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Introduction

Nowadays, with the development of standardizations on networking, the ideas of "Internet of Things" 1 , "Smart City" 2 and "ubiquitous computing" 3 have been pro- posed and attracted great attentions from researchers and industries. The common point of these innovations is to make use of our physical world to facilitate daily lives of human beings. Computing and communicating units are implanted into physical objects (as, e.g., cars, lamps, electronic devices, buildings and products), to collect and exchange data through wireless networks without any human intervention. The collected information allows to interact with the environment in real time.

For instance, in the Libelium Smart Cities design, sensors are implanted in the tunnels to monitor the air quality and trac, put into containers of rubbish to optimize the trash collection routes, integrated into buildings to monitor real time noises and air pollutions, installed on bridges and historical monuments to monitor material conditions. Similar ideas and techniques have already been tested and applied in cities like Oslo, San Francisco and Singapore.

For deploying such real time information systems, well performing wireless sensor networks (WSNs) are essential and indispensable. Small, rugged, inexpensive and low power wireless sensors are required to reach any kind of environment at reasonable costs. At the same time, the sensed data has to be collected eciently in a central unit, called the base station, where it is analyzed or delivered to the Internet for a real time sharing. A crucial property for such systems is to be power aware, that is to consume energy as little as possible.

In most of the available sensors in the market, the primary power supply is two xed typical AA batteries, like Telos, Iris or Mica. However, even the ultra low power sensor Telos can only achieve a maximum of 241 hours of node operation [START_REF] Junaid Ahmed Khan | Energy management in wireless sensor networks: A survey[END_REF]. From a long term perspective, the notion of power-awareness helps to reduce the operations and maintenance costs. Moreover, in some cases, when the moves of the sensors are not under control, it may be dicult or undesirable to access these sensors frequently (cf., Bird Species Recognition [START_REF] Boulmaiz | Robust acoustic bird recognition for habitat monitoring with wireless sensor networks[END_REF], ZebraNet [START_REF] Juang | Energy-ecient computing for wildlife tracking: Design tradeos and early experiences with zebranet[END_REF]). Therefore, once a sensor depletes its available energy, to obtain additional energy is almost impossible. This may cause a signicant deterioration of the performance of the network. For instance, the sensors out of energy can break the network into two disconnected parts. If this happens, neither broadcasting nor gathering of information could ever be achieved. In recent years, the techniques for harvesting energy from the 1 The Internet of Things is the network of physical devices, vehicles, and other items embedded with electronics, software, sensors, actuators, and network connectivity which enable these objects to collect and exchange data. 2 A smart city is an urban development vision to integrate information and communication technology and the Internet of Things technology in a secure fashion to manage city's assets. 3 Ubiquitous computing aims to make computing to appear anytime and everywhere.

environment (e.g. solar or wind energy) have been developed for wireless sensor networks, enabling sensors to increase their lifetime [START_REF] Junaid Ahmed Khan | Energy management in wireless sensor networks: A survey[END_REF]. However, such techniques are highly constrained by the weather conditions, which introduce uncertain factors to the performance. Hence, power-aware designs are required and studied at every level of operation (like sensing or communicating). For example, compressed sensing has been studied to preserve energy when the signal is sparse and compressible [START_REF] Abdur | Energy-ecient sensing in wireless sensor networks using compressed sensing[END_REF].

Global Positioning System (GPS) is integrated to provide location information for sensors, which allows them to adjust the transmission power for a communication [START_REF] Juang | Energy-ecient computing for wildlife tracking: Design tradeos and early experiences with zebranet[END_REF].

In this thesis, a general interest is to design power-aware protocols for wireless sensor networks. More precisely, we design protocols, which consider energy consumption, for the fundamental task of data collection. The goal of data collection is to collect at the base station all the data (e.g., temperature, pressure or altitude) sampled by the sensors, for further data processing. For example, gathering the data of soil moisture tension in the elds allows to better regulate irrigation [START_REF] Cardell-Oliver | A reactive soil moisture sensor network: Design and eld evaluation[END_REF].

Collecting the infrasonic signals generated by volcanic activities helps to predict paroxysmal events and triangulate precise locations of individual eruptions [START_REF] Werner-Allen | Monitoring volcanic eruptions with a wireless sensor network[END_REF].

Having a real-time physiological data of a patient, enables disease diagnosis and remote assistance [START_REF] Adasme | A multicommodity formulation for routing in healthcare wireless body area networks[END_REF]. Note that data collection diers from data aggregation, which aims at eliminating redundant data transmissions and provides fused information to the base station [START_REF] Rajagopalan | Data aggregation techniques in sensor networks: A survey[END_REF]. Data aggregation is not within the scope of this thesis.

Refer to Sect. 1.2.2 for a formal denition of data collection used here.

The rst and essential step in our study is to choose a proper network model.

In common designs, factors that may aect the network performance (e.g., noise of channels, delays of packets, mobility patterns of the nodes, network faults) are involved as many as possible, in order to make the model more realistic. These factors are presented by parameters, obtained from experiments or experiences. They could be deterministic, stochastic or just totally" randomized. Such a network model is complex and complicated, making the pure theoretical analyses hard or even impossible to perform. Therefore, in most cases, designs are validated by simulations, i.e., tested on benchmarks to demonstrate their performances on computations. Indeed, simulations could be useful for intuitive comparisons among dierent approaches.

However, these results are generally not truly objective, because they are highly aected by the computing resources, the coding levels, the lack of considerations of other scenarios, etc. Moreover, sometimes, it is hard to explain the reasons for the good performances appearing in the simulations.

Contrary to the simulation approach, we consider at rst a distributed computing model, called population protocols, which allows purely analytical analysis for a specic type of WSNs. In this model, nodes have limited power resources and communicate only in pairs. They have no identiers and their memory size is uniformly bounded (i.e., independent of the number of nodes). This model has a wide domain of applications, especially in the case where the mobility of nodes are unpredictable, such as in mobile sensor networks with resource-limited communicating devices attached to animals, humans or vehicles (cf., habitat monitoring applications of Bird Species Recognition [START_REF] Boulmaiz | Robust acoustic bird recognition for habitat monitoring with wireless sensor networks[END_REF] or ZebraNet [START_REF] Juang | Energy-ecient computing for wildlife tracking: Design tradeos and early experiences with zebranet[END_REF]). However, this model does not have an energy framework, considering in some way the energy consumption of its entities Section during executions. Hence, for being able to design power-aware protocols, we enhance the population protocols model with an energy consumption scheme. Even though this enhancement considers and models energy consumption of real mobile WSNs, it is still compact and elegant enough to allow a pure analytical analysis of energy or other aspects of eciency. Then, using this enhanced model, we develop and analyze new power-aware data collection protocols and establish explicit upper and lower bounds on energy consumption. This demonstrates the usefulness of the proposed energy model.

Note that for making the protocols power-aware, parameters (related to energy consumption, evolving during an execution) should be integrated into the design to save energy when an abnormal consumption is observed. Therefore, in our poweraware design, choosing such proper parameters for protocols, is an important consideration. However, when a large number of parameters are involved, this may cause large problem dimensions and a lot of dependencies between parameters and bounds. This may make the problem hard, or even impossible, to be solved analytically. That is why we adopt optimization techniques: giving a mathematical model taking parameters as variables and optimizing the analytical bound for the performance.

In the second part of this thesis, we try to apply the same methodology for analyzing energy consumption, to a completely dierent type of networks. We choose the wireless body area network (WBAN) model, as energy is a crucial factor to be considered in its design. WBAN consists of bio-sensors implanted into the body of human beings for health-care. Power-awareness is the main issue because humans are sensitive to the heat generated by the sensors and recharging the battery is denitely not comfortable.

Together with that, there are many dierences between WBAN and networks modeled by population protocols. The former are small and almost static sensor networks using neighboring broadcast communications, while the latter are large scale mobile peer-to-peer networks. Especially due to this fact, WBAN has a particular interest for this thesis. The interest is in performing a broader study of power-aware data collection concerning very dierent types of WSNs. This is for learning the dierences and the similarities between their protocol design approaches as well as between the methods useful for analyzing these protocols.

Compared to population protocols, data collection in WBAN can be managed o-line, i.e., the path for delivering values to the base station can be programmed in advance. It stems from the fact that WBAN is a small WSN of no more than 256 sensors, whose memory sizes are of kilobytes [START_REF] Latré | A survey on wireless body area networks[END_REF]. Hence, each sensor unit in a WBAN could have its own unique identier and the identiers of its neighbors (contrary to population protocols). In addition, since the communication range of each sensor in WBAN is adjustable by changing its transmitting power, the communications between sensors are not as opportunistic as in population protocols (which are almost completely unpredictable). Therefore, to accomplish data collection in a WBAN, optimization techniques can be applied to have an optimal strategy for each sensor, by modeling the routing problem and solving this model centrally. Such an o-line solution obtained by combinatorial optimization is generally impossible in the case of population protocols. Nevertheless, and maybe somewhat surpris-ingly, we nd such an approach applicable and useful also in the case of population protocols (See Chapter 3).

One of the main insights of this thesis is that, although population protocols and WBAN are networks of dierent natures, having dierent characteristics, there is a common point in both approaches for power-awareness. This common point is the benet to use optimization techniques. The main reason is that power-awareness takes into account a large number of parameters, which can be dealt with by optimization.

Main Results and Outlines

Main results. In the rst part of this thesis, we study the complexities of data collection in population protocols, in terms of time and energy. The contribution is fourfold. First, a model for analyzing energy consumption in networks of mobile sensors is introduced (Chapter 2). This model can be considered as an extension to the classical model of population protocols, which takes into account energy consumption. The interest of the extended model is to allow a purely analytical analysis of the energy complexity of a protocol, in the same spirit as for time and space complexity, without appealing to simulations. Second, this model is used for studying energy complexity of distributed protocols for the task of data collection. Starting from analyzing the energy complexity of the existed time-optimal data collection protocol, called TTFM (given in [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF]), we propose and analyze a new power-aware version of it, called EB-TTFM. Then, lower bounds on energy complexity for any data collection protocol are established. This demonstrates also the cases where these lower bounds are reached by the proposed protocols (Chapter 2). Third, the study of non-uniform random fairness (a generalized random fairness) is initiated in the context of population protocols, where a meeting pair is independently selected from the population with a discrete probability (Chapter 3). Fourth, a power-aware population protocol for data collection is then developed to justify the relevance and operability of this enhanced model, which integrates also the optimization approach.

This demonstrates that optimization can be applied to the design of parametrized distributed algorithms.

In the second part of this thesis, we adopt optimization approach to study poweraware data collection in wireless body area networks. While, to have a better and profound comprehension on methods for solving optimization models, we study a stochastic semi-denite program which is complex but applicable to many realistic problems. In addition, this stochastic model is a variant of the one proposed previously, in the rst part. Studying it in depth helps to combine mathematical optimization and distributed computing for future research. The contribution in the second part is twofold. First, a minmax multi-commodity netow formulation is proposed to optimally route data packets in a wireless body area network (Chapter 4). Second, a simulation-based approximation method is studied to solve a stochastic semi-denite program (Chapter 5). This method can be easily applied to solve other optimization problems casted into the same model.

Outlines. Chapter 2 consists of three parts. First, the formal energy model designed for population protocols is presented. Second, the energy worst-case complexity of an extended version of the existed data collection protocol TTFM is studied. Then, a power-aware version of TTFM, called EB-TTFM (Energy-Balanced TTFM), is presented with analytical formulas for energy consumption. EB-TTFM takes residual energy into account and improves TTFM in terms of the maximum energy spent by an agent. At the end, lower bounds for energy consumption are established, and the cases where these lower bounds are reached, are presented.

Chapter 3 enhances the classical population protocols with the novel non-uniform random fairness. Explicit lower bounds on the expected convergence time of any data collection protocol are given. Followed by an average-case analysis on time for a simple data collection protocol, the relevance of this enhanced model in protocol analysis and its operability are justied. Moreover, a new parametrized power-aware protocol is presented and a polynomial-time optimization problem is formulated to obtain optimal parameters. At last, numerical results are presented to show the eciency of this power-aware protocol.

Chapter 4 presents a minmax multi-commodity netow optimization model for the data collection in wireless body area networks, which is transformed then into a mixte integer linear program. After solving this program, each sensor node obtains a decision on its activation and the ows to transmit during one data collection. A variable neighborhood search approach is proposed to obtain a near-optimal solution to this program. Numerical experiments on small instances are conducted in the end to show the eciency of our approach and the quality of our solutions.

Chapter 5 studies the methods to solve chance constrained semi-denite programs.

It can be seen as an invariant of the model applied in Chapter 3 for designing distributed algorithms. A novel simulation-based method is then proposed, which obtains less conservative solutions within reasonable cpu time. Experiments of our methods on a real control theory problem are conducted then, which demonstrate the usefulness of the proposed method. In the 90's, civilian applications of sensor networks became possible with the advances in the fabrication of sensors. The sizes of sensor can range from a pack of cards to dust particle within an aordable price. In addition, network research and developments on highly dynamic ad hoc environments make the wireless sensor networks applicable to more and more realistic scenarios. In industry, sensors are attached to the goods and the products, to track their positions during the transportation. In a smart home, sensors are installed into vacuum cleaners, microwave ovens, and refrigerators, allowing owners to control home devices locally and remotely.

WSNs are also applied for habitat monitoring [START_REF] Mainwaring | Wireless sensor networks for habitat monitoring[END_REF], like helping biologists to settle large-scale land-use issues aecting animals like birds, cows and whales. It prevents the potential disturbances of human presence during the research of life sciences. For instance, audio sensors are used to monitor bird species [START_REF] Boulmaiz | Robust acoustic bird recognition for habitat monitoring with wireless sensor networks[END_REF]. In the ZebraNet project [START_REF] Juang | Energy-ecient computing for wildlife tracking: Design tradeos and early experiences with zebranet[END_REF], sensors are attached to wild-life zebras to track their movements in central Kenya. In the Pigeon Air Patrol Network project 4 , sensors are carried by the pigeons in London to measure nitrogen dioxide and the real time measurement is accessible to the public by the Internet. For this kind of networks, the communication graph is always changing and the network is thus opportunistic.

Population protocols

In this thesis, the rst model studied, population protocols [START_REF] Angluin | Computation in networks of passively mobile nite-state sensors[END_REF], is a theoretical distributed computing model proposed in 2004. It can simulate collections of molecules undergoing chemical reactions and passively mobile sensor networks (e.g., a ock of birds equipped with sensors, WSNs for habitat monitoring). In this model, tiny indistinguishable agents (sensors) with bounded memory 5 move unpredictably. They have no identiers and execute all the same code. As their communication power is limited, they do not communicate by broadcasting, but only, in pairs. That is, when two agents are suciently close to each other, they can communicate (i.e., an interaction happens). During an interaction, they exchange and update their respective states according to a transition rule (the protocol). Such successive interactions contribute to the realization of some global tasks.

Though many restrictions are imposed on the agents in population protocols (like limited memory size or the lack of identiers), the computational power of this model is not trivial. In [START_REF] Angluin | Computation in networks of passively mobile nite-state sensors[END_REF], the authors showed that any predicate in the class of Presburger arithmetic 6 can be computed. Later in [START_REF] Angluin | Fast computation by population protocols with a leader[END_REF], it was proven that in a probabilistic population protocol model, where all pairs of agents are equally to be chosen for each interaction, semilinear predicate can be computed in O(n log5 n)

interactions, provided a unique leader in the initial population. Then, the fundamental tasks and topics of distributed computing, like leader election [START_REF] Alistarh | Polylogarithmic-time leader election in population protocols[END_REF][START_REF] Doty | Stable leader election in population protocols requires linear time[END_REF], majority [START_REF] Alistarh | Fast and exact majority in population protocols[END_REF], counting [START_REF] Aspnes | Time and space optimal counting in population protocols[END_REF], fault tolerance [START_REF] Angluin | The computational power of population protocols[END_REF] and self-stabilization [START_REF] Angluin | Selfstabilizing population protocols[END_REF] have been studied. Their performances in the probabilistic population protocol model are evaluated by the expected (parallel) interactions (time complexity) and by the number of states available at each agent (space complexity). In [START_REF] Alistarh | Time-space trade-os in population protocols[END_REF], the authors showed that any leader election or majority protocol converges in o(n/polylog n) parallel time using Ω(log log n) states. Then, a space optimal leader election was presented, which requires only O(log log n) space usage and converges in O(log 2 n) parallel time. Another trade-o between time and space complexity in population protocols was shown latter in [START_REF] Alistarh | Space-optimal majority in population protocols[END_REF]. It stated that any majority protocol which converges in O(n c ) (c < 1) parallel time, requires Ω(log n) space. Then, the authors proposed a space optimal majority protocol, using O(log n) states and converging in O(n log n)

parallel time. The counting problem, where a distinguished agent (called the base station) counts a non-initialized population, can be solved in time O(n log n), when using an optimal space of only one bit [START_REF] Aspnes | Time and space optimal counting in population protocols[END_REF]. The community detection problem, asking for each agent to recover its community in a regular clustered communication graph, can be solved in O(log 2 n) parallel time using O(log 2 n) states [START_REF] Becchetti | Friend or foe? population protocols can perform community detection[END_REF]. On the other hand, self stabilizing leader election (SSLE) in population protocols was proven to be impossible for arbitrary graphs [START_REF] Angluin | Selfstabilizing population protocols[END_REF]. By applying the oracle Ω?, which is able to detect the presence or the absence of leaders, SSLE can be solved in the complete graphs using just one bit of memory space [START_REF] Fischer | Self-stabilizing leader election in networks of nite-state anonymous agents[END_REF]. Moreover, by using a composition of two copies of Ω?, there exists a solution for SSLE for arbitrary graphs [START_REF] Beauquier | Self-stabilizing leader election in population protocols over arbitrary communication graphs[END_REF]. However, without an oracle, for solving SSLE in a complete graph, under global fairness, at least n states are needed and the best known protocol converges in O(n 2 ) parallel time in the probabilistic model [START_REF] Cai | How to prove impossibility under global fairness: On space complexity of self-stabilizing leader election on a population protocol model[END_REF].

Formal denition

Formally, a system consists of a collection A of pairwise interacting agents, also called a population. The size of the population |A| = n is unknown to the agents.

Among the agents, there is a distinguishable agent called the base station (BST), which can be as powerful as needed, in contrast with the resource-limited non-BST agents. The non-BST agents are also called mobile, interchangeably. Each agent has a state taken from a nite set of states. When two agents i, in state p, and j, in state q, interact (meet), they execute a transition (p, q) → (p , q ). As a result, i changes its state from p to p and j from q to q . The table T of all the transition rules denes the population protocol. A protocol is called deterministic, if for every pair of states (p, q), there is exactly one (p , q ) such that (p, q) → (p , q ). Otherwise, they are non-deterministic. Note that, as interactions are supposed to be asymmetric (with one agent acting as the initiator and the other as the responder), the transition rules for (p, q) and (q, p) may be dierent.

A conguration of the system is dened by the vector of agents' states. If, in a given conguration C, a conguration C can be obtained by executing one transition of the protocol (between two interacting agents), it is denoted by C → C .

An execution of a protocol is a sequence of congurations C 0 , C 1 , C 2 , . . . such that C 0 is the initial conguration and for each i ≥ 0, C i → C i+1 . The sequence of the corresponding interactions in an execution is provided by an external entity called scheduler, whose behavior will be discussed later in Sect. 1.2.2. An execution is said to be nite, if and only if from some point onwards, no applicable transition changes the conguration. In this case, this non-changing conguration is said to be terminal. When a terminal conguration is reached, we say that the termination has occurred. If an execution e is nite, its length |e| is the number of interactions until termination.

Usually, the length of an execution is considered as the time reference, i.e., each interaction adds one time unit to the global time. This is similar to the step complexity, a common measure in population protocols (cf. [START_REF] Alistarh | Time-space trade-os in population protocols[END_REF][START_REF] Angluin | Computation in networks of passively mobile nite-state sensors[END_REF]) and in distributed computing in general [START_REF] Tel | Introduction to Distributed Algorithms[END_REF].

Communication graph

Since the mobilities of agents may have physical constraints, it is possible that, due to the physical distances, an agent never meets some other agents far away from itself. A communication (directed) graph G = (A, E) illustrates the possible interactions in population protocols, where A is the set of nodes and E is the set of edges. A directed edge (i, j) ∈ E intuitively represents a possible interaction between two agents, where agent i is the initiator and agent j is the responder.

Scheduler and fairness

In population protocols, the interactions are unpredictably chosen from E and ordered by the scheduler. Whatever the order of interactions is, a correct population protocol should reach a terminal conguration.

However, if the scheduler chooses to isolate agents in groups and orders only the interactions between agents from the same group, no protocol could ever realize any non-trivial task correctly. Thus, a fairness condition is introduced for the scheduler to restrict its behavior. In the following, three dierent fairness conditions appeared in the literature of population protocols, are presented: global fairness, random fairness and cover time fairness.

Global Fairness. Global fairness imposes constraints on congurations appearing in an execution. The basic idea is that if in an execution there is an innitely often reachable conguration, then it is innitely often reached [START_REF] Angluin | Computation in networks of passively mobile nite-state sensors[END_REF]. More formally, an execution is said globally fair, if for every two congurations C and C such that C → C , if C occurs innitely often in the execution, then C also occurs innitely often in the execution.

Notice that this fairness does not ensure that every interaction happens innitely often, it requires only that certain congurations appear in a fair execution no matter which transitions are used. Global fairness is certainly the most common fairness assumption appearing in the literature on population protocols. For instance in [START_REF] Angluin | Computation in networks of passively mobile nite-state sensors[END_REF],

the authors show that any predicate in the class of Presburger arithmetic 7 can be computed under global fairness. Or in [START_REF] Beauquier | Spaceoptimal counting in population protocols[END_REF], the authors design a counting protocol, which requires only one bit of memory under global fairness.

Random Fairness. Random fairness imposes to the scheduler to choose interacting pairs independently and uniformly at random from E [START_REF] Angluin | Computation in networks of passively mobile nite-state sensors[END_REF]. More formally, an execution is said randomly fair, if for each interaction in the execution, a pair of agents in E is chosen uniformly at random.

Random fairness gives a natural notion of parallel time equal to the total number of interactions divided by the number of agents. Indeed, as each agent participates in an expected number of Θ(1) of interactions per parallel time unit, this fairness allows an average-case analysis on the parallel time of a protocol (cf. leader election protocols [START_REF] Alistarh | Polylogarithmic-time leader election in population protocols[END_REF][START_REF] Doty | Stable leader election in population protocols requires linear time[END_REF], exact majority protocols [START_REF] Alistarh | Fast and exact majority in population protocols[END_REF]).

In chapter 3, a novel generalized random fairness is introduced, where each interacting pairs (i, j) is chosen with a discrete (not necessarily uniform) probability P i,j such that (i,j)∈E P i,j = 1. Such a scheduler is called non-uniformly random scheduler, which is one of our main results in this thesis. In the real mobile networks, some agents may meet more frequently than others (due to their moving speeds or limited areas), i.e., the probabilities for choosing interacting pairs are no more identical. Under our designed fairness, the inter-contact time 8 of two agents is distributed geometrically, which corresponds to the experimental observation in practical mobile networks. More motivations and details are given in chapter 3.2.

Cover Time Fairness. Cover time fairness introduces an idea similar to partial synchrony in [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF], in the sense that constraints are imposed on the relative (activation) speeds of agents. An agent interacts with the others with a certain frequency", expressed by a cover time parameter [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF]. This is an upper bound on the time", counted in number of global interactions (pairwise meetings), for an agent to interact with all the others. The faster" an agent meets the others, the smaller its cover time is. As shown by recent experimental and analytical studies [START_REF] Hong | Routing performance analysis of human-driven delay tolerant networks using the truncated levy walk model[END_REF][START_REF] Mcnett | Access and mobility of wireless PDA users[END_REF], such an assumption of bounded cover times may model well the mobility in many practical sensor networks (e.g., where agents have dierent communication capabilities and move within a bounded area).

Formally, every agent i ∈ A has (an unknown to agents) a parameter cv i ∈ N called cover time s.t. during any cv i time units (consecutive interactions in an execution), agent i interacts with every other agent at least once. cv i is the minimum of such a number of interactions. 9 For two agents x and y, if cv x < cv y , then we say that x is faster than y, and y is slower than x. It should be noted that cover time fairness enables a worst-case analysis on the global time (the number of interactions until termination) of a protocol [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF][START_REF] Xu | Power-aware population protocols[END_REF].

Population protocols for the task of data collection Data Collection. We assume that each agent, except the base station (BST), owns initially an input value (which is constant during one execution of the protocol). Eventually, every input value has to be delivered to BST, and exactly once (as a multi-set). When this happens, we say that the protocol (its execution) has converged. The convergence time of a protocol is the maximum length of a possible execution (until convergence). We denote by M the number of values that a non-BST agent can receive from other agents (on top of its own initial value).

When describing or analyzing a considered protocol, the term to transfer a value" from agent x to y means to copy it to y's memory, and erase it from the memory of x. TTFM has optimal worst case (convergence) time complexity (Corollary 18 in [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF]).

However, none of these protocols is designed with energy consumption in mind.

So, in the rst part of this thesis, we rst built an energy consumption framework for population protocols. Then we design power-aware population protocols for the task of data collection and study their performances in terms of time and energy.

Wireless body area networks

The second model studied in this thesis, is Wireless Body Area Networks (WBAN).

With the advances of electrical sensors and the development of intelligent healthcare, WBAN was designed in 2001 [START_REF] Van Dam | Body area networks: Towards a wearable future[END_REF], for taking care of human body's health using wireless biological sensors. So far, WBAN has received lots of attentions from the researchers [START_REF] Jovanov | A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation[END_REF][START_REF] Van Dam | An adaptive energy-ecient mac protocol for wireless sensor networks[END_REF][START_REF] Lodewijk | A lightweight medium access protocol (lmac) for wireless sensor networks: Reducing preamble transmissions and transceiver state switches[END_REF], as it enhances the current health care practices (e.g., MobiHealth [START_REF] Van Halteren | Wireless body area networks for healthcare: the mobihealth project[END_REF], CodeBlue [START_REF] Shnayder | Sensor networks for medical care[END_REF]) and copes with the high costs of health care system. Besides, it can also be applied for sports training [START_REF] Alan F Smeaton | Aggregating multiple body sensors for analysis in sports[END_REF] and military operations [START_REF] Reed | Sparnet-spartan data network for real-time physiological status monitoring[END_REF] as well.

A wireless body area network (WBAN) is composed of tiny biological sensors (bio-sensors ), which are placed in or on the body of a person in order to remotely monitor health-care status such as fever, blood pressure, body temperature, heart rate, blood glucose concentration, among many others. Each intelligent sensor has enough capability to process and forward information to a base station for diagnosis and prescription. The base station can be a personal device, such as smart phone, acting as a sink for the data. In addition, there is another kind of nodes in WBAN, called actuators, who take actions according to the data received from the bio-sensors or the base station. For a better understanding, we use the example given in [START_REF] Latré | A survey on wireless body area networks[END_REF] to illustrate the roles of nodes in WBAN. In the example of Fig. 1.1, the bio-sensors are placed for measuring heart rate (ECG), brain activities (EEG), blood pressure, glucose level, etc. Next to these sensors, the patient has actuators, such as insulin injection, acting as drug delivery systems. The medicine can be delivered by the predened program, once the actuator is triggered by an event. The event can be either the order sent by a doctor after analyzing the data or the signal from the bio-sensor when it detects abnormal statistics. For instance, when the sensor of glucose monitors a sudden drop of glucose level, it activates the injection of insulin.

To integrate a WBAN (a patient) into health care system where the patient can be remotely consulted, monitored and treated, a communication between the base station (the patient's personal device) and an external network should be constructed. Take the complete real-time infrastructure for patient's rehabilitation (Fig. 1.2) as an example, it enables the connection between patients and doctors. The health data of patients is transferred and stored in a medical server where doctors can access. In the mean time, a patient can require real time diagnostic recommendations given by doctors. Moreover, when the data of a patient exceeds a predened threshold, the base station can make an emergency call for the hospital with the Figure 1.2: Infrastructure for a real health care system [START_REF] Latré | A survey on wireless body area networks[END_REF] real time monitoring data.

WBAN vs. Population Protocols. There are three major dierences between WBAN and population protocols. Firstly, WBAN are small sensor networks with the expected number of sensors up to 50 [START_REF] Otto | System architecture of a wireless body area sensor network for ubiquitous health monitoring[END_REF] and a maximum number up to 256 dened in IEEE 802.15.6. While population protocols assumes a large population (hundreds, even thousands) and the number of agents is unknown to the network.

Secondly, sensors in WBAN are heterogeneous in terms of available energy, computing power and identiers. So in WBAN, a predened lower power consumption routing could be scheduled as sensors distinguish their neighbors. However, the agents in population protocols are anonymous and homogeneous. Thirdly, population protocols are asynchronous networks, while WBAN could be synchronous networks under some designs in MAC layer (See Chapter 2.2 in [START_REF] Lont | Wake-up receiver based ultra-low-power WBAN[END_REF]). Finally, in population protocols, agents are supposed to communicate in a pair-wise (peer-2peer) fashion, while in WBAN they communicate by neighboring broadcast.

For the common parts, the rst one is that, for both, communications are in short range of distance. A maximum operating range of 3 meters is required in WBAN [START_REF] Movassaghi | Wireless body area networks: A survey[END_REF]. In population protocols, the communication is established only when two agents are close enough. Second, in both designs of data collection protocols, network control packets are limited since both nodes have bounded memory and limited energy resources. In addition, in WBAN, since the propagation of the radio in human body suers from the fading, noise and interference, the available bandwidth for the communication channel is narrow. All in all, for data collection protocols in both networks, the energy consumption is a necessary and crucial concern.

Data collection protocols in WBAN

Unlike typical WSN, WBAN suer from very limited energy resources and hence preserving the energy of the nodes is of great importance. Additionally, an extremely low transmit power per node is required in order to minimize interference and to cope with health concerns such as avoiding tissue heating of skin on patients. One possible approach to minimize power consumption as well as tissue heating of skin problems is by improving the performance of routing protocols. In WBAN, routing protocols must have self-conguration features and must be capable of nding the best route for communication in order to increase delivery insurance and decrease energy consumption between nodes.

So far, there have been several algorithmic approaches to control bio-eects for WBAN. The authors in [START_REF] Tang | Communication scheduling to minimize thermal eects of implanted biosensor networks in homogeneous tissue[END_REF] propose a Thermal Aware Routing Algorithm (TARA) that balances the communication over the sensor nodes in order to route data away from high temperatures. The algorithm achieves better energy eciency levels and low temperatures, however it requires that all nodes have complete knowledge about the temperatures of all remaining nodes in the network. Another attempt is a protocol known as Anybody [START_REF] Watteyne | Anybody: a self-organization protocol for body area networks[END_REF]. The underlying idea of Anybody is to form clusters and a backbone network with selected cluster heads in order to reduce the number of direct transmissions to the base station. This algorithm also achieves energy savings, but does not consider other aspects such as reliability of messages for example. In [START_REF] Sup Kwak | A study on proposed ieee 802.15 wban mac protocols[END_REF], the authors compare and analyze dierent protocols from WBAN requirements to energy eciency whereas in [START_REF] Huang | Wrap: A weighted random value protocol for multiuser wireless body area network[END_REF] the authors propose a weighted random value protocol for multiuser WBANs (WRAP). In [START_REF] Braem | The need for cooperation and relaying in short-range high path loss sensor networks[END_REF], authors show that the proper placement of relay nodes can permit a better energy performance for the nodes far away from the base station. Then an integer linear programming model is proposed in [START_REF] Elias | Energy-aware topology design for wireless body area networks[END_REF], which optimizes the number and location of relays to be deployed and the data routing towards the sinks. Other eorts consider explicit mathematical programming formulations in order to eciently design optimal routing protocols in WBANs ( [START_REF] Ababneh | Energybalanced rate assignment and routing protocol for body area networks[END_REF], [START_REF] Abouzar | Action-based scheduling technique for 802.15. 4/zigbee wireless body area networks[END_REF]). For more details on recent advances in data collection protocols, readers can refer to the survey [START_REF] Eatparvar | A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks[END_REF].

In this thesis, we consider a multi-commodity net-ow problem to optimally rout packets in WBAN, which minimizes the worst power consumption and subjects to ow conservation and maximum capacity energy constraints.

Chapter 2

Power-Aware Population Protocols

Introduction

In this chapter, we enhance population protocol (PP) with an energy consumption framework. Basically, an agent consumes energy when: (1) interacting and exchanging data, and (2) signaling its presence and sensing the wireless medium continuously (to allow detection of other agents in proximity). An interacting agent is said to be in awake mode and spends an amount E wkp of energy. When it does not interact, but senses the medium, it is in sleep mode, and spends E slp for every global interaction (that can be seen as a time unit). We also consider an additional mode called terminated, in which an agent consumes no energy. This mode can allow saving energy of agents having terminated their part in a task. The interest of this extended model is to allow a purely analytical analysis of the energy complexity of a protocol without simulations.

To adapt this general energy model to population protocols, we make some additional considerations and assumptions detailed in Sect. 2.2. For instance, as the data exchanged during an interaction is bounded by the small agent's memory, we can assume that any transmitted data ts in one packet and thus the energy spent in a communication is constant. In addition, as the agents communicate only in pairs when they come close to each other, it is likely to assume that the sensing of the medium is done by proximity sensors (cf. [START_REF] Fish | Mobile emulab: A robotic wireless and sensor network testbed[END_REF][START_REF] Polastre | Versatile low power media access for wireless sensor networks[END_REF]) and thus, agents signal their presence only passively, spending no energy.

In order to illustrate the power and the usefulness of this enhanced model, we consider the issue of determining the amount of agents' initial energy necessary and sucient for being able to perform a given task. This issue is crucial for choosing, in practice, a category of sensors (in respect with their power capacities) adapted both to the task and to the number of times it should be repeated (before the sensors are replaced or recharged).

In this context, we analyze the maximum amount of energy spent by an agent for performing a one-time collaborative task, of data collection in our case. This metric is clearly related to the lifetime of the network and to the amount of the required initial energy for each agent. The formal analysis of this metric allows, in advance, to adjust the network both in terms of size and battery power allocated to the agents. It is particularly important in the case of networks where it is dicult or undesirable to access the sensors frequently (cf., Bird Species Recognition [START_REF] Boulmaiz | Robust acoustic bird recognition for habitat monitoring with wireless sensor networks[END_REF]). Due to the nature of the considered problem, a worst case analysis has to be done. However, it is important to note that, if no guarantees are imposed on the agents' interactions, such analysis is in general impossible (for non-trivial protocols). For example, in the case of global fairness, protocols converge only eventually, consuming an arbitrary energy till convergence. On the contrary, with random fairness where pairs of agents interact according to some probability distribution, an average complexity analysis of energy consumption can be computed.

Here, for having a bounded convergence and still being able to perform a worst case analysis of the maximum energy spent, we do not adopt the probabilistic approach, but we assume that the enhanced model satises cover times fairness (Sect. 1.2.2).

Overview and outline

The chapter is organized as follows. The framework allowing an analytical computation of energy consumption is presented in Section 2.2. Using this energy model, we start by analyzing energy consumption of the data collection protocol, TTFM, proposed and proven to be time optimal in [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF] (Section 2.3). In this analysis, our approach is motivated by the observation that the energy spent is proportional to the length of an execution. However, further investigation shows that this is not the only factor that can aect the energy spent, and other factors, as the residual energy of an agent, if considered by a solution, can improve energy performance. This gives an idea for developing a better solution in terms of energy consumption, and we propose a power-aware protocol. We prove its correctness and analyze its energy complexity (Section 2.4). Not surprisingly, it appears that it needs less energy than the rst protocol when correctly adjusting the protocol's parameters. Having analytical formulas for energy consumption under the form of functions allows to draw graphs and plots, on which remarkable points, zones and limits appear immediately (Sect. 2.4.2 and 2.4.2). This is particularly advantageous when a great number of parameters are involved and when the exhibited functions are hybrid (i.e., composed of several functions). Getting the same or approximative results from simulations would certainly be longer and more costly, while here exact results can be obtained almost immediately. This chapter contains such plots as an illustration of this methodology. Section 2.5 presents lower bounds concerning energy consumption of any possible data collection protocols. Cases where this lower bound is reached by the presented protocols are also given. Finally, Sect. 2.6 is a summary of the results in this chapter.

This work has been published in ICDCS 2017 [START_REF] Xu | Power-aware population protocols[END_REF].

Related work

There is a very large literature on power-aware network protocols. However, most of the works on energy consumption do not present an analytical study of energy complexity, and the validation of the approaches is made by simulation. In this section, we will only mention the studies directly linked to our approach by restricting our attention to those for which a formal model of energy consumption is presented and its mathematical analysis is done.

In this category, we should rst mention [START_REF] Sotiris | Interactive wireless charging for energy balance[END_REF] where authors study the problem of energy balancing between non nite state agents (interacting uniformly at random) in a model inspired by population protocols. The considered model is not an energy consumption one. An interacting agent can transfer some part of its energy to the other agent during the interaction (by using a corresponding energy equipment) and there may be a constant energy loss for each unit of the transferred energy.

However, contrary to our study, energy consumption for interacting and sensing is not considered. Three protocols, for balancing (averaging) the distribution of energy given to agents, are presented and their analytical and simulation analysis is presented.

Then, one can mention [START_REF] Wu | Energy-ecient wakeup scheduling for data collection and aggregation[END_REF], which studies a synchronized scheduling of wake-up times for improving the data collection in a non-mobile sensor network. It proposes protocols with energy consumption of at most twice the optimum. Synchronization of the wake-up times is also studied in [START_REF] Herman | Temporal partition in sensor networks[END_REF], where several self-stabilizing protocols to solve the problem of temporal partition are presented and analyzed.

In [START_REF] Yao | Edal: An energyecient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks[END_REF], a 2-approximation (energy consumption) centralized heuristic and a distributed power-aware heuristic are developed for wireless sensor networks with unique identiers, to ensure that all packets are delivered with the minimum energy cost within a required deadline. Authors develop an evaluation function of energy cost for one transmission, considering residual energy, quality of link and the type of nodes.

In [START_REF] Bandyopadhyay | An energy ecient hierarchical clustering algorithm for wireless sensor networks[END_REF], authors propose a randomized clustering algorithm for non-mobile wireless sensor networks which minimizes the energy spent for transmissions. It is proven formally that the algorithm has a time complexity of much less than O(n).

In [START_REF] Wattenhofer | Distributed topology control for power ecient operation in multihop wireless ad hoc networks[END_REF], authors give an approximated cone-based topology scheme to increase ad-hoc network lifetime with adaptive transmission power control, while maintaining connectivity for routing. In an analytical way, it is shown that the power consumption of each route can be made arbitrarily close to the optimal.

[44] studies the performance of a class of simple and local algorithms for energyecient construction of minimum spanning trees in a wireless ad hoc setting. Bounds on the performance of these algorithms, in instances obtained by uniformly distributed points in the unit square, are given.

For being complete, we should also mention that there exist studies presenting a mathematical model for optimizing the energy-consumption of a single entity, independently of the protocol run, which is one of the main focus of the second part in this thesis, but not in our preoccupations here.

Finally, even if some approaches considering energy consumption are in spirit similar to ours, none of them is devoted to the specic type of networks that we consider: anonymous resource-limited mobile sensors moving unpredictably and constituting a highly dynamic opportunistic network.

Assumptions

In the protocol analysis, we consider only the case where cv BST > cv min , that maximizes time and energy consumption (for data collection). In some cases, for simplicity, we also assume that cv min O(n 2 ). This assumption holds for a large and natural family of cover time vectors. It is especially natural for the case of passively mobile sensor networks, which is exactly the type of networks modeled by population protocols. Intuitively, as cv min (in this family) is much larger than the number of all possible pair-wise interactions, agents are free to interact in many dierent ways, as it would be naturally expected with passive mobility. Still very particular schedules are possible and there are guarantees that agents interact according to the cover times.

We emphasize that agents are not assumed to know cover times (to conform with the nite state population protocol model). Instead, we do assume that two interacting agents can only compare their respective cvs. This can be implemented by comparing categories instead of cvs, in applications where the overall number of categories is likely to be uniformly bounded.

Energy Consumption Scheme and Metrics

Up to now, energy does not appear in the literature on population protocols. Although energy is crucial, its introduction in a formal model is dicult, because it involves a lot of parameters. That can be seen in the studies using simulations.

In the present work, we realize this introduction. For being realistic, we studied energy saving schemes already developed in wireless sensor network. We summarize them below and discuss their adaptability to population protocols (Sect. 2.2.1). Finally, we propose the design of energy consumption scheme for population protocols (Sect. 2.2.2).

Energy saving schemes in wireless sensor networks

Generally speaking, there are two ways to save energy in WSN. One is to recharge directly the battery with outer supply such as magnetic resonance, reected solar energy. Another way is to apply ecient energy saving schemes. Readers can refer to [START_REF] Anastasi | Energy conservation in wireless sensor networks: A survey[END_REF][START_REF] Di | Data collection in wireless sensor networks with mobile elements: A survey[END_REF] for a well-organized survey on energy management in WSN.

Figure 2.1 shows the taxonomy of energy saving schemes for WSN. In the sequel, a brief introduction to each kind of schemes is presented. And the reason why ondemand schemes (marked in red color in Fig. 2.1) are chosen as the energy framework for population protocols, is followed.

There are three main categories in energy saving schemes: duty cycling, data driven and mobility. Duty cycling enables the nodes to switch between active and sleep periods depending on network activity, and thus to reduce the energy consumption on idle listening. Duty cycle is dened as the fraction of time during which nodes are active, during their lifetime. Data driven techniques are designed to reduce the energy consumption on sending redundant or unneeded sensing data.

Finally, mobility techniques are used to add mobile nodes to relay data and thus avoid energy depletion on a specic node.

Among duty cycling techniques, topology control refers to nd the optimal subset of nodes (to be active) that guarantees connectivity of the network. MAC protocols with low duty cycle aim to schedule duty cycles such that the corresponding channel accesses have as few collisions as possible. While Sleep/Wakeup protocols turn the idle agents into sleep for a certain period of time (on top of the MAC protocols). The taxonomy of energy saving schemes for WSN [START_REF] Anastasi | Energy conservation in wireless sensor networks: A survey[END_REF] For designing as general as possible energy framework for population protocol, data driven and mobility schemes are not within the scope of the interest. At the same time, as agents have high mobility, which causes frequent changes in the topology of the network, topology control is not applicable neither in the design.

The Sleep/Wakeup protocols are investigated furthermore in the following.

Sleep/Wakeup protocols. There are three dierent strategies for deciding how long an agent sleeps and when it wakes up: scheduled rendezvous, on-demand and asynchronous schemes.

Scheduled rendezvous schemes assume that agents agree on a specic moment to communicate (e.g, S-MAC [START_REF] Ye | Medium access control with coordinated adaptive sleeping for wireless sensor networks[END_REF], T-MAC [START_REF] Van Dam | An adaptive energy-ecient mac protocol for wireless sensor networks[END_REF]). This kind of approach is adopted in ZebraNet [START_REF] Zhang | Hardware design experiences in zebranet[END_REF], where agents are synchronized through a Global Positioning System (GPS). However, it seems hard to add synchronization in population protocols, since it would cost a lot of time and energy.

On-demand schemes consider that a node wakes up only when it needs to communicate. This basic idea is realized by adding a low power stand-by radio for signaling ( [START_REF] Guo | Low power distributed mac for ad hoc sensor radio networks[END_REF], [START_REF] Shih | Wake on wireless: an event driven energy saving strategy for battery operated devices[END_REF], [START_REF] Rabaey | Picoradios for wireless sensor networks: the next challenge in ultra-low power design[END_REF]) or applying radio-triggered techniques ( [START_REF] Gu | Radio-triggered wake-up capability for sensor networks[END_REF], [START_REF] Jurdak | Radio sleep mode optimization in wireless sensor networks[END_REF]) where sleeping nodes are triggered to be woken by a wakeup radio. All on-demand protocols require a short communication distance in WSN because of the supplementary radios, restricted to a dozen meters in most cases. For instance, Radio Frequency Identication (RFID) systems [START_REF] Gu | Radio-triggered wake-up for wireless sensor networks[END_REF] require a read range less than 6 meters and Near Field Communication (NFC) [START_REF] Vedat Coskun | The survey on near eld communication[END_REF] requires a few centimetres. Since population protocols assume that agents communicate only when they are close to each other, on-demand schemes can be introduced in the framework design (details are given in the next subsection).

Asynchronous schemes (like periodic listening [START_REF] Jain | Exploiting mobility for energy ecient data collection in wireless sensor networks[END_REF], wakeup scheduling [START_REF] Zheng | Asynchronous wakeup for ad hoc networks[END_REF]) allow each node to wake up independently of the others by guaranteeing that neighbors always have overlapped active periods with duty cycles. This scheme allows a longer communication distance than the on-demand ones, but it is less energy ecient. Since, in population protocols, the communication distance between two agents is supposed to be small, to have the most energy ecient design, we adopt the on-demand schemes in stead of the asynchronous ones.

On-demand scheme for population protocols

In the sequel, we present in details our energy consumption scheme for population protocols, which belongs to the category of on-demand schemes as explained above.

During an execution, each non-BST agent consumes energy according to three different modes: sleep, awake and terminated. The transitions between modes are depicted in Fig. 2.2 and the overall consumption scheme can be summarized by the following points:

1. Each agent starts with the same amount of initial energy E 0 (e.g., all agents are fully charged). It is in sleep mode, and consumes E slp per time unit (every interaction). During this mode, an agent consumes a reduced amount of energy. It senses the vicinity for detecting other agents in proximity, and signals its presence. The signalling can be done either actively, by emission of small beacon messages (as, e.g., in IEEE 802.11), or passively, only by agent's presence (radio triggered techniques). The latter can be carried out by sensing the vicinity using proximity sensors (cf. [START_REF] Fish | Mobile emulab: A robotic wireless and sensor network testbed[END_REF][START_REF] Polastre | Versatile low power media access for wireless sensor networks[END_REF]). In this work, we consider this latter case of sensing, as it is the most energy ecient one which can be applied to population protocols.

2. When two agents in sleep mode have successfully detected each other, the interaction happens and both turn into awake mode to proceed with a communication. For that, they have to switch on their radio transceivers, which is generally a high energy consuming operation (cf. [START_REF] Venkatesh Rajendran | Energyecient, collision-free medium access control for wireless sensor networks[END_REF]). During the interaction, both agents stay awake and each consumes E wkp = E sw +E tx +E rx +E slp , where E sw is the energy consumed for switching to the main radio, E tx and E rx are consumed during the sending and the reception of data, and E slp is due to point 1.

Since in the considered types of networks (and in PP) non-BST agents have a small memory, independent of the network size, transmitted data can t in very few, and even one, packets in every communication. Thus, we can assume that the energy consumed by the communication, E tx + E rx , is constant.

3. During an interaction, two awake agents decide to turn either to sleep or to terminated mode, according to the protocol. No energy is consumed by a terminated agent. This mode is useful for saving energy of agents that have terminated their protocol activities. Together with that, the scheme can be adapted in such a way that a terminated agent could be restored into sleep mode, whenever it is required to restart a task. This can be done, for example, by a global signal from BST, which, at the same time, can also recharge the mobile agents, to prepare them for the next task [START_REF] Ozgür | Power ecient data gathering and aggregation in wireless sensor networks[END_REF]. 1

4. We assume that when a sleeping agent x meets a terminated agent y, x wakes up and thus, spends E wkp . This assumption makes sense in networks deploying proximity sensors for sensing close agents. In this case, the terminated agent y is detected by the proximity sensor, and as x is not aware of y's mode in this step, x wakes up and only then detects that y is terminated. 2Evaluation Metrics. There are many dierent power-aware metrics in the related literature on sensor networks. The term lifetime of a network is generally used and can be evaluated, e.g., as the maximum time until one or all sensors have no energy, or until there are more than a ratio β of surviving nodes, or until connectivity" is lost. Alternatively, to analyze the lifetime, one can evaluate the maximum energy spent per node for a given task (e.g., per data collection from all nodes to BST, or per packet routing to the next node, or to the nal destination). Refer to surveys on such metrics [START_REF] Chen | On the lifetime of wireless sensor networks[END_REF][START_REF] Singh | Power-aware routing in mobile ad hoc networks[END_REF].

In this work, we choose to evaluate and minimize the maximum energy spent per node across the network in each data collection, thereby enhancing the lifetime performance. Given a protocol P, let E(P) be the set of all executions in P and Es max (e) the maximum energy spent by an agent at the end of the execution e ∈ E(P). Then we denote by Es max (P) the maximum energy spent by an agent in an execution of P, i.e., Es max (P) = max e∈E(P) Es max (e). This metric is one of the most popular metrics studied in power-aware routing protocols for MANET [START_REF] Singh | Power-aware routing in mobile ad hoc networks[END_REF].

Minimizing it can be also seen as balancing the distribution of energy consumption among agents. Moreover, as already mentioned in the introduction (Sect. 2.1), evaluation of this metric can allow, in advance, to adjust the network both in terms of size and battery power allocated to the agents.

Energy Consumption of TTFM

Our starting point is TTFM [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF], which was designed without energy consumption in mind, and we perform its energy consumption analysis, using the proposed energy model.

The basic strategy for data transfer in TTFM (Protocol 1), is that a mobile agent only transfers its values either to base station, or to an agent that has never Protocol 1 TTFM (for a mobile agent i interacting with an agent j) 1: f astest_mark i ∈ {0, 1} (* initialized to 1 *) 2: if (j is not base station) then 3:

if (cv j < cv i and f astest_mark j := 1) then 4:

f astest_mark i := 0 5:
if (f astest_mark j > f astest_mark i and there is a free place in j's memory) then 6:

agent i transfers to j as many values as would t in the free part of j's memory 7: if (j is base station) then f astest_mark i , initialized to one, is a bit mark to record if agent i has already met a faster agent. Lines 3-4 are to aect the value of f astest_mark i during the meetings of agents. Lines 5-6 ensure that agent i transfers its values only to an agent that has never met (yet) another faster agent.

For illustrating the usage of terminated mode, we adapt TTFM in such a way that a mobile agent turns into terminated mode once it has transferred all of its values to a faster agent (excluding BST). Indeed, according to TTFM, once this happens, the slower agent does not receive any value till the end of the execution.

Therefore, turning into terminated mode saves energy. For the fastest agents, as they never transfer values to other agents except to BST, they stay non-terminated until convergence. This adapted protocol, called E-TTFM, is presented below (Protocol 2).

Protocol 2 E-TTFM (for a mobile agent i interacting with an agent j)

1: f astest_mark i ∈ {0, 1} (* initialized to 1 *) 2: if (j is not BST) then 3:
if (cv j < cv i and f astest_mark j := 1) then 4:

f astest_mark i := 0 5:
if (f astest_mark j > f astest_mark i and there is a free place in j's memory) then 6:

agent i transfers to j as many values as would t in the free part of j's if (agent i has no value in its memory) then 8:

agent i turns into terminated mode 9: if (j is BST) then 10:

agent i transfers all values to BST E-TTFM has the same time complexity as TTFM, because the adaption we did does not inuence the worst case convergence time of data collection. Therefore, the longest execution in E-TTFM is of length 2cv min

|N F | M |F | -1 (Th.
11 in [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF]). The worst case on the maximum energy spent by an agent is reached in the longest execution, in which one fastest agent participates in a maximum number of interactions (being in awake mode as long as possible). This implies the result: Proposition 1. An upper bound on the maximum energy spent by an agent in

E-TTFM is (2cv min |N F | M ×|F | -1)E wkp .
This bound is reached when cv min O(n 2 ). Proof. The upper bound is easy to obtain, as the longest execution in E-TTFM is of length (2cv min [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF]. Thus, no agent can consume more energy than (2cv min

|N F | M ×|F | -1)
|N F | M ×|F | -1)E wkp .
Next, we prove that this bound can be reached when cv min O(n 2 ). Consider the following schedule which repeats the segment X 1 X 2 , where X 1 X 2 is of length cv min . We denote by f one of the fastest agents. X 1 ≡ [ repeat as much as possible all interactions between f and every agent in A\BST ], X 2 ≡ [ all the other necessary interactions to satisfy cvs constraints ].

Consider the execution e of E-TTFM corresponding to this schedule. This execution reaches the upper bound on time presented in [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF] and then |e| = (2cv min

|N F | M ×|F | - 1)
. In E-TTFM, a fastest agent never turns into terminated mode. Therefore in e, it consumes the most (E wkp in each interaction in X 1 

Es max (E-TTFM) = Es max (e) = |e|E wkp = (2cv min |N F | M × |F | -1)E wkp .

Energy-Balanced Protocol EB-TTFM

A rst step towards a protocol balancing the distribution of energy consumption would be to consider the following strategy: When an agent notices that it becomes low" in energy, it tries to transfer its values to a higher energy level agent and turns into terminated mode, as soon as possible. The issue raised by this strategy is that the convergence time for data collection could be possibly considerably augmented, especially if some values are transferred to a slow agent. An increased convergence time means more energy spent.

Therefore, the level of the amount of residual energy that is considered to be low" should be carefully set. Below, we discuss the possible choices of such a level. We make these choices depend on a parameter λ, by dening the low" level by E 0 λ where λ ≥ 1. To conform with the nite state population protocol model, we assume that E 0 λ can only take a nite number of values. In the same way as for cover times, we assume that the agents do not know their residual energies but can compare them when they interact. Adding the test of the energy level to E-TTFM yields the protocol EB-TTFM(λ) (for Energy Balanced TTFM, Protocol 3). In the code below, el i denotes the residual energy of the mobile agent i.

Protocol 3 EB-TTFM(λ) (for a mobile agent i interacting with an agent j)

1: if (j is not BST) then 2:
if (el i < E 0 λ and el i < el j and there is a free place in j's memory) then 

Energy Consumption Analysis

Intuitively, by observing the code of EB-TTFM(λ), it can be seen that, if the threshold E 0 λ is too high, many interactions result in the execution of lines 3-5, since the condition in line 2 is satised more easily. That concerns especially the fastest agents, since they interact more frequently. As a consequence, all the fastest agents switch quickly to terminated mode and the values are carried to BST by slower agents, even possibly the slowest agent. Then worst case convergence time and energy consumption depend on cv max instead of cv min , which is worse than for E-TTFM (Prop. 1).

On the other hand, if the threshold E 0 λ is too small, EB-TTFM(λ) executes line 7 more often, i.e., behaves like E-TTFM, since the condition in line 2 is dicult to satisfy. Thus, in the perspective of improving the performance of EB-TTFM, we rst study the conditions excluding the two previous (uninteresting) cases. More precisely, we study the corresponding upper and lower bounds for E 0 with respect to λ (Lem. 1 and 2). Then, for E 0 and λ given inside these bounds, we study the worst-case performance of EB-TTFM(λ) in terms of maximum energy spent by an agent (Th. 1). Next, we try to gure out, for a given E 0 , the best choice for λ (Sect. 2.4.2), according to the results for the worst-case. Then, plots are drawn to show the performance of EB-TTFM(λ) (Sect. 2.4.2 and 2.4.2).

As explained above, the number of fastest agents turning into terminated mode during an execution plays an important role in the energy performance of EB-TTFM(λ). 

Ξ d of EB-TTFM(λ), is l(d) = (E 0 -E 0 λ )[1 -(1 -θ) d 2 ]/E slp . This bound is reached when cv min O(n 2 ).
Proof. Consider an execution and a fastest agent i. In EB-TTFM(λ), agent i turns into terminated mode when the condition (in line 2) is satised, which means that its residual energy is less than E 0 λ . During each interaction, agent i cannot spend more energy than E wkp , corresponding to the cost of the awake mode. Then the number of interactions until agent i turns into terminated mode is at least

E 0 - E 0 λ E wkp .
As both participants in one interaction consume energy, mni(2) = mni(1), mni(4) = mni(3), ..., and more generally mni(2m) = mni(2m -1). In addition, we have the following recursive equations when d > 2:

(mni(d) -mni(d -2)) × (E wkp -E slp ) + mni(d) × E slp ≥ E 0 -E 0
λ . Recursively, we obtain the following inequality:

mni(d) ≥ E 0 -E 0 λ E slp [1 -(1 -θ) d 2 ] = l(d).
(2.1)

For the same reason as in the proof of Prop. 

mnv(d) = M (|F | -2β) × mni(d) 2cv min + 2M × mni(1) 2cv min × [1 + β θ - 1 -θ θ 2 (1 -(1 -θ) β )],
where 

β = (d -
M (|F | -2) × mni(3)
2cv min -mni (1) 2cv min values are delivered to BST in this segment.

Recursively, we obtain the following relation between mnv(d) and mnv(d -2):

mnv(3) = mnv(4) = mnv(1) + M (|F | -2) mni(3) 2cv min - mni(1) 2cv min = M (|F | -2) × mni(3) 2cv min + 2M × mni(1) 2cv min ; mnv(5) = mnv(6) = mnv(3) + M (|F | -4) mni(5) 2cv min - mni(3) 2cv min = M (|F | -4) × mni(5) 2cv min + 2M × ( mni(1) 2cv min + mni(3) 2cv min ) ; . . . mnv(d) = mnv(d -2) + M (|F | -2 d -1 2 ) × mni(d) 2cv min - mni(d -2) 2cv min = M (|F | -2 d -1 2 ) × mni(d) 2cv min + 2M d-1 2 j=1 mni(2j -1) 2cv min . Let β = d-1
2 . From Prop. 2, we have, when cv min O(n 2 ): 

mnv(d) = M (|F | -2β) × mni(d) 2cv min + 2M × mni(1) 2cv min × [1 + β θ - 1 -θ θ 2 (1 -(1 -θ) β )].
Ξ d , is at most ρ(d) = |N F | -2M mni(1) 2cv min [1 + 1 θ d 2 -1-θ θ 2 (1 -(1 -θ) d/2 )] M (|F | -d) × 2cv min . ( 2 
|e max d | = mni(d) + |N F | -mnv(d) M × (|F | -d) × 2cv min .
Therefore, when cv min O(n 2 ), according to Prop. 2 and Prop. 3, we have:

|e max d | ≤ |N F | -2M mni(1) 2cv min [1 + 1 θ d 2 -1-θ θ 2 (1 -(1 -θ) d/2 )] M (|F | -d) ×2cv min = ρ(d).
It appears that ρ(d) is an increasing function of d. Therefore, the longest execution in

∪ |F |-1 i=0 Ξ i is of length at most ρ(|F | -1).
Using the results above, to exclude the two previously described uninteresting cases for energy analysis, we compute the corresponding lower and upper bounds on the initial energy E 0 in EB-TTFM(λ).

Lemma 1. [Upper Bound on

E 0 (∪ |F | i=1 Ξ i = ∅)]. When E 0 ≤ 2cv min |N F | M |F | -1 λ λ-1 E wkp and cv min O(n 2 )
, there exists at least one execution of EB-TTFM(λ), in which a fastest agent turns into terminated mode.

Proof. We know that the time complexity of E-TTFM is 2cv min

|N F | M |F | -1, when cv min O(n 2 ) (Prop. 1
). In addition, when cv min O(n 2 ), for a non-empty set Ξ d , mni(d) = l(d).

Therefore, to ensure that ∪ |F | i=1 Ξ i = ∅, i.e., there exists at least one execution of EB-TTFM(λ) in which a fastest agent i turns into terminated mode, min d =0 l(d) must be less than or equal to 2cv min

|N F | M |F | -1.
Elsewhere, EB-TTFM(λ) would behave as E-TTFM. Thus, according to (2.1), we have:

min d =0 l(d) = l(1) ≤ 2cv min |N F | M |F | -1 ⇒ E 0 ≤ 2cv min |N F | M |F | -1 λ λ -1 E wkp . Lemma 2. [Lower Bound on E 0 (Ξ |F | = ∅)].
When

cv min O(n 2 ), θ ≤ 1/2 and E 0 ≥ |N F | M ×|F | λ λ-1
cv min E wkp , in any execution of EB-TTFM(λ), there is at least one fastest agent, which is not in terminated mode at the end of the execution. 3Proof. We know from the proof of Prop. 4 that, when cv min O(n 2 ), the longest 

execution in ∪ |F |-1 i=0 Ξ i is of length ρ(|F | -
E 0 > |N F | M × θ 2 θ 2 + ( |F |+1 2 + 1/2)θ -1 λ λ -1 cv min E wkp .
This lower bound can also be seen as a function of θ, denoted by lb(θ).

Since lb(θ) is an increasing function of θ and θ ≤ 1 2 , we have lb(θ

) ≤ lb( 1 2 ) ≤ |N F | M × 1 |F | λ λ-1 cv min E wkp . So, we have a sucient condition for Ξ |F | = ∅, which is: E 0 ≥ |N F | M ×|F | λ λ-1 cv min E wkp .
Next, we consider the worst-case performance of EB-TTFM(λ), supposing that every agent has an initial energy E 0 inside the bounds established above (Th. 1) and outside the bounds (Th. 2 and 3). Then from the analysis of the worst-case performance on energy consumption, we will determine the best choice for λ in EB-TTFM. Notice that if there is only one fastest agent (|F | = 1), the conditions of Lem. 1 and 2 are incompatible. This case is not considered by Th. 1. However, with the conditions of Lem. 2, this fastest agent stays non-terminated during all the executions and executes only E-TTFM. In this case, the upper bound in Prop. 1 (depending on cv min ) holds. Otherwise, the bound is worse, as it depends on a cover time greater than cv min .

Theorem 1. [Worst Case Energy Analysis I]. Assume

|N F | M ×|F | λ λ-1 cv min E wkp ≤ E 0 ≤ (2cv min |N F | M |F | -1)λE wkp /(λ -1), cv min O(n 2 ) and |F | > 1. Then Es max (EB-TTFM(λ)) ≤ λ -1 λ E 0 + (ρ(|F | -1) -l(1)) E wkp ,
where l(d), ρ(d) are the functions dened in (2.1) and (2.2), respectively.

Proof. Consider an execution e of EB-TTFM(λ). 1. The energy spent by agent i is smaller or equal to E 0 -E 0 λ . Thus, the maximum energy spent by one agent in e is smaller or equal to λ-1 λ E 0 .

As E 0 ≥ |N F | M ×|F | λ λ-1 cv min E wkp , Ξ |F | = ∅ (Lem.
2. The energy spent by agent i is greater than E 0 -E 0 λ . Let t i be the number of past interactions when the residual energy of agent i reaches E 0 λ . As when cv min O(n 2 ), l(1) is the minimum number of interactions when a fastest agent turns into terminated mode (Prop. 2), we have t i ≥ l(1). Thus, the length of the interval [t i , |e|] is |e|-t i ≤ |e|-l(1). Consequently, the maximum energy spent by an agent in e is smaller or equal to E 0 -

E 0 λ + (|e| -t i )E wkp ≤ λ-1 λ E 0 + (|e| -l(1)) E wkp .
In conclusion, when cv min O(n 2 ), the maximum energy spent by an agent in the worst case of EB-TTFM(λ), Es max (EB-TTFM(λ)), is at most λ-1 λ E 0 + (ρ(|F | -1)l( 1)) E wkp . 1) and cv min O(n 2 ). Then Es max (EB-TTFM(λ)) = Es max (E-TTFM).

Theorem 2. [Worst Case Energy Analysis II]. Assume

E 0 > (2cv min |N F | M |F | - 1)λE wkp /(λ-
Proof. We know from the proof of Lemma. 1 that, when cv min

O(n 2 ) and E 0 > (2cv min |N F | M |F | -1)λE wkp /(λ -1), EB-TTFM(λ) behaves like E-TTFM. So we have Es max (EB-TTFM(λ)) = Es max (E-TTFM). Theorem 3. [Worst Case Energy Analysis III]. Assume E 0 < |N F | M ×|F | λ λ-1 cv min E wkp and cv min O(n 2 ). Then Es max (EB-TTFM(λ)) = Ω(cv max E wkp ).
Proof. According to Lemma. 2, when cv min O(n 2 ) and E 0 < |N F | M ×|F | λ λ-1 cv min E wkp , there exists one execution e = X 1 X 2 , composed of two segments X 1 and X 2 , where at the end of X 1 , all fastest agents are in terminated mode and some values are transferred to the slowest agent. Then we can construct another execution e = X 1 X 3 X 4 .

In X 3 , the slowest agent meets as much as possible the terminated agents. When cv min O(n 2 ), |X 3 | ≈ cv max . Therefore, we know that the maximum energy spent by an agent in e is at least cv max E wkp .

A natural issue is to determine the best value for λ, that is the value that minimizes the upper bound in Th. 1. This determination is not easy because of the ceiling and oor functions appearing in Th. 1. Thus, in order to get an exploitable expression, we drop, in the next subsection, the assumption of bounded memory and we consider that an agent can hold an arbitrary number of values. Then we obtain a better upper bound using such a λ.

Special Case of Non-Bounded Memory (M ≥ n -1)

The following improved bound for E 0 (with respect to Lem. 2) is obtained when the lower bound of mni(|F |) is larger or equal to cv min . This condition ensures that at least one fastest agent is not terminated during the rst cv min interactions (and not until convergence as in Lem. 2). During this period, the fastest agents meet all the non-fastest ones, collect all their values (as M is large enough), and turn them into terminated mode, as it is stated by Lem. 6. This certainly ensures that

Ξ |F | = ∅. Lemma 3. [Lower Bound on E 0 when M ≥ n -1 (Ξ |F | = ∅)]. When E 0 ≥ λ λ-1 ( θ 1-(1-θ) |F | 2
)cv min E wkp and M ≥ n-1, in any execution of EB-TTFM(λ), all non-fastest agents are in terminated mode after the rst cv min interactions.

Proof. We know that a conguration where all fastest agents are in terminated mode can appear only at or after the mni(|F |) th interaction. Thus, if l(|F |) ≥ cv min , in any execution of EB-TTFM(λ), there is at least one non-terminated fastest agent at the end of the rst cv min . Moreover, all the non-fastest mobile agents are in terminated mode, since every non-fastest mobile agent interacts with a non-terminated fastest agent during the rst cv min and has transferred all of its value (as the memory is unbounded) in this interval. Substituting (2.1) in l(|F |) and expressing the formula in function of E 0 yields the formula appearing in Lemma 6.

Then, similarly to the bounded case in the previous section, we compute Es max (EB-TTFM(λ)) for E 0 satisfying the bounds of Lemmas 1 and 6.

Theorem 4. [Worst Case Energy Analysis when

M ≥ n -1]. If λ λ-1 ( θ 1-(1-θ) |F | 2 )cv min E wkp ≤ E 0 ≤ (2cv min -1) λ λ-1 E wkp and cv min O(n 2 ), then Es max (EB-TTFM(λ)) ≤ λ-1 λ E 0 + (1 + 1 2-θ )cv min E wkp = Θ(cv min E wkp ).
Proof. Assume that for an execution e, the energy of agent i decreases to E 0 λ at time t i . Then, there are two possible states for agent i after t i + cv min : Agent i is in terminated mode: It means that agent i has already transferred its value. Therefore, in this case, its residual energy at the end of execution,

el i (|e|) = el i (t i + cv min ) ≥ E 0 λ -cv min E wkp .
Agent i is not in terminated mode: If agent i is still alive after t i + cv min , for any interaction (i, j) at time t ∈ [t i , t i +cv min ] with an agent j still non-terminated, el j (t) < el i (t) ≤ E 0 λ . Thus, after t i + cv min , agent i is the only non-terminated agent. And agent i is the agent that transfers the last value to the base station.

Let agent j be the last agent turning into terminated mode during [t i , t i + cv min ] and let t j be the time where its energy decreases to E 0 λ . Let t ij ∈ [t i , t i + cv min ] be the time when non-terminated j interacts with i. We know that t ij > t j since el j (t ij ) < el j (t j ) = E 0 λ . Denoting by x i the number of interactions of agent i during [t i , t ij ] and by x j the number of interactions of agent j during [t j , t ij ]:

1. First, according to the denition of x i and x j , we have

x i ≤ t ij -t i , x j ≤ t ij -t j . 2. As el j (t ij ) < el i (t ij ), E 0 λ -x j (E wkp -E slp )-(t ij -t j )E slp < E 0 λ -x i (E wkp - E slp )-(t ij -t i )E slp . Thus, we have x i < x j +(t i -t j ) θ 1-θ where θ = E slp E wkp .
3. There is no interaction between i and j during the interval [min(t i , t j ), t ij ). Indeed, suppose that there is one at time

t ∈ [min(t i , t j ), t ij ) , k 1 = arg min x∈{i,j} t x and k 2 = {i, j}\k 1 . We know that el k 1 (t ) ≤ el k 1 (t k 1 ) = E 0 λ . If el k 1 (t ) < el k 2 (t ), agent k 1 transfers its values to agent k 2 . If el k 1 (t ) > el k 2 (t ), as el k 2 (t ) < el k 1 (t ) ≤ E 0 λ , agent k 2 transfers
its values to agent k 1 . Then, after the interaction at time t , either agent k 1 or agent k 2 is in terminated mode which contradicts the interaction of (i, j) at time t ij where both agents are non-terminated. Since there is no interaction between agent i and j during the interval [min{t i , t j }, t ij ) and since there is at least one interaction between i and j for each cv min time interval, according to the denition of a cover time, we have t ij ≤ min{t i , t j } + cv min . Thus, x i + x j ≤ cv min . Taken all the inequalities obtained above into consideration, x i reaches its maximum value

1 2-θ cv min when t ij -t j = cv min , t ij -t i = 1 2-θ cv min , x j = 1-θ 2-θ cv min . Figure 2.
3 gives an illustration of this case. As the execution ends before t ij + cv min , agent i interacts at most cv min times after t ij . Thus, from t i to the end of execution, agent i interacts at most x i + cv min = 3-θ 2-θ times. Therefore, in the worst case, agent i will consume

⏟ ti tj ⏞ ⏞ cvmin x i = cv min 2-θ x j = 1-θ 2-θ ⋅cv min tij

3-θ

2-θ cv min E wkp energy at the end of execution e.

In conclusion, for any agent i ∈ F whose energy decreases to E 0 λ before the end of an execution e, we have proved that agent i should consume at most 3-θ 2-θ cv min E wkp energy. Therefore, we have:

Es max (EB-TTFM(λ)) ≤ λ -1 λ E 0 + (1 + 1 2 -θ )cv min E wkp .
Best Choice for λ.

Now, given E 0 (large enough for accomplishing the task), we study the best choice for λ for minimizing Es max (EB-TTFM(λ)). We can see from Th. 4 that Es max (EB-TTFM(λ)) decreases with λ, provided that λ satises, in particular,

E 0 ≥ λ λ-1 (θ/(1 -(1 - θ) |F |
2 ))cv min E wkp . Therefore, the smallest value of λ is obtained when λ λ-1 (

θ 1-(1-θ) |F | 2 )cv min E wkp = E 0 , which is λ = E 0 /(E 0 -( θ 1 -(1 -θ) |F | 2 
)cv min E wkp ).

Now, we study the consequences of setting λ to λ in EB-TTFM(λ). The best energy level is:

E 0 λ = E 0 -( θ 1 -(1 -θ) |F | 2 
)cv min E wkp , that is the initial energy minus a xed amount, which is precisely

E f ix = ( θ 1 -(1 -θ) |F | 2 
)cv min E wkp .

What is the explanation for that? Actually, in the analysis of EB-TTFM(λ), an important point is the relation between E 0 and λ ensuring that there is at least one non-terminated fastest agent at the end of the rst cv min , i.e., Ξ |F | = ∅. E f ix is the minimum energy consumption of an agent that ensures that Ξ |F | = ∅. The interpretation of E f ix in the process of EB-TTFM( λ) is the following. Once an agent has consumed more than E f ix energy, it transfers its values to more powerful agents and turns into terminated mode. So, we can say that E f ix is the amount of energy to activate the condition in line 2 of EB-TTFM( λ). In other words, the best strategy to increase the lifetime in the worst case of EB-TTFM(λ) is to activate the condition as soon as an agent has consumed E f ix energy, i.e., when it is certain that there will be at least one non-terminated fastest agent at the end of the rst cv min . Thus, the best worst-case performance of EB-TTFM(λ) is when λ is set to λ: The red (lighter) plane shows Es max (E-TTFM) and the blue (darker) one represents Es max (EB-TTFM( λ)). We can see that EB-TTFM( λ) is more energy balanced when θ is small, i.e., when the energy spent in sleep mode is much less than the energy spent in awake mode.

Es max (EB-TTFM( λ)) = E f ix + (1 + 1 2-θ )cv min E wkp = (1 + θ 1-(1-θ) |F | 2 + 1 2-θ )cv min E wkp .

Interpretation of Results: Relationship between λ, E 0 and Es max in EB-TTFM(λ).

In Section 2.4.2, we discussed the best choice for λ in EB-TTFM(λ). But what if the value of λ is not set to λ and what is the performance of EB-TTFM(λ) in this case? In this section, we use 3D plots to show the relation among λ, E 0 and Es max (EB-TTFM(λ)). Firstly, from Lemma 6, we have a lower bound for E 0 depending on λ. Then, 3D plots of λ, E 0 and Es max can be constructed following Th. 4. Figure 2.5 shows the performance of EB-TTFM(λ) where |F | = 10, θ = 0.2. x axis represents λ, y axis E 0 and z axis Es max (EB-TTFM(λ)). The blue polytope in Figure 2.5a presents the possible values of λ and E 0 for which EB-TTFM(λ) does not behave like E-TTFM. As we can see, λ should be carefully chosen to a small value for EB-TTFM(λ) to perform better than E-TTFM in the 

Lower bound on Es max

In this section, we present a lower bound (Th. 5) on the maximum energy spent by an agent (Es max ) for achieving data collection. The protocols considered here, like in the whole study, are those that can compare (but not use in any other way) the cover times and the residual energies of interacting agents. Let us denote this class of protocols by P cv∪e . Following the intuition above for strategies of energybalanced data collection protocols, we study the lower bound for dierent sub-classes of protocols in P cv∪e , distinct in their strategies of turning agents into terminated mode.

Hence, we decompose P cv∪e into subsets P i , dened below. For that, we order the agents according to their cover times and denote by F i the set of mobile agents with the the i th smallest cover time. Thus the set of fastest agents is F 1 , cv i is the value of the i th smallest cover time and ns is the number of dierent cover times. Then, we dene P i as the class of protocols for which, there is at least one non-terminated agent in ∪ i j=1 F j at the end of any execution (or turning into terminated mode during the last interaction of the execution). Moreover, in P i , when i > 1, there exists at least one execution in which all agents in ∪ i-1 j=1 F j are terminated before the end of execution, i.e.,

P i = {P ∈ P cv∪e | ∀ e ∈ e(P), ∃f ∈ ∪ i j=1 F j , M ode(f, e) = terminated ∧ if (i > 1) : ∃ e ∈ e(P), ∀f ∈ ∪ i-1 j=1 F j , M ode(f, e) = terminated},
where M ode(f, e) ∈ {awake, sleep, terminated} indicates the energy consumption mode of agent f just before the last interaction in execution e and e(P) is the set of all executions of protocol P.

By denition, the P i 's are disjoint and ∪ ns i=1 P i = P cv∪e . Moreover, E-TTFM belongs to P 1 . Note that EB-TTFM(λ) can belong to dierent subsets depending on the value of E 0 λ . Under the conditions of Lem. 2, EB-TTFM(λ) is in P 1 .

We obtain the lower bound on energy, using in particular the lower bound on time (the length of an execution) of [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF]. This bound holds for any data collection protocol using only cover time comparisons. Let P cv be this class of protocols. The proof of the lower bound on time for P cv in [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF] holds also for P cv∪e , because only constraints related to the data collection problem are invoked. For example, it is necessary that every mobile agent either meets BST by itself, or meets at least one other agent that meets BST, before convergence. Then comparisons of the residual energies of two interacting agents cannot produce a shorter execution. This is expressed in the following observation.

Observation: The lower bound on time for any data collection in P cv [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF] is also correct for any protocol in P cv∪e .

Recall that this bound is tight and equal to the upper bound on time of the protocol TTFM, also presented in [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF]. Hence, we denote this bound here by |e max (TTFM)|. /E wkp , all agents in ∪ i j=1 F j consume Es max (P) amount of energy. However, the length of e must be smaller than or equal to t. Because otherwise, either there would be a non-terminated agent consuming more than Es max , or all agents would be terminated, which contradicts the fact that P ∈ P i . Thus, we have t ≥ |e|, i.e., Es max (P)

E wkp × | ∪ i j=1 F j | 2 ≥ |e|.
By the observation above, execution e satises the lower bound on time of [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF]. Proof. When i > 1, as P ∈ P i , there exists at least one execution e in which all agents in ∪ i-1 j=1 F j are terminated before the end of the execution. Let t indicate the time when all agents in ∪ i-1 j=1 F j are terminated in e and let f ∈ ∪ i-1 j=1 F j be a non-terminated agent (with cover time cv f ≥ cv i ), holding one of the values not yet collected by BST at time t + 1. We prove the existence of another execution e such that Es max (e ) ≥ cv i E wkp . The execution e begins with the same prex of t events as e and continues by meetings between agent f and the terminated agents until f meets BST at time t + cv f . In our energy consumption scheme, when a sleeping agent meets a terminated agent, it consumes E wkp and does not change its mode (See Sect. 2.2). Therefore and because cv f > cv min O(n 2 ), during the interval [t, t + cv f ], agent f consumes cv f E wkp (the necessary interactions involving other agents than f during cv f are negligible, as in the proof of Lem. 4). So, when i > 1, we have Es max (P) ≥ Es max (e ) ≥ cv f E wkp ≥ cv i E wkp .

Next, we consider the case where i = 1. We prove that Es max (P) ≥ cv min E wkp by contradiction. Suppose that there exists a protocol P ∈ P 1 such that Es max (P) < cv min E wkp . To contradict this, we construct an execution e of P with Es max (e) ≥ cv min E wkp . Consider again the schedule X 1 X 2 in the proof of Lem. 4. It is possible that at time t = Es max (P)/E wkp < cv min , an agent j ∈ F 1 consumes Es max (P) and turns into terminated. For the same reason as above, we can construct e in which a non-terminated agent f meets the terminated agent j repetitively until it meets others at time t + cv f . Thus, when i = 1, we have Es max (P) ≥ cv min E wkp . Proof. This result comes directly from Th. 5 and Th. 4.

Theorem 5. [Lower Bound on

Conclusion

In this chapter, a formal energy model for population protocols has been presented and studied. Designing a good model is dicult. If the model is too abstract (or general), it won't easily apply to reality. If it is too low level and considers too many parameters, it won't allow formal treatments. We believe that the model we introduced is a good compromise between the two approaches. On the one hand, it is based on practical information on how real resource-limited mobile sensor networks are functioning, and on the other hand, as shown in this chapter, it allows to obtain analytically precise formulas, which are obviously not directly intuitive.

Moreover, the proposed energy model is adaptable to many types of mobile sensor networks and their applications, and to those that are not considered in this work (e.g., to the case where the transmitted data does not always t into one packet and in general, to the case of less limited agents). As already noticed, the assumption on the cover times does not particularize the model, since almost all real mobile sensor networks either operate in a bounded area (town, factory, security zone, etc.)

or satisfy the home coming tendency (networks related to human or animal mobility). Nevertheless, other kinds of periodic conditions on the interactions (e.g., probabilistic interactions) can be considered to study energy consumption using the proposed framework. Finally, other important communication problems (as broadcast, all-to-all communication, routing, etc.) have many points in common with data collection (excepted that unique identiers may be needed, like in community protocols [START_REF] Rachid | Even small birds are unique: Population protocols with identiers[END_REF]). Hence, the techniques developed here can be useful in the future studies of these problems.

The second contribution of the chapter consists in establishing analytical formulas for lower bounds and for the energy consumption of two proposed data collection algorithms. We want to emphasize that having analytical formulas allows obtaining information that could not be obtained by the sole intuition, and that would be dicult to obtain by simulations. On one hand, the study of the curves and plots allows to get easily the conditions on the parameters (e.g., think of the value of
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for θ in Sect. 2.4.2). On the other hand, the analytical approach allows obtaining general upper and (always dicult to establish) lower bounds.

To conclude, we summarize the main technical results of this chapter. In Sect. 2.4.1, we obtain formulas for the worst-case performance of energy in EB-TTFM(λ). Then, for the case of non-bounded memory, we compute the best value for λ with respect to E 0 , |F |, E wkp , E slp and cv min (Sect. 2.4.2). Further analysis with the best λ shows that no matter how much initial energy an agent has, once it consumes more than some calculated amount E f ix , the best strategy is to switch to terminated mode, when interacting with a more powerful agent. We interpret the formulas graphically, and show that EB-TTFM(λ) is more energy ecient in the case where the number of fastest agents are more than 10 and the ratio between E slp and E wkp is less then
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(Sect. 2.4.2). At the end (Sect. 2.5), we give a uniform lower bound for energy consumption for all possible data collection protocols. We identify the cases where this bound is reached by the presented protocols (Cor. 1), and where it diers only by a constant multiplicative factor from the energy upper bound of EB-TTFM(λ)

(Cor. 2).

Chapter 3

Power-Aware Population Protocols under Non-uniformly Random Scheduler

Introduction

In population protocols, the fact that agent moves are unpredictable is usually modeled by assuming the uniformly random scheduler ( [START_REF] Alistarh | Fast and exact majority in population protocols[END_REF][START_REF] Angluin | Computation in networks of passively mobile nite-state sensors[END_REF][START_REF] Angluin | Fast computation by population protocols with a leader[END_REF][START_REF] Aspnes | Time and space optimal counting in population protocols[END_REF]). That is, the interactions between any two agents are drawn uniformly at random. However, for some practical sensor networks, this assumption may be unrealistic. Consider, for instance, agents moving at dierent speeds. In this case, an agent interacts more frequently with a faster agent than with a slower one. In other networks, certain agents may be frequently prevented from communicating with some others, because they move in dierent limited areas, or disfunction from time to time, etc. In all these examples, the interactions are clearly not uniformly random. There are thus strong arguments for enhancing the basic model.

This chapter initiates the study of non-uniform schedulers in the context of population protocols. Considering the scheduler as a generator of sequences of pairwise interactions, non-uniform means that the next interacting pair (i, j) is chosen with a non-uniform probability P i,j , depending on i and j.

As an additional justication for studying a non-uniform scheduler, notice that many experimental and analytical studies of dierent (nite boundary) mobile sensor networks show and exploit (respectively) the assumption that the inter-contact time of two agents (the time period between two successive interactions of the same two mobile agents) is distributed exponentially (cf. [START_REF] Cai | Crossing over the bounded domain: from exponential to power-law inter-meeting time in manet[END_REF][START_REF] Gao | User-centric data dissemination in disruption tolerant networks[END_REF][START_REF] Sharma | Scaling laws for capacity and delay in wireless ad hoc networks with random mobility[END_REF][START_REF] Zhu | Recognizing exponential inter-contact time in vanets[END_REF]). Similarly, under a non-uniformly random scheduler, it appears that the inter-contact time T i,j , of any two agents i and j, follows a geometric distribution (P [T i,j = t] = (1 -P i,j ) t-1 P i,j ), which is the discrete analogue of the exponential case (observed in practical mobile networks).

The counterpart of considering a non-uniform scheduler is a more complex analysis. Though, it remains feasible in certain cases, as it is shown in this chapter. To illustrate this point, we consider the previously studied fundamental task, data collection. In the context of population protocols (assuming non-random schedulers), several data collection protocols have been proposed and their complexity in time has been studied [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF] under cover times fairness. Notice that the analysis there was only for the worst case. However, we are not aware of any previous results concerning the average complexity of these protocols. The current chapter presents protocols that basically use the simple ideas of the TTF (Transfer To the Faster) Section 3.

Model and Denitions

Besides the uniformly random scheduling independent of the agents states, there are works assuming a scheduling depending on the states of agents, like the transition function scheduler in [START_REF] Chatzigiannakis | On the fairness of probabilistic schedulers for population protocols[END_REF] or the scheduling of reactions in CRN (Chemical Reaction Network model) according to the model of stochastic chemical kinetics (cf. [START_REF] Cummings | Probability 1 computation with chemical reaction networks[END_REF]).

We should also mention the randomized gossip algorithm in [START_REF] Boyd | Randomized gossip algorithms[END_REF] designed for the problem of averaging, in an arbitrarily connected network. Each node runs an independent Poisson clock (asynchronous time model), and at each clock tick, the node randomly selects a neighbor, with the probability given by the algorithm. Then, it averages its value with the chosen neighbor. Observe that this algorithm can be seen as a population protocol under non-uniformly random scheduler, in which two meeting agents average their values. For more details on gossip algorithms, refer to the surveys [START_REF] Shah | Gossip algorithms[END_REF] and [START_REF] Alexandros G Dimakis | Gossip algorithms for distributed signal processing[END_REF].

Model and Denitions

Non-uniformly random scheduler. Such a scheduler, denoted by S(P ), is dened by a matrix of probabilities P ∈ R n×n . During an execution, S(P ) chooses the next pair of agents (i, j) to interact (taking i as initiator and j as responder) with the probability P i,j . Notice that, in the case of the matrix with entries P i,j = 1/n(n -1) for i = j, and P i,i = 0, the scheduler chooses each pair of agents uniformly at random for each next interaction (i.e., the scheduler is uniformly random).

The matrix P satises n i=1 n j=1 P i,j = 1 and ∀i ∈ {1, ..., n}, P i,i = 0, since interactions are pairwise. Moreover, for any edge (i, j) in the interaction graph G, P i,j > 0. As the graph considered here is complete, every pair of agents is chosen innitely often with probability 1.

For a given P , one can compute the expected (nite) time for a given agent i to meet all the others. We call it cover time of agent i and denote it by cv i . By resolving the coupon collector's problem with a non-uniform distribution [START_REF] Flajolet | Birthday paradox, coupon collectors, caching algorithms and self-organizing search[END_REF], we obtain the cover time of each agent: cv i = ∞ 0 (1j =i (1e -(P i,j +P j,i )t ))dt. Similarly to [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF],

for two agents i and j, if cv i < cv j , we say that i is faster than j, and j is slower than i. If cv i = cv j , i and j are said to be in the same category of cover times. We denote by m the number of dierent categories of cover times.

Time Complexity Measures. The convergence time of a data collection protocol P can be evaluated in two ways: rst, in terms of expected time until termination, denoted by T E (P), and second, in terms of time until termination w.h.p.1 , denoted by T whp (P). The termination of a data collection protocol has been dened in Sect.

??.

Remark 1. The notion of parallel time, which is common when considering the uniformly random scheduler (cf. [START_REF] Angluin | Fast computation by population protocols with a leader[END_REF][START_REF] Angluin | A simple population protocol for fast robust approximate majority[END_REF]), is not used in this study. When using this measure of time, it is assumed that each agent participates in an expected number Θ(1) of interactions per time unit. With the uniformly random scheduler, this time measure is asymptotically equal to the number of interactions divided by n. However, with non-uniformly random scheduler, this is no more true.

Lower Bounds on the Expected Convergence Time

We now give two nontrivial lower bounds on the expected convergence time of data collection protocols. The rst one (Th. 6) only depends on the number of agents.

The second one (Th. 7) depends on the specic values of the probability matrix P used by the scheduler. The bounds are incomparable in general. To obtain the bounds, we observe that, for performing data collection, each agent has to interact at least once (otherwise, its value simply would not be delivered), and we compute the expected time ensuring that. The proof of Th. 6 uses an analogy with a generalization of the classical coupon collector's problem, which we introduce next.

Let k be a positive integer. Given a probability distribution (p 1 , . . . , p k ) on [k] = {1, . . . , k}, the corresponding k-coupon collector's problem is dened by its coupon sequence (X 1 , X 2 , . . . ) of independent and identically distributed (i.i.d.) random variables with P(X t = i) = p i for all i ∈ [k] and all t ≥ 0. The k-coupon collector's problem's expected time is the expectation of the earliest time T such that {X 1 , . . . , X T } = [k], i.e., all coupons were collected at least once.

More generally, given a set A of subsets of [k] such that A∈A A = [k], and a probability distribution (p A ) on A, the corresponding A-group k-coupon collector's problem is dened by its coupon group sequence (X 1 , X 2 , . . . ) of i.i.d. random variables with P(X t = A) = p A for all A ∈ A and all t ≥ 0. Its expected time is the expectation of the earliest time T such that T t=1 X t = [k], i.e., all coupons were collected in at least one coupon group.

Given an integer 1 ≤ g ≤ k, the g-group k-coupon collector's problem is the A-group k-coupon collector's problem where A = A ⊆ [k] | |A| = g . This generalization of the classical coupon collector's problem has been studied, among others, by Stadje [START_REF] Stadje | The collector's problem with group drawings[END_REF], Adler and Ross [START_REF] Adler | The coupon subset collection problem[END_REF], and Ferrante and Saltalamacchia [START_REF] Ferrante | The coupon collector's problem[END_REF].

The following lemma characterizes the probability distributions that lead to a minimal expected time for the group coupon collector's problem. To the best of our knowledge, this is a new result which generalizes the characterization in the classical coupon collector's problem [START_REF] Flajolet | Birthday paradox, coupon collectors, caching algorithms and self-organizing search[END_REF][START_REF] Nakata | Coupon collector's problem with unlike probabilities[END_REF], for which it is known that the uniform distribution leads to the minimal expected time. Lemma 6. The expected time of any A-group k-coupon collector's problem is greater than or equal to the B-group k-coupon collectors problem with uniform probabilities where

B ⊆ A is of minimal cardinality such that B = [k].
In particular, the expected time of any g-group k-coupon collector's problem is Ω(k log k) for every constant g ≥ 1.

Proof. We say that a set B ⊆ A of coupon groups is covering if B = [k]. To show the second part, we note that k/g coupon groups of size g are needed to cover the set [k], i.e., |B| ≥ k/g , which means

E(T ) ≥ k g • H k g ∼ k g • log k g = Ω(k log k) (3.3) as k → ∞ if g is a constant.
Theorem 6. The expected convergence time of any protocol solving data collection with non-uniformly random scheduler is Ω(n log n).

Proof. For data collection, each agent has to transfer its value at least once, and the base station has to receive values at least once. Therefore, in any execution, each agent has to interact at least once. The expected time of every agent interacting at least once is that of a 2-group n-coupon collector's problem, i.e., is Ω(n log n) by Lemma 6.

Theorem 7. The expected convergence time of any protocol solving data collection with random scheduler S(P ), is Ω(max

i 1 n j=1 (P i,j +P j,i ) ).
Proof. For any agent i, it is required at least n j=1 1/(P i,j +P j,i ) time in expectation to establish one interaction. Thus, to complete one data collection, for which it is required that each agent interacts at least once, it takes at least max i

1 n j=1 (P i,j +P j,i ) expected time.
The next corollary considers a very simple protocol solving the data collection problem. In this protocol, agents transfer their values only when they interact with the base station. We consider it as a reference, to compare with other proposed protocols. The corollary follows from Th. 7.

Corollary 3. With random scheduler S(P ), the expected convergence time of the protocol solving data collection and where each agent transfers its value only to the base station is Ω(max i 1/(P i,BST + P BST,i )).

Protocol Transfer To the Faster (TTF)

Corollary 3 formalizes the straightforward observation that, if the only transfers performed by the agents are towards the base station, the convergence time depends on the slowest agent i. It can be very large, e.g. if P i,BST + P BST,i 1/n 2 . Therefore, to obtain better time performances, we propose to study another data collection protocol based on the idea of the TTF protocol of [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF]. In the sequel, the studied protocol is called TTF too, since its strategy is the same and there is no risk of ambiguity. The only dierence is the denition of the cover time parameter (Sect. 3.2) used by this strategy (as explained in Sect. 3.1).

The strategy of TTF is simple. When agent i meets a faster agent j, i transfers to j all the values it has in its memory (recall that transfer means to copy to the memory of the other and erase from its own). The intuition behind is that the faster agent j is more likely to meet the base station before i. Of course, whenever any agent i meets the base station, it transfers all the values it (still) has in its memory at that time to the base station. As a matter of fact, no transition depends on the actual value held by the agents. It depends only on the comparison between cover times, which are constants. Thus, the input values can be seen as tokens and the states of every agent can be represented by the number of tokens it currently holds. Recall, that in this study, it is assumed that each agent has enough memory for storing the tokens (i.e., an O(n) memory), and each pair of agents interacts innitely often (i.e., the interaction graph is complete).

The sequel concerns analytical results on the time performance of TTF. Firstly, we associate to each conguration a vector of non-negative integers representing the number of tokens held by each agent. Then, it is shown that the evolution of such vectors during executions can be expressed by a stochastic linear system. Next, T whp (TTF) is expressed in terms of distances between the conguration vectors (Th. 8) and, by applying stochastic matrix theory ( [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF][START_REF] Ren | Consensus seeking in multiagent systems under dynamically changing interaction topologies[END_REF][START_REF] John N Tsitsiklis | Distributed asynchronous deterministic and stochastic gradient optimization algorithms[END_REF]) an upper bound on T whp (TTF) is obtained (Th. 9). Finally, using this result, we obtain also an upper bound on the convergence time in expectation, T E (TTF) (Th. 10).

Formally, we represent a conguration by a non-negative integer vector x ∈ N n that satises n i=1 x i = n -1. By abusing the terminology, we sometimes call such a vector a conguration. We denote the conguration vectors' space by V. By convention, the rst element of x is the number of tokens held by the base station.

Since, at the beginning of an execution, every mobile agent owns exactly one token and no token is held by the base station, the initial conguration is x init = 1e 1 , where e i = 0, . . . , 0, 1, 0, . . . , 0 T is the n × 1 unit vector with the i th component equal to 1. The terminal conguration is x end = (n -1)e 1 . Let x(t) ∈ V be the discrete random integer vector that represents the conguration just after the t th interaction in executions of TTF. We can see that P(x(0) = x init ) = 1, and since the base station never transfers tokens to others, P(x(t + 1) = x end ) ≥ P(x(t) = x end ). Moreover, since at any moment there is a positive probability for delivering any of the tokens to the base station, lim t→∞ P(x(t) = x end ) = 1.

Furthermore, the time complexities of TTF can be formalized using x(t) by

T E (TTF) = ∞ t=1 t • (P(x(t) = x end ∧ x(t -1) = x end )) and T whp (TTF) = inf t | P(x(t) = x end ) ≥ 1 - 1 n .
To evaluate these time complexities, we study the evolution of x(t) during executions of TTF. Given time t, consider a transition rule applicable from a conguration represented by a vector v t and resulting in a conguration with vector v t+1 . Suppose that at time t, the interaction (i, j) is chosen by the scheduler. If neither i nor j are the base station and if i is faster than j (cv i < cv j ), agent j transfers all its tokens to i. Thus, v t+1 i = v t i + v t j and v t+1 j = 0. The relation between v t and v t+1 , in this case, can be expressed by the linear equation v t+1 = W (t + 1)v t , where W (t + 1) = I + e i e T je j e T j ∈ {0, 1} n×n . If cv i = cv j , no token is transferred and v t+1 = v t . We still have v t+1 = W (t + 1)v t , but with W (t+1) = I. On the other hand, if j is the base station, W (t+1) = I +e i e T j -e j e T j , as agent i transfers all of its tokens to the base station.

As the pair of agents is chosen independently with respect to P , W (t + 1) can be seen as a random matrix such that with probability P i,j + P j,i :

W (t + 1) = I + e i e T j -e j e T j if cv i < cv j or i = 1 or j = 1 I if cv i = cv j (3.4)
By comparing the resulting probability distributions, we readily verify that the relation between x(t) and x(t + 1), i.e., x(t + 1) = W (t + 1)x(t), is a stochastic linear system with the matrices specied in (3.4).

Distance. Consider a function d γ (x) : V → R. It associates any x in V to a real number representing a weighted Euclidian norm distance between the conguration vector x and the vector representing a terminal conguration. That is,

d γ (x) = ||(x -x end ) • γ|| 2 , where γ ∈ R n is a real vector,
• the entry-wise product, and || • || 2 the Euclidean norm. The vector γ can be viewed as a weight vector. We choose γ in such a way that, if there is a transfer of tokens in interaction t + 1,

then d γ (v t+1 ) is smaller than d γ (v t ).
Intuitively this means that, when a transfer is performed, the resulting conguration is closer to termination.

Lemma 7. Let i and j be two agents with cv i < cv j . Consider an interaction between i and j in a conguration represented by v t and resulting in v t+1 . If

γ j /γ i ≥ √ 2n -3, then d γ (v t+1 ) ≤ d γ (v t ).
Proof. During an interaction (i, j) where i is faster than j, j transfers its tokens to i. Suppose that agent i holds a tokens in v t . To ensure

d γ (v t+1 ) ≤ d γ (v t ), it suces to have ((a + 1) 2 -a 2 )γ 2 i ≤ γ 2 j , which is equivalent to γ j /γ i ≥ √ 2a + 1.
If agent j has tokens, agent i cannot have more than n -2 tokens in v t , thus a ≤ n -2. Therefore, if γ j /γ i ≥ √ 2n -3, the lemma is satised.

Scheduler

Recall that m ≤ n denotes the number of cover time categories (Sect. 3.2).

Theorem 8. The convergence time with high probability of TTF, T whp (TTF), is equal to inf t | P dγ (x(t))

dγ (x init ) < (2n) -(m-1) 2 ≥ 1 -1/n if γ BST = 0 and γ j /γ i ≥ √ 2n
whenever cv i < cv j . Proof. Given a conguration vector v t at time t, if v t = x end , we have d γ (v t ) ≥ γ min where γ min = min{γ i | i = BST}. Further, using the relation γ j /γ i ≥ √ 2n, we have

d γ (x init ) = ||γ|| 2 ≤ m-2 i=0 (2n) i + (n -m + 1)(2n) m-1 ≤ (2n) (m-1)/2 . There- fore, if v t = x end , we have dγ (v t ) dγ (x init ) ≥ 1 ||γ|| 2 ≥ (2n) -(m-1)/2 . Thus, if v t satises dγ (v t ) dγ (x init ) < (2n) -(m-1)/2 , it is necessarily the terminal cong- uration. Since T whp (TTF) = inf{t | P(x(t) = x end ) ≥ 1 -1/n}, we obtain the result.
We are now ready to state and prove the main upper bound on the convergence time of TTF, T whp (TTF) (Th. 9). For that, we apply the stochastic matrix theory to the stochastic linear system dened above for x(t).

Without loss of generality, we assume that cv

2 ≤ cv 3 ≤ • • • ≤ cv n . We choose γ ∈ R n by setting γ 1 = 0, γ 2 = 1, and γ i+1 = γ i , if cv i+1 = cv i , and γ i+1 = γ i √ 2n, if cv i+1 > cv i . In particular, γ n = (2n) (m-1)/2 .
Theorem 9. With a non-uniformly random scheduler S(P ), the convergence time of TTF is at most m log 2n log λ 2 ( W ) -1 with high probability, where γ is dened above. Γ i,j = γ i /γ j , W = i<j∧cv i <cv j (P i,j + P j,i )W Γ 2 ij + i<j∧cv i =cv j (P i,j + P j,i )I, W Γ 2 ij = I + Γ i,j (e i e T j + e j e T i ) + (Γ 2 i,j -1)e j e T j , and λ 2 (A) denotes the modulus of the second largest eigenvalue of matrix A.

Proof. Firstly, we study the evolution of the vectors y(t) = x(t)x end • γ, which appear in the formulation of T whp (TTF) (Th. 8). As x end = (n -1)e 1 and γ 1 = 0, y(t) reduces to x(t) • γ. Since x(t + 1) = W (t)x(t), we obtain

y(t + 1) = x(t + 1) • γ = W (t)x(t) • γ = W Γ (t)y(t) (3.5)
where W Γ (t) = W (t) • Γ is the entry-wise product and matrix Γ ∈ R n×n has entries Γ i,j = γ i /γ j when j = 1 and Γ i,1 = 0 for all i ∈ {1, . . . , n}. Hence we get:

E y(t + 1) T y(t + 1) | y(t) = y(t) T E W Γ (t) T • W Γ (t) y(t) (3.6)
From (3.4), we know that with probability P i,j +P j,i , matrix

W Γ (t) T •W Γ (t) is equal to I + Γ i,j (e i e T j + e j e T i ) + (Γ 2 i,j -1)e j e T j if cv i < cv j or i = 1 or j = 1 I if cv i = cv j (3.7)
Then, setting W Γ 2 ij = I + Γ i,j (e i e T j + e j e T i ) + (Γ 2 i,j -1)e j e T j , we have:

W = E W Γ (t) T • W Γ (t) = i<j∧cv i <cv j (P i,j + P j,i )W Γ 2 ij + i<j∧cv i =cv j (P i,j + P j,i )I (3.8) 
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In particular:

W1,1 = 1 and Wi,1 = W1,i = 0 for all i ∈ {1, . . . , n}

Since W Γ (t) T •W Γ (t) is symmetric and positive semi-denite, so is its expectation W . Now, we turn to study the properties of the eigenvalues in W . By (3.9), matrix W is of the form

W =      1 0 • • • 0 0 . . . W 0      (3.10)
for some W ∈ R (n-1)×(n-1) . Denoting the k th largest eigenvalue of matrix A by λ k (A), we have λ 1 (W ) ≤ W ∞ = max 1≤i≤n n j=1 W i,j where • ∞ denotes the operator norm with respect to the supremum norm on R n-1 , i.e., the largest 1-norm of rows of the matrix. According to (3.8)

, the i th row sum of W is n j=1 Wi,j = w =i v =w P w,v + j:cv j =cv i (P i,j + P j,i ) (3.11) + j:cv j <cv i Γ 2 j,i (P i,j + P i,j ) + j:cv j >cv i Γ i,j (P i,j + P i,j ) (3.12) 
for all i ∈ {2, . . . , n}. As Γ i,j = γ i γ j < 1 whenever cv i < cv j , we obtain j W i,j < 1 for all i. By the block decomposition (3.10), we thus have λ 1 ( W ) = 1 and

λ 2 ( W ) = λ 1 (W ) ≤ W ∞ = max i j W i,j < 1 . (3.13) 
Now, using the Rayleigh quotient, we have:

E y(t + 1) T y(t + 1) | y(t) ≤ λ 2 ( W ) • y(t) 2 2 (3.14) 
Repeatedly using (3.14), we obtain the bound

E y(t) 2 2 = E y(t) T y(t) ≤ λ 2 ( W ) t y(0) 2 2 . (3.15) 
Applying Markov's inequality, we obtain

P d γ (x(t)) d γ (x init ) ≥ (2n) -(m-1) 2 = P y(t) 2 2 y(0) 2 2 ≥ (2n) -(m-1) ≤ (2n) m-1 y(t) 2 2 y(0) 2 2 (3.16) ≤ (2n) m-1 λ 2 ( W ) t (3.17) Thus, if (2n) m-1 λ 2 ( W ) t ≤ 1/n, i.e., t ≥ m log 2n log λ 2 ( W ) -1 , then P dγ (x(t)) dγ (x init ) ≥ (2n) -(m-1) 2 ≤ 1/n. So, we obtain T whp (TTF) ≤ m log 2n log λ 2 ( W ) -1 .
Scheduler Now, we study the performance of TTF with respect to the convergence time in expectation, i.e. T E (TTF).

Theorem 10. The expected convergence time of the TTF protocol is

O m log n log λ 2 ( W ) -1
where W is the matrix appearing in Theorem 9.

Proof. Let T be the convergence time and T θ = inf t | P(x(t) = x end ) > 1θ = inf t | P(T ≥ t) ≤ θ . Analogously to (3.17) in Th. 9, we know that

T θ ≤ log 2n (m-1) θ -1 log λ( W ) -1 = (m -1) log 2n log λ( W ) -1 + log(1/θ) log λ( W ) -1 = A + B log(1/θ) . (3.18)
Since T is a non-negative random number, we have

T E (TTF) = ∞ t=1 P(T ≥ t) = P(T ≥ 1) + P(T ≥ 2) + ... + P(T ≥ T θ ) + ∞ t=1+T θ P(T ≥ t) ≤ T θ + T θ/2 t=1+T θ P(T ≥ t) + T θ/4 t=1+T θ/2 P(T ≥ t) + ... ≤ T θ + T θ/2 • θ + T θ/4 • θ/2 + ... = T θ + ∞ i=1 T θ/2 i • θ 2 i-1 ≤ T θ + ∞ i=1 (A + B log 2 i θ ) • θ 2 i-1 = T θ + Aθ • ∞ i=1 1 2 i-1 + Bθ • (log 2 • ∞ i=1 i 2 i-1 + log θ -1 ∞ i=1 1 2 i-1 ) = T θ + (Aθ + Bθ log θ -1 ) • ∞ i=1 1 2 i-1 + 2Bθ log 2 • ∞ i=1 i 2 i ≤ (1 + 2θ) • A + B log(1/θ) + 4Bθ log 2 Choosing θ = 1/n leads to T E (TTF) ≤ (m -1)[(1 + 2/n) log 2n] + [(1 + 2/n) log n + log 16/n] log λ 2 ( W ) -1 .

Lazy TTF

The strategy of TTF may result in a long execution when an input value is transferred many times before being nally delivered to the base station. These transfers are certainly energy consuming. Then a natural issue is to transform TTF in order Section 3.5. Lazy TTF to save energy, while keeping the time complexity as low as possible. The idea is to prevent certain data transfers, for example, when it is more likely to meet soon a faster agent and thus possibly make fewer transfers in overall. We propose a simple protocol based on TTF, called lazy TTF. In contrast with TTF, lazy TTF does not necessarily execute the transition resulting from an interaction. It chooses randomly to execute it or not. Formally, during an interaction (i, j), with agent i acting as initiator, TTF is executed with probability p i , where p ∈ R n is a vector of probabilities.

Notice that the choice of executing TTF depends uniquely on the initiator i. In practical terms, an initiator represents an agent that, by sensing the environment, has detected another agent j. At this moment i takes the random decision (with probability p i ) whether a TTF transition should be executed and the interaction itself should take place, or not. In the latter case, not only the energy for the eventual data transfer is saved, but also the energy for establishing the interaction.

Observe that when p is the vector of all ones, lazy TTF behaves as TTF and its energy consumption is the same as for TTF. However, when p is the vector of all zeros, lazy TTF does not solve the problem of data collection as no value is ever transferred to the base station, but no energy is consumed for transferring of data or establishing interactions.

Depending on p, time complexities of lazy TTF can be worse than of TTF, given the same scheduler. At the same time, longer executions of lazy TTF may be more energy ecient. Thus, there is a trade-o between time and energy performance depending on the values of p. We now investigate the choice of p for obtaining good time-energy trade-o. Firstly, we give upper bounds on the time complexities of lazy TTF. Then, we introduce an optimization problem that takes p as a variable. Finally, numerical results in Sect. 3.6 demonstrate energy eciency of lazy TTF, given the optimal p.

Convergence time of lazy TTF

To obtain an upper bound on the convergence time of lazy TTF, we show a particular equivalence of lazy TTF under scheduler S(P ) with TTF under scheduler S(P • (p • 1 T )), where 1 is the vector of all ones and • presents the entry-wise product. This equivalence is on the level of distribution of congurations of the two protocols.

Precisely, as we show below, the random vector x(t) for these two protocols is exactly the same, allowing to use Th. 9 to obtain a time complexity upper bound for lazy TTF.

Let us express x(t) for lazy TTF in a similar way as we did before for TTF in Sect. 3.4. First, P(x(0) = x init ) = 1 is the same as for TTF. Then, x(t + 1) = W (t+1)x(t) and W (t+1) can be seen as a random matrix such that, with probability P i,j × p i + P j,i × p j , W (t + 1) is as in Eq. 3.4. Notice that x(t) in case of TTF under S(P • (p • 1 T )) is expressed exactly in the same way (Sect. 3.4). Thus, by applying Th. 9 for TTF under S(P • (p • 1 T )), we obtain the upper bound on T whp (lazy TTF(p)).

Theorem 11. With a non-uniformly random scheduler S(P ), the convergence time with high probability of lazy TTF is at most m log 2n log λ 2 ( W ) -1 , where W = cvi<cvj (P i,j p i + P j,i p j )W Γ 2 ij + cvi<cvj (P i,j (1p i ) + P j,i (1p j )I + cvi=cvj (P i,j + P ji )I, and W Γ 2 ij = I + Γ i,j (e i e T j + e j e T i ) + (Γ 2 i,j -1)e j e T j .

(

Then, the upper bound on T E (lazy TTF(p)) can be obtained in the same way as in Th. 10.

To summarize, note that, as executions of lazy TTF are equivalent to those of TTF under S(P • (p • 1 T )) in the sense explained above, one can imagine that lazy TTF transforms the matrix of interaction probabilities "on the y" (during executions). It can be also seen as if it transforms the interaction graph itself. Indeed, certain vectors p may make some pairs of agents to interact with extremely small probability (or not interact at all), thus eectively remove these pairs from the graph. This is illustrated by the numerical results given in Section 3.6.2 . Next, we are looking for vectors p, optimizing an upper bound on the time performance of lazy TTF(p) to ensure a good time energy trade-o. Equivalently, we are looking for schedulers (matrices P ) for which the original TTF is ecient in this sense.

The goal is to nd a vector p minimizing the upper bound on T whp (lazy TTF(p)) (Th. 11). To that end, an optimization program OP 1 , taking p as a variable, is proposed as follows:

OP 1 : min p∈R n λ 2 ( W ) s.t Eq. 3.19 0 ≤ p i ≤ 1 ∀i ∈ {1, ...

, n}

By Th. 11, minimizing the upper bound of T whp (lazy TTF(p)) is equivalent to minimizing the second largest eigenvalue of W . According to Appendix A.2.2, OP 1 can be reformulated as a semi-denite program OP 2 (Appendix A.2), which is convex and can be solved in polynomial time.

OP 2 : min

p∈R n ,s s s.t sI -W 0 Eq. 3.19 0 ≤ p i ≤ 1 ∀i ∈ {1, ...

, n}

Let p be the optimal solution of OP 2 . We can see that if p is all ones vector, lazy TTF(p) performs as TTF. Otherwise, lazy TTF(p) outperforms TTF in terms of the upper bounds on time. This optimized upper bound ensures that lazy TTF(p) converges in a reasonable time. In the next section, by the numerical results obtained for dierent small examples, we demonstrate the eciency of lazy TTF(p), in terms of energy consumption. 

Numerical Results

The relation between T whp (TTF) and its upper bound

The goal of this section is to justify the relevance of the method for obtaining the optimal probability vector p for lazy TTF. To justify this, we show by simulation that the time upper bound value for TTF is well correlated with the exact value of its time complexity (calculated by Markov chains, for small systems). This implies the same correlation for lazy TTF, because the bounds in Th. 9 and Th. 11 are obviously well correlated too (one is obtained from the other; see Sect. 3.5). That is why the optimal probability vector p for the upper bound of lazy TTF is close to the optimal vector for the real (tight) convergence time.

From Th. 9, we have an upper bound on time w.h.p. for TTF, denoted here by T upp (TTF). In this section, we show the relation between T upp (TTF) and T whp (TTF). In our experiment, two systems of size 4 and 5 are considered and 100 schedulers are generated randomly for each system. Since the system is of small size, for each scheduler s, the exact value of T s whp (TTF) can be obtained by constructing the corresponding Markov Chain. The upper bound, T s upp (TTF), can be calculated by Th. 9. Then, for every generated s, we plot T s whp (TTF) and T s upp (TTF) on the gure with x-axis for T whp (TTF) and y-axis for T upp (TTF).

From Fig. 3.1, we can see that T upp (TTF) has a nearly linear relation with T whp (TTF). It means that T upp (TTF) in Th. 9 captures well the relation of the scheduler's behavior to the time performance of TTF in most of the cases. Moreover, it demonstrates that, for lazy TTF, minimizing T whp (lazy TTF(p)) in Sect. 3.5 is reasonable for improving the energy performance.

TTF vs. Lazy TTF(p) in terms of time complexity bounds

The comparison is made considering the upper bounds given in Th. 9 and Th. 11. The justication (by numerical experiments) that such a comparison makes sense Scheduler appears in Sect. 3.6.1. The main goal of this section is to illustrate the eect of the application of the optimal vector p on TTF and its scheduler, in the sense explained in Sect. 3.5.

The numerical experiments, in this section, are performed as follows. First, we generate randomly the probability matrix P to simulate a non-uniformly random scheduler S(P ). Here, we present results for 3 representative schedulers. Second, by solving OP 2 (Sect. 3.5), we get the best p for lazy TTF(p) and we compare the upper bounds on convergence time w.h.p. of TTF and of lazy TTF(p) (Th. 9 and Th. 11, see Tab. 3.1). At last, we interpret the values of p for a better understanding of lazy TTF (Fig. 3.3).

The systems under consideration are composed of four agents, the base station (BST), the fastest agent f , the slowest agent nf 2 , and an intermediate non-fastest agent (nf 1 ). Thus, cv f < cv nf 1 < cv nf 2 . The matrix P , for each considered S(P ) of the three, is encoded by edge labels in a complete interaction graph corresponding to the considered population. The three schedulers are depicted in Fig. 3.2. In the graph (a), take for instance the label 0.021 between f and BST. It means that the probability that the next interaction concerns the fastest agent (as initiator) and BST, is 0.021. Table 3.1 below presents the numerical results for each scheduler given in Fig. Table 3.1: Time complexity of TTF vs. lazy TTF(p).

Lines a and b in Table 3.1 show that the tentative to save energy by inhibiting some interactions, e.g., pnf 2 (a) = 0 and pnf 2 (b) = 0, is not really signicant for the execution time bounds (80 vs. 67, 23 vs. 22). In line c (in case of scheduler (c), Fig. 3.2) lazy TTF behaves as TTF.

As explained in Sect. 3.5, lazy TTF(p) under S(P ) is equivalent to TTF under S(P ), where P i,j = P i,j × pi , ∀(i, j) ∈ E. Observe that according to graph (a) in Fig. 3.2, for both nf 1 and nf 2 , the probability to meet BST is about the same (0.092+0.122 = 0.214 vs. 0.065+0.156 = 0.221). Moreover, the probability for a token to be transferred to BST from nf 1 or nf 2 through f is very small. Thus, when meeting nf 1 , a better heuristic for nf 2 is to wait for meeting BST, rather than to transfer tokens to nf 1 . The value obtained for p conrms this heuristic, since pnf 1 = pnf 2 = 0 (line a, Table 3.1). According to graph (b), Fig. 3.2, nf 1 and nf 2 have a better probability to meet BST than f . Thus, when nf 1 or nf 2 meets f , transferring tokens to f does not seem to be a good choice. This intuition is conrmed by the computed value for p, since f executes TTF with a small probability 0.35 (line b, Table 3 For the energy consumption analysis, we consider the energy model proposed in Sect.

2.2 for population protocols. In this model, an agent senses its vicinity by proximity sensor, consuming a negligible amount of energy [START_REF] Abdur | Energy-ecient sensing in wireless sensor networks using compressed sensing[END_REF]. Once the interaction is established, each participant consumes a xed amount of energy E wkp (mainly for switching on its radio, which is known to be very energy consuming; cf. [START_REF] Venkatesh Rajendran | Energyecient, collision-free medium access control for wireless sensor networks[END_REF]). Now, recall that, with lazy TTF, the choice of executing TTF depends on the probability p i of the initiator i. If TTF should not be executed, the initiator does not proceed to establish the interaction (i.e., E wkp is not spent), as explained in Sect. 3.5.

We study the expectation of the total energy consumption of a protocol P, denoted E(P). According to the energy scheme explained above, E(P) is evaluated by the expected total energy spent for establishing all the interactions till convergence. It is proportional to the time expectation T E (P). In particular, E(TTF) = 2T E (TTF) • E wkp and E(lazyTTF(p)) = 2T E (lazy TTF(p)) × i j (P i,j p i + P j,i p j ) × E wkp .

For the systems of small size with a scheduler s, the exact values of T s E (TTF) and T s E (lazy TTF(p s )) can be calculated by constructing the corresponding Markov Scheduler Chain. In the experiments, systems of size 4,5,6,7 and 8 are considered and for each size n, 10000 dierent schedulers are generated randomly. Denote by S(n) the set of these schedulers. For each scheduler s ∈ S(n), T s E (TTF), ps , T s E (lazy TTF(p s )), E s (TTF) and E s (lazy TTF(p s )) are evaluated. Then, the gaps on time and on energy between lazy TTF(p s ) and TTF s are denoted by Gap(T E , n) and Gap(E, n), respectively, and are computed as follows. Results appear in Table . 3.2. In column 3, it can be seen that lazy TTF consumes less energy than TTF for all systems. Lazy TTF saves at least 15% of energy. The counterpart is (a slight) increase in the execution time, as shown in column 2.

Gap(T

E , n) =   s∈S(n) T s E (lazy TTF(p s )) -T s E (TTF) T s E (TTF)   /
Networks preliminary numerical results for the VNS approach are provided when compared to the optimal solution of the problem (Sect. 4.4). This work has been published in ICORES 2014 [START_REF] Adasme | A multicommodity formulation for routing in healthcare wireless body area networks[END_REF].

Problem Formulation

We model a xed WBAN by the means of a graph G = (V, E), where V denotes the set of sensor (bio-sensor) nodes and E is a set of directed arcs. The assumption of directed arcs is valid for WBANs since before any message is transmitted, the route between the source and the destination can be established using Ad-hoc On-demand Distance-Vector routing (AODV) protocols. Without loss of generality, we assume that every node has a xed initial power capacity Cap ∈ R + . The set of nodes V is composed of a subset of source nodes V s which sense and collect the data to be transmitted, a set of intermediate transmitters V I and a set of sink nodes V t where all data is received. For each node j ∈ V we dene the sets δ -(j) = {i ∈ V : (i, j) ∈ E} and δ + (j) = {i ∈ V : (j, i) ∈ E}. We denote by C the set of commodities to be transmitted, where each commodity c ∈ C consists of routing D c packets from a source node i ∈ V s to a destination node j ∈ V t . Let e i,j be the unitary energy needed for transmission of packets on arc (i, j) ∈ E and dene the total energy consumption of node j ∈ V as c∈C i∈δ -(j) e i,j D c f c i,j where D c f c i,j

is the number of packets of commodity c transmitted on arc (i, j). Note that this amount of energy is computed under the assumption that the transmission energy requirement is negligible compared to the energy required for receiving packets at each node. This is a valid assumption since an extremely low transmit power per node is required in short range ultra-wide band in WBANs, and thus the eort is considerably higher when the nodes are receiving packets [START_REF] Shi | When both transmitting and receiving energies matter: An application of network coding in wireless body area networks[END_REF]. Moreover, this allows signicant energy saving when using network coding techniques with the objective of providing reliability under lower-energy constraints [START_REF] Gabriel | New approaches to reliable wireless body area networks[END_REF]. We consider the following multi-commodity netow formulation denoted hereafter by P 0 as

P 0 : min f,x { i∈V a i x i + max j∈V c∈C i∈δ -(j) e i,j D c f c i,j } (4.1) 
s.t.

j∈δ + (i)

f c i,j - j∈δ -(j) f c j,i = b c i , ∀i ∈ V, ∀c ∈ C (4.2) c∈C i∈δ -(j) e i,j D c f c i,j ≤ Cap × x j , ∀j ∈ V (4.3) -x i ≤ b c i ≤ x i , ∀i ∈ V, ∀c ∈ C (4.4) f c i,j ∈ [0, 1], ∀(i, j) ∈ E, c ∈ C (4.5) x i ∈ {0, 1}, ∀i ∈ V (4.6)
where the ow variables f c i,j represent the fraction of commodity c ∈ C to be transmitted on an arc (i, j) ∈ E. The binary variables x i , i ∈ V are used to decide whether node i ∈ V will be active when transmitting packets through the network. The objective function in (4.1) is to minimize the total heating costs a i , i ∈ V produced by bio-sensors, which are placed in the body of a patient plus the worst case Section 4.3. Near Optimal Solution: Meta-heuristics approach power consumption of each active node in the network. The later is a crucial aspect in a WSN since by denition, its lifetime is equal to the minimum lifetime of all nodes in the network [START_REF] Singh | Power-aware routing in mobile ad hoc networks[END_REF]. In other words, the network lifetime ends as soon as any node runs out of battery. Let b c i be equal to 1 if node i ∈ V s , or be equal to -1 if node i ∈ V t , and zero otherwise. Constraint (4.2) are ow conservation constraints for each node i ∈ V and for each commodity c ∈ C while constraint (4.3) imposes the condition that each node has a maximum available power to receive packets in the network. Note that this constraint is forced to be equal to zero when its respective node is set to an inactive state condition. Constraint (4.4) imposes the condition that all sources and sink nodes must always be active, otherwise the network can not sense or relay the collected data toward the base station. Finally, constraints (4.5)-(4.6) are the domain constraints. Note that model P 0 can be easily converted into a mixed integer linear programming (MILP) problem, denoted by P 1 , by introducing an upper bounding variable z instead of using the max term in its objective function.

We remark that model P 1 provides an optimal routing strategy. However, it does not consider other technical aspects such as broadcasting control ows and organization of the network. The routing strategy is mandatory in WBANs as it allows signicant power savings when transmitting sensed data through the network.

P 1 : min f,x z + i∈V a i x i s.t. z ≥ c∈C i∈δ -(j) e i,j D c f c i,j , ∀j ∈ V j∈δ + (i) f c i,j - j∈δ -(j) f c j,i = b c i , ∀i ∈ V, ∀c ∈ C c∈C i∈δ -(j) e i,j D c f c i,j ≤ Cap × x j , ∀j ∈ V -x i ≤ b c i ≤ x i , ∀i ∈ V, ∀c ∈ C f c i,j ∈ [0, 1], ∀(i, j) ∈ E, c ∈ C x i ∈ {0, 1}, ∀i ∈ V
In the next section, we introduce a variable neighborhood search meta-heuristic approach to compute near optimal solutions for P 1 .

Near Optimal Solution: Meta-heuristics approach

Meta-heuristics are simple algorithmic procedures commonly used to nd near optimal (suboptimal) solutions for combinatorial optimization problems. In practice, they have been proven to be highly eective when solving several hard problems.

Especially when the dimension of the problem increases rapidly, which is often the case in real world applications, and when no solver is available to solve these problems to optimality. The most frequently utilized meta-heuristics approaches are genetic algorithms [START_REF] John | Adaptation in natural and articial systems: an introductory analysis with applications to biology, control, and articial intelligence[END_REF], tabu search [START_REF] Glover | Tabu search[END_REF], ant colony system [START_REF] Dorigo | Ant colony optimization[END_REF], particle swarm op- In principle, a genetic algorithm or a tabu search approach would serve to compute feasible solutions for our proposed multicommodity ow formulation in a straightforwardly manner. Here, we choose VNS mainly due to its simplicity and low memory requirements. In particular, we adopt a reduced VNS strategy which drops the local search phase of the basic VNS algorithm as it is the most time consuming step [START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF].

In order to compute feasible solutions for problem P 1 using a VNS approach, we observe that for any xed assignment of vector x in P 1 , the problem reduces to solve the following linear programming problem P1 (x) : min

f z s.t. z ≥ c∈C i∈δ -(j) e i,j D c f c i,j , ∀j ∈ V j∈δ + (i) f c i,j - j∈δ -(j) f c j,i = b c i , ∀i ∈ V, ∀c ∈ C c∈C i∈δ -(j) e i,j D c f c i,j ≤ Cap × x j , ∀j ∈ V f c i,j ∈ [0, 1], ∀(i, j) ∈ E, c ∈ C
There are 2 |N |-|Ns|-|N l | feasible assignments for vector x in P 1 . It is obvious that some of them are not feasible as they might turn problem P1 (x) infeasible. We propose a VNS approach to compute feasible solutions for P 1 by randomly generating these binary vectors.

We dene the neighborhood structure N k (x) for P 1 as the set of neighbor solutions x in P 1 at a distance "k" from x, where the distance "k" corresponds to the Hamming distance between the binary vectors x and x .

The VNS approach is presented in Protocol 4. Steps 0-1 give an initial solution to P 1 and Step 2 is the main VNS procedure to obtain a near optimal solution. Networks Protocol 4 VNS algorithm 1: Input: a problem instance of P 1 2: Output: a feasible solution (x, f , ṽ) for P 1 3:

Step 0:

4: T ime ← 0; k ← 1; 5: count ← 0; x i ← 0, ∀i ∈ V \V s ∪ V t ; 6: x i ← 1, ∀i ∈ V s ∪ V t ; 7:
Step 1: 8: for st = 2 to St do 9:

r ← min(a i , i ∈ V st )

10:

x r ← 1 11: (x, f , v) ← Solve the linear problem P1 (x). 12: v ← v + i∈V a i xi 13: (x, f , ṽ) ← (x, f , v) 

x i ← 0 22: (x, f , v) ← Solve the linear problem P1 (x). 23: v ← v + i∈V a i xi 24: if v < ṽ then 25: k ← 1; (x, f , ṽ) ← (x, f , v) 26:
T ime ← 0; count ← 0 k ← k + 1; count ← 0 Initialization: We denote by (x, f , v) the solution returned by solving the linear program P1 (x) where v represents the objective function value of P1 (x). We initialize all the required variables in Step 0. Then in Step 1, we obtain an initial feasible assignment for vector x, by simply setting one node r at each stage st to be active, where r = min{a i , i ∈ N st }. This allows solving P1 and obtaining an initial feasible or infeasible solution (x, f , ṽ) for P 1 that we keep.

VNS details: During the execution of the while loop in VNS algorithm, if for any

x, the model P1 (x) is infeasible, then the solution x is discarded and not considered as a valid solution. In the shake phase (line 16-21), VNS is performed by randomly assigning binary values in k ≤ |N I | positions of vector x where these positions belong to the set N I . From line 24 to line 31, it is the move phase of our VNS algorithm.

Initially, k ← 1 while it is increased in one unit, when there is no improvement after a certain number (η) of solutions have been evaluated. On the other hand, if a new current solution is better than the best found so far, then k ← 1, the new solution is recorded and the process goes on. The whole process is repeated until the cpu time variable "Time" is less than or equal to the maximum available "maxTime".

Note that we set "Time ← 0" when a new better solution is found. This gives the possibility to search other "maxTime" units of time with the hope of nding better solutions.

Numerical Results

We rst present preliminary numerical results for the proposed VNS approach using only one sample for the input data of the instances. Subsequently, as the proposed model has two conicting objectives, we provide preliminary numerical comparisons for P 1 while adopting a weighted sum criteria for the objective function of P 1 while adopting a weighted sum criteria for the objective function of P 1 in order to analyze the behavior of the model. Finally, we compute average numerical results.

Numerical results for the VNS algorithm

Parameter settings. In order to present preliminary numerical results for problem P 1 using the proposed VNS, the input data is randomly generated as follows. The entries in matrix (e ij ) are uniformly drawn from [0, 1] while the heating costs a i , i ∈ V and packets D c , c ∈ C are uniformly distributed in [0, 10]. The maximum energy available for each node is set equal to Cap = 0.4 × i∈V e i,1 × c∈C D c /|C|. The value of η in the VNS algorithm is calibrated to 20. We set the maximum number of commodities be equal to |C| = |V s |, i.e., we assume that each source node can only sense one type of commodity. This is a valid assumption as bio-sensors are usually designed for sensing specialized information in a WBAN. Finally, we set the parameter maxT ime = 100.

Implementation. A matlab program is implemented using CPLEX 12 to solve problem P 1 , its linear programming relaxation, and each P1 (x) within each iteration Chapter 5 Stochastic Semidenite Optimization Using Sampling Methods

Introduction

It is well known that optimization models are used for decision making as it nds the best solution from all the feasible solutions. In the traditional models, all the parameters are assumed to be known, which conicts with many real world problems. For instance, in portfolio problems, the return of assets are uncertain [START_REF] Bernardo K Pagnoncelli | Computational study of a chance constrained portfolio selection problem[END_REF].

Further, real world problems almost invariably include some unknown parameters, e.g., random demands in power, gas networks, random obstacles in robotics and random precipitation in power production [START_REF] Lei | Wind power penetration limit calculation based on chance constrained programming[END_REF][START_REF] Yang | An investigation of reactive power planning based on chance constrained programming[END_REF]. As a result, the problem is often modeled with random constraints, as shown below:

min x∈R n f (x) s.t. G(x, ξ) ≥ 0 (5.1)
x ∈ X, where ξ ∈ R d is a random vector with distribution F and support Ξ 1 , X is a deterministic feasible region, 0 ∈ R m is a vector of zeros and f :R n → R, G:R n × R d → R m are given mapping functions.

In chapter 3, we enhanced population protocols with uniformly random scheduler, where agent i meets agent j with (discrete) probability P i,j during an interaction. However, it happens that the measure of P i,j in the system may be not precise, i.e., the value of P i,j is uncertain. Under the assumption of uncertainty, the optimization program OP 2 for the parametrized lazy TTF protocol (3.20), which takes P i,j as parameter, has random constraints exactly like (5.1).

Since the methods developed for deterministic optimization are not applicable to the model with random constraints, stochastic programming is proposed to handle this uncertainty, which combines the concepts of optimization theory with the theory of probability and statistics (See [START_REF] Shapiro | Lectures on stochastic programming: modeling and theory[END_REF] for lectures on stochastic programming).

In this chapter, we focus on chance constrained programs [START_REF] Charnes | Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil[END_REF], one branch of stochastic programming, which is widely applied in nancial industry for risk management [START_REF] Ma | A chance constrained programming based approach for building optimal bidding strategies for generation companies with risk management[END_REF], in engineering for safety requirement [START_REF] David R Morgan | Aquifer remediation design under uncertainty using a new chance constrained programming technique[END_REF], in power system management [START_REF] Lei | Wind power penetration limit calculation based on chance constrained programming[END_REF][START_REF] Yang | An investigation of reactive power planning based on chance constrained programming[END_REF]. 1 The support of a random vector is the set of values that it can take.

Chance constrained programs

To deal with the random constraints (5.1), if we suppose that Ξ is a nite set, one substitution for (5.1) is G(x, ξ) ≥ 0, ∀ξ ∈ Ξ, which ensures an absolutely robust solution, since every feasible solution of the resulting deterministic program satises every possible values of ξ ∈ Ξ (worst-case analysis). However, the resulting program is obviously expensive to be solved, whereas feasible solutions may not ever exist. On the other hand, another substitution G(x, E[ξ]) ≥ 0, which takes only the expectation of each parameter into account (average-case analysis), converts the origin program to a deterministic one easy to solve. But its solution may have no robustness against the perturbations of parameters. As a result, another type of constraints, called chance constraints, are designed for a balance between the robustness of the solution and the solvability of the program, which was rst proposed in [START_REF] Charnes | Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil[END_REF] to deal with an industrial problem. And the corresponding program is called chance constrained program (CCP), dened as follows:

CCP : min

x∈R n f (x) s.t. Pr{G(x, ξ) ≥ 0} ≥ 1 - (5.2) 
x ∈ X, where ∈ (0, 1] is a risk parameter. Usually, is a small value ensuring the constraints to be satised with high probability, i.e., the solution has an acceptable" performance under most realizations of the uncertain parameters.

In real world, many problems can be modeled with constraints like (5.2). For example, in power management system, since wind and solar energy contain many uncertainties to be predicted, depending on the weather and the location, a power plant should be designed to meet energy demand at least to a certain condence level (1 -). In nancial investment, since market conditions are unpredictable, an investment should be guaranteed to a certain amount of returns at a high condence level. Moreover, in the design of safety in the system, which requires fault tolerance and reliability, chance constrained program is also useful. Readers can refer to [START_REF] Dentcheva | Concavity and ecient points of discrete distributions in probabilistic programming[END_REF][START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF][START_REF] Prékopa | Probabilistic programming[END_REF] for a background of CCP and some convexity theorems.

Methods to solve chance constrained program

In order to circumvent CCP, we usually consider tractable approximation. For instance, convex approximation [START_REF] Nemirovski | On safe tractable approximations of chance constraints[END_REF][START_REF] Nemirovski | Convex approximations of chance constrained programs[END_REF] is a way which analytically generates deterministic convex problems which can be solved eciently. However, it requires to know the structure of the distribution and structural assumptions on the constraints. Another way is simulation-based approach based on Monte-Carlo sampling, for example the well-known scenario approach [START_REF] Calaore | Uncertain convex programs: randomized solutions and condence levels[END_REF][START_REF] Giuseppe | The scenario approach to robust control design[END_REF][START_REF] Nemirovski | Scenario approximations of chance constraints[END_REF].

Scenario approach. Scenario approach is easy to be understood, where random parameters are sampled under their distributions, which turns the origin model Section 5.2. Chance Constrained Semidenite Programs

Chance Constrained Semidenite Programs

To study chance constrained semidenite programs, we start by a more generalized model, called conic program with chance constraints (CCC) 2 :

(CCC): min{f (x) : 

P r{G(x, ξ) ∈ K} ≥ 1 -, x ∈ X}, where x ∈ R n is a vector of decision variables, X is a deterministic feasible region, ξ ∈ R d is a random vector supported by a distribution Ξ ⊆ R d , K ⊂ R l is a closed convex cone 3 , G : R n × R d → R l is

Simulation-based Approximation

To solve CCSDP, the classical simulation-based methods presented in Sect. 5.1.2 can be applied. Firstly, we show explicitly how to apply scenario approach and sample average approximation to CCSDP (Sect. 5.3.1 and 5.3.2). Then, a novel method which combines these two is introduced in Sect. 5.3.3.

Scenario approach

According to Sect. 5.1.2, the approximation of classical scenario approach is:

(CCSDP-SA) min{f (x) x∈X : F (x, ξ i ) 0, ∀i = 1, ..., N }
where N is the number of samplings and ξ i is a random sample.

Sample average approximation -Big-M sampling approach

To adopt sample average approximation (Sect. 5.1.2) to CCSDP, we introduce the "big-M" function with integer variables y to be the indicator function. Then, we have the following tractable approximation:

(CCSDP-BM) min x,y f (x) s.t. F (x, ξ i ) + y i M I 0, ∀i ∈ 1, ..., N N i=1 y i ≤ × N x ∈ X, y ∈ {0, 1} N ,
2 A conic optimization problem consists of minimizing a convex function over the intersection of an ane subspace and a convex cone. 3 A convex cone is a subset of a vector space over an ordered eld that is closed under linear combinations with positive coecients where I is an identity matrix and M is a large constant. We see that if y i = 1, the constraint F (x, ξ i ) + y i M I 0 is satised for any candidate solution x, including those x ∈ {x|F (x, ξ i ) 0, x ∈ X} discarded by scenario approach (CCSDP-SA). Therefore, CCSDP-BM is less conservative than CCSDP-SA. However, since CCSDP-BM introduces the binary variables, which makes the model NP-hard. It requires a great eort on computation.

Combination of Big-M and constraints discarding

To have a balance between the conservativeness of the solution and the computation eorts, a new method combining the sampling average approximation and scenario approach is proposed.

At the rst step, we solve a relaxed CCSDP-BM model, where y is no more an integer vector but a real vector whose values are between zero and one. Then, the resulting relaxed solution y helps us to select the set of removal constraints from CCSDP-SA. The idea of removing constraints was rst proposed in [START_REF] Marco | A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality[END_REF] (See Sect. 5.1.2). We suppose that the optimal value of y i ∈ [0, 1] obtained by solving the relaxed CCSDP-BM, indicates the probability of discarding the corresponding constraint. Because when y i is close to one, the solution x obtained in CCSDP-BM violates the constraint F (x, ξ i ) 0 in CCSDP-SA with high probability. So the constraints F (x, ξ i ) 0 in CCSDP-SA whose y i s are large, can then be discarded, which returns back a reduced CCSDP-SA model. One can use the criterion given in (5.4) to decide the number of constraints to be discarded. At last, we solve this new reduced model.

In a word, we make use of a relaxed sample average approximation for CCSDP to generate a reduced sampling model CCSDP-SA. Using this method, only two convex SDP programs are needed to be solved. We obtain a less conservative solution than the one obtained in CCSDP-SA (Sect. 5.3.1), while it costs less on computation compared with the method in Sect. 5.3.2.

Numerical Experiments

To show the strength of our method proposed to solve CCSDP, we conduct numerical experiments. The problem that we choose to test our method is a minimumvolume invariant ellipsoid problem in control theory [START_REF] Cheung | Linear matrix inequalities with stochastically dependent perturbations and applications to chance-constrained semidenite optimization[END_REF], whose classical mathematical model is a semidenite program. Firstly, we present the problem and its mathematical model with random parameters (Sect. 5.4.1). Then, in Sect. 5.4.2, we explicitly show the models obtained by our method and by two other scenario approaches (Sect. 5.1.2): the classical one and the one with greedy constraint removal.

In Sect. 5.4.3, the instances and the implementation in our experiments are given.

Finally, numerical results are given (Sect. 5.4.4).

Control system problem

First of all, we state out the considered problem in control theory and its mathematical model. Consider the following discrete-time controlled dynamical system:

x(t + 1) = Ax(t) + bu(t), t = 0, 1, ...

x(0) = x,
where A ∈ R n×n and b ∈ R n are system specications, t is the index of discrete time, x ∈ R n is the initial state and u(t) ∈ [-1, 1] is the control at time t. For such control system, the interest is to characterize the evolution of x(t) so that its stability on the initial state x can be determined. We say that a control system is stable, if there exists a controlled invariant set S that any state starting from S remains inside S. Thus, the controlled invariant set denes the safe region for the initial state.

There are two important families of controlled invariant set for control systems: ellipsoids and polyhedral sets4 . An ellipsoid is expressed by:

E(Z) = {x ∈ R n : x T Zx ≤ 1},
where Z is a symmetric positive denite matrix. 5For the control system dened above, it has been shown that an invariant ellipsoid E(Z) exists if and only if ||A|| < 1 and there exists a λ ≥ 0 such that

1 -b T Zb -λ -b T ZA -A T Zb λZ -A T ZA 0. [97]
Then, a natural optimization problem for this control system is proposed, aiming to nd such an invariant ellipsoid with the minimum-volume, i.e., to have arg min Z Vol(E(Z )) where Vol(E(Z )) denotes the volume of ellipsoid E(Z). Since the above condition is a linear matrix inequality, the corresponding optimization model belongs to a semidenite program (Appendix A.2). Notice that, Vol(E(Z )) is proportional to (det Z) -1/n , where det Z denotes the determinant of matrix Z.

Till now, we consider a deterministic control system. But in this chapter, we suppose that the system specication b is corrupted with noises, i.e., b is a vector of random parameters. Under this assumption, the original optimization problem is then formulated as a set of CCSDPs [START_REF] Cheung | Linear matrix inequalities with stochastically dependent perturbations and applications to chance-constrained semidenite optimization[END_REF], which is {CCMVIE(λ), λ ∈ D}: 2. Return Z(λ * ) as the optimal solution, where λ * = argmax λ∈D v(λ). We sort the elements of y in descending order and take the rst k indexes into set A = {i 1 , ..., i k }. Then, we solve CCSP(λ). The whole procedure of our method for obtaining the nale matrix Z is shown in Fig. 5.1.

Design of the experiments

Data. We use the same instances as in [START_REF] Cheung | Linear matrix inequalities with stochastically dependent perturbations and applications to chance-constrained semidenite optimization[END_REF]. We have two groups of data. where β is a parameter needed to decide the sample size N and number of removal constraints k. We assume that b i = bi + ρξ i , ∀i = 1, ..., n where bi ∈ R is the nominal value, ρ ≥ 0 is a xed parameter to control the level of perturbation and ξ i is a standard Gaussian random variable.

Selecting the Sample Size and the Number of Constraints to be Removed.

As we have shown previously in Sect. 5.1.2, the minimum number of samplings to ensure the feasibility of solution can be calculated by (5.3). For each sample size In Table 5.1, for each sampling number N , our method (BM SP ) obtains better solution than scenario approach with greedy constraint removal (Greedy) with smaller nal value (average linear size of ellipsoid) and a larger violation which is below 5%. For Greedy, the gap is between 0.5%-10.4%, compared with scenario approach. While for our method, the gap is between 2.7%-11.8%. We observe that the increasing rate of violation is nearly the same. Figure 5.4 shows the local view of ellipsoid for Data 1 obtained by scenario approach, greedy approach and our method with N = 400 and k = 20. We can see that the ellipsoid obtained by our method has the smallest volume.

In Table 5.2, we obtain a Gap more obvious than the previous one on Data 1. For the case where k is chosen by (5.5), our method obtains a gap better than Greedy method with 0.2% to 0.6% improvement. While for other choices of k, their gaps are very close to each other.

The advantage of our method (BM SP ) compared with scenario approach with greedy constraint removal (Greedy) is on the computing time. In the Greedy procedure, we need to solve k + 1 times the semidenite program CCSP(λ) in order to decide the removal constraints. While in our method, we only need to solve 2 semidenite programs. Therefore, we observe from Table 5.3 that BM SP consumes much less CPU time than Greedy and almost twice CPU time than scenario approach. But as a counterpart of the CPU time, we obtain better solution than scenario approach.

Conclusion

In this chapter, we introduced a new simulation-based method to solve chance constrained semidenite program. This method is a combination of sample average approximation and scenario approach. We apply this method to semidenite programming problem in control theory. The numerical results show that our method provides better solutions within a reasonable CPU time. To conclude, we summarize the main contributions of this thesis. Firstly, the formal energy model proposed in Sect. 2.2.2 initiated the study on power-aware population protocols. This enhanced model allowed a purely analytical analysis of the energy complexity of a protocol, in the same spirit as for time and space complexity, without appealing to simulations. The worst case (Chapter 2) and the average case (Chapter 3) analyses were performed to obtain general bounds on time and energy. Moreover, it is adaptable to other types of mobile sensor networks, for example, where the mobility pattern of agents is no more periodic", but follows other mobility models (like random waypoint model, Brownian model or Rush hour (human) trac model).

Secondly, we emphasized the importance of using analytical approaches on designing protocols for WSN. By establishing analytical formulas for the energy consumption of data collection protocols, we got information that could hardly be obtained by simulations. For example, we obtained general lower and upper bounds (Sect. 2.5 and 3.3), showing the explicit relations between the protocols' performances and the characteristics of the network system (e.g., cover times, network size, energy consumption for a communication). Moreover, we obtained the explicit conditions on these characteristics (Sect. 2.4.2) after comparing the analytical bounds.

Thirdly, we showed a promising application of mathematical optimization in the design of (parametrized) distributed algorithms. When a great number of parameters are involved in the protocol (like the vector p in lazy-TTF), the resulting analytical bound for the performance turns to be high-dimensional and complex with complicated constraints imposed on these parameters (e.g., Eq. 3.19). Accordingly, having proper parameters with analytical approaches becomes nearly impossible. However, optimization techniques can be adapted for solving this issue. An optimization model can be built, taking parameters as variables and the analytical bound as the objective function, such as OP 1 in Sect. 3.5.

At last, we demonstrated the usefulness of mathematical optimization when designing a (centralized) power-aware protocol for wireless body area networks (Chapter 4). In addition, we enhanced the study to more complicated scenarios, where random factors are involved (Chapter 5), showing that optimization is a general tool widely used in decision makings. Meanwhile, by proposing heuristics (Sect. 4.3 and 5.3.3), we advanced the techniques for solving two complex basic optimization models. These heuristics are adaptable for any realistic problem expressed in the same framework. Chapter 6. Conclusion

Perspectives

The dierent contributions of this thesis, listed in the paragraphs above, have several natural developments.

At rst, our analytical model and approach can be used to study the energy issues for a specic kind of mobile WSNs, where sensors with unpredictable movements communicate only when they are in proximity. Nowadays, many realistic networks, with similar characteristics, become new topics of interest in scientic and industry communities. For example, in Vehicular Ad Hoc Networks (VANETs), vehicles share information and communicate between each other only when physically close, due to the mobility constraints. In Near Field Communication (NFC), two NFC devices, usually smartphones, establish communication within a range of 4 cm, for social networking, mobile payment, etc. Our formal energy model (based on the real-world networks) can be considered as a reference to the future enhancement of analytical approach for such networks. It is simple and easy to adapt to various applications (e.g., to the case where the transmitted data does not t into one packet or to the case where the energy consumption for transferring data depends on the distance between agents). Moreover, besides the worst-case energy consumption (the maximum energy spent per node) studied in this thesis, other energy metrics (e.g., the total energy consumption, the maximum time until one sensor has no energy) are also analytically measurable, by using this model for power-aware designs. Finally, in addition to the data collection problem, other fundamental problems of distributed computing, such as routing, broadcast, leader election or consensus, can also be studied analytically in terms of energy consumption.

The idea of using optimization tools for analyzing power-aware population protocols can also be applied when designing other (parametrized) distributed algorithms.

Moreover, this approach is not limited to energy metrics, but can also be used for time and space metrics, provided that the analytical formulas for the performances are given. Using such formulas, the optimization model can be easily constructed.

However, this gives rise to the following technical question, which should be investigated further : Can the resulting optimization model (possibly complex) be solved eciently and in a fully distributed manner?

Solving optimization problem in a distributed way, referred to as distributed optimization, has been proposed in the 90's and studied since. Distribute optimization appears in various elds (e.g., distributed learning, decision makings in sensor networks and vehicle coordination), and is adapted to the scenarios where agents in the network measure data, which cannot be treated or analyzed centrally. One example is a system where nodes can only coordinate their decisions with their neighbors.

Each node has its own local cost function known only to itself, and they need to agree on a nal solution that minimizes the sum of all costs. For instance, in sensors network, to track the position of an acoustic source, each node measures the received signal's strength (including noise), and thus can guess the position of this source.

At the end, they cooperate and agree on a single position which minimizes the sum of deviations from their guesses.

In the distributed optimization eld, researchers have focused mostly on the following convex optimization model. Formally, in a network of n agents, each agent i where A 0 ∈ R n×n , ..., A m ∈ R n×n are symmetric matrices.

The semidenite programming [START_REF] Vandenberghe | Semidenite programming[END_REF] is to minimize a linear function of a vector of variables x ∈ R m subject to a matrix inequality : A semidenite program (SDP), dened as above, is a convex optimization, since the objective function and constraint are both convex (Prop. 2). Many programs can be cast into SDP, such as linear programs, convex quadratically constrained quadratic programs and second-order cone programs. And more importantly, SDP can be solvable eciently both in theory and in practice (applying interior point methods [START_REF] Alizadeh | Interior point methods in semidenite programming with applications to combinatorial optimization[END_REF]). Thus, SDP has many applications including transitional convex constrained optimization, combinatorial optimization [START_REF] Alizadeh | Interior point methods in semidenite programming with applications to combinatorial optimization[END_REF] and control theory [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]. where I ∈ R n×n is the identity matrix.

A.2.2 Maximum eigenvalue minimization
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 11 Figure 1.1: Example of distributions of WBAN nodes on a patient[START_REF] Latré | A survey on wireless body area networks[END_REF] 
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 22 Figure 2.2: Transitions between modes.

  Therefore, in the sequel, we classify the executions by the number of fastest agents in terminated mode at the end of the execution. Then, we study the length of the longest execution in each classication set (Prop. 2, 3 and 4), we use these results to obtain bounds for E 0 (Lem. 1 and 2) and we determine the worst-case performance of EB-TTFM(λ) (Th. 1).Notations. We denote by Ξ d the set of executions of EB-TTFM(λ) with exactly d fastest agents in terminated mode at their ends (d ∈ {0, 1, ..., |F |}). For a non-empty set Ξ d , mni(d) is the minimum number of interactions until d fastest agents are in terminated mode in the executions of Ξ d , and mnv(d) is the minimum number of values that have been delivered to BST at the mni(d) th interaction. We denote by e max d a longest execution in Ξ d and by θ the ratio between E slp and E wkp (θ = E slp /E wkp < 1).If ∪ |F | i=1 Ξ i = ∅,no fastest agent ever turns into terminated mode and fastest agents only execute E-TTFM (line 7). In this case, EB-TTFM(λ) has the same performance as E-TTFM. On the contrary, if Ξ |F | = ∅, there exists at least one execution, at the end of which all fastest agents are in terminated mode. Then, some values could be delivered to BST by a slow agent, increasing the convergence time of EB-TTFM(λ) (to be dependent on cv max ). The case ∪ |F | i=1 Ξ i = ∅ is uninteresting and the case Ξ |F | = ∅ is undesirable. That is why we are looking now for conditions on E 0 and λ ensuring that ∪ |F | i=1 Ξ i = ∅ and Ξ |F | = ∅. Prop. 2 presents a lower bound on mni(d) for any non-empty set Ξ d , denoted by l(d). This bound is tight when cv min O(n 2 ). Therefore, to ensure ∪ |F | i=1 Ξ i = ∅, min d =0 l(d) must be smaller than or equal to the length of the longest execution in E-TTFM (see proof of Lem. 1). To ensure Ξ |F | = ∅, l(|F |) must be greater than the length of the longest execution in the set ∪ |F |-1 i=0 Ξ i , i.e., the set of executions converging before all the fastest agents are in terminated mode (see proof of Lem. 2). In addition, in order to obtain an upper bound on the length of the longest execution in Prop. 4, we compute the values of mnv(d) (Prop. 3). Proposition 2. [mni(d)]. A lower bound on the minimum number of interactions before d fastest agents are in terminated mode, taken over all executions in a nonempty set

Proposition 4 .

 4 [|e max d |]. When cv min O(n 2 ) and d < |F |, the length of the longest execution e max d in a non-empty set

  1).According to the denition of mni(d), the conguration where all fastest agents are in terminated mode, can appear only at or after the mni(|F |) th interaction. Then, if all executions in ∪ |F |-1 i=0 Ξ i are of length less than the lower bound of mni(|F |), no execution reaches such a conguration, i.e., there is no execution e such that all fastest agents are in terminated mode at the end of e. Thus, ρ(|F | -1) < l(|F |) implies Ξ |F | = ∅. When cv min O(n 2 ), substituting (2.1) and (2.2) in ρ(|F | -1) < l(|F |), we obtain a lower bound of E 0 :

  2). Moreover, for a non-empty set Ξ d , |e max d | ≤ ρ(d) when cv min O(n 2 ) (Prop. 4). Therefore, since ρ(d) is an increasing function of d, we have |e| ≤ max d<|F | |e max d | ≤ ρ(|F | -1). Let i ∈ F be the agent which consumes the most in e. There are two possibilities at the end of e:
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 23 Figure 2.3: Illustration of the case where x i has the maximum value.
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 24 Figure 2.4: The comparison of Es max between EB-TTFM( λ) and E-TTFM
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 2 4 represents the comparison of Es max between EB-TTFM( λ) and E-TTFM with dierent |F | and θ.
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 25 Figure 2.5: 3D plot on the relationship of λ, E 0 and Es max

Figure 2 .

 2 5b gives a view of x, y axis which shows the feasible values of λ and E 0 (blue and red area).

For

  every B ⊆ A, denote by T B the time until all coupon groups in B appear at least once in the coupon group sequence. Denoting by T the time until all coupons appear at least once in the coupon group sequence, we have T = min T B | B is covering .

( 3 . 1 )

 31 Section 3.3. Lower Bounds on the Expected Convergence TimeFor every covering B, let F B be the event that B is the rst covering coupon group set to completely appear in the coupon group sequence. The law of total expectation givesE(T ) = B covering E T | F B • P(F B ) ≥ min B covering E T | F B .

( 3 . 2 )

 32 By denition of F B , we have E T | F B = E T B | F B . The latter is greater than or equal to the expected time of a |B|-collector's problem, which can be seen by shifting probabilities of non-B coupon groups into B. By [95, Theorem 1], this time is then at most that of the B-coupon collector's problem with uniform probabilities, i.e., |B|H(|B|) where H(m) = m =1 1/ denotes the m th harmonic number. This proves the rst part of the lemma.
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 31 Figure 3.1: Relation between T whp (TTF) and T upp (TTF).
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 32 Figure 3.2: Graph illustrations for three random schedulers.

3. 2 .

 2 The second column gives the vector p in the order [BST, f, nf 1 , nf 2 ]. The third and forth columns present the upper bounds on the time w.h.p. for TTF and lazy TTF(p), computed using Th. 9 and Th. 11 respectively and rounded down to integers.

Fig. 3 .

 3 3 presents the interaction graphs encoding P for schedulers (a) and (b).

  .1).
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 33 Figure 3.3: Resulting schedulers with p.
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 63 Gaps on time and energy between TTF and Lazy TTF(p)
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 41 Figure 4.1: WBAN with mesh topology

  ≤ |V I |) and (count > η) then 31:

Pr 1 - 1 .

 11 b T Zbλ -b T ZA -A T Zb λZ -A T ZA 0 ≥ 1 -Z 0,where D = {0.00, 0.01, ..., 0.99, 1.00} is a nite set, b and A are system specications and ∈ (0, 1] is the risk parameter.Procedure: For each λ ∈ D: (a) Solve CCRBM(λ) and obtain the relaxation values of y, (b) Determine the set A of removed constraints according to y, (c) Solve CCSP(λ), and let v(λ) be the objective value and Z(λ) be the corresponding solution.
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 51 Figure 5.1: The procedure of our simulation-based method

Data 1

 1 03, ρ = 0.001, β = 0.05,
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 52 Figure 5.2: Comparison of average linear size for Data 1

Figure 5

 5 .2 gives a precise look on the nal value obtained by Greedy and BM SP for dierent values of k for 400 samples. In Fig.5.3, we compare the violation of Greedy and BM SP .
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 5354 Figure 5.3: Comparison of violation ratio for Data 1

x i A i 0

 0 where c ∈ R m and A 0 , A 1 , • • • A m ∈ R n×n are symmetric matrices.

  Let A(x) = A 0 + x 1 A 1 + • • • + x m A m bea symmetric matrix of size n depending anely on x ∈ R m , where ∀i ∈ {0, ..., m}, A i = A T i ∈ R n×n . The problem of minimizing the maximum eigenvalue of A(x), i.e. min x∈R m λ max (A(x)), is equivalent to the following SDP : min x∈R m ,s∈R s s.t. sI -A(x) 0 (A.3)

  

  

  The minimum cover time value is denoted by cv min and the maximum one by cv max . A fastest (resp. slowest) agent z has cv z = cv min (resp. cv z = cv max ). We denote by F the set of fastest mobile agents, and by N F the set of non-fastest ones.

  There are four existing population protocols under cover time fairness for the task of data collection, studied by Beauquier et al.[START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF]. The rst one, SIMPLE, makes every agent transfer its value directly to the base station. Thus, the convergence time of SIMPLE depends on the speed of the slowest agent, which is cv max . The second one, STRONG, supposes that every agent i could check a predicate 2 • cv min < cv x at the start of the protocol. This predicate gives each agent an idea about its speed compared with others. So, if the predicate is true, agent i transfers its value to the fastest agent. Otherwise, agent i waits to meet the base station. The worst case (convergence) time complexity decreases to min{2cv min , cv max } in the case where

	the memory is unbounded. However, this protocol requires that every agent knows
	the value of the cover time of a fastest agent and the value of its own cover time,
	which is a very strong assumption. Then, the third one, "Transfer To the Faster"
	(TTF), is proposed, where the agent transfers its values only to a faster agent or
	the base station. The agents are not assumed to know the cover times, instead, two
	interacting agents can compare their respective cvs. Then, the worst case complexity
	of TTF is m • cv min -|F |, where m is the number of dierent cvs in the system and |F | is the number of fastest agents. Last but not least, a time-optimal population protocol, called TTFM (Transfer To the Faster Marked), is introduced. The basic
	strategy for data transfer in TTFM, is that a mobile agent only transfers its values
	either to BST, or to a faster agent that has never met (yet) another mobile agent
	faster than itself. This protocol will be presented in more details in Sect. 2.3. The
	authors showed that when cv max ≥ 2cv min -|F | and the memory is unbounded,

  ). Thus, Es max (e) = (|e| -|X 2 |)E wkp + |X 2 |E slp where |X 2 | is the number of (necessary) interactions in e ) and as cv min O(n 2 ), the length of X 2 is negligible compared with |e|. Therefore,

	not involving agent f . Notice that |X 2 | ≤ n(n-1) 2	= O(n 2

  i transfers to j as many values as would t in the free part of j's

		memory
	4:	if (agent i has no value in its memory) then
	5: 6:	else	agent i turns into terminated mode
	7:		

3: agent execute E-TTFM 8: if (j is BST) then 9: agent i transfers all values to BST

  1, when cv min O(n 2 ), the number of necessary interactions not involving these d fastest agents is negligible in every cv min interactions. In this case, the lower bound on mni(d) is reached.Proposition 3. [mnv(d)]. When cv min O(n 2 ), the minimum number of values that have been delivered to BST at the mni(d) th interaction, taken over all executions in a non-empty set Ξ d of EB-TTFM(λ), is

  1)/2 . Proof. It has been shown that in any segment of 2cv min consecutive interactions of an execution of T T F M , at least M |F | values (tight bound) are transferred to the fastest agents (Th. 11 of[START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF]). Similarly, it is easy to see that every 2cv min interactions, at least M |F | values (tight bound) are delivered to BST. However, in EB-TTFM(λ), since the fastest agents can turn into terminated mode (line 5), this property is no longer true. But it still holds for the segments of 2cv min consecutive interactions where all fastest agents are non-terminated. Then, we consider the segment [mni[START_REF] Aarts | Simulated annealing and boltzmann machines[END_REF], mni(3)) in an execution. There are at least |F | -2 fastest agents which are non-terminated in this segment. Then at least

According to the denition of mni(d), before the mni(1) th interaction, all fastest agents are surely non-terminated in any execution of EB-TTFM(λ). So, we obtain the minimum number of values that have been collected at the mni(1) th interaction in EB-TTFM(λ), which is: mnv(1) = M |F | × mni

(1) 

2cv min . As mni(1) = mni(2), we have mnv(1) = mnv(2).

  .2) Proof. A longest execution e max d in Ξ d is obtained by turning d fastest agents into terminated mode as fast as possible, i.e., at the mni(d) th interaction. Moreover, the data is delivered to BST in the slowest way. It means that there are |N F |mnv(d) values not delivered to BST at the mni(d) th interaction of e max d . And from the mni(d) th interaction until termination, only M (|F |d) values are delivered to BST during every 2cv min consecutive interactions. Thus, the longest execution is of length:

  Es max for Protocols in P i ] If cv min O(n 2 ), for any protocol P in P i , the energy spent by an agent in the worst case is at least Es max (E-TTFM/ Since no agent consumes more than Es max (P) amount of energy in any execution of P, when an agent consumes Es max (P) in e, either it turns into terminated mode or e reaches the nal conguration. And as P ∈ P i , there is at least one agent in ∪ i j=1 F j which is non-terminated at the end of e. Moreover, notice that |X 2 | ≤ n(n-1) ), the length of X 2 is negligible. Thus, following the above schedule, at time t = Es max (P) ×

		|∪ i j=1 F j | 2		
	and as cv min	O(n 2 |∪ i j=1 F j | 2	2	= O(n 2 )

We still assume that cv min O(n 2 ) (see justications in Sect. 2.1.3). Lemma 4. [First Lower Bound on . Proof. First, consider the following schedule which repeats the segment X 1 X 2 , where X 1 X 2 is of length cv min . X 1 ≡ [ repeat as much as possible all the possible interactions between agents in ∪ i j=1 F j ], X 2 ≡ [ all the other necessary interactions to satisfy cvs ]. Consider now the execution of P ∈ P i for this schedule, denoted by e.

  Thus, we obtain |e| ≥ |e max (TTFM)| = |e max (E-TTFM)|, as E-TTFM has the same time performance as TTFM (Sect. 2.3). Moreover, by Prop. 1, when cv min O(n 2 ), |e max (E-TTFM)|E wkp = Es max (E-TTFM). Lemma 5. [Second lower Bound on Es max for Protocols in P i ] If cv min O(n 2 ), for any protocol P in P i , the energy spent by an agent in the worst case is at least cv i E wkp .

	Then, we have			
	Es max (P) ≥	|e| × E wkp |∪ i j=1 F j | 2	≥	|e max (E-TTFM)|E wkp |∪ i j=1 F j | 2
	= Es max (E-TTFM)/	| ∪ i j=1 F j | 2	.

  Es max for Protocols in P cv∪e ] If cv min O(n 2 ), for any protocol in P cv∪e , the energy spent by an agent in the worst case is at leastmax{Es max (E-TTFM)/ |F | 2 , cv min E wkp }.Proof. The result comes directly from Lem. 4 and 5, since ∪ i P i = P cv∪e and , we identify the cases where this bound is reached by the presented protocols (Cor. 1), and where it diers only by a constant multiplicative factor from the energy complexity of EB-TTFM(λ), for the case of non-bounded memory and with a good choice of λ (Cor. 2).Corollary 1. When |F | ≤ 2 and cv min O(n 2 ), E-TTFM is energy-optimal in P cv∪e , with respect to the energy spent by an agent in the worst case.Proof. From Th. 5, if |F | ≤ 2, ∀P ∈ P cv∪e , Es max (P) ≥ Es max (E-TTFM). As E-TTFM ∈ P cv∪e , E-TTFM is energy optimal in P cv∪e . Corollary 2. When |F | > 2 and cv min O(n 2 ), for any protocol in P cv∪e , the energy spent by an agent in the worst case is at least cv min E wkp . For the case where M ≥ n -1 and λ satises the conditions of Th. 4, EB-TTFM(λ) reaches this bound asymptotically.

	min i	max{Es max (E-TTFM)/	| ∪ i j=1 F j | 2	, cv i E wkp }
	= max{Es max (E-TTFM)/	|F | 2	, cv

min E wkp }.

Next

Table 3 .

 3 10000 2: Gaps on time and energy.

	and					
	Gap(E, n) =		s∈S(n)	E s (lazy TTF(p s )) -E s (TTF) E s (TTF)	 /10000.
		Size n	Gap(T E , n) Gap(E, n)
			4	11.60%	-15.32%
			5	17.10%	-23.60%
			6	22.04%	-30.79%
			7	26.31%	-36.99%
			8	27.41%	-39.07%

  a random vector-valued function and is a risk parameter given by a decision maker.Setting K to a positive semidenite cone which is a closed convex cone (See Prop. 2 in Appendix), we have chance constrained semidenite program (CCSDP).

	Formally,
	(CCSDP) min{f (x)

x∈X : P r{F (x, ξ) 0} ≥ 1 -},

where F (x, ξ) 0 is a linear matrix inequality (See Appendix A.2).

Table 5 .

 5 1: Results for Data 1 with = 0.05, ρ = 0.01, β = 0.05

	N	k	k/N	SC	1-Vio	Greedy	1-Vio	Gap(%)	BMSP	1-Vio	Gap(%)
	400	-		4.1348	0.9988	-	-	-	-	-	-
		3	0.008			4.1328	0.9988	0.5	4.1234	0.9948	2.7
			0.030			4.1309	0.9992	0.9	4.1090	0.9902	6.3
			0.040			4.1190	0.9928	3.8	4.1065	0.9842	6.9
			0.050			4.1148	0.9818	4.8	4.0988	0.9767	8.8
	600	-		4.1438	0.9988	-	-	-	-	-	-
		9	0.015			4.1098	0.9884	8.2	4.1095	0.9892	8.3
			0.030			4.1060	0.9829	9.1	4.1025	0.9811	10.0
			0.040			4.1050	0.9835	9.3	4.0976	0.9744	11.2
			0.050			4.1043	0.9799	9.5	4.0962	0.9720	11.5
	800	-		4.1482	0.9998	-	-	-	-	-	-
			0.019			4.1151	0.9891	7.9	4.1138	0.9923	8.2
			0.030			4.1106	0.9917	9.0	4.1066	0.9859	10.0
			0.040			4.1083	0.9883	9.6	4.1028	0.9781	10.9
			0.050			4.1047	0.9846	10.4	4.0990	0.9776	11.8
	1000	-		4.1455	0.9994	-	-	-	-	-	-
			0.022			4.1228	0.9968	5.4	4.1124	0.9889	7.9
			0.030			4.1221	0.9938	5.6	4.1066	0.9865	9.4
			0.040			4.1144	0.9916	7.5	4.1027	0.9791	10.3
			0.050			4.1050	0.9861	9.7	4.0974	0.9734	11.6

Table 5 .

 5 2: Results for Data 2 with = 0.03, ρ = 0.001, β = 0.05

	N	k	k/N	SC	1-Vio	Greedy	1-Vio	Gap(%)	BMSP	1-Vio	Gap(%)
	1000	-		0.0689	0.9995	-	-	-	-	-	-
			0.014			0.0634	0.9980	7.9	0.0631	0.9966	8.5
			0.020			0.0615	0.9958	10.7	0.0613	0.9920	11.1
			0.030			0.0603	0.9908	12.5	0.0603	0.9915	12.4
	1200	-		0.0677	0.9994	-	-	-	-	-	-
		6	0.013			0.0631	0.9933	6.7	0.0629	0.9970	7.1
			0.020			0.0611	0.9925	9.7	0.0612	0.9917	9.6
			0.030			0.0592	0.9877	12.5	0.0596	0.9890	12.0
	1400	-		0.0664	0.9992	-	-	-	-	-	-
			0.012			0.0617	0.9958	7.1	0.0615	0.9943	7.3
			0.020			0.0603	0.9943	9.2	0.0605	0.9933	8.9
			0.030			0.0592	0.9868	10.8	0.0596	0.9927	10.3

Table 5 .

 5 3: Average CPU time of calculation

			Data 1			Data 2	
		SC	Greedy	BMSP	SC	Greedy	BMSP
	CPU time	13.6	201.5	23.3	251.7	4955.2	521.4

http://www.pigeonairpatrol.com/

The size of their memory is uniformly bounded, independently of the total number of sensors in the network.

The language of Presburger arithmetic contains constants 0 and 1 and a binary function +, interpreted as addition, relations <, >, =, ≤, ≥ and the standard connectives and quantiers of rst-order predicate calculus.

The language of Presburger arithmetic contains constants 0 and 1 and a binary function +, interpreted as addition.

the time period between two successive interactions of the same two mobile agents

Note that there are mappings from agents to their cover times for which the cover time fairness cannot be satised (e.g, if cv1 = 4, cv2 = 6, cv3 = 9 and cv4 = 16). From now on, we assume mappings allowing at least one possible fair execution. For an additional discussion on the validity of the cover time values, refer to[START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF].

In this work, we do not consider this possibility, as we analyze energy consumption for only one data collection.

However, with a beacon based approach for agents' detection (described in the rst point), neither x, nor y spend E wkp in such an interaction.

Recall that E wkp > E slp . For simplicity and following the study in[START_REF] Venkatesh Rajendran | Energyecient, collision-free medium access control for wireless sensor networks[END_REF], we choose θ ≤ 1/2.

An event Ξ is said to occur w.h.p., if P(Ξ) ≥ 1 -1 n c , where c ≥ 1.

A polyhedral set is {x ∈ R n : Ax ≤ b} for a matrix A ∈ R m×n and b ∈ R m .

A symmetric real matrix M is said to be positive denite if the scalar z T M z is positive for every non-zero column vector z of n real numbers.
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Scheduler

protocol of [START_REF] Beauquier | On utilizing speed in networks of mobile agents[END_REF] (See Sect. 1.2.2). The new protocols are adapted to a non-uniform scheduler and improve energy consumption, as explained further.

First, consider the original version of TTF. The data transfer between the agents in TTF depends on the comparison of cover times of two interacting agents. Here we follow this idea. However, as the scheduler is probabilistic, we adapt the corresponding denition of the cover time to be the expected (instead of the maximum) number of interactions for an agent to interact with every other agent (see Sect. 3.2).

Moreover, in this preliminary study, we make the assumption that every agent has enough memory to store n values. With these conditions, agent i could transfer any number of values to j (there is never more than n). This assumption is common in the literature [START_REF] Alistarh | Fast and exact majority in population protocols[END_REF][START_REF] Guerraoui | Names trump malice: Tiny mobile agents can tolerate byzantine failures[END_REF].

The complexity analysis starts with the proofs of two lower bounds on the expected convergence time of any protocol solving data collection (Sect. 3.3). Then, an analysis of execution times in expectation and with high probability (w.h.p.), for the new version of TTF, is given (Sect. 3.4). The complexity in expectation indicates how the protocol is good in average, while the complexity w.h.p. tells how it is good almost all the time. We obtain explicit bounds, thus justifying the relevance of the enhanced model in protocol analysis and its operability.

We further investigate the non-uniform model by addressing also energy complexity. The goal is to improve energy consumption of TTF, while keeping good time complexity. For that, we propose a new parametrized protocol, called lazy TTF (Sect. 3.5). As opposed to TTF, it does not execute necessarily the transition of TTF resulting from an interaction. Instead, during an interaction (i, j), TTF is executed with probability p i (depending on agent i, playing the role of initiator in the interaction). Analysis and the corresponding numerical study show that a good choice of the parameters p i results in lower energy consumption. To nd such parameters, we formulate and solve a polynomial-time optimization program. The resulting optimized lazy TTF is compared to TTF in respect with time and energy complexity (Sect. 3.6). For this analysis, we adopt the energy scheme proposed for population protocols in Sect. 2.2. This work is presented in ALGOSENSORS 2017 [START_REF] Beauquier | Data Collection in Population Protocols with Non-uniformly Random Scheduler[END_REF].

Related work

The uniformly random scheduler has been introduced and studied in the context of population protocols in the seminal paper [START_REF] Angluin | Computation in networks of passively mobile nite-state sensors[END_REF]. Later, leader election protocols (cf. [START_REF] Alistarh | Polylogarithmic-time leader election in population protocols[END_REF][START_REF] Doty | Stable leader election in population protocols requires linear time[END_REF]) and exact majority protocols (cf. [START_REF] Alistarh | Fast and exact majority in population protocols[END_REF]) have been proposed in this uniform model. Their performances are evaluated by the parallel expected convergence time and by the number of states available at each agent (space complexity). In several papers (cf. [START_REF] Alistarh | Time-space trade-os in population protocols[END_REF]), trade-os between time and space complexities of protocols solving these problems are studied. Any leader election or majority protocol converges in Ω(n/polylog n) expected time using O(log log n) states. A recent work [START_REF] Alistarh | Space-optimal majority in population protocols[END_REF] shows that, by employing phase clocks, both problems can be solved in O(log 2 n) expected time, using O(log n) states. Other complex problems, such as counting [START_REF] Aspnes | Time and space optimal counting in population protocols[END_REF], community detection [START_REF] Becchetti | Friend or foe? population protocols can perform community detection[END_REF] and proportion computation [START_REF] Mocquard | Optimal proportion computation with population protocols[END_REF], have been also studied under similar uniform scheduler model. Therefore, they have limited energy resources, memory space and computational power. Furthermore, it may be hard to recharge or change the batteries of biosensors, specially of those which are implanted into human's body. Thus, a long lifetime is necessarily required for bio-sensors and for WBAN. For example, a glucose monitor would require a lifetime of more than 5 years.

Therefore, unlike the traditional WSN, where the maximum throughput of data and minimal routing overhead are the rst requirements on the designs, the energy problem is the rst concern and challenge in WBAN. The goal of all designs in every layer of WBAN, is to make the network energy-ecient. For instance, in [START_REF] Fang | Bodymac: Energy ecient tdma-based mac protocol for wireless body area networks[END_REF], the Variable Neighborhood Search (VNS) was rst proposed by Hansen and Mladenovic and used the idea of neighborhood change during the descent toward local optima while avoiding the valleys that contain them [START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF]. There are three essential consecutive phases in VNS procedure: shake, local search and move. These three phases are repeated until a certain criteria set by the user is reached. Note that, before the start of VNS, a pre-selected neighborhood structure should be dened according to the optimization problem, i.e., for each solution x, we dene N k (x) the set of solutions in the k th neighborhood of x.

We give a short explanation here for each phase of VNS. In the shake phase, the algorithm jumps randomly from the current solution x to another solution x in N k (x). Then, a local search starting with x (e.g. Greedy algorithm) is launched, and a local optimum solution x is returned at the end of the local search phase.

During the move phase, the algorithm decides whether x is kept as optimal solution and the value of k (neighborhood structure parameter) for the next interaction.

Communication topology

In WBAN, several types of communication topology are proposed and considered in dierent situations, e.g. star, tree [START_REF] Reusens | Characterization of on-body communication channel and energy ecient topology design for wireless body area networks[END_REF], mesh [START_REF] Gabriel | New approaches to reliable wireless body area networks[END_REF][START_REF] Braem | The need for cooperation and relaying in short-range high path loss sensor networks[END_REF]. The most common topology is a star, where the nodes are connected to a central coordinator in star manner [START_REF] Ullah | A comprehensive survey of wireless body area networks[END_REF].

However, the star conguration follows a single hop strategy which is not always the best choice. In [START_REF] Reusens | Characterization of on-body communication channel and energy ecient topology design for wireless body area networks[END_REF], the authors discuss about energy ecient topology design for WBANs. They consider a tree network topology and discuss on the energy savings when using single hop and multi hop strategies. They conclude that the distance between nodes plays an important role and that both single hop or multi hop strategies achieve energy savings under dierent conditions. In [START_REF] Braem | The need for cooperation and relaying in short-range high path loss sensor networks[END_REF], authors

show that for nodes located far away from the base station, single hop is inecient with respect to energy consumption and network reliability. Therefore, relay nodes are designed and implemented for delivering data, which constructs a mesh topology in WBAN.

Here, we consider the mesh topology, which is a valid assumption in WBAN as it provides more reliable communications when using cooperative and diversity coding transmission schemes with enhanced throughout [START_REF] Gabriel | New approaches to reliable wireless body area networks[END_REF]. As depicted in Fig. ) × 100 for the LP case, Gap Ini V N S = ( V N S ini -P 1 P 1

) × 100 for the initial solution obtained with the VNS algorithm and Gap V N S = ( V N S-P 1 P 1

)×100 for the best solution found with VNS, respectively. The numerical results presented in Table . 4.1 are computed using only one sample for the input data of each instance.

From Table . 4.1, we mainly observe that the gaps obtained with the VNS algorithm are near optimal for all the instances we test, e.g., not larger than 3% from the optimal solution of the problem. Regarding the cpu times, we observe that the VNS approach requires more time when the number of stages is less than the number of nodes per stage. Furthermore, this cpu time is even larger than the cpu time required by CPLEX. This is mainly caused by the fact that the VNS algorithm needs to solve many linear programs in this case. Ultimately, we observe that the gaps obtained when using the initial solutions found with VNS are not very tight which shows somehow the eectiveness of the VNS approach. On the other hand, when the number of stages is larger than the number of nodes per stage, we observe that the VNS algorithm is signicantly faster than CPLEX. Moreover, in this case we see that the initial solution found with the proposed algorithm is very tight and in some cases optimal, e.g. this is the case for instances with 49 and 61 nodes. In particular, we see that the cpu time required by CPLEX becomes prohibitive for some of these instances. Finally, we observe that the gaps obtained with the LP relaxation of P 1 are far from the optimal solution of the problem. In Table . 4.2, we present preliminary numerical results for dierent values of parameter α and for three instances having dierent number of nodes, stages and nodes per stage. More precisely, in column 1 we give the value of α. In columns 2,3 and 4,5, we present the optimal function value of P 1 (resp. LP 1 ) and their cpu time in seconds needed by CPLEX, respectively. Finally, column 6 shows the gaps for the LP relaxation which are computed exactly as in Table . 4.1. Without loss of generality, the input data is randomly generated exactly as for Table . 4.1 as well.

From Table . 4.2, we mainly observe that the gaps of the LP relaxation goes to zero when the value of α ← 1. This means that solving the LP relaxation of P 1 , in this case, suces to obtain the optimal solution of the problem. On the opposite, when 0 ≤ α < 1, the gaps of its relaxation deteriorates considerably which turns the problem more dicult to solve.

Average numerical results

In order to provide more insight regarding our VNS algorithm, we further present average numerical results for the instances presented in While for the instances in rows 14 -16, we use only 10 samples to compute the averages as their cpu times become highly prohibitive. In particular, we arbitrarily set the maximum time for CPLEX to solve these instances be at most 3600 seconds.

From Table . 4.3, we observe similar trends as in Table . 4.1 concerning the gaps obtained with VNS. They are no larger than 3.5% for all the instances tested, compared to the optimal solution of the problem. We also see that the cpu times required by the VNS approach are larger than those required by CPLEX, e.g., the instances in rows 1-9. While for the instances in rows 10-16, CPLEX requires more cpu time.

In particular, the instances in rows 14-16 require a huge amount of cpu time using CPLEX while the VNS algorithm nds very tight near optimal solutions with gaps no larger than 2% in less than 25 seconds approximately. Another observation is that the initial solutions obtained with VNS approach are not feasible for instances in rows 1-8, i.e., at least in one of the 50 samples, the initial solution was infeasible.

Conversely, nding initial solutions for instances in rows 9-16 is easier. In general, the gaps of initial solutions are not larger than 10%. Finally, the gaps obtained with the LP relaxation of P 1 are not tight, compared to the optimal solution. We note that the LP gaps deteriorate signicantly when the number of stages is larger than the number of nodes per stage which is the cases for instances in rows 9-16.

Conclusion

In this chapter, we proposed a minmax multi-commodity netow formulation to optimally route data packets in a health-care wireless body area network. The aim of the model is to minimize the worst power consumption of each bio-sensor node over the body of a patient plus the total heating costs subject to ow conservation and maximum capacity energy constraints. The model is formulated as a mixed integer linear program. Thus, we proposed a variable neighborhood search procedure to obtain near optimal solutions. Preliminary numerical results indicate that the VNS (CCP) to a deterministic one, as shown below:

CCP-SA : min

where N is the number of samplings and the samplings (scenarios) ξ 1 , • • • , ξ N are assumed to be independently chosen from the distribution F . In [START_REF] Giuseppe | The scenario approach to robust control design[END_REF], the authors proved that CCP-SA yields a feasible solution to CCP with probability at least

supposing X is a convex set and G(x, ξ) is a convex function.

Scenario approach with constraint removal. However, the solution of CCP-SA is possibly too conservative compared to the optimal solution of CCP. In [START_REF] Bernardo K Pagnoncelli | Computational study of a chance constrained portfolio selection problem[END_REF],

the authors showed this conservativeness by testing a portfolio selection problem.

Thus, to enhance the performance of CCP-SA, in [START_REF] Marco | A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality[END_REF], the authors developed a sampling-and-discarding approach which removes some sampling constraints from CCP-SA, and thus results in a less conservative solution. They gave theoretical proofs, showing that when the number of discarded constraints k satises

the solution of the reduced model (with optimal constraint removal) remains feasible for CCP and intact with probability at least 1β.

A greedy algorithm was proposed in [START_REF] Bernardo K Pagnoncelli | Risk-return trade-o with the scenario approach in practice: a case study in portfolio selection[END_REF], to select the constraints to be removed by solving multiple problems of the form CCP-SA. In details, at each iteration i, an initial program of form CCP-SA with N -i+1 constraints is solved to determine the set of n i candidate constraints to be removed. Next, each candidate constraint is removed at a time and we solve the corresponding CCP-SA with Ni constraints.

After that, the constraint whose removal yields the greatest diminution (in our case) in the objective value, is chosen to be discarded. The greedy algorithm requires solving 1 + k i=1 n i programs of form CCP-SA. Recent work of [START_REF] Garatti | Modulating robustness in control design: Principles and algorithms[END_REF] presented a precise procedure of this algorithm on control design.

Although the calculation is more expensive here compared with CCP-SA, it allows a less conservative solution.

Sample average approximation. Besides scenario approaches, sample average approximation [START_REF] Luedtke | A sample approximation approach for optimization with probabilistic constraints[END_REF] is another simulation-based approach widely studied and applied, in which some of the sampled constraints are allowed to be violated. The model is Chapter 5. Stochastic Semidenite Optimization Using Sampling Methods shown below.

CCP-SAA : min

where α ∈ [0, ) and I(y) : {True, False} → {0, 1} is the indicator function which equals to one when y is true, and zero otherwise. We can see that when α = 0, CCP-SAA is equivalent to CCP-SA. In [START_REF] Luedtke | A sample approximation approach for optimization with probabilistic constraints[END_REF], the authors proved that supposing X is a nite set of size less then U n , every feasible solution to CCP-SAA will be feasible to CCP with probability at least 1β, given that N ≥

Thus, N has a quadratic dependence on α, indicating that N grows quite large for α near . The advantage of sample average approximation is that we do not need to solve CCP-SAA to optimality to obtain a solution to CCP and the solution is less conservative than the one of CCP-SA even though more samplings are required.

In [START_REF] Luedtke | A sample approximation approach for optimization with probabilistic constraints[END_REF], the authors conduct experiments on the probabilistic set cover problem and probabilistic transportation problem. Both are modeled in forms of mixteinteger programs. Let Pr{G(x, ξ) ≥ 0} be the risk of solution x. The results show that using α > 0 and a larger sample size in CCP-SAA yields solutions with smaller risks than using α = 0 and a small sample size. More important, optimal solutions obtained in CCP-SAA are less conservative than the optimal solutions of CCP-SA, i.e., smaller nal values are obtained in our case. Readers can refer to [START_REF] Bk Pagnoncelli | Sample average approximation method for chance constrained programming: theory and applications[END_REF] for applications of CCP-SAA.

The problem

In this chapter, we study chance constrained semidenite program (CCSDP), which will be dened explicitly later in Sect. 5.2. This model has been used to study minimum-volume invariant ellipsoid problem in control theory [START_REF] Cheung | Linear matrix inequalities with stochastically dependent perturbations and applications to chance-constrained semidenite optimization[END_REF], design problems in RC circuit [START_REF] Zhu | Semidenite programming under uncertainty[END_REF]. Moreover, the example given previously in the introduction considering lazy TTF protocol (the model OP 2 ), if we look into its formulation taking matrix P as random parameters, it can also be modeled as a CCSDP. Thus, we are interested in this chapter to understand how to solve CCSDP eciently. For the related work and applications of CCSDP, readers can refer to [START_REF] Ariyawansa | Chance-constrained semidenite programming[END_REF][START_REF] David D Yao | LQ Control without Riccati Equations: Stochastic Systems[END_REF][START_REF] Zhu | Semidenite programming under uncertainty[END_REF].

Overview

This chapter is organized as follows. In Sect. 5.2, the mathematical formulation of CCSDP is presented. In Sect. 5.3, scenario approaches applied to CCSDP are presented and our novel simulation-based method is introduced. To illustrate its strength, in Sect. 5.4, a well known CCSDP problem in control theory is studied and numerical experiments are conducted to compare our results with the state-ofthe-art. In the end, a conclusion is given. This work has been published in ICORES 2015 [START_REF] Xu | A sampling method to chanceconstrained semidenite optimization[END_REF][START_REF] Xu | Stochastic semidenite optimization using sampling methods[END_REF].

Experiment approaches

In our experiments, three models are tested to solve CCMVIE(λ) respectively. The rst one comes from the classical scenario approach explained in Sect. 5.3.1, the second one refers to the scenario approach with greedy constraint removal (Sect. 5.1.2) and the last one is the application of our proposed method (Sect. 5.3.3). In the sequel, we present these three models. I: Scenario approach. According to Sect. 5.3.1, we obtain the following model

where N is the number of samplings.

II: Scenario approach with greedy constraints removal. 

where A is the set of the indexes of the k removed constraints obtained by the greedy procedure.

III: Our method. According to Sect. 5.3.3, our method contains two parts. First, we solve the following relaxed "big-M" model CCRBM(λ) and obtain the solution

N , according to (5.4), the number of constraints to be removed is calculated as following :

where d is the dimension of the matrix Z.

For data 1, we consider four sample sizes: N = 400, 600, 800 and 1000. For each sample size, in addition to the k obtained by (5.5), we vary the ratio of k/N from 0.03 to 0.05 to study the inuence of k on the result.

For data 2, we consider three sample sizes: N = 1000, 1200 and 1400. Similar to data 1, in addition to the k obtained by (5.5), we vary the ratio of k/N from 0.02 to 0.03.

Implementation.

All experiments are run under MATLAB R2012b on a Windows 7 operating system with i7 CPU 2GHz and 4GB of RAM. The computations are performed using CVX 2.1 [START_REF] Grant | Cvx: Matlab software for disciplined convex programming[END_REF] 6 with semidenite program solver SeDuM i [START_REF] Jos | Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones[END_REF]. 7 

Numerical results

Table 5.1 and Table 5.2 provide the computational results of Data 1 and Data 2 respectively. N presents the sampling number. k is the number of removal constraints and k/N is the corresponding ratio. We use the average linear size measure for ellipsoid, which is dened as ALS(E(Z)) = (Vol(E(Z)) 1/n ) [START_REF] Cheung | Linear matrix inequalities with stochastically dependent perturbations and applications to chance-constrained semidenite optimization[END_REF]. Readers can refer to page 265 in [START_REF] Nemirovski | Lectures on modern convex optimization[END_REF] for the motivation of using this measure. The smaller the volume of an ellipsoid is, the smaller its average linear size is. The columns SC, Greedy, BM SP give the average linear size of ellipsoid obtained by scenario approach (I of Sect. 5.4.2), scenario approach with greedy constraint removal (II of Sect. 5.4.2) and our method (III of Sect. 5.4.2), respectively. 1 -V io shows the satisfaction rate of each solution estimated under 100000 simulated random samples. Gap presents the gap between the solution of the current method and the solution of the scenario approach.

Table 5.3 shows the CPU time expressed in seconds. The columns SC, Greedy, BM SP show the average CPU time of all tests in Table 5.1 and Table 5.2 when applying scenario approach, scenario approach with greedy constraint removal and our method respectively.

We observe that the real violation is signicantly below 5% and 3% respectively in Tables 5.1 and 5.2. It is easy to see that as k increases, we obtain a better solution both with scenario approach with greedy constraint removal and with our method; and the violation of the solution is larger. The reason is that more constraints we remove, the larger feasible set of CCSP(λ) we obtain, which involves more violated 6 cvx is a modeling system for disciplined convex programming. 7 SeDuMi is an add-on for MATLAB, which solves optimization problems with linear, quadratic and semidenite constraints. Section 6.2. Perspectives has a local variable x i ∈ R m and a private convex function f i (x) : R m → R. Agents cooperate to minimize the average function f (x) = 1/n n i=1 f i (x), such that the local variable x i (t) converges to the optimal solution x * = arg min x∈R m f (x). The subgradient method in optimization theory is adapted, such that each agent computes its sub-gradient step locally using only local information, e.g., the asynchronous iterative (consensus) algorithms ( [START_REF] Tsitsiklis | Distributed asynchronous deterministic and stochastic gradient optimization algorithms[END_REF], [START_REF] Srivastava | Distributed asynchronous constrained stochastic optimization[END_REF]) and the incremental algorithms ( [START_REF] Rabbat | Distributed optimization in sensor networks[END_REF], [START_REF] Nedic | Incremental subgradient methods for nondierentiable optimization[END_REF]). The alternating direction method of multipliers (ADMM) [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF] was proposed to distributively solve a more general convex optimization model. These methods are developed and widely applied in message passing models or similar ones with shared memory. In most of the cases, the convergence rate of ADMM is very slow.

In population protocols, agents are anonymous and have no knowledge of the size of the system. In this case, the developed classical methods for distributed optimization can not be applied directly to obtain a converged optimal solution.

Hence, novel methods are required to adapt distributed optimization to the case of population protocols. 

Semidenite Programming

A.1 Positive semi-denite matrix A symmetric real matrix A ∈ R n×n is said to be positive semi-denite, denoted by A 0, if the scalar z T Az is greater than or equal to zero for every non-zero vector z ∈ R n , where z T is the transpose of z. The set of positive semi-denite matrices is denoted by S n + .

Property 1. For any matrix A, the matrix A T A is positive semidenite. Property 2. The set of positive semidenite symmetric matrices, S n + , is convex. That is, if A and B are positive semi-denite, then for any α between 0 and 1, αA

Property 3. All eigenvalues of a symmetric positive semi-denite matrix are nonnegative.

Lemma 8. The expectation of random positive semi-denite matrix is positive semidenite.

Démonstration. Let A ∈ R n×n be a random semi-denite matrix. That is, A is symmetric and for all z ∈ R n , we have

The expected matrix E A is symmetric since A i,j = A j,i implies E A i,j = E A j,i . Moreover, for all z ∈ R n , we have

by Equation (A.1).

A. Then, a variable neighborhood search approach is developed and the numerical results show its eciency. At last, a stochastic optimization model, namely the chance constrained semidenite programs, is considered for the realistic decision making problems with random parameters. A novel simulation-based algorithm is proposed with experiments on a real control theory problem. We show that our method allows a less conservative solution, than other approaches, within reasonable time.