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préparée au Centre Inria Rennes – Bretagne Atlantique

Méthodes et algorithmes

de segmentation et de

déconvolution d’images

pour l’analyse quantitative

de Tissue Microarrays

Thèse soutenue à Rennes
le 18 décembre 2017
devant le jury composé de :

Julie Delon
Professeur, Université Paris Descartes /
Rapporteur

Grégoire Malandain
Directeur de recherche, Inria /Rapporteur

Andrés Almansa
Directeur de recherche, CNRS/Examinateur

Guy Carrault
Professeur, Université de Rennes 1 / Exami-
nateur

Cyril Cauchois
Ingénieur de recherche, Innopsys / Examina-
teur

Pierre Weiss
Chargé de recherche, CNRS /Examinateur

Charles Kervrann
Directeur de recherche, Inria / Directeur de
thèse



ii



iii

For my parents, my wife and my son.



iv



Remerciements

Je tiens à remercier en premier lieu mon directeur de thèse, Charles Kervrann, de
m’avoir fait confiance et encouragé pendant ces dernières années malgré de nom-
breuses difficultés rencontrées notamment à la fin de cette longue période. Merci
beaucoup de ta patience et tes conseils avisés qui m’ont beaucoup guidé lors de mes
premiers jours à Inria.

Je remercie la société Innopsys d’avoir financé cette thèse. Je tiens à remercier
sincèrement Vincent Paveau, qui n’a malheureusement pas pu venir à la soutenance,
de ses efforts pour mener et maintenir ce projet de collaboration, sans lequel je
n’avais pas l’opportunité de commencer mon doctorat.

Je souhaite dire ma gratitude à Julie Delon et Grégoire pour avoir accepté d’être
rapporteur. Leurs remarques précieuses m’ont indiqué les limites de mes approches
et m’ont ainsi ouvert les pistes à améliorer. Aux membres du jury, qui ont consacré
leur temps pour un 18 décembre pas trop loin du Noël. Parmi eux, je tiens à
remercier particulièrement Andrés Almansa de sa présence en vidéo-conférence bien
qu’il soit encore malade. Merci à Guy Carrault, Cyril Cauchois et Pierre Weiss
de leurs commentaires constructifs sur mes travaux. J’espère d’avoir la chance de
collaborer avec vous dans l’avenir.

Merci également à mes amis vietnamiens à Inria pour les pauses-café et les coups
de main dans diverses occasions. J’aimerais aussi remercier mes collègues (anciens
et nouveaux) des épiques Serpico et Fluminance : Antoine, Tina, Thierry, Tris-
tan, Philippe, Denis, Emmanuel, Anca, Léo, Vincent, Sandeep, Mayela, Xuân Quy,
Cordelia, Ioanna, Valentin, etc., de m’avoir accompagné dès le début jusqu’à la fin.
En particulier, je tiens à remercier Huguette Béchu, de ses aides pour les démarches
administratives.

Enfin, merci de tout coeur à ma famille et ma belle-famille de m’avoir supporté,
sans vous, je n’ai pas pu accomplir cette mission.

v



vi REMERCIEMENTS



Contents

Remerciements v

List of figures ix

Résumé en français xix

1 Introduction 1

2 Tissue Microarray De-arraying 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Tissue MicroArray (TMA) history . . . . . . . . . . . . . . . . 10
2.1.2 Challenges of TMA de-arraying . . . . . . . . . . . . . . . . . 10
2.1.3 State-of-the-art of TMA de-arraying methods . . . . . . . . . 11
2.1.4 Overview of the method . . . . . . . . . . . . . . . . . . . . . 13

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 TMA core Detection . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . 16
2.2.1.2 Scale selection . . . . . . . . . . . . . . . . . . . . . 16
2.2.1.3 Fast isotropic wavelet decomposition . . . . . . . . . 16
2.2.1.4 Locally-adaptive thresholding . . . . . . . . . . . . . 18

2.2.2 Segmentation of TMA cores . . . . . . . . . . . . . . . . . . . 19
2.2.2.1 Definition of the ellipse-based energy . . . . . . . . . 21
2.2.2.2 Calculation of partial derivatives . . . . . . . . . . . 24
2.2.2.3 Multi-ellipse segmentation for multi-tissue core anal-

ysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Estimation of array coordinate and TMA core positions . . . . 26

2.2.3.1 Estimation of the linear deformation . . . . . . . . . 26
2.2.3.2 Thin-plate-based estimation of the deformation . . . 28

2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Description of datasets . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Experimental results and algorithm evaluation . . . . . . . . . 31
2.3.3 Simulated images . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.4 Bright field images . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.5 Fluorescence images . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.A Isotropic wavelet frame . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



viii CONTENTS

2.B Direct wavelet decomposition algorithm and reconstruction . . . . . . 43
2.C Partial derivatives of the ellipse quadratic form . . . . . . . . . . . . 45

3 Dejittering of Scanned TMA Images 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Related works for image dejittering and deinterlacing . . . . . . . . . 52
3.3 Jitter modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Notations and image sampling . . . . . . . . . . . . . . . . . . 54
3.3.2 Alternating line pixel jitter . . . . . . . . . . . . . . . . . . . . 55

3.4 Variational method for displacement estimation . . . . . . . . . . . . 57
3.4.1 Energy functional . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 Data fidelity term . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.3 Regularization term . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.4 Optimization of the energy functional . . . . . . . . . . . . . . 59

3.5 Experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5.1 Evaluation on simulated images . . . . . . . . . . . . . . . . . 62

3.5.1.1 Robustness to noise . . . . . . . . . . . . . . . . . . 64
3.5.1.2 Influence of regularization parameter and window size 67

3.5.2 Evaluation on real fluorescence scanner images . . . . . . . . . 68
3.5.3 Comparative studies . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.4 Denoising of jittered images . . . . . . . . . . . . . . . . . . . 76

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Sparse variation deconvolution 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Related works for deconvolution of fluorescence images . . . . . . . . 83
4.3 Norm-based regularization . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 Differential norm regularizers . . . . . . . . . . . . . . . . . . 85
4.3.2 Generalized sparse variation . . . . . . . . . . . . . . . . . . . 87

4.4 Variational image deconvolution . . . . . . . . . . . . . . . . . . . . . 89
4.4.1 Continuous framework . . . . . . . . . . . . . . . . . . . . . . 89
4.4.2 Discrete formulation . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.3 Minimization of the proposed energy . . . . . . . . . . . . . . 92

4.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5.1 Experiments on simulated image . . . . . . . . . . . . . . . . 96
4.5.2 Application to real large fluorescence images . . . . . . . . . . 105

4.5.2.1 Comparison with existing regularizers . . . . . . . . 107
4.5.2.2 Sensitivity to PSF parameters . . . . . . . . . . . . . 108

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Conclusion 115

Bibliography 130





x CONTENTS



List of Figures

1 Une lame de Tissue Microarray (source: http://tmalab.jhmi.edu/) . . . . . . xix

2 De gauche à droite : le scanner InnoScan 1100 AL (source: https://www.

innopsys.com/) et une image de TMA acquise en fluorescence. . . . . . . . . . xx

3 Exemple d’alignement de TMA. (a) Image de TMA en fluorescence, (b) résultat

de détection, (c) segmentation des échantillons de tissu, (d) estimation de la

déformation de la grille TMA, (e) échantillons segmentés (f) résultat d’alignement,

(g) annotation manuelle. . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

4 Exemple de correction d’artéfacts de scan et de déconvolution sur une image

fluorescente de TMA acquise en trois couleurs. . . . . . . . . . . . . . . . . . xxiii

1.1 A Tissue Microarray slide (source: http://tmalab.jhmi.edu/). . . . . . . . . 2

1.2 From left to right: the scanner named InnoScan 1100 AL (source: https://www.

innopsys.com/) and a fluorescence TMA image scanned using this device (by the

courtesy of Innopsys). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Example of TMA de-arraying. (a) Fluorescence image of a TMA, (b) detection

result, (c) segmentation result, (d) estimation of the deformed TMA grid, (e)

recognized TMA cores, (f) de-arraying result, (g) manual annotation. . . . . . 5

1.4 Example of dejittering and deconvolution on a fluorescence TMA image acquired

in three colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Deformation of the TMA grid. An ideal TMA (left top) has tissue cores

perfectly aligned in vertical and horizontal directions with equal spacing according

to a regular square grid (left bottom). The manufactured TMA (right top) is

subjected to a non-linear deformation of the TMA grid resulting to a distorted

grid (right bottom). We aim at de-arraying the observed TMA by estimating the

deformation which transforms the ideal grid into the distorted grid. . . . . . . 11

2.2 Overview of our TMA de-arraying approach. The proposed ATMAD

approach consists in two steps : (i) tissue core localization; (ii) estimation of array

coordinates of tissue cores. The localization step is performed by combining a fast

wavelet-based detection and an ellipse-shaped active contour to produce accurate

core positions for the second step. The second step is dedicated to the estimation

of the deformation of the TMA grid. The objective is to refine the de-arraying

result by providing additionally potential positions of tissue cores which were not

recognized at the first step. The de-arraying result is presented as a regular array

to facilitate the seeking of row and column coordinates of each core. . . . . . . 13

xi



xii LIST OF FIGURES

2.3 Illustration of core positions and notations. The image u is defined on

a rectangular domain Ω (shown in black rectangle). For each detected position

cn (red small dots), a patch Pn (red dashed squares) centered at cn is extracted.

The ellipse Γn (blue ellipses) with center x0,n (blue crosses) is optimized to fit

the object of interest which is located inside the patch Pn. . . . . . . . . . . . 15

2.4 Wavelet atom and corresponding weighting function used for estimat-

ing the local distribution wavelet transform of a circular spot image.

From left to right : the image of a circular spot, its wavelet atom at the appro-

priate scale and its corresponding weighting function on the top row; and their

radial profile on the bottom row (red dashed lines delineate the radius of the spot). 17

2.5 Pair of concentric and coaxial ellipses. The outer ellipse Γ (red curve)

has an area twice larger than the inner ellipse Γ
� (blue curve). These ellipses

determine two domains of the same area : an elliptical outer ring (shown in light

gray) and an elliptical inner core (dark gray). . . . . . . . . . . . . . . . . . 21

2.6 Approximation of the indicator function by logistic curves. The smaller

�, the closer the S-shaped curve S� approaches the graph of 1]−∞,1]. . . . . . . 23

2.7 The weights w�. w�

�

�x− x0�2Γ
�

approximates 1Γ[x] − 2 1Γ� [x] whose the

radial profile is represented by the graph of the step function t �−→ 1]−∞, 1](t)−
2 1]−∞, 0.5](t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Inner and outer domain membership under discrete setting. Points in

the inner core are marked by dark gray squares and those in the outer ring are

marked by lighter gray squares. From left to right : (a) abrupt domain switch

for points in the neighbor of ellipse boundaries (red and blue curves); (b) fuzzy

membership with transition zones (marked by purple squares); and (c) first order

derivative of the function w� (zero values are shown in gray). . . . . . . . . . 24

2.9 Affine approximation of the grid deformation. The distorted grid Λ

which one only observe partially the set of point X0 ⊂ Λ (shown in blue crosses)

is approximated by the oblique (regular) grid Λ0 (black circled dots). The latter

is characterized by the average distance d̄ between its points, two principal di-

rections which are presented by two vectors (e1, e2) (red arrows), and the global

translation t̂ (green arrow) of the grid with respect to the origin (0, 0) (gray square

dot). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.10 Correspondence between the ideal grid and the observed distorted grid.

At an iteration m, the estimated deformation D(m) maps each point y�

p of the ideal

square grid Λ
� (shown in square dots on the left) onto a point y

(m)
p = D(m)(y

(m)
p )

in the warped grid Λ
(m) (circled dots on the right) which manages to fit the

observed set of points X0 (blue crosses). A position x0,n ∈ X0 is associated to a

position y�

p if x0,n is located within a radius δ from y
(m)
p (blue dotted circles).

Associated positions are marked in red. . . . . . . . . . . . . . . . . . . . . 28

2.11 Example of de-arraying on simulated images. From left to right: TMAs

with the grid deformation varying from low to high. From top to bottom: original

images, de-arraying result by the proposed method with segmentation module

deactivated/activated, ground truth given by Dr Jinhai Wang. The obtained de-

arraying results are presented in array form with recognized spot positions marked

by green boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



LIST OF FIGURES xiii

2.12 Example of de-arraying on bright field TMA image. (a) Original image :

H&E stained TMA on ACSR’s database with ID 550-T0011-01. (b) Manual an-

notation used for comparison with de-arraying results. (c)-(d) De-arraying results

obtained with the deactivation/activation of the segmentation module (Option 3

and 4 respectively). These results and the manual annotation are represented in

array format with recognized cores marked by green boxes. . . . . . . . . . . 37

2.13 Example of de-arraying on a fluorescence DNA microarray image with

the deactivation of both the segmentation and of the non-linear estima-

tion for the TMA grid deformation. (a) Contrast-enhanced original image.

(b) De-arraying result of the proposed method presented in array format. (c)

Manual annotations in array format. For comparison purpose, recognized DNA

spots are marked by green boxes. . . . . . . . . . . . . . . . . . . . . . . 38

2.14 Example of de-arraying on a fluorescence TMA image with the activa-

tion of both the segmentation and of the non-linear estimation for the

TMA grid deformation. (a) Contrast-enhanced original image. (b) Detection

map (accurate detection is marked in white, wrong detection is marked in red).

(c) Segmentation of TMA cores (recognized cores are colored by blue ellipses).

(d) Estimated TMA grid (potential core position is marked by a red cross). (e)

Recognized TMA cores (cores which are additionally recognized are colored by

orange ellipses). (f) Final de-arraying result in array format (recognized core

position is marked by green box). (g) Manual annotations for comparison. . . . 39

3.1 Examples of jitters. From top to bottom: jitter arising in analog-to-digital

video conversion (Source http://www.mee.tcd.ie/~ack/cd/linereg/linereg.

htm) and in fluorescence line scanner (by the courtesy of Innopsys). From left to

right: jittered and dejittered image. . . . . . . . . . . . . . . . . . . . . . 51

3.2 Image acquisition process involved in fluorescence line scanners. Im-

ages are acquired pixel by pixel along each line with a change of scan direction

between two subsequent lines. . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Image of a tool slide used for scanner calibration before/after correction

of the vertical rolling effect. A tool slide depicting a checkerboard pattern

is scanned over a region of interest of 6 millimeters in width (approximately a

third of maximal scan width supported by the scanner). Two regions (marked

by red/pink and yellow/orange boxes) are selected to illustrate the displacement

variation along the horizontal direction. The average displacement in the pink

and orange square boxes is about 3 pixels and 6 pixels respectively. Dejittering

with and without regularization provided very similar results in terms of visual

quality on this piecewise constant image. For visualization purposes, the results

by setting λ = 0 (without regularization) are displayed, including the residual

images between the jittered and restored images. . . . . . . . . . . . . . . . 56



xiv LIST OF FIGURES

3.4 Simulation of jittering on the Barbara 512 × 512 image by using a sinus

function. (a) Original image; (b) jittered image; (c) simulated displacement

on even lines with respect to the horizontal axis (in pixels) plotted with an ex-

ponential scale: smooth displacement (red curve) is computed by using a sinus

function and the perturbed version (black curve) is generated by adding small

random values; (d) displacement field associated with (b) (black color represents

zero value). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Result of dejittering with different parameters of regularization λ and

window size s on the Barbara image (512 × 512) corrupted with white

Gaussian noise (σ = 0.04). Residual images are shown in color where “cold”

colors correspond to low residual values and “hot” colors correspond to high resid-

ual values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Detail comparison of dejittering result with different parameters of

regularization λ and window size s on the Barbara image (512 × 512)

corrupted with white Gaussian noise (σ = 0.04). First row: unjittered

image. Second row: jittered image. Third row to ninth row: dejittered images

with different values for λ and s. . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 Comparison of estimated displacement fields with different parameters

of regularization λ and window size s on the Barbara image corrupted

with white Gaussian noise σ = 0.04. Top left: Ground-truth. (b)-(h):

Displacement fields estimated with different values of λ and s. . . . . . . . . . 66

3.8 Dejittering performance (PSNR and SSIM values) depending on λ for

several values of s. The scores are computed on the Barbara image corrupted

with Gaussian white noise (σ = 0.04) and are plotted with a logarithmic scale for

visualization purposes. We display the curves corresponding to three categories

of window size: small windows (blue curves), medium windows (red curves) and

large windows (black curves). The cyan and the green curves which correspond

to s = 11 and s = 31 respectively are transitional between these three groups of

windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.9 Dejittering result on very noisy Mandrill image (512 × 512) (corrupted

with white Gaussian noise σ = 0.1). The first column contains full size

images, all remaining columns display some regions of interest to compare in

details. First row: jitter-free image. Second row: jittered image. Third row to

fifth row: dejittering with different values for λ and s. . . . . . . . . . . . . . 69

3.10 Large jittered image depicting eight tissue microarray spots acquired

by fluorescence scanner in three colors. An region of interest of 4.7 × 2.8

mm2 was scanned at spatial resolution of 0.5 µm/pixel, corresponding to an image

of 9544 × 4704 pixels. Two areas which are marked by blue and yellow box are

selected for comparison in details between the jittered input image and dejittering

results. From top to bottom: full size image, zoom-in view of two selected areas

(blue box and yellow box respectively). From left to right of two bottom rows: 3

colors at the same time, red (488 nm), green (532 nm) and blue (635 nm) channels

displayed separately. We can clearly see that the vertical rolling effect in the red

channel is stronger than in the two other channels. . . . . . . . . . . . . . . 71



LIST OF FIGURES xv

3.11 Zoom-in views of the dejittering results obtained on two region of

interest in the TMA image in Fig. 3.10. Top panel: the area inside of

the blue box. Bottom panel: the area inside of the yellow box. In each panel,

from left to right: 3-color image, red (488 nm), green (532 nm) and blue (635

nm) channel; from top to bottom: jittered images, dejittered images, and residual

images between the input and restored images. . . . . . . . . . . . . . . . . . 73
3.12 Comparative dejittering results obtained with the proposed method

and Nikolova’s method (NLD) Nikolova (2009a,b). From left to right:

jitter-free images, jittered images, dejittered images obtained with our method,

and dejittered images obtained with NLD. From top to bottom: zoom-in views

of noisy-free Mandrill image (512 × 512) corrupted with integer line jitter (d =

6), Barbara image (512 × 512) corrupted with Gaussian noise (σ = 0.04) and

integer line jitter (d = 6), Lena image (512 × 512) corrupted with Gaussian noise

(σ = 0.01) and non-integer line jitter (d = 6.39), Cameraman image (512 × 512)

corrupted with Gaussian noise (σ = 0.02) and non-integer line jitter (d = 6.39),

and real fluorescence TMA image (see Fig. 3.10). . . . . . . . . . . . . . . . 75
3.13 Denoising results obtained with three different methods applied on a

jittered and dejittered region of interest extracted from a real fluores-

cence TMA image shown in Fig. 3.10. The jitter is not removed if denoising

is applied on the jittered image (first row). For viusalization purposes, the original

and restored images have been normalized in the range [0, 1]. . . . . . . . . . 76

4.1 Set of biological images acquired by SIM technology. From left to right:

(a) actin cytoskeleton, (b) microtubule, (c) tumor tissue, (d) muscle tissue, and

(e) adipose tissue. The first two images are cell images collected from the Cell

Image Library (http://www.cellimagelibrary.org) with id number CIL 7053

and CIL 36147 respectively (CIL stands for the Cell Image Library identifier).

The last three images are tissue images in the dataset used in [Fu et al. 2016]

(available at https://dukespace.lib.duke.edu/dspace/handle/10161/10892). 96
4.2 Deconvolution results on the microtubule image obtained with differ-

ent methods in comparison to the proposed SV-based approach. The

original image (available at http://www.cellimagelibrary.org/ with identifier

CIL 36147) is degraded by a Gaussian PSF with standard deviation σPSF = 2 and

a additive Gaussian noise with zero mean and standard deviation σ = 0.04. Zoom

on filament details is shown in order to compare the performance of each method.

The SV and Hessian-based SV solutions are very competitive when compared to

those obtained with the other methods. . . . . . . . . . . . . . . . . . . . . 100
4.3 Gradient magnitude of deconvolution results obtained with several con-

vex regularizers. The “hot” colors correspond to high gradients and “cold” colors

to low gradients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4 Deconvolution results on the microtubule image obtained with Huber-

based smooth approximation of some convex regularizers. The origi-

nal image (available at http://www.cellimagelibrary.org/ with identifier CIL

36147) is degraded by a Gaussian PSF with standard deviation σPSF = 2 and an

additive zero-mean Gaussian noise (σ = 0.04). Zoom on filament details is shown

in order to compare the performance of each method. . . . . . . . . . . . . . 103



xvi LIST OF FIGURES

4.5 Three-color fluorescence image of 8 tissue microarray cores. A region

of interest of 4.7 × 2.8 mm2 was scanned using the fluorescence scanner named

InnoScan 1100AL equipped with three excitation wavelengths (488 nm, 532 nm

and 635 nm) at the spatial resolution 0.5 µm/pixel, corresponding to an image of

9544 × 4704 pixels. Two areas which are bordered by a blue and a yellow boxes

are selected for comparison in details. First row: full size image. Second and

third rows: zoom-in views of two selected areas; from left to right: 3 colors at the

same time, red (488 nm), green (532 nm) and blue (635 nm) channels displayed

separately. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.6 Deconvolution results on the three-color TMA image obtained with

different regularizers. Zoom-in view on two selected areas are displayed for

comparison purposes. (a) and (c): original acquired image; (b) and (d): dejittered

image; (e) and (g): TV solution; (f) and (h): HV solution; (i) and (k): SV solution;

(j) and (l): LHSV solution. . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.7 Single-color fluorescence TMA image. Image of a TMA core is acquired on

the green channel (532 nm) at the resolution 0.2 µm per pixel. The size of the

acquired image is 7580× 6870 pixels. A region (bordered by rex box) is selected

for comparison in details of deconvolution results obtained with different PSFs. . 109
4.8 Comparison of deconvolution results obtained on the single-color TMA

image with different PSFs and regularization parameters. Zoom-in

view on the selected area (bordered by red box in Fig. 4.7) to compare in

details before/after deconvolution differences as well as results obtained with

different parameters. We consider Gaussian PSFs with FWHM values vary-

ing in the range {0.6, 0.7, 0.8, 0.9, 1.0} and several regularization parameters

λ ∈ {0.002, 0.003, 0.005, 0.008}. The two values, FWHM = 1.0 and λ = 0.008,

yield the best result in terms of visual quality compared to the other combinations

of parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110





xviii LIST OF FIGURES



Résumé en français

Contexte et motivations

Introduits par Kononen et al. (1998), les “Tissue Microarrays” (TMAs) ou “puces
à tissus” sont des lames histologiques sur lesquelles de nombreux échantillons tis-
sulaires (micro-biopsies) inclus en paraffine sont organisés selon une structure de
grille (appelée grille de TMA) pour faciliter l’identification de chacun d’eux. Cette
technologie permet en effet d’analyser simultanément l’expression des gènes ou pro-
téines de plusieurs centaines d’échantillons placés sur une même lame dans les mêmes
conditions optimales de reproductibilité. Compatible avec les techniques courantes
telles que l’immunohistochimie (IHC), l’hybridation in situ (ISH) ou l’hybridation
in situ en fluorescence (FISH), l’utilisation des TMAs est une des méthodes les
plus rapides et les plus efficaces pour valider et évaluer des nouveaux biomar-
queurs. L’identification de biomarqueurs fiables joue désormais un rôle essentiel
pour améliorer le diagnostic précoce de cancers.

Figure 1: Une lame de Tissue Microarray (source: http://tmalab.jhmi.edu/)

Malheureusement, dans la plupart des laboratoires concernés, l’analyse de TMAs
reste souvent très manuelle, de la numérisation des lames à l’interprétation des ré-
sultats. Elle exige encore trop de temps et doit être supervisée par un pathologiste,
en général peu disponible. Ce manque d’automatisation ne permet pas d’exploiter
tout le potentiel de la technologie TMA et limite la popularisation de cette tech-
nologie pour les activités de recherche ou pour les pratiques cliniques. Il est donc
nécessaire de développer des outils automatisés, quantitatifs et dédiés aux TMAs

xix
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pour réduire le temps d’invervention humaine et permettre une analyse haut-débit,
fiable et robuste.

Pour répondre à ce besoin, la société Innopsys, un des trois leaders mondiaux
du marché des Microarrays, a développé et commercialisé une nouvelle génération
de scanners en fluorescence appelée InnoScan 1100 AL1. Doté d’un système op-
tique et mécanique soigneusement conçu, ce scanner est capable d’automatiser la
numérisation de plusieurs lames insérées et d’effectuer des acquisitions simultanées
de différentes couleurs (longueurs d’onde). La numérisation d’un grand nombre de
lames est effectuée en un temps relativement court. Il représente un outil idéal pour
les applications en grande échelle dans le domaine de la pathologie numérique et de
la recherche contre le cancer. Afin de compléter cette offre en instrumentation, il
s’avère indispensable de l’équiper aussi d’algorithmes de traitement d’images dédiés
à l’analyse des TMAs pour faciliter l’interprétation des pathologistes.

Figure 2: De gauche à droite : le scanner InnoScan 1100 AL (source: https://www.innopsys.

com/) et une image de TMA acquise en fluorescence.

Mon projet de thèse s’inscrit dans la cadre de la collaboration entre Inria et
Innopsys. L’objectif est de développer des algorithmes originaux pour le traitement
des images de tissus marqués en fluorescence produites par les scanners de la gamme
InnoScan2, notamment le prototype nommé InnoScan 1100 AL. Des développements
conséquents portent sur plusieurs aspects tels que la problématique des Tissue Mi-
croarrays, l’imagerie en fluorescence, et les problèmes d’acquisition liés aux scanners
dédiés en question. Plus précisément, ce travail de thèse visait à développer des
méthodes pour la segmentation des échantillons de tissu, l’estimation de la défor-
mation de la grille TMA, la correction des artéfacts de scan ainsi que l’amélioration
de la résolution spatiale des images scannées. Les deux premières problématiques
relèvent de l’identification automatique des échantillons de tissu, ce qui est extrême-

1 Voir https://www.innopsys.com/en/lifesciences-products/microarrays/innoscan/

innoscan-1100-al pour plus de détails du produit.
2 https://www.innopsys.com/en/lifesciences-products/microarrays/innoscan .
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ment important en analyse de TMA. Les deux dernières problématiques avaient
pour objectifs d’améliorer la qualité visuelle des images brutes (à la sortie du scan-
ner et avant tout prétraitement), un problème assez classique dans le domaine de
traitement d’images. Néanmoins, chaque problématique a exigé un travail signifi-
catif de modélisation en tenant compte des caractéristiques des images de TMA,
du processus d’acquisition d’images, des bruits électronique et photonique induits
par le dispositif d’imagerie. À côté de ces travaux théoriques, les stratégies prag-
matiques ont été également considérées dans certains cas pour pouvoir traiter non
seulement un grand nombre d’images générées mais aussi des images de très grande
taille (jusqu’à 44000 × 148000 pixels pour une lame entière imagée à la résolution
maximale).

Le manuscrit est organisé de manière suivante. Le chapitre 2 aborde la problé-
matique de la localisation des échantillons de tissu biologique présentés sur la lame
de TMA et de l’estimation des coordonnées spatiales de chaque échantillon. Cette
problématique, assez bien décrite en analyse de TMAs, dont la résolution est es-
sentielle pour les utilisateurs (chercheurs et pathologistes), n’a pas reçu beaucoup
d’attention dans le domaine de traitement d’images. Ensuite, le chapitre 3 introduit
une méthode variationnelle, inspirée du calcul de flot optique, pour corriger les arté-
facts de scan dus aux mauvais placements des pixels. Le problème de déconvolution
d’images est traité dans le chapitre 4. De manière originale, pour la déconvolution
des images en fluorescence, on introduit une nouvelle famille de régulariseurs con-
vexes et adaptés à cette modalité d’imagerie. Enfin, le dernier chapitre résume les
travaux réalisés dans le cadre de cette thèse et propose quelques perspectives.

Résumé des chapitres principaux

Chapitre 2 :

La première tâche en analyse de TMA vise à identifier chaque échantillon de tissu
déposé sur la lame et de l’associer à des données cliniques. En terme de traitement
d’images, il s’agit de localiser (segmenter) ces échantillons sur une image TMA de
grande taille et d’estimer leur coordonnées spatiales disposées sur une grille régulière.
Dans ce chapitre, on propose une nouvelle méthode de correction d’alignement en
combinant la détection basée ondelettes, la segmentation par modèle paramétrique
de forme et l’interpolation par spline (“plaque mince”). La méthode proposée est
adaptée non seulement aux images de fluorescence mais aussi aux images en champ
clair (brightfield en anglais). Elle est également robuste au bruit instrumental ainsi
qu’aux déformations non linéaires de la grille TMA.

Chapitre 3 :

Dans ce chapitre, on traite le problème des artéfacts de scan qui se produisent sur
les images acquises par les scanners de la gamme InnoScan développés par la société
Innosys. Ce type d’artéfacts dus aux mauvais positionnements des pixels, est très
similaire à ceux observés sur les images satellitaires de whiskbroom et pushbroom.
Cependant, la situation est beaucoup plus compliquée dans le contexte des images
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 3: Exemple d’alignement de TMA. (a) Image de TMA en fluorescence, (b) résultat de
détection, (c) segmentation des échantillons de tissu, (d) estimation de la déformation de la grille
TMA, (e) échantillons segmentés (f) résultat d’alignement, (g) annotation manuelle.

biologiques, car les images contiennent les détails très fins avec les variations douces
d’intensité. Pour cette raison, on considère une approche basée sur les méthodes
variationnelles de flot optique pour estimer un champ de déplacement dense qui
modélise les artéfacts de scan. Cette approche consiste à minimiser une fonction
d’énergie composée d’un terme d’attache aux données non convexe et d’un terme
de régularisation convexe. Le découplage de ce problème de minimisation en deux
sous-problèmes est nécessaire pour séparer les termes convexe et non convexe. Pour
minimiser la fonction d’énergie proposée, on considère la relaxation quadratique en
introduisant une variable auxiliaire pour découpler la fonction originale en deux
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Figure 4: Exemple de correction d’artéfacts de scan et de déconvolution sur une image fluorescente
de TMA acquise en trois couleurs.

parties: l’une est non convexe et peut-être minimisée en effectuant une recherche
exhaustive; l’autre est convexe et facile à minimiser en utilisant les algorithmes
d’optimisation standards. Les expériences réalisées sur les images synthétiques et
réelles de fluorescence montrent que la correction des artéfacts de scan utilisant notre
approche fournit des résultats prometteurs en terme de qualité visuelle.
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Chapitre 4 :

En imagerie en fluorescence, quand la super-résolution est impossible, la seule méth-
ode pour améliorer la résolution spatiale d’une image est la déconvolution. Dans ce
chapitre, on introduit une nouvelle famille de régulariseurs convexes appropriés aux
images fluorescentes. Cette famille de régulariseurs est généralisée à partir du con-
cept de la variation parcimonieuse (sparse variation), qui associe la variation totale
(total variation) et la norme L1 de l’image pour rehausser des pixels dont l’intensité
et le gradient sont non-nuls. On reformule donc le problème de déconvolution comme
la minimisation d’une énergie composée par un terme d’attache aux données quadra-
tique (sous l’hypothèse de bruit blanc Gaussien) et un terme de régularisation de
cette famille sous certaines contraintes de positivité. Ce problème convexe peut être
résolu, de manière efficace, par un algorithme primal-dual (proximal). Les résultats
expérimentaux montrent que la méthode de déconvolution proposée (ainsi appelée
SV déconvolution) est très compétitive en comparant avec celles de l’état-de-l’art
comme la déconvolution basée sur la minimisation de la variation totale ou de la
norme Schatten de la matrice Hessienne.
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Chapter 1

Introduction

Context

Cancer is nowadays one of the biggest health issues of the modern society. Along
with the continuously increasing number of new cancer cases detected every day, it
is crucial to identify reliable biomarkers in order to improve the diagnosis, predic-
tion and prognostication. The use of tissue microarrays (TMAs) [Kononen et al.
1998] has been proven to be an effective and efficient method for the evaluation and
validation of novel tissue biomarkers. Then, what are tissue microarrays and why
they are useful in cancer research?

A tissue microarray is a microscopy slide on which, up to thousands or more
tissue samples are assembled according to a grid pattern (also called TMA design
grid) in order to facilitate the identification of each sample. In comparison with
conventional histo-pathological techniques that impose generally individual analysis
of each tissue sample, the TMA technology allows, in contrast, simultaneous analysis
of numerous samples at different levels (e.g., RNA, DNA, or protein level) in a
single experiment under identical and standardized conditions while using only a
single slide. It permits therefore to perform large-scale experiments where multiple
markers are eventually tested on very large number of specimens, with substantially
shorter time as well as lower material and labor cost. Furthermore, the application
of TMAs in tissue-based researche also helps to preserve the limited and valuable
tissue resource for future needs.

There is a wide range of immunohistochemical and molecular techniques that
can be used with tissue microarrays as with regular tissue samples, including im-
munohistochemistry (IHC), RNA in situ hybridization (ISH), fluorescence in situ
hybridization (FISH) and immunofluorescence (IF). For several decades, these tech-
niques have required stained TMA slides to be observed under microscope and an-
alyzed by pathologists. Unfortunately, results obtained with these microscopical
analyses are in general irreproducible and subjected to observer variability in visual
evaluation. To avoid these issues, digital images (virtual slides) which are acquired
with dedicated devices are considered instead of physical slides, making a great evo-
lution in the field of pathology – the era of digital pathology. Virtual slides, by
the nature, not only provide the possibility of storage, viewing and manipulation
in computers, but also enable automated and quantitative analysis (by using image

1
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Figure 1.1: A Tissue Microarray slide (source: http://tmalab.jhmi.edu/).

processing algorithms). This computer-assisted approach to analyze TMAs repre-
sents so far a powerful and practical tool for pathologists to reduce interpretation
errors and improve accuracy of diagnoses. It is especially useful for large-scale assays
where a large number of TMAs and biomarkers may involve, since some quantitative
information (e.g., annotated data) is provided through pre-processing by computers,
thus easing the analyses of pathologists.

In the context of digital pathology, the workflow of TMA analysis is composed of
following steps: (i) image acquisition of the TMAs which are stained according to the
considered molecular technique; (ii) localization (segmentation) and identification of
each tissue sample on the acquired images; and (iii) evaluation on the segmented
(annotated) images. To our knowledge, there is not yet a standard platform dedi-
cated to tissue microarrays which allows a totally automated workflow, or at least
automated until human intervention for final evaluation. Indeed, the majority part
of digital TMA image analysis is still performed manually in most biological labo-
ratories, requiring a lot of time and a permanent supervision of a pathologist which
is not always available for this tedious and time-consuming task. Consequently, in
spite of its prominent potential, TMA technology encounters a major bottleneck for
wide usage in basic research as well as routine clinical works, due to the lack of a
convenient platform for automated and high-throughput analysis. The development
of such a platform is highly recommended to accelerate and simplify the TMA ana-
lyzing process, thus reducing the working time of pathologists on the supervision and
making them more available for their expertise (i.e. the discovery of new predictive
biomarkers).

To meet this need, Innopsys – specialized in biological instrumentation – aims
at providing a unified framework and a user-friendly environment for TMA analysis
from fast image acquisition, protected data transfer and management to automated
pre-processing (such as denoising, deconvolution, segmentation, etc.). They com-
mercialize a new generation of fluorescence scanners named InnoScan 1100 AL1.
Equipped with carefully designed mechanical, optical and electronic components,

1 See https://www.innopsys.com/en/lifesciences-products/microarrays/innoscan/

innoscan-1100-al for more technical details of the product.
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the dedicated scanner is able to perform not only simultaneous acquisitions on dif-
ferent excitation channels but also programmed acquisition of a batch of multiple
input specimen slides at very high spatial resolution while avoiding photo-bleaching.
Moreover, thanks to its eligibility to any standard microscopy slide with various sub-
strates – cells, tissue, proteins, DNA, glycans, peptides, and others – this specific
device is potentially an adapted solution for large-scale application of multiplexed
assay techniques which are commonly used in cancer research. Nevertheless, it also
remains to integrate advanced image processing algorithms, especially those which
are adapted for fluorescence images, in order to improve the visual quality of acquired
images and facilitate the interpretation for further analyses.

Figure 1.2: From left to right: the scanner named InnoScan 1100 AL (source: https://www.

innopsys.com/) and a fluorescence TMA image scanned using this device (by the courtesy of
Innopsys).

The objective of this thesis in collaboration between Innopsys and Inria con-
sists in investigating and developing methods and algorithms dedicated to TMA
(and eventually other biological sample) images acquired by scanners and devices
designed by the industrial partner (namely the range InnoScan2, including the novel
prototype InnoScan 1000 AL). More precisely, there are two major topics in which
we are particularly interested: (i) challenges of digital TMA image analysis, and
(ii) problems related to image acquisition with the scanner. For the first topic, we
mainly focus on the localization (segmentation) of circular-shaped tissue samples in
a bi-dimensional scanned TMA image and the estimation of their row and column
coordinates according to a grid pattern. The aim is to correctly link each sample
with its corresponding clinical data. This problem is also called tissue microarray
de-arraying [Wang et al. 2011]. Meanwhile, other aspects of TMA image-based
analysis (e.g., marker scoring, tumor recognition or tissue profiling, etc.) will not
be covered in this dissertation and are subject to further studies. Regarding the
imaging devices, beside classical problems in image processing such as denoising

2 https://www.innopsys.com/en/lifesciences-products/microarrays/innoscan .
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and deconvolution, the correction of pixel mispositioning (i.e. jitter) during scan-
ning process is also discussed. Pixel mispositioning resulting in images with jagged
shapes, represents in general a big issue, since the visual effect is disturbing due to
rolling effect. The removal of this particular artifact is thus necessary to provide
images which are visually more pleasant when compared to the jittered version. In
the case of the InnoScan range, images acquired by those scanners not only suffer
from the jittering effect which is common for all scanning platforms, but also are
degraded by a blur due to the low-pass nature of the scanner’s optical system. To
address to this problem, a deconvolution algorithm is investigated to improve the
image resolution.

Note that the algorithms developed during this thesis will be possibly integrated
into industrial products. Accordingly, we need to take into account several practical
constraints in the design of algorithms, including computational time, hardware
requirements as well as implementation facility. It imposes us to design fast and
low-memory-requirement algorithms using as-simple-as-possible approaches to ease
the implementation. In addition, adhoc strategies such as subsampling or tiling can
be also considered in some cases when dealing with very large images (up to about
44000×148000 pixels) to reduce the amounts of processed data at a time and enable
parallel computing.

The main contribution of this work is to provide a set of fast algorithms for
quantitative analysis of fluorescence TMA images which represents an actual need
of pathologists in tissue-based researches but receives little attention from both aca-
demics and industry experts. Coupled with existing devices of the InnoScan range
designed by Innopsys, these algorithms allow to envisage constructing an automated
platform of imaging and pre-processing dedicated to TMAs: once the TMA slides
are inserted into the scanner, the batch of inserted slides is automatically performed,
and straightforwardly followed by the automated localization (segmentation) of tis-
sue samples as well as the correction of scanning artifacts and the deconvolution
without any human supervision. This workflow provides to final users (e.g., pathol-
ogists, researchers) not only artifact-free and high-resolution images of each TMA
slide, but also structured data (composed of estimated coordinates of each sample,
extracted regions of interest from the whole slide image, etc.) for further quan-
titative analysis. It will be a significant improvement in the automation of the
present workflow for digital TMA image analysis where the majority of stages are
still performed manually. Beyond the scope of tissue microarray, some of developed
algorithms (e.g., segmentation, deconvolution) may have applications and impacts
in other contexts, especially in optical microscopy and fluorescence imaging.

The remainder of this manuscript is structured as follows. First, in Chapter 2,
we propose a fast and robust approach for TMA de-arraying by combining wavelet-
based detection, active contours and thin-plate spline interpolation. In Chapter
3, the scanning artifacts (jitter) is addressed by considering an optical-flow-based
variation approach to estimate the underlying displacement. Chapter 4 presents
a regularization-based deconvolution method using novel convex regularizers called
generalized Sparse Variation. Finally, Chapter 5 summarizes our contributions and
results, and gives a perspective to future works.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 1.3: Example of TMA de-arraying. (a) Fluorescence image of a TMA, (b) detection result,
(c) segmentation result, (d) estimation of the deformed TMA grid, (e) recognized TMA cores, (f)
de-arraying result, (g) manual annotation.

Preview of chapters

Chapter 2 :

On a tissue microarray slide, tissue samples are collected from different donors, thus
it is highly important to properly identify and associate each sample with its patho-
logical and clinical metadata. More precisely, each sample needs to be accurately
localized and to be assigned to relevant row and column coordinates according to a
grid pattern. This process is the so-called TMA de-arraying. Although de-arraying
seems to be easy at first glance due to the TMA grid pattern, it is much more diffi-
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cult in practice because the TMA grid is often strongly deformed and tissue samples
can be destroyed or split into several parts during the manufacturing process. To
overcome these difficulties, we combine wavelet-based detection, parametric active
contours and thin-plate spline interpolation, and propose an automated, fast and ro-
bust method for TMA de-arraying. Our method is robust not only to noise but also
to non-linear deformation of the TMA grid. It is also adapted for both brightfield
and fluorescence images.

Chapter 3 :

In this chapter, we address to scanning artifacts due to pixel mis-positioning (jitter)
arising in dedicated scanners developed by Innopsys. Inspired by variation optical
flow computation, we propose a variational method for the correction of this specific
jitter. Our method consists in estimating a dense displacement field representing the
jitter by minimizing an energy functional composed of a non-convex re-alignment
criterion and a convex differential-based regularizer. In order to minimize this non-
convex functional, we utilize the half-quadratic splitting approach to decouple convex
and non-convex terms in such a way that the original minimization problem can be
solved by alternating two optimization steps – one using a proximal algorithm for
the convex part and the other using an exhaustive search for the non-convex part.
Experimental results on artificial and large real fluorescence images demonstrate that
our method is not only capable to handle large displacements but is also efficient
in terms of sub-pixel precision without modifying image intensities when comparing
with image regularization-based approaches.

Chapter 4 :

In this chapter, we generalize the sparse variation (SV), which combines the total-
variation (TV) regularization and the L1 regularization, and introduce a novel family
of convex and non-quadratic regularizers for fast deconvolution of large 2D fluores-
cence images. These regularizers are defined as mixed Lν-L2 norms (ν ≥ 1) which
group image intensity and spatial differentials, computed at each pixel of the im-
age, to favor the co-localization of high-intensity pixels and high-magnitude gradi-
ents. By coupling a regularization term of this family with a quadratic data fidelity
term, we propose a fast and efficient deconvolution method by using the primal-dual
(proximal) algorithms to minimize the corresponding energy functional. Experi-
ment results on both 2D simulated and real fluorescence scanner images demon-
strate that the proposed deconvolution method is very competitive when compared
to other existing regularization-based methods, specially TV-based deconvolution
and Hessian-norm-based deconvolution.
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Figure 1.4: Example of dejittering and deconvolution on a fluorescence TMA image acquired in
three colors.
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Chapter 2

Tissue Microarray De-arraying

Related publications

H.-N. Nguyen, V. Paveau, C. Cauchois, C. Kervrann. Automatic core segmentation
and registration for fast Tissue Microarray de-arraying1. Published in Proceedings
of IEEE 12th International Symposium on Biomedical Imaging (ISBI), New York
2015
H.-N. Nguyen, V. Paveau, C. Cauchois, C. Kervrann. ATMAD: robust image anal-
ysis for Automatic Tissue MicroArray De-arraying1. Manuscript submitted for pub-
lication in BMC Bioinformatics, 2017

Abstract

In this chapter, we propose an Automatic, fast and robust TMA De-arraying (AT-
MAD) approach dedicated to images acquired with bright field and fluorescence
microscopes (or scanners). First, tissue samples are localized in the large image by
applying a locally adaptive thresholding on the isotropic wavelet transform of the
input TMA image. To reduce false detections, a parametric shape model is con-
sidered for segmenting ellipse-shaped objects at each detected position. Segmented
objects that do not meet the size and the roundness criteria are discarded from the
list of tissue samples before being matched with the design grid. Sample matching
is performed by estimating the TMA grid deformation under the thin-plate model.
Finally, thanks to the estimated deformation, the true tissue samples that were pre-
liminary rejected in the early image processing step are recognized by running a
second segmentation step. By combining wavelet-based detection, active contour
segmentation, and thin-plate spline interpolation, our approach is able to handle
TMA images with high dynamic, poor signal-to-noise ratio, complex background
and non-linear deformation of TMA grid. In addition, the deformation estimation
produces quantitative information to asset the manufacturing quality of TMAs.
Keywords: tissue microarray, TMA de-arraying, detection, wavelet, segmentation,
active contour, deformation, thin-plate spline

1These works were supported by Innopsys.
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2.1 Introduction

2.1.1 Tissue MicroArray (TMA) history

The development of multi-tissue techniques was started at the mid-1980s in order
to address the scarcity issue of diagnostic reagents and tissue samples. The pi-
oneer work was contributed by Battifora (1986) who introduced the multi-tumor
“sausage” tissue block. In this method, several rods of tissue, which were extracted
from paraffin-embedded tissue blocks (or shortened as paraffin blocks), deparaf-
finized and rehydrated, were put together and reparaffinized after being tightly
wrapped in small intestine of small mammals like a sausage. To avoid deparaf-
finization and reparaffinization procedures of Battifora’s “sausage” technique, Wan
et al. (1987) conceived the “punching” technique which used 16-gauge needle for re-
trieving cylinders of tissue (also tissue cores) from paraffin blocks and arraying them
in a recognizable pattern. Although Wan’s punching technique was a big footstep
and was used in nearly all of today TMA techniques, its tissue pattern was not a grid
one which is more structured and facilitates the identification of each tissue sample.
The first multi-tissue grid pattern is described by Battifora and Mehta (1990) under
the name of “checkerboard tissue block” in which tissue rods were manually aligned
in a Cartesian coordinate system (checkerboard pattern).

By combining the punching technique of Wan and the “checkerboard” concept
of Battifora and Mehta, Kononen et al. (1998) invented a machine for assembling
efficiently and accurately extracted tissue cores in grid pattern. The proposed tech-
nique called “tissue microarray” (TMA) became therefore popular and widely used
in most pathological laboratories. In the last decade, different TMA techniques were
developed to improve manufacturing process and minimize manufacturing cost (e.g.
[Gillett et al. 2000; Chan et al. 2000a; Fejzo and Slamon 2001; Packeisen et al. 2002;
Badve et al. 2002; Hidalgo et al. 2003; Wang et al. 2003; Dan et al. 2004; Pan et al.
2004; Datta et al. 2005; Montgomery et al. 2005]), but all of them were based on
Battifora’s, Wan’s and Kononen’s previous works. Since in most TMA techniques,
extracted tissue samples have cylinder form, in the following, we use the terms “tissue
cores” or “TMA cores” (or even more shorter “cores”) to refer TMA tissue samples.

2.1.2 Challenges of TMA de-arraying

In a TMA, assembled tissue cores are collected from different donor blocks. It is
thus highly important to matching them with their proper meta-data for further
clinical or pathological analysis. To this end, grid pattern was conceived to ease
the localization of each TMA cores. However, in spite of numerous technique im-
provements [Dan et al. 2004; Pilla et al. 2012], TMAs manufactured recently by
manual or automated (semi-automated) machine are still subjected to the deforma-
tion of the design tissue grid due to bad positioning of the tissue cores with respect
to the design. Another main source of deformation is the heat deformation of the
paraffin waxes – commonly used in TMA techniques – when embedding tissue cores
into recipient block. Sectioning paraffin-embedded tissue blocks with a microtome to
produce multiple slides may also produce additional deformation. In fact, the design
grid may suffer geometric transformations such as translation, rotation and shear-
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Ideal TMA Observed TMA

Ideal square grid Distorted grid

Figure 2.1: Deformation of the TMA grid. An ideal TMA (left top) has tissue cores perfectly
aligned in vertical and horizontal directions with equal spacing according to a regular square grid
(left bottom). The manufactured TMA (right top) is subjected to a non-linear deformation of the
TMA grid resulting to a distorted grid (right bottom). We aim at de-arraying the observed TMA
by estimating the deformation which transforms the ideal grid into the distorted grid.

ing (linear or affine deformations) combined with dilatation, distortion and random
perturbations (non-linear deformations). In addition, some fragile tissue cores may
be lost or split into several fragmented parts, making more difficulties to recognize
them. Figure 2.1 illustrates a typical image of TMA imaged in fluorescence. We
can clearly observe that the ideal TMA grid which is a square grid is significantly
distorted after the manufacturing process and the present tissue cores do not have a
perfectly circular shape as expected. These problems need to be taken into account
to develop robust de-arraying methods.

2.1.3 State-of-the-art of TMA de-arraying methods

Closely similar to TMAs, DNA microarrays (also known as bio-chips) [Taub et al.
1983] are constructed by spotting DNA probes by robots with high precision ac-
cording to a grid pattern. Numerous gridding methods for microarrays were used
to localize each DNA probes and find its row and column coordinates with respect
to the design grid. This procedure is called “de-arraying”. Despite the similitude of
these microarray concepts, existing “de-arraying” methods for microarrays are not
adapted for TMAs because the grids are more highly deformed. Along with the
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commercialization of digital imaging devices for TMA analysis over the last decade,
several methods for TMA “de-arraying” have been developed (e.g [Vrolijk et al. 2003;
Chen et al. 2004; Dell’Anna et al. 2005; Rabinovich et al. 2006; Lahrmann et al.
2010; Wang et al. 2011]). In general terms, a “de-arraying” approach consists in
two steps: (i) segmentation and localization of assembled tissue cores; (ii) array
coordinate (row and column coordinates) estimation of each core.

Firstly, for segmenting tissues, existing de-arraying methods usually assume that
the histogram of a TMA image is bimodal. Under this assumption, these methods
perform in general a thresholding by taking the local minimum between two highest
peaks corresponding to the background and the foreground, of the image intensity
histogram as global threshold. Various thresholding techniques were proposed from
a simple thresholding as in [Vrolijk et al. 2003] to more sophisticated methods such
as the moment-preserving thresholding in [Dell’Anna et al. 2005], the automatic
thresholding based on Savitsky-Golay filtered histogram in [Rabinovich et al. 2006]
or Otsu’s method used in [Lahrmann et al. 2010; Wang et al. 2011]. To improve
the segmentation result, pre-processing like contrast enhancement transform [Wang
et al. 2011] or template matching [Dell’Anna et al. 2005] was applied. Morphological
operators were also used as post-processing for removing outliers in the thresholded
map as in [Vrolijk et al. 2003; Wang et al. 2011]. However, this underlying as-
sumption is not satisfied in case of images acquired from novel fluorescence device
because of their complex background. Due to the nature of fluorescence imaging,
pixels corresponding to irrelevant objects – such as dusts, glue and washing stains –
in the background have often high intensities resulting as a high peak in the intensity
histogram; in contrast, the intensities of pixels corresponding to tissue cores could
be relatively lower. Hence, as a consequence, most of cores fail to be detected with
a high threshold and there is a number of outliers corresponding to a low threshold
value.

Secondly, for estimating row and column coordinates of each TMA cores, the
methods mentioned above were generally based on distance and angle criteria to
define the average spacing between the cores and the orientation of the observed
grid. These criteria were derived simply from the distance between neighbor tissue
cores [Dell’Anna et al. 2005], or from sophisticated measures such as the histogram
of distance and angle [Vrolijk et al. 2003] or the coefficients of the Hough transform
[Chen et al. 2004] or even the Delaunay triangulation [Wang et al. 2011]. To deal with
the case of missing tissue cores or the design of TMA grid in which some positions
are left empty [Pilla et al. 2012], linear or local bilinear interpolation were used as
in [Vrolijk et al. 2003; Wang et al. 2011] for completing the grid. Whereas these
methods yield satisfactory results for further pathological analysis, they can not
produce quantitative information about the deformation of the TMA grid which is an
indicator for evaluating the quality of the manufactured input TMA. For that reason,
we address this issue and develop a de-arraying method which is able to provide
quantitative information about the deformation. Our approach allows management
of traceability and quality control of the whole TMA manufacturing process.
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LOCALIZATION

ESTIMATION OF ARRAY COORDINATES

Ellipse-based SegmentationWavelet-based Detection

SegmentationDeformation estimation

Wavelet transform Thresholding Detection result Ellipse initialization Ellipse optimization

Core centres
Final result

Recognized coresEstimated grid

Figure 2.2: Overview of our TMA de-arraying approach. The proposed ATMAD ap-
proach consists in two steps : (i) tissue core localization; (ii) estimation of array coordinates of
tissue cores. The localization step is performed by combining a fast wavelet-based detection and
an ellipse-shaped active contour to produce accurate core positions for the second step. The second
step is dedicated to the estimation of the deformation of the TMA grid. The objective is to refine
the de-arraying result by providing additionally potential positions of tissue cores which were not
recognized at the first step. The de-arraying result is presented as a regular array to facilitate the
seeking of row and column coordinates of each core.

2.1.4 Overview of the method

In this chapter, we propose a fast and efficient approach for automated TMA de-
arraying with the emphasis on fluorescence TMA images and modeling of TMA
grid deformation. The proposed approach called ATMAD is based on the following
image processing operations: core detection, core segmentation and estimation of
the grid deformation. For the tissue localization step of the de-arraying procedure,
we combine the detection and segmentation tasks to produce reliable inputs for the
second step – the computation of the array coordinate of each tissue core. This
second step is performed by using the deformation estimation module followed by a
segmentation task to refine the result. The outline of our approach is shown in Fig.
2.2 which describes the two steps of the de-arraying procedure and the combination
of the three image processing operations.

The “detection” operation (i.e. the detection) is based on a wavelet approach. In
order to process images having large dynamic range, complex background and high
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noise level such as fluorescence images, we compute a stationary wavelet transform
of the input TMA image at an appropriate scale to the tissue size – the average
tissue core radius given by the manufacturer. By choosing the mother wavelet as
a difference of Gaussians, we can deduce the closed-form expression of the wavelet
atom at any desired scale and use it to perform directly the wavelet decomposition.
Our technique is faster and more accurate than the well-known “à trous” algorithm
[Starck et al. 1994]. The wavelet transform map is then locally thresholded to
spatially adapt to the contrast between the foreground – corresponding to TMA
cores – and the inhomogeneous background. The position of potential tissue cores
is defined as the center of the connected components in the thresholded wavelet
transform map.

To delineate the boundary of each tissue core and improve detection result, an
ellipse-shaped active contour [Thévenaz et al. 2011] is used for segmenting the de-
tected object at each position obtained from previous step. The segmented objects,
which are too large or too small than the given average size of tissue sample or too
elongated, will be considered as false detection and be discarded from the list of po-
tential positions. This removal is essential to discard potential outliers and enhance
the reliability of the input for the estimation of row and column coordinates of TMA
cores.

Instead of estimating directly the row and column coordinates of each core from
the position list, we approximate the deformation of the TMA grid using the thin-
plate model. In fact, the deformed grid is the image (in the sense of set theory) of the
regular grid of design by the deformation. Given the deformation at some arbitrary
points of the grid, the thin-plate interpolation allows to estimate it at other points
[Bookstein 1989]. The more points we have known, the more precisely we estimate
the deformation. Once the deformation is approximated, the computation of row and
column coordinates of each tissue core is therefore straightforward. By reformulating
as an approximation problem and solving it iteratively, our method is robust to high
non-linear deformations which were observed in most real TMA images. Moreover,
according to the thin-plate model, the approximation yields information such as the
average translation, the rotation angle, the bending energies along the horizontal
and vertical axes, etc. These information are useful to assess the quality of the
manufactured TMAs.

The remainder of this chapter is organized as follows. In the next section, we de-
scribe the de-arraying approach including a technical presentation of the “detection,
“segmentation”, “deformation estimation” tasks. We also figure out how the pro-
posed approach is adapted for TMA images acquired with bright field microscopes.
In Section 2.2, we present the experimental results obtained from simulated and real
data. Finally, the last section gathers the conclusions drawn from this research and
details the future work.

2.2 Methodology

In our approach, the estimation of core positions on the input TMA image is sub-
sequently refined in successive tasks by considering different image domains (i.e.
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Figure 2.3: Illustration of core positions and notations. The image u is defined on a
rectangular domain Ω (shown in black rectangle). For each detected position cn (red small dots),
a patch Pn (red dashed squares) centered at cn is extracted. The ellipse Γn (blue ellipses) with
center x0,n (blue crosses) is optimized to fit the object of interest which is located inside the patch
Pn.

patches or regions) in the input original image. Such a strategy allows not only to
avoid unnecessary processing on non-content regions but also to reduce the acqui-
sition time, storage and processing time of high resolution data. To distinguish the
inputs and outputs of each task and facilitate the comprehension of the technical
details, we present a diagram in Fig. 2.3 which illustrates a few notations which will
be used throughout the chapter.

2.2.1 TMA core Detection

The detection of approximately circular TMA cores can be performed by spot de-
tection algorithms. Spot detection is a well-known topic in image processing (see
[Kervrann et al. 2016] for a recent review). Over past decades, number of spot detec-
tion methods have been proposed (e.g. [Breen et al. 1991; Olivo-Marin 2002; Sage
et al. 2005; Zhang et al. 2007; Smal et al. 2008]). To produce satisfactory results,
most of these methods require fine adjustment of a critical parameter: the detection
scale corresponding to the size of the objects of interest. Automatic selection of the
detection scale is a challenging problem since the objects of interest may have differ-
ent sizes or they may have the same size as the irrelevant objects in the background.
Few methods of automatic scale selection [Basset et al. 2014; Püspöki et al. 2015,
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2016] have been proposed recently. However, in the context of tissue microarrays,
the diameter of assembled TMA cores is defined by the size of the needle used for
extracting cores from paraffin tissue blocks. The determination of the scale parame-
ter used for spot detection is straightforward from this measure which is often given
by the manufacturer. We propose here a fast algorithm for tissue core detection by
performing directly the wavelet decomposition at the appropriate aforementioned
scale and computing a locally-adaptive threshold of the wavelet coefficients.

2.2.1.1 Pre-processing

Wavelet-based detection techniques are known to be robust to noises with non-
stationary distributions like Poisson noise or mixed-Poisson-Gaussian noise as in
TMA images, acquired by brightfield or fluorescence. Pre-processing operations
such as image denoising or variance stabilization transform are thus not mandatory.
However, our algorithm is primarily designed for detecting bright spots over a dark
background, and especially adapted for fluorescence images. brightfield TMA im-
ages, in which the tissue cores are darker than the background, are first inverted
before further processing.

2.2.1.2 Scale selection

Nowadays, standard TMAs are manufactured with a diameter of tissue core typically
from 0.6 to 1.5 millimeters. Given an imaging resolution (pixel size), the optimal
scale of wavelet decomposition can be determined according to the core radius. If
we denote rcore the expected average radius (in pixels) of TMA cores, the optimal
scale index ̂ of the wavelet decomposition that best fits the size of TMA cores is
defined as:

̂ = argmin
j∈N∗

�
�rcore − 2j−1σ1

�
� , (2.1)

where σ1 is selected according to the pixel size.

2.2.1.3 Fast isotropic wavelet decomposition

In contrast to multiresolution approaches, our detection method requires only the
wavelet decomposition at the appropriate selected scale. To compute the decompo-
sition at a desired scale, usual wavelet transform techniques perform a sequence of
successive convolutions which are used for computing iteratively the decomposition
from the smallest scale to the coarsest scale. These techniques are time consuming
when dealing with large images and high number of scales. Instead, to address to this
computational issue, we build a dyadic isotropic wavelet frame {ψj}j≥1 by choosing
the scaling function φj as a Gaussian function whose variance v2j is a function of
scale j ∈ {1, . . . , jmax} and jmax is the maximum index of the highest scale:

φj(x) = Gvj(x) =
1

2πvj
exp

�

−�x�22
2v2j

�

, (2.2)
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where � · �2 denotes the Euclidean norm, x ∈ Ω ⊂ R
2 is the pixel location in the

rectangular domain Ω and

v2j =

j
�

k=1

σ2
k =

j
�

k=1

4k−1σ2
1 = σ2

j + v2j−1 (2.3)

with σk = 2k−1σ1. Thanks to the semi-group property of Gaussian functions, the
relationship between the scaling functions at subsequent scales can be expressed as:

φj(x) = G√
σ2
j+v2j−1

(x) (2.4)

= Gσj
�Gvj−1

(x) = Gσj
� φj−1(x),

where � denotes the convolution operator. Therefore, the wavelet decomposition
Ψju of u : Ω ⊂ R

2 → R at the scale j ∈ {1, . . . , jmax} is obtained by convolution of
u with the wavelet atom ψj as:

Ψju(x) = ψj � u(x) = (φj−1 − φj) � u(x)

= (Gvj−1
−Gvj) � u(x),

with the conventions v20 = 0 and G0(·) = δ(·) (Dirac delta function). For more
technical details on the proposed wavelet frame and the wavelet decomposition and
reconstruction algorithms, please refer to the Appendices 2.A and 2.B.
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Figure 2.4: Wavelet atom and corresponding weighting function used for estimating
the local distribution wavelet transform of a circular spot image. From left to right : the
image of a circular spot, its wavelet atom at the appropriate scale and its corresponding weighting
function on the top row; and their radial profile on the bottom row (red dashed lines delineate the
radius of the spot).
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2.2.1.4 Locally-adaptive thresholding

While the wavelet decomposition plays the role of a filtering which reduces the noise
and enhances the objects of interest, a common way to detect objects is to threshold
the filtered image – the wavelet decomposition of the input TMA image in our case.
As depicted in [Basset et al. 2014], a global threshold is not appropriate to handle
complex situations, especially when dealing with images acquired in fluorescence
context because of their inhomogeneous background. To overcome this difficulty,
we propose to define an adaptive threshold according to the local distribution of
the wavelet decomposition Ψ̂u previously computed. Accordingly, we consider the
following statistical test at each point x of the TMA image u:

�
H0 : x belongs to the background,
H1 : x corresponds to tissue core (foreground).

Pixels corresponding to tissue cores have strong positive responses in the wavelet
decomposition. Under the null hypothesis H0, the wavelet coefficient Ψ̂u(x),
which follows the local distribution of the wavelet-decomposed-image background
with mean µ(x) and variance ν2(x), is lower than a certain value τ(x). Let
P (Ψ̂u(x) < τ(x)) be the probability for a pixel x to be classified as “background”
class. The threshold τ(x) is used to control the number of misclassification. Given
a probability of false alarm p

FA
> 0, the corresponding threshold τ

FA
is selected such

that the misclassification probability P (Ψ̂u(x) ≥ τ
FA
(x)) is lower than p

FA
. By

applying the conventional probabilistic Tchebychev’s inequality, we get, ∀κ(x) > 0:

P (|Ψ̂u(x)− µ(x)| ≥ κ(x)) ≤ ν2(x)

κ2(x)
. (2.5)

It follows that

P (Ψ̂ u(x) ≥ µ(x) + κ(x)) ≤ P (|Ψ̂ u(x)− µ(x)| ≥ κ(x)) .

Now, let us define τ
FA
(x) = µ(x) + κ(x) and assume (ν2(x)/κ2(x)) ≤ p

FA
such that

P (Ψ̂u(x) ≥ τ
FA
(x)) ≤ p

FA
. Finally,

τ
FA
(x) ≥ µ(x) +

ν(x)
√
p
FA

(2.6)

and the adaptive threshold τ
FA
(x) is controlled by the p-value p

FA
set by the user.

To determine the threshold τ
FA
(x), the local mean µ(x) and the local variance

ν2(x) of the image background on the wavelet decomposition Ψ̂u are required.
However, prior knowledge about the image background distribution is unfortunately
not available in most cases. We consider thus empirical estimations of µ and ν2 at
each point x from Ψ̂u:

µ̂(x) = g �Ψ̂u(x) , (2.7)

ν̂2(x) = g � (Ψ̂u)
2(x)− µ̂2(x) , (2.8)

where g(·) is a weighting positive function (i.e. �g(·)�1 = 1, � · �1 is the L1 norm
and g(x) ≥ 0, ∀x ∈ Ω) mainly used to avoid the estimation of the background
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distribution statistics being biased from coefficients corresponding to the foreground.
By construction, µ̂(x) and ν̂2(x) are weighted estimators derived from Ψ̂u which
is a filtered version of u by the band-pass filter ψ̂ in order to enhance the objects
of radius rcore. It is thus convenient to define the weighting function g according to
the wavelet atom ψ̂ . By using an affine transform which implies the positivity and
the normalization conditions, we propose a candidate for g(·) as follows :

ĝ(x) =
−ψ̂ (x) + supψ̂

�−ψ̂ + supψ̂ �1
, (2.9)

where supψ̂ = �ψ̂ �∞ denotes the supremum (L∞ norm) of ψ̂ and �−ψ̂ + supψ̂ �1
is the normalization factor to ensure �ĝ(·)�1 = 1. The choice of this candidate is
clarified in Fig. 2.4 showing the wavelet atom and its derived weighting function
according to a given circular spot. The proposed weighting which is constructed
from the wavelet atom has the same size of the considered spot and has a hollow
shape at the center (see right column in Fig. 2.4). This specific shape allows to
reduce the impact of high wavelet coefficients corresponding to foreground pixels on
the estimation of the background statistics.

By substituting the empirical estimators to µ(x) and ν2(x), we obtain the esti-
mated detection threshold:

τ̂
FA
(x) = µ̂(x) +

ν̂(x)
√
p
FA

. (2.10)

Thresholding the wavelet decomposition Ψ̂u with respect to τ̂
FA

results in a binary
image I

FA
: Ω → {0, 1}:

I
FA
(x) =

�
1 if Ψ̂u(x) ≥ τ

FA
(x)

0 otherwise
(2.11)

where each connected component in I
FA

represents a region which is potentially a
tissue core of the TMA image. The gravity centers of these regions (or detection
position) will be used as inputs for estimating the array coordinates of TMA cores.
However, the detection reliability has a great impact on the de-arraying outcome: few
false detections may lead to severely inaccurate results. Removing false detections
(i.e. outliers) is then crucial. To this end, the size of detected regions seems to be a
relevant criterion since the core size is given in most cases by the TMA manufacturer.
Although, due to the complexity of backgrounds, it may be highly different from
the true core size. Instead of exploiting the imprecise information derived from
the binary detection map I

FA
, we perform an active-contour-based segmentation to

delineate the objects at each detected position. Also, we re-use the segmentation
results to confirm and improve the preliminary detection results.

2.2.2 Segmentation of TMA cores

As depicted in previous section, the detection binary image I
FA

does not allow us
to accurately determine the size of detected objects. Active contours are typically
well appropriate in our context since they can evolve to closely delineate the object
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borders and thus yield an estimation of the TMA core size. The family of parametric
active contours presented below will help to refine the detected position and the size
of TMA cores and eventually to determine the orientation of the potential core if it
was deformed during the manufacturing process.

Since the seminal paper of Kass et al. (1988), active contour models (or snakes)
have been successfully used to detect discontinuities, detect objects of interest or
segment images, especially in bioimaging [Delgado-Gonzalo et al. 2015]. General
purpose closed contours are generally controlled by elastic forces based on local
curvature and image based potentials (e.g., [Kass et al. 1988; Zhu and Yuille 1996;
Chan and Vese 2001; Kervrann and Trubuil 2002]). The curve evolves from its initial
starting position towards the target object. The optimization of the underlying
energy functional is traditionally performed using variational principles and finite
differences techniques, which needs an appropriate initialization to converge to a
relevant solution. At the end of the nineties and beginning of the 2000’s, geodesic
active contours [Caselles et al. 1997] based on the theory of surfaces evolution and
geometric flows have been introduced to segment an arbitrary number of highly
complex objects in the image. In our TMA context, the 2D shapes of tissue cores
can be actually well estimated by ellipse-shaped active contours which belong to the
family of parametric deformable templates.

Application-tailored parametrized templates introduced by Yuille et al. (1992)
were proposed in cases where strong a priori knowledge about the shape being ana-
lyzed is available (e.g. eyes or lips in human faces [Yuille et al. 1992]). The models
are hand-built using simple parametrized 2D geometric representations. Another
line of research focused on models of random deformations for a given initial shape
(deformable template). Grenander et al. obtained the first promising results in im-
age segmentation by considering statistical deformable models which describe the
statistics of local deformations applied to an original template (see [Amit et al. 1991;
Grenander et al. 1991]). Markov models and Monte-Carlo techniques have been in-
troduced in this context to derive optimal random deformations estimates from
image data [Amit et al. 1991; Grenander et al. 1991; Grenander and Miller 1994;
Kervrann and Heitz 1998; Descombes 2013]. In the approach initially proposed by
Cootes et al. (1995) and successfully applied to object tracking [Kervrann and Heitz
1998], the shape structure and the parameters describing its deformations are learned
from a training set of representative shapes. Meanwhile, Staib and Duncan (1992)
proposed to combine parametric snakes (B-splines) to the standard decomposition
on a Fourier basis to analyze deformable biomedical structures. All these methods
are generally robust to noise but computationally demanding if stochastic iterative
procedures are used to conduct the minimization and no initial guess close to the
optimal solution is provided. Very recently “snakescules” [Thévenaz and Unser 2008]
combined to fast algorithms and Markov point process [Descombes 2016] have been
proposed along the same philosophy but dedicated to the detection of cells or nuclei
in fluorescence microscopy images.

Finally, the ellipse fitting concept has been furthemore introduced by Thévenaz
et al. (2011) as an extension of the simple circle-shaped active contour [Thévenaz
and Unser 2008] which can be defined just by two points. As a consequence, a
triplet of points is necessary to parametrize the ellipse-shaped version. However,



2.2. METHODOLOGY 21

Figure 2.5: Pair of concentric and coaxial ellipses. The outer ellipse Γ (red curve) has
an area twice larger than the inner ellipse Γ

� (blue curve). These ellipses determine two domains
of the same area : an elliptical outer ring (shown in light gray) and an elliptical inner core (dark
gray).

this parametrization which has an extra degree of freedom increases the complexity
of the model and makes the optimization of ellipse parameters more challenging
when compared to the circle-shaped model. To overcome these difficulties, an al-
ternative way was proposed in [Pediredla and Seelamantula 2012]: the ellipses are
configured by their center, their axes and the angle between their major axis and
the horizontal. Under this configuration, the ellipse energy (also the cost function)
which is defined as the contrast between the core and the ring delineated by the
pair of ellipses (see Fig. 2.5), and the derivatives of the energy with respect to the
ellipse parameters could be calculated efficiently by using the Green’s theorem [Staib
and Duncan 1992]. Nevertheless, the Green’s theorem cannot be applied with no
error in the discrete setting and digitized images. In order to handle properly the
ellipse parametrization described in [Pediredla and Seelamantula 2012] instead of
[Thévenaz et al. 2011] in the discrete setting, we propose a pixel-based smooth ap-
proximation of the underlying cost energy functional. Our approximation allows us
to calculate properly the derivatives of the cost function with respect to the ellipse
parameters and is not based on the Green’s theorem also used in [Staib and Duncan
1992] for energy minimization.

2.2.2.1 Definition of the ellipse-based energy

More formally, let Γ be the outer ellipse with parameters {x0, a, b, θ} where x0 =
(x0, y0) is the center, a and b are the semi major and minor axes respectively, and θ is
the angle of rotation. The inner ellipse Γ� is defined as a concentric and coaxial ellipse
of Γ such the latter has an area (denoted |Γ|) twice larger than the former: |Γ| = 2|Γ�|
(see Fig. 2.5). The factor 2 ensures that the area of the elliptical outer ring is equal
to the area of the elliptical inner core. Let us consider a rectangular image patch P
containing a potential TMA core associated to a connected component estimated by
the detection method in the early stage. The ellipse energy is defined as a normalized
image contrast between the two domains Γ

� ⊂ Γ ⊂ P where P is a rectangular
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domain in the image domain Ω which contains a single TMA core [O’Sullivan and
Qian 1994; Thévenaz et al. 2011]:

J(u,Γ) =
1

ab

��

Γ\Γ�

u(x) dx−
�

Γ�

u(x) dx

�

(2.12)

=
1

ab

��

Γ

u(x) dx− 2

�

Γ�

u(x) dx

�

.

To handle discrete images, the continuous image u defined in (2.12) can be replaced
by its sampled version as follows:

J(u,Γ)=
1

ab

�

x∈P∩Z2

(1Γ[x]− 2 1Γ� [x])u[x] , (2.13)

where u[x] is the discrete sample of u(x) and 1[·] denotes the set indicator function
such as 1Γ[x] = 1 if x ∈ Γ and 0 otherwise. However, there are two major draw-
backs while considering this energy function. Firstly, the calculation of the energy
gradient is not trivial in the discrete setting since the indicator functions in (2.13)
are piecewise constant which are not differentiable at some points. Secondly, due to
sampling effect, brutal switch of the membership of some points from a domain to
another may happen just with an infinitesimal change in the ellipse parameters, giv-
ing rise to severe numerical instabilities. Smooth approximations of the underlying
piecewise constant functions is recommended to overcome both discontinuity and
sampling problems. The calculations of partial derivatives of the energy functional
is facilitated if we can define a fuzzy membership to avoid abrupt domain switches
(see Fig. 2.8a and 2.8b). Our goal is then to build an approximation which favors
the computation of the partial derivative of the energy with respect to each ellipse
parameter as much as possible. First, we consider the following quadratic form:

�x�2
Γ
=

�
�
�
�

�
a−1 0
0 b−1

� �
cos θ sin θ
− sin θ cos θ

�

x

�
�
�
�

2

2

. (2.14)

For a given point x, �x− x0�Γ is a normalized metric between x and the ellipse
center x0 induced by the geometry of the ellipse Γ. A pixel x belongs to the interior of
the ellipse Γ if and only if �x− x0�2Γ ≤ 1 since �x−x0�2Γ is always positive. The term
1Γ[x] can be then expressed by a function of �x− x0�Γ as 1Γ[x] = 1]−∞,1][�x−x0�2Γ].
Moreover, we need to find a smooth function which closely approximates 1]−∞,1] as
investigated in [Chan and Vese 2001; Thévenaz et al. 2011] and has simple derivative.
We realized that the graph of 1]−∞,1] looks similar to the C∞ S-shaped logistic curve
whose the derivative is easy to compute. Let us consider therefore the following
logistic function:

S�(t) =
1

1 + e
t−1
�

−→
�→0

1]−∞,1](t), (2.15)

where � > 0 controls the steepness of the curve (see the plot of t �−→ S�(t) in Fig.
2.6 for several values of �). The smaller �, the closer the curve S� approaches the
graph of the indicator function 1]−∞,1]. Thanks to the property of logistic functions,
the derivative of S� can be easily computed as S �

�(t)=−�−1S�(t) (1− S�(t)).
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Figure 2.6: Approximation of the indicator function by logistic curves. The smaller �,
the closer the S-shaped curve S� approaches the graph of 1]−∞,1].
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Figure 2.7: The weights w�. w�

�

�x− x0�2Γ
�

approximates 1Γ[x]− 2 1Γ� [x] whose the radial

profile is represented by the graph of the step function t �−→ 1]−∞, 1](t)− 2 1]−∞, 0.5](t).

Finally, the energy functional has the following form [Thévenaz et al. 2011]:

J(u,Γ) =
1

ab

�

x∈P∩Z2

w�(�x− x0�2Γ)u[x] , (2.16)

with w�(t) = S�(t)− 2S�(2t) =
1

1 + e
t−1
�

− 2

1 + e
2t−1

�

. For illustration, we present in

Fig. 2.7 the plot of w� whose the term w�(�x− x0�2Γ) is nothing else than a smooth
approximation of the piecewise constant function x0 �−→ 1Γ[x] − 2 1Γ� [x]. These
weights are very similar to those described in [Chan and Vese 2001] and based on
the arctan function.



24 CHAPTER 2. TISSUE MICROARRAY DE-ARRAYING

(a) (b) (c)

Figure 2.8: Inner and outer domain membership under discrete setting. Points in
the inner core are marked by dark gray squares and those in the outer ring are marked by lighter
gray squares. From left to right : (a) abrupt domain switch for points in the neighbor of ellipse
boundaries (red and blue curves); (b) fuzzy membership with transition zones (marked by purple
squares); and (c) first order derivative of the function w� (zero values are shown in gray).

2.2.2.2 Calculation of partial derivatives

By applying the derivation rules of composite functions, the partial derivatives of
the energy with respect to each ellipse parameter {x0, a, b, θ} are given by:
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(2.17)

where w�
�(t) =

4S�(2t) (1− S�(2t))− S�(t) (1− S�(t))

�

=
1

�
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�
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�
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�

�2




 ,

and the calculation of partial derivatives of �x− x0�2Γ are detailed in the Appendix
2.C. As depicted in Fig. 2.8c, for a given parametrization {x0, a, b, θ}, the term
w�

� (�x− x0�2Γ) vanishes for most of points x. Thus, the computation of the partial
derivatives J(u,Γ) takes account only few points near the ellipse boundaries where
w�

� (�.− x0�2Γ) is non-zero. Our smooth approximation which is adapted for discrete
images produces similar expressions of the partial derivatives of the ellipse energy
when comparing with those described in [Pediredla and Seelamantula 2012] for con-
tinuous images. It can be viewed as the expression of the Green’s theorem in the
discrete setting and an alternative to the optimization presented in [Grenander and
Miller 1994].
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2.2.2.3 Multi-ellipse segmentation for multi-tissue core analysis

Let {cn}1≤n≤N be the centroids of the connected components of the binary detection
map I

FA
. In the original image u, we extract a rectangular patch Pn centered at cn

with a radius ρ larger than the given tissue core radius rcore (for example, ρ = 2rcore).
Let us define

Πρ,cnu = {u[x], �x− cn�∞ ≤ ρ} , (2.18)

where x = (x, y) ∈ Pn, �x�∞ = sup(|x|, |y|) and Πρ,cn · denotes the patch extraction
operator with center cn and radius ρ. In order to perform a multi-object segmenta-
tion, we consider the following multi-ellipse optimization problem:

argmin
Γ1,...,ΓN

N�

n=1

�

1

anbn

�

x

w�

�

�x− xn
0�2Γn

�

Πρ,cnu[x]

�

(2.19)

subject to (Γ1,Γ2, . . . ,ΓN) ∈ Υ ,

where {x0,n, an, bn, θn} are the parameters of the ellipse Γn and Υ is a set of con-
straints to ensure the ellipses fall into an acceptable range of configurations. In
practice, we typically set

Υ =
�
�x0,n − x0,n��2 > ρ; �x0,n − cn�∞ ≤ ρmax;

rmin ≤ an, bn ≤ rmax; θmin ≤ θn ≤ θmax

�

1≤n,n�≤N
,

for some predefined values ρmax, rmin, rmax, θmin, θmax set according to the extracted
patch positions and the allowed sizes and orientations of tissue cores. The constraint
�x0,n − x0,n��2 > ρ which prevents the distance between two ellipse centers being too
close helps to avoid the overlapping of segmented tissue cores. In what follows, we
denote J (u,Γ1, . . . ,Γn) the global cost function associated with the optimization
problem (2.19).

By construction, the function J (u,Γ1, . . . ,Γn) is differentiable with respect to
(Γ1, . . . ,ΓN). The common way to minimize J (u,Γ1, . . . ,Γn) under the constraint
set Υ is to use a gradient method whose performance depends on how efficient is the
computation of the gradient of J (u,Γ1, . . . ,Γn). Since J (u,Γ1, . . . ,Γn) is a linear
combination of separable functions, therefore, the gradient can be simply obtained
as:

∇J (u,Γ1, . . . ,Γn) =






∇J(Πρ,c1u,Γ1)
...

∇J(Πρ,cNu,ΓN)




 , (2.20)

where

J(Πρ,cnu,Γn) =
1

anbn

�

x∈Γn

w�

�

�x− xn
0�2Γn

�

Πρ,cnu[x]

and the expressions of its partial derivatives are given in (2.17).
The result of the multi-ellipse optimization problem (2.19) is a set of ellipses

{Γn}1≤n≤N which fits the objects located in the regions of interest {Πρ,cnu}1≤n≤N .
Furthermore, given the major axes of these ellipses and the TMA core radius rcore,
we discard the tiny, giant and flattened ellipses and we keep those which are most
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similar to the expected tissue cores. The center of the selected ellipse allows us to
determine the position of the recognized TMA core. This reference position will be
used to determine the array coordinates of the corresponding tissue core. In the
following, we denote X0 = {x0,n}n∈{1,...,N} as the set of centers of the N reliable and
selected ellipses.

2.2.3 Estimation of array coordinate and TMA core positions

An ideal TMA is the one which has tissue cores perfectly aligned in both horizontal
and vertical directions and equally spaced according to a regular square grid. The
array coordinate p = (k, l) ∈ Z

2 of a core can be simply obtained by drawing
two orthogonal lines crossed at the considered core position. However, due to the
deformation of the design TMA grid, the lines passing through tissue cores and their
nearest neighbors may be slightly inclined with respect to the horizontal or vertical
axes. Moreover, the direction of these lines may have a large spectrum of variations
which makes more challenging the tracking of tissue cores over a given direction. To
deal with this deformation, existing TMA de-arraying methods use usually distance-
and-angle-based criteria for the purpose of defining the neighborhood of TMA cores.
Although this approach estimates robustly the average core-to-core distance and the
two principal directions of the deformed core grid, it may fail for some well-detected
cores whose the position is strongly distorted with respect to their neighbors. In
order to avoid this failure, we introduce an algorithm for estimating iteratively the
deformation of the TMA grid in a way that the grid which is warped by the estimated
deformation at an iteration gets closer to the observed TMA grid. To this end, we
assume that the deformation of the TMA grid can be decomposed by linear and non-
linear parts. Under this assumption, we estimate the linear part of the deformation
by defining an oblique grid (affine warping) which is derived from the detected core
positions as the initialization of the warped grid (see Fig. 2.9). The latter is used
to find nearby cores that will be taken into account to compute an estimator of the
grid deformation by using the thin-plate interpolation [Bookstein 1989] if we do an
analogy with material deformation.

2.2.3.1 Estimation of the linear deformation

Our goal is to approximate the distorted TMA grid Λ (which is observed partially
with the set of point X0) by an oblique grid Λ0 which minimizes the distance between
them in the way that the deformation of the grid is approximated by a 2D affine
transform. For this purpose, we consider the set C0 of core pairs whose each pair
(x0,n,x0,n�) is formed by an element of X0 and one of its four nearest neighbors with
respect to the Euclidean distance

C0 = {(x0,n,x0,n�) ∈ X0 ×X0, x0,n� ∈ N (x0,n)} ,

where N (x0,n) denotes the 4-neighborhood of x0,n. To estimate the average core-to-
core distance d̄cc , we compute the trimmed mean (denoted TM) of the length of the
segment defined by the pair (x0,n,x0,n�) of C0 by discarding the most extreme values
(typically 30%):

d̄ = TM30% {�x0,n − x0,n��2}(x0,n,x0,n� )∈C0 . (2.21)
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sin ᾱ
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cos β̄
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Figure 2.9: Affine approximation of the grid deformation. The distorted grid Λ which
one only observe partially the set of point X0 ⊂ Λ (shown in blue crosses) is approximated by the
oblique (regular) grid Λ0 (black circled dots). The latter is characterized by the average distance
d̄ between its points, two principal directions which are presented by two vectors (e1, e2) (red
arrows), and the global translation t̂ (green arrow) of the grid with respect to the origin (0, 0)
(gray square dot).

Let ang(x0,n,x0,n�) be the angle between the line passing through (x0,n,x0,n�) and
the horizontal axis such that −0.25π ≤ ang(x0,n,x0,n�) ≤ 0.75π. By analogy, we
define the two principal angles of the deformed TMA grid as follows:

ᾱ = TM30%

�

ang(x0,n,x0,n�) ≤ π

4

�

,

β̄ = TM30%

�

ang(x0,n,x0,n�) ≥ π

4

�

.

Finally, we denote t̂ as the global translation of the distorted TMA grid with re-
spect to the origin that minimizes the distance between the set X0 and the linearly-
estimated grid Λ0

t̂ = argmin
t

N�

n=1

min
p∈Z2

�t+ F(p)− x0,n�22 (2.22)

where F maps each array coordinates p ∈ Z
2 to a position of Λ0 corrected by t̂ and

F(p) = d̄

�
cos ᾱ cos β̄
sin ᾱ sin β̄

�

� �� �

Mᾱ,β̄

p . (2.23)

Note that Mᾱ,β̄ is a change-of-basis matrix of unit column vectors and d̄ is a scaling
factor which transforms array coordinates (elements of Z2) to real spatial positions
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Λ
⋆

D
(m)

Λ
(m)

Figure 2.10: Correspondence between the ideal grid and the observed distorted grid.
At an iteration m, the estimated deformation D(m) maps each point y�

p of the ideal square grid Λ
�

(shown in square dots on the left) onto a point y
(m)
p = D(m)(y

(m)
p ) in the warped grid Λ

(m) (circled
dots on the right) which manages to fit the observed set of points X0 (blue crosses). A position

x0,n ∈ X0 is associated to a position y�

p if x0,n is located within a radius δ from y
(m)
p (blue dotted

circles). Associated positions are marked in red.

(in Ω ⊂ R
2). The resulting oblique grid is parametrized with four parameters

{d̄, ᾱ, β̄, t̂} and represents the affine part of the grid deformation. We thus arrive at
the affine mapping function: A(p) = t̂+F(p) ∈ Λ0. The oblique grid Λ0 will serve
as initialization to estimate of the non-linear deformation of the grid. Figure 2.9
illustrates an example showing the oblique grid obtained from a given set of points
as well as its estimated parameters.

2.2.3.2 Thin-plate-based estimation of the deformation

Let Λ
� be the ideal design TMA grid with (0, 0) as origin and d the ideal distance

between two neighboring cores along the horizontal and vertical axes. The mapping
is then defined as:

y�
p = dp ∈ Λ

�, ∀p ∈ Z
2.

The deformation D maps each point y�
p ∈ Λ

� onto a point yp = D(y�
p) in the

distorted grid Λ. In order to estimate the deformation D at all points of the
grid Λ

�, we aim at approximating this set from the observed set X0 = {x0,n}
by using the thin-plate splines as an interpolant. Indeed, given a set of points
D−1X0 = {D−1 (x0,n)}n∈{1,...,N}, the coefficients of the interpolating thin-plate splines
are the minimizers of a quadratic function which is the first approximation of the
bending energy of the mapping from D−1X0 to the set of target points X0 (see
[Bookstein 1989]). Nevertheless, unlike the usual framework [Bookstein 1989], the
correspondence between the two sets of points is not established, that is D−1X0 is
unknown. Instead of investigating a matching method to determine D−1X0, we pro-
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pose to build a sequence of grids {Λ(m)}m≥0 which evolves iteratively to fit X0. We
initialize this sequence with the oblique grid Λ

(0) = Λ0 previously computed. The
linear approximation of D is then as follows:

y(0)
p = D(0)(y�

p) (2.24)

= t̂+
d̄

d

�
cos ᾱ cos β̄
sin ᾱ sin β̄

�

p.

At iteration m, a core position x0,n ∈ X0 is associated to a position y�
p if the

former is located within a radius δ from y
(m)
p = D(m)(y�

p). Pairs of associated
positions establish therefore the correspondence between the ideal grid Λ

� and the
set of observed point X0. We also note that all the positions of Λ� do not have a
corresponding position in X0 as shown in Fig. 2.10 mainly because the cardinality
of sets are not the same. Let P (m) be the set of pairs of associated positions:

P (m) =
��

x0,n,y
�
p

�
, �D(m)(y�

p)− x0,n�2 ≤ δ
�
. (2.25)

Assume that N (m) is the number of elements of P (m). The objective is to estimate
the deformation D(m) from the set of N (m) associated pairs (x0,n,y

�
p). According to

[Bookstein 1989], we define the Gram’s matrix
�

K
(m)
n,n�

�

1≤n,n�≤N(m)
as follows:

K
(m)
n,n� = �x0,n − x0,n��22 log �x0,n − x0,n��22 , (2.26)

and the additional matrices as:

Y(m) =

�
1 1 . . . 1
yp1 yp2 . . . yp

N(m)

�

, (2.27)

L(m) =

�
K(m) Y(m)

Y(m)� 0

�

, (2.28)

X(m) =
�
x0,1 x0,2 . . . x0,N(m) 0 0 0

�
, (2.29)

W(m) =
��

L(m)
�−1�

X(m)
����

, (2.30)

with W(m) = (w
(m)
1 ,w

(m)
2 , . . . ,w

(m)

N(m))
�. By using the entries of the matrix W(m),

the estimator of the deformation D and of the grid Λ at the next iteration m + 1
are therefore defined as:

y(m+1)
p = w

(m)

N(m)+1
+
�

w
(m)

N(m)+2

�
�
� w

(m)

N(m)+3

�

y�
p+

N(m)
�

n=1

w(m)
n (�x0,n−y�

p�22 log �x0,n−y�
p�22) .

(2.31)
This iterative scheme will be stopped at the iteration m∗ = m if there are no change
between Λ

(m) and Λ
(m+1). At convergence, the row and column coordinates of a

detected cores of position x0,n ∈ X0 is simply given by:

p̂ = argmin
p∈Z2

�x0,n −D(m∗)(y�
p)�22 . (2.32)
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Moreover, since the grid Λ
(m∗) is an estimator of the deformed TMA grid Λ which

is partially observed in X0, it can be used as approximated positions to recognize
tissue cores which are missed during detection and segmentation processes. Indeed,
to refine de-arraying result, we perform another multi-ellipse optimization at the
position of remaining nodes of the grid Λ

(m∗). If there are ellipses that meet the size
and the roundness criteria of standard cores, we add them to the list of detected
core position and adjust the coefficients of the thin-plate splines according to the
new list. An example of TMA de-arraying is depicted in Fig. 2.14 showing the gain
of our method in term of tissue core detection.

2.3 Results and discussion

2.3.1 Description of datasets

To evaluate our de-arraying ATMAD approach, we selected a number of DNA mi-
croarray and tissue microarray images including those which are artificially simulated
and those which are acquired in both bright field and fluorescence modes. The se-
lected images were collected from various sources and can be classified into three
data sets.

The first set is a collection of binary images generated by Wang et al. (2011)
as pseudo TMA slides. This data set was artificially created by taking account
of different possible situations occurring during the TMA manufacturing pro-
cess, including rotations and stretches of the design grid as well as irregularities
in the size and the shape of tissue cores. The average core radius is approxi-
mately rcore = 15 pixels for all images. The whole set of all these simulated im-
ages and ground truths can be freely downloaded at https://get.google.com/

albumarchive/117531880452844036890.
The second data set is composed of color TMA images from the AIDS and

Cancer Specimen Resource (ACSR) Digital Library of the University of California
San Francisco (http://acsr.ucsf.edu). This online library – managed and visual-
ized by Aperio’s WebScope software – contains several hundreds of tissue specimens
which are mostly stained with H&E (Hematoxylin and Eosin) stain and are imaged
by bright field microscopy technique. For this experiment, we considered down-
sampled version (with the magnification between 0.4X and 0.6X) of the original
images hosted on ACSR’s server in order to reduce the processing time. The con-
sidered resolutions correspond to images of approximately 1000 × 1000 pixels, on
which the TMA cores have radius of only a few dozen pixels but it is sufficient for
our approach to localize them.

The third set for the evaluation includes fluorescence high-dynamic-range (HDR)
images showing DNA microarray and tissue microarray slides. Provided by the
courtesy of Innopsys company, these HDR images which were saved in 16-bit-TIFF
format were acquired using a scanner called InnoScan 1100 AL2. The latter which is
equipped with three excitation lasers (488 nm, 532 nm and 625 nm compatible with

2 see https://www.innopsys.com/en/lifesciences-products/microarrays/innoscan/

innoscan-1100-al for more details.
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cyanine dyes such as Cy2, Cy3 and Cy5 respectively). It can perform simultaneously
the acquisition on each excitation channel and provides up to three color fluorescence
images. The maximal scan area supported by the mentioned device is 22 × 74
mm2 corresponding to the size of typical microscopy slides used in most biological
laboratories nowadays. For the same reason with ACSR’s images, we selected typical
images acquired by this Innopsys’s scanner with spatial resolutions varying in a
range from 10 to 40 µm per pixel in this experiment instead of using those with
higher resolution (up to 0.5 µm per pixel or a 20X magnification equivalently).
Indeed, considering such images of low resolution and small size as input data not
only enables efficient and low-memory-requirement processing but also requires very
short scanning time – less than just five minutes with a resolution of 10 µm per
pixel when compared with typically several hours of acquisition at sub-micrometer
resolutions.

Regarding the complexity of the datasets, it contains difficult cases such as irregu-
lar and non-rounded shapes, fragmented cores as well as low contrasts between image
background and foreground. Sophisticated array design with incomplete (missing
cores) rows and columns is also present in the image set for the purpose of testing
the robustness of our de-arraying approach (see Figs. 2.11-2.14).

2.3.2 Experimental results and algorithm evaluation

For the first and second data sets which contain images with dark spots and bright
background, we performed first a color inversion before further processing. The
de-arraying procedure was directly applied on binary and grayscale images. Multi-
channel color images as in the case of ACSR’s data require a conversion to grayscale
such as a simple average over all channels which we used in these experiments.

In order to evaluate the performance of our ATMAD algorithm, we analyzed the
obtained results by considering two criteria: (i) the rate of samples which are suc-
cessfully localized and (ii) the rate of samples whose array coordinates are correctly
estimated. To that end, the de-arraying ATMAD outcome was compared with the
ground-truth provided by the simulated dataset or by manual annotation of real-
world TMA images. The comparative similarity between the de-arraying results
and ground-truths (simulation, annotation) is quantitatively measured by these six
following metrics:

• Accuracy: A =
TP+TN

TP+TN+FP+FN
,

• Precision: P =
TP

TP+FP
,

• Recall (sensitivity): R =
TP

TP+FN
,

• F-score: F = 2
PR

P+R
,
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Ellipse-based Non-linear
segmentation registration

Option 1 – –
Option 2 � –
Option 3 – �
Option 4 � �

Table 2.1: Workflow options corresponding to the selection (activation/deactivation) of ellipse-
based segmentation and non-linear registration modules.

• G-score: G =
√
PR,

• Jaccard coefficient: JSC =
TP

TP+FP+FN
.

“True Positive” (TP) denotes the number of true tissue samples (cores) which are
correctly localized, or those whose array coordinates are correctly estimated. “False
Negative” (FN) denotes the number of true cores which are not successfully localized
(due to non detection or failed segmentation), or those whose array coordinates are
not estimated. “False Positive” (FP) denotes the number of cores which are wrongly
localized (due to false detection), or those whose array coordinates are wrongly
estimated. “True Negative” (TN) denotes the number of “empty” spot positions (no
core is placed) where no core is wrongly localized.

To better appreciate the impact of the components (or modules) of our de-
arraying approach, the performance was evaluated under four different setting op-
tions (see also Table 2.1):
Option 1: deactivation of ellipse-based segmentation and non-linear registration

modules,
Option 2: activation of ellipse-based segmentation module and deactivation of

non-linear registration module,
Option 3: deactivation of ellipse-based segmentation module and activation of

non-linear registration module,
Option 4: activation of ellipse-based segmentation and non-linear registration

modules.
When the ellipse-based segmentation module is deactivated, the spot localization is
performed only with the wavelet-based detection method. Consequently, the process
of removal of unreliable detected cores based on the size and the shape criteria is
then disable, and the refinement of de-arraying result using estimated positions of
the deformed TMA grid can not be performed. Meanwhile, the deactivation of the
non-linear registration module implies that the grid deformation is assumed to be
approximated by an affine (linear) transform. It could result in a non-coincidence
between core positions and estimated positions of the deformed grid for most of
cores. A distance-based matching is thus necessary to establish the correspondence
of each core position and its array coordinates. To allow a step-by-step evaluation
of the performance, besides the final de-arraying result, intermediary results of the
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Localization Estimation of
array coordinates

A(a) P(b) R(c) F(d) G(e) JSC(f) A(a) P(b) R(c) F(d) G(e) JSC(f)

Simulated
Average on 31 images

Wang et al. Wang et al. (2011) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ATMAD Opt. 1 1 1 1 1 1 1 0.93 1 0.93 0.96 0.96 0.93
ATMAD Opt. 2 0.95 1 0.95 0.98 0.98 0.95 0.85 1 0.84 0.91 0.91 0.84
ATMAD Opt. 3 1 1 1 1 1 1 1 1 1 1 1 1
ATMAD Opt. 4 0.95 1 0.95 0.98 0.98 0.95 0.95 1 0.95 0.98 0.98 0.95

Fig. 2.11a
ATMAD Opt. 1 1 1 1 1 1 1 1 1 1 1 1 1
ATMAD Opt. 2 0.97 1 0.96 0.98 0.98 0.96 0.97 1 0.96 0.98 0.98 0.96
ATMAD Opt. 3 1 1 1 1 1 1 1 1 1 1 1 1
ATMAD Opt. 4 0.97 1 0.96 0.98 0.98 0.96 0.97 1 0.96 0.98 0.98 0.96

Fig. 2.11b
ATMAD Opt. 1 1 1 1 1 1 1 0.93 1 0.92 0.96 0.96 0.92
ATMAD Opt. 2 0.93 1 0.92 0.96 0.96 0.92 0.90 1 0.89 0.94 0.95 0.89
ATMAD Opt. 3 1 1 1 1 1 1 1 1 1 1 1 1
ATMAD Opt. 4 0.93 1 0.92 0.96 0.96 0.92 0.93 1 0.92 0.96 0.96 0.92

Brightfield
Average on 8 images

ATMAD Opt. 1 0.94 1 0.93 0.96 0.96 0.93 0.91 1 0.88 0.94 0.94 0.88
ATMAD Opt. 2 0.87 1 0.83 0.91 0.91 0.83 0.84 1 0.79 0.88 0.89 0.79
ATMAD Opt. 3 0.94 1 0.93 0.96 0.96 0.93 0.94 1 0.93 0.96 0.96 0.93
ATMAD Opt. 4 0.87 1 0.83 0.91 0.91 0.83 0.93 1 0.91 0.95 0.95 0.91

Fig. 2.12
ATMAD Opt. 1 0.96 1 0.94 0.97 0.97 0.94 0.91 1 0.89 0.94 0.94 0.89
ATMAD Opt. 2 0.87 1 0.83 0.91 0.91 0.83 0.84 1 0.80 0.89 0.89 0.80
ATMAD Opt. 3 0.96 1 0.94 0.97 0.97 0.94 0.96 1 0.94 0.97 0.97 0.94
ATMAD Opt. 4 0.87 1 0.83 0.91 0.91 0.83 0.93 1 0.91 0.95 0.95 0.91

Fluorescence
Average on 8 DNA microarray images

ATMAD Opt. 1 1 1 1 1 1 1 1 1 1 1 1 1
ATMAD Opt. 2 1 1 1 1 1 1 1 1 1 1 1 1
ATMAD Opt. 3 1 1 1 1 1 1 1 1 1 1 1 1
ATMAD Opt. 4 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 2.13
ATMAD Opt. 1 1 1 1 1 1 1 1 1 1 1 1 1
ATMAD Opt. 2 1 1 1 1 1 1 1 1 1 1 1 1
ATMAD Opt. 3 1 1 1 1 1 1 1 1 1 1 1 1
ATMAD Opt. 4 1 1 1 1 1 1 1 1 1 1 1 1

Average on 4 TMA images

ATMAD Opt. 1 0.79 0.77 1 0.87 0.88 0.77 0.92 0.98 0.93 0.95 0.95 0.91
ATMAD Opt. 2 0.91 0.99 0.90 0.94 0.95 0.89 0.73 1 0.69 0.82 0.83 0.69
ATMAD Opt. 3 0.79 0.77 1 0.87 0.88 0.77 - - - - - -
ATMAD Opt. 4 0.91 0.99 0.90 0.94 0.95 0.89 0.92 0.98 0.93 0.96 0.96 0.91

Fig. 2.14
ATMAD Opt. 1 0.88 0.86 1 0.93 0.93 0.86 0.94 1 0.94 0.97 0.97 0.94
ATMAD Opt. 2 0.86 1 0.84 0.91 0.92 0.84 0.80 1 0.77 0.87 0.88 0.77
ATMAD Opt. 3 0.88 0.86 1 0.93 0.93 0.86 0.97 1 0.97 0.98 0.98 0.97
ATMAD Opt. 4 0.86 1 0.84 0.91 0.92 0.84 1 1 1 1 1 1

Table 2.2: Performance of the proposed de-arraying method on three datasets under four setting
options: (1) both the segmentation and the non-linear estimation (for the deformation) modules
are deactivated, (2) the segmentation is activated but the non-linear estimation is deactivated, (3)
the segmentation is deactivated and the non-linear estimation is activated, and (4) both of them
are activated. All considered performance scores range from 0 (worst) to 1 (best) and measure
the similarity between the de-arraying results and their corresponding ground-truth or manual
annotation. Notations: (a) accuracy (A), (b) precision (P), (c) recall (R), (d) F-score (F), (e) G-
score (G) and (f) Jaccard coefficient (JSC).
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de-arraying procedure were also carefully analyzed.
For a comparative evaluation, we also provide de-arraying results on simulated

images (which are generated using the deformation model described in [Wang et al.
2011]) obtained with the method of Wang et al. (2011) – the state-of-the-art method
for TMA brightfield image de-arraying, and compare these results to those obtained
with the proposed ATMAD method. Unfortunately, it was not possible to apply
the method Wang et al. (2011) on real-world images since the software and code
are not available. In Table 2.2, the average performance obtained on each dataset
as well as on each example is shown in Figs. 2.11-2.14. We notice that, except the
precision and recall scores which are not in agreement in certain cases, the Accuracy,
F-score, G-score and Jaccard metrics yield consistent results about the effectiveness
of the de-arraying method. Accordingly, we will focus on the F-score metric in the
next sections for the sake of simplicity. The results with all the metrics are reported
in Table 2.2.

2.3.3 Simulated images

We evaluated our ATMAD method applied to the Wang’s dataset and we compared
the results with those obtained with the method described in [Wang et al. 2011].
An example of de-arraying result with different levels of deformation is illustrated
in Fig. 2.11. The top row shows the original images. The two middle rows show the
de-arraying outcomes obtained with deactivation and activation of the segmenta-
tion respectively (the non-linear estimation for the deformation is activated in both
cases). These two cases correspond to the setting option 3 and 4 respectively, as
reported in Table 2.2. The recognized spot positions are marked by green boxes and
correctly aligned in a array to facilitate localization and identification. The bottom
row of Fig. 2.11 shows the ground-truth provided by the authors of the dataset.

As expected, in the case of simulated images when the background is constant,
our method provided a perfect F-score = 1 (corresponding to an accuracy of 100%)
in average with the Option 3 even if the localization of spots is only performed with
the wavelet-based detection method. On the second row of Fig. 2.11 showing the de-
arraying results obtained on two typical examples with the deactivation of the ellipse-
based segmentation method, we notice that all the spots are successfully recognized
and the array coordinates are correctly estimated. The results are similar to those
obtained with the method of Wang et al. (2011) (for more details, see Table 2.2).
Meanwhile, the de-arraying results obtained with the Option 4 achieved a slightly
lower F-score F = 0.98 (corresponding to an accuracy of 95%) in average. This score
is a direct consequence of the fact that all existing spots were not recognized by the
spot localizer due to segmentation failure or elimination, as depicted in Figs. 2.11e
and 2.11f in which too small, too large and too elongated spots were not taken into
account in the final de-arraying result. This behavior is confirmed by a lower Recall
value which measures the sensitivity of the method (R = 0.95 in average compared
with the perfect score R = 1 obtained with the Option 3). Although, despite a
smaller number of correct spot positions, the estimation of the array coordinate
yielded exact results for successfully recognized spots (Precision value P = 1 in
average) comparing with the ground-truth. In terms of deformation estimation,
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(a)

(c)

(g)

(e)

(b)

(d)

(h)

(f)

Figure 2.11: Example of de-arraying on simulated images. From left to right: TMAs
with the grid deformation varying from low to high. From top to bottom: original images, de-
arraying result by the proposed method with segmentation module deactivated/activated, ground
truth given by Dr Jinhai Wang. The obtained de-arraying results are presented in array form with
recognized spot positions marked by green boxes.

the estimated potential spot positions provided by the de-arraying with two setting
options are almost identical. It thus allows us to localize spots which were not
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recognized and demonstrates the robustness of our method for estimating the grid
deformation.

Regarding the two remaining options (not illustrated in Fig. 2.11), when both
the segmentation and non-linear estimation modules are deactivated (Option 1),
ATMAD produced surprisingly decent de-arraying results with a F-score = 0.96
in average on this set of simulated images (see Table 2.2). This score which is
slightly lower than those obtained with Option 4 is possibly contributed by the
monotone and non-oscillating nature of the deformation model used to generate
those test images, as described in [Wang et al. 2011] and illustrated in Figs. 2.11a
and 2.11b. Meanwhile, the combination of the segmentation activated and the non-
linear estimation deactivated (Option 2) yielded sharply inferior results. The F-score
in average is barely 0.91 (corresponding to an accuracy level of 84%). It is mainly
due to lower rate of correctly localized spots, implying less precise linear estimation
for the deformation.

Moreover, we point out that when there is no false positive (i.e. FP = 0 implies
P = 1), the Jaccard similarity coefficient (JSC) coincides with the Recall (R) value.
This explains why we have obtained the same values for these two performance
measures on this set of simulated images. We also observe similar behaviors in some
cases on brightfield and fluorescence images when the method tends to eliminate all
false detections during the localization step.

2.3.4 Bright field images

We have noticed that in the previous experiments with simulated data, our wavelet-
based detection algorithm was able to localize all spots on images with constant
background. In the case of brightfield TMA images whose background is not constant
but generally homogeneous, this approach might still be efficient for spot localization
since the situation is much more simpler than in fluorescence imaging. In this
section, we focus on the evaluation of ATMAD applied to the ACRS dataset with the
options 3 and 4 (see Table 2.1) to assess the impact of the ellipse-based segmentation
algorithm. In Fig. 2.12, the de-arraying result with these two setting options on
a H&E stained TMA image containing irregularities in the shape of tissue cores is
illustrated. The original input image shown in Fig. 2.12a is the slide cut #9 of the
TMA whose the ID is 550-T0011-01 on ACSR’s database. The de-arraying results
obtained with the option 3 and 4 are depicted in Fig. 2.12c and 2.12d respectively.
To evaluate the accuracy of these results, we consider in Fig. 2.12b a reference de-
arraying obtained by manual annotation. The latter is presented in the same format
(i.e. an array representation) as those of the automated de-arraying outcomes to
facilitate comparison.

Comparing with an accuracy of 100% obtained on simulated data, localization
only based the wavelet method achieved in average approximately 94% of existing
TMA cores on ACSR’s data (corresponding to a F-score = 0.96 in average). Indeed,
it failed generally to recognize cores with inner hole or cores which are split into parts
(see Fig. 2.12c) since the shape of these cores implies that the wavelet coefficients
at their position are lower than the detection threshold – resulting to non detection.
Activating the segmentation module does not improve successful recognition rate
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(a) (b)

(c) (d)

Figure 2.12: Example of de-arraying on bright field TMA image. (a) Original image
: H&E stained TMA on ACSR’s database with ID 550-T0011-01. (b) Manual annotation used
for comparison with de-arraying results. (c)-(d) De-arraying results obtained with the deactiva-
tion/activation of the segmentation module (Option 3 and 4 respectively). These results and the
manual annotation are represented in array format with recognized cores marked by green boxes.

of the localization step due to the use of detected core position for initializing the
ellipse fitting. In our interest, the main role of this module in the localization step is
to measure the size and the roundness of detected objects in order to eliminate false
detection and to provide reliable input for the estimation of the grid deformation.
For this reason, only about 87% of existing cores were correctly recognized during the
localization step (corresponding to F-score = 0.91 in average) with the combination
of the detection and the segmentation modules due to the segmentation failure and
the elimination of outliers. In spite of the difference between the localization results
obtained with the deactivation/activation of the segmentation module, the non-
linear estimation of the grid deformation using these results however yielded similar
de-arraying outcomes as illustrated in Fig. 2.12c and 2.12d. The overall accuracy
of the de-arraying procedure with the activation of the ellipse-based segmentation
module is approximately 93% (corresponding to F-score = 0.95 in average) compared
to 87% (corresponding to F-score = 0.91 in average) if the module is activated (see
Table 2.2). Under the latter setting options, the final recognition rate of tissue cores
has increased by about 6% with respect to the rate obtained after the localization
step. This improvement is due to the segmentation performed using the potential
position which is provided by the estimation of the grid deformation to recognize
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(a) (b) (c)

Figure 2.13: Example of de-arraying on a fluorescence DNA microarray image with
the deactivation of both the segmentation and of the non-linear estimation for the
TMA grid deformation. (a) Contrast-enhanced original image. (b) De-arraying result of
the proposed method presented in array format. (c) Manual annotations in array format. For
comparison purpose, recognized DNA spots are marked by green boxes.

missed cores during the first step of the de-arraying procedure (for example, some
fragmented cores or cores with inner hole were additionally recognized as shown in
Fig. 2.12d in comparison with Fig. 2.12c). This approach is useful, not only for
brightfield images, but also in the case of fluorescence images, in which the contrast
between the background and the foreground is often significantly weaker.

For the two remainder options (Options 1 and 2), ATMAD produced slightly
inferior scores when compared to those obtained with the Options 3 and 4. It is due
to the imprecise estimation of tissue core positions computed with affine registration
of the grid. Quantitative similar results were observed in the case of simulated images
as reported in Table 2.2.

2.3.5 Fluorescence images

In this section, we evaluated ATMAD on a more challenging image dataset which
is acquired by fluorescence scanners and characterized by high noise level and non-
homogeneous background. Unlike simulated and brightfield images depicting tissues,
fluorescence images provided by Innopsys company, are composed of both DNA
microarray and TMA images. Examples of DNA and TMA image de-arraying are
respectively shown in Figs. 2.13 and 2.14. For the illustrated DNA microarray, we
presented in Fig. 2.11 only the original image, the final de-arraying result and the
corresponding manual annotations. Whereas, intermediate results were additionally
illustrated in Fig. 2.12 besides the original image as well as the final result and the
ground truth in the case of TMA image to allow step-by-step evaluation.

As expected, the proposed ATMAD method achieved 100% accuracy (corre-
sponding to the perfect F-score = 1) in average on DNA microarray images under
all four considered setting options (see Table 2.2 and Fig. 2.13). This perfect score
was obtained due to the regularity of the size, the shape and the grid of spotted DNA
samples which facilitates the localization and the estimation of the array coordinates
of each spot.

It is however not possible to reach such performance scores on TMA images in
most cases because of the deformation of TMA grid and the irregularities of TMA
cores. Indeed, when the segmentation module is deactivated (Options 1 and 3), the
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 2.14: Example of de-arraying on a fluorescence TMA image with the acti-
vation of both the segmentation and of the non-linear estimation for the TMA grid
deformation. (a) Contrast-enhanced original image. (b) Detection map (accurate detection is
marked in white, wrong detection is marked in red). (c) Segmentation of TMA cores (recognized
cores are colored by blue ellipses). (d) Estimated TMA grid (potential core position is marked by
a red cross). (e) Recognized TMA cores (cores which are additionally recognized are colored by
orange ellipses). (f) Final de-arraying result in array format (recognized core position is marked
by green box). (g) Manual annotations for comparison.

localization of TMA cores estimated with only the wavelet-based detection method,
often suffers from false positives because erroneous detection of irrelevant objects
on the background is not eliminated. False detection mostly occurs in images with
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complex background such as those illustrated in Figs. 2.14a and 2.14b. Note that in
the case of fluorescence TMA images, the number of false positives is significantly
larger than in the case of simulated and brightfield TMA images. On the other
hand, tanks to the adaptive threshold derived from the wavelet transform, there is
in general no false negative (i.e. all existing tissue cores were detected). These results
demonstrate that the detection operation is not too sensitive (perfect recall score
R = 1 in average), but also it is not precise enough (weak precision score P = 0.77 in
average) in fluorescence imaging. Consequently, it lowered the overall performance of
TMA core localization. In Table 2.2, the accuracy is only about 79% (corresponding
to a F-score = 0.87) in average. Note that the linear transform estimation (Option
1) using the set of localizations with false positives, yielded satisfying de-arraying
results (with an accuracy of 91% or F-score = 0.94 in average), mainly because robust
estimators are used for TMA grid registration. Nevertheless, in some cases the non-
linear transform estimation (Option 3) was unable to correctly handle erroneous
inputs and to produce reliable de-arraying results.

In order to reduce the number of false positives during the localization step,
we combined the wavelet-based detection method with the ellipse-based segmenta-
tion method. Despite low-light fluorescence imaging conditions and low contrast in
images, the multi-core ellipse-based segmentation perfectly performed with a rate
of 100% of successful segmentation over all detected positions. The segmentation
procedure provided reliable features of the object found at each detected position
(see Fig. 2.14c). By combining the detection and the segmentation modules, the
localizer gave better results; in average, the overall accuracy is about 91% (F-score
= 0.94) to be compared to only 79% when the ellipse-based segmentation module
is not activated (see Table 2.2). Given these precise localization results, the non-
linear transform estimation produced satisfactory outcomes; the row and column
coordinates of most existing TMA cores were accurately computed (Fig. 2.14f). In
average, the de-arraying with activation of both the ellipse-based segmentation and
the non-linear transform estimation modules (Option 4) achieved a F-score = 0.96
(corresponding to an accuracy of 92%), which is sightly better than those obtained
with option 1 (F-score = 0.95). We also notice a gain of about 1% in terms of
overall accuracy (0.01 in terms of F-score performance) comparing to the localiza-
tion step. The improvement between the two steps of the de-arraying procedure
demonstrates the positive influence of the ellipse-based segmentation module on the
overall performance of the proposed ATMAD method.

To sum up, the proposed de-arraying method rarely achieves perfect scores in
the case of real (brightfield and fluorescence) images (except those obtained on DNA
microarrays) in comparison to simulated images. This weaker performance is often
due to the insufficient number of localized cores obtained on images with complex
non-homogeneous background and/or highly irregular shapes of tissue cores. Conse-
quently, we get imperfect de-arraying results which represent only array coordinates
of each core. In spite of these imperfections, we have noticed that the spline approx-
imation of the grid deformation yields, in most cases, accurate core position. More
efficient segmentation algorithms can be used to further localize cores which were
not recognized and thus to refine de-arraying results.

The majority of the time computing is spent on the detection task to compute
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the wavelet transform. Overall, the computational cost is less than 5 seconds for de-
arraying a 1000× 1000 image. The experiments were performed on a Macbook Pro
equipped with 2.7 Ghz Intel Core i7, 16 Gb of RAM and the Mac OS X v. 10.12.4
operating system. The algorithm was implemented in Matlab and we exploited the
intrinsic parallelism of the CPU by performing many ellipse-based segmentation in
parallel.

2.4 Conclusion

This chapter introduced a fast and efficient algorithm for de-arraying TMA by com-
bining wavelet transform, active contour and thin-plate interpolation. The proposed
ATMAD algorithm is adapted not only for bright field images but also for fluo-
rescence images which are more challenging in terms of tissue localization due to
complex backgrounds. This difficulty is carried out by a two-step approach: a fast
detection followed by a careful segmentation to reduce the number of false alarms.
The row and column coordinates of each localized tissue core are next computed by
estimating the deformation of the design grid. Using the estimation of the deforma-
tion, tissue cores which are missed during localization can be later recognized and
it refine thus the de-arraying result.
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Appendices

2.A Isotropic wavelet frame

Mathematically, a wavelet ψ : Rd −→ R is a function of zero average:

�

. . .

�

Rd

ψ(x) dx = 0 ,

where d is the number of dimensions (usually, d = 1, 2 or 3). When the wavelet
function ψ is isotropic (i.e. ψ(−x) = ψ(x), ∀x ∈ R

d), we deduce the wavelet atoms
{ψ(t,s)}(t,s)∈Rd×R∗

+
by dilation of ψ with factor s and translation by vector t as:

ψ(t,s)(x) =
1

sd
ψ

�
1

s
(x− t)

�

.
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The wavelet transform of a square-integrable function u ∈ L2(Rd) is defined as the
inner product (in R

d) of u and the wavelet atom ψ(t,s) as follows:

Ψu(t, s) =
�
u,ψ(t,s)

�
=

�

. . .

�

Rd

u(x) ψ̄(t,s)(x) dx ,

where ψ̄(t,s) denotes the complex conjugate of ψ(t,s). To construct a shift-invariant
representation, we consider the dyadic wavelets derived by discretizing the scale
parameter along a dyadic sequence {2j}j∈Z, while the translation parameter is not
sampled as: �

ψj(x) =
1

2dj
ψ
� x

2j

��

j∈Z
. (2.33)

The family {ψj}j∈Z is a frame of L2(Rd) according to [Mallat 2008]. Using this
family, the isotropic wavelet transform of u at the scale (or resolution) 2j and the
position x ∈ R

d is:

Ψju(x) =

�

. . .

�

Rd

u(x)
1

2dj
ψ

�
1

2j
(x− t)

�

dt

= u � ψ̌j(x), (2.34)

where ψ̌j(x) = ψj(−x) = ψj(x) since ψj is isotropic. The wavelet coefficient Ψju(x)
can also be expressed as the difference of approximations of u at subsequent scales
as follows:

Ψju(x) = uj−1(x)− uj(x) , (2.35)

uj(x) = χj � uj−1(x) = lim
k→+∞

(χj � . . . � χj−k) � u(x) , (2.36)

where uj and χj denote respectively the approximation of u and the smoothing
function at the scale 2j.

The infinite convolution cascade φj = limk→+∞ (χj � . . . �χj−k) represents the
approximation operator applied on u at the given resolution 2j. In order to favor the
simplest computation of the convolution sequence in (2.36), the selection of (χj)j∈Z
is critical. Among many function families, Gaussian functions are convenient since
it satisfies the semi-group property (i.e. the convolution of two Gaussians is also a
Gaussian with variance being the sum of the original variances):

Gσa
�Gσb

(x) = G√
σ2
a+σ2

b

(x) ,

where Gσ is a Gaussian with standard deviation σ.
Therefore, if we choose χj being a Gaussian Gσj

with standard deviation σj,
the convolution sequence (χj � . . . � χj−k) can be easily computed by summing
σ2
j , . . . , σ

2
j−k. Since resolution decreases by a factor 2 between two consecutive scales,

it is appropriate to set σj = 2σj−1 = 2j−1σ1, where σ1 is a reference standard devia-
tion according to the Shannon-Nyquist sampling step. Thus, we have:

+∞�

k=0

σ2
j−k =

+∞�

k=0

�
2j−k−1σ1

�2
=

4j

3
σ2
1 .
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Then, the approximation operator at the scale 2j can be expressed as a convolution
with a Gaussian of variance (4j/3)σ2

1:

φj(x) = lim
k→+∞

(χj � . . . � χj−k) (x) = G√
(4j/3)σ2

1
(x) .

Additionally, from equations (2.34) to (2.36), we deduce:

ψ(x) = 2dj(φj−1(2
jx)− φj(2

jx)) = φ−1(x)− φ0(x) . (2.37)

By generalizing the equation expressed the relation of the mother wavelet ψ and
its associate scaling function φ as described in [Starck and Murtagh 2006] as follows:

1

2d
ψ
�x

2

�

= φ(x)− 1

2d
φ
�x

2

�

,

a closed-form solution of the scaling function φ (also known as father wavelet) is
obtained as:

φ(x) = φ0(x) = Gσ1/
√
3(x) =

1

(2πσ2
1/3)

d/2
exp

�

−3�x�22
2σ2

1

�

.

Since φ is Gaussian, ψ is defined as the difference of two Gaussians (DOG) with the
first standard deviation equal to half of the second one. Given a value of σ1 as input,
the wavelet atoms ψj which are also DOGs are determined using the equations (2.33)
and (2.37). Hence, a class of isotropic wavelets can be simply characterized by only
one parameter.

2.B Direct wavelet decomposition algorithm and re-
construction

Starck et al. (2007) proposed a method for performing the isotropic undecimated
wavelet transform. This algorithm is called the Starlet transform. Like the standard
undecimated wavelet transforms, the Starlet transform uses the à trous algorithm
[Starck et al. 1994] which inserts zeros (holes) in the discrete convolution kernel at
each iteration. This kernel is a low-pass filter derived from the normalized cardinal
B-spline of order 3:

h(1D)[k] =
1

16
[1, 4, 6, 4, 1], k ∈ {−2,−1, 0, 1, 2},

B3(u) =
1

12
(|u− 2|3 − 4|u− 1|3 + 6|u|3

− 4|u+ 1|3 + |u+ 2|3).

Yet, as the order tends to infinite, the normalized cardinal B-spline tend to a Gaus-
sian function The kernel used for wavelet decomposition is then an approximation
of a Gaussian. To avoid the decimation at each level, the insertion of holes in the
kernel leads to approximation errors, since the kernels with holes are far from their
corresponding scaling functions. The error cumulation through iterations increases
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Level (j) Std. of χj (σj) Variance of φ0
j (v2j )

1 σ1 σ2
1

2 2σ1 5σ2
1

3 4σ1 21σ2
1

4 8σ1 85σ2
1

5 16σ1 341σ2
1

6 32σ1 1365σ2
1

Table 2.3: Computation of the variance of the scaling function phi0j at first few levels.

with the level of the decomposition. In addition, the iterative convolution process
involves the dependence of the higher level of the decomposition on its previous lev-
els. To sum up, the limits of à trous algorithm are its inaccuracy and computational
cost.

To overcome these limits, the discrete wavelet decomposition of a function u at
the desired scale 2j can be obtained by performing the discrete convolution between
u and the corresponding wavelet atom ψj. In practice, since all computations are
performed over discrete signals, the input signal is not u but its discrete approxima-
tion counterpart. Without losing the generality, one can assume this approximation
is u0. In fact, using (2.35) and (2.36), we have:

Ψju(x)= uj−1(x)− uj(x)

=

�
(χj−1 ∗ . . . � χ1 − χj � . . . � χ1) � u0(x) if j > 1
u0(x)− χ1 � u0(x) if j = 1

= (φ0
j−1 − φ0

j) � u0(x)

= ψ0
j � u0(x),

where φ0
j =

�
χj � . . . � χ1 if j > 1 ,

δ if j = 1 .

The key idea of our method is the computation of the scaling function φ0
j which

results the convolution sequence χj � . . . � χ1. Since χj is chosen as a Gaussian with
variance σ2

j = 4j−1σ2
1, the function of interest φ0

j is also a Gaussian with variance:

v2j =







j
�

k=1

4k−1σ2
1 if j ≥ 1,

0 if j = 0.

The values of v2j at first few levels are reported in the Table 2.3.
Hence, there are two ways to compute Ψju. The fastest way is to compute

directly the wavelet atom ψ0
j (x) = φ0

j−1(x) − φ0
j(x) = Gvj−1

(x) − Gvj(x) (with
convention G0(x) = δ(x)). Then, the wavelet decomposition map is the convolution
product Ψju(x) = ψ0

j � u0(x). The alternative way is to compute two convolutions
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uj−1(x) = φ0
j−1 � u0(x) and uj(x) = φ0

j � u0(x), thus the wavelet decomposition is
derived by taking the difference of two computed results. This way is slower than
the first one but it is useful to reconstruct the input signal u0.

By construction, for any given level j, the formula of reconstruction of u0 is:

u0(x) =

j
�

k=1

Ψuk(x) + uj(x)

=

j−1
�

k=1

(uk−1 − uk)(x) +Ψju(x) + uj(x)

= u0(x)− uj−1(x) +Ψju(x) + uj(x) .

The perfect reconstruction of u0 is therefore possible if u0 − uj−1 and uj are known.
Yet, uj−1 and uj are computed by using the alternative way of the wavelet decom-
position. Instead of returning only the wavelet decomposition Ψju, u0−uj−1 and uj

are also stored if the user needs to perform the reconstruction step. This approach
can be extended for multi-scale reconstruction. In fact, if we have (Ψju)j∈J where
J = {j1, j2, . . . , j|J |} ⊂ N

∗, the reconstruction formula is written as:

u0(x) =
1

|J |

|J |
�

k=1

(u0 − ujk−1 +Ψujk + ujk)(x) .

In practice, wavelet-based algorithms compute over a set of subsequent scales (i.e.
J = {j0, j0+1, . . . , j0+|J |−1}). In this case, the reconstruction formula is therefore:

u0(x) = u0(x)− uj0−1(x) +

|J |−1
�

k=0

Ψuj0+k(x) + uj0+|J |−1(x) .

2.C Partial derivatives of the ellipse quadratic form

Let {x0, a, b, θ} be the parameters of the ellipse Γ where x0 = (x0, y0) is the center, a
and b are the semi major and minor axes, and θ is the angle of rotation. We consider
the quadratic form induced by Γ as:

�x− x0�2Γ =

�
�
�
�

�
a−1 0
0 b−1

� �
cos θ sin θ
− sin θ cos θ

�

(x− x0)

�
�
�
�

2

2

=

�
cos θ

a
(x− x0) +

sin θ

a
(y − y0)

�2

+

�

−sin θ

b
(x− x0) +

cos θ

b
(y − y0)

�2

.
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The partial derivatives of �x− x0�2Γ with respect to {x0, a, b, θ} are given by:

∂ �x− x0�2Γ
∂x0

= −2

�
cos θ

a

�
cos θ

a
(x− x0) +

sin θ

a
(y − y0)

�

−sin θ

b

�

−sin θ

b
(x− x0) +

cos θ

b
(y − y0)

��

∂ �x− x0�2Γ
∂y0

= −2

�
sin θ

a

�
cos θ

a
(x− x0) +

sin θ

a
(y − y0)

�

+
cos θ

b

�

−sin θ

b
(x− x0) +

cos θ

b
(y − y0)

��

,

∂ �x− x0�2Γ
∂a

= −1

a

�
cos θ

a
(x− x0) +

sin θ

a
(y − y0)

�2

,

∂ �x− x0�2Γ
∂b

= −1

b

�

−sin θ

b
(x− x0) +

cos θ

b
(y − y0)

�2

,

∂ �x− x0�2Γ
∂θ

= 2

�
b

a
− a

b

��
cos θ

a
(x− x0) +

sin θ

a
(y − y0)

�

×

�

−sin θ

b
(x− x0) +

cos θ

b
(y − y0)

�

.
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Chapter 3

Dejittering of Scanned TMA Images

Related publication

H.-N. Nguyen, V. Paveau, C. Cauchois, C. Kervrann. A Variational Method for
Dejittering Large Fluorescence Line Scanner Images1. Manuscript submitted for
publication in IEEE Transactions on Computational Imaging, 2017

Abstract

We propose a variational method dedicated to jitter correction of large fluorescence
scanner images. Our method consists in minimizing a regularization energy func-
tional to estimate a dense displacement field representing the spatially-varying jit-
ter. The computational approach is based on a half-quadratic splitting of the energy
functional which decouples the re-alignment data term and the dedicated differential-
based regularizer. The resulting problem amounts to alternatively solving two con-
vex and non-convex optimization sub-problems with appropriate algorithms. Ex-
perimental results on artificial and large real fluorescence images demonstrate that
our method is not only capable to handle large displacements but is also efficient in
terms of sub-pixel precision without inducing additional intensity artifacts.
Keywords: Dejittering, fluorescence scannner, variational method, regularization,
optimization, quadratic relaxation, proximal algorithm

3.1 Introduction

Over the past decades, the evolution of digital technology has radically changed the
way in which images are handled, stored, visualized and transmitted. Nowadays,
most of imaging devices are able to transform acquired images into digital form in
order to allow not only the recording on electronic medium, but also the processing
by computers. This transformation is called digitization which consists in generating
a finite sequence of samples from the input (analog) signal. Despite number of ad-
vantages, digitization often suffers from undesirable artifacts during the acquisition,

1This work was supported by Innopsys.
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transmission and recording processes due to imperfections of one or more compo-
nents of the involved devices. One of those artifacts is jitter, a type of distortion
characterized by the mispositioning of pixels in the image.

There are several situations where jittering frequently arises. A typical example
is the analog-to-digital conversion of video from old magnetic tapes in which hor-
izontal displacement of image lines (line jitter) might happen. As a result, edges
appear to be jagged in vertical direction as illustrated in the first row of Fig. 3.1.
It is mainly because the synchronization signals that contain the information of the
relative position of image rows to each other, were corrupted with noise in the video
signal and/or by degradation of the storage medium. Line jitter can also occur
during wireless video transmission due to delayed and loss packets. Another case
is the video interlacing technique that scans video images by recording two fields
with half vertical resolution at two different times. Alternating lines of these two
fields enables doubling the frame rate (temporal resolution) of the video while re-
maining the same bandwidth (amount of data). The temporal difference between
the two recorded fields can lead to a rolling effect in both horizontal and vertical
directions as a consequence of relative motions of the camera and the objects in the
scene. Similarly, during long acquisition process, random displacement (vibration)
of the imaging device and the imaged object is a major cause of jittering in biomed-
ical equipment such as CT (computer tomography) and MRI (magnetic resonance
imaging) scanners.

In this chapter, we do not address the problem of jittering in general, but we focus
only on a particular case of jitter arising in dedicated fluorescence line scanners2, as
illustrated in the second row of Fig. 3.1. Here, the images are acquired pixel by pixel
along each line with a change of scan direction between two subsequent lines (see
Fig. 3.2). Such an acquisition system requires a very accurate positioning of each
acquired pixel in order to provide output images with no distortion. Unfortunately,
the resulting images are jiterred. The main sources of distortion are mainly due to:

• imperfect synchronization between mechanical and electronic components;

• small objective rotations induced by abrupt acceleration and deceleration dur-
ing scanning;

• spatially-varying sinusoidal scan speed.

The pixels on subsequent lines are horizontally displaced in opposite directions, re-
sulting in a structured jitter (see Figs. 3.1, 3.3 and 3.10). To our knowledge, there
is no existing method to compensate the displacement errors in such jittered fluo-
rescence images. Accordingly, we propose a computational approach inspired from
variational optical flow methods, to restore images. Our approach consists in mini-
mizing an energy functional which explicitly combines a non-convex data term with
a convex spatial regularity term with respect to the horizontal displacement, while
taking into account the particular structure of the jitter. The optimization problem

2 InnoScan 1100 AL developed by Innopsys Inc., for more details of the prod-
uct please refer to https://www.innopsys.com/en/lifesciences-products/microarrays/

innoscan/innoscan-1100-al
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Figure 3.1: Examples of jitters. From top to bottom: jitter arising in analog-to-digital video
conversion (Source http://www.mee.tcd.ie/~ack/cd/linereg/linereg.htm) and in fluorescence
line scanner (by the courtesy of Innopsys). From left to right: jittered and dejittered image.

can be efficiently solved by introducing an auxiliary variable and a quadratic con-
straint to decouple the data term and the regularity term into two more tractable
optimization sub-problems. The first sub-problem is convex while the second sub-
problem is non-convex and does not exhibit spatial dependency between pixels. The
proposed decoupling allows to solve each sub-problem separately with two appropri-
ate algorithms: a proximal algorithm for the convex sub-problem and an exhaustive
search for the non-convex sub-problem. The minimization of the proposed energy
can be therefore performed by alternating the two optimization steps. Experiments
on both simulated and real images show that our approach can handle large and
non-integer displacements, while these two issues are not addressed by the majority
of existing dejittering methods. Unlike image-regularization methods devoted to jit-
ter correction, our approach does not smooth images but optimally register all the
displaced lines.

The remainder of the chapter is organized as follows. In the next section, several
existing methods for image dejittering and deinterlacing are reviewed. In Section
3.3, we present the proposed acquisition model based on the sampling theory. We
explain the relationships between the ideal continuous image and its discrete jitter-
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Figure 3.2: Image acquisition process involved in fluorescence line scanners. Images
are acquired pixel by pixel along each line with a change of scan direction between two subsequent
lines.

free as well as its jittered version. We also define a dedicated energy functional for
dejittering. In Section 3.4, technical details of the proposed dejittering algorithm
are given. Section 3.5 presents the experimental results obtained on simulated and
real data. Finally, the last section gathers the conclusions drawn from this chapter
and gives a perspective to further improvements.

3.2 Related works for image dejittering and dein-
terlacing

Analog video signals have a specific format that defines how the timing reference
(also known as “time base”) is embedded. It allows the receiving device to cor-
rectly extract the necessary synchronization information for reconstructing images
and providing visual display. The corruption or even the loss of this timing reference
consequently results in an extraction of incorrect synchronization information and
thus introduces jitter. In the late of 80’s, “time base correction” techniques were
already used for restoring the embedded synchronization information in the analog
signal. Noise was removed from the non-picture part of the signal in order to repro-
duce an accurate display of the input video. However, such a technique which is able
to process solely analog signals cannot be applied to current digital videos. Over the
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last two decades, intrinsic dejittering Kokaram (1998) techniques were introduced as
an alternative solution. Indeed, these techniques which rely only on jittered image
data are much more flexible and widely applicable when compared to conventional
(non intrinsic) “time base correctors”.

To perform (intrinsically) image dejittering, one can envisage simple approaches
such as line averaging and correlation matching between two subsequent lines. Un-
fortunately, the former approach tends to produce blur and decreases the vertical
resolution, whereas the latter tends to cause a bias in vertical direction due to its
local property. At the end of 90’s, Kokaram et al. (1997) invented the first intrinsic
method, in which the authors assumed jitter-free images obey a 2D-AR (autoregres-
sive) model. The unknown AR coefficients and the line displacements are jointly
estimated by blocs using an iterative algorithm. Whitening of the estimated dis-
placement can be performed in the case of drift (i.e. restored images are warped) to
remove the low frequency component of the estimation.

Later, Laborelli (2003) proposed a different approach to estimate the line dis-
placement by considering the L1 norm of the difference of two or three consecutive
shifted lines as a local criterion and using it to define a global cost which is optimized
by dynamic programming. Right afterwards, Shen (2004) described a joint denoising
and dejittering algorithm which consists in minimizing a energy functional in the
Bayesian framework with respect to the original (unjittered) image and the associ-
ated displacement. The considered energy is derived from the posterior probability
of the unjittered image and the displacement given the observed jittered image. This
conditional probability is defined under the Gaussian distribution assumption of the
displacement and of the noise, combined with the BV (bounded variation) image
model. Instead of considering such a joint denoising and dejittering approach, Kang
and Shen (2006) developed a two-step displacement-estimation method called “Bake
and Shake” which relies on Perona-Malik diffusion [Perona and Malik 1990] to reduce
the noise and the rolling effect of jittered images. The key idea of this method is that
the intermediate diffused (baked) image – less noisy and less jittered – can guide
the estimation of the displacement (i.e. the “shake” step). Later on, the “Bake and
Shake” authors introduced in [Kang and Shen 2007] the notion of slicing moments
of BV images – a measure to quantify how much the image is jittered. Using this
notion, the displacement of image lines is obtained by minimizing a L2-TV (total
variation)-based functional of the vertical slicing moments.

In contrast to these continuous-optimization-based methods, Nikolova (2009a,b)
proposed a fast algorithm for image dejittering by performing a complete search
over a finite set of allowed integer values of shifts to optimize a non smooth and
(eventually) non-convex local criterion. This local criterion is an extended version
of the criterion mentioned in [Laborelli 2003] by using normalized Lp norms (with
p = 0.5 or p = 1) and possibly higher order criteria (e.g. more than three adjacent
lines). Recently, Lenzen and Scherzer (2011) introduced a PDE (partial differen-
tiable equation) derived via semi-groups from a nonconvex energy functional for
restoring directly jittered images without explicit estimation of the displacement.
This model which is related to the mean curvature flow [Huisken 1984; Catté et al.
1992] corresponds to the minimization of an energy composed of a linearized re-
alignment criterion and a TV regularization. Based on these previous works, Dong
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et al. (2015) proposed a unified class of methods for different types of jitter by gener-
alizing the Nikolova’s algorithm to infinite dimensional framework and establishing
its relation with the Lenzen’s PDEs.

In the comparison with “line dejittering” which corrects the shift between con-
secutive lines of a jittered image, deinterlacing is the process of reconstructing a
complete image frame from two recorded fields at half vertical resolution at two
different times. It consists generally in compensating the motion between these
recorded fields due to temporal difference. Inspired from optical flow models, the
estimation of the underlying motion have been recently used in state-of-the-art dein-
terlacing methods. Most of these motion-estimation-based methods are defined in a
variational framework with TV regularization [Ghodstinat et al. 2009; Keller et al.
2005, 2008].

Irrespective of deinterlacing or dejittering algorithms, we can classify the major-
ity of them into three categories: (i) simultaneous methods such as [Shen 2004; Keller
et al. 2008] which consist in jointly estimating the displacement and the jitter-free
original image; (ii) methods, which aim at estimating the displacement represent the
majority part on the literature as in [Kokaram et al. 1997; Kokaram 1998; Laborelli
2003; Kang and Shen 2006, 2007; Nikolova 2009a,b; Ghodstinat et al. 2009]; (iii)
variational methods which consist in restoring the image without any estimation of
the displacement as in [Keller et al. 2005; Lenzen and Scherzer 2011; Dong et al.
2015]. Note that there are a few problems which are not fully addressed in the lit-
erature such as large and non-integer displacement, over-fitting, or over-smoothing.
Our approach belongs to the second category of methods since a displacement field
is estimated by global energy minimization.

3.3 Jitter modeling: Application to fluorescence
line scanner images

In this section, we present a general image acquisition model which explains the rela-
tionship between the ideal (undistorted) continuous image and its digitized versions.
The digitized images are nothing else than finite sets of samples of the continuous
image according to a sampling grid. In this chapter, we focus on gray-scale bi-
dimensional (2D) images for the sake of clarity.

3.3.1 Notations and image sampling

Let u : Ω → R be an undistorted continuous image which is defined on a rectangular
domain Ω = [0,M ] × [0, N ] ⊂ R

2. Digitization consists in sampling the input
continuous image with respect to a lattice (sampling grid) in order to provide an
output discrete image. In the case of an ideal sampling, the sampling grid is a
regular grid which is characterized by a couple of orthogonal unit vectors and a
vertex-to-vertex distance (also sampling step). Without loss of generality, one can
assume that this regular sampling grid is the Cartesian grid Z

2 (i.e. the couple of
characterized vectors is the canonical basis (e1, e2) of the plane R

2 and the sampling
step equals to 1, implying that each vertex of the sampling grid is an integer point).
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The sampled version of u according to Z
2, defined as the set of finite samples {ui,j �

u[i, j]}(i,j)∈Z2∩Ω, is called the (discrete) jitter-free image. For the sake of simplicity,
we denote the image grid Λ = Z

2 ∩ Ω = {0, 1, . . . ,M} × {0, 1, . . . , N}.
Let us denote w : (i, j) ∈ Λ �−→ (w1(i, j), w2(i, j)) ∈ R

2 the dense displacement
field which represents the jitter, occurring during the image acquisition process. The
jittered version of u with respect to the displacement field w is therefore defined as:

�

fi,j � f [i, j] = u [i− w1(i, j), j − w2(i, j)]
�

(i,j)∈Λ
. (3.1)

In other words, {fi,j}(i,j)∈Λ is a sampled version of u according to a irregular sampling
grid

Λ̃ = {(i− w1(i, j), j − w2(i, j)) , ∀(i, j) ∈ Λ} ⊂ R
2 . (3.2)

The restoration of {ui,j}(i,j)∈Λ from irregular samples {fi,j}(i,j)∈Λ with unknown sam-
pling position Λ̃ is the so-called dejittering procedure.

3.3.2 Alternating line pixel jitter

In contrast to a general irregular sampling case in which the perturbed sampling
position Λ̃ does not need to have any particular structure (beyond a minimal sam-
pling density) [Almansa et al. 2006; Facciolo et al. 2009], dejittering usually exploits
the structure of the associated vector field w to compensate the displacement errors
and re-align the jagged edges. In this chapter, we focus on a specific jitter arising in
images acquired by fluorescence line scanners (InnoScan 1100 AL). A typical exam-
ple of jittering is illustrated in Fig. 3.3, depicting a checkerboard pattern in which
the displacement between two subsequent image lines is not constant along the hor-
izontal axis. This situation is quite different from the usual case of line jitter which
is well documented in the literature (e.g., [Kokaram 1998; Kokaram et al. 1997; La-
borelli 2003; Shen 2004; Kang and Shen 2006, 2007; Nikolova 2009a,b; Lenzen and
Scherzer 2011; Dong et al. 2015]).

In such jittered images, we notice that:

• the pixels on the even lines are shifted in the opposite direction with respect
to those on the odd lines;

• there is no apparent displacement between lines of the same set of even lines
or odd lines.

More specifically, the rolling effect appears only in the vertical direction and not
in the horizontal direction. By measuring the gap between vertical contours on
subsequent lines at difference positions in the jittered images, we also notice that
the magnitude of displacement along horizontal axis varies smoothly according to
a specific pattern depending on pixel positions (see Fig. 3.3). Consequently, the
observed jitter can be named as “alternating line pixel jitter”. Based on the described
observations, we noticed that estimating the difference in displacement between
the set of all odd lines and those of all even lines is sufficient to re-align jagged
shapes. Without loss of generality, one can arbitrary assume that the displacement
equals to zero on even lines (or odd lines). Under this assumption, we propose to
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Full-size image

Dejittering results

Selected areas Zoom-in views Dejittering without Residual images
regularization

Figure 3.3: Image of a tool slide used for scanner calibration before/after correction
of the vertical rolling effect. A tool slide depicting a checkerboard pattern is scanned
over a region of interest of 6 millimeters in width (approximately a third of maximal scan width
supported by the scanner). Two regions (marked by red/pink and yellow/orange boxes) are selected
to illustrate the displacement variation along the horizontal direction. The average displacement
in the pink and orange square boxes is about 3 pixels and 6 pixels respectively. Dejittering with
and without regularization provided very similar results in terms of visual quality on this piecewise
constant image. For visualization purposes, the results by setting λ = 0 (without regularization)
are displayed, including the residual images between the jittered and restored images.

model the occurred jitter by a vector field w = {w(i, j) = (wi,j, 0)}(i,j)∈Λ whose the
vertical component is zero and the horizontal component satisfies the two following
conditions associated to odd and even lines:

�
wi,j = 0 if j ∈ 2Z ,
wi,jwi�,j ≥ 0 for any (i, i�) ∈ Z

2 .
(3.3)

The first condition implies the alternating structure of the observed jitter (one line
of every two lines is shifted). The second condition implies that the horizontal
component of the displacement vector at a given point on a line has the same sign
as those at another point on the same line – resulting in the same displacement
direction on the same line. Since the vertical component of w is assumed to be
constant, we estimate only the horizontal component w : (i, j) �−→ wi,j to perform
image dejittering.
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3.4 Variational method for displacement estimation

3.4.1 Energy functional

To deal with the “alternating line pixel jitter” occurring in fluorescence scanner
images, we aim at estimating the scalar field w which represents the displacement
along the horizontal direction by minimizing a global energy of the following form:

E(w) =
M�

i=0

N�

j=0

ρ(i, j, f, w)

� �� �

ED(w,f)

+
M�

i=0

N�

j=0

φ
�
(Lw)i,j

�

� �� �

ER(w)

, (3.4)

where L is a linear operator used to control the spatial regularity of w. The energy
(3.4) explicitly combines a data potential ρ(·), which penalizes irregular shapes in the
image f with respect to neighboring pixels of (i, j), with a regularization potential
φ(·) which penalizes high values of the norm of (Lw)i,j. A typical example of φ

and L is the combination of the square L2-norm (φ(·) = � · �22) and the gradient
operator (L = ∇) as φ

�
(Lw)i,j

�
= �(∇w)i,j�22 = (∂xw)

2
i,j + (∂yw)

2
i,j, where ∂x and ∂y

denote the first-order derivatives along the horizontal (x-axis) and vertical (y-axis)
directions respectively.

This reformulation is inspired from the concept of regularized vector field which
is widely used in optical flow to compute the motion between a pair of frames in a
video sequence [Brox and Malik 2011; Fortun et al. 2015]. In the context of dejitter-
ing, regularizing the displacement field allows to overcome two major problems: (i)
data over-fitting as observed with unregularized approaches [Kokaram 1998; Nikolova
2009b]; (ii) discontinuity over-smoothing as observed when regularization-based ap-
proaches are applied to jittered images [Shen 2004; Lenzen and Scherzer 2011; Dong
et al. 2015].

3.4.2 Data fidelity term

The corrected version of the jittered image f by the displacement w is defined as:

{ũi,j = f [i+ wi,j, j]}(i,j)∈Λ . (3.5)

By considering the vertical regularity of the corrected image ũ, a data potential ρ(·)
is designed to re-align the jittered image f as:

ρ(i, j, f, w) = |(D(k)ũ)i,j|
β , (3.6)

where D(k) denotes the discrete kth order vertical derivative operator and β is a
positive parameter which controls the amount of non zero entries of D(k)ũ. In other
words, ρ(·) favors sparse D(k)ũ if 0 < β ≤ 1, otherwise this potential promotes non-
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sparse configurations. If k = 1, 2 and 3, we have the following discrete derivatives:

(D(1)ũ)i,j = ũi,j − ũi,j−1

= f [i+ wi,j, j]− f [i+ wi,j−1, j − 1] ,

(D(2)ũ)i,j = ũi,j+1 − 2ũi,j + ũi,j−1

= f [i+ wi,j+1, j + 1]− 2f [i+ wi,j, j] + f [i+ wi,j−1, j − 1] ,

(D(3)ũ)i,j = ũi,j+1 − 3ũi,j + 3ũi,j−1 − ũi,j−2

= f [i+ wi,j+1, j + 1]− 3f [i+ wi,j, j]

+ 3f [i+ wi,j−1, j − 1]− f [i+ wi,j−2, j − 2] ,

with the symmetric boundary conditions in the vertical direction such that ũi,j =
ũi,−j if j < 0 and ũi,j = ũi,2N−j if j > N . In what follows, we choose k = 2 and
β = 1 since these values allow to recover images with nearly piece-wise linearity
in the vertical direction (see Nikolova (2009a,b)). However, this potential exhibits
spatial dependency on w since ρ(i, j, f, w) not only depends on wi,j but also on other
entries wi,j� where j � is a neighbor of j according to the order k of the derivative.

Instead of considering the potential (3.6), a point-wise term when no spatial
dependency on w is desired to facilitate the optimization task. From the condition
(3.3), the displacement field w is non zero on odd lines (i.e. the function i �−→ wi,j �=
0 for j /∈ 2Z). Therefore, let us consider the odd line translation Twi,j

defined as:

(Twi,j
f)i�,j� =

�
f [i�, j�] if j � ∈ 2Z ,
f [i� + wi,j, j

�] otherwise .

By assuming that the variation of the displacement between odd and even lines on a
small neighborhood of a point is infinitesimal, we consider novel non-local potential
ρσ defined as follows:

ρσ(wi,j, f)=







0 if j ∈ 2Z ,

�

(i�,j�)∈σ(i,j)

|D(k)(Twi,j
f)i�,j� |

β otherwise ,

where σ(i, j)= {i − �r
2
�, . . . , i + �r

2
�}×{j − �s

2
�, . . . , j + �s

2
�} is a patch of size r × s

pixels centered at pixel (i, j). The new data term, defined as:

ED(w, f) =
M�

i=0

N�

j=0

ρσ(wi,j, f) , (3.7)

is a generalization of the point-wise data term.
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3.4.3 Regularization term

We consider the following regularization term which exploits the alternating struc-
ture of the displacement field:

ER(w) =
M�

i=1

N�

j=2

�

λ
�
w

i,j
− w

i−1,j

�2
+ ν

�
w

i,j
− w

i,j−2

�2
�

. (3.8)

Here, λ, ν ≥ 0 are regularity parameters which control the regularity of w along the
horizontal and vertical directions respectively. Also, we impose that the restored
image has no sharp discontinuity. If we denote L

λ,µ
the discrete differential-based

operator as:

(L
λ,µ

w)i,j =





√
λ
�
w

i,j
− w

i−1,j

�

√
µ
�
w

i,j
− w

i,j−2

�



 ∈ R
2 ,

for 1 ≤ i ≤ M and 2 ≤ j ≤ N (otherwise (L
λ,µ

w)i,j is a null vector), the regulariza-
tion term (3.8) can be rewritten as:

ER(w) =
M�

i=0

N�

j=0

�(L
λ,µ

w)i,j�22 , (3.9)

where � · �2 denotes the Euclidean norm.

3.4.4 Optimization of the energy functional

Considering the proposed data and regularization terms, the final energy functional
has the following form:

E(w) =
M�

i=0

N�

j=0

ρσ(wi,j, f) + �(L
λ,µ

w)i,j�22 , (3.10)

in which the second term is convex with respect to w and the first term is non-convex.
The combination of a convex term with a non-convex term makes the underlying
optimization problem difficult to optimize in general. Existing algorithms (e.g.,
[Mercier 1979; Eckstein and Bertsekas 1992; Combettes 2004; Combettes and Pes-
quet 2011; Chambolle and Pock 2011; Condat 2014]) cannot be applied to minimize
(3.10). This situation is closely similar to the variation formulation of the optical flow
problem (see [Horn and Schunck 1981; Fortun et al. 2015]) in which the non-convex
data term is usually coupled with a convex regularity term (see [Zach et al. 2007,
Wedel et al. 2009]). In addition, the two terms eventually may be not continuously
differentiable. One computational approach consists in linearizing the data term
and replacing the non differentiable functions by smoothly approximated versions.
Standard differentiable optimization techniques can be then used to minimize the
new energy. To avoid any approximations, we adopt the approach of Steinbrücker
et al. (2009) and propose to optimize a quadratically relaxed version of (3.10) of the
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following form:

E�(w) =
M�

i=0

N�

j=0

ρσ(wi,j, f) +
1

2�
(wi,j − vi,j)

2 + �(L
λ,µ

v)i,j�22 , (3.11)

where � is a small constant and v : (i, j) �−→ vi,j is an auxiliary variable used to
approximate w. The use of auxiliary variable for decoupling convex and non-convex
part is also known as the half-quadratic method which was originally introduced by
Geman and Yang (1995). This splitting technique is widely used in both linearized
and non-linearized optical flow models (e.g., [Zach et al. 2007; Wedel et al. 2009;
Steinbrücker et al. 2009]) to decompose the original optimization problem into two
more tractable sub-problems.

Moreover, since the magnitude of displacement does not exceed a certain bound,
one can add the convex constraint {�w�∞ = maxi,j |wi,j| ≤ wmax} to the relaxed
optimization problem (3.11) where wmax denotes the maximal absolute value of dis-
placement. Finally, we consider the final optimization problem:

(ŵ, v̂) = argmin
w,v

M�

i=0

N�

j=0

�

ρσ(wi,j, f) + ıC(wi,j)

+
1

2�
(wi,j − vi,j)

2

+ �(L
λ,µ

v)i,j�22 + ıC(vi,j)

�

, (3.12)

where ıC denotes the characteristic function of the subset C = [−wmax, wmax] ⊂ R

defined as (r ∈ R):

ıC(r) =

�
0 if r ∈ C ,

+∞ otherwise .

This problem can be solved by alternating two optimization steps to update either
w or v at each iteration:

• For v being fixed, solve

argmin
w

M�

i=0

N�

j=0

�

ıC(wi,j) + ρσ(wi,j, f) +
1

2�
(wi,j − vi,j)

2

�

. (3.13)

This problem can be solved point-wise, since there are no spatial dependency
term for w in (3.13). Therefore, the optimal values for wi,j at every point (i, j)
can be simply computed by an exhaustive search in the discrete set of possible
displacements:

W = {−wmax,−wmax + δ,−wmax + 2δ, . . . , wmax} ,

where the step δ can be chosen as small as possible to guarantee the sub-pixel
precision of the estimated jitter. To handle these non-integer displacements,
we use Fourier interpolation for fast computation. In practice, for each point
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(i, j), we minimize the function wi,j �−→ ρσ(wi,j, f) +
1
2�
(wi,j − vi,j)

2 over the
finite and countable set W rather than C which is finite but uncountable.
This discrete minimization not only helps to avoid the linearization of the
data term, which may yield inaccurate results, but also allows to deal with
large and non-integer displacements.

• For w being fixed, solve

argmin
v

M�

i=0

N�

j=0

�
1

2�
(wi,j − vi,j)

2 + �(L
λ,µ

v)i,j�22 + ıC(vi,j)

�

. (3.14)

Since the constraint set C is convex, this problem can be solved by a simple
projected gradient descent algorithm summarized as follows:







ṽ
(k)
i,j =

1

�
(v

(k)
i,j − w) + (L�

λ,µ
L

λ,µ
v(k))i,j ,

v
(k+1)
i,j = projC(v

(k)
i,j − γkṽ

(k)
i,j ) ,

(3.15)

where L�
λ,µ

denotes the adjoint of L
λ,µ

and projC denotes the projection to the
set C. To ensure the convergence of projected gradient descent iterations, the
descent step γk satisfies the usual condition

0 < γk <
2

4(λ+ µ)
. (3.16)

Note that the projected gradient descent algorithm is a particular case of
the forward-backward algorithm (see [Combettes and Wajs 2005; Combettes
and Pesquet 2011]). This algorithm also belongs to the family of proximal
algorithms as depicted in [Condat 2014].

3.5 Experiment results

In order to evaluate our variational method, we consider both true and simulated
jittered images. The real images are acquired by fluorescence scanners of the series
InnoScan commercialized by Innopsys company. The laser beam is moving accord-
ing to a programmed trajectory to scan input microscopic slides. In the scanner
design, the velocity of the laser beam is not constant during the scanning: it starts
slowly at the beginning of a line, then accelerates from left to right before reaching
the maximum value at the middle of the line, and decelerates smoothly until the
right border. The scan direction is reverse on the subsequent line (scanning from
right to left). The desynchronization between the mechanical system, which con-
trols the movement of the scanning laser beam, and the electronic system, which
converts analog signals to digital output, leads to the recording of pixels at wrong
positions. Consequently, we observe a vertical rolling effect of odd and even lines
with non-constant displacements along the horizontal direction, low at the left and
right borders of the lines, and maximal at the middle. The typical spatially-varying
jittering effect is illustrated in Fig. 3.3 (different magnitudes of displacement).
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Smooth
Perturbed

(a) (c)

(b) (d)

Figure 3.4: Simulation of jittering on the Barbara 512 × 512 image by using a sinus
function. (a) Original image; (b) jittered image; (c) simulated displacement on even lines with
respect to the horizontal axis (in pixels) plotted with an exponential scale: smooth displacement
(red curve) is computed by using a sinus function and the perturbed version (black curve) is
generated by adding small random values; (d) displacement field associated with (b) (black color
represents zero value).

3.5.1 Evaluation on simulated images

To simulate the same jittering effect as in fluorescence scanner images, we first
generated a dense displacement field which is zero on odd lines, and non-constant
on even lines. The displacement with respect to the horizontal coordinate smoothly
increases on the first half of the line and decreases on the second half according to
a sinus function evolution. Random perturbation with small magnitude (less than
one tenth of the pixel) was then added to the displacement field to model the micro-
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(a) Unjittered (b) Jittered

(c) λ = 0, s = 1 (d) Residual between (e) λ = 0, s = 21 (f) Residual between
(PSNR = 25.14) (c) with (a) (PSNR = 29.19) (e) with (a)

(g) λ = 0, s = 41 (h) Residual between (i) λ = 10, s = 21 (j) Residual between
(PSNR = 28.91) (g) with (a) (PSNR = 29.91) (i) with (a)

(k) λ = 0.1, s = 1 (l) Residual between (m) λ = 500, s = 21 (n) Residual between
(PSNR = 25.48) (k) with (a) (PSNR = 32.03) (m) with (a)

(o) λ = 104, s = 1 (p) Residual between (q) λ = 104, s = 21 (r) Residual between
(PSNR = 21.19) (o) with (a) (PSNR = 31.32) (q) with (a)

Figure 3.5: Result of dejittering with different parameters of regularization λ and
window size s on the Barbara image (512 × 512) corrupted with white Gaussian noise
(σ = 0.04). Residual images are shown in color where “cold” colors correspond to low residual
values and “hot” colors correspond to high residual values.
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vibration of the acquisition system. A set of eight images was selected and corrupted
with the artificial jittering process. An example of jitter simulation applied to the
Barbara image is shown in Fig. 3.4.

3.5.1.1 Robustness to noise

To analyze the robustness of our approach to noise, a zero-mean white Gaussian
noise with variance σ2 is first added to the original images before artificially jitter-
ing the images. The performance of our algorithm on these images is measured by
the Peak Signal-to-Noise Ratio (PSNR) and by the Structural Similarity (SSIM)
index between the dejittered images and their unjittered version in both noise-free
and noisy cases. In the case of real data, the ground truth is not available and quan-
titative evaluation as described previously is not possible. Therefore, we display the
dejittering outcome and visually compare in details the obtained results with the in-
put images to highlight the effect of displacement correction. In all our experiments,
we normalized the images in the range [0, 1] to compare more objectively the results
and to evaluate the influence of algorithm parameters. For the sake of simplicity, we
focused on square windows (s = r) and isotropic regularization parameters (λ = ν)
when performing dejittering on simulated images.

A typical result of our dejittering method with different regularization parameters
and estimation window sizes is illustrated in Fig. 3.5. On the second column of
Fig. 3.5, the residual of dejittered images is also displayed to compare the results.
In this example, the jitter-free image was corrupted with a white Gaussian noise
with standard deviation σ = 0.04 (which corresponds to a value of PSNR = 26.77).
The displacement field was estimated by setting the precision of displacement to
δ = 0.1 (in pixel) and p = 0.5. We can see that, even in the case of s = 1 (smallest
estimation window) and λ = 0 (without regularization), the vertical rolling effect
is significantly removed and most of large geometric structures and small details
are well restored (see Figs. 3.5c, 3.5d and 3.6). However, we observe an aliasing
effect on the restored image with these parameter settings (see the first column in
Fig. 3.6). Aliasing typically occurs in regions near the left and right borders of the
image where the displacement is relatively smaller than those observed in the middle
of the image. Nevertheless, aliasing does not disturb the overall visual display. It
is slightly reduced when increasing the size of the estimation window s and/or the
regularization parameter λ as depicted in Fig. 3.6. In dense textured regions (see
third column of Fig. 3.6), we notice that dejittering with parameters s = 1 and
λ = 0 failed to properly recover very fine details. With these parameter settings, the
orientation of the texture was wrongly estimated. It is mainly due to the repetition
of patterns and the lack of regularity of the estimated displacement field.

We expected that dejittering with higher values of s and λ, both encouraging
spatial regularities of the displacement field, would produce better reconstruction
results. Surprisingly, setting s = 21 (large estimation window) and λ = 0 (no
explicit regularization) yielded better restoration results than s = 1 and λ = 0.1
(highest value of SSIM with s = 1 among λ ∈ {0, 0.1, 1, 10, 500, 10000}, see Table
3.1). The final restoration result is very close to the result obtained with s = 21 and
λ = 10 (see the third column of Fig. 3.6). This suggests that our method provides
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Jitter-free image

Jittered image

Dejittered images

(a) dejittering with λ = 0 and s = 1

(b) dejittering with λ = 0 and s = 21

(c) dejittering with λ = 0 and s = 41

(d) dejittering with λ = 10 and s = 21

(e) dejittering with λ = 0.1 and s = 1

(f) dejittering with λ = 500 and s = 21

(g) dejittering with λ = 104 and s = 1

(h) dejittering with λ = 104 and s = 21

Figure 3.6: Detail comparison of dejittering result with different parameters of regu-
larization λ and window size s on the Barbara image (512 × 512) corrupted with white
Gaussian noise (σ = 0.04). First row: unjittered image. Second row: jittered image. Third row
to ninth row: dejittered images with different values for λ and s.
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(a) Ground truth (b) λ = 0, s = 1 (c) λ = 0, s = 21
(SSIM = 0.9088) (SSIM = 0.9614)

(d) λ = 0, s = 41 (e) λ = 10, s = 21 (f) λ = 0.1, s = 1
(SSIM = 0.9533) (SSIM = 0.9628) (SSIM = 0.9131)

(g) λ = 500, s = 21 (h) λ = 104, s = 1 (i) λ = 104, s = 21
(SSIM = 0.9683) (SSIM = 0.7831) (SSIM = 0.9670)

Figure 3.7: Comparison of estimated displacement fields with different parameters of
regularization λ and window size s on the Barbara image corrupted with white Gaussian
noise σ = 0.04. Top left: Ground-truth. (b)-(h): Displacement fields estimated with different
values of λ and s.

better results with larger estimation window sizes than with higher regularization
parameters.
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s = 1
s = 3
s = 5

s = 11
s = 19
s = 21
s = 23

s = 31
s = 37
s = 39
s = 41

Figure 3.8: Dejittering performance (PSNR and SSIM values) depending on λ for
several values of s. The scores are computed on the Barbara image corrupted with Gaussian
white noise (σ = 0.04) and are plotted with a logarithmic scale for visualization purposes. We
display the curves corresponding to three categories of window size: small windows (blue curves),
medium windows (red curves) and large windows (black curves). The cyan and the green curves
which correspond to s = 11 and s = 31 respectively are transitional between these three groups of
windows.

3.5.1.2 Influence of regularization parameter and window size

To better understand the impact of λ and s in the estimation of the displacement
field, the estimated displacement corresponding to the dejittering result in Fig. 3.5
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are shown in Fig. 3.7. For comparison purpose, we also displayed in Fig. 3.7a the
simulated displacement (ground truth) which was used to generate jittered images.
Moreover, Fig. 3.7b shows the estimated displacement with λ = 500 and s = 21
which corresponds to the best value of SSIM scores (SSIM=0.9683) for all possible
couples (λ, s). Finally, the displacement estimated with λ = 10000 is illustrated
in the last row of Fig. 3.7 as may be considered as an extreme case. As expected,
the larger estimation window and/or the higher regularization parameter, the more
regular displacement field is obtained. Indeed, we can observe that image details
visibly appear in the estimated field for λ = 0 and s = 1 (the smallest value of λ
and s). For higher values of λ while the value s remains the same, these details
are smoothed as shown in Figs. 3.7c, 3.7e and 3.7g. Meanwhile, the combination
of larger s and λ = 0 provides piecewise-constant results (also known as staircasing
effect). Sharp discontinuities are not expected, even though the dejittered image
obtained with this parameter setting (Fig. 3.5g) provides very encouraging results.
The staircasing effect can be reduced by setting a strictly positive value for λ to
enforce the smoothness of the displacement (see Figs. 3.7d, 3.7f and 3.7h). In con-
trast, a high value of λ combined with a small value of s tends to over-smooth the
displacement field as depicted in Fig. 3.7g (λ = 10000 and s = 1). Considering the
same regularization parameter with large window sizes (e.g., λ = 10000 and s = 21)
tends to produce results very close to the ground-truth as shown in Fig. 3.7h. This
behavior emphasizes how the performance of our method depends on the regular-
ization parameter λ and on the size s of the estimation window. Figure 3.8 shows
plots of PSNR and SSIM values for different values of λ and s. In summary, the
performance values vary as follows: for a given value of s, as λ increases, the perfor-
mance (PSNR, SSIM) increases, reaches a maximum value, and decreases towards
a limit value. From Fig. 3.8, it is recommended to combine a high value of the
regularization parameter λ with a large estimation window size s.

For large scale comparison, we provide the SSIM values for all the tested images
with different noise levels as well as several regularization parameters and window
sizes in Table 3.1. It turns out that the performance of our method varies case by
case and depends not only on the image itself but also on the amount of noise. In
general, the higher the noise level is, the higher optimal values for λ and s are. To
illustrate the performance obtained in case of strong noise, we display in Fig. 3.9
the three best dejittering results on Mandrill image (512 × 512) corrupted with a
white Gaussian noise with standard deviation σ = 0.1. Even in the case of strong
noise and complex texture, our method, which does not require any pre-processing
(e.g., denoising), is able to restore fine details and vertical structures if appropriate
values for λ and s are selected. In the three zoom-in views of Fig. 3.9 depicting
reconstruction of eye, hair and beard regions in the Mandrill image, we notice that
the occurred jitter is efficiently removed. The image details and textures are also
well preserved in all cases.

3.5.2 Evaluation on real fluorescence scanner images

In this section, we evaluate the proposed algorithm on an fluorescence image of eight
tissue microarray cores (see Fig. 3.10). This image, saved in 16-bit-TIFF format, was



3.5. EXPERIMENT RESULTS 69

Jitter-free image

Jittered image

Dejittered images

(a) dejittering with λ = 104 and s = 21 (PSNR = 27.57)

(b) dejittering with λ = 104 and s = 41 (PSNR = 26.35)

(c) dejittering with λ = 103 and s = 21 (PSNR = 25.31)

Figure 3.9: Dejittering result on very noisy Mandrill image (512× 512) (corrupted with
white Gaussian noise σ = 0.1). The first column contains full size images, all remaining
columns display some regions of interest to compare in details. First row: jitter-free image. Second
row: jittered image. Third row to fifth row: dejittering with different values for λ and s.
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λ = 0 λ = 0.1 λ = 1

s = 1 s = 5 s = 21 s = 41 s = 1 s = 5 s = 21 s = 41 s = 1 s = 5 s = 21 s = 41

σ = 0 (Noise-free)
Barbara 0.9088 0.9419 0.9614 0.9533 0.9131 0.9456 0.9614 0.9533 0.9063 0.9518 0.9616 0.9534
Boat 0.9322 0.9624 0.9851 0.9771 0.9387 0.9683 0.9853 0.9771 0.9399 0.9812 0.9861 0.9772
Cameraman 0.9585 0.9846 0.9913 0.9851 0.9603 0.9888 0.9913 0.9851 0.9583 0.9930 0.9914 0.9852
Lena 0.9306 0.9576 0.9798 0.9742 0.9411 0.9621 0.9800 0.9742 0.9537 0.9750 0.9805 0.9743
Mandrill 0.7780 0.8295 0.9128 0.9302 0.8016 0.8471 0.9136 0.9303 0.8109 0.9024 0.9185 0.9313
Peppers 0.9018 0.9231 0.9533 0.9569 0.9161 0.9289 0.9537 0.9570 0.9187 0.9480 0.9554 0.9573
Phantom 0.9918 0.9914 0.9876 0.9868 0.9880 0.9908 0.9876 0.9868 0.9797 0.9888 0.9876 0.9867
Micro-tubule 0.9439 0.9827 0.9914 0.9911 0.9591 0.9845 0.9914 0.9911 0.9757 0.9888 0.9916 0.9912

σ = 0.02
Barbara 0.8236 0.8647 0.9236 0.9166 0.8365 0.8722 0.9246 0.9168 0.8265 0.8965 0.9282 0.9174
Boat 0.8308 0.8629 0.9134 0.9140 0.8443 0.8698 0.9141 0.9144 0.8318 0.8902 0.9178 0.9155
Cameraman 0.8308 0.8450 0.8827 0.8894 0.8416 0.8525 0.8844 0.8900 0.8312 0.8702 0.8917 0.8926
Lena 0.8230 0.8515 0.9118 0.9170 0.8409 0.8590 0.9129 0.9171 0.8460 0.8887 0.9166 0.9179
Mandrill 0.7486 0.7962 0.8962 0.9177 0.7733 0.8127 0.8977 0.9179 0.7734 0.8738 0.9034 0.9190
Peppers 0.8068 0.8275 0.8885 0.9047 0.8275 0.8346 0.8893 0.9049 0.8255 0.8662 0.8947 0.9058
Phantom 0.7647 0.7620 0.7710 0.7895 0.7791 0.7574 0.7716 0.7895 0.7597 0.7553 0.7749 0.7909
Micro-tubule 0.8415 0.8842 0.9225 0.9321 0.8609 0.8891 0.9226 0.9321 0.8801 0.9064 0.9249 0.9331

σ = 0.04
Barbara 0.7341 0.7815 0.8700 0.8729 0.7508 0.7911 0.8714 0.8731 0.7383 0.8229 0.8769 0.8745
Boat 0.7315 0.7604 0.8339 0.8423 0.7485 0.7666 0.8345 0.8423 0.7334 0.7928 0.8404 0.8441
Cameraman 0.7232 0.7309 0.7851 0.7938 0.7376 0.7343 0.7858 0.7942 0.7272 0.7583 0.7909 0.7967
Lena 0.7145 0.7407 0.8201 0.8452 0.7370 0.7456 0.8212 0.8455 0.7354 0.7790 0.8267 0.8466
Mandrill 0.7020 0.7416 0.8628 0.8944 0.7277 0.7558 0.8646 0.8947 0.7193 0.8224 0.8720 0.8961
Peppers 0.7046 0.7268 0.8051 0.8360 0.7291 0.7335 0.8067 0.8360 0.7261 0.7669 0.8140 0.8377
Phantom 0.5966 0.5991 0.6238 0.6485 0.6196 0.5973 0.6253 0.6495 0.6117 0.5997 0.6323 0.6522
Micro-tubule 0.7271 0.7644 0.8352 0.8595 0.7490 0.7715 0.8356 0.8594 0.7535 0.7976 0.8396 0.8607

σ = 0.1
Barbara 0.7341 0.7815 0.8700 0.8729 0.7508 0.7911 0.8714 0.8731 0.7383 0.8229 0.8769 0.8745
Boat 0.7315 0.7604 0.8339 0.8423 0.7485 0.7666 0.8345 0.8423 0.7334 0.7928 0.8404 0.8441
Cameraman 0.7232 0.7309 0.7851 0.7938 0.7376 0.7343 0.7858 0.7942 0.7272 0.7583 0.7909 0.7967
Lena 0.7145 0.7407 0.8201 0.8452 0.7370 0.7456 0.8212 0.8455 0.7354 0.7790 0.8267 0.8466

Mandrill 0.7020 0.7416 0.8628 0.8944 0.7277 0.7558 0.8646 0.8947 0.7193 0.8224 0.8720 0.8961
Peppers 0.7046 0.7268 0.8051 0.8360 0.7291 0.7335 0.8067 0.8360 0.7261 0.7669 0.8140 0.8377
Phantom 0.5966 0.5991 0.6238 0.6485 0.6196 0.5973 0.6253 0.6495 0.6117 0.5997 0.6323 0.6522

Micro-tubule 0.7271 0.7644 0.8352 0.8595 0.7490 0.7715 0.8356 0.8594 0.7535 0.7976 0.8396 0.8607

λ = 10 λ = 500 λ = 10000

s = 1 s = 5 s = 21 s = 41 s = 1 s = 5 s = 21 s = 41 s = 1 s = 5 s = 21 s = 41

σ = 0 (Noise-free)
Barbara 0.8799 0.9597 0.9628 0.9542 0.8237 0.9549 0.9683 0.9577 0.7831 0.9313 0.9670 0.9663
Boat 0.9315 0.9916 0.9881 0.9778 0.9008 0.9857 0.9916 0.9806 0.8772 0.9665 0.9859 0.9847
Cameraman 0.9434 0.9953 0.9915 0.9854 0.9299 0.9846 0.9916 0.9867 0.9182 0.9740 0.9843 0.9872
Lena 0.9551 0.9864 0.9824 0.9748 0.9363 0.9825 0.9876 0.9773 0.9135 0.9669 0.9838 0.9812
Mandrill 0.8186 0.9536 0.9294 0.9351 0.8068 0.9678 0.9620 0.9547 0.7894 0.9416 0.9711 0.9771

Peppers 0.9114 0.9685 0.9607 0.9586 0.8874 0.9650 0.9720 0.9650 0.8696 0.9378 0.9696 0.9737

Phantom 0.9640 0.9851 0.9873 0.9868 0.9492 0.9734 0.9841 0.9863 0.9472 0.9619 0.9769 0.9851
Micro-tubule 0.9748 0.9934 0.9924 0.9915 0.9538 0.9914 0.9955 0.9938 0.9334 0.9781 0.9926 0.9937

σ = 0.02
Barbara 0.7967 0.9357 0.9372 0.9201 0.7232 0.9401 0.9606 0.9353 0.6881 0.8984 0.9588 0.9573
Boat 0.8152 0.9243 0.9275 0.9192 0.7771 0.9357 0.9650 0.9400 0.7561 0.8987 0.9714 0.9626
Cameraman 0.8123 0.9019 0.9092 0.8998 0.7967 0.9163 0.9574 0.9311 0.7850 0.8909 0.9652 0.9603
Lena 0.8472 0.9326 0.9284 0.9210 0.8197 0.9303 0.9669 0.9435 0.7935 0.8911 0.9642 0.9629
Mandrill 0.7761 0.9393 0.9176 0.9229 0.7607 0.9589 0.9578 0.9472 0.7434 0.9230 0.9685 0.9747

Peppers 0.8119 0.9212 0.9086 0.9100 0.7858 0.9253 0.9500 0.9325 0.7697 0.8798 0.9490 0.9548

Phantom 0.7382 0.7576 0.7860 0.7983 0.7231 0.7428 0.8041 0.8211 0.7200 0.7396 0.7936 0.8281

Micro-tubule 0.8754 0.9327 0.9335 0.9356 0.8403 0.9315 0.9594 0.9553 0.8135 0.8974 0.9455 0.9586

σ = 0.04
Barbara 0.7036 0.8852 0.8930 0.8803 0.6409 0.9058 0.9461 0.9137 0.6191 0.8525 0.9512 0.9495
Boat 0.7054 0.8483 0.8565 0.8511 0.6696 0.8524 0.9115 0.8842 0.6575 0.7894 0.9245 0.9278

Cameraman 0.7034 0.7949 0.8065 0.8040 0.6863 0.8163 0.8595 0.8452 0.6757 0.7754 0.8790 0.8656
Lena 0.7198 0.8463 0.8464 0.8534 0.6981 0.8442 0.9069 0.8930 0.6793 0.7819 0.9134 0.9248

Mandrill 0.7072 0.9121 0.8912 0.9011 0.6866 0.9416 0.9505 0.9302 0.6735 0.8907 0.9641 0.9647

Peppers 0.7034 0.8374 0.8400 0.8450 0.6840 0.8412 0.9240 0.8932 0.6733 0.7718 0.9218 0.9390

Phantom 0.5875 0.6074 0.6525 0.6612 0.5706 0.6024 0.7137 0.6939 0.5674 0.5957 0.6734 0.7226

Micro-tubule 0.7382 0.8390 0.8527 0.8658 0.7004 0.8297 0.8907 0.8968 0.6820 0.7744 0.8843 0.9084

σ = 0.1
Barbara 0.6021 0.7752 0.8108 0.8177 0.5679 0.7888 0.8993 0.8703 0.5603 0.7038 0.9083 0.9241

Boat 0.6004 0.7289 0.7572 0.7680 0.5827 0.7378 0.8479 0.8176 0.5814 0.6606 0.8599 0.8729

Cameraman 0.6009 0.6602 0.7040 0.7167 0.5827 0.6666 0.7841 0.7722 0.5763 0.6207 0.8063 0.8139

Lena 0.6010 0.7265 0.7243 0.7472 0.5806 0.7177 0.8188 0.8005 0.5746 0.6606 0.8136 0.8250
Mandrill 0.6054 0.7924 0.7899 0.8085 0.5899 0.8158 0.8994 0.8676 0.5873 0.7456 0.9549 0.9377
Peppers 0.5799 0.6996 0.7186 0.7363 0.5662 0.6881 0.8267 0.8003 0.5610 0.6332 0.8224 0.8626

Phantom 0.4783 0.4974 0.5336 0.5498 0.4629 0.4919 0.5831 0.5961 0.4604 0.4813 0.5617 0.6138
Micro-tubule 0.5807 0.6954 0.7028 0.7243 0.5679 0.6609 0.7597 0.7715 0.5653 0.6095 0.7193 0.7721

Table 3.1: Dejittering result on simulated data with different noise levels, window sizes and
regularization parameters. The SSIM values are computed using the dejittered images and their
corresponding unjittered (eventually noisy) version.
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Full-size image

Zoom-in views
3-color Red Green Blue

Figure 3.10: Large jittered image depicting eight tissue microarray spots acquired
by fluorescence scanner in three colors. An region of interest of 4.7× 2.8 mm2 was scanned
at spatial resolution of 0.5 µm/pixel, corresponding to an image of 9544 × 4704 pixels. Two
areas which are marked by blue and yellow box are selected for comparison in details between the
jittered input image and dejittering results. From top to bottom: full size image, zoom-in view of
two selected areas (blue box and yellow box respectively). From left to right of two bottom rows:
3 colors at the same time, red (488 nm), green (532 nm) and blue (635 nm) channels displayed
separately. We can clearly see that the vertical rolling effect in the red channel is stronger than in
the two other channels.

acquired using the Innopsys fluorescence scanner named InnoScan 1100AL at the
spatial resolution of 0.5 µm per pixel with three excitation wavelengths: 488 nm,
532 nm and 635 nm which are compatible with cyanine dye fluorophores such as
Cy2, Cy3 and Cy5. In this experiment, the size of the acquired image is 9544×4704
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pixels. Such a large image in which the absolute displacement between adjacent lines
does not exceed 10 pixels requires huge computational resources if the dejittering is
applied. In order to reduce the computational cost and to produce a satisfactory
comparison between images before and after the correction of displacement error,
we performed dejittering on non-background regions (i.e., tissue core regions) and
we displayed several zoom-in views to better assess the results of the dejittering
algorithm.

In this study, we first noticed that the vertical rolling effect on the jittered
image (see two bottom rows of Figs. 3.10) in the red channel (488 nm) is visibly
stronger than in green (532 nm) and blue (635 nm) channels. This suggests that
the displacement is not the same for the three channels. To our knowledge, this is
mainly due to the imperfection of the mechanical system which results in a trajectory
difference of the three excitation beams. The dejittering was therefore performed
separately on each channel and the result on the three channels was then merged to
produce 3-color image as the original image. In this experiment, the values of λ and
s are set as follows: λ = 500 and s = 11.

The dejittering result obtained with these parameters is reported in Fig. 3.11.
We can notice that the jitter has been significantly reduced on the three channels.
We observe however some regions where the jitter was not well corrected, especially
in transition zones between bright and dark patches, but in overall the visual effect is
sharply improved. Furthermore, in spite of the separate processing on each channel,
the merged image of these dejittered versions does not suffer from decorrelation
artifacts. Accordingly, no registration is required to re-align the dejittering results.

An example of dejittering result on image acquired over a large region of interest
is also illustrated in Fig. 3.3 depicting a tool slide with checkerboard pattern used
for scanner calibration. The width of the input image scanned at 1.0 µm per pixel, is
about 6 thousand pixels corresponding to approximately 6 millimeters in real scale.
Since the distance between two vertical lines of the images can reach several hundreds
of pixels, large estimation windows (high value of s) are considered. As shown in the
two bottom rows of Fig. 3.3, we can notice that dejittering without regularization
provided satisfactory results in terms of visual quality on this piecewise constant
image.

In general, the computational cost depends on the size of the input images as well
as the parameter setting. The computing time is in average 3.8± 0.7 seconds in the
case of dejittering without regularization and 26.9± 9.8 seconds with regularization
on images of size 512× 512 pixels. On real large images whose the width can reach
several thousands of pixels as shown in this section, the computing time varies from
less than 5 minutes to more than 10 minutes for dejittering without regularization
and it is about more than one hour with regularization. The experiments were
performed on a Macbook Pro equipped with 2.7 Ghz Intel Core i7, 16 Gb of RAM
and the Mac OS X v. 10.12.4 operating system. The algorithm was implemented in
C/C++ and we exploited the intrinsic parallelism of the CPU to solve large-scale
problems.
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Figure 3.11: Zoom-in views of the dejittering results obtained on two region of
interest in the TMA image in Fig. 3.10. Top panel: the area inside of the blue box. Bottom
panel: the area inside of the yellow box. In each panel, from left to right: 3-color image, red (488
nm), green (532 nm) and blue (635 nm) channel; from top to bottom: jittered images, dejittered
images, and residual images between the input and restored images.

3.5.3 Comparative studies

In this section, we compare our method to the approach proposed in [Nikolova



74 CHAPTER 3. DEJITTERING OF SCANNED TMA IMAGES

2009a,b], which will be named Nikolova’s line dejittering (NLD) method in the se-
quel. The NLD method belongs to the class of displacement-estimation-based algo-
rithms and may be considered as a state-of-the-art method for line jitter removal.
In our experiments, we consider the standard version of NLD (i.e. Algorithm 1 in
Nikolova (2009b) without denoising). In order to conduct a fair comparison of these
two methods – one of which cannot handle non-constant displacements along the
horizontal direction, and the other is not appropriate to random displacements along
the vertical direction – we generated a specific structured jitter called “alternating
line jitter”: one line of every two lines is shifted but the displacement is constant
along the horizontal direction. This jittering scenario fulfills the application con-
ditions of each method, instead of those described in Section 3.5.1. Accordingly,
jitter-free images (previously used for experiments in Section 3.5.1) are corrupted
by the mentioned jittering process with both integer and non-integer displacements
to evaluate the restoration performance. White Gaussian noise is also added to
evaluate the robustness of the algorithms. Moreover, we have also performed com-
parisons on real fluorescence images: the two methods are applied on small regions
of interest of Fig. 3.10, in which the displacement between two subsequent lines is
quasi-constant along the horizontal direction. This situation is very close to the con-
text of “alternating line jitter”. Because strong regularity in both the vertical and
horizontal directions is desired, one considers large estimation windows and high
regularization values when applying our algorithm. Typically, we set s = 81 and
λ = 104 in this experiment.

Examples of dejittering results on several simulated and real images corrupted
with different signal-to-noise ratios, are illustrated in Fig. 3.12 showing zoom-in
views of jittered and dejittered images obtained with the two methods. In the
last column of Fig. 3.12, we can clearly notice that in the case of integer displace-
ment, NLD produces results which are visually more pleasant while compared with
jittered images. However, this method suffers from warping effect (distortion) ap-
pearing in regions depicting typically strong noise (e.g., Barbara image corrupted
with Gaussian noise with standard deviation σ = 0.04) or noise-like textures (noise-
free version of Mandrill image as shown in Fig. 3.12). These re-alignment artifacts
are a direct consequence of the bias in the displacement estimation due to the lack
of regularity of the estimated displacement along the vertical direction. Nikolova
(2009b) then suggests to slightly modify the original NLD method by combining
with a pre-denoising step when dealing with noisy images, especially in the case of
strong noises. In contrast, our dejittering method is able to provide distortion-free
results on jittered images with integer displacements (see the third row of Fig. 3.12)
without any pre-processing, even when the noise is very strong. In the case of non-
integer displacement, NLD performs poorly. It produces dejittered images which
look highly warped in the vertical direction. In addition, the occurred jitter is not
removed but replaced by another jitter, generating distorted images. In our opinion,
this is because NLD, originally designed for integer displacement, does not support
sub-pixel precision. Consequently, approximation errors on subsequent lines are ac-
cumulated, causing more severe errors. Strong distortion is also observed in the
NLD dejittering results on real images (see bottom row of Fig. 3.12) as expected,
due to infinitesimal variations and non-integer nature of the displacement field. In
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Figure 3.12: Comparative dejittering results obtained with the proposed method and
Nikolova’s method (NLD) Nikolova (2009a,b). From left to right: jitter-free images,
jittered images, dejittered images obtained with our method, and dejittered images obtained with
NLD. From top to bottom: zoom-in views of noisy-free Mandrill image (512 × 512) corrupted with
integer line jitter (d = 6), Barbara image (512 × 512) corrupted with Gaussian noise (σ = 0.04) and
integer line jitter (d = 6), Lena image (512 × 512) corrupted with Gaussian noise (σ = 0.01) and
non-integer line jitter (d = 6.39), Cameraman image (512 × 512) corrupted with Gaussian noise
(σ = 0.02) and non-integer line jitter (d = 6.39), and real fluorescence TMA image (see Fig. 3.10).

comparison to these unsatisfactory results, the dejittered images obtained with our
algorithm are visibly much more better in all the three cases. On simulated images,
the proposed method is able to restore very well fine details as well as large structures
and produces results looking closely similar to the reference (jitter-free) images. Its
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superior performance versus NLD emphasizes the necessity of taking into account of
non-integer displacements and the influence of a dedicated regularization term when
dealing with real-world structured jitter.

3.5.4 Denoising of jittered images

In many cases, it happens that image quality is degraded not only by jitter but
also by noise during acquisition. The restoration task, therefore, aims at remov-
ing the occurred jitter as well as denoising the input acquired images. However,
denoising without dejittering yields in general weak results since the existing de-
noising algorithms exploit contextual information from neighbor pixels which suffer
from mispositioning due to jitter. It leads to unsatisfactory denoising results or,
even worse, serious distortion of image details. To reduce these artifacts, several
authors (e.g, [Shen 2004; Lenzen and Scherzer 2011; Dong et al. 2015]) recommend
to jointly perform denoising and dejittering by iteratively estimating a jitter-free
and noise-free image from the observed noisy and jittered image. These methods in
principle incorporate a denoising step in the “global” restoration scheme, implying
that a change of the denoising model requires major modifications in the resulting
algorithm. While the performance of the latter on images, which are corrupted with
“alternating line pixel jitter” and noise, still remains in question, it unfortunately is
not practical if one envisages applying sophisticated denoising methods.
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Figure 3.13: Denoising results obtained with three different methods applied on
a jittered and dejittered region of interest extracted from a real fluorescence TMA
image shown in Fig. 3.10. The jitter is not removed if denoising is applied on the jittered image
(first row). For viusalization purposes, the original and restored images have been normalized in
the range [0, 1].

Accordingly, we consider here a more flexible two-step approach similar to those
described in [Nikolova 2009b]. First, it consists dejittering the input images and then
denoising the dejittered image. In comparison to Nikolova (2009b) which suggests
two noise removal steps while dealing with jittered images with strong noise – i/ an
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under-denoising step is applied before dejittering to improve the compensation of
displacement errors; ii/ a full denoising step is applied on the dejittered images –
we propose to denoise the jitter-corrected images, irrespective of the noise level. A
variety of efficient denoising algorithms can be then combined with our dejittering
method.

The two step approach is illustrated in Fig. 3.13 showing results obtained on
one channel (Green component) of the fluorescence image in Fig. 3.10, using dif-
ferent advanced denoising methods, applied to jittered and dejittered images. In
our experiments, we considered the Total Variation [Rudin et al. 1992], PURE-LET
[Luisier et al. 2009, 2010] and ND-Safir [Kervrann and Boulanger 2006; Boulanger
et al. 2010] algorithms. We can clearly notice that jitter cannot be removed if de-
noising is applied on the jittered images. Actually, noise is removed but jitter is
visually emphasized. More satisfactory results are obtained if the dejittered images
are denoised in a second step.

3.6 Conclusion

In this chapter, we have proposed a variational method to remove a specific jitter
arising in large fluorescence scanner images. We formulate the dejittering problem as
an estimation problem of the underlying displacement by minimizing an energy func-
tional which combines convex regularization and non-convex non-local data terms.
To solve the non-convex minimization problem, the half-quadratic splitting tech-
nique is used to decompose the energy functional into convex and and non-convex
parts in such a way that the original minimization problem can be done by alter-
nating two optimization steps. One step used the projected gradient algorithm to
minimize the convex sub-problem. A fast exhaustive search is used to minimize the
non-convex sub-problem in the second step. This approach allows us to approximate
accurately the optimal solution of the original problem while avoiding the lineariza-
tion of the data term. In numerous experiments, we show that our method is able
not only to remove efficiently the rolling effect due to this jitter even in the case of
huge images and large, non-integer displacements.
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Chapter 4

Sparse variation based approach for

fluorescence image deconvolution

Related publication

H.-N. Nguyen, V. Paveau, C. Cauchois, C. Kervrann. Generalized sparse variation
regularization for large fluorescence image deconvolution1. Manuscript submitted
for publication in IEEE Transactions on Image Processing, 2017

Abstract

In this chapter, we generalize the sparse variation (SV), which combines the total-
variation (TV) regularization and the L1 regularization, and introduce a novel family
of convex and non-quadratic regularizers for fast deconvolution of large 2D fluores-
cence images. These regularizers are defined as mixed Lν-L2 norms (ν ≥ 1) which
group image intensity and spatial differentials, computed at each pixel of the im-
age. By coupling a regularization term of this family with a quadratic data fidelity
term, we propose a fast and efficient deconvolution method by using the primal-dual
(proximal) algorithms to minimize the corresponding energy functional. Experiment
results on both 2D simulated and real fluorescence scanner images demonstrate the
performance of our method in terms of restoration quality as well as computational
time.
Keywords: Fluorescence imaging, image deconvolution, sparse variation, convex
optimization, proximal algorithms

4.1 Introduction

Fluorescence microscopy is nowadays an imaging technique widely used in the field
of biomedical sciences for cell biology research. The sample of interest is first la-
belled by fluorescent molecules before being excited by the illumination light of a
given wavelength; upon the excitation, fluorophore re-emits light of relatively longer

1This work was supported by Innopsys.
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wavelength which is then collected by photosensitive sensors to form the digitized im-
age of the input sample. This imaging modality provides in practice a very powerful
framework to biologists for observing, analyzing, and studying specific fluorescently-
tagged structures at very high spatial and temporal resolutions.

Despite number of advantages, there are two major limitations of fluorescence
microscopy. The first limitation is the presence of noise in acquired images. Similarly
to other optical imaging techniques, the main contribution of noise here is the photon
(shot) noise. The latter is mainly due to the quantum nature of light, implying that
the arrival of a photon on a sensor is a random event and thus the number of incident
photons over a period of time is a random variable depending on the brightness
of the light source. In the context of fluorescence imaging, the image signal-to-
noise-ratio (SNR) is usually very low because the low dose of illumination light is
required to avoid photo-bleaching of fluorescent molecules and preserve specimen
integrity (photo-toxicity). Additionally, the quality of acquired fluorescence images
is worsened by the blurring effect. This second limitation (i.e. blur) is a consequence
of various factors during acquisition process including optical diffraction, excitation
wavelength, immersion medium refraction and specimen thickness. These limitations
not only degrade the image quality in terms of overall visualization but also have a
negative severe impact on specimen analysis since they reduce the ability to recognize
the objects of interest from noisy background and to detect fine details.

To improve the quality of images acquired by fluorescence microscopes, deconvo-
lution is frequently suggested as pre-processing step for noise removal and resolution
enhancement before further analysis. It aims at restoring the original (noise-free and
sharp) image from observed noisy and blurry image, which is in general an ill-posed
inverse problem. Number of regularization-based methods have been proposed over
the past few decades in order to stabilize numerically the solution of the underlying
inverse problem as well as to produce better estimation in the sense that the latter
looks more similar to real-world images. The choice of an appropriate regularization
modelling prior knowledge about the imaged objects is thus highly important for
high-quality deconvolution results.

In this chapter, we present a novel family of convex regularizers which are well-
suited for fluorescence microscopy images by taking into account the characteristics
of fluorescence imaging context. These regularizers are inspired from the concept
of sparse variation (SV), originally introduced by Eickenberg et al. (2015) for MRI
segmentation. Indeed, based on the observation of the sparse distribution and the
co-localization of regions with high intensity and high-magnitude gradient on flu-
orescence images, we consider the mixed norm L1-L2 norm of a linear transform
combining the image intensity and spatial differential coefficients into one feature
vector, computed at each pixel of the image, to promote the spatial sparsity of bright
objects over relatively darker background. Under the assumption of additive Gaus-
sian noise, the image deconvolution problem then corresponds to the minimization
of a convex functional which can be efficiently solved by primal-dual (proximal) al-
gorithms. We evaluate furthermore the proposed SV-based deconvolution method
on both simulated and real fluorescence images. Experimental results prove that our
regularization approach outperforms total variation (TV) [Rudin et al. 1992] which
is the most widely used regularizer in image processing, and is very competitive
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when compared to the Hessian Schatten-norm regularizer [Lefkimmiatis et al. 2013].
The remainder of the chapter is organized as follows. In Section 4.2, we briefly

review several existing deconvolution methods for bi-dimensional (2D) fluorescence
microscopy images. In Section 4.3, we introduce the norm-based regularization ap-
proach which is frequently used in image processing. We derive a novel family of
convex non-quadratic regularizers by generalizing the concept of sparse variation.
In Section 4.4, given the family of regularizers, a general variational framework for
image deconvolution is presented. We also describe an optimization algorithm to
solve the underlying variational problem. Then, in Section 4.5, we assess the per-
formance of our approach on simulated and real large fluorescence images. Finally,
we conclude this chapter and propose some future work in Section 4.6.

4.2 Related works for deconvolution of fluorescence
images

In fluorescence microscopy, the arising blur is mainly induced by the limited aperture
of the objective which results in light diffraction through the optical system. The
diffraction phenomenon implies that light emitted by an infinitely small point source
appears wider at the focal plan and spreads into a specific pattern called “point
spread function” (PSF). As a consequence, the obtained 2D image of an object is
the superposition of these emitted light patterns from each point of the object. It
can be mathematically modelled as the convolution product of the imaged object
and the PSF of the microscope under the linear shift-invariance assumption of the
imaging system. In contrast with hardware-assisted techniques that aim at adjusting
the optical system to reduce the size of the PSF and/or reject out-of-focus light
before it reaches the detector, hence improving the spatial resolution of acquired
images, deconvolution is a computational post-processing technique which consists
in restoring a sharper image of the object from its blurry digitized version.

In the last twenty years, many deconvolution methods have been investigated in
order to deal with the steadily increasing amounts of microscopy data. The most
popular deconvolution approach is the linear filtering method such as Wiener and
Tikhonov-Miller (see [van der Voort and Strasters 1995; van Kempen et al. 1996,
1997]) filters. The former provides the minimizer of the mean squared error between
the estimated (deconvolved) image and the true image, while the latter consists in
minimizing an energy functional composed of a quadratic data term and a quadratic
regularization term, resulting in linear operations on the acquired image. Both
Wiener and Tikhonov-Miller filters assume that the acquired image is corrupted by
additive Gaussian noise. Despite the simplicity and low-computation-requirement,
such linear methods usually produce limited deconvolution results since they do not
restore fine image details at frequency components that are beyond the bandwidth
of the point spread function (i.e. the support of its Fourier transform). Moreover,
the positivity of the results obtained with these filters can not be always guaranteed
due to their linear nature. It presents therefore a major issue while dealing with
fluorescence microscopy images in which pixel intensities have positive values by
definition.
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To handle this issue, several iterative non-linear algorithms have been proposed
instead of previously mentioned one-step approaches. Among them, the iterative
constrained Tikhonov-Miller algorithm [van der Voort and Strasters 1995; van Kem-
pen et al. 1996, 1997] and a modified version of it which is called the Carrington
algorithm [Carrington 1990; Carrington et al. 1995] consist in minimizing itera-
tively the Tikhonov functional. The only difference between them is in the way
they integrate the constraint of non-negativity at each iteration. In contrast with
these additive-form algorithm, the Gold-Meinel algorithm [Meinel 1986] implicitly
incorporates the positivity by considering a multiplicative formulation. As an al-
ternative, the Richardson-Lucy algorithm [Richardson 1972; Lucy 1974; Shepp and
Vardi 1982] which is derived from the maximum likelihood estimation (MLE) under
the assumption of Poisson noise involves similar multiplicative-form iterations. An
important drawback of both Gold-Meinel and Richardson-Lucy algorithms is how-
ever their numerical instability, resulting in noise amplification after a small number
of iterations. A further review of these classical deconvolution algorithms is given
in [Sibarita 2005].

Later on, the total variation (TV) regularization approach, originally introduced
by Rudin et al. (1992) for image denoising, was widely used for image deconvolu-
tion [Combettes and Pesquet 2004], including in microscopy imaging (see [Dey et al.
2006; Soulez et al. 2012]). The success of this well-known approach is mainly due
to its ability to preserve sharp edges and smooth homogeneous areas in the under-
lying images. Although, its downside is the staircasing effect, resulting in images
of contiguous regions with constant intensities [Chan et al. 2000b]. This effect is
rather an artifact than a desired property on non-synthetic images. A family of
non-quadratic functionals which involve Schatten norms of the Hessian matrix has
been investigated in [Lefkimmiatis et al. 2013] as second-order extensions of TV in
order to attenuate staircasing effect. Its performance was furthermore depicted in
[Lefkimmiatis et al. 2012; Lefkimmiatis and Unser 2013] showing their effectiveness
in biomedical applications, specially for fluorescence image deconvolution. Beside
these Hessian-based regularizers, other second and higher-order regularization ap-
proaches were also proposed as alternatives, including the L1 norm of the Laplacian
operator, the modified Laplacian and the affine total-variation (see [Lefkimmiatis
et al. 2013] for comprehensive comparison). Recently, a novel energy functional has
been introduced using a specific non-convex regularization functional [Arigovindan
et al. 2013] to cope with the relevant characteristics of fluorescence images. This
functional tends to penalize jointly the pixel intensities and intensity variations to fa-
vor sparsely distributed bright objects over relatively darker background. However,
its non-convex nature leads to complicated optimization problems and does not guar-
antee the convergence to global optimum. A gentle initialization of the algorithm
is suggested in [Arigovindan et al. 2013] to overcome local minima of the energy
functional. In our opinion, an appropriate regularizer which takes into account im-
portant characteristics of fluorescence imaging in a similar way as in [Arigovindan
et al. 2013], and possesses interesting mathematical properties, including convexity,
invariance to contrast, scale, rotation, and translation as total variation and Hes-
sian Schatten norm regularizers, is highly recommended for fast and high-quality
deconvolution of large fluorescence images.
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4.3 Norm-based regularization

Most of commonly-used regularizers in imaging problems (such as denoising, decon-
volution, inpainting, etc.) have the following form:

ER(u) =

�

Ω

Φ(Lu(x)) dx , (4.1)

where u is an image defined on a square domain Ω ⊂ R
2, L (called “regularization

operator”) is a linear operator used to control the spatial distribution of u and Φ(·)
is a positive potential function usually related to a norm distance. A typical exam-
ple is the Tikhonov regularization using the squared Euclidean (L2-) norm chosen
as potential function (Φ = � · �22), frequently combined with the identity operator
(L = Id) or a differentiation operator (such as the gradient and the Laplacian opera-
tors) or eventually an orthogonal projection operator in order to cope with particular
structure of the desired solution. Due to their convex and differentiable properties,
quadratic penalties are widely used for many years to numerically stabilize inverse
problems arising in number of applications including astronomy [Gull and Daniell
1978; Starck and Murtagh 2006], ultrasound imaging [Zhao et al. 2016], scanning-
tunneling microscopy [Kokaram et al. 1995], electrical tomography [Vauhkonen et al.
1998], magnetic resonance imaging [Ying et al. 2004] and atomic-force microscopy
[Cidade et al. 2000]. Nevertheless, despite its mathematical tractability and im-
plementation simplicity, Tikhonov regularization yields unsatisfactory results if the
image transform (by the regularization operator L) does not have a small norm. In
particular, when differentiation operator is used, it tends to produce blurred details
in obtained images since images with low gradient magnitudes are encouraged.

4.3.1 Differential norm regularizers

To avoid over-smoothing caused by quadratic functionals, non-quadratic regularizers
have been studied recently as alternative solutions. One of the most popular among
them is total variation [Rudin et al. 1992] which considers the gradient operator and
the Euclidean norm as the following:

TV(u) =

�

Ω

�∇u(x)�2 dx , (4.2)

where ∇u(x) ∈ R
2 denotes the gradient of u at the point x. By definition, total

variation can be interpreted as the L1-norm of the image gradient magnitude �∇u�2;
or in other words, it corresponds to the mixed L1-L2 norm (� · �1,2) of the image
gradient ∇u where the L1-norm acts on the spatial domain Ω and the L2-norm
acts on the gradient vector components. The use of the L1-norm, which promotes
sparsity, favors images with vanishing gradients except at some points and thus
allows to restore well-preserved and sharp edges, showing the superior performance
of TV when compared to the Tikhonov approach. The convexity of such a norm
enables to consider efficient optimization algorithms (see [Boyd and Vandenberghe
2004]) and explains the wide use of total variation in various imaging applications
due to its computational simplicity. However, the drawback of TV is the staircasing
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effect (also known as blocking artifact) since imposing vanishing gradients also leads
to piecewise-constant reconstructions while the underlying images are not necessary
piecewise-constant.

A way to prevent the blocking artifact is to “regularize” the TV functional by
replacing the Euclidean norm of the image gradient by a smooth approximation
[Nikolova 2004] of the following form:

TVh�
(u) =

�

Ω

h�(�∇u(x)�2) dx , (4.3)

where h� : R+ → R is a smooth and non-decreasing function on R+ and � is a
parameter controlling the smoothness of the approximation. A usual and convenient
choice for h� is the Huber function

t �−→
�

1
2�
t2 if |t| ≤ � ,

|t|− �
2

if |t| > � ,
(4.4)

which leads to the so-called “Huber norm”. This “norm” has similar behavior as
the Euclidean norm for high gradient (when �∇u�2 > �) but is quadratic for small
gradient and thus implies the property of avoiding the blocking artifact of the as-
sociated TV-Huber (TVH) regularizer. The performance of TV-Huber model has
been proved in [Louchet and Moisan 2013] for image denoising.

Another way to overcome the issue of staircasing is to consider higher-order dif-
ferentiation operators instead of first-order operators. By investigating the Hessian
operator which is a second-order operator, Lefkimmiatis et al. (2013) proposed a
family of convex regularizers as an extension of total variation. It is based on the
matrix norm of the Hessian, computed at each point of the image

HVp(u) =

�

Ω

�Hu(x)�Sp
dx , p ≥ 1 , (4.5)

where Hu(x) is the Hessian matrix of u at the point x

Hu(x) =






∂2

∂x2u(x)
∂2

∂x∂y
u(x)

∂2

∂y∂x
u(x) ∂2

∂y2
u(x)




 , (4.6)

and �Hu(x)�Sp
denotes its Schatten p-norm [Bhatia 1997] defined as

�Hu(x)�Sp
=

�
2�

l=1

σ
p
l (Hu(x))

� 1
p

, (4.7)

with σl(Hu(x)) the l-th singular value of Hu(x). The above-mentioned regulariza-
tion functionals named Hessian variation (HV) favor vanishing second-order differ-
entials, hence lead to piecewise-linear reconstructions in comparison with piecewise-
constant reconstructions produced by total variation. They allow not only to prevent
the undesired staircasing effect but also to provide better approximation of the spa-
tial variation of image intensities.
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In spite of the effectiveness of these Hessian-based regularizers, there are however
few important characteristics of fluorescence imaging which were not considered by
this approach, especially the sparsity of the spatial distribution of high-intensity
regions and the colocalization between these regions and those with high magnitude
gradients. In the next part, we introduce a novel regularization approach which
exploits these interesting characteristics but preserves the desired properties of total
variation as well as Hessian variation, such as convexity, contrast, rotation, trans-
lation, and scale invariance. It enables thus the application of convex optimization
algorithms that are very efficient for large scale problems as in the context of fluo-
rescence microscopy.

4.3.2 Generalized sparse variation

Originally introduced in [Eickenberg et al. 2015] for brain MRI segmentation, sparse
variation (SV) is a non-quadratic penalty defined as

SVρ(u) =

�

Ω

�

ρ2�∇u(x)�22 + (1− ρ)2u(x)2

� �� �

�K1,ρu�2

dx , (4.8)

where ρ ∈]0, 1[ is a parameter controlling the trade-off between spatial regularity
and sparsity, and K1,ρ is the linear operator gathering the image gradient and the
image intensity components:

K1,ρ =

�
(1− ρ) Id

ρ ∇

�

and K1,ρu(x)=





(1− ρ)u(x)
ρ ∂xu(x)
ρ ∂yu(x)



 ∈ R
3 , (4.9)

with ∂x and ∂y denote the first order derivative in the horizontal and vertical direction
respectively. From this point-of-view, sparse variation is closely similar to total
variation and can also be expressed as a mixed L1-L2 norm as:

SVρ(u) = �K1,ρu�1,2 , (4.10)

where the operator K1,ρ is considered instead of the gradient operator. This regu-
larizer has been proposed to reduce blocking artifacts by combining the L1 penalty
(on the image intensity), which enforces the sparsity of the images with TV penalty,
which enforces the sparsity of image gradient. The idea behind this combination is
to sparsify jointly the spatial distribution of image intensities and image gradients
and to allow smooth variations between spatially-contiguous non-zero regions of the
underlying image. Indeed, it promotes images with background with small intensity
values and sparsely distributed bright objects since if a pixel is non-null, the gradi-
ent vector at this pixel is non-null as well, or otherwise both of them are null. Such
images look like surprisingly to those which are typically obtained in fluorescence
imaging.

Based on the concept of grouping image intensity and spatial differentials, we
propose an extended version of sparse variation using the second order differentia-
tion operator. The proposed regularization which is named as Hessian-based sparse
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variation (HSV) is defined as the following:

HSVρ(u) =

�

Ω

�

ρ2�Hu(x)�2F + (1− ρ)2u(x)2 dx , (4.11)

where � · �F denotes for the matrix Frobenius norm and ρ ∈]0, 1[ is the weighting
parameter. We also note that the Frobenius norm which is the square root of the
sum of squared matrix entries coincides with the Schatten 2-norm (� · �S2) in the
case of the Hessian matrix due to its symmetry. More interestingly, by using the
fact that the Frobenius norm of the Hessian matrix is equal to the Euclidean norm
of its vectorized version, if we define

K2,ρ �









(1− ρ) Id
ρ ∂2

xx

ρ ∂2
xy

ρ ∂2
yx

ρ ∂2
yy









, (4.12)

the expression of the Hessian-based sparse variation can be re-written as:

HSVρ(u) =

�

Ω

�K2,ρu�2 dx = �K2,ρu�1,2 . (4.13)

It recalls once again the famous mixed L1-L2 norm mentioned earlier. Our Hessian-
based regularization is analogous to those introduced in [Arigovindan et al. 2013]
which also combines image intensities and second-order differentials but a relaxed
logarithm function is used for more sparsifying effect as

u �−→
�

Ω

log(�K
2, 12

u�2 + ε2) dx , (4.14)

where ε > 0 is a control parameter to prevent the singularity at 0 of the logarithm.
From the definitions (4.8)–(4.13), we remark furthermore that the original sparse

variation and its Hessian-based version correspond to convex regularizers since they
are defined as the integration of linear operators. It is easy to verify that these
regularizers are homogeneous, shift- and rotation-invariant as total variation. These
properties not only are important in the sense of mathematical functional analysis
but also allow the design of exact and efficient algorithms which are not possible for
the smooth logarithm-based regularizer described in [Arigovindan et al. 2013]. In
general, by using an arbitrary k-th order differentiation operator and by replacing the
L1-norm by a Lν-norm (ν ≥ 1), we obtain a generalized version of sparse variation
as the following:

GSV(k)
ρ,ν(u) ��K

k,ρ
u�νν,2

�

�

Ω

�
ρ2�D(k)u(x)�22 + (1− ρ)2u(x)2

� ν
2 dx , (4.15)

where D(k) denotes the corresponding vectorized version of a k-th order differenti-
ation operator and ν is the parameter controlling the convexity degree of the func-
tional. The family of convex regularizers GSV(k)

ρ,ν includes therefore sparse variation
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(k = 1, ν = 1) and Hessian-based sparse variation (k = 2, ν = 1). In this work, we
only consider k = 1 or 2 for the sake of simplicity, and we focus on the case of ν = 1
to impose the sparsity of the image transform K

k,ρ
u which is the most important

property to restore fluorescence images.

4.4 Variational image deconvolution

4.4.1 Continuous framework

Given an observed image f : Ω → R which is blurred and noisy, image deconvolu-
tion consists in restoring the underlying image u : Ω → R such that the following
acquisition model holds:

f = T (Hu) , (4.16)

where H denotes the linear operator representing the blur related to the optical
system (e.g., point spread function) and T is a degradation operator modeling the
measurement noise. In fluorescence microscopy, the arising shot noise is usually
modeled by the Poisson distribution (or eventually by a mixed Poisson-Gaussian
distribution) which is non-stationary and signal-dependent. Although this model
is very convenient for modeling purpose, it also leads to practical computational
difficulties since its associated data fidelity term is non-quadratic and is defined
only for strictly positive images (not defined for images having zero-value pixels).
To avoid the strict positivity issue, instead of considering the Poisson noise model,
we assume, in this work, that the observed image f is corrupted by a Gaussian white
noise as the following:

f = Hu+ η , (4.17)

where η denotes the additive Gaussian noise with zero-mean and standard deviation
σ. Variance stabilization techniques (see [Starck and Murtagh 2006; Delpretti et al.
2008; Boulanger et al. 2010; Makitalo and Foi 2013]) can be used in the case of
Poisson-Gaussian noise to approximately convert the mixed noise into a Gaussian
noise [Dupe et al. 2009].

Under the assumption of additive Gaussian noise, the associated data fidelity
term is a quadratic functional which corresponds to a least-squares fitting:

ED(u) =
1

2

�

Ω

�
Hu(x)− f(x)

�2
dx . (4.18)

Putting together this quadratic data term and the proposed regularization, the so-
called SV (sparse variation) deconvolution can be reformulated as a minimization
problem:

û = argmin
u

1

2
�Hu− f�22 + λ�K

k,ρ
u�1,2 (4.19)

= argmin
u

�

Ω

�1

2
(Hu(x)− f(x))2 + λ�K

k,ρ
u(x)�2

�

dx ,

where k = 1 or 2, 0 ≤ ρ ≤ 1 and λ ≥ 0 is the regularization parameter. We remark
that the problem (4.19) is convex since the underlying energy functional is sum of



90 CHAPTER 4. SPARSE VARIATION DECONVOLUTION

convex terms, but it is non-smooth because of the singularity of the regularization
term. Solving such a problem is not a trivial task due to its non-smoothness. Smooth
approximation can be envisaged to overcome the non-differentiability of the underly-
ing energy functional (objective) if we want to use standard differentiable optimiza-
tion techniques (such as gradient descent or Newton-Raphson method). However,
the solution of the approximated problem could be different from those of the orig-
inal problem because the behavior of the objective is modified. To our knowledge,
only primal-dual methods (e.g, [Chambolle and Pock 2011; Condat 2013]) allows to
solve directly this kind of convex and non-smooth problem without any modification
of the energy functional.

4.4.2 Discrete formulation

The observed noisy and blurry image f , which is obtained at the end of the ac-
quisition process, is represented by its digitized (discrete) version and not by its
continuously defined counterpart. The continuous model is not appropriate for dis-
crete images even though the estimation of the continuous image u from discrete
samples of f is in principle possible. For that reason, we propose to consider a dis-
crete version of (4.19) by assuming that the images u and f are sampled according
to the sampling grid

Λ = Z
2 ∩ Ω = {1, 2, . . . ,M} × {1, 2, . . . , N} . (4.20)

For a coordinate p = (i, j) ∈ Λ, we denote by u
i,j

= u(p) (resp. f
i,j

= f(p))
the value of u (resp. f) at the position (i, j). Discrete version of these images are
therefore given by {u

i,j
}

1≤i≤M,1≤j≤N
and {f

i,j
}

1≤i≤M,1≤j≤N
. Let us consider X = R

MN

a finite dimensional vector space equipped with a standard inner (scalar) product

�w,w��X =
M�

i=1

N�

j=1

w
i,j
w�

i,j
. (4.21)

The induced norm by the defined inner product is given by

�w�X2 =
�

�w,w�X =

�
M�

i=1

N�

j=1

w2
i,j

� 1
2

. (4.22)

It is easy to check that both {u
i,j
}

i,j
and {f

i,j
}
i,j

belong to the mentioned vector
space X .

In the following, without risk of ambiguity, we will consider the notations K
k,ρ

:

X → X 2k+1 and H : X → X for discrete versions associated with the intensity-
differential-grouping and the blurring operator. In the discrete setting, the blurring
operator H corresponds to a discrete convolution which can be efficiently computed
by using fast Fourier transform (FFT) (see [Heideman et al. 1984; Van Loan 1992;
Frigo and Johnson 1998, 2005]). To discretize K

k,ρ
(with k = 1 or 2), we use standard

finite differences for the gradient and Hessian operators with Neumann conditions
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on image boundaries

(K1,ρu)i,j =





(1− ρ)u
i,j

ρ(D(1)
1 u)

i,j

ρ(D(1)
2 u)

i,j



 ∈ R
3 , (4.23)

and

(K2,ρu)i,j =









(1− ρ)u
i,j

ρ(D(2)
1, 1u)i,j

ρ(D(2)
1, 2u)i,j

ρ(D(2)
2, 1u)i,j

ρ(D(2)
2, 2u)i,j









∈ R
5 , (4.24)

where

(D(1)

1 u)
i,j
=

�
u

i+1,j
− u

i,j
if i < M ,

0 if i = M ,
(4.25a)

(D(1)

2 u)
i,j
=

�
u

i,j+1
− u

i,j
if j < N ,

0 if j = N ,
(4.25b)

(D(2)

1, 1u)i,j =

�
u

i+1,j
− 2u

i,j
− u

i−1,j
if 1 < i < M ,

0 otherwise ,
(4.25c)

(D(2)

2, 2u)i,j =

�
u

i,j+1
− 2u

i,j
− u

i,j−1
if 1 < j < N ,

0 otherwise ,
(4.25d)

(D(2)

1, 2u)i,j =(D(2)

2, 1u)i,j =







u
i+1,j+1

− u
i+1,j

− u
i,j+1

+ u
i,j

if i < M and j < N ,
0 otherwise .

(4.25e)

Let us consider these discrete operators and define the mixed L1-L2 norm of
{(K

k,ρ
u)

i,j
}

i,j
as

�K
k,ρ
u�X1,2 =

M�

i=1

N�

j=1

�(K
k,ρ
u)

i,j
�2 , (4.26)

where the L1-norm acts now on the discrete domain Λ. The energy functional
associated with SV deconvolution problem in the discrete setting then reads, where
λ ≥ 0,

E(u) =
1

2
�Hu− f�2X2

+ λ�K2,ρu�X1,2 . (4.27)

Furthermore, due to the nature of photon-limited imaging in fluorescence mi-
croscopy which implies that image intensities are upper and lower bounded, range
constraints on image intensities can also be added

C = {u : 0 ≤ u
i,j

≤ umax, 1 ≤ i ≤ M, 1 ≤ j ≤ N} (4.28)

= [0, umax]
MN ⊂ X ,

where the lower bound 0 guarantees to positivity of the solution and the upper
bound umax > 0 is the maximal intensity value allowed. Finally, we consider the
following minimization problem:

û=argmin
u

1

2
�Hu− f�2X2

+ λ�K
k,ρ
u�X1,2 + ıC(u) , (4.29)
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where ıC denotes the characteristic function of the convex subset C defined as

ıC(u) =

�
0 if u ∈ C ,

+∞ otherwise .
(4.30)

We notice that the objective function in (4.29) is a sum of linear composite functions
as u �→�m

n=1 Fn(Lnu), where each Fn is a convex function and each Ln is a linear
bounded operator. Formally, we can write m = 3, F1 = ıC, L1 = Id, F2 = λ� ·�X1,2,
L2 = K

k,ρ
and F3 = 1

2
� · �2X2

, L3 = H(·) − f . Generic primal-dual proximal
approaches can be used to minimize this linear combination of convex functions as
proposed in [Combettes et al. 2011, 2014], but it is not optimal since the smoothness
of the quadratic terms 1

2
�Hu− f�2X2

is not exploited. In order to solve the problem
(4.29), the design of an appropriate algorithm requires therefore to take into account
the specific form of the corresponding energy, i.e. the sum of a simple convex
function F = ıC, a more sophisticated composite function G ◦ L = λ�K

k,ρ
(·)�X1,2

(here, G = λ� · �X1,2 and L = K
k,ρ

) and a smooth function H = 1
2
�H(·)− f�2X2

.

4.4.3 Minimization of the proposed energy

In this section, we present a first-order method to minimize the sum of convex func-
tions in (4.29), based on the proximal splitting approaches (see [Mercier 1979; Eck-
stein and Bertsekas 1992; Combettes 2004; Combettes and Wajs 2005; Combettes
and Pesquet 2011; Chambolle and Pock 2011; Condat 2013, 2014]). It consists in
decomposing (splitting) the original problem into several simple sub-problems in
the way that each single function of the sum can be processed separately. Indeed,
smooth function involves its gradient operator, while non-smooth function implies
its Moreau proximity operator [Moreau 1965]. These operators are well-suited for
large-scale problems arising in signal and image processing, because they only exploit
first-order information of the function and thus enable fast and efficient computation.

Let us recall first that the proximity operator of a convex function J : X → R

is defined as

proxτJ (u) = argmin
w∈X

J (w) +
1

2τ
�u− w�2X2

, (4.31)

where τ > 0 is a control parameter. From this definition, it easy to verify that the
proximity operator of the function F (u) = ıC(u) is nothing else than the projection
(according to the norm � · �X2) onto the convex subset C = [0, umax]

MN as the
following

proxτF (u) = argmin
w∈X

ıC(w) +
1

2τ
�u− w�2X2

(4.32)

= argmin
w∈C

�u− w�2X2
.

If we denote projC the projection operator on C, its closed-form expression is given
by

�
projC(u)

�

i,j
= max(0,min(umax, ui,j

)) , (4.33)

which is completely simple and easy to compute. Meanwhile, the quadratic func-
tion H (u) = 1

2
�Hu − f�2X2

possesses an analytic form for its associated proximity
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operator but the latter is slightly complicated

proxτH (u)= argmin
w∈X

1

2
�Hw − f�2X2

+
1

2τ
�u− w�2X2

(4.34)

=(τH�H + Id)−1(τH�Hf + u) ,

where the symbol � denotes the adjoint of a linear operator and H� : X → X
satisfies �Hw,w��X = �w,H�w��X . The evaluation of proxτH (u) corresponds to the
inverse of a linear system that is not always possible in practice due to the high
dimension of the problem. For this reason, optimization methods which involve the
gradient of H are more appropriate since they do not require any inverse operator.
In comparison with F and H , the calculation of the proximity operator in the case
of the composite function G ◦ L(u) = λ�K

k,ρ
u�X1,2 is theoretically possible but is

challenging because of the presence of K
k,ρ

which is not diagonal.
To solve the minimization problem (4.29), we adopt the full splitting approach

described in [Condat 2013, 2014]. The key idea of this approach is to evaluate the
gradient, proximity and linear operators individually in order to avoid implicit oper-
ations such as inner loops or inverse of linear operators. Accordingly, only “simple”
computations are considered such as the gradient ∇H , the proximity operators of
F and G , the linear mapping L and its adjoint operators L�. The corresponding
proximal algorithm for the problem (4.29) is written under the following general
form:

u(�+1) = proxγF

�

u(�) − γ
�
L�z(�) +∇H (u(�))

��

, (4.35a)

z(�+1)= proxζG �

�

z(�) + ζL
�
2u(�+1) − u(�)

��

, (4.35b)

where γ, ζ > 0 are proximal parameters, G
�

denotes the Legendre-Fenchel conju-
gate of G and its proximity operator proxζG � can be directly computed from proxG

ζ

by using Moreau’s identity v = ζ proxG

ζ
(v
ζ
) + proxζG � (v). Following [Condat 2013,

2014], to guarantee the convergence of the proposed algorithm, the parameters γ

and ζ must fulfill the condition

γ

�
1

2
+ ζ|||L�L|||

�

< 1 , (4.36)

where ||| · ||| denotes the operator norm. The proofs of the convergence can be found
in [Condat 2013]. We also note that the proposed algorithm belongs to the class of
primal-dual algorithms which provide not only the solution of the primal problem
(a.k.a. the original minimization problem) but also the solution of its dual problem.

Since the closed-form of proxγF is already given, it remains to define the analytic
expression of other terms in (4.35a) and (4.35b). We start with the gradient of the
quadratic function H which is straightforwardly obtained by

∇H (u) = H�(Hu− f) . (4.37)

Next, we remark that the regularization operator L = K
k,ρ

is a linear mapping

u ∈ X �→ K
k,ρ
u = (vt)

1≤t≤2k+1
∈ X 2k+1, then its adjoint operator L� = K

k,ρ

� is
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defined using the equation �u,K
k,ρ

�v�X = �K
k,ρ
u, v�

X 2k+1 , which implies

�
K1,ρ

�v
�

i,j
=(1− ρ)v1

i,j
+ ρ[(D(1)

1 )�v2]
i,j
+ ρ[(D(1)

2 )�v3]
i,j

(4.38)

and
�
K2,ρ

�v
�

i,j
=(1− ρ)v1

i,j
+ ρ[(D(2)

1, 1)
�v2]

i,j
+ ρ[(D(2)

1, 2)
�v3]

i,j

+ ρ[(D(2)

2, 1)
�v4]

i,j
+ ρ[(D(2)

2, 2)
�v5]

i,j
, (4.39)

where the involving adjoint operators (D(1)
1 )�, (D(1)

2 )�, (D(2)
1, 1)

�, (D(2)
1, 2)

�, (D(2)
2, 1)

�, and (D(2)
2, 2)

�

are given in the appendix section. From equations (4.38) and (4.39), one can deduce
the following upper bounds:

|||K1,ρ

�K1,ρ ||| ≤ (1− ρ)2 + 8ρ2 , (4.40a)

|||K2,ρ

�K2,ρ ||| ≤ (1− ρ)2 + 64ρ2 , (4.40b)

that are used for choosing the proximal parameters γ and ζ.
The last term we want to deal with is the proximity operator proxζG

� . We also
note that the proposed primal-dual algorithm does not necessitate evaluating the
proximity operator of the composite function G ◦L as in the case of generic proximal
algorithms, but only proxG

ζ
is required. Since G is related to the mixed L1-L2 norm

� · �X1,2 whose the proximity operator is defined as:

�
proxτ�·�X1,2

(v)
�t

i,j
= max(0, �L

i,j
v�2 − τ)

vt
i,j

�L
i,j
v�2

, (4.41)

where Li,j : v ∈ X 2k+1 �→ (vt
i,j
)
1≤t≤2k+1

∈ R
2k+1 is a linear operator; by using the

Moreau’s identity, we obtain the closed-form expression of proxζG � as the following:

�
proxζG � (v)

�t

i,j
=

vt
i,j

max
�

1,
�Lijv�2

λ

� , (4.42)

which shows that proxζG � is independent from ζ and moreover it is an pointwise op-
erator. These properties allow therefore fast and efficient computation by exploiting
the intrinsic parallelism of multicore processors.

4.5 Experimental results

To evaluate the performance of the sparse variation (SV) deconvolution approach,
we provide experimental comparisons with classical deconvolution methods (see
[Sage et al. 2017]), that are commonly used in fluorescence microscopy such as the
Richarson-Lucy (RL) algorithm, the iterative constrained Tikhonov-Miller (ICTM)
algorithm, and the Gold-Meinel (GM) algorithm, and with recent regularization-
based deconvolution methods, including total variation (TV), Hessian variation
(HV), GraphNet (GN) [Ng et al. 2010; Kandel et al. 2013; Grosenick et al. 2013],
TV-L1 [Chan and Esedoglu 2005; Michel et al. 2011], and specially the non-convex
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Regularizer Differentiation Convexity Smoothness

order

Total Variation (TV) 1 Convex Non smooth
Hessian Variation (HV) 2 Convex Non smooth
TV-L1 1 Convex Non smooth
GraphNet (GN) 1 Convex Non smooth
Sparse Variation (SV) 1 Convex Non smooth
Hessian-based SV (HSV) 2 Convex Non smooth

TV Huber (TVH) 1 Convex Smooth
HV Huber (HVH) 2 Convex Smooth
TV-L1 Huber (TV-L1H) 1 Convex Smooth
HV-L1 2 Convex Non smooth
HV-L1 Huber (HV-L1H) 2 Convex Smooth
GraphNet Huber (GNH) 1 Convex Smooth
Hessian-based GN (HGN) 2 Convex Non smooth
HGN Huber (HGNH) 2 Convex Smooth
SV Huber (SVH) 1 Convex Smooth
HSV Huber (HSVH) 2 Convex Smooth

Arigovindan et al. (2013) (LHSV) 2 Non convex Smooth

Table 4.1: Properties of regularizers which are used in the deconvolution experiments.

regularizer (4.14) introduced by Arigovindan et al. (2013). The latter involves sec-
ond order differentiation operator and is based on the logarithm function. It is
abbreviated as LHSV (Log-based Hessian Sparse Variation) due to its similarity
with the concept of SV. We recall that GraphNet is the sum of the L1 norm of the
image intensity and the squared L2 norm of the image gradient (i.e. the Tikhonov
penalty), whereas TV-L1 differs from GraphNet by replacing the Tikhonov penalty
by TV penalty:

GNρ(u) = ρ�∇u�22 + (1− ρ)�u�1 , (4.43)

TVL1ρ(u) = ρ�∇u�1,2 + (1− ρ)�u�1 . (4.44)

To enrich the catalog of convex regularizers used in these experiments, by using
the Hessian operator instead of the gradient operator, we consider also an extended
version of GraphNet and TV-L1 which can be named as Hessian-based GraphNet
(HGN) and Hessian Variation-L1 (HV-L1) respectively. Furthermore, Huber-norm-
based smooth approximations of non-smooth regularization functionals, which en-
able the use of smooth optimization techniques such as gradient-descent-based meth-
ods, are also considered in our study. For these smooth regularization functionals,
we use the projected gradient method to minimize the underlying deconvolution en-
ergy. In contrast, a full-splitting-based primal-dual algorithm [Condat 2013, 2014]
is used in the case of non-smooth regularization functionals.

One important motivation of this work was to investigate the impact of smooth
and non-smooth regularizers for image deconvolution. In Table 4.1, we summarize
the characteristics of the reguralizers mentioned above. The deconvolution experi-
ments were performed on an image set composed of both synthetic and real fluores-
cence images depicting bright objects over dark backgrounds.
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(a) (b) (c) (d) (e)

Figure 4.1: Set of biological images acquired by SIM technology. From left to right:
(a) actin cytoskeleton, (b) microtubule, (c) tumor tissue, (d) muscle tissue, and (e) adipose
tissue. The first two images are cell images collected from the Cell Image Library (http:
//www.cellimagelibrary.org) with id number CIL 7053 and CIL 36147 respectively (CIL stands
for the Cell Image Library identifier). The last three images are tissue images in the dataset used in
[Fu et al. 2016] (available at https://dukespace.lib.duke.edu/dspace/handle/10161/10892).

Image Type Image Pixel Spatial

size size resolution

Actin cytoskeleton Cell 1904 × 1900 px 0.04 µm 0.1 µm
Microtubule Cell 1054 × 1028 px 0.04 µm 0.1 µm
Tumor Tissue 350 × 300 px 1.50 µm 4.4 µm
Muscle Tissue 350 × 300 px 1.50 µm 4.4 µm
Adipose Tissue 350 × 300 px 1.50 µm 4.4 µm

Table 4.2: Information of test images (see Fig. 4.1).

4.5.1 Experiments on simulated image

We have selected several SIM (Structured Illumination Microscopy) images to serve
as blur-free and noise-free reference images (i.e. ground-truth) in our experiments.
SIM imaging allows to reconstruct very fine details at very high resolutions (up
to 100 nm for standard SIM techniques) while removing noise from raw acquired
measurements. These fluorescence images, shown in Fig. 4.1, were collected from
two sources: the Cell Image Library (CIL) database (available at http://www.

cellimagelibrary.org) and the training dataset used in [Fu et al. 2016] for the
detection of positive margins in a pre-clinical genetically engineered mouse model
of sarcoma. We note that, for the latter data set, the used SIM technique called
widefield SIM is specially developed for tissue imaging which does not require sub-
cellular resolution. For that reason, the resolution is much smaller than those of
conventional SIM which is approximately 100 nm as in the case of CIL images. In
Table 4.2, we provide detailed information of all test images, including specimen
name, image size and spatial resolution.

To produce a homogeneous and fair comparison of different methods and to avoid
bias induced by inhomogeneous dynamic ranges between the images, we first nor-
malized the reference images in the range [0, 1] before all further simulations. The
normalized images are then blurred by considering a Gaussian point spread function
with standard deviation σPSF = 2. A Gaussian noise with zero mean and variance
σ2 is also added to these images in order to generate observed noisy and blurry
data. In these experiments, we consider three distinct noise levels corresponding to
a standard deviation σ ∈ {0.02, 0.04, 0.08} respectively. Quantitative evaluation of
each deconvolution method is measured by the Peak Signal-to-Noise Ratio (PSNR)
and by the Structural Similarity (SSIM) index between the deconvolved images and
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the reference images.
For regularization-based methods which combine penalties on image intensity

and on image differentiation operator (such as SV, TV-L1, GraphNet and their
variants), we set the trade-off parameter ρ = 0.5, implying the equal contribution
of each component for simplification purpose. In the case of the Richardson-Lucy
(RL) algorithm which is originally designed to deal with Poisson noise, the degraded
images are re-scaled to the original dynamics of the underlying reference images by
multiplying by a normalization factor. The RL deconvolution results are then re-
normalized for a fair comparison with those obtained by the other methods. Before
applying the Gold-Meinel algorithm, the noisy images are smoothed with a Gaus-
sian filter as pre-processing step because this algorithm assumes that the noise is
negligible.

Quantitative evaluation

In Table 4.3, we provide the comparative results of the proposed SV deconvolu-
tion with the tested methods for the set of fluorescence images shown in Fig. 4.1,
for different degradation conditions. Note that the deconvolution outcome of each
method was obtained using parameters which were tuned in the way that produces
the best PSNR performance. Using these fine-tuned parameters, the SSIM score
is computed for an additional quantitative criterion to evaluate the effectiveness of
considered deconvolution methods.

According to the results reported in Table 4.3, we notice that the non-
regularization methods such as RL and GM algorithms perform poorly, irrespec-
tively of the images and the noise levels, showing their non-competitiveness when
compared with regularization-based methods. The poor performance of these meth-
ods is mainly due to the lack of regularization on the solution, leading to noise
amplification in deconvolved images. Among the regularization-based methods, the
iterative constrained Tikhonov-Miller (ICTM) algorithm, based on the squared L2

norm of the image gradient, generally produces encouraging results in terms of PNSR
and SSIM performance. In some cases, it eventually outperforms other competitors.
For example, on the image of tumor tissue (see Fig. 4.1c), ICTM solution achieves
the best PSNR and SSIM scores in the case of medium and high noise levels (corre-
sponding to σ = 0.04 and σ = 0.08 respectively); meanwhile, slightly inferior scores
are obtained for low noise level (σ = 0.02) but the difference between them and the
corresponding highest values is relatively small.

Regarding non-smooth regularizers, Hessian variation consistently gives superior
PSNR scores than TV, for all considered images and noise levels. In terms of SSIM
performance, it produces better results in most of cases. In comparison to TV
that only penalizes image gradient norm, the TV-L1 approach which introduces
additionally the L1 penalty on image intensities, yields slightly improved PSNR and
SSIM values in some few cases. For the remaining cases, the obtained results using
TV and TV-L1 are very similar. The analogous behavior is also noticed when we
compare the couple of HV and HV-L1 regularizers, the second-order extension of
TV and TV-L1 respectively. The experimental results shows furthermore that the
second-order regularizers achieve in general higher PSNR and SSIM scores than the
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corresponding first-order version. In contrast with first-tier performance obtained
with these TV-based regularizations, GraphNet and its Hessian-based variant fail
to be competitive for many selected images and signal-to-noise ratios. Their PSNR
performance falls behind by more than 2 dB in average and even more than 3 dB in
some cases, resulting in lower SSIM scores when compared to TV-related approaches
that consider non-quadratic penalty on image differential components. Meanwhile,
the results provided by sparse variation are almost comparable to those obtained
with TV and HV in terms of both PSNR and SSIM performance. Specially, in the
case of microtubule image (CIL 36147) which represents sparsely distributed fine
filament structures over dark background, SV leaves these two competing regularizers
behind on SSIM benchmark, whereas its PSNR score is higher for two noise levels
and slightly lower (only 0.02 dB) than HV for the remaining noise level. In contrast
to the supremacy of HV with respect to TV, Hessian-based sparse variation, the
second-order extension of SV, does not achieve higher performance than its first-
order version over half of cases and the difference between results obtained with
these two versions are almost insignificant.

Comparing with these convex but non-smooth regularization functionals, the
Huber-norm-based approximations yield in general satisfying results. In a few cases,
the PSNR and SSIM score are slightly improved by using the smooth approximated
version instead of the original counterpart, but slightly inferior performances are
also observed in some other cases. More interestingly, the improvement is frequently
noticed for first-order regularizers including TV Huber, TV-L1 Huber, GraphNet
Huber and SV Huber, whereas, second-order regularizers usually suffer from a low-
ering of PSNR score as well as SSIM value. Another smooth regularizer that we
wished to investigate is the so-called LHSV which considers a regularization operator
gathering the image intensity and the Hessian matrix coefficients as Hessian-based
SV, but replaces the square root in the L2 norm by a smooth approximation of the
logarithm. Using the logarithm function enables to enforce the sparsifying effect,
LHSV is able to efficiently remove noise in extremely noisy images while preserving
essential details. In our experiments, this sophisticated approach produces however
disappointing results on artificially degraded images. Indeed, the PSNR and SSIM
scores are barely in the same grade of GraphNet and sharply inferior than those
obtained with HV, SV or even TV in most cases.

Visual inspection and assessment

Based on our observations, the PSNR and SSIM benchmark do not yield a consistent
ranking on the performance of each deconvolution approach, and thus it is not possi-
ble to definitely conclude which method works best among the considered methods.
Their effectiveness needs to be assessed visually in local regions. Actually, there are
chances that an obtained result with outstanding PSNR and SSIM scores is unac-
ceptable in terms of visual quality, simply due to over-smoothing which results in
the loss of fine details in deconvolved images or due to over-sharpening which leads
to unrealistic reconstructions. For that reason, we provide in Fig. 4.2, a comparison
showing the example of deconvolution results obtained with different methods on
the microtubule image (CIL 36147) degraded by a Gaussian PSF (σPSF = 2) and
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(a) Original (b) Blurred and noisy

(c) RL (PNSR = 23.11) (d) GM (PNSR = 24.82) (e) ICTM (PNSR = 27.98)

(f) TV (PSNR = 27.88) (g) TV-L1 (PSNR = 27.93) (h) GN (PSNR = 28.26)

(i) HV (PSNR = 28.57) (j) HV-L1 (PSNR = 28.61) (k) HGN (PSNR = 28.35)

(l) SV (PSNR = 28.82) (m) HSV (PSNR = 28.89) (n) LHSV (PNSR = 27.78)

Figure 4.2: Deconvolution results on the microtubule image obtained with different
methods in comparison to the proposed SV-based approach. The original image (available
at http://www.cellimagelibrary.org/ with identifier CIL 36147) is degraded by a Gaussian PSF
with standard deviation σPSF = 2 and a additive Gaussian noise with zero mean and standard
deviation σ = 0.04. Zoom on filament details is shown in order to compare the performance of
each method. The SV and Hessian-based SV solutions are very competitive when compared to
those obtained with the other methods.



4.5. EXPERIMENTAL RESULTS 101

(a) Original (b) TV (c) TV-L1

(d) GN (e) SV (f) HV

Figure 4.3: Gradient magnitude of deconvolution results obtained with several convex
regularizers. The “hot” colors correspond to high gradients and “cold” colors to low gradients.

an additive Gaussian white noise with standard deviation σ = 0.04. The original
image, showing microtubule structures on a Drosophila S2 cell, was acquired by a
Zeiss Elyra Super-resolution microscope equipped with SIM imaging technique and
is collected as part of the Marine Biological Laboratory Neurobiology Course in
summer 2011.

First, Fig. 4.2c and 4.2d clearly show that the GM and RL algorithms give
very poor results. The ICTM algorithm produces, in contrast, more pleasant visual
results, but it tends to over-smooth (blur) important structural details in the images
(see Fig. 4.2e) due to the quadratic form of the Tikhonov regularizer. Comparing
with the blurred ICTM solution, the deconvolved imaged obtained with LHSV has
sharper details over a uniform background (see Fig. 4.2n). However, noise is not
sufficiently removed, especially in non-background regions. It not only disturbs the
visual effect but also makes the detection of fine details more difficult.

Meanwhile, the result provided by TV in Fig. 4.2f, is visually unrealistic in spite
of its competitive PSNR and SSIM scores against other regularizers. As expected, it
suffers from undesirable staircasing effect characterized by sharp edges and contigu-
ous flat regions (also known as piecewise constant image). The staircasing artifacts
can be easily observed in bright regions, notably those corresponding to filament
structures which represent smooth changes of intensities. A particular consequence
of staircasing effect that we want to figure out in the case of TV, is the presence of
number of light-shaded spots with constant intensity over relatively darker surround-
ing areas. Most of these spots correspond generally to high peaks of noise in the
blurred image background and do not represent any relevant structure of the original
image. A deconvolved image with more homogeneous background is obtained using
the TV-L1 regularization that combines TV with the L1 norm of the image intensity
to prevent pixels having intensity smaller than a certain threshold, and controlled by
the weight ρ and the regularization parameter λ. This thresholding which imposes
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vanishing of low-intensity regions is also known as the feature selection property
the TV-L1 model as reported in [Chan and Esedoglu 2005]. However, this model
does not remove staircasing artifacts related to TV regularization. In comparison
with the latter, GraphNet addresses both staircasing and light-shaded spot issues
by combining the quadratic Tikhonov functional with the L1 penalty. The decon-
volved image has indeed a uniform background (with less light-shaded spots) and a
foreground with no apparent contiguous regions of constant intensity, as shown in
Fig. 4.2h. It is visually more pleasant than TV and TV-L1 solutions. It however
produces slightly blurred image details due to the Tikhonov penalty which promotes
smooth changes of intensities. However, it does not suffer from over-smoothing as
in the ICTM solution due to the L1 penalty which prevents nearly-zero intensity
pixels, and hence enhances the contrast between bright objects and darker back-
ground. This is consistent with the high PSNR and SSIM values. In the particular
example of microtubule image, GraphNet outperforms the ICTM, TV and TV-L1

algorithms.

By examining the comparative results reported in Fig. 4.2, it turns out that SV
gives similar results to GraphNet and outperforms all other regularizers which are
first-order, convex and non-smooth, in terms of visual quality. The effectiveness of
SV approach for fluorescence images, especially in the case of the microtubule image,
can be justified by the way that this regularization affects the form of obtained solu-
tions. In contrast with TV (penalty on image gradients), or with TV-L1 and Graph-
Net that simply sum two penalties acting separately, one on image intensities and
the other on image gradients, SV penalizes jointly image intensities and gradients by
introducing structured sparsity on a specific linear transform which maps each pixel
to an unique vector composed of its intensity and its directional derivatives in order
to favor the co-localization of non-zero pixels and gradients. Therefore, it allows
to obtain non-zero regions of eventually high-magnitude gradients, in opposition to
relatively small-magnitude gradients in the case of GraphNet or vanishing gradients
for TV and TV-L1. This behavior results in better reconstruction of the image fore-
ground, in which large intensity variation between pixels at the object boundaries
and those in the middle, as well as sharp contrast between different objects may
occur, while avoiding undesirable over-smoothing or over-sharpening effect. As an
alternative, HV based on the norm of second-order differentiation operator leading
to piecewise linear solutions, also permits the reconstruction of high-magnitude gra-
dients not only at the edge of the objects but also inside objects. HV solution shown
in Fig. 4.2i, is able to restore smooth intensity variations of filament structures and
is visually comparable to the GraphNet and SV solutions. The background with
some visible light-shaded spots is however non-homogeneous, as expected. Hence,
in the example of microtubule image, SV represents so far the best deconvolution
result with well-restored fine details and homogeneous background in comparison
with existing regularizers including TV, TV-L1, GraphNet and HV.

To better appreciate the behavior of the regularization approaches, Fig. 4.3
depicts the gradient magnitude of several deconvolution results shown in Fig. 4.2.
We can clearly notice that, in the case of TV and TV-L1 solution (see Figs. 4.3b
and 4.3c respectively), the gradient vanishes for most of pixels except along object
edges, thus implying blocking artifacts. The gradient of HV solution shown in Fig.
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(a) Original (b) SVH (PSNR = 28.70) (c) HSVH (PSNR = 28.47)

(d) TVH (PSNR = 28.35)(e) TV-L1H (PSNR = 28.41) (f) GNH (PSNR = 27.45)

(g) HVH (PSNR = 28.32) (h) HV-L1H (PSNR = 28.38)(i) HGNH (PSNR = 27.84)

Figure 4.4: Deconvolution results on the microtubule image obtained with Huber-
based smooth approximation of some convex regularizers. The original image (available
at http://www.cellimagelibrary.org/ with identifier CIL 36147) is degraded by a Gaussian
PSF with standard deviation σPSF = 2 and an additive zero-mean Gaussian noise (σ = 0.04).
Zoom on filament details is shown in order to compare the performance of each method.

4.3f possesses piecewise constant magnitude, or in other words, HV pushes the well-
known staircasing effect to the image first-order differentials instead of the image
itself. Unlike these regularizers, SV approach, which produces results with smoothly
varied gradients as depicted in Fig. 4.3e, allows to handle smooth intensity changes
and then restore a wider class of images than piecewise constant or piecewise linear
images. In comparison, the spatial gradient of GraphNet solution (see Fig. 4.3d) is
rather similar to SV, but the magnitude is slightly smaller at some points, resulting
in slightly more blurred details.

Regarding second-order regularization, HV-L1 solution shown in Fig. 4.2j is vi-
sually similar to HV, but with less light-shaded spots when compared to TV and
TV-L1. Hessian-based GraphNet produces quasi-identical results to those obtained
with its first-order version (see Figs. 4.2k and 4.2h respectively). This is probably
due to the quadratic nature of the squared norms (the L2 norm for GraphNet and
the Frobenius norm for the Hessian-based variant), regardless of the order of con-
sidered differentiation operator. In addition, insignificantly different results are also
observed in the case of sparse variation and its Hessian-based version (see Figs. 4.2l
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Figure 4.5: Three-color fluorescence image of 8 tissue microarray cores. A region of
interest of 4.7 × 2.8 mm2 was scanned using the fluorescence scanner named InnoScan 1100AL
equipped with three excitation wavelengths (488 nm, 532 nm and 635 nm) at the spatial resolution
0.5 µm/pixel, corresponding to an image of 9544× 4704 pixels. Two areas which are bordered by
a blue and a yellow boxes are selected for comparison in details. First row: full size image. Second
and third rows: zoom-in views of two selected areas; from left to right: 3 colors at the same time,
red (488 nm), green (532 nm) and blue (635 nm) channels displayed separately.
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for SV solution and 4.2m for those obtained with HSV). We note that the differ-
ence between them in terms of quantitative evaluation is negligible: only 0.07 dB of
difference between the PSNR scores and 0.001 for their SSIM performances.

Finally, we compare the original non-smooth regularizers with the correspond-
ing Huber-norm-based smooth approximation. Figure 4.4 shows the deconvolution
results obtained with these smooth regularization functionals on the microtubule
image CIL 36147 degraded by Gaussian PSF (σPSF = 2) and additive Gaussian
noise (σ = 0.04). As depicted in Fig. 4.4c, TV-Huber prevents blocking artifact
and provides visibly better result than the original TV model, as expected. The
main drawback is the light-shaded spot issue that we have previously observed in
the case of TV, TV-L1 and HV solution (see Figs. 4.2f, 4.2g, and 4.2i respectively).
In comparison, the TV-L1 Huber solution shown in Fig. 4.4d, is indistinguishable
from those obtained with TV-Huber in terms of fine detail reconstruction as well as
non-homogeneous background. We notice that this regularization does not preserve
the feature selection property of TV-L1, maybe because the Huber norm disables the
sparsity induced by the L1 norm. Concerning second-order approaches, HV-Huber
and HV-L1 Huber give results (see Figs. 4.4f and 4.4g respectively) which are vi-
sually similar to their first-order versions. Nevertheless, they tend to worsen the
problem of light-shaded spots by making these spots more pronounced. Similarly,
undesirable light-shaded spots are also observed in the case of SV-Huber and HSV-
Huber solution (see Figs. 4.4b and 4.4c). It degrades sharply the visual quality of
these deconvolution results although fine details, such as filament structures are ad-
equately restored. Solutions obtained with GraphNet-Huber and its Hessian-based
variant (Figs. 4.4e and 4.4h) do not severely suffer from light-shaded spot issue
and have more homogeneous background. However, they can not be considered as
reliable solution due to the noisy reconstruction of relevant details in the image fore-
ground. In our opinion, the Huber-norm-based approximation of convex non-smooth
regularizers may improve deconvolution results in some aspects as we have observed,
but it also modifies the properties of its corresponding original version.

To sum up, the proposed SV-based deconvolution approach yields better re-
sults in overall in comparison to those obtained with the tested methods. Not only
achieving competitive PSNR and SSIM performance in most of cases, the SV and
HV solutions are also very encouraging in terms of visual quality. According to
our observations, they avoid in general over-smoothing and over-sharpening effect
arising when using other regularizers, while being able to well restore image details
with smooth changes of intensities and to efficiently eliminate strong noise from the
background.

4.5.2 Application to real large fluorescence images

We present in this section the deconvolution results obtained with our method on
real fluorescence images of tissue microarray (TMA) These TMA images, shown in
Fig. 4.5 and 4.7, are acquired using dedicated scanner called InnoScan 1100AL2.

2 InnoScan 1100AL is developed and commercialized by Innopsys, see https://www.innopsys.
com/en/lifesciences-products/microarrays/innoscan/innoscan-1100-al for more technical
details.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.6: Deconvolution results on the three-color TMA image obtained with dif-
ferent regularizers. Zoom-in view on two selected areas are displayed for comparison purposes.
(a) and (c): original acquired image; (b) and (d): dejittered image; (e) and (g): TV solution; (f)
and (h): HV solution; (i) and (k): SV solution; (j) and (l): LHSV solution.
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Equipped with three excitation lasers with corresponding wavelength 488 nm (red),
532 nm (green) and 635 nm (blue) respectively, this fluorescence scanner is able to
provide single-color as well as multi-color (up to three color) images at very high
resolutions. The highest resolution can reach to 0.5 µm per pixel (or a 20X objective
equivalently) for normal users and eventually 0.2 µm per pixel in advanced mode
for developers.

According to the scanner design, the acquisition on each color channel is per-
formed pixel by pixel, by moving the excitation laser beam with respect to a pro-
grammed scanning trajectory and collecting re-emitted light at specific positions on
the scanning trajectory. Due to the beam divergence, the intensity of a pixel does
not measure the emitted fluorescence signals at its spatial positions but the inte-
gral of signals over a wider area defined by the laser pattern which has in theory
the shape of an isotropic Gaussian spot. Given that, the diameter of laser spots
configured for this fluorescence scanner is typically set to more than 1 µm, in the
case of high-precision scanning which requires sub-micrometer pixel size, the optical
resolution (in the sense of the shortest distance between two points that can still
be distinguished) is then limited by the laser spot size, resulting in blurred details
on acquired images. If the image pixels are correctly positioned, each channel of
an acquired image can be modeled as the convolution product of the underlying
fluorescently-tagged specimen and the corresponding laser spot. The latter is there-
fore called the PSF of the associated color channel. Due to its Gaussian nature,
this PSF can be parametrized by its FWHM (Full Width at Half Maximum) value
which is usually empirically measured during the scanner calibration process. The
relation between the FWHM and the standard deviation σPSF of a Gaussian PSF is
given by FWHM = 2σPSF

√
2 log 2 .

As depicted in the second and third rows of Fig. 4.5, we notice that the acquired
TMA images for this experiment suffer not only from blur, but also from rolling effect
(jitter) in vertical direction due to the bad positioning of pixels. A dejittering step
is thus required as pre-processing in order to re-align jagged shapes and produce less
jittered input images for deconvolution step. To that end, we utilized the algorithm
described in chapter 3 to compensate the specific jitter arising on these fluorescence
images. In Figs. 4.6b and 4.6d, we provide zoom-in views of two selected areas on
result obtained with this dejittering algorithm on the three-color TMA image shown
in Fig. 4.5 for illustration purpose. We can clearly see that the rolling effect is
significantly reduced when compared to the original jittered images.

4.5.2.1 Comparison with existing regularizers

We visually compared the results obtained with SV to those obtained with existing
state-of-the-art regularizers such as TV, TV-L1, GraphNet, HV, and LHSV on a
fluorescence image showing eight tissue microarray cores (see Fig. 4.5). The consid-
ered TMA image, saved in 16-bit-TIFF format, was acquired in three colors at the
resolution of 0.5 µm per pixel with a total size of 9544×4704 pixels. Since we notice
that the vertical rolling effect is not the same on the three color channels, as shown
in the two bottom rows of Fig. 4.5, the experiment is performed as the following.
Each channel is first dejittered separately for an appropriate removal of the jitter



108 CHAPTER 4. SPARSE VARIATION DECONVOLUTION

arising on it. Second, the dejittered outcome on each channel served as the input
image for deconvolution. The deconvolution results are finally merged to produce a
three-color image as the original image for comparison purposes. According to the
scanner calibration, the measured FWHM value of the Gaussian laser spot is ap-
proximately 0.703 µm for all three channels, corresponding to a standard deviation
σPSF � 0.5971 µm which is slightly larger than the image pixel size.

The deconvolution results are shown in Fig. 4.6 (zoom-in view) on two selected
areas for comparison in details. The regularization parameter for each regularization
approach is tuned to get the most pleasant visual effect. As shown in Figs. 4.6e
and 4.6g, TV produces piecewise constant reconstruction which wipes out details
in areas with small changes of intensities and over-sharpens the transition between
contiguous regions. The restored images look like cartoon images and are not natural
visually. HV is able to restore better these fine details with smooth variations while
preserving the contrast between structures in the foreground and the background
(see Figs. 4.6f and 4.6h). The resulting image seems however slightly blurred when
comparing with the SV and LHSV solution. Up to our knowledge, it may be due to
the piecewise linear nature of the HV solution which does not fit the smooth nature
of structures on the underlying image.

Both LHSV and SV which penalize jointly image intensities and image differential
components, provide sharper reconstruction than HV based on the second-order
differentiation operator. Because of this joint penalization concept, they also tend to
unfortunately over-sparsify the distribution of non-zero pixels, resulting in vanishing
nearly-zero-intensity details, as noticeable in Fig. 4.6i and 4.6j where several green
color features are nearly disappeared. We remark that the over-sparsifying effect on
LHSV solution is slightly stronger than those obtained with SV. In our opinion, it is
mainly due to the combination of the logarithm function and the squared L2 norm
in the LHSV functional in comparison to the L2 norm in the case of SV. Note that
the jittering was not completely removed on the example shown in Figs. 4.6b and
4.6d, but SV handles these imperfect input images and produces nearly jitter-free
solutions (see Figs. 4.6i, and 4.6k). It was not possible to get such a result with
LHSV (see Figs. 4.6j, and 4.6l).

4.5.2.2 Sensitivity to PSF parameters

As previously reported, when the PSF of the imaging system is known, SV approach
appears to be the best solution for deconvolution of real fluorescence images. There
is unfortunately a small chance that the PSF is known with a very high precision. In
practice, the PSF is rather estimated by direct estimation on acquired images or by
calibration using small point-like objects to get PSF measures at different location.
In fluorescence microscopy, one usually considers microbeads to estimate the PSF of
the underlying microscope. However, this estimation may in some cases suffer from
severe errors due to the measurement conditions and can lead to poor deconvolution
results if the used deconvolution method is too sensitive to errors in the estimation
of the PSF.

Consequently, our interest here is to evaluate the sensitivity of SV deconvolution
to the PSF parameters. To that end, we consider a TMA image, shown in Fig. 4.7,
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Figure 4.7: Single-color fluorescence TMA image. Image of a TMA core is acquired on
the green channel (532 nm) at the resolution 0.2 µm per pixel. The size of the acquired image
is 7580 × 6870 pixels. A region (bordered by rex box) is selected for comparison in details of
deconvolution results obtained with different PSFs.

which was acquired on the green channel (532 nm) at the resolution of 0.2 µm per
pixel using InnoScan 1100AL scanner. In this experiment, we note that the PSF
of the scanner was not measured before acquisition. In Fig. 4.8, we provide then
comparative results obtained on this single-color image with different PSFs to better
appreciate the impact of PSF change on the deconvolution results. In this particular
study, it has been experimentally established that the PSF can be approximated
by an isotropic Gaussian function. Hence, we generated several Gaussian PSFs
by varying the FWHM value in the range of {0.6, 0.7, 0.8, 0.9, 1.0} (in µm).
Regarding the regularization parameter λ, we selected four typical values to control
the regularization level: λ ∈ {0.002, 0.003, 0.005, 0.008}.

In Fig. 4.8, we remark first that, for all the considered FWHM values and reg-
ularization parameters, our algorithm produced encouraging deconvolution results
in terms of visual quality. However, we realize that some results still suffer from
vertical rolling effect because jitter is not completely removed after pre-processing,
as shown in the first row of Fig. 4.8. This effect is typically observed on deconvolved
images obtained with low FWHM values. In the special case where FWHM = 0.6,
all the four deconvolved images are concerned (see the second row of Fig. 4.8). The
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Figure 4.8: Comparison of deconvolution results obtained on the single-color TMA
image with different PSFs and regularization parameters. Zoom-in view on the selected
area (bordered by red box in Fig. 4.7) to compare in details before/after deconvolution differ-
ences as well as results obtained with different parameters. We consider Gaussian PSFs with
FWHM values varying in the range {0.6, 0.7, 0.8, 0.9, 1.0} and several regularization parameters
λ ∈ {0.002, 0.003, 0.005, 0.008}. The two values, FWHM = 1.0 and λ = 0.008, yield the best result
in terms of visual quality compared to the other combinations of parameters.
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jittering artifacts are less visible with larger FWHM or when increasing the regular-
ization parameters. The setting FWHM = 1.0 and λ = 0.008 yields the best visual
results in comparison to those obtained with the other combinations of parameters.
Although, very similar results are obtained for FWHM > 0.8, irrespectively to the
choice of λ. This experiments revealed that the SV-based deconvolution method is
not sensitive to small errors in PSF estimation and to non-stationarities induced by
mixed Poisson-Gaussian noise.

In terms of computational performance, the proposed SV-based deconvolution
algorithm takes only 0.5-0.7 second, for both first-order and second-order variants, on
a standard image of 512×512 pixels. This processing time is comparable to TV with
about 0.6 second and is much faster than HV with more than 1.3 seconds. Regarding
LHSV approach, the computational time can reach more than 2.4 seconds, due to
the non-convex nature of the regularization functional. The method was applied to
large fluorescence images (7590 × 6870 pixels) and the computation time is about
80 seconds. The experiments were performed on a Macbook Pro equipped with 2.7
Ghz Intel Core i7, 16 Gb of RAM and the Mac OS X v.10.12.4 operating system.
All the tested algorithms were implemented in Matlab and we exploited the intrinsic
parallelism of the CPU to deal with large-scale inverse problems.

4.6 Conclusion

In this chapter, we have presented a deconvolution method for 2D fluorescence imag-
ing using a novel family of convex regularizers. The proposed regularization func-
tionals are based on the concept of sparse variation, that consists in penalizing
jointly the image intensity and gradient at each pixel to favor the co-localization
of non-zero intensities and gradients, by considering eventually higher-order differ-
entiation operators. By construction, these regularizers possess interesting mathe-
matical properties, namely convexity, invariance to scale, rotation, and translation
as the well-known total variation regularization approach. It allows therefore to de-
sign efficient algorithms to solve the underlying deconvolution problem which is in
general large-scale in the context of fluorescence microscopy. We reformulated the
deconvolution as a minimization problem of a convex energy function composed of
a quadratic data fidelity term and a sparse-variation-based regularity term under
the constrain of positivity and maximum intensity value. In order to minimize this
energy, we considered a primal-dual (proximal) algorithm based on the full-splitting
technique which only involves first-order operators to cope with the large-scale nature
of the problem. Experimental results on both synthetic and real fluorescence images
demonstrated that our method was able to produce very competitive deconvolution
results when compared to several competing methods in terms of quantitative per-
formance as well as visual quality and computational time. A possible improvement
is to accelerate the deconvolution of very large images (up to about 44000× 148000
pixels in the case of images acquired by InnoScan 1100 AL) by applying the pro-
posed method on overlapping patches. An extension of the method to 3D images
can be also envisaged in short-term. Moreover, based on the parametric model of
the PSF, the automatic estimation of the PSF will be an interesting approach for
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further studies.
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Chapter 5

Conclusion

This thesis, in the context of the development of a novel platform for quantitative
analysis of tissue microarrays, brings us to concrete problems, dedicated to digital
TMA image analysis on the one hand, and on the other, related to the imaging
devices (more precisely, those of the InnoScan range designed by Innopsys). These
specific problems which have no pre-existing solution require thus substantial de-
velopments in both theory and application. Besides the theoretical aspects which
concern in general the modeling, the reformulation and the resolving of the un-
derlying problems, the large-scale nature of acquired TMA images (up to about
44000×148000 pixels) also leads to some practical questions, namely computational
complexity. This issue has been addressed in this work mostly by considering “first-
order” algorithms, in the sense that they only involve simple linear operators (such
as convolution, gradient, projection operator, etc.) which facilitate the implementa-
tion and allow parallel computing. In some other cases, subsampling (in the image
domain as well as in the solution space) can be used as a pragmatic approach to
reduce the amount of processing data at a time and provide a first estimation of the
solution.

The first contribution of the thesis was to provide an automated and robust
method for TMA de-arraying (Chapter 2) which is highly requested by pathologists
and scientists working in tissue-based researches, but not too much interested within
the scope of image processing. The proposed method has shown its effectiveness for
both conventional bright-field and fluorescence images without any assumption on
noise and dynamic range. By relying on a two-step approach in which result from a
step can be refined by the following step to improve accuracy, our method is able to
eliminate false detection of TMA cores due to outliers and to recover cores that are
not recognized through the detection and segmentation steps, thus improving the
final de-arraying results. Another improvement comparing to existing de-arraying
methods is that not only the de-arraying result (i.e. the row and column coordinates
of each TMA core) is provided, but also some quantitative measurements of the TMA
grid deformation are estimated, thanks to the use of thin-plate splines to estimate
the underlying deformation. These measurements can serve as quality indicators
helping TMA constructors to adjust their techniques.

In Chapter 3, the problem of pixel mispositioning (jitter) arising in dedicated
scanners has been addressed. While similar scanning artifacts have been reported in
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the context of satellite imaging (push-broom and whiskbroom scanners) and mod-
eled by irregular sampling, the existing solutions are not adapted for TMA images,
mainly because it is not always possible to get accurate sampling (scanning) positions
and biological images are much more complex than satellite images (containing in
general piece-wise constant regions). Regarding general dejittering approaches (i.e.
correction of random displacements of pixels), those based on image regularization
may produce less jittered results but usually over-smoothed due to regularization.
Inspired from variational optical flow formalism, we have proposed a variational
method to estimate a dense displacement field modeling the arising jitter instead of
directly estimating the (unknown) unjittered image in order to avoid oversmooth-
ing effect. Our method consists in minimizing an energy function composed of a
non-convex data fidelity term and a convex regularity term derived from the spe-
cific structure of the jitter. It leads to the application of half-quadratic splitting
technique to decouple the original problem into simpler convex and non-convex sub-
problems which can be solved by appropriate optimization methods. Experiments
on both simulated and real images showed that the proposed method produces very
encouraging results in terms of visual quality, while avoiding over-smoothing effect
or linearizing of non-convex term.

In contrast to the two previous chapters which concern little-known problems
in image processing, we covered in Chapter 4 a more common problem: fluores-
cence image deconvolution. We have investigated the characteristics of fluorescence
imaging modality, where few bright objects are observed over a relatively darker
background, to define an appropriate regularization-based method. The contribu-
tions of this chapter were two-fold: (i) we have introduced a novel family of convex
regularizers, based on Sparse Variation which combines total variation and the L1

penalty on image intensities to enhance co-localization of pixels with high inten-
sity and high-magnitude gradient in fluorescence images; (ii) we have proposed the
so-called SV-based deconvolution method by considering this family of regulariz-
ers and primal-dual (proximal) algorithms combined with full-splitting technique
for fast deconvolution of large fluorescence images. Simple but rapid and efficient,
our deconvolution method produces competitive results both in terms of visual and
quantitative quality when compared with existing regularization-based methods, in-
cluding total variation and the Schatten norms of Hessian matrix.

In summary, this manuscript have presented few efficient algorithms for fluo-
rescence TMA image analysis. In the continuation of this work, the short-term
objective is to complete the analysis platform by integrating the developed algo-
rithms into existing and future scanner systems. In our discussion, more pragmatic
strategies need to be considered to accelerate the processing flow and reduce the
hardware requirements. In long-term, machine-learning-based approaches can be
envisaged in order to reinforce the automation level of the platform. Another point
is to accelerate the deconvolution method by applying the method on overlapping
patches. The method can be easily extended to 3D as well. Another issue will be the
automatic estimation of the PSF size which can be spatially variant in the image.
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Abstract

This thesis aims at developing dedicated methods for quantitative analysis of Tissue
Microarray (TMA) images acquired by fluorescence scanners. We addressed there
issues in biomedical image processing, including segmentation of objects of inter-
est (i.e. tissue samples), correction of acquisition artifacts during scanning process
and improvement of acquired image resolution while taking into account imaging
modality and scanner design. The developed algorithms allow to envisage a novel
automated platform for TMA analysis, which is highly required in cancer research
nowadays.

On a TMA slide, multiple tissue samples which are collected from different donors
are assembled according to a grid structure to facilitate their identification. In order
to establish the link between each sample and its corresponding clinical data, we are
not only interested in the localization of these samples but also in the computation
of their array (row and column) coordinates according to the design grid because
the latter is often very deformed during the manufacturing of TMA slides. However,
instead of directly computing array coordinates as existing approach, we proposed to
reformulate this problem as the approximation of the deformation of the theoretical
TMA grid using “thin plate splines” given the result of tissue sample localization. We
combined a wavelet-based detection and a ellipse-based segmentation to eliminate
false alarms and thus improving the localization result of tissue samples.

According to the scanner design, images are acquired pixel by pixel along each
line, with a change of scan direction between two subsequent lines. Such scanning
system often suffers from pixel mis-positioning (jitter) due to imperfect synchroniza-
tion of mechanical and electronic components. To correct these scanning artifacts,
we proposed a variational method based on the estimation of pixel displacements
on subsequent lines. This method, inspired from optical flow methods, consists
in estimating a dense displacement field by minimizing an energy function com-
posed of a nonconvex data fidelity term and a convex regularization term. We used
half-quadratic splitting technique to decouple the original problem into two small
sub-problems: one is convex and can be solved by standard optimization algorithm,
the other is non-convex but can be solved by a complete search.

To improve the resolution of acquired fluorescence images, we introduced a
method of image deconvolution by considering a family of convex regularizers. The
considered regularizers are generalized from the concept of Sparse Variation which
combines the L1 norm and Total Variation (TV) to favors the co-localization of
high-intensity pixels and high-magnitude gradient. The experiments showed that
the proposed regularization approach produces competitive deconvolution results on
fluorescence images, compared to those obtained with other approaches such as TV
or the Schatten norm of Hessian matrix.



Résumé

Ce travail de thèse a pour objectif de développer les méthodes originales pour
l’analyse quantitative des images de Tissue Microarrays (TMAs) acquises en fluores-
cence par des scanners dédiés. Nous avons proposé des contributions en traitement
d’images portant sur la segmentation des objets d’intérêts (i.e. des échantillons de
tissus sur la lame de TMA scannée), la correction des artéfacts d’acquisition liés aux
scanners en question ainsi que l’amélioration de la résolution spatiale des images ac-
quises en tenant compte des modalités d’acquisition (imagerie en fluorescence) et la
conception des scanners. Les développements permettent d’envisager une nouvelle
plateforme d’analyse de TMAs automatisée, qui représente aujourd’hui une forte
demande dans la recherche contre les cancers.

Les TMAs (ou “puces à tissus”) sont les lames histologiques sur lesquelles de
nombreux échantillons tissulaires venant de différents donneurs sont déposés selon
une structure de grille afin de faciliter leur identification. Pour pouvoir établir le
lien entre chaque échantillon et ses données cliniques correspondantes, on s’intéresse
non seulement à segmenter ces échantillons mais encore à retrouver leur position
théorique (les indices de ligne et de colonne) sur la grille TMA car cette dernière
est souvent très déformée pendant la fabrication des lames. Au lieu de calculer
directement les indices de ligne et de colonne (des échantillons), nous avons reformulé
ce problème comme un problème d’estimation de la déformation de la grille de
TMA théorique à partir du résultat de segmentation en utilisant l’interpolation par
splines “plaques mincse”. Nous avons combiné les ondelettes et un modèle d’ellipses
paramétriques pour éliminer les fausses alarmes, donc améliorer les résultats de
segmentation.

Selon la conception des scanners, les images sont acquises pixel par pixel le long
de chaque ligne, avec un change de direction lors du balayage entre les deux lignes.
Un problème fréquent est le mauvais positionnement des pixels dû à la mauvaise
synchronisation des modules mécaniques et électroniques. Nous avons donc proposé
une méthode variationnelle pour la correction de ces artéfacts en estimant le décalage
entre les pixels sur les lignes consécutives. Cette méthode, inspirée du calcul du
flot optique, consiste à estimer un champ de vecteurs en minimisant une fonction
d’énergie composée d’un terme d’attache aux données non convexe et d’un terme de
régularisation convexe. La relaxation quadratique est ainsi utilisée pour découpler
le problème original en deux sous-problèmes plus simples à résoudre.

Enfin, pour améliorer la résolution spatiale des images acquises qui dépend de la
PSF (point spread function) elle-même variant selon le faisceau laser d’excitation,
nous avons introduit une méthode de déconvolution d’images en considérant une
famille de régulariseurs convexes. Les régulariseurs considérés sont généralisés du
concept de la variation parcimonieuses (Sparse Variation) combinant la norme L1

de l’image et la variation totale (Total Variation) pour rehausser les pixels dont
l’intensité et le gradient sont non-nuls. Les expériences montrent que l’utilisation de
cette régularisation produit des résultats de déconvolution d’images très satisfaisants
en comparaison avec d’autres approches telles que la variation totale ou la norme de
Schatten de la matrice Hessienne.


