
HAL Id: tel-01758280
https://theses.hal.science/tel-01758280

Submitted on 4 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Outsourcing Network Services via the NBI of the SDN
Amin Aflatoonian

To cite this version:
Amin Aflatoonian. Outsourcing Network Services via the NBI of the SDN. Networking and Internet
Architecture [cs.NI]. Ecole nationale supérieure Mines-Télécom Atlantique, 2017. English. �NNT :
2017IMTA0032�. �tel-01758280�

https://theses.hal.science/tel-01758280
https://hal.archives-ouvertes.fr

THÈSE / IMT Atlantique

sous le sceau de l’Université Bretagne Loire

pour obtenir le grade de

DOCTEUR D'IMT Atlantique

Spécialité : Informatique

École Doctorale Mathématiques et STIC

Présentée par

Amin Aflatoonian
Préparée dans le département Systèmes réseaux,
cybersécurité & droit du numérique

Laboratoire Irisa

Outsourcing Network
Services Via the NBI of SDN

Thèse soutenue le 19 septembre 2017

devant le jury composé de :

Christophe Chassot
Professeur, Insa / DGEI - Toulouse / président

Noël Crespi
Professeur, Télécom SudParis / rapporteur

Pascal Lorenz
Professeur, Université Haute Alsace - IUT de Colmar / rapporteur

Mathieu Bouet
Ingénieur R&D, Thales Communications & Security S.A.S - Gennevilliers / examinateur

Karine Guillouard
Ingénieur R&D, Orange Labs - Cesson Sévigné / examinateur

Vincent Catros
Ingénieur R&D, Orange Labs - Lannion / examinateur

Ahmed Bouabdallah
Maître de conférences, IMT Atlantique / examinateur

Jean-Marie Bonnin
Professeur, IMT Atlantique / directeur de thèse

i

Acknowledgements

This thesis took place in Orange Labs of Rennes within the MCA’s team in the context of

a CIFRE contract. I would like then to thank the MCA’s former team manager M. Mathieu

MORANGE and current manager M. Florent LE LAIN for giving me this opportunity.

I am most grateful to the people with whom I have most closely worked. First of all, my ad-

visor Dr. Ahmed BOUABDALLAH, who followed this work from the early beginning to the

manuscript writing. I am grateful for his availability and encouragement. I am also grateful

to my thesis director Dr. Jean-Marie BONNIN for his opinions, advices and for guiding my

work through these four years. I would like to express my gratitude to Dr. Karine GUIL-

LOUARD and M. Vincent CATROS for their support, availability and involvement.

I would like to thank the members of my Ph.D. committee for reading my dissertation. I

feel greatly honoured that they have accepted to evaluate my work. I am most grateful to

my wife, Nasim, for her constant care and support throughout the long hours of work and

for her listening when I was frustrated. I am especially grateful to my parents for having

supported me during my studies.

Rennes, 19 September 2017 A. A.

iii

Abstract

Over the past decades, Service Providers (SPs) have been crossed through several genera-

tions of technologies redefining networks and requiring new business models. The economy

of an SP depends on its network which is evaluated by its reliability, availability and ability

to deliver new services. The ongoing network transformation brings the opportunity for

service innovation while reducing costs and mitigating the locking of suppliers. Digital-

ization and recent virtualization are changing the service management methods, traditional

network services are shifting towards new on-demand network services. These ones al-

low customers to deploy and manage their services independently and optimally through

a well-defined interface opened to the SP’s platform. To offer this freedom to its customers

and to provide on-demand network capabilities, the SP must be able to rely on a dynamic

and programmable network control platform. We argue in this thesis that this platform

can be provided by Software-Defined Networking (SDN) technology. Indeed, the SDN con-

troller can be used to provide an interface to service customers where they could on-demand

subscribe to new services and modify or retire existing ones.

To this end we first characterize the perimeter of this class of new services. We identify the

weakest management constraints that such services should meet and we integrate them in

an abstract model structuring their lifecycle. This one involves two loosely coupled views,

one specific to the customer and the other one to the SP. This double-sided service lifecycle

is finally refined with a data model completing each of its steps.

The SDN architecture does not support all stages of the previous lifecycle. We extend it

through an original Framework allowing the management of all the steps identified in the

lifecycle. This Framework is organized around a service orchestrator and a resource orches-

trator communicating via an internal interface. Its implementation requires an encapsula-

tion of the SDN controller. The example of the MPLS VPN serves as a guideline to illustrate

our approach. A PoC based on the OpenDaylight controller targeting the main parts of the

Framework is proposed.

Providing to the SP the mastering of SDN’s openness on its northbound side should largely

be profitable to both SP and customers. We therefore propose to value our Framework by

introducing a new and original control model called BYOC (Bring Your Own Control) which

formalizes, according to various modalities, the capability of outsourcing an on-demand

service by the delegation of part of its control to an external third party. Opening a control

interface and offering a granular access to the underlying infrastructure leads us to take into

account some characteristics, such as multi-tenancy or security, at the Northbound Interface

(NBI) level of the SDN controller.

iv

An outsourced on-demand service is divided into a customer part and an SP one. The latter

exposes to the former APIs which allow requesting the execution of the actions involved in

the different steps of the lifecycle. We present an XMPP-based NBI allowing opening up a

secured BYOC-enabled API. The asynchronous nature of this protocol together with its in-

tegrated security functions, eases the outsourcing of control into a multi-tenant SDN frame-

work. Delegating the control of all or a part of a service introduces some potential value-

added services. Security applications are one of these BYOC-based services that might be

provided by an SP. We discuss their feasibility through a BYOC-based Intrusion Prevention

System (IPS) service example.

v

Résumé

Au cours des dernières décennies, les fournisseurs de services (SP) ont eu à gérer plusieurs

générations de technologies redéfinissant les réseaux et nécessitant de nouveaux modèles

économiques. L’équilibre financier d’un SP dépend principalement des capacités de son ré-

seau qui est valorisé par sa fiabilité, sa disponibilité et sa capacité à fournir de nouveaux

services. À contrario l’évolution permanente du réseau offre au SP l’opportunité d’innover

en matière de nouveaux services tout en réduisant les coûts et en limitant sa dépendance

auprès des équipementiers. L’émergence récente du paradigme de la virtualisation modifie

profondément les méthodes de gestion des services et conduit à une évolution des services

réseau traditionnels vers de nouveaux services réseau à la demande. Ceux-ci permettent

aux clients du SP de déployer et de gérer leurs services de manière autonome et optimale

grâce à l’ouverture par le SP d’une interface bien définie sur sa plate-forme. Pour offrir cette

souplesse de fonctionnement à ses clients en leurs fournissant des capacités réseau à la de-

mande, le SP doit pouvoir s’appuyer sur une plate-forme de gestion permettant un contrôle

dynamique et programmable du réseau. Nous montrons dans cette thèse qu’une telle plate-

forme peut être fournie grâce à la technologie SDN (Software-Defined Networking). Nous

proposons une caractérisation préalable de la classe de services réseau à la demande, qui en

fixe le périmètre. Les contraintes de gestion les plus faibles que ces services doivent satis-

faire sont identifiées et intégrées à un modèle abstrait de leur cycle de vie. Celui-ci détermine

deux vues faiblement couplées, l’une spécifique au client et l’autre au SP. Ce cycle de vie est

complété par un modèle de données qui précise chacune de ses étapes.

L’architecture SDN ne prend pas en charge toutes les étapes du cycle de vie précédent. Nous

l’étendons à travers un Framework original permettant la gestion de toutes les étapes identi-

fiées dans le cycle de vie. Ce Framework est organisé autour d’un orchestrateur de services

et d’un orchestrateur de ressources communiquant via une interface interne. Sa mise en

œuvre nécessite une encapsulation du contrôleur SDN. L’exemple du VPN MPLS sert de

fil conducteur pour illustrer notre approche. Un PoC basé sur le contrôleur OpenDaylight

ciblant les parties principales du Framework est proposé.

La maitrise par le SP de l’ouverture contrôlée de la face nord du SDN devrait être profitable

tant au SP qu’à ses clients. Nous proposons de valoriser notre Framework en introduisant

un modèle original de contrôle appelé BYOC (Bring Your Own Control) qui formalise, selon

différentes modalités, la capacité d’externaliser un service à la demande par la délégation

d’une partie de son contrôle à un tiers externe. L’ouverture d’une interface de contrôle of-

frant un accès de granularité variable à l’infrastructure sous-jacente, nous conduit à prendre

vi

en compte certaines exigences incontournables telles que le multi-tenancy ou la sécurité, au

niveau de l’interface Northbound (NBI) du contrôleur SDN.

Un service externalisé à la demande est structurée en une partie client et une partie SP. Cette

dernière expose à la partie client des API qui permettent de demander l’exécution des ac-

tions induites par les différentes étapes du cycle de vie. Nous présentons un NBI basé sur

XMPP permettant l’ouverture d’une API BYOC sécurisée. La nature asynchrone de ce proto-

cole ainsi que ses fonctions de sécurité natives facilitent l’externalisation du contrôle dans un

environnement SDN multi-tenant. La délégation du contrôle de tout ou partie d’un service

permet d’enrichir certains services d’une valeur ajoutée supplémentaire. Les applications

de sécurité font partie des services BYOC pouvant être fournis par un SP. Nous illustrons

leur faisabilité par l’exemple du service IPS (système de prévention d’intrusion) décline en

BYOC.

vii

Personal Bibliography

Publications

(2016) H. Jiang, A. Bouabdallah, A. Aflatoonian, J. M. Bonnin, K. Guillouard, "A Secure

Multi-Tenant Framework for SDN", 9th International Conference on Security of Information and

Networks (SIN ’16), ACM, New York, 2016, pp. 40-44.

(2015) A. Aflatoonian, A. Bouabdallah, K. Guillouard, V. Catros and J. M. Bonnin, "BYOC:

Bring Your Own Control a new concept to monetize SDN’s openness," 1st IEEE Conference

on Network Softwarization (NetSoft), London, 2015, pp. 1-5.

(2014) A. Aflatoonian, A. Bouabdallah, V. Catros, K. Guillouard, J. M. Bonnin, "An asyn-

chronous push/pull communication solution for northbound interface of SDN based on

XMPP", 10th edition of the Francophone conference on Management of Networks and Services

GRES, Paris, France. 2014.

(2014) A. Aflatoonian, A. Bouabdallah, V. Catros, K. Guillouard, J. M. Bonnin, "An Orchestrator-

Based SDN Framework with Its Northbound Interface", In: Advances in Communication Net-

working. EUNICE 2014. Lecture Notes in Computer Science, vol 8846. Springer, Cham, pp.

1-13.

Patents

(2016) M. R. Sama, L. Suciu, A. Aflatoonian, K. Guillouard, "Device and methods for con-

trolling an IP network core", EP Patent WO/2016/034798.

ix

Contents

Acknowledgements i

Abstract iii

Résumé v

Personal Bibliography vii

List of Figures xiii

List of Tables xv

Resumé étendu xxi

1 Introduction 1

1.1 Thesis context . 1

1.2 Motivation and background . 2

1.3 Problem statement . 2

1.4 Contributions of this thesis . 3

1.5 Document structure . 4

2 Programming the network 7

2.1 Technological context . 7

2.2 Modeling programmable networks . 8

2.3 Fundamentals of programmable networks . 9

2.4 Software-Defined Networking (SDN) . 11

2.4.1 Architecture . 11

2.4.2 SDN Infrastructure . 11

2.4.3 SDN Southbound Interface (SBI) . 12

2.4.3.1 OpenFlow Protocol . 12

2.4.3.2 OpenFlow switch . 13

2.4.4 SDN Controller . 14

2.4.5 SDN Northbound Interface (NBI) . 15

2.5 SDN Applications Analysis . 16

2.5.1 SDN Applications . 16

2.5.1.1 Traffic engineering . 16

2.5.1.2 Mobility and wireless . 17

x

2.5.1.3 Measurement and monitoring 17

2.5.1.4 Security . 17

2.5.2 Intuitive classification of SDN applications 18

2.5.3 Impact of SDN Applications on Controller design 19

2.6 Network Function Virtualization, an approach to service orchestration 20

3 SDN-based Outsourcing Of A Network Service 23

3.1 Introduction to MPLS networks . 23

3.1.1 MPLS data plan . 23

3.1.2 MPLS control plan . 24

3.1.3 MPLS VPN Sample Configuration . 26

3.1.4 MPLS VPN Service Management . 27

3.2 SDN-based MPLS . 28

3.2.1 OpenContrail Solution . 28

3.2.2 OpenFlow-based MPLS Networks . 29

3.2.2.1 MPLS Networks in OpenDaylight controller 30

3.2.2.2 OpenDaylight native MPLS API 31

3.2.2.3 OpenDaylight VPN Service project 31

3.3 Outsourcing problematics . 34

4 Service lifecycle and Service Data Model 37

4.1 Service Lifecycle . 38

4.1.1 Client side Service Lifecycle . 38

4.1.1.1 Client side Service Lifecycle managed by Type-1 applications 39

4.1.1.2 Client side Service Lifecycle managed by Type-2 applications 39

4.1.1.3 Client side Service Lifecycle managed by Type-3 applications 40

4.1.1.4 Global Client-side Service Lifecycle 40

4.1.2 Operator Side Service Lifecycle . 41

4.1.3 The global view . 43

4.2 Service Data Model . 44

4.2.1 A two-layered approach . 44

4.2.2 Applying the two-layered model approach on Service Lifecycle 45

4.2.2.1 Applying two-layered model on client side service lifecycle . 45

4.2.2.2 Applying two-layered model on operator side service lifecycle 45

4.3 Conclusion . 48

5 An SDN-based Framework For Service Provisioning 49

5.1 Illustrating Service Deployment Example . 50

5.2 Orchestrator-based SDN Framework . 52

5.2.1 Internal structure of the Service Orchestrator 52

5.2.1.1 Service Request Manager (SRM) 53

5.2.1.2 Service Decomposition and Compilation Manager (SDCM) . 53

5.2.1.3 Service Configuration Manager (SCM) 55

xi

5.2.1.4 Service Compilation Manager (SCM) - SDN Controller (SDNC)

Interface . 56

5.2.1.5 Service Monitoring Manager (SMM) 57

5.2.2 Internal architecture of the Resource Orchestrator 58

5.2.3 Framework interfaces . 59

5.3 Implementation . 59

5.3.1 Hardware architecture . 59

5.3.2 Network architecture . 60

5.3.3 Software architecture . 61

5.4 Conclusion . 65

6 Bring Your Own Control (BYOC) 67

6.1 Analysis of BYOC concept . 69

6.1.1 Outsourcing services . 69

6.1.2 Software-Defined Networking (SDN) Service Lifecycle and Northbound

Interface (NBI) Application Programming Interface (API)s 69

6.1.2.1 Applying the Bring Your Own Control (BYOC) concept to

Type 1 services . 70

6.1.2.2 Applying the BYOC concept to Type 2 services 70

6.1.2.3 Applying the BYOC concept to Type 3 services 70

6.2 Northbound Interface permitting the deployment of a BYOC service 72

6.2.1 Requirements for specification of the NBI 72

6.2.2 SDN NBI Implementations . 73

6.2.2.1 Representational state transfer (REST) 73

6.2.3 XMPP As An Alternative Solution . 74

6.2.3.1 XMPP-based NBI . 75

6.2.3.2 Global design . 75

6.2.3.3 NBI Data Model . 76

6.2.4 Simulation results . 76

6.3 Conclusion . 77

7 BYOC Use Case 79

7.1 IPS Control Plane as a Service . 79

7.1.1 Referenced architecture . 79

7.1.2 Proposed solution . 81

7.1.3 BYOC Use Case : A VPN service secured by a BYOC-based IPS 82

7.1.3.1 Implementing a secured VPN 82

7.1.3.2 Opening an IPS control interface 84

7.1.3.3 Decision Engine (DE) . 85

7.1.3.4 Decision Base (DB) . 86

7.1.3.5 Service Dispatcher (SD) and NBI 86

7.1.3.6 Detailed components of the Guest Controller (GC) 86

7.1.3.7 Applying the GC decision on the infrastructure 86

xii

7.1.4 Distributed IPS control plane . 86

7.2 Conclusion . 87

8 Conclusions and Future Research 91

8.1 Contributions . 91

8.2 Future researches . 93

8.2.0.1 A detailed study of the theoretical and technical approach of

the BYOC . 93

8.2.1 BYOC as a key enabler to flexible NFV service chaining 94

8.2.2 BYOC as a key concept leading to 5G dynamic network slicing 95

Bibliography 97

xiii

List of Figures

2.1 Global model of programmable networks (source [9]) 8

2.2 Computation and communication capabilities of programmable networks (source

[9]) . 9

2.3 The IETF policy architecture (source [15]) . 10

2.4 SDN Architecture . 11

2.5 OpenFlow Protocol in practice . 12

2.6 OpenFlow Switch Components (source [23]) 13

2.7 Flow Table (source [24]) . 14

2.8 A general representation of the three types of services implemented by the

Guest Controller . 18

2.9 Additional control functions brought by SDN Applications 20

2.10 The MANO architecture proposed by ETSI (source [62]) 21

3.1 Label Switch Routers (LSR)s . 24

3.2 MPLS Architecture Elements . 25

3.3 Routing protocols used by PE . 25

3.4 MP-BGP update process . 26

3.5 OpenContrail control plane architecture (source [69]) 28

3.6 OpenDaylight Architecture (source [32]) . 30

3.7 OpenDaylight VPN Service project (source [32]) 32

3.8 VPN Configuration Using OpenDaylight VPN Service projetct 33

4.1 Client side Service Lifecycle of Type-1 applications 39

4.2 Client side Service Lifecycle of Type-2 applications 40

4.3 Client side Service Lifecycle of Type-3 applications 41

4.4 Global Client Side Service Lifecycle . 42

4.5 Operator Side Service Lifecycle . 43

4.6 Global Service lifecycle . 44

5.1 Functional modules of the service and resource management platform. 50

5.2 Service Deployment Call Flow . 51

5.3 Proposed orchestrator-based SDN Framework 53

5.4 Physical topology of the negotiated MPLS VPN service 54

5.5 Abstract architecture of the negotiated MPLS VPN service 54

5.6 Service Update Call Flow . 55

xiv

5.7 REST call allowing to reserve a resource . 59

5.8 Physical architecture of the implemented framework 60

5.9 Network architecture of the implemented service 60

5.10 Class diagram of the implemented framework 62

5.11 Negotiated MPLS VPN service model . 63

5.12 Implemented MPLS VPN transformer simplified algorithm 63

5.13 A simplified device model template used for Ingress LSR 64

6.1 Positioning the BYOC in the SDN architecture 68

6.2 Main APIs structuring the NBI . 69

6.3 Nominal call-flow for the three types of BYOC services applied to the "MPLS

networks" use case . 71

6.4 Communication between components . 73

6.5 The XMPP-based NBI . 75

6.6 NBI Overhead Charge . 77

7.1 NM-DIPS architecture (source [97]) . 80

7.2 ALADDIN architecture (source [98]) . 81

7.3 Global architecture of the proposal . 82

7.4 Physical topology of the negotiated Secured VPN service 83

7.5 Internal architecture of an IDS-end module deployed on each site 84

7.6 A model of Decision Base implemented within the SO 85

7.7 Decision Engine task flowchart . 85

7.8 Internal architecture of the Security Manager 87

7.9 Distributed IPS control plane . 88

7.10 A simplified abstract model of the Secured VPN service 89

xv

List of Tables

2.1 SDN Controllers and their NBI . 15

3.1 MPLS VPN configuration parameters . 27

3.2 MPLS VPN configuration parameters accessible via OpenDaylight API 32

3.3 MPLS VPN configuration parameters accessible via OpenDaylight VPN Ser-

vice project . 34

4.1 Service lifecycle phases and their related data models and transformation

methods . 47

xvii

Acronyms

5G 5th generation

AJAX Asynchronous JAvascript and Xml

ALTO Application-Layer Traffic Optimization

API Application Programming Interface

ARP Address Resolution Protocol

ARPU Average Revenue Per User

AS Autonomous System

BGP Border Gateway Protocol

BYOC Bring Your Own Control

CAGR Compound Annual Growth Rate

CapEx Capital Expenditure

CDN Content Distribution Network

CE Customer Edge

CLI Command Line Interface

CoS Class of Service

COPS Common Open Policy Service

COTS Commercial Off-The-Shelf

CSV Comma-Separated Values

DB Decision Base

DC Data Center

DDoS Distributed Denial of Service

DE Decision Engine

DHCP Dynamic Host Configuration Protocol

DoS Denial of Service

DPID Datapath ID

EaYB Earn as You Bring

eBGP Exterior BGP

EMS Elemental Management Systems

eNB evolved Node B

EPC Evolved Packet Core

EPS Evolved Packet System

ETSI European Telecommunications Standards Institute

FAWG Forwarding Abstraction Working Group

xviii

FIB Forwarding Information Base

ForCES Forwarding and Control Element Separation

GC Guest Controller

GRE Generic Routing Encapsulation

GUTI Globally Unique Temporary ID

HSS Home Subscriber Server

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

ID Identifier

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IGP Interior Gateway Protocol

IM Instant Messaging

IP Internet Protocol

IPS Intrusion Prevention System

ISMI International Mobile Subscriber Identity

IT Information Technology

JID Jabber ID

JSON JavaScript Object Notation

LAN Local Area Network

LDP Label Distribution Protocol

LSP Label Switch Path

LSR Label Switch Router

LTE Long Term Evolution

MAC Media Access Control

MANO Management and Orchestration

MME Mobility Management Entity

MNO Mobile Network Operator

MP-BGP Multiprotocol BGP

MPLS MultiProtocol Label Switching

MPLS-TE MPLS Traffic Engineering

MVNO Mobile Virtual Network Operator

NaaS Network as a Service

NBI Northbound Interface

NETCONF Network Configuration Protoco

NDPMs Negotiable Data Path Models

NFV Network Function Virtualization

ONF Open Networking Foundation

OpEx Operating Expenditure

xix

OS Operating System

OSPF Open Shortest Path First

OSS Operation Support System

OTT Over The Top

OVS Open vSwitch

OVSDB Open vSwitch Database

P Provider

PCEP Path Computation Element Protocol

PDN Packet Data Network

PDP Policy Decision Point

PE Provider Edge

PEP Policy Enforcement Point

PGW PDN Gateway

POC Proof Of Concept

PoP Point of Presence

POSIX Portable Operating System Interface

QoE Quality of Experience

QoS Quality of Service

RAM Random-Access Memory

RD Route Distinguisher

REST Representational State Transfer

RR Route Reflector

RRC Radio Resource Control

RRM Resource Reservation Manager

RO Resource Orchestrator

RSS Rich Site Summary

RT Route Target

RTD Round-Trip Delay time

SAL Service Abstraction Layer

SASL Simple Authentication and Security Layer

SBI Southbound Interface

SC Service Customer

SCM Service Compilation Manager

SD Service Dispatcher

SDCM Service Decomposition Compilation Manager

SDN Software-Defined Networking

SDNC SDN Controller

SGW Serving Gateway

SM Security Manager

SMDB Service Model Database

xx

SMM Service Monitoring Manager

SDOs Standard Development Organizations

SC Service Chain

SF Service Function

SFC Service Function Chaining

SFF Service Function Forwarder

SFP Service Function Path

SLA Service Level Agreement

SMM Service Monitoring Manager

SNMP Simple Network Management Protocol

SO Service Orchestrator

SOAP Simple Object Access Protocol

SP Security Proxy

SRM Service Request Manager

SSL Secure Sockets Layer

STP Spanning Tree Protocol

TDB Topology Database

TCP Transmission Control Protocol

TE Traffic Engineering

TLS Transport Layer Security

TTM Time To Market

UE User Equipement

URL Uniform Resource Locator

VIM Virtual Infrastructure Manager

VLAN Virtual LAN

VM Virtual Machine

VNF Virtual Network Function

VNFM Virtual Network Function Manager

vNIC Virtual Network Interface Cart

VPN Virtual Private Network

VRF Virtual Routing and Forwarding

vRouter Virtual Router

VXLAN Virtual Extensible LAN

WAP Wireless Access Point

XEP XMPP Extension Protocols

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

xxi

Resumé étendu

Introduction

Au cours des dernières décennies, les fournisseurs de services (SP) ont eu à gérer plusieurs

générations de technologies redéfinissant les réseaux et nécessitant de nouveaux modèles

économiques. L’équilibre financier d’un SP dépend principalement des capacités de son ré-

seau qui est valorisé par sa fiabilité, sa disponibilité et sa capacité à fournir de nouveaux

services. La croissance des demandes d’accès au réseau conduisent les fournisseurs de ser-

vices à rechercher des solutions rentables pour y répondre tout en réduisant la complexité

et le cout du réseau et en accélérant l’innovation de service.

Le réseau d’un opérateur est conçu sur la base d’équipements soigneusement développés,

testés et configurés. En raison des enjeux critiques liés à ce réseau, les opérateurs limitent au-

tant que faire se peut, sa modifications. Les éléments matériels, les protocoles et les services

nécessitent plusieurs années de standardisation avant d’être intégrés dans les équipements

par les fournisseurs. Ce verrouillage matériel réduit la capacité des fournisseurs de services

à innover, intégrer et développer de nouveaux services.

La transformation du réseau offre la possibilité d’innover en matière de service tout en ré-

duisant les coûts et en atténuant les restrictions imposées par les équipementiers. Transfor-

mation signifie qu’il est possible d’optimiser l’exploitation des capacités du réseau grâce à

la puissance des applications pour finalement donner au réseau du fournisseur de services

une dimension de plate-forme de prestation de services numériques. L’émergence récente

de la technologie Software Defined Networking (SDN) accompagné du modèle Network

Function Virtualisation (NFV) permettent d’envisager l’accélération de la transformation

du réseau. La promesse de ces approches se décline en terme de flexibilité et d’agilité du

réseau tout en créant des solutions rentables.

Le concept SDN introduit la possibilité de découpler les fonctionnalités de contrôle et de

réacheminement des équipements réseau en plaçant les premières sur une unité centrale

appelée contrôleur. Cette séparation permet de contrôler le réseau à partir d’une couche

applicative centralisé, ce qui simplifie les tâches de contrôle et de gestion du réseau. De plus

la programmabilité du contrôleur accélère la transformation du réseau des fournisseurs de

services.

Dans cette thèse nous nous intéressons à la gestion des services de télécommunication dans

un environnement contrôlé. L’exemple de la gestion d’un service de connectivité (MPLS

xxii

VPN) enrichi d’ un contrôle de la qualité de service (QoS) centralisé, nous sert de fil conduc-

teur pour illustrer notre analyse. Au cours de la dernière décennie, les réseaux MPLS ont

évolué et sont devenus critiques pour les fournisseurs de services. MPLS est utilisé à la fois

pour une utilisation optimisée des ressources et pour l’établissement de connexions VPN.

À mesure que la transformation du réseau devient réalité et que la numérisation modifie les

méthodes de gestion des services, les services de réseau traditionnels sont progressivement

remplacés par les services de réseau à la demande. Les services à la demande permettent aux

clients de déployer et de gérer leurs services de manière autonome grâce à l’ouverture par

le fournisseur de service d’une interface bien définie sur sa plate-forme. Cette interface per-

met à différents clients de gérer leurs propres services possédant chacun des fonctionnalités

particulières. Pour offrir cette souplesse de fonctionnement à ses clients en leurs fournis-

sant des capacités réseau à la demande, le fournisseur de services doit pouvoir s’appuyer

sur une plate-forme de gestion permettant un contrôle dynamique et programmable du ré-

seau. Nous montrons dans cette thèse qu’une telle plate-forme peut être fournie grâce à la

technologie SDN (Software-Defined Networking).

Un réseau de télécommunications fait appel à différentes technologies fournissant plusieurs

types de services. Ces services sont utilisés par plusieurs clients et une mauvaise configu-

ration d’un service client peut avoir des conséquences sur la qualité de service des autres.

La position centrale du contrôleur SDN permet à l’opérateur de gérer tous les services et

équipements. Cependant la fourniture d’une interface de gestion et de contrôle de service

à granularité variable s’appuyant sur ce contrôleur requiert la mise en place d’une couche

supplémentaire de gestion des services au-delà du contrôleur et permettant au fournisseur

de services de gérer le cycle de vie du service tout en mettant à la disposition de ses clients

une interface de gestion de service.

Nous présentons dans le cadre de cette thèse un framework basé sur SDN permettant à la

fois de gérer le cycle de vie d’un service et d’ouvrir avec une granularité contrôlable l’in-

terface de gestion de services. La granularité de cette interface permet de fournir différents

niveaux d’abstraction au client, chacun permettant d’offrir une partie des capacités néces-

saires pour un service à la demande.

Découpler le plan de contrôle et le plan de données des réseaux MPLS et localiser le premier

dans un contrôleur apporte plusieurs avantages en termes de gestion de service, d’agilité

de service et de contrôle de la QoS. La couche de contrôle centralisée offre une interface de

gestion de service disponible pour le client. Néanmoins, cette localisation et cette ouverture

peuvent créer plusieurs défis. Le backone MPLS est un environnement partagé entre les

clients d’un opérateur. Pour déployer un réseau VPN l’opérateur configure un ensemble de

périphériques, situés en cœur et en bordure de réseau. Ces équipements fournissent ainsi

e, parallèle plusieurs services aux clients qui utilisent la connexion VPN comme moyen de

transaction fiable de leurs données confidentielles.

L’externalisation du plan de contrôle vers un contrôleur SDN (SDNC) apporte beaucoup de

visibilité sur le trafic échangé au sein du réseau. C’est grâce à l’interface nord (NBI) de ce

xxiii

contrôleur qu’un client peut créer un service à la demande et gérer ce service dynamique-

ment. La granularité de cette information donne au client plus de liberté dans la création et

la gestion de son service.

En plus de maintenir l’agilité de la gestion des services, nous proposons d’introduire un

framework de gestion des services au-delà du SDNC. Ce framework fournit une vue d’en-

semble de toutes les fonctions et commandes. Nous renforçons ce framework en ajoutant

la question de l’accès du client aux ressources et services gérés. En effet, ce framework doit

être capable de fournir une granularité variable, capable de gérer tous les types de services :

— Applications de type 1 : Le modèle abstrait de service apporté par NBI du framework

permet à l’application côté client de configurer un service avec un minimum d’infor-

mations communiquées entre l’application et le framework. L’accès restreint fourni

par le framework empêche les fuites de données involontaires ou intentionnelles et

la mauvaise configuration du service.

— Applications de type 2 : Du côté sud, les blocs internes du framework reçoivent les

événements de réseau venus directement à partir des ressources, ou indirectement via

le SDNC. Du côté nord, ces blocs ouvrent une API aux applications leurs permettant

de s’abonner à certaines métriques utilisées pour des raisons de surveillance. Sur la

base d’événements remontés par les ressources, ces métriques sont calculées par des

blocs internes du framework et sont envoyées à l’application appropriée.

— Applications de type 3 : L’accès contrôlé aux fonctions basées sur SDN assurées par

le framework fournit non seulement une API de gestion de service, mais aussi une

interface de contrôle de service ouvert à l’application client. L’API de contrôle avec

une granularité fine permet aux clients d’avoir un accès de bas niveau aux ressources

réseau via le framework. En utilisant cette API les clients reçoivent les événements

réseau envoyés par les équipements, à partir desquels ils reconfigurent le service.

Afin de fournir un framework capable de mettre en œuvre les API mentionnées, nous de-

vons analyser le cycle de vie du service en détail. Cette analyse conduit à l’identification de

tous les blocs internes du framework et à leurs articulations internes pour permettre aussi

bien la présentation d’une API de service et de contrôle que le déploiement l’allocation et la

configuration de ressources.

Cycle de vie du service et modèle de données de service

Afin de réduire la complexité de la gestion du cycle de vie, nous divisons le cycle de vie du

service global en deux points de vue complémentaires : la vue du client et celle de l’opé-

rateur. Chacune des deux vues capture uniquement les informations utiles pour l’acteur

associé. La vue globale peut cependant être obtenue en composant les deux vues partielles.

Sur la base de la classification des applications abordées dans nos études, nous analysons le

cycle de vie du service côté client pour les trois principaux types d’applications. Les appli-

cations de type 1 sont constituées d’applications créant un service réseau à l’aide de la NBI.

Cette catégorie ne surveille ni ne modifie le service en fonction des événements réseau.

xxiv

Le cycle de vie du service côté client géré par ce type d’applications contient deux étapes

principales :

— Création de service : L’application spécifie les caractéristiques de service dont elle a

besoin, elle négocie le SLA associé qui sera disponible pour une durée limitée et enfin

elle demande une nouvelle création de service.

— Retrait du service : l’application retire le service à la fin de la durée négociée. Cette

étape définit la fin de la durée de vie.

Les applications de type 2 tire parti des événements provenant de la NBI pour surveiller le

service. Il est à noter que ce service peut être créé par la même application qui surveille le

service.

Ce type d’application ajoute une étape supplémentaire au cycle de vie du service côté client.

Ce cycle de vie contient trois étapes principales :

— Création de service.

— Surveillance de service : Une fois créé, le service peut être utilisé par le client pour

une durée négociée. Pendant ce temps, certains paramètres réseau et de service se-

ront surveillés grâce aux événements et aux notifications envoyées par le SDNC à

l’application.

— Retrait de service.

Dans un cas plus complexe, c’est-à-dire les applications de type 3, une application peut créer

le service via la NBI, elle surveille le service via cette interface et, en fonction des événements

à venir, elle reconfigure le réseau via le SDNC. Ce type de contrôle ajoute une étape rétroac-

tive au cycle de vie du service côté client. Celui-ci contient quatre étapes principales :

— Création de service.

— Surveillance de service.

— Modification de service : Les événements remontés par les notifications peuvent dé-

clencher un algorithme implémenté dans l’application (implémenté au nord du SDNC),

dont la sortie reconfigure les ressources réseau sous-jacentes via le SDNC.

— Retrait de service.

Un cycle de vie global de service côté client contient toutes les étapes préalables nécessaires

pour gérer les trois types d’applications, discutées précédemment. Nous introduisons dans

ce modèle une nouvelle étape déclenchée par les opérations côté opérateur :

— Création de service.

— Surveillance de service.

— Modification de service.

— Mis à jour de service : La gestion du réseau de l’opérateur peut entraîner la mise à

jour du service. Cette mise à jour peut être émise en raison d’un problème survenant

lors de l’utilisation du service ou d’une modification de l’infrastructure réseau. Cette

mise à jour peut être minime, telle que la modification d’une règle dans l’un des

équipements sous-jacents, ou peut avoir un impact sur les étapes précédentes, avec

des conséquences sur la création du service et / ou sur la consommation du service.

— Retrait de service.

Le cycle de vie du service côté opérateur comprend en revanche six étapes principales :

xxv

— Demande de service : Une fois qu’une demande de création ou de modification de

service arrive du portail de service des utilisateurs, le gestionnaire de demandes né-

gocie le SLA et une spécification de service de haut niveau afin de l’implémenter. Il

convient de noter qu’avant d’accepter le SLA, l’opérateur doit s’assurer que les res-

sources existantes peuvent gérer le service demandé au moment où il sera déployé.

En cas d’indisponibilité, la demande sera mise en file d’attente.

— Décomposition de service, compilation : Le modèle de haut niveau du service de-

mandé est décomposé en plusieurs modèles de service élémentaires qui sont envoyés

au compilateur de service. Le compilateur génère un ensemble de configurations de

ressources réseau qui composent ce service.

— Configuration de service : Sur la base du précédent ensemble de configurations de

ressources réseau, plusieurs instances de ressources virtuelles correspondantes seront

créées, initialisées et réservées. Le service demandé peut ensuite être implémenté sur

ces ressources virtuelles créées en déployant des configurations de ressources réseau

générées par le compilateur.

— Maintenance et surveillance de service : Une fois qu’un service est mis en œuvre, sa

disponibilité, ses performances et sa capacité doivent être maintenues automatique-

ment. En parallèle, un gestionnaire de journaux de service surveillera tout le cycle de

vie du service.

— Mise à jour de service : Lors de l’exploitation du service, l’infrastructure réseau peut

nécessiter des modifications en raison de problèmes d’exécution ou d’évolution tech-

nique, etc. Elle entraîne une mise à jour susceptible d’avoir un impact différent sur

le service. La mise à jour peut être transparente pour le service ou peut nécessiter de

relancer une partie des premières étapes du cycle de vie du service.

— Retrait de service : la configuration du service sera retirée de l’infrastructure dès

qu’une demande de retrait arrive au système. Le retrait du service émis par l’exploi-

tant est hors du périmètre de ce travail.

Un framework d’approvisionnement de services SDN

Les processus de gestion des services peuvent être divisés en deux familles plus génériques :

la première gère toutes les étapes exécutants les taches liées au service, depuis la négociation

de service jusqu’à sa configuration et sa surveillance, et le second gère toutes les opérations

basées sur les ressources. Ces deux familles gérant ensemble tout le cycle de vie du service

côté opérateur. Ce framework est composé de deux couches d’orchestration principales :

— Orchestrateur de service (SO)

— Orchestrateur de ressource (RO)

L’ "Orchestrateur de service" sera dédié aux opérations de la partie service et est conforme

au cycle de vie du service côté opérateur :

— Demande de service

— Décomposition de service, compilation

— Configuration de service

xxvi

— Maintenance et surveillance de service

— Mise à jour de service

— Retrait de service

Cet orchestrateur reçoit les ordres de service et initie le cycle de vie du service en décompo-

sant les demandes de service complexes et de haut niveau en modèles de service élémen-

taires.

Ces modèles permettent de dériver le type et la taille des ressources nécessaires pour im-

plémenter ce service. Le SO demande la réservation de ressources virtuelles à partir de la

couche inférieure et déploie la configuration de service sur les ressources virtuelles via un

SDNC.

L’ "Orchestrateur de ressource" gère les opérations sur les ressources :

— Réservation de ressources

— Surveillance des ressources

Cet orchestrateur, qui gère les ressources physiques, réserve et lance les ressources virtuelles.

Il maintient et surveille les états des ressources physiques en utilisant son interface sud.

L’architecture interne de SO est composée de cinq modules principaux :

— Gestionnaire de demande de service (SCM) : il traite les demandes de service des

clients et négocie les spécifications du service.

— Gestionnaire de décomposition et compilation de service (SDCM) : il répartit toutes

les demandes de service reçues en un ou plusieurs modèles de service élémentaires

qui sont des modèles de configuration de ressources.

— Gestionnaire de configuration de service (SCM) : il configure les ressources physiques

ou virtuelles via le SDNC.

— Contrôleur SDN (SDNC)

— Gestionnaire de surveillance de service, d’une part, il reçoit les alarmes et notifica-

tions à venir de l’orchestrateur inférieur, RO, et d’autre part il communique les noti-

fications de service à l’application externe via la NBI.

Bring Your Own Control (BYOC)

NBI fait référence aux interfaces logicielles entre le contrôleur et ses applications. Celles-ci

sont extraites à travers la couche application consistant en un ensemble d’applications et

de systèmes de gestion agissant sur le comportement du réseau en haut de la pile SDN à

travers la NBI.

La nature centralisée de cette architecture apporte de grands avantages au domaine de ges-

tion de réseau. Les applications réseau, sur la couche supérieure de l’architecture, atteignent

le comportement réseau souhaité sans connaître la configuration détaillée du réseau phy-

sique. L’implémentation de la NBI repose sur le niveau d”abstraction du réseau à fournir

à l’application et sur le type de contrôle que l’application apporte au contrôleur, appelé SO

dans notre travail.

xxvii

NBI apparaît comme une frontière administrative naturelle entre l’orchestrateur SDN, géré

par un opérateur, et ses clients potentiels résidant dans la couche application. Fournir à

l’opérateur la capacité de maîtriser l’ouverture de SDN sur son côté nord devrait être lar-

gement profitable à l’opérateur et aux clients. Nous introduisons une telle fonctionnalité à

travers le concept de BYOC : Bring Your Own Control qui consiste à déléguer tout ou partie

du contrôle et/ou de la gestion de réseau à une application tierce appelée Guest Controller

(GC) et appartenant à un client extérieur.

BYOC devrait clairement permettre de réduire la charge de traitement du contrôleur. En ef-

fet, les architectures et les propositions SDN existantes centralisent la plupart du contrôle

de réseau et de la logique de décision dans une seule entité. Celle-ci doit supporter une

charge importante en fournissant un grand nombre de services tous déployés dans la même

entité. Une telle complexité est clairement un problème que BYOC peut aider à résoudre

en externalisant une partie du contrôle à une application tierce. La préservation de la confi-

dentialité de l’application client de service est un autre point important apporté par BYOC.

En fait, centraliser le contrôle du réseau dans un système et passer toutes les données de ce

contrôleur peut créer des problèmes de confidentialité qui peuvent empêcher l’utilisateur

final, que nous appelons SC, d’utiliser le SDNC. Enfin et surtout, BYOC peut aider l’opéra-

teur à affiner sensiblement son modèle économique basé sur SDN en déléguant un contrôle

presque "à la carte" via des APIs dédiés. Une telle approche peut être exploitée intelligem-

ment selon le nouveau paradigme de "Earn as you bring" (EaYB) que nous présentons et

décrivons ci-dessous.

En effet, un client extérieur possédant un algorithme sophistiqué propriétaire peut vouloir

commercialiser les traitements spécialisés associés, à d’autres clients via l’opérateur SDN

qui pourrait apparaître comme un courtier de ce type de capacités. Il convient de souligner

que ces avantages de BYOC peuvent en partie être compensés par la tâche non triviale de vé-

rifier la validité des décisions prises par l’intelligence externalisée qui doivent être au moins

conformes aux différentes politiques mises en œuvre par l’opérateur dans le contrôleur. Ce

point qui mérite plus d’investigation pourrait faire l’objet de recherches futures.

L’externalisation d’une partie des tâches de gestion et de contrôle modifie le modèle de cycle

de vie du service. Il s’agit en effet de traduire du côté client, des parties de certaines tâches

appartenant initialement à l’opérateur. Une analyse minutieuse nous permet d’identifier

les tâches de compilation et de surveillance, réalisées au niveau du cycle de vie du service

côté opérateur, comme des candidats potentiellement intéressants, dont certaines parties

peuvent être déléguées au GC. Le GC est connecté au SO à travers la NBI. C’est là que

l’opérateur de service communique avec le client du service et parfois avec les applications

côté client, les orchestrateurs et les GCs.

Afin de réaliser ces fonctionnalités, certaines librairies devraient être implémentées. Ces der-

nières prennent en charge deux catégories de tâches : 1) création, configuration et modifica-

tion de service, et 2) surveillance de service et contrôle de service BYOC. La première utilise

une interaction synchrone qui implémente une simple communication requête / réponse

xxviii

et qui permet à l’application côté client d’envoyer des demandes de service et des modi-

fications, tandis que la seconde utilise une interaction asynchrone où une notification sera

envoyée à l’application de service abonnée. La nature asynchrone de cette librairie la rend

utile pour envoyer des messages de contrôle au GC. La communication entre le GC et le SO

est basée sur l’algorithme Push-and-Pull (PaP) essentiellement utilisé dans les applications

web. Dans cette proposition, nous essayons d’adapter cet algorithme pour déterminer la mé-

thode de communication de la NBI qui utilisera le paradigme de publication / soumission

de messagerie.

L’importance d’un système de provisionnement de service est basée sur son NBI qui connecte

le portail de service au système de provisionnement de service (SO) dans un environnement

SDN. Cette interface fournit une abstraction de la couche service et des fonctions essentielles

pour créer, modifier et détruire un service, et, comme décrit ci-dessus, elle prend en compte

les unités de contrôle externalisées appelées GC. Cette interface est un point d’accès par-

tagé entre différents clients, chacun contrôlant des services spécifiques avec un abonnement

associé à certains événements et notifications. Il est donc important que cette interface parta-

gée implémente un environnement isolé pour fournir un accès multi-tenant. Celui-ci devrait

être contrôlé à l’aide d’un système intégré d’authentification et d’autorisation.

Dans notre travail, nous introduisons une NBI basée sur le protocole XMPP. Ce protocole

est développé à l’origine comme un protocole de messagerie instantané (IM) par la commu-

nauté. Ce protocole utilise une technologie de streaming pour échanger des éléments XML,

appelés stanza, entre deux entités du réseau, chacune identifiée par un unique identifiant

JID. La raison principale de la sélection de ce protocole pour implémenter la NBI du sys-

tème de provisionnement de services repose sur son modèle d’interaction asynchrone qui, à

l’aide de son système push intégré, autorise l’implémentation d’un service BYOC.

Conclusion et perspectives

Afin de définir un framework d’approvisionnement de service basé sur SDN permettant de

définir les couches de contrôle et d’application, une analyse du cycle de vie du service de-

vait avoir lieu. Nous avons organisé l’analyse du cycle de vie du service selon deux points

de vue : client et opérateur. La première vue concerne le cycle de vie du service client qui

traite les différentes phases dans lesquelles un client de service (ou client) peut être pendant

le cycle de vie du service. Cette analyse est basée sur la classification des applications et des

services que nous avons précédemment faite. Selon cette classification, un client de service

peut utiliser l’interface de gestion de service pour gérer trois types de services. Le premier

est le cas où le client demande et configure un service. Le deuxième type est le client qui

surveille son service, et le troisième est le client qui, en utilisant l’interface de gestion, reçoit

certains paramètres de service sur la base desquels il reconfigure ou met à jour ce service.

Sur la base de cette analyse, le cycle de vie du service côté client peut être modifié. Nous

avons analysé toutes les phases que chaque type de service pourrait ajouter au cycle de vie

du service. D’un autre côté, l’analyse du cycle de vie du service côté opérateur présente un

xxix

modèle de cycle de vie du service représentant toutes les phases qu’un opérateur doit tra-

verser pour déployer, configurer et maintenir un service. Cette analyse recto-verso permet

de déterminer les actions que chaque client et opérateur de service peut effectuer sur un

service qui est l’objet commun entre un client et un opérateur.

Nous avons présenté pour la deuxième fois le modèle de données de chaque cycle de vie

basé sur une approche de modèle de données à deux couches. Dans cette approche, un

service peut être modélisé en deux modèles de données : service et dispositif, et un modèle

élémentaire, appelé transformation, définit comment l’un de ces deux modèles peut être

transformé en un autre. Le modèle de service est un modèle général et simplifié du service

présenté au client du service. Et le modèle de périphérique est la définition technique de

la configuration de périphérique générée sur la base du modèle de service négocié. L’objet

de service partagé entre l’opérateur et le client est décrit dans le modèle de service. Par

conséquent, le cycle de vie du service côté client utilise le modèle de service et toutes les

phases du cycle de vie sont basées sur ce modèle. Le modèle de service traverse le cycle de

vie côté opérateur et est transformé en un ou plusieurs modèles de ressource.

L’analyse du cycle de vie du service nous donne un outil pour déterminer toutes les activités

qu’un opérateur doit effectuer pour gérer un service. Basé sur le cycle de vie du service côté

opérateur, nous proposons un framework à travers lequel un modèle de service présenté au

client est transformé en modèles de ressources déployés sur des ressources. L’architecture

de ce framework repose sur un système à deux couches gérant le cycle de vie du service

via deux orchestrateurs : orchestrateur de service et orchestrateur de ressource. Le premier

regroupe toutes les fonctions permettant à l’opérateur de gérer un service verticalement, et

le second gère les ressources nécessaires au premier pour déployer un service.

Le framework proposé donne lieu à un système de déploiement et de gestion de services.

Il ouvre une interface du côté des clients. Nous présentons un nouveau modèle de contrôle

de service, appelé Bring Your Own Control (BYOC) qui suit le modèle d’application de type

3. Nous introduisons BYOC comme un concept permettant de déléguer, à travers la NBI,

le contrôle de tout ou partie d’un service à un contrôleur externe, appelé Guest Controller

(GC). Ce dernier peut être géré par le même client demandant et consommant le service ou

par un opérateur tiers. L’ouverture d’une interface de contrôle au nord de la plate-forme

SDN nécessite certaines spécifications au niveau de NBI. Nous avons abordé dans la suite

de notre travail les exigences de la NBI permettant d’ouvrir l’API de BYOC. Sur la base de

ces exigences, nous avons proposé l’utilisation de XMPP comme le protocole permettant de

déployer une telle API.

L’analyse des avantages du concept BYOC et les problèmes de complexité et de sécurité

que BYOC peut apporter au processus de gestion des services peuvent faire l’objet d’un

travail futur. Cette analyse nécessite une étude plus sophistiquée de ce concept, du modèle

économique potentiel qu’il peut introduire (ex. Earn as You Bring EaYB), des méthodes et

des protocoles utilisés pour implémenter l’interface nord et contrôler l’accès aux ressources

exposées au GC, et l’impact réel de ce type de services sur la performance des services.

xxx

L’ouverture de l’interface de contrôle de type BYOC permet de créer des nouveaux modèles

de service non seulement dans le domaine SDN mais aussi dans les domaines NFV et 5G.

1

Chapter 1

Introduction

In this chapter we introduce the context of this thesis followed by the motivation and back-

ground of this studies. Then we present our main contributions and we conclude by the

structure of this document.

1.1 Thesis context

Over the past two decades, service providers have been crossed through several generations

of technologies redefining networks and requiring new business models. The economy of

a Service Provider depends on its network which is evaluated by its reliability, availability

and ability to deliver services. Due to the introduction of new technologies requiring a

pervasive network, new and innovative applications and services are increasing the demand

for network access [1]. Service Providers, on the other hand, are looking for a cost-effective

solution to meet this growing demand while reducing the network complexity [2] and costs

(i.e. Capital Expenditure (CapEx) and Operating Expenditure (OpEx)), and accelerating

service innovation.

The network of an Operator is designed on the basis of equipments that are carefully de-

veloped, tested and configured. Due to the importance of this network, the operators avoid

the risks of modifications made to the network. Hardware elements, protocols and services

require several years of standardization before being integrated into the equipment by sup-

pliers. This hardware lock-in reduces the ability of Service Providers to innovate, integrate

and develop new services.

The network transformation brings the opportunity for service innovation while reducing

costs and mitigating the locking of suppliers. Transformation means making it possible to

exploit network capabilities through application power. This transformation converts the

Operator network from a simple utility to a digital service delivery platform. The latter not

only increases the velocity of the service, but also creates new sources of revenue. Recently

Software-Defined Networking (SDN) [3, 4] and Network Function Virtualization (NFV) [5,

6] technologies are proposed to accelerate the transformation of the network. The promise

2 Chapter 1. Introduction

of these technologies is to bring more flexibility and agility to the network while creating

cost-effective solutions. This will allow Service Providers to become digital businesses.

The SDN concept is presented to decouple the control and forwarding functionalities of net-

work devices by putting the first one on a central unit called controller [7]. This separation

makes it possible to control the network from a central application layer simplifying net-

work control and management tasks. And the programmability of the controller accelerates

the Service Providers network transformation.

1.2 Motivation and background

In this Ph.D. thesis we study the telecom service management in a controlled environ-

ment. This work is based on the management of a connectivity service (MultiProtocol Label

Switching (MPLS) Virtual Private Network (VPN)) with a centralized reliability and Quality

of Service (QoS) control. Over the last decade, MPLS networks have evolved and become

critical for Service Providers. MPLS is used both for Traffic Engineering (TE) allowing op-

timized resource usage, and for establishing VPNs. This one is an increasingly profitable

service for Providers.

As the network transformation is becoming a reality and the digitalization is changing the

service management methods, traditional network services are replacing with on-demand

network services. On-demand services allow customers to deploy and manage their services

independently through a well-defined interface opened to the Service Providers platform.

This interface allows different customers to manage their own services each one possessing

special features.

For example, to manage a VPN service, a customer might have several types of interactions

with the Service Provider platform. For the first case, a customer might request a fully

managed VPN interconnecting its sites. For this type of service, the customer owns abstract

information about the service and provides a simple service request to the Service Provider.

The second case is a customer, with a more professional profile, who monitors the service

by retrieving some network metrics sent from the Providers platform. And the third type

consists of a more dynamic and open service sold to customers wishing to control all or part

of their services. For this type of services, based on the metrics retrieved from the Service

Providers platform, the customer re-configures the service.

1.3 Problem statement

In order to offer this freedom to its customers and to provide on-demand network capability,

the Service Provider must be able to rely on a dynamic and programmable network control

platform. We argue that this platform can be provided by SDN technology. Indeed, the SDN

1.4. Contributions of this thesis 3

controller layer might provide an interface to service customers where they might subscribe

to a new service, modify an existing service, and retire a service.

A telco network is built on different technologies providing several types of services. These

services are used by several customers and a misconfiguration of a customer service can

have unexpecteds on the quality of service of other ones. The central visibility provided by

the SDN controller allows the operator to manage all services and equipment. Nevertheless,

providing a granular management and service control interface on this controller requires

presenting an additional Service Management layer beyond the controller through which

the Service Provider can manage the service lifecycle and provide a service management

interface to its customers.

1.4 Contributions of this thesis

As part of this thesis we present an SDN based framework allowing to both manage the

lifecycle of a service and open the service management interface with a fine granularity. The

granularity of this interface allows to provide different levels of abstraction to the customer,

each one allowing to offer part of the capabilities needed by an on-demand service discussed

in Section 1.2.

The following are the main research contributions of this thesis.

— A double-sided service lifecycle and the associated data model

We first characterise the applications that might be deployed upon the northbound

side of an SDN controller, through their lifecycle. The characterisation rests on a clas-

sification of the complexity of the interactions between the outsourced applications

and the controller. This leads us to a double-side service lifecycle presenting two ar-

ticulated points of view: client and operator. The service lifecycle is refined with a

data model completing each of its steps.

— A service management framework based on SDN paradigm

The service lifecycle analysis gives us a tool to determine all activities an operator

should do to manage a service. Based on the operator-side service lifecycle, we

propose a framework through which a service model presented to the customer, is

transformed to device models deployed on resources. This framework is organized

into two orchestrator systems called respectively Service Orchestrator and Resource

Orchestrator interconnected by an internal interface. Our approach is illustrated

through the analysis of the MPLS VPN service, and a Proof Of Concept (POC) of

our framework based on the OpenDaylight controller is proposed.

— Bring Your Own Control (BYOC) service model

We exploit the proposed framework by introducing a new and original service control

model called Bring Your Own Control (BYOC). It allows the customer or a third

party operator to participate in the service lifecycle following various modalities. We

analyse the characteristics of interfaces allowing to deploy a BYOC service and we

4 Chapter 1. Introduction

illustrate our approach through the outsourcing of an Intrusion Prevention System

(IPS) service.

1.5 Document structure

In Chapter 2 we present a state of the art on SDN and NFV technologies. We try to focus

our study on SDN control and application layer. We present two classifications of SDN

applications. For the first classification we are interested in the functionality of applications

and their contribution in the deployment of the controller. And for the second one, we

present different types of applications according to the model of the interaction between

them and the controller. We discuss in this second classification three types of applications,

each one requiring some characteristics at the Northbound Interface (NBI) level.

In Chapter 3 we discuss the deployment of a network service in SDN environment. For the

first part of this chapter, we present the MPLS networks with a rapid analysis of the control

and forwarding planes of these networks in the legacy world. This analysis quickly shows

which information is used to configure such a service. This information is, for confidential

reasons, managed by the operator most of which is not manageable by the customer.

For the second part of this chapter, we analyze the deployment of the MPLS service on the

SDN network through the OpenDaylight controller. For this analysis we consider two pos-

sibilities: (1) deployment of the service using the third-party applications developed on the

controller (the VPN Services project), and (2) deployment of the service using the northern

Application Programming Interface (API)s provided by the controller’s native functions.

The results obtained during the second part together with the case study discussed in the

first part, accentuate the lack of a service management system in the current controllers.

This justifies the presentation of a service management framework providing the service

management interfaces and managing the service lifecycle.

In order to refine the perimeters of this framework, we firstly discuss a service life cycle

studies in Chapter 4. This analysis is carried out on two sides: customer and operator.

For the service lifecycle analysis from the client-side perspective, we rely on the classification

of applications made in Chapter 2. During this analysis we study the additional steps that

each application adds in the lifecycle of a service. And for the analysis of the lifecycle from

the operator side view point we study all steps an operator takes during the deployment

and management of a service.

At the end of this chapter, we discuss the data model allowing to implement each step of the

service lifecycle. This data model is based on a two layered approach analyzing a service

provisioning system on two layers: service and device. Based on this analysis, we study the

data model of each service lifecycle step, helping to define the internal architecture of the

service management framework.

1.5. Document structure 5

Service lifecycle analysis leads us to present, in Chapter 5, the SDN-based service manage-

ment framework. This framework cuts up all the tasks an operator performs to manage

the lifecycle of a service. Through an MPLS VPN service deployment example we detail

all of these steps. Part of tasks are carried on the service presented to the client, and part

of them on the resources managed by the operator. We organize these two parts into two

orchestration systems, called respectively Service Orchestrator and Resource Orchestrator.

In order to analyze the framework’s capability in service lifecycle management, we take the

example of MPLS VPN service update. With this example we show how the basic APIs

provided by an SDN controller can be used by the framework to deploy and manage a

requested service.

The presented framework allows us not only to manage the service life cycle but also to

open an NBI to the client. This interface allows us to provide different levels of abstraction

used by each of lastly discussed three types of applications.

In Chapter 6, we present for the first time the new service model: Bring Your Own Control

(BYOC). This new service allows a customer or a third party operator to participate in the

service lifecycle. This is the practical case of a type 3 application, where the client configures

a service based on the events coming up from the controller.

We analyze characteristics of interface allowing to deploy such a BYOC-type service. We

present in this chapter the XMPP protocol as a good candidate enabling us to implement

this new service model.

In Chapter 7, we apply the BYOC model to a network service. For this use case we choose to

externalize the control of an IPS. Outsourcing the IPS service control involves implementing

the attack detection engine in an external controller, called Guest Controller (GC).

In Chapter 8, we point out the main contributions of this thesis and give the research per-

spectives in relation to BYOC services in SDN/NFV and 5G networks.

7

Chapter 2

Programming the network

In this chapter we present, firstly, a state of the art on programmable networks. Secondly,

we study Software-Defined Networking (SDN) as a technology allowing to control and pro-

gram network equipment to provide on-demand services. For this analysis we discuss the

general architecture of SDN, its layers and its interfaces. Finally, we discuss SDN appli-

cations, their different types and the impact that all applications can have on the internal

architecture of an SDN controller.

2.1 Technological context

Nowadays Internet whose number of users exceeds 3,7 billions [8], is massively used in all

human activities from the professional part to the private ones via academical ones, admin-

istrative ones, etc. The infrastructure supporting the Internet services rests on various in-

terconnected communication networks managed by network operators. This continuously

growing infrastructure evolves very dynamically and becomes quite huge, complex, and

sometimes locally ossified. To configure and maintain their communication networks and

provide high-level services, network operators have therefore to deal with a large number

of routers, firewalls, switches and various heterogeneous devices with a progressively re-

duced lifecycle due to the fast hardware and software changes. This growing complexity

makes the introduction of a new service or a new protocol together with its configuration,

an exceptionally difficult task, because network operators have to translate a high-level ser-

vice specification to low-level distributed device configurations and next to configure these

ones through their Command Line Interface (CLI). This introduction has non trivial side ef-

fects leading to frequent network state changes for which operators have to adapt manually

the existing network configuration to integrate the new services or protocols. As a result,

this manual configuration may lead to frequent misconfigurations [9]. Last but not least,

all these may have an adverse effect on the management cost of the operator, Operating

Expenditure (OpEx).

Such rigid configuration framework has been quickly perceived as hard limitation prevent-

ing operators to cope with their critical scalability and adaptability’ requirements. It leaded

2.3. Fundamentals of programmable networks 9

Programmable network architecture

Network programming environment

Communication

model

Computaion

model

Network

programming

interfaces

Node

interfaces

Node kernel Node kernel

Node HW Node HW

FIGURE 2.2: Computation and communication capabilities of programmable
networks (source [9])

distinguishes two kinds of operating systems, a local one and a global one. The former is

defined by the « node kernel » and provides primitives allowing to control and to exploit

the rough resources offered by the hardware node. The latter called « network program-

ming environment » allows to build the architecture of dedicated networks by resting on

the cooperation between the local services offered by the node kernel through its interface.

2.3 Fundamentals of programmable networks

The high performance constraints required for routers in packet switched networks, limit

the authorized processing to the sole modification of the packet headers. The strength of

this approach is also its weakness because the counterpart of their high performance is their

lack of flexibility. The evolution brought by the research on the programmability of the

network, has led to the emergence of strong ideas whose relevance can be measured by

their intellectual longevity.

The seed of the idea of having APIs allowing a flexible management of the network equip-

ments at least goes back to the OpenSig initiative [9] which aimed to develop and promote

standard programmable interfaces crafted on network devices [10]. It is one of the first

fundamental steps towards the virtualization of networks the main objectives of which con-

sisted in switching from a strongly coupled network, where the hardware and the software

are intimately linked to a network where the hardware and the software are decorrelated.

It concretely conducts in keeping the data forwarding capability inside the box while out-

sourcing the control.

In a general setting the control part of the processing carried out in routers, roughly consists

in organizing in a smart and performant way the local forwarding of each received packet

while ensuring a global soundness between all the boxes involved in its path. The outsourc-

ing of the control has been designed according different philosophies. One aesthetically nice

but extreme vision known as « Active Networks » recommends that each packet may carry

in addition to its own data, the code of the process which will be executed at each crossed

2.4. Software-Defined Networking (SDN) 11

2.4 Software-Defined Networking (SDN)

SDN is presented to change the way networks operate by giving hope to change the cur-

rent network limitations. It enables simple network data-path programming, allows easier

deployment of new protocols and innovative services, opens network virtualization and

management by separating the control and data planes [4]. This paradigm is attracting at-

tention by both academia and industry. SDN breaks the vertical integration of the traditional

network devices by decoupling the control and data planes, where network devices become

a simple forwarding device programmed by a logically centralized application called con-

troller or network operating system.

2.4.1 Architecture

Figure 2.4 shows a simplified view of the SDN’s architecture based on this separation.

SDN Controller

SDN Applications

Network

Device

Southbound interface

Northbound interface

Application Layer

Control Layer

Infrastructure Layer

S
D

N
 A

rc
h

it
e

ct
u

re

Network

Device

Network

Device

FIGURE 2.4: SDN Architecture

2.4.2 SDN Infrastructure

The lowest layer of the SDN architecture, called Data or Infrastructure plane, is composed of

a series of data forwarding elements executing packet level operations (such as forwarding,

dropping, modifying, etc.) based on their local flow tables. These tables contain a set of

packet-handling rules, each one composed by three parts: a match rule, actions, and coun-

ters. Most of todays SDN datapath devices follow the OpenFlow-based design.

As the OpenFlow-based SDN community is growing up, a large variety of OpenFlow-

enabled networking hardware and software switches are presented into the market. Hard-

ware devices are produced for a long range purposes, from the small businesses [17, 18] to

12 Chapter 2. Programming the network

high-class one [19] used for their high switching capacity. Software switches, on the other

hand are mostly OpenFlow-enabled applications, and are used to provide the virtual access

points in the data centers and to bring virtualized infrastructures.

2.4.3 SDN Southbound Interface (SBI)

The communication between the Infrastructure layer and the control one is assured through

a well-defined API called Southbound Interface (SBI), that is the element separating the data

and the control plane. This one provides for upper layer a common interface to manage

physical or virtual devices by a mixture of different southbound APIs and control plug-ins.

The most accepted and implemented of such southbound APIs is OpenFlow [20] standard-

ized by Open Networking Foundation (ONF) [21].

2.4.3.1 OpenFlow Protocol

The SDN paradigm is started by the forwarding and control layer separation idea presented

by OpenFlow protocol. This protocol enables flow-based programmability of a network

device. Indeed, OpenFlow provides for SDN controller an interface to create, update and

delete new entries reactively or proactively.

SDN Controller

Host A Host B

Switch1 Switch2 Switch3

Forwarder Forwarder Forwarder

Ctrl Agent Ctrl Agent Ctrl Agent

1 1 12 2 2

10.0.0.1/24 10.0.0.2/24

Ethernet: MAC_A -> MAC_B

IPv4: 10.0.0.1 -> 10.0.0.2

TCP: 23000 -> 80

HTTP Header & Payload

Ethernet: MAC_A -> MAC_B

IPv4: 10.0.0.1 -> 10.0.0.2

TCP: 23000 -> 80

…

Flow: 10.0.0.1 -> 10.0.0.2

TCP 23000 -> 80

Action: Egress Port #2

Dest. MAC_B

FIGURE 2.5: OpenFlow Protocol in practice

Fig. 2.5 shows OpenFlow protocol in practice, where a SDN controller programs the under-

lying switches based on new traffic. In this example Host A sends an Hypertext Transfer

Protocol (HTTP) Get Web Request to Host B through several OpenFlow switches. By receiv-

ing the first packet, Switch 1 looks up in its flow table, if no match for the flow is found,

the switch sends an OpenFlow PACKET_IN message to the SDN controller for instructions.

2.4. Software-Defined Networking (SDN) 13

Based on this message, the controller creates a PACKET_OUT message and sends it to the

switch. This message is used to add a new entry to the flow table of the switch.

Programming a network device using the OpenFlow can be done in three ways [22]:

— Reactive flow instantiation. When a new flow arrives to the switch, it looks up into

the flow table and if the relevant action doesn’t match with the flow, the switch sends

a PACKET_IN message to the controller. In previous example, shown in Fig. 2.5, the

SDN controller programs the Switch 1 in a reactive manner.

— Proactive flow instantiation. In contrast to the first case, a flow can be defined in

advance. In this case when a new flow comes to the switch there is no lookup into

the flow table and the action will be done based on a predefined entry. In our ex-

ample (Fig. 2.5) the follow programing done for two Switches 2 and 3, is a proactive

one. The proactive flow instantiation eliminates the latency introduced by controller

interrogation.

— Hybrid flow instantiation. This one is a combination of two first modes. In our exam-

ple (Fig. 2.5) for a specific traffic, sent by Host A to Host B, the controller programs the

related switches using this method. The Switch 1 is programmed reactively and two

other switches (Switch 2 and Switch 3) are programmed proactively. Using hybrid

flow instantiation allows to benefit the flexibility of the reactive mode for granular

traffics, while saving a low-latency traffic forwarding for the rest of traffic.

2.4.3.2 OpenFlow switch

The most recent OpenFlow Switch (1.5.0) has been defined by ONF [23]. Fig. 2.6 shows three

main components of this switch:

Controller Controller

OpenFlow

Channel

OpenFlow

Channel

Flow

Table

Flow

Table

Flow

Table

Group

Table

Group

Table

Port

Port

Port

Port

OpenFlow Protocol

OpenFlow Switch

Control Channel

Datapath

Pipeline

FIGURE 2.6: OpenFlow Switch Components (source [23])

— OpenFlow Channel creates a secured channel, over Secure Sockets Layer (SSL), be-

tween the switch and a controller. Using this channel, the controller manages the

switch via OpenFlow protocol allowing commands and packet to be sent from the

controller to the switch.

14 Chapter 2. Programming the network

— Flow Table contains a set of flow entries dictating the switch how to process the flow.

These entries include match fields, counters and a set of instructions.

— Group Table contains a set of group each one having a set of actions.

Fig. 2.7 shows an OpenFlow Switch flow table. Each flow table contains three columns: rules,

actions and counters [24]. The rules column contains header fields used to define a flow. For

an incoming packet, the switch looks up the flow table, if a rule matches the header of the

packet, the related action of action table will be applied to the packet, and finally the counter

value will be updated. There are several possible actions to be taken on a packet (Fig. 2.7).

The packet can be forwarded to a switch port, it can be sent to the controller, it can be sent

to a group table, it can be modified in some fashions, or it can be dropped.

Switch

Port

MAC

src

MAC

dst

Eth

type

VLAN

ID

IP

Src

IP

Dst

IP

Prot

TCP

sport

TCP

dport

Rule Action Stats

1. Forward packet to port(s)

2. Encapsulate and forward to controller

3. Drop packet

4. Send to normal processing pipeline

+ mask

Packet + Byte counters

FIGURE 2.7: Flow Table (source [24])

2.4.4 SDN Controller

The Control plane, equivalent to the network operating system [25], is the intelligent part of

this architecture. It controls the network thanks to its centralized perspective of networks

state. On one hand, this logically centralized control simplifies the network configuration,

management and evolution through the SBI. On the other hand, it gives an abstract and

global view of the underlying infrastructure to the applications through the Northbound

Interface (NBI).

While SDN’s interest is quite extending in different environments, such as home networks [26],

data center network [27], and enterprise networks [28], the number of proposed SDN con-

troller architecture and the implemented functions is also growing up.

Despite this large number, most of existing proposals implement several core network func-

tions. These functions are used by upper layers, such as network applications, to build their

own logic. Among the various SDN controller implementations, these logical blocks can

be classified into: Topology Manager, Device Manager, Stats Manager, Notification Man-

ager and Shortest Path Forwarding. For instance, a controller should be able to provide a

2.4. Software-Defined Networking (SDN) 15

network topology model to the upper layer applications. It also should be able to receive,

process and forward events by creating alarm notifications or state changes.

As mentioned previously, nowadays, numerous commercial and non-commercial commu-

nities are developing SDN controllers proposing network applications on top of them. Con-

trollers such as NOX [25], Ryu [29], Trema [30], Floodlight [31], OpenDayLight [32] and

ONOS [33] are the top five today’s controllers. These controllers implement basic network

functions such as topology manager, switch manager, etc. and provide the network pro-

grammability to applications via NBI. In order to implement a complex network service

on a SDN-based network, service providers face a large number of controllers each one im-

plementing a large number of core services based on a dedicated work flow and specific

properties. R. Khondoker et al. [34] tried to solve the problem of selecting the most suitable

controller by proposing a decision making template. The decision however requires a deep

analysis of each controller and totally depends on the service use case. It is worth to mention

that in addition to this miscellaneous controller’s world, the NBI abstraction level diversity

also emphasizes the challenge.

2.4.5 SDN Northbound Interface (NBI)

In the SDN ecosystem the NBI is the key. This interface allows applications to be inde-

pendent of a specific implementation. Unlike the southern interface, where we have some

standard proposals (OpenFlow [20] and NETCONF [35]), the subject of a common and a

standard NBI standard is remained open. Since use cases are still in development, it is still

immature to define a standardized NBI. Contrary to its equivalent in the south (SBI), the NBI

is a software ecosystem, it means that the standardization of this interface requires more ma-

turity and a well standardized SDN framework. In application ecosystems, implementation

is usually the leading engine, while standards emerge later [36].

Open and standard interfaces are essential to promote application portability and interop-

erability across different control platforms. As illustrated in Table 2.1, existing controllers

such as Floodlight, Trema, NOX, ONOS, and OpenDaylight propose and define their own

APIs in the north [37]. However, each of them has its own specific definitions.

SDN Controller Northbound API Programming language

Floodlight REST Java
Trema ad-hoc API C, Ruby
NOX ad-hoc API C++
ONOS REST Java
OpenDaylight REST, RESTCONF Java

TABLE 2.1: SDN Controllers and their NBI

This question has been raised several times and a common conclusion is that northbound

APIs are indeed important, but it is too early to define a single standard at this time [38, 39,

16 Chapter 2. Programming the network

40]. The experience gained in developing various controllers will certainly be the basis for a

common application-level interface.

If we consider the SDN controller as a platform allowing to develop applications on a

resource pool, a north API can be compared to the Portable Operating System Interface

(POSIX) standard in operating systems [41]. This interface provides generic functions hid-

ing the operational details of the computer hardware. These ordinary functions allow a

software to manipulate this hardware by ignoring their technical details. Today, program-

ming languages such as Procera [42] and Frenetic [43] are proposed to follow this logic by

providing an abstraction layer on controller functions. The yanc project [44] also offers an

abstraction layer simplifying the development of SDN applications. This layer allows pro-

grammers to interact with lower-level devices and subsystems through the traditional file

system.

It may be concluded that it is unlikely that a single northern interface will emerge as a

winner because the requirements for different network applications are quite different. For

example, APIs for security applications may be different from routing ones. In parallel with

its SDN development work, the ONF has begun a vertical solution in its North Bound Inter-

face Working Group (NBI - WG) to present standardized northbound APIs [45]. This work

is still ongoing.

2.5 SDN Applications Analysis

2.5.1 SDN Applications

At the toppest part of the SDN architecture, the Application layer programs the network be-

havior through the NBI offered by the SDN controller. Existing SDN applications implement

a large variety of network functionalities from simple one, such as load balancing and rout-

ing, to more complex one, such as mobility management in wireless networks. This wide

variety of applications is one of the major reasons to raise up the adoption of SDN into cur-

rent networks. Regardless of this variety most SDN applications can be grouped mainly in

five categories [46], including (I) traffic engineering, (II) mobility and wireless, (III) measure-

ment and monitoring, (IV) security and dependability, and (V) data center networking.

2.5.1.1 Traffic engineering

The first group of SDN application consists of proposals that monitor the traffic through the

SDN Controller (SDNC) and provide the load balancing and energy consumption optimiza-

tion. Load balancing as one of the first proposed SDN applications [47] covers a big range

of network management tasks, from redirecting clients requests traffic to simplifying the

network services placement. For instance, the work [48] proposes the use of wilcard-based

for aggregating a group of clients requests based on their Internet Protocol (IP) prefixes. In

2.5. SDN Applications Analysis 17

the [49] also the network application is used to distribute the network traffic among the

available servers based on the network load and computing capacity of servers.

The ability of network load monitoring through the SBI introduces applications such as en-

ergy consumption optimization and traffic optimization. The information received from the

SBI can be used by specialized optimization algorithms to aim up to 50% of economiza-

tion of network energy consumption [50] by dynamically scale in/out of the links and de-

vices. This capacity can be leveraged to provision dynamic and scalable of services, such

as Virtual Private Network (VPN) [51], and increase network efficiency by optimizing rules

placement [52].

2.5.1.2 Mobility and wireless

The programmability of the stack layers of wireless networks [53], and decoupling the wire-

less protocol definition from the hardware, introduce new wireless features, such as creation

of on-demand Wireless Access Point (WAP) [54], load balancing [55], seamless mobility [56]

and Quality of Service (QoS) [57] management. These traditionally hard to implement fea-

tures are implemented by the help of the well-defined logics presented from the SDN con-

troller.

The decoupling of the wireless hardware from its protocol definition provides a software

abstraction that allows sharing Media Access Control (MAC) layers in order to provide pro-

grammable wireless networks [53].

2.5.1.3 Measurement and monitoring

The detailed visibility provided by centralized logic of the SDN controller, permits to intro-

duce the applications that supply network parameters and statistics for other networking

services [58, 4]. These measurement methods can also be used to improve features of the

SDN controller, such as overload reduction.

2.5.1.4 Security

The capability of SDN controller in collecting network data and statistics, and allowing ap-

plications to actively program the infrastructure layer, introduce works that propose to im-

prove the network security using SDN. In this type of applications, the SDN controller is the

network policy enforcement point [59] through which malicious traffic are blocked before

entering a specific area of the network. In the same category of applications, the work [60]

uses SDN to actively detect and prevent Distributed Denial of Service (DDoS) attacks.

18 Chapter 2. Programming the network

2.5.2 Intuitive classification of SDN applications

As described previously, SDN applications can be analyzed in different categories. In 2.5.1

we categorized the SDN applications based on the functionality they add to the SDN con-

troller. In this section we analyze these applications based on their contribution on the net-

work control life cycle.

SDN applications consist of modules implemented at the top of a SDNC which, thanks to

the NBI, configure network resources through the SDNC. This configuration might control

the network behavior to offer a network service. Applications which configure the network

through a SDNC can be classified in three types. The Fig. 2.8 presents this classification.

The first type concerns an application configuring a network service which once initial-

ized and running will not be modified anymore. A "simple site interconnection" through

MultiProtocol Label Switching (MPLS), can be a good example for this service. This type

of services requires a one direction up-down NBI which can be implemented with a REST-

ful solution. The second one concerns an application which, firstly, configures a service

and, secondly, monitors it during the service life. One example for this model is a network

monitoring application which monitors the network via the SDNC in order to generate QoS

reports. For example, for assuring the QoS of an MPLS network controlled by the SDNC,

this application might calculate the traffic latency between two network endpoints thanks to

metrics received from the SDNC. This model requires a bottom-up communication model

in the NBI level so that the real-time events can be sent from the controller to the applica-

tion. Finally, the third type of coordination concerns an application resting on, and usually

including, the two previous types and adding specific control treatments executed in the

application layer. In this case the application configures the service (type one), listens to

network real-time events (type two), and calculates some specific network configurations in

order to re-configure the underlying network accordingly (type one).

SDN Controller

Type 1

SBI

NBI

Network

Device

Network

Device

Network

Device

Network

Device

Network

Device

Type 2 Type 3

FIGURE 2.8: A general representation of the three types of services imple-
mented by the Guest Controller

2.5. SDN Applications Analysis 19

2.5.3 Impact of SDN Applications on Controller design

The variety of SDN applications developed at the top of the SDN controller may modify

the internal architecture of the controller and its core functions, described in 2.4.4. In this

section we analyze some of these applications and their contribution to a SDNcontroller core

architecture.

The Aster*x [47] and Plug-n-Serve [49] projects propose HTTP load balancing applications

that rely on three functional units implemented in the SDN controller: "Flow Manager",

"Net Manager" and "Host Manager". The first one, Flow Manager, controls and routes flows

based on a specific load-balancing algorithm implemented in this module. This one im-

plements necessary controller core functions and Layer 2 protocols such as Dynamic Host

Configuration Protocol (DHCP), Address Resolution Protocol (ARP) and Spanning Tree Pro-

tocol (STP). The second module, Net Manager, keeps track of the network topology, link us-

ages and links packet latency. The third module, Host Manager, monitors the state of each

HTTP servers and reports it to the Flow Manager. This load-balancing application adds two

complementary modules inside the controller, within the core functions.

In work [48] authors implemented a series of load-balancing modules in a NOX controller

that partition client traffics between multiple servers. The partitioning algorithm imple-

mented in the controller receives client’s Transmission Control Protocol (TCP) connection

requests, arriving into the Load Balancer Switch, and balances the load over the servers by

generating wildcard rules. The load-balancing application proposed in this work is imple-

mented inside the controller, in addition with other controller’s core modules.

Adjusting the set of active network devices in order to save the data center energy con-

sumption is another type of SDN applications. ElasticTree [50], as one of these applications,

proposes a "network-wide power manager" increasing the network performance and fault

tolerance while minimizing its power consumption. This system implements three main

modules: "Optimize", "Power control" and "Routing". The optimizer finds the minimum

power network subset, it uses the topology, traffic matrix, and calculates a set of active

components to both the power control and routing modules. Power control toggles the

power states of elements. The routing chooses paths for all flows and pushes routes into

the network. In ElasticTree these modules are implemented as a NOX application inside the

controller. The application pulls network statistics (flow and port counters) sends them to

the Optimizer module, and based on calculated subset it adjusts flow routes and port status

by OpenFlow protocol. In order to toggle the elements, such as active ports, linecards, or

entire switches different solutions, such as Simple Network Management Protocol (SNMP)

or power over OpenFlow can be used.

In SDN architecture the network topology is one of the information provided to applica-

tions. The work [61] proposes the Application-Layer Traffic Optimization (ALTO) protocol

as a topology manager component of this architectures. In this work authors propose this

protocol to provide an abstract view of the network to the applications which, based on

20 Chapter 2. Programming the network

this informations, can optimize their decision related to service rendezvous. ALTO proto-

col provides network topology by hiding its internal details or policies. The integration

of ALTO protocol to the SDN architecture introduces an ALTO server inside the SDN con-

troller through which the controller abstracts the information concerning the routing costs

between network nodes. This information will be sent to SDN applications in the form of

ALTO maps. These maps are used in different types of applications, such as: data centers,

Content Distribution Network (CDN)s, and peer-to-peer applications.

SDN Applications

Topology

Manager

Stats Manager

Device Manager
Notification

Manager

Shortest Path

Forwarding

Host Manager

Net Manager

Flow Manager

HTTP Load

Balancing

Optimize

Power control

Routing

Network wide

power

manager

ALTO

Server

ALTO Maps

R
E

S
T

A
LT

O

Application Layer

Control Layer

Core Network

Functions

S
D

N
 A

rc
h

it
e

ct
u

re

FIGURE 2.9: Additional control functions brought by SDN Applications

Fig. 2.9 illustrates our first analysis of different controllers, their core modules, NBI and

applications. Proposing all control function required for implementing a service, may rely

on the use of several SDNC. Managing the lifeceycle of a service also requires the use of

several APIs proposed through the NBI.

2.6 Network Function Virtualization, an approach to service or-

chestration

Network Function Virtualization (NFV) is an approach to virtualize and orchestrate network

functions, traditionally carried out on dedicated hardware, on Commercial Off-The-Shelf

(COTS) hardware platform. This is an important aspect of the SDN particularly studied by

service providers, who see here a solution to better adjust the investment according to the

needs of their customers.

2.6. Network Function Virtualization, an approach to service orchestration 21

OSS/BSS

VNF

Orchestrator

VNF

Infrastructure

Manager(s)

Virtual

Compute

Virtual

Storage

Virtual

Network

Virtualization Layer

Compute, Storage & Network

Hardware

EMS 1

VNF 1 VNF N

EMS N

VNF

Manager(s)

Service, VNF and

Infrastructure Description

NFVI

Management and

Orchestration (MANO)

FIGURE 2.10: The MANO architecture proposed by ETSI (source [62])

The reference architecture of NFV, called Management and Orchestration (MANO), is pre-

sented by European Telecommunications Standards Institute (ETSI) [62]. Fig. 2.10 illustrates

the MANO architecture. This architecture consists of three layers:

— A layer comprising the Virtual Network Function (VNF)s

— An infrastructure layer (computing, storage and network) in which the functions will

be executed

— A transverse layer for management and orchestration

The main role of MANO is to manage the lifecycle of VNFs. This architecture includes

Elemental Management Systems (EMS) managing each one an individual VNF.

The main advantage of using NFV to deploy and manage VNFs is that the Time To Mar-

ket (TTM) of NFV-based service is less than a legacy service, thanks to the standard hard-

ware platform used in this technology. The second advantage of NFV is lower Capital Ex-

penditure (CapEx) while standard hardware platforms are usually cheaper than wholesale

hardware used on legacy services.

This approach, however, has certain issues. Firstly, in a service operator network, there is

no more a single central (data center type) network to manage, but also several networks

deployed by different technologies, both physical or virtual. At first glance this seems to be

contrary to one of the primary objectives of the SDN: the simplification of network opera-

tions. The second problem is the complexity that the diversity of NFV architecture elements

brings to the service management system. In order to create and manage a service, several

VNFs should be created. These VNFs are configured, each one, by an EMS, the life cycle of

which is managed though the Virtual Network Function Manager (VNFM). All VNFs are

deployed within an infrastructure managed by the Virtual Infrastructure Manager (VIM).

22 Chapter 2. Programming the network

For the sake of simplicity, we don’t mention the license management systems proposed by

VNF editors to manage the licensing of their products. In order to manage a service all

mentioned systems should be managed by the Orchestrator.

23

Chapter 3

SDN-based Outsourcing Of A

Network Service

In this chapter we present the MPLS networks, its control plan and its data plan. Then, we

study the processes and the necessary parameters in order to configure a VPN network. In

the second part, we study the deployment of this type of network using SDN. For this anal-

ysis, we firstly analyze the management of the VPN network with non-openflow controllers,

such as OpenContrail. Then, we analyze the deployment of the VPN network with one of

the most developed OpenFlow enabled controller: OpenDaylight.

3.1 Introduction to MPLS networks

MPLS [63] technology supports the separation of traffic flows to create VPNs. It allows the

majority of packets to be transferred over Layer 2 rather than Layer 3 of the service provider

network. In an MPLS network, the label determines the route that a packet will follow. The

label is injected between Layer 2 and Layer 3 headers of the packet. A label is a 32 bits word

containing several information:

— Label: 20 bits

— Time-To-Live (TTL): 8 bits

— CoS/EXP: specifies the Class of Service used for the QoS, 3 bits

— BoS: determines if the label is the last one in the label stack (if BoS = 1), 1 bit

3.1.1 MPLS data plan

The path taken by the MPLS packet is called Label Switch Path (LSP). MPLS technology is

used by providers to improve their QoS by defining LSPs capable of satisfying Service Level

Agreement (SLA) in terms of traffic latency, jitter, packet loss. In general, the MPLS network

router is called a Label Switch Router (LSR). Fig. 3.1 shows three main actions done on an

MPLS packet by LSRs: push, swap and pop. (A) When a packet enters the MPLS network, it is

labeled by an ingress router, called Provider Edge (PE) or Ingress-LSR. (B) This tag is used

for all subsequent switching done by the core routers, Provider (P) routers or Transit LSRs,

24 Chapter 3. SDN-based Outsourcing Of A Network Service

without ever consulting the IP header. (C) Finally, the network egress PE router, or Egress

LSR, removes the tag and transmits the original IP packet to its final destination.

A

B

C

FIGURE 3.1: Label Switch Routers (LSR)s

3.1.2 MPLS control plan

Fig. 3.2 shows the topology of a simple MPLS network. The network is designed with three

types of equipment:

— Customer Equipment (CE) is the LAN’s gateway from the customer to the core net-

work of the service provider

— Provider Equipment (PE) is the entry point to the core network. The PE labels pack-

ets, classifies them and sends them to a LSP. Each PE can be an Ingress or an Egress

LSR. We discussed earlier the way this device injects or removes the label of the

packet.

— P routers are the core routers of an MPLS network that switch MPLS packets. These

devices are Transit LSRs, the operation of whom is discussed earlier.

Each PE can be connected to one or several client sites (Customer Edge (CE)s), Cf. Fig. 3.3. In

order to isolate PE-CE traffics and to separate routing tables within PE, an instance of Virtual

Routing and Forwarding (VRF) is instantiated for each site, this instance is associated with

the interface of the router connected to the CE. The routes that PE receives from the CE are

recorded in the appropriate VRF Routing Table. These routes can be propagated by Exterior

BGP (eBGP) [64] or Open Shortest Path First (OSPF) [65] protocols. The PE distributes the

VPN information via Multiprotocol BGP (MP-BGP) [66] to the other PE within the MPLS

network. It also installs the Interior Gateway Protocol (IGP) routes learned from the MPLS

backbone in its Global Routing Table.

3.1. Introduction to MPLS networks 27

the destination CE is connected directly to him. It then pops the label and forwards the IPv4

packet to the CE1.

We drive this configuration example by joining one of customer_1 sites (Site D of Figure 2)

to his VPN. Assuming that the MP-BGP of PE4 is already configured and the MPLS back-

bone IGP is already running on this router. To start the configuration, the service provider

creates a dedicated VRF, called customer_1. He adds the RD value on this VRF, we use for

this example the RD = 65000:100. For allowing that VRF to distribute and learn routes of

this VPN, the RT specified to this customer (65000:100) is configured on the VRF. He then

associates the physical interface connected to the CE4 with the initiated VRF. A routing pro-

tocol (eBGP, OSPF, etc.) is configured between the VRF and the CE4. This protocol allows

to learn Site D network prefix, the information that will be used by PE4 to send the MP-BGP

update to other PEs. We discussed earlier this process. By receiving this update, all sites

belonging to this customer are able to communicate with Site D.

3.1.4 MPLS VPN Service Management

In the network of a service provider, the parameters used to configure the MPLS network of

a client, are not managed neither configured by this client. In other words, for the sake of

security, the customer doesn’t have any right to configure the PEs connected to these sites or

to modify the parameters of his service. For example, if a client A modify the configuration

of its VRF by supplying the RTs used for the other VPN (of client B), it can overlap its VPN

with that of the client B and put itself in the network of this client. On the other hand, a

client can parameter the elements of its sites, for example the addressing plan of its Local

Area Network (LAN), and exchange the parameters of its service, ex: service classes (Class

of Service (CoS)). Table 1 summarizes parameters of an MPLS VPN service that can be

modified by the service provider and its client.

MPLS VPN Parameters Service Provider Service Client

LAN IP address ✗ ✓

RT ✓ ✗

RD ✓ ✗

Autonomous System (AS) ✓ ✗

VRF name ✓ ✗

Routing protocols ✓ ✗

VPN Identifier (ID) ✓ ✗

TABLE 3.1: MPLS VPN configuration parameters

28 Chapter 3. SDN-based Outsourcing Of A Network Service

3.2 SDN-based MPLS

Decoupling control from the forwarding plane of an OpenFlow-based MPLS network per-

mits to centralize all routing and label distribution protocols (i.e. Border Gateway Proto-

col (BGP), LDP, etc.) in a logically centralized SDNC. In this architecture forwarding ele-

ments deploy uniquely three MPLS actions needed to establish an LSP. However, this archi-

tecture is not the only one proposed to deploy SDN-based MPLS. MPLS naturaly decouples

the service (i.e. IP unicast) from the transport by LSPs [68]. This decoupling is achieved by

encoding instructions (i.e. MPLS lables) in packet headers. In [68] the authors propose to use

MPLS as a "key enabler" to deploy SDN. In this work to achieve data centers connectivity

authors propose to use the OpenContrail controller that allows to establish overlay network

between Virtual Machine (VM)s based on BGP MPLS protocols.

3.2.1 OpenContrail Solution

OpenContrail [69] is an open source controller developed based on BGP and MPLS service

architecture. It decouples overlay network from underlay, and control plane from forward-

ing one by centralizing network policy management.

FIGURE 3.5: OpenContrail control plane architecture (source [69])

Fig. 3.5 illustrates the physical architecture of the OpenContrail in production. The architec-

ture of this controller is based on three main nodes:

— Configuration nodes, that translate high-level service data-model into a low-level

form used to configure network elements.

— Control nodes, that propagate low-level model to and from network elements.

— Analytics nodes, that capture real-time data from network elements, abstract it, and

present it in a form suitable for applications to consume.

3.2. SDN-based MPLS 29

In OpenContrail architecture, the forwarding plane is implemented using vRouters. To con-

figure vRouters, control node uses the Extensible Messaging and Presence Protocol (XMPP)

based interface. These nodes communicate with other control nodes using their east-west

interfaces implemented in BGP.

OpenContrail is a suitable solution used to interconnect VMs within one or multiple data

centers. VMs are initiated inside a compute node that are general-purpose virtualized

servers. Each compute node contains a vRouter implementing the forwarding plane of

the OpenContrail architecture. Each VM contains one or several Virtual Network Interface

Cart (vNIC)s, and each vNIC is connected to a vRouter’s tap interface. In this architecture,

the link connecting the VM to the tap interface is equivalent to the CE-PE link of VPN ser-

vice. This interface is dynamically created as soon as the VM is spawned.

In OpenContrail proposed architecture, XMPP performs the same function as MP-BGP in

signaling overlay networks. After joining spawning a VM the vRouter assigns an MPLS

label to the related tap interface connected to the VM. Next, it advertises the network prefix

and the label to the control node, using a XMPP Publish Request message. This message,

going from the vRouter to the Control node is equivalent to a BGP update from both se-

mantic and structural point of view. The Control node, acts like a Route Reflector (RR) that

centralizes route signaling and sends routes from one vRouter to another one by an XMPP

Update Notification.

Proposed OpenContrail architecture and its complementary blocs provide a turnkey solu-

tion suitable for public and private clouds. However, this solution covers mostly data center

oriented use cases based on specific forwarding devices, called vRouters. The XMPP-based

interface used by the latter creates "technological dependency" and reduces the openness

of the solution, while the XMPP is not a commune interface usable by other existing SDN

controllers.

3.2.2 OpenFlow-based MPLS Networks

Configuring and controlling MPLS networks via SDN controllers is one of challenges. Nowa-

days, SDN controllers propose to externalize MPLS control plane inside modules some of

which are implemented within the controller or application layer. The work [70] proposes

the implementation of MPLS Traffic Engineering (MPLS-TE) and MPLS-based VPN using

OpenFlow and NOX. In this work authors discuss how the implementation of MPLS con-

trol plane becomes simple thanks to the consistent and up to date topology map of the con-

troller. This externalization is done though the network applications implemented at the top

of the SDN controllers, applications like Traffic Engineering (TE), Routing, VPN, Discovery,

and Label Distribution. This work is an initiative to SDN-based MPLS networks, and the

internal architecture of SDN controller and APIs allowing to configure an MPLS network is

not explained in details.

30 Chapter 3. SDN-based Outsourcing Of A Network Service

In order to analyze the internal architecture of controllers proposing the deployment of

MPLS networks, and also to study SDN APIs allowing to configure the underlying network,

we try to orient our studies on one of the most developed open source SDN controllers,

OpenDaylight.

3.2.2.1 MPLS Networks in OpenDaylight controller

With its large development community and it various projects the OpenDaylight controller

is one of the most popular controllers in the SDN academic and open source world. Open-

Daylight is an open source project under the Linux Foundation based on the microservices

architecture. In this architecture, each core function of the controller is a microservice which

can be activated or deactivated dynamically. OpenDaylight supports a large number of net-

work protocols beyond OpenFlow, such as NETCONF, OVSDB, BGP, and SNMP.

FIGURE 3.6: OpenDaylight Architecture (source [32])

The architecture of OpenDaylight is illustrated in Fig. 3.6. The central part of OpenDaylight

is the Service Abstraction Layer (SAL) that connects the protocols of the SBI to the Base

Service Network Functions which contains the following components:

— Topology Manager: handles information about the network topology. At the boot

time, it builds the topology of the network based on the notifications coming from

the switches. This topology can be updated according to notifications coming from

other modules like Device Manager and Switch Manager.

3.2. SDN-based MPLS 31

— Statistics Manager: sends statistics request to resources (switches), collects statistics

and stores them in a data base. This component implements an API to retrieve infor-

mation like meter, table, flow, etc.

— Forwarding Rules Manager: manages forwarding rules, resolves conflict and vali-

dates rules. This module communicates via the SBI with the equipment. It deploys

the new rules in switches.

— Switch Manager: provides information for nodes (network equipment) and connec-

tors (ports). When the controller discovers the new device, it stores the parameters in

this module. The latter provides an API for retrieving information about nodes and

discovered links.

— Host Tracker: provides information on end devices. This information can be switch

type, port type, network address, etc. To retrieve this information, the Host Tracker

uses ARP. The database of this module can also be manually enriched via the north

API.

— Inventory Manager: retrieves the information about the switches and its ports for

keeping its database up to date.

These modules provide some APIs at the NBI level allowing to program the controller to

install flows. Using this API, the modules implemented in application layer are able to con-

trol the behavior of each equipment separately. Programming an OpenFlow switch consists

of a tuple of two rules: match and action. Using this tuple, for each incoming packet, the

controller can decide if the packet should be treated, if so which action should be applied

on this packet. This programming capacity allows the appearance of a large API allowing

to manipulate almost every packet types, including MPLS packets.

3.2.2.2 OpenDaylight native MPLS API

OpenDaylight proposes native APIs to make three MPLS actions, PUSH, POP, and SWAP,

each LSR might apply on the packet. Using these APIs, the NBI application may install

flows on the Ingress LSR pushing tag on a packet entering MPLS network. It may install

flows on Transit LSRs allowing to swap tags along and routing the packet along the LSP.

This application may install a flow on Egress LSR to send the packet to its final destination

by popping the tag.

In order to program the underlying networks behavior via this native API, the application

needs to have a detailed perspective of the network and its topology, and a control on spec-

ified MPLS labels. Table 3.2 summarizes parameters that an application may control using

the OpenDaylight native API.

3.2.2.3 OpenDaylight VPN Service project

Apart from OpenDaylight core functions, additional modules can be developed in this con-

troller. In order to deploy a specific service, these modules benefit the information provided

3.2. SDN-based MPLS 33

packets.

— FIB Service: Maintains the state of the Forwarding Information Base (FIB) that as-

sociates routes and NextHop for each VRF. This information is sent to the OVS by

OpenFlow.

The VPN Service project provides the NBI APIs for deploying an L3 VPN for the Data Center

(DC) Cloud environment.

FIGURE 3.8: VPN Configuration Using OpenDaylight VPN Service projetct

Fig. 3.8 shows the VPN service configuration steps through OpenDaylight VPN Service.

For this, the user must have a detailed knowledge of the service he wishes to deploy. The

deployment of this service takes place via several internal modules of the controller through

several steps:

1. First a BGP router must be created via the BGP Manager, and the user must configure

the BGP Neighbors.

2. In the second step, via the Internal Transport Manager module, the user creates the

tunnels between the switches. The ITM creates and maintains the Generic Routing

Encapsulation (GRE) and Virtual Extensible LAN (VXLAN) tunnels between Open-

Flow switches.

3. The third step is creating Virtual LAN (VLAN) interfaces for each VM connected

to the VPN. The creation of the VLAN interface is implemented by the Interface

Manager module of OpenDaylight.

4. Once VLAN interfaces are created, the user creates VPN instance containing all in-

formation about the VPN, such as RD, acRT, etc. The VPN instance creation is done

through the VPN Manager module.

34 Chapter 3. SDN-based Outsourcing Of A Network Service

5. Then, via the API of the VPN Manager a VPN interface is created. In this step, the

VPN ID is registered in the database and the VRF is created.

6. Finally, VMs interfaces are added on VPN interface.

As discussed in this example, the VPN Service project and its interfaces are rich enough

to deploy a VPN service via OpenDaylight. Nevertheless, in order to create a "sufficient"

complex VPN service, the user must manage the information concerning the service, its

sites and its equipments. Table 3.3 summarizes the information that a user should manage

using this project.

MPLS VPN Parameters OpenDaylight Native MPLS API

LAN IP address ✓

RT ✓

RD ✓

AS ✓

VRF name ✓

Routing protocols ✓

VPN ID ✓

MPLS labels ✓

TABLE 3.3: MPLS VPN configuration parameters accessible via OpenDaylight
VPN Service project

As it is shown in this table, the amount of manageable data, information about its BGP

routers (local AS number and identifier) information about its BGP neighbor (AS number

and IP address) information on VPN (VPN ID, RD and RT) and etc. can quickly increase

exponentially. This large amount of information can make the service management more

complex and reduce the QoS. It is important to note that the SDN controller of an operator

manages a set of services on different network equipment shared between several clients.

That means that, for the sake of security, most of the listed information will not be made

available to the customer.

3.3 Outsourcing problematics

Decoupling control plane and data plane of MPLS networks and outsourcing the second

one into a controller brings several benefits in terms of service management, service agility

and QoS [70, 71]. Centralized control layer offers a service management interface available

to the customer. Nevertheless, this outsourcing and openness can create several challenges.

The MPLS backbone is a shared environment among the customers of an operator. To deploy

a VPN network, as discussed recently, the operator configures a set of devices, situated in

the core and the edge of the network. This equipment, mostly provide several services

to customers in parallel. The latter ones use the VPN connection as a reliable means of

transaction of their confidential data.

3.3. Outsourcing problematics 35

Outsourcing the control plane to an SDNC brings a lot of visibility on the traffic exchanged

within the network. It is through this controller that a customer can create an on-demand

service and manage this service dynamically. Tables 3.2 and 3.3 present in detail the in-

formation sent from the NBI to deploy a VPN service. These NBIs are proposed by two

solutions 3.2.2.2 and 3.2.2.3. The granularity of this information gives to customer more

freedom in the creation and management of his service. Moreover, beyond this freedom a

customer having access to the NBI not only can modify the parameters of his own service

(i.e. VPN) but also it can modify the parameters concerning the services of other customers.

In order to control the customers access to the services managed by the controller, while

maintaining service management agility, we propose to introduce a service management

framework beyond the SDNC. From bottom-up perspective, this framework provides an

NBI abstracting all rich SDNC functions and control complexities, discussed in Section 2.5.3.

We strengthen this framework by adding the question of the access of the client to managed

resources and services. Indeed, this framework must be able to provide a NBI of variable

granularity, through which the customer is able to manage all three types of services dis-

cussed in Section 2.5.2:

— Type-1 applications: The service abstraction model brought by the framework’s NBI

allows the customers side application to configure a service with minimum of infor-

mation communicated between the application and the framework. The restricted

access provided by the framework prevent unintentional or intentional data leaking

and service misconfiguration.

— Type-2 applications: On the southern side, internal blocks of the framework re-

ceive upcoming network events directly from the resources, or indirectly through the

SDNC. On the northern side, these blocks open up an API to applications allowing

them to subscribe to some metrics used for monitoring reasons. Based on receiving

network events, these metrics are calculated by framework internal blocks and are

sent to the appropriate application.

— Type-3 applications: The controlled access to SDN based functions assured by the

framework provides not only a service management API, but also a service control

one, opened to the customers application. The thin granularity control API allows

customers to have a low-level access to network resources via the framework. Using

this API customers receive upcoming network events sent by devices, based of which

they reconfigure the service.

In order to provide a framework able to implement mentioned APIs, we need to analyze the

service lifecycle in details. This analyze gives rise to all internal blocks of the framework and

all steps they may take, from presenting a high-level service and control API to deploying a

low-level resource allocation and configuration.

37

Chapter 4

Service lifecycle and Service Data

Model

Contents

1.1 Thesis context . 1

1.2 Motivation and background . 2

1.3 Problem statement . 2

1.4 Contributions of this thesis . 3

1.5 Document structure . 4

In order to propose different level of abstractions on the top of the service providers platform

a service orchestrator should be integrated at the top of the SDNC. This system allows

third party actor, called user or customer, to participate to all or part of his network service

lifecyle.

Nowadays, orchestrating an infrastructure based on SDN technology is one of the SDN

challenges. This problematic has at our knowledge been once addressed by Tail-F which

proposes a partial proprietary solution [72]. In order to reduce the Operation Support Sys-

tem (OSS) cost and also the TTM of services, Tail-F Network Control System (NCS) [73]

introduces an abstraction layer on the top of the NBI in order to implement different ser-

vices, including layer 2 or layer 3 VPN. It addresses an automated chain from the service

request, on the one hand, to the device configuration deployment in the network, on the

other hand. To transform the informal service model to a formal one this solution uses the

YANG data model [74]. The service model is mapped into device configurations as a data

model transformation. The proposed work doesn’t however cover all management phases

of the service lifecycle, specially service monitoring, maintenance, etc. , and also it doesn’t

study the possibility of opening up a control interface to a third party actor. Due to the pro-

prietary nature of this product it is not possible to precisely analyze its internal structure.

We present in this chapter a comprehensive solution to this problematic by identifying a

reasonable set of capabilities of the NBI of the SDN together with the associated API. Our

first contribution rests on a global analysis of an abstract model of the operator platform

articulated to a generic but simple service lifecycle, described in Section 4.1, which takes into

account the view of the user together with that of the operator. Tackling the service lifecycle

38 Chapter 4. Service lifecycle and Service Data Model

following these two views simplifies the service abstraction design. The first viewpoint

allows us to identify the APIs structuring the NBI and shared by both actors (operator and

service consumer).

The second part of this chapter, Section 4.2, is dedicated to service data model analysis,

where we describe data model(s) used on each service lifecycle phases, both for client side

and operator side.

4.1 Service Lifecycle

The ability of managing the lifecycle of a service is essential to implement it in an operator

platform. Existing service lifecycle frameworks are oriented on human-driven services. For

example, if a client needs to introduce or change an existing service, the operator has to

configure the service manually. This manual configuration may take hours or sometimes

days. It may therefore significantly affect the operators OpEx. It clearly appears that the

operator has to re-think about its service implementation in order to provision dynamically

and also to develop on-demand services. There are proposals in order to enhance new on-

demand network resource provisioning. For instance, the GYESERS project [75], proposed

a complex service lifecycle model for on-demand service provisioning.

This model includes five typical stages, namely service requests/SLA negotiation, compo-

sition/reservation, deployment/register and synchronization, operation (monitoring), de-

commissioning. The main drawback of this model rests on its inherent complexity. We ar-

gue this one may be reduced by splitting the global service lifecycle in two complementary

and manageable viewpoints: client and operator view. Each one of both views captures only

the information useful for the associated actor. The global view may however be obtained

by composing the two partial views.

In a fully virtualized network based on SDN, the SDNC is administratively managed by the

Service Operator. This one provides a programmable interface, called NBI, at the top of this

SDNC allowing the OSS and Service Client applications to configure on-demand services.

In order to analyze the service lifecycle, and to propose a global model of service lifecycle in

this kind of networks, the application classification analysis is necessary. In Section 2.5.2 we

made an intuitive classification of SDN applications. This classification allows us to analyze

the service lifecycle on both operator and client sides.

4.1.1 Client side Service Lifecycle

Based on the application classification discussed in Section 2.5.2, we analyze the client side

service lifecycle of the three main application types.

4.1. Service Lifecycle 39

4.1.1.1 Client side Service Lifecycle managed by Type-1 applications

Type-1 applications consist of applications creating a network service using the NBI. This

category doesn’t monitor neither modify the service based on upcoming network events.

Fig. 4.1 illustrates the client-side service lifecycle managed by this type of applications, con-

taining two main steps:

— Service creation: The application specifies the service characteristics it needs, it ne-

gotiates the associated SLA which will be available for limited duration and finally it

requests a new service creation. In the reminder of the text we will mark it [Service

creation].

— Service retirement: The application retires the service at the end of the negotiated

duration. This step defines the end of the service life. In the reminder of the text we

will mark it [Service retirement].

Service
Creation

Service
Retirement

Service
Creaion

FIGURE 4.1: Client side Service Lifecycle of Type-1 applications

4.1.1.2 Client side Service Lifecycle managed by Type-2 applications

This category of applications, takes advantage of events coming up from NBI to monitor

the service. It is worth to note that this service may be created by the same application

which monitors the service. Fig. 4.2 illustrates the supplementary step added by this type of

applications to the client-side service lifecycle. This lifecycle contains three main steps:

— Service creation: [Service creation] cf. Section 4.1.1.1.

— Service monitoring: Once created, the service may be used by the client for the ne-

gotiated duration. During this time some network and service parameters will be

40 Chapter 4. Service lifecycle and Service Data Model

monitored thanks to the upcoming events and statics sent from the SDNC to the ap-

plication. In the reminder of the text we will mark it [Service monitoring].

— Service retirement: [Service retirement] cf. Section 4.1.1.1.

Service
Creation

Service
Monitoring

Service
Retirement

FIGURE 4.2: Client side Service Lifecycle of Type-2 applications

4.1.1.3 Client side Service Lifecycle managed by Type-3 applications

In a more complex case, an application may create the service through the NBI, monitors

the service through this interface, and based on upcoming events reconfigure the network

via the SDNC. This type of control adds a retroactive step to the client-side service lifecycle.

This one is illustrated in Fig. 4.3 and contains four main steps:

— Service creation: [Service creation] cf. Section 4.1.1.1.

— Service monitoring: [Service monitoring] cf. Section 4.1.1.2.

— Service modification: Upcoming events and statistics may trigger an algorithm im-

plemented inside the application (implemented at the top of the SDNC), the output

of which reconfigures the underlying network resources through the SDNC. In the

reminder of the text we will mark it [Service modification].

— Service retirement: [Service retirement] cf. Section 4.1.1.1.

4.1.1.4 Global Client-side Service Lifecycle

A global client-side service lifecycle is illustrated in Fig. 4.4. This model contains all previous

steps needed to manage three types of applications, discussed earlier. We introduce to this

4.1. Service Lifecycle 41

Service
Creation

Service
Monitoring

Service
Modification

& update

Service
Retirement

FIGURE 4.3: Client side Service Lifecycle of Type-3 applications

model a new step that is triggered by the operator side operations. This service lifecycle

consists of five main steps:

— Service creation: [Service creation] cf. Section 4.1.1.1.

— Service monitoring: [Service monitoring] cf. Section 4.1.1.2.

— Service modification: [Service modification] cf. Section 4.1.1.3.

— Service modification and update: The management of the operator’s network may

lead to the update of the service. This update can be issued because of a problem

occurring during the service consummation or a modification of the network infras-

tructure. This update may be minimal, such as modifying a rule in one of the under-

lying devices, or it may impact the previous steps, with consequences on the service

creation and/or on the service consummation.

— Service retirement: [Service retirement] cf. Section 4.1.1.1.

4.1.2 Operator Side Service Lifecycle

The Operator-side service lifecycle is illustrated in Fig. 4.5. This service lifecycle consists of

six main steps:

— Service request: Once a service creation or modification request arrives from the

users’ service portal (through the NBI), the request manager negotiates the SLA and

a high level service specification in order to implement it. It is worth noting that be-

fore agreeing the SLA the operator should ensure that the existing resources can cope

with the requested service at the time it will be deployed. In case of unavailability,

the request will be enqueued.

42 Chapter 4. Service lifecycle and Service Data Model

Service
Creation

Service
Monitoring

Service
Modification

& updateService
Retirement

FIGURE 4.4: Global Client Side Service Lifecycle

— Service decomposition, compilation: The high level model of requested service is

decomposed into several elementary service models which are sent to the service

compiler. The compiler generates a set of network resource configurations which

compose that service.

— Service configuration: Based on the previous set of network resource configurations,

several instances of corresponding virtual resources will be created, initialized and

reserved 1. The requested service can then be implemented on these created virtual

resources by deploying network resource configurations generated by the compiler.

— Service maintain, monitoring and operation: Once a service is implemented, its avail-

ability, performance and capacity should be maintained automatically. In parallel, a

service log manager will monitor all service lifecycle.

— Service update: During the service exploitation the network infrastructure may ne-

cessitate changes due to some execution problems or technical evolution require-

ments, etc. It leads to update which may impact the service in different way. The

update may be transparent to the service or it may require to re-initiate a part of the

first steps of the service lifecycle.

— Service retirement: the service configuration will be retired from the infrastructure as

soon as a retirement request arrives to the system. The service retirement issued by

the operator is out of the scope of this work.
1. This aspect is not mentioned in this figure because it falls outside of the scope of the service lifecycle.

4.1. Service Lifecycle 43

Service

Request

Service

Decomposition

Compilation

Service

Configuration

Service

Maintain

Monitoring

Operation

Service

Retirement

Service

Update

FIGURE 4.5: Operator Side Service Lifecycle

We argue that this service lifecycle on the provider side is generic enough to manage the

three types of applications, discussed in Section 2.5.2.

4.1.3 The global view

The global service lifecycle is the combination of both service lifecycles explained in Sections

4.1.1 and 4.1.2. The Fig. 4.6 illustrates the interactions between these two service lifecycles.

During the service run-time the client and the operator interact with each other using the

NBI. This interface interconnects different phases of each part, as described below:

— Service Creation and Modification ↔ Service Request, Decomposition, Compilation

and Configuration: the client-side service creation and specification phase leads to

three first phases of the service lifecycle in the operator side; service request, decom-

position, compilation and configuration.

— Service Monitoring ↔ Service Maintain, Monitoring and Operating: client-side ser-

vice monitoring, which is executed during the service consummation, is in parallel

with operator-side service maintain, monitoring and operation.

— Service Update ↔ Service Update: operator-side service maintain, monitoring and

operation phase may lead to the service update phase in the client-side service life-

cycle.

— Service Retirement ↔ Service Retirement: In the end of the service life, the client-side

service retirement phase will be executed in parallel with the operator-side service

retirement.

4.2. Service Data Model 45

To formalize data model on each layer and the transformation allowing to map one layer

onto the other one, Moberg et al. [76] proposed to use the YANG data model [74] as the

formal modeling language. Using the unified YANG modeling for both service and device

layers was also previously proposed by Wallin et al. [77].

These three elements required to model a service, (i.e. service layer, device layer and trans-

formation model), are illustrated in [76] where the authors specify with this approach IP

VPN services. At the service layer the model consists in a formal description of VPN services

presented to the customer, and derived from a list of VPN service parameters including BGP

AS number, VPN name and a list of VPN endpoints (CE and/or PE). At the second layer

the device model is the set of device configurations corresponding to a VPN service. This

one is defined by all configurations done on PEs connected to all requested endpoints. This

information includes PE IP address, RT, RD, BGP AS number, etc. Finally, for the third ele-

ment which is the transformation template mapping one layer on the other one, the authors

propose the use of a declarative model. In the example the template is based on Extensible

Markup Language (XML) which according to service model parameters, generates a device

model.

4.2.2 Applying the two-layered model approach on Service Lifecycle

Proposed model based on YANG data modeling language brings dynamicity and agility to

the service management system. Its modular aspect allows to reduce the new service cre-

ation and modification costs. In this section we apply this model on the proposed service

lifecycle, discussed in Section 4.1. This analysis aims to introduce a model allowing to for-

malize service lifecycle phases and their respective data models. An example of this analysis

is presented in the Table 4.1 at the end of this Section.

4.2.2.1 Applying two-layered model on client side service lifecycle

The client side service representation is a minimal model containing informal information

about the customers service. All steps of client side service lifecycle are relying on the ne-

gotiated service model, i. e. the service layer model of two-layered approach (Section 4.2.1)

that is a representation of the service and its components. From the operator side point of

view, data model used by this service lifecycle rests on the service layer model.

4.2.2.2 Applying two-layered model on operator side service lifecycle

The integration of new services and updating the service delivery platform involves the

creation and updating data models used by the client side service lifecycle. Contrary to the

client side, the operator side service lifecycle relies on several data models.

46 Chapter 4. Service lifecycle and Service Data Model

Following we describe service model(s) used during each step of operator side service life-

cycle, discussed in Section 4.1.2:

— Service Request: to negotiate the service with the customer the operator relies on the

service layer model. This model is the same as the model used on the client side ser-

vice lifecycle. For example, for a negotiated VPN service, both Service Request step

and client side service lifecycle, will use the same service layer model. An example

of this model is discussed in Section 4.2.1 [76].

— Service Decomposition and Compilation: this step receives on the one hand, the ser-

vice layer model and generates, on the other hand, device configuration sets. Com-

paring to proposed two-layered approach, this phases is equivalent to the intermedi-

ate layer transforming data models. A service layer model can be a fusion of several

service models that for the sake of simplicity are merged into a global model. Dur-

ing the decomposition step this global model is broken down into elementary service

models which are used in compilation step. They are finally transformed in sets of

device models. The transformation of models can be done through two methods:

— Declarative method is a straightforward template that makes a one to one map-

ping of a source data model of parameters to a destination one. For example a

service model describing a VPN can be transformed to device configuration sets

by one-to-one mapping of values given within the service model. In this case it

is sufficient that the transformer retrieves required values from the first model to

construct the device model based on a given template.

— Imperative method is defined by an algorithmic expression used to map a data

model to a second one. Usually this model contains some dynamic parameters,

e.g. an unlimited list of interfaces. An example for this model can be a VPN

service model in which each client’s site, i.e. CE, has different number of up-links

(1..n) connected to different number of PEs (1..m). In this case the transformation

is not a simple one-to-one mapping any more, but rather an algorithmic process

(here a loop) that creates one device model per service model.

Using one of these methods, i.e. declarative or imperative data transformation, has

its own advantage or drawback, hardly one of these methods would be superior than

the other [78, 79]. We argue that the choice of the transformation method used on

compilation phase rests on the service model, its related device model and the gran-

ularity of parameters within each model.

— Service configuration: to configure a resource, the device model generated by the

transformation method of the previous step (i.e. compilation) is used. If this model is

generated into the same data model known by the network element, no transforma-

tion method should be used. Otherwise another data transformation action should

be done on the device model transforming the original device model to a network ele-

ment compatible one. It is worth noting that since this transformation is a one-to-one

mapping task, the data transformation can be done with the declarative method.

— Service maintain, monitoring and operation: since the service maintain and opera-

tion process is directly done on network elements, the data model used for this phase

4.2. Service Data Model 47

is device model. Although the service model used for the monitoring task of this

phase relies on the nature of the monitored resource. For example, if the service engi-

neers and operators need to monitor the status of a resource they might use a moni-

toring method such as SNMP, BGP signaling-based monitoring [80], etc. the result of

which is described in device model. Otherwise, if a service customer needs to mon-

itor its service, e.g. monitoring the latency of two endpoints of a VPN connection,

the monitoring information sent from the operator to the customer is transformed to

a service data model. This bottom-up transformation can be done by declarative or

imperative method.

— Service update: updating a service consists in updating network elements configura-

tions, hence the data model used on this phase is a device data model. Nevertheless

this update may derive a modification on the service model represented to the cus-

tomer. In this case, at the end of the service update process, a new service model will

be generated based on the final state of network elements. This new model is the re-

sult of the bottom-up data transformation done through of declarative or imperative

methods.

— Service retirement: decommissioning a service is made up of all tasks done to re-

move service related configurations from network elements, and eventually to re-

move the resource itself. In order to remove device configurations, device data mod-

els are used. But, during the retirement phase the service model is also used. The data

model transformation done in this phase entirely depends on the source of retirement

process. Indeed, if the service retirement is requested from the customer, hence the

request is arrived from the client side described in a service model. Consequently, the

service model - device model transformation is a top-bottom model transformation.

Otherwise, if the service retirement is triggered by the service operator, a new service

model should be represented to the customer. This one requires a bottom-up model

transformation done with one of explained methods.

Service lifecycle Phase Data model(s) Transformation method(s)

Client side

Service creation SM N/A
Service monitoring SM N/A

Service update SM N/A
Service retirement SM N/A

Operator side

Service creation SM N/A
Service configuration DM D

Service maintain, monitoring
and operation

SM - DM D - I

Service update SM - DM D - I
Service monitoring SM - DM D - I
Service retirement SM - DM D - I

TABLE 4.1: Service lifecycle phases and their related data models and trans-
formation methods

SM - Service model, DM - Device model, D - Declarative, I - Imperative

48 Chapter 4. Service lifecycle and Service Data Model

4.3 Conclusion

In this chapter we conducted an analysis of service lifecycle in an SDN-based ecosystem.

This analysis has led us to two general service lifecycles: client-side and service-side. On

the first side we discussed how an application implementing network services using an

SDNC can contribute to the client-side service lifecycle. For this reason, for each application

category discussed in Section 2.5.2, we presented a client-side service lifecycle model, by

discussing additional steps that each category may add to this model. Finally, a global client-

side service lifecycle is presented. This global model, contains all steps needed to deploy

each type of applications. We also presented a global model concerning the operator-side

service lifecycle. It represents the model that an operator may take into account to manage

a service from the service negotiation to the service retirement phases.

In the second part of this chapter we discussed the data model used by each service lifecycle

phase. Through an example we explained in details the manner in which a data model is

transformed from a source model into a destination one.

We argue that presenting a service lifecycle model on one side, allows the implementation

of a global SDN orchestration model managed by an operator. On the other side, this model

will help us to understand the behavior of applications. In this way it will simplify the

specification of the NBI in forthcoming studies. Presenting the data model also describes in

details the behavior of the management system on each service lifecycle step. It also permits

the definition of operational blocks and their relations allowing to implement the operator

side service lifecycle.

49

Chapter 5

An SDN-based Framework For Service

Provisioning

Contents

2.1 Technological context . 7

2.2 Modeling programmable networks . 8

2.3 Fundamentals of programmable networks 9

2.4 Software-Defined Networking (SDN) . 11

2.4.1 Architecture . 11

2.4.2 SDN Infrastructure . 11

2.4.3 SDN Southbound Interface (SBI) . 12

2.4.4 SDN Controller . 14

2.4.5 SDN Northbound Interface (NBI) . 15

2.5 SDN Applications Analysis . 16

2.5.1 SDN Applications . 16

2.5.2 Intuitive classification of SDN applications 18

2.5.3 Impact of SDN Applications on Controller design 19

2.6 Network Function Virtualization, an approach to service orchestration . . 20

In this chapter we present a framework involving a minimal set of functions required to

manage any network service conform to the service lifecycle model presented in the previ-

ous chapter. We organize this set of functions in two orchestrators, one dedicated exclusively

to the management of the resources: the resource orchestrator, and the other one grouping the

remaining functions: the service orchestrator. The general framework structuring the inter-

nal architecture of SDN is presented in Section 5.2 and illustrated with an example. This

framework is externally limited by NBI and SBI and internally clarifies the border between

the two orchestrators by identifying an internal interface between them, called the middle

interface.

50 Chapter 5. An SDN-based Framework For Service Provisioning

5.1 Illustrating Service Deployment Example

The operator side service lifecycle is presented in Section 4.1.2. This model represents all

processes an operator may take into account to manage a service. We introduce a service

and resource management platform which encapsulates an SDNC and provides through

other functional modules, the capabilities to implement each step of the service lifecycle

presented before. Fig. 5.1 illustrates this platform with the involved modules together with

special data required and generated by each module. It shows the diversity of information

needed to manage a service automatically.

Service

Request

Manager

Service

Decomposition

and Compilation

Manager

Service

Configuration

Manager

Resource

Reservation

Manager

Generic

Service Model

Service

Specifications

Resource

Configuration

Sets

Virtual

Resource List

Resource

Requirements

Resource

Configuration

Resource

Reservation

Platform

Functional

Modules

Generated Data

FIGURE 5.1: Functional modules of the service and resource management
platform.

We will detail the different modules of this platform in the next section. We prefer now to

illustrate this model by describing the main processes through the example of a VPN service

connecting two remote sites of a client connected to physical routers: PE1 and PE2. In MPLS

networks, each CE is connected to a VRF instance hosted in a PE. In our example we call

these instances, (i.e. VRFs) respectively vRouter1 and vRouter2. The first step of the service

lifecycle which consists in the "Service Creation" gives rise in the nominal case to a call flow

the details of which are presented in Fig. 5.2.

In the first step (arrow 1 of Fig. 5.2), the client requests a VPN service and negotiates the

service specifications, such as QoS, bandwidth, etc. This negotiation is done through the

NBI with the Service Request Manager (SRM). In this case, the negotiated service model

can be presented as a general virtual router with two interfaces, each one connected to one

52 Chapter 5. An SDN-based Framework For Service Provisioning

SDNC NBI to program these resources by recently generated instructions (arrows 6, 10, 12

of Fig. 5.2). Finally at the end of the service deployment, the client will be informed about

the service implementation through the SRM (arrows "Service Creation Resp." of Fig. 5.2).

5.2 Orchestrator-based SDN Framework

Service management processes, as illustrated in the previous example, can be divided into

two more generic families: the first one managing all steps executing service based tasks

from service negotiation to service configuration and service monitoring, and the second one

managing all resource based operations. These two families managing together all operator-

side service lifecycle (discussed in 4.1.2) can be represented as a framework illustrated in Fig.

5.3. The model is composed of two main orchestration layers:

— Service Orchestrator (SO)

— Resource Orchestrator (RO)

The "Service Orchestrator" will be dedicated to the service part operations and is conform

to the operator side service lifecycle, cf. Section 4.1.2:

— Service Request

— Service Compilation/Decomposition

— Service Configuration

— Service Maintain

— Service Monitoring

— Service Retirement

The "Resource Orchestrator" will manage resource part operations:

— Resource Reservation

— Resource Monitoring

Service Orchestrator (SO): This orchestrator receives service orders and initiates the service

lifecycle by decomposing complex and high level service requests to elementary service

models. These models allow to derive the type and the size of resources needed to imple-

ment that service. The SO will demand the virtual resource reservation from the lower layer

and deploy the service configuration on the virtual resources through an SDNC.

Resource Orchestrator (RO): This orchestrator, which manages physical resources, will re-

serve and initiate virtual resources. It maintains and monitors physical resources states

using the southbound interface.

5.2.1 Internal structure of the Service Orchestrator

As mentioned in Fig. 5.3, the first orchestrator, SO, contains five main modules:

— SRM

— SDCM

— SCM

56 Chapter 5. An SDN-based Framework For Service Provisioning

The SCM can be considered as a resource driver of the SO. This module is the interface

between the orchestrator and resources. Creating such a module facilitates the processes

run at upper layers of the orchestrator where the service can be managed independently of

existing technologies, controllers and protocols implementing and controlling resources. On

the one hand, this module communicates to different resources through its SBI. On the other

hand, it exposes a universal resource model to other SO modules, specifically to SDCM.

Configuring a service by SCM requires a decomposition into two tasks: creating the resource

on the first step (if the resource doesn’t exist, cf. arrow 4 of Fig. 5.6), and configuring that

resource at the second step (cf. arrow 5 of Fig. 5.6). In our example, once the PE3 ID

and the required configuration is received from the SDCM side, the SCM, firstly fetches the

management IP address of the PE3 from its database. Secondly if the requested vRouter is

missing on the PE, it creates a vRouter (cf. arrow 4 of Fig. 5.6). And thirdly, it configures

that vRouter to fulfill the requested service.

In order to create the required resource (i.e. to create the vRouter on the PE3), SCM sends a

resource creation request to the RO (arrow 4 of Fig. 5.6). Once the virtual resource (vRouter)

is initiated, the RO acknowledges the creation of the resource by sending the management

IP address of that resource to SCM. All what this latter needs to do, is to push the generated

configuration to that vRouter using its management IP address (arrow 6 of Fig. 5.6). The

configuration of the vRouter can be done via different methods. In our example the vRouter

is an OpenFlow-enabled device programmable via the NBI of an SDNC. To configure the

vRouter, SCM uses its interface with the SDNC controlling this resource.

5.2.1.4 SCM - SDN Controller (SDNC) Interface

As we explained, the configuration of part or all of virtual resources used to fulfill a service

can be done through an SDNC. In Section 3.2.2.1 we analyzed the architecture of the Open-

Daylight controller providing a rich set of modules allowing to program network elements.

This controller exposes on its NBI some Representational State Transfer (REST) APIs allow-

ing to program flows thanks to its internal Flow Programmer module. These APIs allow to

program the behavior of a switch based on a “match” and “action” tuple. Among all ac-

tions done on a received packet, the Flow Programmer allows to push, pop and swap MPLS

labels.

In order to program the behavior of the initiated vRouter, we propose to use the API pro-

vided by OpenDaylight Flow Programmer. The vRouters role is to push MPLS label into

packets going out from Site D to other sites (A and C), and to pop the MPLS labels from in-

coming packets sent from these remote sites. To program each flow OpenDaylight requires

the Datapath ID (DPID) of the vRouter, inbound and outbound port numbers, MPLS la-

bels to be pushed, popped and swapped, and the IP address of next hops where the packet

should be sent to. In the following we will discuss how these information is managed to be

sent to the SDNC.

5.2. Orchestrator-based SDN Framework 57

DPID: During the resource creation time, the vRouter is programmed to be connected au-

tomatically to OpenDaylight. The connection establishment between these two entities is

explained in OpenFlow specification, where the vRouter sends its DPID to the controller

via OpenFlow features reply. This DPID, known by SCM and SDNC, is further used as the

unique ID of this virtual resource.

Port numbers: Inbound and outbound port numbers are practically interface numbers of

the vRouter created by the SO. To create a virtual resource, the SCM relies on a resource

template explaining the interface ordering of that resource. This template describes which

interface is used for management purpose, which interface is connected to the CE and which

one is connected to the P router inside the MPLS network. This template is registered inside

the database of the SCM, and this module uses this template to generate REST requests sent

to the SDNC.

MPLS labels: MPLS labels are other parameters needed to program the flow inside the

vRouter. These labels are generated and managed by SDCM. This module controls the

consistency of labels inside a managed MPLS network. Labels are generated in this layer

and are sent to the SCM to use in service deployment step.

Next hop IP address: When a packet enters to vRouter from the CE side, the MPLS label

will be pushed into the packet and it will be sent to the next LSR. Knowing that the MPLS

network, including LSRs, is managed and configured by the SO, this one has an updated

vision of the topology of this network. The IP address of the P router directly connected to

the PE is one of information that can be exported from the topology database of SO managed

by SCM.

Once the vRouter is created and configured on the PE3, the LSP of the MPLS network also

should be updated. At the end of the vRouter creation step, the customer owns three sites,

each one connected to a PE hosting a vRouter. The SCM configures on each vRouter (1 and

2) the label that should be pushed to each packet sent to Site D and vice versa (cf. arrows 6,

8, 10 of Fig. 5.6). It configures also the P router connected directly to PE3 to take into account

the label used by the vRouter3 (cf. arrow 12 of Fig. 5.6).

5.2.1.5 Service Monitoring Manager (SMM)

In parallel to the three main modules explained previously, the SO contains a monitoring

system, called SMM, that monitors vertically the functionality of all orchestrators modules

from the SRM to the SCM and its SDNC. This module has two interfaces to external part of

the orchestrator. On the one hand, it receives upcoming alarms and statistics from the lower

orchestrator, RO, and on the other hand it communicates the service statistics to the external

application via the NBI.

58 Chapter 5. An SDN-based Framework For Service Provisioning

5.2.2 Internal architecture of the Resource Orchestrator

As it is mentioned in previous sections, 4.1.2 and 5.2.1.3, during the service configuration

phase, the RO will be called to initiate resources required to implement that service. In the

service configuration step, if a resource is missing, the SCM will request the RO to initiate the

resource on the specified location. The initiated resource can be virtual or physical according

to the operator politic and/or negotiated service contract.

Existing cloud orchestration systems, such as OpenStack platform [81], are good candidates

to implement a RO. OpenStack is a modular cloud orchestrator that permits providing

and managing a large range of virtual resources, from computing resource, using its Nova

module, to L2/L3 LAN connection between the resources, using its Neutron module. The

flexibility of this platform, the variety of supported hypervisors and its optimized resource

management [82] can help us to automatically provision virtual resources, including virtual

servers or virtual network units. We continue exploiting the proposed framework based on

a RO implemented by the help of OpenStack.

In order to implement and manage required resources needed to bring up a network service,

an interface will be created between the SO and the RO where the SCM can communicate

to the underlying OpenStack platform providing the virtual resource pool. This interface

provides a resource management abstraction to SO. The resource request will be passed

through various internal blocks of the OpenStack, such as Keystone that controls the access

to the platform. As our study is mostly focused on service management, in this proposal we

don’t describe the functionality of each OpenStack module in details. In general, the internal

architecture of the required RO is composed of two main modules, one used to provide

virtual resources, a composition of Nova, Cinder, Glance and Swift modules of OpenStack,

and another one used to monitor these virtual resources, thanks to the Ceilometer module

of OpenStack.

If the RO faces an issue it will inform the SO which is consuming the resource. The service

run-time lifecycle and performance is monitored by the SO. When it faces an upcoming

alarm sent by the RO or a service run-time problem occurring on virtual resources, it will

either perform some task to resolve the problem autonomously or send an alarm to the

service consumer application (service portal).

Creating a virtual resource requires a set of information, software and hardware specifica-

tions, such as the version of the firmware installed inside that resource, number of physical

interfaces, the capacity of its Random-Access Memory (RAM), and its startup configura-

tions like the IP address of the resource. For example to deploy a vRouter, the SO needs a

software image which installs the firmware of this vRouter. Like all computing resources, a

virtual one also requires some amount of RAM and Hard Disk space to use. In OpenStack

world, these requirements are gathered within a Flavor.

Fig. 5.7 illustrates a REST call, sent from the SCM to the RO, requesting the creation of the

vRouter. In this example, the SCM requests the creation of the “vPE1”, that is a vRouter, on

5.3. Implementation 59

a resource called “PE1” using an image called “cisco-vrouter” and the flavor “1”.

curl -X POST -H "X-Auth-Token:\$1" -H "Content-Type: application/json" -d '
{ "server": {

"name": "vPE1",
"imageRef": "cisco_vrouter",
"flavorRef": "1",
"availability-zone" : "SP::PE1",
"key_name" : "OrchKeyPair" }

}
' http://resourceorchestrator:8774/v2/admin/servers | python -m json.tool

FIGURE 5.7: REST call allowing to reserve a resource

5.2.3 Framework interfaces

The composition of this framework requires the creation of three interfaces (cf. Fig. 5.3). The

first one, the NBI, provides an abstracted service model enriched by some value-added ser-

vices to the third party application or service portal. The second one, the SBI, interconnects

the SO to the resource layer through the SDNC. This interface permits the SCM to configure

and control virtual or physical resources. Inter-orchestrator (middle) interfaces, is the third

interface that is presented for the first time in this framework. This interface interconnects

the SO to the ROs. The modular aspect created by this interface permits to implement a dis-

tributed orchestration architecture. This architecture allows one or several SO(s) to control

and communicate to one or several RO(s).

5.3 Implementation

In order to describe the internal architecture of the framework, we implement different lay-

ers of the Service Orchestrator through the MPLS VPN deployment example.

5.3.1 Hardware architecture

Fig. 5.8 shows the physical architecture of our implementation. This one is composed

mainly by three servers each one implementing one of the main blocks:

— Server1 implements the Mininet Platform [83]. For the sake of simplicity and because

of lack of resources, we implement the infrastructure of our implementation based

on a Mininet platform. This one implements all resources, routers and hosts, needed

to deploy our desired architecture.

— Server2 implements OpenDaylight SDN controller [32]. For this implementation we

use the Carbon version of the OpenDaylight. From its SBI this controller manages

resources implemented by the Mininet platform based on OpenFlow protocol.

5.3. Implementation 61

For this implementation we study the case where all three customer sites are already con-

nected to the core network and the physical connection between CE and PE routers is estab-

lished.

5.3.3 Software architecture

Given that our analysis focuses on the architecture of the SO, in this implementation we

study the case where the required resource already exists. In this case the deployment of the

service relies on the SO and its related SDNC. Fig. 5.10 shows the internal architecture and

the class diagram of the implemented SO.

The architecture of the orchestrator is based on the object oriented paradigm developed in

Python 2.7. In our implementation each SOs layer is developed in a separated package:

Service Request Manager (SRM): contains several classes including Service_request, Cus-

tomer and Service_model. On the one hand it implements a REST API used by the customer,

on the other it manages all available services proposed to the customer and the service re-

quested arrived from the customer. For this, it uses two other objects (classes) each one

controlling the resources managed in this layer. The first one, Customer class, manages

the customer, its subscribed services and available services to him. The second one, the

Service_model, manages customer face service models. This model is used to make a repre-

sentation of the service to the customer.

Fig. 5.11 shows the negotiated MPLS VPN service model requested by the customer. In this

model the customer requests creating a VPN connection between three remote sites each

one connected to a CE (ce1, ce2, and ce3).

Service Decomposition and Compilation (SDCM): contains several classes and a submod-

ule called Service_transformers. The SDCM sends the requested VPN service model to

the specified transformer implemented within the Service transformers package. In order

to transform the VPN service model to its equivalent device models, we implemented a

Mpls_vpn_transformer class converting the higher level model to a lower level one.

Fig. 5.12 shows the simplified algorithm implemented within the MPLS_vpn_transformer.

In the first step, this module retrieves related PE list connected to each remote site from the

Topology module. Using the integrated Dijkstra engine of the Topology module, it calcu-

lates the shortest path to reach other sites from each PE. And using the labels generated by

the Label_manager, and device model templates managed by the Flow_manager, it gener-

ates a list of device models to be deployed on the underlying network devices to create the

required LSP.

In our implementation we use a device model database containing all models needed to

create a MPLS network on an OpenFlow based infrastructure. This database is managed

by the Flow_manager module. The entries of this database are each one a flow template

5.3. Implementation 63

{
" s e r v i c e _ t y p e " : " mpls_vpn " ,
" customer_id " : " customer_1 " ,
" p r o p e r t i e s " : {

" c e _ l i s t " : [{
" ce_id " : " ce1 " ,

" lan_net " : " 1 9 2 . 1 6 8 . 1 . 0 / 2 4 "
} ,
{

" ce_id " : " ce2 " ,
" lan_net " : " 1 9 2 . 1 6 8 . 2 . 0 / 2 4 "

} ,
{

" ce_id " : " ce2 " ,
" lan_net " : " 1 9 2 . 1 6 8 . 3 . 0 / 2 4 "

}]
}

}

FIGURE 5.11: Negotiated MPLS VPN service model

service model

received from SRM

for each CE in CE_list

find related PE PE_list

PE

exists

create PE record

in the PE_list

for each PE in PE_list calculate the

path (SPF) to other PEs path_list

No

for each node in each path generate

related LSP flow device_model_list

return

device_model_list

Mpls_vpn_transformer

Topology

Label_manager

Flow_manager

FIGURE 5.12: Implemented MPLS VPN transformer simplified algorithm

a MPLS label to a packet. This template can be used to program an ingress LSR.

64 Chapter 5. An SDN-based Framework For Service Provisioning

{
" model_id " : " mpls_push " ,
" flow " : {

. . .
" i n s t r u c t i o n s " : {

" i n s t r u c t i o n " : {
. . .
" apply−a c t i o n s " : {

" a c t i o n " : [{
" push−mpls−a c t i o n " : {

" e thernet−type " : "34887"
} ,
. . .

} ,
{

" se t−f i e l d " : {
" protocol−match−f i e l d s " : {

" mpls−l a b e l " : " "
}

} ,
. . .

} ,
{

" output−a c t i o n " : {
" output−node−connector " : " "

} ,
. . .

}]
}

}
} ,
. . .
" match " : {

" e thernet−match " : {
" e thernet−type " : {

" type " : "2048"
}

} ,
" in−port " : " " ,
" ipv4−d e s t i n a t i o n " : " "

} ,
. . .

}
}

FIGURE 5.13: A simplified device model template used for Ingress LSR

Once all device models are generated by the Mpls_vpn_transformer, the Service_compiler

5.4. Conclusion 65

sends them to the lower layer, the Service Configuration Manager (SCM). In this implemen-

tation the SCM pushes generated flows to the OpenDaylight through the REST interface of

the controller. It’s worth noting that to create these rules within underlying devices, the

Forwarding Rules Manager module of OpenDaylight is used.

The Topology module is another key element implemented in this orchestrator. This mod-

ule retrieves the topology information of the infrastructure via the REST interface of the

Topology Explorer of the controller. It generates a topology graph usable by other blocks of

the orchestrator.

5.4 Conclusion

In this chapter, we proposed a SDN framework derived from the operator-side service life-

cycle discussed in 4.1.2. This framework which is structured in a modular way encapsulates

SDNC with two orchestrators, SO and RO, dedicated respectively to the management of

services and resources. The proposed framework is externally limited by NBI and SBI and

internally clarifies the border between the two orchestrators by identifying an internal inter-

face between them, called the middle interface, which provides a virtual resource abstraction

layer on the top the RO. Our approach gives the foundation for the rigorous definition of

the SDN architecture.

It is important to note the difference between the SO and its complementary system, RO. The

RO provisions, maintains and monitors physical devices hosting several virtual resources.

It doesn’t dispose any perspective of running configuration on each virtual resource. Unlike

RO, the SO manages the internal behavior of each resource. It is also the responsible of

interconnecting several virtual resources to conduct a required service.

Finally, we described in 5.3 the implementation of the main components of the proposed

framework based on OpenDaylight controller and Mininet platform. In this prototype we

study the service data model transformation, discussed in 4.2, through a simple MPLS VPN

service deployment.

67

Chapter 6

Bring Your Own Control (BYOC)

Contents

3.1 Introduction to MPLS networks . 23

3.1.1 MPLS data plan . 23

3.1.2 MPLS control plan . 24

3.1.3 MPLS VPN Sample Configuration . 26

3.1.4 MPLS VPN Service Management . 27

3.2 SDN-based MPLS . 28

3.2.1 OpenContrail Solution . 28

3.2.2 OpenFlow-based MPLS Networks . 29

3.3 Outsourcing problematics . 34

NBI refers to the software interfaces between the controller and the applications running

atop. These ones are abstracted through the application layer consisting in a set of appli-

cations and management systems acting upon the network behavior at the top of the SDN

stack through the NBI. The centralized nature of this architecture brings large benefits to

the network management domain, including the third party network programmability ac-

cess. Network applications, on the highest layer of the architecture, achieve the desired

network behavior without knowledge of detailed physical network configuration. The im-

plementation of the NBI relies on the level of the network abstraction to be provided to the

application and the type of the control that the application brings to the controller, called SO

in our work.

NBI appears as a natural administrative border between the SDN Orchestrator, managed by

an operator, and its potential clients residing in the application layer. We argue that pro-

viding to the operator the capability of mastering SDN’s openness on its northbound side

should largely be profitable to both operator and clients. We introduce such a capability

through the concept of BYOC: Bring Your Own Control which consists in delegating all or a

part of the network control or management role to a third party application called Guest

Controller (GC) and owned by an external client. An overall structure of this concept is pre-

sented in Fig.6.1, which shows the logical position of the Bring Your Own Control (BYOC)

application in the traditional SDN architecture, that includes partly the Control Layer and

the Application one.

70 Chapter 6. Bring Your Own Control (BYOC)

monitoring tasks, done at the operator-side service lifecycle, as potentially interesting can-

didates, some parts of which may be delegated to the GC. Such an outsourcing moreover

leads to enrich in some ways the APIs described in Fig. 6.2.

6.1.2.1 Applying the BYOC concept to Type 1 services

Configuring a service in the SO is initiated after the Service compilation phase of the oper-

ator side service lifecycle 4.1.2. This one translates the abstracted network models into de-

tailed network configurations thanks to integrated network topology and statement databases.

In order to apply the BYOC concept, all or a part of the service compilation phase may be

outsourced to the application side represented by the GC. For example, the resource config-

uration set of a requested VPN service, discussed in Section 5.1, can be generated by a GC.

This delegation needs an interface between the SDCM and the GC. We suggest to enrich the

first API with dedicated primitives allowing the GC to proceed to the delegated part of the

complete compilation process (cf. the primitive "Outsourced (Service Compilation)" in Fig. 6.3).

It is worth pointing out that the compilation process assigned to the GC could be partial

because the operator may want to maintain the confidentiality of sensitive information, as

for example the topology of its infrastructure.

6.1.2.2 Applying the BYOC concept to Type 2 services

In this case the application may configure a service and monitor it via the NBI. This type

involves the compilation phase, discussed earlier, and the monitoring one. Outsourcing the

monitoring task from the Controller to the GC, thanks to the BYOC concept, requires an

asynchronous API that permits to transfer the real-time network events to GC during the

monitoring phase. The control application implemented in the GC observes the network

state thanks to the real-time events sent from the Controller. A recent work [84] proposed an

XMPP-based push/pull solution to implement an NBI that permits to communicate the net-

works real-time events to the application for a monitoring purpose. The outsourced mon-

itoring is located in the second API of Fig. 6.2 and could be expressed by refining some

existing primitives of the API (cf. "Outsourced (Service Monitoring Req./Resp.)" of Fig. 6.3).

6.1.2.3 Applying the BYOC concept to Type 3 services

This type concerns the application that configures a service (Type 1) and monitors it (Type

2), according to which it may modify the network configuration and re-initiate the partial

compilation process (Type 1). The second API of Fig. 6.2 should be sufficient to implement

such type of service even if it may necessitate non trivial refinements or extensions in order

to be able to collect the information needed by GC. The delegation of the control induced by

this kind of GC comes exactly from the computation of the new configuration together with

its re-injection in the network, through the SDNC, in order to modify it.

72 Chapter 6. Bring Your Own Control (BYOC)

6.2 Northbound Interface permitting the deployment of a BYOC

service

6.2.1 Requirements for specification of the NBI

The GC is connected to the SO through the NBI. This is where the service operator communi-

cates with the service customer and sometimes couples with the client side applications, or-

chestrators, and GC(s). In order to accomplish these functionalities certain packages should

be implemented. These packages maintain two categories of tasks: 1) Service creation, con-

figuration and modification, and 2) Service monitoring and BYOC service control.

1. Synchronous vs Asynchronous interactions

The former uses a synchronous interaction that implements a simple request/reply

communication that permits the client-side application to send service requests and

modifications, while the latter uses an asynchronous interaction where a notification

will be pushed to the subscribed service application. The asynchronous nature of this

package makes it useful for sending control messages to the GC.

From its SBI, the SO tracks the network events sent by resources. Based on the service

profile related to the resources, it sends events to concerning modules implemented

either inside the SO or within an external GC.

2. Push/Pull paradigm to structure the interactions

The communication between the GC and the SO is based on Push-and-Pull (PaP)

algorithm [85] that is basically used for the HTTP browsing reasons. In this proposal

we try to adapt this algorithm to determine the communication method of the NBI

which will use publish/submit messaging paradigm. The GC subscribes to the SO.

To manage BYOC-type services, Decision Engine (DE) and Service Dispatcher (SD)

modules are implemented within the SO. The DE receives messages sent by network

elements and based on them it decides whether to treat the message inside the SO or

forward the message to the GC. For messages needed to be analyzed within a GC,

the DE sends them to the SD. The SD distributes these messages to every GC that has

subscribed to the corresponding service.

Figure 6.4 illustrates the communication between components of the system in detail.

a: The service customer requests a service from the SRM, through the service portal.

In addition to the service request confirmation, the system sends the subscription

details about the way that service is managed, internal or BYOC.

b: Using the subscription details, the user connects to the SD unit and subscribes to

the relevant service.

c: When a control message, e.g. OpenFlow PackeIn message, is sent to the DE, the

DE creates a notification and sends it to the SD.

d: The SD unit pushes the event to all subscribers of that specific service.

74 Chapter 6. Bring Your Own Control (BYOC)

a unique Uniform Resource Locator (URL). Resources are application’s state and function-

ality which are represented by a uniform interface to transfer the state between the client

and server. Unlike most of web services architecture, it is not necessary to use XML as a

data interchange format in REST. The implementation of the REST is standard-less and

the format of exchanged information can be in XML, JavaScript Object Notation (JSON),

Comma-Separated Values (CSV), plain text, Rich Site Summary (RSS) or even in HyperText

Markup Language (HTML), i.e. REST is ambivalent.

The simplicity, performance and scalability of REST are the reasons of its popularity in SDN

controllers’ world. REST is easier to use and is more flexible. In order to interact with the

Web Services, no expensive tools are required. Comparing to our requirements explained in

section 6.2.1, the fundamental limitation of this method rests on the absence of asynchronous

capabilities and managing a secured multi-access.

Traditional Web Services solutions, such as Simple Object Access Protocol (SOAP) have pre-

viously been used to specify NBI but quickly abandoned in favor of the RESTful approach.

The initiative concerning the WebSockets [89] should eventually be interesting, but actually

this solution is still under development. As mentioned in the work of Franklin and Zdonik

[90], push systems are actually implemented with the help of a periodic pull that may cause

an important charge in the network. Alternative solutions like Asynchronous JAvascript

and Xml (AJAX) also rely on client’s initiated messages. We argue that XMPP [91] could

be a good candidate due to its maturity and simplicity it may cope with all the previous

requirements.

6.2.3 XMPP As An Alternative Solution

XMPP [91], also known as Jabber, is originally developed as an Instant Messaging (IM) pro-

tocol by the Jabber community. This protocol, formalized by the IETF, uses an XML stream-

ing technology in order to exchange XML elements, called stanza, between any two entities

across the network, each one identified by a unique Jabber ID (JID). The JID format is com-

posed of three elements: "node@domain/resource" where the "node" can be a username, the

"domain" is a server and the "resource" can be a device identifier. XMPP Standard Founda-

tion tries to enlarge the capability of this protocol by providing a collection of XMPP Ex-

tension Protocols (XEP)s [92], XEP-0072 [93], for example, defines methods for transporting

SOAP messages over XMPP. Thanks to its flexibility, the XMPP is used in a large domain,

from a simple application such as instant messaging to a larger one such as remote comput-

ing and cloud computing [94]. The work [95] shows how XMPP is a compelling solution for

cloud services and how its push mechanism eliminates unnecessary polling. XMPP forms a

push mechanism where nodes can receive messages and notifications whenever they occur

on the server. This asynchronous nature eliminates the need for periodic pull messages.

76 Chapter 6. Bring Your Own Control (BYOC)

two main crucial packages listed in the beginning of this section; packages that execute

1) Service creation, configuration and modification, and 2) Service monitoring and BYOC

service control. The NBI security problem also is considered in this proposal. The XMPP

specifications describe security functions as the core parts of the protocol [91] and all XMPP

libraries support these functionalities by default. XMPP provides a secure communication

through an encrypted channel (Transport Layer Security (TLS)) and restricts the client access

via the Simple Authentication and Security Layer (SASL) that permits XMPP servers to ac-

cept only encrypted connections. All this signifies that XMPP is well suited for constructing

a secured NBI allowing to deploy a BYOC service.

6.2.3.3 NBI Data Model

In order to hide the service implementation complexity, services can be represented as a

simple resource model described in a data modeling language. YANG data modeling lan-

guage [74] can be a good candidate for this purpose. A YANG data model is translated

into an equivalent XML syntax called YANG Independent Notation (YIN) that, on the one

hand, allows the use of a rich set of XML-based tools and, on the other hand, can be easily

transported through the XMPP-based NBI.

6.2.4 Simulation results

In order to evaluate this proposal, we assessed the XMPP NBI implementation performance

in term of delay and overhead costs by comparing a simple GC using an XMPP-based NBI

with the same GC using a RESTful-based one. Once the term "near to real-time" is used

to develop a system, the delay is the first parameter to be reduced. In a multi-tenant en-

vironment the system charge is also the other important parameter to take into account.

To measure these parameters and compare them in the XMPP case versus the REST one,

we need to implement a simple GC that exploits the NBI to monitor packets belonging to

some specific service, in our case HTTP filtering service. The underlying network is simu-

lated thanks to Mininet [83] project. We implemented two NBIs, XMPP-based and RESTful)

which accessed to the NBI, in parallel. We use the term "event" to describe control messages

sent from the SO to the GC. In the XMPP-based NBI case this event is pushed near-to real-

time, thanks to the XMPP protocol. But for the RESTful one, the event message should be

stored in a temporary memory before the GC pull them up REST requests. In this case, to

simulate a real-time process and to reduce the delay, REST requests are sent in a little time

intervals.

In the case of the XMPP-based NBI, the event is sent in a delay of 0.28 ms. The NBI overhead

of this NBI is 530 Bytes which is the size of an XMPP message needed to carry the event.

In the other case, with the RESTful NBI, the GC will pull periodic message to push this

information, a request/response message that will be at least 293 Bytes. In order to reduce

the delay, the time interval between each request should be scaled down. This periodic

6.3. Conclusion 77

request/response messages will create a huge overhead in the NBI. The Fig. 6.6 shows

the Overhead charge of the NBI obtained during this test. The NBI Overhead charge rests

constant for the XMPP-based case and varies for the RESTful one. The overhead charge of

the NBI in the simulated real-time case (less that 1 ms of delay) for the RESTful NBI is about

3 MB. To reduce this charge and achieve the same Overhead as XMPP-based one, we need

to increase the time interval up to 200 ms. This time interval will have a direct effect on the

event transfer delay.

Overhead

Bytes

Interval

ms
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

REST

XMPP

FIGURE 6.6: NBI Overhead Charge

6.3 Conclusion

In the first part of this chapter we introduced BYOC as a new concept providing a convenient

framework structuring the openness of the SDN on its northbound side. We derived from

the lifecycle characterizing the services deployed in an SDN, the parts of services the control

of which may be delegated by the operator to external GC through dedicated APIs located

in the NBI.

We presented EaYB business model through which the operator monetizes the openness of

its SDN platform thanks to the BYOC concept. Several use cases are briefly presented, that

have potential interest to be implemented by the BYOC concept.

In the second part we determined basic requirements to specify an NBI that tightly couples

the SDN framework, presented recently, with the GC. We proposed an XMPP-based NBI

conforming to previously discussed requirements and allowing to deploy the BYOC service.

Apart all the numerous advantages of the XMPP-based NBI, the main limitation concern

the transfer of large service descriptions. These ones are restricted by the "maximum stanza

site" value that limits the maximum size of the XMPP message processed and accepted by

the server. This value can however be parameterized when deploying the XMPP server.

79

Chapter 7

BYOC Use Case

Contents

4.1 Service Lifecycle . 38

4.1.1 Client side Service Lifecycle . 38

4.1.2 Operator Side Service Lifecycle . 41

4.1.3 The global view . 43

4.2 Service Data Model . 44

4.2.1 A two-layered approach . 44

4.2.2 Applying the two-layered model approach on Service Lifecycle . . . 45

4.3 Conclusion . 48

In the last chapter we proposed a new service implementing BYOC-based services. Lastly

in chapter 4 we analyzed the lifecycle of a service based on two service actors, the client

and the operator, view points. Dividing the service lifecycle into two parts refines our anal-

ysis and helped us to present lastly a SDN framework in chapter 5, where we discussed a

framework through which a negotiated service model can be vertically implemented. This

framework is issued from the operator-side service lifecycle steps, where that permits not

only to implement and control a service, but also to manage its lifecycle. The second part

of service lifecycle, client-side, presents all steps that every applications types, presented in

section 2.5.2, may take to deploy, monitor and reconfigure a service through the SDNC. In

this chapter we rapidly showed how the lastly presented framework permits to deploy a

BYOC-type service. We also presented an XMPP-based NBI allowing to open the interface

to the GC.

7.1 IPS Control Plane as a Service

7.1.1 Referenced architecture

The architecture of proposed service is based on the Intrusion Prevention System (IPS) ar-

chitecture divided into two entities. The first one is Intrusion Detection System (IDS)-end

that is implemented in key points of the network and observes real-time traffics. The sec-

ond one, called Security Manager (SM), is a central management system that, thanks to its

7.1. IPS Control Plane as a Service 85

interne Orange1

N° Data Path ID InPort N° IPSrc IPDst TCPSrc IPProto Action

1 00:00:00:00:00:00:00:01 1 Any Any Any 143 SM1

2 00:00:00:00:00:00:00:01 1 Any Any Any 144 SM1

3 00:00:00:00:00:00:00:03 12 Any Any Any 143 SM2

4 00:00:00:00:00:00:00:03 12 Any Any Any 144 SM2

FIGURE 7.6: A model of Decision Base implemented within the SO

7.1.3.3 Decision Engine (DE)

Fig. 7.7 shows all of tasks performed in the DE. The contribution of the BYOC concept

concludes on the left side of the FlowChart shown in this figure where the DE transmits

the flow coming from an outsourced security service to an external unit, called a GC. For

this, by comparing the received message header and the "action" rules installed in the DB

for that specific flow profile, the DE determines if the message concerns a flow coming from

an IDS-end, then it finds the identifier of the related GC (gcId).

FIGURE 7.7: Decision Engine task flowchart

86 Chapter 7. BYOC Use Case

7.1.3.4 Decision Base (DB)

This database is comparable with the database used normally within Firewalls where there

are actions like: ACCEPT, REJECT, and DROP. The difference between these ones and the

DB presented in BYOC is in fields “IPProto” and “Action” where we record the type of

message log / alert (in the IPProto field) and the ID of the GC, gcId (in the Action field). The

values stored in this database are configured by the network administrator (operator) that

manages the entire infrastructure.

7.1.3.5 Service Dispatcher (SD) and NBI

The SD is the module directly accessible by GCs. It identifies GCs using the identifier of each

one (gcId), registered in the Action field of the DB. We propose here to use the XMPP pro-

tocol to implement the interface between the SD and GCs where each endpoint is identified

by a JID.

7.1.3.6 Detailed components of the Guest Controller (GC)

The Fig. 7.8 shows the detailed components of the SM implemented the GC. As stated

recently the SD sends the log and alert messages arriving from IDS-ends to an appropriate

GC. These messages contain the specific values (143, 144) in their IPProto field. By receiving

a message, the SM needs to know the origin of this message, whatever it is: log and alert.

For this we propose to implement Security Proxy (SP). By examining the IPProto field, the

SP decides whether a message relates to a log or an alert.

7.1.3.7 Applying the GC decision on the infrastructure

Once a decision is made by the GC, it sends a service update message to the SDCM. This

decision may update a series of devices. In our example, to block an attacking traffic, the

decision just updates the OpenFlow switch that is installed in front of the IDS-end. This

new configuration, deployed on the switch, allows the GC to block the inbound traffic en-

tering the customers sites (interface I.1 on the figure 7.5). The update message sent from the

GC contains a service data model equivalent to the model presented in the service creation

phase. Thanks to this homogeneity of models, the BYOC service update becomes transpar-

ent for the SO and the update process will be done through existing blocks of the SO.

7.1.4 Distributed IPS control plane

Opening a control interface on the IDS-end equipment through the SO allows to break down

the inner modules of the SM between several GCs. The fig. 7.9 illustrates this example in

details. In this example, an attack signature database is shared between multiple SMs.

7.2. Conclusion 89

<?xml version=" 1 . 0 " encoding=" utf −8" ?>
< s e r v i c e s >

< s e r v i c e >
<name>VPN</name>
<contro l_ type> i n t e r n a l </contro l_ type>
< i n t e r f a c e _ 1 >

< s e r v i c e _ t y p e>Connect iv i ty</ s e r v i c e _ t y p e>
<name> P a r i s _ S i t e </name>
<zone> P a r i s </zone>
< c o n f i g u r a t i o n >

<ip_address> 1 9 2 . 1 6 8 . 1 . 1 </ip_address>
<netmask> 2 5 5 . 2 5 5 . 2 5 5 . 0 </netmask>

</ c o n f i g u r a t i o n >
</ i n t e r f a c e _ 1 >
< i n t e r f a c e _ 2 >

< s e r v i c e _ t y p e>Connect iv i ty</ s e r v i c e _ t y p e>
<name>London_Site</name>
<zone>London</zone>
< c o n f i g u r a t i o n >

<ip_address> 1 9 2 . 1 6 8 . 2 . 1 </ip_address>
<netmask> 2 5 5 . 2 5 5 . 2 5 5 . 0 </netmask>

</ c o n f i g u r a t i o n >
</ i n t e r f a c e _ 2 >
</ i n t e r f a c e _ 3 >

< s e r v i c e _ t y p e>Compute</ s e r v i c e _ t y p e>
<name>Web_Server</name>
<zone>Madrid</zone>
< c o n f i g u r a t i o n >

<ip_address> 1 9 2 . 1 6 8 . 3 . 2 </ip_address>
<netmask> 2 5 5 . 2 5 5 . 2 5 5 . 0 </netmask>
<protoco l>TCP</protoco l>
<port>80</port>

</ c o n f i g u r a t i o n >
</ i n t e r f a c e _ 3 >

</ s e r v i c e >
< s e r v i c e >

<name>IPS</name>
<contro l_ type>byoc</contro l_ type>
< d i s t r i b u t i o n > d i s t r i b u t e d </ d i s t r i b u t i o n >

</ s e r v i c e >
</ s e r v i c e s >

FIGURE 7.10: A simplified abstract model of the Secured VPN service

91

Chapter 8

Conclusions and Future Research

Contents

5.1 Illustrating Service Deployment Example 50

5.2 Orchestrator-based SDN Framework . 52

5.2.1 Internal structure of the Service Orchestrator 52

5.2.2 Internal architecture of the Resource Orchestrator 58

5.2.3 Framework interfaces . 59

5.3 Implementation . 59

5.3.1 Hardware architecture . 59

5.3.2 Network architecture . 60

5.3.3 Software architecture . 61

5.4 Conclusion . 65

This dissertation is setted out to investigate the role that SDN plays in various aspects of

network service control and management, and to use an SDN based framework as service

management system. In this final chapter, we will review the research contributions of this

dissertation, as well as discuss directions for future research.

8.1 Contributions

The following are the main research contributions of this dissertation.

— A double-sided service lifecycle and data model (Chapter 4)

At the beginning of this dissertation the SDN based service management was one of

the non-answered questions. There were several initiatives to define the perimeter of

SDN architecture layers, several SDN controllers were in the design and development

phase, and developed SDN controllers and frameworks were deployed each one for

specific research topics. Some of SDN-based services were deployed by internal SDN

controller’s functions and some of them were controlled by applications developed

at the top of the controller programing the network via the controllers NBI. Due to

the nature of ongoing projects, and the fact that there were not any clear definition

of SDN controller core functions and northbound applications, defining the border

of these two layers, i.e. SDN controller and SDN applications, helping to delimitate

92 Chapter 8. Conclusions and Future Research

their perimeter and aiming to define an NBI was almost impossible. ONF had just

started the NBI group activities aiming to define an NBI answering requirements

of most of applications. However, this work was far from being realized, because

defining a standard NBI, that is an application interface, requires a careful analysis of

several implementations and the feedback gained by all those implementations.

In order to define a reference SDN-based service provisioning framework allowing

to define the control and application layer edge, a service lifecycle analysis had to

take place. At the first time, in Section 4.1, we presented the service lifecycle analysis

in two point of views: client and operator. The fist view, client-side service lifecycle,

discusses different phases in which a service customer (or client) can be during the

service lifecycle. This analysis is held based-on the application and service classifica-

tion that we have previously done in Section 2.5.2. According to this classification,

a service customer can use the service management interface to manage three types

of services. The first one is the case where the customer requests and configures a

service. The second type is the customer who monitors his service, and the third one

is the customer who, using the management interface, receives some service param-

eters based on which he reconfigures or updates that service. Based on this analy-

sis, the client-side service lifecycle can be modified. In this section we analyzed all

phases that each service type might add to the service lifecycle. On the other side, the

operator-side service lifecycle analysis presents a service lifecycle model represent-

ing all phases an operator should cross to deploy, configure and maintain a service.

This double-sided analysis allows to determine actions that each service customer

and operator can take on a service that is the common object between a customer and

an operator.

At the second time, we presented the data model of each lifecycle sides based on a

double-layered data model approach. In this approach a service can be modeled in

two data models: service and device, and an elementary model, called transforma-

tion, defines how one of these two models can be transformed to the other one. The

service model is a general and simplified model of the service presented to the service

customer. And the device model is the technical definition of the device configuration

generated based on the negotiated service model. The service object, shared between

the operator and the customer is described in the service model. Consequently, the

client-side service lifecycle is using the service model and all phases of the lifecycle

are based on this model. The service model crosses down the operator-side lifecycle

and is transformed to one or different device models. In Section 4.2 we discuss the

model used or generated by each operator-side service lifecycle phase. In this section

we discussed also the transformation type each step might do to convert a model

from a service to a device one.

— A service management framework based on SDN paradigm (Chapter 5)

The service lifecycle analysis gives us a tool to determine all activities an operator

should do to manage a service. In Chapter 5, based on the operator-side service

lifecycle, we propose a framework through which a service model presented to the

8.2. Future researches 93

customer, is transformed to device models deployed on resources.

The architecture of this framework is based on a double-layered system managing

the service lifecycle through two orchestrators: service orchestrator and resource or-

chestrator. The first one puts together all functions allowing operator to manage a

service vertically, and the second one manages resources needed by the first one to

deploy a service.

— Bring Your Own Control BYOC service (Chapter 6) The proposed framework gives

rise to a system deploying and managing services. It opens an interface to the cus-

tomers’ side. In this chapter we present a new service control model, called Bring

Your Own Control (BYOC) that follows the Type 3 applications model discussed in

Section 2.5.2.

In the first part of this chapter we introduce BYOC as a concept allowing to delegate,

through the NBI, the control of all or a part of a service to an external controller,

called “Guest Controller (GC)”. The latter might be managed by the same customer

requesting and consuming the service or by a third party operator.

Opening a control interface at the top of the SDN platform requires some specifica-

tions at the NBI level. We discussed at the second part of this chapter the require-

ments of the NBI allowing to open the BYOC API. Based on these requirements we

proposed the use of XMPP as the protocol allowing to deploy such an API.

8.2 Future researches

The framework and its multilevel service provisioning interface introduced in this disser-

tation, provides a new service type, called BYOC, to future research. While this work has

demonstrated the potential of opening a tuned control access to a service though a dynamic

IPS service in Chapter 7, many opportunities for extending the scope of this thesis remain.

In this section we discuss some of these opportunities.

8.2.0.1 A detailed study of the theoretical and technical approach of the BYOC

Opening up the control interface to a GC by BYOC concept may create some new revenue

resources. Indeed, BYOC allows not only to the service customer to implement its per-

sonalized control algorithm and fully managing its service, but also it allows the operator

to monetize the openness of its SDN-based system. We presented the Earn as You Bring

(EaYB) business model allowing the operator to resell a service to a customer controlled by

third party GC [99].

Opening the control platform and integrating an external Controller in a service production

chain, however, may create some security and complexity problems. One of the funda-

mental issues concerns the impact of the BYOC concept on the performance of the network

94 Chapter 8. Conclusions and Future Research

controller. In fact, externalizing the control engine of a service to a GC may create a sig-

nificant delay on decision step of the controller, the delay that will have a direct effect on

the QoS. The second issue concerns the confidentiality of information available to the GC.

By opening its control interface, the operator provides the GC with information that may

be confidential. To avoid this type of security problem, a data access control mechanism

must take place, through which the operator controls all the data communicated between

the controller and the GC while maintaining the flexibility of the BYOC model [100].

The analysis of advantages of BYOC model and the complexity and security issues that

BYOC may bring to the service management process can be the subject of a future work.

This analysis requires a more sophisticated study of this concept, the potential business

model that it can introduce (ex. EaYB), the methods and protocols used to implement the

northern interface and to control the access to resources exposed to the GC, and the real

impact of this type of services on the performance of services.

8.2.1 BYOC as a key enabler to flexible NFV service chaining

A NFV SC defines a set of Service Function (SF)s and the order of these SF through which a

packet should pass in the downlink and uplink traffic. Chaining network elements to create

a service is not a new subject. Indeed, legacy network services are made of several network

functions which are hardwired back-to-back. These solutions however remain difficult to

deploy and expensive to change.

As soon as software-centric networking technologies, such as SDN and NFV brought the

promise of programmability and flexibility to the network, the flexible service chaining be-

came one of the academic challenges. The flexible service chaining consists in choosing the

relevant SC through the analysis of traffic. There are several initiatives trying to propose an

architecture for creation of Service Function Chaining (SFC) [101, 102, 103]. Among these

solutions, IETF [102] and ONF [101] propose to use a traffic classifier at the ingress point of

the SC allowing to classify traffic flows based on policies. This classification allows to spec-

ify a path ID to the flow used to forward the flow on a specific path, called Service Function

Path (SFP). In the ONF proposal the SDNC has a central role, where it sets up SFPs by pro-

gramming Service Function Forwarder (SFF) to steer the flow through the sequence of SF

instances. It also locates and program the flow classifier through the SBI allowing to classify

a flow.

Applying the BYOC concept to the approach proposed by ONF consists in opening a control

interface between the SDNC and a GC that implements all functions needed to classify the

flow and reconfigure the SFF, and the flow classifier based on new flows arrived on the clas-

sifier. Delegating the control of the SFC to the customer, gives more flexibility, visibility and

freedom to the customer to create a flexible SFC based on its customized path computation

algorithms and its applications requirements. On the other hand, a BYOC based SFC allows

the Service Provider to lighten the service OpEx.

8.2. Future researches 95

8.2.2 BYOC as a key concept leading to 5G dynamic network slicing

5th generation (5G) networks needs to support new demands from a wide variety of service

groups from e-health to broadcast services [104]. In order to cover all these domains 5G net-

works need to support diverse requirements in terms of network availability, throughput,

capacity and latency [105]. In order to deliver services to such wide domains and to answer

these various requirements, network slicing has been introduced in 5G networks [106, 107,

108]. Network slicing allows operators to establish different capabilities for each service

group and serve multiple tenants in parallel.

SDN will play an important role in shifting to dynamic network slicing [109, 110, 111]. The

control and forwarding plane decoupling leads to separation of software from hardware, the

concept that allows to share the infrastructure between different tenants each one using one

or several slices of the network. In [112] "Dynamic programmability and control" brought

by SDN, is presented as one of the key principles guiding the dynamic network slicing.

In this work the authors argue that "the dynamic programming of network slices can be

accomplished either by custom programs or within an automation framework driven by

analytics and machine learning."

Applying the BYOC concept to 5G networks leads to externalizing the control of one or

several slices to a GC owned or managed by a customer, an Over The Top (OTT), or an OSS.

We argue that this openness is totally in line with the dynamic programmability and control

principle of 5G networks presented in [112]. The innovative algorithms implemented within

the GC controlling the slice of the network empowers promising value-added services and

business models. However, this externalization creates some management and orchestration

issues presented previously in [109].

97

Bibliography

[1] Andreas Metzger and Clarissa Cassales Marquezan. “Future Internet Apps: The Next

Wave of Adaptive Service-Oriented Systems?” In: Towards a Service-Based Internet: 4th

European Conference, ServiceWave 2011, Poznan, Poland, October 26-28, 2011. Proceed-

ings. Ed. by Witold Abramowicz et al. Berlin, Heidelberg: Springer Berlin Heidelberg,

2011, pp. 230–241. ISBN: 978-3-642-24755-2. DOI: 10.1007/978-3-642-24755-

2_22. URL: http://dx.doi.org/10.1007/978-3-642-24755-2_22.

[2] Theophilus Benson, Aditya Akella, and David Maltz. “Unraveling the Complexity

of Network Management”. In: Proceedings of the 6th USENIX Symposium on Networked

Systems Design and Implementation. NSDI’09. Boston, Massachusetts: USENIX Asso-

ciation, 2009, pp. 335–348. URL: http://dl.acm.org/citation.cfm?id=

1558977.1559000.

[3] Nick McKeown. “Software-defined networking”. In: vol. 17. 2. 2009, pp. 30–32.

[4] Hyojoon Kim and N. Feamster. “Improving network management with software de-

fined networking”. In: Communications Magazine, IEEE 51.2 (2013), pp. 114–119. ISSN:

0163-6804. DOI: 10.1109/MCOM.2013.6461195.

[5] R. Mijumbi et al. “Network Function Virtualization: State-of-the-Art and Research

Challenges”. In: vol. 18. 1. 2016, pp. 236–262. DOI: 10.1109/COMST.2015.2477041.

[6] B. Han et al. “Network function virtualization: Challenges and opportunities for in-

novations”. In: vol. 53. 2. 2015, pp. 90–97. DOI: 10.1109/MCOM.2015.7045396.

[7] D. Kreutz et al. “Software-Defined Networking: A Comprehensive Survey”. In: Pro-

ceedings of the IEEE 103.1 (2015), pp. 14–76. ISSN: 0018-9219. DOI: 10.1109/JPROC.

2014.2371999.

[8] Internet World Stats. "World Internet Usage and Population Statistics". 2017. URL: http:

//www.internetworldstats.com/stats.htm.

[9] Andrew T. Campbell et al. “A Survey of Programmable Networks”. In: SIGCOMM

Comput. Commun. Rev. 29.2 (Apr. 1999), pp. 7–23. ISSN: 0146-4833. DOI: 10.1145/

505733.505735. URL: http://doi.acm.org/10.1145/505733.505735.

[10] J. Biswas et al. “The IEEE P1520 standards initiative for programmable network in-

terfaces”. In: IEEE Communications Magazine 36.10 (1998), pp. 64–70. ISSN: 0163-6804.

DOI: 10.1109/35.722138.

[11] D. L. Tennenhouse et al. “A survey of active network research”. In: IEEE Communica-

tions Magazine 35.1 (1997), pp. 80–86. ISSN: 0163-6804. DOI: 10.1109/35.568214.

https://doi.org/10.1007/978-3-642-24755-2_22
https://doi.org/10.1007/978-3-642-24755-2_22
http://dx.doi.org/10.1007/978-3-642-24755-2_22
http://dl.acm.org/citation.cfm?id=1558977.1559000
http://dl.acm.org/citation.cfm?id=1558977.1559000
https://doi.org/10.1109/MCOM.2013.6461195
https://doi.org/10.1109/COMST.2015.2477041
https://doi.org/10.1109/MCOM.2015.7045396
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
https://doi.org/10.1145/505733.505735
https://doi.org/10.1145/505733.505735
http://doi.acm.org/10.1145/505733.505735
https://doi.org/10.1109/35.722138
https://doi.org/10.1109/35.568214

98 BIBLIOGRAPHY

[12] C. Tsarouchis et al. “A policy-based management architecture for active and pro-

grammable networks”. In: IEEE Network 17.3 (2003), pp. 22–28. ISSN: 0890-8044. DOI:

10.1109/MNET.2003.1201473.

[13] J. V. Millor and J. S. Fernandez. “A network management approach enabling active

and programmable Internets”. In: IEEE Network 19.1 (2005), pp. 18–24. ISSN: 0890-

8044. DOI: 10.1109/MNET.2005.1383436.

[14] John Strassner. “Policy-Based Network Management”. In: Policy-Based Network Man-

agement. Ed. by John Strassner. The Morgan Kaufmann Series in Networking. Burling-

ton: Morgan Kaufmann, 2004. DOI: https://doi.org/10.1016/B978-155860859-

7/50033-5. URL: http://www.sciencedirect.com/science/article/

pii/B9781558608597500335.

[15] R. Yavatkar, D. Pendarakis, and R. Guerin. RFC 2753: A Framework for Policy-based

Admission Control. Tech. rep. IETF, 2000. URL: www.ietf.org/rfc/rfc2753.txt.

[16] J. Boyle et al. The COPS (Common Open Policy Service) Protocol. Ed. by D. Durham.

United States, 2000.

[17] HP. HP 8200 zl Switch Series. 2013. URL: http://www8.hp.com/uk/en/products/

networking-switches/product-detail.html?oid=3437443.

[18] Arista. Arista 7150 Series. 2013. URL: https://www.arista.com/en/products/

7150-series.

[19] O.E. Ferkouss et al. “A 100Gig network processor platform for openflow”. In: 7th In-

ternational Conference on Network and Service Management (CNSM), 2011 (2011), pp. 1–

4.

[20] Nick McKeown et al. “OpenFlow: Enabling Innovation in Campus Networks”. In:

SIGCOMM Comput. Commun. Rev. 38.2 (Mar. 2008), pp. 69–74. ISSN: 0146-4833. DOI:

10 . 1145 / 1355734 . 1355746. URL: http : / / doi . acm . org / 10 . 1145 /

1355734.1355746.

[21] ONF. "Open Networking Foundation". 2015. URL: \url{https://www.opennetworking.

org}.

[22] B. Salisbury. OpenFlow: Proactive vs Reactive Flows. 2013. URL: http://networkstatic.

net/openflow-proactive-vs-reactive-flows/.

[23] Open Networking Foundation. OpenFlow Switch Specification, Version 1.5.0 (Proto-

col version 0x06). TS ONF TS-020. Open Networking Foundation, Dec. 2014. URL:

https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-switch-v1.5.0.

noipr.pdf.

[24] Nick McKoewn. OpenFlow (Or: “Why can’t I innovate in my wiring closet? 2014. URL:

https://www.coursehero.com/file/10419252/WK7-McKeown-OpenFlow/.

[25] Natasha Gude et al. “NOX: Towards an Operating System for Networks”. In: SIG-

COMM Comput. Commun. Rev. 38.3 (July 2008), pp. 105–110. ISSN: 0146-4833. DOI:

10 . 1145 / 1384609 . 1384625. URL: http : / / doi . acm . org / 10 . 1145 /

1384609.1384625.

https://doi.org/10.1109/MNET.2003.1201473
https://doi.org/10.1109/MNET.2005.1383436
https://doi.org/https://doi.org/10.1016/B978-155860859-7/50033-5
https://doi.org/https://doi.org/10.1016/B978-155860859-7/50033-5
http://www.sciencedirect.com/science/article/pii/B9781558608597500335
http://www.sciencedirect.com/science/article/pii/B9781558608597500335
www.ietf.org/rfc/rfc2753.txt
http://www8.hp.com/uk/en/products/networking-switches/product-detail.html?oid=3437443
http://www8.hp.com/uk/en/products/networking-switches/product-detail.html?oid=3437443
https://www.arista.com/en/products/7150-series
https://www.arista.com/en/products/7150-series
https://doi.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1355734.1355746
\url{https://www.opennetworking.org}
\url{https://www.opennetworking.org}
http://networkstatic.net/openflow-proactive-vs-reactive-flows/
http://networkstatic.net/openflow-proactive-vs-reactive-flows/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.coursehero.com/file/10419252/WK7-McKeown-OpenFlow/
https://doi.org/10.1145/1384609.1384625
http://doi.acm.org/10.1145/1384609.1384625
http://doi.acm.org/10.1145/1384609.1384625

BIBLIOGRAPHY 99

[26] Yiannis Yiakoumis et al. “Slicing Home Networks”. In: HomeNets ’11 (2011), pp. 1–

6. DOI: 10.1145/2018567.2018569. URL: http://doi.acm.org/10.1145/

2018567.2018569.

[27] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. “A Scalable, Com-

modity Data Center Network Architecture”. In: SIGCOMM Comput. Commun. Rev.

38.4 (Aug. 2008), pp. 63–74. ISSN: 0146-4833. DOI: 10.1145/1402946.1402967.

URL: http://doi.acm.org/10.1145/1402946.1402967.

[28] Martin Casado et al. “Ethane: Taking Control of the Enterprise”. In: SIGCOMM Com-

put. Commun. Rev. 37.4 (Aug. 2007), pp. 1–12. ISSN: 0146-4833. DOI: 10.1145/1282427.

1282382. URL: http://doi.acm.org/10.1145/1282427.1282382.

[29] Ryu SDN Controller. Accessed: 2013-03-30. URL: https://osrg.github.io/ryu/.

[30] Trema SDN Controller. Accessed: 2013-04-28. URL: https://trema.github.io/

trema/.

[31] “Floodlight OpenFlow Controller”. In: 2014. URL: http://www.projectfloodlight.

org/floodlight.

[32] The OpenDaylight SDN Platform. Accessed: 2014. URL: https://www.opendaylight.

org/.

[33] Pankaj Berde et al. “ONOS: Towards an Open, Distributed SDN OS”. In: Proceed-

ings of the Third Workshop on Hot Topics in Software Defined Networking. HotSDN ’14.

Chicago, Illinois, USA: ACM, 2014, pp. 1–6. ISBN: 978-1-4503-2989-7. DOI: 10.1145/

2620728.2620744. URL: http://doi.acm.org/10.1145/2620728.2620744.

[34] R. Khondoker et al. “Feature-based comparison and selection of Software Defined

Networking (SDN) controllers”. In: 2014 World Congress on Computer Applications

and Information Systems (WCCAIS). 2014, pp. 1–7. DOI: 10.1109/WCCAIS.2014.

6916572.

[35] Ed. R. Enns et al. Network Configuration Protocol (NETCONF). RFC 6241. 2011. URL:

https://tools.ietf.org/html/rfc6241.

[36] I. GUIS. The SDN Gold Rush To The Northbound API. 2012. URL: https://www.

sdxcentral.com/articles/contributed/the-sdn-gold-rush-to-the-

northbound-api/2012/11/.

[37] B. SALISBURY. The Northbound API- A Big Little Problem. 2012. URL: http://networkstatic.

net/the-northbound-api-2/.

[38] I. Pepelnjak. SDN CONTROLLER NORTHBOUND API IS THE CRUCIAL MISSING

PIECE. 2012. URL: http://blog.ipspace.net/2012/09/sdn-controller-

northbound-api-is.html.

[39] B. Casemore. Northbound API: The Standardization Debate. 2012.

[40] R. G. Little. ONF to standardize northbound API for SDN applications? 2013. URL: http:

//searchsdn.techtarget.com/news/2240206604/ONF-to-standardize-

northbound-API-for-SDN-applications.

[41] A. Josey. POSIX - Austin Joint Working Group. URL: POSIX-AustinJointWorkingGroup.

[42] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. “Procera: A Language for High-

level Reactive Network Control”. In: Proceedings of the First Workshop on Hot Topics

https://doi.org/10.1145/2018567.2018569
http://doi.acm.org/10.1145/2018567.2018569
http://doi.acm.org/10.1145/2018567.2018569
https://doi.org/10.1145/1402946.1402967
http://doi.acm.org/10.1145/1402946.1402967
https://doi.org/10.1145/1282427.1282382
https://doi.org/10.1145/1282427.1282382
http://doi.acm.org/10.1145/1282427.1282382
https://osrg.github.io/ryu/
https://trema.github.io/trema/
https://trema.github.io/trema/
http://www.projectfloodlight.org/floodlight
http://www.projectfloodlight.org/floodlight
https://www.opendaylight.org/
https://www.opendaylight.org/
https://doi.org/10.1145/2620728.2620744
https://doi.org/10.1145/2620728.2620744
http://doi.acm.org/10.1145/2620728.2620744
https://doi.org/10.1109/WCCAIS.2014.6916572
https://doi.org/10.1109/WCCAIS.2014.6916572
https://tools.ietf.org/html/rfc6241
https://www.sdxcentral.com/articles/contributed/the-sdn-gold-rush-to-the-northbound-api/2012/11/
https://www.sdxcentral.com/articles/contributed/the-sdn-gold-rush-to-the-northbound-api/2012/11/
https://www.sdxcentral.com/articles/contributed/the-sdn-gold-rush-to-the-northbound-api/2012/11/
http://networkstatic.net/the-northbound-api-2/
http://networkstatic.net/the-northbound-api-2/
http://blog.ipspace.net/2012/09/sdn-controller-northbound-api-is.html
http://blog.ipspace.net/2012/09/sdn-controller-northbound-api-is.html
http://searchsdn.techtarget.com/news/2240206604/ONF-to-standardize-northbound-API-for-SDN-applications
http://searchsdn.techtarget.com/news/2240206604/ONF-to-standardize-northbound-API-for-SDN-applications
http://searchsdn.techtarget.com/news/2240206604/ONF-to-standardize-northbound-API-for-SDN-applications
POSIX - Austin Joint Working Group

100 BIBLIOGRAPHY

in Software Defined Networks. HotSDN ’12. Helsinki, Finland: ACM, 2012, pp. 43–48.

ISBN: 978-1-4503-1477-0. DOI: 10.1145/2342441.2342451. URL: http://doi.

acm.org/10.1145/2342441.2342451.

[43] Nate Foster et al. “Frenetic: A Network Programming Language”. In: SIGPLAN Not.

46.9 (Sept. 2011), pp. 279–291. ISSN: 0362-1340. DOI: 10.1145/2034574.2034812.

URL: http://doi.acm.org/10.1145/2034574.2034812.

[44] Matthew Monaco, Oliver Michel, and Eric Keller. “Applying Operating System Prin-

ciples to SDN Controller Design”. In: Proceedings of the Twelfth ACM Workshop on Hot

Topics in Networks. HotNets-XII. College Park, Maryland: ACM, 2013, 2:1–2:7. ISBN:

978-1-4503-2596-7. DOI: 10.1145/2535771.2535789. URL: http://doi.acm.

org/10.1145/2535771.2535789.

[45] Pascal Menezes et al. “North Bound Interface Working Group (NBI-WG) Charter”.

In: Open Networking Foundation, 2013. URL: https://www.opennetworking.

org/images/stories/downloads/working-groups/charter-nbi.pdf.

[46] Fei Hu, Qi Hao, and Ke Bao. “A Survey on Software-Defined Network and Open-

Flow: From Concept to Implementation”. In: IEEE Communications Surveys Tutorials

16.4 (2014), pp. 2181–2206. ISSN: 1553-877X. DOI: 10.1109/COMST.2014.2326417.

[47] Nikhil H et al. “Aster*x: Load-Balancing Web Traffic over Wide-Area Networks”. In:

().

[48] Richard Wang, Dana Butnariu, and Jennifer Rexford. “OpenFlow-based Server Load

Balancing Gone Wild”. In: Hot-ICE’11 (2011), pp. 12–12. URL: http://dl.acm.

org/citation.cfm?id=1972422.1972438.

[49] Nikhil Handigol et al. “Plug-n-Serve: Load-Balancing Web Traffic using OpenFlow”.

In: (2009). URL: http://conferences.sigcomm.org/sigcomm/2009/demos/

sigcomm-pd-2009-final26.pdf.

[50] Brandon Heller et al. “ElasticTree: Saving Energy in Data Center Networks”. In:

NSDI’10 (2010), pp. 17–17. URL: http://dl.acm.org/citation.cfm?id=

1855711.1855728.

[51] M. Scharf et al. “Dynamic VPN Optimization by ALTO Guidance”. In: (2013), pp. 13–

18.

[52] Xuan-Nam Nguyen et al. “Optimizing Rules Placement in OpenFlow Networks:

Trading Routing for Better Efficiency”. In: Proceedings of the Third Workshop on Hot

Topics in Software Defined Networking. HotSDN ’14. Chicago, Illinois, USA: ACM, 2014,

pp. 127–132. ISBN: 978-1-4503-2989-7. DOI: 10.1145/2620728.2620753. URL:

http://doi.acm.org/10.1145/2620728.2620753.

[53] Manu Bansal et al. “OpenRadio: A Programmable Wireless Dataplane”. In: Proceed-

ings of the First Workshop on Hot Topics in Software Defined Networks. HotSDN ’12.

Helsinki, Finland: ACM, 2012, pp. 109–114. URL: http://doi.acm.org/10.

1145/2342441.2342464.

[54] Jonathan Vestin et al. “CloudMAC: Towards Software Defined WLANs”. In: SIG-

MOBILE Mob. Comput. Commun. Rev. 16.4 (Feb. 2013), pp. 42–45. ISSN: 1559-1662.

https://doi.org/10.1145/2342441.2342451
http://doi.acm.org/10.1145/2342441.2342451
http://doi.acm.org/10.1145/2342441.2342451
https://doi.org/10.1145/2034574.2034812
http://doi.acm.org/10.1145/2034574.2034812
https://doi.org/10.1145/2535771.2535789
http://doi.acm.org/10.1145/2535771.2535789
http://doi.acm.org/10.1145/2535771.2535789
https://www.opennetworking.org/images/stories/downloads/working-groups/charter-nbi.pdf
https://www.opennetworking.org/images/stories/downloads/working-groups/charter-nbi.pdf
https://doi.org/10.1109/COMST.2014.2326417
http://dl.acm.org/citation.cfm?id=1972422.1972438
http://dl.acm.org/citation.cfm?id=1972422.1972438
http://conferences.sigcomm.org/sigcomm/2009/demos/sigcomm-pd-2009-final26.pdf
http://conferences.sigcomm.org/sigcomm/2009/demos/sigcomm-pd-2009-final26.pdf
http://dl.acm.org/citation.cfm?id=1855711.1855728
http://dl.acm.org/citation.cfm?id=1855711.1855728
https://doi.org/10.1145/2620728.2620753
http://doi.acm.org/10.1145/2620728.2620753
http://doi.acm.org/10.1145/2342441.2342464
http://doi.acm.org/10.1145/2342441.2342464

BIBLIOGRAPHY 101

DOI: 10.1145/2436196.2436217. URL: http://doi.acm.org/10.1145/

2436196.2436217.

[55] Aditya Gudipati et al. “SoftRAN: Software Defined Radio Access Network”. In: HotSDN

’13 (2013), pp. 25–30. DOI: 10.1145/2491185.2491207. URL: http://doi.acm.

org/10.1145/2491185.2491207.

[56] P. Dely, A. Kassler, and N. Bayer. “OpenFlow for Wireless Mesh Networks”. In:

(2011), pp. 1–6.

[57] L.E. Li, Z.M. Mao, and J. Rexford. “Toward Software-Defined Cellular Networks”.

In: (2012), pp. 7–12.

[58] Srikanth Sundaresan et al. “Broadband Internet Performance: A View from the Gate-

way”. In: Proceedings of the ACM SIGCOMM 2011 Conference. SIGCOMM ’11. Toronto,

Ontario, Canada: ACM, 2011, pp. 134–145. URL: http://doi.acm.org/10.1145/

2018436.2018452.

[59] Martin Casado et al. “SANE: A Protection Architecture for Enterprise Networks”. In:

Proceedings of the 15th Conference on USENIX Security Symposium - Volume 15. USENIX-

SS’06. Vancouver, B.C., Canada: USENIX Association, 2006. URL: http://dl.acm.

org/citation.cfm?id=1267336.1267346.

[60] R. Braga, E. Mota, and A. Passito. “Lightweight DDoS flooding attack detection using

NOX/OpenFlow”. In: IEEE 35th Conference on Local Computer Networks (LCN), 2010.

2010, pp. 408–415.

[61] V.K. Gurbani et al. “Abstracting network state in Software Defined Networks (SDN)

for rendezvous services”. In: IEEE International Conference on Communications (ICC),

2012. 2012, pp. 6627–6632. DOI: 10.1109/ICC.2012.6364858.

[62] ETSI. Network Functions Virtualisation (NFV); Management and Orchestration. TS ETSI

GS NFV-MAN 001, DGS/NFV-MAN001. European Telecommunications Standards

Institute, Dec. 2014. URL: http://www.etsi.org/deliver/etsi_gs/NFV-

MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf.

[63] E. Rosen, A. Viswanathan, and R. Callon. “Multiprotocol Label Switching Architec-

ture, RFC 3031”. In: Jan. 2001. URL: https://tools.ietf.org/html/rfc3031.

[64] Y. Rekhter and S. Hares. “A Border Gateway Protocol 4 (BGP-4), RFC 4271”. In: Jan.

2006. URL: https://tools.ietf.org/html/rfc4271.

[65] J. Moy. “OSPF Version 2, RFC 1247”. In: July 1991. URL: https://tools.ietf.

org/html/rfc1247.

[66] T. Bates et al. “Multiprotocol Extensions for BGP-4, RFC 4760”. In: Jan. 2007. URL:

https://tools.ietf.org/html/rfc4760.

[67] L. Andersson, I. Andersson, and B. Thomas. “LDP Specification, RFC 5036”. In: Oct.

2007. URL: https://tools.ietf.org/html/rfc5036.

[68] Krzysztof Szarkowicz and Antonio Monge. MPLS in the SDN Era. O Reilly Media,

Jan. 2016.

[69] Ankur Singla and Bruno Rijsman. Day One: Understanding OpenContrail Architecture.

Juniper Networks, Nov. 2013.

https://doi.org/10.1145/2436196.2436217
http://doi.acm.org/10.1145/2436196.2436217
http://doi.acm.org/10.1145/2436196.2436217
https://doi.org/10.1145/2491185.2491207
http://doi.acm.org/10.1145/2491185.2491207
http://doi.acm.org/10.1145/2491185.2491207
http://doi.acm.org/10.1145/2018436.2018452
http://doi.acm.org/10.1145/2018436.2018452
http://dl.acm.org/citation.cfm?id=1267336.1267346
http://dl.acm.org/citation.cfm?id=1267336.1267346
https://doi.org/10.1109/ICC.2012.6364858
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
https://tools.ietf.org/html/rfc3031
https://tools.ietf.org/html/rfc4271
https://tools.ietf.org/html/rfc1247
https://tools.ietf.org/html/rfc1247
https://tools.ietf.org/html/rfc4760
https://tools.ietf.org/html/rfc5036

102 BIBLIOGRAPHY

[70] Ali Reza Sharafat et al. “MPLS-TE and MPLS VPNS with Openflow”. In: Proceedings

of the ACM SIGCOMM 2011 Conference. SIGCOMM ’11. Toronto, Ontario, Canada:

ACM, 2011, pp. 452–453. ISBN: 978-1-4503-0797-0. DOI: 10.1145/2018436.2018516.

URL: http://doi.acm.org/10.1145/2018436.2018516.

[71] S. Das et al. “MPLS with a simple OPEN control plane”. In: 2011 Optical Fiber Com-

munication Conference and Exposition and the National Fiber Optic Engineers Conference.

2011, pp. 1–3.

[72] Chappell Caroline. “Creating the Programmable Network, The Business case for Net-

conf/YANG in network devices”. In: Oct. 2011. URL: http://www.tail-f.com/

wordpress/wp-content/uploads/2013/10/HR-Tail-f-NETCONF-WP-10-

08-13.pdf.

[73] “Tail-f Network Control System (NCS) – Datasheet”. In: 2012. URL: http://www.

tail - f . com / wordpress / wp - content / uploads / 2014 / 01 / Tail - f -

Datasheet-NCS.pdf.

[74] M. Bjorklund. YANG - A Data Modeling Language for the Network Configuration Protocol

(NETCONF). RFC 6020. 2010.

[75] Yuri Demchenko and Xiaomin Chen. “GYESERS Project, Service Delivery Frame-

work and Services Lifecycle Management in on-demand services/resources provi-

sioning. WP2/WP3 Technical document, Version 0.2”. In: 2012.

[76] C. Moberg and S. Vallin. “A two-layered data model approach for network services”.

In: vol. 54. 3. 2016, pp. 76–80. DOI: 10.1109/MCOM.2016.7432175.

[77] Stefan Wallin and Claes Wikström. “Automating Network and Service Configuration

Using NETCONF and YANG”. In: Proceedings of the 25th International Conference on

Large Installation System Administration. LISA’11. Boston, MA: USENIX Association,

2011, pp. 22–22. URL: http://dl.acm.org/citation.cfm?id=2208488.

2208510.

[78] Paul Pichler et al. “Imperative versus Declarative Process Modeling Languages: An

Empirical Investigation”. In: Business Process Management Workshops: BPM 2011 Inter-

national Workshops, Clermont-Ferrand, France, August 29, 2011, Revised Selected Papers,

Part I. Ed. by Florian Daniel, Kamel Barkaoui, and Schahram Dustdar. Berlin, Hei-

delberg: Springer Berlin Heidelberg, 2012, pp. 383–394. ISBN: 978-3-642-28108-2. DOI:

10.1007/978-3-642-28108-2_37. URL: http://dx.doi.org/10.1007/

978-3-642-28108-2_37.

[79] Dirk Fahland et al. “Declarative versus Imperative Process Modeling Languages: The

Issue of Understandability”. In: Enterprise, Business-Process and Information Systems

Modeling: 10th International Workshop, BPMDS 2009, and 14th International Conference,

EMMSAD 2009, held at CAiSE 2009, Amsterdam, The Netherlands, June 8-9, 2009. Pro-

ceedings. Ed. by Terry Halpin et al. Berlin, Heidelberg: Springer Berlin Heidelberg,

2009, pp. 353–366. ISBN: 978-3-642-01862-6. DOI: 10.1007/978-3-642-01862-

6_29. URL: http://dx.doi.org/10.1007/978-3-642-01862-6_29.

https://doi.org/10.1145/2018436.2018516
http://doi.acm.org/10.1145/2018436.2018516
http://www.tail-f.com/wordpress/wp-content/uploads/2013/10/HR-Tail-f-NETCONF-WP-10-08-13.pdf
http://www.tail-f.com/wordpress/wp-content/uploads/2013/10/HR-Tail-f-NETCONF-WP-10-08-13.pdf
http://www.tail-f.com/wordpress/wp-content/uploads/2013/10/HR-Tail-f-NETCONF-WP-10-08-13.pdf
http://www.tail-f.com/wordpress/wp-content/uploads/2014/01/Tail-f-Datasheet-NCS.pdf
http://www.tail-f.com/wordpress/wp-content/uploads/2014/01/Tail-f-Datasheet-NCS.pdf
http://www.tail-f.com/wordpress/wp-content/uploads/2014/01/Tail-f-Datasheet-NCS.pdf
https://doi.org/10.1109/MCOM.2016.7432175
http://dl.acm.org/citation.cfm?id=2208488.2208510
http://dl.acm.org/citation.cfm?id=2208488.2208510
https://doi.org/10.1007/978-3-642-28108-2_37
http://dx.doi.org/10.1007/978-3-642-28108-2_37
http://dx.doi.org/10.1007/978-3-642-28108-2_37
https://doi.org/10.1007/978-3-642-01862-6_29
https://doi.org/10.1007/978-3-642-01862-6_29
http://dx.doi.org/10.1007/978-3-642-01862-6_29

BIBLIOGRAPHY 103

[80] G. Di Battista, M. Rimondini, and G. Sadolfo. “Monitoring the status of MPLS VPN

and VPLS based on BGP signaling information”. In: 2012 IEEE Network Operations and

Management Symposium. 2012, pp. 237–244. DOI: 10.1109/NOMS.2012.6211904.

[81] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. “OpenStack: Toward an

Open-source Solution for Cloud Computing”. In: International Journal of Computer

Applications 55.3 (2012), pp. 38–42.

[82] Yu Huanle, Shi Weifeng, and Bai Tingting. “An OpenStack-Based Resource Opti-

mization Scheduling Framework”. In: Sixth International Symposium on Computational

Intelligence and Design (ISCID), 2013. Vol. 1. 2013, pp. 261–264. DOI: 10.1109/ISCID.

2013.72.

[83] R.L.S. de Oliveira et al. “Using Mininet for emulation and prototyping Software-

Defined Networks”. In: IEEE Colombian Conference on Communications and Computing

(COLCOM), 2014. 2014, pp. 1–6. DOI: 10.1109/ColComCon.2014.6860404.

[84] A. Aflatoonian et al. “An asynchronous push/pull communication solution for North-

bound Interface of SDN based on XMPP”. In: 10eme Conference International Gestion

de REseaux et de Services - GRES 2014, Paris, France. 2014.

[85] Manish Bhide et al. “Adaptive Push-Pull: Disseminating Dynamic Web Data”. In:

IEEE Trans. Comput. 51.6 (June 2002), pp. 652–668. ISSN: 0018-9340. DOI: 10.1109/

TC.2002.1009150. URL: http://dx.doi.org/10.1109/TC.2002.1009150.

[86] Xinyang Feng, Jianjing Shen, and Ying Fan. “REST: An alternative to RPC for Web

services architecture”. In: ICFIN 2009. First International Conference on Future Informa-

tion Networks, 2009. Beijing, China., 2009, pp. 7–10. DOI: 10.1109/ICFIN.2009.

5339611.

[87] VMWare. “VMWare vCloud Director”. In: 2014. URL: http://www.vmware.com/

products/vcloud-director/.

[88] Roy Thomas Fielding. “Architectural Styles and the Design of Network-based Soft-

ware Architectures”. PhD thesis. 2000. ISBN: 0-599-87118-0. URL: www.ics.uci.

edu/~fielding/pubs/dissertation/top.htm.

[89] I Fette and A Melnikov. “The WebSocket Protocol, RFC 6455”. PhD thesis. Decembre,

2011. URL: http://tools.ietf.org/html/rfc6455.

[90] Michael Franklin and Stan Zdonik. “Data in Your Face: Push Technology in Perspec-

tive”. In: Proceedings of the 1998 ACM SIGMOD International Conference on Manage-

ment of Data. SIGMOD ’98. Seattle, Washington, USA: ACM, 1998, pp. 516–519. ISBN:

0-89791-995-5. DOI: 10.1145/276304.276360. URL: http://doi.acm.org/

10.1145/276304.276360.

[91] P Saint-Andre and Ed. “Extensible Messaging and Presence Protocol (XMPP): Core,

RFC 3920”. In: 2004. URL: http://www.ietf.org/rfc/rfc3920.txt.

[92] “XMPP Extensions”. In: URL: http://xmpp.org/xmpp- protocols/xmpp-

extensions/.

[93] “XEP-0072: SOAP Over XMPP”. In: URL: http://xmpp.org/extensions/xep-

0072.html.

https://doi.org/10.1109/NOMS.2012.6211904
https://doi.org/10.1109/ISCID.2013.72
https://doi.org/10.1109/ISCID.2013.72
https://doi.org/10.1109/ColComCon.2014.6860404
https://doi.org/10.1109/TC.2002.1009150
https://doi.org/10.1109/TC.2002.1009150
http://dx.doi.org/10.1109/TC.2002.1009150
https://doi.org/10.1109/ICFIN.2009.5339611
https://doi.org/10.1109/ICFIN.2009.5339611
http://www.vmware.com/products/vcloud-director/
http://www.vmware.com/products/vcloud-director/
www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://tools.ietf.org/html/rfc6455
https://doi.org/10.1145/276304.276360
http://doi.acm.org/10.1145/276304.276360
http://doi.acm.org/10.1145/276304.276360
http://www.ietf.org/rfc/rfc3920.txt
http://xmpp.org/xmpp-protocols/xmpp-extensions/
http://xmpp.org/xmpp-protocols/xmpp-extensions/
http://xmpp.org/extensions/xep-0072.html
http://xmpp.org/extensions/xep-0072.html

104 BIBLIOGRAPHY

[94] A. Hornsby and R. Walsh. “From instant messaging to cloud computing, an XMPP

review”. In: Consumer Electronics (ISCE), 2010 IEEE 14th International Symposium on.

Germany, 2010, pp. 1–6. DOI: 10.1109/ISCE.2010.5523293.

[95] Johannes Wagener et al. “XMPP for cloud computing in bioinformatics support-

ing discovery and invocation of asynchronous web services”. English. In: vol. 10.

1. BioMed Central, 2009, pp. 1–12. DOI: 10.1186/1471- 2105- 10- 279. URL:

http://dx.doi.org/10.1186/1471-2105-10-279.

[96] “XEP-0060: Publish-Subscribe”. In: 2010. URL: http://www.xmpp.org/extensions/

xep-0060.html.

[97] Xinyou Zhang, Chengzhong Li, and Wenbin Zheng. “Intrusion prevention system

design”. In: The Fourth International Conference on Computer and Information Technology,

2004. CIT ’04. 2004, pp. 386–390. DOI: 10.1109/CIT.2004.1357226.

[98] Legouge Pascal et al. “ALADDIN : Fighting Cloud DDoS!” In: Orange Labs Research

Exhibition Demonstration. 2013.

[99] A. Aflatoonian et al. “BYOC: Bring Your Own Control a new concept to monetize

SDN’s openness”. In: Proceedings of the 2015 1st IEEE Conference on Network Softwariza-

tion (NetSoft). 2015, pp. 1–5. DOI: 10.1109/NETSOFT.2015.7116147.

[100] Hao Jiang et al. “A Secure Multi-Tenant Framework for SDN”. In: Proceedings of the

9th International Conference on Security of Information and Networks. SIN ’16. Newark,

NJ, USA: ACM, 2016, pp. 40–44. ISBN: 978-1-4503-4764-8. DOI: 10.1145/2947626.

2947641. URL: http://doi.acm.org/10.1145/2947626.2947641.

[101] ONF. "L4-L7 Service Function Chaining Solution Architecture". 2015. URL: https://

www.opennetworking.org/images/stories/downloads/sdn-resources/

onf-specifications/L4-L7_Service_Function_Chaining_Solution_

Architecture.pdf.

[102] Ed. J. Halpern and Ed. C. Pignataro. Service Function Chaining (SFC) Architecture. 2015.

URL: https://tools.ietf.org/html/rfc7665.

[103] ETSI. Network Functions Virtualisation (NFV); Architectural Framework. TS ETSI GS

NFV 002, DGS/NFV-002. European Telecommunications Standards Institute, Oct.

2013. URL: http://www.etsi.org/deliver/etsi_gs/nfv/001_099/

002/01.01.01_60/gs_nfv002v010101p.pdf.

[104] NGMN Alliance. “5G white paper”. In: (2015).

[105] Salah Eddine Elayoubi et al. “5g service requirements and operational use cases:

Analysis and metis ii vision”. In: European Conference on Networks and Communica-

tions (EuCNC), 2016. IEEE. 2016, pp. 158–162.

[106] NGMN Alliance. “Description of network slicing concept”. In: NGMN 5G P 1 (2016).

[107] A Galis, K Makhijan, and D Yu. Autonomic Slice Networking-Requirements and Reference

Model, October 2016. URL: https://tools.ietf.org/html/draft-galis-

anima-autonomic-slice-networking-01.

[108] Menglan Jiang, Massimo Condoluci, and Toktam Mahmoodi. “Network slicing man-

agement & prioritization in 5G mobile systems”. In: European Wireless. 2016.

https://doi.org/10.1109/ISCE.2010.5523293
https://doi.org/10.1186/1471-2105-10-279
http://dx.doi.org/10.1186/1471-2105-10-279
http://www.xmpp.org/extensions/xep-0060.html
http://www.xmpp.org/extensions/xep-0060.html
https://doi.org/10.1109/CIT.2004.1357226
https://doi.org/10.1109/NETSOFT.2015.7116147
https://doi.org/10.1145/2947626.2947641
https://doi.org/10.1145/2947626.2947641
http://doi.acm.org/10.1145/2947626.2947641
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/L4-L7_Service_Function_Chaining_Solution_Architecture.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/L4-L7_Service_Function_Chaining_Solution_Architecture.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/L4-L7_Service_Function_Chaining_Solution_Architecture.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/L4-L7_Service_Function_Chaining_Solution_Architecture.pdf
https://tools.ietf.org/html/rfc7665
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://tools.ietf.org/html/draft-galis-anima-autonomic-slice-networking-01
https://tools.ietf.org/html/draft-galis-anima-autonomic-slice-networking-01

BIBLIOGRAPHY 105

[109] Jose Ordonez-Lucena et al. “Network Slicing for 5G with SDN/NFV: Concepts, Ar-

chitectures, and Challenges”. In: IEEE Communications Magazine 55.5 (2017), pp. 80–

87.

[110] TR-526, Applying SDN Architecture to 5G Slicing. 2016. URL: https://www.opennetworking.

org/images/stories/downloads/sdn-resources/technical-reports/

Applying_SDN_Architecture_to_5G_Slicing_TR-526.pdf.

[111] Akram Hakiri and Pascal Berthou. “Leveraging SDN for the 5G networks: trends,

prospects and challenges”. In: arXiv preprint arXiv:1506.02876 (2015).

[112] Dynamic end-to-end network slicing for 5G. 2016. URL: https://resources.ext.

nokia.com/asset/200339.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Applying_SDN_Architecture_to_5G_Slicing_TR-526.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Applying_SDN_Architecture_to_5G_Slicing_TR-526.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/Applying_SDN_Architecture_to_5G_Slicing_TR-526.pdf
https://resources.ext.nokia.com/asset/200339
https://resources.ext.nokia.com/asset/200339

Résumé

Au cours des dernières décennies, les fournisseurs de services (SP)
ont eu à gérer plusieurs générations de technologies redéfinissant les
réseaux et nécessitant de nouveaux modèles économiques. Cette
évolution continue du réseau offre au SP l’opportunité d'innover en
matière de nouveaux services tout en réduisant les coûts et en limitant
sa dépendance auprès des équipementiers. L’émergence récente du
paradigme de la virtualisation modifie profondément les méthodes de
gestion des services réseau. Ces derniers évoluent vers l’intégration
d’une capacité « à la demande » dont la particularité consiste à
permettre aux clients du SP de pouvoir les déployer et les gérer de
manière autonome et optimale. Pour offrir une telle souplesse de
fonctionnement, le SP doit pouvoir s’appuyer sur une plateforme de
gestion permettant un contrôle dynamique et programmable du réseau.
Nous montrons dans cette thèse qu’une telle plate-forme peut être
fournie grâce à la technologie SDN (Software-Defined Networking).

Nous proposons dans un premier temps une caractérisation de la
classe de services réseau à la demande. Les contraintes de gestion
les plus faibles que ces services doivent satisfaire sont identifiées et
intégrées à un modèle abstrait de leur cycle de vie. Celui-ci détermine
deux vues faiblement couplées, l'une spécifique au client et l'autre au
SP. Ce cycle de vie est complété par un modèle de données qui en
précise chacune des étapes.

L'architecture SDN ne prend pas en charge toutes les étapes

du cycle de vie précédent. Nous introduisons un Framework original
qui encapsule le contrôleur SDN, et permet la gestion de toutes les
étapes du cycle de vie. Ce Framework est organisé autour d'un
orchestrateur de services et d'un orchestrateur de ressources
communiquant via une interface interne. L'exemple du VPN MPLS sert
de fil conducteur pour illustrer notre approche. Un PoC basé sur le
contrôleur OpenDaylight ciblant les parties principales du Framework
est proposé.

Nous proposons de valoriser notre Framework en introduisant un
modèle original de contrôle appelé BYOC (Bring Your Own Control) qui
formalise, selon différentes modalités, la capacité d'externaliser un
service à la demande par la délégation d'une partie de son contrôle à
un tiers externe. Un service externalisé à la demande est structurée en
une partie client et une partie SP. Cette dernière expose à la partie
client des API qui permettent de demander l'exécution des actions
induites par les différentes étapes du cycle de vie. Nous illustrons notre
approche par l'ouverture d'une API BYOC sécurisée basée sur XMPP.
La nature asynchrone de ce protocole ainsi que ses fonctions de
sécurité natives facilitent l'externalisation du contrôle dans un
environnement SDN multi-tenant. Nous illustrons la faisabilité de notre
approche par l’exemple du service IPS (système de prévention
d'intrusion) décliné en BYOC.

Mots clefs : Réseau logiciel programmable, Interface nord, Interface

de programmation applicative, Apporter votre propre contrôle,

Externalisation / Délégation, Multi-client

Abstract

Over the past decades, Service Providers (SPs) have been crossed
through several generations of technologies redefining networks and
requiring new business models. The ongoing network transformation
brings the opportunity for service innovation while reducing costs and
mitigating the locking of suppliers. Digitalization and recent
virtualization are changing the service management methods,
traditional network services are shifting towards new on-demand
network services. These ones allow customers to deploy and manage
their services independently and optimally through a well-defined
interface opened to the SP’s platform. To offer this freedom to its
customers, the SP must be able to rely on a dynamic and
programmable network control platform. We argue in this thesis that
this platform can be provided by Software-Defined Networking (SDN)
technology.

We first characterize the perimeter of this class of new services. We
identify the weakest management constraints that such services should
meet and we integrate them in an abstract model structuring their
lifecycle. This one involves two loosely coupled views, one specific to
the customer and the other one to the SP. This double-sided service
lifecycle is finally refined with a data model completing each of its
steps.

The SDN architecture does not support all stages of the previous
lifecycle. We extend it through an original Framework allowing the
management of all the steps identified in the lifecycle. This Framework
is organized around a service orchestrator and a resource orchestrator
communicating via an internal interface. Its implementation requires an
encapsulation of the SDN controller. The example of the MPLS VPN
serves as a guideline to illustrate our approach. A PoC based on the
OpenDaylight controller targeting the main parts of the Framework is
proposed.

We propose to value our Framework by introducing a new and original
control model called BYOC (Bring Your Own Control) which formalizes,
according to various modalities, the capability of outsourcing an on-
demand service by the delegation of part of its control to an external
third party. An outsourced on-demand service is divided into a
customer part and an SP one. The latter exposes to the former APIs
which allow requesting the execution of the actions involved in the
different steps of the lifecycle. We present an XMPP-based
Northbound Interface (NBI) allowing opening up a secured BYOC-
enabled API. The asynchronous nature of this protocol together with its
integrated security functions, eases the outsourcing of control into a
multi-tenant SDN framework. We illustrate the feasibility of our
approach through a BYOC-based Intrusion Prevention System (IPS)
service example.

Keywords: Sofware Defined Networking, Northbound Interface, API,

Bring Your Own Control, Outsourcing, Multi-tenancy

	Acknowledgements
	Abstract
	Résumé
	Personal Bibliography
	List of Figures
	List of Tables
	Resumé étendu
	Introduction
	Thesis context
	Motivation and background
	Problem statement
	Contributions of this thesis
	Document structure

	Programming the network
	Technological context
	Modeling programmable networks
	Fundamentals of programmable networks
	Software-Defined Networking (SDN)
	Architecture
	SDN Infrastructure
	SDN Southbound Interface (SBI)
	OpenFlow Protocol
	OpenFlow switch

	SDN Controller
	SDN Northbound Interface (NBI)

	SDN Applications Analysis
	SDN Applications
	Traffic engineering
	Mobility and wireless
	Measurement and monitoring
	Security

	Intuitive classification of SDN applications
	Impact of SDN Applications on Controller design

	Network Function Virtualization, an approach to service orchestration

	SDN-based Outsourcing Of A Network Service
	Introduction to MPLS networks
	MPLS data plan
	MPLS control plan
	MPLS VPN Sample Configuration
	MPLS VPN Service Management

	SDN-based MPLS
	OpenContrail Solution
	OpenFlow-based MPLS Networks
	MPLS Networks in OpenDaylight controller
	OpenDaylight native MPLS API
	OpenDaylight VPN Service project

	Outsourcing problematics

	Service lifecycle and Service Data Model
	Service Lifecycle
	Client side Service Lifecycle
	Client side Service Lifecycle managed by Type-1 applications
	Client side Service Lifecycle managed by Type-2 applications
	Client side Service Lifecycle managed by Type-3 applications
	Global Client-side Service Lifecycle

	Operator Side Service Lifecycle
	The global view

	Service Data Model
	A two-layered approach
	Applying the two-layered model approach on Service Lifecycle
	Applying two-layered model on client side service lifecycle
	Applying two-layered model on operator side service lifecycle

	Conclusion

	An SDN-based Framework For Service Provisioning
	Illustrating Service Deployment Example
	Orchestrator-based SDN Framework
	Internal structure of the Service Orchestrator
	Service Request Manager (SRM)
	Service Decomposition and Compilation Manager (SDCM)
	Service Configuration Manager (SCM)
	SCM - SDN Controller (SDNC) Interface
	Service Monitoring Manager (SMM)

	Internal architecture of the Resource Orchestrator
	Framework interfaces

	Implementation
	Hardware architecture
	Network architecture
	Software architecture

	Conclusion

	Bring Your Own Control (BYOC)
	Analysis of BYOC concept
	Outsourcing services
	SDN Service Lifecycle and NBI APIs
	Applying the BYOC concept to Type 1 services
	Applying the BYOC concept to Type 2 services
	Applying the BYOC concept to Type 3 services

	Northbound Interface permitting the deployment of a BYOC service
	Requirements for specification of the NBI
	SDN NBI Implementations
	Representational state transfer (REST)

	XMPP As An Alternative Solution
	XMPP-based NBI
	Global design
	NBI Data Model

	Simulation results

	Conclusion

	BYOC Use Case
	IPS Control Plane as a Service
	Referenced architecture
	Proposed solution
	BYOC Use Case : A VPN service secured by a BYOC-based IPS
	Implementing a secured VPN
	Opening an IPS control interface
	Decision Engine (DE)
	Decision Base (DB)
	Service Dispatcher (SD) and NBI
	Detailed components of the Guest Controller (GC)
	Applying the GC decision on the infrastructure

	Distributed IPS control plane

	Conclusion

	Conclusions and Future Research
	Contributions
	Future researches
	A detailed study of the theoretical and technical approach of the BYOC
	BYOC as a key enabler to flexible NFV service chaining
	BYOC as a key concept leading to 5G dynamic network slicing

	Bibliography

