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Chapter

Overview

PIN-ORBIT coupling links a particle’s velocity to its quantum-mechanical spin,
S and it is essential in numerous condensed matter phenomena. Recently, in
ultracold atomic systems [1], highly tunable synthetic spin-orbit couplings have
been engineered enabling unique features and new physical phenomena. Spin-orbit
coupled Bose gases present a notable example raising fundamentally new questions
12, 3} 14, 5]. For instance, a pioneering experiment at NIST achieved a spin-orbit
coupled Bose gas and Bose-Einstein condensation [2]. Indeed realization of a
pseudo-spin one-half Bose gas was achieved by selecting two internal states of the
atoms and by coupling them through Raman processes.

At the mean-field level, spin-orbit coupling (SOC) introduces degenerate ground
states expected to enhance fluctuation effects and giving rise to new, exotic quantum
phases. However, the occurrence and nature of finite temperature transitions in
bosonic systems have not yet been fully established [6, 7, (8,9} 10].

In this thesis, we determine the finite-temperature phase diagram of a two-
dimensional interacting Bose gas with two hyperfine (pseudospin) states
coupled via a Rashba-Dresselhaus spin-orbit interaction using classical field
Monte Carlo calculations.

First, we review the results of mean-field calculations [8, 9}, 10, 11} 12] that indicate
a Bose condensed ground state strongly dependent on the anisotropy of the
interparticle interactions. At zero temperature, we expect exotic ground states
formed by either a single plane wave with non-vanishing momentum or a linear
superposition of two plane waves with opposite momenta, called plane wave state
(PW) and stripe phase (SP), respectively. For spin-independent interaction between
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atoms, PW and SP remain degenerate at the mean-field level.

We then explore the phase diagram using classical field Monte Carlo calculations, and
present the main results of the thesis. Classical field Monte Carlo simulations provide
a numerical method to accurately describe continuous phase transitions of Bose
gases at finite temperatures. We have adapted this method to perform simulations
of interacting Bose gases with SOC. In two spatial dimensions, we show that for
anisotropic SOC, the systems undergoes a Kosterlitz-Thouless phase transition from
a normal to superfluid state. In the superfluid state, the single particle density matrix
decays algebraically and directly reflects the PW/SP character of the mean-field
ground state. In the limit of isotropic interparticle interaction, the PW/SP degen-
eracy is unaffected by the transition and fragmentation of the condensate occurs [13].

In the case of isotropic SOC, we show that the transition temperature decreases with
increasing system size due to the increasing number of degenerate mean-field ground
states and eventually vanishes in the thermodynamic limit. Our simulations show
that the circular degeneracy of the single-particle ground state destroys the algebraic
ordered phase. No superfluid transition is then expected in the thermodynamic limit.

We start with a brief introduction to artificial gauge fields in ultracold atomic gases,
motivating our theoretical study. Then, we provide a description of the classical field
Monte Carlo methods, used to obtain the main, new results of the thesis, presented
in chapter three and four. Our conclusions together with perspectives for future work
are summarized in chapter five.

CHAPTER 0. OVERVIEW
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Introduction et Résumé

E COUPLAGE spin-orbite, essentiel dans de nombreux phénomenes en matiere
L condensée, fait intéragir la vitesse d'une particule avec son propre spin.
Récemment dans le domaine des atomes froids [1], un couplage spin-orbite
finement réglable a été concu. Il a depuis ouvert la voie a des dispositifs uniques et a
la découverte de nouveau phénomeénes physiques. Les gaz de Bose avec couplage
spin-orbite sont un exemple majeur de ces nouvelles pistes qui soulévent des
questions inédites [2} 3,4, 5]. Par exemple, une expérience pionniére au laboratoire
NIST a permis d’obtentir un gaz de Bose avec couplage spin-orbit ainsi qu’'une
condensation de Bose-Einstein dans ce systeme [2]. Le gaz de bosons avec des
pseudo spins 1/2 a été réalisé en sélectionnant deux états internes propre a chaque
atome et en les couplant a travers un processus Raman.

Selon I'approximation champ moyen, le couplage spin-orbite introduirait une forte
dégénérescence de I'état fondamental qui donnerait lieu a des phases quantiques
exotiques et qui permettrait également d’envisager un role prépondérant des effets
des fluctuations. Pourtant, 'apparition, I’existence et la nature de transitions a
température finie dans un systéme de bosons avec couplage spin-orbite ne sont pas
encore réellement établies [6, (7, (8,9} [10].

Lobjectif de cette these est de déterminer le diagramme de phase a température
finie d’'un gaz de Bose bidimensionnels interagissant avec deux états hyperfins
(pseudospins) couplés a travers une interaction spin-orbite Rashba-Dresselhaus
en utilisant des calculs Monte Carlo type champs classiques.

Tout d’abord, nous examinons les résultats des calculs type champ moyen
18,19,[10,11,12] qui indiquent un état fondamental, du gaz de Bose condensé, forte-
ment déterminé par I'anisotropie des interactions interparticules. A température
nulle, des phases exotiques sont attendues formant soit un état type onde plane avec
une impulsion non-nulle soit une superposition linéaire de deux ondes planes avec
deux impulsions opposées, chacune appelée respectivement onde plane (PW) et
état de bande (SP). Pour des interactions indépendantes du spin de chaque atome,
les états PW et SP restent dégénérés dans le cadre de la théorie champ moyen.

Nous explorons alors le diagramme de phase en utilisant les calculs Monte Carlo
basés sur champs classiques pour ensuite présenter les résultats principaux de
cette thése. Les simulations Monte Carlo avec champs classiques fournissent une
méthode décrivant précisemment les transitions de phases continues dans les gaz

CHAPTER 0. OVERVIEW
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de Bose a températures finies. Nous avons adapté cette méthode afin d’effectuer
des simulations d'un gaz de Bose interagissant avec couplage spin-orbite. En deux
dimensions spatiales, nous montrons que, pour un coupalge spin-orbite anisotrope,
le systéme subit une transition de phase type Kosterlitz-Thouless qui sépare une
phase dite normale d'une phase superlfuide. Dans la phase superlfuide, la matrice
densité a un corps décroit algébriquement et refléte directement le caractere type
PW/SP en écho avec les prédictions d’état fondamental provenant de la théorie
champ moyen. Dans la limite d’'interactions interparticules totalement isotropes,
la dégénérescence entre les états PW et SP n’est pas affectée par la transition. Une
fragmentation du quasi-condensat s’opere dans ce cas [13].

Dans le cas d’'un couplage spin-orbite isotrope, nous montrons que la température
de transition diminue avec la taille du systéme a cause du nombre croissant d’états
fondamentaux décrivant le minimum dégénéré d’énergie champ moyen. Cette
température tend alors vers zéro a la limite thermodynamique. Nos simulations
montrent que la dégénérescence circulaire de la courbe de dispersion de 'énergie
de chaque particule détruit I’ordre algébrique et donc la phase ordonnée. Aucune
transition vers une phase superfluide n’est attendue dans ce cas a température finie
a la limite thermodynamique.

Nous commencons ce manuscrit avec une breve introduction aux champs de jauge
artificiels dans les atomes froids qui appuient notre étude théorique. Nous four-
nissons ensuite une description des méthodes Monte Carlo basées sur champs
classiques utilisées pour obtenir les résultats nouveaux et principaux de cette these
qui seront présentés durant les Chapitre III et IV. Nos conclusions ainsi que des
perspectives pour de prochaines études sont résumées Chapitre V.

CHAPTER 0. OVERVIEW
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1.1 Spin-orbit coupling (SOC) in ultra-cold atoms

"The achievement of Bose Einstein condensation (BEC) (Anderson et al. 1995;
Bradley et al. 1995; Davis et al. 1995) and of Fermi degeneracy (DeMarco and Jin,
1999; Schreck at al., 2001; Truscott et al. 2001) in ultra-cold dilute gases has opened a
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new chapter in atomic and molecular physics, in which particle statistics and their
interactions, rather than the study of single atoms or photons, are at center stage."
Extracted from [14].

Why simulate gauge fields in ultra-cold atoms ?

Trapped cold atoms usually have a neutral charge. However, magnetic phenomena
are of a particular interest in quantum mechanics. They appear for example
in spin Hall effects [15, [16], spin-orbit coupling[17, 18], Aharonov-Bohm effect,
Hofstadter butterfly physics and topological insulators [19, 20, 21] when a charged
particle interacts with a magnetic field. In order to better understand these effects
in situations where particle statistics and interactions are important, various
propositions to enable such physics in ultra-cold gases were explored. Very recently
new ways of creating artificially synthetic magnetic couplings have been found [22].
This thesis focuses on the interplay between collective behavior and single particle
magnetic phenomena in ultra-cold gases. In particular, we study the effect of a
spin-orbit coupling in a homogeneous Bose gas with repulsive hardcore two-body
interaction.

In the following we will first sketch how magnetic phenomena and artificial gauge
fields can be created in single atoms, then we will describe the collective behavior
of homogeneous bosonic gases in the presence of this new coupling. In the next
chapters we will then focus on the interplay between the two-body interaction and
the single particle spin-orbit coupling (SOC) spectrum.

CHAPTER 1. INTRODUCTION
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1.1.1 Artificial gauge fields

A free non-relativistic particle of mass m with a charge g coupled to a magnetic field
B =V x A with A being the vector potential, is described by the Hamiltonian,

:_(p__A)z (1.1)

where c is the speed of light and p is the canonical momentum operator. In most ex-
perimental systems, trapped ultra-cold atoms are neutral (g = 0) and do not naturally
couple to electromagnetic fields. In the next section we will very briefly introduce
how to create artificial gauge fields that mimics the effect of electromagnetic fields
on neutral atoms.

Rotating gas

Artificial gauge fields were studied very early in trapped gases [23]. A standard way of
creating strong artificial magnetic field is by rotating a neutral particle system which
is equivalent to placing them in a magnetic field proportional to the rotation vector
Q with the appearance of additional terms.

2 —mQxr) 1
p——Q(rXp):u——m(er)z (1.2)

2m 2m 2
The artificial magnetic field produced through rotation is necessarily uniform. This
idea has shown to be very effective to study the creation of vortex lattices in BECs

[14].

Raman induced gauge field

Here we consider a toy model of a three-level atom coupled to two lasers in order to
give a little insight on how induced transitions can simulate artificial gauge fields.
This toy model is presented from the reference [1]], which contains a more accurate
and detailed description of artificial gauge field in ultracold atoms. As in the rota-
tional gas case we will aim to cast the Hamiltonian in a form like Eq. , we will
however not give an accurate explanation of the experimental realization itself.

Figure [1.1] shows the induced transitions of a schematic three-level atom placed
in two counter propagating laser beams. A Raman transition corresponds to the
absorption of a single photon from one laser beam and its stimulated re-emission
into the second. The momentum carried by each of these photons can be quite
large compared to the typical ultra-cold atom setup. It is possible to coherently
couple the state and the momentum of the cold atoms as we will see in the next

CHAPTER 1. INTRODUCTION
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Figure 1.1: Figure extracted from [1]. Representation of a Raman transition in an
atom with two low energies states and one high energy excited state. The states |g)
and |g») are usually hyperfine states and they will later be labeled as |1) and ||).

section. The transfer of momentum can be realized with no change in energy for
w, = wp, such that the two ground states of energies E; and E, can be equally popu-
lated and considered degenerate, E; = E», as it will be the case in the rest of this thesis.

In the rotating frame we can extract an effective Hamiltonian that does not depend
on the excited state but only on |g;) and |g2). Raman transitions do not necessary
populate the excited state (for large detuning A,) which is very convenient in cold
atoms experiments. The reduced Hamiltonian for this effective two-level system is
then a 2 x 2 matrix and writes in this basis,

JLO:E(A K ) (1.3)
2|l x -A

The effective Rabi frequency and the Raman mismatch write

KaKZ

K =

A=h(wg—wp) — (Ex — Ey) (1.4)

with x, and xj, the Rabi frequencies corresponding to the two lasers of frequencies
w4 and wp,. The light intensity is proportional to |x|2. In order to extract the gauge
field term appearing in the Hamiltonian, we write Eq. (1.3) in the a general form

B 17} cos(0) e~ Psin(0)
A= 2| e®sin@®) —cos(®) (15

with the generalized Rabi frequency Q = (A% + |1<|2)1/2, the mixing angle tan(f) =

|x|/A and the phase ¢ from k = || e'?. In the basis defined by the eigenvalues |y _)

CHAPTER 1. INTRODUCTION
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hQ
5.

in(@/2 0/2
|w_>=( sn(072) ) |1//+>=( cos(0/2) ) (1.6)

and |y ), the two energies write E; = +

—e ¥sin(6/2) e'?sin(6/2)

Up to now Eq. (1.3) only described the internal degree of freedom of an atom. In
order to describe the spatial degree of freedom of the whole atom we treat the
internal (electronic) state in the adiabatic approximation.

In the adiabatic approximation ¥(r, t) = ¢_(r, ) |¢_(r)) the equation of evolution for
an atom in its internal ground state E_ can be written in the form like Eq. (1.1)

0P [(p-A_)?
in =
ot 2M

+E_(x)+v_(@)|¢-(x,1) (1.7)
Where v_(r) = g—; [(A6)? +sin? 0 (A¢)?] and the vector potential is defined by
A_(0) = il (y_|Vy_) (1.8)

Creating an artificial magnetic field, this causes a shearing of the atomic cloud and
allows the entry of vortices into the BEC as presented in figure[1.2]

-80 0 80
X position after TOF (um)

Figure 1.2: Figure extracted from [22]. Vortices created in a BEC of 8Rb coupled to
an artificial magnetic field.

In contrast to the case of a rotational gas which was equivalent to a uniform magnetic
field, the coupling « in Eq. may depend on the position of the atom and on the
shape of the laser beam. The two plane waves created by the two lasers can be each
tuned independently described as k 4/ (r) = K eZkaT where 2k}, is the momentum
transfered to the atom. During a Raman process, the single atom then acquires in
total the difference of the two momenta carried from the two photons.

CHAPTER 1. INTRODUCTION
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Raman induced SOC

"Thus, as first put forward by Higbie and Stamper-Kurn [24], Raman transitions can
provide the required velocity-dependent link between the spin [the internal state of
the atom] and momentum: because the Raman lasers resonantly couple the spin
states together when an atom is moving, its Doppler shift effectively tunes the lasers
away from resonance, altering the coupling in a velocity-dependent way."
Extracted from [4]

It is then possible to simulate different shapes of the vector potential A and tune
each component differently. When the vector potential components A = (Ay,Ay,A;)
do not commute, the gauge potential is called non-abelian. One particular example
of non commuting components are Pauli matrices which give rise to SOC terms.
Generating non-abelian gauge potential is of a higher level of difficulty and it relies
on multipod configuration (multiple low energy states).

In summary, it is possible to generate a vector potential A such that,

(p-A)°
2M

SO = (1.9)
where the components of A do not necessary commute. In particular, in this thesis,
we will study the case Ao (0, 0, 0 )T where o and 0, are the x and y Pauli spin
matrices acting on a two level atom (figure|[L.1) [3].

Ultra-cold SOCed systems have been of a great interest recently from both experimen-
tal and theoretical point of view [3} 22} 25]. Indeed extremely tunable SOC are a good
playground for new accessible questions to arise. Some examples of phenomena
that do not exist in standard condensed matter systems are listed here below.

* What is the collective behavior of SOCed bosons?
* How does SOC change when the spinis S > 1/22
* What is the interplay between interactions and SOC for bosons?

After a more precise definition of our SOC Hamiltonian, we will study the single
particle spectrum of SOCed atoms and then ask again the questions arising from
these new features.

CHAPTER 1. INTRODUCTION
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1.1.2 Rashba-Dresselhaus spin-orbit coupling

Spin-orbit coupling in condensed matter

For electrons in atoms or solid, the spin-orbit coupling is naturally present due to
relativistic corrections. When a charged particle is moving in an electric field, the
particle in its reference frame sees a magnetic field which couples to the internal
magnetic moment (spin).

Different physical realizations produce different types of SOC with different
symmetries. In two dimensions they are generally regrouped in two classes called
Rashba [17] and Dresselhaus [18] SOC. These couplings were originally studied in
the context of two dimensional semiconductors.

In the context of ultra-cold gases, the SOC is not a relativistic correction to the
electronic energy levels but arises as an effective description for the hyperfine states
of the atom and its coupling to the laser fields via the atomic momentum. The form
and the strength of the SOC are experimentally tunable and therefore their study is
distinct and often far from the SOC studies based on electrons in standard condensed
matter. We quickly define below the terminology used in the context of ultra-cold
atoms where different types of SOC are experimentally achievable [3,[26].

Rashba and Dresselhaus couplings
The general Rashba-Dresselhaus coupling is defined as
o = 2k N h2x
RD = — Px0x +1soc m pyoy

where k corresponds to the strength of the SOC. The real scalar 1y, characterizes
the anisotropy/isotropy of the SOC in the x-y plane which can be experimentally
controlled by coupling lasers with different amplitudes in the x-y plane. As a defini-
tion, the pure Rashba case corresponds to an isotropic SOC with 1, = 1. Otherwise
for 0 < 1o < 1 the anisotropic coupling is called Rashba-Dresselhaus. In the next
section we will draw the energy spectrum of the free particle Hamiltonian including
the general SOC and discuss its dependency on the parameter 7.
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1.2 Non interacting SOCed Bose gases

Before discussing the implications of including SOC in the Hamiltonian for interact-
ing many body systems, let us first study the single particle spectrum of the ideal
(non interacting) SOCed atoms. We introduce in this section the eigenbasis of the
non interacting Hamiltonian given by a linear superposition of spin up and down
states.

1.2.1 Diagonal form

In this thesis we will consider bosons with two internal degrees of freedom coupled
by a Rashba-Dresselhaus SOC in a homogeneous system. In the second quantization
basis the field creator operator writes

. 1 _—
)= =Y elkrgt 1.10
(r) V; " (1.10)

We define Iftlt and dI as creation operator of a spin up and down particle of momen-
tum k.

vl =(af, df) (1.11)

In a homogeneous system and in presence of a SOC, the Hamiltonian takes the form

N R h2k? + h?x? 2k hx N
=Y Wi L+ ——ky0x +Nsoe——kyo, | ¥ 1.12
0 %‘, K ( om ) 2 o xOx Nsoc m oy k ( )
with [, the 2 x 2 identity matrix. The constant term % is added for convenience in

order to set the absolute minimum of the energy to zero. The following results are of
course completely independent of it. In matrix form, the Hamiltonian H writes

| R R
Hp = VZfdr Pl M) Py (1.13)
k

CHAPTER 1. INTRODUCTION



1.2. Non interacting SOCed Bose gases Page 15

For simplicity we set 7 = m = 1 in the following. The matrix M (k) writes

K212 +x%/2 kx — ifsock K212+x212  xkype O
M) = T KU = Msocky)) _ (/21 T2 ke B 1
K(kx +insocky) ke12+x=/2 xk et ke[2+x°/2
where we have written the off-diagonal terms as
K (ky * iNsocky) = Kk e=% (1.15)

or

. kyti k
N (e 116)

Diagonalizing M (k), we obtain

Toy= Y ek DT D7 (1.17)

k,o=+,—

where the energies of the two branches write

(kL +x)%+(1-1n% ) kK2 + k2
e:(K) = k212 + 1212 + [xky | = ( - o) Ky + (1.18)

The new field operators write

N fyc "%
b = K==k (1.19)
V2
The energy eigenfunctions is composed out of the two spin states of the correspond-
ing momentum with equal amplitude but momentum dependent phase. Figure
shows the single particle energy spectrum of the ideal gas for two different values of

M soc-
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1.2.2 Energy spectrum

These last years in the context of ultra-cold atoms [4, 8], both fermionic and bosonic
systems were studied in presence of these energy spectra.

In the case of bosons, at low temperature a large fraction of particles occupy the
lowest energy state and can give rise to the phase transition known as Bose Einstein
condensation (BEC). The absolute minimum of the energy is the key feature for the
physics of bosons at low temperature which is strongly affected by the presence
of a SOC term. For the pure Rashba gauge potential n5,. = 1 the dispersion curve
minimum is a constant nonzero radius in the momentum space as shown in the
left figure This corresponds to a massive degeneracy of the single-particle
ground level. In this particular case, as we will see, Bose-Einstein condensation does
not necessary occur and a highly correlated ground state may be expected in the
presence of a contact interaction.

The existence of this degeneracy determines strongly the behavior of such bosonic
systems. The simplest way to break explicitly this symmetry is to change the intensity
of the two Raman lasers e.g. changing the amplitude of their plane-waves in the x-y
plane leading to 75,¢ # 1, as shown in the right figure[1.3]

What happens to the BEC scenario in presence of a SOC?

1.2.3 Ideal Bose gas in 3D

In three dimensions the degeneracy of the single particle ground state critically
changes the BEC scenario. We study, in this section, the effect of SOC term in a
homogeneous three dimensional Bose gas. The impact of a SOC on a BEC was
already pointed out in recent theoretical studies [7,28].

Ideal Bosons in absence of SOC: x =0

We briefly recall the standard BEC phase transition in a three dimensional homo-
geneous system without any coupling or interaction. The number of particles at
temperature T = (kp ,6)_1 and chemical potential p < 0 in the energy eigenstate € (k)
is simply given by the Bose distribution, Ny = (exp(Blex — )] — 1)1, and the density
of the excited states writes

Bu
1 83 (™)

- N = 3 (1.20)
4 k#0 AT

Nex =
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Figure 1.3: Figures extracted from [27]. Two dimensional dispersion of a homo-
geneous SOCed system. The two branches €. touch at the origin. The left graph
corresponds to the pure Rashba term whereas the right graph is plotted for 5y, = 0.7.
We see in this last case that only two minima appear in py = £x.

a b o
—o—T—— 90
Excited state % 2
— H 8 a; Cll’éJ 41 _%
Y 10 {284
| O @ |, §C
o b Sg
L ~O@ Jgqcc
L L o 1 1
’- In :
Zeeman shift W . I . I
between I !
ground states n 1 '.'
L . R h
-1.0 0.0 1.0

Quasimomentum, g/k;

Figure 1.4: Figure extracted from [4] a) Typical level diagram. b) Minima location.
Measured location of energy minimum or minima, where as a function of laser
intensity the characteristic double minima of SOC dispersion move together and
finally merge. c) Dispersion measured in ®Li.
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I, . .
where gq4(z) = X.72, 7z is the Riemann Zeta function and

Ar= 2nh” (1.21)
= kaT '

is the thermal de Broglie wavelength. The BEC phase transition occurs at @ =0
corresponding to a critical temperature Tc where the density of particles in the
excited state, Eq. saturates and the number of particles in the ground state,
Ny, becomes extensive. The condensed fraction N,/ N remains non-zero even in the
thermodynamic limit. In this case the system has formed a Bose-Einstein condensate
in the zero momentum mode k = 0.

Impact of SOC:x #0

We now consider a bosonic gas with two internal degrees of freedom. As we have
seen in the previous section, in presence of the SOC the dispersion relation e.. (k) is
not minimal at k = 0 any more. In the basis of energy eigenstates, the total number
of particles is given by the sum over both energy branches. The excited state density
now writes

(1.22)

Nex

[ d’k ( 1 . 1
) @em)3 \eBlesto-p) — 1 pBle-t0-p) _q

Depending on the value of ., two very different effects occur.

Rashba-Dresselhaus term 7, = 0 In this case, the two energy branches simply
correspond to a shift of the energy dispersion in the k, direction

@m) nex = f dk, f dk, f dky

. oo oo ﬁ((kx—K)2+k)2,+k§_ )
+ f dsz dkyf di|e V7 P (1.23)
—0o0 —00 —00

B (ch+7<)2+k)2,+k§ B
2m H
e

-1

Shifting the integration variable, we recover the ideal gas expression for the density
of excited particles in each energy branch. Below the transition at p = 0, both eigen-
states with ky = £k become occupied. The condensate is therefore built out of two
exactly degenerate modes.
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Pure Rashban =1 Whereas 1, <1 is qualitatively similar to the scenario with
Nsoc = 0 leading to a two-fold degeneracy of the condensate, fully isotropic SOC,
Nsoc = 1, is essentially different. It was experimentally achieved and explored [2} 3].
For 150 = 1 the minimum of the single particle energies is infinitely degenerate.

fo's) fo%s) (kl+1<)2+k§_ -1
(zn)znex = f dsz ki dk, (eﬁ( am ﬂ) — 1)
—00 0

oo 00 (k1% +k2 -1
+ f dsz kydk, (eﬁ( & “)—1) (1.24)
—00 0
This expression does not simplify as in the pure Rashba case, but can be written as
pr®

ga(ePrzm) . oo npu pn
Rex=N4+n_=2—"——+—3" erf| 1/ —x« (1.25)

A%« /1% n=1 I 2m

where erf(x) = ﬁ Jre *dt is the error function. The last term in this expression
prevents the occurrence of BEC since it diverges in the limit of vanishing chemical
potential. Any arbitrary high density is therefore accessible without the need of
macroscopically occupying any single particle state. In contrast to 7y, < 1, the
ideal Bose gas with isotropic SOC does not have a BEC phase transition at finite
temperature.

As pointed out by reference [27], the absence of a BEC at finite temperature can be
explained by the infinite degeneracy of the single particle ground state in the pure
Rashba case (5, = 1). At very low energies the density of states is constant like for
non-interacting particles in two dimensions

n(k) :f

Therefore, at low temperatures, our system behaves similar to a two dimensional
Bose gas without SOC where Bose condensation is suppressed by the higher density
of states.

d®k K
(27[)35(E—€_(p)) ~ o (1.26)
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1.2.4 Ideal Bose gas in 2D

In two spatial dimensions, a Kosterlitz-Thouless phase transition occurs for an inter-
acting homogeneous Bose gas without SOC, so that we expect also the SOCed Bose
gas to be particularly affected by presence of interactions. These systems are also of
great interest for experimental groups [5]. Before focusing on the interacting system
in the next chapters, we study quantitatively in this section the impact of the SOC on
a two dimensional non interacting gas.

Ideal Bose gas without SOC: x =0
Similar to Eq.(1.22), we calculate the density of non-condensed particles

7 2mTf°°d e x+Pu 127
I 0 1 ex+bu '
mT
= 5 log[1 - ePH (1.28)

Using the thermal wave length defined in Eq.(L.21]the density writes
n)LzT =—log[1 - ePH (1.29)

As anticipated, Bose-Einstein condensation is absent, since the density diverges for
vanishing chemical potential. Nevertheless, the number of bosons in the ground
state, Ny, becomes large at low temperatures,

T I’l/lz

NO:—:
|l

(1.30)

though never macroscopic at any finite temperature, Ny/V = 0 in the thermodynamic
limit.

CHAPTER 1. INTRODUCTION



1.2. Non interacting SOCed Bose gases Page 21

Isotropic (pure Rashba) SOC

Since we have seen that no BEC occurs in two dimensions, we limit ourself to study
the impact of a pure Rashba SOC, 1, = 1, where the single particle ground state is
infinitely degenerate. In the two dimensional system, we get for the density

)2 -1

fo's) (k| +x _
omn = f kldkl(eﬁ( 2m ”)—1) (1.31)
0

-1

0 (k -)%
+ f kldkl(eﬁ( 2m ”)—1) (1.32)
0

which can be simplified by changing the integration variables

-1 -1
omn = Zfoordr(eﬁ(%_”)—l) +2Kder(eﬁ[£_”)—l) (1.33)
0 0

(1.34)

or

2k (X 1
nA? = —log[l—eﬁ“]+m—1;f dr————— (1.35)
o p

e (5_’”_ ) -1
The additional term on the density due to SOC is always positive, so that the density
of particles per spin at constant chemical potential is higher than without SOC.

Although BEC does not occur for 15, = 1 in two and three dimensions at finite
temperatures for ideal Bosons, this does not exclude the occurrence of a phase
transition in the interacting case. Therefore we investigate the effect of interparticle
interactions within the mean field approximation in the next section.

What is the effect of the interactions ?
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1.3 Interacting Bose gas: Mean Field Approximation

In a dilute system, interactions between the particles are dominated by two-body
collisions. At low energies, the two-body interaction can be effectively described by a
single parameter, the s-wave scattering length a, independently of the details of the
two body potential. In the following, we will use a contact pseudo-potential gé(r) for
the interaction where the interaction strength g is related to the scattering length a
through g = 4nh%a/m [29]. In the case of a Bose gas with two internal (spin) states,
three coupling parameter are in general needed, g,/, proportional to the scattering
amplitudes between different the various hyperfine states as o and ¢’. In second
quantization, the interaction part of the Hamiltonian is then given by

Hint = f dx Y oo ¥ ¥ 0¥, x¥,x) (1.36)
g,0'=1,]
with g;| = g|1. Together with the single particle Hamiltonian, Eq.(1.17), the total
Hamiltonian then writes

= F (K, Nsoc) + Hone(g11, 811, 811) (1.37)

At high density and low temperature the energy is dominated by interactions
proportional to the density squared, Eq. (1.36). We may expect fluctuations of the
density to be strongly suppressed. Replacing the density operator by its expectation
value, we obtain a mean-field description neglecting flucuation effects.

As we will show, within mean-field, the low temperature phases are selected by the
single combination

g§=281—811—8ll (1.38)

In the other limit of high temperatures and low densities, the interparticle interaction
can be considered as a perturbation to the non-interacting kinetic energy. This
regime is again correctly described in leading order by a mean field theory. In the
next section we will study the two mean field prediction at high and low temperature.
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1.3.1 High temperature Mean Field Hartree approximation

In this section to review the derivation of the high temperature mean field approxi-
mation following closely the reference of J-P Blaizot and G.Ripka, Quantum theory
of finite systems [30] where the interaction leads to a simple shift of the effective
chemical potential. For simplicity, we only consider an averaged interaction strength
with g1 = g|| = g1], or g =0. Corrections due to an anisotropy g # 0 of the couplings
811,811, 81 can be included without difficulty, but are negligible for all coupling
parameters considered in this thesis.

The free energy of the system is defined as,

F=E-TS—uN =-kgTlog(Z) (1.39)

where Z = Tr[exp(—B(H — uN))] is the grand canonical partition function.
The mean field approximation is based on the following inequality

1 R
F< B(logpo)o + (A (1.40)

where pg = exp[—Hyl/ Zy is any trial density matrix corresponding to a Hamiltonian
Hj and 7% is the corresponding partition function, (- )¢ = Tr{ - po}

Our ansatz for the trial density matrix is based on the non-interacting part of the
Hamiltonian with an additional mean-field shift of all energies, such that the Hamil-
tonian of our system can be separated as

H = S+ (1.41)
. (k1 +x)% + k2 it
Hy = *Z —,—— H 5@%,0%0 (1.42)
,o0=1%
> _ 8t S Y St &
A= Z»@hz’@p_ﬁ@k@p &) O O, (1.43)
p.k, k,o=%
We obtain
1 . . .
F= B(logpo>o + (A o)o + (F1)o = Fo + (H1)o (1.44)

where Fy(T, u, &) = —Tlog Zy is the free energy of our reference system. Using Wick’s
theorem we get

oy _ 8N et g 2T & B G
o= ;w%@po;@p@pm —¢ 2 (@ Do (1.45)

k,o=+
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Introducing the density of our mean-field approximation

L aa T d
n() = V;@%cb,go— v aeho (1.46)

the variational expression for the free energy writes
F < Fo(&) + Vg [n@)* -&vn(e) (1.47)

Since we have

_0F(§) _ 0K (&)
& du

= pVn() (1.48)

the derivative of the variational free energy with respect to ¢ leads to the following
condition for its minimum

—Vn@+2Vgnn'€)-vnE)-EVva' & = 0 (1.49)

which determines the mean-field energy shift self-consistently

¢ =2g11n(s) (1.50)
Explicitly, we then obtain a set of equations for the quasi-particle energies and density

(kJ_+K)2+]C2 MF

M) +2g11n

W= 2:([(2ﬂf3eﬁ@0ﬁm o1 (1.52)

which has to be solved self-consistently. For fixed chemical potential, the single
particle energies are shifted by a constant 2g;;n™¥. We see that the mean field
approach at high temperature leads to qualitatively similar conclusions as for the
ideal gas.

(1.51)

nMF(

We will need this leading order approximation at high temperature to match our
classical field calculations in Chapter II.
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1.3.2 Mean Field ground states: Plane-Wave & Stripe phase

Our ideal gas calculations have shown that isotropic SOC may suppress Bose
condensation at finite temperatures, and our previous mean field calculation only
introduces a rigid shift of all energy levels.

Still, approaching zero temperature, the occupation of the lowest energy modes
dominate and the formation of a condensate at zero temperature is expected. Here,
we study possible phases of the ground state within the mean field approximation.

Let us rewrite the interaction energy, Eq. (1.36),

1
Eint = Efdr Z 8o'a{Ng' () Ny (1)) (1.53)

o,0'=1,]

using the density operator 7, (r). In ahomogeneous (translationally invariant) system
the tendency of the interaction is to flattened the coupled densities in real space.
Neglecting density fluctuations, we expect two different situations to minimize the
interaction energy:

Case g11,8| > g1 Each densities n and n| should be constant in space.

Case g1 > g11,8); The sum of the two densities is constant but densities of
opposite spin, n; and n|, avoid each other spatially.

Based on this heuristic considerations, we will now write down a mean field ansatz
for the different ground states of isotropic and anisotropic SOCed Bosons.

Variational calculation

In Fourier space, using Eq. (1.11), the interaction Hamiltonian, Eq. (1.36), writes

5o & ab af oo n 81 ot ot 81l ot
Hint = S i, O, i i, + de df di,dy, +—u ALty | (159
k1+k2 k3+k4

where we have explicitly written out all three couplings. For our variational calcula-
tions of the ground state energy, we start with the simplest, less symmetric case of
bosons with anisotropic SOC.
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Anisotropic SOC, 15, <1 In this case the single particle spectrum has two degen-
erate minima in k = x = (+x,0,0) corresponding to the single particle states

b 10) = 7z (ﬁlx T 631,() 10) (1.55)

Introducing the angle ¢ that described the linear superposition of the two minimal
states (in a single particle), our mean field ansatz for the ground state then writes
Aot s |V
(cos(d))(DK + sm(gb)q)_,()
V' N!

with N the number of particles in the system. We then evaluate the interacting energy,

Eq.(1.54),

D™ () = 10) (1.56)

(D7 ()| Ane| D™ () (1.57)

The non zero components of this expression can be decomposed into three different
situations : (1) all the particles carry a xk momentum, (2) all the particle carry a
—Kk momentum, (3) the two particles carry different momenta +«x and exchange a
momentum 2x. In this last case, four different arrangement of momenta +x are pos-
sible. When the two interacting particle carry a different spin, the negative sign in Eq.
has to be taken and it introduces a term proportional to —gj,| cos(¢p) |*| sin(¢) %
By explicitly calculating each non zero configuration and using the normalization
condition we obtain,

N(N-1)

(O | A D7) = o

(811 + 811 +2811 +1sin@P)1* (811 + 811 - 2811)  (1.58)
Minimizing the interaction energy, Eq. (1.58), we distinguish three cases depending
on the sign of the anisotropy of the interaction, g.

Case g1+ g|| > 2g1) i.e. g <0: The mimimum of the energy corresponds to ¢ =
{0,7/2}. In this case the particle populate a single momentum +x and the state is
called Plane Wave state.

Case 2g;| > g1t + & i.e. g >0: The mimimum of the energy corresponds to ¢ =
/4. The particles are in a superposition of two opposite momenta +k e.g. in a
superposition of two Plane Wave states. This standing wave forms stripes in the real
space and is called Stripe Phase.
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Case g1t + 8| =2g;) i.e. g=0: The Plane Wave state and Stripe Phase are degen-
erate. This degeneracy is present within the mean field approximation and it is not
expected to be robust beyond mean field.

Isotropic SOC, n5oc =1 As we have seen in the non-interacting section, when the
spin-orbit coupling is isotropic in the x — y plane the single-particle ground state is
infinitely degenerate along a momentum ring of radius x. In order to minimize the
energy, we can choose a mean-field ansatz where we choose to populate only one
direction, so that we essentially recover the scenario above. Allowing for a combina-
tion of more momenta in the ansatz, the calculation also involves the angles k;, k»
and ks, ky in Eq. (1.54). This approach was studied in reference [7] and numerical
calculation done by reference [11] produced consistent with the results based on a
single direction shown in figure[L.5|

AB
Be II »-
I =
(p+:p-) Qe «
—B. II1 »-

Figure 1.5: Mean field phase diagram from ref [11] a = g;,/g, B = (g11 — g1)/g and
g =(g11+g1)/2. Using the formalism of this thesis, the critical value of a is predicted
for @, =1 and the indices p, and p_ correspond to the directions k, = +x. Region I
is a superposition of p, and p_ e.g. the stripe phase. Region II and III are states in
which only p. and p_ are populated respectively.
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Mean field phase diagram and ground state wave function

We have seen that in the presence of interactions the mean field ground state breaks
the symmetry of the degenerate single particle energy levels selecting one direction
|x| = x. The wave function of the mean field ground state, Eq. (1.56), writes

MF
(r) 1
WME () = ( sz\?[K ) _

1.59
virw |7V 159

cos(<p)ei"'r( _eliex )+sin((/))e_“"r( eilﬂx )

up to total phase e?. Without loss of generality, we can choose x = x(1,0,0).

For ¢ = 0 we have a pure plane-wave state : y/"(r) = = (e'*, —e’**). The
wave-function is described by a single plane-wave and the density of each spin
component is therefore flat in space. For ¢ = /4 we describe the stripe phase:
yMFE(p) = % (cos(xx), isin(xx)). The total density is also flat but the density of each
component fluctuates spatially with a defined wavelength x e.g. appearance of

stripes.

However, since mean field usually overestimates ordering, it is questionable if these
exotic mean field ground states are really stable at zero temperature, since the large
degeneracy of the single particle spectrum may significantly enhance fluctuation
effects.

What are the main theories/results beyond the mean approach?
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1.4 Fluctuations & Open questions

Fluctuations beyond mean-field We propose in this section to review different
approaches that have been applied to address questions beyond mean field.

* Variational wave function Fragmentation is a main example of a ground state
not captured by the mean field approach. Despite being particularly fragile,
references [31}/32] propose fragmented states as possible ground states. Based
on very dilute limit arguments, reference [33] propose a fermonized many-
body state by composite fermion construction as a ground state of interacting
bosons.

 Effective theory At extremely low temperature, only low energy excitations are
populated and the degrees of freedom of the system are therefore expected to
be reduced. A more simple, effective theory based on minimal fluctuations
around the mean field solution has been used to describe the system. Fol-
lowing this approach we can, for instance, consider only the lower branch of
the energy spectrum @~ (k) in Eq. (1.19). One standard approximation is for
instance, by defining the wave-function as a phase and a density component,
to integrate out density fluctuations and to consider only phase fluctuations.
The Plane Wave state energy is then described by only one phase. On the
other hand the Stripe Phase breaks the translational symmetry and is therefore
described by two phases [9].
Within these approaches, references [9] and [10] propose a qualitative phase
diagram at finite temperature of a SOCed Bose gas in two dimension. In the
third chapter of this thesis, we will draw a significantly different phase dia-
gram based on a classical field theory which is expected to be valid at finite
temperature around the phase transition.

* Renormalized T-matrix approach In the pure Rashba case 75, = 1 the inter-
acting term Eq. couples any momentum relying on the ring minimum
k = k. As we showed in the previous section, in the case of an fully isotropic
interaction g = 0 the ground state is degenerate. In order to lift this degeneracy,
reference [34] consider renormalized interactions to determine the absolute
ground state. Using the T-matrix formalism they consider a renormalized con-
tact interaction that depends on the angle between the two momenta gy y ; -
The effective interaction is stronger when k and k' are in the same direction,
therefore indicating a stripe phase as an absolute ground state.
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* Bogoliubov approach The Bogoliubov approach is suited for studying fluctua-
tions on top of the mean field prediction. In our case, this study is particularly
interesting in the case of isotropic contact interaction g = 0 when no single
ground state is selected within the mean field approximation. By an order by
disorder mechanism, reference [35] finds that the absolute ground state corre-
sponds to a Plane Wave state and results from a competition of the thermal and
quantum fluctuations. By studying the depletion of the condensate and the
impact of the finite temperature excitations, both references [35] and [7] draw
a finite temperature phase diagram based on the Bogoliubov approximation,
in particular in three dimensions (since the thermal fluctuations diverges in
two dimensions).

¢ Experimental challenge The Stripe Phase is predicted to have supersolid prop-
erties by breaking both the gauge and the translational symmetries. Very fragile
in experiments, many propositions were made to increase the stability of the
stripe phase [36,/37,/38]. The predicted density modulation of the stripes were
observed in 2017 by reference [39]. The role of an harmonic trap was also
considered [40, 41]and the breaking of the stripe phase because of vortices
was also carefully studied [15]. Because of the SOC term, the wave-function
can change sign by either rotating the relative phase or by flipping spin. Half-
quatum vortices are therefore naturally present in the system as non standard
topological defects [42, (9, 43].

* Superfluidity Because of the breaking of Galilean invariance in SOCed system,
the superfluidity is expected to be strongly affected by the presence of the
SOC. In particular Landau’s criterion for the critical velocity cannot be defined
independently of the reference frame [44]. Reference [45] suggests that the
normal density does not vanish at zero temperature, a strong reminder of the
distinction between superfluidity and BEC.

Despite these efforts, the nature of the quantum ground state of interacting bosons
with Rashba SO coupling remains an open issue. It is also a strong motivation for
the experimental realization of such a SO coupling in cold atom systems, where a
strongly correlated quantum state can be expected.
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1.5 Outline of the thesis

In the following, we wish to establish the phase diagram of a two-dimensional
homogeneous gas of Rashba-Dresselhaus spin-orbit-coupled bosons. This work
has being inspired by both fundamental investigation and experimental progress,
we will especially insist on a quantitative prediction of the phase diagram and on
experimental implications of our results.

Chapter II : The method In order to focus on the finite temperature description
of the bosonic gas, we selected a completely different approach from the methods
presented in the previous section : the classical field approximation. This approx-
imation is based on the field character description of the bosons that essentially
occupy only the very low energy modes which become very highly populated. We
then perform classical field Monte Carlo calculations which are expected to correctly
describe the finite-temperature behavior close to a possible phase transition.

Chapter III : BKT phase transition After discussing the best numerical tools to
correctly evaluate observables of interest like the condensed fraction and the density,
we first show that the system undergoes a Kosterlitz-Thouless phase transition from
a normal to superfluid state in presence of the SOC term. The thermodynamic limit
behavior strongly depends on the anisotropy 750 and in particular, we show that for
N soc = 1 @ crossover occurs for finite systems at similar phase-space densities, but no
superfluid transition is expected for infinite sizes.

Chapter IV: SP/PW orders We then characterize the low temperature phases and
we show that the spin order of the quasicondensate is driven by the anisotropy of
the interparticle interaction. In particular in the superfluid state, we study the single-
particle density matrix that decays algebraically and directly reflects the PW or SP
character of the mean-field ground state. We show that in the case of an anisotropy
g # 0 spins exhibit a quasi-long-range order corresponding to the KT transition.

In the case of a fully isotropic interparticle interaction, we show that the PW or
SP degeneracy is unaffected by the transition. Our calculations then indicate a
fractionalized quasicondensate where the mean-field degeneracy of the two states
remains robust against critical fluctuations. We conclude on new prospects and
motivations beyond the classical field approximation.
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1.6 Résumé

Au cours du premier chapitre de cette thése nous avons introduit le concept de
champ de jauge artificiel. Afin de simuler des effets magnétiques dans les systémes
d’atomes neutres et ultra-froids, des techniques basées sur les transitions Raman
entre deux états hyperfins des atomes ont été développées ces derniéres années
[1,12,13]. AT'aide de faisceaux lasers, ces différents champs peuvent étre manipulés et
controlés pour donner naissance en particulier a des vecteurs potentiels effectifs
dont les components ne commutent pas.

Un célebre exemple, inclus dans ce dernier cas, est le couplage spin-orbite (SOC)
dont nous avons sélectionné I'écriture en tant que interaction Rashba-Dresselhaus
[17, 18] : les amplitudes du couplage selon les deux directions spatiales x et y
peuvent étre différentes et nous avons donc défini le nombre 0 < 1, < 1 décrivant
cette anisotropie.

Nous considérons ensuite le cas d’'une particule isolée pour obtenir son spectre
d’énergie en présence du terme SOC. Apres avoir correctement transformé la base
décrivant les deux états couplés de 'atome, nous avons mis en évidence la nouvelle
dégénérescence de I'état fondamental induite par le couplage SOC. En effet dans le
cas d'une anisotropie 1. < 1 le spectre d’énergie présente deux minima. Dans le
cas d'un couplage SOC isotrope, le minimum de I'énergie correspond a un anneau
dans ’espace des impulsions.

Dans ce dernier cas et pour un systeme de bosons non interagissants, nous avons
également montré 1'absence de transition de phase telle que la condensation de
Bose-Einstein (BEC).

Nous avons alors introduit une premiére approche pour décrire les effets des interac-
tions interparticules dans les gaz de bosons avec couplage SOC : 'approximation
champ moyen. Deux régimes peuvent en principe étre correctement décrits par
cette méthode, celui d'une température infinie et celui d'une température nulle.

A trés haute température I'effet des interactions correpond a un décalage effectif du
potentiel chimique [30] égal a 2g;; n™F avec g;; I'interaction moyenne entre deux
particules et n™F la densité champ moyen déterminée de facon auto-cohérente.
Celui-ci correspond au terme connu de Hartree.

A trés basse température nous avons procédé par méthode variationnelle en écrivant
un Ansatz de la fonction d’'onde minimisant I'énergie d'une particule simple. Nous
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avons alors déterminé les parametres libres en minimisant I’énergie d’interaction.

Deux phases distinctes [11] sont alors apparues en fonction de 'intensité des
interactions entre particules de méme (g1 et g||) et différent spin (gy;). Pour
g1t + 81| > 281, I'état fondamental correspond a une onde plane avec impulsion non
nulle (PW). Dans le cas opposé, 281 > g1 + 8|, chaque particule est décrite comme
une superposition de deux ondes planes avec impulsions opposées. Ce dernier état
est appelé état de bande (SP) car des bandes apparaissent dans la densité en espace
réel.

Enfin nous avons étudié les enjeux et avancées actuelles autour de ce type de sys-
téme en insistant sur le role prépondérant des fluctuations [7,35] qui dépassent les
prédictions souvent trop schématiques des théories type champ moyen.
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2.1 Introduction

In this chapter we present the main methods we used to establish the finite-
temperature phase diagram of two dimensional Bose gases in presence of SOC and
inter particle interactions. We will concentrate on weakly interacting systems at low
temperature region. From the absence of BEC in an ideal (or mean-field) gas at any
finite temperature, invoking continuity, we can expect the critical temperature of any
possible phase transition to approach zero temperature in the limit of vanishing

35



Page 36 2.1. Introduction

interaction. Approaching zero temperature, bosons essentially occupy only the very
low energy modes which become very highly populated. In this regime the field
character of the quantum particles dominates and the description in terms of a
classical field theory becomes quantitatively accurate [46), /47, 48, |49} 50]. Beyond
the weakly interacting region, classical field theory is still capable to describe the
universal behavior around a continuous phase transition, a well known result from
the theory of critical phenomena [51]. In this thesis, we have established for the first
time the phase diagram of interacting SOCed bosons, based on classical field Monte
Carlo calculations.

Roughly speaking, the classical field description emerges by replacing the occupation
of a "quantum mode” of energy &, given by the Bose distribution (exple/kpT] - 1),
with that of the classical field kpT/€, and, further, neglecting the non-vanishing
commutators of the quantum fields. Both approximations becomes exact for the low
energy modes in the limit of T — 0 and provide the starting point to a quantitative
description of weakly interacting Bose gases.

Still, due to interactions, we cannot explicitly diagonalize the Hamiltonian even
within the classical field approximation. However, the calculation of static observ-
ables directly maps to the calculation of classical probability distributions, well
known in classical statistical mechanics. In our work, we have used Monte Carlo
methods to numerically sample the classical field distribution.

The weight of each classical field configuration is given by a Boltzmann distribution
according to its energy. However, two technical issues arise. First, in order to well
define the energy of a classical field theory, we have to regularize its behavior at high
energies ("ultraviolett divergencies”). Within numerical Monte Carlo calculations,
this is naturally taken into account by discretizing the fields on a lattice. Second,
SOC formally introduces imaginary terms in the action of the two complex fields
representing the two spin states. So we first have to show that we really obtain a
probability distribution, i.e the discretized action stays real for any configuration of
the fields. Then, we can correctly sample classical field configurations by proposing
efficient Monte Carlo algorithms ensuring the ergodicity of the system.

CHAPTER 2. METHODS



2.1. Introduction Page 37

Eventually, we have to correct the raw densities of our classical field calculations
which depends on the lattice discretization and to take into account the correct
behavior of high energy modes which are Bose distributed. However, since these low
occupied modes are only weakly affected by the interaction, the mean field approx-
imation provides an accurate description for them. Using this correction, we can
in principle match any observable from classical field calculations to provide quan-
titative predictions for our systems which can be directly compared to experiment
[46].
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2.2 C(lassical field approximation

As discussed in Chapter I, in this thesis we are interested into establishing the
phase diagram in the limit of small interaction strength, mg;; < 1 and small
spin-orbit coupling, kA7 < 1 where A7 = \/27h2/mkgT is the thermal wave length
at temperature 7.

In this limit, the leading order corrections to mean-field are captured within
classical field theory where the occupation of low energy modes is high such that
commutators like [¥7(r), ¥ ()] can be neglected. In this approximation, the field
operator, ¥ (r), can be replaced by two complex fields, W (r) = (¥ (r), ¥, (1)), one for
each spin.

Starting from the ideal gas results of two dimensional systems presented in chapter I,
we first introduce the classical field approximation in the absence of a SOC. Calculat-
ing the phase-space density for particles in the low-energy modes with e < kg T,

d%k 1—ePr-1

A% =22 f — N =1
fi< pepc1 @m2 £ 08

we notice that at high degeneracy, nA?, the occupation of higher energy modes

IR B — P 2 pA? —loe | 2
T nA- +log(l—e = nA log[e_l](z.l)

becomes negligible. At the same level of accuracy, we may also replace the Bose
occupation Nj by the occupation of classical field,

New NT=—— L1 2.2)
ko Bler—w '
which gives,
d’k 1
/lzf N =lo [M ~nA%+|Bul 2.3)
Ber<1 (271) | Bl

The classical field distribution with a simple cut-off A = \/2mkgT/h? therefore
quantitatively describes the leading order behavior of the density up to corrections
of order (nA?)"!. The corresponding energy distribution of the classical fields writes

hZ
Hep =N =) (ex=pajap =Y | =o—[VymP - ulymr° (2.4)
k<A r

where a are complex numbers which describe the classical field. Their Fourier trans-
form, v (r), defines their real space distribution on a lattice with minimum distance
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~ A~!. The theory is therefore naturally regularized by discretizing space on a lattice
of linear extension L. The probability distribution for a given field configuration,
w(r), is then

ply (] = Z_} e PHer=kt) (2.5)

where Z.r = [ Dy (r)e P#:r is the partition function, where [ D indicates the
summation over all discrete field configurations. For our non-interacting system,
Hef= chof and we can explicitly perform the Gaussian integral to obtain ZS = The
classical field description of the ideal Bose gas with SOC does not pose additional

difficulties using the eigenmode basis.

For interacting fields, we simply add their interaction energy to the non-interacting
system

Kooy =2y =N+ ¥ Y B o Py o) (2.6)

r go’

where we have explicitly written out possible spin dependence of the interaction.

Validity range In order to study the validity range of the classical field distribution
we Taylor expand the nominator of the Bose distribution for small energies,

1 [e¢] n (€ _ )n -1
Ny = _ ( 5 ﬁk—“) 2.7)
exp(Blexr—w) -1 \ 5 n!
The leading order term is precisely the classical field distribution, Ny — ;}f_Tu under
the condition
Ek—,uSkBT (2.8)

Outside this energy range, classical field theory cannot be taken literally. However,
interaction corrections to high energy modes €, — u = kg T can usually be treated
perturbatively in the limit of weak interactions. We can then match the classical field
results with accurate high energy behavior obtained perturbatively.

At very low temperatures, the classical field distribution approaches the configu-
ration which minimizes the energy. From the variation of the fields, we obtain the
time independent Gross-Pitaevskii equation in the limit of vanishing temperature.
Therefore, the classical field approximation merges continuously the Gross-Pitaevskii
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T=0 | T~T. = T>T,

Gross-PitaevskKii Classical Field Kinetic

Bogoliubov

Figure 2.1: Qualitative scheme of the validity range of the theories in function of the
temperature.

theory. However, quantum corrections, as contained for example in the Bogoliubov
approximation, are not included. At high temperatures and weak interactions, the
classical field as well as the full quantum field theory are both accurately described
by their corresponding mean-field approximation, so that the difference between
quantum and classical theory can be worked out analytically.

Between these two regimes, the classical field approximation captures the leading
order thermal corrections to mean-field for the strongly degenerate, low energy
states. In particular, it is capable to detect and correctly describe any possible finite
temperature continuous phase transitions. For systems without SOC classical field
theory correctly describes the BEC transition in three dimensions as well as the
Kosterlitz-Thouless phase transition in two dimensions (e.g. the XY-model).
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2.3 Markov Chain Monte Carlo

Even after applying the classical field approximation, we cannot explicitly integrate
over the distribution p[¥ (r)] Eq. because of the interaction term from Eq.
that needs to be included. Indeed, the interaction term and the single-particle terms
are both diagonal in different basis : real space and Fourier space, respectively.

We will therefore calculate the observables as numerical integrals. Multi-dimensional
integrals like Eq. can be evaluated using Monte Carlo methods. For numerical
efficiency of the algorithm we aim to use a local form of the Hamiltonian. Since the
Laplacian and derivative operators remain local around a point r in the real space,
we write down the effective total action for a given field configuration in real space.

2.3.1 Effective action S

We can write the probability p[¥ (r)] of a given classical field configuration as propor-
tional to exp(—=S[¥ (r)]). Summing the kinetic energy, the SOC term and the contact
interaction, the total local action S writes

2\72

\Y/
2mD W, () — pl¥, )2

2

S = {Z
B r o=1,]

-V (x)

+h27’< [ @) (<107 - 15007 | W, @)]

(_
+7727K [\Pf(l‘) (—i@? +nsoca?) \PT (1‘)]

1
+- ) gaa/l‘l’a(r)lzl‘l’ar(r)lz} (2.9
20,0’:1,1

where a is the lattice spacing, u is the chemical potential, and V and 0% are finite
difference expressions approximating the derivatives and we sum over all positions r
of the lattice. Provided that the expression of S[W(r)] is real for any configuration of
the field we can sample the distribution by Monte Carlo methods. Below we show
explicitly that this discrete action is real.
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Kinetic term

Y PimVEY, ) Y (PR - il ) Vi (PEm) +ivlm) (2.10)

r

YEOVEYE@) + Y W ) v2 Wl () 2.11)
o D*'o g D*to

+

iy wRoVLYLm - vImvivEw (2.12)

with W£ and ¥! the real and imaginary part of the two component complex field ¥
having spin o. Using the following finite difference expression of the Laplacian,

d
VAW ) =a *) [Pi+ai) + ¥ (- ai) —2%;(1)] (2.13)
i

where i denotes the unit vector pointing to the nearest neighbors on the lattice and a
the lattice spacing. For simplicity we consider in this section the case a = 1. Together
with periodic boundary conditions, we write

YR ryv2 wl(r) VAW - 1) + VR0V +1) - 2¥R ) vl )] 2.14)
g D o - g o

Y [PEa+ DY)+ YR - )Y ) - 290w ] 2.15)

r

Y ¢lmvivlm (2.16)
Tr

Therefore the imaginary part of the kinetic energy identically vanishes and the corre-
sponding action is real for any configuration of the fields.

SOC term Writing out the Pauli matrices in the SOC part of the action, we have

Ssoc=Y [\P;‘(r) (102 +no ) w o) + W} (i0? —naf) \PT(r)] (2.17)

Let us concentrate on the terms involving 0% first

P (00YY | (r) + P ()07 W4 (r) PEmoYW ) + 1P )0Y W[ (r) - 1P (1)0, V] ()
+ YIOYY [0+ P maYYT )+ iV )oY ()

iV 00DV () + ¥ (0)07 W] (r) (2.18)

Again, using the finite difference expression together with periodic boundary condi-
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tions
; R0oPwR ) + R )L wRr) = ;a? (WEmwim) =0 (2.19)
;\Pf ®PY! ) + ¥ 02w () = ;afj (¥imwm)=0 (2.20)
and we obtain
; W noRw | () + ; W moPW, () = 2i ; (wiolwhewlolwh| @21
After similar manipulations of the terms involving 02, we obtain
swczzzgpﬁ@m?ﬁunﬂﬂmﬁwﬁﬂ
+ 217800; [\Pf(r)af\lff(r) + v ol w! (r)] (2.22)

Again, the SOC action is real for any field configurations, as well as the interaction
energy.

SWI)eR V¥(r) in a periodic system (2.23)

Therefore, exp(—S[¥(r)]) is non negative and we can interpretate weight as a proba-
bility of a given field configuration suitable for Monte Carlo sampling.

2.3.2 Monte Carlo algorithms: Metropolis, Heat bath and Fourier
moves

In this section, we briefly present few numerical algorithms that we have found
essential to correctly sample the distribution of the fields using Monte Carlo methods
based on a Markov process. Standard algorithms are typically based on Metropolis’
rule for acceptation or rejection of changes in the field configuration.

The Markov chain is constructed by a random walk in configuration space, where the
transition probability from one configuration R (note that R in our context labels the
values of all fields at each lattice site) to another one R’ satisfies

Y TR—R) 1 (2.24)
R!

Y TR—R) 1 (2.25)
R
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together with so called detailed balance condition
T(RITR—-PR) = 7R)T(R —R) (2.26)

where 7(R) « exp[—S(R)] is the probability distribution which we aim to sample.

Metropolis algorithm is a particularly simple solution for the transition where one
proposes an arbitrary change of the configuration R which is accepted with probabil-
ity

o~ SR)
T(R—R’) =min

1, (2.27)

o—S®)

Whenever rejected, we remain at the same configuration. One can explicitly verify
that Metropolis rule satisfies the detailed balance condition.

Since our action, Eq. (2.9) is local, we can efficiently compute S(R’) — S(R) for local
changes avoiding the calculating of total action at each step.

However, standard Metropolis algorithm leads to a slow convergence for our
purposes. Two main problems appear when decreasing the temperature. First, the
acceptance of the moves decreases since Metropolis steps are completely random
and most of the moves at low temperature lead to high energy changes which
are highly unlikely. Secondly, different degenerate ground states of the ideal (or
mean-field) system are separated from each other in the sense that they are not
connected by local moves. In practice, local moves in real space do not ensure the
ergodicity of the sampling for large systems where the probability to tunnel from one
ground state to another gets exponentially small.

During the next sections, we propose few ways to tackle these problems. First, we
will study the action itself and propose efficient changes instead of total random
ones leading eventually to the Heat Bath, Gaussian, and Fourier space algorithms.

A priori probabilities To increase the acceptance probability of the simple
Metropolis algorithm, we decompose the transition probability

TR-R)=4R—-R)p(R—R) (2.28)

into the a-priori probability o/ (R — R’) and the final acceptance rate p (R — R’). Our
strategy will be to choose an a-priori probability which is easy to compute, typically
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a Gaussian, and which increases the final acceptance rate given by

e ® o/ (R —R)

R—R)=min|l1,
P ) e SR/ (R—R)

(2.29)

Instead of proposing completely random moves, we therefore try to orientate changes.
In order to propose the most efficient local move, let us consider the action keeping
all the fields fixed except one component ¥, (r). We will then propose an optimized
change of W (r), the value of the « field at r. The part of the action without spin-orbit
coupling involving W (r) writes

1 d 'K2 gn N 2
- Z Wor+al) +¥V,ur— ai))]) W)+ (—u+ > + d) ‘I’a(r)Z + > Z \Pﬁ(r)Z}zBO)

p=1

where we have assumed symmetric interactions for simplicity. Note that the
change of the action is diagonal in the different field components ¥, (r) =
{‘Pf (1), ‘I’{ (1), ‘Pf (r), \I’f (r)}, whereas the spin-orbit interaction couples different com-
ponent of the fields.

ASSOC(\P{?(r)) « const 2.31)
Assoc(wf(r)) o koWl (2.32)
Assoc(wf(r)) o K(af\yf(r)my’?\y{(r)) (2.33)
ASSOC(\Pf(r)) LA (2.34)

Thus, changes in the total action involving ¥, (r) can be written in the general form

AS(¥o (1) < bW o(r) — a¥q(r)* - %\Pw(r)‘L (2.35)
with
14
b = 23 [Walr+i)+Wo(r-0)l+ASsoc (¥em) (2.36)
l Kz
a = —p++d+gy Y Wem)? (2.37)

pFa

where ASsoc (1)) is linear in the field components Wg(r) with  # a containing the
contributions from the SOC.
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Heat bath algorithm

The heat bath algorithm provides an exact sampling at high temperatures where in-
teraction effects are small. Neglecting the anharmonic term, x go¥, (r)?, the change
of the action, Eq. (2.35), becomes a quadratic form. The distribution exp(—AS[¥ (r)])
is therefore Gaussian centered around the minimum given by

2a¥,(x)=b (2.38)

or

41y i) + W, (r—i)] +2AS
qfa(r):ﬁ:z’[ a(@®) @ +1i) +W¥o(r—10)] +2AS8s0c (r) (2.39)
2a 2(—2u+x%+2d)

for g;1 = 0. Explicitly, we have

, — 2
ASoc = (—p+x212+ d) (Va®) - Wo o) (2.40)

We can sample exactly the distribution using
Vo) > W) =¥, +6¥ (2.41)

where 6V is sampled from a normal distribution of variance

1
2
= 2.42
7 —2u+x%+2d (2.42)
The corrections needed for the acceptance rate then writes
2 ,
AR —T) (Yo -¥om) -5
log| ———| = 2.43
8 g (R—R) 202 ( )

We can further improve the acceptance using Eq. (2.37) for gy # 0 which takes into
account the local interactions with the other field components.

Gaussian algorithm

The Heat Bath algorithm is based on an essentially exact sampling of the non-
interacting system. However, for interacting systems with g;; > 0, we have shown in
Chapter I section 1.3.1 that the effective chemical potential is shifted by the mean
field interactions. The chemical potential u can become positive, and the variance of
the Gaussian sampling is not any more guaranteed to be positive.
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In order to adapt to this situation, we make a general Gaussian ansatz for the a-priori
probability

(YR -Y®R)+ f(‘P(R’)))2
202

« (R"—R) =exp (— (2.44)

We determine the mean f and variance o of this Gaussians such that the acceptance
rate gets close to one. We have

e S® o/ (R - R)

/ 12 I 2
log ] = —S(‘P')+S(‘P)—(\P_\y+f) L))

e SR o/ (R—R) 202 202
= -S(¥)+SW¥)
fre-v) fe-v) 5 £~
- 2 + 52 + 552 292 (2.45)

Assuming small changes in the field, we can expand the action S(¥) = S(¥') +

B (v-v)+0(v-¢ )? and approximate the acceptance rate
eS® o/ (R —R) ByS+0wS) (¥ -¥)
log =
e SR/ (R—R) 2
+ ) (Y-¥ 2 f2
U+l ) L2 f +0(¥ -9 (2.46)
o? 20°

Up to first order, the acceptance of the moves p (R — R’) — 1 is maximized by f(¥) =
%Zaq, S, and we have

e *®g(R—R)| o° ) ’ no
log| ——sm_, Ro®)| "8 (09 S)* — (0wS)?) +O (¥ - (2.47)

From the second order terms, we can determine the variance o>, However, a simpler
solution is to consider o as an external parameter of our Monte Carlo algorithm,
which we adapt for different temperatures to maximize the efficiency of the moves.

Fourier algorithm

Still, at low energy, ergodic sampling of the configurations is challenging. Local
moves in the real space can easily change the high momenta k of the energy
spectrum. However, it is very difficult at low temperature to equally sample the
degenerate energy minima of SOCed bosons.
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In order to sample efficiently these minima, we have implemented Metropolis moves
in the Fourier space around the minima of the non-interacting energy spectrum.
The calculation of the action for this moves scales worse in the system size, Nlog(IV)
where N the number of discretized points, using fast Fourier transform. Below we
present the main steps of our Fourier space Metropolis algorithm.

* Calculate the Fourier transforms @ and @, as defined in Chapter I or later in

Eq.

* Propose a change of mainly @,  around the mimina of the energy i.e the most
populated momenta

O —-P =P +z zeC (2.48)

where z is a random, Gaussian distributed, complex variable. To gain efficiency,
we simultaneously compute

w' = uy + e 0k 4 ' =di—-z (2.49)

We then choose a momemtum k around the minimum of the energy selecting
it from the distribution,

K2 @
£ o (6_7+KV k’%”ﬁock%) @eR (2.50)

where a is arbitrarily chosen to fit the density of state in function of the tem-
perature.

* Ifthe changeis accepted, we calculate the inverse Fourier transform and update
the fields.

Algorithms interplay In order to optimize the efficiency and reduce the time con-
sumption of the computation, we switch between different algorithms during a
single simulation run. At each Monte Carlo step, we randomly select, according to a
externally selected probability, one of the different algorithms.
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90

30 | )

y Density ngA~ ——

, Condensed density, Fourier algorithm ——-
/ , , ,

10 I~ Condensed density, Gaussian algorithm ,

P

S Condensed density, Metropolis algorithm

20

Condensed density nOK?»z/ Density ncfxz

Algorithm steps

Figure 2.2: Example of convergence of different algorithms. The plot represents
the condensed fraction starting from a random set in function of the steps of the
different algorithms. Using Metropolis algorithm we obtain a much larger variance
and incertitude on the observable than using the Heat Bath and Gaussian algorithm.

2.3.3 Partition function

We have presented different algorithms to correctly sample the distribution p[y (r)],
ply ()] = Z_} e PHer=kl) (2.51)

where Z.; = [ Dy (r)e”P7s is the partition function. One of our central observables
in the following is total density as a function of the chemical potential. Discretizing
the system size L on N sites, it is given by

TaTTY, [J Dya i) Iya ()] ePHorWalDva@rmvia )
Zef

Nef (2.52)
Together with the density of particles in the energy minimum state, we will be able to
to draw the phase diagram of the interacting SOCed bosons in Chapter I1I. However,
as we have seen above, predictions of the classical field theory may systematically
differ from those of interacting bosons, in particular in the high temperature limit.
In the next section, we will show how to reduce this differences in order to make
quantitative predictions for dilute Bose gases.
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2.4 Density matching

2.4.1 Procedure

Within classical field theory, the occupation of eigenmodes of energy is given by the
equipartition theorem instead of the full Bose distribution. For weakly interacting
systems at high energy, mean-field theory correctly describes the leading order
interaction corrections [29] and the occupation of energy eigenstates asymptotically
approaches their mean-field values at high energy. Therefore, we can correct the
densities of our classical field calculations to account for the correct ultraviolet
behavior adding the difference

nplepe " = ) = nep(erd - (2.53)

1
An=— Y
L? ka=+

where the single particle mean-field energies are given by gl Bl

ka
Eﬁ&cf +2Y o 8aa! an Blef , where ei{’ff are the eigen energies of the ideal SOC gas (see

below). The corresponding mean-field densities, nZl 1.Bief _ -2 2k NefIB (azlaf -,
have to be determined self-consistently as presented in figure[2.3

Note that the Bose distribution of the occupation numbers merges the classical field
occupation for low energies, as we have shown before. Therefore, the low energy
modes do not contribute to the density difference, Eq. , the difference only
arises from the different ultraviolet behavior.

2.4.2 Lattice expressions for ideal and mean-field classical fields

In the notation above we have indicated one further subtlety arising from the
regularization of our classical field theory. The eigenmodes of our classical field
theory on the lattice in general differ from those of the Bose gas for high momenta
already for an ideal gas.

cf
ka

Nef (sli]; — 1), of the non interacting classical field system as presented in figure

Let us therefore calculate explicitly the eigenmodes, €, and the occupation numbers,

The action of the ideal system is diagonal in the Fourier space

1 & e 1 & K
Vi) = ﬁ Z ukiyjelk”] r ¥ ()= ﬁ Z dki,j elk”f r (2.54)
ij=1 i,j=1
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Figure 2.3: Density as a function of the chemical potential. We have corrected the
densities of our classical field calculations to account for the correct ultraviolet
behavior. We see especially at low density that the Hartree mean field approach
developed in Chapter I recovers the numerical integration. At low temperature the

density is proportional to the chemical potential as expected c.f Chapter I section
1.3.
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Figure 2.4: Density as a function of the chemical potential for non interacting SOCed
bosons. It is interesting to notice that niq mc as a constant deviation from the exact
solution nq soc. As expected from the non interacting results in Chapter I the SOC
term increases the density at a fixed chemical potential.
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with k; j = 2 (i, j). The action can then be written

~. 2

U K
S = — L 4 —
v Zl._j 2 HTo

(u_ki’j Uk; ; + d_ki,j dki'].)

K . K .
+ EZ [kx,U - lnsocky,U] U—k; ; dki,j + ﬁz [kx,U + lnsocky,U] d—k,-,j Uk; ;
i,j i,j

(2.55)

where k, y and kZU are the Fourier transform of the finite difference expressions
approximating the derivatives. Using the lowest order finite difference expressions of
the Laplacian, we have

d

VoW = a? ) [¥ir+ab + - ai) -2 1)] (2.56)
d

ki, = a?) [2-2cos(k(i)a)] = k*+0(a*k") (2.57)
i

The derivatives and the corresponding wave vectors in Fourier space write

1
Ory¥i(®) = > [V (r+ aiy) — ¥ (r—ary)| (2.58)

1
k.t —sin (kya) = ky + 0(a®k3) (2.59)

Diagonalizing the action similar to the continuous system studied in section 1.1.2,
we obtain the corresponding lattice expressions

2
1 kl] U
Sy = ﬁz ,U+K\/ U+nsoc q)ikq)lt
l' L
2
1 kl] U - L
+ EZ —u- K\/ Ut MReck | @@ (2.60)
l’ L
With the new basis vectors
W (r) + ¥ (r W (r) =¥ (r
o (1) = 1 (1) 1 (1) O (1) = 1 (1) 1 (1) 2.61)
V2 V2
1 ik -1 _ik
D} = E;qmr)e kro o= E;@-(r)e her (2.62)

where e'%% = (ki + in50cky, U)/\/kx U +nsock2’U
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Figure 2.5: Density 7 as a function of the action S for a finite system length L/a = 40
with small anisotropy g = 7/100, spin-orbit coupling x = 7/20 and anisotropy 7c =
0. Each point corresponds to one Monte Carlo iteration step. We observe that at high
temperature u = —2 the density is small, the fluctuations are strong and its value is
strongly correlated to the value of the action S. Indeed, in this regime every point of
Y (r) is almost independent and the action is determined by the chemical potential
u. For increasing chemical potential, i.e decreasing temperature, we observe a
decorrelation of the density and the action. As presented in the Appendix, at low
temperature, fluctuations of the density are strongly suppressed and the value of the
action is determined by the many body state i.e interactions and density of state.
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Since these fields are non interacting, we can then explicitly calculate the density Eq.
(2.52) as a Gaussian integral

1

cf _ 1
ncf(gka_u) - 2L2Z k2.
i,j

l_]U

—,u+—+1<\/kx U+nsock2ij

1
+ EZ z (2.63)
hJ T_ __K\/kx U+77soc

with ky = 22 and k, = ZL.
The analytical results of the non-interacting classical field on the lattice already
presents an important benchmark of our numerical Monte Carlo calculation in the
non-interacting limit. In order to include the mean field corrections, it is rather
straightforward to use these results and solve the self-consistent mean-field equation
for the density n, f(emf <f — ).
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2.4.3 Convergence and scale of energy

Figure presents, at each step of an algorithm, the density as a function of the
corresponding instantaneous value of the action. We see that at high temperature i.e
low density, the action is only determined by the chemical potential and fluctuations
of the density are strong. At low temperature, fluctuations around the mean density
are highly suppressed. We comment in more detail of this feature in the Appendix. In
this strongly degenerate regime the convergence of the algorithm towards the correct
distribution can be rather slow and must be checked for each observable separately.

Studying the correlation of the observable with the value of the action can give
important insight into its convergence properties.

 I. Density n In all regimes, the density usually converges fast since density
changes are strongly correlated with the action. As shown in figure the
density converges rapidly towards its mean value determined by the chemical
potential p.

e II. Condensed fraction and momentum distribution (k) As shown in figure
the condensed fraction converges significantly slower than the density.

¢ IIL SP and PW states n{ The correct balance between the population of de-
generate momenta is typically converging slower than the condensate fraction.
Since in our later study we focus on the regime of very small anisotropy g,
PW and SP states are always very close in energy. At low temperature, the
local minima are ubiquitous and the distribution is converging too slowly for
purely local moves. Global changes like the Fourier algorithm described in the
previous section are needed to reach convergence.
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2.5 Résumeé

Au cours de ce chapitre nous avons présenté les principales méthodes utilisées au
cours de cette these pour établir le diagramme de phase a température non nulle
d'un gaz de bosons bidimensionnels en présence d’'un couplage spin-orbite et
d’interactions interparticules. Nous nous sommes intéressés a des systémes avec de
faibles interactions et a des températures basses. En se basant sur I’absence d'un
condensat de Bose-Einstein dans un gaz idéal (ou dans le cas des théories champ
moyen) des arguments de continuité tenderaient vers une température critique
d’une possible transition repoussée a zéro dans la limite d'une interaction également
infiniment proche de zéro.

En approchant le zéro absolu, la vaste majorité des bosons occupent les états de
trés basse énergie qui sont donc fortement peuplés. Dans ce régime, le caractere
ondulatoire des particules quantiques domine et la description en tant que champs
classiques devient quantitativement correcte [46, 47,48} 49| 50]. Au-dela du régime
de faibles interactions, la théorie de champs classiques reste capable de décrire des
comportements universels autour d'une transition continue, un phénomene trés
connu des théories critiques [51]. Au cours de cette these et en se basant sur des
calculs de champs classiques, nous avons établi pour la premiere fois le diagramme
de phase de bosons interagissant avec couplage spin-orbite.

De maniere schématique, la description type champs classiques apparait en
remplacant 'occupation d'un état quantique donnée par la distribution de Bose
(exple/kgT] — 1) avec une énergie ¢, par 'occupation d'un champ classique
kg T /e tout en négligeant les commutateurs des champs quantiques. Ces deux
approximations deviennent exactes pour les états de basse énergie dans la limite
T — 0 et elles fournissent le point de départ d’'une description quantitativement
correcte d'un gaz de Bose faiblement interagissant.

Pourtant, a cause des interactions, il n’est pas possible de diagonaliser explicitement
I’Hamiltonien méme apres avoir appliqué I'approximation type champs classiques.
Toutefois, le calcul des observables statiques correspond directement a un calcul de
distribution de probablilités, bien connu en physique statistique classique. Au cours
de cette étude et en se basant sur ce constat, nous avons utilisé les méthodes Monte
Carlo pour échantillonner numériquement la distribution des champs classiques.

Le poids de chaque configuration du champ classique est donné par la distribution
de Boltzmann en fonction de son énergie. Cependant, deux problémes techniques
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apparaissent en préambule de notre calcul. Premierement, afin de correctement
définir I'énergie d’'une théorie de champs classiques, il faut régulariser son
comportement a hautes énergies ("divergences ultraviolettes"). Au travers du calcul
numérique Monte Carlo, cet obstacle est naturellement résolu par la discrétisation
des champs sur réseau. Deuxiémement, le couplage spin-orbite introduit des
termes imaginaires dans I'action des deux champs complexes représentant les
deux états de spin. Nous devons donc montrer que I’on obtient réellement une
distribution de probabilité, c’est a dire que I'action discrétisée est maintenue réelle
quelque soit la configuration des champs. Ensuite seulement, il est possible de
correctement échantillonner les configurations des champs classiques en proposant
des algorithmes Monte Carlo efficaces qui assurent 'ergodicité du systéme.

Enfin, nous avons corrigé les densités brutes provenant des calculs de champs clas-
siques qui dépendent de la discrétisation sur réseau en tenant compte des com-
portements a hautes énergie des modes distribués selon la statistique de Bose.
Cependant, ces états étant peu peuplés, ils sont peu affectés par les interactions
et 'approximation type champ moyen en fournit donc une description tres perti-
nente. En utilisant cette correction, il est en principe possible de corriger chaque
observable a partir des calculs de champs classiques et de fournir des prédictions
quantitatives pour nos systémes alors directement comparables aux expériences
[46].
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3.1 Introduction

In this chapter, we explore the phase diagram of a two dimensional SOCed Bose gas
based on the methods presented in the last chapter. Here, we will first establish
the presence or absence of a finite temperature phase transition in the interacting
system and provide quantitative predictions for the phase diagram. In the next
chapter, we will study and characterize the (quasi-) ordering of the different phases
at low temperature.

According the Mermin-Wagner theorem [52}53}/54], no long range order can occur at
finite temperatures. Still, in the absence of SOC, a Berenzinskii-Kosterlitz-Thouless

59
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phase (BKT) transition from the normal to a superfluid phase occurs for interacting
Bose gases [50] where the low temperature superfluid phase is characterized by
algebraic (quasi-long range) order.

Our numerical studies clearly establish that the weakly interacting Bose gas
still undergoes a BKT phase transition for anisotropic SOC, 15, < 1. In the low
temperature phase, the condensate fraction decays algebraically with system
size and the gas becomes superfluid. However, for isotropic SOC, 1, = 1, our
calculations show a cross-over behavior at finite systems, with strong evidence for
the absence of a finite temperature phase transition in the thermodynamic limit.
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3.2 Bose gas without SOC: Berezinskii, Kosterlitz and
Thouless phase transition

Let us first briefly review the Berezinskii, Kostelitz and Thouless transition of the
interacting two-dimensional Bose gas without SOC described by the Hamiltonian

fdzr\lﬁ(r)( i A+@\P*(r)\1f(r) W (r) 3.1)

where g is the interaction strength. At low temperatures, density fluctuations
are strongly suppressed. Keeping only phase fluctuations, ¥(r) = \/ﬁem(”, the
Hamiltonian can be reduced to the so-called XY model [55].

In the XY-model, a Berenzinskii-Kosterlitz-Thouless transition takes place [56,/57, 58]
where the superfluid density, ng, jumps from n; = 0 at high temperatures to ng =
2mkgT/nh? (or ngA? = 4) at the transition temperature Tc. Below Tg, the first-
order correlation function, g; (r) = (¥1(r)¥(0)), algebraically decays, g; (r) ~ r 1D
characterized by a temperature dependent exponent n(T) = 1/nsA?. At T¢, n(T¢) =
1/4, and the exponent decreases with decreasing temperature. Thus, the algebraic
decay is quite slow, so that for any finite size system we can expect a significant
condensate fraction

N, L2 U
np = — = d%rg (r) ~ —— ~ N2 (3.2)

Although the condensate fraction vanishes in the thermodynamic limit, numerical
simulations as well as many experimental systems will be affected by strong finite
size effects. Experiments on ultra cold atomic gases typically involve mesoscopic
system sizes, e.g. N ~ 10*78, where the condensate fraction at T¢ still plays a
dominating role, ng ~ 107!,

As presented in Chapter I, in a SOCed two dimensional system the dispersion
relation of the single particle is very different from Eq. (3.1), and quasi-long range
order may be destroyed in certain parameter regimes [59].

What is the effect of the SOC on the BKT scenario ?
In the following, we study the condensate and superfluid fraction for different SOC

anisotropy, 150 = 0, 0.5, 0.9, and 1, for signatures of a possible finite temperature
phase transition.
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3.3 Bose gas with SOC: condensate fraction

For a single component Bose gas without SOC, the single particle density matrix
depends only on distance and decays algebraically in the low temperature superfluid
phase [56} 57, 58]. The same algrebraic decay propagates to the condensate fraction.
In the case of a two-component Bose gas with SOC, the single particle density matrix
further depends on the spin-projection, G, (r,t’). Quasi-long range order occurs in
the distribution of the modes and the single particle density matrix gets dominated by
one or few highly occupied modes. We therefore project G, , (r,r') over all degenerate
PW mean-field ground states, e.g. we sum over all the minima of the single particle
spectrum

drdr’
LZ

YF (1) Gy o (6, 1)y () (3.3)

- T ¥

k=(+x,0) o0’

to estimate the condensate fraction ny/n where n =3 ; Gy (r,1) is the total particle
density. It is important to notice that nj is a direct indicator for a phase transition.
However, it does not fully describe the character of the low temperature phase, in
particular it does not distinguish between PW or SP order.

In figure we show n as a function of density for a finite system of extension
L/a = 80 where a = h/+\/mkgT is the minimal distance on our lattice. The
condensate fraction grows rapidly around a cross-over density which decreases
from 1, = 0 to N0 = 1. However, no differences are visible changing the sign of our
small anisotropic interaction from negative to positive g. We therefore expect that
the cross-over/transition temperature is a smooth, continuous function of g around

g=0.

In two dimensional systems of infinite size, the condensate density is expected to
vanish at any finite temperature. However, as explained in the previous section,
huge finite size effects are expected. In order to determine a possible sharp phase
transition in the thermodynamic limit, we have to determine the behavior of the
condensate fraction increasing the system size. The occurrence of a BKT phase
then shows up in the algebraic scaling of the condensate fraction with system size,
nkin~ L0,
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Figure 3.1: Condensate fraction nj/n as a function of inverse phase space den-
sity [nA?]7! for a finite system of length L/a = 80. The cross-over from normal to
condensed phase slightly lowers with increasing SOC anisotropy, 10.. Although
the PW/SOC character of the condensate depends essentially on the sign of the
anisotropic interaction mg = +7/100, differences in nj between g >0 and g <0 for
equal SOC are beyond our resolution. The colored zones indicate our estimates for
the Kosterlitz-Thouless transition in the thermodynamic limit from finite-size-scaling

of the condensate fraction described in the text.
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Figure 3.2: Condensate fraction, ng / n, as a function of inverse volume in presence of
the SOC but in absence of interactions. As we will precisely detail in the paragraph
dedicated to the isotropic SOC, we notice that the absolute value of the condensed
density depends on the sum introduced in Eq. describing the number of degen-
erate points corresponding to the fundamental state |k| = x. The condensate density
decreases with the volume for any density, no transition occurs.
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Non-interacting system

Let us start discussing finite size effects for non-interacting bosons. In figure[3.2]we
show the behavior of the condensate fraction in the non-interacting case. The exact
expressions of this limiting case not only provide a benchmark for our simulation,
but also serve to illustrate the finite size scaling of the condensate in the normal
phase. We then obtain

kgT
- 12 Z k2
bl 5= /~1+_+K\/ +nsoc
kgT
+ B Y
12 ~ kl?
b T_ __K\/ U+nsoc
kgT

ng o= ) (3.4)

Ikl=k L*p

In the expression of the condensate density, we explicitly sum over all degenerate
ground states with |k| = x. It is important to keep in mind that the number of
degenerate minima depends on the isotropicity of the SOC. For 1, < 1, we have
two degenerate minima, whereas for isotropic SOC, 15, = 1, we have an infinite
degeneracy, a circle in momentum space in the thermodynamic limit. Finite size
effects introduce qualitative changes for 1750 = 1, where the additional symmetry of
the underlying lattice strongly reduces the degeneracy to a finite number. These
effects are present in both figures[3.4/and 3.5

Nevertheless, in both cases, we see that the condensate density decreases with the

system size as n—rf x # This exponent of this algebraic decay simply reflects that the
condensate fraction decays as 1/L? for all densities and no phase transition occurs.

Interacting system with anisotropic SOC

We now turn to the interacting systems, summarizing our results of the classical
field Monte Carlo calculations. Whereas in the high temperature, normal phase the
condensate density decreases with the volume, ) = 2, the exponent changes rapidly
around the temperature where condensation occurs in the finite system. At lower
temperatures, the exponent almost vanishes. This behavior is consistent with a
Berenzinskii-Kosterlitz-Thouless transition [56} 57, /58]. Assuming the transition to
be within the Kosterlitz-Thouless class, the critical temperature can be estimated to
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Figure 3.3: Condensate fraction, ng /n, as a function of the inverse volume, L2,
for anisotropic SOC bosons with 75, = 0 at different phase space densities and
anisotropic interaction, g > 0. We observe a transition between the high temperature
regime, where the condensate density decreases with the volume, and the low tem-
perature regime where the exponent depends on the density and eventually vanishes.
The solid black line indicates the critical exponentn = 1/4.
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Figure 3.4: Exponent 1(7T) as a function of the density. The exponent is obtained by
scaling the condensate fraction from figure[3.3} with the system size n%/n ~ L™,
By scaling the condensed fraction for different SOC anisotropies 1,. we obtain the
phase diagram showed in figure
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occur when n(Txr) = 1/4. Our simulations indicate that for anisotropic SOC, 150 < 1,
the Berenzinskii-Kosterlitz-Thouless phase occurs at finite temperature, independent
of the sign of the anisotropy g of the interaction (see figure[4.1|for 7, = 0). Further,
the limit of isotropic interaction, g = 0, is approached smoothly from both sides,
g > 0 and g <0, so that the critical temperature is continuous around g = 0. This
latter behavior is in contradiction with the discontinuity predicted in reference [9].

Interacting system with isotropic SOC

For isotropic SOC, 150 = 1, the system behaves qualitatively different. As shown in
figure3.3|for g < 0, we do not observe the onset of quasi-long range order over the
whole density regime and system sizes we considered.

For g > 0, we observe a cross-over similar to 75, < 1, but this time the onset of
algebraic order strongly depends on the number of degenerate mean-field ground
states. For our finite simulation box, only 4 or 8 minima are strictly degenerate for the
system sizes we considered. The circular degeneracy only occurs after performing
the thermodynamic limit. As shown in figure the behavior of the condensate
fraction is qualitatively and quantitatively affected by the number of degenerate
states. In particular, the onset of algebraic order is shifted towards considerable
higher densities, i.e lower temperatures, increasing the degeneracy from 4 to 8
degenerate modes. For 15, = 1 and infinity system sizes, the transition will therefore
be shifted to zero temperature and no finite temperature transition with algebraic
order in the single particle channel should occur.

It is important to point out that the BKT transition is absent within the classical field
calculation. Therefore, the transition is suppressed by purely classical fluctuations in
strong contrast to prediction of reference [10] i.e. quantum fluctuations do not play
an essential role.
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Figure 3.5: Condensate fraction, ng/n, as a function of the inverse volume, L72, for
isotropic SOC bosons with 15, = 1 at different phase space densities and anisotropic
interaction, g < 0. We do not observe any quasi-long range order.
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Figure 3.6: Solid lines: Condensate fraction, ng/n, as a function of inverse volume
for isotropic SOC, 70 = 1, of finite systems with 4 degenerate minima and g > 0.
Dashed lines corresponds to finite systems with 8 degenerate minima where the
algebraic behavior, nf ~ L™" with n) > 1/4, at high phase space density is suppressed.
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Let us illustrate in more detail the degeneracy of the finite size simulation for isotropic
SOC. In our simulations, we have chosen the value of the SOC strength x = i—g,
commensurable withx = k = Z—Z’ for system sizes L = 40, 80,120 where we have four
minima at k = (+x,0) and k = (0, £x). Instead, for L =81, 144, we have eight minima

as in the scheme shown below.

ky
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Notice, that for g < 0, where mean field predicts PW, we have four or eight possibilities
for the direction. Instead, for g > 0, the mean field ground state is a superposition of
two opposite PW phases, so that we only have half of the possibilities for the unsigned
momentum direction, two or four possibilities in our case. This simple picture may
already explain the main qualitative different behavior of the condensate fraction
depending on the sign g of the interparticle interaction we have observed in our
simulations.

Intermezzo: XY vs Heisenberg model

In the thermodynamic limit, for 15, = 0 and isotropic interaction, we can eliminate
the SOC via a gauge transformation, and we obtain a Bose gas with two internal spin
component and isotropic interaction. This model is equivalent to a field theory with
N =4 internal components. Only the model with N =2 maps to the XY model giving
rise to a BKT transition. For N > 2, a Kosterlitz-Thouless phase transition is absent
(60} 61], in accordance with the absence of a phase transition in the 2D Heisenberg
model.

However, in the case of 15y, = 0, the thermodynamic limit is singular. For any finite
system, the above argument only applies for situations where x is commensurate
with the boundary conditions. Here, we address the limit 175, — 0 continuously
connected to non vanishing 7n,. > 0, which corresponds to situation with non-
commensurate values of x of any finite system, so that the BKT transition survives
even in the limit of infinite system sizes. The situation 1 ,. = 0 is therefore singular.
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3.4 Superfluidity

In systems without SOC, the quasi-long range order in the low temperature
phase also implies superfluidity, and one of the most striking prediction of the
Kosterlitz-Thouless transition is the occurrence of a universal jump of the superfluid
density at the critical temperature [62}/58,63]. In SOC systems, Galilean invariance
is broken with important consequences for the superfluid phase. In such systems
peculiar features have been predicted like the appearance of spatial anisotropic
superlfuidty, BEC with zero superfluid fraction at zero temperature [45], and a
critical velocity which is not uniquely defined [44].

In thermal equilibrium, the superfluid mass density ps can be directly related

to the phase stiffness pg = 6261;(26) where F(0) is the free-energy density where the

momentum operator p is replaced by p — 6 in the Hamiltonian [64, 65, 66, 67].

We have therefore further calculated the superfluid and normal mass density, p,, =
mn — p, from the phase stiffness. For 15, = 0 and isotropic interactions, we have

1
"~ kgTIL?

on ([PL + hxS©Y % (3.5)
where P! is the total momentum and S$*' = [drS(r) the total magnetization of
the system. Deviations from a Boltzmann distribution of [P!*' + Ax S'°'12/ (2mnL?)
are directly connected to the quantization of the center of mass motion in the x
direction. For general n,. > 0 or anisotropic interactions g # 0, quantum effects
may modify superfluid properties [68], but we can still use Eq. to study the
universal behavior of the normal density around a superfluid phase transition.

Our results for the normal/superfluid density (see inset of figure(3.1{for 75, = 0.5,
g < 0) confirm the conclusions drawn above from the finite-size analysis of the
condensate fraction. Consistent with the prediction of Berenzinskii, Kosterlitz and
Thouless, the low temperature, algebraically ordered phase is superfluid for 7. < 1.
The transition temperature is roughly independent of the sign of g and decreases
with increasing 7,.. It vanishes for isotropic SOC with increasing degeneracy. This
absence of a transition for isotropic SOC is consistent with recent hydrodynamical
results predicting the appearance of rigid flow at zero temperature in three spatial
dimensions [45].

CHAPTER 3. INTERACTING BOSONS WITH SOC IN 2D: PHASE DIAGRAM



Page 70 3.5. Conclusion and phase diagram

3.5 Conclusion and phase diagram

In conclusion we have drawn the finite temperature phase diagram of a two dimen-
sional SOCed Bose gas. We have shown the signature of a KT transition in the case of
Nsoc < 1 with the presence of superfluidity in the low temperature phase. By scaling
the condensed fraction with the system size we have predicted the critical densities
corrected by the matching presented in Chapter II. In the particular case of a pure
Rashba SOC 1, = 1, we have shown that a crossover occurs for finite systems at
similar phase-space densities, but no superfluid transition is expected in the thermo-
dynamic limit.

0.06

Normal phase

0.04 - ® i

1/n\?
@

0.02 1
Superfluid phase

0 0.2 0.4 0.6 0.8
Nsoc

Figure 3.7: Critical densities as a function of the SOC anisotropy 1... The KT phase
transition from normal to superfluid phase takes place at slightly higher densities
with increasing SOC anisotropy, 1750.. No finite temperature phase transition occurs
for isotropic SOC 1o = 1.
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3.6 Résumeé

Au cours de ce chapitre, nous explorons le diagramme de phase d'un gaz de bosons
bidimensionnel avec couplage spin-orbite en utilisant les différentes méthodes
définies dans le chapitre précédent. Nous avons établi spécifiquement la présence
ou 'absence d’'une transition de phase a température finie dans le systéme avec
interactions interparticules. Nous avons également proposé des prédictions
quantitatives pour le diagramme de phase. Au cours du prochain chapitre nous
proposons d’étudier et correctement caractériser le (quasi-) ordre des différentes
phases a basse température.

Selon le théoreme de Mermin-Wagner [52, /53, 54], aucun ordre a longue portée ne
peut s’établir a température finie. Cependant, en absence de couplage spin-orbite,
une transition de phase Berenzinskii-Kosterlitz-Thouless (BKT) est possible dans un
gaz de bosons interagissant entre une phase normale et une phase superfluide. Cette
derniere est caractérisée par un ordre algébrique de quasi-longue portée.

Nos études numériques établissent que une transition BKT a toujours lieu dans
le gaz de bosons faiblement interagissant en présence d'un couplage spin-orbite
anisotrope 1o < 1. Dans la phase basse température, la fraction condensée décroit
de maniere algébrique en fonction de la dimension du systeme et le gaz devient
alors superfluide. Au contraire, pour un couplage spin-orbite isotrope, 1, = 1, nos
calculs indiquent une absence de transition de phase a température finie et a la limite
thermodynamique. Une transition lisse (cross-over) subsiste pour des systémes a
taille finie. La figure[3.7|présente le diagramme de phase de notre systéme, détaillant
les densités critiques en fonction de ’anisotropie du couplage spin-orbite 7.
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4.1 Introduction and motivations

In Chapter III, we have studied the phase diagram of a two-dimensional SOCed Bose
gas. For anisotropic SOC, we have identified a low and high temperature phases
separated by a transition that we have shown to be within the Kosterlitz-Thouless

class. As we have seen in Chapter I, mean field theory predicts exotic many body
ground states, in particular, depending on the strength of interactions between same

and different spins (defined in Eq. (1.38))

8§=281— 811 —8ll
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the mean-field ground state is either given by a single Plane Wave State (PW), or by a
linear superposition of two Plane Waves with opposite momenta, the Stripe Phase
(SP).

Beyond mean field, the existence and appearance of such exotic phases are still
unclear and open questions remain. As an example, reference [69] proposes a phase
diagram based on qualitative argument in the very dilute limit, which does not
depend on the sign of anisotropy g, in contrast to the mean field predictions. In the
following, we will investigate in detail, the character of the low temperature phases
observed in our classical field simulation.

In particular, we will study the magnetic ordering of the atoms/spins at low
temperature and link it to the BKT phase transition studied in Chapter III. We
show that in the case of an anisotropy g # 0 the spin correlations exhibit quasi-
long-range order induced by the KT transition in contrast to prediction of long
range order from reference [70]. We therefore find a phase diagram in strong
connexion to the Kosterlitz-Thouless transition. We also investigated predictions
of zero momentum transition by [71,[72], or the appearance of bosons pairs by ref-
erences [69,9] but we did not find any indications of such exotic phases and behavior.

In the case of isotropic interactions, g = 0, mean field calculations do not select an
unique ground state, SP and PW states remain degenerate. In this case, one may
expect that thermal and quantum fluctuations break this degeneracy and select
an unique ground state. The classical field approximation allows us to address the
question of thermal fluctuations in a direct and explicit way. Here, we show that the
system undergoes a KT transition without selecting a unique ground state. Instead,
our calculations predict a fractionalization of the condensate where SP and PW
remain degenerate.

Parameter values in the simulations In order to study the competition between
SOC and interparticle interaction, we have fixed }_;,-1| mgyo'/4 = x/\/mkpT =
/20 with mg = 0 to address isotropic interaction and mg = +7/100 to slightly break
the spin isotropy of scattering particles.
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4.2 Reduced single body density matrix

In the previous chapter, we have observed a Kosterlitz-Thouless transition for
Nsoc < 1. The low temperature phase was characterized by the occurrence of a
quasi-condensate, a large, though non extensive, occupation of the two degenerate
single particle ground states. More precise information on the character of the quasi-
condensate can be expected from the full calculation of the reduced single-particle
density matrix given by

Go,or(0,1) = (P12 W, () (4.1)

In the high temperature regime, the one-body density matrix decays to zero over
a distance given by the thermal de Broglie length A 7. At the transition, quasi-long
range order appears, characterized by an algebraic decay. In momentum space, the
reduced one-body density matrix writes

Go,or I, K) = (&7, T &F) 4.2)

and the distinction between quasi and true long range order is directly connect to
the occurrence of a quasi-condensate or full BEC in momentum space.

BEC The momentum distribution for a system revealing BEC exhibits a singular
behavior at the minimum of the energy spectrum. In the case of a three dimensional
ideal Bose gas without SOC, only the zero momentum state is macroscopically
occupied. In real space, the one-body density matrix at large distances saturates to
a finite value set by the condensate fraction of the gas. The system is then said to
show off diagonal long-range order, i.e. finite values in G(r,r’) for r # r'. The criterion
for BEC of a macroscopic occupation given by Penrose and Onsager [73] is thus
equivalent to the existence of a long range order.

In the case of ideal SOCed Bosons in three dimensions, the ground state is degenerate
leading to a macroscopic occupation of all modes with |k| = x. The Fourier transform
of these modes will lead to oscillations of the one-body density matrix in real space.
Although possible, the observation of true-long range order gets more involved in
the real space density matrix than in Fourier space. In general, BEC corresponds to a
macroscopic occupation of one (or more) eigenmodes of the single-particle density
matrix. In the case of SOC, these eigenmodes in general couple spin and momentum
degrees of freedom.
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BKT phase In the case of a quasi-condensate below the BKT transition in two
dimensions, the single particle density matrix in real space is algebraically decaying,
with additional oscillations for systems with SOC corresponding to peaks of the
momentum distribution at non-vanishing momenta. The spin-structure of the
quasi-condensate can be obtained from the dominating modes after diagonalization
of the single particle density matrix.

Since the occupation number is strongly peaked for k = x with
x| =x

we have calculated the reduced single particle density matrix only for momenta at
the minimum of the single particle energy spectrum, G, 4 (k,%"). For 150, < 1, we
only need to consider (+x,0). The resulting 4 x 4 matrix can be calculated using
classical field Monte Carlo.

Explicitly, using the definition[1.11} this reduced density matrix writes (. (k)) with

M) = (uy d u”,cd*)® (4.3)

Population of momenta +x In the last Chapter we have shown that for 1, < 1
the system undergoes a BKT transition. There are only two minima in the single
particle energy spectrum +x = (+x,0) and their population n(+x) depends on the
sign of the interaction g. In order to study the matrix .# (k) the two directions +x are
of course equivalent.

For isotropic SOC, 1o = 1, the minimum of the energy spectrum is a full ring of
radius |k| = x in the thermodynamic limit. However, for our numerical calculation
on a finite system, we have only a small number of degenerate single particle ground
states, typically four or eight. However, we numerically observe that for finite simu-
lation time, only one direction « is selected. The two corresponding momenta +x
are almost macroscopically populated, whereas the other momenta on the ring have
a negligeable occupation at low temperature when the density is large nA? >~ 1.
Averaging over different initial conditions reestablishes the symmetry between all
directions x.
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Figure 4.1: Solid lines: Condensate fraction, n;/n, as a function of the inverse volume,
L2, for anisotropic SOC bosons with g, = 0 at different phase space densities
and anisotropic interaction, g > 0. Dashed lines show the corresponding maximal
occupation number after diagonalizing the single body density matrix (not ensemble
averaged). In the normal phase at low phase space density, we have nf ~ L™? and two
degenerate modes, whereas in the superfluid phase at high phase space density we
have ng ~ L™ with n < 1/4, the degeneracy is broken, and only one mode contributes
to the quasi-condensate.
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Link between low temperature order and the BKT transition for 7, < 1 and
g #0 In the last chapter, we have determined the BKT from the appearance of a
quasi-condensate density, averaged over the two momentum states which minimize
the single particle energy. From the diagonalization of the single particle density
matrix, we obtain additional information.

Above the critical temperature, we obtain two degenerate modes within our numer-
ical accuracy — both minima in momentum space are equally populated within a
single Monte Carlo run. Below the critical temperature, the system spontaneously
chooses one mode which dominates. The two minima are only equivalent after
ensemble averaging different Monte Carlo calculations. As shown in figure for
g #0, in the BKT phase, the single particle density matrix is dominated by a single,
highly occupied mode.

PW and SP phase Since the low temperature phase of the system is dominated by
a single mode of the reduced density matrix, the spin-structure of the corresponding
eigenstate characterizes the spin-structure of the BKT phase, e.g. an algebraically
decaying PW or SP quasi-condensate.

Diagonalizing the matrix .# (k), we numerically obtain the eigenvectors that describe
the appearing order. However, in order to interpret better these results, let us first
analyze the structure of the matrix assuming PW or SP order.

Our mean-field ground state introduced in Chapter I Eq. (1.55), we based on the
following

T
(cosup)q)K +sm(¢)<l)_,()
vV N!

D™ () = 10) (4.4)
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The resulting structure of the matrix .# for pure PW (¢ = 0) or SP (¢p = 1/4) states is
then

Plane Wave : ¢ =0

1
-1
M@)o (1 -1 0 0e| (4.5)
0
Stripe phase: ¢ = 7
1
M) x (1 =11 1@ _1 (4.6)
1

We recover these features in our numerical calculation and we extracted numerically
the angle ¢. At high temperature, where we have two degenerate modes, the angle ¢
is not correctly defined. Approaching the transition point, when one mode starts
to dominate, the value of angle becomes well defined. Its mean value depends on
the anisotropy g > 0 or g < 0 (SP and PW respectively), fluctuations around it are
strongly suppressed.

Our analysis of the eigenmodes and their occupations clearly connects the quasi-
condensate structure with the spin-ordering in the BKT phase showing PW or SP
depending on the sign of g. Although there is clearly one mode dominating, the
occupation is slowly decaying with system size. Therefore, also in spin space, there
is no true, but only quasi-long range order. In the next section, we will study the
spin order in a more intuitive and experimentally better accessible way, calculating
correlation functions of the local spin density.
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4.3 Local Spin Density

The PW and SP character of the reduced one-body density matrix computation
naturally propagates to various observables and higher order correlation function.
In the following we will analyze the spin-order in terms of the local spin density.

Spin Density Since we labeled the two hyperfine states of the atoms as spin up and
spin down we can use the formalism of magnetism to study the ordered phases. For
instance, counting the difference of the number of atoms in the two hyperfine states
is equivalent to compute the magnetic moment in the direction z

t 2 _ 2
o0 = Y Wo|¥Ym _ y @ -y, o) @)
YimYe)  (ly @2+l @P)

The colors of figures and |4.4|represent the value of the local spin density
o.(r) of the field at each point of space r. These quantities are not averages but they
are rather obtained at single step of the algorithm. For g > 0 we can clearly identify
stripes at low temperature whereas for g < 0 the density is constant in space.

Spin projections We can then generalize the spin formalism to the other directions
of the spin. Note that the gas is confined in two dimensions but the spin degree of
freedom is three-dimensional. Then using the Pauli matrices,

o1 (o —i (1 o0 w8
=11 o 777 o 72=lo 1 '
we can then compute the local spin density of the field in the three directions

vimo,wm Ry Oy )]

- - 4.9
0(x) YImwm® @)+ ()2 (49
IR Syl Oy @) w0
o, = = .
Y PIOWE) @2+ @2
+ 2 _ 2
o.(0) = Yo Y@ |y -y @)l @.11)

YImPE) gy @2+ |y @)

and by this way obtain all the information about the spin structure of the field.
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4.3. Local Spin Density
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Figure 4.2: Spin local projection at extremely low temperature for anisotropic interac-

tion g < 0i.e Plane Wave state. The arrows’ directions represent the local spin o, and
0y projection on the x-y plane. Colors represent the value of the local spin density

o ;. As expected for the Plane Wave state, spins’ projections point in average in the

same direction. We observe vortices typical of the KT physics.

y plane and colors represent the value of the local spin

density o ,. We observe the signature of a SP order : spins rotate with periodicity 2x.
The direction of the rotation is determined by the direction of the two populated

momenta +K.
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Figure 4.3: Spin local projection at extremely low temperature for anisotropic inter-
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Mean-field predictions It is instructive to explicitly write down the mean-field spin
density for PW and SP using the mean-field wave function

MF
MF oy _ Vi (5Y) _ 1
Y (0 (wj‘?,f(x,y)) 7

For g < 0 the mean-field ground state corresponds to ¢ = 0, a Plane Wave state, with

cos((p)ei”( _11 )+sin(¢)e‘i"x( i )

ox(x) =1 oy =0 o) =0 (4.12)

All the spins are aligned and point in the direction x = (x,0) of the minimum.

For g <0, the minimum of the energy corresponds to ¢ = %, the Stripe Phase state,
where we have

oxr)=0 0 y(r) = sin(2x x) 0 ,(r) = cos(2x x) (4.13)

Now the spins direction rotates around the x-axis with periodicity 2«.

Numerical simulation From figures[4.2]and[4.3|we observe that the spin density
of our classical field simulation reflects the mean-field ground state at very low
temperature. However, at slightly higher temperature, thermal excitations mask the
state. Further, we also observe vortices due to thermal excitations, typical for BKT
physics.

Figure4.4|also shows that few thermal excitations are enough to significantly modify
the stripe order of the local spin density. In the following, we will use spin density
correlations for a more quantitative study to characterize spin ordering.
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Figure 4.4: Spin local projection at low extremely temperature for anisotropic interac-
tion g > 0i.e Stripe Phase state. The arrows’ directions represent the local spin o and
oy projection on the x-y plane and colors represent the value of the local spin density
o ;. Due to thermal excitations, vortices interact with the Stripe Phase ordering. In
particular in the superfluid phase at intermediate temperature, we cannot observe
directly stripes in the density due to these excitations. The SP signature is however
observable in the correlation function as showed in figure[d.5
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Figure 4.5: Spins density correlation function, M,(x,0), at phase space density
1/nA? = 0.026 for Nsoc = 0.9 where ng/n ~ 40%. For g <0, My(x,0) shows quasi-
long range order indicating PW, whereas M, (x,0) is short ranged. For g > 0 we obtain
SP where the amplitude of the oscillations of M (x,0) decays algebraically and no
order is present in M, (x,0).
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4.4 Spin density correlation functions

In the last section, we have shown the local spin density of an instantaneous field con-
figuration. For a more quantitative study, we calculated the spin-density correlation
function averaged over many field configurations

Mg() =(Se8,0))  with Sy) =¥ o, ¥ (4.14)

As shown in figure[4.5} the spin structure of this condensate mode is directly reflected
in the spin correlation function My (r).

Quasi-long range order Quasi-long range stripe order is reflected in slowly decay-
ing oscillations of period 2x in M, (x,0). For g <0, M(x,0) develops quasi-long
range order. In both cases, the exponent of the algebraic decay is given by the scal-
ing exponent of n§j and compatible with (T) obtained from the superfluid density.
Therefore, the quasi-long range spin order results from the spin structure of the
underlying quasi-condensate.

Anisotropy We also notice that the correlation functions, My(x,0) and M, (x,0),
remain short ranged in the SP and PW state, respectively. The system therefore
exhibits a strong anisotropy between the direction x and the one orthogonal to it.
Reference [45] addresses this feature, focusing in particular on the possibility of
anisotropic superfluidity.

4.5 Isotropic interaction: Fragmented condensate

Let us now study the case of isotropic interparticle interaction g = 0. As shown in
Chapter I, mean field calculations do not select an unique ground state between SP
and PW states.

Since SP and PW degeneracy may only reflect the insensitivity of the mean field
ansatz for the ground state, many studies focused on looking for the true absolute
ground state [72} 35} 34} 6]. In these approaches the symmetry between the SP and
PW phases is broken by different physical mechanisms, for example by introducing
quantum fluctuations [35] or by renormalization procedures [34].

However, as shown in figure for two fundamentally distinct cases 15, = 0
and 750 = 1, in the limit of isotropic interaction, g = 0, we always obtain two
highly occupied modes of the single particle density matrix, degenerate within our
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Figure 4.6: Second largest eigenvalue A, of the reduced density matrix .4 (x) as a
function of the largest eigenvalue A, for isotropic interactions g = 0. The top and
bottom plots correspond to two opposite SOC anisotropies 1., respectively 15y = 0
and 750, = 1. Each point represents a single long run of a computation at extremely
low temperature in a regime numerically challenging within our approximation. In
the superfluid regime and for any density, we observe a strong signature of frac-
tionalization. Black points show the corresponding eigenvalues in the case of an
anisotropic interaction g # 0 when only one eigenvalue A, is non zero (A, ~ 107214).
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numerical precision. By analyzing the spin correlation functions as in the previous
sections, we find that both M,(x,0) and M, (x,0) become quasi-long ranged and
indicate simultaneous PW and SP characters.

Therefore, for our great surprise, PW and SP remain degenerate and robust against
thermal, critical fluctuations. In case of macroscopically occupied modes, this
phenomena corresponds to a fractionalized condensate [74]. Since we do not have
true long range order, we observe for the first time a fractionalized quasi-condensate.

This unusual behavior indicates that although two modes are extremely populated,
the phase ¢ between them is not locked and the spin does not prefer any particular
direction. However, classical field description takes only into account thermal fluc-
tuations. From the Bogoliubov approximation around the T = 0 mean-field ground
states, we expect that quantum fluctuations lift the degeneracy and favor the PW
character decreasing the temperature without further phase transition [35].

4.6 Low temperature wave-function

References [69, 9] predicted the occurrence of a paired condensate. Our classical
field Monte Carlo have not shown any evidence for the occurrence of this phase.
However, it is not clear which observable would best show up such a phase. Here, we
present some of our analysis done on the whole field distribution.

Figure[4.8|shows the distribution of the field along the real (x-axis) and imaginary
axis (y-axis) at high and low temperature. At a single single Monte Carlo step, we plot
the field W (r) at every point in space r for both 0 =1 and o =|.

At high temperature we recognize the Gaussian regime centered on (W (r)) = 0. At
low temperature, we recover the mean-field predictions in addition to a broadening
due to thermal fluctuations .
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Spin up wave-function
Spin down wave-function

Re[W(n)]

Figure 4.7: Imaginary part of the wave-function as a function of its real part at every
point in space r. The system size is L/a = 80, the SOC anisotropy 15, = 0 and the
space density 1/n1? = 0.240. As expected, at high temperature the density is Gaussian
distributed.
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Figure 4.8: Imaginary part of the wave-function as a function of its real part at every
point in space r. The system size is L/ a = 80, the SOC anisotropy 15, = 0, the space
density 1/nA? = 0.0126 and the contact interaction anisotropy is set to g > 0 i.e
Stripe Phase state. At low temperature, in addition to a broadening due to thermal
cos(kx) )

fluctuations, we recover the mean-field prediction of yf(r)=| .
—1sin(xx)
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4.6.1 Bosons pairs

In this distribution, we can notice a great difference between the SP and the other
phases. Indeed the average (¥2) is non zero in the case of a SP wave-function and
zero otherwise.

High temperature Gaussian regime The average of a squared Gaussian distributed
function is zero.

Plane Wave The average of a squared Plane Wave is also zero.
ikx 2 i2kx
(™)) = @ =0 (4.15)
Stripe Phase The square of a Stripe Phase wave-function is not zero

(sin(2xx)?) = 0.5 (4.16)

The results discussed in last chapter, indicated that for isotropic SOC, 150 = 1, no
standard BKT transition occurs. In this particular region of the phase diagram and
for g > 0, in the Stripe Phase, condensation of pairs of bosons were predicted by
references [69, 9].

We analyzed how this observable for pairing scales with the system size. Figure[4.10|
shows that it decreases with the system size L? depending on the discrete number of
degenerate minima as the condensate fraction observable studied before. Therefore
we do not find any indications of a phase transition to a pairing phase as proposed
in reference [9]. However, we cannot exclude the possibility of pair superfluidity at
considerably lower densities or much larger system sizes.
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Figure 4.9: Imaginary part of the wave-function as a function of its real part at every
point in space r. The system size is L/a = 80, the SOC anisotropy 1,. = 0, the space
density 1/nA? = 0.0126 and the contact interaction anisotropy is set to g < 0 i.e
Plane Wave state. At low temperature, in addition to a broadening due to thermal

. 1
fluctuations, we recover the mean-field prediction of wKMF (r) = e'** ( 1 )
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Figure 4.10: Pairs of bosons < P2 > as a function of the inverse volume, L2, for
isotropic SOC with 1., = 1 at different phase space densities and anisotropic inter-
action, g > 0 i.e Stripe Phase. We recognize the dependency of this observable on the
discrete number of degenerate minima as the condensate fraction studied before.
We do not find any indication of a finite temperature phase transition.
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4.7 Résumé

Au cours du Chapitre III, nous avons étudié le diagramme de phase d'un gaz de
Bose bidimensionnel en présence d'un couplage spin-orbite. Dans le cas d'un cou-
plage spin-orbite anisotrope, nous avons identifié deux phases distinctes a basse et
haute température séparées par une transition de phase dont nous avons montré
I'appartenance a la classe Kosterlitz-Thouless. Présentée en Chapitre I, la théorie
champ moyen prédit |'existence de phases exotiques comme états fondamentaux a
plusieurs corps. En particulier, ces derniéres dépendent fortement des amplitudes
d’interactions entre mémes et différents spins (comme défini Eq. )

g§=281—811—8ll

I’état fondamental par champ moyen est alors décrit soit comme une onde plane
(PW) soit comme une superposition de deux ondes planes avec impulsions opposées
appelée état de bande (SP) [69].

Au-dela de I'approximation type champ moyen, |'existence et 'apparition de ces
phases exotiques n’est pas établi et beaucoup de questions restent ouvertes. Par
exemple, la référence [69] propose un diagramme de phase basé sur des arguments
qualitatifs dans la limite du régime fortement dilué. Les différentes phases ne
dépenderaient plus alors du signe de l'anisortopie g, en fort contraste avec les
prédictions en champ moyen. Nous avons, a notre tour, caractérisé les différentes
phases a basse température observées au sein de nos simulations de champs
classiques.

En particulier, nous avons étudié I'ordre magnétique des atomes/spins a basse
température que nous avons relié a la transition BKT étudiée au cours du chapitre
précédent. Nous avons également montré que dans le cas d'une anisotropie
g # 0 les corrélations de spin présentent un ordre de quasi-longue portée in-
duit par la transition KT en opposition avec les prédictions de ordre longue
portée de la part de la référence [70]. Nous observons donc un diagramme de
phase fortement déterminé par la transition Kosterlitz-Thouless. Nous avons
également sondé différentes prédictions, en particulier celle d'une transition a
impulsion nulle [71} [72] ainsi que I'apparition de paires de bosons [69,[9]. Toute-
fois, nous n'avons pas trouvé de trace de ces comportements et phases tres exotiques.

Dans le cas d’interactions isotropes, g = 0, I'approximation type champ moyen
ne sélectionne pas d’état fondamental unique, les états SP et PW restent alors
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dégénérés. Dans ce cas spécifique, il serait attendu que les fluctuations thermiques
et quantiques lévent cette dégénérescence et qu'un unique état fondamental soit
sélectionné. L'approximation type champs classiques nous permet d’aborder la
question des fluctuations thermiques de facon directe et explicite. Nous avons
montré que le systeme subit une transition de phase sans sélectionner d’état
fondamental unique. Nos calculs prédisent dans ce cas une fractionalisation du
condensat, les états PW et SP se maintenant dégénérés.

Dans le cadre de notre étude et pour étudier la compétition entre couplage
spin-orbite et interactions interparticules, nous avons fixé Y ;-1 mgyy'/4 =
x/\/mkgT = m/20 avec mg = 0 pour étudier le cas d’une interaction isotrope et
mg = +7/100 pour étudier le cas d'une fine brisure de symmeétrie entre les diffusions
des différents spins.
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Chapter

Conclusion and Perspectives

N THIS THESIS we have determined the finite-temperature phase diagram of a
I two-dimensional interacting Bose gase with two hyperfine (pseudospin) states
coupled via Rashba-Dresselhaus spin-orbit interaction using classical field Monte
Carlo calculations.

Our numerical studies clearly establish that the weakly interacting Bose gas under-
goes a BKT phase transition for anisotropic SOC, 150 < 1. In the low temperature
phase, the condensate fraction decays algebraically with system size and the gas
becomes superfluid. However, for isotropic SOC, 1. = 1, our calculations shows a
cross-over behavior at finite systems, with strong evidence for the absence of a finite
temperature phase transition in the thermodynamic limit.

We have further characterized superfluid many body states for ns < 1 as a
function of a vanishing or small spin-anisotropy of the interparticle interaction,
g =281 — &1t — 81, of positive or negative sign. In particular, we have shown that
in the case of an anisotropy g # 0 the spin correlations exhibit quasi-long-range
order and that the magnetic ordering of the atoms/spins at low temperature is linked
to the BKT phase transition. Our calculations confirm mean field predictions for
the character of the quasi-condensate in the superfluid state, i.e. PW or SP order
depending on the sign of g.

For isotropic interactions, g = 0, we obtained a fractionalized quasi-condensate with
two degenerate modes at the transition showing both, PW and SP character.
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Originally motivated by the mean field prediction of the degeneracy between
the SP/PW states, the system of isotropically interacting bosons, g = 0, with
Rashba spin-orbit coupling, 15, = 1, has attracted considerable attention [7, [35].
Fluctuations and correlations beyond mean field were expected to break this
degeneracy. Using classical field Monte Carlo calculations, we directly addressed
the role of thermal fluctuations. The stability of the SP/PW degeneracy leading
to a fractionalized quasi-condensate in our calculations came out unexpectedly.
However, within classical field theory, quantum effects due to non-vanishing
commutators of the quantum fields are neglected.

Close to zero temperature, the Bogoliubov approach is suited for studying quantum
fluctuations around the mean field state. Reference [35] shows that, within the Bogoli-
ubov approximation, the three dimensional isotropic SOCed Bose gas condenses into
a single-momentum state of the Rashba spectrum, thus resulting in order by disorder.

In two dimensions, thermal fluctuations destabilize the system at any finite
temperature. Nevertheless, decreasing temperature, the analogous calculation of
reference [35] predicts quantum fluctuations to lift the degeneracy and favor the PW
character for 5. < 1 and g = 0. However, the exact transition from a fractionalized
quasi-condensate at the critical temperature to the broken degeneracy at zero
temperature is unclear and still an open question.

Addressing numerically the full quantum system is extremely challenging due to
the presence of the SOC which introduces a sign problem into all known quantum
Monte Carlo algorithms. Similar to the fermionic sign problem, the error of such
a calculation increases exponentially with system size, inverse proportional to
temperature. Similar, already for classical field calculations, SOC prevents the use of
the Worm algorithm [75] to speed up our computation.

As an outlook, we want to include quantum fluctuations, as described in the Bo-
goliubov theory, within our classical field approach, with the hope to quantitatively
descrive both thermal and quantum fluctuations for a weakly interacting SOCed
Bose gas.
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Conclusion et Perspectives

U COURS de cette these nous avons déterminé le diagramme de phase a
A température finie d'un gaz de Bose bidimensionnel avec deux états hyperfins
(pseudospin) couplés au travers d'une interaction spin-orbite Rashba-Dresselhaus
en utilisant des calculs Monte-Carlo basés sur champs classiques.

Nos études numériques établissent clairement qu'un gaz de Bose intéragissant
subit une transition de phase de type BKT en présence d’'un couplage spin-orbite
anisotrope 150 < 1. La phase a basse température présente une fraction condensée
qui décroit algébriquement avec la taille du systéme et le gaz devient alors
superfluide. Au contraire, dans le cas d’'un couplage spin-orbite isotrope, 7o = 1,
nos calculs pointent I'absence d’une transition de phase a température finie et a
la limite thermodynamique. Une transition lisse (cross-over) subsiste pour des
systemes a taille finie.

Nous avons ensuite étudié plus en détail les différents états fondamentaux a
plusieurs corps pour 15, < 1 en fonction d'une anisotropie des interactions
interparticules g = 2g1| — g11 — &) nulle, positive ou négative. En particulier, nous
avons montré que dans le cas d'une fine anisotropie g # 0 les correlations de spins
présentent un ordre quasi-longue portée et que I’ordre magnétique des atomes/spins
a basse température est lié a la transition de phase BKT. Nos calculs confirment les
prédictions de type champ moyen a propos de la nature du quasi-condensat dans la
phase superluide c’est a dire la sélction des ordres SP et PW en fonction du signe de
g. Dans le cas d’interactions isotropes, g = 0, nous obtenons un quasi-condensat
fractionnalisé avec deux modes dégénérés a la transition et qui présente deux ordres
simultanément PW et SP.

Une attention toute particuliere de la part de la communauté [7, 35] est portée
sur le systeme composé de bosons interagissant de maniere isotrope, g = 0, avec
un couplage spin-orbite également isotrope, 15, = 1 provoquée a 'origine par
la prédiction d’'une dégénérescence entre les états SP et PW dans le cadre des
théories de type champ moyen. Il serait attendu que cette dégénérescence soit levée
par les fluctuations au-dela du champ moyen. En utilisant les calculs de champs
classiques par Monte Carlo, nous avons pour notre part abordé directement le role
des fluctuations thermiques. C’est alors que la stabilité de la dégénérescence entre
les ordres SP et PW entrainant une fractionalisation du quasi-condensat est apprarue
dans nos calculs de facon inattendue. Toutefois, au sein d'une théorie de champs
classiques, les effects quantiques diis aux commutateurs des champs quantiques
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sont négligés.

Au contraire, en se rapprochant de la limite a température nulle, I'approche Bogoli-
ubov est particulierement adaptée pour I’étude des fluctuations quantiques autour
de I'état fondamental provenant du champ moyen. En particulier la référence [35]
montre que, au sein de I’approximation Bogoliubov, le gaz de Bose tridimensionnel
avec couplage spin-orbite isotrope condense dans un état du spectre Rashba avec
une unique impulsion, ceci se traduisant alors dans un processus de ordre par le
désordre.

En deux dimensions, les fluctuations thermiques déstabilisent le systeme pour
n'importe quelle température non nulle. Néanmoins, en diminuant la tempéraure,
des calculs analogues a ceux de la référence [35] prédisent que les fluctuations quan-
tiques levent la dégénéréscence et favorise la nature PW du systéme pour 150 < 1 et
g = 0. Pourtant, la transition exacte entre un quasi-condensat fractionnalisé autour
de la température critique vers une dégénéréscence brisée a tempérautre nulle, est
incertaine et plusieurs questions restent ouvertes.

Résoudre numériquement le systeme quantique complet est extrémement difficile a
cause de la présence du couplage spin-orbite qui introduit un probleme de signe
abondamment connu dans tous les algorithmes de Monte Carlo quantique. De facon
semblable au probleme du signe fermionique, |’erreur provenant de ce type de calcul
croit de facon exponentielle avec la taille du systeme et de maniére inversement
proportionnelle a la température. De maniére analogue dans le cadre des calculs
de champs classiques que nous avons développés, le terme traduisant le couplage
spin-orbite empéche I'utilisation des algorithmes type Worm [75] pour accélérer nos
calculs.

Comme projet futur et comme proposition d’ouverture, nous souhaitons inclure les
fluctuations quantiques, telles celles décritent dans la théorie de Bogoliubov, au sein
de notre approche se basant sur des champs classiques avec I’espoir de décrire de
maniere quantitativement correcte simultanément les fluctuations quantiques et les
fluctuations thermiques dans un gaz de Bose faiblement interagissant.
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Chapter

Appendix

6.1 Fluctuations of the density at low temperature

As shown in ﬁgure at low temperature, the interaction energy, gn?/2, dominates
over the kinetic energy, o« nA?. For simplicity, let us consider the system in absence
of SOC, x = 0, where the density distribution at low temperature is approximately
given by

ply (1] ~ expl-B(H#,r — uN)] ~ exp[- 5 f dzrg(w/(rnz - ul/g?l (6.1)

Therefore, fluctuations of the density around its mean value, n = (n) = u/g, are
Gaussian distributed, with mean-square fluctuations

ksT
An25<n2(r)>—n2~"g3 . n’>7lg 6.2)

and highly suppressed for large phase space density, An?/n? ~ [gnA?]~! =0, in con-
trast to the non interacting case. Approaching zero temperature, density fluctuations
smoothly vanish. At high temperature, fluctuations around the density are much
larger, since the kinetic energy can never be neglected. In this regime, the Fourier
modes of the fields are Gaussian distributed leading to qualitatively different density
fluctuations, (n?) = 2n?.
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Abstract

In this thesis, we theoretically study the occurence of exotic phases in a dilute two compo-
nent (spin) Bose gas with artificial spin-orbit coupling (SOC) between the two internal states.
Including spin-orbit coupling in classical field Monte Carlo calculations, we show that this
method can be used for reliable, quantitative predictions of the finite temperature phase
diagram. In particular, we have focused on SOCed bosons in two spatial dimensions and es-
tablished the phase diagram for isotropic and anisotropic SOC and interparticle interactions.
In the case of anisotropic SOC, the system undergoes a Berenzinskii-Kosterlitz-Thouless
transition from a normal to a superfluid state at low temperature. The spin order of the
quasicondensate in the low temperature superfluid phase is driven by the spin dependence
of the interparticle interaction, favoring either the occurence of a single plane wave state at
non-vanishing momentum (PW) or a linear sperposition of two plane waves with opposite
momenta, called stripe phase (SP). For spin-independent interparticle interaction, our simu-
lations indicate a fractionalized quasicondensate where PW and SP remain degenerate. For
isotropic SOC, our calculations indicate that no true phase transition at finite temperature
occurs in the thermodynamic limit, but a cross-over behavior remains visible for large, but
finite number of atoms.

Résumé

Cette thése est dédiée a I’étude théorique de phases exotiques dans un gaz dilué de bosons
avec deux composantes (spins) en présence d'un couplage spin-orbite (SOC) entre ces deux
états internes. En ajoutant ce dernier couplage a une description de type champs classiques
de notre systeme, nous montrons que cette méthode permet de prédire le diagramme de
phase a température finie de maniere quantitative, efficace et fiable. Notre étude porte en
particulier sur un systéeme de bosons bidimensionnels avec SOC dont nous dessinons le
diagramme de phase en fonction de I'anisotropie du SOC ainsi que des interactions. Dans le
cas d'un SOC anisotrope, une transition de phase de type Berenzinskii-Kosterlitz-Thouless
sépare une phase dite normale d'une phase superfluide a plus basse température. L'ordre
des spins du quasi-condensat dans la phase superfluide est alors guidé par les interactions
de contact dépendantes du spin. Elles favorisent I'apparition soit d'un état onde plane avec
moment non-nul (PW) soit d’'une superposition linéaire de deux ondes planes appelée état de
bande (SP). Pour des interactions indépendantes du spin des particules, nos simulations in-
diquent une fractionalisation du quasi-condensat. Les états PW et SP restent alors dégénérés.
Dans le cas d'un SOC isotrope, nos calculs n'indiquent aucune transition de phase a la limite
thermodynamique et a température finie. Un changement de comportement non critique
(transition lisse ou cross-over) subsiste pour un nombre important mais fini d’atomes.
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