN arbitrary. The

following identities hold true:

(i) 〈vech(A),m〉 = 1
2 〈A+ diag(A),math(m)〉.

(ii) 〈A,math(m)〉 = 2〈vech(A− 1
2diag(A)),m〉,

where diag(A) denotes the diagonal matrix obtained out of the diagonal entries of A. Let
vech∗ : RN → Sn and math∗ : Sn → RN be the adjoint maps of vech and math, respectively,
then:

math∗(A) = 2 vech
(
A− 1

2diag(A)
)
, (2.3)

vech∗(m) = 1
2 (math(m) + diag(math(m))) . (2.4)

The operator norms of the mappings that we just introduced are given by:

‖vech‖op = 1 (2.5)
‖math‖op =

√
2 (2.6)

‖vech∗‖op = 1 (2.7)
‖math∗‖op =

√
2 (2.8)

‖diag‖op = 1 (2.9)

Block matrices and the Σ operator: let n ∈ N and B ∈ Mn2 . The matrix B can be
divided into n2 blocks Bij ∈Mn and hence its components can be labeled using a blockwise
notation by referring to the (k, l) element of the (i, j) block as (Bij)kl. This notation
makes particularly accessible the interpretation of B as the coordinate expression of a linear
endomorphism of the tensor product space Rn ⊗Rn. Indeed if {e1, . . . , en} is the canonical
basis or Rn, we have

B(ei ⊗ ek) =
n∑

j,l=1
(Bij)kl(ej ⊗ el). (2.10)
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Definition 2.2 Let A ∈ MN with N = 1
2n(n + 1). We define Σ(A) ∈ Sn2 blockwise using

the expression 
If k > l (Σ(A)kl)ij =


1
2Aσ(k,l),σ(i,j), if i > j
Aσ(k,l),σ(i,j), if i = j
1
2Aσ(k,l),σ(j,i), if i < j

If k 6 l Σ(A)kl = Σ(A)lk,

(2.11)

where σ is the map defined above that yields the position of component (i, j), i > j, of
any symmetric matrix in its equivalent vech representation. By construction (Σ(A)kl)ij is
symmetric with respect to transpositions in the (k, l) and (i, j) indices; this implies that Σ(A)
is both symmetric and blockwise symmetric. We will refer to any matrix in Sn2 with this
property as n-symmetric and will denote the corresponding space by Snn2 .

The proofs of the next two results are provided in the Appendix.

Proposition 2.3 Given H ∈ Sn and A ∈MN , with N = 1
2n(n+1), the n-symmetric matrix

Σ(A) ∈ Snn2 that we just defined satisfies:

Avech(H) = vech(Σ(A) •H), (2.12)

where Σ(A) •H ∈ Sn is the symmetric matrix given by

(Σ(A) •H)kl = 〈Σ(A)kl, H〉 = trace(Σ(A)klH).

Proposition 2.4 Let Σ : MN → Mn2 be the operator defined in the previous proposition,
N = 1

2n(n + 1). Then, for any B ∈ Mn2 , the corresponding dual map Σ∗ : Mn2 → MN is
given by

Σ∗(B) = 2B − B̃, (2.13)

where B, B̃ ∈MN are the matrices defined by

Bpq = ((Pnn2(B))σ−1(p))σ−1(q), and B̃pq = Bpqδpr1(σ−1(p)),pr2(σ−1(p)).

The symbol Pnn2(B) denotes the orthogonal projection of B ∈ Mn2 onto the space Snn2 of n-
symmetric matrices that we spell out in Lemma 5.1. As we saw in Proposition 2.3, Σ maps
into the space Snn2 of symmetric matrices; let Σ̃ : MN → Snn2 be the map obtained out of Σ
by restriction of its range. The map Σ̃ is a bijection with inverse Σ̃−1 : Snn2 →MN given by(

Σ−1(B)
)
p,q

=
(
Bσ−1(p)

)
σ−1(q)

(
2− δpr1(σ−1(q)),pr2(σ−1(q))

)
. (2.14)

3 The VEC-GARCH model

Consider the n-dimensional conditionally heteroscedastic discrete-time process {zt} deter-
mined by the relation

zt = H
1/2
t εt with {εt} ∼ IIDN(0, In).

In this expression, {Ht} denotes a predictable matrix process, that is for each t ∈ N, the
matrix random variable Ht is Ft−1-measurable, and H

1/2
t is a square root of Ht, hence it
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satisfies H1/2
t (H1/2

t )T = Ht. In these conditions it is easy to show that the conditional mean
Et[zt] = 0 and that the conditional covariance matrix process of {zt} coincides with {Ht}.

Different prescriptions for the time evolution of the conditional covariance matrix {Ht}
determine different vector conditional heteroscedastic models. In this paper we will focus
on the VEC-GARCH model (just VEC in what follows). This model was introduced
in [?] as the direct generalization of the univariate GARCH model [?] in the sense that
every conditional variance and covariance is a function of all lagged conditional variances
and covariances as well as all squares and cross-products of the lagged time series values.
More specifically, the VEC(q,p) model is determined by

ht = c +
q∑
i=1

Aiηt−i +
p∑
i=1

Biht−i,

where ht := vech(Ht), ηt := ztzT , c is a N -dimensional vector, with N := n(n + 1)/2 and
Ai, Bi ∈MN .

In the rest of the paper we will restrict to the case p = q = 1, that is:{
zt = H

1/2
t εt with {εt} ∼ IIDN(0, In),

ht = c +Aηt−1 +Bht−1.
(3.15)

In this case the model needs N(2N + 1) = 1
2 (n2 + n)(n2 + n+ 1) parameters for a complete

specification.

Positivity and stationarity constraints
The general prescription for the VEC model spelled out in (3.15) does not guarantee that
it has stationary solutions. Moreover, as we saw above, the resulting matrices {Ht}t∈N
are the conditional covariance matrices of the resulting process and therefore, additional
constraints should be imposed on the parameter matrices c, A, and B in order to ensure
that they are symmetric and positive semidefinite. Unlike the situation encountered in the
one-dimensional case, necessary and sufficient conditions for positivity and stationarity are
very difficult to find and we will content ourselves with sufficient specifications.
Positivity constraints: we will use the sufficient conditions introduced by Gourieroux
in [?] that, as we show in the next proposition, can be explicitly formulated using the map
Σ introduced in Definition 2.2.

Proposition 3.1 If the parameter matrices c, A, and B in (3.15) are such that math(c),Σ(A),
and Σ(B) are positive semidefinite then so are the resulting conditional covariance matrices
{Ht}t∈N, provided the initial condition H0 is positive semidefinite.

Second order stationarity constraints: Gourieroux [?] has stated sufficient conditions
in terms of the spectral radius of A+B that we will make more restrictive in order to ensure
the availability of a formulation in terms of positive semidefiniteness constraints.

Proposition 3.2 The VEC model specified in (3.15) admits a unique second order station-
ary solution if all the eigenvalues of A+B lie strictly inside the unit circle. This is always
the case whenever the top singular eigenvalue σmax(A + B) of A + B is smaller than one
or, equivalently, when the matrix IN − (A+B)(A+B)T is positive definite. If any of these
conditions is satisfied, the marginal variance of the model is given by

Γ(0) = math(E[ht]) = math((IN −A−B)−1c). (3.16)
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The likelihood function, its gradient, and computability constraints
Given a sample z = {z1, . . . , zT }, the quasi-loglikelihood associated to (3.15) is:

logL(z;θ) = −TN2 log 2π − 1
2

T∑
t=1

log(detHt)−
1
2

T∑
t=1

zTt H−1
t zt (3.17)

where θ := (c, A,B). In this expression, the matrices Ht are constructed out of θ and
the sample z using the second expression in (3.15). This implies that the dependence of
logL on θ takes place through the matrices Ht. Notice that these matrices are well defined
once initial values H0 and z0 have been fixed. This initial values are usually taken out of a
presample; if this is not available it is customary to take the mean values associated to the
stationary model, namely z = 0 and H0 = math((IN − A − B)−1c) (see (3.16)). Once the
initial conditions have been fixed, it can be shown by induction that

ht =
(
t−1∑
i=0

Bi

)
c +

t−1∑
i=0

BiAηt−i−1 +Bth0. (3.18)

The maximum likelihood estimator θ̂ of θ is the value that maximizes (3.17) for a given
sample z. The search of that extremal is carried out using an optimization algorithm that
we will discuss later on in the paper and that requires the gradient ∇θlogL(z;θ) of logL.
In order to compute it we write the total quasi-loglikelihood as a sum of T conditional
loglikelihoods

lt(zt;A,B, c) = −N2 log 2π − 1
2 log(detHt)−

1
2zTt H−1

t zt

A lengthy calculation shows that:

∇clt =
[

(γt − Γt)T
t−1∑
i=0

Bi

]T
, (3.19)

∇Alt =
[
t−1∑
i=0

ηt−i−1 (γt − Γt)T Bi
]T

, (3.20)

∇Blt =

t−1∑
i=0

i−1∑
j=0

Bj(c +Aηt−i−1) (γt − Γt)T Bi−j−1 +Bjh0 (γt − Γt)T Bt−j−1

T ,(3.21)

where

Γt := 1
2math

∗(H−1
t ), γt := 1

2math
∗(Λt), and Λt := H−1

t ztzTt H−1
t .

These formulas for the gradient were obtained by using the explicit expression of the condi-
tional covariance matrices (3.18) in terms of the sample elements and the coefficient matrices.
Such a closed form expression is not always available as soon as the model becomes slightly
more complicated; for example, if one adds to the model (3.15) a drift term like in [?] for the
one dimensional GARCH case, an expression like (3.18) ceases to exist. That is why, in the
next proposition, we introduce an alternative iterative method that can be extended to more
general models, it is well adapted to its use under the form of a computer code and, more
importantly, suggests the introduction of an additional calibration constraint that noticeably
shortens the computation time needed for its numerical evaluation.
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Proposition 3.3 Let z = {z1, . . . , zT } be a sample, θ := (c, A,B), and let logL(z;θ) be the
quasi-loglikelihood introduced in (3.17). Then, for any component θ of the three-tuple θ, we
have

∇θ logL =
T∑
t=1
∇θlt =

T∑
t=1

T ∗θHt · ∇Ht lt, where (3.22)

∇Ht lt = −1
2
[
H−1
t −H−1

t ztzTt H−1
t

]
, (3.23)

and the differential operators T ∗θHt are determined by the recursions:

T ∗c Ht ·∆ = math∗(∆) + T ∗c Ht−1 · vech∗(BTmath∗(∆)), (3.24)
T ∗AHt ·∆ = math∗(∆) · ηTt−1 + T ∗AHt−1 · vech∗(BTmath∗(∆)), (3.25)
T ∗BHt ·∆ = math∗(∆) · vech(Ht−1)T + T ∗BHt−1 · vech∗(BTmath∗(∆)), (3.26)

with ηt = ztzT , ∆ ∈ Sn and setting T ∗c H0 = 0, T ∗AH0 = T ∗BH0 = 0. The operators T ∗θHt

constructed in (3.24)–(3.26) are the adjoints of the partial tangent maps TcHt : RN → Sn,
TAHt : MN → Sn, and TBHt : MN → Sn to Ht(c, A,B) := math(ht(c, A,B)), with
ht(c, A,B) as defined in (3.18).

Whenever we deal with a long time series sample, the computation of the gradient (3.22)
may turn out numerically very expensive since it consists of the sum of T terms T ∗θHt ·∇Ht lt,
each of which is made of the sum of the t terms recursively defined in (3.24)–(3.26). A major
simplification can be obtained if we restrict ourselves in the calibration process to matrices
B whose top eigenvalue is in norm smaller than one. The defining expressions for the
differential operators T ∗θHt show that in that situation, only a certain number of iterations,
potentially small, is needed to compute the gradients with a prescribed precision. This is
particularly visible in the expressions (3.19)–(3.21) where the dependence on the powers of
B makes very small many of the involved summands whenever the spectrum of B is strictly
contained in the unit disk. This is the reason why we will impose this as an additional
calibration constraint. The details of this statement are spelled out in the proposition below
that we present after the summary of the constraints that we will impose all along the paper
on the model (3.15):

(SC) Stationarity constraints: IN (1 − εAB) − (A + B)(A + B)T � 0 for some small
εAB > 0.

(PC) Positivity constraints: math(c)−εcIn � 0, Σ(A)−εAIn2 � 0, and Σ(B)−εBIn2 �
0, for some small εA, εB , εc > 0.

(CC) Computability constraints: IN (1− ε̃B)−BBT � 0 for some small ε̃B > 0.

Proposition 3.4 Let t ∈ N be a fixed lag and let T ∗θHt be the differential operators defined
by applying t times the recursions (3.24)-(3.26). Consider now the operators T ∗θHk

t obtained
by truncating the recursions (3.24)-(3.26) after k iterations, k < t. If we assume that
the coefficients c, A, and B satisfy the constraints (SC), (PC), and (CC) then the error
committed in the truncations can be estimated using the following inequalities satisfied by
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the operator norms:

‖T ∗c Ht − T ∗c Hk
t ‖op 6

2(1− ε̃B)k

ε̃B
, (3.27)

‖E
[
T ∗AHt − T ∗AHk

t

]
‖op 6

2(1− ε̃B)k‖c‖
εAB

, (3.28)

‖E
[
T ∗BHt − T ∗BHk

t

]
‖op 6

2(1− ε̃B)k‖c‖
εAB

. (3.29)

Notice that the last two inequalities estimate the error committed in mean. As consequence
of these relations, if we allow a maximum expected error δ in the computation of the gra-
dient (3.22) then a lower bound for the number k of iterations that need to be carried out
in (3.24)–(3.26) is:

k = max

 log
(
ε̃Bδ

2

)
log(1− ε̃B) ,

log
(
ε̃BεABδ

2εc

)
log(1− ε̃B)

 . (3.30)

Remark 3.5 The estimate (3.30) for the minimum number of iterations needed to reach
a certain precision in the computation of the gradient is by no means sharp. Numerical
experiments show that the figure produced by this formula is in general too conservative.
Nevertheless, this expression is still very valuable for it explicitly shows the pertinence of
the computability constraint (CC).

Remark 3.6 We emphasize that the constraints (SC), (PC), and (CC) are sufficient
conditions for stationarity, positivity, and computability, respectively, but by no means
necessary. For example (SC) and (CC) could be replaced by the more economical (but also
more restrictive) condition that imposes A,B ∈ S+

N with λmax(A+B) 6 (1− εAB). In this
situation it can be easily shown that λmax(B) < 1 and hence the computability constrained
is automatically satisfied.

4 Calibration via Bregman matrix divergences

In this section we present an efficient optimization method that, given a sample z, provides
the parameter value θ̂ corresponding to the VEC(1,1) model that fits it best by maximizing
the quasi-loglikelihood (3.17) subjected to the constraints (SC), (PC), and (CC). It can be
proved under certain regularity hypotheses (see [?, page 119]) that the quasi-loglikelihood
estimator θ̂ is consistent and asymptotically normal:

√
T (θ̂ − θ0) −−→

dist
N(0,Ω0) where Ω0 = A−1

0 B0A
−1
0 , with

A0 = Eθ0

[
−∂

2lt(θ0)
∂θ∂θT

]
and B0 = Eθ0

[
∂lt(θ0)
∂θ

∂lt(θ0)
∂θT

]
.

These matrices are usually consistently estimated by replacing the expectations by their
empirical means and the true value of the parameter θ0 by the estimator θ̂:

Â0 = − 1
T

T∑
i=1

∂2lt(θ̂)
∂θ∂θT

, B̂0 = 1
T

T∑
i=1

∂lt(θ̂)
∂θ

∂lt(θ̂)
∂θT

.
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Constrained optimization via Bregman divergences
The optimization method that we will be carrying out to maximize the quasi-loglikelihood is
based on the use of Burg’s matrix divergence. This divergence is presented, for example,
in [?] and it is a particular instance of a Bregman divergence. Bregman divergences are of
much use in the context of machine learning (see for instance [?, ?] and references therein).
In our situation we have opted for this technique as it allows for a particularly efficient
treatment of the constraints in our problem, avoiding the need to solve additional secondary
optimization problems that appear, for example, had we used Lagrange duality; even though
the constraints that we handle admit a simple and explicit conic formulation well adapted
to the use of Lagrange multipliers, the associated dual optimization problem is this case of
difficulty comparable to that of the primal so avoiding this extra step is a major advantage.

Definition 4.1 Let X,Y ∈ Sn and φ : Sn −→ R a strictly convex differentiable function.
The Bregman matrix divergence associated to φ is defined by

Dφ(X,Y ) := φ(X)− φ(Y )− trace
(
∇φ(Y )T (X − Y )

)
.

Bregman divergences are used to measure distance between matrices. Indeed, if we take the
squared Frobenius norm as the function φ, that is φ(X) := ‖X‖2, then Dφ(X,Y ) := ‖X −
Y ‖2. Other example is the von Neumann divergence which is the Bregman divergence
associated to the entropy of the eigenvalues of a positive definite matrix; more explicitly, if X
is a positive definite matrix with eigenvalues {λ1, . . . , λn}, then φ(X) :=

∑n
i=1(λi log λi−λi).

In our optimization problem we will be using Burg’s matrix divergence (also called the
LogDet divergence or Stein’s loss in the statistics literature [?]) which is the Bregman
divergence obtained out of the Burg entropy of the eigenvalues of a positive definite matrix,
that is φ(X) := −

∑n
i=1 log λi, or equivalently φ(X) := − log det(X). The resulting Bregman

divergence over positive definite matrices is

DB(X,Y ) := trace(XY −1)− log det(XY −1)− n. (4.31)

The three divergences that we just introduced are examples of spectral divergences, that
is, the function φ that defines them can be written down as the composition φ = ϕ◦λ, where
ϕ : Rn −→ R is differentiable strictly convex function and λ : Sn −→ Rn is the function that
lists the eigenvalues of X in algebraically decreasing order. It can be seen (see Appendix A
in [?]) that spectral Bregman matrix divergences are invariant by orthogonal conjugations,
that is, for any orthogonal matrix Q ∈ On:

Dφ(QTXQ,QTY Q) = Dφ(X,Y ).

Burg divergences are invariant by an even larger group since

DB(MTXM,MTYM) = DB(X,Y ),

for any square non-singular matrix M . Additionally, for any non-zero scalar α:

DB(αX,αY ) = DB(X,Y ).

The use of Bregman divergences in matrix constrained optimization problems is substan-
tiated by replacing the quadratic term in the local model, that generally uses the Frobenius
distance, by a Bregman divergence that places the set outside the constraints at an infi-
nite distance. More explicitly, suppose that the constraints of a optimization problem are
formulated as a positive definiteness condition A � 0 and that we want to find

argmin
A�0

f(A),
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by iteratively solving the optimization problems associated to penalized local models of the
form

fA(n)(A) := f
(
A(n)

)
+
〈
∇f

(
A(n)

)
, A−A(n)

〉
+ L

2Dφ(A,A(n)). (4.32)

If in this local model we take φ(X) := ‖X‖2 and the elastic penalization constant L is small
enough, the minimum argminA�0 fA(n)(A) is likely to take place outside the constraints.
However, if we use Burg’s divergence DB instead, and A(n) is positive definite, then so is
argminA�0 fA(n)(A) for no matter what value of the parameter L. This is so because as
A approaches the constraints, the term Dφ(A,A(n)) becomes increasingly close to infinity
producing the effect that we just described. The end result of using Bregman divergences is
that they reduce a constrained optimization problem to a series of local unconstrained ones.

The local approximation for VEC models

Before we tackle the VEC calibration problem, we add to (SC), (PC), and (CC) a fourth
constraint on the variable c ∈ RN that makes compact the optimization domain:

(KC) Compactness constraint: KIN −math(c) � 0 for some K ∈ R.

In practice the constant K is taken as a multiple of the Frobenius norm of the covariance
matrix of the sample. This is a reasonable choice since by (3.16), in the stationary regime
c = (IN −A−B)vech(Γ(0)); moreover, by the constraint (SC) and (2.5) we have

‖c‖ = ‖(IN −A−B)vech(Γ(0))‖ 6 ‖IN −A−B‖op‖vec‖op‖Γ(0)‖ 6 2‖Γ(0)‖.

Now, given a sample z and a starting value for the parameters θ0 = (c0, A0, B0), our goal
is finding the minimum of minus the quasi-loglikelihood f(θ) := −logL(z;θ), subjected to
the constraints (SC), (PC), (CC), and (KC). We will worry about the problem of finding
a preliminary estimation θ0 later on in Section 4. As we said before, our method is based
on recursively optimizing penalized local models that incorporate Bregman divergences that
ensure that the constraints are satisfied. More especifically, the estimate of the optimum
θ(n+1) after n iterations is obtained by solving

θ(n+1) = argmin
θ∈RN×MN×MN ,

f̃ (n)(θ), (4.33)

where f̃ (n) is defined by:

f̃ (n)(θ) = f(θ(n)) + 〈∇f(θ(n)),θ − θ(n)〉+ L1

2 DB(IN − (A+B)T (A+B), IN − (A(n) +B(n))T (A(n) +B(n)))

+ L2

2 DB(Σ(A),Σ(A(n))) + L3

2 DB(Σ(B),Σ(B(n))) + L4

2 DB(IN −BTB, IN −B(n)TB(n))

+ L5

2 DB(math(c),math(c(n))) + L6

2 DB(KIN −math(c),KIN −math(c(n))). (4.34)

Notice that for the sake of simplicity we have incorporated the constraints in the divergences
with the constraint tolerances εAB , εA, εB , ε̃B , and εc set equal to zero.

The local optimization problem in (4.33) is solved by finding the value θ0 for which

∇f̃ (n)(θ0) = 0. (4.35)
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A long but straightforward computation shows that the gradient ∇f̃ (n)(θ) is given by the
expressions:

∇Af̃ (n)(θ) = ∇Af(θ(n))− L1(A+B)
((

IN − (A(n) +B(n))T (A(n) +B(n))
)−1
−
(
IN − (A+B)T (A+B)

)−1
)

+L2

2 Σ∗
(

Σ(A(n))−1 − Σ(A)−1
)
, (4.36)

∇B f̃ (n)(θ) = ∇Bf(θ(n))− L1(A+B)
((

IN − (A(n) +B(n))T (A(n) +B(n))
)−1
−
(
IN − (A+B)T (A+B)

)−1
)

+L3

2 Σ∗
(

Σ(B(n))−1 − Σ(B)−1
)
− L4B

((
IN −B(n)TB(n)

)−1
−
(
IN −BTB

)−1
)
, (4.37)

∇cf̃
(n)(θ) = ∇cf(θ(n)) + L5

2 math∗
(
math(c(n))−1 −math(c)−1

)
−L6

2 math∗
(

(KIN −math(c(n)))−1 − (KIN −math(c))−1
)
, (4.38)

where ∇θf(θ(n)) = −∇θlogL(z;θ(n)) is provided by the expressions in Proposition 3.3.

Solving the local approximation problem by space augmentation
In order to solve the local approximation problem, we will solve a intermediate system defined
on an augmented space. Using an augmented space will be important from a numerical view-
point. Indeed, using Bregman divergences implicitely enforces the semi-definiteness of the
involved matrices. However, solving the local approximation problem can only be performed
using iterative schemes for which the positive semi-definiteness constraints are difficult to
preserve along the iterations. Choosing an augmented space where the semi-definiteness
constraint can be easily preserved may improve the algorithm’s behavior drastically. In the
present study, we chose the following augmented system of equations:

g(n)(ϑ) := (g(n)
j (ϑ))j=1,...,7 = 0, (4.39)

with

g
(n)
1 (ϑ) = g

(n)
1 − L1D

((
IN −D(n)TD(n)

)−1
−
(
IN −DTD

)−1
)

+L2

2 Σ∗
(

(E(n))−1 − (E)−1
)
, (4.40)

g
(n)
2 (ϑ) = g

(n)
2 − L1D

((
IN −D(n)TD(n)

)−1
−
(
IN −DTD

)−1
)

+L3

2 Σ∗
(

(F (n))−1 − (F )−1
)
− L4B

((
IN −B(n)TB(n)

)−1
−
(
IN −BTB

)−1
)
,(4.41)

g
(n)
3 (ϑ) = g

(n)
3 + L5

2 math∗
(
math(c(n))−1 −math(c)−1

)
−L6

2 math∗
(

(KIN −math(c(n)))−1 − (KIN −math(c))−1
)
, (4.42)

g
(n)
4 (ϑ) = A+B −D (4.43)
g

(n)
5 (ϑ) = Σ(A)− E (4.44)
g

(n)
6 (ϑ) = Σ(B)− F (4.45)
g

(n)
7 (ϑ) = G−math(c), (4.46)
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g
(n)
1 = ∇Af(θ(n)) (4.47)
g

(n)
2 = ∇Bf(θ(n)) (4.48)
g

(n)
3 = ∇cf(θ(n)) (4.49)

(4.50)

and ϑ = (A,B, c,D,E, F,G). The differentials of g(n)
j (ϑ), j = 1, . . . , 7 are given by

T
g

(n)
1

(ϑ) ·H = −L1HD

((
IN −D(n)TD(n)

)−1
−
(
IN −DTD

)−1
)

+L1D
((

IN −DTD
)−1 (HT

DD +DTHD)
(
IN −DTD

)−1)
+L2

2 Σ∗
(
E−1HEE

−1) , (4.51)

T
g

(n)
2

(ϑ) ·H = −L1HD

((
IN −D(n)TD(n)

)−1
−
(
IN −DTD

)−1
)

+L3

2 Σ∗
(
F−1HFF

−1) (4.52)

+L4B
((

IN −BTB
)−1 (HT

BB +BTHB)
(
IN −BTB

)−1)
, (4.53)

T
g

(n)
3

(ϑ) ·H = L5

2 math∗
(
math(c)−1 math(hc) math(c)−1)

L6

2 math∗
(
(KIN −math(c))−1 math(hc) (KIN −math(c))−1) ,(4.54)

T
g

(n)
4

(ϑ) ·H = HA +HB −HD (4.55)

T
g

(n)
5

(ϑ) ·H = Σ(HA)−HE (4.56)

T
g

(n)
6

(ϑ) ·H = Σ(HB)−HF (4.57)

T
g

(n)
7

(ϑ) ·H = HG −math(hc), (4.58)

where H = (HA, HB , hc, HD, HE , HF , HG). The simplest proposal for solving the aug-
mented system (4.39) is to use Newton’s method. Newton’s method can be written as

ϑ(l+1) = ϑ(l) −H(l) (4.59)

with initial value ϑ(0) = (A(n), B(n), c(n), D(n), E(n), F (n), G(n)), where H(l) is the solution
of

Tg(n)(ϑ(l)) ·H = g(n), (4.60)

where g(n) = (g(n)
1 , g

(n)
2 , g

(n)
3 , 0, 0, 0, 0). A more appropriate method might be a projected

vection of Newton’s method, where (4.61) is replaced with

ϑ(l+1) = P+

(
ϑ(l) −H(l)

)
(4.61)

where P+ is a projection operator defined by

P+(A,B, c, D,E, F,G) = (A,B, c, P�(D), P�(E), P�(F ), P�(G)) (4.62)

and where Psucceq is the projection onto the cone of semidefinite matrices (with space di-
mensions implicitely defined by the matrix onto which it applies).



138 E. MULTIVARIATE GARCH CALIBRATION VIA BREGMAN DIVERGENCES

Performance improvement: BFGS and trust-region corrections
The speed of convergence of the calibration algorithm presented in the previous section can
be significantly increased by enriching the local model with a quadratic BFGS (Broyden-
Fletcher-Goldfarb-Shanno) type term and by only accepting steps of a certain quality mea-
sured by the ratio between the actual descent and that predicted by the local model (see [?]
and references therein).

The BFGS correction is introduced by adding to the local penalized model f̃ (n)(θ) defined
in (4.34), the BFGS Hessian proxy H(n) iteratively defined by:

H(n) = H(n−1) + y(n−1)y(n−1)T

y(n−1)T s(n−1) −
H(n−1)s(n−1)s(n−1)TH(n−1)

s(n−1)TH(n−1)s(n−1) .

with H(0) an arbitrary positive semidefinite matrix and where s(n−1) := θ(n) − θ(n−1) and
y(n−1) := ∇f(θ(n)) − ∇f(θ(n−1)). More specifically, we replace the local penalized model
f̃ (n)(θ) by

f̂ (n)(θ) := f̃ (n)(θ) + 1
2

(
θ − θ(n)

)T
H(n)

(
θ − θ(n)

)
,

whose gradient is obviously given by:

ĝ(n)(θ) := ∇f̂ (n)(θ) = ∇f̃ (n)(θ) +H(n)
(
θ − θ(n)

)
= g̃(n)(θ) +H(n)

(
θ − θ(n)

)
,

with g̃(n)(θ) = ∇f̃ (n)(θ) given by (4.36)–(4.38). Using this corrected local penalized model,
the solution of the optimization problem will be obtained by iteratively computing

θ(n+1) = argmin
θ∈RN×MN×MN ,

f̂ (n)(θ). (4.63)

This is carried out by finding the solution θ0 of the equation

ĝ(n)(θ0) = g̃(n)(θ0) +H(n)
(
θ0 − θ(n)

)
= 0. (4.64)

using a modified version of the Newton-Raphson iterative scheme spelled out in (??). Indeed,
it is easy to show that θ0 is the limit of the sequence {θ(n, k)}k∈N constructed exactly as in
Section ?? where the linear systems (??) are replaced by(

˜Tθ(n, k)g(n) + H̃(n)
)
· ˜
θ(n, k+1) = −vec

(
∇f̃ (n)(θ(n, k))

)
+ H̃(n) · θ̃(n) + ˜Tθ(n, k)g(n) · θ̃(n, k).

(4.65)

where ˜
θ(n, k+1) =

 vec(A(n, k+1))
vec(B(n, k+1))

c(n, k+1)

 and H̃(n) ∈ M2N2+N denotes the matrix associated

to H(n) that satisfies

vec
(
H(n) · θ

)
= H̃(n) ·

 vec(A)
vec(B)

c

 for any θ = (A,B, c).

Important remark: the Newton-Raphson method and the constraints. In Sec-
tion 4 we explained how the use of Bregman divergences ensures that at each iteration, the
extremum of the local penalized model satisfies the constraints of the problem. However, the
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implementation of the Newton-Raphson method that provides the root of the equation (4.64)
does not, in general, respect the constraints, and hence this point requires especial care.

In the construction of our optimization algorithm we have used the following prescription
in order to ensure that all the elements of the sequence {θ(n, k)}k∈N that converge to the root
θ0 satisfy the constraints: given θ(n, 1) = θ(n) (that satisfies the constraints) let θ(n, 2) be the
second value in the Newton-Raphson sequence obtained by solving the linear system (4.65).
If the value θ(n, 2) thereby constructed satisfies the constraints it is then accepted and we
continue to the next iteration; otherwise we set

θ(n, 2) := θ(n, 1) + θ(n, 2) − θ(n, 1)

2 (4.66)

iteratively until θ(n, 2) satisfies the constraints. Notice that by repeatedly performing (4.66),
the value θ(n, 2) hence constructed is closer and closer to θ(n, 1); since this latter point satisfies
the constraints, so will at some point θ(n, 2). This manipulation that took us from θ(n, 1) to
θ(n, 2) in a constraint compliant fashion has to be carried out at each iteration to go from
θ(n, k) to θ(n, k+1).

Trust-region correction: given an starting point θ0 we have given a prescription for the
construction of a sequence {θ(n)}n∈N that converges to the constrained minimum of minus
the quasi-loglikelihood f(θ) := −logL(z;θ). We now couple this optimization routine with
a trust-region technique. The trust-region algorithm provides us with a systematic method
to test the pertinence of an iteration before it is accepted and to adaptively modify the
strength of the local penalization in order to speed up the convergence speed. In order to
carefully explain our use of this procedure consider first the local model (4.33) in which all
the constants L1, . . . , L6 that manage the strength of the constraint penalizations are set to
a common value L. At each iteration of (4.63) compute the adequacy ratio ρ(n) defined
as

ρ(n) := f(θ(n))− f(θ(n−1))
f̂ (n)(θ(n))− f̂ (n)(θ(n−1))

which measures how close the descent in the target function in the present iteration is to
the one exhibited by the local model f̂ (n). The values that can be obtained for ρ(n) are
classified into three categories that determine different courses of action:

(a) Bad iteration ρ(n) < 0.01: there is too much dissimilarity between the local penalized
model and the actual target function. In this situation, the iteration update is rejected
by setting θ(n) = θ(n−1) and the penalization is strengthened by doubling the constant:
L = 2L

(b) Good iteration 0.01 6 ρ(n) 6 0.9: the iteration update is accepted and the constant
L is left unchanged.

(c) Very good iteration 0.9 6 ρ(n): the iteration update is accepted but given the
very good adequacy between the local penalized model and the target function we can
afford loosening the penalization strength by setting L = 1

2L as the constant that will
be used in the next iteration.

Preliminary estimation
As any optimization algorithm, the one that we just presented requires a starting point θ(0).
The choice of a good preliminary estimation of θ(0) is particularly relevant in our situation
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since the quasi-loglikelihood exhibits generically local extrema and hence initializing the
optimization algorithm close enough to the solution may prove to be crucial in order to
obtain the correct solution.

Given a sample z = {z1, . . . , zT }, a reasonable estimation for θ(0) can be obtained by
using the following two steps scheme:

1. Find a preliminary estimation of the conditional covariance matrices sequence
{H1, . . . ,HT } out of the sample z. This can be achieved by using a variety of existing non-
computationally intensive techniques. A non-exhaustive list is:

(i) Orthogonal GARCH model (O-GARCH): introduced in [?, ?, ?, ?]; this technique is
based on fitting one-dimensional GARCH models to the principal components obtained
out of the sample marginal covariance matrix of z.

(ii) Generalized orthogonal GARCH model (GO-GARCH) [?]: similar to O-GARCH, but in
this case the one-dimensional modeling is carried out not for the principal components
of z but for its image with respect to a transformation V which is assumed is assumed
to be just invertible (in the case of O-GARCH is also orthogonal) and it is estimated
directly via a maximum likelihood procedure, together with the parameters of the
one-dimensional GARCH models. GO-GARCH produces better empirical results than
O-GARCH but it lacks the factoring calibration feature that O-GARCH has, making
it more complicated for the modeling of large dimensional time series and conditional
covariance matrices.

(iii) Independent component analysis (ICA-GARCH): [?] this model is based on a signal
separation technique [?, ?] that turns the time series into statistically independent
components that are then treated separately using one dimensional GARCH models.

(iv) Dynamic conditional correlation model (DCC): introduced in [?, ?], this model proposes
a dynamic behavior of the conditional correlation that depends on a small number of
parameters and that nevertheless is still capable of capturing some of the features of
more complicated multivariate models. Moreover, a version of this model [?] can be
estimated consistently using a two-step approach that makes it suitable to handle large
dimensional problems.

Other method that is widely used in the context of financial log-returns is the one advocated
by Riskmetrics [?] that proposes exponentially weighted moving average (EWMA) models for
the time evolution of variances and covariances; this comes down to working with IGARCH
type models with a coefficient that is not estimated but proposed by Riskmetrics and that
is the same for all the factors.

2. Estimation of θ(0) out of z and H = {Ht}t∈{1,...,T} using constrained ordinary
least squares. If we have the sample z and a preliminary estimation of the conditional
covariances {Ht}t∈{1,...,T}, a good candidate for θ(0) = (A(0), B(0), c(0)) is the value that
minimizes the sum of the Euclidean norms st := ‖ht −

(
c +Aηt−1 +Bht−1

)
‖2, that is,

s(A,B, c; z, H) =
T∑
t=2

st(A,B, c; z, H) =
T∑
t=2
‖ht −

(
c +Aηt−1 +Bht−1

)
‖2,

subjected to the constraints (SC), (PC), (CC), and (KC). This minimum can be efficiently
found by using the Bregman divergences based method introduced in Sections 4 through 4
with the function s(A,B, c; z, H) replacing minus the log-likelihood. However, we emphasize
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that unlike the situation in the log-likelihood problem, the choice of a starting point in the
optimization of s(A,B, c; z, H) is irrelevant given the convexity of his function.

As a consequence of these arguments, the preliminary estimation θ(0) is obtained by
iterating (4.63) where in the local model (4.34) the map f is replaced by s. This scheme
is hence readily applicable once the gradient of s, provided by the following formulas, is
available:

∇As = 2
T∑
t=2

[
Aηt−1η

T
t−1 + cηTt−1 +Bht−1η

T
t−1 − htηTt−1

]
,

∇Bs = 2
T∑
t=2

[
chTt−1 +Aηt−1hTt−1 +Bht−1hTt−1 − hthTt−1

]
,

∇cs = 2
T∑
t=2

[
c +Aηt−1 +Bht−1 − ht

]
.

5 Appendix

Proof of Proposition 2.1

We start with the proof of (i) by using the following chain of equalities in which we use the
symmetric character of both A and math(m):

〈A+ diag(A),math(m)〉 = trace(Amath(m)) + trace(diag(A)math(m))

=
n∑

i,j=1
Aijmath(m)ji +Aijδijmath(m)ji

=
∑
i<j

Aijmath(m)ij +
∑
i>j

Aijmath(m)ij + 2
n∑

i=j=1
Aijmath(m)ij

= 2
∑
i>j

Aijmath(m)ij = 2
∑
i>j

Aijmσ(i,j) = 2
N∑
q=1

Aσ−1(q)mq

= 2〈vech(A),m〉,

as required. In order to prove (ii), note that the identity that we just showed ensures that

〈A,math(m)〉 = 2〈vech(A),m〉 − 〈diag(A),math(m)〉. (5.67)

At the same time

〈diag(A),math(m)〉 = trace(diag(A)math(m)) =
n∑
i=1

Aiimath(m)ii =
n∑
i=1

Aiimσ(i,i)

=
∑
i>j

diag(A)ijmσ(i,j) =
N∑
q=1

diag(A)σ−1(q)mq

=
N∑
q=1

vech(diag(A))qmq = 〈vech(diag(A)),m〉,
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which substituted in the right hand side of (5.67) proves the required identity. Finally,
expression (2.3) follows directly from (ii) and as to (2.4) we observe that

1
2 〈A+ diag(A),math(m)〉 = 1

2 trace((A+ diag(A))math(m))

= 1
2 trace(Amath(m)) + 1

2 trace(diag(A)math(m))

= 1
2 (trace(Amath(m)) + trace(Adiag(math(m))))

= 1
2 〈A,math(m) + diag(math(m))〉,

which proves (2.4). Regarding the operator norms we will just prove (2.5) and (2.6) as the
rest can be easily obtained out of these two combined with the expressions (2.3) and (2.4).
We start by noticing that for any nonzero A = (aij) ∈ Sn:

‖vech(A)‖2

‖A‖2
=
∑n
i>j=1 a

2
ij +

∑n
i=1 a

2
ii

2
∑n
i>j=1 a

2
ij +

∑n
i=1 a

2
ii

= 1−
∑n
i>j=1 a

2
ij

2
∑n
i>j=1 a

2
ij +

∑n
i=1 a

2
ii

.

Since the last summand in the previous expression is always positive we have that

‖vech‖op = sup
A∈Sn,A6=0

‖vech(A)‖
‖A‖

= 1,

the supremum being attained by any diagonal matrix (
∑n
i>j=1 a

2
ij = 0 in that case). Con-

sider now v = vech(A). Then:

‖math(v)‖2

‖v‖2
= ‖A‖2

‖vech(A)‖2 =
2
∑n
i>j=1 a

2
ij +

∑n
i=1 a

2
ii∑n

i>j=1 a
2
ij +

∑n
i=1 a

2
ii

= 1 +
∑n
i>j=1 a

2
ij∑n

i>j=1 a
2
ij +

∑n
i=1 a

2
ii

.

(5.68)
When we let A ∈ Sn vary in the previous expression, we obtain a supremum by considering
matrices with zeros in the diagonal (

∑n
i=1 a

2
ii = 0) and by choosing

∑n
i>j=1 a

2
ij → ∞, in

which case ‖A‖2
‖vech(A)‖2 → 2. Finally, as the map vech : Sn → RN is an isomorphism, (5.68)

implies that

‖math‖op = sup
v∈RN ,v 6=0

‖math(v)‖
‖v‖

= sup
A∈Sn,A6=0

‖A‖
‖vech(A)‖ =

√
2. �

Proof of Proposition 2.3
We just need to verify that (2.11) satisfies (2.12). Let k, l ∈ {1, . . . , n} be such that k > l.
Then,

(Avech(H))σ(k,l) =
∑
i>j

Aσ(k,l),σ(i,j)Hij =
∑
i>j

Aσ(k,l),σ(i,j)
Hij +Hji

2

= 1
2
∑
i>j

Aσ(k,l),σ(i,j)Hij + 1
2
∑
i>j

Aσ(k,l),σ(i,j)Hji

= 1
2
∑
i>j

Aσ(k,l),σ(i,j)Hij +
∑
i=j

Aσ(k,l),σ(i,j)Hij + 1
2
∑
i<j

Aσ(k,l),σ(j,i)Hij

=
∑
i>j

(Σ(A)kl)ijHij +
∑
i=j

(Σ(A)kl)ijHij +
∑
i<j

(Σ(A)kl)ijHij = trace(Σ(A)klH),

as required. �
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Proof of Proposition 2.4

We start with the following Lemma:

Lemma 5.1 Let A ∈ Mn2 . The orthogonal projections Pn2(A) ∈ Sn2 and Pnn2(A) ∈ Snn2

of A onto the spaces of symmetric and n-symmetric matrices with respect to the Frobenius
inner product (2.1) are given by:

Pn2(A) = 1
2(A+AT ) (5.69)

(Pnn2(A))kl = 1
4(Akl +ATkl +Alk +ATlk), (5.70)

for any block (Pnn2(A))kl of Pnn2(A), k, l ∈ {1, . . . , n}.

Proof. In order to prove (5.69) it suffices to check that 〈A − Pn2(A), B〉 = 0 for any
B ∈ Sn2 . Indeed,

〈A− Pn2(A), B〉 = trace(AB)− 1
2 trace(AB)− 1

2 trace(ATB) = 0.

The result follows from the uniqueness of the orthogonal projection. Regarding (5.70) we
check that 〈A − Pnn2(A), B〉 = 0, for any B ∈ Snn2 . Given that for any k, l ∈ {1, . . . , n} the
block (AB)kl is given by (AB)kl =

∑n
r=1AkrBrl we have

〈A− Pnn2(A), B〉 = trace(AB)− trace(Pnn2(A)B) =
n∑
i=1

trace(AB)ii − trace(Pnn2(A)B)ii

=
n∑

i,j=1
trace(AijBji)− trace((Pnn2(A))ijBji) =

n∑
i,j=1

trace(AijBji)

−
n∑

i,j=1

[
1
4 trace(AijBji) + 1

4 trace(ATijBji) + 1
4 trace(AjiBji) + 1

4 trace(ATjiBji)
]

= 0,

where we used that, due to the n-symmetricity of B trace(ATijBji) = trace(BTjiAij) =
trace(AijBji) and

n∑
i,j=1

trace(AjiBji) = trace(AjiBij) = trace(AijBij).

Analogously
∑n
i,j=1 trace(ATjiBji) = trace(AijBij). �

Now, in order to prove Proposition 2.4, consider A ∈MN and B ∈Mn2 . Since the image
of the map Σ lies in S2

n2 we have that 〈B − Pnn2(B),Σ(A)〉 = 0 and hence

〈Σ∗(B), A〉 = 〈B,Σ(A)〉 = 〈Pnn2(B)+B−Pnn2(B),Σ(A)〉 = 〈Pnn2(B),Σ(A)〉 = 〈Σ∗(Pnn2(B)), A〉.
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This identity allows us to restrict the proof of (2.4) to the n-symmetric elements B ∈ Snn2 .
Hence let B ∈ Snn2 and let σ̃ be the extension of the map σ defined in (2.2). Then,

〈Σ(A),B〉 =
n∑

k,l=1
〈Σ(A)kl,Bkl〉 =

n∑
k,l=1

trace(Σ(A)klBTkl) =
n∑

k,l,i,j=1
(Σ(A)kl)ij(Bkl)ij

=
n∑

k,l,i,j=1

1
2

[
A
σ̃(k,l),σ̃(i,j) +A

σ̃(k,l),σ̃(i,j)δij

]
(Bkl)ij

=
n∑

k,j=1

 n∑
i<j

1
2Aσ̃(k,l),σ(j,i)(Bkl)ji +

n∑
i=j=1

A
σ̃(k,l),σ(i,j)(Bkl)ij + 1

2

n∑
i>j

A
σ̃(k,l),σ(i,j)(Bkl)ij


=

n∑
k,j=1

n∑
i>j

A
σ̃(k,l),σ(i,j)(Bkl)ji

=
n∑
i>j

[
n∑
k<l

Aσ(l,k),σ(j,i)(Blk)ji +
n∑

k=l=1
Aσ(k,l),σ(i,j)(Bkl)ij +

n∑
l<k

Aσ(k,l),σ(i,j)(Bkl)ij

]

=
n∑
i>j

 n∑
k>l

Aσ(k,l),σ(i,j)(Bkl)ij −
n∑

k=l=1
Aσ(k,l),σ(i,j)(Bkl)ijδkl


=

N∑
p,q=1

[
2Ap,qBp,q −Ap,qBp,qδpr1(σ−1(p)),pr2(σ−1(p))

]
= trace(2ABT −AB̃T ) = 〈A, 2B − B̃〉,

which proves the statement. We emphasize that in the fourth and sixth equalities we used
the n-symmetry of B. The equality (2.14) is proved in a straightforward manner by verifying
that Σ̃−1 ◦Σ = IMN and Σ ◦ Σ̃−1 = ISn

n2
using the defining expressions (2.2) and (2.14). �

Proof of Proposition 3.1
Using the property of the operator Σ stated in Proposition 2.3, the second equality in (3.15)
can be rewritten as:

vech(Ht) = vech(math(c)) +Avech(zt−1zTt−1) +Bvech(Ht−1)
= vech(math(c)) + vech(Σ(A) • (zt−1zTt−1)) + vech(Σ(B) •Ht−1),

or, equivalently:

Ht = math(c) + Σ(A) • (zt−1zTt−1) + Σ(B) •Ht−1.

In view of this expression and in the terms of the statement of the proposition, it suffices to
show that both Σ(A) • (zt−1zTt−1) and Σ(B) •Ht−1 are positive semidefinite provided that
Ht−1 is positive semidefinite. Regarding Σ(A) • (zt−1zTt−1), consider v ∈ Rn2 . Then

〈v,Σ(A) • (zt−1zTt−1)v〉 =
n2∑
i,j=1

vi(Σ(A) • (zt−1zTt−1))ijvj =
n2∑
i,j=1

vi trace(Σ(A)ij(zt−1zTt−1))vj

=
n2∑
i,j=1

vi trace(zTt−1Σ(A)ijzt−1)vj =
n2∑

i,j,k,l=1
viz

T
t−1,k(Σ(A)ij)klzt−1,lvj

= 〈v⊗ zt−1,Σ(A)(v⊗ zt−1)〉,
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which is greater or equal to zero due to the positive semidefiniteness hypothesis on Σ(A).
In the last equality we used (2.10).

As to Σ(B) •Ht−1, we start by noticing that Ht−1 = Et−1[zt−1zTt−1] and hence Σ(B) •
Ht−1 = Σ(B) • Et−1[zt−1zTt−1]. This equality, as well as the linearity of the conditional
expectation allows us to use virtually the same argument as above. Indeed, for any v ∈ Rn2

〈v,Σ(B) •Ht−1v〉 =
n2∑
i,j=1

vi trace(Σ(B)ijEt−1[zt−1zTt−1])vj =
n2∑
i,j=1

Et−1[vi trace(Σ(B)ijzt−1zTt−1)vj ]

= Et−1[〈v⊗ zt−1,Σ(B)(v⊗ zt−1)〉],

which is greater or equal to zero due to the positive semidefiniteness hypothesis on Σ(B).
�

Proof of Proposition 3.2

We start by noticing that the VEC(1,1) model is by construction a white noise and hence
it suffices to establish the stationarity of the variance. Indeed, for any t, h ∈ N we compute
the autocovariance function Γ:

Γ(t, t+ h) := E
[
ztzTt+h

]
= E

[
Et

[
H

1/2
t εtεt+hH

1/2
t+h

]]
= E

[
H

1/2
t Et [εtεt+h]H1/2

t+h

]
= δh0E

[
H

1/2
t H

1/2
t+h

]
. (5.71)

Consequently, we just need to prove the existence of a solution for which Γ(t, t) = E [Ht] or,
equivalently E[ht], is time independent. We first notice that

E[ht] = E
[
c +Aηt−1 +Bht−1

]
= E [c +Aht−1 +Bht−1]+AE

[
ηt−1 − ht−1

]
= E [c +Aht−1 +Bht−1] ,

since AE
[
ηt−1 − ht−1

]
= 0 by (5.71). Now, for any k > 0

E[ht] = c + (A+B)E [ht−1] =
k∑
j=0

(A+B)jc + (A+B)k+1E [ht−k−1] .

If all the eigenvalues of A + B are smaller than one in modulus then (see, for example [?,
Appendix A.9.1])

k∑
j=0

(A+B)jc −−−−→
k→∞

(IN −A−B)−1c, and (A+B)k+1E [ht−k−1] −−−−→
k→∞

0,

in which case E[ht] is time independent and

Γ(0) = math(E[ht]) = math((IN −A−B)−1c).

The sufficient condition in terms of the top singular value σmax(A + B) of A + B is a
consequence of the fact that (see for instance [?, Theorem 5.6.9]) |λ(A+B)| 6 σmax(A+B),
for any eigenvalue λ(A+B) of A+B. �
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Proof of Proposition 3.3
The chain rule implies that for any perturbation ∆ in the θ direction

dθlt ·∆ = dHt lt(Ht(θ)) · TθHt ·∆ = 〈∇Ht lt, TθHt ·∆〉 = 〈T ∗θHt · ∇Ht lt,∆〉,

which proves that ∇θlt = T ∗θHt · ∇Ht lt and hence (3.22) follows. We now establish (3.23)
by showing separately that

∇Ht log(det(Ht)) = H−1
t and ∇Ht

(
−1

2zTt H−1
t zt

)
= 1

2
(
H−1
t ztzTt H−1

t

)
. (5.72)

In order to prove the first expression we start by using the positive semidefinite character
of Ht in order to write Ht = V DV T . V is an orthogonal matrix and D is diagonal with
non-negative entries; it has hence a unique square root D1/2 that we can use to write
Ht = V DV T = (V D1/2)(V D1/2)T . Let δ ∈ R and ∆ ∈ Sn. We have

log(det(Ht + δ∆)) = log(det((V D1/2)(V D1/2)T + δ∆))
= log(det((V D1/2)(In + δ(D−1/2V T )∆(V D−1/2))(V D1/2)T ))
= log(det(V D1/2) det(In + δ(D−1/2V T )∆(V D−1/2)) det(V D1/2)T )
= log(det((V D1/2)(V D1/2)T ) det(In + δ(D−1/2V T )∆(V D−1/2)))
= log(det(Ht) det(In + δΞ)),

with Ξ := (D−1/2V T )∆(V D−1/2). This matrix is symmetric and hence normal and diago-
nalizable; let {λ1, . . . , λn} be its eigenvalues. We hence have that

dHt ·∆ = d

dδ

∣∣∣∣
δ=0

log(det(Ht + δ∆)) = d

dδ

∣∣∣∣
δ=0

log(det(Ht)) + log
(

n∏
i=1

(1 + δλi)
)

= d

dδ

∣∣∣∣
δ=0

n∑
i=1

log(1 + δλi)

=
n∑
i=1

λi = trace((D−1/2V T )∆(V D−1/2)) = trace((V D−1/2)(D−1/2V T )∆) = trace(H−1
t ∆),

which proves ∇Ht log(det(Ht)) = H−1
t . Regarding the second expression in (5.72) we define

f(Ht) := − 1
2zTt H−1

t zt and note that

df(Ht) ·∆ = d

dt

∣∣∣∣
t=0
− 1

2zTt (Ht + t∆)−1zt = d

dt

∣∣∣∣
t=0
− 1

2zTt (In + tH−1
t ∆)−1H−1

t zt

= d

dt

∣∣∣∣
t=0
− 1

2zTt (In + tH−1
t ∆)−1H−1

t zt = d

dt

∣∣∣∣
t=0
− 1

2

∞∑
k=0

(−1)ktkzTt (H−1
t ∆)kH−1

t zt

= 1
2zTt H−1

t ∆H−1
t zt = 1

2 trace(H−1
t ztzTt H−1

t ∆),

which implies that ∇Htf = 1
2
(
H−1
t ztzTt H−1

t

)
, as required.

In order to prove (3.24)–(3.26) we notice that the second equation in (3.15) can be
rewritten using the vech and math operators as

Ht = math
(
c +Aηt−1 +Bvech(Ht−1)

)
. (5.73)

We now show (3.24). Let v ∈ RN and ∆ ∈ Sn arbitrary. Identity (5.73) and the linearity of
the various mappings involved imply that TcHt ·v = math

(
c +Aηt−1 +Bvech(TcHt−1 · v)

)
and hence

〈T ∗cHt ·∆,v〉 = 〈∆, TcHt · v〉 = 〈∆,math
(
c +Aηt−1 +Bvech(TcHt−1 · v)

)
〉

= 〈math∗(∆) + T ∗cHt−1 · vech∗(BTmath∗(∆)),v〉.
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The proof of (3.25) follows a similar scheme. By (5.73) we have that for any M ∈MN :

TAHt ·M = math
(
Mηt−1 +Bvech(TAHt−1 ·M)

)
. (5.74)

Consequently, for any ∆ ∈ Sn

〈T ∗AHt ·∆,M〉 = 〈∆, TAHt〉 = 〈∆,math
(
Mηt−1 +Bvech(TAHt−1 ·M)

)
〉

= 〈math∗(∆) · ηTt−1 + T ∗AHt−1 · vech∗(BTmath∗(∆)),∆〉.

Finally, (3.26) is proved analogously replacing (5.74) by its B counterpart, namely,

TBHt ·M = math (Mvech(Ht−1) +Bvech(TBHt−1 ·M)) . �

Proof of Proposition 3.4

An inductive argument using (3.24)–(3.26) guarantees that for any t, k ∈ N, k 6 t

TcH
∗
t ·∆ =

k∑
i=1

Bi−1Tmath∗(∆) + T ∗cHt−k · vech∗(Bk Tmath∗(∆)), (5.75)

T ∗AHt ·∆ =
k∑
i=1

Bi−1Tmath∗(∆) · ηTt−i + T ∗AHt−k · vech∗(Bk Tmath∗(∆)), (5.76)

T ∗BHt ·∆ =
k∑
i=1

Bi−1Tmath∗(∆) · vech(Ht−i)T + T ∗BHt−k · vech∗(Bk Tmath∗(∆)),(5.77)

The first expression with k = t and the norm estimate (2.8) imply that

‖TcH
∗
t ·∆‖ =

∥∥∥∥∥
t∑
i=1

Bi−1Tmath∗(∆)

∥∥∥∥∥ 6 √2
t∑
i=1
‖B‖i−1

op ‖∆‖ 6
√

2‖∆‖
1− ‖B‖op

. (5.78)

We now use (5.75) for an arbitrary k as well as (2.7) and (5.78) and write

‖(T ∗cHt − T ∗cHk
t ) ·∆‖ = ‖T ∗cHt−k · vech∗(Bk Tmath∗(∆))‖

6 ‖T ∗cHt−k‖op‖vech∗‖op‖B‖kop‖math
∗‖op‖∆‖ 6

2‖∆‖‖B‖kop
1− ‖B‖op

. (5.79)

The computability constraint (CC) implies that ‖B‖op 6 1 − ε̃B and hence ‖T ∗cHt −
T ∗cH

k
t ‖op 6 2(1 − ε̃B)k/ε̃B . A straightforward computation shows that if we want this

upper bound for the error to be smaller than a certain δ > 0, that is 2(1 − ε̃B)k/ε̃B < δ
then it suffices to take

k >
log
(
ε̃Bδ

2

)
log(1− ε̃B) . (5.80)

We now tackle the estimation of the truncation error in mean in the A variable. Firstly,
we recall that by (5.71) and in the presence of the stationarity constraint E[ηt] = E[ht] =
(IN − A− B)−1c. The first consequence of this identity is that if we take the expectations
of both (5.76) and (5.77) we see that ‖E [T ∗AHt ·∆] ‖ and ‖E [T ∗BHt ·∆] ‖ are determined by
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exactly the same recursions and hence the error estimations for both variables are going to
be the same. Also, by (5.76)

‖E [T ∗AHt ·∆] ‖ =

∥∥∥∥∥
t∑
i=1

Bi−1Tmath∗(∆) · E[ηTt−i]

∥∥∥∥∥ 6 √2‖∆‖‖E[ht]‖
t∑
i=1
‖B‖i−1

op

6
√

2‖∆‖‖(IN −A−B)−1c‖/ε̃B 6
√

2‖∆‖‖c‖/εAB ε̃B . (5.81)

The last inequality is a consequence of the constraints (SC) and (PC). Indeed,

‖(IN −A−B)−1c‖ =

∥∥∥∥∥
∞∑
i=0

(A+B)ic

∥∥∥∥∥ 6
∞∑
i=0
‖(A+B)‖iop ‖c‖ 6

∞∑
i=0

(1− εAB)i‖c‖ = ‖c‖
εAB

.

Now, by (5.76) and (5.81),

‖E
[
(T ∗AHt − T ∗AHk

t ) ·∆
]
‖ = ‖E

[
T ∗AHt−k · vech∗(Bk Tmath∗(∆))

]
‖

6 ‖T ∗AHt−k‖op‖vech∗‖op‖B‖kop‖math
∗‖op‖∆‖ 6

2‖∆‖‖c‖
εAB ε̃B

(1− ε̃B)k, (5.82)

which proves (3.28). If we want this upper bound for the error to be smaller than a certain
δ > 0, we have to make the number of iterations k big enough so that

2‖c‖
εAB ε̃B

(1− ε̃B)k < δ that is (1− ε̃B)k = δεAB ε̃B
2‖c‖ 6

δεAB ε̃B
2εc

.

This relation, together with (5.80) proves the estimate (3.30). �



Chapter F

Mixtures of GAMs for habitat
suitability analysis with overdispersed
presence/absence data

with David Pleydell

Abstract

This paper proposes a new approach to species distribution modelling based on un-
supervised classification via a finite mixture of GAMs incorporating habitat suitability
curves. An tailored EM algorithm is proposed for computing maximum likelihood es-
timates. Several submodels incorporating various parameter constraints are explored.
Simulation studies confirm that under certain constraints, the habitat suitability curves
are recovered with good precision. The method is also applied to a set of real data con-
cerning presence/absence of observable small mammal indices collected on the Tibetan
plateau. The resulting classification was found to correspond to species-level differences
in habitat preference described in previous ecological work.

1 Introduction

Understanding variations in species distribution has remained one of the key challenges in
ecology since its conceptualisation as a discipline [?, ]. It has been natural that ecologists
should seek to model species distribution and early models date from the nineteen twen-
ties [?, ]. Uses of species distribution models (SDMs) in conservation biology include [?,
]: quantification of environmental niches for species; testing biogeographical, ecological and
evolutionary hypotheses; invasive species monitoring; impact assessment for climatic change;
prediction of unsurveyed sites for rare species; management support for species reintroduc-
tion and recovery; conservation planning; species assemblage modelling; classification of
biogeographic or ecogeographic regions; calibration of ecological distance between patches
in meta population or gene flow models.

Several techniques have been employed for SDMs including: generalised linear models
(GLMs) and their flexible extension generalised additive models (GAMs) ([?], [?], [?]); tree
based classification techniques [?, ]; ordination [?, ]; eco-niche factor analysis [?, ]; Bayesian
approaches [?, ]; neural networks [?, ] and support vector machines [?, ]. Ecologists have
long recognised the bias introduced into SDMs when data are overdispersed with respect to
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a simple parametric model such as can arise when strong spatial dependence exists between
observations for example ([?], [?], [?]) but the proportion of articles published in ecological
journals in which these biases are reasonably corrected for remains low. One problem, partic-
ularly in the spatial context, has been the lack of available tools for analysing overdispersed
binary or Poisson data. This situation has been slowly changing since the seminal work of
[?] who introduced the geostatistical concept of Gaussian random fields to the GLM litera-
ture to account for spatially smooth sources of overdispersion. Since then appropriate tools
have become increasingly more available: the geoRglm library [?, ] for Bayesian analysis of
GLMs with geostatistical priors and the MGCV library for fitting generalised additive mixed
models with either geostatistical or spline based random effects using penalised likelihood
[?, ] are just two examples of what is now available for R [?, ].

A recent review (with online R code) of available techniques for the estimation of Gaus-
sian random fields within a GLM for spatially dependant Bernoulli data [?, ] suggested that
the estimation of spatially structured random effects could be reasonable if the underlying
spatial structure was simple relative to the sampling density of the points. However when
each curve and bend in a complex hidden surface was sparsely sampled then attempts to
estimate the hidden surface proved less successful. The estimation of complicated hidden
spatial structure from Bernoulli samples is now recognised to be highly data demanding
suggesting that these models might be unreasonable in certain practical situations where
logistical constraints limit the quantity of available data. We could ask the question ”is it
always necessary to estimate continuous spatial random effects plus three or four variogram
parameters for binary ecological data sets?” or even ”are hidden spatial structures in eco-
logical data sets always smooth?”. If the answers to these questions is ”no” then perhaps
we can simplify and reduce the number of random effects and parameters that we expect to
estimate, thereby reducing the demands we place on our datasets. In this paper we attempt
to do this using a mixture model approach where the usual single GAM with n continuous
random effects might be replaced by say K GAMs. Such a simplification would require a
small number of parameters relative to n especially when further constraints between the
mixture components are imposed.

Note that here we do not attempt to explicitly model sources of overdispersion. The
mixture model approach simply provides a general solution to account for various sources
of overdispersion. According to [?, ] mixture components ”correspond to particular zones of
support of the true distribution” and thus provide local representions of the likelihood func-
tion. While these local supports ”do not always posses an individual significance or reality
for the particular phenomenon modelled”, interpretability can be possible in situations such
as discrimination or clustering. This is the case for our model and a real data example is
section 5 is found to provide a very natural ecological interpretation.

It is worth noting that the simplification we propose is not necessarily made at the ex-
pense of physical interpretation. In a given ecological context a small number of discrete
random effects could be a reasonable model for hidden spatial structure or other sources
of overdispersion. For example, if the species in question lived in colonies one GAM could
represent within colony densities and a second GAM could represent non-colony densities.
Similarly, if the observations in question materialised from numerous different processes then
a mixture model approach could be expected to outperform it’s K = 1 counterpart. The
most pertinent number of random effects K could then be identified using model selection
techniques. Herein lies an additional advantage of our approach, our GAM utilises a simple
transformation on covariates and so the parameters for our mixture model can be estimated
by maximum likelihood. For highly flexible models such as GAMs with splines or random
fields ML is known to be prone to over fitting and penalisations are often imposed to com-
pensate. Since we use a mixture of simple GAMs with relatively limited flexibility we can



2. A GENERALISED ADDITIVE MODEL FOR HABITAT SUITABILITY IDENTIFICATION151

use maximum likelihood directly without penalisation. For model comparison statistics such
as Akaike Information Criterion (AIC) [?, ] are therefore readily available.

In the current paper we implement this proposed model simplification in a habitat suit-
ability identification context. Habitat suitability curves are used to identify non-linear
species responses along environmental gradients ([?],[?],[?]). The concept is to identify a
curve which transforms a continuous environmental variable to a scale more relevant to the
distribution of the species in question thereby giving an index of habitat suitability.

2 A generalised additive model for habitat suitability
identification

GAMs for habitat suitability detection

Generalised additive models (GAMs) have become popular tools in ecology due to their
ability to detect non-linearities. A recent review of GAMs can be found in [?, ]. The usual
approach is to add smooth functions of covariates to the linear predictor of a generalised
linear model [?, ]. We take the simple case,

g(µi) = β0 + β1H(xi)

where µ ≡ E[Y ], Y follows some distribution of the exponential family, β0 is the intercept
and H is a smooth function of covariate x. Perhaps the most common choice for H are
spline functions [?, ] which are highly flexible. Here however we use a much simpler habitat
suitability curve to detect a single region within an environmental gradient within which
a given species is found in greatest abundance. We avoid the term ”niche detection” since
we work exclusively in the univariate case in the interest of maintaining simplicity. In our
GAM H is defined as the unimodal transformation

Hα1,α2(x) =

(
x−l
u−l

)α1(
u−x
u−l

)α2(
m−l
u−l

)α1(
u−m
u−l

)α2 .

This transformation is a flexible uni-modal mapping from the range [l, u] ⊂ R to [0, 1] and
is intended to be flexible enough to identify the most pertinent subset of x corresponding to
those areas where a species may be found in greatest density. The parameters α1 and α2 may
take values in (0,∞) and Hα1,α2(l) = Hα1,α2(u) = 0. The value m = (uα1 + lα2)/(α1 +α2)
locates the mode, i.e. x = m maximises H(x) such that H(x = m) = 1. As {α1, α2} → (0, 0)
then Hα1,α2(x) → 1 ∀ x ∈ (l, u) giving a uniform mapping in the limit. As {α1, α2} →
(∞,∞) then

∫ u
l
Hα1,α2(x)dx→ 0.

Transformation (2.1) can be re-parameterised in terms of α1 (α from here on) and m.
This has the advantage over (2.1) of greater orthogonality between parameters plus a more
intuitive interpretation of m. The new parameterisation is thus

Hα,m(x) =
( x− l
m− l

)α( u− x
u−m

)αu−mm−l
.

In what follows x represents a continuous index of some environmental gradient such as
vegetation biomass, soil moisture, mean daily temperature etc. In practice such an index
might be mapped across the study area in raster format.
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The mixture of GAMs model
We will now introduce our mixture of GAMs. We will assume that given the vector
(H(x1), . . . ,H(xn)) each observation yi ∈ {1, 0} corresponding to presence/absence, is sam-
pled from the distribution

fmix(yi) =
K∑
k=1

pkfik(yi),

where
fik(yi) = πyiik(1− πik)1−yi

and

πik =
exp

(
β0k + β1kHαk,mk(xi)

)
1 + exp

(
β0k + β1kHαk,mk(xi)

) .
The unknowns in this model which we will have to estimate for each are k ∈ {1, . . . ,K},

• the probability weights pk s.t.
∑K
k=1 pk = 1

• the reals β0k ∈ R and β1k ∈ R+

• the parameters (αk,mk) of the functions Hαk,mk which map [l, u] to [0, 1] and linearise
the influence of a bounded continuous index of environmental variation.

The goal of this model is to split the sample into K classes of data with similar statistical
properties. It is expected that these classes will reflect to a certain extent the sources of
overdispersion within the observed phenomenon at a reasonable computational cost, i.e.
without being over demanding of the information available in the data. This formulation
is clearly not spatially explicit and so prediction of hidden spatial structure at unsampled
locations is not a feature of our model. This is a further step that we will investigate in
future work.

3 Estimation and EM algorithm

We now address the question of estimating the unknown parameters of our mixture model.
The estimation of the parameters can be obtained using the maximum likelihood approach
for which the EM algorithm is well tailored.

Maximum likelihood
We now enter the details of the maximum likelihood approach for estimation in our mixture
model. The observed data are couples (yi, xi), i = 1, . . . , n. To this sample, we associate a
sequence of couples (Yi, Xi) of independent random variables, i = 1, . . . , n such that the value
of the conditional likelihood taken at (y1, . . . , yn) given the event {X1 = x1, . . . , Xn = xn}
may be written as

Ly1,...,yn(θ) =
n∏
i=1

K∑
k=1

pkfik(yi),

with the fik given by formula (2.1) and where θ is the vector of unknown parameters, i.e.

θ = (p1, . . . , pK , β01, . . . , β0K , β11, . . . , β1K , α1, . . . , αK ,m1, . . . ,mK).



3. ESTIMATION AND EM ALGORITHM 153

The vector of parameters θ can be estimated using the maximum likelihood procedure, i.e.

θML ∈ argmaxθ∈ΘLy1,...,yn(θ),

where Θ is the domain of the likelihood function satisfying

Θ ⊂
{
θ = (p1, . . . , pK , β01, . . . , β0K , β11, . . . , β1K , α1, . . . , αK ,m1, . . . ,mK)

∈ [0, 1]K × RK × [0,∞)K × (0,∞)K × (u, l)K |
∑K
k=1 pk = 1

}
.

The domain may also incorporate various additional restrictions on the model such as the
possible equalities of certain parameters between classes.

There now remains to notice that a vector θML maximizing the conditional likelihood
cannot be obtained via a closed form formula. Thus, an iterative algorithm has to be used
and in the following section we describe a version of the well known EM algorithm for this
purpose.

The EM algorithm
Description of the method

The EM algorithm is a well known conceptual scheme allowing to build recursive procedures
that converge towards a set of vectors maximizing the likelihood, or more appropriately
here, the conditional likelihood over the domain Θ. EM has been proposed in its present
general form by Dempster, Laird and Rubin in [?, ], hence encompassing several specialised
procedures that had been developed in various applications of the maximum likelihood
principle. The main reference on EM algorithms, their variants and their applications is the
book [?, ].

The idea underlying the EM algorithm is the following. It is expected that if more
information on the observations were available, then optimising the likelihood could be
performed easily. The main additional information that we could have in the ecological
setting is the class of the mixture to which each observation belongs.

If we denote by Zi the random index of the mixture component from which observation Yi
was drawn, the so-called complete data is actually given by the triples (Y1, Z1, X1), . . . , (Yn, Zn, Xn).
One still has to keep in mind that the Zi’s are actually unobserved and that their only con-
tribution is to provide the right framework underlying the EM procedure. The complete
likelihood associated to the complete data is given by

Lc(Y1,Z1),...,(Yn,Zn)(θ) =
n∏
i=1

pZiπ
Yi
iZi

(1− πiZi)(1−Yi),

where πiZi is given by (2.1) above. One of the main features of the complete likelihood
is that it can usually be optimised in a easier fashion than the plain likelihood. This is the
exact reason why statisticians have been using the EM approach.

E Step. Assume that we have a current value of θ, denoted hereafter by θ̃. Then, one
unreachable but tempting goal would be to optimise the complete likelihood. Now here is the
crux: the Zi’s are not observed. One sensible way to approximate logLc(Y1,Z1),...,(Yn,Zn)(θ)
then is to take its minimum mean squared error estimator among functions of the Yi’s only.
It is well known that the minimum mean squared error estimator is given by the conditional
expectation given the Yi’s assuming that the underlying probability is specified by θ̃, i.e.
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Q(θ, θ̃) = Eθ̃

[
logLc(Y1,Z1),...,(Yn,Zn)(θ) | Y1 = y1, . . . , Yn = yn

]
.

In the case of our model, this conditional expectation is quite simple to obtain. Indeed,
one only needs to know the values of the conditional probabilities for each possible value
of Zi, i = 1, . . . , n given Y1, . . . , Yn under the model specified by θ̃. Using Bayes’ rule, one
obtains

Pθ̃(Zi = k | Yi = yi) = fik(yi; θ̃)p̃k∑K
k′=1 fik′(yi; θ̃)p̃k′

.

Therefore, we obtain that

Q(θ, θ̃) =
n∑
i=1

K∑
k=1

(
log(pk) + yi log πik + (1− yi) log(1− πik)

)
Pθ̃(Zi = k | Yi = yi).

M Step. The next step is the choice of the next iterate, θnext. The idea for obtaining
a sensible candidate is quite simple: just maximise the approximation of the complete log-
likelihood conditionally on the observations y1, . . . , yn, i.e.

θnext ∈ argmaxθ∈ΘQ(θ, θ̃).

Finally the EM algorithm consists of repeating these two steps recursively until the
increase of the likelihood obtained between two successive iterates is judged sufficiently
small. In the following, we will write the sequence of EM iterates (θ(ν))ν∈N.

Implementation details

Given iterate θ(ν) at step ν, the computation of the next iterate is obtained by solving the
first order optimality condition

∇Q(θ, θ(ν)) = 0,

where ∇ is the gradient with respect to the vector of variables θ. Cancelling the partial
derivatives with respect to the pk’s is easy and gives the same result as in any mixture
model of this type, i.e.

p
(ν+1)
k =

∑n
i=1 τ

(ν)
ik∑n

i

∑K
k′=1 τ

(ν)
ik′

= 1
n

n∑
i

τ
(ν)
ik

where τ (ν)
ik is the posterior probability that Zi = k given Yi = yi under the model parametrised

by the current estimate θ̃. More explicitly,

τ
(ν)
ik = Pθ(ν)(Zi = k | Yi = yi) =

f(yi | Zi = k; θ(ν))p(ν)
k∑K

k′=1 f(yi | Zi = k′; θ(ν))p(ν)
k′

The computation is less straightforward for other components of θ. The gradient of Q
with respect to all the other components has been calculated and is given in the Appendix
below. The expression for the gradient should convince that no closed form formula can
be obtained for the solution of (3.-36). With this respect, our situation is different from
the case of Gaussian mixtures for instance where the successive iterations can be computed
by hand. Therefore, a computational approach has to be chosen. We used the L-BFGS-B
version of function optim in the software R to perform this task.
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Parameter equality constraints.
The model described thus far is highly flexible. Depending on the application it can be
desirable to impose further constraints. Here we consider the modifications required to
ensure that certain parameters in θ are constrained to be equal. For example, if θ1, . . . , θK
are parameter sets for models 1, . . . ,K respectively, a user might impose that θ1, . . . , θK are
equivelent with the exception that β01 6= · · · 6= β0K which would provide a mixture model
representation of a random effects on intercept model. Alternatively, a user might impose
that θ1, . . . , θK are equivelent with the exception that β11 6= · · · 6= β1K providing what we
call a random effects on β1 model. An example of such a model in a spatial statistics context
(i.e with a spatial prior) is known as geographically weighted regression.

To impose such equality constraint on any subset of parameters S ⊂ θ it is sufficient to
first impose equivalence in the starting values such that s(1)

e = s∗(1) ∀ Se ∈ S and thereafter
ensure that the L-BFGS-B is pressented with a gradient vector in which the derivative of Q
w.r.t Se (see Appendix) is replaced by the mean derivative w.r.t all elements of S, i.e.

∂Q

∂Se
= 1
|S|

∑
Se′∈S

∂Q

∂Se′

In what follows we denote as θfree ⊂ θ : V ∈ θ ⇒ V ∈ θfree the subset of free parameters.
Put another way, θfree is equivelent to θ without those elements of θ which are redundant
under the model constraints, pK being such a parameter.

We now describe two simulation studies and a real data application of our mode. The
first simulation study (4) investigates identifiability under the random effect on intercept
parameterisation. The second simulation study (4) investigates the effect of sample size
on the precision of parameter estimates under the random effect on β1 parameterisation.
The real data analysis (5) compares four different parameterisations in the analysis of small
mammal indices data collected on the Tibetan plateau, Sichuan Province, China.

4 Simulation studies

First study
Description

A dataset was simulated under the following parameters: K = 2, n = 1000, pk = 1
K , β =

{β0, β1} = {−4,−2, 2, 2}, l = −1, u = 1, α = {10, 10},m = {0.1, 0.1}. The covariate x was
simulated over a 100 × 100 pixel raster grid using a zero-mean Gaussian Random Field
(GRF) [?, ], that is, pixel values were drawn from a multivariate Gaussian distribution with
covariance between any two pixels si and sj defined as a function of the vector −−→sisj . We
used the so called Gaussian covariance function

Σi,j = σ2
0 + σ2

s exp
(−||si − sj ||22

a

)
with nugget (σ2

0), sill (σ2
s) and range (a) set to 0, 5 and 15 (pixels) respectively. This

simulation was performed in R using the RandomFields library (http://cran.r-project.org/).
The realisation of the GRF was subjected to a linear rescaling so that it was bounded by l
and u (Fig. F.1 (a)).

To simulate localised clustering of the ”hidden” random effect a second GRF was simu-
lated as above but with a = 5 (Fig. F.1 (c)). The 50% quantile of this GRF was used to
partition the grid into two classes Z = 1 and Z = 2 (Fig. F.1 (d)). A stratified sampling
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was then implemented with n/K sampling locations simulated at random within each of
the two classes. An observation yi was simulated at each location i in the knowledge of the
parameters, covariate and z (Fig. F.1 (f)). For the purpose of parameter estimation zis
were assumed unknown and all parameters were constrained to be shared by models 1 and
2 with the exception of the intercepts and mixing probabilities.

The EM algorithm was used to try to re-capture the true parameter values. This
was performed using fifty sets of starting values obtained at random under the follow-
ing rules: pstart ∝ Unif(0, 1); βstart0 ∼ Unif(−5, 5);βstart1 ∼ Unif(0, 5); β01 = β02;
α ∼ Unif(10−2, 102) and m ∼ Unif(l, u). In order to maintain the interpretation that
H provides an index of habitat suitability a lower bound of β1 = 0 was imposed in the M-
step. The EM was run until l2 norm difference in θfree between successive iterates became
lower than a threshold, i.e. ||θ(v)

free − θ
(v−1)
free ||22 < 10−3.

Results

Solutions provided by the EM algorithm were clearly clustered in parameter space. This
clustering indicates dependency between starting values and the local optima to which the
algorithm converges, a characteristic of mixture models that is widely recognised [?, ]. Table
F.1 shows cluster means and variances of parameter estimates and maximised log likelihoods.
The optima closest to the true parameter values was optima 3. The HSC mode m was
consistently estimated with precision. The algorithm also detected areas of the likelihood
which returned more erroneous parameter estimates and yet higher likelihoods than those
obtained using the original parameters, i.e. optima 1 and optima 2. In these solutions
β01 was under estimated and p1 over estimated. These solutions appear to correspond to
degenerate solutions since lowering both the threshold for the stopping rule and the lower
bound of β0 in the L-BFGS-B algorithm resulted in even lower estimates of β01 (not shown).
The lowest likelihood corresponded to optima 4 where β02 becomes over estimated and β1
underestimated. These solutions arose when the estimates for α became large causing the
HSC too narrow thus increasing the proportion of observations for which H(x) ≈ 0. The
proportion of observations being significantly influenced by variation in the covariate x was
thus reduced and β02 grew in order to compensate.

Second study
Description

Data was generated according to the method outlined above (section 4) but with β =
{β0, β1} = {−2,−2, 0, 2} and m = {m1,m2} = {0.1, 0.4}. An image of the resulting η is
shown in Fig. ??. A range of sample sizes was considerred with n ∈ {5000, 4000, 3000, 2000, 1000, 500, 400, 300, 200, 100}.
For each sample size n one hundred realisations of Yn were generated with x fixed. True
parameter values were used as starting values and the EM algorithm was used to maximise
the likelihood. The EM was stopped after the first iterate within which the square of the l2
norm of the difference between successive parameter estimates was smaller than a threshold,
i.e. ||θ(v)

free − θ
(v−1)
free ||2 < 10−2.

Results

The mean, variance and l2 norm of the discrepency between true and fitted values are re-
ported in table F.2. In general the fitted values successfully recapture the original parameter
values. The largest discrepancies between original and fitted values appear to be for the α
parameter which is not surprising since this parameter might realistically take values across
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several orders of magnitude. The largest outliers clearly correspond to those estimates de-
rived from the smallest samples where n = 100. Otherwise θ is consistently estimated with
a satisfactory degree of precision, the precision in m̂ being particularly striking.

It is important to note that the l2 norm of the error tends to zero as sample size increases.
So at the same time the proportion of estimators which are consistent to the true parameter
values tends to one and the proportion of meaningless estimators such as those encountered
in simulation study 1 tends to zero as sample size grows.

5 Small mammal index example

The data
The data analysed here were from transect surveys conducted in the vicinity of Tuanji, a
town situated at 4250m altitude on the Tibetan plateau, Shiqu County, Sichuan Province,
China. All transects were made in July 2001 and 2002. Investigators walked straight lines
and recorded locations of start, stop and turn points with hand held GPS receivers. After
each ten pace interval volunteers stopped and recorded presence or absence of holes belonging
to Microtus limnophilus, Microtus leucurus, Microtus irene or Cricetulus kamensis. Holes
of these species are very similar so no attempt was made to identify holes at the species
level. A full account of this data can be found in [?, ]. The aim here was to present a
regression analysis of this presence / absence data with respect to the normalised difference
vegetation index (NDVI) derived from a Landsat Enhanced Thematic Mapper (ETM) image
acquired on 3rd July 2001. The NDVI here is assumed to provide a suitable proxy index
for vegetation biomass for the study area and was derived from ETM’s red R and infra-red
NIR wave bands as follows.

NDV I = NIR−R
NIR+R

We applied our mixture of HSC GAMs to this data set in the interest of identifying
the range of NDVI within which small mammal indices were observed in greatest number.
In our analysis we consider the two types of parameter constraints mentioned in section
3. We will refer to these two models as M1 and M2 and define these two models as
M1 ≡ {K = 2, β01 6= β02, β11 = β12, α1 = α2,m1 = m2} and M2 ≡ {K = 2, β01 =
β02, β11 6= β12, α1 = α2,m1 = m2}. We also consider two more flexible models defined
as M3 ≡ {K = 2, β01 = β02, β11 6= β12, α1 = α2,m1 6= m2} and M4 ≡ {K = 2, β01 =
β02, β11 6= β12, α1 6= α2,m1 6= m2}.

Results
AIC values and maximum likelihood estimates of parameters under M1, M2, M3 and M4
are presented in Table F.3. M3 was selected as the most pertinent with respect to these
AIC values. Under M3 two different modes of the HSC were identified. The component
with the m-value equal to 0.58 apparently corresponds to areas of greatest biomass since the
maximum NDVI within the study area was 0.53. By comparison with M2 there appears
to be evidence of a bimodal response in small mammal indices with respect to the NDVI
gradient.

Our results may be better interpreted using Table 4 and Figure 4 in [?, ] which show
trapping frequencies of the four species in various classes of habitat. Microtus limnophilus
and Cricetulus kamensis were the most frequently trapped species. It is clear from Raoul et
al. that Microtus limnophilus and Microtus leucurus were more abundant in areas subjected
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to lower grazing pressure where vegetation biomass was greater. The two other species,
Cricetulus kamensis and Microtus irene were more abundant in areas of lower vegetation
biomass. It can be safely ascertained that the first component in our mixture with β11 = 2.96
and m1 = 0.31 corresponds to indices of Cricetulus kamensis and Microtus irene whereas
the second mixture component with β12 = 8.01 and m2 = 0.58 corresponds to indices of
Microtus limnophilus and Microtus leucurus. Figures F.3 and F.4 map the derived HS
indices for these two groups of species.

6 Discussion

This paper proposed a contribution to modelling species distributions using unsupervised
classification via a finite mixture of GAMs and an EM algorithm was proposed for deriv-
ing maximum likelihood estimates. Several submodels were studied in which the mixture
components were assumed to share certain parameter values. Not all of these submodels
appeared satisfactorily identifiable. For instance using different intercepts in two compo-
nents lead to several possible stationary points, moreover, the one with highest likelihood
was far from the vector of true values. On the other hand accurate parameter estimates
were obtained when the constraint of equal intercepts was imposed as shown in Table F.2.

The method was also applied to a set of real data concerning presence/absence of ob-
servable small mammal indices collected on the Tibetan plateau. The AIC was used to
determine the best submodel among 4 candidates and the resulting classification was found
to confirm trapping results given in Raoul et al. about the common response to vegetation
biomass of Microtus limnophilus and Microtus leucurus on the one hand and Cricetulus
kamensis and Microtus irene on the other.

Several improvements are the focus of our current work. In its present state, our model
makes a strong scale assumption, that the model assumes that small mammal responses at a
point are most pertinently explained using an index calculated from a single pixel. However
Lidicker’s ROMPA (Ratio of Optimal to Marginal Patch Area) hypothesis [?, ] describes how
population dynamics can change as a function of the proportion of their preferred habitat
within a landscape. There lies hidden here a question of scale since, in addition to habitat
quality itself, the distribution or abundance of a given species may respond to the spatial
arrangement of preferred habitat [?, ]. The species Arvicola terrestris [?, ], Microtus arvalis
[?, ], Tetrao urogallus [?, ] and the cestode Echinococcus multilocularis [?, ] are just some
examples of species who’s populations appear to respond to landscape level effects. Scale
has become an important issue in ecology and [?, ] reviews it’s multifaceted nature. In order
to derive a landscape index such as ROMPA the area over which it is to be calculated must
be defined. A commonly adopted approach is to calculate the metric in a circular buffer
centerred at each observation. There are two problems. First, a suitable buffer size is not
always a priori apparent. Secondly, the abrupt cutoff and the indicator weighting scheme
that such a buffer imposes is most likely an unrealistic representation of reality. With these
ecological considerations in mind, a suitable modification of our model might include the
additive component

HBik (xi) = 1
NBi

∑
j∈Bi

ωijHαk,mk(xj)

where Bi denotes the subset of pixels falling within a buffer centerred at location i, NBi
is its cardinal and weights ωij are some function of distance. The HBik (xi) terms therefore
introduces into the regression equation the spatially weighted mean habitat suitability within
an area surrounding each observation. Preliminary experience with this type of enrichment
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indicates that the EM algorithm becomes impractically slow as the buffer size increases.
Evidently there is a need for faster algorithms than EM and building such improved methods
will be the subject of our next efforts.

Finally future work will also be undertaken on the crucial and exciting question of in-
corporating spatial dependence into our model via using a discrete random field as a prior
for Z.
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8 Appendix

In this section, we provide the formulas for the gradient of Q(θ, θ̃) in order for the reader
to be able to implement our EM algorithm. As described in section 3, the vector θ is com-
posed of the K mixture probabilities pk’s, the K intercepts β01, . . . , β0K , the K coefficients
β11, . . . , β1K , the shape parameters α1, . . . , αK ’s and the mode points m1, . . . ,mK . The
derivative with respect to any variable Vk ∈ {β0k, β1k, αk,mk} is given by

∂Q

∂Vk
(θ, θ̃) =

n∑
i=1

τik
∂πik
∂Vk

( yi − πik
πik(1− πik)

)
with

∂πik
∂β0k

= πik(1− πik),

∂πik
∂β1k

= πik(1− πik)Hαk,Mk
(xi),

∂πik
∂αk

= πik(1− πik)β1k
∂Hαk,mk(xi)

∂αk
,

∂πik
∂mk

= πik(1− πik)β1k
∂Hαk,mk(xi)

∂mk
,

∂Hαk,mk(xi)
∂αk

= Hαk,mk(xi)
(

log
( xi − l
mk − l

)
+ (u−mk)

(mk − l)
log
( u− xi
u−mk

))
and

∂Hαk,mk(xi)
∂mk

= Hαk,mk(xi)αk
(u− l)

(mk − l)2 log
(u−mk

u− xi

)
.

9 Tables
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freq. l̄y1,...,yn(θ) p̄1 β̄01 β̄02 β̄1 ᾱ m̄

EM 50
Optima 1 11 −467.55 0.67 −13.89 −1.21 6.40 20.22 0.11

(4.5E-3) (1.1E-3) (0.91) (0.010) (0.20) (0.48) (1.1E-4)
Optima 2 1 −468.80 0.93 −15.00 6.32 14.21 1.16 0.11
Optima 3 3 −469.38 0.88 −2.91 −1.49 2.17 8.31 0.10

(1.4E-3) (0.021) (0.065) (0.026) (0.024) (0.026) (6.5E-5)
Optima 4 3 −507.22 0.89 −2.11 7.55 0.43 186.32 0.76

(0.047) (6.2E-3) (0.051) (4.90) (0.36) (130.00) (4.7E-3)
Returned NAs 32 - - - - - - -

(-) (-) (-) (-) (-) (-) (-)
θtrue −472.78 0.5 −4 −2 2 10 0.1

Table F.1: Summarised results for simulation study 1 in which EM was run from fifty sets
of starting values. Solutions were clustered in four sets and cluster means and variances of
parameter estimates and the observed data log likelihood are reported here. n is the number
of times the algorithms stopped close to the reported cluster means. The algorithm returned
NA 32 times in 50.
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model AIC l p β0 β1 α m
M1 3565.3 −1776.7 {0.30, 0.70} {−1.33,−15.00} 8.94 56.11 0.41
M2 3563.7 −1775.8 {0.76, 0.24} −2.52 {0.00, 13.32} 76.45 0.38
M3 3556.7 −1771.4 {0.36, 0.64} −2.68 {3.72, 3.87} 80.1 {0.30, 0.53}
M4 3558.6 −1771.3 {0.35, 0.65} −2.68 {3.76, 3.85} {80.10, 80.11} {0.30, 0.53}

Table F.3: Estimates of parameters in θfree under four different sets of constraints. In
M1 β02 reached the lower bound used in the L-BFGS-B algorithm, which resembles the
behaviour observed in study 1 associated with degenerate solutions. In M2 the fitted HSC
is clearly not degenerate and corresponds to approximately 24% of the observations y. The
AIC is reduced when more than one mode is allowed as in M3 although there is little
evidence of the need for relaxing the equality constraint on α as in M4.

10 Figures
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(a) (b)

(c) (d)

(e) (f)

Figure F.1: Dataset generated for simulation study 1. The first GRF (a) was transformed
by the HSC to derive habitat suitability (b). The second GRF (c) was split at the 50%
quantile to provide and indicator map of where model 1 (blue) and model 2 (red) operate.
A map of g(µ) (e) was derived from (b) and (d) and used to simulate observed data (f).
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Figure F.2: Normalised difference vegetation index (NDVI) for the Tuanji study area over-
layed with transect data on small mammal indices. Red and blue points repressent pressence
and absence of observable small mammal indeced respectively. Coordinates are in UTM pro-
jection.
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Figure F.3: Habitat Suitability Index derived from the NDVI using ML estimates of α̂ and
m̂1 from M3 overlayed with transect data on small mammal indices. Red and black points
repressent pressence and absence of observable small mammal indeced respectively.
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Figure F.4: Habitat Suitability Index derived from the NDVI using ML estimates of α̂ and
m̂2 from M3 overlayed with transect data on small mammal indices. Red and black points
represent presence and absence of small mammal indices respectively.



Chapter G

An Alternating l1 approach to the
compressed sensing problem

Abstract

Compressed sensing is a new methodology for constructing sensors which allow
sparse signals to be efficiently recovered using only a small number of observations.
The recovery problem can often be stated as the one of finding the solution of an un-
derdetermined system of linear equations with the smallest possible support. The most
studied relaxation of this hard combinatorial problem is the l1-relaxation consisting of
searching for solutions with smallest l1-norm. In this short note, based on the ideas of
Lagrangian duality, we introduce an alternating l1 relaxation for the recovery problem
enjoying higher recovery rates in practice than the plain l1 relaxation and the recent
reweighted l1 method of Candès, Wakin and Boyd.

1 Introduction

Compressed Sensing (CS) is a very recent field of fast growing interest and whose im-
pact on concrete applications in coding and image acquisition is already remarkable. Up
to date informations on this new topic may be obtained from the website http://nuit-
blanche.blogspot.com/. The foundational paper is [1] where the main problem considered
was the one of reconstructing a signal from a few frequency measurements. Since then, im-
portant contributions to the field have appeared; see [7] for a survey and references therein.

The Compressed Sensing problem
In mathematical terms, the problem can be stated as follows. Let x be a k-sparse vector in
Rn, i.e. a vector with no more than k nonzero components. The observations are simply
given by

y = Ax (1.0)

where A ∈ Rm×n and m small compared to n with rankA = m, and the goal is to recover x
exactly from these observations. The main challenges concern the construction of observation
matrices A which allow to recover x with k as large as possible for given values of n and m.

The problem of compressed sensing can be solved unambiguously if there is no sparser
solution to the linear system (1) than x. Then, recovery is obtained by simply finding the
sparsest solution to (1). If for any x in Rn we denote by ‖x‖0 the l0-norm of x, i.e. the

167
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cardinal of the set of indices of nonzero components of x, the compressed sensing problem
is equivalent to

min
x∈Rn

‖x‖0 s.t. Ax = y. (1.0)

We denote by ∆0(y) the solution of problem (1) and ∆0(y) is called a decoder ∗. Thus,
the CS problem may be viewed as a combinatorial optimization problem. Moreover, the
following lemma is well known.

Lemma 1.1 (See for instance [4]) If A is any m×n matrix and 2k 6 m, then the following
properties are equivalent:

i. The decoder ∆0 satisfies ∆0(Ax) = x, for all x ∈ Σk,
ii. For any set of indices T with #T = 2k, the matrix AT has rank 2k where AT stands

for the submatrix of A composed of the columns indexed by T only.

The l1 relaxation

The main problem in using the decoder ∆0(y) for given observations y is that the optimiza-
tion problem (1) is NP-hard and cannot reasonably be expected to be solved in polynomial
time. In order to overcome this difficulty, the original decoder ∆0(y) has to be replaced by
simpler ones in terms of computational complexity. Assuming that A is given, two meth-
ods have been studied for solving the compressed sensing problem. The first one is the
orthognal matching pursuit (OMP) and the second one is the l1-relaxation. Both methods
are not comparable since OMP is a greedy algorithm with sublinear complexity and the
l1-relaxation offers usually better performances in terms of recovery at the price of a com-
putational complexity equivalent to the one of linear programming. More precisely, the l1
relaxation is given by

min
x∈Rn

‖x‖1 s.t. Ax = y. (1.0)

In the following, we will denote by ∆1(y) the solution of the l1-relaxation (1). From the com-
putational viewpoint, this relaxation is of great interest since it can be solved in polynomial
time. Indeed, (1) is equivalent to the linear program

min
x∈Rn

n∑
i=1

zi s.t. − z 6 x 6 z, and Ax = y.

The main subsequent problem induced by this choice of relaxation is to obtain easy to verify
sufficient conditions on A for the relaxation to be exact, i.e. to produce the sparsest solution
to the underdetermined system (1). A nice condition was given by Candes, Romberg and
Tao [1] and is called the Restricted Isometry Property. Up to now, this condition could only
be proved to hold with great probability in the case where A is a subgaussian random matrix.
Several algorithmic approaches have also been recently proposed in order to garantee the
exactness of the l1 relaxation such as in [6] and [5]. The goal of our paper is different. Its aim
is to present a new method for solving the CS problem generalizing the original l1-relaxation
of ([1]) and with much better performance in pratice as measured by success rate of recovery
versus original sparsity k.

∗In the general case where x is not the unique sparsest solution of (1) using this approach for recovery
is of course possibly not pertinent. Moreover, in such a case, this problem has several solutions with equal
l0-”norm” and one may rather define ∆0(y) as an arbitrary element of the solution set.
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2 Lagrangian duality and relaxations

Equivalent formulations of the recovery problem
Recall that the problem of exact reconstruction of sparse signals can be solved using ∆0 and
Lemma 1.1. Let us start by writing down problem (1), to which ∆0 is the solution map, as
the following equivalent problem

max
z, x∈Rn

etz (2.-1)

subject to
zixi = 0, zi(zi − 1) = 0 i = 1, . . . , n, and Ax = y

where e denotes the vector of all ones. Here since the sum of the zi’s is maximized, the
variable z plays the role of an indicator function for the event that xi = 0. This problem is
clearly nonconvex due to the quadratic equality constraints zixi = 0, i = 1, . . . , n.

The standard Semi-Definite Programming (SDP) relaxation scheme
A simple way to construct a SDP relaxation is to homogenize the quadratic forms in the
formulation at hand using a binary variable z0 = 1. Indeed, by symmetry, it will suffice
to impose z1

0 = 1 since, if the relaxation turns out to be exact and a solution (z0, z, x)
is recovered with z0 = −1, then, as the reader will be able to check at the end of this
section, (−z0,−z,−x) will also solve the relaxed problem. For instance, problem (4.-8) can
be expressed as

max
z, x∈Rn

etzz0 (2.-2)

subject to
zixi = 0, zi(zi − z0) = 0 and z0Ax = y

for i = 1, . . . , n, z2
0 = 1.

If we choose to keep explicit all the constraints in problem (2), the Lagrange function
can be easily be written as

LSDP (w, λ, µ, ν) = wtQw +
∑n
i=1 λiw

tCiw
+
∑n
i=1 µiw

tEiw + v0w
tE0w

+
∑m
j=1 νjw

tAjw − νty,

where w is the concatenation of z0, z, x into one vector, λ (resp. µ and ν) is the vector of
Lagrange multipliers associated to the constraints zixi = 0, i = 1, . . . , n (resp. zi(zi − z0),
i = 1, . . . , n, and z0a

t
jx = yj , j = 1, . . . ,m) and where all the matrices Q, Aj , j = 1, . . . ,m,

Ei, i = 1, . . . , n and Ci = 1, . . . , n belong to S2n+1, the set of symmetric 2n+ 1× 2n+ 1 real
matrices and are defined by

Q =

 0 1
2e
t 01,n

1
2e 0n,n 0n,n

0n,1 0n,n 0n,n

Aj =

 0 01,n
1
2a
t
j

0n,1 0n,n 0n,n
1
2aj 0n,n 0n,n


for j = 1, . . . ,m, where ati is the jth row of A,

E0 =

 1 01,n 01,n
0n,1 0n,n 0n,n
0n,1 0n,n 0n,n

 , Ei =

 0 −eti 01,n
−ei 2D(ei) 0n,n
0n,1 0n,n 0n,n
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and

Ci =

 0 01,n 01,n
0n,1 0n,n D(ei)
0n,1 D(ei) 0n,n


for i = 1, . . . , n where ei is the vector with all components equal to zero except the ith which
is set to one, e is the vector of all ones, D(ei) is the diagonal matrix with diagonal vector ei
and where 0k,l denotes the k × l matrix of all zeros. The dual function is given by

θSDP (λ, µ, ν) = sup
w∈R2n+1

L(w, λ, µ, ν),

and thus

θSDP (λ, µ, ν) =
{
−νty if Q(λ, µ, ν) � 0
+∞ otherwise

with

Q(λ, µ, ν) = wtQw +
n∑
i=1

λiw
tCiw +

n∑
i=0

µiw
tEiw +

m∑
j=1

νjw
tAjw

and where � is the Löwner ordering (A � B iff A−B is positive semi-definite). Therefore,
the dual problem is given by

inf
λ∈Rn,µ∈Rn+1,ν∈Rm

θSDP (λ, µ, ν),

which is in fact equivalent to the following semi-definite program

inf
λ∈Rn,µ∈Rn+1,ν∈Rm

−ytν, (2.-11)

subject to
Q(λ, µ, ν) � 0. (2.-11)

We can also try and formulate the dual of this semi-definite program which is called the
bidual of the initial problem. This bidual problem is easily seen after some computations to
be given by

max
X∈S2n+1, X�0

trace(QX) (2.-11)

subject to
trace(AjX) = yj , j = 1, . . . ,m,

trace(E0X) = 1, (2.-12)

trace(EiX) = 0 and trace(CiX) = 0, i = 1, . . . , n.

Now, if X∗ is an optimal solution with rank(X∗) = 1, then

X∗ =
(
±

 z∗0
z∗

x∗

)(±
 z∗0
z∗

x∗

)t
and it can be easily verified that all the constraints in (2) are satisfied. Moreover, we may
additionally impose that z∗0 = 1 †. However, the following proposition ruins the hopes for
the occurance of such an agreable situation.
†Indeed, if z∗0 = −1, multiply by −1 the whole vector [z∗0 , z∗, x∗]
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Proposition 2.1 If non empty, the solution set of the bidual problem (2) is not a singleton
and it contains matrices with rank equal to n−m.

Proof. Consider the subspace W0 of R2n+1 as the set of vectors whose n+1 first coordinates
are equal to zero and such that the last n coordinates form a vector in the kernel of A. Since
we assumed that rankA = m, we have that dimW0 = n −m. Assume that there exists a
solution X∗ to (2) with rank less than or equal to n−m− 1. Then, it is possible to find a
vector w in W0 with wt ⊥ PW0(Range(X∗)). On the other hand, one can easily check that
X∗∗ = X∗+wwt satisfies all the bidual constraints and has the same objective value as X∗.
Thus, X∗∗ is also a solution of the bidual problem and rankX∗∗ = rankX∗ + 1. Iterating
the argument up to matrices of dimension equal to n − 1, we obtain that the solution set
contains matrices with rank equal to n −m. To prove non uniqueness of the solution, for
any solution matrix X∗, set X∗∗∗ = X∗ +wwt for any choice of w in W0 and X∗∗∗ is also a
solution of the bidual problem. 2

Comments on the SDP relaxation
Despite the powerfull Lagrangian methodology behind its construction, the SDP relaxation
of the problem has three major drawbacks:

• as implied by Proposition 2.1, the standard SDP relaxation scheme leads to solutions
which naturally have rank greater than one which makes it hard to try and recover
a nice primal candidate. Moreover, even if the rank problem could be overcome in
practice in the case where x is sparse enough, by adding more ad hoc constraints in
the SDP, finding the most natural way to do this seemed quite non trivial to us.

• in the case where the SDP has a duality gap, proposing a primal suboptimal solution
does not seem to be an easy task.

• the computational cost of solving Semi-Definite Programs is much greater than the
cost of solving our naive relaxation, a fact which may be important in real applications.

An utopic relaxation
In order to overcome the drawbacks of the SDP relaxation, we investigate another scheme
which may look utopic at first sight. Notice that one interesting variant of formulation (4.-8)
could be the following in which the nonconvex complementarity constraints are merged into
the unique constraint ‖D(z)x‖1 = 0

max
z∈{0,1}n

etz s.t.‖D(z)x‖1 = 0, Ax = y. (2.-14)

Choosing to keep the constraints Ax = y and z ∈ {0, 1}n implicit in (2), the Lagrangian
function is given by

L(x, z, u) = etz − u‖D(z)x‖1 (2.-14)

where D(z) is the diagonal matrix with diagonal vector equal to z. The dual function (with
values in R ∪+∞) is defined by

θ(u) = max
z∈{0,1}n, Ax=y

L(x, z, u) (2.-14)

and the dual problem is
inf
u∈R

θ(u). (2.-14)
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The main problem with the dual problem (2) is that the solutions to (2) are as difficult
to obtain as the solution of the original problem (2) because of the nonconvexity of the
Lagrangian function L.

3 The Alternating l1 method

We now present a generalization of the l1 relaxation which we call the Alternating l1 relax-
ation with better experimental performances than the standard l1 relaxation and the SDP
relaxation.

A practical alternative to the utopic relaxation
Due to the difficulty of computing the dual function θ in the relaxation 2, the interest of
this scheme seems at first to be of pure theoretical nature only. In this section, we propose
a suboptimal but simple alternating minimization approach.

When we restrict z to the value z = e, solving the problem

x(u) = argmaxz=e, x∈Rn, Ax=yL(x, z, u) (3.-14)

gives exactly the solution ∆1(y) of the l1 relaxation. From this remark, and the Lagrangian
duality theory above, it may be supected that a better relaxation can be obtained by trying
to optimize the Lagrangian even in a suboptimal manner.

Algorithm 2 Alternating l1 algorithm (Alt-l1)
Require: u > 0 and L ∈ N∗
z

(0)
u = e
x

(0)
u ∈ argmaxx∈Rn, Ax=yL(x, z(0), u)
l = 1
while l 6 L do
z

(l)
u ∈ argmaxz∈{0,1}nL(x(l)

u , z, u)
x

(l)
u ∈ argmaxx∈Rn, Ax=yL(x, z(l)

u , u)
l← l + 1

end while
Output z(L)

u and x
(L)
u .

At each step, knowing the value of z(l)
u implies that optimization with respect to x ∈ Rn

can be equivalently restricted to the set of variables xi which are indexed by the i’s associated
with the values of z(l)

u which are equal to one. Thus, the choice of z(l)
u corresponds to adaptive

support selection for the signal to recover.
The following lemma states that z(l)

u is in fact the solution of a simple thresholding
procedure.

Lemma 3.1 For all x in Rn, any solution z of

max
z∈[0,1]n

L(x, z, u) (3.-14)

satisfies that zi = 1 if |xi| < 1
u , 0 if |xi| > 1

u and zi ∈ [0, 1] otherwise.

Proof. Problem (3.1) is clearly separable and the solution can be easily computed
coordinatewise. 2
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Open problems
A fully rigorous analysis of the rudimentary Alternating l1 algorithm for a given u seems
quite challenging. However, the two following basic properties hold true:

• Taking L = 1 and the suboptimal choice z(1)
u = e gives the standard l1 relaxation.

• Since the computation of x(l)
u is equivalent to

x(l)
u ∈ argmaxx∈Rn, Ax=y

∑
i s.t.(z(l)

u )i=1

|xi|, (3.-14)

the number of components of x taken into account in the l1 objective funtion will
hopefully be lower than n.

Based on this, it seems intuitively reasonable to expect that the Alternating l1 approach
should improve over the plain l1, at least in the case where all the components selected at
each iteration have indices in the support of x, just because no useless sparsity penalty is
put on the components which are not to be estimated as zero. The simulation experiments
below seem to confirm this intuition. Another important question would be to know when
does the alternating procedure provide a solution to the optimization problem in the very
definition (2) of θ in the case L = +∞, and when this convergence occurs within polynomial
time. Based on such results, one could safely try and generalize the approach by associating
a Lagrange multiplier to each constraint |xizi| = 0 and attack the resulting Lagrangian dual
problem using modern non-smooth optimization algorithms such as bundle methods [7].

4 Monte Carlo experiments

Comparison between the success rate of l1 and Alternating l1 is shown in Figure 1. Op-
timization of the Lagrange multiplier u was performed using coarse dichotomic search and
we finally used u = 3 and L = 4 iterations in the Alternating l1. We also incorporated the
results obtained using Boyd, Candes and Wakin’s recent proposal called the Reweighted l1
relaxation. Our proposal outperformed both the plain l1 and the Reweighted l1 relaxations
for the given data sizes. The programs can be found on the author’s webpage at the address
http://stephane.g.chretien.googlepages.com/alternatingl1.
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Figure G.1: Rate of success over 1000 Monte Carlo experiments in recovering the support
of the signal vs. signal sparsity k for n = 128, m = 50, L = 4, u = 3. A and nonnul
components of x were drawn from the gaussian N (0, 1) distribution. The black line is for
the l1 relaxation, the blue line for Boyd, Candes and Wakin’s new Reweighted l1 relaxation
with ε = .1, the best value found in [3] and the green line is for our Alternating l1 relaxation.
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Chapter H

Sparse recovery with unknown
variance: a LASSO-type approach

with Sébastien Darses.

Abstract

We address the issue of estimating the regression vector β in the generic s-sparse
linear model y = Xβ + z, with β ∈ Rp, y ∈ Rn, z ∼ N (0, σ2I) and p > n when the
variance σ2 is unknown. We study two LASSO-type methods that jointly estimate β
and the variance. These estimators are minimizers of the `1 penalized least-squares
functional, where the relaxation parameter is tuned according to two different strate-
gies. In the first strategy, the relaxation parameter is of the order σ̂

√
log p, where σ̂2

is the empirical variance. In the second strategy, the relaxation parameter is chosen so
as to enforce a trade-off between the fidelity and the penalty terms at optimality. For
both estimators, our assumptions are similar to the ones proposed by Candès and Plan
in Ann. Stat. (2009), for the case where σ2 is known. We prove that our estimators
ensure exact recovery of the support and sign pattern of β with high probability. We
present simulations results showing that the first estimator enjoys nearly the same per-
formances in practice as the standard LASSO (known variance case) for a wide range
of the signal to noise ratio. Our second estimator is shown to outperform both in terms
of false detection, when the signal to noise ratio is low.

1 Introduction

Problem statement
The well-known standard Gaussian linear model reads

y = Xβ + z, (1.1)

where X denotes a n×p design matrix, β ∈ Rp is an unknown parameter and the components
of the error z are assumed i.i.d. with normal distribution N (0, σ2). The present paper aims
at studying this model in the case where the number of covariates is greater than the number
of observations, n < p, and the regression vector β and the variance σ2 are both unknown.

The estimation of the parameters in this case is of course impossible without further
assumptions on the regression vector β. One such assumption is sparsity, i.e. only a few
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components of β are different from zero, say s components; β is then said to be s-sparse.
There has been a great interest in the study of this problem recently. Recovering the
support of β has been extensively studied in the context of Compressed Sensing, a new
paradigm for designing observation matrices X. In this framework, it is now a standard
fact that matrices X can be found (e.g. with high probability if drawn from sub-Gaussian
i.i.d distributions) such that the number of observations needed to recover β exactly is
proportional to s log (p/n).

Existing results in the known variance case

When the variance is known and positive, two popular techniques to estimate the regression
vector β are the Least Absolute Shrinkage and Selection Operator (LASSO) [23], and the
Dantzig selector [11]. We refer to [3] for a recent simultaneous analysis of these two methods.
The standard LASSO estimator β̂λ of β is defined as

β̂λ ∈ argmin
b∈Rp

1
2‖y −Xb‖

2
2 + λ‖b‖1, (1.2)

where λ > 0 is a regularization parameter controlling the sparsity of the estimated coeffi-
cients.

Sparse recovery cannot hold without some geometric assumptions on the dictionary (or
the design matrix), as recalled in [24] pp. 4–5. The papers [28] and [22] introduced very
pertinent assumptions for the study of variable selection problem using the LASSO in the
finite sample (resp. asymptotic) contexts.

One common assumption to study the statistical performance of these estimators is
an incoherence property of the matrix X. This means that the coherence of X, i.e. the
maximum scalar product of two (normalized) columns of X, is very small. Coherence based
conditions appeared first in the context of Basis Pursuit for sparse approximation in [15],
[19] and [16]. It then had a significant impact on Compressed Sensing; see [33] and [11].

The recent references [3], [7] and [23] contain interesting assumptions on the coherence
in our context of interest, i.e. high dimensional sparse regression. For instance, [3] and
[7] require a bound of the order

√
logn/n whereas [23] requires a bound of the order 1/s.

The recent paper [14] requires that the coherence of X is less than Cst/ log p. Under the
additional assumptions that β is sparse and assuming that the support and sign pattern are
uniformly distributed, they prove that β̂ has the same support and sign pattern as β with
probability 1− p−1((2π log p)−1/2 + sp−1)− O(p−2 log 2). Notice that in [14] the sparsity is
not only controlled by the coherence but also by the operator norm ‖X‖ and implicitly an
appropriate choice of the relaxation parameter λ.

Finally, let us notice that the invertibility of the restricted covariance matrix [28] indexed
by the signal’s true support and the Irrepresentable Condition in [22] can be derived from
the incoherence condition in [14]. This would possibly yield suboptimal orders in certain
instances though.

Existing results in the unknown variance case

The problem of estimating the variance in the sparse regression model has been addressed
in only a few references until now. In [2] the authors analyze in the unknown variance
setting AIC, BIC and AMDL based estimators, as well as estimators using a more general
complexity penalty. As well known among practitioners, the LASSO procedure, at the
price of certain assumptions on X, avoids the enumeration of all subsets of covariates, an
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intractable task when the number of covariates is large. This last property motivates the
theoretical analysis provided in the present paper.

In [6], a joint estimation procedure for both the regression vector and the variance is
proposed. The authors give a detailed study of the risk under quite general conditions. In
[35], it is proven in particular that, for the variance estimator of [6], under a compatibility
condition introduced in [20], λ‖β‖1/σ = o(1) if and only if σ̂/σ = (1 + oP(1)), for λ such
that P(λ > a‖Xt(Y −Xβ)/n‖∞/σ) → 1 where a > 1 is any constant. Moreover, Sun and
Zhang [32] study an iterative algorithm, named Scaled LASSO, which is equivalent to the
square-root LASSO of Belloni, Chernozhukov and Wang [5], for the joint estimation of the
regression coefficients and the noise level σ. In particular, they prove an interesting oracle
inequality which shows that the performance of the scaled LASSO method with respect to
the risk, is of the same order as for the known-variance case for the usual range of sparsity.
However, in these works the problem of support and sign pattern recovery is not addressed.

Our contribution
We study two different strategies in the present paper.

Strategy (A): Plugging in the variance estimator

Our work mainly aims at understanding when the results of [14] extend to the case where
σ2 is unknown. In the case where σ2 is known, it is proven in [14] that the right order of
magnitude for λ is σ

√
log p. We first study the very natural estimator consisting of replacing

σ by σ̂ = ‖y−Xβ̂‖2/
√
n in the expression of λ. As is standard in the study of the LASSO,

the regression vector β’s coefficients have to be significantly larger than the noise level for
exact recovery of the support and sign pattern.

The main differences between the known and the unknown variance cases are summarized
in the following table.

Known variance Unknown variance: Strategy (A)

β̂ ∈ argmin
b∈Rp

‖y−Xb‖22
2 + λ‖b‖1 β̂λ ∈ argmin

b∈Rp
‖y−Xb‖22

2 + λ‖b‖1

Tune λ to λ̂ s.t. : λ̂ = Cvarσ̂
√

log p
λ = cst σ

√
log p

with : σ̂2 =
‖y−Xβ̂

λ̂
‖22

n

Convex problem Non convex problem

Oracle β̃ Oracle (β̃, λ̃)

Conditions holding with
high probability Similar conditions

Notice that, in this table, β̂ is defined via λ̂ and λ̂ is defined via β̂. In other words, β̂
and λ̂ jointly satisfy a set of optimality conditions. From a numerical viewpoint, β̂ and λ̂
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can be computed iteratively using a simple dichotomic search method described in Section
5.

Strategy (B): Enforcing a trade-off between fidelity and penalty

Another possible strategy can be used to overcome the problem of estimating the regression
vector β and the relaxation parameter λ when the variance σ2 is unknown. This strategy con-
sists of prescribing a trade-off between the fidelity term and the penalty term. More precisely,
λ is now an estimator, which is obtained by imposing the constraint λ̂‖β̂

λ̂
‖1/‖y−Xβ̂λ̂‖

2
2 = C,

where λ 7→ βλ is the standard LASSO defined by (1.2). The constant C is selected by the
user. Notice that β̂

λ̂
is sparse (because it is an `1-penalized least-squares estimator) whereas

the least-squares solution is not. This will be confirmed by the simulations results of Section
5.

Enforcing such a trade-off between fidelity and penalty results in a more complex problem
from both statistical and computational viewpoints. However, since λ̂‖β̂

λ̂
‖1 and ‖y−Xβ̂

λ̂
‖22

are, at least approximately, homogeneous functions of σ2, using such a criterion allows to
bypass the estimation of the variance in a first stage. The variance itself could be estimated

in a second stage, using the formula σ̂2 =
‖y−Xβ̂

λ̂
‖22

n .

Known variance Unknown variance: Strategy (B)

β̂ ∈ argmin
b∈Rp

‖y−Xb‖22
2 + λ‖b‖1 β̂λ ∈ argmin

b∈Rp
‖y−Xb‖22

2 + λ ‖b‖1

Tune λ to λ̂ s.t. :
λ = cst σ

√
log p

λ̂‖β̂
λ̂
‖1 = C ‖y −Xβ̂

λ̂
‖22

Convex problem Non convex problem

Oracle β̃ Oracle (β̃, λ̃)

Conditions holding with Similar conditions
high probability + Upper bound on ‖β‖1

Results

Our main results are Theorem 2.5, for Strategy (A), and Theorem 2.7, for Strategy (B).
Both results can be described as follows. Given an arbitrary α > 0, we prove that, for
regression vectors β satisfying certain constraints, standard assumptions on the number of
observations n and the sparsity s imply that our modified LASSO procedures fail to identify
the support and the signs of β with probability at most of the order p−α. These results are
non-asymptotic and all our constants are explicit.

The coherence assumption on the design matrix made in this paper is readily checkable.
Many other currently used assumptions in the literature are based on concentration proper-
ties of the extreme singular values of all or most extracted submatrices of X with bounded
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number of columns. Yet, some other are based on the concentration of the singular values
of the covariance matrix with respect to the covariate’s underlying distribution. All such
criteria are difficult or impossible to check in practice as opposed to the coherence property.

We neither make any uncheckable assumption on the variance σ2. The only unverifi-
able assumptions used in the present work are on the magnitude of the nonzero regression
coefficients. As in [14], the set of regressors β which are correctly estimated is constrained
by imposing that the magnitude of all nonzero components of β should be greater than the
noise level. Moreover, for Strategy (B), our analysis requires the additional assumption that
the components of β should not be too large either, the upper bound being in particular
a function of C. This result suggests that Strategy (B) is pertinent in low SNR situations
only. Simulation experiments at the end of this paper confirm the usefulness of Strategy (B)
in the low SNR setting.

The approaches we choose in the present paper have the advantage of allowing a rigourous
theoretical investigation of the order of magnitude of maximum admissible sparsity as a
function of the problem’s dimensions. It would be very interesting to establish similar results
based on a LARS-type approach and we leave this open question for further research.

Plan of the paper

The LASSO estimator, the main results Theorem 2.5 and Theorem 2.7, together with the
assumptions used throughout the paper are presented in Section 1.0. The proof of Theorem
2.5 is given in Section 3 and the proof of Theorem 2.7 in Section 4. The proofs of certain
technical intermediate results are gathered in the Appendix.

Notations

Generalities

When E ⊂ {1, . . . , N}, we denote by |E| the cardinal of E. For I ⊂ {1, . . . , p} and x a vector
in Rp, we set xI = (xi)i∈I ∈ R|I|. The usual scalar product is denoted by 〈·, ·〉. The notations
for the norms on vectors and matrices are also standard: for any vector x = (xi) ∈ RN ,

‖x‖22 =
∑

1≤i≤N
x2
i ; ‖x‖1 =

∑
1≤i≤N

|xi| ; ‖x‖∞ = sup
1≤i≤N

|xi|.

For any matrix A ∈ Rd1×d2 , we denote by At its transpose. The set of symmetric real
matrices in Rn×n is denoted by Sn. We denote by ‖A‖ the operator norm of A. The
maximum (resp. minimum) singular value of A is denoted by σmax(A) (resp. σmin(A)).
Recall that σmax(A) = ‖A‖ and, if A is invertible, σmin(A)−1 = ‖A−1‖. We use the Loewner
ordering on symmetric real matrices: if A ∈ Sn, 0 � A is equivalent to saying that A is
positive semi-definite, and A � B stands for 0 � B −A.

The notations N (µ, σ2) (resp. χ2(ν) and B(ν)) stands for the normal distribution on the
real line with mean µ and variance σ2 (resp. the Chi-square distribution with ν degrees of
freedom and the Bernoulli distribution with parameter ν).

Specific notations related to the design matrix X and the estimators

For I ⊂ {1, . . . , p}, and a matrix X, we denote by XI the submatrix whose columns are
indexed by I. We denote the range of XI by VI and the orthogonal projection onto VI by
PVI .
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The coherence µ(X) of a matrix X whose columns are unit-norm is defined by

µ(X) = max
1≤i 6=j≤p

|〈Xi, Xj〉|. (1.2)

As in [37], we consider the ’hollow-Gram’ matrix H and the selector matrix R = diag(δ):

H = XtX − I (1.3)
R = diag(δ), (1.4)

where δ is a vector of length p whose components are i.i.d. random variables following the
Bernoulli distribution B(s/p). In a similar fashion, we define Rs = diag(δ(s)) where δ(s) is
a random vector of length p, uniformly distributed on the set of all vectors with exactly s
components equal to 1 and p− s components equal to 0.

The support of β̂ is always denoted by T̂ .

2 The modified LASSO estimators

In this section, we present the main results on the estimators given by Strategy (A) and
Strategy (B), and we discuss the underlying assumptions. Practical computability of these
estimators will be studied in Section 5. In particular ”tuning λ to λ̂” is achieved by finding
a zero of a function of λ numerically. We will show in Section 5 that these zero finding
problems are computationally very easy to solve.

For any arbitrary value of α > 0, Theorem 2.5 (resp. Theorem 2.7), proposes a set
of conditions under which exact recovery of the support and sign pattern of β holds with
probability at least 1−O(p−α) for Strategy (A) (resp. for Strategy (B)).

As will be shortly seen, the magnitude of the nonzero coefficients of β has to satisfy certain
constraints: as in [14], one will require for both Strategies that the nonzero components of
β are not too small (in fact, slightly above the noise level). In the case of Strategy (B),
we will moreover require that the nonzero components of β are not too large. Although
this upper bound assumption may seem to argue in disfavor of Strategy (B), computational
experiments will later show that this Strategy has much nicer empirical performance when
the signal to noise ratio is small. The same computational experiments will also demonstrate
that Strategy (A) performs almost as well as a standard LASSO which would know the
variance.

Definition of the estimators
To define our estimators, we first need to work with matrices ensuring that the map λ 7→ β̂λ,
where β̂λ is given by (1.2), is well defined and enjoys special properties, such as continuity.

Definition 2.1 The matrix X is said to satisfy the Generic Condition if∣∣〈Xj , XI(Xt
IXI)−1δI〉

∣∣ < 1, ∀δ ∈ {−1, 1}p, ∀I ⊂ {1, . . . , p} s.t. XI non singular and ∀j 6∈ I.(2.5)

As from now, we always work under the Generic Condition. We will use the following
result about uniqueness of the LASSO estimator.

Proposition 2.2 ([17]) Assume that X satisfies the Generic Condition. Then, for all
y ∈ Rn, and for all λ ∈ R+, Problem (1.2) has a unique solution β̂λ and its support T̂λ is
such that X

T̂λ
is non singular.
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The following property is proven in Appendix 6:

Lemma 2.3 Let the Generic Condition hold. Then, almost surely, the map{
(0,+∞) −→ Rp

λ 7−→ β̂λ

is bounded and continuous. Moreover, λ 7−→ ‖β̂λ‖1 is non-increasing.

Strategy A

The estimator of strategy A is defined as β̂ := β̂
λ̂

where λ̂ verifies the implicit equation

λ̂2 = Cvar

∥∥∥y −Xβ̂
λ̂

∥∥∥2

2
n

log p, (2.5)

where a relevant range for Cvar will be given in Theorem 2.5 Eq. (2.5).
The estimators (β̂, λ̂) being implicitly defined, it is not clear, at that point, that they

exist.

We will see in the sequel that a suitable choice of Cvar will ensure the existence of the
estimators (under the above mentioned assumptions on X).

The uniqueness follows by showing that the map ΓA : R+ → R+ given by

ΓA(λ) := n

log p
λ2

‖y −X
T̂λ
β̂
T̂λ
‖22
,

is increasing, which is proven in Appendix 6 .
Strategy A simply reduces to finding the value λ̂A such that ΓA(λ̂A) = Cvar. A precise

range of interest for Cvar will be given in Theorem 2.5 below. Moreover, λ̂ may be computed
using dichotomy search. This scheme is discussed in Section 5.

Remark 2.4 Recall that in the known variance case, it is often assumed that

λ2 = Cvarσ
2 log p, (2.5)

for some positive constant Cvar; see e.g. in [14]. In comparison, Strategy (A) enforces the
choice (2.5). This is the empirical analog to (2.5). However, as will appear later in the
proof of Theorem 2.5, instead of being an absolute constant, Cvar will have to depend on n,
p and ‖X‖2 as follows

Cvar � n

p
‖X‖2.

In the case of an i.i.d. Gaussian random design matrix, ‖X‖2 is of the order p/n with high
probability. Thus Cvar can be basically seen as a constant in the Gaussian setting.
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Strategy B

The estimator of strategy B is defined as β̂ := β̂
λ̂

where λ̂ verifies the implicit equation

λ̂‖β̂λ‖1 = C
∥∥∥y −Xβ̂

λ̂

∥∥∥2

2
. (2.5)

Again, the estimators (β̂, λ̂) are implicitly defined and their existence has to be proven.

Compared to Strategy A, one specificity of Strategy B is that for any value of C > 0,
existence and uniqueness of the estimators is guaranteed, with no other assumptions than
the Generic Condition. Indeed, we show here (cf Lemma 6.5 in the Appendix) that the map
ΓB given by

ΓB(λ) = λ‖β̂λ‖1
‖y −Xβ̂λ‖22

, λ > 0, (2.6)

is increasing, continuous and ΓB((0,+∞)) = (0,+∞). Thus, there exists a unique value
λ̂B > 0 such that ΓB(λ̂B) = C.

Similarly as for Strategy A, the estimation can be performed using a simple dichotomic
search described in Section 5.

Main results
Preliminary remarks

The main idea behind the analysis of LASSO-type methods is the following. First, the `1
penalty promotes sparsity of the estimator β̂. Since β̂ is sparse, we may restrict the study
to the subvector β̂

T̂
of β̂, resp. the submatrix X

T̂
of X, whose components, resp. columns,

are indexed by T̂ .
Taking this idea a little further, since T̂ is supposed to estimate the true support T of

cardinality s, the first kind of result one may ask for is a proof that XT is far from singular
for every possible T . Unfortunately, proving such a strong property with the right order in
the upper bound on s, based on incoherence only, seems to be impossible. The idea proposed
by Candès and Plan in [14] to overcome this problem is to assume that T is random and
then prove that non-singularity occurs with high probability, i.e. for most supports.

Based on this model, the method first consists of proving that XT satisfies, for 0 < r < 1,

1− r ≤ σmin(XT ) ≤ σmax(XT ) ≤ 1 + r, (2.7)

with high probability. The proof of this property in [14] is based on the Non-Commutative
Kahane-Kintchine inequalities. In the present paper, we instead use a result of [13] based
on a recent version of the Non-Commutative Chernoff inequality proposed by Tropp [11], in
order to obtain better estimates for the involved constants. The most intuitive conditions
to prove (2.7) are:

(i) T is a random support with uniform distribution on index sets with cardinal s;

(ii) s is sufficiently small;

(iii) X is sufficiently incoherent.
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The main part of the analysis consists of proving that the least-squares oracle estimator,
which knows the support ahead of time, satisfies the optimality conditions of the LASSO
estimator with high probability. This will prove that the LASSO automatically detects the
right support and sign pattern. The proofs of these results highly depend on the quasi-
isometry condition (2.7) and similar properties obtained with the same techniques as for
(2.7). We also need the sign pattern of β to be uniformly distributed and jointly independent
of the support of T . This assumption was already invoked in [14].

Assumptions and main results

As from now, we will work with the following constants:

r ∈ (0, 1
2 ]

α > 0 (controlling the probability that ‖Xt
TXT − I‖ > r)

Cspar = r2

(1 + α)e2 (controlling the sparsity) (2.6)

Cµ = r

1 + α
(controlling the coherence) (2.7)

κ = 4
√

1 + α (2.7)

C◦ = `−1
α

(
10e 1 + r

(1− r)2κ
2
)
> 0, (controlling the number of observations)

where `−1
α is the reciprocal function of the one-to-one continuous map from (0,+∞) onto

(0,+∞):

`α(x) = xe−4α/x, x > 0.

The constant C◦ := C◦(α, r) is thus well defined (and can be computed numerically by e.g.
dichotomy).

The first so-called Coherence condition deals with the minimum angle between the
columns of X.

Assumptions 2.1 (Range and Coherence condition for X) The matrix X has unit `2-norm
columns, is full rank and its coherence verifies

µ(X) ≤ Cµ
log p .

Assumptions 2.2 (Generic sparse model [14])

(a) The support T of β is random and has uniform distribution among all index subsets
of {1, . . . , n} with cardinal s,

(b) Given T , the sign pattern of βT is random with uniform distribution over {−1,+1}s,
and jointly independent of the support.
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Assumptions 2.3 (Level of sparsity)

s ≤ s0 := p

log p
Cspar
‖X‖2

.

The last condition concerns the magnitude of the nonzero regression coefficients βj ,
j ∈ T .

Defining

Hn,s0,pα,r = 4
√
n+
√

2α log p
√
s0

1− r√
1 + r

. (2.2)

we now state the range assumption for the coefficients of β for Strategy (A).

Assumptions 2.4 (Range condition for β: Strategy (A)) The unknown vector β verifies

min
j∈T
|βj | ≥ Hn,s0,pα,r σ. (2.3)

Our main results show that the estimators β̂ defined by either Strategy (A) or Strat-
egy (B) recover the support and sign pattern of β exactly with probability of the order
1−O(p−α) using similar bounds on the coherence and the sparsity as in [14].

Theorem 2.5 Set α > 0 and p ≥ e8/α. Let X satisfy the Generic Condition 2.1. Let
Assumption 2.2, 2.2, 2.3 and 2.4 hold with

n ≥ s (C◦ log p+ 1) . (2.4)

Then the probability that the estimator β̂ defined by Strategy (A) with

Cvar ∈
[

(1− r)2

20(1 + r)Cspar
n

p
‖X‖2; (1− r)2

2(1 + r)Cspar
n

p
‖X‖2

]
, (2.5)

exactly recovers the support and sign pattern of β is greater than 1− 228/pα.

Remark 2.6 The choice of the constants 1/20 and 1/2 in the range of Cvar is unessential.
For application purposes, the practitioner may need to choose a different range of Cvar, and
then decrease or increase these constants. By studying the proof of Theorem 2.5 in Section
3, one notices that e.g. lowering 1/20 results in lowering the numerical constant 10 in C◦.

We now turn to Strategy (B). Let us define for C > 0,

Ln,s,pα,r,C = max
(

2
√

1 + 2C
C
√

1− r

√
n− s+

√
2α log p√

s
, 2
√
s+
√

2α log p√
1− r

√
s

)
(2.6)

Mn,s,p
α,r,C = n− s√

log p
1

3κC

(√
π(n− s)
pα

) 4
n−s

. (2.7)

The value of C needs to be selected by the user and will be discussed in Section 5.

Let us state the corresponding range assumption for the coefficients of β.
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Assumptions 2.5 (Range condition for β: Strategy (B)) The unknown vector β verifies

min
i∈T
|βj | ≥ Ln,s,pα,r,C σ, (2.8)

‖β‖1 ≤ Mn,s,p
α,r,C σ. (2.9)

Theorem 2.7 Set α > 0, p ≥ e8/α and c◦ = (6κ)2e
1−r . Choose C > 0. Let X satisfy the

Generic Condition 2.1. Let Assumptions 2.2, 2.2, 2.3 and 2.5 hold with this value of C and

n ≥ c◦(1 + 2C) s log p+ s. (2.10)

Then the probability that the estimator β̂ defined by Strategy (B) exactly recovers the support
and sign pattern of β is greater than 1− 229/pα.

The proofs of Theorems 2.5 and 2.7 are forthcoming in Sections 3 and 4.

Important comments
About X

The normalized Gaussian example is instructive. First, when X is obtained from a random
matrix with i.i.d. standard Gaussian random entries by normalizing the columns, the co-
herence is of the order

√
log p/n (See below for a short proof). Therefore, taking n of the

order of log3 p is sufficient for satisfying the Incoherence Assumption 2.2. Second, it is also
well known that ‖X‖2 is of the order p/n, see e.g. [34]. This suggests in particular that the
upper bound (2.6) on the number s of nonzero components of β may be understood in the
Gaussian setting as

s ≤ p

log p
Cspar
‖X‖2

= O

(
n

log p

)
.

Notice that the estimate
√

log p/n of the coherence for i.i.d. Gaussian matrices with
normalized columns easily follows from the Paul Levy concentration of measure phenomenon
on the sphere [25]. Namely, since each normalized column is Haar distributed on the unit
sphere, one has

P (|〈Xj , Xj′〉| ≥ u) = E P (|〈Xj , Xj′〉| ≥ u | Xj′) ≤ 2 exp
(
−cn u2) ,

for some constant c > 0. The union bound then gives

P
(

max
1≤j<j′≤p

|〈Xj , Xj′〉| ≥ u
)
≤ p(p− 1)

2 · 2 exp
(
−cn u2) ,

≤ exp
(
−cn u2 + 2 log p

)
.

Hence, this last quantity is less that p−α for u ≥
√

log p/n
√

(α+ 2)/c.
An interesting question concerns the pertinence of the coherence for the problem of

variable selection using the LASSO. The work of [28] shows through numerical investigations
that certain conditions on the matrix X (requiring in particular the knowledge of the true
signal’s support, without any statistical assumptions on beta though), allow to deduce sharp
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bounds on the minimum sample size needed for exact support recovery. When the true
support is not known ahead of time, conditions such as the ones in [28] are required to hold
uniformly or at least for most support with high probability. Proving such a property for
matrices more general than i.i.d. Gaussian matrices implies loosing sharp bounds on the
minimum sample size. The advantage of the coherence over such assumptions is that it can
be computed very easily for any given matrix. The main drawback is that the resulting
bounds on the minimum sample size might not be sharp.

One may also consult Section 3 in [1] where the authors provide some interesting examples
of matrices (frames), selected at random from various libraries, enjoying small coherence
(called in their paper worst case coherence).

Order of Hn,s0,pα,r

In the case where X is i.i.d. Gaussian, the order of s0 is n/ log p and thus the order of Hn,s0,pα,r

is
√

log p, just as in [14]. Indeed,

Hn,s0,pα,r �
√
n+
√

2α log p√
n

log p

�
√

log p.

About C and Ln,s,pα,r,C

Increasing the upper bound (2.9) on the magnitude of the βj ’s via decreasing the constant
C also results in increasing the lower bound (2.8). Therefore, C governs a sliding window
inside which the coefficients of β can be recovered by the LASSO. Moreover for a given n,
one can decrease the lower bound Ln,s,pα,r,C in Eq. (2.6) by increasing C. This would result
on a smaller sparsity in Eq. (2.26). Taking C as C ∼ n/(s log p) implies the usual order√

log p for the minimum of beta’s (See Eq. (2.6)). If one wants to specify C in a way that
is independent of s one may run the risk of prescribing an incorrect order for Ln,s,pα,r,C as a
function of n. This technical issue should however be considered as of theoretical interest
only and not so much of a problem in practice. As an analogy, consider the plain LASSO
with known variance: there exists a universal way of choosing the parameter λ, but many
practitioners use the LARS instead in order to explore all the supports occuring on the λ-
trajectory and compare them using a standard model selection procedure (AIC, BIC, Foster
and George, etc). In the same manner, one could also vary the value of C and compare all
supports on this trajectory. In this spirit, our simulation experiments show the histogram of
recovered and incorrectly detected components over a large range of values of C. One nice
surprise is that Strategy (B) is quite robust vs. the actual choice of C at such a low signal
to noise ratio level.

About the constants Cspar and Cµ

Let us compare the numerical values of these constants to the one obtained in [14].
One of the various constraints on the rate α in [14] is given by the theorem of Tropp in

[37]. In this setting,

α = 2 log 2
r = 1/2,
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the author’s choice of 1/2 being unessential. To obtain such a rate α, they need to impose
the r.h.s. of (3.15) in [14] to be less than 1/4, that is:

30Cµ + 13
√

2Cspar ≤ 1
4 . (2.4)

In particular, 13
√

2Cspar ≤ 1
4 , so Cspar < 1.19 × 10−4. Let us choose Cspar close to

this maximum allowed, say 1.18 10−4. The corresponding greatest value of Cµ is then
1
4 − 13

√
2 ∗ 1.18 10−4:

Cspar ' 1.18 10−4, Cµ ' 1.7 10−3.

(The additional condition coming from the end of the proof of [14, Lemma 3.5], that is
3

64C2
µ

= 2 log(2), is not limiting since
√

3/(128 log 2)� 1.7 10−3.)
Our theorem allows to choose any rate α > 0. To make a fair comparison, let us also

choose α = 1.5 > 2 log 2 and r = 1/2. We obtain:

Cspar ' 1.4 10−2, Cµ = 0.2.

About the Generic Sparse Model

The Generic Sparse Model was proposed in [14] for a precise analysis of the support recovery
properties of the LASSO estimator. It is natural to use the same model in the present study
which extends the LASSO to Strategies (A) and (B) which incorporate the estimation of λ
when the variance is unknown. The sparsity assumption is quite natural in several applica-
tions ranging from gene expression analysis to image reconstruction and inverse problems.
However, the assumption that the signs of the components of β are independent is a bit
harder to justify in practice. We use this assumption in the sequel only for the sake of
simplifying the mathematical analysis. Further work should be devoted to relaxing this as-
sumption in the future. Obviously, assumming some kind of randomness in the construction
of X could help for this purpose.

3 Proof of Theorem 2.5

The proof is divided into several steps. The main two steps are as follows. First, we provide
the description and consequences of the optimality conditions for the standard LASSO
estimator as a function of λ. Second, we prove that these optimality conditions are satisfied
by a simple and natural oracle estimator.

Enforcing the invertibility assumption
We recall the basic result we proved in [13] regarding the invertibility of random submatrices
via the Non-commutative Chernoff Inequality.

Theorem 3.1 Let r ∈ (0, 1), α ≥ 1. Let X be a full-rank n × p matrix and s be positive
integer, such that

µ(X) ≤ r

2(1 + α) log p

s ≤ r2

4(1 + α)e2
p

‖X‖2 log p .
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Let T ⊂ {1, . . . , p} be a set with cardinality s, chosen randomly from the uniform distribution.
Then the following bound holds:

P
(
‖Xt

TXT − Is‖ ≥ r
)
≤ 216

pα
. (3.1)

By Theorem 2.1, we have

(1 + r)−1 ≤ ‖
(
Xt
TXT

)−1 ‖ ≤ (1− r)−1 (3.2)
(1− r)1/2 ≤ ‖XT ‖ ≤ (1 + r)1/2 (3.3)

with probability greater than 1 − 216 p−α. Thus, throughout this section, we will assume
that (3.2) and (3.3) hold, i.e. we will reduce all events considered to their intersection with
the event that (3.2) and (3.3) are satisfied.

The oracle estimator for β̂ and λ̂

We now discuss the next step of the proof of Theorem 2.5, which consists of studying some
sort of oracle estimators for β which enjoys the property of knowing the support T of β
ahead of time.

For a given λ̃, one might like to consider the following oracle for β̂:

β ∈ argmax
b∈B

− 1
2‖y −Xb‖

2
2 − λ̃‖b‖1, (3.4)

where

B = {b ∈ Rp, supp(b) = T, sign(b) = sign(βT )}.

However, it is not so easy to derive a closed form expression for β. Therefore, it might be
more interesting to consider instead the following oracle:

β̃ ∈ argmax
b∈Rp, supp(b)=T

− 1
2‖y −Xb‖

2
2 − λ̃ sign(βT )tb. (3.4)

Indeed, β̃ satisfies

Xt
T

(
y −XT β̃T

)
− λ̃ sign(βT ) = 0,

and we obtain that β̃ is given by

β̃T =
(
Xt
TXT

)−1
(
Xt
T y − λ̃ sign(βT )

)
. (3.4)

This formula is the same as in the proof of Th. 1.3 in [14], but here, λ̃ is a variable.

Now let us recall that in the known variance case, Candès and Plan assume that

λ2 = Cvarσ
2 log p, (3.5)

for some positive constant Cvar. It is then relevant to seek our oracle λ̃ as:

λ̃2 = Cvar
‖y −XT β̃T ‖22

n
log p. (3.6)
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Replacing β̃ by its value (3.4), we obtain

Cvar

∥∥∥y −XT

(
Xt
TXT

)−1
(
Xt
T y − λ̃ sign(βT )

)∥∥∥2

2
= n

log p λ̃
2.

Thus,

Cvar ‖PV ⊥
T
y + λ̃XT

(
Xt
TXT

)−1
sign(βT )‖22 = n

log p λ̃
2,

and using the orthogonality relations, we obtain

Cvar ‖PV ⊥
T
y‖22 + λ̃2Cvar ‖XT

(
Xt
TXT

)−1
sign(βT )‖22 = n

log p λ̃
2,

which is equivalent to

λ̃2 =
‖PV ⊥

T
z‖22

n
Cvar log p − ‖XT (Xt

TXT )−1
sign(βT )‖22

(3.4)

We henceforth work with this definition of λ̃. Notice that λ̃ is well defined whenever

Cvar ≤ n

‖XT (Xt
TXT )−1

sign(βT )‖22 log p
. (3.5)

The choice of Cvar will be done in the next section.

Study of the oracle λ̃

In this section, we provide a confidence interval for λ̃. In particular, the first subsection
shows that λ̃ is well defined.

Bounds on ‖XT (Xt
TXT )−1

sign(βT )‖22
Using the lower bound on σmin(XT ) and the upper bound on σmax(XT ) given by (3.2) and
(3.3), we have, with high probability:

1− r
(1 + r)2 s ≤ ‖XT (Xt

TXT )−1
sign(βT )‖22 ≤ 1 + r

(1− r)2 s. (3.6)

We write the choice of Cvar made in (2.5) as

1
20

(1− r)2

1 + r

n

s0 log p ≤ Cvar ≤
1
2

(1− r)2

1 + r

n

s0 log p , (3.7)

where s0 is the maximum sparsity allowed in Inequality (5.-22), namely,

s0 = p

log p
Cspar
‖X‖2

.

In particular, the condition (3.5) is satisfied which guarantees that λ̃ is indeed well defined.
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Bounds on ‖PV ⊥
T
z‖2

Using some well known properties of the χ2 distribution recalled in Lemma 6.2 in the
Appendix, we obtain that

P
(
‖PV ⊥

T
(z)‖2/σ ≥

√
n− s+

√
2t
)
≤ exp(−t) (3.7)

and

P
(
‖PV ⊥

T
(z)‖22/σ2 ≤ u(n− s)

)
≤ 2√

π(n− s)
(u e/2)

n−s
4 . (3.8)

Tune u such that the r.h.s. of (3.5) equals 2/pα, i.e.

u = 2
e

(√
π(n− s)
pα

)4/(n−s)

.

Thus, we obtain that

‖PV ⊥
T
z‖22

σ2 ≤

(
√
n− s+

√
2 log(p

α

2 )
)2

≤
(√

n− s+
√

2α log p
)2

(3.8)

and

‖PV ⊥
T
z‖22

σ2 ≥ 2(n− s)
e

(√
π(n− s)
pα

)4/(n−s)

(3.9)

with probability greater than or equal to 1− 2p−α.

Bounds on λ̃

Lemma 3.2 The following bounds hold:

λ̃ ≤ σ
1− r√
1 + r

√
n− s+

√
2α log p

√
s0

(3.10)

λ̃ ≥ κ σ
√

log p. (3.11)

Proof. Recall that 0 ≤ s ≤ s0. From (3.7), we have

Cvar ≤
1
2

(1− r)2

1 + r

n

s0 log p .

We then obtain, by virtue of (3.4) and the upper bound in (3.6),

λ̃2 ≤
‖PV ⊥

T
z‖22

2s0
1+r

(1−r)2 − ‖XT (Xt
TXT )−1

sign(βT )‖22

≤
‖PV ⊥

T
z‖22

2s0
1+r

(1−r)2 − s0
1+r

(1−r)2

.

Using the bound (3.8), we deduce (3.10).
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On the other hand, the bound (3.9) and

n

Cvar log p ≤ 20 1 + r

(1− r)2 s0,

yield

λ̃2 ≥ 2(n− s)
e

(
π(n− s)
p2α

)2/(n−s)
σ2

20 1+r
(1−r)2 s0

.

From (2.4), we know that n verifies

n− s
s0

≥ n− s0

s0
≥ C◦ log p. (3.7)

Thus, noting that (π(n− s))2/(n−s) ≥ 1,

λ̃2 ≥ (1− r)2

10e(1 + r)p
−4α/(n−s)C◦σ

2 log p.

Writing p−4α/(n−s) = e−4α log p/(n−s) and, using (3.7) again,

log p
n− s

≤ log p
n− s0

≤ 1
s0 C◦

≤ 1
C◦
,

we obtain

p−4α/(n−s) ≥ e−4α/C◦ .

Therefore,

λ̃2 ≥ (1− r)2

10e(1 + r)e
−4α/C◦C◦σ

2 log p. (3.5)

Let us recall that the constant C◦ has been precisely chosen to satisfy

`α(C◦) = C◦e
−4α/C◦ = 10e 1 + r

(1− r)2κ
2.

As a conclusion, we have just proved (3.11). 2

Candès and Plan’s conditions
To obtain the exact recovery of the support and sign patterns of β, we will need similar
bounds as the ones in [14, Section 3.5]. Namely,

(i) ‖(Xt
TXT )−1Xt

T z‖∞ ≤ κ σ
√

log p

(ii) ‖(Xt
TXT )−1sign(βT )‖∞ ≤ 3

(iii) ‖Xt
T cXT (Xt

TXT )−1sign(βT )‖∞ ≤ 1
4

(iv) ‖Xt
T c

(
I −XT (Xt

TXT )−1Xt
T

)
z‖∞ ≤ κ σ

√
log p

(v) ‖Xt
TXT − Is‖ ≤ r.
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When r = 1
2 , these conditions were proven to hold with high probability in [14] based on

previous results due to Tropp [37]. Most of the proofs that these conditions hold with high
probability are the same as in [14] up to some slight improvements of the constants.

Proposition 3.3 The bounds (i-iv) hold with probability at least 1− 10/pα. Condition (v)
holds with probability at least 1− 216/pα.

extbfProof. See Section 6 in the Appendix. 2

Last step of the proof
We now conclude the proof using the strategy announced in the beginning of this section:

(i) We prove that the proxies β̃ and λ̃ satisfy the optimality conditions (6.-35) and (6.-34),
from which we deduce that β̂ = β̃ and λ̂ = λ̃.

(ii) Since the proxy β̃ has the right support and sign patterns, we conclude that β̂ exactly
recovers these features as well.

β̃ and β have the same support and sign pattern

First, it is clear that β̃ and β have the same support. Next, we must prove that β̃ has the
same sign pattern as β. Use Proposition 3.3 to obtain

‖β̃T − βT ‖∞ ≤ ‖(Xt
TXT )−1Xt

T z‖∞ + λ̃ ‖(Xt
TXT )−1sign(βT )‖∞

≤ κ σ
√

log p+ 3λ̃.

Using the lower bound (3.11), and the expression of κ, we obtain

‖β̃T − βT ‖∞ ≤ 4λ̃. (3.3)

A sufficient condition to guarantee that the sign pattern is recovered is that this last upper
bound be lower than the minimum absolute value of non-zero components of β, i.e.

4λ̃ ≤ min
j∈T
|βj |. (3.4)

Using the upper bound on λ̃ in (3.10), this is achieved in particular when

4σ
√
n− s+

√
2α log(p)

√
s0

1− r√
1 + r

≤ min
j∈T
|βj |,

which is implied by Assumption 2.5.

β̃ and λ̃ satisfy the optimality conditions

Using the lower bound (3.11) on λ̃, the proof of the fact β̃ and λ̃ satisfy the optimality
conditions is exactly the same as in [14, Section 3.5]. We repeat the argument for the sake
of completeness. On one hand, by construction, we clearly have

Xt
T (y −Xβ̃) = −λ̃ sign(βT ).
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Since β̃ and β have the same sign pattern, we actually have:

Xt
T (y −Xβ̃) = −λ̃ sign(β̃T ).

On the other hand,

‖Xt
T c(y −Xβ̃)‖∞ = ‖Xt

T cPV ⊥(z) + λ̃ Xt
T cXT (Xt

TXT )−1sign(βT )‖∞
≤ ‖Xt

T cPV ⊥(z)‖∞ + λ̃ ‖Xt
T cXT (Xt

TXT )−1sign(βT )‖∞

≤ κ σ
√

log p+ 1
4 λ̃ (3.0)

≤ 3
4 λ̃ < λ̃.

Hence, the two parts of the subgradient conditions (6.-35-6.-34) are satisfied by β̃ and λ̃,
which means that

β̃ = β̂
λ̃
. (3.0)

In other words, β̃ corresponds to the solution of problem (1.2) with the penalization λ = λ̃.
Moreover, λ̃ bas been determined so that it verifies (3.6)

λ̃2 = Cvar
‖y −XT β̃T ‖22

n
log p,

i.e., plugging (3.0),

λ̃2 = Cvar
‖y −XT (β̂

λ̃
)T ‖22

n
log p.

Therefore, λ̃ is a solution of Eq. (2.5). By virtue of uniqueness proved in Appendix 6, we
deduce that

β̂ = β̃

λ̂ = λ̃.

Conclusion of the proof

The two preceding sub-sections prove that β̂ has the same support and sign pattern as β.
This occurs when (3.2) and (3.3) (both implied by the invertibility condition (v) in Sec. 3),
Candès and Plan’s conditions (i-iv) in Sec. 3 and the bound on ‖PV ⊥

T
z‖2 in Sec. 3 are

satisfied simultaneously. Therefore, this occurs with probability at least

1− 216 + 10 + 2
pα

,

as announced.

4 Proof of Theorem 2.7

As in the proof of Theorem 2.5, the quasi-isometry property (3.2) and (3.3), and Candès
and Plan’s conditions of Section 3 will be assumed. Notice also that the results of Section
6 are still valid with the assumption of Theorem 2.7.
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The oracle estimator

As in the case of Section 3, the oracle for β is given by

β̃T =
(
Xt
TXT

)−1
(
Xt
T y − λ̃ sign(βT )

)
. (4.-4)

We now seek λ̃ verifying

1
2‖y −XT β̃T ‖22 = Cλ̃ sign(βT )tβ̃T . (4.-3)

Replacing β̃ by its value (3.4), we obtain

1/2 ‖y −XT

(
Xt
TXT

)−1
(
Xt
T y − λ̃ sign(βT )

)
‖22

= C λ̃ sign(βT )t
((
Xt
TXT

)−1
(
Xt
T y − λ̃ sign(βT )

))
.

Thus,

1
2 ‖PV ⊥

T
y + λ̃XT

(
Xt
TXT

)−1
sign(βT )‖22 =

−Cλ̃2〈sign(βT ),
(
Xt
TXT

)−1
sign(βT )〉+ Cλ̃ sign(βT )t

(
Xt
TXT

)−1
Xt
T y.

Using the orthogonality relations, we then obtain

1
2‖PV ⊥

T
y‖22 + λ̃2

2 ‖XT

(
Xt
TXT

)−1
sign(βT )‖22 = Cλ̃ sign(βT )t

(
Xt
TXT

)−1
Xt
T y

−C λ̃2〈sign(βT ),
(
Xt
TXT

)−1
sign(βT )〉,

which is equivalent to(
1
2 + C

)
λ̃2‖

(
Xt
TXT

)− 1
2 sign(βT )‖22 − Cλ̃ sign(βT )t

(
Xt
TXT

)−1
Xt
T y + 1

2‖PV ⊥
T
z‖22 = 0.(4.-8)

The roots of the quadratic equation are

λ̃ = C sign(βT )t (Xt
TXT )−1

Xt
T y ±

√
∆

(1 + 2C)‖ (Xt
TXT )−

1
2 sign(βT )‖22

, (4.-7)

where

∆ =
(
C sign(βT )t

(
Xt
TXT

)−1
Xt
T y
)2

−(1 + 2C)‖
(
Xt
TXT

)− 1
2 sign(βT )‖22‖PV ⊥

T
z‖22.

Study of the oracle λ̃

Following the same strategy as for Strategy (A), we now provide a confidence interval for λ̃.
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Premilinaries

We have

sign(βT )t
(
Xt
TXT

)−1
Xt
T y = sign(βT )t

(
Xt
TXT

)−1
Xt
T (XTβ + z)

= sign(βT )tβ + sign(βT )t
(
Xt
TXT

)−1
Xt
T z

= ‖β‖1 + 〈XT

(
Xt
TXT

)−1
sign(βT ),PVT z + PV ⊥

T
z〉.

Hence,

sign(βT )t
(
Xt
TXT

)−1
Xt
T y = ‖β‖1 + 〈XT

(
Xt
TXT

)−1
sign(βT ),PVT z〉. (4.-12)

Note that the Cauchy-Schwarz inequality yields∣∣∣〈XT

(
Xt
TXT

)−1
sign(βT ),PVT z〉

∣∣∣ ≤ ‖ (Xt
TXT

)− 1
2 sign(βT )‖2‖PVT z‖2. (4.-12)

Bound on ‖PVT z‖2

Using some well known properties of the χ2 distribution recalled in Lemma 6.2 in the
Appendix, we obtain

P
(
‖PVT (z)‖2/σ ≥

√
s+
√

2t
)
≤ exp(−t). (4.-11)

Tune t such that e−t = 2p−α, i.e.

t = log(pα/2).

Hence,

P
(
‖PVT (z)‖2/σ ≥

√
s+

√
2 log(pα/2)

)
≤ p−α. (4.-11)

Positivity of ∆

We begin with the study of sign(βT )t (Xt
TXT )−1

Xt
T y and ‖ (Xt

TXT )−
1
2 sign(βT )‖22‖PV ⊥

T
z‖22,

two key quantities in the analysis.

We first study sign(βT )t (Xt
TXT )−1

Xt
T y. By (3.2), we have

‖
(
Xt
TXT

)− 1
2 sign(βT )‖2 ≤

√
s

1− r . (4.-10)

Thus, using (4.-11), (4) and the lower bound (2.8) from Assumption 2.5 on the non-zero
components of β, we can write∣∣∣〈XT

(
Xt
TXT

)−1
sign(βT ),PVT z〉

∣∣∣ ≤ σ

√
s√

1− r

(√
s+

√
2α log p

)
≤ 1

2 ‖β‖1.
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Therefore, from (4) we deduce that
1
2‖β‖1 ≤ sign(βT )t

(
Xt
TXT

)−1
Xt
T y ≤

3
2‖β‖1. (4.-11)

Second, we study ‖ (Xt
TXT )−

1
2 sign(βT )‖22‖PV ⊥

T
z‖22. We have

‖
(
Xt
TXT

)− 1
2 sign(βT )‖2‖PV ⊥

T
z‖2 ≤ σ

√
s

1− r

(√
n− s+

√
2α log p

)
.

Thus

∆ ≥ C2

4 ‖β‖
2
1 − σ2(1 + 2C) s

1− r

(√
n− s+

√
2α log p

)2
(4.-12)

≥ C2

4 s2 min
1≤j≤p

|βj |2 − σ2(1 + 2C) s

1− r

(√
n− s+

√
2α log p

)2
(4.-11)

and Assumption 2.5 shows that ∆ > 0, which ensures that λ̃ is well defined.

Bounds on λ̃

First, let us write
√

∆ =
(
C sign(βT )t

(
Xt
TXT

)−1
Xt
T y
)

×

√√√√√1−
(1 + 2C) ‖ (Xt

TXT )−
1
2 sign(βT )‖22‖PV ⊥

T
z‖22(

C sign(βT )t (Xt
TXT )−1

Xt
T y
)2 .

On one hand, due to
√

1− δ ≤ 1− δ
2 on (0, 1), we obtain

√
∆ ≤

(
C sign(βT )t

(
Xt
TXT

)−1
Xt
T y
)

−
(1 + 2C)‖ (Xt

TXT )−
1
2 sign(βT )‖22‖PV ⊥

T
z‖22

2C sign(βT )t (Xt
TXT )−1

Xt
T y

.

Combining this last equation with (4.-7), we obtain that

λ̃ ≥
‖PV ⊥

T
z‖22

2C sign(βT )t (Xt
TXT )−1

Xt
T y
. (4.-14)

On the other hand, we also have
√

1− δ ≥ 1− δ on (0, 1). Thus we can write
√

∆ ≥
(
C sign(βT )t

(
Xt
TXT

)−1
Xt
T y
)

−
(1 + 2C)‖ (Xt

TXT )−
1
2 sign(βT )‖22‖PV ⊥

T
z‖22

C sign(βT )t (Xt
TXT )−1

Xt
T y

and combining this last equation with (4.-7) and the previous upper bound, we thus obtain

λ̃ ≤
‖PV ⊥

T
z‖22

C sign(βT )t (Xt
TXT )−1

Xt
T y
.
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Using (4.-11), we finally get

‖PV ⊥
T
z‖22

3 C ‖β‖1
≤ λ̃ ≤ 2

‖PV ⊥
T
z‖22

C ‖β‖1
. (4.-16)

Combining this last equation with (3.9), we obtain:

σ2
(n− s)

(√
π(n−s)
pα

) 4
n−s

3 C ‖β‖1
≤ λ̃ ≤ 2 σ2

(√
n− s+

√
2α log p

)2
C‖β‖1

. (4.-16)

Using Assumption 2.5 and (2.7), we thus obtain

λ̃ ≥ κ σ
√

log p. (4.-15)

Last step of the proof
β̃ and β have the same support and sign pattern

As in the case of Strategy (A) it is clear that β̃ and β have the same support. Let us now
verify that they have the same sign pattern.

As in Section 3 and based on (4.-15), we obtain

‖β̃T − βT ‖∞ ≤ 4λ̃,

exactly as for Strategy (A). Using the upper bound on λ̃ in the right hand side of (4.-16),
we thus need

8
(√
n− s+

√
2α log p

)2
C

≤ min
j∈T
|βj |
‖β‖1
σ2

to garantee that β̃T and βT have the same sign pattern. In view of this inequality, and since
‖β‖1 ≥ sminj∈T |βj |, an even stronger sufficient condition is

8
(√
n− s+

√
2α log p

)2
C s

≤ minj∈T |βj |2

σ2 .

Noting that 2
√

2√
C
≤ 2

√
1+2C

C
√

1−r , we conclude that this condition is also implied by Assumption
2.5.

β̃ and λ̃ satisfy the optimality conditions

The proof is exactly the same as in Section 3 after replacing (3.11) by (4.-15).

Conclusion of the proof

The two preceding sub-sections prove that β̂ has same support and sign pattern as β.
This occurs under the same conditions as those mentioned in the conclusion of the proof
of Theorem 2.5, Sec. 3, plus the bound on ‖PVT z‖2 in Sec. 4. Hence, this occurs with
probability at least

1− 216 + 10 + 2 + 1
pα

,

as announced.
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Epilogue: Nonempty range for ‖β‖1
We need to ensure that the range of admissible values for β is sufficiently large. The intuition
says that this can be achieved by allowing sufficiently large values of n. In other words, we
would like to know the additional constraints on the various parameters ensuring

s Ln,s,pα,r,C < Mn,s,p
α,r,θ,C .

Based on Eq. (2.6) and (2.7), it then suffices to know when the following inequalities are
satisfied:

mα,r,C s

√
n− s+

√
2α log p√

s
≤ n− s√

log p

(√
π(n− s)
pα

) 4
n−s

(4.-19)

where

mα,r,C = 6κ
√

1 + 2C√
1− r

.

First, notice that under the condition

n− s ≥ 8α s log p ≥ 8α log p, (4.-19)

we have log
(√

π(n−s)
pα

) 4
n−s

= 4
(n−s)

(
1
2 (log(π) + log(n− s))− α log p

)
≥ − 1

2 , and then

e−1/2 ≤

(√
π(n− s)
pα

) 4
n−s

.

Therefore, since we also have
√

2α log p ≤
√
n− s, (4.-19) is fulfilled if

2mα,r,C

√
s
√
n− s ≤ e−1/2 n− s√

log p
,

i.e.

n− s ≥ 4e m2
α,r,C s log p.

This explains the constraint (2.10) with the constant c◦ := 4e m2
α,r,C > 8α.

5 Algorithms and simulations results

In this section, we propose one iterative algorithm for Strategies (A) and (B) and we study
their practical performance via Monte Carlo experiments.

We performed Monte Carlo experiments in the following setting. We took p = 600,
n = 75 and s = 9 and we ran 500 experiments with σ2 = 1 and the coefficients of β
were randomly drawn independently as B times a Bernoulli ±1 random variable plus an
independent centered Gaussian perturbation with variance one.
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Preliminaries
Our algorithms will be well defined under the assumption that for each positive value of the
relaxation parameter, the value β̂λ of the regression vector is unique and the trajectory of β̂λ
is continuous and piecewise affine. This property is well known under various assumptions on
the design matrix X. It is a basic prerequisite for the theory behind Least Angle Regression
and Homotopy methods. We refer the reader to [29] and [18] for information on these
problems. See also [17] for a recent account on the study of β̂λ as a function of λ under
generic conditions on the design matrix.

The subgradient conditions for the LASSO imply that

Xt

T̂λ
(y −X

T̂λ
β̂
T̂λ

) = λ sign(β̂
T̂λ

). (5.-21)

where X
T̂λ

is non-singular, and we obtain the well known fact that, for any λ > 0 such that
β̂λ 6= 0,

β̂
T̂λ

= (Xt

T̂λ
X
T̂λ

)−1
(
Xt

T̂λ
y − λ sign

(
β̂
T̂λ

))
. (5.-20)

The following result is straightforward but useful.

Lemma 5.1 (Nontriviality of the estimator) Let Σ be the set

Σ =
{

(S, δ); S ⊂ {1, . . . , p}, δ ∈ {−1, 1}|S|, |S| ≤ n, σmin(XS) > 0
}
. (5.-20)

The inequality

inf
(S,δ)∈Σ

∥∥(Xt
SXS)−1(Xt

Sy − λδ)
∥∥

1 > 0 (5.-19)

holds with probability one.

extbfProof. This is an immediate consequence of the Gaussian distribution of z. 2

The standard LASSO with known variance
Simulations results: high SNR

With the choice B = 40, in all of the 500 experiments, we found that the support was exactly
recovered.

Simulations results: low SNR

Figure H.1 below shows the histogram of the number of properly recovered components (left
column) and the number of false components (right column) for the LASSO estimator with
known variance and λ = 2σ

√
2 log p.

Strategy (A)
Implementation

As was discussed in Section 2, finding the estimator (β̂, λ̂) in Strategy A is equivalent to
solving the equation

ΓA(λ) = Cvar.
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Figure H.1: Histogram of the number of properly recovered components (left column)
and the number of false components (right column) for the LASSO estimator with known
variance σ2 = 1 and λ = 2σ

√
2 log p for coeff. mean level B = 1, 2, 5, 10 (from top to bottom)

Since the function ΓA is increasing (see Appendix 6.4), there is a number of Newton-type
methods which can be used to solve this equation very efficiently and globally, i.e. without
any condition on the initial iterate λ(0); see e.g. [32]. Instead of such refined methods, one
may also use a simple dichotomic search. This is the option we chose for our simulations
experiments, since the problem is only one dimensional and the complexity of the method
is satisfactory in such simple cases. Notice that λ has the well-known upper bound ‖Xty‖∞
(a value beyond which β̂λ = 0 [30]) and we used this value in the dichotomic search by
specifying the initial interval to be [0, ‖Xty‖∞].

Simulations results: high SNR

As for the case of the standard LASSO with known variance of Section 5 we found that, for
B = 40, the support was exactly recovered in all of the 500 experiments.
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Simulations results: low SNR

We performed Monte Carlo experiments in the same setting as for the LASSO in Section 5.

In real situations where the level of magnitude of the regression coefficients may not
be much higher than the noise level, one observes that false positives often occur for the
LASSO estimator with known variance. As seen from these results, the LASSO estimator
where the variance is estimated using the penalty λ̂ = 2σ̂

√
2 log p performs at least as well

as the standard LASSO estimator to which the true variance is available. The estimator σ̂
of the standard deviation is a slightly biased as shown in Figure H.3.
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Figure H.2: Histogram of the number of properly recovered components (left column) and
the number of false components (right column) for the LASSO estimator with unknown
variance (σ2 = 1) using Strategy (A) and λ̂ = 2σ̂

√
2 log p for coeff. mean level B = 1, 2, 5, 10

(from top to bottom).
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Figure H.3: Histogram of σ̂ for the LASSO estimator with unknown variance using Strategy
(A) and λ̂ = 2σ̂
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Strategy (B)

Implementation

In order to compute the LASSO estimators (β̂, λ̂) satisfying the penalty vs. fidelity tradeoff
constraint, we need to find λ̂ such that ΓB(λ̂) = C. Since Γ is strictly decreasing by Lemma
6.5, and the problem is one dimensional, this task is not difficult to perform. As for Strategy
A, we chose a standard dichotomic search for this problem. As for Strategy (A), we used
the well-known upper bound ‖Xty‖∞ on λ (a value beyond which β̂λ = 0) in the dichotomic
search.

Simulations results: high SNR

As for the case of the standard LASSO with known variance of Section 5 we found that, for
B = 40, the support was exactly recovered in all of the 100 experiments.

Simulations results: low SNR

We performed Monte Carlo experiments in the same setting as for the LASSO in Section 5.
Figure H.4 below shows the histogram of the number of properly recovered components

(left column) and the number of false components (right column) for the LASSO estimator
with unknown variance and the penalty vs. fidelity tradeoff constraint for the values C =
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.01, .1, .5, 5. The instances where Newton’s iterations did not converge were simply discarded
although implementing a line search or a trust region strategy could easily have produced
a correct result at the price of increasing the computational time for the Monte Carlo
simulations study.
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Figure H.4: Histogram of the number of properly recovered components (left column) and
the number of false components (right column) for the LASSO estimator with unknown
variance (σ2 = 1) using Strategy (B) for C = 0.01, .01, 0.5, 5 (from top to bottom) with level
B = 2.

The number of well recovered components of β is very close to the true value 9 for all
values of C. On the other hand, the number of false positives is very close to zero for all
values of C. Our estimator with penalty vs. fidelity tradeoff constraint is seen to have quite
better performances than the standard LASSO and LASSO with estimated variance of the
previous section with respect to the number of false positives; compare Figure H.4 with the
second row of Figure H.1 or Figure H.2. This was the main objective for proposing this
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strategy and the presented simulations show encouraging evidence of its robust behavior in
the low SNR case. The low dependency on C is a property which might be well appreciated
in practice when neither the signal nor the noise levels are precisely known ahead of time.

Comments
The simulations results confirmed the theoretical findings that, in the high SNR case, Strat-
egy (A) and Strategy (B) perform as well, without knowing the variance ahead of time, as
the standard LASSO which uses the true value of the variance. Although the results are
presented for a particular set of parameters, this behavior was observed more generally for
a large number of numerical experiments with different parameter configurations, for which
the standard LASSO exactly recovers the true support and sign pattern. In the low SNR
setting, the standard LASSO and Strategy (A) perform poorly in the sense that many false
components are selected. The Monte Carlo experiments show that Strategy (B) is more
robust in the low SNR setting, in the sense that the estimated support contains much less
false components. Surprisingly, this phenomenon was observed over a wide range of values
for the constant C. In other words, the dependence of Strategy (B)’s performance on C
appeared as rather unessential for the recovery problem in the low SNR setting. As a pre-
liminary practical conclusion, Strategy (A) appeared to be more suitable for the high SNR
setting and Strategy (B) more suitable for the low SNR setting. In practice, the choice of C
in Strategy B could be based on standard model selection procedures (AIC, BIC, Foster and
George, etc) for comparing the obtained supports over a large range of possible values. The
limited number of possible supports occurring in practice as C varies makes this comparison
numerically tractable.

Finally, there remains the question of choosing between Strategy A and Strategy B on a
given practical problem. One reasonable way to proceed might simply be as follows: compare
the supports obtained via both methods, using a standard model selection procedure such
as BIC, AIC, Foster and George’s criterion, etc.

6 Appendices

Proof of Proposition 3.3
First, let us recall a technical result we obtained in [13]:

Lemma 6.1 The following bound holds:

P (‖RH‖1→2 ≥ v) ≤ p

(
e
s

p

‖X‖2

v2

)v2/µ(X)2

, (6.-19)

provided that e sp
‖X‖2
v2 ≤ 1.

Let us introduce the events:

E = {‖Xt
TXT − I‖ ≤ r}

B =
{
‖RH‖1→2 ≤

c√
log p

}
.

The proofs that Conditions (i) and (ii) hold with high probability are trivial modifica-
tions of the ones given in [14] up to the constants. The proofs that Conditions (iii) and (iv)
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hold with high probability can be performed using the following by-product inequality from
our Lemma 6.1:

P (Bc) ≤ p exp
(
c2

C2
µ

log
(
e
Cspar
c2

)
log p

)
, (6.-20)

instead of using [14, Lemma 3.5] and [14, Lemma 3.6]. Here, we take

c2 ≥ max(e2Cspar ; (1 + α)Cµ), (6.-19)

so that

P (Bc) ≤ 1
pα
. (6.-18)

All the proofs are moreover based on the simple inequality

P(A) = P(A ∩ E ∩B) + P(A ∩ (Ec ∪Bc))
≤ E [P (A | R) IE∩B ] + P(Ec) + P(Bc),

and the bound, for a given vector W :

P (|〈W,X〉| > t) ≤ 2e−t
2/(2‖W‖22). (6.-19)

This last bound holds true for sub-Gaussian random vectors with independent components
having Bernoulli or standard Gaussian distribution, for instance.

Condition (i)

Here, let Wi be the ith row of (Xt
TXT )−1Xt

T . Since 〈Wi, z〉 ∼ N (0, ‖Wi‖22), we have from
(4.-76) and the union bound:

P
(

max
i∈T
|〈Wi, z〉| > t

)
≤ 2s e−t

2/(2 maxi ‖Wi‖22).

Note that on E:
max
i∈T
‖Wi‖2 ≤ ‖(Xt

TXT )−1‖ ‖Xt
T ‖ ≤

√
1 + r

1− r . (6.-20)

One then obtains

P
(
‖(Xt

TXT )−1Xt
T z‖∞ ≤ σ κ

√
log p

)
≥ 1− 2

pα
,

whenever

κ ≥
√

2(1 + α)(1 + r)
1− r . (6.-20)

Condition (ii)

Let us show that the estimate (ii) holds with high probability. This is an actual consequence
of our Lemma 6.1.

First, as in [14] p.2171 and Lemma 3.3 p.2166, we write the inequality

‖(Xt
TXT )−1sign(βT )‖∞ ≤ 1 + max

i∈T
|〈Wi, sign(βT )〉|,
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where Wi is the ith row or column of (Xt
TXT )−1 − I. Set

A =
{

max
i∈J
|〈Wi, sign(βT )〉| ≥ 2

}
.

Hoeffding’s inequality yields:

P (A|R) ≤ 2|J | exp
(
− 22

2 maxi∈J ‖Wi‖22

)
. (6.-22)

As in [14] p.2171 and p.2172, we write ‖Wi‖2 ≤ ‖RHRei‖21−r . Thus on E:

‖Wi‖2 ≤
‖RHR‖1→2

1− r ≤ ‖RH‖1→2

1− r .

Recall that P(Bc) ≤ 1
pα since c satisfies (6.-19). Moreover

E [P (A | R) IE∩B ] ≤ 1
pα

holds true if

c2 ≤ 2(1− r)
1 + α

.

We can easily check that this last condition is compatible with (6.-19) and

Cµ = r

1 + α

Cspar = r2

(1 + α)e2 ,

whenever r ∈ (0, 1/2). Therefore, when r ∈ (0, 1/2), the event
‖(Xt

TXT )−1sign(βT )‖∞ ≤ 1 + 2 = 3
holds with probability at least 1− 3

pα .

Condition (iii)

Here, Wi = (Xt
TXT )−1Xt

TXi. Notice that on E ∩B:

max
i∈T c
‖Wi‖2 ≤

c

(1− r)
√

log p
. (6.-27)

Using (6.-18) again and the same previous arguments, we obtain

P
(
‖Xt

T cXT (Xt
TXT )−1sign(βT )‖∞ ≤

1
4

)
≥ 1− 3

pα
.

Condition (iv)

If one now sets Wi as the ith row of I−XT (Xt
TXT )−1Xt

T and note that on E for any i ∈ T :
‖Wi‖2 ≤ ‖Xi‖2 = 1, (6.-28)

then:

P
(
‖Xt

T c
(
I −XT (Xt

TXT )−1Xt
T

)
z‖∞ ≤ σ κ

√
log p

)
≥ 1− 2

pα
,

whenever
κ ≥

√
2(1 + α). (6.-28)
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Choosing κ

The parameter κ has to satisfy (6.-20) and (6.-28). Since r ∈ (0, 1
2 ], one has

√
2(1+r)
1−r ≤

2
√

3 ≈ 3.4. Thus we simply chose

κ = 4
√

1 + α,

which is Eq. (2.4).

Some properties of the χ2 distribution
We recall the following useful bounds for the χ2(ν) distribution of degree of freedom ν.

Lemma 6.2 The following bounds hold:

P
(
χ(ν) ≥

√
ν +
√

2t
)
≤ exp(−t)

P
(
χ(ν) ≤

√
uν
)
≤ 2√

πν
(u e/2)

ν
4 .

extbfProof. For the first statement, see e.g. [27]. For the second statement, recall that

P
(
χ2(ν) ≤ uν

)
=

∫ u ν2

0

t
ν
2−1e−t

Γ(ν2 ) dt

=
∫ u ν2

0

t
ν
2−1−αtαe−t

Γ(ν2 ) dt.

Since maxt∈R+ tαe−t = (α/e)α and is attained at t = α, we obtain that

P
(
χ2(ν) ≤ uν

)
≤ (α/e)α

Γ(ν2 )

∫ u ν2

0
t
ν
2−1−αdt = (α/e)α

(ν2 − α)Γ(ν2 )

(
u
ν

2

) ν
2−α

.

Take for instance α = ν
4 and obtain

P
(
χ2(ν) ≤ uν

)
= (ν/4e) ν4

ν
4 Γ(ν2 )

(
u
ν

2

) ν
4
. (6.-33)

On the other hand, we have

Γ(z) ≥
√

2π zz−
1
2

ez

and then,

(ν/4e) ν4
ν
4 Γ(ν2 ) ≤

√
2
π

(e/2) ν4
(
ν
2
)− ν4√

ν
2

.

Hence,

P
(
χ2(ν) ≤ uν

)
≤

√
2
π

(u e/2) ν4√
ν
2

= 2√
πν

(u e/2)
ν
4 ,

as desired. 2
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Properties of the standard LASSO
Reminders on the LASSO subgradient conditions

In [20] Section III, it is proven that a necessary and sufficient optimality condition in (1.2)
is the two following conditions:

Xt
T (y −Xβ̂λ) = λ sign(βT ) (6.-35)

‖Xt
T c(y −Xβ̂λ)‖∞ ≤ λ. (6.-34)

Moreover, if ‖Xt
T c(y −Xβ̂λ)‖∞ < λ, then problem (1.2) admits a unique solution.

Let us also recall (see [17] and [14]) that the support T̂λ ⊂ {1, . . . , p} of β̂λ verifies

|T̂λ| ≤ n. (6.-33)

General properties of λ 7→ β̂λ

Recall that β̂λ is the standard LASSO estimator of β parametrized by λ,
The following notations will be useful. Define L as the cost function:

L :
{

(0,+∞)× Rp −→ R+
(λ, b) 7−→ 1

2‖y −Xb‖
2
2 + λ‖b‖1,

(6.-33)

and for all λ > 0,

θ(λ) = inf
b∈Rp
L(λ, b).

Lemma 6.3 Let the Generic Condition hold. Then, the function θ is concave and non-
decreasing.

extbfProof. Since θ is the infimum of a set of affine functions of the variable λ, it is
concave. Moreover, we have

θ(λ) = L(λ, β̂λ),

where, by Proposition 2.2, β̂ is the unique solution of (1.0). Using the filling property [22,
Chapter XII], we obtain that ∂θ(λ) is the singleton {‖β̂λ‖1}. Thus, θ is differentiable and
its derivative at λ is given by

θ′(λ) = ‖β̂λ‖1.

Moreover, this last expression shows that θ is nondecreasing. 2

Proof of Lemma 2.3

(i) ‖β̂λ‖1 is non-increasing – The fact that λ 7−→ ‖β̂λ‖1 is non-increasing is an immediate
consequence of the concavity of θ.

(ii) Boundedness – Notice that using (5.-20), we obtain that

‖β̂λ‖1 ≤ max
(S,δ)∈Σ

∥∥(Xt
SXS)−1(Xt

Sy − λδ)
∥∥

1 ,
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where we recall that, in Lemma 5.1, Σ reads as

Σ =
{

(S, δ); S ⊂ {1, . . . , p}, δ ∈ {−1, 1}|S|, |S| ≤ n, σmin(XS) > 0
}
.

Thus, λ 7−→ β̂λ is bounded on any interval of the form (0,M ], with M ∈ (0,+∞).
Moreover, since its `1-norm is non-increasing, it is bounded on (0,∞).

(iii) Continuity – Assume for contradiction that λ 7−→ β̂λ is not continuous at some λ◦ > 0.
Using boundedness, we can construct two sequences converging towards β̂+

λ◦ and β̂−λ◦

respectively with β̂+
λ◦ 6= β̂−λ◦ . Since L(λ◦, ·) is continuous, both limits are optimal

solutions of the problem

argmin
b∈Rp

L(λ◦, b), (6.-37)

hence contradicting the uniqueness.

T̂λ has cardinality n for λ sufficiently small.
Let (λk)k∈N be any positive sequence converging to 0. Let β∗ be any cluster point of

the sequence (β̂λk)k∈N (this sequence is easily seen to be bounded under various standard
assumptions; see e.g. [14, Lemma 3.5] for a proof). Fix ε > 0 and b ∈ Rp. For all k ∈ N, we
have

L(λk, β̂λk) ≤ L(λk, b), (6.-36)

where L is defined by (6). Since L(λk, ·) is continuous, we can also write for k sufficiently
large:

L(λk, β∗) ≤ L(λk, β̂λk) + ε.

Hence, L(λk, β∗) ≤ L(λk, b) + ε. Letting λk → 0, we obtain

1
2‖y −Xβ

∗‖22 ≤ 1
2‖y −Xb‖

2
2 + ε,

and thus,

1
2‖y −Xβ

∗‖22 ≤ inf
b∈Rp

1
2‖y −Xb‖

2
2. (6.-37)

Since range(X) = Rn, (6.-37) implies ‖y −Xβ∗‖22 = 0, and then

lim
λ↓0
‖y −Xβ̂λ‖22 = 0. (6.-36)

Notice further that {b ∈ Rp, |supp(b)| < n} is a finite union of subspaces of Rp, each with
dimension n− 1. Thus,

m := inf
{b∈Rp; |supp(b)|<n}

1
2‖y −Xb‖

2
2 > 0,

with probability one. Therefore for λ sufficiently small, (6.-36) implies ‖y − Xβ̂λ‖22 < m,
from which we deduce that |T̂λ| = n since one has |T̂λ| ≤ n (cf Reminder 6).

Partitioning (0,+∞) into good intervals
The continuity of λ 7→ β̂λ implies that the interval (0,+∞) can be partitioned into

subintervals of the type Ik = (λk, λk+1], with
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(i) λ0 = 0 and λk ∈ (0,+∞] for k > 0,

(ii) the support and sign pattern of β̂λ are constant on each open interval I̊k := (λk, λk+1).

Notice further that due to 6, T̂λ 6= ∅ on at least I0. Let K be the nonempty set

K =
{
k ∈ N, ∀λ ∈ I̊k, β̂λ 6= 0

}
.

On any interval Ik, k ∈ K, uniqueness of β̂ implies that the expression (5.-20) for β̂
T̂λ

holds.

Multiplying (5.-20) on the left by sign
(
β̂
T̂λ

)t
, we obtain

‖β̂λ‖1 = sign
(
β̂
T̂λ

)t
(Xt

T̂λ
X
T̂λ

)−1Xt
T y − λsign

(
β̂
T̂λ

)t
(Xt

T̂λ
X
T̂λ

)−1sign
(
β̂
T̂λ

)
.

Thus
d‖β̂λ‖1
dλ

(λ) = −sign
(
β̂
T̂λ

)t
(Xt

T̂λ
X
T̂λ

)−1sign
(
β̂
T̂λ

)
,

on (0,+∞). Thus, the definition of Σ, we obtain that

d‖β̂λ‖1
dλ

(λ) ≤ − inf
(S,δ)∈Σ

δt(Xt

T̂λ
X
T̂λ

)−2δ < 0 (6.-39)

on each I̊k, k ∈ K and

d‖β̂λ‖1
dλ

(λ) = 0

on each I̊k, k 6∈ K, i.e. on each I̊k such that ‖β̂
T̂λ
‖1 = 0 for all λ in Ik, if any such Ik exists.

Since λ 7−→ ‖β̂λ‖1 is continuous on (0,∞), (6.-39) implies that:

(i) there exists τ ∈ (0,+∞), such that β̂τ = 0 (as an easy consequence of the Fundamental
Theorem of Calculus and a contradiction).

(ii) β̂λ = 0 for all λ ≥ τ .

Hence ∪k∈KIk is a connected bounded interval.
The map λ 7→ ‖y −Xβ̂λ‖2 is increasing on (0, τ ]
Using (5.-20), we obtain

y −Xβ̂λ = PV ⊥
T̂λ

(y)− λX
T̂λ

(Xt

T̂λ
X
T̂λ

)−1sign
(
β̂
T̂λ

)
,

which implies that

‖y −Xβ̂λ‖22 =
∥∥∥∥PV ⊥

T̂λ

(y)
∥∥∥∥2

2
− 2λ〈PV ⊥

T̂λ

(y), X
T̂λ

(Xt

T̂λ
X
T̂λ

)−1sign
(
β̂
T̂λ

)
〉

+λ2 sign
(
β̂
T̂λ

)t
(Xt

T̂λ
X
T̂λ

)−1sign
(
β̂
T̂λ

)
and thus, by the definition of PV ⊥

T̂λ

(y),

‖y −Xβ̂λ‖22 =
∥∥∥∥PV ⊥

T̂λ

(y)
∥∥∥∥2

2
+ λ2 sign

(
β̂
T̂λ

)t
(Xt

T̂λ
X
T̂λ

)−1sign
(
β̂
T̂λ

)
. (6.-42)

From (6.-42), since (Xt

T̂λ
X
T̂λ

)−1 is definite, we obtain that λ 7→ ‖y−Xβ̂λ‖2 is increasing

on each I̊k, and thus on (0, τ ] by using that λ 7→ ‖y −Xβ̂λ‖2 is continuous on (0, τ ].
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Study of ΓA
Lemma 6.4 ΓA is increasing on (0, τ ] and limλ→+∞ ΓA(λ) = +∞.

extbfProof. Due to Step 3, and the definition of τ , the set of values λ > 0 such that
‖y −Xβ̂λ‖2 > 0 is nonempty. Let λinf denote its infimum value. Take λ ∈ I̊k for some k
such that λ ≥ λinf . In particular, λ 6= 0. Then,

ΓA(λ) = s

1
λ2

∥∥∥∥PV ⊥
T̂λ

(y)
∥∥∥∥2

2
+ sign

(
β̂
T̂λ

)t
(Xt

T̂λ
X
T̂λ

)−1sign
(
β̂
T̂λ

) , (6.-41)

and we deduce that ΓA is increasing on I̊k. By continuity, we have that ΓA is increasing on
(λinf , τ ]. Once λ > τ , ‖y−Xβ̂λ‖22 = ‖y‖22 and ΓA(λ) = sλ2/‖y‖22. Thus, limλ→+∞ ΓA(λ) =
+∞ as desired. 2

The fact that ΓA is increasing proves that the equation ΓA(λ) = Cvar admits at most
one solution.

Study of ΓB
Recall that

ΓB(λ) = λ‖β̂λ‖1
‖y −Xβ̂λ‖22

. (6.-40)

We will use repeatedly that β̂λ is unique for all λ > 0 and that the trajectory λ 7→ β̂λ is
continuous under the Generic Condition, see [17].

Lemma 6.5 Under the Generic Position Assumption of [17], the function ΓB defined by
(6.-40) almost surely satisfies

lim
λ↓0

ΓB(λ) = +∞. (6.-39)

Moreover, almost surely, there exists τ > 0 such that ΓB is decreasing on the interval (0, τ ]
with ΓB(τ) = 0, while ‖y −Xβ̂λ‖2 is increasing on (0, τ ].

extbfProof. Let us first show that limλ↓0 ΓB(λ) = +∞.
Let λ0 > 0 be sufficiently small so that for all λ ≤ λ0, |T̂λ| = n. Such a λ0 exists due to

Step 1.a. Hence, since X
T̂λ

is nonsingular:

PVTλ
= In. (6.-38)

Thus, using (5.-20), we obtain

y −Xβ̂λ = −λX
T̂λ

(Xt

T̂λ
X
T̂λ

)−1sign
(
β̂
T̂λ

)
, (6.-37)

which implies that

‖y −Xβ̂λ‖22 = λ2‖(Xt

T̂λ
X
T̂λ

)−1sign
(
β̂
T̂λ

)
‖22.
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Moreover, Lemma 5.1 combined with (5.-20) gives

‖β̂λ‖1 > inf(S,δ)∈Σ
∥∥(Xt

SXS)−1(Xt
Sy − λδ)

∥∥
1 := m′ > 0.

Hence, for λ ≤ λ0,

ΓB(λ) ≥ λm′

λ2‖X
T̂λ

(Xt

T̂λ
X
T̂λ

)−1sign
(
β̂
T̂λ

)
‖22
.

Using the trivial fact that sup(S,δ)∈Σ ‖XS(Xt
SXS)−1δ‖22 <∞, the proof of Step 1 is complete.

Let us now show that ΓB is decreasing on (0, τ) by studying the function

Φ :
{

(0,+∞) −→ R+
λ 7−→ λ‖β̂λ‖1.

(6.-40)

We immediately deduce from Step 2 and the definition of the intervals Ik, k ∈ K, that Φ is
differentiable on each I̊k, k ∈ K. Using (5.-20), its derivative on I̊k reads

dΦ
dλ

(λ) = ‖β̂
T̂λ
‖1 − λ sign

(
β̂
T̂λ

)t
(Xt

T̂λ
X
T̂λ

)−1sign
(
β̂
T̂λ

)
= ‖β̂

T̂λ
‖1 − λ ‖(Xt

T̂λ
X
T̂λ

)−1/2sign
(
β̂
T̂λ

)
‖22.

Now, since X
T̂λ

is non singular,

‖y −Xβ̂λ‖22 = λ2‖(Xt

T̂λ
X
T̂λ

)−1sign
(
β̂
T̂λ

)
‖22 > λ2n σmin

(
(Xt

T̂λ
X
T̂λ

)−1
)2

> 0

for λ > 0. Therefore ΓB(λ) < +∞ on (0,+∞), ΓB is continuous on Ik and differentiable on
I̊k. Moreover, using (6.-42), we have

dΓB
dλ

(λ) =
dΦ
dλ (λ)‖y −Xβ̂λ‖22 − Φ(λ)d‖y−Xβ̂λ‖

2
2

dλ (λ)
‖y −Xβ̂λ‖42

=
dΦ
dλ (λ)− 2Φ(λ)

λ

‖y −Xβ̂λ‖22
.

Hence, using (6.-40) and (6.-42),

dΓB
dλ

(λ) =
−‖β̂

T̂λ
‖1 − λ ‖(Xt

T̂λ
X
T̂λ

)−1/2sign
(
β̂
T̂λ

)
‖22

‖y −Xβ̂λ‖22

≤
−λ ‖(Xt

T̂λ
X
T̂λ

)−1/2sign
(
β̂
T̂λ

)
‖22

λ2‖(Xt

T̂λ
X
T̂λ

)−1sign
(
β̂
T̂λ

)
‖22

≤ − 1
λ

σmin

(
(Xt

T̂λ
X
T̂λ

)−1/2
)

σmax

(
(Xt

T̂λ
X
T̂λ

)−1
)
2

,

on each I̊k. We can thus conclude, due to the non-singularity of X
T̂λ

, that ΓB is decreasing
on (0, τ), as announced.

2
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Chapter I

Invertibility of random submatrices
via tail decoupling and a Matrix
Chernoff Inequality

with Sébastien Darses.

Abstract

Let X be a n × p matrix. We give a new proof of the quasi-isometry property for
random submatrices of X obtained by uniform column sampling. The result exhibits
explicit constants and some of them are improved by a factor 100. The analysis relies
on a tail decoupling argument, of independent interest, and a recent version of the
Non-Commutative Chernoff inequality (NCCI).

1 Introduction

Problem statement
Let X be a matrix in Rn×p. The goal of this paper is to propose a new upper bound for
the probability that the submatrix XT fails to be an r0-quasi isometry when T is a random
index subset of size s of {1, . . . , p} drawn uniformly at random and XT is the matrix obtained
by extracting the columns of X indexed by T . By an r0-quasi isometry, we simply mean
‖Xt

TXT − I‖ ≤ r0. In the sequel, we assume that the columns of X have unit norm.
Proving that the quasi isometry property hold with high probability has applications in

Compressed Sensing and high dimensional statistics based on sparsity. The uniform version
of the quasi-isometry property, i.e. satisfied for all possible T ’s, is called the Restricted
Isometry Property (RIP) and has been widely studied for random i.i.d. subgaussian matrices
[7]. Recent works such as [14] proved that the quasi isometry property holds with high
probability for matrices satisfying an certain incoherence assumption. Checking that a
matrix is sufficiently incoherent is easy to check in practice. Such types of result are therefore
of great potential interest for a wide class of problems involving high dimensional linear or
nonlinear regression models.

In a recent work based on the landmark papers of Bourgain and Tzafriri [1] (see also [3])
and Rudelson [8], Tropp proved the following theorem.
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218 I. INVERTIBILITY OF RANDOM SUBMATRICES

Theorem 1.1 [37, Theorem 1.1] Let A be an n × n Hermitian matrix, decomposed into
diagonal and off-diagonal parts: A = D+H. Fix p in [2,+∞), and set q = max{p, 2 log(n)}.
Then

Ep ‖RAR‖ ≤ C
[
qEp ‖RHR‖max +

√
δqEp ‖HR‖1,2 + δ ‖H‖

]
+ Ep ‖RDR‖ .

Here, R denotes the square diagonal ”selector” matrix whose jth diagonal entry is δj , where
{δj} denotes a sequence of independent Bernoulli 0–1 random variables with common ex-
pectation δ, and the symbol Ep denotes the Lp norm (E| · |p)1/p. The proof heavily relies on
the Non-Commutative Kintchin inequality in a similar way as in [9].

Using this result and Markov’s inequality, Candès and Plan proved in [14, Theorem 3.2]
that the 1/2-quasi isometry property holds with probability greater than 1− p−2 log(2) when
s ≤ p/(4‖X‖2) and the coherence of X, i.e. max |Xt

kXl|, k 6= l, is sufficiently small. The r0-
quasi isometry property then holds with high probability under easily checkable assumptions
on X.

Our contribution

The present paper aims at giving a more precise and self-contained version of Theorem 3.2
in [14]. Our result yields explicit constants and some of them are improved by a factor
100. The analysis relies on a tail decoupling argument, of independent interest, and a recent
version of the Non-Commutative Chernoff inequality (NCCI) [11].

Additional notations

For T ⊂ {1, . . . , p}, we denote by |T | the cardinal of T . Given a vector x ∈ Rp, we set
xT = (xj)j∈T ∈ R|T |. The canonical scalar product in Rp is denoted by 〈·, ·〉.

For any matrix A ∈ Rd1×d2 , we denote by At its transpose. The set of symmetric real
matrices is denoted by Sn. We denote by ‖A‖ the operator norm of A; ‖A‖1→2 denotes the
maximum l2-norm of a column of A and ‖A‖max is the maximum absolute entry of A. We
use the Loewner ordering on symmetric real matrices: if A ∈ Sn, 0 � A is equivalent to
saying that A is positive semi-definite, and A � B stands for 0 � B −A.

The coherence of X, denoted by µ(X), is defined by

µ(X) = max
1≤k<l≤p

|〈Xk, Xl〉|. (1.0)

As in [37], we consider the ’hollow Gram’ matrix H:

H = XtX − I. (1.1)

Recall that R is the diagonal matrix composed of iid Bernoulli variables δj , j = 1, . . . , p with
expectation denoted by δ. In the sequel, R′ will always denote an independent copy of R.
Let Rs be a diagonal matrix whose diagonal is a random vector δ(s) of length p, uniformly
distributed on the set of all vectors with s components equal to 1 and p − s components
equal to 0. Notice that when δ = s/p, the support of the diagonal of R has cardinal close
to s with high probability, by a standard concentration argument.
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2 Main results

Singular value concentration theorem
Theorem 2.1 Let r ∈ (0, 1), α ≥ 1. Let us be given a full rank matrix X ∈ Rn×p and a
positive integer s, such that

µ(X) ≤ r

(1 + α) log p (2.2)

s ≤ r2

(1 + α)e2
p

‖X‖2 log p . (2.3)

Let T ⊂ {1, . . . , p} be a random support with uniform distribution on index sets with cardinal
s. Then the following bound holds:

P
(
‖Xt

TXT − Is‖ ≥ r
)
≤ 1944

pα
. (2.4)

About the various constants

The constant 1944 stems from the following decomposition: 2 (poissonization) ×324 (de-
coupling) ×3 (union bound). This constant might look large. However, in many statistical
applications as in sparse models, p is often assumed to be very large.

Let us now compare the constants Cs and Cµ in the inequalities

µ(X) ≤ Cµ
log p (2.5)

s ≤ Cs
p

‖X‖2 log p , (2.6)

to the one of [14]. The larger Cs and Cµ are, the better the result is.
One of the various constraints on the rate α in [14] is given by the theorem of Tropp in

[37]. In this setting, α = 2 log 2 and r0 = 1/2, the author’s choice of 1/2 being unessential.
To obtain such a rate α, they need to impose the r.h.s. of (3.15) in [14] to be less than 1/4,
that is 30Cµ+13

√
2Cs ≤ 1

4 . This yields Cs < 1.19×10−4. Choosing Cs close to 1.19×10−4,
e.g. Cs ' 1.18 10−4, we obtain:

Cs ' 1.18 10−4, Cµ ' 1.7 10−3.

Our theorem allows to choose any rate α > 0. To make a fair comparison, let us choose
α = 2 log 2 and r = 1/2. We obtain:

Cs ' 0.014, Cµ = 0.2.

3 Proof of Theorem 2.1

In order to study the invertibility condition, we want to obtain bounds for the distribution
tail of random sub-matrices of H = XtX − I.

Let R′ be an independent copy of R. Let us recall two basic estimates:

‖H‖21→2 ≤ ‖X‖2, ‖H‖2 ≤ ‖X‖4.
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As a preliminary, let us notice that

P (‖RsHRs‖ ≥ r) ≤ 2 P (‖RHR‖ ≥ r) , (3.3)

which can be actually proven using the same kind of ’Poissonization argument’ as in Claim
(3.29) p.2173 in [14].

To study the distribution tail of ‖RHR‖, we use a decoupling technique which consists
of replacing ‖RHR‖ with ‖RHR′‖.

Proposition 3.1 The operator norm of RHR satisfies

P (‖RHR‖ ≥ r) ≤ 60 P (‖RHR′‖ ≥ r/2) . (3.4)

The main feature of this inequality is that the decoupling constant sits in front of the
probability instead of affecting the deviation. In addition to this decoupling argument, we
need the following technical concentration result.

Proposition 3.2 Let X ∈ Rn×p be a full rank matrix. For all 4-tuples (s, r, u, v) of param-
eters such that p

s
r2

e ≥ u
2 ≥ s

p‖X‖
4 and v2 ≥ s

p‖X‖
2, the following bound holds:

P (‖RHR′‖ ≥ r) ≤ 3 p V(s, [r, u, v]), (3.5)

with

V(s, [r, u, v]) =
(
e
s

p

u2

r2

) r2
v2

+
(
e
s

p

‖X‖4

u2

)u2/‖X‖2

+
(
e
s

p

‖X‖2

v2

)v2/µ(X)2

.

We now have to analyze carefully the various quantities in Proposition 3.2 in order to
obtain for P (‖RHR′‖ ≥ r) a bound of the order e−α log p.

Set α′ = α+ 1. We tune the parameters so that

u2

‖X‖2
= α′ log p (3.5)

v2

µ(X)2 = α′ log p (3.6)

r2

v2 ≥ α′ log p, (3.7)

and

e
s

p

‖X‖4

u2 ≤ e−1 (3.8)

e
s

p

‖X‖2

v2 ≤ e−1 (3.9)

e
s

p

u2

r2 ≤ e−1. (3.10)

A crucial quantity turns out to be s
p‖X‖

2. Keeping in mind that the hypothesis on the
coherence reads

µ(X) ≤ Cµ
log p , (3.11)
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it is relevant to impose that s satisfies

s

p
‖X‖2 = Cs

log p , (3.12)

where the constants Cµ and Cs will be tuned according to several constraints. The equalities
(3.5-3.6) determine the values of u and v. It remains to show that the previous inequalities
are satisfied for a suitable choice of Cµ and Cs.

First, plugging (3.5) into (3.10), we obtain:

α′
s

p
‖X‖2 log p ≤ e−2r2.

Using (3.12), it follows that

Cs ≤ r2

α′e2 .

Now, the bound (3.8) is satisfied if

e2Cs
log p ≤ α′ log p.

Based on (3.9), it suffices to have r2

α′2 ≤ log2 p, that is p ≥ e > er/α
′ .

Second, plugging (3.6) into (3.9), we obtain:

e2 s

p
‖X‖2 ≤ α′µ(X)2 log p.

Using (3.11) and (3.12), it follows that

e

√
Cs
α′

≤ Cµ.

Finally, (3.6-3.7) yields r2 ≥ α′2µ(X)2 log2 p. In view of (3.11), it thus suffices to have
r ≥ α′ Cµ.

As a conclusion, in order to ensure the six previous constraints, it suffices to choose Cs
and Cµ such that:

Cµ ≤
r

1 + α
and Cs ≤ min

(
r2

(1 + α)e2 , (1 + α)
C2
µ

e2

)
.

This completes the proof of Theorem 2.1.

4 Proof of the tail decoupling and the concentration result

Proof of Proposition 3.1
Let us write

RHR =
∑
j 6=k

δjδkHjk.
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Let {ηi} be a sequence of iid Rademacher independent of D := {δi, 1 ≤ i ≤ p}. Following
Bourgain and Tzafriri [1], and de la Peña and Giné [6], we build up from these two methods
an auxiliary r.v. for our purpose:

Z = Z(η, δ) :=
∑
j 6=k

(1− ηjηk)δjδkHjk.

We can thus write

Z = RHR+ Y, (4.5)

where

Y =
∑

1≤i6=j≤p
Bijηiηj , Bij = Bij(δ) ∈Mp(R). (4.6)

For the sake of completeness, we recall basic arguments from Corollary 3.3.8 p.12 in de
la Peña and Giné [6] (applied to (4.5)) to obtain a lower bound for P(‖Z‖ ≥ ‖RHR‖). (We
henceforth work conditionally on D.)

Hahn-Banach’s theorem gives a linear form x∗ on Mp(R) such that

P(‖Z‖ ≥ ‖RHR‖) ≥ P(x∗(Z) ≥ x∗(RHR))
≥ P(x∗(Y ) ≥ 0).

Set ξ := x∗(Y ). Using Holder’s inequality twice, first writing E|ξ| = 2E ξIξ>0 (since ξ is
centered), second noting ξ2 = ξ2/3ξ4/3, one obtains:

P(ξ ≥ 0) ≥ 1
4

(E|ξ|)2

E ξ2 ≥ 1
4

(E ξ2)2

E ξ4 .

Hence,

P (‖Z‖ ≥ ‖RHR‖ |D) ≥ 1
4× 15 = 1

60 . (4.4)

Multiplying both sides by I{‖RHR‖≥r} and taking the expectation, one has

1
60 P(‖RHR‖ ≥ r) ≤ P (‖Z‖ ≥ r) . (4.5)

As from now, we can use the same kind of arguments as in [37, Prop. 2.1]. There is a
η∗ ∈ {−1, 1}p for which

P (‖Z‖ ≥ r) = EE
[
I{‖Z‖≥r}|(ηi)

]
≤ E I{‖Z(η∗,δ)‖≥r} = P(‖Z(η∗, δ)‖ ≥ r).

Hence, setting T = {i, η∗i = 1}, we can write

Z(η∗, δ) = 2
∑

j∈T, k∈T c
δjδkHjk + 2

∑
j∈T c, k∈T

δjδkHjk. (4.5)

Since H is hermitian, we have∥∥∥∥∥∥
∑

j∈T, k∈T c
δjδkHjk +

∑
j∈T c, k∈T

δjδkHjk

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

j∈T, k∈T c
δjδkHjk

∥∥∥∥∥∥ . (4.5)
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Now, let (δ′i) be an independent copy of (δi). Set δ̃i = δi if i ∈ T and δ̃i = δ′i if i ∈ T c. Since
the vectors (δi) and (δ̃i) have the same law, we then obtain:

P (‖Z‖ ≥ r) ≤ P

2

∥∥∥∥∥∥
∑

j∈T, k∈T c
δjδ
′
kHjk

∥∥∥∥∥∥ ≥ r
 .

Re-introducing the missing entries in H yields

P (‖Z‖ ≥ r) ≤ P(‖RHR′‖ ≥ r/2),

which concludes the proof of the lemma due to (4.5).

Remark 4.1 The previous result can be seen as a special case of Theorem 1 p.224 of the
seminal paper [5]. Tracking back the various constants involved in this theorem, we obtained
the inequality

P (‖RHR‖ ≥ r) ≤ 103 P
(
‖RHR′‖ ≥ r

18

)
. (4.4)

Proof of Proposition 3.2
We first apply the NCCI to ‖RHR′‖ by conditioning on R.

Lemma 4.2 The following bound holds:

P (‖RHR′‖ ≥ r) ≤ P (‖RH‖ ≥ u) + P (‖RH‖1→2 ≥ v)

+ p

(
e
s

p

u2

r2

) r2
v2

. (4.4)

extbfProof.
We have ‖RHR′‖2 = ‖RHR′2HR‖. But R′2 = R′, so

P (‖RHR′‖ ≥ r) = P
(
‖RHR′HR‖ ≥ r2) . (4.5)

We will first compute the conditional probability

P
(
‖RHR′HR‖ ≥ r2 | R

)
:= E

[
I{‖RHR′HR‖≥r2}| R

]
. (4.6)

Notice that

RHR′HR =
p∑
j=1

δ′jZjZ
t
j :=

p∑
j=1

Aj .

where Zj is the jth column of RH, j = 1, . . . , p.
Since

∑p
j=1 ZjZ

t
j = RH2R and ‖ZjZtj‖ = ‖Zj‖22 , we then obtain

‖Aj‖ ≤ ‖RH‖21→2 (4.6)∥∥∥∥∥∥
p∑
j=1

EAj

∥∥∥∥∥∥ ≤ s

p
‖RH‖2. (4.7)
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The NCCI then yields

P
(
‖RHR′HR‖ ≥ r2 | R

)
≤ p

(
e
s

p

‖RH‖2

r2

)r2/‖RH‖21→2

, (4.8)

provided that

e
s

p

‖RH‖2

r2 ≤ 1. (4.9)

Let us now introduce the events

A =
{
‖RHR′HR‖ ≥ r2} ; B = {‖RH‖ ≥ u} ; C = {‖RH‖1→2 ≥ v} .

We have

P(A) = P(A | B ∪ C)P(B ∪ C) + P(A ∩ Bc ∩ Cc)
≤ P(B) + P(C) + P(A ∩ Bc ∩ Cc).

The identity P(A ∩ Bc ∩ Cc) = E [IA∩Bc∩Cc ] = E [P (A | R) IBc∩Cc ] concludes the lemma. 2

We now have to control the norm of s
pRH

2R, the norm of RH and the column norm of
RH. Let us begin with ‖RH‖ = ‖HR‖.

Lemma 4.3 The following bounds hold:

P (‖HR‖ > u) ≤ p

(
e
s

p

‖X‖4

u2

)u2/‖X‖2

P (‖RH‖1→2 ≥ v) ≤ p

(
e
s

p

‖X‖2

v2

)v2/µ(X)2

,

provided that e sp
‖X‖4
u2 and e sp

‖X‖2
v2 are less than 1.

extbfProof.
The steps are of course the same as what we have just done in the proof of Lemma 3.1.

Notice that

P (‖RH‖ > u) = P
(
‖HR‖2 > u2) = P

(
‖HRH‖ > u2) .

The jth column of H is Hj = XtXj − ej . Moreover,

HRH =
p∑
j=1

δjHjH
t
j . (4.4)

We have ‖HjH
t
j‖ = ‖Hj‖22 ≤ ‖H‖21→2 ≤ ‖X‖2, and∥∥∥∥∥∥

p∑
j=1

E[δjHjH
t
j ]

∥∥∥∥∥∥ ≤ s

p
‖H‖2 ≤ s

p
‖X‖4. (4.5)

We finally deduce from the NCCI that

P
(
‖HRH‖ ≥ u2) ≤ p

(
e
s

p

‖X‖4

u2

)u2/‖X‖2

. (4.6)
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Let us now control the supremum `2-norm of the columns of RH. Set

M =
p∑
k=1

δk diag(HkH
t
k). (4.7)

Notice that

‖RH‖21→2 = maxpk=1 ‖(RH)k‖22 = ‖diag ((RH)tRH)‖ =
∥∥diag (HtRH

)∥∥ .
Thus,

‖RH‖21→2 =

∥∥∥∥∥diag
(

p∑
k=1

δk(Ht)kHt
k

)∥∥∥∥∥ .
Using symmetry of H and interchanging the summation and the diag, we obtain that
‖RH‖21→2 = ‖M‖. Moreover, we have for all k ∈ {1, · · · , p},

‖diag(HkH
t
k)‖ = maxpj=1(XjXk)2 ≤ µ(X)2, (4.6)

and

‖EM‖ = s

p
‖diag(HHt)‖2 = s

p
‖H‖21→2 ≤

s

p
‖X‖2.

Applying the NCCI completes the lemma. 2 This lemma concludes the proof of
Proposition 3.2.

5 Appendix

On Rademacher chaos of order 2
Lemma 5.1 Let ξ be an homogeneous Rademacher chaos of order 2. Then

E ξ4 ≤ 15 (E ξ2)2. (5.6)

extbfProof. We develop both ξ2 and ξ4 (as Littlewood’s proof of Kintchine’s inequality).
The multinomial formula applied to the chaos ξ =

∑
i<j xijηiηj with an integer q, gives

ξq =
∑ q!∏

αij !
∏

x
αij
ij (ηiηj)αij , (5.7)

where the sum is over all the αij ’s, i < j, such that
∑
i<j αij = q, and the products are over

all the index (i, j), i < j, ordered via the lexicographical order. Hereafter, we adopt these
conventions when considering any product of the αij ’s and the xij ’s.

Case q = 2 — The partitions of 2 are 2 + 0′s and 1 + 1 + 0′s. Consider the partition
1+1+0′s, say αkl = αk′l′ = 1 for some 4-uple (k, l, k′, l′) with k ≤ k′. We have (k, l) 6= (k′, l′),
k < l and k′ < l′. Thus,

E[ηkηlηk′ηl′ ] =

 E[ηk]E[ηlηk′ηl′ ](= 0) if k < k′

E[η2
k]E[ηl]E[ηl′ ](= 0) esle.
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Therefore, E ξ2 only depends on the partition 2 + 0′s, and one has

E ξ2 =
∑
i<j

x2
ij .

Case q = 4 — The partitions of 4 are 4, 2 + 2, 3 + 1, 2 + 1 + 1 and 1 + 1 + 1 + 1 (we now
omit the zeros).

First, using the same arguments as in the case q = 2, we show that the terms in E ξ4

corresponding to the partitions 3 + 1 and 2 + 1 + 1 vanish.
Second, the partitions 1 + 1 + 1 + 1 involve four different couples (i, i′), (j, j′), (k, k′) and

(l, l′) (recall that i < i′, etc., and that the couples are lexicographically ordered). The only
terms corresponding to the partitions 1 + 1 + 1 + 1 whose expectation does not vanish are
of the form

xi1i′1xi1i′2xi2i′2xi2i′1 η
2
i1η

2
i′1
η2
i2η

2
i′2

= xi1i′1xi1i′2xi2i′2xi2i′1 .

Finally, the αij ’s corresponding to the partitions 4 and 2 + 2 are even: αij = 2βij where∑
βij = 2. Therefore

E ξ4 =
∑ 4!∏

(2βij)!
∏

x
2βij
ij +

∑
4! xi1i′1xi1i′2xi2i′2xi2i′1

≤ 3
∑ 2!∏

βij !
∏

(x2
ij)βij + 4!

2
∑(

x2
i1i′1

x2
i2i′2

+ x2
i1i′2

x2
i2i′1

)
.

But ∑ 2!∏
βij !

∏
(x2
ij)βij =

(∑
i<i′

x2
ii′

)2

∑
rectangles dans partie superieure

2
(
x2
i1i′1

x2
i2i′2

+ x2
i1i′2

x2
i2i′1

)
≤

∑
2! xii′xjj′

=
(∑
i<i′

x2
ii′

)2

.

Hence,

E ξ4 ≤ (3 + 6) (E ξ2)2.

A Non-Commutative Chernoff inequality
We need a corollary of a Matrix Chernoff’s inequality recently established in [11].

Theorem 5.2 (Matrix Chernoff) Let X1,. . . ,Xp be independent random positive semi-definite
matrices taking values in Rd×d. Set Sp =

∑p
j=1Xj. Assume that for all j ∈ {1, . . . , p}

‖Xj‖ ≤ B a.s. and

‖Sp‖ ≤ µmax.

Then, for all t ≥ e µmax,

P (‖Sp‖ ≥ r) ≤ d exp
(e µmax

r

)r/B
.

(Set r = (1 + δ)µmax and use eδ ≤ e1+δ in Theorem 1.1 [11].)
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Chapter J

On prediction with the LASSO when
the design is not incoherent

Abstract

The LASSO estimator is an `1-norm penalized least-squares estimator, which was
introduced for variable selection in the linear model. When the design matrix satisfies,
e.g. the Restricted Isometry Property, or has a small coherence index, the LASSO
estimator has been proved to recover, with high probability, the support and sign
pattern of sufficiently sparse regression vectors. Under similar assumptions, the LASSO
satisfies adaptive prediction bounds in various norms. The present note provides a
prediction bound based on a new index for measuring how favorable is a design matrix
for the LASSO estimator. We study the behavior of our new index for matrices with
independent random columns uniformly drawn on the unit sphere. Using the simple
trick of appending such a random matrix (with the right number of columns) to a given
design matrix, we show that a prediction bound similar to [14, Theorem 2.1] holds
without any constraint on the design matrix, other than restricted non-singularity.

Keywords: LASSO; Coherence; Restricted Isometry Property; `1-penalization; High di-
mensional linear model.

1 Introduction

Given a linear model

y = Xβ + ε (1.1)

where X ∈ Rn×p and ε is a random vector with gaussian distribution N (0, σ2I) the LASSO
estimator is given by

β̂ = argminβ∈Rp
1
2‖y −Xβ‖

2
2 + λ‖β‖1. (1.2)

This estimator was first proposed in the paper of Tibshirani [23]. The LASSO estimator
β̂ is often used in the high dimensional setting where p is much larger than n. As can
be expected, when p � n, estimation of β is hopeless in general unless some additional
property of β is assumed. In many practical situations, it is considered relevant to assume
that β is sparse, i.e. has only a few nonzero components, or at least compressible, i.e. the
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magnitude of the non zero coefficients decays with high rate. It is now well recognized that
the `1 penalization of the likelihood often promotes sparsity under certain assumptions on
the matrix X. We refer the reader to the book [4] and the references therein for a state
of the art presentation of the LASSO and the tools involved in the theoretical analysis
of its properties. One of the main interesting properties of the LASSO estimator is that
it is a solution of a convex optimization problem and it can be computed in polynomial
time, i.e. very quickly in the sense of computational complexity theory. This makes a big
difference with other approaches based on variable selection criteria like AIC [1], BIC [17],
Foster and George’s Risk Inflation Criterion [12], etc, which are based on enumeration of the
possible models, or even with the recent proposals of Dalalyan, Rigollet and Tsybakov [15],
[9], although enumeration is replaced with a practically more efficient Monte Carlo Markov
Chain algorithm.

In the problem of estimating Xβ, i.e. the prediction problem, it is often believed that the
price to pay for reducing the variable selection approach to a convex optimization problem
is a certain set of assumptions on the design matrix X ∗. One of the main contributions of
[15] is that no particular assumption on X is required for the prediction problem, as opposed
to the known results concerning the LASSO such that [3], [2], [14] and [20], and the many
references cited in these works.

An impressive amount of work has been done in the recents years in order to understand
the properties of β̂ unded various assumptions on X. See the recent book by P. Buhlmann
and S. Van de Geer [4] for the state of the art. Two well known assumptions on the design
matrix are

• small Coherence µ(X)

• small Restricted Isometry Constant δ(X)

where the Coherence µ(X) is defined as

µ(X) = max
j,j′
|Xt

jXj′ |,

and the Restricted Isometry Constant δ(X) is the smallest δ such that

(1− δ)‖βT ‖2 ≤ ‖XTβT ‖2 ≤ (1 + δ)‖βT ‖2 (1.2)

for all subset T with cardinal s and all β ∈ Rp. Other conditions are listed in [5]; see Figure
1 in that paper for a diagram summarizing all relationships between them. The Restricted
Isometry property is very stringent and implies almost other conditions. Moreover, the Re-
stricted Isometry Constant is NP-hard to compute for general matrices. On the other hand,
the Coherence only requires of the order np(p− 1) elementary operations. However, it was
proved in [14] that a small coherence, say of the order of 1/ log(p), is sufficient to prove a
property very close to the Restricted Isometry Property: (1.2) holds for a large proportion
of subsets T ⊂ {1, . . . , p}, |T | = s (of the order 1 − 1/pα, α > 0). This result was later re-
fined in [13] with better constants using the recently discovered Non-Commutative deviation
inequalities [19]. Less stringent properties are the restricted eigenvalue, the irrepresentable
and the compatibility properties.

The goal of this short note is to show that, using a very simple trick, one can prove
prediction bounds similar to [14, Theorem 2.1] without any assumption on the design ma-
trix X at the low expense of appending to X a random matrix with independent columns
uniformly distributed on the sphere.
∗Conditions for model selection consistency are given in e.g. [22], and for exact support and sign pattern

recovery with finite samples and p� n, in [14], [28].
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For this purpose, we introduce a new index for design matrices, denoted by γs,ρ−(X)
that allows to obtain novel adaptive bounds on the prediction error. This index is defined
for any s ≤ n and ρ− ∈ (0, 1) as

γs,ρ−(X) = sup
v∈B(0,1)

inf
I⊂Ss,ρ−

‖Xt
Iv‖∞, (1.3)

where Ss,ρ−(X) is the family of all S of {1, . . . , p} with cardinal |S| = s, such that σmin(XS) ≥
ρ−. The meaning of the index γs,ρ− is the following: for any v ∈ Rn, we look for the ”al-
most orthogonal” family inside the set of columns of X with cardinal s, which is the most
orthogonal to v .

One major advantage of this new parameter is that imposing the condition that γs,ρ− is
small is much less stringent than previous criteria required in the litterature. In particular,
many submatrices of X may be very badly conditioned or even singular without altering
the smallness of γs,ρ− . Computing the new index γs,ρ−(X) for random matrices with in-
dependent columns uniformly distributed on the sphere †, shows that a prediction bound
involving γs,ρ−(X) can be obtained which is of the same order as the bound of [14, Theorem
2.1].

One very nice property of the index γs,ρ− is that it decreases after the operation ap-
pending any matrix to a given one. As a very nice consequence of this observation, the
results obtained for random matrices can be extended to any matrix X to which a random
matrix is appended. This trick can be used to prove new prediction bounds for a modified
version of the LASSO obtained by appending a random matrix to any given design matrix.
This simple modification of the LASSO retains the fundamental property of being polyno-
mial time solvable unlike the recent approaches based on non-convex criteria for which no
computational complexity analysis is available.

The plan of the paper is as follows. In Section 2 we present the index γs,ρ− for X
and provide an upper bound on this index for random matrices with independent columns
uniformly distributed on the sphere, holding with high probability. Then, we present our
prediction bound in Theorem 3.1: we give a bound on the prediction squared error ‖X(β −
β̂‖22 which depends linearly on s. This result is similar in spirit to [14, Theorem 1.2]. The
proofs of the above results are given in Section 3. In Section 4, we show how these results
can be applied in practice to any problem with a matrix for which γs,ρ− is unknown by
appending to X an n× p0 random matrix with i.i.d. columns uniformly distributed on the
unit sphere of Rn and with only a small number p0 of columns. An appendix contains the
proof of some intermediate results.

Notations and preliminary assumptions

A vector β in R is said to be s-sparse if exactly s of its components are different from
zero. Let ρ− be a positive real number. In the sequel, we will denote by Ss,ρ−(X) the
family of all index subsets S of {1, . . . , p} with cardinal |S| = s, such that for all S ∈ Ss,ρ− ,
σmin(XS) ≥ ρ−.

†or equivalently, post-normalized Gaussian i.i.d. matrices with components following N (0, 1/n).
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2 Main results

A new index for design matrices

Definition 2.1 The index γs,ρ−(X) associated with the matrix X in Rn×p is defined by

γs,ρ−(X) = sup
v∈B(0,1)

inf
I⊂Ss,ρ−

‖Xt
Iv‖∞. (2.4)

An important remark is that the function X 7→ γs,ρ−(X) is nonincreasing in the sense that
if we set X ′′ = [X,X ′], where X ′ is a matrix in Rn×p′ , then γs,ρ−(X) ≥ γs,ρ−(X ′).

Unlike the coherence µ(X), for fixed n and s, the quantity γs,ρ−(X) is very small for
p sufficiently large, at least for random matrices such as normalized standard Gaussian
matrices as shown in the following proposition.

Proposition 2.2 Assume that X is random matrix in Rn×p with i.i.d. columns with uni-
form distribution on the unit sphere of Rn. Let ρ− and ε ∈ (0, 1), Cκ ∈ (0,+∞) and
p0 ∈ {de

6√
2π e, . . . , p}. Set

Kε =
√

2π
6

(
(1 + Cκ) log

(
1 + 2

ε

)
+ Cκ + log

(
Cκ
4

))
.

Assume that n, κ and s satisfy

n ≥ 6, (2.4)

κ = max
{

4e−2(ln(2)−1), 4e3
(1−ρ−)2

(
(1+Kε)(1+Cκ)

c(1−ε)4

)2
log2(p0) log(Cκn)

}
, (2.4)

max {κs, 2× 36× 3× 3, exp((1− ρ−)/2))
Cκ

≤ n ≤ min


(

p0

log(p0)

)2
,

exp
(

1−ρ−√
2 p0

)
Cκ

 .(2.4)

Then, we have

γs,ρ−(X) ≤ 80 log(p0)
p0

(2.5)

with probability at least 1− 5 n
p0 log(p0)n−1 − 9 p−n0 .

Remark 2.3 Notice that the constraints (2.4) and (2.5) together imply the following con-
straint on s:

s ≤ Csparsity
n

log2(p0) log(Cκn)

with

Csparsity = c2(1− ρ−)2(1− ε)8

4e3
Cκ

(1 +Kε)2(1 + Cκ)2 .



232 J. ON PREDICTION WITH THE LASSO WHEN THE DESIGN IS NOT INCOHERENT

A bound of ‖X(β − β̂)‖22 based on γs,ρ−(X)
In the remainder of this paper, we will assume that the columns of X are `2-normalized.
The main result of this paper is the following theorem.

Theorem 2.4 Let ρ− ∈ (0, 1). Let ν be a positive real such that

ν γνn,ρ−(X) ≤ ρ− σmin(XS)
n maxT⊂{1,...,p}

|T |≤n
σmax(XT ) . (2.4)

Assume that s ≤ νn. Assume that β has support S with cardinal s and that

λ ≥ (2.5)

σ

(
BX,ν,ρ− maxT⊂{1,...,p}

|T |≤n
σmax(XT )

√
2α log(p) + log(2νn) +

√
(2α+ 1) log(p) + log(2)

)
with

BX,ν,ρ− =
νn γνn,ρ−(X)

ρ− σmin(XS)− νn γνn,ρ−(X) maxT⊂{1,...,p}
|T |≤n

σmax(XT ) . (2.5)

Then, with probability greater than 1− p−α, we have

1
2‖X(β̂ − β)‖22 ≤ s Cn,p,ρ−,α,ν,λ (2.6)

with

Cn,p,ρ−,α,ν,λ =
λ+ σ

√
(2α+ 1) log(p) + log(2)
ρ− σmin(XS)

(
σ
√

2α log(p) + log(2νn) + λ
)
(2.7)

Comments
Equation (2.4) in Theorem 3.1 requires that

γνn,ρ−(X) < ρ−
σmin(XS)

νn maxT⊂{1,...,p}
|T |≤n

σmax(XT ) . (2.8)

Proposition 2.2 proves that for random matrices with independent columns uniformly drawn
on the unit sphere of Rn (i.e. normalized i.i.d. gaussian matrices),

γs,ρ−(X) ≤ 80 log(p0)
p0

(2.9)

with high probability. The case of general design matrices can be treated using a simple
trick. It will be studied in Section 4.

The main advantage of using the parameter γνn,ρ−(X) is that it allows X to contain
extremely badly conditioned submatrices, a situation that may often occur in practice when
certain covariates are very correlated. This is in contrast with the Restricted Isometry
Property or the Incoherence condition, or other conditions often required in the litterature.
On the other hand, the parameter γνn,ρ−(X) is not easily computable. We will see however
in Section 4 how to circumvent this problem in practice by the simple trick consisting of
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appending a random matrix with p0 columns to the matrix X in order to ensure that X
satisfies (2.8) with high probability.

Finally, notice that unlike in [14, Theorem 2.1], we make no assumption on the sign
pattern of β. In particular, we do not require the sign pattern of the nonzero components to
be random. Moreover, the extreme singular values of XS are not required to be independent
of n nor p and the condition (2.8) is satisfied for a wide range of configurations of the various
parameters involved in the problem.

3 Proofs

Proof of Proposition 2.2
Constructing an outer approximation for I in the definition of γs,ρ−

Take v ∈ Rn. We construct an outer approximation Ĩ of I into which we be able to extract
the set I. We procede recursively as follows: until |Ĩ| = min{κs, p0/2}, for some positive
real number κ to be specified later, do

• Choose j1 = argminj=1,...,p0 |〈Xj , v〉| and set Ĩ = {j1}

• Choose j2 = argminj=1,...,p0, j 6∈Ĩ |〈Xj , v〉| and set Ĩ = Ĩ ∪ {j2}

• · · ·

• Choose jk = argminj=1,...,p0, j 6∈Ĩ |〈Xj , v〉| and set Ĩ = Ĩ ∪ {jk}.

An upper bound on ‖Xt
Ĩ
v‖∞

If we denote by Zj the quantity |〈Xj , v〉| and by Z(r) the rth order statistic, we get that

‖Xt
Ĩ
v‖∞ = Z(κs).

Since the Xj ’s are assumed to be i.i.d. with uniform distribution on the unit sphere of Rn,
we obtain that the distribution of Z(r) is the distribution of the rth order statistics of the
sequence |Xt

jv|, j = 1, . . . , p0. By (5) p.147 [13], |Xt
jv| has density g and CDF G given by

g(z) = 1√
π

Γ(n2 )
Γ(n−1

2 )
(
1− z2)n−3

2 and G(z) = 2
∫ z

0
g(ζ) dζ.

Thus,

FZ(r)(z) = P (B ≥ r)

where B is a binomial variable B (p0, G(z)). Our next goal is to find the smallest value z0
of z which satisfies

FZ(κs)(z0) ≥ 1− p−n0 . (3.7)

We have the following standard concentration bound for B (e.g. [11]):

P (B ≤ (1− ε)E[B]) ≤ exp
(
−1

2 ε2E[B]
)
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which gives

P (B ≥ (1− ε)p0G(z)) ≥ 1− exp
(
−1

2 ε2p0G(z)
)

We thus have to look for a root (or at least an upper bound to a root) of the equation

G(z) = 1
1
2 ε

2
n

p0
log(p0).

Notice that

G(z) = 2 1√
π

Γ
(
n
2
)

Γ
(
n−1

2
) ∫ z

0

(
1− ζ2)n−3

2 dζ,

≥ 1√
π

Γ
(
n
2
)

Γ
(
n−1

2
) z

for z ≤ 1/
√

2. By a straightforward application of Stirling’s formula (see e.g. (1.4) in [14]),
we obtain

Γ
(
n
2
)

Γ
(
n−1

2
) ≥ e2 ln(2)

2
(n− 3)3/2

(n− 2)1/2 .

Thus, any choice of z0 satisfying

z0 ≥ 2
√
π

e2 ln(2)
(n− 2)1/2

(n− 3)3/2
1

1
2 ε

2
n

p0
log(p0) (3.2)

is an upper bound to the quantile for (1 − ε)p0G(z0)-order statistics at level p−n0 . We now
want to enforce the constraint that

(1− ε)p0G(z0) ≤ κs.

By again a straightforward application of Stirling’s formula, we obtain

G(z) ≤ 1√
π

e2

2
(n− 3)3/2

(n− 2)1/2 z

for n ≥ 4. Thus, we need to impose that

z0 ≤ 2
√
π

e2
(n− 2)1/2

(n− 3)3/2
κs

(1− ε)p0
. (3.1)

Notice that the constraints (3.2) and (3.1) are compatible if

κ ≥ 4
e2(ln(2)−1)

1− ε
ε2

n

s
log(p0).

Take ε = 1− 1
n/s log(p0) and obtain

P
(
‖Xt

Ĩ
v‖∞ ≥

8
√
π

e2 ln(2)
(n− 2)1/2

(n− 3)3/2
n

p0
log(p0)

)
≤ p−n0
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for

κ = 4
e2(ln(2)−1)

for any p0 such that n/s log(p0) ≥
√

2, which is clearly the case as soon as p0 ≥ e
6√
2π for

s ≤ n as assumed in the proposition.
If n ≥ 6, we can simplify (3.1) with

P
(
‖Xt

Ĩ
v‖∞ ≥ 80 log(p0)

p0

)
≤ p−n0 (3.-1)

Extracting a well conditionned submatrix of XĨ

The method for extracting XI from XĨ uses random column selection. For this purpose, we
will need to control the coherence and the norm of XĨ .

Step 1: The coherence of XĨ . Let us define the spherical cap

C(v, h) = {w ∈ Rn | 〈v, w〉 ≥ h} .

The area of C(v, h) is given by

Area (C(v, h)) = Area(S(0, 1))
∫ 2h−h2

0
t
n−1

2 (1− t) 1
2 dt.

Thus, the probability that a random vector w with Haar measure on the unit sphere S(0, 1)
falls into the spherical cap C(v, h) is given by

P (w ∈ C(v, h)) = C(v, h)
S(0, 1)

=
∫ 2h−h2

0 t
n−1

2 (1− t) 1
2 dt∫ 1

0 t
n−1

2 (1− t) 1
2 dt

.

The last term is the CDF of the Beta distribution. Using the fact that

P (Xj ∈ C(Xj′ , h)) = P (Xj′ ∈ C(Xj , h))

the union bound, and the independence of the Xj ’s, the probability that Xj ∈ C(Xj′ , h) for
some (j, j′) in {1, . . . , p0}2 can be bounded as follows

P
(
∪p0
j 6=j′=1 {Xj ∈ C(Xj′ , h)}

)
= P

(
∪p0
j<j′=1 {Xj ∈ C(Xj′ , h)}

)
≤

p0∑
j<j′=1

P ({Xj ∈ C(Xj′ , h)})

=
p0∑

j<j′=1
E [P ({Xj ∈ C(Xj′ , h)} | Xj′)]

= p0(p0 − 1)
2

∫ 2h−h2

0
t
n−1

2 (1− t) 1
2 dt.

Our next task is to choose h so that

p0(p0 − 1)
2

∫ 2h−h2

0
t
n−1

2 (1− t) 1
2 dt ≤ p−n0 .
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Let us make the following crude approximation

p0(p0 − 1)
2

∫ 2h−h2

0
t
n−1

2 (1− t) 1
2 dt ≤ p2

0
2 (2h)

n−1
2 (2h− 0).

Thus, taking

h ≥ 1
2 exp

(
−2

(
log(p0) + log (p0)− log(2))

n+ 1

))
will work. Moreover, since p0 ≥ 2, we deduce that

µ(XĨ) ≤ 1
2 p−2

0 (3.-12)

with probability at least 1− p−n0 .
Step 2: The norm of XĨ . The norm of any submatrix XS with n rows and κs columns

of X has the following variational representation

‖XS‖ = max
v∈Rn, ‖v‖=1

w∈Rκs, ‖w‖=1

vtXSw.

We will use an easy ε-net argument to control this norm. For any v ∈ Rn, vtXj , j ∈ S is a
sub-Gaussian random variable satisfying

P
(
|vtXj | ≥ u

)
≤ 2 exp

(
−cn u2) ,

for some constant c. Therefore, using the fact that ‖w‖ = 1, we have that

P

∣∣∣∣∣∣
∑
j∈S

vtXSw

∣∣∣∣∣∣ ≥ u
 ≤ 2 exp

(
−cn u2) .

Let us recall two useful results of Rudelson and Vershynin. The first one gives a bound on
the covering number of spheres.

Proposition 3.1 ([22, Proposition 2.1]). For any positive integer d, there exists an ε-net
of the unit sphere of Rd of cardinality

2d
(

1 + 2
ε

)d−1
.

The second controls the approximation of the norm based on an ε-net.

Proposition 3.2 ([22, Proposition 2.2]). Let N be an ε-net of the unit sphere of Rd and
let N ′ be an ε′-net of the unit sphere of Rd′ . Then for any linear operator A : Rd 7→ Rd′ ,
we have

‖A‖ ≤ 1
(1− ε)(1− ε′) sup

v∈N
w∈N ′

|vtAw|.
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Let N (resp. N ′) be an ε-net of the unit sphere of Rκs (resp. of Rn). On the other hand,
we have that

P

 sup
v∈N
w∈N ′

|vtAw| ≥ u

 ≤ 2|N ||N ′| exp
(
−cn u2) ,

≤ 8 nκs
(

1 + 2
ε

)n+κs−2
exp

(
−cn u2) ,

which gives

P

 sup
v∈N
w∈N ′

|vtAw| ≥ u

 ≤ 8 nκs ε2

(2 + ε)2 exp
(
−
(
cn u2 − (n+ κs) log

(
1 + 2

ε

)))
.

Using Proposition (5.2), we obtain that

P (‖XS‖ ≥ u) ≤ P

 1
(1− ε)2 sup

v∈N
w∈N ′

|vtAw| ≥ u

 .

Thus, we obtain

P (‖XS‖ ≥ u) ≤ 8 nκs ε2

(2 + ε)2 exp
(
−
(
cn (1− ε)4 u2 − (n+ κs) log

(
1 + 2

ε

)))
.

To conclude, let us note that

P (‖XĨ‖ ≥ u) ≤ P

 max
S⊂{1,...,p0}
|S|=κs

‖XS‖ ≥ u


≤

(
p0

κs

)
8 nκs ε2

(2 + ε)2 exp
(
−
(
cn (1− ε)4 u2 − (n+ κs) log

(
1 + 2

ε

)))
.

and using the fact that (
p0

κs

)
≤

(e p0

κs

)κs
,

one finally obtains

P (‖XĨ‖ ≥ u) ≤ 8 exp
(
−
(
cn (1− ε)4 u2 − (n+ κs) log

(
1 + 2

ε

)
− κs log

(e p0

κs

)
− log

(
nκs ε2

(2 + ε)2

)))
.

The right hand side term will be less than 8p−n0 when

n log(p0) ≤ cn (1− ε)4 u2 − (n+ κs) log
(

1 + 2
ε

)
− κs log

(e p0

κs

)
− log

(
nκs ε2

(2 + ε)2

)
.

This happens if

u2 ≥ 1
c(1− ε)4

(
n

log(p0)
n

+
(

1 + κs

n

)
log
(

1 + 2
ε

)
+ κs

n
log
(e p0

κs

)
+ 1
n

log
(
nκs ε2

(2 + ε)2

))
.



238 J. ON PREDICTION WITH THE LASSO WHEN THE DESIGN IS NOT INCOHERENT

Notice that (
1 + κs

n

)
log
(

1 + 2
ε

)
+ κs

n
log
( e
κs

)
+ 1
n

log
(
nκs ε2

(2 + ε)2

)
(3.-27)

≤ (1 + Cκ) log
(

1 + 2
ε

)
+ Cκ + 1

n
log
(
Cκn

2

4

)
,

≤ Kε
6√
2π
,

since n ≥ 1. Now, since

6√
2π

≤ log(p0) ≤ n+ κs

n
log(p0),

we finally obtain

P
(
‖XĨ‖ ≥

1 +Kε

c(1− ε)4
n+ κs

n
log(p0)

)
≤ 8

pn0
. (3.-29)

Step 3. We will use the following lemma on the distance to identity of randomly selected
submatrices.

Lemma 3.3 Let r ∈ (0, 1). Let n, κ and s satisfy conditions (2.5) and (2.4) assumed in
Proposition 2.2. Let Σ ⊂ {1, . . . , κs} be a random support with uniform distribution on
index sets with cardinal s. Then, with probability greater than or equal to 1− 9 p−n0 on X,
the following bound holds:

P
(
‖Xt

ΣXΣ − Is‖ ≥ r | X
)

< 1. (3.-28)

extbfProof. See Appendix. 2

Taking r = 1 − ρ−, we conclude from Lemma 3.3 that, for any s satisfying (2.6), there
exists a subset J̃ of Ĩ with cardinal s such that

σmin (XJ̃) ≥ ρ−.

The supremum over an ε-net

Recalling Proposition 5.1, there exists an ε-net N covering the unit sphere in Rn with
cardinal

|N | ≤ 2n
(

1 + 2
ε

)n−1
.

Combining this with (3.-1), we have that

P
(

supv∈N infI⊂Ss,ρ− ‖X
t
Iv‖ ≥

8
√
π

e2 ln(2)
n (n−2)1/2

(n−3)3/2
log(p0)
p0

)
≤ 2n

(
1 + 2

ε

)n−1
p−n0 + 9 p−n. (3.-30)
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From the ε-net to the whole sphere

For any v′, one can find v ∈ N with ‖v′ − v‖2 ≤ ε. Thus, we have

‖Xt
Iv
′‖∞ ≤ ‖Xt

Iv‖∞ + ‖Xt
I(v′ − v)‖∞

≤ ‖Xt
Iv‖∞ + max

j∈I
|〈Xj , (v′ − v)〉|

≤ ‖Xt
Iv‖∞ + max

j∈I
‖Xj‖2‖v′ − v‖2

≤ ‖Xt
Iv‖∞ + ε. (3.-32)

Taking

ε = 80 log(p0)
p0

,

we obtain from (3.-32) and (3.-30) that

P
(

sup‖v‖2=1 infI⊂Ss,ρ− ‖X
t
Iv‖ ≥ 80 log(p0)

p0

)
≤ 20 n

(
1 + p0

80 log(p0)

)n−1
p−n0 + 9 p−n0

and thus,

P
(

sup‖v‖2=1 infI⊂Ss,ρ− ‖X
t
Iv‖ ≥ 80 log(p0)

p0

)
≤ 5 n

p0 log(p0)n−1 + 9 p−n0 ,

for p0 ≥ exp(6/
√

2π).

Proof of Theorem 3.1

Optimality conditions

The optimality conditions for the LASSO are given by

−Xt(y −Xβ̂) + λg = 0 (3.-36)

for some g ∈ ∂ (‖ · ‖1)β̂ . Thus, we have

XtX(β̂ − β) = Xtε− λg. (3.-35)

from which one obtains that, for any index set H ⊂ {1, . . . , p} with cardinal s,∥∥∥Xt
HX(β − β̂)

∥∥∥
∞
≤ λ+

∥∥Xt
Hε
∥∥
∞ , (3.-34)

The support of β̂

As is well known, even when the solution of the LASSO optimization problem is not unique,
there always exists a vector β̂ whose support has cardinal n.
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A bound on ‖Xt
HXS(βS − β̂S)‖∞

The argument is divided into three steps.
First step. Equation (3.-34) implies that∥∥∥Xt

HXS(βS − β̂S)
∥∥∥
∞
≤ λ+

∥∥Xt
Hε
∥∥
∞ +

∥∥∥Xt
HXSc(βSc − β̂Sc)

∥∥∥
∞
. (3.-33)

Second step. We now choose H as a solution of the following problem

ϑ = min
I⊂{1,...,p}
|I|=s

max
j∈I
|〈Xj , XSc(βSc − β̂Sc)〉|

subject to

σmin(XI) ≥ ρ−.

By Definition 2.1,

ϑ ≤ γs,ρ−(X) ‖XSc(βSc − β̂Sc)‖2

and thus,

ϑ ≤ γs,ρ−(X) σmax(XSc)‖βSc − β̂Sc‖2
≤ γs,ρ−(X) σmax(XSc)‖βSc − β̂Sc‖1

which gives

ϑ ≤ γs,ρ−(X) σmax(XSc)
(
‖βSc‖1 + ‖β̂Sc‖1

)
. (3.-37)

Third step. Combining (3.-33) and (2.3), we obtain∥∥∥Xt
HXS(βS − β̂S)

∥∥∥
∞
≤ λ+

∥∥Xt
Hε
∥∥
∞ + γs,ρ−(X) σmax(XSc)

(
‖βSc‖1 + ‖β̂Sc‖1

)
.

Using the fact that ∥∥Xt
Hε
∥∥
∞ ≤

∥∥Xtε
∥∥
∞ (3.-37)

and since

P
(∥∥Xtε

∥∥
∞ ≥ σ

√
2α log(p) + log(2p)

)
≤ p−α,

we obtain that∥∥∥Xt
HXS(βS − β̂S)

∥∥∥
∞
≤ λ+ σ

√
(2α+ 1) log(p) + log(2)

+γs,ρ−(X) σmax(XSc)
(
‖βSc‖1 + ‖β̂Sc‖1

)
(3.-38)

with probability greater than 1− pα.
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A basic inequality

The definition of β̂ gives

1
2‖y −Xβ̂‖

2
2 + λ‖β̂‖1 ≤ 1

2‖y −Xβ‖
2
2 + λ‖β‖1

Therefore, we have that

1
2‖ε−X(β̂ − β)‖22 + λ‖β̂‖1 ≤ 1

2‖ε‖
2
2 + λ‖β‖1

which implies that

1
2‖X(β̂ − β)‖22 ≤ 〈ε,XS(β̂S − βS)〉+ 〈ε,XSc(β̂Sc − βSc)〉

+λ
(
‖βS‖1 − ‖β̂S‖1

)
− λ‖β̂Sc‖1 + λ‖βSc‖1.

This can be further written as

1
2‖X(β̂ − β)‖22 ≤ 〈ε,XS(β̂S − βS)〉+ 〈Xt

Scε, β̂Sc − βSc〉 (3.-41)

+λ
(
‖βS‖1 − ‖β̂S‖1

)
− λ‖β̂Sc‖1 + λ‖βSc‖1. (3.-40)

Control of 〈ε,XS(β̂S − βS)〉

The argument is divided into two steps.
First step. We have

〈ε,XS(β̂S − βS)〉 = 〈Xt
Sε, β̂S − βS〉

≤
∥∥Xt

Sε
∥∥
∞ ‖β̂S − βS‖1

≤
√
s
∥∥Xt

Sε
∥∥
∞ ‖β̂S − βS‖2

and, using the fact that σmin(XH) ≥ ρ−,

〈ε,XS(β̂S − βS)〉 ≤ s

ρ− σmin(XS)
∥∥Xt

Sε
∥∥
∞ ‖X

t
HXS(β̂S − βS)‖∞.

Second step. Since the columns of X have unit `2-norm, we have

P
(∥∥Xt

Sε
∥∥
∞ ≥ σ

√
2α log(p) + log(2s)

)
≤ p−α,

which implies that

〈ε,XS(β̂S − βS)〉 ≤
s σ
√

2α log(p) + log(2s)
ρ− σmin(XS) ‖Xt

HXS

(
β̂S − βS

)
‖∞ (3.-44)

with probability at least 1− p−α.



242 J. ON PREDICTION WITH THE LASSO WHEN THE DESIGN IS NOT INCOHERENT

Control of 〈Xt
Scε, β̂Sc − βSc〉

We have

〈Xt
Scε, β̂Sc − βSc〉 ≤

∥∥Xt
Scε
∥∥
∞ ‖β̂Sc − βSc‖1. (3.-43)

On the other hand, we have

P
(∥∥Xt

Scε
∥∥
∞ ≥ σ

√
2α log(p) + log(2(p− s))

)
≤ p−α,

which, combined with (3.-43), implies that

〈Xt
Scε, β̂Sc − βSc〉 ≤ σ

√
2α log(p) + log(2(p− s))

(
‖β̂Sc‖1 + ‖βSc‖1

)
with probability at least 1− p−α.

Control of ‖βS‖1 − ‖β̂S‖1

The subgradient inequality gives

‖β̂S‖1 − ‖βS‖1 ≥ 〈sign(βS), β̂S − βS〉.

We deduce that

‖βS‖1 − ‖β̂S‖1 ≤ ‖−sign(βS)‖∞ ‖β̂S − βS‖1

≤
√
s

ρ− σmin(XS)‖X
t
HXS(β̂S − βS)‖2

which implies

‖βS‖1 − ‖β̂S‖1 ≤ s

ρ− σmin(XS) ‖X
t
HXS(β̂S − βS)‖∞. (3.-47)

Summing up

Combining (3.-41) with (3.-44), (3.-47) and (3.-38), the union bound gives that, with prob-
ability 1− 3p−α,

1
2‖X(β̂ − β)‖22 ≤ s

ρ− σmin(XS)

(
σ
√

2α log(p) + log(2s) + λ
)(

λ+ σ
√

(2α+ 1) log(p) + log(2)

+γs,ρ−(X) σmax(XSc)
(
‖βSc‖1 + ‖β̂Sc‖1

))
+σ
√

2α log(p) + log(2(p− s))
(
‖βSc‖1 + ‖β̂Sc‖1

)
+λ
(
‖βSc‖1 − ‖β̂Sc‖1

)
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which gives,

1
2‖X(β̂ − β)‖22 ≤ s

λ+ σ
√

(2α+ 1) log(p) + log(2)
ρ− σmin(XS)

(
σ
√

2α log(p) + log(2s) + λ
)

+
(

s

ρ− σmin(XS)

(
σ
√

2α log(p) + log(2s) + λ
)
γs,ρ−(X) σmax(XSc)

+σ
√

2α log(p) + log(2(p− s))− λ
)
‖β̂Sc‖1

+
(

s

ρ− σmin(XS)

(
σ
√

2α log(p) + log(2s) + λ
)
γs,ρ−(X) σmax(XSc)

+σ
√

2α log(p) + log(2(p− s)) + λ

)
‖βSc‖1.

Using the assumption that s ≤ νn, we obtain

1
2‖X(β̂ − β)‖22 ≤ s

λ+ σ
√

(2α+ 1) log(p) + log(2)
ρ− σmin(XS)

(
σ
√

2α log(p) + log(2νn) + λ
)

+
(

νn

ρ− σmin(XS)

(
σ
√

2α log(p) + log(2νn) + λ
)
γs,ρ−(X) σmax(XSc)

+σ
√

(2α+ 1) log(p) + log(2)− λ
)
‖β̂Sc‖1

+
(

νn

ρ− σmin(XS)

(
σ
√

2α log(p) + log(2νn) + λ
)
γs,ρ−(X) σmax(XSc)

+σ
√

2α log(p) + log(2(p)) + λ

)
‖βSc‖1.

Since, as recalled in Section 3, the support of β̂ has cardinal less than or equal to n, we have

σmax(XSc) ≤ max
T⊂{1,...,p}
|T |≤n

σmax(XT ),

and the proof is completed.

4 A simple trick when γs,ρ− is unknown: appending a random
matrix

We have computed the index γs,ρ− for the random matrix with independent columns uni-
formly distributed on the unit sphere of Rn in Theorem 2.2. The goal of this section is to
show that this result can be used in a simple trick in order to obtain prediction bounds
similar to [14, Theorem 2.1] without conditions on the design matrix X.

This idea is of course to use Theorem 3.1 above. However, the values of σmin(XS) and
σmax(XSc) are of course usually not known ahead of time and we have to provide easy to
compute bounds for these quantities. The coherence µ(X) can be used for this purpose.
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Indeed, for any positive integer t ≤ p and any T ⊂ {1, . . . , p} with |T | = t, we have

µ(X) = ‖XtX − I‖1,1
= max

‖w‖∞=1
max
‖w′‖1=1

wt(XtX − I)w′

≥ 1√
t

max
‖w‖2=1
‖w‖0=t

max
‖w′‖2=1
‖w′‖0=t

wt(XtX − I)w′.

Thus, we obtain that

1− µ(X)
√
t ≤ σmin(XT ) ≤ σmax(XT ) ≤ 1 + µ(X)

√
t.

However, the lower bound on σmin(XS) obtained in this manner may not be accurate enough.
More precise, polynomial time computable, bounds have been devised in the litterature. The
interested reader can find a very useful Semidefinite relaxation of the problem of finding the
worst possible value of σmin(XT ) over all subsets T of {1, . . . , p} with a given cardinal
(related to the Restricted Isometry Constant) in [10].

Assuming we have a polynomial time computable a priori bound σ∗min on σmin(XT ) (resp.
σ∗max on maxT⊂{1,...,p}

|T |≤n
σmax(XT )), our main result for the case of general design matrices is

the following theorem.

Theorem 4.1 Let X be an matrix in Rn×p with `2-normalized columns and let X0 be a
random matrix with independent columns uniformly distributed on the unit sphere of Rn. Let
X] denote the matrix corresponding to the concatenation of X and X0, i.e. X] = [X,X0].
Let β̂] denote the LASSO estimator with X replaced with X] in (1.0). Let ρ− ∈ (0, 1). Let
ν be a positive real. Assume that p0 is such that

80 log(p0)
p0

< L ρ−
σ∗min

νn σ∗max
(4.-65)

for some L ∈ (0, 1). Assume moreover that p0 is sufficiently large so that the second inequal-
ity in (2.5) is satisfied. Assume that β has support S with cardinal s and that

λ ≥ σ
(
B′X,ν,ρ− σ∗max

√
2α log(p+ p0) + log(2νn) +

√
(2α+ 1) log(p+ p0) + log(2)

)
with

B′X,ν,ρ− =
νn γνn,ρ−(X)

ρ− σ∗min − νn γνn,ρ−(X) σ∗max
. (4.-65)

Assume that s satisfies the first inequality in (2.5) and that s ≤ νn. Then, with probability
greater than 1− p−α − 9p−n0 − 20 n

log(p0)n−1 p
−1
0 , we have

1
2‖X(β̂# − β)‖22 ≤ s C ′n,p,ρ−,α,ν,λ (4.-64)

with

C ′n,p,ρ−,α,ν,λ =
λ+ σ

√
(2α+ 1) log(p+ p0) + log(2)

ρ− σ∗min

(
σ
√

2α log(p+ p0) + log(2νn) + λ
)

extbfProof. Since the index γs,ρ− does not increase after appending a matrix with `2-
normalized columns, the matrix X# has at most the same index as that of X0. Then (4.-65)
ensures that the index γs,ρ−(X#) is sufficiently small. The rest of the proof is identical to
the proof of Theorem 3.1. 2
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5 Proof of Lemma 3.3

For any index set S ⊂ {1, . . . , κs} with cardinal s, define RS as the diagonal matrix with

(RS)i,i =
{

1 if i ∈ S,
0 otherwise.

Notice that we have ∥∥Xt
SXS − I

∥∥ = ‖RSHRS‖

with H = XtX − I. In what follows, Rδ simply denotes a diagonal matrix with i.i.d.
diagonal components δj , j = 1, . . . , κs with Bernoulli B(1, 1/κ) distribution. Let R′ be an
independent copy of R. Assume that S is drawn uniformly at random among index sets
of {1, . . . , κs} with cardinal s. By an easy Poissonization argument, similar to [14, Claim
(3.29) p.2173], we have that

P (‖RsHRs‖ ≥ r) ≤ 2 P (‖RHR‖ ≥ r) , (5.-67)

and by Proposition 4.1 in [13], we have that

P (‖RHR‖ ≥ r) ≤ 36 P (‖RHR′‖ ≥ r/2) . (5.-66)

In order to bound the right hand side term, we will use [13, Proposition 4.2]. Set r′ = r/2.
Assuming that κ r

′2

e ≥ u2 ≥ 1
κ‖X‖

4 and v2 ≥ 1
κ‖X‖

2, the right hand side term can be
bounded from above as follows:

P (‖RHR′‖ ≥ r′) ≤ 3 κs V(s, [r′, u, v]), (5.-65)

with

V(s, [r′, u, v]) =
(
e

1
κ

u2

r′2

) r′2
v2

+
(
e

1
κ

‖M‖4

u2

)u2/‖M‖2

+
(
e

1
κ

‖M‖2

v2

)v2/µ(M)2

.

Using (3.-12) and (3.-29), we deduce that with probability at least 1− 8p−n0 − p−n0 , we have

V(s, [r′, u, v]) =
(
e

1
κ

u2

r′2

) r′2
v2

+

e 1
κ

(
1+Kε
c(1−ε)4

n+κs
n log(p0)

)4

u2


u2(

1+Kε
c(1−ε)4

n+κs
n

log(p0)
)2

+

e 1
κ

(
1+Kε
c(1−ε)4

n+κs
n log(p0)

)2

v2


v2

1
2 p
−2
0

.

Take κ, u and v such that

v2 = r′
2 1

log(Cκ n)

u2 = CV

(
1 +Kε

c(1− ε)4
n+ κs

n
log(p0)

)2
,

κ ≥ e3 CV

r′2

(
1 +Kε

c(1− ε)4
n+ κs

n
log(p0)

)2
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for some CV possibly depending on s. Since κs ≤ Cκn, this implies in particular that

κ ≥ e3 CV

r′2

(
(1 +Kε)(1 + Cκ)

c(1− ε)4 log(p0)
)2

. (5.-73)

Thus, we obtain that

V(s, [r′, u, v]) =
(

1
e2

)log(Cκn)
+
(

r′
2

e2 C2
V

)CV
+
(

log(Cκn)
e2 CV

) 2r′2 p2
0

log(Cκn)

.

Using (5), (5.-66) and (5.-65), we obtain that

P (‖RsHRs‖ ≥ r′) ≤ 2× 36× 3× κs

( 1
e2

)log(Cκn)
+
(

r′
2

e2 C2
V

)CV
+
(

log(Cκn)
e2 CV

) 2r′2 p2
0

log(Cκn)

 .

Take

CV = log(Cκn) (5.-74)

and, since p0 > 1 and r ∈ (0, 1), we obtain

P (‖RsHRs‖ ≥ r′)

≤ 2× 36× 3× κs

( 1
e2

)log(Cκn)
+
(

r′
2

e2 log2(Cκn)

)log(Cκn)

+
(

1
e2

) 2r′2 p2
0

log(Cκn)

 .(5.-74)

Replace r′ by r/2. Since it is assumed that n ≥ exp(r/2)/Cκ and p0 ≥
√

2 log(Cκn)/r, it is
sufficient to impose that

C2
κn

2 ≥ (2× 36× 3× κs× 3)
1

log(e2) ,

in order for the right hand side of (5.-74) to be less than one. Since κs ≤ Cκn, it is sufficient
to impose that

C2
κn

2 ≥ 2× 36× 3× Cκn× 3,

or equivalently,

Cκn ≥ 2× 36× 3× 3.

This is implied by (2.5) in the assumptions. On the other hand, combining (5.-73) and
(5.-74) implies that one can take

κ = 4e3

r2

(
(1 +Kε)(1 + Cκ)

c(1− ε)4

)2
log2(p0) log(Cκn),

which is nothing but (2.4) in the assumptions.
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Chapter K

Mixture model for designs in high
dimensional regression and the LASSO

Abstract

The LASSO is a recent technique for variable selection in the regression model

y = Xβ + ε,

where X ∈ Rn×p and ε is a centered gaussian i.i.d. noise vector N (0, σ2I). The LASSO
has been proved to perform exact support recovery for regression vectors when the de-
sign matrix satisfies certain algebraic conditions and β is sufficiently sparse. Estimation
of the vector Xβ has also extensively been studied for the purpose of prediction under
the same algebraic conditions on X and under sufficient sparsity of β. Among many
other, the coherence is an index which can be used to study these nice properties of the
LASSO. More precisely, a small coherence implies that most sparse vectors, with less
nonzero components than the order n/ log(p), can be recovered with high probability if
its nonzero components are larger than the order σ

√
log(p). However, many matrices

occuring in practice do not have a small coherence and thus, most results which have
appeared in the litterature cannot be applied. The goal of this paper is to study a
model for which precise results can be obtained. In the proposed model, the columns
of the design matrix are drawn from a Gaussian mixture model and the coherence con-
dition is imposed on the much smaller matrix whose columns are the mixture’s centers,
instead of on X itself. Our main theorem states that Xβ is as well estimated as in the
case of small coherence up to a correction parametrized by the maximal variance in the
mixture model.

1 Introduction

The goal of the present paper is the study of the high dimensional regression problem
y = Xβ + z, where X ∈ Rn×p, with p � n and z ∼ N (0, σ2In). For simplicity, we will
assume throughout this paper that the columns of X have unit l2-norm. This problem
has been the subject of a great research activity. This high dimensional setting, where
more variables are involved than observations, occurs in many different applications such
as image processing and denoising, gene expression analysis, and, after slight modifications,
time series (filtering) [17], [20], machine learning and especially graphical models [19] and
more recently, biochemistry [1]. One of the most popular approaches is the Least Angle
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Shrinkage and Selection Operator (LASSO) introduced in [23] for the purpose of variable
selection. The LASSO estimator is given as a solution, for λ > 0, of

β̂ = argminb∈Rp
1
2‖y −Xb‖

2
2 + λ‖b‖1. (1.0)

Conditions for uniqueness of the minimizer in this last expression are discussed in [16], [21]
and [15]. Several other estimators have also been proposed, such as the Dantzig Selector
[11] [3] or Message Passing Algorithms [14]. In the sequel, we will focus on the LASSO due
to its wide use in various applications.

One of the most surprising and important discoveries from these recent extensive efforts
is that, under appropriate assumptions on the design matrix X, and for most regression
vectors β, the support of β can be recovered exactly when its size is of the order n/ log(p);
see [3], [5], [14], [28] for instance. Moreover, under similar assumptions, the prediction
error can be controlled adaptively as a function of the sparsity of β and the noise variance;
see for instance [14]. Similar rates can be achieved by other method, involving for instance
penalization, but the main advantage of the LASSO over most competitors is that a solution
can be obtained in polynomial time, following the definition of complexity theory. A very
efficient algorithm is, e.g., [2]. Many implementations are available on the web.

The two main assumptions for achieving these remarkable results are unavoidably im-
posed on the design matrix X and on the regression vector.

• The regression vector β is assumed to be s-sparse, with support denoted by T , meaning
that no more than s of its components are non zero. This can be relaxed to β assumed
only compressible, that is approximable by a sparse vector.

• The design matrix is assumed to satify one of many proposed algebraic conditions in
the litterature, implying that all singular values of XS are close to one for any or most
given S ⊂ {1, . . . , n} with |S| = s′ for some appropriate choice of s′ (often equal to s
of 2s).

Concerning the second point, two main assumptions have been proposed in the litterature.
The first is the Restricted Isometry Property [12] [8], which requires that

(1− δ)‖βS‖22 ≤ ‖XSβS‖22 ≤ (1 + δ)‖βS‖22, (1.1)

for S ⊂ {1, . . . , n} with |S| = s′ and all β ∈ Rp. This property is satisfied by high proba-
bility for most random matrices with i.i.d. entrees with variance 1/n such as Gaussian or
Rademacher variables and for s′ ≤ Crip n/ log(p), where the constant Crip depends on the
distribution of the individual entrees. Notice that the 1/n assumption on the variance and
standard concentration bounds imply that the resulting random matrix has almost normal-
ized columns and the normalized avatar will satisfy RIP with unessential modifications of
the constants. The RIP has been extensively used in signal processing after the emergence
of the so-called Compressed Sensing paradigm [7].

The second assumption which is often considered is the Incoherence Condition, which
requires that

µ(X) = pmax
j 6=j′=1

|〈Xj , Xj′〉|

is small, e.g. µ(X) ≤ Cµ/ log(p) as in [14], which is garanteed for random matrices with
i.i.d. gaussian entrees with variance 1/n in the range n ≥ Cic log(p)3.
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The main advantage of the Incoherence Condition over the Restricted Isometry Property
is that it can be checked quicky (in p(p − 1)/2 operations), whereas no-one knows how to
check the RIP without enumerating all possible supports S ⊂ {1, . . . , n} with cardinal s′.
Such an enumeration would of course take an exponential amount of time to establish. The
main relationship between IC and RIP is that it can be proved that under IC, (1.1) holds, not
for all, but for most supports S ⊂ {1, . . . , n} with cardinal s′, where s′ ≤ Cs p/(‖X‖ log(p)),
for some constant Cs controlling the proportion of such supports.

The objective of the present paper is to extend the analysis based on the Incoherence
Condition to more general situations where X may have a lot of very colinear columns. The
main idea is to assume that the columns are drawn from a mixture model of K clusters, and
that the set of cluster’s centers form a matrix which satisfies the Incoherence Condition.

2 Main results

The mixture model
In order to relax the Incoherence Condition, one needs a model for the design matrix X
allowing for a certain amount of correlations between columns while keeping some of the
algebraic structure in the same spirit as (1.1) for at least most supports indexing a subset of
really pertinent covariates. In what follows, we study such a model, where the columns can
be considered as belonging to a family of clusters and the cluster’s centers or (an empirical
surrogate) is defined to be the pertinent variable. This model is of great interest when many
columns are very colinear. In practice, one often observes that the columns of X can be
grouped into different clusters such that the dot product of Xj and Xj′ j 6= j′ is close to one
if they belong to the same cluster, and very close to zero otherwise. Notice that applying
the LASSO for such designs will eventually result into grossly incorrect variable selection.
On the other hand confusing a variable for another very correlated variable might not be a
real issue as far as prediction is concerned if the clusters are well separated.

Detailed presentation

Let K be the number of clusters in the covariates. Consider a matrix C in Rn×K , with small
coherence. The columns of the matrix C will be the ”centers” of each cluster, k = 1, . . . ,K.

The design matrix will be assumed to derive from a matrix Xo whose columns are
drawn from the following procedure. Let K be randomly drawn among all index subsets
of {1, . . . ,K} with cardinal s∗ with uniform distribution. We then assume that, condition-
ally on K each column of Xo is drawn from a mixture Φ of K n-dimensional Gaussian
distributions, i.e.

Φ(x) =
∑
k∈K

πkφk(x),

where

φk(x) = 1
(2πs2)

n
2

exp
(
−
‖x− Ck‖22

2s2

)
,

and πk ≥ 0, k ∈ K and
∑
k∈K πk = 1. We will denote by nk the random number of columns

in Xo that were drawn from N (Ck, s2I), k = 1, . . . ,Ko. Thus,
∑
k∈K nk = p.

Finally, the matrix X is obtained by column-wise normalization of Xo, i.e. Xj =
Xo,j/‖Xo,j‖2.
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Notice that the model could easily be modified in order to more general distributions for
K than the uniform distribution on subsets of {1, . . . ,Ko} with cardinal s∗.

More notations

For each j ∈ {1, . . . , p}, denote by kj the index of the Gaussian component from which
columns j was drawn, and let Jk denote the set of indices of columns drawn from the kth
Gaussian component. For any index set S ∈ {1, . . . , p}, let KS denote the list (with possible
repetitions)

KS = {kj | j ∈ S} .

The deviation of columns Xo,j from center Ckj will be denoted by

εj = Xo,j − Ckj ∼ N
(
Ckj , s

2) .
and the matrix E is defined as

E = (εi,j)i∈{1,...,n}, j∈{1,...,p}.

A simple proxy for β
For each k ∈ {1, . . . ,K}, let j∗k be the best approximation of the center Ck from the set of
colums Xj , j ∈ Jk, i.e.

j∗k = argminj∈Jk‖Xj − Ck‖2.

Moreover, set

T ∗ = {j∗k | k ∈ K} .

Of course, we have s∗ = |T ∗|.
The vector β∗ is defined by

CKT∗β
∗
T∗ = CKT βT . (2.-6)

A simple expression of β∗ can be obtained by taking

β∗j∗ =
∑

j∈Jkj∗∩T
βj (2.-5)

for all j∗ ∈ T ∗. Moreover, this expression is unique whenever XT∗ has rank equal to s∗.
In Section 3, we will show that XT∗ is indeed non-singular with high probability under
appropriate assumptions on T .

Main result
Further notations

In the sequel r will denote a constant in (1, 1/4). The constants ϑ∗ et ν will be specified in
Assumptions 2.3 below. The constants Cµ, Cspar et Ccol will be used in the Assumptions
below:

Cµ = r/(1 + α),
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Cspar = r2/((1 + α)e2),

Ccol = 1
2

( √
2√

(1− r)(1 + α)
− (1 + r)

)
.

Let Cχ denote a positive constant such that

P
(
‖G‖22
s2 ≤ u2

)
≤ Cχ

(
u2

n

)n
where G is a n-dimensional centered and unit-variance i.i.d. gaussian vector. Let us further
define

rmax = 1 + s

(
√
n+

√
α

c
log(p) + 1

c
log(s)

)
, (2.-8)

µmax = 1
2 s
(√

n+
√
s+

√
2α log (p)

)
, (2.-7)

σ2
max = 1

2
√
s s2, (2.-6)

r∗max = 1

1− s

√
n
(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

,

K2
n,s∗ = α n log(p)

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

, (2.-6)

µ∗max = sKn,s∗ ,

σ∗max
2 =

(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

1− s

√
n
(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

√
s∗ s2, (2.-6)

C∫ =
∫ 3

0

√
log
(

3
ε′

)
dε′.

and

C∗∫ =
∫ 3

0

√
log
(

3
ε′

)
dε′.
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Assumptions

We will make the following assumptions.

Assumptions 2.1

p ≥ max
{
Ko, e

e2−log(α)
}
.

and

log(p) ≥ max
{

0.2 · r
(
1 + 1.1 · r + 0.11 · r2)

0.1 · (1.1 · r + 0.11 · r2) ,
1.1 · r (1.1 + 0.11 · r)

α

}
.

Assumptions 2.2 Assume that C has coherence µ(C) satisfying

µ(C) ≤ Cµ
log(p) . (2.-9)

Assumptions 2.3 There exists a positive real constant ϑ∗ and a positive integer ν such
that

min
j∗∈T∗

|Jkj∗ | ≥ ϑ∗ log(p)ν .

Assumptions 2.4

s∗ ≤ Ko

log p
Cspar
‖C‖2

.

Assumptions 2.5

n ≥ α+ 1
c

log(p). (2.-10)

Remark 2.1 Assumption 2.5 is to be interpreted with care since the order of magnitude of
n is primarily governed by Assumption 2.2 on the coherence of C. For instance, if C comes
from a Gaussian i.i.d. random matrix, the coherence will be of the order

√
log(Ko)/n as

discussed in [14, Section 1.1] and n should be at least of the order log(p)2 log(Ko). Notice
that this is still less than if X itself had to satisfy the coherence bound, with would implie
that n be of the order log(p)3.

Assumptions 2.6

Ccol ≥ e2(α+ 1) max{
√
Cspar, Cµ}.

and

(Ccol + (1 + 1.1 · r) Cs,n,p) ≤ 1
2

√
log(p) (1− r∗)2

(α log(p)− log(2)) 2 .

Assumptions 2.7 s
(√

n+
√

α
c log(p) + 1

c log(s)
)
≤ 1/2

s ≤ Cs,n,p
1√

log(p)
(√

n+
√

α+1
c log(p)

) . (2.-11)
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for any Cs,n,p such that and

Cs,n,p ≤ min
{

0.1 · r√
α
(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

; 1
2
√

log(p)
}
.

Assumptions 2.8

‖βT ‖22 ≥ 2 α log(p)n σ2
max

4 α2

9 µ2
max log2(p)− 12 C∫ µmax rmax s

√
n
.

Assumptions 2.9

‖β∗T∗‖22 ≥ 2α log(p)n σ∗max
2

4 α2

9 µ∗max
2 log2(p)− 24 C∗∫ µ∗max r

∗
max s

√(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

.

Remark 2.2 Notice that, using (2.-5), the following relationship holds between ‖β∗T∗‖22
and ‖βT ‖22 if all the coefficients βj, j ∈ Jk have the same sign for all k ∈ K:

‖β∗T∗‖22 ≥ ‖βT ‖22.

In this case, one can replace ‖β∗T∗‖22 by ‖βT ‖22 in Assumption (2.9) and merge Assumption
(2.8) and Assumption (2.9) by taking the maximum of their respective right hand side and
obtain a simpler assumption.

Assumptions 2.10 The support of β∗T∗ is random and uniformly distributed among subsets
of {1, . . . , p} with cardinal s∗. The sign of β∗T∗ is random with uniform distribution on
{−1, 1}s∗ .

Remark 2.3 This last assumption is a transposition to the proxy β∗ of the conditions on
β in [14].

Main theorem

The main result of this paper is the following theorem.

Theorem 2.4 Set λ = 2σ
√

2α log(p). Assume that X is drawn from the Gaussian mixture
model of Section 2 with K drawn uniformly at random among all possible index subsets of
{1, . . . ,K} with cardinal s∗. Let Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 and 2.9
hold. Then, we have

1
2‖Xh‖

2
2 ≤ s∗

3
2r∗ λ

(
3
2 λ+

√
1 + r∗ δ‖CTβT ‖2

)
+ 1

2δ
2‖Xβ‖22
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with r∗ = 1.1 · r (1.1 + 0.11 · r) and for any δ satisfying

δ ≥ 4s
(
√
n+

√
α

c
log(p) + 1

c
log(s)

)(
1 + 8

√
2
√
α log(p) + log(2n+ 2)

√
s∗ρC

)
+
(

12 C∫ s
√
n rmax + α log(p) µmax

) √
s∗ρC

+4s

√
n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

(
1 + 2

√
2 √ρC

√
α log(p) + log(2n+ 2))

)

+
(

24 r∗max s

√(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

C∗∫ + µ∗max α log(p)
)
√
ρC, (2.-18)

3 Proof of Theorem 3.1

Some parts of the proof closely follow the key arguments in the proof of [14, Theorem 1.2].
Their adaptation to the present setting is however sometimes nontrivial. We present all the
details for the sake of completeness.

Preliminaries: Candès and Plan’s conditions

The following proposition will be much used in the arguments.

Proposition 3.1 We have the following properties:

(I)

P
(
‖CtKCK − Is‖ ≥

1
2

)
≤ 216

pα
. (3.-17)

(II)

P
(∥∥Xt

T∗XT∗ − I
∥∥ ≥ 1.1 · r(1.1 + 0.11 · r)

)
≤ 219

pα
. (3.-16)

(III)

P
(
‖Xtz‖∞ ≥ σ

√
2α log(p)

)
≤ 1

pα
. (3.-15)

(IV) ∥∥Xt
T∗cXT∗(Xt

T∗XT∗)−1Xt
T∗z
∥∥
∞ + λ

∥∥Xt
T∗cXT∗(Xt

T∗XT∗)−1sign (β∗T∗)
∥∥
∞

≤ σ
√

1 + 1.1 · r(1.1 + 0.11 · r) + 1
2 λ (3.-15)

extbfProof. See Appendix 6. 2
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Controlling ‖Xβ −Xβ∗‖2 by ‖Xβ‖
Proposition 3.2 One has

P(‖Xβ −Xβ∗‖2 ≥ δ ‖CKT βT ‖2) ≤ 1
pα

extbfProof. The proof is divided into four steps, for the sake of clarity.
Step 1. Let

ẼT = XT − CKT .

where, since KT is supposed to be a list with possible repetitions, the matrix CKT has
correspondingly possible column repetitions, and

Ẽ∗T = XT∗ − CKT∗ .

Thus, using (2.-6),

‖Xβ −Xβ∗‖2 = ‖ẼTβT − Ẽ∗T∗β∗T∗‖2,

which, by the triangular inequality, gives

‖Xβ −Xβ∗‖2 ≤ ‖ẼTβT ‖2 + ‖Ẽ∗T∗β∗T∗‖2.

Step 2: Control of ‖ẼTβT ‖2. The column j ∈ T of the matrix ẼT has the expression

Ẽj =
Ckj + Ej

‖Ckj + Ej‖2
− Ckj .

We may decompose the quantity ‖ẼTβT ‖2 as

‖ẼTβT ‖2 = ‖A‖2 + ‖B‖2,

where

A =
∑
j∈T

(
1

‖Ckj + Ej‖2
− 1
)
Ckjβj

and

B =
∑
j∈T

1
‖Ckj + Ej‖2

Ejβj .

We have the following bound for A.

Lemma 3.3

P

(
‖A‖2 ≥ 4s

(
√
n+

√
α

c
log(p) + 1

c
log(s)

)(
1 + 8

√
2
√
α log(p) + log(2n+ 2)

√
s∗ρC

)
‖CKT βT ‖2

)

≤ C + 1
pα

. (3.-24)

extbfProof. See Appendix 4. 2 Turning to B, we have the following result.
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Lemma 3.4 We have

P

(
‖B‖2 ≥

(
12 C∫ s

√
n rmax + α log(p) µmax

) √
s∗ρC‖CKT βT ‖2

)
≤ 2
pα
.

extbfProof. See Appendix 4. 2

Step 3: Control of ‖Ẽ∗T∗β∗T∗‖2. The column j∗ ∈ T ∗ of the matrix Ẽ∗T∗ has the expression

Ẽ∗j∗ =
Ckj∗ + Ej∗

‖Ckj∗ + Ej∗‖2
− Ckj∗ .

We will procede as in Step 2. Define

W ∗j∗ = 1
‖Ckj∗ + Ej∗‖2

− 1.

Notice that Ẽ∗j∗ can be written

Ẽ∗T∗β
∗
T∗ = A∗ +B∗

with

A∗ =
∑
j∗∈T∗W

∗
j∗β
∗
j∗A
∗
j∗ ,

where

A∗j∗ =
[

0 Ctkj∗
Ctkj∗ 0

]
.

and

B∗ =
∑
j∗∈T∗ β

∗
j∗B

∗
j∗ , where Bj∗ = Ej∗

‖Ckj∗ + Ej∗‖2
.

We begin with the study of A∗.

Lemma 3.5 We have

P

(
‖A∗‖2 ≥ 4s

√
n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

(
1 + 2

√
2 √ρC

√
α log(p) + log(2n+ 2))

)
‖CKT βT ‖2

)

≤ 2
pα
.

extbfProof. See Appendix 4. 2 Turning to B∗, we have the following result.

Lemma 3.6 We have

P

(
‖B∗‖ ≥

(
24 r∗max s

√(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

C∗∫
+µ∗max α log(p)

)
√
ρC ‖CTβT ‖2

)
≤ 2
pα
.
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extbfProof. See Appendix 4. 2

Step 4: Conclusion. Combining Lemmæ 1.1, 3.4, 3.5 and 3.6, we obtain that for any δ
such that (2.-15) we have

P(‖Xβ −Xβ∗‖2 ≥ δ‖CTβT ‖2) ≤ 1
pα
.

2

The prediction bound
By definition, the LASSO estimator satisfies

1
2‖y −Xβ̂‖

2
2 + λ‖β̂‖1 ≤ 1

2‖y −Xβ
∗‖22 + λ‖β∗‖1. (3.-36)

One may introduce Xβ in this expression and obtain

1
2‖y −Xβ +X(β − β̂)‖22 + λ‖β̂‖1 ≤ 1

2‖y −Xβ +X(β − β∗)‖22 + λ‖β∗‖1,

from which we deduce
1
2‖X(β − β̂)‖22 ≤ 〈y −Xβ,X(β̂ − β∗)〉 (3.-36)

−λ
(
‖β̂‖1 − ‖β∗‖1

)
+ 1

2‖X(β − β∗)‖22.

Set h∗ := β̂ − β∗. Using sparsity of β∗, we obtain that h∗T∗c = β̂T∗c − β∗T∗c = β̂T∗c . Thus,
we have

‖β̂‖1 − ‖β∗‖1 = ‖β∗ + h‖1 − ‖β∗‖1
= ‖β∗T∗ + h∗T∗‖1 + ‖β∗T∗c + h∗T∗c‖1 − ‖β∗T∗‖1
= ‖β∗T∗ + h∗T∗‖1 − ‖β∗T∗‖1 + ‖h∗T∗c‖1.

Since, for any b with no zero component, the gradient of ‖·‖1 at b is sign(b), the subgradient
inequality gives

‖β∗T∗ + h∗T∗‖1 ≥ ‖β∗T∗‖1 + 〈sign (β∗T∗) , h∗T∗〉

and combining this latter inequality with (3.-36), we obtain

1
2‖X(β − β̂)‖22 ≤ 〈y −Xβ,Xh∗〉 − λ 〈sign (β∗T∗) , h∗T∗〉 (3.-40)

−λ‖h∗T∗c‖1 + 1
2‖X(β − β∗)‖22.

Set r := β∗ − β and h := β̂ − β. Using these notations, equation (3.-40) may be written

1
2‖Xh‖

2
2 ≤ 〈z,Xh∗〉 − λ 〈sign (β∗T∗) , h∗T∗〉 (3.-40)

−λ‖h∗T∗c‖1 + 1
2‖Xr‖

2
2.

Using the fact that

〈Xtz, h∗〉 = 〈Xt
T∗z, h

∗
T∗〉+ 〈Xt

T∗cz, h
∗
T∗c〉
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and the following majorization based on (3.-15)

〈Xt
T∗cz, h

∗
T∗c〉 ≤ ‖h∗T∗c‖1‖X ′T∗cz‖∞

≤ 1
2 λ ‖h∗T∗c‖1,

we obtain that
1
2‖Xh‖

2
2 ≤ 〈v, h∗T∗〉 − (1− 1

2) λ‖h∗T∗c‖1 + 1
2‖Xr‖

2
2,

where v := Xt
T∗z − λ sign (β∗T∗).

Now, observe that

〈v, h∗T∗〉 = 〈v, (Xt
T∗XT∗)−1Xt

T∗XT∗h
∗
T∗〉

= 〈(XT∗XT∗)−1v,Xt
T∗XT∗h

∗
T∗〉

= 〈(Xt
T∗XT∗)−1v,Xt

T∗Xh
∗〉︸ ︷︷ ︸

A1

−〈(Xt
T∗XT∗)−1v,Xt

T∗XT∗ch
∗
T∗c〉︸ ︷︷ ︸

A2

.

Let us begin by studying A2. We have that

A2 ≥ −‖Xt
T∗cXT∗(Xt

T∗XT∗)−1v‖∞‖hT∗c‖1
≥ −‖Xt

T∗cXT∗(Xt
T∗XT∗)−1Xt

T∗z‖∞‖hT∗c‖1
−λ ‖Xt

T∗cXT∗(Xt
T∗XT∗)−1sign (β∗T∗) ‖∞‖h∗T∗c‖1

≥ −
(
σ
√

1 + 1.1 · r (1.1 + 0.11 · r) + 1
2 λ

)
‖h∗T∗c‖1

by (3.-15). Thus

〈v, h∗T∗〉 ≤ A1 +
(
σ
√

1 + 1.1 · r (1.1 + 0.11 · r) + 1
2 λ

)
‖hT∗c‖1

and since, by (2.-8), (
σ
√

1 + 1.1 · r (1.1 + 0.11 · r) + 1
2 λ

)
≤ λ,

we deduce that
1
2‖Xh‖

2
2 ≤ A1 + 1

2‖Xr‖
2
2,

Let us now bound A1 from above. We have that

A1 ≤ ‖Xt
T∗Xh

∗‖∞︸ ︷︷ ︸
B1

‖(Xt
T∗XT∗)−1v‖1︸ ︷︷ ︸

B2

Firstly,

B1 ≤ ‖Xt
T∗(Xβ∗ − y)‖∞ + ‖Xt

T∗(Xβ̂ − y)‖∞
≤ ‖Xt

T∗(Xr − z)‖∞ + ‖Xt
T∗(y −Xβ̂)‖∞

≤ 1
2λ+ ‖Xt

T∗Xr‖∞ + λ
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where we used (3.-15), and the optimality condition for the LASSO estimator. Secondly,

B2 ≤
√
s∗‖(Xt

T∗XT∗)−1v‖2
≤
√
s∗‖(Xt

T∗XT∗)−1‖‖v‖2
≤ s∗‖(Xt

T∗XT∗)−1‖‖v‖∞.

Moreover, (3.-16) gives ‖(Xt
T∗XT∗)−1‖ ≤ 1.1 · r (1.1 + 0.11 · r) and

‖v‖∞ ≤ ‖Xt
T∗z‖∞ + λ ≤ 3

2 λ

Thus, we obtain that

A1 ≤ s∗1.1 · r (1.1 + 0.11 · r) 3
2 λ

(
3
2 λ+ ‖Xt

T∗Xr‖∞
)

and thus,

1
2‖Xh‖

2
2 ≤ s∗1.1 · r (1.1 + 0.11 · r) 3

2 λ

(
3
2 λ+ ‖Xt

T∗Xr‖∞
)

+ 1
2‖Xr‖

2
2.

Since ‖Xt
T∗Xr‖∞ ≤ ‖Xt

T∗Xr‖2 and since ‖Xt
T∗Xr‖2 ≤

√
1 + 1.1 · r (1.1 + 0.11 · r)‖Xr‖2,

we obtain

1
2‖Xh‖

2
2 ≤ s∗1.1 · r (1.1 + 0.11 · r) 3

2 λ

(
3
2 λ+

√
1 + 1.1 · r (1.1 + 0.11 · r)‖Xr‖2

)
+ 1

2‖Xr‖
2
2.

Moreover, Proposition 3.2 yields

1
2‖Xh‖

2
2 ≤ s∗1.1 · r (1.1 + 0.11 · r) 3

2 λ

(
3
2 λ+

√
1 + 1.1 · r (1.1 + 0.11 · r) δ‖CTβT ‖2

)
+ 1

2δ
2‖Xβ‖22

which completes the proof.

4 Technical lemmæ

Proof of Lemma 1.1

We have that

‖Ckj‖2 − ‖Ej‖2 ≤ ‖Ckj + Ej‖2 ≤ ‖Ckj‖2 + ‖Ej‖2.

Moreover, since ‖Ej‖22/s2 follows the χ2
n-distribution, the scalar Chernov bound gives

P
(∣∣∣∣‖Ej‖2s

−
√
n

∣∣∣∣ ≥ u) ≤ C exp
(
−cu2) (4.-68)

for some constants c and C. Let Wj denote the following variable.

Wj = 1
‖Ckj + Ej‖2

− 1,
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and let Eα denote the event

Eα = ∩j∈T

{
−

s
(√

n+
√

α
c log(p) + 1

c log(s)
)

1 + s
(√

n+
√

α
c log(p) + 1

c log(s)
) ≤ 1

‖Ckj + Ej‖2
− 1

≤
s
(√

n+
√

α
c log(p) + 1

c log(s)
)

1− s
(√

n+
√

α
c log(p) + 1

c log(s)
)}.

Taking u =
√

α
c log(p) + 1

c log(s), we obtain that

P (Eα) ≥ 1− C

pα
.

On the other hand, we can write ‖A‖2 as

‖A‖2 =
∥∥∥∑
j∈T

Aj

∥∥∥,
where Aj is the matrix

Aj = Wj

[
0 Ctkjβj

Ckjβj 0

]
Thus, by the triangular inequality, we have

‖A‖2 ≤
∥∥∥∑
j∈T

Aj − E [Aj | Eα]
∥∥∥+

∥∥∥∑
j∈T

E [Aj | Eα]
∥∥∥, (4.-73)

and we may apply the Matrix Hoeffding inequality recalled in Appendix 5. We have that

‖Aj‖ = |Wj ||βj |

which implies that, on Eα, we have

‖Aj − E [Aj | Eα] ‖ ≤ 2
s
(√

n+
√

α
c log(p) + 1

c log(s)
)

1− s
(√

n+
√

α
c log(p) + 1

c log(s)
) |βj |,

which, by Assumption 2.7, gives that

‖Aj − E [Aj | Eα] ‖ ≤ 4s
(
√
n+

√
α

c
log(p) + 1

c
log(s)

)
|βj |.

The Matrix Hoeffding inequality, first applied to the sum and then to its opposite, yields

P

‖∑
j∈T

Aj − E [Aj | Eα] ‖2 ≥ u | Eα


≤ 2(n+ 1) · exp

− u2

8 · 16 s2
(√

n+
√

α
c log(p) + 1

c log(s)
)2
‖βT ‖22

 .(4.-76)
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On the other hand, we have that∥∥∥∑
j∈T

E [Aj | Eα]
∥∥∥ =

∥∥∥∑
j∈T

E [Wj | Eα]
[

0 Ctkjβj
Ckjβj 0

] ∥∥∥.
Notice that, since ‖Ckj‖2 = 1, then, ‖Ckj + Ej‖22/s2 has a noncentral-χ2 distribution with
non-centrality parameter equal to 1/s2, for all j ∈ T . Thus, we deduce that all the variables
‖Ckj + Ej‖22, j ∈ T , have the same distribution and in particular, the same conditional
expectation given Eα. Therefore,∥∥∥∑

j∈T
E [Aj | Eα]

∥∥∥ = |E [W1 | Eα]|
∥∥∥∑
j∈T

[
0 Ctkjβj

Ckjβj 0

] ∥∥∥
= |E [W1 | Eα]| ‖CKT βT ‖2.

But since

|E [W1 | Eα]| ≤ 4s
(
√
n+

√
α

c
log(p) + 1

c
log(s)

)
,

we obtain ∥∥∥∑
j∈T

E [Aj | Eα]
∥∥∥ = 4s

(
√
n+

√
α

c
log(p) + 1

c
log(s)

)
‖CKT βT ‖2.

Combining this latter inequality with (4.-76), (4.-73) becomes

P

(
‖A‖2 ≥ 4s

(
√
n+

√
α

c
log(p) + 1

c
log(s)

)
‖CKT βT ‖2 + u | Eα

)

≤ 2(n+ 1) · exp

− u2

8 · 16 s2
(√

n+
√

α
c log(p) + 1

c log(s)
)2
‖βT ‖22

 .

Since, for any event A,

P (A) ≤ P (A | Eα) + P (Ecα) ,

we obtain that

P

(
‖A‖2 ≥ 4s

(
√
n+

√
α

c
log(p) + 1

c
log(s)

)
‖CKT βT ‖2 + u

)

≤ 2(n+ 1) · exp

− u2

8 · 16 s2
(√

n+
√

α
c log(p) + 1

c log(s)
)2
‖βT ‖22

+ C

pα
.

Let us now choose u such that

2(n+ 1) · exp

− u2

8 · 16 s2
(√

n+
√

α
c log(p) + 1

c log(s)
)2
‖βT ‖22

 = 1
pα
,
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i.e.

u = 8
√

2 s

(
√
n+

√
α

c
log(p) + 1

c
log(s)

)
‖βT ‖2

√
α log(p) + log(2n+ 2)).

Therefore, we obtain that

P

(
‖A‖2 ≥ 4s

(
√
n+

√
α

c
log(p) + 1

c
log(s)

)(
‖CKT βT ‖2

+8
√

2
√
α log(p) + log(2n+ 2)‖βT ‖2

))

≤ C + 1
pα

. (4.-89)

Recall that we assumed the βj associated to the same cluster to have the same sign. Thus,
we obtain that

‖βT ‖1 = ‖β∗T∗‖1 ≤
√
s∗‖β∗T∗‖2,

and using the version of the Invertibility Condition for C (3.-17), we get

‖βT ‖1 =
√
s∗ρC ‖CK∗

T
β∗T∗‖2,

and thus,

‖βT ‖2 =
√
s∗ρC ‖CK∗

T
β∗T∗‖2

and, using the definition of βT∗ ,

‖βT ‖2 =
√
s∗ρC ‖CKT βT ‖2. (4.-91)

Thus, (4.-87) gives

P

(
‖A‖2 ≥ 4s

(
√
n+

√
α

c
log(p) + 1

c
log(s)

)(
1 + 8

√
2
√
α log(p) + log(2n+ 2)

√
s∗ρC

)
‖CKT βT ‖2

)

≤ C + 1
pα

. (4.-91)

Proof of Lemma 3.4

Recall that

‖B‖2 =
∥∥∥∑
j∈T

βj
‖Ckj + Ej‖2

Ej

∥∥∥
2
.

Will be use Talagrand’s concentration inequality and Dudley’s entropy integral bound to
study ‖B‖2. We start with some preliminary results.
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Preliminaries

Let us define the following event:

Fα = Eα ∩
{∥∥EtT∥∥ ≤ s

(√
n+
√
s+

√
2α log (p)

)}
.

Since EtT is i.i.d. with Gaussian entrees N (0, s), Theorem 5.5 in Appendix 5 gives

P
(∥∥EtT∥∥ ≥ s

(√
n+
√
s+

√
2α log (p)

))
≤ 2

pα
.

Thus, the union bound gives that P (Fα) ≥ 3/pα. Let us now turn to the task of bounding
‖B‖2.

Concentration of ‖B‖2 using Talagrand’s inequality

Notice that on Fα, we have∥∥∥∥∥∥
∑
j∈T

βj
‖Ckj + Ej‖2

Ej

∥∥∥∥∥∥
2

≤ max
b

∥∥∥∥∥∥
∑
j∈T

βj
b
Ej

∥∥∥∥∥∥
2

,

where the maximum is over all

b ∈

[
1− s

(
√
n+

√
α

c
log(p) + 1

c
log(s)

)
, 1 + s

(
√
n+

√
α

c
log(p) + 1

c
log(s)

)]
.

Thus, on Fα,

‖B‖2 ≤ max
b,‖w‖2=1

〈w,
∑
j∈T

βj
b
Ei,j〉,

the main advantage of this former inequality being that of involving the supremum of a
simple Gaussian process. Now, we have

P

‖B‖2 − E

 max
b,‖w‖2=1

〈w,
∑
j∈T

βj
b
Ej〉 | Fα

 ≥ u | Fα


≤ P

 max
b,‖w‖2=1

〈w,
∑
j∈T

βj
b
Ej〉 − E

 max
b,‖w‖2=1

〈w,
∑
j∈T

βj
b
Ej〉 | Fα

 ≥ u | Fα
 .

Let

Mb,w = 〈w,
∑
j∈T

βj
b
Ej〉.

In order to apply Talagrand’s concentration inequality, we have to bound the Mb,w on Eα,
and its conditional variance given Fα. First, by the Cauchy-Schwartz inequality, we have

Mb,w ≤ 1
b
‖βT ‖2

√∑
j∈T

(wtEj)2,



266
K. MIXTURE MODEL FOR DESIGNS IN HIGH DIMENSIONAL REGRESSION AND THE

LASSO

and thus,

Mb,w ≤ 1
b
‖βT ‖2‖EtTw‖2

≤ 1
b
‖βT ‖2‖EtT ‖‖w‖2.

Thus, on Fα, using the fact that ‖w‖2 = 1, we have

Mb,w ≤ µmax ‖βT ‖2,

where µmax is given by (2.-7). Let us now turn to the conditional variance of Mb,w given
Fα. We have

V ar (Mb,w | Fα) =
∑
j∈T

βj
b
V ar

(
Etjw | Fα

)
,

and, using the Cauchy-Schwartz inequality again, we obtain

V ar (Mb,w | Fα) = ‖βT ‖2
b

√∑
j∈T

V ar2 (Etjw | Fα).
On the other hand, notice that, conditionally on Fα, Etjw is centered. This can easily be
seen from the invariance of both the Gaussian law and the event Fα under the action of
orthogonal transformations. Therefore, we have

V ar
(
Etjw

)
≥ V ar

(
Etjw | Fα

)(
1− 3

pα

)
.

Moreover, using the fact that ‖w‖2 = 1,

V ar
(
Etjw

)
= s2.

Therefore,

V ar (Mb,w | Fα) =
√
s s2

b
‖βT ‖2.

Using the lower bound on b, we finally obtain

V ar (Mb,w | Fα) ≤ σ2
max ‖βT ‖2,

where σ2
max is defined by (2.-6). With the bound on Mb,w and its conditional variance

in hand, we are ready to use Talagrand’s concentration inequality recalled in Appendix 5.
Thus, Theorem 5.6 gives

P
(

max
b,‖w‖2=1

Mb,w

µmax ‖βT ‖2
≥ E

[
max

b,‖w‖2=1

Mb,w

µmax ‖βT ‖2
| Fα

]
+
√

2uγ + u

3 | Fα
)

(4.-110)
≤ exp (−u) , (4.-109)

with

γ = n
σ2

max
µ2

max ‖βT ‖22
+ E

[
max

b,‖w‖2=1

Mb,w

µmax ‖βT ‖2
| Fα

]
.
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Control of the conditional expectation of maxb,‖w‖2=1
Mb,w

µmax

Notice that

E

 max
b,‖w‖2=1

〈w,
∑
j∈T

βj
b
Ej〉

 ≥ E

 max
b,‖w‖2=1

〈w,
∑
j∈T

βj
b
Ej〉 | Fα

(1− 1
pα

)
.

Therefore, our task boils down to controling the supremum of a centered gaussian process.
For this purpose, let w̃ = w/b, which implies that

E

 max
b,‖w‖2=1

〈w,
∑
j∈T

βj
b
Ej〉

 = E

max
w̃∈T
〈w̃,

∑
j∈T

βjEj〉


where T denotes the spherical shell between the sphere centered at zero with radius rmax =
1 + s

(√
n+

√
α
c log(p) + 1

c log(s)
)

and the sphere centered at zero with radius rmin =
2− rmax. This can of course be performed using Dudley’s entropy bound recalled in Section
5. In the terminology of Section 5, the semi-metric d given by

d2(w̃, w̃′)) = E


〈w̃ − w̃′,∑

j∈T
βjEj〉

2
 .

The variables βj (w−w′)tEj , j ∈ T , are centered and have variance equal to s2β2
j ‖w−w′‖22.

Thus,

d(w,w′) = s ‖βT ‖2 ‖w − w′‖2.

Let us now consider the entropy. An upper bound on the covering number of T with respect
to the euclidean distance is given by

H(ε, T ) ≤ n log
(

3 s rmax ‖βT ‖2
ε

)
.

Therefore, by Theorem 5.7, we obtain that

E

max
w̃∈T

〈w̃,
∑
j∈T

βjEj〉

 ≤ 12
√
n

∫ σG

0

√
log
(

3 s rmax‖βT ‖2
ε

)
dε,

with

σG = s rmax ‖βT ‖2.

Using the change of variable ε′ = ε
s rmax ‖βT ‖2 , we obtain

E

max
w̃∈T

〈w̃,
∑
j∈T

βjEj〉

 ≤ 12 C∫ s rmax ‖βT ‖2
√
n, (4.-116)

where we recall that

C∫ =
∫ 3

0

√
log
(

3
ε′

)
dε′.
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Conclusion of the proof

To sum up, combining (4.-109) and (4.-116)

P
(
‖B‖2 ≥ 12 C∫ s

√
n rmax ‖βT ‖2 + µmax ‖βT ‖2

(√
2uγ + u

3

)
| Fα

)
≤ exp (−u) ,(4.-116)

with

γ ≤ n σ2
max

µ2
max ‖βT ‖22

+ 12
C∫
µmax

s
√
n rmax.

Thus,

P

(
‖B‖2 ≥

(
12 C∫ s

√
n rmax +

√
2nσ2

max
u

‖βT ‖2
+ 12 C∫ µmax s

√
n rmax + µmax

u

3

)
‖βT ‖2 | Fα

)

≤ exp (−u) . (4.-118)

Taking u = α log(p) and using Assumption 2.8 gives

P

(
‖B‖2 ≥

(
12 C∫ s

√
n rmax + α log(p) µmax

)
‖βT ‖2 | Fα

)
≤ 1
pα
.

Using the same trick as before, we have

P

(
‖B‖2 ≥

(
12 C∫ s

√
n rmax + α log(p) µmax

)
‖βT ‖2

)
≤ 2
pα
.

Finally, using (4.-91), we have

P

(
‖B‖2 ≥

(
12 C∫ s

√
n rmax + α log(p) µmax

) √
s∗ρC‖CKT βT ‖2

)
≤ 2
pα
.

Proof of Lemma 3.5
We will use the same arguments based on the Matrix Hoeffding inequality as in 4. For this
purpose, define

W ∗j∗ = 1
‖Ckj∗ + Ej∗‖2

− 1

and wrFite

‖A∗‖2 =

∥∥∥∥∥∥
∑
j∗∈T∗

W ∗j∗β
∗
j∗A
∗
j∗

∥∥∥∥∥∥ .
We will need the following lemma.

Lemma 4.1 Let

E∗α = ∩j∗∈T∗

‖Ej∗‖2 ≤ s

√
n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

 .

Then, P (E∗α) ≥ 1− p−α.

extbfProof. See Section 4. 2
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Control of the deviation of ‖A∗‖2 by the Matrix Hoeffding Inequality

We can write ‖A∗‖2 as

‖A∗‖2 =
∥∥∥ ∑
j∗∈T∗

A∗j∗
∥∥∥,

where A∗j∗ is the matrix

A∗j∗ = Wj∗

[
0 Ctkj∗β

∗
j∗

Ckj∗β
∗
j∗ 0

]
Thus, by the triangular inequality, we have

‖A∗‖2 ≤
∥∥∥ ∑
j∗∈T∗

A∗j∗ − E
[
A∗j∗ | E∗α

] ∥∥∥+
∥∥∥ ∑
j∗∈T∗

E
[
A∗j∗ | E∗α

] ∥∥∥, (4.-125)

and we may apply the Matrix Hoeffding inequality again. We have that

‖A∗j∗‖ = |Wj∗ ||β∗j∗ |

and thus, on E∗α,

‖A∗j∗ − E
[
A∗j∗ | E∗α

]
‖ ≤ 2

s

√
n
(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

1− s

√
n
(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

|β∗j∗ |.

Under Assumption 2.7, we have

s

√
n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

≤ 0.1,

this former inequality becomes

‖A∗j∗ − E
[
A∗j∗ | E∗α

]
‖ ≤ 3s

√
n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

|βj |.

Applying the Matrix Hoeffding inequality, we obtain

P

‖ ∑
j∗∈T∗

A∗j∗ − E
[
A∗j∗ | E∗α

]
‖2 ≥ u | E∗α



≤ 2(n+ 1) · exp

− u2

8 · 9 s2
(
n
(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

)
‖β∗T∗‖22

 .(4.-129)

Let us now turn to the expectation term, i.e. the last term in (4.-125). We have∥∥∥ ∑
j∗∈T∗

E
[
A∗j∗ | E∗α

] ∥∥∥ =
∥∥∥ ∑
j∗∈T∗

E [Wj∗ | E∗α]
[

0 Ctkj∗βj∗

Ckj∗βj∗ 0

] ∥∥∥
≤

∥∥∥ ∑
j∗∈T∗

3s

√
n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n
[

0 Ctkj∗βj∗

Ckj∗βj∗ 0

] ∥∥∥.
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This last inequality, when combined with (4.-129) and (4.-125), implies

P

‖A∗‖2 ≥ 3s

√
n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

‖CKT∗βT∗‖2 + u | E∗α



≤ 2(n+ 1) · exp

− u2

8 · 9 s2
(
n
(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

)
‖β∗T∗‖22

 ,

from which we deduce, by the same trick as in Section 4, that

P

‖A∗‖2 ≥ 3s

√
n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

‖CKT∗βT∗‖2 + u



≤ 2(n+ 1) · exp

− u2

8 · 9 s2
(
n
(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

)
‖β∗T∗‖22

+ 1
pα
.

Let us now choose u such that

2(n+ 1) · exp

− u2

8 · 9 s2
(
n
(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

)
‖β∗T∗‖22

 ,

i.e.

u = 8
√

2 s

√
n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

‖β∗T∗‖2
√
α log(p) + log(2n+ 2)).

Therefore, we obtain that

P

(
‖A∗‖2 ≥ 3s

√
n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

‖CKT∗βT∗‖2

+8
√

2 s

√
n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

‖β∗T∗‖2
√
α log(p) + log(2n+ 2))

)

≤ 2
pα
.

By the (3.-17), and the definition of β∗, we have

‖β∗T∗‖2 ≤ √
ρC ‖CKT∗βT∗‖2,

= √
ρC ‖CKT βT ‖2
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and therefore, we obtain

P

(
‖A∗‖2 ≥ 3s

√
n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

(
1 + 2

√
2 √ρC

√
α log(p) + log(2n+ 2))

)
‖CKT βT ‖2

)

≤ 2
pα
.

Proof of Lemma 4.1

Using the independence of the Ej , j ∈ Jkj∗ , we have

P (‖Ej∗‖2 ≥ u) = P

(
min
j∈Jkj∗

‖Ej‖2 ≥ u

)
=

∏
j∈Jkj∗

P
(
‖Ej‖22 ≥ u2) ,

≤ P
(
‖Ej‖22 ≥ u2)minj∗∈T∗ |Jkj∗ | .

We also have

P
(
‖Ej‖22 ≥ u2) = 1− P

(
‖Ej‖22 ≤ u2) .

On the other hand, as is well known, we have

P
(
‖Ej‖22
s2 ≤ u2

)
≤ Cχ

(
u2

n

)n
for some positive constant Cχ. Thus, the union bound gives

P
(

max
j∗∈T∗

‖Ej∗‖2 ≥ u
)
≤ s∗

(
1− Cχ

(
u2

n s2

)n)minj∗∈T∗ |Jkj∗ |

.

Let us tune u so that

s∗
(

1− Cχ
(
u2

n s2

)n)
≤ 1

pα

i.e.

u2 ≥ n s2

C
1
n
χ

(
1−

(
s∗p−α

) 1
minj∗∈T∗ |Jkj∗

|
) 1
n

and since minj∗∈T∗ |Jkj∗ | ≥ ϑ∗ log(p)ν ,

u2 ≥ n s2

C
1
n
χ

(
1− exp

(
− α

ϑ∗ log(p)ν−1 −
log(s∗)
ϑ∗ log(p)ν

)) 1
n

.

On (0, 1), we have

exp(−z) ≤ 1− (1− e−1)z
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and thus,

u2 ≥ n s2
(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

,

from which the desired estimate follows.

Proof of Lemma 3.6
Concentration of ‖B∗‖2
We start with the concentration of

‖B∗‖2 =
∥∥∥ ∑
j∗∈T∗

β∗j∗

‖Ckj∗ + Ej∗‖2
Ej∗
∥∥∥

2
.

Consider the matrix EtT∗ , whose columns are independent. We would like to bound its
operator norm.

Lemma 4.2 We have

P
(∥∥EtT∗∥∥ ≥ sKn,s∗ | E∗α

)
≤ 2

pα

where we recall that Kn,s∗ is defined by (2.-6) above.

extbfProof. See Section 4. 2 Define

F∗α = E∗α ∩
{∥∥EtT∗∥∥ ≤ sKn,s∗

}
.

Thus, the union bound gives that P (F∗α) ≥ 3/pα. Let us now turn to the task of bounding
‖B∗‖2. Notice that on F∗α, we have∥∥∥∥∥∥

∑
j∗∈T∗

β∗j∗

‖Ckj∗ + Ej∗‖2
Ej∗

∥∥∥∥∥∥
2

≤ max
b

∥∥∥∥∥∥
∑
j∗∈T∗

β∗j∗

b
Ej∗

∥∥∥∥∥∥
2

,

where the maximum is over all

b ∈

1− s

√
n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

, 1 + s

√
n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

 .
Thus, on F∗α, ∥∥∥∥∥∥

∑
j∗∈T∗

β∗j∗

‖Ckj∗ + Ej∗‖2
Ej∗

∥∥∥∥∥∥
2

≤ max
b,‖w‖2=1

〈w,
∑
j∗∈T∗

β∗j∗

b
Ei,j∗〉.

Now, we have

P

‖B∗‖2 − E

 max
b,‖w‖2=1

〈w,
∑
j∗∈T∗

β∗j∗

b
Ej∗〉 | F∗α

 ≥ u | F∗α


≤ P

 max
b,‖w‖2=1

〈w,
∑
j∗∈T∗

β∗j∗

b
Ej∗〉 − E

 max
b,‖w‖2=1

〈w,
∑
j∗∈T∗

β∗j∗

b
Ej∗〉 | F∗α

 ≥ u | F∗α
 .
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Let

M∗b,w = 〈w,
∑
j∗∈T∗

β∗j∗

b
Ej∗〉.

We again have to bound M∗b,w on F∗α, and its conditional variance given F∗α. The Cauchy-
Schwartz inequality gives

M∗b,w ≤ 1
b
‖β∗T∗‖2

√ ∑
j∗∈T∗

(wtEj∗)2,

and thus,

M∗b,w ≤ 1
b
‖β∗T∗‖2‖EtT∗w‖2

≤ 1
b
‖β∗T∗‖2‖EtT∗‖‖w‖2.

Thus, on F∗α, using the fact that ‖w‖2 = 1, we have

M∗b,w ≤ µ∗max‖β∗T∗‖2,

where

µ∗max = sKn,s∗ ,

and Kn,s∗ is defined by (2.-6). Let us now turn to the conditional variance of M∗b,w given
F∗α.

Lemma 4.3 We have

V ar
(
M∗b,w | F∗α

)
≤ σ∗max

2

where σ∗max
2 is defined by (2.-6).

extbfProof. See Section 4. 2 Using Talagrand’s inequality (Theorem 5.6) again, we obtain
that

P
(

max
b,‖w‖2=1

M∗b,w
µ∗max‖β∗T∗‖2

≥ E
[

max
b,‖w‖2=1

M∗b,w
µ∗max‖β∗T∗‖2

| F∗α
]

+
√

2uγ∗ + u

3 | F
∗
α

)
(4.-170)

≤ exp (−u) ,

with

γ∗ = n
σ∗max

2

µ∗max
2 ‖β∗T∗‖22

+ E
[

max
b,‖w‖2=1

M∗b,w
µ∗max ‖β∗T∗‖2

| F∗α
]
.

Control of the conditional expectation of maxb,‖w‖2=1
M∗b,w

µ∗max ‖β∗T∗‖2

As in Section 4, we will use Dudley’s entropy integral bound to control the expectation, but
this time, the sub-Gaussian version of Section 5.9. Let us rewrite

E
[

max
b,‖w‖2=1

M∗b,w | F∗α
]

= E

max
w̃∈T ∗

〈w̃,
∑
j∗∈T∗

β∗j∗Ej∗〉 | F∗α

 .
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First, we have to prove the sub-Gaussianity ofM∗b,w. Notice that, due to rotational invariance
of the Gaussian measure, conditionally on F∗α, Etj∗w is centered and

P

〈w̃ − w̃′, ∑
j∗∈T∗

β∗j∗Ej∗〉 ≥ u | F∗α

 ≤ P

 ∑
j∗∈T∗

β∗j∗ (w̃ − w̃′)tEj∗ ≥ u | F∗α


= P

 ∑
j∗∈T∗

β∗j∗(Ow̃−w̃′D(ζ)Ej∗)t(w̃ − w̃′) ≥ u | F∗α

 .

where ζ is a rademacher ±1 random vector, Ow̃−w̃′ is the orthogonal transform which sends
w̃ − w̃′ to the vector ‖w̃ − w̃′‖2/

√
ne, where e is the vector of all ones. Thus,

P

〈w̃ − w̃′, ∑
j∗∈T∗

β∗j∗Ej∗〉 ≥ u | F∗α

 = P

‖w̃ − w̃′‖2√
n

∑
j∗∈T∗

β∗j∗

n∑
i=1

ζiEi,j∗ ≥ u | F∗α

 .

We now study the sub-Gaussianity of
∑n
i=1 ζiEi,j∗ . Using the Laplace transform version of

Hoeffding’s inequality, we have

E

[
exp

(
η
‖w̃ − w̃′‖2√

n

n∑
i=1

ζi β
∗
j∗ Ei,j∗

)
| Ej∗ ,F∗α

]

≤ exp
(
η2 ‖w̃ − w̃′‖22

n
β∗2j∗ s2

(
n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

))
.

Therefore, using independence of the Ej∗ ’s, we have that

E

exp

η ‖w̃ − w̃′‖2√
n

∑
j∗∈T ∗

β∗j∗

n∑
i=1

ζiEi,j∗

 | F∗α


= E

E
exp

η ‖w̃ − w̃′‖2√
n

∑
j∗∈T ∗

β∗j∗

n∑
i=1

ζiEi,j∗

 | Ej∗ ,F∗α
 | F∗α


= E

 ∏
j∗∈T∗

E

[
exp

(
η ‖w̃ − w̃′‖2√

n
β∗j∗

n∑
i=1

ζiEi,j∗

)
| Ej∗ ,F∗α

]
| F∗α


≤ exp

(
η2 ‖w̃ − w̃′‖22‖β∗T∗‖22 s2

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

)
.

Now Chernov’s bound gives

P

‖w̃ − w̃′‖2√
n

∑
j∗∈T ∗

β∗j∗

n∑
i=1

ζiEi,j∗ ≥ u | F∗α


≤ e−ηu E

exp

η ‖w̃ − w̃′‖2√
n

∑
j∗∈T ∗

β∗j∗

n∑
i=1

ζiEi,j∗

 | F∗α


≤ exp
(
η2 ‖w̃ − w̃′‖22‖β∗T∗‖22 s2

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

− ηu

)
.
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Optimizing in η gives

P

‖w̃ − w̃′‖2√
n

∑
j∗∈T ∗

β∗j∗

n∑
i=1

ζiEi,j∗ ≥ u | F∗α



≤ exp

−1
4

u2

‖w̃ − w̃′‖22 ‖β∗T∗‖22 s2
((

α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

)
 .

Using the union bound and invariance of the bound with respect to sign change, we thus
obtain

P

∣∣∣∣∣∣〈w̃ − w̃′,
∑
j∗∈T∗

β∗j∗Ej∗〉

∣∣∣∣∣∣ ≥ u | F∗α


≤ 2 exp

−1
4

u2

‖w̃ − w̃′‖22 ‖β∗T∗‖22 s2
(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

 .

Thus, the process is sub-Gaussian with the semi-metric d, given by

d2(w̃, w̃′) = 4‖w̃ − w̃′‖22 ‖β∗T∗‖22 s2
(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

.

Let us now apply Theorem 5.9. The diameter of T ∗ is bounded from above by

r∗max = 1

1− s

√
n
(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

.

An upper bound on the covering number of T ∗ with respect to the semi-metric d is given
by

H(ε, T ∗) ≤ n log

3 · 2r∗max ‖β∗T∗‖2 s

√(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

ε

 .

Therefore, by Theorem 5.7, we obtain that

E

max
w̃∈T ∗

〈w̃,
∑
j∈T

βjEj〉 | F∗α

 ≤ 12
√
n

∫ σG

0

√√√√√√√log

6 r∗max ‖β∗T∗‖2 s

√(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

ε

dε,
with

σG = r∗max.

Using the change of variable

ε′ = ε

2 r∗max ‖β∗T∗‖2 s

√(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

,
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we obtain

E

max
w̃∈T

〈w̃,
∑
j∈T

βjEj〉 | F∗α


≤ 24 r∗max ‖β∗T∗‖2 s

√(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

C∗∫ ,(4.-196)

where

C∗∫ =
∫ 3

0

√
log
(

3
ε′

)
dε′.

Last step of the proof

Combining (4.-170) and (4.-196), we obtain

P

(
‖B∗‖ ≥ 24 r∗max ‖β∗T∗‖2 s

√(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

C∗∫
+µ∗max ‖β∗T∗‖2

(√
2uγ∗ + u

3

)
| F∗α

)
≤ exp (−u) ,(4.-197)

with

γ∗ = n
σ∗max

2

µ∗max
2 ‖β∗T∗‖22

+ E
[

max
b,‖w‖2=1

M∗b,w
µ∗max ‖β∗T∗‖2

| F∗α
]
.

Therefore, taking u = α log(p) we have

P

(
‖B∗‖ ≥ 24 r∗max ‖β∗T∗‖2 s

√(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

C∗∫
+
(√

2α log(p) (L∗) + α log(p)
3 µ∗max

)
‖β∗T∗‖2 | F∗α

)
≤ p−α,

with

L∗ = n
σ∗max

2

‖β∗T∗‖22
+ 24 µ∗maxr

∗
max s

√(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

C∗∫ .
Using Assumption 2.9, we obtain

P

(
‖B∗‖ ≥

(
24 r∗max s

√(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

C∗∫
+µ∗max α log(p)

)
‖β∗T∗‖2 | F∗α

)
≤ p−α.
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Using the same trick as before, we obtain

P

(
‖B∗‖ ≥

(
24 r∗max s

√(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

C∗∫
+µ∗max α log(p)

)
‖β∗T∗‖2

)
≤ 2
pα
.

Notice further that

‖β∗T∗‖2 ≤ (1 + ρC)‖CKT∗β
∗
T∗‖2

= (1 + ρC)‖CTβT ‖2,

by definition of β∗. Thus, we obtain that

P

(
‖B∗‖ ≥

(
24 r∗max s

√(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

C∗∫
+µ∗max α log(p)

)
√
ρC ‖CTβT ‖2

)
≤ 2
pα
.

as desired.

Proof of Lemma 4.2

Let us first notice that since ‖ET∗‖ = ‖EtT∗‖, we can write

‖EtT∗‖ =
√
‖ET∗EtT∗‖

=

√√√√√
∥∥∥∥∥∥
∑
j∗∈T∗

Ej∗Etj∗

∥∥∥∥∥∥
This latter expression is well suited for our problem, since it is the norm of the sum of
independent positive semi-definite random matrices, for which the Matrix Chernov inequality
of Section 5 applies. In order to apply this inequality, we need a bound on the norm of each
summand. By Lemma 4.1, on E∗, we have∥∥Ej∗Etj∗∥∥ = ‖Ej∗‖22

≤ s2 n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

.

We also need a bound on the norm of the expectation. We have∥∥∥∥∥∥E
 ∑
j∗∈T∗

Ej∗E
t
j∗ | F∗α

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
j∗∈T∗

E
[
Ej∗E

t
j∗ | F∗α

]∥∥∥∥∥∥ .
Due to rotational invariance, we have that the law of Ej∗ is the same as the law of D(ζ)Ej∗ ,
where ζ1, . . . , ζn are i.i.d. Rademacher ±1 random variables independent from Ej∗ . Thus,

E [ζiEi,j∗ζi′Ei′,j∗ | E∗α] = E [E [ζiEi,j∗ζi′Ei′,j∗ | Ei,j∗ , Ei′,j∗ | E∗α]]

= 0. (4.-215)
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On the other hand, we have the following result.

Lemma 4.4 We have

E
[
E2
i,j∗ | E∗α

]
≤ s2

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

.

extbfProof. Due to rotational invariance of the law of Ej∗ and the event E∗α, we have

E
[
E2

1,j∗ | E∗α
]

= · · · = E
[
E2
n,j∗ | E∗α

]
.

Therefore,

E
[
E2
i,j∗ | E∗α

]
≤ 1

n
E

[
n∑

i′=1
E2
i′,j∗ | E∗α

]

and by the definition of E∗α,

E
[
E2
i,j∗ | E∗α

]
= s2

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

.

2

Based on this lemma, and the fact that the matrix

E

 ∑
j∗∈T∗

Ej∗E
t
j∗ | F∗α

 ,
is diagonal by (4.-215), we obviously obtain that∥∥∥∥∥∥E

 ∑
j∗∈T∗

Ej∗E
t
j∗ | F∗α

∥∥∥∥∥∥ = s2
(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

.

With the bound on the norm of the expectation and on the variance in hand, we are now
ready to apply the Matrix Chernov inequality and obtain

P

∥∥∥∥∥∥
∑
j∗∈T∗

Ej∗E
t
j∗

∥∥∥∥∥∥ ≥ u | F∗α


≤ n

e s2
(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

u


u

s2 n

(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

.

Let us finally tune u so that the right hand side term is less than p−α, i.e.

log(n) + log

e s2
(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

u



≤ −α
s2 n

(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

u
log(p).
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Take

u = α s2 n

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

log(p). (4.-224)

Since, by assumption, p ≥ ee
2−log(α) , we have − log(log(p)) + log(e/α) ≤ −1. Moreover, the

value of u given by (4.-224) is less than or equal to s2 K2
n,s∗ with Kn,s∗ given by (2.-6). This

completes the proof.

Proof of Lemma 4.3

Independence of the Ej∗ , j∗ ∈ T ∗ allows to write

V ar
(
M∗b,w | F∗α

)
=

∑
j∗∈T∗

β∗j∗

b
V ar

(
Etj∗w | F∗α

)
,

and, using the Cauchy-Schwartz inequality again, we obtain

V ar
(
M∗b,w | F∗α

)
= ‖β∗T∗‖2

b

√ ∑
j∗∈T∗

V ar2 (Etj∗w | F∗α).
On the other hand, notice that, due to rotational invariance of the Gaussian measure,
conditionally on F∗α, Etj∗w is centered and

V ar
(
Etj∗w | F∗α

)
= E

[(
(OwD(ζ)Ej∗)tw

)2 | F∗α] ,
= E

[(
Etj∗D(ζ)Oww

)2 | F∗α] ,
where ζ is a rademacher ±1 random vector, Ow is the orthogonal transform which sends w
to the vector 1/

√
ne, where e is the vector of all ones. Thus,

V ar
(
Etj∗w | F∗α

)
= 1

n
E
[
E
[(
Etj∗D(ζ)e

)2 | E,F∗α] | F∗α] ,
Moreover,

E
[(
Etj∗D(ζ)e

)2 | E,F∗α] = E

( n∑
i=1

Ei,j∗ζi

)2

| E,F∗α


and expanding the square of the sum gives

E
[(
Etj∗D(ζ)e

)2 | E,F∗α] = ‖Ej∗‖22.

Using the bound on b, we finally obtain

V ar
(
M∗b,w | F∗α

)
≤ σ∗max

2,

where σ∗max
2 is given by (2.-6).



280
K. MIXTURE MODEL FOR DESIGNS IN HIGH DIMENSIONAL REGRESSION AND THE

LASSO

5 Norms of random matrices, ε-nets and concentration
inequalities

Norms and coverings
Proposition 5.1 ([22, Proposition 2.1]). For any positive integer d, there exists an ε-net
of the unit sphere of Rd of cardinality

2d
(

1 + 2
ε

)d−1
≤

(
3
ε

)d
.

The next proposition controls the approximation of the norm based on an ε-net.

Proposition 5.2 ([22, Proposition 2.2]). Let N be an ε-net of the unit sphere of Rd and
let N ′ be an ε′-net of the unit sphere of Rd′ . Then for any linear operator A : Rd 7→ Rd′ ,
we have

‖A‖ ≤ 1
(1− ε)(1− ε′) sup

v∈N
w∈N ′

|vtAw|.

The Matrix Hoeffding Inequality
A Non-commutative version of the famous Hoeffding inequality was proposed in [25]. We
recall this result for convenience.

Theorem 5.3 Consider a finite sequence (Uj)j∈T of independent random, self-adjoint ma-
trices with dimension d, and let (Uj)j∈T be a sequence of deterministic self-adjoint matrices.
Assume that each random matrix satisfies

E [Uj ] = 0 and U2
j � V 2

j a.s.

for all j ∈ T . Then, for all u ≥ 0,

P
(
λmax

(∑
j∈T

Uj

)
≥ t
)
≤ d · exp

− u2

8
∥∥∥∑j∈T V

2
j

∥∥∥
 .

The Matrix Chernov inequality
The following non-commutative version of Chernoff’s inequality was recently established in
[25].

Theorem 5.4 (Matrix Chernoff Inequality [25]) Let X1,. . . ,Xp be independent random pos-
itive semi-definite matrices taking values in Rd×d. Set Sp =

∑p
j=1Xj. Assume that for all

j ∈ {1, . . . , p} ‖Xj‖ ≤ B a.s. and

‖E Sp‖ ≤ µmax.

Then, for all r ≥ e µmax,

P (‖Sp‖ ≥ r) ≤ d
(e µmax

r

)r/B
.

(Set r = (1 + δ)µmax and use eδ ≤ e1+δ in Theorem 1.1 [25].)



5. NORMS OF RANDOM MATRICES, ε-NETS AND CONCENTRATION INEQUALITIES281

Gaussian i.i.d. matrices
The following result on random matrices with Gaussian i.i.d. entries can be found in [27,
Corollary 5.35].

Theorem 5.5 Let G be an n×m be a matrix whose entries are independent standard normal
random variables. Then for every u ≥ 0, with probability at least 1−2 exp

(
−u2/2

)
, one has

√
n−
√
m− u ≤ σmin(G) ≤ σmax(G) ≤

√
n+
√
m+ u.

Talagrand’s concentration inequality for empirical processes
The following theorem, which a version of Talagrand’s concentration inequality for empirical
processes, was proved in [4, Theorem 2.3].

Theorem 5.6 Let Xi be a sequence of i.i.d. variables taking values in a Polish space X ,
and let F be a countable family of functions from X to R and assume that all functions f
in F are measurable, square integrable and satisfy E [f ] = 0. If supf∈F ess sup f ≤ 1, then
we denote

Z = sup
f∈F

n∑
i=1

f(Xi).

Let σmax be a positive number such that σ2
max ≥ supf∈F V ar (f(X1)) almost surely, then,

for all u ≥ 0, we have

P
(
Z ≥ E [Z] +

√
2uγ + u

3

)
≤ exp (−u) ,

with γ = nσ2
max + E [Z].

Dudley’s entropy integral bound
Let (T , d) denote a semi-metric space and denote by H(δ, T ) the δ-entropy number of (T , d)
for all positive real number δ.

The Gaussian case

Let (Gt)t∈T be a centered gaussian process indexed by T and set d to be the covariance
pseudo-metric defined by

d(t, t′) =
√
E [(Gt −Gt′)2].

Then, we have the following important theorem of Dudley, which can be found in the present
form in [18].

Theorem 5.7 Assume that (T , d) is totally bounded. If
√
H(δ, T ) is integrable at zero,

then

E
[
sup
t∈T

Gt

]
≤ 12

∫ σG

0

√
H(δ, T ) dδ,

where

σ2
G = sup

t∈T
E
[
G2
t

]
.
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The sub-Gaussian case

We start with the definition of sub-Gaussian processes.

Definition 5.8 A centered process (St)t∈T is said to be sub-Gaussian if for all (t, t′) ∈ T 2,
and for all u > 0,

P (|Xt −Xt′ | ≥ u) ≤ 2 exp
(
− u2

d2(t, t′)

)
.

One easily checks that a Gaussian process is sub-Gaussian with the covariance semi-metric
in the former definition. Let (St)t∈T be a centered sub-Gaussian process. We then have the
following standard result.

Theorem 5.9 Assume that (T , d) is totally bounded. If
√
H(δ, T ) is integrable at zero,

then

E
[
sup
t∈T

St

]
= Cchain

∫ diam(T )

0

√
H(δ, T ) dδ

for some positive constant Cchain.

6 Verifying the Candes-Plan conditions

The goal of this section is to Proposition 3.1 which gives a version of Candès and Plan’s
conditions adapted to our Gaussian mixture model.

Important properties of C

The invertibily condition for (3.-17) is a direct consequence of [37]. An alternative approach,
based on the Matrix Chernov inequality is proposed in [13], with improved constants. We
have in particular

Theorem 6.1 [13, Theorem 1] Let r ∈ (0, 1), α ≥ 1. Let Assumptions 2.2 and 2.4 hold
with

Cspar ≥ r2

4(1 + α)e2 . (6.-245)

With K ⊂ {1, . . . ,K} chosen randomly from the uniform distribution among subsets with
cardinality s∗, the following bound holds:

P
(
‖CtKCK − Is‖ ≥ r

)
≤ 216

pα
. (6.-244)

Moreover, the following property will also be very useful.

Lemma 6.2 (Adapted from [13, Lemma 5.3]) If v2 ≥ e s∗ ‖C‖/Ko, we have

P
(

max
k∈Kc

∥∥CtKCk∥∥ ≥ v

1− r

)
≤ Ko

(
e
s∗ ‖C‖2

Ko v2

) v2
µ(C)2

.

Based on this lemma, we easily get the following bound.
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Lemma 6.3 Take Ccol ≥ e2(α+ 1) max{
√
Cspar, Cµ}/(1− r). Then, we have

P

(
max
k∈Kc

∥∥CtKCk∥∥ ≥ Ccol

(1− r)
√

log(p)

)
≤ 1

pα
.

extbfProof. Taking v = Ccol/
√

log(p), we obtain from Lemma 6.2

P

(
max
k∈Kc

∥∥CtKCk∥∥ ≥ Ccol

(1− r)
√

log(p)

)
≤ Ko

(
e
s∗ ‖C‖2 log(p)

Ko C2
col

)C2
col
C2
µ

log(p)

.

Using (2.4), this gives

P

(
max
k∈Kc

∥∥CtKCk∥∥ ≥ Ccol

(1− r)
√

log(p)

)
≤ Ko

(
e
Cspar
C2
col

)C2
col
C2
µ

log(p)
.

Since Ccol ≥ e2(α+ 1) max{
√
Cspar, Cµ}, we get

Ko

(
e
Cspar
C2
col

)C2
col
C2
µ

log(p)
≤ Ko

(
e

α+ 1

)(α+1) log(p)

and since, by Assumption 2.1, Ko ≤ p, we obtain that

P

(
max
k∈Kc

∥∥CtKCk∥∥ ≥ Ccol

(1− r)
√

log(p)

)
≤ 1

pα
.

2

Similar properties for XT ∗

Control of ‖Xt
T∗XT∗ − I‖

We have

σmin
(
Xt
T∗XT∗

)
= σmin

(
(CKT∗ + ET∗)tD2

∗ (CKT∗ + ET∗)
)

where (see Step 1 in the proof of Proposition 3.2) D∗ is a diagonal matrix whose diagonal
elements are indexed by T ∗ and are defined by

D∗,j∗,j∗ = 1∥∥Ckj∗ + Ej∗
∥∥

2
,

for j∗ ∈ T ∗. By the definition of E∗α, we have

σmin(D∗) ≥ 1

1 + s

√
n
(
α(1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

.

and

σmax(D∗) ≤ 1

1− s

√
n
(
α(1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

.
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By the triangular inequality,

σmin
(
Xt
T∗XT∗

)
≥ σmin

(
CtKD

2
∗CK

)
−
∥∥CtKD2

∗ET∗
∥∥− ∥∥EtT∗D2

∗ET∗
∥∥

≥ 1− r(
1 + s

√
n
(
α(1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

)2

− (1 + r) ‖ET∗‖+ ‖ET∗‖2(
1− s

√
n
(
α(1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

)2 .

and

σmax
(
Xt
T∗XT∗

)
≤

∥∥CtKD2
∗CK

∥∥+
∥∥CtKD2

∗ET∗
∥∥+

∥∥EtT∗D2
∗ET∗

∥∥
≤ (1 + r) + (1 + r) ‖ET∗‖+ ‖ET∗‖2(

1− s

√
n
(
α(1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

)2 .

Moreover, using Theorem 6.1 and Lemma 4.2, we obtain

P
(∥∥Xt

T∗XT∗ − I
∥∥ ≥ r∗ | E∗α) ≤ 218

pα

with r∗ given by

r∗ = max
{

(1 + r) + (1 + r) sKn,s∗ + s2K2
n,s∗(

1− s

√
n
(
α(1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

)2 − 1;

1−
(

1− r(
1 + s

√
n
(
α(1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

)2 (6.-260)

−
(1 + r) sKn,s∗ + s2K2

n,s∗(
1− s

√
n
(
α(1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

)2

)}
.

Using Assumption (2.7), we have

s Kn,s∗ ≤ Cs,n,p

√
α
(
α (1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n(

1 +
√

α+1
c log(p)
n

) ,

and thus, by Assumption 2.7,

s Kn,s∗ ≤ Cs,n,p

√
α

(
α (1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

,

≤ 0.1 · r.



6. VERIFYING THE CANDES-PLAN CONDITIONS 285

On the other hand,

s

√
n

(
α(1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

≤ Cs,n,p√
log(p)

√(
α(1−e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n(

1 +
√

α+1
c log(p)
n

)

≤ Cs,n,p√
log(p)

√(
α(1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

which, by Assumption 2.7, gives

s

√
n

(
α(1− e−1)
ϑ∗ Cχ

) 1
n
(

1
log(p)ν−1

) 1
n

≤ 0.1 · r
log(p) .

Summing up, we get

r∗ ≤ (1 + r) + (1 + r) 0.1 · r + 0.01 · r2(
1− 0.1·r

log(p)

)2 − 1

≤
(
1.1 · r + 0.11 · r2)

+2
(
1 + 1.1 · r + 0.11 · r2) 0.1 · r

log(p)

and by Assumption 2.-8,

r∗ ≤ 1.1 · r (1.1 + 0.11 · r) .

Thus, using Lemma 4.1,

P
(∥∥Xt

T∗XT∗ − I
∥∥ ≥ 1.1 · r(1.1 + 0.11 · r)

)
≤ 218 + 1

pα
,

Control of maxk∈T∗c ‖Xt
T∗Xk‖2

By the triangular inequality, we have that

max
k∈T∗c

∥∥Xt
T∗Xk

∥∥
2 = max

k∈T∗c

∥∥∥(CK + ET∗)tD2
∗ (Ck + Ek)

∥∥∥
2

≤

(
max
k∈T∗c

∥∥CtKCk∥∥+ ‖CK‖ max
k∈T∗c

‖Ek‖2

+ ‖ET∗‖ max
k∈T∗c

‖Ek‖2

)
‖D∗‖2.

A computation analogous to the one for the probability of Eα gives that

P

(
max

k∈{1,...,p}
‖Ek‖2 ≥ s

(
√
n+

√
α+ 1
c

log(p)
)
| E∗α

)
≤ C

pα
.

Thus, using Lemma 6.3 and Lemma 4.2, we obtain

P

(
max
k∈T∗c

∥∥Xt
T∗Xk

∥∥
2 ≥

Ccol√
log(p)

+ (1 + r + sKn,s∗) s
(
√
n+

√
α+ 1
c

log(p)
)
| E∗α

)
≤ C + 2

pα
.
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Since, by Assumption (2.7),

(1 + r + sKn,s∗) s
(
√
n+

√
α+ 1
c

log(p)
)
≤ (1 + 1.1 · r) Cs,n,p√

log(p)
,

we obtain

P

(
max
k∈T∗c

∥∥Xt
T∗Xk

∥∥
2 ≥

Ccol + (1 + 1.1 · r) Cs,n,p√
log(p)

| E∗α

)
≤ C + 2

pα
.

Moreover, using Lemma 4.1, we obtain

P

(
max
k∈T∗c

∥∥Xt
T∗Xk

∥∥
2 ≥

Ccol + (1 + 1.1 · r) Cs,n,p√
log(p)

)
≤ C + 3

pα
.

The last two inequalities

The proof of (3.-15) is standard and, under Assumption 2.7, the proof of (3.-15) can be
proved using the ideas of [14, Section 3.3]. We give the proofs for the sake of completeness.

Control of
∥∥Xt

T∗cXT∗(Xt
T∗XT∗)−1Xt

T∗z
∥∥
∞

For any j ∈ T ∗c, we have

P
(
Xt
jXT∗(Xt

T∗XT∗)−1Xt
T∗z ≥ u

)
≤ 1

2 exp
(
− u2

2σ2 ‖XT∗(Xt
T∗XT∗)−1Xt

T∗Xj‖22

)

≤ 1
2 exp

− u2

2σ2 1+r∗
(1−r∗)2

(Ccol+(1+1.1·r) Cs,n,p)2

log(p)

+ C + 219 + 3
pα

Taking u such that

1
2 exp

− u2

2σ2 1+r∗
(1−r∗)2

(Ccol+(1+1.1·r) Cs,n,p)2

log(p)

 = 1
pα

i.e.

u =

√
(α log(p)− log(2)) 2σ2 1 + r∗

(1− r∗)2
(Ccol + (1 + 1.1 · r) Cs,n,p)2

log(p) .

Using the union bound, we finally obtain

P

∥∥Xt
T∗cXT∗(Xt

T∗XT∗)−1Xt
T∗z
∥∥
∞ ≥

√
(α log(p)− log(2)) 2σ2 1 + r∗

(1− r∗)2
(Ccol + (1 + 1.1 · r) Cs,n,p)2

log(p)


≤ C + 223

pα−1 .
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Control of
∥∥Xt

T∗cXT∗(Xt
T∗XT∗)−1sign (β∗T∗)

∥∥
∞

Hoeffding’s inequality gives

P
(
Xt
jXT∗(Xt

T∗XT∗)−1sign (β∗T∗) ≥ u
)
≤ 1

2 exp
(
− u2

2 ‖(Xt
T∗XT∗)−1Xt

T∗Xj‖22

)

≤ 1
2 exp

− u2

2 (Ccol+(1+1.1·r) Cs,n,p)2

log(p) (1−r∗)2

+ C + 219 + 3
pα

.

Choosing

u =

√
(α log(p)− log(2)) 2 (Ccol + (1 + 1.1 · r) Cs,n,p)2

log(p) (1− r∗)2 .

and applying the union bound, we obtain

P

Xt
jXT∗(Xt

T∗XT∗)−1sign (β∗T∗) ≥

√
(α log(p)− log(2)) 2 (Ccol + (1 + 1.1 · r) Cs,n,p)2

log(p) (1− r∗)2

 ≤ C + 223
pα−1 .

Summing up

Using Assumption 2.6, we obtain that∥∥Xt
T∗cXT∗(Xt

T∗XT∗)−1Xt
T∗z
∥∥
∞ + λ

∥∥Xt
T∗cXT∗(Xt

T∗XT∗)−1sign (β∗T∗)
∥∥
∞

≤ σ
√

1 + 1.1 · r (1.1 + 0.11 · r) + 1
2 λ

as announced.
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Chapter L

On the perturbation of the extremal
singular values of a matrix after
appending a column

with Sébastien Darses.

Abstract

We provide new bounds on the extreme singular values of a matrix obtained after
appending a column vector to a given matrix. The proposed bounds improve upon the
results obtained in [24]. Moreover, we present two applications of independent interest:
a first one regarding the restricted isometry constant and the coherence in Compressed
Sensing theory, and a second one concerning the perturbation of the algebraic connec-
tivity of a graph after removing an edge.

1 Introduction

Framework
Let d be an integer. Let X ∈ Rd×n be a d× n-matrix and let x ∈ Rd be column vector. We
denote by a subscript t the transpose of vectors and matrices. There exist at least two ways
to study the matrix (x,X) obtained by appending the column vector x to the matrix X:

(A1) Consider the matrix

A =
[
xt

Xt

] [
x X

]
=
[
xtx xtX
Xtx XtX

]
; (1.1)

(A2) Consider the matrix

Ã =
[
x X

] [ xt

Xt

]
= XXt + xxt.

On one hand, one may study in (A1) the eigenvalues of the (n+ 1)× (n+ 1) hermitian
matrix A, i.e. the matrix XtX augmented with an arrow matrix.
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On the other hand, one will deal in (A2) with the eigenvalues of the d × d hermitian
matrix Ã, which may be seen as a rank-one perturbation of XXt. The matrices A and Ã
have the same non-zeros eigenvalues, and in particular λmax(A) = λmax(Ã). Moreover, the
singular values of the matrix (x,X) are the square-root of the eigenvalues of the matrix A.

Equivalently, the problem of a rank-one perturbation can be rephrased as the one of
controlling the perturbation of the singular values of a matrix after appending a column.

In the current paper, we study a slightly more general framework than (A1), that is the
case of a matrix

A =
[
c at

a M

]
, (1.1)

where a ∈ Rd, c ∈ R and M ∈ Rd×d is a symmetric matrix.
Our goal is to present new bounds on the extreme eigenvalues of A as a function of the

eigenvalues of M and the norm of a, and we will focus on various applications. Indeed,
this problem occurs in a variety of contexts such as the perturbation analysis of covariance
matrices in statistics [28], the study of the Restricted Isometry Constant in Compressed
Sensing [9], spectral graph theory and edge deletion [8], control theory of complex networks
[31], hitting time analysis for classical or quantum random walks [38], robust face recognition
[32], wireless comunications [34], communication theory and signal processing [38], numerical
methods for partial differential equations [4], numerical analysis of bifurcations [17], among
many applications.

Notice further that in (1.1) if M and A are positive definite, there exist X ∈ Rd×n
and x ∈ Rd such that M = XtX and A can be written as in (1.1) due to the Chowlesky
decomposition.

Additional notations
The Kronecker symbol is denoted by δi,j , i.e. δi,j = 1 if i = j and is equal to zero otherwise.
For any symmetric matrix B ∈ Rd×d we will denote its eigenvalues by λ1(B) ≥ · · · ≥ λd(B).
The largest eigenvalue will sometimes also be denoted by λmax(B) and the smallest by
λmin(B). The smallest nonzero eigenvalue of B will be denoted by λmin>0(B).

Plan of the paper
Section 2 is devoted to an overview of known results. Section 3 presents new upper and
lower bounds for the extreme eigenvalues. Section translates some previous results in terms
of operator norm together with a slight variation. Finally, Section 5 is concerned with the
applications in Compressed sensing and graphs theory.

2 Previous results on eigenvalue perturbation

We now review some previous, old and recent results from matrix perturbation theory and
apply them to our problem of appending a column.

Obtaining precise estimates on the eigenvalues of a sum of two matrices (say X + P ,
considering P as a perturbation) is a very difficult task in general. Weyl’s and Horn’s
inequalities for instance can be employed and these bounds can be improved when knowing
that the perturbation P is small with respect to X (see e.g. [20, Chap. 6]). The whole point
of the works [2] and [3], to name a few, is to understand how randomness can simplify this
analysis.
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Weyl’s inequalities
The reference [35] gives an overview of many inequalities on the eigenvalues of sums of
symmetric (and Hermitian) matrices. The Weyl inequalities are given as follows:

Theorem 2.1 (Weyl) Let B and B′ be symmetric real matrices in Rd×d and let λj(B),
j = 1, . . . , d, (resp. λj(B′)), denote the eigenvalues of B (resp. B′). Then, we have

λi+j−1(B +B′) ≤ λi(B) + λj(B′),

whenever i, j ≥ 1 and i+ j − 1 ≤ n.

The arrowhead perturbation

Consider the case where we would like to control the largest eigenvalue of A with the
eigenvalues of M = XtX. We have the following result.

Proposition 2.2 We have

λ1(A) ≤ max{c, λ1(M)}+ ‖a‖2.

extbfProof. The Weyl inequalities for i, j = 1 gives that

λ1(A) ≤ λ1

([
c 0
0 M

])
+ λ1(E) (2.0)

with

E =
[

0 at

a 0

]
.

Moreover, using the variational representation of the maximum eigenvalue and the method
of Lagrange multipliers, we have λ1(E) = ‖a‖2. Combining this with (2.0), we obtain the
desired result. 2 The main fact to retain from this
inequality is that if x is orthogonal to all columns of X, then a = 0 and the perturbation
has no effet on the largest eigenvalue as long as c ≤ λ1(M). This elementary observation
can be extrapolated to much more difficult situations, e.g. in the spiked covariance model
where a phase transition has been proved between concerning the ability to detect a spike
or not, depending on the energy level of the spike [28, Theorem 2.3].

The rank-one perturbation

If we only want to study the perturbation of the largest eigenvalue, then we can consider
the rank-one perturbation described by (A2). In this case, Weyl’s bound gives the following
result.

Proposition 2.3 We have

λ1(A) ≤ λ1(M) + ‖x‖22.

extbfProof. Using that λ1(A) = λ1(Ã) and λ1(M) = λ1(M̃), we obtain from Theorem 2.1 :

λ1(A) ≤ λ1(M) + λ1(xxt).

Since λ1(xxt) = ‖x‖22, the conclusion follows. 2

The main drawback of this inequality is that it does not take into account the geometry of
the problem and in particular the angle between X and the new vector x that we want to
append to X. This does not disqualify the rank-one perturbation approach to controlling
the maximum eigenvalue as will be shown in Subsection 2.



3. MAIN RESULTS ON THE PERTURBATION OF THE EXTREME SINGULAR VALUES293

An inequality of Li and Li

They prove a general inequality concerning the perturbation of eigenvalues under off-block
diagonal perturbations. We specify their result, [24, Theorem 2], in our context:

|λ1(A)−max(c, λ1(M))| ≤ 2‖a‖2

η +
√
η2 + 4‖a‖2

, (2.-2)

with η = min{|c− λi(M)|, 1 ≤ i ≤ d}. In their paper, λ̃1 is actually max(c, λ1(M)) here.
We refer to [24] and references therein for the history of such inequalities.

An inequality of Ipsen and Nadler

In [21], the authors propose a bound for the eigenvalues of Ã in the problem of rank one
perturbation (A2). The following theorem is a corollary of their main result where we
restrict our attention to the largest eigenvalue.

Theorem 2.4 Let M̃ ∈ Cd×d denote an Hermitian matrix and let x ∈ Cd. Let V1 (resp. V2)
denote the eigenvector associated to the eigenvalue λ1(M̃) (resp. λ2(M̃)). Let Ã = M̃+xxt.
Then

λ1(M̃) + δmin ≤ λ1(Ã) ≤ λ1(M̃) + δmax,

with

δmin = 1
2

(
‖P〈(V1,V2)〉(x)‖22 − gap2 +

√
(gap2 + ‖P〈(V1,V2)〉(x)‖22)2 − 4 gap2‖P〈(V2)〉(x)‖22

)
δmax = 1

2

(
‖x‖22 − gap2 +

√
(gap2 + ‖x‖22)2 − 4 gap2‖P〈(V2,...,Vd)〉(x)‖22

)
,

where (Vi, . . . , Vj), 1 ≤ i ≤ j ≤ d, denotes the vector space generated by Vi, . . . , Vj and
P〈(Vi,...,Vj)〉 denotes the orthogonal projection onto this space, and

gap2 = λ1(M̃)− λ2(M̃).

This inequality has been used in various applications such as control of complex systems
[31], quantum information theory [15], communication theory and signal processing [38],
numerical methods for partial differential equations [4]. One drawback of using this result
in our context is that we have to know the spacing gap2 for the second eigenvalue. Moreover,
the upper bound depends on ‖x‖22 and does not take into account the scalar products of
x with the columns of X, which may lead to serious overestimation of the perturbation,
especially in the case of random matrices.

3 Main results on the perturbation of the extreme singular values

In this section, we present and prove our main results. We improve the bound obtained
from Weyl’s inequality over a non-trivial and useful range of perturbations. Moreover, our
bound does not depend on the spacing gap2 unlike in [21].
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The maximum eigenvalue
The following theorem provides sharp upper bounds for λmax(A), and lower bounds on
λmin(A), depending on various informations on the sub-matrix M of A. As discussed above,
this problem has close relationships with our problem of appending a column to a given
rectangular matrix, because λ1(Ã) = λ1(A).

Theorem 3.1 Let d be a positive integer and let M ∈ Cd×d be an Hermitian matrix, whose
eigenvalues are λ1 ≥ · · · ≥ λd with corresponding eigenvectors (V1, · · · , Vd). Set c ∈ R,
a ∈ Cd. Let A be given by (1.1). Therefore:

2〈a, V1〉2

η1 +
√
η2

1 + 4〈a, V1〉2
≤ λ1(A)−max(c, λ1) ≤ 2‖a‖2

η1 +
√
η2

1 + 4‖a‖2
, (3.-6)

with

η1 = |c− λ1|.

Remark 3.2 • Inequality (3.1) is sharp: the upper bound is reached when choosing
M = I, c = 1 and any a, so that λmax(A) = 1 + ‖a‖;

• The upper bound in (3.1) is better than (2.-2) since η1 ≥ η. A typical example where
the improvement holds is basically when c is one of the eigenvalues of M (i.e. η = 0).
For instance, take c = 1, at = (α, 0) and M = diag(2, 1). In particular, η1 = 1. An
easy computation yields λ1(A) = 3/2 +

√
1/4 + α2 and then

λ1(A)− λ1(M) =
√

1/4 + α2 − 1/2 = 2α2

1 +
√

1 + 4α2
,

which is the upper bound in (3.1), while the bound (2.-2) is simply the triangle inequal-
ity |λ1(A)− λ1(M)| ≤ |α|.

• The lower bound in (3.1) is also better than (2.-2) since we have:

λ1(A) ≥ max(c, λ1) + 2〈a, V1〉2

η1 +
√
η2

1 + 4〈a, V1〉2
≥ max(c, λ1)− 2‖a‖2

η +
√
η2 + 4‖a‖2

.

Our lower bound is in particular consistent with Cauchy interlacing theorem, which
states that λ1(A) ≥ λ1.

• A great feature of Theorem 2 of Li and Li in [24] is that it holds for all eigenvalues
and for block perturbations. We will treat the whole spectrum in a subsequent work.
Moreover, generalizing our bounds for block perturbations may be an interesting per-
spective.

Proof.
Let M = V DV ∗ denote the eigenvalue decomposition of M , i.e. V = (V1, · · · , Vd) where

the Vi’s are the orthonormal eigenvectors of M and D is a diagonal matrix whose diagonal
entries are the real eigenvalues λ1 ≥ · · · ≥ λd. We can write

A =
(

1 0
0 V

)(
c a∗V

V ∗a D

)(
1 0
0 V ∗

)
,
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and we set

B =
(
c b∗

b D

)
, b = V ∗a,

where we use the notation bj := 〈a, Vj〉. Therefore, A and B have the same spectra and in
particular,

λmax(A) = λmax(B). (3.-10)

As in [16], we compute the characteristic polynomial of the arrow matrix B:

PB(λ) = (c− λ)
d∏
i=1

(λi − λ)−
d∑
i=1

∏
j 6=i

(λj − λ)b2j .

Let us define the function f on R \ {λi, 1 ≤ i ≤ d} as

f(λ) := PB(λ)
∏
i=1

(λi − λ)−1 = c− λ+
d∑
j=1

b2j
λ− λj

,

which is decreasing on (λ1,+∞) (even if b = 0).
We now assume that b1 = 〈a, V1〉 6= 0. Thus limλ→λ1 f(λ) = +∞. From limλ→+∞ f(λ) =

−∞, we then deduce that the continuous function f has a unique root on (λ1,+∞), that is

λmax(B) > λ1.

For all λ > λ1, we have

f(λ) ≤ c− λ+ ‖b‖22
λ− λ1

:= g(λ). (3.-12)

For the same reasons as f , the function g has a unique root λ∗ on (λ1,+∞). Since f is
decreasing on (λ1,+∞) and f(λmax(B)) = 0 = g(λ∗) ≥ f(λ∗), we deduce:

λmax(B) ≤ λ∗.

We have

(λ∗ − c)(λ∗ − λ1) = ‖b‖22,

and thus λ∗ is a root of the polynomial

Q(x) = (x− c)(x− λ1)− ‖b‖2

= x2 − (c+ λ1)x+ cλ1 − ‖b‖22.

The discrimant of Q reads:

∆ = (c+ λ1)2 − 4(cλ1 − ‖b‖22)
= (c− λ1)2 + 4‖b‖22 > 0.

Since Q(λ1) < 0 and the dominant coefficient of Q is positive, we deduce that λ∗ is actually
the greatest root of Q. Hence, noting that ‖b‖2 = ‖a‖2,

λ∗ = c+ λ1

2 + 1
2
√

(c− λ1)2 + 4‖a‖2. (3.-17)
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Assume that 〈a, V1〉 6= 0. In order to find a lower bound for λmax(B), we perform the
same reasoning by writing

f(λ) ≥ c− λ+ 〈a, V1〉2

λ− λ1
,

and considering the polynomial (x− c)(x− λ1)− 〈a, V1〉2.
Finally, we have:

c+ λ1

2 + 1
2
√

(c− λ1)2 + 4〈a, V1〉2 ≤ λ1(A) ≤ c+ λ1

2 + 1
2
√

(c− λ1)2 + 4‖a‖2. (3.-18)

Set η1 = |c− λ1|. Since

2 max(λ1, c) = c+ λ1 + η1,

we deduce

1
2

(√
η2

1 + 4〈a, V1〉2 − η1

)
≤ λ1(A)−max(λ1, c) ≤

1
2

(√
η2

1 + 4‖a‖2 − η1

)
.

Multiplying by the ”conjugate quantity” yields the lower and the upper bounds in (3.1).

The case 〈a, V1〉 = 0 can be treated by standard continuity arguments: consider a con-
tinuous ε 7→ a(ε) such that for all ε > 0, 〈a(ε), V1〉 6= 0 and a(0) = a. Ones then writes (3.1)
for ε > 0 and passes to the limit as ε→ 0.

2

Corollary 3.3 In particular, the following simple perturbation bounds hold:

λ1(A) ≤ max(c, λ1) + ‖a‖2 (3.-19)

λ1(A) ≤ max(c, λ1) + ‖a‖22
|λ1 − c|

, (3.-18)

extbfProof. Inequality (3.-19) (resp. (3.-18)) follows from (3.1) by using η1 ≥ 0 (resp.
‖a‖ ≥ 0).

Perturbation of the smallest nonzero eigenvalue
Theorem 3.4 Let d be a positive integer and let M ∈ Cd×d be an Hermitian matrix, whose
eigenvalues are λ1 ≥ · · · ≥ λd with corresponding eigenvectors (V1, · · · , Vd). Set c ∈ R,
a ∈ Cd. Let A be given by (1.1). Assume that M has rank r ≤ d. Therefore:

λr+1(A) ≥ min(c, λr)−
2‖a‖2

ηr +
√
η2
r + 4‖a‖2

, (3.-18)

with

ηr = |c− λr|.

extbfProof.
In the case where r = d, Inequality (3.4) immediately follows from applying (3.-19) to

the matrix −A.
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Assume now that r < d. The eigenvalues of M are λ1 ≥ · · · ≥ λr ≥ λr+1 = · · · = λd = 0.
We use the same reduction for the matrix A as in the proof of Theorem 3.1. If a 6= 0, we
have that b 6= 0 and so there exists j0 such that bj0 6= 0. Again, we consider the function f ,
defined on R \ {λi, 1 ≤ i ≤ d} by

f(λ) := c− λ+
d∑
j=1

b2j
λ− λj

,

which is decreasing on (λr+1, λr). Since limλ↓λr+1 f(λ) = +∞ and limλ↑λr f(λ) = −∞, we
deduce that the continuous function f has a unique root on (λr+1, λr), which is λr+1(A).
We have

f(λ) := c− λ+
r∑
j=1

b2j
λ− λj

+
d∑

j=r+1

b2j
λ
,

For all λ s.t. 0 = λr+1 < λ < λr, we have

f(λ) ≥ c− λ+
∑r
j=1 b

2
j

λ− λr
+
∑d
j=r+1 b

2
j

λ
(3.-20)

and thus

f(λ) ≥ c− λ+
∑d
j=1 b

2
j

λ− λr
:= g(λ). (3.-19)

The function g has a unique root λ∗ in (−∞, λr).
Since f is decreasing on (0 = λr+1, λr) and f(λr+1(B)) = 0 = g(λ∗) ≤ f(λ∗), we deduce

that:

λr+1(A) ≥ λ∗. (3.-18)

Let us now bound λ∗ from below. We have

(c− λ∗)(λr − λ∗) =
d∑
j=1

b2j = ‖b‖22 = ‖a‖22. (3.-17)

Therefore

λ∗
2
− (c+ λr)λ∗ + c λr − ‖a‖22 = 0. (3.-16)

and thus,

λ∗ = 1
2

(
c+ λr −

√
(c+ λr)2 − 4c λr + 4‖a‖22

)
, (3.-15)

since one easily checks that the other root is greater than λr. Expanding the term (c+λr)2

inside the square root and simplifying the resulting expression, we get

λ∗ = 1
2

(
c+ λr −

√
(c− λr)2 + 4‖a‖22

)
(3.-14)

and

λ∗ −min(c, λr) ≥ 1
2

(
ηr −

√
η2
r + 4‖a‖22

)
, (3.-13)
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with

ηr = |c− λr|.

The desired result then follows by multiplying by the ”conjugate quantity”.
2

Corollary 3.5 In particular, the following simple perturbation bounds hold:

λr+1(A) ≥ min(c, λr)− ‖a‖2 (3.-13)

λr+1(A) ≥ min(c, λr)−
‖a‖22
|c− λr|

. (3.-12)

extbfProof. Inequality (3.-13) (resp. (3.-12)) follows from (3.4) by using ηr ≥ 0 (resp.
‖a‖ ≥ 0).

4 Bounds on the perturbation of the operator norm

We provide here three bounds on the operator norm: the first and second inequalities are
easy consequences of Theorem 3.1, the third one is based on a new trick.

Corollary 4.1 Let d be an integer, a ∈ Cd, c ∈ R and let M ∈ Cd×d be an Hermitian
matrix. Let A be given by (1.1). Then the following inequalities hold:

‖A‖ ≤ max(c, ‖M‖) + ‖a‖2 (4.-11)

‖A‖ ≤ ‖M‖+ ‖a‖22
‖M‖ − c

, if c ≤ λmax(M) (4.-10)

‖A‖ ≤ ‖M‖+ |c|2 + ‖a‖
2
2 + c2/8
‖M‖

. (4.-9)

Remark 4.2 Notice that (4.-10) is better than (4.-11) if

‖a‖ ≤ ‖M‖ − c,

and that (4.-9) is better than (4.-11) if

c

2 + ‖a‖
2
2 + c2/8
‖M‖

≤ ‖a‖.

extbfProof. We obtain (4.-11) by applying (3.-19) with−A and by noticing that λmax(A) ≤
‖A‖.

Now assume that c ≤ λmax(M). We bound ∆ as:
√

∆ ≤
√

(‖M‖ − c)2 + 4‖a‖22,

and then

2λ∗ ≤ 2‖M‖+ 2‖a‖22
‖M‖ − c

,

which yields (4.-10).
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To prove (4.-9), we now consider, instead of B,

B′ =

 c bt bt

b D 0
b 0 −D

 . (4.-12)

Since the operator norm increases by adding elements to a matrix , we obtain

‖A‖ ≤ ‖B′‖ (4.-11)

The functions f, g in (3.-20) are now replaced resp. by,

f̃(λ) = c− λ+
d∑
j=1

b2j

(
1

λ− λj
+ 1
λ+ λj

)
= c− λ+

d∑
j=1

b2j
2λ

λ2 − λ2
j

g̃(λ) = c− λ+ ‖b‖22
2λ

λ2 − ‖M‖2
, λ > ‖M‖.

If c ≤ 0 then

f̃(λ) ≤ g̃(λ) ≤ λ+ ‖b‖22
2λ

λ2 − ‖M‖2
:= h(λ).

Let x∗ be a root of h. As previously, f̃(λmax(B̃)) = 0 = h(x∗) ≥ f̃(x∗), and then

λmax(B̃) ≤ x∗.

But x∗ is less than the greatest root of the polynomial x 7→ x2 − ‖M‖2 + 2‖b2‖, that is:

x∗ ≤
√
‖M‖2 + 2‖b‖22.

If c > 0, we notice that

(λ2 − ‖M‖2)(c− λ) + 2λ‖b‖22 = −λ3 + cλ2 + (2‖b‖22 + ‖M‖2)λ− c‖M‖2

≤ −λ3 + cλ2 + (2‖b‖22 + ‖M‖2)λ,

and we set

R(x) = x2 − cx− (2‖b‖22 + ‖M‖2).

The greatest root x∗ of R reads:

x∗ ≤ c

2 +
√
c2

4 + ‖M‖2 + 2‖b‖22

≤ c

2 + ‖M‖

√
1 + 2‖b‖22 + c2/4

‖M‖2

≤ c

2 + ‖M‖ + ‖b‖
2
2 + c2/8
‖M‖

.

Repeating the analysis with −A yields (4.-9) as desired. 2
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5 Applications

As already mentionned in the introduction, perturbations bounds on the extreme eigenvalues
have many applications in science and engineering and some references were proposed. In
this section, we focus two more applications where quadratic inequalities as the upper bound
(3.1) can yield some improvements in the order of magnitude for the perturbed system.

Restricted isometry constant and coherence in Compressed Sensing
General framework

The purpose of Compressed Sensing (CS) is to study the various possible strategies for con-
structing efficient sensors allowing the recovery of very sparse signals in a high dimensional
space (See e.g. the pioneering work of Candès, Romberg and Tao [13]). The possiblity
of building such types of sensors was first discovered through simulations in the study of
Magnetic Resonnance Imaging, where sparsity in a certain dictionary was used in order to
reconstruct the signal from much fewer measurements than was previously imagined. Since
then, Compressed Sensing has found many applications as can be seen from the blog ”Nuit
Blanche” maintained by Igor Caron.

The problem can be expressed mathematically as the one of solving the linear system

y = Xβ + σε

in the variable β, where X ∈ Rn×p, σ ∈ R+ and ε is a random noise. A major breakthrough
occured in late 2005-early 2006 when [13], [12], [11] and [10] appeared. One of the main
discoveries contained in these works is that the vector β can be recovered exactly even when
p is much larger than n and n is as small as a constant times s log(p/s). The assumptions
initially required that σ = 0 and β is s-sparse and the results were obtained for most X
drawn with i.i.d. components with standard gaussian or ±1-Bernoulli distribution. It was
then obtained in [11] and [14] that the support of β can be exactly recovered in the noisy
case σ > 0 when n is roughly of the same order. A basic property, which emerged from the
analysis as a tool for proving the reconstructibility from few measurements, is the Restricted
Isometry Property, which requires that all the submatrices XT have their singular values in
the interval [1− ρ, 1 + ρ] for some constant ρ ∈ (0, 1/2). Several authors [36], [37] and [14]
subsequently noticed that, assuming the columns ofX to be `2-normalized, most submatrices
XT obtained by selecting the columns indexed by T with |T | such that

|T | ≤ p

log p
C

‖X‖2
(5.-22)

for some constant C, have their singular values in the interval [1−ρ, 1+ρ] for some constant
ρ ∈ (0, 1/2). Recall that the coherence µ(X) is defined by

µ(X) = max
j 6=j′
|Xt

jXj′ |.

This latter property can be interpreted in a probabilistic setting: let T be a random subset
of {1, . . . , n} drawn with uniform distribution over all subsets with cardinal bounded from
above as in (5.-22). Then, with high probability, ‖Xt

TXT − I‖ ≤ ρ.

Perturbation of the singular values

When an additional column is appended to the matrix X, one may wonder what is the
impact of this operation on the localisation of the extreme singular values of all submatrices
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with s columns which can be extracted from the resulting matrix. Notice that appending
just one column to X results in creating p!/(s − 1)!(p − s + 1)! additional submatrices.
Therefore, having a flexible bound on the perturbation of the extreme eigenvalues may be a
valuable tool in practice. Another situation where perturbation has to be precisely controlled
is when one wants to study the random variable ‖Xt

TXT − I‖ using the tools of modern
concentration of measure theory [6]. Indeed, after a ’Poissonization’ trick has been employed
as in Claim (3.29) p.2173 in [14], one may study the problem on a product space for which
the celebrated theorem of Talagrand or recent variants by Boucheron, Lugosi and Massart
can be used. However, for such concentration theorems to be relevant, one also needs precise
perturbation bounds on the extreme singular values.

Let us consider the case where one uses a fixed design matrix X and T is obtained by
selecting s columns uniformly at random. Then, Lemma 3.6 in [14] implies that

P
(
‖Xt

TXj‖22 ≥ s/p‖X‖2 + t
)
≤ 2 exp

(
t2

2µ2(X)(s‖X‖2/p+ t/3)

)
and thus, using (5.-22), one easily obtains that

‖Xt
TXj‖22 ≤

1
4 log(p) (5.-23)

with probability at least 1 − 2e−
3

64µ2(X) log(p) if C ≤ 1/8. Assuming that the coherence is
of the order of 1/ log(p), one obtains that (5.-23) holds with high probability. Thus, using
inequality (3.-19), one obtains a perturbation of the order of log(p)−1/2 of the maximum
eigenvalue of Xt

TXT . On the other hand, if one is interested in the perturbation with norm
already larger than

√
1 + ρ, (3.-18) gives a perturbation of the norm of the order ρ−1 log(p)−1

which is significantly smaller and, as one might check in the assumptions of Theorem 5 in
[5], is the right order of magnitude for obtaining the desired concentration of measure for
this problem.

Perturbation of the algebraic connectivity of a graph by removing an
edge

with Sébastien Darses.

Another application of spectral perturbation is in hypergraph theory.

The Laplacian of a graph

The G = (V,E) denote an oriented graph with vertex set V and edge set E. In such a graph,
each edge e has a positive end and a negative end. We say that two vertices are adjacent
if they are ends of the same edge. The indicence matrix IG associated to G is the matrix
whose rows are indexed by the vertices and the columns are indexed by the oriented edges.
The (i, j)-entry of IG is

IG(i, j) =


+1 if vertex i is the positive end of edge j
−1 if vertex i is the negative end of edge j
0 otherwise.
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The adjacency matrix AG is the matrix whose rows and columns are indexed by the vertices.
The (i, i′)-entry of AG is

AG(i, i′) =
{

+1 if vertex i and vertex i′ are adjacent
0 otherwise.

The degree vector of G is the vector dG where dG(i) is the number of edges of G to which
vertex i is an end. The Laplacian matrix of G is the matrix LG defined by

LG = D(dG)−AG,

and the following well known identity holds

LG = IGItG. (5.-25)

If G is not oriented, the degree vector and the adjacency matrix are defined in exactly
the same way and any arbitrary orientation of the edges of G will of course provide the
same result. Notice that LG is positive semi-definite and that 0 is always an eigenvalue
of LG. If the second smallest eigenvalue is nonzero, then the graph G is connected. This
second smallest eigenvalue is very important for the study of various graphs and is called the
algebraic connectivity of G or Fiedler’s value of G. We will denote the algebraic connectivity
by a(G). The eigenvalues of the Laplacian of a graph have been the subject of intense
research for many years and is connected to various fields of pure and applied mathematics
like expander families [19], geometry of Banach spaces [1], Markov chains [7], clustering [25],
to name just a few.

Edge deletion and the algebraic connectivity

We now turn to the problem of controling the impact of deleting an edge on the algebraic
connectivity of L. The complement of a graph is the graph obtained by putting an edge
between every non-adjacent couple of vertices and by deleting all edges already present in
the graph before this operation. It is well known [26] that

a(G) ≥ n− λ1(Gc). (5.-24)

Thus, controlling the effect of adding an edge to the complement of a graph allows to control
the effect of deleting an edge of the graph on the algebraic connectivity.

For e = (u, v), with u, v ∈ V (G), let Gc + e denote the graph obtained from Gc by
appending the edge e. Let ie denote the column vector obtained by setting the component
indexed by u to -1 and the component indexed by v to +1, and by setting all other compo-
nents to zero. Since the Laplacian matrix LGc admits a factorization analogous to (5.-25),
we obtain that LGc can be written in the form (1.1) with c = 2 and a = ItGcie.

In many fields, it is very important to study the robustness of the graph topology to
structural perturbations. For instance, the study of food webs has been of growing interest
in the recent years [33]. As is well known, predation habits evolve with time as a consequence
of landscape changes and competition. The world wide web is also an interesting application
of graph theory and the formation and perturbation of communities is a topic of growing
interest [29]. Communication systems are also often viewed as an interesting application of
graph theory. In these examples, as in many other from ecology, social sciences, wireless
communications, genetics, etc, one is often interested in predicting the impact on topology
of removing or adding an edge, a vertex or of various other modifications of the structure,
as measured by a relevant index such as the algebraic connectivity.
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Controllability of complex networks

In [31], the following model was proposed. One considers a set of N n-dimensional oscillators
governed by a system of nonlinear differential equations. Moreover, we assume that each
oscillator is coupled with a restricted set of other oscillators. This coupling relationship can
be efficiently described using a graph where the vertices are indexed by the oscillators and
there is an edge between two oscillators if they are coupled. The overall dynamical system
is given by the following set of differential equations

x′i(t) = f(xi(t))− σB
N∑
j=1

lijxj(t) + ui(t), t ≥ t0, (5.-23)

i = 1, . . . , N , where xi(t) ∈ Rn is the state of the ith oscillator, σ is a positive real number,
B ∈ Rn×n, f : R 7→ R describes the dynamics of each oscillator, L = (lij)i,j=1,...,N is the
graph Laplacian of the underlying graph, and ui(t), i = 1, . . . , N are the controls. For
the system to be well defined, we have to specify some initial conditions xi(t0) = xi0 for
i = 1, . . . , N .

Assume that we have a reference trajectory s(t), t ≥ t0 satisfying the differential equation

s′(t) = f(s(t)).

We want to control the system using a limited number of nodes. The selected nodes are
called the ”pinned nodes”. For this purpose, we use a linear feedback law of the form

ui(t) = piKei(t),

where ei(t) = s(t)− xi(t), K is a feedback gain matrix, and where

pi =
{

1 if node i is pinned
0 otherwise.

Let P denote the diagonal matrix with diagonal vector p1, . . . , pN .
The authors then give the definition of (global pinning-) controllability (based on Lya-

punov stability criteria):

Definition 5.1 We say that the system (5.-23) is controllable if the error dynamical system
e := (ei(t))1≤i≤N is Lyapunov stable around the origin, i.e. there exists a positive definite
function V such that d

dtV (e(t)) < 0 when e(0) 6= 0.

The following result, [31, Corollary 5], provide a sufficient condition for a system to be
controllable:

Proposition 5.2 ([31]) Assume that f is such that there exists a bounded matrix F
ξ,ξ̃

,
whose coefficients depend on ξ and ξ̃, which satisfies

F
ξ,ξ̃

(
ξ − ξ̃

)
= f(ξ)− f(ξ̃), ξ, ξ̃ ∈ Rn. (5.-25)

Let Q ∈ Rn×n be a positive definite matrix such that

QK +KtQt = κ
(
QB +BtQt

)(
QB +BtQt

)
� 0
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and
1
2 λN (σL+ κP ) λn

(
QB +BtQt

)
> sup

ξ,ξ̃

‖F
ξ,ξ̃
‖ ‖Q‖. (5.-26)

Then the system is controllable.

Many systems of interest satisfy the constraint specified by (5.-25); see [22]. This proposition
is very useful for node selection via the matrix P . Indeed, assume that Q is selected, then
one may try to maximise λN (σL+ κP ) as a function of P , under the constraint that no
more than r nodes can be pinned. This is a combinatorial problem that can be relaxed using
semi-definite programming or various heuristics [18].

Using Theorem 3.1, we are in position for stating an easy controllability condition in the
spirit of [31, Corollary 7], based on the algebraic connectivity of the graph, the number of
pinned nodes, the coupling strengh and the feedback gain.

Proposition 5.3 If some positive definite symetric matrix Q ∈ Rn×n is given that satisfies

QK +KtQt = κ
(
QB +BtQt

)(
QB +BtQt

)
� 0

and if κ satisfies

κ ≥
∑r
i=1 degi

σλmin>0(L)− 2 ‖Fξ,ξ̃‖ ‖Q‖
λmin(QB+BtQt)

+ σλmin>0(L),

then the system is controllable.

extbfProof. We follow the same steps as for the proof of Corollary 7 in [31]. We assume
without loss of generality that the first r nodes are the pinned nodes. We may write P as

P =
r∑
i=1

eie
t
i,

where ei is the ith member of the canonical basis of RN , i.e. ei(j) = δi,j . We will try to
compare λN (σL+ κP ) with λN (σL) and use Proposition 5.2 to obtain a sufficient condition
for controllability based on L, i.e. the topology of the network. For this purpose, let us notice
recall that L can be written as

L = I · It,

where I is the incidence matrix of any directed graph obtained from the system’s graph
by assigning an arbitrary sign to the edges [8]. Of course L will not depend on the chosen
assignment. Using this factorization of L, we obtain that

σL+ κ

r∑
i=1

eie
t
i =

[√
κ er, . . . ,

√
κ e1,

√
σI
] [√

κ er, . . . ,
√
κ e1,

√
σI
]t
.

Moreover, λmin>0 (σL+ κP ) can be expressed easily as the smallest nonzero eigenvalue of
the rth term of a sequence of matrices with shape (1.1) for with we can use Theorem 3.4
iteratively. Indeed, we have

λmin>0 (σL+ κe1) = λmin>0

([√
κ e1,

√
σI
]t [√

κ e1,
√
σI
])
.
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Let us denote by x the vector
√
κ e1 and by X the matrix [

√
σI]. Then, we have that

[√
κ e1,

√
σI
]t [√

κ e1,
√
σI
]

=
[
xtx xtX
Xtx XtX

]
.

Therefore, Theorem 3.4 gives

λmin>0
(
σL+ κe1e

t
1
)
≥ σλmin>0(L)− deg1

(κ− σλmin>0(L)) ,

where deg1 is the degree of node number 1.
Let us now consider λmin>0 (σL+ κ e1 + δ2e2). We have that

λmin>0 (σL+ κ e1 + δ2e2) = λmin>0

([√
κ e2,

√
κ e1,

√
σI
]t [√

κ e2,
√
κ e1,

√
σI
])
.

Let us denote by x the vector
√
κ e2 and by X the matrix [

√
κ e1,

√
σI]. Then, we have

that [√
κ e2,

√
κ e1,

√
σI
]t [√

κ e2,
√
κ e1,

√
σI
]

=
[
xtx xtX
Xtx XtX

]
and using Theorem 3.4 again, we obtain

λmin>0
(
σL+ κe1e

t
1 + κe2e

t
2
)
≥ λmin>0(σL+ κe1e

t
1)− deg2

(κ− λmin>0(σL+ κe1et1)) .

Since λmin>0(σL+ κe1e
t
1) ≤ λmin>0(σL), we thus obtain

λmin>0
(
σL+ κe1e

t
1 + κe2e

t
2
)
≥ λmin>0(σL+ κe1e

t
1)− deg2

(κ− σλmin>0(L)) .

We can repeat the same argument r times and obtain

λmin>0 (σL+ κP ) ≥ σλmin>0(L)−
∑r
i=1 degi

κ− σλmin>0(L) . (5.-38)

Finally, by Proposition 5.2, we know that the following constraint is sufficient for pre-
serving controllability

λmin>0

(
σL+ κ

r∑
i=1

eie
t
i

)
≥

2 ‖Fξ,ξ̃‖ ‖Q‖
λmin (QB +BtQt) . (5.-37)

By (5.-38), it is sufficient to garantee the controllability of our system to impose

σλmin>0(L)−
∑r
i=1 degi

κ− σλmin>0(L) ≥
2 ‖Fξ,ξ̃‖ ‖Q‖

λmin (QB +BtQt) .

This last inequality can then be written as

κ ≥
∑r
i=1 degi

σλmin>0(L)− 2 ‖Fξ,ξ̃‖ ‖Q‖
λmin(QB+BtQt)

+ σλmin>0(L).

2
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Chapter M

On the spacings between the successive
zeros of the Laguerre polynomials

(pp. 39, 290, 293 et 294).
(p. 302).

with Sébastien Darses.

(p. 302).

Abstract

We propose a simple uniform lower bound on the spacings between the successive
zeros of the Laguerre polynomials L(α)

n for all α > −1. Our bound is sharp regarding
the order of dependency on n and α in various ranges. In particular, we recover the
orders given in [1] for α ∈ (−1, 1].

(pp. 38, 39, 291 et 292).
(p. 302).

(pp. 38, 291, 293, 303 et 304).

1 Introduction

(p. 291).
The study of orthogonal polynomials has a long history with exciting interplay with

numerous fields, including random matrix theory. The Laguerre polynomials which occur
as the solutions of important differential equations [13], have had many applications in
physics (electrostatics, quantum mechanics [6]), engineering (control theory; see e.g. [2]),
random matrix theory (Wishart distribution; see e.g. [3] and [5]) and many other fields. The
knowledge of the spacings between successive zeros of the Laguerre polynomials, interesting
in its own right, is also potentially of great interest in many situations, e.g. for the spacings
between successive eigenvalues of Wishart matrices, for bounding the gaps between sucessive
energy levels in quantum mechanics or for the analysis of numerical algorithms in system
identification problems, to name a few. (p. 302).
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In this short note, we provide a uniform lower bound for the gaps between successive
zeros of the Laguerre polynomials L(α)

n . In [1], important bounds were proposed in the case
α ∈ (−1, 1] for individual spacings (i.e. bounds depending also on the ranking). Our bound
is uniform but it is valid on the entire range α > −1. For this reason, our bound might be
helpful in a large number of applications. In particular, the cases including large values of α,
are those of interest for random matrices with Wishart distribution. Our approach is based
on a remarkable well known identity (a Bethe ansatz equation; see e.g. [11],[12]). (p. 291).

2 Preliminaries: Bethe ansatz equality

(pp. 38 et 292).
We first recall the following remarkable general result, see e.g. Lemma 1 in [11]. Let f

be a polynomial with real simple zeros x1 < · · · < xn, satisfying the ODE f ′′−2af ′+bf = 0
where a and b are meromorphic function whose poles are different from the xi’s. Then for
any fixed k ∈ {1 · · ·n}, ∑

j 6=k

1
(xk − xj)2 = ∆(xk)− 2a′(xk)

3 , (2.1)

with ∆(x) = b(x)− a2(x). Such equalities are called Bethe ansatz equations. (p. 300).
For α > −1, the Laguerre polynomials L(α)

n (n indicates the degree) are orthogonal
polynomials with respect to the weight xαe−x on (0,∞). Let xn,n(α) < · · · < xn,1(α)
denote the zeros of L(α)

n . It is known that the polynomial L(α)
n is a solution of the second

order ODE:

u′′ −
(

1− α+ 1
x

)
u′ + n

x
u = 0.

In this case, a(x) = 1
2
(
1− α+1

x

)
. Therefore,

∆(x) = n

x
− (x− α− 1)2

4x2 = −x
2 + (2(α+ 1) + 4n)x− (α+ 1)2

4x2 ,

and then using the notations in [11],

∆(x) = (U2 − x)(x− V 2)
4x2 , (2.0)

where
U =

√
n+ α+ 1 +

√
n, V =

√
n+ α+ 1−

√
n. (2.0)

(pp. 181, 187, 193, 218, 219, 222, 282 et 300).
Since the l.h.s. of (2.1) is positive and a′(x) > 0 for x > 0, an immediate consequence of

(2.1) is that for all k, (U2 − xn,k(α))(xn,k(α)− V 2) > 0, i.e.

V 2 < xn,n(α) < xn,1(α) < U2. (2.1)

Several bounds for the extreme zeros are known and can be found in [4, 7, 10, 11, 13]. For
instance, using the Bethe ansatz, Krasikov proved [11, Theorem 1]:

V 2 + 3V 4/3(U2 − V 2)−1/3 ≤ xn,n(α) < xn,1(α) ≤ U2 − 3U4/3(U2 − V 2)−1/3 + 2. (2.1)

(pp. 291 et 293).
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3 Main result

We show by means of elementary computations that the Bethe ansatz equality actually
yields a simple uniform lower bound for xn,k(α) − xn,k+1(α), which turns out to be sharp,
see Remark (2) below.

Theorem 3.1 Let α > −1. Then, the following lower bound for the spacings holds for all
k ∈ {1, · · · , n− 1}:

xn,k(α)− xn,k+1(α) ≥
√

3 α+ 1√
n(n+ α+ 1)

. (3.2)

Moreover, if α ≥ n/C for some C > 0, we have

xn,k(α)− xn,k+1(α) ≥ 1√
C + 1

√
α

n
. (3.3)

Proof of Theorem 3.1

From (2.1), (2.1) and a′(x) > 0 for x > 0, we deduce the following inequality

1
(xn,k(α)− xn,k+1(α))2 ≤

∑
j 6=k

1
(xn,k(α)− xn,j(α))2 ≤

1
3 sup
V 2≤x≤U2

∆(x). (3.4)

The first inequality above seems to be crude, but is not, see Remark (1) below.
Let us then study the function ∆. The derivative of ∆ on (0,+∞) reads:

∆′(x) =
(−2x+ U2 + V 2)x2 − 2x

(
−x2 + (U2 + V 2)x− U2V 2)

4x4 = 2U2V 2 − (U2 + V 2)x
4x3 .

Thus, ∆ has a unique maximum on (0,+∞) that is reached at x∗ = 2U2V 2

U2+V 2 . We have:

U2 − x∗ = U4 − U2V 2

U2 + V 2 = U2U
2 − V 2

U2 + V 2

x∗ − V 2 = U2V 2 − V 4

U2 + V 2 = V 2U
2 − V 2

U2 + V 2 .

Thus, we obtain by plugging into (2.0),

sup
V 2≤x≤U2

∆(x) = ∆(x∗) = (U2 − V 2)2

16 U2V 2 ,

since one can check that x∗ ∈ (V 2, U2). Moreover, from the expressions (2) of U and V :

U2 − V 2 = (U − V )(U + V ) = 4
√
n
√
n+ α+ 1

UV = α+ 1.

Hence, plugging these last equalities in (3.4), we can write

1
(xn,k(α)− xn,k+1(α))2 ≤ 1

3
42 n(n+ α+ 1)

16 (α+ 1)2 ,
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and finally

xn,k(α)− xn,k+1(α) ≥
√

3 α+ 1√
n(n+ α+ 1)

.

Now assume that n ≤ Cα. Then n + α + 1 ≤ (C + 1)α + 1. Therefore
√
n+ α+ 1 ≤√

2(C + 1)α, where we used 1 ≤ Cα ≤ (C + 1)α. Hence

xn,k(α)− xn,k+1(α) ≥

√
3

2(C + 1)

√
α

n
,

which completes the proof of Theorem 3.1.

Remarks
(a) Notice that replacing the sum

∑
j 6=k(xn,k(α)−xn,j(α))−2 by the single term (xn,k(α)−

xn,k+1(α))−2 does not deteriorate a priori the order of dependency on n and α of a
uniform bound in k of xn,k(α) − xn,k+1(α). Indeed, let 0 < δ < xn,k(α) − xn,k+1(α)
for all k, we have the following simple inequality for any fixed k:

1
(xn,k(α)− xn,k+1(α))2 ≤

∑
j 6=k

1
(xn,k(α)− xn,j(α))2 ≤

∑
j 6=k

1
(δ|j − k|)2 ≤ 2π

2

6
1
δ2 .

(b) Let us verify that our bound is sharp regarding the order of dependency on n and α
in various ranges.
Case α ∈ (−1, 1]: Theorem 5.1 in [1] says that for all α ∈ (−1, 1]:

(n+ (α+ 1)/2) (xn,k(α)− xn,k+1(α)) n→∞−−−−→ j2
α,k+1 − j2

α,k,

where jα,k is the k-th zeros of the Bessel function Jα(x). But, for all k ≥ 1, the
following holds (see [8, Theorem 3] and [9, p.2]):

π ≤ jα,k+1 − jα,k ≤ 2π
jα,k+1 + jα,k ≥ 2

√
(k − 1/4)2π + α2 ≥ 1 + α.

As a consequence, for small k, xn,k(α)−xn,k+1(α) ∼ C(α)/n, which is consistent with
our bound (3.2).
Case n ≤ Cα for an absolute constant C > 0: Summing (3.3) over k yields

√
nα√
C + 1

≤
∑

1≤k≤n−1
(xn,k(α)− xn,k+1(α)) = xn,1(α)− xn,n(α)

≤ U2 − V 2 = 4
√
n
√
n+ α+ 1 ≤ 6

√
C + 1

√
nα,

which means that the bound (3.3) is sharp with respect to the orders of n and α up
to a multiplicative constant.
Notice moreover that in full generality, C can be taken as a function of n with abso-
lutely no change in the proof.

(c) Finally, since the Bethe ansatz equation (2.1) is a general equality for polynomials f
with real simple zeros, satisfying the ODE f ′′ − 2af ′ + bf = 0, good prior bounds
on the extreme zeros for such polynomials could be used to obtain similar results as
Theorem 3.1.
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4 Numerical results

We now provide numerical results on the successive spacings of the Laguerre polynomials
L

(α)
n for various values of n and α.
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Figure M.1: Comparison between the uniform bound (3.2) in red, and the function i 7→
xn,i(α)−xn,i+1(α), 1 ≤ i ≤ n−1, in blue. We set α = 1, 100, 103, 104 and n = 10, 20, 50, 100.

Let us make a few comments on Figure M.1. The first column illustrates that the
uniform bound almost coincides with the smallest spacing, which is here xn,n−1(1)−xn,n(1)
(Recall that xn,n(α) is the smallest zero). When α is large compared to n, the behavior
is quite different. For instance, based on Remark 2 in the case α ≥ n/C, we can expect
most spacings to be almost equal, i.e. close to the uniform lower bound

√
α/n up to a

multiplicative constant. In the last two columns of Figure M.1 (large values of α compared
to n), we observe that this phenomena actually occurs in the bulk, i.e. for εn ≤ i ≤ (1−ε)n,
0 < ε < 1.

The results plotted in Figure M.1 have been obtained using Matlab and the codes avail-
able at http://people.sc.fsu.edu/˜jburkardt/m_src/laguerre_polynomial/.

http://people.sc.fsu.edu/~jburkardt/m_src/laguerre_polynomial/
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