Analyse multi-échelle du comportement hygromécanique du bois : Mise en évidence par relaxométrie du proton et mesures de champs volumiques de l'influence de l'hétérogénéité au sein du cerne - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2017

Multiscale analysis of the hygromechanical behavior of wood : highlighting the influence of the growth-ring heterogeneity by proton relaxometry and volumetric full-field measurements

Analyse multi-échelle du comportement hygromécanique du bois : Mise en évidence par relaxométrie du proton et mesures de champs volumiques de l'influence de l'hétérogénéité au sein du cerne

Marie Bonnet
  • Fonction : Auteur

Résumé

Wood has highly variable properties and is also hygroscopic. These characteristics may restrict its use in construction even if it can be considered as a material of choice with the current environmental and economical concerns. Therefore, it is essential to better understand the physical origins of the behavior of wood in order to improve the prediction of its properties, and making it competitive with respect to other building materials. Dimensional changes of wood appear when it is subjected to relative humidity variations. This hygromechanical behavior is particularly difficult to predict because of the multiscale structure of wood and its complex interactions with water.In this context, the present work aims to understand and enrich relationships between microstructure, sorption properties and hygromechanical behavior of wood. More specifically, it is focused on the influence of the growth-ring heterogeneity, constituted of earlywood and latewood which have different structures and properties. The study is performed on Douglas fir (Pseudotsuga menziesii (Mirb.) Franco), which is a species of significant interest for structural applications. Advanced characterization tools are used: proton Nuclear Magnetic Resonance (NMR) to characterize sorption mechanisms; digital volume correlation (DVC) to measure deformation fields from X-Ray microtomography 3D images (XRµT), also providing local density of wood.At first wood properties and its hygromechanical behavior are described through a literature overview. Preliminary microstructural (microfibril angle, growth-ring width, density) and hygromechanical behavior characterizations of earlywood and latewood samples with different cambium age are performed. Earlywood reveals a strong anisotropic behavior compared to latewood which is isotropic in the transversal plane. Moreover, strains along the fiber direction nonlinearly evolve with moisture content. This phenomenon has been hardly reported and studied in the literature. Discussions on variability of properties and on relationships between structure and properties are also initiated.Sorption mechanisms are then studied by 2D NMR relaxometry (T1-T2 correlation spectra) in order to investigate differences between earlywood and latewood hygromechanical behaviors. Two types of bound water located in distinct environments are highlighted and their sorption isotherms are shown to be different in the two types of wood. A hypothesis on their location in the cell-wall is proposed and a simple 2D model is developed to evaluate their respective effect on the hygromechanical behavior of earlywood and latewood, especially in the fiber direction.Furthermore, local and global strains fields are studied using DVC from XRµT images of earlywood and latewood subjected to relative humidity variations. The coupling of these two materials is also investigated in order to evaluate their mechanical interactions and to understand the behavior at the growth-ring scale. A specific DVC procedure is developed for images of wood. The hygromechanical behaviors of earlywood, latewood and a growth-ring are compared. At the local scale, strains fields heterogeneities are highlighted and correlated to the local density. Their effect on the growth-ring behavior and the samples curvature is analyzed. A 3D finite elements model which takes into account local gradients of properties is finally developed to better understand earlywood-latewood mechanical interactions
La variabilité des propriétés du bois ainsi que son hygroscopicité pourraient être un frein à son utilisation dans la construction, même s’il peut être considéré comme un matériau de choix dans le contexte environnemental et économique actuel. Il est donc primordial de mieux comprendre les origines physiques du comportement du bois pour être capable d’améliorer la prédiction de ses propriétés, et pouvoir ainsi le rendre plus compétitif par rapport aux autres matériaux de construction. Le comportement hygromécanique du bois, caractérisé par des variations dimensionnelles en présence de variations d’hygrométrie, est particulièrement difficile à prédire, du fait de sa microstructure multi-échelle et de ses interactions complexes avec l’eau.Dans ce contexte, la thèse vise à comprendre et enrichir les relations entre la microstructure du bois, ses propriétés de sorption et son comportement hygromécanique, en étudiant l’influence de l’hétérogénéité de l’accroissement annuel (cerne), constitué de bois initial et de bois final dont la structure et les propriétés présentent de nombreuses différences. Cette étude est menée sur du Douglas (Pseudotsuga menziesii (Mirb.) Franco), actuellement référencé comme un matériau de structure intéressant. Des outils de caractérisation avancés sont utilisés : la Résonance Magnétique Nucléaire (RMN) du proton pour caractériser les mécanismes de sorption ; la corrélation d’images volumiques (DVC) pour mesurer les champs de déformations à partir d’images 3D de microtomographie aux rayons X (µTRX), donnant aussi accès à la densité locale du bois.Après une introduction sur le matériau bois et un état de l’art sur son comportement hygromécanique, une caractérisation préliminaire de la microstructure (angle des microfibrilles, largeur de cerne, densité) et du comportement hygromécanique d’échantillons de bois initial et de bois final prélevés dans différents cernes est menée. Une forte anisotropie du bois initial est mise en évidence en opposition au comportement isotrope transverse du bois final. Les déformations suivant la direction des fibres présentent aussi de fortes non-linéarités peu discutées dans la littérature. Une discussion sur la variabilité des propriétés est par ailleurs engagée, ainsi que sur les relations structure-propriétés à l’échelle macroscopique.L’origine des différences de comportement hygromécanique entre le bois initial et le bois final est tout d’abord recherchée au niveau des mécanismes de sorption, au travers une étude de relaxométrie RMN du proton en 2D (cartes T1-T2). Deux types d’eau liée situés dans des environnements distincts sont mis en évidence et leur isotherme de sorption diffère dans les deux types de bois. Une hypothèse sur leur localisation dans la paroi cellulaire est proposée, puis une modélisation simplifiée 2D est effectuée pour évaluer leur impact respectif sur le comportement hygromécanique du bois initial et du bois final, en particulier dans la direction des fibres.Enfin, les champs de déformations locaux et globaux sont étudiés en analysant par DVC des images de µTRX de bois initial et de bois final soumis à différentes sollicitations hydriques. Le couplage entre ces deux matériaux est aussi étudié pour évaluer leurs interactions et comprendre le comportement du bois à l’échelle du cerne. Un protocole de DVC adapté aux images de bois est proposé. Les comportements hygromécaniques du bois initial, du bois final et du cerne sont comparés. A l’échelle locale, des hétérogénéités du champ de déformations sont mises en évidence et corrélées à la densité locale. Leur effet sur le comportement du cerne et sur la courbure des échantillons induite par le chargement hydrique est analysé. Une modélisation 3D par éléments finis, tenant compte des gradients locaux de propriétés, vient enfin compléter cette étude pour améliorer la compréhension des interactions mécaniques entre le bois initial et le bois final
Fichier principal
Vignette du fichier
TH2017PESC1042.pdf (17.44 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01759286 , version 1 (05-04-2018)

Identifiants

  • HAL Id : tel-01759286 , version 1

Citer

Marie Bonnet. Analyse multi-échelle du comportement hygromécanique du bois : Mise en évidence par relaxométrie du proton et mesures de champs volumiques de l'influence de l'hétérogénéité au sein du cerne. Matériaux. Université Paris-Est, 2017. Français. ⟨NNT : 2017PESC1042⟩. ⟨tel-01759286⟩
321 Consultations
519 Téléchargements

Partager

Gmail Facebook X LinkedIn More