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Vers la segmentation automatique des organes à risque
dans le contexte de la prise en charge des tumeurs
cérébrales par lápplication des technologies de classifica-
tion de deep learning

Résumé : Les tumeurs cérébrales sont une cause majeure de décès et
d’invalidité dans le monde, ce qui représente 14,1 millions de nouveaux cas de
cancer et 8,2 millions de décès en 2012. La radiothérapie et la radiochirurgie
sont parmi l’arsenal de techniques disponibles pour les traiter. Ces deux
techniques s’appuient sur une irradiation importante nécessitant une défini-
tion précise de la tumeur et des tissus sains environnants. Dans la pratique,
cette délinéation est principalement réalisée manuellement par des experts
avec éventuellement un faible support informatique d’aide à la segmentation.
Il en découle que le processus est fastidieux et particulièrement chronophage
avec une variabilité inter ou intra observateur significative. Une part im-
portante du temps médical s’avère donc nécessaire à la segmentation de ces
images médicales. L’automatisation du processus doit permettre d’obtenir
des ensembles de contours plus rapidement, reproductibles et acceptés par
la majorité des oncologues en vue d’améliorer la qualité du traitement. En
outre, toute méthode permettant de réduire la part médicale nécessaire à la
délinéation contribue à optimiser la prise en charge globale par une utilisation
plus rationnelle et efficace des compétences de l’oncologue.

De nos jours, les techniques de segmentation automatique sont rarement
utilisées en routine clinique. Le cas échéant, elles s’appuient sur des étapes
préalables de recalages d’images. Ces techniques sont basées sur l’exploitation
d’informations anatomiques annotées en amont par des experts sur un “pa-
tient type”. Ces données annotées sont communément appelées “Atlas” et
sont déformées afin de se conformer à la morphologie du patient en vue de
l’extraction des contours par appariement des zones d’intérêt. La qualité des
contours obtenus dépend directement de la qualité de l’algorithme de recalage.
Néanmoins, ces techniques de recalage intègrent des modèles de régularisation
du champ de déformations dont les paramètres restent complexes à régler et
la qualité difficile à évaluer. L’intégration d’outils d’assistance à la délinéation
reste donc aujourd’hui un enjeu important pour l’amélioration de la pratique
clinique.

L’objectif principal de cette thèse est de fournir aux spécialistes médicaux
(radiothérapeute, neurochirurgien, radiologue) des outils automatiques pour
segmenter les organes à risque des patients bénéficiant d’une prise en charge
de tumeurs cérébrales par radiochirurgie ou radiothérapie.
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Pour réaliser cet objectif, les principales contributions de cette thèse
sont présentées sur deux axes principaux. Tout d’abord, nous considérons
l’utilisation de l’un des derniers sujets d’actualité dans l’intelligence artificielle
pour résoudre le problème de la segmentation, à savoir le “deep learning”.
Cet ensemble de techniques présente des avantages par rapport aux méth-
odes d’apprentissage statistiques classiques (Machine Learning en anglais). Le
deuxième axe est dédié à l’étude des caractéristiques d’images utilisées pour
la segmentation (principalement les textures et informations contextuelles
des images IRM). Ces caractéristiques, absentes des méthodes classiques
d’apprentissage statistique pour la segmentation des organes à risque, con-
duisent à des améliorations significatives des performances de segmentation.
Nous proposons donc l’inclusion de ces fonctionnalités dans un algorithme
de réseau de neurone profond (deep learning en anglais) pour segmenter les
organes à risque du cerveau.

Nous démontrons dans ce travail la possibilité d’utiliser un tel système de
classification basée sur techniques de “deep learning” pour ce problème par-
ticulier. Finalement, la méthodologie développée conduit à des performances
accrues tant sur le plan de la précision que de l’efficacité.

Mots clès : Segmentation des organes à risque, radiochirurgie, radio-
thérapie, réseau de neurones profond.



Towards automatic segmentation of the organs at risk
in brain cancer context via a deep learning classification
scheme

Brain cancer is a leading cause of death and disability worldwide, account-
ing for 14.1 million of new cancer cases and 8.2 million deaths only in 2012.
Radiotherapy and radiosurgery are among the arsenal of available techniques
to treat it. Because both techniques involve the delivery of a very high dose
of radiation, tumor as well as surrounding healthy tissues must be precisely
delineated. In practice, delineation is manually performed by experts, or with
very few machine assistance. Thus, it is a highly time consuming process
with significant variation between labels produced by different experts. Radi-
ation oncologists, radiology technologists, and other medical specialists spend,
therefore, a substantial portion of their time to medical image segmentation.
If by automating this process it is possible to achieve a more repeatable set of
contours that can be agreed upon by the majority of oncologists, this would
improve the quality of treatment. Additionally, any method that can reduce
the time taken to perform this step will increase patient throughput and make
more effective use of the skills of the oncologist.

Nowadays, automatic segmentation techniques are rarely employed in clin-
ical routine. In case they are, they typically rely on registration approaches.
In these techniques, anatomical information is exploited by means of images
already annotated by experts, referred to as atlases, to be deformed and
matched on the patient under examination. The quality of the deformed
contours directly depends on the quality of the deformation. Nevertheless,
registration techniques encompass regularization models of the deformation
field, whose parameters are complex to adjust, and its quality is difficult to
evaluate. Integration of tools that assist in the segmentation task is therefore
highly expected in clinical practice.

The main objective of this thesis is therefore to provide radio-oncology
specialists with automatic tools to delineate organs at risk of patients under-
going brain radiotherapy or stereotactic radiosurgery. To achieve this goal,
main contributions of this thesis are presented on two major axes. First, we
consider the use of one of the latest hot topics in artificial intelligence to tackle
the segmentation problem, i.e. deep learning. This set of techniques presents
some advantages with respect to classical machine learning methods, which
will be exploited throughout this thesis. The second axis is dedicated to the
consideration of proposed image features mainly associated with texture and
contextual information of MR images. These features, which are not present
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in classical machine learning based methods to segment brain structures, led
to improvements on the segmentation performance. We therefore propose the
inclusion of these features into a deep network.

We demonstrate in this work the feasibility of using such deep learning
based classification scheme for this particular problem. We show that the
proposed method leads to high performance, both in accuracy and efficiency.
We also show that automatic segmentations provided by our method lie on the
variability of the experts. Results demonstrate that our method does not only
outperform a state-of-the-art classifier, but also provides results that would
be usable in the radiation treatment planning.

Keywords: Machine learning, support vector machines, deep learning,
stacked denoising auto-encoders, radiotherapy,
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To my wife Silvia, and my sons Eithan and Noah
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“Shoot for the moon, even if you fail, you’ll land among the stars.”
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Chapter 1

Overview

1.1 Context

Cancer is a leading cause of death and disability worldwide, accounting for
14.1 million of new cancer cases and 8.2 million deaths in 2012 [1]. Cancer rep-
resents a group of common, non-communicable, chronic and potentially lethal
diseases affecting most families in developed countries, and a growing contrib-
utor to premature death within population of these countries [2]. Meanwhile,
the annual incidence of cancer keeps raising with an estimation of 26 million
of new cases yearly by 2030, with a death toll close to 17 million people [3]. In
particular, brain tumors are the second most common cause of cancer death in
men ages 20 to 39 and the fifth most common cause of cancer among women
age 20 to 39 [4].

Among available techniques to treat brain tumors, radiotherapy and radio
surgery have become part of the management of patients with brain tumors,
to complement surgery or chemotherapy. During treatment, high intensity
radiation beams to destroy the cancerous cells are delivered across the tissues.
However, when delivering radiation through the human body, side effects on
normal tissues may occur. To limit the risk of severe toxicity of critical brain
structures, i.e. the organs at risk (OARs), the volume measurements and the
localization of these structures are required. Among available image modal-
ities, magnetic resonance imaging (MRI) images are extensively used to seg-
ment most of the OARs, which is performed mostly manually nowadays. How-
ever, manual delineation of brain structures is prohibitively time-consuming,
and might never be reproducible during clinical routines [5,6], leading to sub-
stantial inconsistency in the segmentation.

Medical imaging is increasingly evolving towards higher resolution and
throughput. The exponential growth of the amount of data in medical imag-
ing and the usage of multiple imaging modalities have significantly increased
the need of computer assisted tools in clinical practice. Among them, au-
tomatic segmentation of brain structures has become a very important field
of the medical image processing research. A variety of techniques has been
presented during the last decade to segment brain structures. Particularly,
structures involved in neurological diseases, such as Alzheimer or Parkinson,
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have held the attention of researchers. However, critical structures involved in
the radiation treatment planning are rarely included in the evaluations. Even
in the cases they are analyzed, limited success has been reported. Neverthe-
less, the fields of computer vision and machine learning are closely related to
offer a rich set of useful techniques in the medical imaging domain, in general,
and in segmentation in particular.

In this thesis, deep learning techniques are proposed as alternative to the
segmentation of the OARs to address the problems of classical segmenta-
tion methods. Specifically, an unsupervised deep learning technique known
as Stacked Denoising Auto-Encoders is proposed and evaluated. The appli-
cation of SDAE to the segmentation of OARs in brain cancer allows to (i)
yield more accurate classification in more complex environments, (ii) achieve
faster classification without sacrifying classification accuracy and (iii) avoid
expensive registration stages.

1.2 Contributions

The main contributions of this thesis can be summarized as follows:

• An unsupervised deep learning technique known as Stacked Denoising
Auto-Encoders is proposed to segment the OARs in radiotherapy and
radio-surgery as alternative to conventional methods used to segment
brain structures, i.e. atlas-based.

• New features to include in the classification scheme are proposed to im-
prove the performance of other researchers that used traditional features
in Machine Learning classification schemes. Some of the proposed fea-
tures, have been already employed in neuroimaging. However, their use
is limited to other applications rather than segmentation of the OARs.

• Some OARs that have not been previously segmented by proposed meth-
ods are included in the list of OARs involved.

• The proposed deep learning classification scheme is compared to a well-
known state-of-the-art machine learning classifier, support vector ma-
chines.

• Apart from the previous technical validation of the presented approach,
its performance is evaluated in clinical routine. Four observers con-
tributed in this thesis by doing manual contouring of all the OARs
involved in the radiation treatment planning (RTP). Results provided
by the automatic method were compared to the manual ones.
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1.3 Roadmap

This dissertation is organized as follows.
In Chapter 2, an introduction of brain cancer, radiation techniques and

effects of radiation on biological tissues will be presented. As a part of the
radiation treatment planning, the problem of manual segmentation of the
organs at risk and the blueneed of automatizing this step will be introduced.

In Chapter 3, the relevant literature on the state-of-the-art segmentation
methods for brain structures on MRI is presented. Particularly the devel-
opment of atlas-based methods, statistical models of shape and texture, de-
formable models and machine learning techniques are reviewed. To reduce
the number of meaningless papers, only works handling with brain structures
that are included in the RTP are considered.

In Chapter 4, the main contributions of this work are disclosed. First sec-
tion brings to the reader a theoretical introduction of machine learning basis
terms. Concepts such as classification or data representation are briefly ex-
plained. Next, historical context, advantages and explanation of deep learning,
and particularly the technique employed in this thesis, are afforded. After-
wards, the proposed features to segment brain structures in this dissertation
are detailed. Last two sections of this chapter presents the methodological
processes performed in this thesis to conduct both training and classification.

In Chapter 5, we detail the materials employed throughout this thesis.
Image modalities and their characteristics, as well as volume contours used as
reference are introduced. Afterwards, strategies and metrics used to evaluate
the performance of the proposed classification system are presented.

In Chapter 6, experiments set-up and results of these experiments are
shown. Comparisons with other works is also conducted in this chapter.

In chapter 7, conclusions of the methods presented in this thesis, as well
as guidelines for future work are discussed.

And finally, chapters 8 and 9 present the scientific dissemination produced
by this work, and a french summary of the thesis, respectively.





Chapter 2

Introduction

“What we do in life, echoes in eternity.”

2.1 Brain Cancer

Cancer is a leading cause of death and disability worldwide, accounting for
14.1 million of new cancer cases and 8.2 million deaths in 2012 [1]. Cancer rep-
resents a group of common, non-communicable, chronic and potentially lethal
diseases affecting most families in developed countries, and a growing contrib-
utor to premature death within population of these countries [2]. Meanwhile,
the annual incidence of cancer keeps raising with an estimation of 26 million
of new cases yearly by 2030, with a death toll close to 17 million people [3]. In
particular, brain tumors are the second most common cause of cancer death in
men ages 20 to 39 and the fifth most common cause of cancer among women
age 20 to 39 [4].

A brain tumor is any mass caused by abnormal or uncontrolled growth
of cells that arise within or adjacent to the brain. In general, these tumors
are categorized according to several factors, including location, type of cells
involved, and the growing rate. Slowly growing tumors that lack of capacity
to spread to distant sites and that originate in the brain itself are called
primary brain tumors. On the other hand, rapidly growing tumors that can
infiltrate surrounding tissues and spread to distant sites, i.e. metastasize, are
called secondary brain tumors. While primary brain tumors can be benign
or malignant, secondary brain tumors are always malignant. However, both
types are potentially disabling and life threatening. Because the space inside
the skull is limited, their growth increases intracranial pressure, and may cause
edema, reduced blood flow, and displacement, with consequent degeneration
of healthy tissue that controls vital functions [7, 8]. Additionally, metastatic
or secondary brain tumors are the most common types of brain tumors, and
occur in 10-15 % of people with cancer. Brain tumors are inherently difficult
to treat given that the unique features of the brain can complicate the use of
conventional diagnostic and treatment methods.
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Figure 2.1: Healthy brain(left) compared to brain tumor (in blue,right).

2.2 Brain Tumor Treatment

One of the consequences of tumor growing into or pressing on a specific region
of the brain is the probability of stopping that brain area from working the
way it should. Consequently, independently on the nature of the tumor, both
benign and malignant brain tumors cause signs and symptoms and require
treatment.

2.2.1 Available Treatments

A variety of therapies are used to treat brain tumors. Treatments options
mainly include surgery, radiotherapy, chemotherapy, and/or steroids. Selec-
tion of suitable treatments depends on a number of factors, which may include
type, location, size or grade of the tumor, as well as the patient′s age and gen-
eral health. Surgery is used to excise tumors, or parts of tumors, from specific
locations directly using a knife. Chemotherapy uses chemical substances to
treat cancer indirectly, since these drugs typically target all rapidly dividing
cells, which include cancer cells. Radiation therapy (RT) uses radiation to
kill tumor cells, which involves radiation permanently damaging the deoxyri-
bonucleic acid (DNA) of tumor cells.

2.2.2 Radiation Therapy

The term radiation therapy, or radiotherapy (RT), describes the medical ap-
plication of ionizing radiation to control malignant cells by damaging their
DNA [9]. Essential genetic instructions for the development and functioning
of a cell are contained in the DNA. Cells are naturally programmed to correct
damaged DNA up to a certain degree. Nevertheless, if the deterioration is
substantial, the cell dies. It has been demonstrated, however, that healthy
cells recover better than cancerous cells when they are exposed to degrada-
tion [10]. This radiobiological difference between healthy and cancerous cells
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is exploited by radiation therapy. An example of a brain tumor patient having
been treated with RT is shown in figure 2.2.

Figure 2.2: A patient before and after of having being treated with rdiation
therapy.

The three primary techniques for delivering radiation include: i) external
or conventional radiotherapy, ii) internal radiotherapy or brachytherapy, and
iii) stereotactic radiosurgery (SRS), sometimes referred to as gamma-knife.
Each of them have been evaluated in the treatment of patients with brain
tumors and may be utilized in different circumstances. While external radio-
therapy is the conventional treatment for brain tumors, SRS has also become
a standard procedure. Recently, SRS has been used in the treatment of many
types of brain tumors, such as acoustic neuromas, meningiomas or trigeminal
neuralgia, for example. Furthermore, it has been proven to be effective in
the treatment of brain metastases. Since this work aims at improving the
segmentation procedure in RT and SRS treatment planning, only these two
techniques will be explained in the following section.

2.2.2.1 Conventional Radiotherapy

RT involves directing radiation beams from outside the body into the tu-
mor. It implicates careful and accurate use of high intensity radiation beams
to destroy the cancerous cells. Machines called linear accelerators (LINAC)
produce these high energy radiation beams which penetrate the tissues and
deliver the radiation dose deep in the body where the tumor is located. These
modern machines and other state-of-the-art techniques have enabled radiation
oncologists to enhance the ability to deliver radiation directly to the tumor
whilst substantially reducing the side effects.

RT is typically delivered as an outpatient procedure for approximately over
a six to eight week period, five days a week. Nevertheless, treatment schedule
may vary across patients. The total procedure for each session typically takes
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Figure 2.3: Conventional RT and CyberKnife SRS treatment plans for a pa-
tient who received 40 Gy in 15 fractions to FLAIR for the first course followed
an SRS boost to T1 Enhancement at a total dose of 24 Gy delivered in 3 frac-
tions. Shown are the (A) axial, (B) sagittal, and (C) coronal views of the
EBRT treatment plans and the (D) axial, (E) sagittal, and (F) coronal views
of the CyberKnife SRS treatment plans.

between 10 and 20 minutes. This dose fractionation enables normal tissue to
recover between two fractions reducing damage to normal tissues. RT begins
with a planning session during which the radiation oncologist places marks
on the body of the patient and takes measurements in order to align the ra-
diation beam in the precise position for each treatment. During treatment,
the patient lies on a table and the radiation is delivered from multiple direc-
tions to minimize the dose received by healthy tissues. A conventional RT
and CyberKnife SRS treatment plan are shown in Figure 2.3 (Image courtesy
of [11]).

2.2.2.2 Stereotactic Radiosurgery

Stereotactic techniques have been developed with the aim to deliver more
localized irradiation and minimize the long-term consequences of treatment.
They represent a refinement of conventional RT with further improvement in
immobilization, imaging and treatment delivery. Basically, SRS is a single
fraction RT procedure at high dose. For instance, while a dose of 2 Gy is
delivered for a standard RT fraction, 12 to 90 Gy are delivered in a SRS frac-
tion. Thus, the entire procedure occurs in one day, including immobilization,
scanning, planning and the procedure itself.

When a patient undergoes SRS, the radiation dose delivered in one ses-
sion is commonly lower than the total dose that would be given by following
conventional RT. Nevertheless, the tumor receives a very high radiation does
at once with SRS. Since more radiation is delivered to surrounding healthy
tissues when treatment is split into few or several sessions instead of one, de-
creasing the number of sessions is important. Otherwise, it might result in
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more side effects, some of which may be permanent. Other consequence of
splitting the treatment is that, a reduced amount of radiation delivered to the
tumor with each RT session, rather than a very large dose in a single session,
may result in less tumor control and poorer outcomes than by employing SRS.

Even though RT and SRS are reported to have identical outcomes for par-
ticular indications [12] and regardless of similarities between their concepts,
the intent of both approaches is fundamentally different. On the one hand,
conventional RT relies on a different sensitivity of the target and the surround-
ing normal tissue to the total accumulated radiation dose [13]. On the other
hand, SRS aims at destroying target tissue while preserving adjacent normal
tissue. In other words, SRS offers the possibility of normal tissue protection
by improved precision of beam application, while conventional RT is limited
to the maximum dose that can be safely applied because of normal tissue con-
straints. Instead of many doses of radiation therapy to treat a targeted region,
SRS usually consists of a single treatment of a very high dose of radiation in
a very focused location. Due to this, not only higher total radiation doses but
also higher single doses can be used, which results in increased biologically
effective doses compared with conventional RT.

Stereotactic radiosurgery is a well-described management option for most
metastases, meningiomas, schwannomas, pituitary adenomas, arteriovenous
malformations, and trigeminal neuralgia, among others [12,14].

Figure 2.4: A patient being positioned for SRS treatment (Gamma-Knife).

The popularity and acceptance of SRS procedures has led to the develop-
ment of several SRS systems. Stereotactic boosts can be carried out in several
modalities, such as Gamma Knife (Elekta AB, Stockholm, Sweden), and vari-
ous LINAC-based systems such as CyberKnife (Accuray Inc., Sunnyvale, CA)
or Novalis (BrainLAB, Feldkirchen, Germany).

2.2.2.2.1 Gamma Knife. The Gamma Knife (GK) is an instrument that
was developed by surgeons in Sweden nearly five decades ago. A GK typically
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contains 201 beams of highly-focused gamma rays that are directed so that
they intersect at the precise location of the cancer. The patient is placed on a
couch and then a specialized helmet (Fig. 2.5) is attached to the head frame.
Holes in the helmet allow the beams to match the calculated shape of the
tumor.

The most frequent use of the Gamma Knife has been for small, benign
tumors, particularly acoustic neuromas, meningiomas, and pituitary tumors.
In addition, the GK is also employed to treat solitary metastases and small
malignant tumors with well-defined borders.

Figure 2.5: Gamma Knife radiation helmet.

2.2.2.2.2 Linear accelerators (LINAC). Although a linear accelerator
(LINAC) is mostly employed for conventional RT treatments, some SRS sys-
tem have adopted its use to treat brain cancer patients. A LINAC customizes
high energy x-ray beams to conform to a defined tumor’s shape. The high
energy x-rays are delivered to the region where the tumor is present. The
patient is positioned on a sliding bed around which the linear accelerator cir-
cles. The linear accelerator directs arcs of x-ray beams at the tumor. The
pattern of the arc is computer-matched to the tumor’s shape. This reduces
the dose delivered to surrounding normal tissue. The LINAC can perform
SRS on larger tumors either during multiple sessions, which is referred to as
fractionated stereotactic radiotherapy.

2.2.3 Radiation Treatment Flowchart

Radiation treatment planning (RTP) is often organized in two phases: the
planning and the delivery. Images are first acquired, the regions of interest
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are identified and the ballistic problem is solved for the acquired data. The
planned treatment is then delivered to the patient.

Figure 2.6: Flowchart of a common radiotherapy treatment.

2.2.3.1 Imaging

The CT image gives an estimation of the electronic density of the anatomy,
which is still required to compute the dose distribution in the patient body.
Since this image modality is affected by a lack of contrast between soft tis-
sues, other images have sometimes to be acquired. Depending on the cancer
type, other images such as positron emission tomography (PET) or magnetic
resonance imaging (MRI) can be recommended. A detailed justification of the
importance of MRI in brain cancer is explained in Section 2.4.

2.2.3.2 Delineation

Acquired images are used to determine the position of the target volumes
(TVs) as well as the position of some specific organs. This task is usually
performed by the physician. To determine the position of the TVs, the physi-
cian defines the borders of regions of interest on the image that corresponds
to the gross tumor volumes (GTVs). This operation is known as delineation.
It is generally performed by drawing contours on two dimensional (2D) slices
extracted from the 3D CT. The delineated region of interest, is made up of
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several 2D shapes from different slices of the image. As there are assumptions
of microscopic spread of cancerous cells around the tumors, margins are added
around the GTV. The new volume, called clinical target volume (CTV), takes
into account cancerous cells that may not be seen on the image. A third vol-
ume, the planning target volume (PTV), is created as an extension of the CTV
and takes into account the uncertainties in planning and treatment delivery.
It is a geometric volume designed to ensure that the prescribed radiation dose
is correctly delivered to the CTV. Critical organs have to be delineated to
ensure that they do not receive a higher-than-safe dose. There exist different
specifications for each of the organs. In some cases, as for the PTV, an extra
margin is added around the organ to take into account the uncertainties. De-
pending on the localization of the tumor, the delineation stage can take up to
2 hours.

2.2.3.3 Dose prescription

During this stage the physician evaluates the tumor propagation in the patient
body by using staging system such as ”tumor-nodes-metastasis” (TNM) and
makes the appropriate prescription. The prescription includes, among oth-
ers, the number of fractions and the dose the tumour has to receive. Those
prescriptions must follow the recommendations made by the International
Commission on Radiation Units and Measurements (ICRU) (reports ICRU
50, ICRU 62 and ICRU 83).

2.2.3.4 Dose distribution computation

The delineated images and the prescriptions are then given to the physicist
who computes the dose distribution. The physicist tries to find the best
trade-off between maximizing the dose on the PTV and preserving the critical
healthy structures.

2.2.3.5 Treatment Delivery

According to the treatment modality selected, treatment delivery will be either
fractionated during several weeks, with one daily session without including
the weekend, or delivered in a single session. Regardless of the treatment
technique used, during each of these sessions, the patient receives a fraction
of the planned dose.
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Figure 2.7: Transversal, coronal and sagittal dose distribution and DVH in-
formation. Graphs: PTV (1), left eye (2), right eye (3), right optic nerve (4),
left optic nerve (5), chiasma (6), brainstem (7), spinal cord (8).

2.3 Effects of radiation on biological tissues

A major goal of RT is to deprive cancer cells of their multiplication poten-
tial and eventually kill the cancer cells. However, radiation will also damage
healthy cells. Hence, the main goal of a radiation therapy treatment be-
comes to deliver sufficient dose to the tumor, while ensuring that the healthy
tissue around the tumor is spared as much as possible. Particularly in treat-
ments that include SRS, where radiation dose is considerably higher, setup
or localization errors might result in severe overdosing of the adjacent normal
healthy tissue. This over exposition to radiation may lead to progressive and
irreversible complications to the brain, which often occur months or years
after treatment. These critical structures to be preserved are referred to as
Organs at Risk (OARs).

To deliver the correct radiation dose, the radiation oncologist or neuro-
surgeon must consider not only the effects of treatment on the tumor but
also the consequences on normal tissues. These two objectives cannot be fully
achieved simultaneously, because both the probability of undesirable effects of
radiotherapy on normal tissues and the probability of tumor control increase
with the delivered dose (Figure 2.8). The two sigmoid curves respectively refer
to the tumor control probability (TCP, grey curve) and to the normal tissue
complication probability (NTCP, red curve). In clinical applications, the effec-
tiveness of radiotherapy is measured by the therapeutic ratio (TCP/NTCP)
which ideally should be as high as possible. Typical values in a good radio-
therapy treatment are higher than 0.5 for the TCP, and lower than 0.05 for
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the NTCP.

Figure 2.8: The principle of therapeutic ratio. Grey curve represents the
TCP, and red curve the probability of complications. The total clinical dose
is usually delivered in 2Gy fractions in EBRT.

2.3.1 Organs at Risk

During radiotherapy treatment planning, the normal tissues / critical organs
within the radiation beam and at the vicinity of the tumor receive a higher
amount of radiation dose, and sometimes may be equal to the tumor dose,
which causes normal tissue injury.

The focus of this section is therefore on providing a background in the
anatomy that underlies the images that we are attempting to segment. Un-
derstanding the role of each of these organs is crucial to comprehend how an
overdose may damage their primary functions leading to a decrease of the
life’s quality of the patient.

Figure 2.9: Organs at Risk commonly involved in brain tumor radiation treat-
ment.



2.3. Effects of radiation on biological tissues 15

2.3.1.1 Brainstem

The brainstem, or brain stem, is one of the most basic regions of the human
brain. Despite this, it is one of the most vital regions for our body’s survival.
It represents one of the three major parts of the brain, which controls many
important body functions. In the anatomy of humans it is the posterior part
of the brain, adjoining and structurally continuous with the spinal cord. It
is usually described as including the medulla oblongata (myelencephalon),
pons (part of metencephalon), and midbrain (mesencephalon). Though small,
this is an extremely important part of the brain as the nerve connections
of the motor and sensory systems from the main part of the brain to the
rest of the body pass through the brainstem. This includes the corticospinal
tract (motor), the posterior column-medial lemniscus pathway (fine touch,
vibration sensation, and proprioception), and the spinothalamic tract (pain,
temperature, itch, and crude touch). The brainstem also plays an important
role in the regulation of cardiac and respiratory function. It also regulates
the central nervous system, and is pivotal in maintaining consciousness and
regulating the sleep cycle.

2.3.1.2 Eyes

Eyes are the organs of vision. They detect light and convert it into electro-
chemical impulses in neurons. The different parts of the eye allow the body
to take in light and perceive objects around us in the proper color, detail
and depth. This allows people to make more informed decisions about their
environment. If a portion of the eye becomes damaged, one may not be able
to see effectively, or lose vision all together.

Optic nerves join about half way between the eye and brain, and then split
up again. The join is called the optic chiasm. At the join, signals from the
’nose’ side of each eye’s visual world swap sides and continue traveling along
the opposite side from where they started. The two optic nerves then join on
to the brain. The brain is split into two halves, right and left. This means
all the signals from the visual world on the right hand side are now traveling
in the left side of the brain. It also means that all the signals from the visual
world on the left hand side are now traveling in the right half of the brain.

The information then travels to the many different special ’vision’ areas of
the brain. The main bit of the brain that works vision is at the back of the
head. It is called the occipital lobe. The joined up path that signals travel
down from retina to optic nerve then optic chiasm then occipital lobe is called
the visual pathway. There are two visual pathways, one on the right side of
the brain and another on the left. All parts of both visual pathways need to
be present and working for us to see normally.



16 Chapter 2. Introduction

2.3.1.3 Optic Nerves

The optic nerves are located in the back of the eyes. However, although the
optic nerve is part of the eye, it is considered to be in the central nervous
system. The optic nerve is the nerve that carries the neural impulses created
by the retina to the brain, where this information is interpreted. At a structure
in the brain called the optic chiasm, each optic nerve splits, and half of its
fibers cross over to the other side. The crossing over of optic nerve fibers
at the optic chiasm allows the visual cortex to receive the same hemispheric
visual field from both eyes. Superimposing and processing these monocular
visual signals allow the visual cortex to generate binocular and stereoscopic
vision.

Any damage or disorder on the optic nerves will always impact vision in
some way and might affect either one or both eyes.

2.3.1.4 Optic Chiasm

The optic chiasm is located in the forebrain directly in front of the hypotha-
lamus. Crucial to sight, left and right optic nerves intersect at the chiasm.
One-half of each nerve’s axons enter the opposite tract at this location, making
it a partial decussation.

We have seen that the optic nerves send electrical signals from each eye
to meet in the brain at the optic chiasma. Here, the left visual signal from
one eye is combined with the other eye and the same goes for the right visual
signal. Now the signals split again. The right visual heads for the left brain
and the left visual makes its way to the right side of the brain. This way,
visual messages from both eyes will reach both halves of the visual cortex.
The brain then merges the image into one image which you are looking out at
the world with. This partial crossing of the nerve fibers at the optic chiasm
(or chiasma) is the reason why we humans have stereoscopic sight and a sense
of depth perception.

2.3.1.5 Pituitary Gland

The pituitary gland is a pea-sized structure located at the base of the brain,
just below the hypothalamus and attached to it by nerve fibers. It is part of the
endocrine system and produces hormones which control other glands as well as
various bodily functions. The pituitary is divided into three sections known as
the anterior, intermediate and posterior lobes, each of which produces specific
hormones. The anterior lobe is mainly involved in development of the body,
sexual maturation and reproduction. Hormones produced by the anterior lobe
regulate growth and stimulate the adrenal and thyroid glands as well as the
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ovaries and testes. It also generates prolactin, which enables new mothers to
produce milk. The intermediate lobe of the pituitary gland releases a hormone
which stimulates the melanocytes, cells which control pigmentation through
the production of melanin. The posterior lobe produces antidiuretic hormone,
which reclaims water from the kidneys and conserves it in the bloodstream to
prevent dehydration. Oxytocin is also produced by the posterior lobe, aiding
in uterine contraction during childbirth and stimulating the production of
milk.

2.3.1.6 Hippocampus

The hippocampus is a small region of the brain that belongs to the limbic
system and is primarily associated with memory and spatial navigation. The
hippocampus is located in the brain’s medial temporal lobe, underneath the
cortical surface. Its structure is divided into two halves which lie in the left
and right sides of the brain. The hippocampus is responsible for long-term,
or "declarative" memory, and spatial navigation. Long term memory is like a
compilation of data in our conscious memory and all of our gathered knowledge
and experiences. The hippocampus is involved in the storage of all of this data.
In some neurological disorders, such as Alzheimer’s disease, the hippocampus
is one of the first regions of the brain to become damaged and this leads to
the memory loss and disorientation associated with the condition. Individuals
with hippocampal damage develop amnesia and may be unable to form new
memories of the time or location of an event, for instance.

2.3.2 Dose limits

For the OARs typically involved in RTP some of the tolerance limits are
presented in table 2.1.

2.4 The role of Structural MRI in brain tumor
radiation treatment

During the last decades, medical imaging, which was initially used for basic
visualization and inspection of anatomical structures, has evolved to become
an essential tool for diagnosis, treatment and follow-up of patient diseases.
Particularly, in oncology, image evolution has improved the understanding
of the complexities of cancer biology, cancer diagnosis, staging, and progno-
sis. Advanced medical imaging techniques are thus used for tumor resection
surgery (i.e. pre-operative planning, intra-operative, post-operative), and for
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Dose level limit(Dmax)
OAR Radiotherapy

Hippocampus 16Gy (IMRT - fractionation 10x3Gy) [15]
Brainstem 45Gy (IMRT - fractionation 20x1.8Gy + 10x(1.8Gy+1.6Gy)) [16]

Eyes(Retina) 40Gy (IMRT - fractionation 30x2Gy) [17]
Eyes(Lens) As low as possible [17]
Cochlea 45Gy (conventionally fractionated RT) [18]
Chiasma 54Gy (IMRT - fractionation 30x2Gy) [17]

Optic Nerve 54Gy (IMRT - fractionation 30x2Gy) [17]
OAR Radiosurgery

Hippocampus -

Brainstem volume 0.1 cc / Dose limit = 10Gy [19]
volume 0.1 cc / Dose limit=12Gy [20]

Eyes(Retina) 5Gy [21]
Eyes(Lens) 3Gy [21]

Cochlea 12Gy [19]
10Gy [22]

Chiasma volume 0.2CC / Dose limit = 8Gy [19]

Optic Nerve volume 0.2CC / Dose limit = 8Gy
[19,23–25]

Table 2.1: Dose limits for the OARs in both radiotherapy and radio-surgery.

subsequent radiotherapy treatment planning (RTP). There exists a wide range
of medical imaging modalities that allows neuro-scientists to see inside a liv-
ing human brain. Early imaging methods, invasive and sometimes dangerous,
have been abandoned in recent times in favor of non-invasive, high-resolution
modalities, such as computed tomography (CT), and especially structural
magnetic resonance imaging (MRI). However, to outline the normal brain
structures in great detail, the MRI has a higher sensitivity for detecting the
presence of, or changes within, a tumor. It is therefore perfectly suited for
anatomic visualization of the human body such as deep structures and tis-
sues of the brain. For this reason, and because MRI does not rely on ioniz-
ing radiation, MRI has gradually supplanted CT as the mainstay of clinical
neuro-oncology imaging, becoming the preferred modality for the diagnostic,
follow-up and planning treatments of brain lesions [26].

Additional advantage of MRI is offered by the ability to directly obtain
images in planes other than axially, as with CT. The high contrast resolu-
tion noted with MRI over CT offers better clarity and easier diagnosis and
demarcation of soft tissues or lesions in most situations. We can therefore say
that structural Magnetic Resonance Imaging plays a central and crucial role
in brain tumor radiation treatment (RT) assessment.

The typical MR scan for a patient with a brain tumor includes T1/T2-
weighted, fluid-attenuated inversion recovery (FLAIR), and post-contrast T1-
weighted images (Figure 2.10). T1-weighted images are most useful for de-
picting anatomic detail and show cerebrospinal fluid and most tumors as low
signal intensity, whereas areas of fat and subacute hemorrhage appear as high
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signal intensity. T2-weighted images are more sensitive for lesion detection
and show cerebrospinal fluid and most lesions as high signal intensity, whereas
areas of hemorrhage or chronic hemosiderin deposits may appear as low signal.
FLAIR images are T2-weighted with low signal cerebrospinal fluid, are highly
sensitive for pathology detection, and display most lesions, including tumors
and edema, with higher signal intensity than T2 images. However, the tumor
focus in FLAIR or T2 images is not well separated from surrounding edema,
gliosis, or ischemic changes. T1-weighted images after contrast enhancement
generally provide better localization of the tumor nidus and improved diag-
nostic information relating to tumor grade, blood-brain barrier breakdown,
hemorrhage, edema, and necrosis. Contrast-enhanced T1-weighted images
also show small focal lesions better, such as metastases, tumor recurrence,
and ependymal or leptomeningeal tumor spread. The T1-weighted enhance-
ment of a contrast agent is attributed to blood-brain barrier leakage associated
with angiogenesis and capillary damage in regions of active tumor growth and
radiation injury [27].

Figure 2.10: MRI modalities commonly employed in the RTP. From left to
right: T1, T1-Gadolinium, T2 and FLAIR modalities.

MRI imaging sequences are composed of multiple slices, which positions
and thickness might be different from one modality to another, as shown
in Figure 2.11. The red, blue and green rectangles refer to commonly used
imaging directions to the MRI slices.

The fact that most cranial contouring is performed on the MRI means that
an excellent registration between the CT and MRI scans is essential in order
to have confidence in the position of the contours during dose calculation. In
general the skull provides a good reference point which prevents too much
deformation of the cranium, allowing good results to be achieved using rigid
registration techniques. However, because of the long acquisition times of MRI
scans, the patient couch is typically designed with greater comfort in mind
than the RT treatment couch, and this can mean there is some deformation
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Figure 2.11: The selection of directions of MRI slices.

in the neck area, which can make an overall good fit hard to achieve, instead
the oncologist must choose which region to prioritize in the fitting.

2.5 Need of automatization of the OARs seg-
mentation process

Because RT and SRS involve the delivery of a very high dose of radiation,
both tumor and surrounding tissue must be precisely delineated. Particularly
for the OARs, their volume measurements and localizations are required to
constrain the risk of severe toxicity. These segmentations are therefore crucial
inputs for the RTP, in order to compute the parameters for the accelerators,
and to verify the dose constraints.

As it has been previously discussed, among available image modalities MRI
images are extensively used to segment most of the OARs. The delineation
task performed manually by experts, or with very few machine assistance [28],
is highly time consuming, and there exists significant variation between the
labels produced by different experts [29, 30]. For some OARs with clearly
defined boundaries these are likely to be on the order of only a few voxels,
but for many organs with reduced contrast a difference of 2 cm or more be-
tween contour lines is not uncommon, creating large variations in the volumes
contoured by different oncologists. Radiation oncologists, radiology technolo-
gists, and other medical specialists spend, therefore, a substantial portion of
their time to medical image segmentation. Furthermore, recent investigations
have shown that the effects of inter-variability in delineating OARs have a
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significant dosimetric impact [31].
Consequently, the role of delineating contours on a patient’s MRI scan is

a highly skilled one, which must be carefully supervised by the physician in
charge of treatment. The mean time typically spent to analyze and delineate
OAR on a brain MRI dataset has been evaluated to 86 min [5], engaging
valuable human resources.

If by automatizing this process it is possible to achieve a more repeatable
set of contours that can be agreed upon by the majority of oncologists this
would improve the quality of treatment. Additionally, any method that can
reduce the time taken to perform this step will increase patient throughput
and make more effective use of the skills of the oncologist.

Uncertainty and Choice. Contours approved by the oncologist or re-
quiring minor tricks for a few features is highly expected for any automatic
segmentation process. indeed, if the physician spends more time making mod-
ifications than it would have taken them to contour by hand, then the purpose
of the segmentation algorithm is lost.

To overcome these major issues, various computer-aided systems to (semi-)
automatically segment anatomical structures in medical images have been de-
veloped and published in recent years. However, brain structures (semi-)
automatic segmentation still remains challenging, with no general and unique
solution. Because all the aforementioned reasons, and as the number of pa-
tients to be treated increases, OARs cannot always be accurately segmented,
which may lead to suboptimal plans [32]. This makes the introduction in
clinical routine of an automated OARs segmentation assisted tool highly de-
sirable.





Chapter 3

Segmentation methods for brain
structures: State of the art

“ The most difficult thing is the decision to act, the rest is merely tenacity.”
Amelia Earhart

This chapter provides an overview of the state of the art in the field of seg-
mentation of brain structures. Methods referenced in this chapter are applied
in various fields, not being restricted to radiotherapy. However, despite the
large number or techniques proposed to segment different regions of the brain,
only those approaches focusing on the critical structures detailed in 2.3.1 are
included.

3.1 Introduction

Image segmentation represents the problem of partitioning an image in a se-
mantically purposeful way. Subdivision of the image into meaningful regions
allows that a compact and easier representation of the image can be achieved.
Grouping of the pixels is done according to a predefined criterion. This crite-
rion can be based on many factors, such as intensity, color, or texture similari-
ties, pixel continuity, and some other higher level knowledge about the objects
model. For many applications, segmentation reduces to find an object in a
given image. This involves partitioning the image only into two classes of re-
gions. These two classes can be either the object or the background (Fig. 3.1).
Thus, image segmentation is often an essential step in further image analysis,
object representation, visualization and many other image processing tasks.

3.2 Medical imaging segmentation

Since image segmentation plays a central role in retrieving meaningful infor-
mation from images, the effective extraction of all the information and fea-
tures contained in multidimensional images is of increasingly importance in
this field. Medical field provides an interesting source of images. In their raw
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Figure 3.1: Image segmentation example. Original image (left) is segmented
into four class regions (center), and into two class regions (right).

form, medical images are represented by arrays of numbers depicting quanti-
ties that show contrast between different types of body tissue. Voxel values
may vary depending on the image modality, type of tissue or some acquisition
parameters. Processing and analyzing medical images are useful to transform
this raw information into a quantifiable symbolic form. The extraction of this
meaningful quantitative information can aid in diagnosis, as well as in inte-
grating complementary data from multiple imaging modalities. Therefore, in
medical image analysis, segmentation has a great clinical value since it is of-
ten the first step in quantitative image analysis. For instance, segmentation
of medical images aims at identifying the target anatomy or pathology and
delineating the boundary of structures of interest for computer aided diagnosis
(CAD) purpose or for planning therapy. Image segmentation plays, therefore,
an important role in numerous medical applications [33].

However, medical image segmentation distinguishes itself from conven-
tional image segmentation tasks and still remains generally challenging. First,
many medical imaging modalities generate very noisy and blurred images due
to their intrinsic imaging mechanisms. Particularly, in radiation oncology,
radiologists tend to reduce acquisition times on CT and MRI for better pa-
tient acceptance. Second, medical images may be relatively poorly sampled.
Many voxels may contain more than only one tissue type, which is known as
Partial Volume Effect (PVE) (See figure 3.2). When this occurs, the intensity
of a given voxel depends not only on the tissue properties, but also on the
proportions of each tissue type present in the voxel. As a consequence, loss
of contrast between two adjacent tissues is likely to occur, making the delin-
eation more difficult. In addition to these effects, it might also happen that
some tissues or organs of interest share similar intensity levels with nearby
regions, leading to a lack of strong edge or ridge information along the bound-
aries of the object. In these cases, structures of interest are very difficult to
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be separated from its surroundings. If the object to be segmented has a com-
plex shape, this lack of contrast along the boundaries makes the segmentation
even harder. Last, besides of the image information, higher level knowledge
of anatomy and pathology is critical for medical image segmentation. Medical
images have usually complex appearance due to the complexity of anatomic
structures. Medical expertise is therefore required to understand and inter-
pret the image so that the segmentation algorithms could meet the clinicians’
needs.

Figure 3.2: Partial volume effect caused by effects of finite voxel size when
imaging a circle. The green area in the left image has value 10 and the white
area has value 0. Imaging this circle with 9 voxels results in the right figure.

Despite these drawbacks, recent developments of medical imaging acqui-
sition techniques, such as CT MRI have allowed to increase the resolution of
images which have greatly assisted in clinical diagnosis. Nevertheless, these
advances have not only significantly improved the resolution and information
captured in the diverse image modalities, but also have led to an increase of
the amount of data to be analyzed. Additionally, data complexity has been
also affected. This increment in complexity has forced to medical technicians
to process a large number of images with much more details.

3.3 Segmentation in neuroimaging

Initial approaches of brain segmentation on MRI focused on the classification
of the brain into three main classes: white matter (WM), grey matter (GM)
and cerebrospinal fluid (CSF) [34]. During the last two decades, the segmen-
tation of the whole brain into the primary cerebrum tissues (i.e. CSF, GM,
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and WM) has been one of the core challenges of the neuroimaging commu-
nity, leading to many publications. Nevertheless, it is still an active area of
research [35, 36]. More recent methods include tumors and adjacent regions,
such as necrotic areas [37]. Those methods are only based on signal intensity.
However, segmentation of subcortical structures (i.e. OARs) can hardly be
achieved based solely on signal intensity, due to the weak visible boundaries
and similar intensity values between different subcortical structures. Conse-
quently, additional information, such as prior shape, appearance and expected
location, is therefore required to perform the segmentation.

Due to the crucial role of the hippocampus (HC) in learning and memory
processes [38] and its role as biomarker for the diagnosis of neural diseases,
such as Parkinson, dementia or Alzheimer [39], many methods have been
published to (semi-) automatically segment the HC on MRI [40–55]. Among
presented methods to segment the HC, atlas-based, statistical and deformable
models have been typically employed.

Segmentation approaches of other brain structures, in addition to the HC,
have been investigated. For instance, segmentation of corpus callosum has
been approached by parametric [56] and geometric [57] deformable models.
An active shape model method was employed in [58] to segment the mid brain
on MR images. Other researchers have focused on a set of different subcortical
and cerebellar brain structures instead, proposing several approaches: active
shape and appearance models [59–64], atlas-based methods [65–69],deformable
models [70–72] or machine learning approaches [73–76].

Notwithstanding, the number of publications focusing on segmentation of
structures involved in the RTP is relatively lower. In addition, although good
performance has been often reported for some of these structures, evaluation
of proposed methods has been made on control and on several mental disorders
patients, such as Schizophrenia or Alzheimer. Nevertheless, in brain cancer
context, the presence of tumors may deform other structures and appear to-
gether with edema that changes intensity properties of the nearby region,
making the segmentation more challenging.

There exist, however, a reduced number of approaches that have already
attempted to segment some OARs and brain structures in patients undergoing
radiotherapy [5, 6, 32, 77–80]. While for large structures results were often
satisfactory, automatic segmentation of small structures were not sufficiently
accurate for being usable in RTP in most cases. An atlas-based approach
to segment the brainstem was validated in brain cancer context in [5]. In
the work of [78], whilst segmentation of large structures was considerably
suitable for RTP, optic chiasm and pituitary gland segmentations were totally
unsuccessful. In other attempt to evaluate an automatic approach on a clinical
environment, [6] also reported unsatisfactory results for small OARs such as



3.4. Atlas-based segmentation methods 27

the chiasm. Despite insufficient results reported on small OARs, previous
works demonstrated that the introduction of automatic segmentation methods
may be useful in a clinical context.

The objective of this chapter is to provide the reader with a summary of the
current state of the art with regard to approaches to segment subcortical brain
structures. As it has been reported in the previous section, a large number of
techniques have been proposed over the years to segment specific subcortical
structures in MRI. However, we are interested in those techniques which are
typically applicable to subcortical brain structures in general. In the presented
work, we mainly focus on minimally user-interactive methods -automatic or
semi-automatic -, which are not tailored to one or few specific structures, but
applicable in general. Thus, methods presented in this chapter can be divided
into four main categories: atlas-based methods, statistical models, deformable
models and machine learning methods.

3.4 Atlas-based segmentation methods

The transformation of brain MRI segmentation procedures from human expert
to fully automatic methods can be witnessed by exploring the atlas-based
methods. Segmentation by using atlas-based methods can be divided into the
following main steps: atlas construction, registration between the atlases and
the target image, and optionally atlas selection and label fusion (Figure 3.3).

Figure 3.3: Typical atlas-based segmentation workflow where multiple atlases
are employed.

3.4.1 Atlas build-up

First attempts at atlas construction of the human brain were based on a single
subject. Here, a single atlas image is used to perform the segmentation [66].
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This atlas, referred as topological, single-subject or deterministic atlas, is usu-
ally an image selected from a database to be representative of the dataset to be
segmented, in terms of size, shape and intensity for instance. Particularly, for
follow-up of patient’s disease where segmentation of brain structures should
be performed on longitudinal studies (i.e. at different time point along the
treatment), the use of single-atlas based segmentation method to propagate
segmented structures obtained at one time point to another time point is gen-
erally sufficient. However, in applications where no prior image of the patient
can be used as atlas, the segmentation using single-atlas based methods of
anatomical structures presenting wide variability between humans becomes
challenging, and might lead to poor results.

To overcome the limitations encountered with single-atlas based method,
multiple atlases can be used [5,44–46,49,50,54,65,67–69,81] . In this approach,
multiple atlas images are selected from a database of images representative of
the image to be segmented. Each atlas image is then registered to optimally
fit the target image. Subsequently, using the deformation resulting from reg-
istration, the atlas labeled image is deformed. At this stage, multiple labeled
images are fitted to the target image. At last, propagated labeled images are
fused, providing the final segmentation. Beside the registration method used,
performance of multi-atlas segmentation methods depends on: 1) the atlas
building, 2) the atlas selection (Section 2.3), and 3) the label fusion method
(Section 2.4) used. The major drawback of multi-atlas based segmentation
methods remains the computation cost since it increases with the number of
atlases selected.

A limitation of the multi-atlas based segmentation methods is that individ-
ual differences that occur in only a minority of the atlases could be averaged
out. Hence, segmentation results might be biased, particularly for MRI scans
presenting some pathologies. To address this issue, probabilistic atlases are
used. This third category of atlases estimates a probabilistic model of the
input images, either from a probabilistic atlas or a combination of topological
atlases. For a more detailed explanation see the work of Cabezas et al. [82]

3.4.2 Image Registration

Image registration is a prerequisite to perform atlas-based segmentation. The
registration process is used to spatially align an atlas A and the target image
T. For our segmentation purpose, the registration process involved is necessar-
ily based on non-rigid approaches to tackle inter-individual spatial variation.
Various image registration methods exist and have been applied to many med-
ical application domains. We refer the reader to the publications of Hill et
al. [83] and Zitova and Flusser [84] for an overview of the image registra-
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tion methods, regardless of particular application areas. A review of image
registration approaches specifically used in brain imaging is available in the
publication of Toga and Thompson [85]. The main contributions, advantages,
and drawbacks of existing image registration methods are addressed.

3.4.3 Atlas selection

Normal individual variations in human brain structures present a significant
challenge for atlas selection. Some studies demonstrated that, although the
use of more than only one topological atlas improves the accuracy of the
segmentation, it is not necessary to use all the cases in a dataset for a given
query image [49, 54, 66–68, 86, 87]. Among the existing solutions to choose
the best matching cases, the use of meta-information is the simplest case. In
this solution, which can be also called population specific atlases, an average
atlas is built for several population groups according to similar features, like
gender or age. Although they represent the simplest solution, the use of
meta-information has proved to be a powerful similarity criterion when used
in multi-atlas segmentation [67]. However, this information may not be always
available, requiring the use of similarity metrics to compare both atlas and
target image.

Initially, the majority of published works used a single individual image
randomly selected from the atlas dataset, where the selection criterion was not
even mentioned. The optimal selection of a single template from the entire
dataset during atlas-based segmentation and its influence in the segmentation
accuracy was investigated in [86]. Han et al. [87] compared the selection of a
single atlas against the propagation and fusion of their entire atlas database.
In their work, the selection of the single atlas was based on the highest Mutual
Information (MI) similarity between atlases and the target image after a global
affine registration. Multi-atlas segmentation strategy significantly improved
the accuracy of single-atlas based strategy, especially in those regions which
represented higher dissimilarities between images. Additionally to MI, Sum
of squared differences (SSD) or cross-correlation (CC) are often used as a
similarity metric to select the closest atlas with respect to the target image.

Aljabar et al. [67] proved that using multi-atlas selection when segmenting
subcortical brain structures improves the overlapping than when using random
sets of atlases. In their work, a dataset of 275 atlases was used. As in [87], MI
similarity was used to top-rank the atlases from the dataset. Then, the n top
ranked atlases from the list were selected to be propagated to the target image
by using a non-rigid registration. Mean DSC obtained by selecting the top-
ranked atlases (0.854) was higher than the DSC obtained randomly selecting
the atlases (0.811). This difference represents nearly 4% of improvement,
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demonstrating that the selection of a limited number of atlases which are
more appropriate for the target image and prior to multi-atlas segmentation,
would appear preferable to the fusion of an arbitrarily large number of atlases.

The inclusion in the label propagation step of atlases containing high dis-
similarities with respect to the target image, may not make the segmentation
more accurate, but contribute to a poorer result. Consequently, the proper
selection of the atlases to include in the label propagation is a key step of the
segmentation process.

3.4.4 Label fusion

Once the suitable atlases have been selected from the atlas dataset and labels
propagated to the target image, information from transferred labels has to be
combined to provide the final segmentation [44–46,49, 50, 52, 54, 65, 67, 69, 81,
86,88,89]. This step is commonly referred as label fusion or classifier fusion.

Label fusion techniques known as best atlas and majority voting approach
represent the simplest strategies to combine the propagated labels. In best
atlas technique, after the registration step, the labels from the most similar
atlas to the target image are propagated to yield the final segmentation. In
majority voting method, votes for each propagated label are counted and the
label receiving the most votes is chosen to produce the final segmentation
[45, 65, 67]. Since majority voting assigns equal weights to different atlases,
it makes a strong assumption that different atlases produce equally accurate
segmentations for the target image.

To improve label fusion performance, recent work focuses on developing
segmentation quality estimations based on local appearance similarity and
assigning weights to the propagated labels. Thus, final segmentation is ob-
tained by increasing the contribution of the atlases that are more similar to
the target scan [44–46, 49, 50, 54, 66, 86]. Among previous weighted voting
strategies, those that derive weights from local similarity between the atlas
and target [44, 46, 49, 50], and thus allow the weights to vary spatially, have
demonstrated to be a better solution in practice. Hence, each atlas contributes
to the final solution according to how similar to the target they are. However,
the computation of the weights is done independently for each atlas, and the
fact that different atlases may produce similar label errors is not taken into
account. This assumption can lead to labeling inaccuracies caused by replica-
tion or redundancy in the atlas dataset. To address this limitation, a solution
for the label fusion problem was proposed [54]. In this work the weighted vot-
ing was formulated in terms of minimizing the total expectation of labeling
error and the pairwise dependency between atlases was explicitly modeled as
the joint probability of two atlases making a segmentation error at a voxel.
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Hence, the dependencies among the atlases were taken into consideration, and
the expected label error was reduced in the combined solution.

Another remarkable example of producing consensus segmentations, es-
pecially in the context of medical image processing, is the algorithm named
Simultaneous Truth and Performance Level Estimation (STAPLE) [89]. STA-
PLE approach, instead of using an image similarity metric to derive the clas-
sifier performance, estimates the classifier performance parameters by com-
paring each classifier to a consensus, in an iterative manner according to the
Expectation Maximization (EM) algorithm. In order to model miss regis-
trations as part of the rater performance, a reformulation of STAPLE with a
spatially varying rater performance model was introduced [88]. More recently,
Cardoso et al. [52] extended the classical STAPLE approach by incorporat-
ing a spatially image similarity term into a STAPLE framework, enabling
the characterization of both image similarity and human rater performance
in a unified manner, which was called Similarity and Truth Estimation for
Propagated Segmentations (STEPS). At last, a novel reformulation of the
STAPLE framework from a non-local perspective, called Non-local Spatial
STAPLE [69], was used as a label fusion algorithm [81].

3.4.5 Joint segmentation-registration

It is important to note that most atlas-based methods presented perform reg-
istration and segmentation sequentially. Nevertheless, there exist approaches
that exploit complementary aspects of both problems to segment either several
tissues [90–95] or tumors [96,97]. The idea of joining registration and segmen-
tation has been utilized by boundary localization techniques using level set
representation [57]. These methods relate both problems to each other by
extending the definition of the shape to include its pose.

In the work of Yezzi et al. [90], a variational principle for achieving simulta-
neous registration and segmentation was presented. However, the registration
step was limited to rigid motions. Another variational principle in a level-set
based formulation was presented in the work of Paragios et al. [91] to jointly
segment and register cardiac MRI data. A shape model based on a level set
representation was constructed and used in an energy to force the evolving
interface to rigidly align with the prior shape. The segmentation energy was
separately involved as a boundary and region based energy model. In their
work, again, the proposed formulation was limited to rigid motion. Departing
from earlier methods, Wang et al. [93] proposed a unified variational principle
where segmentation and non-rigid registration instead, were simultaneously
achieved. Unlike previous approaches, their algorithm could accommodate
for image pairs presenting a high variation on intensity distributions. Among
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other applications of this work, 3D hippocampal segmentation was presented.
Wu et al. [95] also benefit from joint segmentation and registration to address
the problem of segmentation of infant brains from subjects at different ages.
In their work, tissue probability maps were separately estimated by using
only training at the respective age. Probability maps were then employed as
a good initialization to guide the level set segmentation. Some of these work
have shown the improvements of coupling segmentation and registration with
respect to their isolated use. Nevertheless, the use of this technique to seg-
ment some of the structures of interest for our particular problem is minimal,
with very few published works [93].

3.4.6 Strengths and Weaknesses

Nearly all atlas-based techniques require some sort of image registration at
the initial stages. That means that the success of the atlas propagation highly
depends on the registration step. Regarding the creation of the atlases, they
are relatively simply to build: any segmentation can be suitable for being an
atlas.

The use of a single atlas to propagate segmented structures within a single
patient (i.e. at different time point along the treatment for a given patient) is
generally sufficient. However, in intra-patients situations presenting wide vari-
ability between humans the use of only one atlas might lead to unsatisfactory
results. The use of more than one atlas improves segmentation quality in these
situations. By increasing the number of atlases in the database, the method
becomes more representative of the population and more robust when pro-
cessing target images that can represent possible deviations. However, when
working with multiple atlases, the key point is to determine which atlas must
be used, that is not too different from the target image. To achieve this, some
similarity metrics are used after the registration step and hence the choice of
the closest atlas among all the others in the database. Alternatively to select
the closest atlas to the target image, several atlases can be propagated, leading
to multiple candidate segmentations that have to be merged at the end of the
process. Merging of candidates is performed by label-fusion methods with the
risk that these methods can generate organs with disconnected pieces, which
is often hardly plausible from an anatomical point of view.

From a clinical perspective, recent clinical evaluations of the final segmen-
tations still reveal the need of manual editing or correction of the automatic
contours [98]. Additionally, the definition of an appropriate atlas or a set of
appropriate atlases remains still an open question. Furthermore, no consensus
exists on inclusion/exclusion rules of a given patient in a database, or in the
numbers of patients to be included [67, 86]. Because of all these constraints,
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atlas-based segmentation techniques still suffer from a slow adoption by the
physicians in clinical routine.

One of the main limitations of atlas-based methods is that the contours
included in the atlases contain prior knowledge about organs pictured in the
image which is not exploited. To perform the segmentation, these contours
are merely deformed. As a consequence, most of the information conveyed
by the contours, such as shape or appearance, remains implicit and likely
underexploited. Statistical models are an alternative that address this issue
by making a more explicit use of such prior information to assist the image
segmentation. Unlike atlases, the images are not registered but the shapes
and, sometimes, the appearance of the organ, are learned in order to be found
in a target image.

3.5 Statistical models

Statistical models (SM) have become widely used in the field of computer vi-
sion and medical image segmentation over the past decade [48,58–64,99–113].
Basically, SMs use a priori shape information to learn the variation from a
suitably annotated training set, and constrain the search space to only plau-
sible instances defined by the trained model. The basic procedure of SM of
shape and/or texture is as follows: 1) the vertices (control points) of a struc-
ture are modeled as a multivariate Gaussian distribution; 2) shape and texture
are then parameterized in terms of the mean and eigenvectors of both the ver-
tex coordinates and texture appearance; 3) new instances are constrained to
a subspace of allowable shapes and textures, which are defined by the eigen-
vectors and their modes of variation. Consequently, if the dimensionality of
the shape representation exceeds the size of the training data, the only per-
missible shapes and textures are linear combinations of the original training
data.

3.5.1 Training Phase. Construction of the statistical
model

3.5.1.1 Modelling the shape

Statistical shape model (SSM) construction basically consists in extracting
the mean shape and a number of modes of variation from a collection of
training samples to represent the possible shapes that the model is able to
generate. Landmarks based method is a generic technique coined as Point
Distribution Models (PDMs) by Cootes et al. [99], which has been extensively
used in SSMs for surface representation. This method regularly distributes
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a set of points across the surface, which usually relies on high curvatures of
boundaries (Figure 3.4. Images courtesy of [114]). However, they do not
need to be placed at salient feature points as per the common definition of
anatomical landmark, which is the reason of why they have also been referred
as semi-landmarks. Among other shape representation models that have been
recently used in medical image segmentation [108] we can identify medial
models or skeletons, meshes, vibration modes of spherical meshes or the use
of wavelets, for example.

Alignment of the training shape samples in a common coordinate frame is
the first step to create the shape model. Once the samples are co-registered,
a reduced number of modes of variation that best describes the variation ob-
served are extracted, which is usually done by applying Principal Components
Analysis (PCA) to the set of vectors describing the shapes [100]. PCA picks
out the main axes of the cloud, and models only the first few, which account
for the majority of the variation. Thus, any new instance of the shape can be
modeled by the mean shape of the object and a combination of its modes of
variations [99].

3.5.1.2 Modelling the appearance

As an extension of the statistical models of shape, the texture variability ob-
served in the training set was included in the model, leading to appearance
models (AMs) [102]. In this approach, in addition to the shape, the inten-
sity variation seen in the training set is also modeled. As in the SSM, the
variability observed in the training set is parameterized in terms of its mean
and eigenvectors. Once the shape has been modeled (See section 3.1.1), the
statistical model of the gray level appearance has to be built. For this pur-
pose, sample images are warped based on the mean shape. Then, the intensity
information from the shape-normalized image is sampled over the region cov-
ered by the mean shape. Different techniques to sample the intensity in the
warped image can be found in the literature [108].

3.5.2 Segmentation Phase. Search algorithm

Once the SM has been created, it is important to define the strategy to search
new instances of the model in the input images. This step consists essentially
in finding the most accurate parameters of the statistical model that best
define a new object. Active shape models(ASM) and active appearance models
(AAM) are the most frequently employed constrained search approaches and
are described below.
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.

Figure 3.4: An example of constructing Point Distribution Models. (a) An
MR brain image, transaxial slice, with 114 landmark points of deep neu-
roanatomical structures superimposed. (b) A 114-point shape model of 10
brain structures. (c) Effect of simultaneously varying the model’s parameters
corresponding to the first two largest eigenvalues (on a bi-dimensional grid)

3.5.2.1 Active Shape Model

Originally introduced by Cootes et al. [99,100], ASM is a successful technique
to find shapes with known prior variability in input images. ASM has been
widely used for segmentation in medical imaging [108], including segmentation
of subcortical structures on brain [58, 61, 63, 101, 103–105, 107, 112, 113]. It is
based on a statistical shape model (SSM) to constrain the detected organ
boundary to plausible shapes (i.e. shapes similar to those in the training data
set). Given a coarse object initialization, an instance of the model can be
fit to the input image by selecting a set of shape parameters defined in the
training phase (see Section 3.1.1).

Original ASM method [100] was improved in [103] by using an adaptive
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gray-level AM based on local image features around the border of the object.
Thus, landmarks points could be moved to better locations during the opti-
mization process. To allow some relaxation in the shape instances fitted by
the model, ASM can be combined with other methods, as in [104]. They em-
ployed a framework involving deformable templates constrained by statistical
models and other expert prior knowledge. This approach was used to segment
four brain structures: corpus callosum, ventricles, hippocampus and caudate
nuclei. Most of the ASMs used in the literature are based on the assumption
that the organs to segment are usually located on strong edges, which may
lead to a final shape far from the actual shape model. Instead, [58] presented a
novel method which was based on the combined use of ASM and Local Binary
Patterns(LBP) as features for local appearance representations to segment the
midbrain. In this way, segmentation performance was improved with respect
to the ASM algorithm.

A major limitation of ASM is the size of the training set (especially in
3D), due to lack of representative data and time needed for model construc-
tion process. Hence, 3D ASMs tend to be restrictive in regard to the range of
allowable shapes, over-constraining the deformation. Zhao et al. [105] over-
came this limitation by using a partitioned representation of the ASM where,
given a PDM, the mean mesh was partitioned into a group of small tiles,
which were used to create the statistical model by applying the PCA over
them. Other techniques focus on artificially enlarging the size of the train-
ing set. Koikkalainen et al. [106] concluded that the two best enlargement
techniques were the non-rigid movement technique and the technique that
combines PCA and a finite element model.

3.5.2.2 Active Appearance Model

The active appearance model (AAM) is an extension of the ASM that, apart
from the shape, models both the appearance and the relationship between
shape and appearance of the object [102]. Since the purpose of this review is
to give a view about the use of these methods in medical image segmentation
(especially of the subcortical structures on MRI), and not to enter into detail
in the mathematical foundations of each methods, we encourage the readers
to review a detailed description of the algorithm in [102].

Initially, Cootes et al. [59] demonstrated the application of 2D AAMs on
finding structures in brain MR images. Nevertheless, they are not suitable for
3D images in their primary form because of the underlying shape representa-
tion (i.e. PDM) that becomes impractical in 3D. Some approaches extended
them to higher dimension by using non-linear registration algorithms for the
automatic creation of a 3D-AAM. Duchesne et al. [60] segmented medial tem-
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poral lobe structures by including nonlinear registration vector fields into a
3D warp distribution model.

However, a number of considerations have to be taken into account in
adapting a generic AAM approach to a specific task. Babalola et al. [109]
built AAMs of some subcortical structures using groupwise registration to
establish correspondences, i.e. to initialize the composite model within the
new image. To build the AAMs, the intensities along vectors normal to the
surface of the structures were sampled, which is known as profile AAM. In [62],
the proposed approach used a global AAM to find an approximate position
of all the structures in the brain. Once the coarse localization was found,
shape and location of each structure were refined by using a set of AAMs
individually trained for each of the structures. Although the probability of
object occupancy could be derived from the training set, they demonstrated
that the use of simple regressors at each voxel based on the pattern of grey
level intensities nearby provided better results.

3.5.2.3 Initialization

Most of the methods that aim to locate a SSM in a new input image use a
local search optimization process. So, they need to be initialized near the
structure of interest, so that the model boundaries fall in the close vicinity of
object boundaries in the image. Straightforward solution for the initialization
problem is human-interaction. In some cases, it is sufficient to roughly align
the mean shape with the input data, whereas in other cases, it is preferred
to use a small number of points to guide the segmentation process [103].
Alternatively, more robust techniques can be used to initialize the model in the
image [109–111]. Nevertheless, the automatic methods can be slow, especially
when they work with 3D images.

3.5.3 Strengths and Weaknesses

Unlike atlas-based segmentation methods, statistical models require a learning
model. Mean shapes, textures and their modes of variations which define this
model are learned from the training set. If the number of samples used to build
the learning model is not sufficient, there is a significant risk to overfit the
shape or the appearance. If the number of images used to build the model is
low, there is a non-negligible risk to overfit the shape and/or the appearance.
Overfitting arises when the learned model is too specific to the training set
and is not able to acceptable fit unseen instances. Then, it performs well on
the training samples but its performance is quite poor when dealing with new
examples. Additionally, if some noise along the shapes is learned in the model,
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robustness when segmenting target images will be also affected.

When utilizing the ASM, during the optimization process, the intensity
model and the shape model are applied alternatively. First, candidate target
points in the neighborhood of each landmark point are search. And second,
a new ASM shape is fit through these points. This procedure is repeated
iteratively until convergence. The fact that the shape model may be deceived
if the gray-level appearance model does not select a proper landmark makes
ASM methods sensitive to local optima.

Because of target points are searched in a local constrained vicinity of
the current estimation for each landmark location, a sufficiently accurate ini-
tialization needs to be provided in order to make the model converge to the
proper shape. Therefore, for both ASM and AAM, the search of the shape
and/or appearance requires an initialization. It can be provided either by
direct human-interaction or by automatic techniques, which might result too
slow. If the initial position is too distant from the searched object, in terms
of translation, rotation or scale, this can lead to poor object identification.

3.6 Deformable models

The term ”deformable model” (DM) was pioneered by Terzopoulos et al. [115]
to refer to curves or surfaces, defined in the image domain, and which are
deformed under the influence of internal and external forces. Internal forces
are related with the curve features and try to keep the model smooth during
the deformation process. In the other hand, external forces are the responsible
of attracting the model toward features of the structure of interest, and are
related with the image features of the adjacent regions to the curve. Hence,
DM tackles the segmentation problem by considering an object boundary as a
single, connected structure, and exploiting a priori knowledge of object shape
and inherent smoothness [115]. Although DM were originally developed to
provide solutions for computer vision applications to natural scenes and com-
puter graphics problems, their applicability in medical image segmentation has
already been proven [116]. An example of using deformable models to segment
the corpus callosum is shown in Figure 3.5 (Images courtesy of [117]).

According to the type of shape representation used to define the model,
DM methods can be categorized in: parametric or explicit deformable models
[56, 70, 118–120] and geometric or implicit deformable models [40, 51, 57, 71,
72,121–125].
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Figure 3.5: Segmenting the corpus callosum from an MR midbrain sagittal
image using a deformable Fourier model. Top left: MR image (146 x 106).
Top right: positive magnitude of the Laplacian of the Gaussian (γ= 2.2)
Bottom left: initial contour (six harmonics). Bottom right: final contour on
the corpus callosum of the brain.

3.6.1 Parametric deformable models

The first parametric model used in image segmentation found in the liter-
ature was originally introduced by Kass et al. [118], coined with the name
of ?snakes?. It was proposed as an interactive method where, because of
its limitations, initial contours must be placed within the vicinity of object
boundaries. First, the energy of the contour depends on its spatial position-
ing and changes along the shape. Sensitivity to initial location obliges the
contour to be placed close to the object boundary, leading to failure in case of
improper initialization. Second, the presence of noise may cause the contour
to be attracted by a local minimum and get stuck in a location that might
not correspond with the ground truth. To overcome these limitations differ-
ent approaches have been proposed [116,119]. The method presented in [119]
provides different mechanisms to enable the contour topology to change dur-
ing the deformation process. In [116], an extensive study of DM and different
types of external forces was presented.

Regarding the segmentation of subcortical structures, parametric DM have
been recently employed to perform the segmentation, in combination with
other approaches [56,70,120]. Ada-boosted algorithm was used in [120] to de-
tect brainstem and cerebellum candidate areas, followed by an active contour
model to provide the final boundaries. An extension of natural snakes was
proposed in [70], where desired properties of physical models were combined
with Fourier parameterizations of shapes representations and their shape vari-
ability to segment the corpus callosum. In [56], the application of genetic al-
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gorithms to DM was explored in the task of corpus callosum segmentation. In
this approach, genetic algorithms were propose to reduce typical deformable
model weaknesses pertaining to model initialization, pose estimation and local
minima, through the simultaneous evolution of a large number of models.

3.6.2 Geometric deformable models

One of the main drawbacks of parametric DM is the difficulty of naturally han-
dling topological changes for the splitting and merging of contours, restricting
severely the degree of topological adaptability of the model. To introduce
topological flexibility, geometric DM have been implicitly implemented by
using the level set algorithm developed by Osher and Sethian [121]. These
models are formulated as evolving contours or surfaces, usually called fronts,
which define the level set of some higher-dimensional surface over the image
domain.

Generally, image gray level based methods face difficult challenges such as
poor image contrast, noise, and diffuse or even missing boundaries, especially
for certain subcortical structures. In most of these situations, the use of prior
model based algorithms can solve these issues. The method proposed in [122]
used a systematic approach to determine a boundary of an object as well as
the correspondence of boundary points to a model by constructing a statis-
tical model of shape variation. Ghanei et al. [40] used a deformable contour
technique to customize a balloon model to the subjects’ hippocampus. In
order to avoid local minima due to mismatches between model edge and mul-
tiple edges in the image, their technique incorporates statistical information
about the possible range of allowable shapes for a given structure. Geodesic
active contours were extended in [57] by incorporating shape information into
the evolution process. PCA and level set functions of the object boundaries
were employed to form a statistical shape model from the training set. The
segmenting curves evolved according to image gradients and a maximum a
posteriori (MAP) estimated the shape and pose.

The use of level set methods to formulate the segmentation problem has
been reported to increase the capture range of DM and constrain the defor-
mation through the incorporation of some prior shape information. Because
of these advantages geometric DMs have been extensively used to carry out
the segmentation task of brain subcortical structures [40,57,71,72,122–125].

In some situations, texture information is also required to constrain the
deformation on the contours. As a consequence, statistical models of both
shape and texture are used in addition to only shape prior based segmen-
tation methods [59, 102]. The modeled structure can be located by finding
the parameters, which minimize the difference between the synthesized model
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image and the target image in conjunction with the statistical model of the
shape based on landmark points and texture.

3.6.3 Strengths and Weaknesses

Contrary to statistical models, no training or previous knowledge is required
by deformable models. These models can evolve to fit into the desired shape,
showing more flexibility than other methods. Nevertheless, the definition
of stopping criteria might become hard to achieve, and it depends on the
characteristics of the problem.

Parametric deformable models have been successfully employed in a broad
range of applications and problems. An important property of this kind of
representation is its capability to represent boundaries at a sub-grid resolu-
tion, which is essential in the segmentation of thin structures. However, they
present two main limitations. First, if variation in size and shape between
the initial model and the target object are substantial, the model must be
reparameterized dynamically to faithfully recover the boundary of the object.
The second limitation is related with the complications that they present to
deal with topological changes, such as splitting or merging model parts. This
property is useful to recover either multiple objects or an object with un-
known topology. Geometric models, however, provide an elegant solution to
address these main limitations of parametric models. Due to these models are
based on curve evolution theory and the level set method, curves and surfaces
evolve independently of the parameterization. Evolving curves and surfaces
can therefore be represented implicitly as a level set of a higher-dimensional
function, resulting in automatic handling of topological transitions.

Although topological adaptation can be useful in many applications, it
can sometimes lead to undesirable results. Geometric deformable models may
generate shapes that have inconsistent topology with respect to the actual
object, when applied to noisy images with significant boundary gaps. In these
situations, the significance of ensuring a correct topology is often a necessary
condition for many subsequent applications. Parametric deformable models
are better suited to these applications because of their strict control on topol-
ogy. Additionally, in practice, design of parametric deformable models is more
straightforward because of its discrete representation rather than a continu-
ous curve or surface, like in the geometric deformable models. A common
disadvantage that share both geometric and parametric models is that their
robustness is limited to specific type of images. Suitable images to apply
any of the deformable models here presented must provide sufficient edge or
region-based information for an explicit modeling in a deterministic or prob-
abilistic manner with parametric assumptions. As a consequence, traditional
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deformable models generally fail to segment images with significant intensity
inhomogeneity and/or poor contrast.

3.7 Machine learning methods

Machine Learning (ML) techniques have been extensively used in the MRI
analysis domain almost since its creation. Artificial Neural Networks (ANN),
or Support Vector Machines (SVM), are among the most popular learn-
ing methods used not only for segmentation of brain anatomical structures
[42, 43, 47, 73–76, 126–128] ,but also for tumors classification [129–131] or au-
tomatic diagnosis [132]. Although to a lesser extent, some brain structures
others than WM, GM and CSF have also benefit from the use of some other
machine learning approaches, such as k-Nearest Neighbors (KNN) [133–135].
Such supervised learning based segmentation methods first extract image fea-
tures with information often richer than intensity information alone, and then
construct a classification model based on the image features using supervised
learning algorithms. We will first review typical features utilized in supervised
learning based classification schemes (Section 3.7.1). Next, in section 3.7.2,
some of the most common machine learning techniques employed to segment
brain structures are presented.

3.7.1 Features used in segmentation

Among all possible information that can be extracted to segment brain struc-
tures in medical images, intensity-based, probability-based and spatial in-
formation are the most commonly employed features. They represent the
simplest cases of features, in terms of complexity.

3.7.1.1 Intensity Features

Intensity features exploit intensity information of a voxel and appearance of
its vicinity. Researchers have extracted neighborhood information in several
ways. In its simplest representation, square patches around a given pixel are
used in 2D, with typical patch size values ranging from 3 to 9 pixels(Figure
3.6). To catch texture appearance of a voxel and its neighbors cubic patches
of different sizes -usually of size 3,5 or 7- are extracted in 3D (Figure 3.7).
Extracting such cubic patches represents to have a subset of 27, 125 and 343 in-
tensity values, respectively. These amounts of voxels, however, become some-
times very expensive and impractical, especially for large structures, where a
larger number of instances is required in training. To offer a "cheaper" solu-
tion that still catches information as far away as these cubic patches, some
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works have proposed to use crosses orthogonal to the voxel under examination
instead. In this way, capturing texture appearance in a radius of size 2 from
the voxel v, for example, will lead to a total of 12 voxels, instead of 125 in the
case of the cubic patch of size 5, while having the same scope. As alternative
to square and cubic intensity patches and crosses, gradient direction has been
used to capture relevant information of texture appearance. Here, intensity
values along the gradient descents are used to characterize the voxel v and its
surroundings. Taking intensity values along the maximum gradient direction
from a few voxels from inside to outside has a distinct advantage over using
neighbor intensity values based on a rectilinear coordinate system.

Figure 3.6: Intensity patches commonly used in 2D. Patch sizes are 3x3, 5x5
and 7x7 from left to right.

Image intensity has been largely used to segment objects in medical im-
ages. Indeed, it represents the fundamental feature utilized by the algorithms
pioneering the use of ANN in the area of tissue classification [136,137] . Never-
theless, image intensity information individually is not good enough for distin-
guishing different brain structures since most of them share similar intensity
patterns in MRI. To address such a problem, in learning based segmentation
methods, more discriminative features are often extracted from MRI. In addi-
tion to image intensity values, which we will denote as IIV onwards, of voxels
and their neighborhood, probabilistic and spatial information is often used.

3.7.1.2 Probability based Features

Probability based features are spatial probabilistic distribution maps for the
different structures. They analyze the likelihood of a voxel to belong to a
determined structure. The higher the value of a structure at a given location,
the more likely the voxel at that location to be the structure. Probability
maps generated for machine learning based systems can be seen like a sort of
probabilistic atlases, but with more relaxed registration constraints. Labeled
patients in the training set are employed to build a map of probabilities. To
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Figure 3.7: Intensity configurations commonly used in 3D. In blue is painted
the center voxel under examination and in green its neighboring voxels.

ensure the probabilities on the map make sense, labels must be referred to
the same reference system. To do so, an alignment of both MRI images and
labels is required. Once all the patients have been aligned, labels are added
to a common volume, creating the probability map (Figure 3.8).

Figure 3.8: Brainstem probability map created from the training set.

3.7.1.3 Spatial based Features

Apart from image intensity and probability information, spatial knowledge of
the voxel under examination can be employed. Although Cartesian coordi-
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nates (x,y,z) are frequently exploited, spherical coordinates (r, θ, ϕ) have also
been used to capture the spatial information [138].

Figure 3.9: Cartesian and spherical coordinates.

Spatial information can aid in classification in several ways. First, the
number of possible anatomical classes, such as the brainstem or the optic
chiasm, at a given global position in the brain as specified by an atlas coor-
dinate is often relatively small. Second, neuroanatomical structures occur in
a characteristic spatial pattern relative to one another. For instance, taking
the amygdala as example, it is anterior and superior to the hippocampus.
And third, many tissue classes, such as gray or white matter, have spatially
heterogeneous MRI intensity properties that vary in a spatially predictable
fashion.

3.7.2 Learning Methods

The goal of many learning algorithms is to search a family of functions so as
to identify one member of the mentioned family which minimizes a training
criterion. The selection of this family of functions, as well as how members
of that family are parameterized is of vital importance. Even though there is
no universally optimal choice of parametrization of a family of functions (also
called architecture) it might happen that some architectures are appropriate,
or not, for a broad class of learning tasks and data distributions. Different
architectures have different peculiarities that can be appropriate or not, de-
pending on the learning task we are interested in. One of these characteristics,
which has prompted a lot of interest in the research community in latest years,
is the depth of the architecture. Depth corresponds to the number of hidden
and output layers in the case of multilayer neural networks, which will be
later introduced. Typical shallow neural networks are built of one to three
hidden layers. In the case of support vector machines, for instance, depth is
considered to be equal to two [139]. These architectures composed by very
few layers are known as shallow architectures. Multilayer neural networks and
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support vector machines are among the most employed shallow architectures
to perform classification. On the other hand, there are some other methods
that, although they represent the simplest form of machine learning, have
been employed to segment brain structures: KNN. Even though there exist
some other methods inside this category that have been employed to segment
either tumors or the brain in its primary classes, their contribution to segment
critical brain structures has been marginal. Therefore, they are not considered
in this review.

3.7.2.1 K-Nearest neighbors

K-Nearest neighbors (KNN) classification is based on the assignment of sam-
ples, i.e. image voxels, to a class, i.e. tissue type, by a search for samples in
a learning set with approximately the same features. The learning set, gen-
erated from the labeled voxels, is entered into the feature space according to
the feature values of its samples. A new image voxel is classified by inserting
it in the feature space and further inspection of the K learning samples which
are closest in a distance measure d to it. Then the tissue label is assigned
to the target voxel based on a voting strategy among the tissues assigned to
the K training voxels [140]. A common way to do this is to assign the most
frequent class among the K neighbors to this voxel.

Although KNN it is very simple and easy to understand it has been suc-
cessfully employed for segmentation on brain structures on MRI [133–135].
Anbeek et .al [133] proposed an automatic approach based on KNN and
multi-parametric MRI for probabilistic segmentation of eight tissue classes in
neonatal brains. Among evaluated structures, brainstem and cerebellum were
included. Intensity values from the different MRI modalities were employed
as features: T1- and T2-weighted (T1w and T2w, respectively). In addition
to intensity values, spatial information for each voxel was also used. Thus,
each voxel was described with intensity and spatial features. Based on these
features, each voxel was assigned to one of the eight tissue classes using a KNN-
based classifier. Another attempt to segment brain structures by employing
multi-parametric MRI in a KNN-based classifier was presented in [134]. In
addition to T1w and T2w sequences, Proton Density weighted (PDw) images
were used to generate the voxel intensity information. As in [133], authors
including spatial information into the features array by employing the x, y
and z coordinates of the voxel under examination. More recently, Larobina et
al. [135] investigated the feasibility of KNN to segment the four subcortical
brain structures: caudate, thalamus, pallidum, and putamen. As in previous
works, a combination of intensity and spatial-based information is employed to
classify voxels. In their work, multispectral MRI from two studies were used.
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While the first group was composed by T1w, T2w and PDw, the second group
contained T1w, T2w and FLAIR images. Additionally, they proposed the use
of atlas-guided training as effective way to automatically define a represen-
tative and reliable training dataset, giving supervised methods the chance to
successfully segment brain MRI images without the need for user interaction.

One of the main advantages of KNN-based classifier is that it is a very
simple classifier that works well on basic recognition problems. Due to the
nature of its mathematical background, training is performed relatively fast.
Nevertheless, it does not learn anything from the training data and simply
uses the training data itself for classification. To predict the label of a new
instance the KNN algorithm will find the K closest neighbors to the new
instance from the training data, the predicted class label will then be set
as the most common label among the K closest neighboring points. The
main disadvantage of this approach is that the algorithm must compute the
distance and sort all the training data at each prediction, which can be slow
if there are a large number of training examples. Another disadvantage of not
learning anything from the training data, is that it can result in a model not
generalizing well and also not being robust to noisy data. Further, changing
K may affect the resulting predicted class label. In addition, if the available
training set is small there exist a high risk of overfitting. Another drawback
of KNN is that prediction accuracy can quickly degrade when number of
attributes grows. Computation cost is very high because distance for each
query instance to all training samples must be computed.

3.7.2.2 Artificial neural networks

An artificial neural network (ANN) represents an information processing sys-
tem containing a large number of interconnected individual processing com-
ponents, i.e. neurons. Motivated by the way the human brain processes
input information, neurons work together in a distributed manner inside each
network to learn from the input knowledge, process such information and gen-
erate a meaningful response. Each neuron n inside the network processes the
input through the use of its own weight wn, a bias value bn, and a transfer
function which takes the sum of wn and bn. Depending on the transfer func-
tion selected and the way the neurons are connected, distinct neural networks
can be constructed.

Because of their efficacy in solving optimization problems, ANN have
been integrated in segmentation algorithms to define subcortical structures
[42,73,74,76,126,128]. In the method proposed in [42], grey-level dilated and
eroded versions of the MR T1 and T2-weighted images were used to minimize
leaking from the HC to surrounding tissue combined with possible foreground
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tissue. An ANN was applied to a manually selected bounding box, which
result was used as an initial segmentation and then used as input of the grey-
level morphology-based algorithm. Magnotta et al. [73] used a three-layer
ANN to segment caudate, putamen and whole brain. The ANN was trained
using a standard back-propagation algorithm and a piecewise linear registra-
tion was used to define an atlas space to generate a probability map which was
used as input feature of the ANN. This approach was later employed by [126]
and extended by [74] through the incorporation of a landmark registration to
segment the cerebellar regions. Based on the success of applying ANN ap-
proaches to segment cerebellar regions by incorporating a higher dimensional
transformation, Powel et al. [76] extended the initial algorithm of [73] to use a
high dimensional intensity-based transform. Further, they compared the use
of ANN with SVM, as well as with more classical approaches such as single-
atlas segmentation and probability based segmentation. In [128], a two-stage
method to segment brain structures was presented, where geometric moment
invariants (GMI) were used to improve the differentiation between the brain
regions. In the first stage, GMI were used along voxel intensity values as an
input feature and a signed distance function of a desired structure as an out-
put of the network. To represent the brain structures, the GMI were employed
in 8 different scales, using one ANN for each of the scales. In the second stage,
the network was employed as a classifier and not as a function approximator.

Some limitations must be taken into account when ANN are employed.
Their performance strongly depends on the training set, achieving good re-
sults only in those structures for which a suitable training can be developed.
This may limit their value with inherently difficult structures that human
beings have difficulty delineating reliably, such as the thalamus [73]. As a
consequence, ANN must be well designed, and different types of ANN may
require specific training data set development, depending on the structure-
identification task.

3.7.2.3 Support vector machine

Another widely employed ML system, which also represents a state-of-the-art
classifier, is Support Vector Machines (SVM). It was originally proposed by
Vapnik [141] and [142] for binary classification. In contrast with other ma-
chine learning approaches like artificial neural network which aims at reducing
empirical risk, SVM implements the structural risk minimization (SRM) that
minimizes the upper bound of generation error.

Support vector machines (SVM), often called kernel-based methods, have
been extensively studied and applied to several pattern classification and func-
tion approximation problems. Basically, the main idea behind SVM is to find
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the largest margin hyperplane that separates two classes. The minimal dis-
tance from the separating hyperplane to the closest training example is called
margin. Thus, the optimal hyperplane is the one providing the maximal mar-
gin, which represents the largest separation between the classes. This will
be the line such that the distances from the closest point in each of the two
groups will be farthest away. The training samples that lie on the margin are
referred as support vectors, and conceptually are the most difficult data points
to classify. Therefore, support vectors define the location of the separating
hyperplane, being located at the boundary of their respective classes. By em-
ploying kernel transformations to map the objects from their original space
into a higher dimensional feature space [143], SVM can separate objects which
are not linearly separable (Figure 3.10). Their good generalization ability and
their capability to successfully classify non-linearly separable data have led to
a growing interest on them for classification problems.

Figure 3.10: Effect of the kernel transformation. Data is not linearly separable
in (a). Mapping features into a higher dimensionality (b) may make the
classification possible.

Support vector machines is a non-probabilistic supervised binary classifier
that learns a model which represents the instances as points in space, mapped
in such a way that instances of different classes are separated by a hyperplane
in a high dimensional space. However, if the dataset is not linearly separable in
that space the hyperplane will fail in classifying properly. This can be solved
by mapping the dataset instances into a higher dimensional space using a
kernel function, thus making easier the dataset division

Support vector machine represent one of the latest and most successful
statistical pattern classifiers. It has received a lot of attention from the
machine learning and pattern recognition community. Although SVM ap-
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proaches have been mainly employed for brain tumor recognition [129–131]
in the field of medical image classification, recent works have also used them
for tissue classification [127] and segmentation of anatomical human brain
structures [43, 47,75,76].

The growing interest on SVM for classification problems lies in its good
generalization ability and its capability to successfully classify non-linearly
separable data. First, SVM attempts to maximize the separation margin -
i.e., hyperplane- between classes, so the generalization performance does not
drop significantly even when the training data are limited. Second, by em-
ploying kernel transformations to map the objects from their original space
into a higher dimensional feature space [143], SVM can separate objects which
are not linearly separable. Moreover, they can accurately combine many fea-
tures to find the optimal hyperplane. Hence, as can be seen, SVM globally
and explicitly maximize the margin while minimizing the number of wrongly
classified examples, using any desired linear or non-linear hypersurface.

Powell et al. [76] compared the performance of ANN and SVM when
segmenting subcortical (caudate, putamen, thalamus and hippocampus) and
cerebellar brain structures. In their study the same input vector was used
in both machine learning approaches, which was composed by the following
features: probability information, spherical coordinates, area iris values, and
signal intensity along the image gradient. Although results obtained where
very similar, ANN based segmentation approach slightly outperformed SVM.
However, their employed a reduced number of brains to test (only 5 brains),
and 25 manually selected features, which means that generalization to other
datasets was not guarantee. PCA was used in [75] to reduce the size of the
input training pool, followed by a SVM classification to identify statistical
differences in the hippocampus. In this work, in addition to the input fea-
tures used in [76], geodesic image transform map was added as input vector of
the SVM. However, selection of proper discriminative features is not a trivial
task, which has already been explored in the SVM domain. To overcome this
problem, AdaBoost algorithm was combined with a SVM formulation [47].
AdaBoost was used in a first stage to select the features that most accu-
rately span the classification problem. Then, SVM fused the selected features
together to create the final classification. Furthermore, they compared four
automated methods for hippocampal segmentation using different machine
learning algorithms: hierarchical AdaBoost, SVM with manual feature se-
lection, hierarchical SVM with automated feature selection (Ada-SVM), and
a publicly available brain segmentation package (FreeSurfer). In their pro-
posed study, they evaluated the benefits of combining AdaBoost and SVM
approaches sequentially.
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3.8 Discussion

Generally, none of the presented methods can singly handle brain subcortical
structures segmentation with the presence of brain lesions. Typically, meth-
ods discussed in this survey rely on the existent information in a training set.
However, subjects presenting brain lesions are not usually representative for
a large set of patients, because of lesions may strongly differ and produce
random deformations on the subcortical structures. As a consequence, they
are not included in the training stage and the deformations on the structures
caused by the lesion cannot be therefore modeled. A summary of referenced
methods to segment subcortical structures is presented in Table 3.1. Addi-
tionally, details of the validation process for these methods are presented in
tables 3.2 and 3.3. Definition and description of a validation process is of vital
importance to evaluate segmentation methods in medical images. Neverthe-
less, since this process is not standardized there exist a lot of works that do
not fully present all these details. In these two tables, we did our best to try
to summarize all this important information.

Model based approaches, such as atlas or statistical models trend to per-
form reasonably well when there is no high anatomical deviation between the
training set and the input case to analyze. Nevertheless, these approaches
might completely fail if shape variability is not properly modeled, which often
occurs in the presence of brain lesions. Additionally to the shape variability,
registration plays an important role in atlas-based approaches. Registrations
with large initial dissimilarity in shape between the atlases and the target
might not be handled properly. This can lead to inappropriately weights
when there are initially large shapes differences resulting in incorrect image
correspondences established by the atlas registration. In the other hand, in
statistical model approaches, which are only capable of generating a plausible
range of shapes, the presence of a tumor might deform a determined struc-
ture to an unpredictable shape. This will cause the failure of SM approaches,
because of their incapability to generate new unknown shapes which consid-
erably differs from the shapes in the training set.

In the context of SMs, PCA was originally used in a framework called
Active Shape Model(ASM) [100] and has become a standard technique used
for shape analysis in segmentation tasks, and the preferred methodology when
trying to fit a model into new image data. Compared to ASM, AAM makes an
excessive usage of the memory when it creates the 3D texture model, and the
implementation of ASM is relatively easier than the AAM implementation.
While ASMs search around the current location and along profiles, AAMs
only examine the image under its current area of interest, allowing the ASMs
to generally have a larger capture range. However, the use of information
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solely around the model points makes that ASMs may be less reliable, since
they do not profit from all texture information available across a structure,
unlike AAM. Another interest advantage of the AAMs reported by [59] is
related with the number of landmarks required to build a statistical model.
Compared to the ASMs, AAMs can build a convincing model with a relatively
small number of landmarks, since any extra shape variation may be encoded
by additional modes of the texture model. Consequently, although the ASM
is faster and achieves more accurate feature point location than the AAM,
the AAM gives a better match to the image texture, due to it explicitly
minimizes texture errors. Furthermore, ASM is less powerful in detecting the
global minima and may converge to a local minimum due to multiple nearby
edges in the image. These situations make AAM usually more robust than
ASM. Although the main advantage of using PCA in SMs is to constraint the
segmentation task to the space spanned by the eigenvectors and their modes
of variation, it has two major limitations. First, the deformable shapes that
can be modeled are often very restricted. Secondly, finer local variations of
the shape model are not usually encoded in these eigenvectors. Consequently,
new instances containing these small variations will not be properly fitted in
the model instance.

Contrary to statistical models, DM provide flexibility and do not require
explicit training, though they are sensitive to initialization and noise. SMs
may lead to greater robustness, however they are more rigid than DM and
may be over-constrained, not generalizing well to the unsampled population,
particularly for small amounts of training data relative to the dimensionality.
This situation can appear on new input examples with pathologies, lesions or
presenting high variance, different from the training set. Models having local
priors similar to DM formulation do not have this problem. They will easily
deform to highly complex shapes found in the unseen image. Hence, many
methods attempt to find a balance between the flexibility of the DM and the
strict shape constraints of the SM by fusing learned shape constraints with
the deformable model.

Notwithstanding, some main limitations have to be taken into account
when working with generic parametric DM. First, if the stopping criterion is
not defined properly, or boundaries of the structures are noisy, DM may get
stuck in a local minimum which does not correspond to the desired boundary.
Second, in situations where the initial model and the desired object boundary
differ greatly in size and shape, the model must be reparameterized dynami-
cally to faithfully recover the object boundary. Methods for reparameteriza-
tion in 2D are usually straightforward and require moderate computational
overhead. However, reparameterization in 3D requires complicated and com-
putationally expensive methods. Further, it has difficulties when dealing with
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topological adaptation, caused by the fact that a new parameterization must
be constructed whenever the topology change occurs, which may require so-
phisticated schemes. This issue can be overcome by using LSs. Moreover, as
DM represent a local search, they must be initialized near the structure of
interest.

By introducing machine learning methods, algorithms developed for med-
ical image processing often become more intelligent than conventional tech-
niques. Improvements in the resulting relative overlaps came from the ap-
plication of the machine learning methods including ANN and SVM [76]. A
comparison done in this work between four methods (template based, proba-
bilistic atlas, ANN and SVM) showed that machine learning algorithms out-
performed the template and probabilistic-based methods when comparing the
relative overlap. There was also little disparity between the ANN and SVM
based segmentation algorithms. ANN training took significantly longer than
SVM training but can be applied more quickly to segment the regions of inter-
est. It was reported that it took a day to train an ANN for the classification
of only one structure from the others even though a random sampled data
was used instead of the whole dataset.

Machine learning techniques have therefore demonstrated to outperform
other, more traditional, approaches in segmenting brain structures. Recent
developments of medical imaging acquisition techniques have led to an increase
of complexity on the analysis of images. This brings new challenges where the
analysis of large amount of data is compelled. On this context, we believe that
machine learning techniques suit perfectly to deal with these new challenges.

However, a new area of Machine Learning has recently emerged with the
intention of moving machine learning closer to one of its original purposes:
Artificial Intelligence. This area is known as deep learning. Recent progress
on using deep networks for image recognition, speech recognition, and some
other applications has shown that they currently provide the best solutions
to many of these problems. Therefore, we are going to consider the use of
deep learning to address the problem of segmentation of brain structures in
radiation therapy. Next chapter will introduce the reader in the context of
deep learning and its use in this dissertation.
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Method Ref Structures Image
Modality

Single
Atlas-based

Kwak et al. [53]
Wu et al. [66]

Hippocampus
Multi-structure

MR T1
MR T1

Multiple
Atlas-based

Aljabar et al. [67]
Artaechevarria et al. [44]
Asman et al. [69]
Bondiau et al. [5]
Cardoso et al. [52]
Collins et al. [45]
Coupe et al. [46]
Heckemann et al. [65]
Khan et al. [49]
Kim et al. [50]
Lotjonen et al. [68]
Panda et al. [81]
Wang et al. [54]
Zarpalas et al. [55]

Multi-structure
Multi-structure
Multi-structure
Brainstem
Hippocampus
Hippocampus, amygdala
Multi-structure
Multi-structure
Hippocampus
Hippocampus
Multi-structure
Optic nerves, eye globes
Hippocampus
Hippocampus

MR T1
MR
MR
MR T1,T2
MR T1
MR T1
MR T1
MR T1
MR T1
MR 7T
MR T1
CT
MR
MR T1

Active Shape
models

Bailleul et al. [61]
Bernard et al. [112]
Olveres et al. [58]
Pitiot et al. [104]
Rao et al. [107]
Tu et al. [63]
Zhao et al. [105]

Multi-structure
Subthalamic nucleus
Mid Brain
Multi-structure
Multi-structure
Multi-structure
Multi-structure

MR
MR T1
MR T1, SWI
MR T1
MR
MR T1
MR

Active
Appearance
models

Babalola et al. [62]
Babalola et al. [109]
Brejl et al. [101]
Cootes et al. [59]
Duchesne et al. [60]
Hu et al. [48]
Hu et al. [64]

Multi-structure
Multi-structure
Corpus callosum, cerebellum
Multi-structure
Medial temporal lobe
Hippocampus, amygdala
Medial temporal lobe

MR T1
MR T1
MR
MR
MR T1
MR T1, T2
MR T1

Parametric
deformable
models

Lee et al. [120]
Mcinerney et al. [119]
Mcintosh et al. [56]
Szekely et al. [70]

Brainstem,cerebellum
Corpus callosum,cerebellum
Corpus callosum
Multi-structure

MR
MR
MR
MR

Geometric
deformable
models

Bekes et al. [124]
Duncan et al. [123]
Ghanei et al. [40]
Leventon et al. [57]
Shen et al. [41]
Tsai et al. [71]
Wang et al. [122]
Yang et al. [72]
Zhao et al. [51]

Eyeballs,lens,nerves
Hippocampus
Hippocampus
Corpus callosum
Hippocampus
Multi-structure
Multi-structure
Multi-structure
Hippocampus

CT
MR T1
MR
MR
MR T1
MR
MR
MR
MR

Machine
Learning.
ANN

Hult et al. [42]
Magnotta et al. [73]
Moghaddam et al. [128]
Pierson et al. [74]
Powell et al. [76]
Spinks et al. [126]

Hippocampus
Multi-structure
Putamen,caudate, thalamus
Cerebellar subregions
Multi-structure
Thalamus,mediodorsal nucleus

MR T1,T2
MR T1,T2
MR T1
MR T1,T2
MR T1,T2,PD
MR T1,T2,PD

Machine
Learning.
SVM

Golland et al. [75]

Morra et al. [43]
Morra et al. [47]
Powell et al. [76]

Hippocampus,amygdala,corpus cal-
losum
Hippocampus
Multi-structure
Multi-structure

MR

MR T1
MR T1
MR T1,T2,PD

Table 3.1: Summary of subcortical structures segmentation methods.
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Method [10ex] Benefits Assumptions and/or Limitations

Single
atlas-based

- Fast
- Sufficient fot intra-patient
segmentation

- Lower accuracy if there is significant
anatomical variation

Multiple
atlas-based

- Capable to cover a higher variability
than with a single atlas
- Combination of propagated labels may
overcome limitations of single atlases
- Atlases are easy to build

- Computationally expensive
- Rely on the registration
- Success also depends on atlas building

Active
shape
models

- Relatively fast
- Easy to implement
- Larger capture range than AAM
- Robust against noise

- Cannot create unseen shapes
- Not robust when different images are
introduced
- May not converge to a good solution

Active
appearance
models

- More powerful than ASM in detecting
the global minima
- Better match to image texture than ASM
- Robust against noise

- Excessive usage of memory
- Hard to implement
- Cannot generalize well to unsampled
population

Parametric
deformable
models

- No training required
- Provide flexibility

- Sensitive to initialization
- Susceptible to noise and artifacts

Geometric
deformable
models

- No training required
- Provide flexibility
- Ability to handle topological changes
- Easily deform to highly complex
structures

- Sensitive to initialization
- Stopping criteria hard to define
- May get stuck in any local minima

Artificial
neural
networks

- can be used for classification or regression
- able to represent Boolean functions
- tolerant of noisy inputs
- instances can be classified by more than
one output

- difficult to understand structure of the
algorithm
- too many attributes can result in
overfitting
- optimal network structure can only be
determined by experimentation

Support
vector
machines

- models nonlinear class boundaries
- overfitting is unlikely to occur
- computational complexity reduced to
quadratic optimization problem
- easy to control complexity of decision
rule and frequency of error

- training is slow compared to other ML
approaches
- difficult to determine optimal parameters
when training data is not linearly separable
- difficult to understand structure of the
algorithm

Table 3.4: Summary of benefits, assumptions and limitations of different seg-
mentation methods for brain structures.





Chapter 4

Our Contribution

“ I have not failed. I have just found 10.000 ways that will not work.”
Thomas A. Edison

This chapter introduces the main contributions of this thesis. Typical
setting of a machine learning classifier mainly involves two elements: the
learning method and the set of features. On the one hand, we propose to
employ a stack of denoised auto-encoders in a deep fashion to segment the
OARs. On the other hand, we propose the use of new features to achieve better
performance. These two components of the classifier are the cornerstone of our
dissertation. To understand the context of our proposal, some fundamental
notions of machine learning, such as the representation of the data and the
classification task, are briefly presented in the first section,. Next, the deep
learning technique employed in our work is introduced. Following, in section
4.3, features proposed throughout our work are detailed. And in the last
section of this chapter the steps to train the deep network are explained.

4.1 Introduction to Machine Learning

The endeavor to understand intelligence implies building theories and models
of brains and minds, both natural as well as artificial. From the earliest
writings of India and Greece, this has been a central problem in philosophy.
With the arrival of the digital computer in the 1950’s, this became a central
concern of computer scientists as well. Thanks to the parallel development
of the theory of computation, a new set of tools with which to approach the
problem through analysis, design, and evaluation of computers and programs
exhibiting some aspects of intelligent behavior was provided. The ability to
recognize and classify patterns or to learn from experience were some of these
intelligent behaviors [144].

Among the different ways to define the notion of intelligence, we interpret
it as the ability to take the right decisions, according to some criterion. Taking
appropriate decisions generally requires some sort of knowledge that is utilized
to interpret sensory data. Decisions are then taken based on that information.
Nowadays, as a result of all the programs that humans have crafted, computers
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possess somehow their own intelligence. This understanding allows computers
to easily carry out tasks that might be intellectually difficult for human beings.
Nevertheless, tasks that are effortlessly done by humans and animals might
still remain unreachable for computers. Many of these tasks fall under the
label of Artificial Intelligence (AI).

Reasons of failure in such tasks can be summarized in the lack of explicit
information when trying to transfer the knowledge to the machine. That
is, in other words, in situations where to solve a given problem a computer
program cannot be directly written. This commonly occurs when we, humans,
know how to perform an action or a task and are not able to explain our
expertise. Learning is therefore required by the machine to execute such
a task. In this way, computers learn from experience and understand the
world in terms of a hierarchy of concepts, where each concept is defined in
terms of its relation to simpler concepts. This hierarchical distribution will
allow the computer to learn complex concepts by depicting them with simpler
ones. The capability of AI-based systems to acquire their own knowledge
by extracting patterns from raw data is known as machine learning (ML).
Consider as example the problem of speech recognition. This task can be
done apparently without any difficulty, but explanation on how we do it is
not straightforward. Due to differences in gender, age or accent, for example,
there exists a speaker variability, which makes different people utter the same
word differently. We can easily recognize who speaks, or to which kind of
population a given utterance belongs because of our experience. Nevertheless,
in machine learning, the approach consists on collecting a large collection of
sample utterances from different people and learning how to map all these to
words. Thus, the machine learns how to automatically extract the algorithm
to perform this task. In short, machine learning involves training a computer
system to perform some task, rather than directly programming the system
to perform the task.

4.1.1 The "Task"

One of the main strengths for which machine learning has been especially
interesting is the variety of tasks that can be achieved with it. From an
engineering point of view, ML has brought us the capability to approach some
tasks that would be too hard to solve with hand-crafted computer programs.
On the other hand, from a scientific point of view, understanding machine
learning has provided us the knowledge of the principles that govern intelligent
behavior, which establishes the basis to accomplish certain tasks.

Hence, the learning process itself is not the aforementioned task. Learning
is the process of obtaining the ability to achieve the task. For instance, if
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we want a car to be able to autonomously drive, then driving is the task.
To complete the task we could either program the car to learn to drive, or
directly write a computer program that specifies how manually drive, instead.
We therefore understand that machine learning can be employed to solve many
kinds of tasks. Nevertheless, one of the most common tasks, which is also the
task to perform in this dissertation, is classification.

Classification entails assigning an observation to a category or class. To
solve this task, the learning algorithm is typically asked to build a function
f : Rn → {1, ..., k} which can be applied to any input. The output of this
function, f(x), can be then interpreted as an estimation of the class to which
x belongs to. Methods used for classification often predict the probability of
an observation of each of the categories, or classes, of a qualitative variable
as the basis for later on providing the classification. Let’s consider object
recognition as example of classification. Here, an image usually represents the
input, x, and the output, f(x), is a numeric value which identifies the object
in the image.

Learning how to classify objects to one of a pre-specified set of categories
or classes is a characteristic of intelligence that has been of keen interest to
researchers in psychology and computer science. Identifying the common core
characteristics of a set of objects that are representative of their class is of
enormous use in focusing the attention of a person or computer program.
For example, to determine whether an animal is a zebra, people know that
looking for stripes is much more meaningful rather than examining its tail or
ears. Stripes alone are not sufficient to form a class description for zebras,
since tigers have them also, but they are certainly one of the important char-
acteristics. Thus, stripes strongly figure in our concept or generalization of
what zebras are. The ability to perform classification and to be able to learn
to classify gives people and computer programs the power to make decisions.
The efficacy of these decisions is affected by performance on the classification
task, which in turn strongly depends on the representation of the data.

4.1.2 Data Representation

The choice of data representation plays a crucial role on the performance of
a ML-based classifier. In a typical machine learning task, data is represented
as a table of examples or instances. Each instance is described by a fixed
number of measurements, or features, along with a label that denotes its class.
Features, which are also sometimes called attributes, are typically one of two
types: nominal or numeric. While the former are members of an unordered
set, the later are represented by real numbers. Table 4.1 shows ten instances of
benign and malignant tumors according to some of their characteristics. Each



62 Chapter 4. Our Contribution

instance is a tumor described in terms of the attributes size, homogeneity and
shape, along with the class label which indicates whether a tumor is benign
or malignant. During learning, correlation between these features and various
outcomes will be learned, and this will be employed to make predictions on
new unseen instances.

#instances Features Tumor Type

Size Homogeneity Shape

1 Small Yes Circular Benign
2 Medium Yes Irregular Malignant
3 Medium No Irregular Malignant
4 Large Yes Circular Benign
5 Small No Irregular Malignant
6 Large No Irregular Malignant
7 Medium No Circular Malignant
8 Medium Yes Circular Benign
9 Small Yes Irregular Benign
10 Small No Circular Malignant

Table 4.1: Brain tumor classification table. Some tumor properties are used
as features to train the classifier.

To illustrate the importance of selecting the proper representation of the
data for a given problem, two different representations of the same data are
shown in figure 4.1. Available data is sampled according to points location or
coordinates. A simple classification task would be to separate the two data
categories by just drawing a line between the two groups. However, whilst on
the example where data is represented by Cartesian coordinates the task is
impossible, in the example representing the data with polar coordinates the
task becomes simple to solve with a vertical line.

This dependence on data representations is a phenomenon that commonly
appears throughout computer science. Operations such as searching a collec-
tion of data can proceed exponentially faster if the collection is structured and
indexed intelligently. Thus, we can assume that many AI tasks can be easily
solved by designing the proper set of features for a specific task. For example,
as illustrated in the case of tumor characterization (table 4.1), a useful feature
for representing a tumor is its shape. It may be useful for tumor characteriza-
tion because type of tumor it is often, together with other factors, determined
by the nature of its shape. Shape gives therefore a strong clue as to whether
a tumor is benign or malign.

However, for many tasks, knowing which features should be extracted is
not trivial. For instance, following the tumor example, suppose that we would
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Figure 4.1: Example of different representations: a) Cartesian coordinates
and b) polar coordinates are used to represent the data.

like to write a computer program to detect tumors in medical images. We,
or doctors, know how tumors may look like. So we might like to use the
appearance of a tumor as a feature. Unfortunately, it is very difficult to exactly
describe how a tumor looks like in terms of pixel values. This is particularly
harder when combining multiple image sequences. One solution to tackle this
problem is to use ML to discover not only the mapping from representation
to an output, but also the data representation itself. This approach is known
as representation learning.

We have seen that, in general, a good data representation is the one that
makes the further learning task easier. Generally, designing features aims at
separating the factors of variation that explain the observed data. Hence,
hand-designed representations of the data usually provide satisfactory classi-
fication performances. Nevertheless, learned representations typically result
in much better performance, since the best data configuration is represented
in a more compressed and meaningful way. Despite there exist sophisticated
algorithms to learn data representations, factors or sources of variation still
introduce a major source of difficulty in many real world AI applications: they
influence every single piece of observed data. In such situations, factors of vari-
ations must be unscrambled and careless factors discarded. Nevertheless, this
is not straightforward and complex understanding of the data is required to
identify such high-level abstract features. To solve this main issue in represen-
tation learning, representations that are expressed in terms of other, simpler
representations are introduced. And this is exploited in deep learning, which
will be detailed later on.
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4.1.3 Learning Algorithms

A learning algorithm, or an induction algorithm, forms concept descriptions
from known data or experience. Concept descriptions are often referred to
as the knowledge or model that the learning algorithm has induced from the
input data. It models then the function that will perform the classification
task from the representation of the given data. Knowledge may be represented
differently from one algorithm to another.

Advantageously, while most conventional computer programs are explic-
itly programmed for each process, ML-based systems are able to learn a given
task, regardless of its complexity. By following the lemma "divide and con-
quer", a complex problem can be decomposed into simpler tasks, in order to be
able to understand it and solve it. Artificial Neural Networks (ANN), repre-
sent one approach to achieve this. An ANN is a massively parallel computing
system consisting of an extremely large number of simple processors, i.e. neu-
rons, with many interconnections between them, i.e. weights. Learning in
ANN is performed by using algorithms designed to optimize the strength of
the connections in the networks. A network can be subject to supervised or
unsupervised learning. In order to be referred to as supervised learning, an ex-
ternal criteria has to be used and matched by the network output. Otherwise,
learning is termed as unsupervised, or also self-organizing. In this approach,
no sample outputs are provided to the network against which it can mea-
sure its predictive performance of a given vector of inputs. As a result, there
exist more interaction between neurons. Interaction is often performed by
employing feedback and intralayer connections between neurons, which pro-
motes self-organization. A detailed explanation of ANNs them can be found
in Appendix A.

The purpose of this section is to review the deep learning technique ex-
plored, which can be applied to the problem of segmenting critical struc-
tures on MRI scans during the radiation treatment planning for brain cancer.
Throughout this thesis, two learning algorithms are used as a basis for compar-
ison between their performance. The first of these learning algorithms is Sup-
port Vector Machines, which constitutes one of the most successful classifiers
inside the classic machine learning techniques. Nevertheless, it is important
to note that during the research conducted for this work, it has been found
that there is a gap missing in the state-of-the-art, as no deep architectures
seem to have been fully explored yet to tackle the problem of brain structures
segmentation on MRI. We try to make a step towards this direction in the
framework of this project, and we propose the use of a deep learning classifi-
cation system based on Stacked Denoising Autoencoders (SDAE). Since SVM
does not represent the core of this thesis, and it is only employed for com-
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parison purposes, a theoretical introduction has been included in Appendix
B.

4.2 Deep Learning

Deep Learning is a new subfield of machine learning that focuses on learning
deep hierarchical models of data. Modern deep learning research takes a lot
of its inspiration from neural network research of previous decades. Whereas
most current learning algorithms correspond to shallow architectures with 1
up to 3 levels of abstractions, the mammal brain is organized in a deep ar-
chitecture with multiple levels, each level corresponding to a different cortex
region. Inspired by the architectural depth of the brain, neural network re-
searchers had wanted for decades to train deep multilayer neural networks,
but no successful attempts were reported before 2006 (except convolutional
NNs).

4.2.1 Historical context

Inspired by the understanding of biological neurons, straightforward algo-
rithms were proposed to create artificial neural networks in the 60’s [145].
Although this discovery created a great excitement and expectations over the
scientific community, initial enthusiasm soon declived because of the inability
of these simple learning algorithms to learn representations. This shortcom-
ing in learning what the hidden layers of the network should represent led
to a strong influence of symbolic computation and expert systems in the Ar-
tificial Intelligence domain during the subsequent years. The introduction
of the backpropagation algorithm to learn patterns that were not linearly-
separable [146] made possible the use neural networks to solve problems which
were previously insoluble. This caused a replenishment on the research of
neural networks. Lately, in the 90’s and 2000’s, and despite the remarkable
results of artificial neural networks to perform some tasks [147], some other
approaches dominated the field [141,143,148].

One of the main reasons to abandon artificial neural networks in favor of
these more limited approaches was the difficulty of training deep networks.
Training deep architectures was a difficult task and classical methods that
had proved to be effective when applied to shallow architectures were not as
efficient when adapted to deep architectures. Simply adding more layers did
not necessarily lead to better solutions. On the contrary, as the number of
hidden layers increased -i.e. architecture got deeper- it become more difficult
to obtain good generalization. For example, the deeper the network, the lesser
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the impact of the back-propagation algorithm on the first layers. The error
from the output layer that was back propagated to the inner layer was getting
smaller at each time a layer was passed over, making that the multilayer
network in fact did not learn. Gradient-based training of deep supervised
multi-layer neural networks starting from random initialization then tended
to get stuck in local minima [149]. Additionally, a neural network composed
by three layers -i.e. only a hidden layer- was mathematically demonstrated
to be a universal approximator [150]. As a consequence, solutions obtained
with deeper networks corresponded to poor solutions, with worse performance
than shallow networks. Hence, until some years ago, most machine learning
techniques exploited shallow structures architectures, where networks were
typically limited to one or two hidden layers.

However, it was not until 2006 when the concept of Greedy Layer-Wise
Learning was introduced [149, 151, 152]. This new concept profits from a
semi-unsupervised learning procedure. Unsupervised learning is used in a first
stage to initialize the parameters of the layers, one layer at a time, and then a
fine-tuning of the whole system is done by a supervised task. Since then, deep
structured learning, or more commonly known as deep learning or hierarchical
learning, has emerged as a new area of machine learning research [151, 153],
impacting a wide range of research fields.

4.2.2 Advantages respect to shallow architectures

We have seen that a simple neural network with two hidden layers already
theoretically represents a universal function approximator capable of approx-
imating any function to any arbitrary accuracy. However, one of the main
benefits of using deep networks comes from the side of computational effi-
ciency. Indeed, complex functions can often be approximated with the same
accuracy using a deeper network that has much fewer total number of units
compared to a typical two-hidden-layer network containing large hidden lay-
ers. The size of the training set is often a limiting factor when using neural
networks based systems. By employing deeper network instead, models with
smaller degree of freedom, which require smaller datasets to train [154], are
built. This leads to a shrinkage on the training dataset size required.

Another, probably more compelling, factor is that typical approaches for
classification must be generally preceded by a feature selection step, where
most discriminative features are privileged for a given problem. Such step,
however, is not needed in deep learning-based classification schemes. What
differentiates deep learning approaches from other conventional machine learn-
ing techniques, therefore, is their ability to automatically learn features from
data which largely contributes to improvements in terms of accuracy. In other
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words, deep learning learns a better and more compact representation of the
input data. This represents an important advantage and removes a level of
subjectivity from conventional approaches, where the researcher typically has
to decide which set of features must be tried. With the inclusion of deep
learning techniques in the classification scheme this step is thus avoided.

Furthermore, as it has been shown in the previous section, one of the
problems of classical shallow networks is its difficulty to train networks with
more than two or three hidden layers. By employing a learning algorithm that
greedily trains one layer at time deeper networks can be used. Apart from
allowing the use of networks with more hidden layers, pre-training each layer
with an unsupervised learning algorithm might result in the achievement of
much better results [155, 156]. Unsupervised pre-training allows, indeed, to
achieve good generalization performance when the training set is limited in
terms of size by positioning the network in a region of the parameter space
where the supervised gradient descent is less likely to drop in a local minimum
of the loss function.

A worthy point to highlight is that deep learning approaches are recently
breaking records in several domains, such as speech, signal, image and text
mining and recognition and improving state of the art classification methods
in accuracy by, sometimes, more than 30 %, where the prior decade struggled
to barely achieve 1-2 % of improvements [157,158].

The main shortcoming of deep learning techniques, which is actually one
of its advantages, is the large amount of data required to unsupervisedly craft
the features during its first stage.

4.2.3 Different levels of abstraction

Following the analogy with the human brain, the process of object recognition
in the visual cortex begins in the low-level primary area V1. Then, the process
proceeds in a roughly bottom-up fashion through areas V2 and V4, ending
in the inferotemporal cortex (IT), figure 4.2. Once the information reaches
the IT, it travels to prefrontal areas, where it plays a role in perception,
action, planning and memory. These hierarchically organized circuits in the
human brain exploit circuit modularity and reuse general subcircuits in order
to economize on space and energy consumption. Thus, in a hierarchical model,
lower layers might include dictionaries of features that are general and yet
applicable in the context of many specific classification tasks.

We have seen that deep learning is a kind of representation learning in
which there are multiple levels of features. These features are automatically
discovered and they are composed together in the various levels to produce
the output. Each level represents abstract features that are discovered from
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Figure 4.2: Deep architecture of the brain.

the features represented in the previous level. Hence, the level of abstrac-
tion increases with each level. This type of learning enables discovering and
representing higher-level abstractions. In neural networks, the multiple layers
correspond to multiple levels of features. These multiple layers compose the
features to produce the output. While the first layers use to be more generic,
last layers are often strongly task-specific. Therefore, the higher the layer, the
more specialized the features are.

4.2.4 Convolutional neural networks

Among all the deep learning approaches, convolutional neural networks
(CNNs) have demonstrated to be very powerful when classifying medical im-
ages. These artificial networks are made up of convolutional, pooling and
fully-connected layers. These type of networks are mainly characterized by
three main properties: local connectivity of the hidden units, parameter shar-
ing and the use of pooling operations.

A CNN consists of a succession of layers which perform several operations
on the input data. First, convolutional layers C convolve images presented
at their inputs with a predefined number of kernels, k. These kernels have
a certain size, s, and are typically followed by activation units that rescale
the convolution results in a non-linear manner. Pooling layers reduce the
dimensionality of the responses produced by the convolutional layers through
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downsampling. Different strategies can be adopted to perform the pooling:
average or max-pooling, for example. At the end, fully connected layers are
the responsible of extracting compact, high level features from the data. A
typical workflow for a convolutional neural network is shown in figure 4.3. In
these networks, two or three-dimensional patches are commonly fed into the
deep network, which unsupervisedly learns the best features representation of
those given patches. In other words, it learns a hierarchical representation
of the input data and is able to decode the important information contained
on the data. By doing this, a deep network is able to provide a hierarchical
feature representation of each patch and ensure discriminative power for the
learned features. Networks based on convolutional filters, i.e. CNN, perfectly
suit to deal with data presenting a grid structured representation, such as 2D
or 3D image patches. However, when input data composed by features not
presenting a grid-based representation is employed, CNNs might not represent
the best solution.

Figure 4.3: A typical workflow for a convolutional neural network.

Valuable information inherited from classical machine learning approaches
to segment brain structures is not therefore included into the CNNs. This
knowledge may come in the form of likelihood voxel values, voxel location, as
well as textural information, for example, which is greatly useful to segment
structures that share similar intensity properties. Because we wish to employ
arrays composed by concatenation of different features, which will be intro-
duced in Section 4.3, we consider the use of denoised auto encoders (DAE)
instead, which is able to deal with such type of features arrays. Another
reason for employing DAE is because of the limited size of the number of
training and labeled data. Instead of random initialization of the network
weights, values are obtained by using DAEs which act as a pre-training step
in an unsupervised fashion. Thanks to this the network can be trained with
such limited amount of data while avoiding overfitting.



70 Chapter 4. Our Contribution

4.2.5 Auto-Encoders

Autoencoders are a method for performing representation learning, an unsu-
pervised pretraining process during which a more useful representation of the
input data is automatically determined. Representation learning is impor-
tant in machine learning since the performance of machine learning methods
is heavily dependent on the choice of data representation in which they are
applied. For many supervised classification tasks, the high dimensionality of
the input data means that the classifier requires a huge number of training
examples in order to generalize well and not overfit. One solution is to use
unsupervised pretraining to learn a good representation for the input data
and during actual training, transform the input examples into an easier form
for the classifier to learn. Autoencoders are one such representation learning
tool.

Classical auto-encoders (AE) have been recently developed in the deep
learning literature in different forms [159]. In its simplest representation, an
AE is formed by two components: an encoder h(·) that maps the input x
∈ Rd to some hidden representation h(x) ∈ Rdh , and a decoder g(·), which
maps the hidden representation back to a reconstructed version of the input
x, so that g(h(x)) ≈ x (Fig. 4.4). Therefore, an AE is trained to minimize
the discrepancy between the data and its reconstruction. This discrepancy
represents the difference between the actual output vector and the expected
output vector that is the same as the input vector. As a result, AEs offer
a method to automatically learn features from unlabeled data, allowing for
unsupervised learning.

Figure 4.4: Auto-Encoder.

Let formulate an autoencoder in more detail. When a traditional autoen-
coder takes an input x ∈ [0, 1]d, first thing that it does it to map this input
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-with the encoder- to a hidden representation y ∈ [0, 1]d
′ through a determin-

istic mapping, as follows

y = fθ(x) = s(Wx+ b) (4.1)

which is parameterized by θ = {W, b}. In addition, s is a non-linearity
function, such as the sigmoid, W is a d′ × d weight matrix and b is the bias
vector. The resulting latent representation y is then mapped back -with the
decoder- to a “reconstructed” vector z ∈ [0, 1]d of the same shape as x. This
reconstruction is defined as

z = gθ′(y) = s(W ′y + b′) (4.2)

where parameterization is given by θ′ = {W ′, b′} in this case. The weight
matrixW ′ of the reverse mapping may optionally be constrained byW ′ = W T

to be the transpose of the forward mapping. If this happens, the auto-encoder
is said to have tied weights. Each training x(i) is thus mapped to a correspond-
ing y(i) and a reconstruction z(i). In other words, z can be seen as a prediction
of the input x, given the latent representation y. The parameters of this model
are optimized such that the average reconstruction error is minimized

θ′, θ′∗ = arg min
θ′,θ′∗

1

n

n∑
i=1

L(x(i), z(i))

= arg min
θ′,θ′∗

1

n

n∑
i=1

L(x(i), z(i))

(4.3)

where L(·) is a loss function such as the traditional squared error (for
real-valued x)

L(x, y) = ‖x− z‖2 (4.4)

Alternative loss functions can be used in 4.3. For example, if x and z are
interpreted as either bit of vectors of bit probabilities, the cross entropy loss
reconstruction can be used

LH(x, y) = −
d∑

k−1

[xk log zk + (1− xk) log(1− zk)] (4.5)

Using the cross entropy reconstruction formulation in 4.3, the average
reconstruction error can be defined then as

θ′, θ′∗ = arg min
θ′,θ′∗

Eq0(X)[LH(X, gθ′(fθ(X)))] (4.6)
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where q0(X) denotes the empirical distribution associated to the n training
inputs and E refers to the Expectation

Ep(X)[f(X)] =

∫
p(x)f(x)dx (4.7)

To compute the Expectation, Eq. 4.7, we have assumed X and Y to be
two random variables with joint probability density p(X, Y ), with marginal
distributions p(X) and p(Y ). Note that in the general auto-encoder frame-
work, other forms of parameterized functions for the encoder or decoder, as
well as other suitable choices of the loss function (corresponding to a differ-
ent p(X, Y ) may be used. In particular, the usefulness of a more complex
encoding functions was investigated in [160]. According to all this, it can be
said that training an auto-encoder to minimize reconstruction error amounts
to maximize a lower bound on the mutual information between input X and
learned representation Y. Intuitively, if a representation allows a good recon-
struction of its input, it means that it has retained much of the information
that was present in that input.

The autoencoder yields lower reconstruction errors than other related
batch algorithms based on matrix factorization. It efficiently generalizes to
new inputs very accurately, with no expensive computations. This makes
autoencoders fundamentally different from classical matrix factorization tech-
niques. An example of neural encoding of an input and its corresponding
reconstruction is shown in figure 4.5. In this figure, a reconstruction example
of a handwritten digit input by employing neural encoding is shown. The in-
put is represented by x, while x̂ symbolizes its reconstruction. The input and
the output are connected with the hidden layer h by the weights W and W T ,
respectively. Weights W are responsible of encoding the input through the
hidden layer, whereas weights W T will decode the information in the hidden
layer through the output, or reconstructed input.

4.2.6 Denoising Auto-Encoders

One serious potential issue when working with AE is that if there is no other
constraint besides minimizing the reconstruction error (4.3), then an AE with
n inputs and an encoding of dimension at least n could potentially just learn
the identity function, for which many encodings would be useless, leading to
just copy the input. That means that an AE would not differentiate test
examples from other input configurations. There are different ways that an
AE with more hidden units than inputs could be prevented from learning the
identity, and still capture some valuable information about the input in its
hidden representation. Adding randomness in the transformation from input
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Figure 4.5: Reconstruction example of a handwritten digit input by employing
neural encoding.

to reconstruction is one option, which is exploited in Denoising Auto-Encoders
(DAEs) [161–166]. To force a hidden layer to discover more robust features
and prevent it from simply learning the identity, a slight modification to the
normal AE setup is done by corrupting the input x before mapping them into
the hidden representation. This leads to a partially destroyed version x̃ by
means of a stochastic mapping x̃ ∼ qD(x̃|x). Therefore, to convert an AE
class into a DAE class, only adding a stochastic corruption step that modifies
the input is required, which can be done in many ways.

Thus, following the formulation in classical AE in Section 4.2.5, the cor-
rupted input x̃ is mapped to a hidden representation

y = fθ(x) = s(Wx̃ + b) (4.8)

from which z can be reconstructed (Figure 4.6).

z = gθ′(y) = s(W ′
y + b′) (4.9)

As before, the parameters of the model are trained to minimize the average
reconstruction error LH(x, z) (4.5) over a training set.

Hence the DAE tries to predict the corrupted values from the uncorrupted
values, for randomly selected subsets of missing patterns, i.e., corrupted. The
DAE is therefore a stochastic version of the AE.

Let define now the following joint distribution

q0(X, X̃, Y ) = q0(X)qD(X̃‖X)δfθ(X̃)(Y ) (4.10)
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Figure 4.6: The denoising autoencoder architecture.

where δu(v) puts mass 0 when u 6= v. Thus Y is a deterministic function of
X̃. Note also that the joint distribution function q0(X, X̃, Y ) is parameterized
by θ. The objective function minimized by the stochastic gradient descent
becomes

arg min
θ′,θ′∗

Eq0(X,X̃)[LH(X, gθ′(fθ(X̃)))] (4.11)

Therefore, from the point of view of the stochastic gradient descent al-
gorithm, in addition to picking an input sample from the training set, we
will also produce a random corrupted version of it, and take a gradient step
towards reconstructing the uncorrupted version from the corrupted version.
In this way, the denoising auto-encoder cannot learn the identity, unlike the
basic auto-encoder, thus removing the constraint that d′ < d or the need to
regularize specifically to avoid such a trivial solution.

Types of corruption. Corruption processes can be incorporated in many
ways. The most common corruption processes are:

• Additive isotropic Gaussian noise (GS): x̃‖x ∼ N (x, σ2I);

• Masking noise (MN): a fraction v of the elements of the input x, that
can be randomly selected, is forced to be 0;

• Salt-and-pepper noise (SP): a fraction v of the elements of the input x,
that can be randomly selected, is set to their minimum or maximum
possible value (typically 0 or 1) according to a fair coin flip.

Additive Gaussian noise is a very common noise model, and is a natural
choice for real valued inputs. The salt-and-pepper noise will also be considered,
as it is a natural choice for input domains which are interpretable as binary or
near binary such as black and white images or the representations produced at
the hidden layer after a sigmoid squashing function. For example, in [159], the
stochastic corruption process consists in randomly setting some of the inputs
to zero.
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4.2.7 Stacked Denoising Auto-Encoders

Several DAEs can be stacked to form a deep network by feeding the hidden
representation of the DAE found on the layer below as input to the current
layer [159] (Figure 4.7), leading to what is known as Stacked Denoising Auto-
encoder (SDAE). On this configuration, DAEs are stacked and trained bottom
up in unsupervised fashion, followed by a supervised learning phase to train
the top layer and fine-tune the entire architecture.

Weights between layers of the network are initially learned via an unsu-
pervised pre-training step. Unsupervised pre-training of such architecture is
done greedily, i.e. one layer at a time. Each layer is trained as a DAE by
minimizing the reconstruction of its input. Once the first k layers are trained,
the (k+1)th layer can be trained because the latent representation from the
layer below can be then computed.

Once all the weights of the network are unsupervisedly computed, the
highest level of the output network representation can be fed into a stand-
alone supervised algorithm. Alternatively, and as in this work, a logistic
regression layer can be added on top of the encoders. This yields a deep neural
network amenable to supervised learning. Thus, the network goes through a
second stage of training called fine-tuning, where prediction error is minimized
on a supervised task [159]. A gradient-based procedure such as stochastic
gradient descent is employed in this stage. The hope is that the unsupervised
initialization in a greedy layer-wise fashion has put the parameters of all the
layers in a region of parameter space from which a good local optimum can
be reached by local descent. The unsupervised pre-training helps to mitigate
the difficult optimization problem of deep networks by better initializing the
weights of all layers [149].

Figure 4.7: Stacked Denoising Auto-encoder. After training a first level de-
noising autoencoder (Fig. 4.6) its learnt encoding function fθ is used on clean
input (left). The resulting representation is used to train a second level de-
noising autoencoder (middle) to learn a second level encoding function f

(2)
θ .

From there, the procedure can be repeated (right) [159].
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Figure 4.8: Fine-tuning of a deep network for classification. After training
a stack of encoders as explained in the previous figure, an output layer is
added on top of the stack. The parameters of the whole system are fine-
tuned to minimize the error in predicting the supervised target (e.g., class),
by performing gradient descent on a supervised cost [159].

4.2.7.1 Logistic Regression

Regression analysis is a field of mathematical statistics well explored which has
been used for many years. In this type of analysis, given a set of observations,
regression analysis can be employed to find a model that best fits the obser-
vation data. For instance, in linear regression, given an example ith of a set of
samples, x, a value for y(i) is predicted by a linear function y = hθ(x) = θ>x.
Although the linear regression model is simple and used frequently it is not
adequate for some purposes, such as our goal, i.e. classification. Here, we aim
at trying to predict binary values, such as labels (y(i) ∈ 0, 1). A linear model
has no bounds on what values the response variable can take, and hence y can
take on arbitrary large or small values. However, it is desirable to bound the
response to values between 0 and 1. For this we would need something more
powerful than linear regression. In logistic regression a different hypothesis
class used to predict the probability that a given sample belongs to the class
A (’1’) versus the probability that it belongs to the class B (’0’) is employed.
Particularly, the function learned will be of the form:
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P (y = 1 | x) = hθ(x) =
1

1 + exp(−θ>x)
≡ σ(θ>x)

P (y = 0 | x) = 1− P (y = 1 | x) = 1− hθ(x)

(4.12)

The function σ(z) ≡ 1

1 + exp(−z)
is widely employed, and often referred to

as sigmoid or logistic function. This function squeezes the value of hθ(x) into
the range [0,1]. By doing that, hθ(x) can be interpreted as a probability. The
goal is therefore to search a value of θ that makes the probability P (y = 1 | x)
large when x belongs to the class A and small if x belongs to the class B
instead. Imagine that we have a set of training samples with binary labels,
(x(i), y(i)) : i = 1, ...,m). To measure how well a given hypothesis hθ(x) fits
the training dataset, a cost function is defined as follows:

J(θ) = −
∑
i

(
y(i) log(hθ(x

(i))) + (1− y(i)) log(1− hθ(x(i)))
)

(4.13)

The next step is to learn to classify our training data by minimizing J(θ)

in order to find the best choice of θ. Once training has been performed, new
points can be classified either as class A or B by simply checking which of
these classes is most probable. Basically, if for a given sample P (y = 1 | x) >

P (y = 0 | x), it will be labeled as class A(’1’). Otherwise, it will belong to
class B(’0’). To minimize J(θ) the same tools typically employed for linear
regression can be applied. This means to provide a function that computes
J(θ) and ∇θJ(θ) for any request of the choice of θ. The derivative of J(θ)

can be written as:

∂J(θ)

∂θj
=
∑
i

x
(i)
j (hθ(x

(i))− y(i)) (4.14)

If this is written in its vector form, the entire gradient can be expressed
as:

∇θJ(θ) =
∑
i

x(i)(hθ(x
(i))− y(i)) (4.15)

See the lecture notes of Andrew for a complete explanation of logistic
regression [167].

4.3 Features used for classification

Whatever the efficacy of the machine learning strategy applied, the choice of
relevant features is highly crucial on classification problems. Recent research
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on segmentation of brain clinical structures by machine learning techniques
has tended to focus on the use of several learning algorithms rather than in the
addition of more discriminative features into the classification scheme. Tra-
ditional features explained in Chapter 3, section 3.7.1 have been commonly
employed when segmenting brain structures with a considerable success. How-
ever, the use of alternative features may (i) improve classification performance,
while (ii) reducing, in some cases, the number of features used to describe the
texture information of a given region. Apart from the application of SDAEs to
the OARs segmentation problem, one of the main contributions of this work is
the use of features that have not been previously employed to segment brain
structures.

Among the full set of OARs involved in the RTP, there are some that
present a sort of homogeneity in texture and variation in shape is less strong
than in the other OARs. In this group we can include the brainstem, eyes and
lens. Contrary, there are some other OARs which texture is more heteroge-
neous, shape variations across patients are more pronounced and/or its small
size and localization variation makes automatic segmentation more complex.
This second group is comprised by the optic nerves, optic chiasm, pituitary
gland and pituitary stalk. Because of dissimilarities between characteristics of
both groups, some of the suggested features are organ dependent, not being
suitable for all the organs investigated in this work. While segmentation of
some organs will exploit the use of the Geodesic Distance Transform and 3D-
Local binary pattern to achieve better results, for example, the segmentation
of some other will make use of texture and contextual analysis to improve the
results.

4.3.1 Gradient and contextual features

In the image domain, the image gradient can be seen as a directional change
in the intensity or color in an image. The image gradient is composed by two
components: horizontal and vertical component (Figure 4.9). The horizontal
component shows the variation of gray levels in an image along the horizontal
direction, usually from left to right. This change is encoded in the grey level
of the image showing the horizontal component. Thus, mean levels represent
no change, bright levels represent variation from a dark value to a brighter
value, and the dark level represents a change from a bright value to a darker
one. Analogous observations can be made for the vertical component, which
shows image variations in the vertical direction, in a top-to-bottom fashion.
Combining both components, the magnitude and the orientation (Fig. 4.10)
of the gradient can be obtained.

Although image gradient brings a more exhaustive description of an in-
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(a) Original MRI (b) Horizontal gradient com-
ponent

(c) Vertical gradient compo-
nent

Figure 4.9: A MRI slice of the brain showing partially the head in the eye
region (a). While the horizontal gradient component in the x direction mea-
suring horizontal change in intensity is displayed in (b) the vertical gradient
component in the y direction measuring vertical change in intensity is shown
in (c).

Figure 4.10: Gradient orientation values of the previous image in figure 4.9,a.
The arrows indicate the direction of the gradient at each pixel.

stance, i.e. a single voxel, supplementary knowledge has been included in the
features vector. This is the case of the augmented features vector. The term
of augmented features vector, and the inclusion of gradient and contextual
features into it, was already introduced by [168]. In their work, gradient ori-
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Figure 4.11: Contextual feature is defined by a number of surrounding regions
(green squares) of the voxel under examination (red dot).

entations of all the voxels on each patch were used. Following their work,
to describe relative relations between an image patch and its surroundings,
contextual features are used. For each voxel v, a number of regions around its
surroundings are sampled, radiating from voxel v with equal degree intervals
and at different radius ( Fig. 4.11). To obtain a continuous description of the
context, intensity difference between the voxel v and a patch P is defined:

dv,P = µP − Iv (4.16)

where µP is the mean intensity of the patch P and Iv is the intensity of
the voxel v. In addition, a compact and binary context description is obtained
by employing the Binary Robust Independent Elementary Features (BRIEF)
descriptor [169]:

bv,P =

{
1 Iv < µP

0 otherwise
(4.17)

Then, for each patch, the contextual feature includes both the continuous
and binary descriptor for all the neighbor regions sampled.

4.3.2 Features from texture analysis

Additionally to the information extracted from the context, texture analysis
(TA) has proven to be a potentially valuable and versatile tool in neuro MR
imaging [170]. MR images contain a lot of microscopic information that may
not be assessed visually and texture analysis technique provides the means
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for obtaining this information. Therefore, we also considered the use of some
these features. This is the case of statistical features of first order statistics and
spectral features. TA can be divided into categories such as structural, model-
based, statistical and transform, according to the means employed to evaluate
the inter-relationships of the pixels. Statistical methods are the most widely
used in medical images. On these methods, the spatial distribution of grey
values are analyzed by computing local features at each point in the image,
and deriving a set of statistics from the distributions of the local features.
Local features are defined by the combination of intensities at specific position
relative to each point in image. In the literature, the use of these features to
characterize textures have been mainly employed for classification of images
[171] or for the characterization of healthy and pathological human cerebral
tissues [172]. Nevertheless, their use as discriminant factor in the segmentation
of critical structures in brain cancer has not been investigated yet.

To quantitatively describe the first order statistical features of an image
patch P, useful image features can be obtained from the histogram. In the pro-
posed work the following features were employed: mean, variance, skewness,
kurtosis, energy and entropy. The mean takes the average level of intensity
of the image or texture being examined, whereas the variance describes the
variation of intensity around the mean. Skewness is a measure of symmetry, or
more precisely, the lack of symmetry. A distribution, or data set, is symmetric
if it looks the same to the left and right of the center point. The skewness for
a normal distribution is zero, and any symmetric data should have a skewness
near zero. Negative values for the skewness indicate data that are skewed
left and positive values for the skewness indicate data that are skewed right.
Kurtosis is a measure of whether the data are peaked or flat relative to a nor-
mal distribution. That is, data sets with high kurtosis tend to have a distinct
peak near the mean, decline rather rapidly, and have heavy tails. Data sets
with low kurtosis tend to have a flat top near the mean rather than a sharp
peak. A uniform distribution would be the extreme case. Energy is a measure
of local homogeneity. Energy values range from 0 to 1, where the higher the
energy value, the bigger the homogeneity of the texture. Thus, for a constant
image, its energy is equal to 1. Contrary, entropy is a statistical measure of
randomness that can be used to characterize the texture of the input image.
It represents the opposite of the energy. A completely random distribution
would have very high entropy because it represents chaos. An image with a
solid tone would have an entropy value of 0.

Probability density of occurrence of the intensity levels can be obtained by
dividing the value of intensity level histogram by the total number of pixels
in an image:

P (i) = h(i)/nx ∗ ny i = 0, 1, ...G− 1 (4.18)
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where nx and ny are the number of pixels in the horizontal and vertical
image domain, respectively. G represents the total gray levels on the image.
Thus, features obtained from the histogram are calculated as follows:

Mean : µ =
G−1∑
i=0

ip(i) (4.19)

V ariance : σ2 =
G−1∑
i=0

(i− µ)2p(i) (4.20)

Skewness : µ3 = σ−3

G−1∑
i=0

(i− µ)3p(i) (4.21)

Kurtosis : µ4 = σ−4

G−1∑
i=0

(i− µ)4p(i) (4.22)

Energy : E =
G−1∑
i=0

[p(i)]2 (4.23)

Entropy : H = −
G−1∑
i=0

p(i)log2[p(i)] (4.24)

Statistical based features may lack the sensitivity to identify larger scale
or more coarse changes in spatial frequency. To evaluate spatial frequencies
at multiple scales wavelet functions can be employed [173]. The basic idea
of the algorithm is to divide the input images into respective decomposed
sub-images using the wavelet transform. A wavelet transform decomposes
a signal to a hierarchy of sub-bands with sequential decrease in resolution.
The idea of using the wavelets to extract information in texture classification
context is not entirely new. Specifically, in the medical field, Discrete wavelet
transform (DWT) has been used for sub-domains such as image fusion, image
resolution enhancement or image segmentation [174]. Despite this, a major
usage of DWT has been noticed for classifying MR brain images into normal
and abnormal tissue [175].

4.3.3 Geodesic Distance Transform Map

To encourage spatial regularization and contrast-sensitivity, geodesic distance
transform map (GDTM) of the input image is used as additional feature. The
addition of GDTM in the features vector used by the classifier exploits the
ability of seed-expansion to fill contiguous, coherent regions without regard to
boundary length. As explained in the work of Criminisi et al. [176], given an
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(a) Original MRI (b) Mean (c) Variance

(d) Skewness (e) Kurtosis (f) Entropy

(g) Energy (h) First level high-pass
wavelet components

(i) Second level high-pass
wavelet components

Figure 4.12: First-order statistical features (F-OSF) example. Axial slice of a
brain with several first-order statistical features computed with a with radius
= 3 around each voxel. First and second levels of high-pass components from
wavelets decomposition ((h) and (i)).

image I defined on a 2D domain ψ, a binary mask M (with M (x) ∈ {0,1} ∀x)
and an "object" region Ω with x ∈ Ω ⇐⇒ M (x) = 0, the unsigned geodesic
distance of each pixel x from Ω is defined as:

D(x;M,∇I) = min
{x′|M(x′)=0}

d(x, x′), with (4.25)
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d(a, b) = min
Γ∈Pa,b

∫ 1

0

√
‖Γ′(s)‖2 + γ2(∇I · u)2 ds (4.26)

with Pa,b the set of all paths between the points a and b, and Γ(s) : <
→ <2 indicating one such path, which is parameterized by s ∈ [0,1]. Figure
1 shows an example of how compute the GTDM of an image given a binary
mask.

Figure 4.13: Geodesic distance transform map: a) axial MR view of the brain-
stem, b) mask obtained from the probability brainstem map (in white), c)
binary mask used to obtain the GDTM, and d) output GDTM.

4.3.4 3D Local Binary Texture Pattern

In order to catch neighborhood appearance of the voxel under examination
with the fewest number of features, Local Binary Patterns (LBP) are investi-
gated. The idea of LBP is to give a pattern code to each voxel. Particularly,
an extended version of 3D-LBP presented by [177] (Fig. 4.14) is proposed.
In their work, classical LBP [178] were adapted by selecting the 6 nearest
voxels and ordering them to create the encoding patterns (Figure 2). By en-
coding patterns in that manner, 26 = 64 possible patterns would be created.
However, those 64 possible combinations were merged in 10 different groups
according to geometrical similarities (Figure 4.14). In accordance with this
classification, each group is filled with patterns that have the same number of
neighbor voxels with a gray level higher than the central voxel c. Thus, rota-
tion invariance in each group is kept. These groups are defined with (Table
4.2):

card(c) =
P−1∑
i=0

s(gi − gc) (4.27)

where P = 6 is the number of neighboring voxels and R=1 or R=2 the
distance between central voxel c and its neighbors i. By using R =1,2 micro
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and macro-structure appearance of the texture are captured in the 3D-LBTP.
In equation 3, card(c) gives the number of neighbors with a higher gray level
than the central voxel c.

Figure 4.14: Merging the 64 possible patterns into 10 groups. Number of
different patterns for each group is indicated in brackets.

LBP3D card(c) Condition
1 0
2 1
3 2 opposite voxels
4 2 bend voxels
5 3 voxels on the same plane
6 3 voxels on different planes
7 4 voxels on the same plane
8 4 voxels on different planes
9 5
10 6

Table 4.2: Definition of the 10 groups of patterns.

In addition to the encoded value for the 3D patch structure proposed
by [177], an additional texture value is included. Let ghigh the gray values
that are higher than the gray value of the center voxel c in the 3D-LPB
(Figure 2). Similarly, let’s denote glow to the gray values that are lower than
the gray value of the center voxel c in the 3D-LPB. Then, the texture value
added to the encoded structure value is defined as:

Textureval = mean
m∑
i=0

ghigh(i)−mean
n∑
i=0

glow(i) (4.28)

where m and n are the number of neighboring voxels with higher and
lower values than the center voxel c, respectively. Thus, the introduction of
the 3D-LBTP in the features vector will lead to 4 new features: 3D-LBP and
Textureval for R = 1 and 2.
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4.4 Training the deep network

This section presents the way we combine the deep network with the proposed
features. First, pre-processing required for the images to be used in this work
is explained. Next, training and classification of the network are detailed.

4.4.1 Pre-processing

Pre-processing involves any of the diverse processes that help the segmenta-
tion algorithm to produce a more accurate model. Ideally, the segmentation
process should be fully automatic, not requiring any user interaction. Never-
theless, this barely happens. Typical pre-processing steps include registration
of images to a common coordinate space, intensity normalization, resampling
of images to the same resolution or the bias field correction, for example.
Only pre-processing methods applied to the images in this thesis are explained
above.

4.4.1.1 Resampling

MR resolution is not always the same. Particularly, differences in resolution
often come from the x and y coordinates. Hence, to make both the training
and classification more homogeneous, images which resolution differed from
1mm x 1mm x 1mm were resampled to this resolution.

4.4.1.2 Patient Alignment

If the whole set of images in a study are first aligned to a common template,
a specific region of interest is then already in approximately the same region
of the coordinate space for all subjects across the study. This fact makes
learning patterns easier and reduces the search space for a particular region of
interest. It is therefore a common practice in brain segmentation approaches
to apply some sort of registration technique to the MRI images to make them
as similar as possible to a common MRI template. Some approaches require a
rigid registration step to align the images [128,138]. However, in the proposed
approach, and as in [73] and [76], MRI T1 images were spatially aligned such
that the anterior commissure and posterior commissure (AC−PC) line was
horizontally oriented in the sagittal plane, and the inter hemispheric fissure
was aligned on the two other axes. This process therefore represents the
initialization step for the segmentation of a new target patient.

It is worthwhile to describe the coordinate system used to define neu-
roanatomical locations of normalized images. The ’Talairach’ coordinate sys-
tem specifies locations relative to their distance from the anterior commissure
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(AC). The AC is a thin white matter tract between the olfactory areas of each
hemisphere, which despite of being a small region represents an easy spot to
localize, making of it an ideal origin for the coordinate system. Each location
is described by three numbers, each describing the distance in millimeters
from the AC: X is the left/right dimension, Y is the posterior/anterior dimen-
sion, and Z is the ventral/dorsal dimension. The diagram below shows the
location of the AC (blue dot) on a midsagittal view. Note that the orientation
of axial plane in Talairach space officially lies immediately dorsal to the AC
and ventral the posterior commissure (PC, yellow dot), as in Figure 4.15.

Figure 4.15: AC-PC example on MRI image(right).

4.4.1.3 Image Normalization

Image normalization is a process that changes the range of pixel intensity
values. Normalize an image by setting its mean to zero and variance to one.
To do so, images intensity values are shifted and scaled so that the voxels in the
image have a zero mean and unit variance. The filter NormalizeImageFilter
from the Insight Segmentation and Registration Toolkit (ITK) [179] was used
to normalize the images.
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4.4.2 Training

Supervised learning based approaches involve the existence of two distinct
groups of images: training and testing images. The first group is composed
by images that have been manually segmented by experts. Manually labeled
images are often referred to as reference or standard contours. This set of
images, comprising both clinical images and manual labels, are utilized to
learn patterns associated with a particular structure. On the other hand, the
testing images group is composed by an independent set of images, which
are not included in the training set. Testing images are used to validate how
well the patterns were learned. To compare an algorithm’s performance with
the reference contour defined by an expert, the testing images must also be
manually segmented.

The whole process used in the training step is shown in figure 4.16. The
first step in the training consists on creating a common binary mask for each of
the OARs. This mask was computed by applying an ”or” operation to all the
reference masks in the training set for a given OAR. This mask was employed
to prune the voxels in all the images, both in training and classification,
and thus reducing the research region of each OAR. Therefore, only voxels
allocated inside the common mask are taken into account when extracting the
features that will be used in the classifier. Once all the features are extracted,
scaling is applied over all of them. At last, the training model is computed
for the desired classifier.

4.4.2.1 Probability map and common mask creation.

A detailed example of how the probability map and the common mask are
created during the training phase is shown in Fig.4.17. Masks contained in
the training set are added into a volume to create a probability map for each
OAR, which yielded voxel-wise continuous probabilistic measures in the range
of [0,1], indicating the likelihood of the organ class. This map represents the
frequency with which an OAR appears in the training set and therefore the
probability of a given voxel to belong to some structure. The probability map
is also used to reduce the number of samples that are fed into the classifier.
From this map, a region of interest (ROI) mask is generated. The pruning
criterion is based on the probability of a voxel to belong to any of the structures
of interest. Thus, any voxel containing a probability higher than zero is taken
into account to create the common mask, for each structure, which will be used
to prune the voxels in the feature extraction stage. To ensure that OARs of
unseen patients will be inside this common mask a security margin was given
to the generated mask by applying a morphological dilation.
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Figure 4.16: Framework for training.

4.4.2.2 Features extraction

Traditional features used in the segmentation of brain structures were already
introduced in Section 3.7.1. In addition to these ones, new proposed features
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Figure 4.17: Probability map (bottom-left) and common mask (bottom-right)
creation process. Example showing a 2D axial slice of the optic chiasm.

were detailed in Section 4.3. However, it is important to note that features
employed in the classification may slightly vary from one organ to another, de-
pending on some characteristics of the organs to segment. Thus, for example,
the use of additional spatial information, such as distance to the center of the
brain, and angle with respect to the horizontal can help to the segmentation
of symmetric thin structures, such as the optic nerves. In the other hand, the
use of features that encourage spatial regularization over the entire structure
improves the classification in large and/or well-defined structures, such as the
brainstem or the eyes. We can say, therefore, that each structure requires its
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own specific descriptors.
Features are extracted on voxels that belong to the inner part of the ROI

mask defined in previous section. Hence, we avoid to analyze voxels which do
not give any relevant information to solve our problem.

4.4.2.3 Scaling

As explained in [180], scaling the features before applying non-scale invariant
techniques, such as SDAE, is very important for a good performance of the
classifier. Among the main advantages of scaling, it can be mentioned that
it helps to: 1) avoid attributes in greater numeric ranges dominating those
in smaller numeric ranges, and 2) avoid numerical difficulties during the cal-
culation. Complications in the calculations can be caused by large attribute
values when the inner products of feature vectors are used to compute the
kernel values.

Ranges [−1,+1] and [0,+1] are typically employed to scale the attributes
of the features vectors. Range selected to scale training data must be coherent
with range used to scale the testing data. This means that the same scaling
factors must be used for both training and classification data and not scale
them separately. Let’s imagine that we have a features vector of intensities
with 8 attributes indicating grey levels in the training that we scale in the
range [0,+1] (second row of table 4.3). For a given features vector on the
testing, if scaling is done independently of the data contained in the training
set (fourth row of table 4.3), the scaled values are not correlated with those in
the training. As a consequence, the classification performance will be unsat-
isfactory in comparison with features correctly scaled (row five of table 4.3).
In appendix B of [181] a real example showing differences in classification
accuracy between wrong and right scaled values is detailed.

Features vector elements
#1 #2 #3 #4 #5 #6 #7 #8

Training
(Original)

178 205 189 35 12 48 255 241

Training
(Scaled)

0.6980 0.8039 0.7412 0.1373 0.0471 0.1882 1.0000 0.9451

Testing
(Original)

201 198 55 33 45 124 89 174

Testing
(Erroneously Scaled)

1.0000 0.9821 0.1310 0 0.0714 0.5417 0.3333 0.8393

Testing
(Correctly Scaled)

0.7882 0.7765 0.2157 0.1294 0.1765 0.4863 0.3490 0.6824

Table 4.3: Scale example showing a bad and a good example of features scaling
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4.4.2.4 Parameters setting of the classifier

Performance of classification algorithms also depends on the selection of their
parameters, which must be carefully selected by the user. However, suitable
combination of parameters depends on the training data. As a result, the
parameters choice of the different classifiers can be viewed as an optimization
process, where parameters values are iteratively modified until a satisfactory
result is achieved. Best parameters may be selected by users based on a priori
knowledge and\or expertise [148]. Nevertheless, this often implies the user to
manually test a wide range of parameters and select the best combination of
them, which is time-consuming. Additionally, a risk of overfitting still prevails
when different settings for the classifiers are evaluated. Parameters can be
adjusted until the classification optimally performs, allowing a ”leakage” of
knowledge about the testing set into the model which would no longer provide
a generalization on its performance. To tackle these issues some validation
techniques for model selection have been adopted. Next section introduces
the use of cross-validation to select a successful combination of the classifier’s
parameters.

4.4.2.4.1 Cross-validation for model selection

In this section we consider how to use methods of cross-validation (CV) for
model selection. The parameters of a classifier have to be optimized based on
the training available data. An independent testing set is therefore required
for making a reliable assessment of the applicability of the classifier to new
data. Cross-validation provides a simple way to measure this generalization
performance when no such test data are available. A common strategy is
to separate the training data set into two disjoint sets. One of these sets
is actually used for training, and the other, the validation set, which is
used to monitor the performance. The prediction accuracy obtained from
the unknown set more precisely reflects the performance on classifying an
independent data set. The performance on the validation set is used as a
proxy for the generalization error and model selection achieved using this
measure.

In practice, a shortcoming of hold-out method is that only a fraction of
the full data set can be used for training. In addition, if the validation set
is small, the performance obtained might have large variance. To minimize
these problems, CV is very often used in the k-fold cross-validation setting:
the k-fold cross-validation data is split into k disjoint, equally sized subsets.
Validation is then done on a single subset and training is done using the union
of the remaining (k-1) subsets. The entire procedure is repeated k times, each
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time with a different subset for validation. Thus, a large fraction of the data
can be used for training, and all cases appear as validation cases. The price
is that k models must be trained instead of one. Typical values for k are in
the range 3 to 10, whereas 10-fold CV has been shown to be accurate enough
for model selection [182].

The following subsection highlights and details the task of parameters
selection for the SDAE approach followed in this thesis. Parameters selection
for SVM are detailed in Appendix B.

4.4.2.4.2 SDAE Parameter Setting

One of the most crucial, and at the same time most complex decisions to
make when working with any kind of neural networks is the architecture con-
figuration. This comprises the choice of the depth of the network, as well as
the number of hidden units in each layer. Trying to find the best network con-
figuration by performing a grid search becomes much harder than in the case
of the SVM, where only two parameters were searched. The strategy followed
to find a suitable network structure was based on the error convergence during
training. Thus, the faster the convergence and the lower the error, the more
suitable the network structure. In order to constrain the search and avoid
having to test hundreds or even thousands of different network architectures,
typical network configurations were employed, where the size of layer l+1 is
half of the precedent layer l.

In SDAE there are another parameters that must be carefully selected.
These parameters include layer-wise learning rate, the activation function and
the corruption level of the denoised autoencoder.

4.5 Classification

Classification is done at one class at each time. That means that a binary
classifier is used for each of the structures. In this context, classes for each
classifier are: one structure of interest and the background. Classification
scheme, although very similar, is slightly different from the scheme used during
the training phase. In figure 4.19 the pipeline followed to segment a new
patient, or target patient, is presented.
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Figure 4.18: Decision boundaries for a banana shaped dataset generated by
SDAE with different network architectures.

4.5.1 Pre-processing

Pre-processing steps required for classifying a target patient are the same
than those presented on the training section ( Section 4.4.1). These steps are:
resampling, patient alignment and image normalization.

4.5.2 Features extraction

Voxel pruning is done with the common mask generated during the training
(section 4.4.2.1) for each new target patient and each OAR. Then, features
to be used in the classifier are extracted from voxels inside each ROI. As
happened in the training phase, features will slightly vary from one organ to
each other. However, for the same organ, features composing the features
array are the same both in training and classification.
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Figure 4.19: Framework for classification.

4.5.3 Scaling

As stated in Section 4.5.3, features extracted for classification are scaled in
concordance with scaling values used during the training phase. Using differ-
ent scaling values will negatively affect the segmentation performance.

4.5.4 Classification

Classification basically consists on applying the weights learned during the
training stage to each input sample. Thus, once features for all samples have
been extracted and scaled, they are fed into our trained network. Input fea-
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tures are multiplied by learned weights from the first layer. Output from first
layer is multiplied by weights on the second layer. This process is repeated
until the last layer, which gives a value indicating whether the sample belong
to the OARs class.

4.5.5 Post-processing

After classification, a post-processing layer, which was mainly a filter applying
morphological operations was introduced before providing the output. Par-
ticularly, a closing operation to remove small isolated regions and to fill small
holes was employed.



Chapter 5

Materials and Methods

“The best time to plant a tree was 20 years ago. The second best time is
now.”

Chinese Proverb

In this chapter the materials employed to conduct this work, as well as
to evaluate the performance of the proposed approach are presented. First
section introduces the software used to develop all the content of this the-
sis. Then, imaging data employed on the experiment is presented. Medical
imaging analysis, and particularly segmentation, often lacks from a universal
ground truth. Thus, multiple observers are typically required to manually de-
lineate a set of structures on a group of patients, from which reference contours
can be therefore generated. This second section details the process followed to
generate the reference standard. Third section details the evaluation metrics
employed to analyze results and how important they are for the assessment
of our proposed classification scheme in clinical context. To evaluate whether
there exist significant differences between groups, statistical analysis are often
employed. This type of analysis is described in last section.

5.1 Software

All the code that has been employed in this thesis has been implemented using
the following platforms: MATLAB( The MathWorks Inc., Natick, MA, 2000)
and Microsoft Visual Studio (MSVS) 2010.

There are two main processes in the code developed in this thesis: image
processing step (i.e. features extraction) and learning/classification. For the
former step, a whole set of functions were developed in MSVS 2010 by using
C++ programming language. The learning and classification steps for the
deep networks were implemented on MATLAB based on the toolbox provided
by Palm [156]. The publicly available library libsvm [183] was used to compare
our classification scheme with SVM.

Apart from the research contribution provided by this work, we aim at
developing some prototype, that is why we also employed MSVS. The main
program run on this platform. To connect MSVS with the MATLAB func-
tionalities of the deep learning toolbox, the MATLAB run-time compiler was
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employed to create the dynamic libraries (i.e. dlls) to be included in the MSVS
project. Thus the whole process is as follows:

1. Features extraction is performed by employing functions implemented
in C++.

• All features have been extracted.

• An array containing all the features is created.

2. The MATLAB dll that contains the deep learning functionalities is called
from MSVS.

• Either training or classification is performed.

• According to the operational mode (training/classification) some
information is received (trained model or an array containing the
predicted labels).

3. The segmentation is reconstructed by employing C++ code.

Figure 5.1: Workflow of the connection between MSVS and MATLAB.

For the manual labeling, Artiview 3.0 (AQUILAB) was used by the ob-
servers that participated in the study of this thesis.

5.2 Method validation

Validation of medical image processing methods is of crucial importance be-
cause the performance of such methods can have an impact on the performance
of the larger systems in which they are embedded. Definition of a standard
protocol for validation may therefore have a high relevance to facilitate the
complete and accurate reporting of validation studies and results and the
comparison of such studies and results. Following the guidelines suggested
by Jannin et al. [184] towards this standardization we designed the validation
protocol of our method.
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5.2.1 Validation objective

In the clinical context of segmentation of organs at risk of brain cancer patients
undergoing radiotherapy or radio surgery, a segmentation method based on a
stack of denoised auto-encoders fed by a wide range of image-based features
extracted from MR-T1 images is able to segment those organs at risk with an
accuracy that is significantly better than other state-of-the-art methods and
that lies between experts variability.

5.2.2 Validation process

The validation process is performed on a validation dataset, which detailed de-
scription is of high importance. Image data employed in this experiment was
composed by clinical images, which description is presented in Section 5.3.1.
Given the validation datasets, the outcome of the segmentation method has
to be validated. The segmentation method computes an estimate of the ref-
erence standard, being the reference standard the theoretical ideal result. In
this work, the reference was provided by expert observers (Sections 5.3.2 and
5.3.3). By comparing outcomes of the segmentation method and reference
standard, a validation criterion aims at characterizing different properties of
the method to be validated. These properties may include accuracy, robust-
ness or efficiency, for example. Evaluation metrics employed in this work
to validate our segmentation method are introduced in Section 5.5. To do
these comparisons, output volumes from the segmentations are used. It is
commonly to compare results from a proposed method against a well known
state-of-the-art method. In our case, support vector machines (SVM) was
the approach chosen for comparison purposes. The last part of the validation
process comprises the analysis of results (Section 6.2). First, results computed
by the proposed segmentation method and the reference method, i.e. SVM,
are compared. Segmentation results are also compared against manual anno-
tations. Then, comparison results are tested against the validation hypothesis
(Section 5.2.2) in order to provide the validation result.

5.3 Imaging Data

5.3.1 Dataset

MRI data from 15 patients who underwent Leksell Gamma Knife Radiosurgery
were used in this work. Two different MRI facilities were employed to acquire
images according to the radiosurgery planning protocol (Table 5.1). Patholo-
gies in this dataset included trigeminal neuralgia, metastases, and brainstem
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cavernoma. Although the employed dataset was limited in size, it was rep-
resentative of the population. Examples of the original input sequences from
several patients are shown in Figure 5.2. In this figure, axial slices showing
some tumors on these patients are presented.

Experiments were retrospectively performed on all the patients. All data
analyzed was collected as part of routine diagnosis and treatment. Prior to
being processed all images were anonymized. Patients were diagnosed and
treated according to national guidelines and agreements. Therefore, no con-
sent approval for our study was required.

MRI System TE(ms) TR(ms) Echo
number

Matrix size Seq. Name Voxel Size
(mm3)

Philips Achieva
1.5T

4.602 25 1 256x256 T1 3D FFE 1x1x1

GEHC Optima
MR450w 1.5T

2.412 5.9 1 256x256 FSPGR 0.8203x0.8203x1

Table 5.1: Acquisition parameters on the 2 MRI devices.

Figure 5.3 shows the intensity profile of some OARs for a given patient.
From this image, it can be seen that structures share intensity bands between
them, which makes no possible to only employ voxel intensity values to sep-
arate them. In addition, some properties of the OARs across the patients
included in this study are presented in Table 5.2.

Image characteristics
Intenstiy Volume

Mean Max Min Size (cm3)
Brainstem 280.62 (± 277.23) 745.67 (± 632.45) 36.56 (± 34.50) 25.79 (± 2.85)
Eye (Right) 117.74 (± 67.04) 542.39 (± 305.95) 3.31 (± 2.78) 5.41 (± 0.73)
Eye (Left) 118.68 (± 78.49) 539.92 (± 292.17) 3.69 (± 3.24) 5.43 (± 0.78)
Lens (Right) 438.38 (± 272.19) 619.93 (± 381.16) 233.71 (± 140.01) 0.15 (± 0.04)
Lens (Left) 438.56 (± 289.95) 640.31 (± 434.34) 257.43 (± 159.29) 0.14 (± 0.06)
Optic nerve (Right) 480.81 (± 286.01) 959.14 (± 539.85) 86.14 (± 91.01) 0.81 (± 0.18)
Optic nerve (Left) 484.89 (± 294.52) 994.79 (± 626.46) 94.57 (± 125.21) 0.82 (± 0.25)
Optic chiasm 497.25 (± 324.11) 734.53 (± 523.55) 262.50 (± 168.85) 0.23 (± 0.05)
Pituitary Gland 748.85 (± 478.79) 1210.15 (± 736.49) 313.21 (± 271.75) 0.53 (± 0.14)
Pituitary Stalk 568.45 (± 414.06) 939.71 (± 665.71) 295.93 (± 237.83) 0.08 (± 0.02)

Table 5.2: Intensity and volume characteristics of images contained in the
dataset used for this work.
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Figure 5.2: Some examples of images contained in the database employed
in this work. While in some cases the tumor is inside the brainstem and
may change the shape and intensity properties of the brainstem (top-row), in
other brain cancer cases, tumors do not affect the brainstem or other OARs
properties.

5.3.2 Manual Contouring

Altogether, four experts participated in this experiment. This group of ex-
perts was comprised by: two neurosurgeons, one physician and one medical
physicist. All of them were trained and qualified for radiosurgery delineation.
However, the number of available manual contours differed from one OAR to
each other. Thus, the composition of the manually labeled dataset, per pa-
tient, was: four manual contours of the brainstem in 9 patients, three manual
contours of the optic nerves, optic chiasm, pituitary gland and pituitary stalk
in 15 patients, and only one manual contour of the eyes and lenses in 15 pa-
tients. The reason for having only one manual contour per patient for the eyes
and lenses is because they do not represent a complex structure to segment.
Thus, less inter-observer variation is expected, being meaningless to employ
several contours to generate a reference standard. Protocol for delineation
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Figure 5.3: Intensity profiles of some OARs for a randomly selected patient.

was described before contouring session. Artiview R©3.0 (Aquilab) was used
after a training session to achieve Dicom RT contouring structures. Average
manual segmentation times per organ are listed in table 5.3.

Manual segmentation time (minutes)
Brainstem 20′ 12′′ (± 10′ 48′′)
Eyes 6′ 51′′ (± 1′ 42′′)
Lenses 2′ 17′′ (± 0′ 51′′)
Optic nerves 7′ 34′′ (± 2′ 53′′)
Optic chiasm 1′ 52′′ (± 0′ 38′′)
Pituitary Gland 3′ 8′′ (± 0′ 55′′)
Pituitary Stalk 2′ 41′′ (± 0′ 49′′)

Table 5.3: Mean manual segmentation times per observer and organ.

The pie chart in 5.4 represents the total time for manual segmentation
averaged over all the patients. The sections show the time for the OARs
delineated. Looking at the section, it can be observed that brainstem, eyes
and optic nerves represented the structures where the experts spent more time
in the segmentation task.



5.3. Imaging Data 103

45%

15%

5%

17%

4%

7%

6%

 

 

Brainstem

Eyes

Lenses

Optic nerves

Chiasm

Pituitary gland

Pituitary stalk

Figure 5.4: Pie charts representing mean manual segmentation times for
OARs.

5.3.3 Simulated Ground Truth

To conduct a validation analysis of the quality of image segmentation, it
is typically necessary to know a voxel-wise reference standard. Nevertheless,
image segmentation in the medical domain often lacks from a universal known
ground truth. Even though a single manual rater provides realistic data,
contours may suffer from intra- and inter-observer variability. Thus, a number
of observers and target patients that provide a good statistical analysis is
often required. Accordingly, this study has been designed to quantify variation
among clinicians in delineating OARs and to assess our proposed classification
scheme in this context.

Therefore, available manual contours from the experts were used to create
the simulated ground truth, which will be onwards referred to as reference.
Reference contours have been obtained in this thesis by using the computation-
ally simple concept of probability maps. In this method, which is analogous
to the voting rule approach, probability maps are thresholded at a variable
level in order to create the mask. The threshold was fixed at 50%, or at
75%, depending on whether the number of available manual contours from
the physicians was three or four, respectively. Hence, reference contours for
big structures such as the brainstem will be generated by thresholding the
probability map at 75% of the maximum level. For small structures, however,
threshold level will be fixed at 50% of the probability map values. This choice
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Figure 5.5: Creation of a reference contour example. In the left there row
are contours from observers in a 2D axial slice. In the middle row, contours
overlapping is shown. Last, in the right, the reference contour is created by
majority voting rule from the overlapping map.

for thresholds corresponds to the values proposed by the work of Biancardi et
al. [185]. In their work threshold values of 50% and 75% tended to produce
consistently large or small estimates, respectively. In figure 5.5, the genera-
tion of the reference standard for the brainstem and the optic nerves in our
study is shown. When only one manual contour was available, it was directly
employed as reference standard (i.e. for eyes and lenses).

Due to differences between observers, generated reference could not al-
ways be satisfactory and considered as corrupted data, particularly if they
are employed for learning. To ensure this not to happen, an external expert
reviewed the generated reference contours and performed small modifications,
if needed.

5.4 Leave-One-Out-Cross-Validation

Typical validation techniques to evaluate the performance of a classifier com-
prises the separation of the available dataset into two independent groups:
training and testing group. Accordingly, the training group is used to train
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the classifier, whereas the testing group is employed to evaluate its perfor-
mance. Nevertheless, there could be some cases where the availability of
images is limited and such division cannot be conducted if a relevant evalua-
tion is envisaged. Such is the case of the dataset employed in this thesis. In
these situations, a strategy called Leave-one-out cross-validation (LOOCV) is
usually employed. LOOCV is closely related to the validation set approach
explained in section 4.4.2.4.1. The difference lies in the attempt of addressing
the drawbacks of the later. Like the k -fold CV approach, LOOCV involves
splitting the training set into two parts. However, instead of creating k sub-
sets of comparable size, a single observation (x1, y1) is used for the validation
set, and the remaining observations (x2, y2), ..., (xn, yn) are used to carry out
the training. The learning method is fit on the n − 1 training observations,
and a prediction ŷ1 is made for the excluded observation, using its value x1.
The procedure can be repeated by employing the observation (x1, y1) as vali-
dation set, and training the statistical learning process on the n−1 remaining
observations, (x1, y1), (x3, y3), ..., (xn, yn).

This variation of CV can be seen as the k -fold cross-validation where k
is equal to the number of samples in the sample set. There is no need to
generate random permutations for leave-one-out cross-validation and repeat
the process, because the training and validation datasets for each of the folds
are always the same, and therefore the result of the accuracy estimation is
determined.

One of the major advantages of using LOOCV over the validation set
approach is that it has less bias. If we remember, in the validation set method,
the training set is commonly half size of the entire dataset. On the other
hand, when using LOOCV, the statistical learning approach is repeatedly
fitted using training sets which contain n − 1 observations. This helps to
the LOOCV strategy to have a tendency of not overestimating the test error
rate as much as the validation set approach does. Second, since there is
no randomness in the training and validation groups, performing LOOCV
multiple times will necessarily produce the same outcomes. Contrary to the
validation set approach, where results will be different due to the randomness
when creating the training and validation sets.

Unlike in Section 4.4.2.4.1, where the partitioning of the data was done
by grouping single instances randomly selected from all the patients into the
different subsets, in this stage a patient is considered as a sample. That is,
during model selection each observation represented a voxel and its features,
whereas in classification an observation is assumed to be a patient.
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5.5 Evaluation metrics

Medical image segmentation is an important processing step in medical image
analysis. Segmentation methods with high precision, high reproducibility and
low bias are a main goal in radiotherapy because they directly impact the
results. Accurately recognizing some patterns is of great value when segment-
ing medical images. Consequently, assessing the accuracy and the quality of
segmentation algorithm is of great importance. There are different quality as-
pects in medical image segmentation according to which types of segmentation
errors can be defined. Evaluation metrics are expected to indicate some or all
of theses errors, depending on the data and on the segmentation task. Re-
quirements of medical segmentation evaluation were categorized by [186] into
accuracy, precision as a measure of repeatability and the efficiency. The ac-
curacy category represents the degree of agreement of the segmentation with
respect to the reference contours. Under this category, two quality aspects
were mentioned, namely the contour, or delineation of the boundary, and the
size, or volume of segmented object.

As pointed out by [6], evaluation methods have lacked consensus as to com-
parison metrics. Since each metric yields different information, their choice
is important and must be considered in the appropriate context. Although
volume-based metrics, such as Dice Similarity Coefficient (DSC) [187], have
been broadly used to compare volume similarities, they are fairly insensitive
to edge differences when those differences have a small impact on the overall
volume. Therefore, two segmentations with high degree of spatial overlapping
may exhibit clinically relevant differences at the edges. As a consequence
distance-based metrics, such as Hausdorff distances, are also used to evaluate
segmentation results.

Let us now introduce some metric definitions that will be used through-
out this chapter. Let a medical volume be represented by a point set X =

{x1, ..., xn}, where xn represent the voxel n. Let denote |X| as w×h× d = n,
where w, h and d are the width, height and depth on the grid where the
volume is defined. To facilitate the understanding of following sections, let
assume that we only deal with segmentations that have two classes: the class
or structure of interest and the background. To refer to the class of interest
we will use the number 1, while we will employ the number 2 to refer to the
background.

Let denote the volume used as reference Vref , which is represented by the
partition {V 1

ref , V
2
gt} of X. The assignment function f iref (x) therefore provides

the membership of the structure x in the subset Siref , where:
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f iref (x) =

{
1 if x ∈ V i

ref

0 if x /∈ V i
ref

(5.1)

On the other hand, let refer to Va as the automatic segmentation to be
evaluated, which is represented by {V 1

a , V
2
a } of X. Similarly to the case of the

reference volume, the assignment function f ia(x) provides the membership of
x in the class Sia, which is analogously defined.

5.5.1 Spatial overlap based metrics

Spatial overlap based metrics can be derived from the four basic cardinalities
of the so-called confusion matrix: the true positives (TP), the false positives
(FP), the true negatives (TN) and the false negatives (FN).

5.5.1.1 Basic cardinalities

Let Sa and Sb be two segmentations, the confusion matrix represents the four
common cardinalities which reflect the overlap between them: TP, FP, TN
and FN. For each pair of subsets i ∈ Sa and j ∈ Sb, the cardinalities provides
the sum of agreement mij between them as follows:

mij =

|X|∑
n=1

f iref (xn)f ia(xn) (5.2)

where TP = m11, FP = m10, FN = m01 and TN = m00. To simplify its
definition we can refer to TP as the positive samples that were correctly la-
beled by the classifier, while TN denote the negative samples correctly labeled.
On the other hand, FP represent the negative samples incorrectly classified,
i.e. erroneously indicates the presence of a condition, such as a disease, when
in reality it is not, for example. Last, and contrary to FP, FN represents an
error indicating no presence of a condition when it actually exists. In medical
domain, and more generally in binary classification, it is a common practice to
directly use these basic cardinalities to assess the performance of a classifier.

5.5.1.2 Dice Similarity Coefficient

The Dice Similarity Coefficient (DSC) has been broadly used in the field
of segmentation as a measure of spatial overlapping [187]. As it has been
used in the literature, it compares a pair of volumes (binary masks) and
provides a similarity index between these two structures. The similarity index
or coefficient is defined as the ratio of twice the common area to the sum of
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the individual areas. Following the nomenclature already introduced, the Dice
similarity coefficient is defined as

DSC =
2|V 1

ref ∩ V 1
a |

|V 1
ref |+ |V 1

a |
=

2TP

2TP + FP + FN
(5.3)

According to 5.3, DSC values closer to 1 reflect high spatial agreement,
while DSC values closer to 0 show poor agreement between the volumes.

5.5.1.3 Sensitivity and specificity

Additionally to volume and distance-based metrics, sensitivity and specificity
were also investigated. Sensitivity measures the percentage of actual posi-
tives values which are correctly identified whereas specificity measures the
percentage of negative values which are correctly identified. To do this, the
numbers of true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) voxels were determined. These two metrics are defined as
follows:

Sensitivity = Recall = TPR =
TP

TP + FN
(5.4)

Specificity = TNR = TPR =
TN

TN + FP
(5.5)

The sensitivity might be equal to 1 for a poor segmentation much bigger
than the ground truth. On the other hand, the specificity, is therefore the
necessary counterpart of the sensitivity, but it might tend to 1 for a very poor
segmentation that does not detect the object of interest at all. Consequently, a
good segmentation system should have high sensitivity and specificity values.
It is worth to notice that both measures are very sensitive to the size of the
structure of interest. Thus, they penalize errors in small segments more than
in large segments [186].

Receiver operating characteristic (ROC) analysis is usually employed to
analyze classifiers performance. In this evaluation, curves defining the relation
between sensitivity and (1 - specificity) are plotted. If the ROC analysis is
considered from a radiotherapy point of view, FN and FP voxels must be taken
into consideration when analyzing the segmentation performance. While FN
voxels might lead to overirradiation of OARs voxels, FP voxels could result
in a possible underirradiation of target volume voxels. Thus, the higher the
sensitivity, the lower risk of overirradiation of normal tissue and the higher the
specificity, the lower the risk of underirradiation of tumor tissue. Following the
suggestion of [188], instead of employing ROC curves to evaluate performance
of a given classifier, the ROC space is used. The ROC space can be divided
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into four sub-spaces. This sub-division scheme is shown in Figure 5.6. Thus,
results spread over the left-top sub-space indicate acceptable contours, with
the OAR spared and the PTV covered. Results lying on the right-top sub-
space present a high-risk, since the OAR may be spared but with PTV not
covered. Poor contours are considered when they ROC representation are
present on the left-bottom sub-space. There, although the PTV is covered,
it is considered that the OAR is not spared. And last, the right-bottom side
of the ROC subdivision contains the unacceptable contours, with OARs not
spared and PTV not covered.
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Figure 5.6: ROC space sub-division to evaluate our classifier performance.

5.5.2 Volume based metrics

It is important to note that, although the concept of OAR is purely oncolog-
ical or anatomical, a representation of these volumes is used in the planning
process. Therefore, the defined volume of a critical structure plays a crucial
role in the dose distribution planned. As can be seen in the table 2.1, where
the dose limits for the OARs in both radiotherapy and radio-surgery are de-
fined, especially in the case of radio-surgery, variations in the volume may
lead to variations in the planned dose.

Consequently, volume based metrics are of significant importance when
generating contours to be used in the RTP. As its name indicates, volume
based metrics are measures that consider the volumes of the segmentations
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to indicate similarity. To measure volume differences between manual and
automatic contours with the reference, we consider the the following formula

∆V (%) =
V 1
a − V 1

ref

V 1
ref

∗ 100 (5.6)

which will be referred to as relative Volume Differences (rVD). An impor-
tant point to note in this metric is that, while the absolute value of ∆V (%)

will be used to plot rVD values and to compute mean values, values directly
obtained from eq. 5.6 (either negative or positive) will be used in the sta-
tistical analysis. The reason to employ absolute values of rVD to compute
means is to evaluate total relative differences between contours. If, for exam-
ple, we consider two contours that differ from the reference standard in -10
and 10%, the mean will be 0 if negative values are also taken into account.
However, both contours will have a difference with respect to the reference of
10%, independently of the sign, leading a mean deviation of 10%.

5.5.3 Spatial distance based metrics

To tackle with edge dissimilarities that have a small impact on the overall
segmented volume, volume-based metric are not sufficient. If a given seg-
mentation is planned to be used in RTP, an analysis on shape fidelity of the
segmentation outline is highly recommended. Any underinclusion on the OAR
delineation might lead to a part of the healthy tissue exposed to radiation.
Spatial distance based metrics have been also widely employed in the liter-
ature to evaluate image segmentations as dissimilarity measures. They are
strongly recommended when the segmentation overall accuracy is crucial, as
in the case of its inclusion in the RTP. Therefore, a surface distance measure
(Hausdorff distance [189]) was also used to evaluate the segmentation results.

5.5.3.1 Hausdorff Distance

The Hausdorff Distance is a mathematical construct to measure the ”closeness”
of two sets of points that are subsets of a metric space. It represents the
”maximum distance of a set to the nearest point in the other set”. More
formally, Hausdorff distance from the finite point set X = {x1, ..., xp} to the
finite point set Y = {y1, ..., yp} is a maximin function, defined as

H(X, Y ) = max(h(X, Y ), h(Y,X)) (5.7)

where

h(X, Y ) = max
x∈X

min
y∈Y
‖x− y‖ (5.8)
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and ‖ · ‖ is some underlying norm on the points of X and Y , such as L2

or the Euclidean Norm.

Figure 5.7: A schematic figure explaining the concept of Hausdorff distance
with two segmentation proposals, X and Y, for a certain structure.

Using Figure 5.7 as example: ROI X and ROI Y are two different seg-
mentation proposals in a single MRI slice under evaluation. Somewhere on
the edge of ROI X there is a point, x, that is further away from any point
on Y than all other points on X’s edge. This point has a minimum distance,
l2, to ROI Y. This is the Hausdorff distance from X to Y. Similarly on the
edge of ROI Y there is a point y that is further away from any point on X
than all other points on the edge of Y. The minimum distance, l1, from point
y to a point on the edge of X is the Hausdorff distance from Y to X. The
maximum of these two values (the longer of the two lines), in this case l1, is
the Hausdorff distance between ROI X and ROI Y in this MRI slice.

Thus, this distance can be used to determine the degree of resemblance
between two objects that are superimposed on to another [189].

5.5.4 Efficiency

Efficiency describes the practical viability of the segmentation method. It
refers to the practical viability of a segmentation method. Two factors need
to be considered to fully characterize efficiency: computational time and the
human operator time required to complete segmentation of each study in a
routine setting in the application domain. As it was already presented, user
interaction is minimized to a simple alignment of that target patient before
to send it to the classification process. Therefore, to assess efficiency, the
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computational time required for algorithm execution should be measured and
analyzed.

5.5.4.1 Processing Time

For comparison purposes, segmentation time observed for each physician when
manually segmenting the OARs was recorded. The segmentation of each struc-
ture was timed individually both for the manual segmentation and for the
automatic contours. The total time per patient for each of the methods was
then compared as well as the time consumed per structure. For the purpose
of our application, we can consider two different times through the whole
segmentation process: features extraction and classification time.

5.6 Statistical analysis

Among different types of inferential statistical tests, analysis of variance
(ANOVA) are the most suitable one for the purpose of our evaluation.
ANOVA is a parametric method for means comparison of several groups and
it tests the significance of group differences between two or more groups. It is
important to point out that it only determines that there is a difference be-
tween groups, but it does not tell us which is different. In the ANOVA setting,
the observed variance in a particular variable is partitioned into components
attributable to different sources of variation. In its simplest form, ANOVA
provides a statistical test of whether or not the means of several groups are
equal, and therefore generalizes the t-test to more than two groups.

The first of the techniques encompassed in ANOVA approaches is the
one-way ANOVA. It is used to determine whether there are any significant
differences between the means of two or more groups. However, one of the
assumptions is that samples contained in the groups must be independent,
which is not the case in our study.

Nevertheless, one-way repeated measures ANOVA is the equivalent of the
one-way ANOVA, but for related -not independent- groups. A repeated mea-
sures ANOVA is also referred to as a within-subjects ANOVA or ANOVA for
correlated samples. All these names imply the nature of the repeated measures
ANOVA, that of a test to detect any overall differences between related means.
One-way repeated measures ANOVA compares how a within-subjects experi-
mental group performs in three or more experimental conditions. This means
that it is used when you have a single group on which you have measured
something a few times. The analysis compares whether the mean of any of
the individual experimental conditions differ significantly from the aggregate
mean across the experimental conditions.
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Particularly, by employing statistical analysis we aim at demonstrating
that differences in volume and surface were significantly different between
SVM and our SDAE-based classification system. On the other hand, we also
employed statistical analysis between manual annotations and contours gen-
erated by our system. In this case, we expect to prove that, although results
from some manual observers were better than results provided by our ap-
proach, differences were not significantly important.





Chapter 6

Experiments and Results

“ There is only one way to avoid criticism: do nothing, say nothing, and be
nothing.”
Aristotle

This chapter focuses on the experiments that were carried out to achieve
the results presented on this work, and how they were implemented. Setting-
up of these experiments is detailed in the first section on the chapter. The
parameterization of all the values involved in any step of the proposed work-
flow are detailed in this section. This includes steps such as generation of
probability map or common mask, the composition of the features vector,
how features were extracted and choice of SDAE parameters, for example.
The second section presents the results that come from the experiments. For
comparison purposes, the proposed method is always compared against a clas-
sifier based on SVM. Then, manual observers are also taken into account to
evaluate the performance of our proposed scheme in clinical settings. The
main objective of this section is to demonstrate that our proposed scheme
outperforms SVM when classifying OARs in brain cancer, as well as it lies in
the variability of the experts. Accordingly, results are subdivided into subsec-
tions that details the obtained results. Last section summarizes the results,
and a discussion about them is presented. Comparison with other presented
methods to segment OARs in brain cancer is presented in this section.

6.1 Experiments set-up

In chapter 4, the theoretical introduction on how parameterization must be
done has been introduced. Now, in this section, values obtained through the
parameterization employed in all the steps are detailed.

6.1.1 Parametrization

In previous sections, a detailed theoretical explanation of how training and
classification has been performed was introduced. There, reasonings about
procedures followed to train the learning based systems were detailed in order
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to support their use. In following sections, parameters used in each of these
processes are presented.

6.1.1.1 Probability map and common mask creation

We have previously seen that the first step right after aligning the images
contained in the training set is generating a spatial probabilistic distribution
map (SPDM) for each of the OARs. To generate the SPDM, aligned manual
labels are added into a volume. The resulted image is then smoothed by
using a Gaussian filter with a kernel size of 3x3x3. To reduce the number of
input samples that contain consistent information, the voxel space was first
binarized by setting its values greater than 0.005 to 1, and the others to 0.
Then, a dilation operation with a square kernel type of size 3x3x3 was applied
over the binary image. Only those voxels that belonged to the inner part of
the dilated image were kept to extract the features.

6.1.1.2 Composition of the features vector

As we introduced in 4.3, dissimilarities between characteristics of OARs cause
that some of the suggested features are organ dependent, not being suitable for
all the organs investigated. Thus, two groups of OARs have been identified:
large and/or well-defined organs with no large shape variations, and organs
which texture is heterogeneous and/or large shape variations and which local-
ization also presents a high variation. From now onward, they will be referred
to as group A, and B, respectively. See table 6.1 for a classification of OARs
in both groups.

OARs groups classification

Group A
Brainstem
Eyes
Lenses

Group B

Optic nerves
Pituitary gland
Pituitary stalk
Chiasm

Table 6.1: Classification of the OARs in groups A or B.

To demonstrate that including proposed features, for each group, positively
impacts on the segmentation performance, different features sets have been
evaluated. Thus, the first set for each group is composed by features that have
already been proposed in other works. This set will be referred to as classical
features in all the groups. Several features sets were investigated depending
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on the OARs group. A complete list describing the composition of features
vectors used is presented in table 6.2. Next section presents the details of how
features were extracted for each of the groups.

Features set name Features included Vector size
Group A

Classical

Intensity of voxel under examination
Intensity of voxel neighborhood (3D)

Intensity of 8 voxels along maximum gradient direction
Probability voxel value
Spherical Coordinates

39

Enhanced

Classical (except 3D voxel neighborhood)
Geodesic Distance Transform Map
3D-Local Binary Texture Pattern

Gradient value of voxel

19

Group B

Classical

Intensity of voxel under examination
Intensity of voxel neighborhood (3D)

Intensity of 8 voxels along maximum gradient direction
Probability voxel value
Spherical Coordinates

137

Augmented

Classical
Gradient Patch in 2D (Horizontal and vertical

magnitudes and orientation)
Contextual features

276

Textural

Classical
Mean

Variance
Entropy
Energy
Kurtosis
Skewness

Wavelet patch decomposition

149

AE-FV
Classical

Augmented
Textural

288

Table 6.2: Features sets employed for the different groups.

6.1.1.3 Features Extraction

MR T1 sequence was the only image modality used. Intensity information
around neighboring region of the voxel under examination was extracted by
employing three-dimensional patches in groups A and B. However, patch size
in group A was 3x3x3 whilst in group B it was 5x5x5. The reason for this
difference is that OARs included in group A present a more homogenized
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texture than those included in group B. Furthermore, we experimented with
both sizes in OARs of group A, and no significant improvement was found.
Following the same reasoning, intensity neighborhood properties in OARs of
group C were extracted in a patch of size 5. Nevertheless, instead of extracting
the information of a three-dimensional vicinity, only the 2D space was taking
into account. Therefore, vector sizes for classical features resulted to be of 39,
137 and 34, for groups A,B and C, respectively.

Suggested features to segment OARs of group A include the use of a
geodesic distance transform map (GDTM)(section 4.3.3), the proposed 3D-
Local binary texture pattern (3D-LBTP) (section 4.3.4) and the gradient value
of the voxel under examination. The GDTM was generated by employing the
3D input image. To calculate the value of the GDTM at each voxel, we used
a patch of size 3x3x3 and λ was set to 0.75. As detailed in section 4.3.4, 6
voxels around the central voxel and ratios equal to 1 and 2 were employed to
capture the neighborhood appearance. In total, 4 values were extracted for
this feature: 1 texture and 1 binary values at each ratio. This led to a features
set composed by 19 features.

Features proposed to segment OARs belonging to group B are divided
into three groups: augmented, textural and augmented-enhanced features vec-
tors. In addition to specific features for each group, they include features
described for the classical features set. Gradient information was extracted
on a two-dimensional patch of size 5x5 around each voxel for each of the gra-
dient properties (horizontal and vertical gradient values, as well as gradient
orientation). Thus, 75 gradient values were obtained for each voxel. In ad-
dition to gradient, contextual features were also included in this set. As in
the work of [168] regions of size 3x3x1 voxels were sampled around the voxel
under examination by radiation from it at every 45◦, and at four different
radius: 4,8,16 and 32. By combining the continuous and the binary value
at each sampled patch, this led to a total of 64 contextual features for each
voxel. Textural features set comprises features related with texture. To com-
pute first-order textural features, patches of size 3x3x3 were extracted around
each voxel. Additionally, for the skewness, kurtosis and entropy, an additional
patch of size 5x5x5 was also employed, leading to a two values of these features
for each voxel (one value per patch). In addition to these patch sizes, other
different patches configurations were investigated. Particularly, patches of size
7, 9 and 11 were included in the features vector. However, their inclusion did
not lead to significant performance improvement, but it considerably increased
the computation time to extract the features. Therefore, they have not been
included in our evaluation. Regarding the use of wavelet-based features, first
to fourth order high-pass components from discrete wavelet decomposition
were employed. Total number of features used in each features set is shown
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in table 6.2. And last, the features set named augmented-enhanced features
vector encompasses all the sets previously presented for OARs of group B.
Therefore, sizes for each of the features sets are as follows: 137 for the clas-
sical set, 276 for the augmented set, 149 for the textural set and 288 for the
proposed AE-FV set.

6.1.1.4 Features scaling

Figure 6.1 shows the distribution of some features representing optic chiasm
and non optic chiasm samples for one patient. For the purpose of visualiza-
tion, only few features have been selected. The idea is to show that features
included in the vector incorporate additional discriminative information for
the segmentation. To avoid features with greater values dominating the classi-
fication, the features vector was normalized before training or testing. Except
for the BRIEF descriptor features, all the rest were normalized in the range of
[−1, 1]. The same scaling factors applied during training are employed in the
classification. To demonstrate that normalizing the features values does not
affect to their discriminative power, the distribution of normalized features is
plotted in the lower row of figure 6.1.
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Figure 6.1: Scatter plots of samples from the same subject showing different
features sets representations for the optic chiasm. Red crosses and blue circles
indicate optic chiasm and non optic chiasm samples, respectively. While the
upper row plots samples non-normalized, the row on the bottom represent the
distribution of normalized features.
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6.1.1.5 Parameter setting for SVM

The two parameters that can be tuned in the RBF kernel and which depend
on the input data are: C and γ. A coarse grid search, followed by a finer
search was performed to find the best combination of both parameters. For
example, for the brainstem case it was found from this search that best values
for C and γ were approximately 6 and 5.5, respectively, with an accuracy
close to 97% and a precision nearly of 95% (Fig. 6.2). These values for C and
γ were kept for the training and classification in all the features set.
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Figure 6.2: Parameter setting for SVM with different C and lambda values
for the brainstem case.

6.1.1.6 Parameter setting for SDAE

The deep network used in the proposed classification scheme was formed by
stacking DAEs (Fig. 6.3). Weights between layers of the network are ini-
tially learned via the unsupervised pre-training step. Once all the weights of
the network are unsupervisedly computed, a supervised refinement is carried
out by using the labeled classes, and final values of the network’ weights are
updated (Sec. 4.2.7).
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Figure 6.3: Deep network architecture constructed by stacking denoising au-
toencoders in the proposed approach.

The stack of DAEs forms the intermediate layers of the deep network (See
Figure 6.3). Nevertheless, defining the number of hidden layers, as well as
their size, is not an easy task. Training was run multiple times with differ-
ent configurations of the deep architecture to find a proper combination of
parameters. As introduced in section 4.4.2.4.2, the strategy followed to find
a network configuration is based on the error convergence during training.
Curve plotted in figure 6.4 shows the progression of this error for several net-
work configurations. With this procedure we obtained two optimal network
configurations, which depends on the number of elements composing the fea-
tures vector (Table 6.2). Architecture of networks aiming at segmenting OARs
of group A was composed by 4 hidden layers, with 100, 50, 25 and 10 units,
from input to output, respectively. On the other hand, for OARs of groups B,
the network structured was composed by 4 hidden layers, with 400, 200, 100
and 50 units, from input to output, respectively. The learned representation
of the input had therefore a dimensionality of 10 for the structures of group
A and 50 for structures of group B.

Since our network is composed by 4 hidden layers, during the unsupervised
pre-training, the weights vectors {W1,W2,W3,W4} were initially learned. De-
noising corruption level for the DAEs was set to 0.5, since a value of 50% of
noise level has already been proved to perform well in other problems [159].
Following the same architecture than in the unsupervised pre-training, four
hidden layers of DAEs were used for the fine-tuning step, with the same num-
ber of units than before. At the end of the last layer of DAEs a logistic regres-
sion layer is used as output with the sigmoid function as activation function.
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SDAE parameters

Network Structure
Group A 100 - 50 - 25 - 10
Group B 400- 200 - 100 - 50

Number of classes 2
Corruption Level 0.5
Batch sizes (per layer) 200 - 500 - 1000 - 2000
Number of epochs 500
Learning rate 0.1
Activation function
(Unsupervised learning)

Sigmoid

Activation function
(Supervised learning)

Sigmoid

Output Logistic

Table 6.3: Summary of employed SDAE parameters.

Mini-batch learning was followed during both unsupervised pre-training of
DAEs and supervised fine-tuning of the entire network. Batch sizes were set
in both configurations to 200,500,1000 and 2000, from the top to the bottom
layers, respectively. Table 6.3 summarizes parameter values employed in the
proposed SDAE.
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Figure 6.4: Evolution of batch errors during training for different configura-
tions of the deep architecture. Epochs refers to the number of passes through
the data.

6.1.1.7 Number of features

It is very common in practice to have a training set with unbalanced number of
positives and negatives samples. Not taking the proper balance between them
might lead to unsatisfactory results. Since the performance of the classifier
depends on the available data, there exist no rule to define the best balance
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between positive and negative samples in a training set. Therefore, we evalu-
ated the impact of different unbalanced training sets on the DSC. Figure 6.5
plots the evolution of the DSC in relation with the proportion of positive and
negative samples for a patient in a given OAR. Since the number of negative
samples was much higher than positive samples, we employed all the positive
samples and increased by steps the number of negative samples. We observed
that, in general, DSC increased up to having a number of negative samples
equal to 32 times the number of positive ones. Increasing the number of nega-
tive samples beyond 32 did not significantly improve DSC values. The reason
of this behavior can be attributed to the amount of data often required from
deep learning methods to learn input representations. Some structures in our
experiment were composed by an average amount of voxels ranging from 80
to 785. This is the case, for instance, of the chiasm, which mean volume was
composed by 235 voxels. Due to the limited available dataset, the training
set for the chiasm in the balanced case was composed by nearly 6580 voxels
(235 × 14 patients × 2). This number of samples showed to be insufficient
for providing the best volume similarity performance in our experiment. Par-
ticularly, a low amount of available samples for training makes the situation
even worst in cases presenting a large variability between samples, such as
for the optic nerves. Regardless of type or sample, i.e. either negative or
positive, by adding more samples on the training set increased the volume
similarity performance. Thus, for training purposes, the number of negatives
samples was 30 times the number of positives samples, when that amount of
negative samples were available. Otherwise, all the samples were taken into
consideration to train the classifier.

6.1.2 Leave-one-out-cross-validation

As explained in section 5.4, we employ this strategy to evaluate our method.
This technique consists in leaving one of the patients of the dataset out, and
train the classifier by using the remaining patients. This process is repeated
as many times as available patients we have. Thus, taking into account that
our dataset is composed by 15 patients, we will use 14 patients for training
and 1 for classification, which will be repeated 15 times, leaving one different
patient in each iteration.

6.2 Results

Since SVM has proven to be a state-of-the-art classifier, we use it in this thesis
for comparison purposes. To demonstrate that employing a deep network
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Figure 6.5: DSC values for a given patient with different balance relations
between the number of positives and negative samples used to train the clas-
sifier.

scheme to classify OARs can outperform SVM, different configurations were
evaluated. Changes on configurations comprise: i) the use of either SVM or
SDAE for classification and ii) the use of one of the features sets described in
Section 6.1.1.2. Accordingly, the first configuration will always be composed
by SVM and classical features, which will be referred to as SVM1. Next,
classical features will be employed in the SDAE based system, which leads to
the configuration known as SDAE1. Depending on the OARs group, several
configurations will be evaluated (Table 6.2). Accordingly, configurations will
be referred to as SDAEn, where n denotes the features group used. Finally,
SVM will be employed with the last features set of each configuration, i.e.
proposed set, leading to the SVM2 or SVMAE−FV set for organs from group
A or B, respectively.

Structures considered as OARs in the present work differ between them
in texture and/or shape appearance. Nevertheless, as explained in section
4.3, despite these differences, there are some structures that present a sort of
homogeneity in texture and variation in shape and location is less strong than
in others. Therefore, OARs are classed into two main groups, A and B. As a
remainder, the group A is composed by the brainstem, eyes and lenses. On
the other hand, optic nerves, optic chiasm, pituitary gland and pituitary stalk
are considered to belong to the group B. Because of proposed features vary
between group A and B, results for both groups are presented separately.

Additionally, number of patients and manual contours available to evaluate
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the performance of the proposed approach over different OARs was different
(See section 5.3 to see the dataset composition). Hence, results that show com-
parisons between manual and automatic contours are presented when avail-
able.

6.2.1 OARs group A

This section presents results of the automatic approaches to segment OARs
that belong to group A. For evaluation purposes, in those organs separately
present in both left and right brain sides, each of the sides are individually
analyzed. With regards to features sets employed, we refer to the table 6.2,
where different groups of features were presented. Following this definition
and as previously explained, the deep learning scheme that employs classical
features will be referred to as SDAE1, whilst the one employing the proposed
set will be referred to as SDAE2 in this section. In addition, the setting
employing SVM and classical features will be referred to as SVM1, while the
configuration employing the proposed features will be referred to as SVM2.

6.2.1.1 Comparison with respect to the reference standard

Performance of the four automatic configurations with respect to the reference
standard is evaluated in this section. The objective is to quantitatively demon-
strate that our proposed learning scheme outperforms the SVM settings, as
well as the SDAE scheme configured with classical features.

Dice Similarity Coefficients. Dice similarity coefficients obtained by the
automatic segmentations of the OARs of group A are plotted in Figure 6.6.
Box plots are grouped for each OAR. Inside each group, results for the refer-
ence SVM1, the SVM scheme employing proposed features (SVM2), the SDAE
setting with classical features (SDAE1) and our proposed system (SDAE2) are
displayed. Median values for each group were taken to compute the 50% per-
centile of the distribution, q50. To calculate the first and third quartile, i.e q25

and q75, median values of elements lower and higher than q50 were respectively
employed. Then, the Interquartile range (IQR) was equal to q75 - q25. The
lower and upper inner fences were estimated taking 1.5×IQR from the quar-
tile (the "inner fence") rather than the max or min. Last, outliers were those
values that were either 1.5×IQR or more above the third quartile or 1.5×IQR
or more below the first quartile. Looking across all structures, segmentations
produced by SVM1 system achieved the lowest results in comparison with the
other three settings. While it reported a mean DSC of 0.77 (± 0.05) over all
the structures, a mean value of 0.79 (± 0.04) was achieved by the SVM2 set-
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Figure 6.6: Segmentation DSC results for the automatic contours with differ-
ent settings for organs of group A.

ting. Schemes based on deep learning, i.e. SDAE1 and SDAE2, obtained mean
DSC values of 0.83 (± 0.05) and 0.85 (± 0.05), respectively. Decomposing into
single structures, it can be observed that solely by employing SDAE in the
classification scheme instead of SVM, segmentation performance improved in
all the structures, as well as variability was reduced. If, in addition, the pro-
posed features are fed into the classifier, performance still improved in most
of the OARs, particularly in SDAE frameworks. Specifically for the proposed
configuration, SDAE2, whereas the mean DSC for the brainstem was greater
than 0.9 (0.92 ± 0.02), it was close to 0.9 for both eyes. For both lenses,
however, mean DSC was nearly 0.75. Furthermore, the overall minimum DSC
in large structures was typically above 0.85. For small organs, this minimum
value was just below 0.7.

Automatic segmentations presented small but significant (p < 0.05) dif-
ferences across machine and deep learning environments when conducting a
within-subjects ANOVA test on the DSC of all the groups. The small p-
value indicated that at least one method significantly differed from the others.
Paired repeated measures ANOVAs (Table 6.4) shows the p-values obtained
when comparing results between only two groups. This table pointed out
that differences were particularly notorious on the scheme employing SVM
combined with classical features as classifier (first row of each group), which
values were lower than 0.05. Regarding the inclusion of proposed features in
the deep learning scheme, with exception of the brainstem case (p = 0.0181),
no significant differences were found on the DSC between the groups using
SDAE as classifier.
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Paired ANOVA (DSC)
Left Eye Right Eye

SVM1 SVM2 SDAE1 SDAE2 SVM1 SVM2 SDAE1 SDAE2

SVM1 1 0.3345 0.0265 0.0396 1 0.9640 0.1094 0.1955
SVM2 - 1 0.1626 0.2061 - 1 0.0773 0.1574
SDAE1 - - 1 0.9818 - - 1 0.7560
SDAE2 - - - 1 - - - 1

Left Lens Right Lens
SVM1 SVM2 SDAE1 SDAE2 SVM1 SVM2 SDAE1 SDAE2

SVM1 1 0.5351 0.2543 0.0736 1 0.9402 0.1148 0.0748
SVM2 - 1 0.5315 0.2210 - 1 0.1277 0.0837
SDAE1 - - 1 0.6442 - - 1 0.8636
SDAE2 - - - 1 - - - 1

Brainstem
SVM1 SVM2 SDAE1 SDAE2

SVM1 1 0.5173 0.0275 5.7583x10−5

SVM2 - 1 0.3872 0.0323
SDAE1 - - 1 0.0181
SDAE2 - - - 1

Table 6.4: Paired ANOVA tests for the DSC between the automatic ap-
proaches to segment OARs from group A.

Hausdoff distances. Figure 6.7 presents the values of Hausdorff distances
obtained for the four configurations. SVM based systems achieved the high-
est overall mean HD values among the four groups, with values of 5.96 (±
1.11) and 5.23 mm (± 1.02) for SVM1 and SVM2, respectively. On the other
hand, these values decreased when employing SDAE as classifier, with mean
HD of 4.29 (± 1.09) and 4.07 mm(± 0.98), for SDAE1 and SDAE2, respec-
tively. Having a look to the HD distributions on individual organs on figure
6.7, it can be observed that both SVM settings achieved the highest mean
HD values across all the OARs. Although the addition of proposed features
into the SVM framework improved mean HD values, it was not sufficient to
outperform SDAE based classifiers. Concerning the use of SDAE, mean HD
achieved by both settings were very similar when segmenting both eyes and
lenses. Across these structures, mean HD values for SDAE1 were 5.35 (±
3.35), 5.29 (± 2.58), 2.01 (± 0.73) and 2.27 mm (± 1.04) for left and right
eye, and left and right lens, respectively. When employing proposing features,
mean values were: 5.10 (± 2.05), 5.21 (± 3.06), 2.06 (± 0.76) and 2.15 mm
(± 0.95), respectively. However, the addition of proposed features decreased
values of Hausdorff distances with respect to the setting that employed clas-
sical features (SDAE1) when segmenting the brainstem. While mean HD
achieved by the SDAE1 scheme was reported to be 6.54 mm (± 2.17 mm),
mean HD had a value of 5.87 mm, with a lower standard deviation (0.99 mm),
if we employed proposed features instead. Results also reported that for large
organs, overall maximum distances were around 10-14 mm when employing
SVM in the classification scheme. On the other hand, these maximum values
decreased to almost half in SDAE settings, not typically exceeding the barrier
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Figure 6.7: HD results for the automatic contours with different settings for
organs of group A.

of 8 mm. For the lenses, however, maximum HD values were below 5.5 mm
in all configurations.

Paired ANOVA (HD)
Left Eye Right Eye

SVM1 SVM2 SDAE1 SDAE2 SVM1 SVM2 SDAE1 SDAE2

SVM1 1 0.4673 0.1484 0.0408 1 0.4227 0.0067 0.0098
SVM2 - 1 0.4175 0.2093 - 1 0.0545 0.0634
SDAE1 - - 1 0.8042 - - 1 0.9286
SDAE2 - - - 1 - - - 1

Left Lens Right Lens
SVM1 SVM2 SDAE1 SDAE2 SVM1 SVM2 SDAE1 SDAE2

SVM1 1 0.5541 0.0926 0.0759 1 0.8392 0.2463 0.1329
SVM2 - 1 0.2356 0.1953 - 1 0.2922 0.1525
SDAE1 - - 1 0.8927 - - 1 0.7487
SDAE2 - - - 1 - - - 1

Brainstem
SVM1 SVM2 SDAE1 SDAE2

SVM1 1 0.0307 0.0158 6.3953x10−4

SVM2 - 1 0.7379 0.1440
SDAE1 - - 1 0.2885
SDAE2 - - - 1

Table 6.5: Paired ANOVA tests for the Hausdorff distances between the au-
tomatic approaches to segment OARs from group A.

The ANOVA test demonstrated that there existed also differences between
automatic segmentations in relation to Hausdorff distances (p < 0.05). As
in the case of Dice similarities, significant differences mainly come from the
SVM1 setting, particularly if it is compared with SDAE groups (Table 6.5).
Although results plotted on Figure 6.7 shows that including the proposed
features on the classification scheme slightly decreased the values of HD, the
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ANOVA analysis indicates that no significant differences between (SDAE1)
and (SDAE2) existed with regards to HD. With exception of the brainstem,
where differences in the mean of HD was larger, we can say that improvement
is therefore marginal in terms of surface difference.

Relative Volume differences. Figure 6.8 plots relative volume differences
(rVD) distributions of the four automatic schemes for each of the organs from
group A. Schemes employing SVM as classifier presented the largest volume
differences for all the structures. Such differences in volume often doubled the
value of differences obtained by SDAE classifiers. For example, while volumes
generated by SVM1 and SVM2 when segmenting the lenses were sometimes
around 100-120% larger than the reference standard, these differences were
reduced to 50-55% when employing SDAE1 and SDAE2. Analyzing structures
individually, mean relative volume differences obtained by SVM1, in absolute
values, were: 15.43 (± 8.40), 36.77 (± 28.93), 26.33 (± 15.03), 54.60 (± 39.52)
and 43.74% (± 30.95) for the brainstem, left eye, right eye, left lens and right
lens, respectively. When adding the proposed features into the SVM-based
scheme these values became: 7.76 (± 4.99), 14.54 (± 8.51), 20.04 (± 21.02),
55.32 (± 38.45) and 42.79% (± 28.34). In the same order, SDAE1 obtained
the following relative volume differences: 3.97 (± 2.03), 8.17 (± 6.09), 10.72
(± 6.15), 29.52 (± 26.25) and 20.12% (± 12.52). At last, reported differences
for the proposed scheme (SDAE2) were: 3.01 (± 1.23), 10.02 (± 6.01), 10.07
(± 7.74), 28.05 (± 24.14) and 17.57% (± 11.69).

Brainstem Eye L Eye R Lens L Lens R
0

20

40

60

80

100

120
Relative Volume differences 

R
el

at
iv

e 
V

ol
um

e 
di

ffe
re

nc
es

 (
%

)

 

 

SVM 1
SVM 2
SDAE 1
SDAE 2

Figure 6.8: Vol diff results for the automatic contours with different settings
for organs of group A.

Differences between automatic segmentations in terms of volume were sta-
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Paired ANOVA (Vol Diff)
Left Eye Right Eye

SVM1 SVM2 SDAE1 SDAE2 SVM1 SVM2 SDAE1 SDAE2

SVM1 1 0.0081 8.2509x10−4 0.0015 1 0.1956 8.6539x10−4 1.1963x10−4

SVM2 - 1 0.0255 0.0927 - 1 0.1106 0.0788
SDAE1 - - 1 0.4121 - - 1 0.3521
SDAE2 - - - 1 - - - 1

Left Lens Right Lens
SVM1 SVM2 SDAE1 SDAE2 SVM1 SVM2 SDAE1 SDAE2

SVM1 1 0.9604 4.5912x10−6 2.6051x10−6 1 0.9312 4.6127x10−6 7.3127x10−6

SVM2 - 1 3.1125x10−6 1.1722x10−6 - 1 4.4581x10−6 7.0858x10−6

SDAE1 - - 1 0.6442 - - 1 0.5680
SDAE2 - - - 1 - - - 1

Brainstem
SVM1 SVM2 SDAE1 SDAE2

SVM1 1 0.0051 0.2013 0.0233
SVM2 - 1 0.0018 0.0358
SDAE1 - - 1 0.0188
SDAE2 - - - 1

Table 6.6: Paired ANOVA tests for volume differences between the automatic
approaches to segment OARs from group A.

tistically significant across the four groups (p < 0.05). Results from volume
differences showed more dissimilarities in the paired ANOVA tests than pre-
vious metrics (Table 6.6). Paired ANOVA tests pointed out that differences
between volumes generated by the SVM1 framework and volumes generated
with the other three settings were statistically significant in nearly all the
structures. This situation was almost similarly repeated by the configuration
SVM2, where differences on generated volumes in comparison from those gen-
erated by the deep networks were often statistically significant. Last, volumes
generated by the two SDAE settings did not present significant differences,
with exception of the brainstem, where the paired ANOVA test provided a
p-value of 0.0188.

Sensitivity and specificity. Mean sensitivity and specificity values across
OARs of group A for the four different classifier configurations are reported
in table 6.7. Sensitivity ans specificity obtained with the proposed SDAE2

framework were commonly among the top-ranked results for all the organs of
group A. Particularly, sensitivity values achieved by the proposed setting were
the highest in the cases of the brainstem and lenses, and among the two highest
when segmenting the eyes. Furthermore, standard deviation of sensitivity was
reduced on the configurations that employed SDAE as classifier. We can also
observe that the inclusion of proposed features into SDAE schemes slightly
improved sensitivity values across all the structures. Nevertheless, this trend
was not observed in settings employing SVM as classifier. For example, the
combination of proposed features with SVM, SVM2, achieved lower sensitivity
values than SVM1 when segmenting both eyes.
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Configuration Sensitivity Specificity

Brainstem

SVM1

SVM2

SDAE1

SDAE2

85.94 (± 6.12)
86.96 (± 5.71)
88.67 (± 3.83)
90.56 (± 5.41)

84.69 (± 3.69)
87.75 (± 6.51)
90.01 (± 2.48)
91.43 (± 2.97)

Eye (L)

SVM1

SVM2

SDAE1

SDAE2

88.63 (± 4.33)
84.34 (± 6.54)
91.25 (± 3.32)
91.03 (± 4.02)

96.49 (± 3.69)
99.34 (± 0.92)
97.29 (± 3.71)
99.19 (± 1.06)

Eye (R)

SVM1

SVM2

SDAE1

SDAE2

88.79 (± 5.42)
83.25 (± 7.87)
91.74 (± 4.13)
90.81 (± 4.62)

95.46 (± 8.06)
98.84 (± 3.15)
94.47 (± 10.03)
98.68 (± 2.78)

Lens (L)

SVM1

SVM2

SDAE1

SDAE2

72.29 (± 7.09)
73.37 (± 6.68)
83.40 (± 5.89)
84.24 (± 5.01)

79.26 (± 14.31)
78.17 (± 14.61)
71.08 (± 15.67)
70.76 (± 13.77)

Lens (R)

SVM1

SVM2

SDAE1

SDAE2

72.94 (± 7.96)
72.41 (± 7.59)
89.98 (± 4.71)
90.22 (± 5.65)

84.68 (± 13.14)
84.22 (± 13.56)
80.39 (± 13.50)
79.68 (± 14.31)

Table 6.7: Sensitivity and specificity mean values for the four automatic con-
figurations across the OARs of group A.

In terms of specificity, however, results varied across the four configura-
tions. For large structures, for example, configurations including the proposed
features reported the highest specificity values, in comparison with classical
features sets. Contrary, for small organs, i.e. lenses, classical features settings
achieved marginally higher results than their homologous with proposed fea-
tures. Differences between SVM and SDAE settings, employing the same fea-
tures set, mainly come from the brainstem and lenses. Mean specificity values
obtained from brainstem segmentations were around 5% higher in SDAE than
in SVM configurations. In the case of lenses segmentations, highest specificity
values went to the SVM side, which mean values ranging from 5-10% higher
than SDAE settings.

A good classifier should ideally be a combination of both high sensitivity
and specificity values. We can thereby say that SDAE settings were better
classifiers than configurations employing SVM. Additionally, the introduction
of proposed features into the classifier improved, although marginally, sensi-
tivity and specificity values of segmentations of OARs from this group.

Following ROC subdivision presented in Section 5.5.1.3, figure 6.9 is pre-
sented. On this figure, crosses indicate the correspondence between sensitivity
and (1 - specificity) for each patient for the four automatic settings. Thus,
each cross represents a single patient and its color indicates the setting em-
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ployed. It can be observed that for the four analyzed configurations, nearly
all results lie on the left-top sub-space, which indicates contours would be
considered acceptable for RTP. However, automatic lenses contours for two
patients lie on the "high risk" region when employing SDAE1 and SDAE2.
Furthermore, it is important to note that for the case of both lenses, there are
some results that dangerously approach the "high risk" and "poor" regions.
While some segmentations generated by SDAE based classifiers are closer to
the "high risk" region, segmentations generated by SVM are typically closer
to the "poor" region.
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Figure 6.9: ROC sub-division analysis for the four automatic approaches for
organs of group A.

Some visual examples of automatic segmentations generated by the four
settings are shown in Figure 6.10, together with the reference standard. OARs
shown in this figure are: eye (left), lens (middle) and brainstem (right). First,
it can be observed that in this set of OARs, SVM settings tended to provide
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larger volumes than those produced by SDAE configurations. Concerning
proposed features, their inclusion into the features vector generally produced
more similar contours to the reference volume than those generated by schemes
incorporating classical features.

Reference

SVM 1SVM 2

SDAE 1SDAE 2

Reference

SVM 1 SVM 2

SDAE 1 SDAE 2

Reference

SVM 1 SVM 2

SDAE 1 SDAE 2

Reference

SVM 1SVM 2
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SVM 1 SVM 2

SDAE 1 SDAE 2

Reference

SVM 1 SVM 2

SDAE 1 SDAE 2

Figure 6.10: Visual examples of automatic segmentations of OARs from group
A.

6.2.1.2 Comparison across manual contours and the proposed
scheme

This section evaluates manual segmentations in relation with the generated
reference standard and compares with the automatic segmentations obtained
with our approach. The goal is to quantitatively demonstrate that segmenta-
tions generated by our proposed learning scheme lies on the variability of the
experts. Since the brainstem was the only structure in group A from which we
obtained more than one manual contour per patient, this section only contains
results for the brainstem.

Dice Similarity Coefficients. Mean DSC values for the four observers
ranged from 0.84 to 0.90, with minimum and maximum values of 0.78 and
0.93 respectively. On the other hand, our proposed approach achieved a mean
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Figure 6.11: DSC results of manual and our proposed approach for the brain-
stem.

DSC value of 0.92, with a minimum value of 0.89 and a maximum value
of 0.93. It can be observed on figure 6.11,left that mean DSC achieved by
the proposed system is higher than values reported by manual segmentations
when compared with the reference standard. The within-subjects ANOVA
test conducted on the DSC of all the groups (p<0.05) indicated that there
were significant differences among them. These differences were especially
notorious on observers 1 and 4. In the right side of this figure, the ANOVA
multi-group comparison is presented. The proposed scheme is represented by
a blue line, while groups which have means significantly different from SDAE
group are drawn in red. These groups represent to the observer 1 and 4.
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Figure 6.12: Hausdorff distance results of manual and our proposed approach
for the brainstem.
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Hausdoff distances. Left side of figure 6.12 plots Hausdorff distances dis-
tributions for the group of manual and automatic contours. While mean HD
values for the four observers ranged from 6.52 to 10.09 mm, our proposed
system achieved a mean HD of 5.87 mm. Minimum and maximum HD val-
ues obtained by the group of manual raters were 4.12 and 16.93, respectively.
Although minimum HD values were not decreased when employing the deep
learning scheme, maximum values were reduced to almost the half in relation
to several observers. Furthermore, variability of the reported HD was also de-
creased by the proposed system. The within-subjects ANOVA test conducted
on the HD of all the groups indicated that there were not significant differences
among them (p = 0.0225). However, despite dissimilarities observed across
the observers and the automatic approach, only segmentations from observer
1 presented significant differences with respect to automatic contours (Figure
6.12, right). On this figure, groups with means significantly different from our
approach, in blue, are displayed in red.
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Figure 6.13: Volume differences results of manual and our proposed approach
for the brainstem.

Relative volume differences. Mean relative volume differences with re-
gards to reference contours across the four manual observers were reported
to be of 29.39%, 18.92%, 23.59% and 39.44%, for observer 1,2,3 and 4, re-
spectively. By employing the deep learning based classification scheme, rel-
ative volume difference was reduced to a mean value of 3.10% with respect
to reference volume. The within-subjects ANOVA test conducted on volume
differences of all the groups indicated that there were significant differences
among them (p = 5.5216x10e(−12)). These differences come from the manual
groups with respect to the automatic method (Figure 6.13). In this figure the
ANOVA multi-group comparison for volume differences is shown. The blue



6.2. Results 137

Brainstem
DSC HD (mm) Abs.Vol.Diff (%)

Observer 1 0.86 (± 0.03) 10.09 (± 4.84) 29.39 (± 8.26)
Observer 2 0.90 (± 0.03) 6.52 (± 1.99) 18.92 (± 6.45)
Observer 3 0.88 (± 0.03) 8.09 (± 3.06) 23.59 (± 7.99)
Observer 4 0.84 (± 0.03) 9.27 (± 2.64) 39.44 (± 8.54)
Our method 0.92 (± 0.02) 5.87 (± 0.73) 3.10 (± 1.18)

Table 6.8: Comparisons across the four observers and the proposed approach
when segmenting the brainstem.

line represents the automatic SDAE setting. Red lines symbolize the group
comprising the manual raters. As it can be observed, mean of SDAE have
significant differences with respect to all the raters of manual segmentations
group.

Table 6.8 summarizes the performance of manual annotations of the brain-
stem done by the four observers in comparison with the proposed approach.
For the three metrics, the proposed approach significantly outperforms manual
annotations, particularly in terms of relative volume differences.

Reference

Observer 1 Observer 2

Observer 3 Observer 4

Reference

SDAE 2

Figure 6.14: Visual examples of manual brainstem delineation and their com-
parison with reference and automatic segmentations.

Figure 6.14 shows a visual example of manual contours (top) and contours
generated by our approach (bottom) when segmenting the brainstem, and its
comparison with the reference standard. It can be observed from the manual
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contours that differences between manual raters usually come from the z axis
and from areas where no visible anatomical boundaries exist.

6.2.2 OARs group B

This section presents results of the automatic approaches to segment OARs
that belong to group B: optic nerves, pituitary gland, pituitary stalk and
chiasm. As in section 6.2.1, organs separately present in both left and right
brain sides are split into the two sections, which are individually analyzed.
With regards to the features sets employed, we refer to the table 6.2, where
different groups of features were presented. Following this definition, the deep
learning scheme that employs classical features will be referred to as SDAE1.
The rest of the groups will be referred to as SDAEAugmented, SDAETextural and
SDAEAE−FV , for the augmented, textural and AE-FV set, respectively. As
in the previous section, and to investigate the impact of employing a deep
network as classifier instead of some other classification schemes, SVM is used
as reference. Both the classical and the AE-FV configurations in combination
with SVM will be included in the evaluation. These settings will be referred
to as SVM1 and SVMAE−FV , respectively.

6.2.2.1 Comparison with respect to the reference standard

Dice Similarity Coefficients. Dice similarity coefficients obtained with
the automatic segmentations with respect to the reference standard for the
OARs of group B are plotted in Figure 6.15. Box plots are grouped for each
OAR. Inside each group, results for SVM references, and the several SDAE
settings are displayed. Among all configurations, SVM based classifiers pre-
sented the lowest overall mean DSC values, with 0.59 (± 0.16) and 0.64 (±
0.09) for SVM1 and SVMAE−FV , respectively. Concerning the SDAE settings,
the system that included our proposed features, SDAEAE−FV , achieved the
highest mean DSC value over all the OARs. Values for the several SDAE
configurations were: 0.69 (± 0.11), 0.74 (± 0.07), 0.74 (± 0.07) and 0.79 (±
0.06), for classical, augmented, textural and AE-FV sets, respectively. Ana-
lyzing each structure separately, we can observe that again, mean DSC values
from SVM configurations were among the lowest ones. In this setting, adding
the set of proposed features generally improved the mean DSC. Nevertheless,
it often remained below mean values achieved by SDAE based classifiers.
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Figure 6.15: Segmentation DSC results for the automatic contours with dif-
ferent settings for organs of group B.

Regarding the impact of different features sets on deep architectures, the
use of classical features produced segmentations with acceptable mean DSC
across all the OARs. However, it did not improve any of the other three fea-
tures groups. Mean DSC for SDAE1 were 0.72 (± 0.09), 0.72 (± 0.10), 0.68
(± 0.12), 0.68 (± 0.10) and 0.67 (± 0.13) for left optic nerve, right optic nerve,
pituitary gland, pituitary stalk and chiasm, respectively. Introduction of ei-
ther augmented or textural features improved the segmentation performance
of the classifier, which is reflected on its mean DSC values. In the same order,
mean DSC values were 0.73 (± 0.04), 0.75 (± 0.06), 0.73 (± 0.08), 0.73 (±
0.09) and 0.74 (± 0.08) for the augmented features set, and 0.76 (± 0.05), 0.76
(± 0.06), 0.73 (± 0.08), 0.70 (± 0.10) and 0.75 (± 0.06) when employing the
textural features set. Last, the use of the proposed features set, i.e. AE-FV,
achieved the highest mean DSC values across all the structures with values of
0.78 (± 0.05), 0.80 (± 0.06), 0.76 (± 0.06), 0.77 (± 0.08) and 0.83 (± 0.06),
respectively.

Automatic segmentations presented significant differences (p < 0.05)
across the automatic groups, according to the within-subjects ANOVA test on
the DSC of all the groups. Paired repeated measures ANOVAs were conducted
over groups that employed only classical and proposed features. The objective
of performing paired repeated ANOVAs only in classical and proposed features
was to evaluate whether the inclusion of proposed features set in this thesis
made a significant difference with respect to classical features set. Results of
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Paired ANOVA (DSC)
SVM1 SVMAE−FV SDAE1 SDAEAE−FV

Optiv Nerve (L)

SVM1 1 0.1386 0.0001 5.9524x10−7

SVMAE−FV - 1 3.8499x10−5 2.1743x10−6

SDAE1 - - 1 0.0159
SDAEAE−FV - - - 1

Optiv Nerve (R)

SVM1 1 0.0737 0.0008 2.8712x10−7

SVMAE−FV - 1 0.0015 7.8942x10−6

SDAE1 - - 1 0.0138
SDAEAE−FV - - - 1

Pituitary Gland

SVM1 1 0.6793 0.9564 0.0173
SVMAE−FV - 1 0.7341 0.0472
SDAE1 - - 1 0.0291
SDAEAE−FV - - - 1

Pituitary Stalk

SVM1 1 0.7635 0.7507 0.0147
SVMAE−FV - 1 0.4761 0.0014
SDAE1 - - 1 0.0081
SDAEAE−FV - - - 1

Chiasm

SVM1 1 0.1503 0.0807 9.1865x10−9

SVMAE−FV - 1 0.4281 8.4951x10−8

SDAE1 - - 1 0.0002
SDAEAE−FV - - - 1

Table 6.9: Paired ANOVA tests for the DSC between the automatic ap-
proaches to segment OARs from group B.

these tests on DSC values are presented in table 6.9, which shows p-values ob-
tained when comparing results between only two groups. Results demonstrate
that no statistically significant differences existed between both SVM based
systems in any of the OARs of this group (p > 0.05). Regarding the use of
deep networks, the combination of SDAE as classifier with classical features
reported significant differences with respect to SVM groups when segmenting
both optic nerves. Our proposed scheme, however, presented differences on
DSC values that were statistically significant with respect the other groups in
all the OARs.

Hausdorff distances. Figure 6.16 plots the distribution of HD across the
OARs for all the automatic frameworks. As in the case of DSC distributions,
mean HD values over all the structures show that SVM based classifiers pre-
sented the worst results. While SVM1 and SVMAE−FV achieved an overall
mean HD of 7.09 (± 5.23) and 6.63 (± 5.09) mm, respectively, mean values
for SDAE settings were 5.80 (± 5.47), 4.74 (± 4.83), 4.69 (± 4.70) and 3.32
(± 0.96) mm for SDAE1, SDAEAugmented, SDAETextural and SDAEAE−FV , re-
spectively. Looking at each structure individually, it can be observed that
including the set of proposed features into the SVM system decreased mean
HD values with respect to the classical features set when segmenting both op-
tic nerves. For the rest of the organs, however, inclusion of proposed features
did not particularly improve HD values. Mean HD values for left optic nerve,
right optic nerve, pituitary gland, pituitary stalk and chiasm, were reported to
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Figure 6.16: Segmentation HD results for the automatic contours with differ-
ent settings for organs of group B.

be of 11.47 (± 8.12), 10.11 (± 3.89), 4.67 (± 1.45), 4.29 (± 1.97) and 4.95 (±
1.02) mm for SVM1, and 11.18 (± 9.22), 7.46 (± 3.23), 5.24 (± 1.99), 4.20 (±
1.38) and 5.86 (± 1.31) mm, respectively, for SVMAE−FV . Employing SDAE
as classifier instead of SVM in a classical features setting decreased mean HD
in most cases. Incorporation of either augmented or textural features in the
SDAE based classifier improved HD values with respect to classical features.
While in some organs mean HD values were lower for augmented features
based classifiers, for some other organs textural features set achieved the low-
est mean HD values. Nevertheless, the combination of both features sets into
the AE-FV set led to the lowest mean HD values across all the structures.
Mean HD values obtained with the proposed features set were 3.51 (± 0.87),
3.67 (± 0.67), 3.34 (± 1.09), 2.78 (± 0.76) and 3.29 (± 1.19), for left and right
optic nerve, pituitary gland, pituitary stalk and chiasm, respectively.

Paired repeated measures ANOVAs conducted on HD values (Table 6.10)
indicates that including proposed features in the SVM based classifier did not
produce segmentations with significant differences with respect to classical
configurations (p > 0.05). Employing SDAE as classifier with the classical
features set did not report differences statistically significant in four out five
structures. Only segmentations of the right optic nerve (p = 0.0098) showed
significant different between SVM and SDAE when employing the classical
features set. Nevertheless, differences between the two classifiers, i.e. SVM
and SDAE, were significant when employing proposed features over all the
structures (p < 0.05). Regarding the use of proposed features against classical
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Paired ANOVA (Hausdorff distances)
SVM1 SVMAE−FV SDAE1 SDAEAE−FV

Optiv Nerve (L)

SVM1 1 0.9318 0.5786 0.0014
SVMAE−FV - 1 0.4435 0.0034
SDAE1 - - 1 0.0377
SDAEAE−FV - - - 1

Optiv Nerve (R)

SVM1 1 0.0519 0.0098 7.7642x10−7

SVMAE−FV - 1 0.3869 0.0001
SDAE1 - - 1 0.0057
SDAEAE−FV - - - 1

Pituitary Gland

SVM1 1 0.3855 0.3358 0.0077
SVMAE−FV - 1 0.1008 0.0031
SDAE1 - - 1 0.0836
SDAEAE−FV - - - 1

Pituitary Stalk

SVM1 1 0.8769 0.5265 0.0099
SVMAE−FV - 1 0.5917 0.0017
SDAE1 - - 1 0.0616
SDAEAE−FV - - - 1

Chiasm

SVM1 1 0.7512 0.7921 0.0003
SVMAE−FV - 1 0.9461 0.0005
SDAE1 - - 1 0.0165
SDAEAE−FV - - - 1

Table 6.10: Paired ANOVA tests for the Hausdorff distances between the
automatic approaches to segment OARs from group B.

features in SDAE settings, segmentation of both optic nerves and chiasm
presented significant differences between them, with p-values of 0.0377, 0.0057
and 0.0165, respectively.

Relative Volume Differences. Distributions of relative volume differences
of the six automatic schemes for each organ are plotted in figure 6.17. Schemes
employing SVM as classifier presented the largest volume differences for all
the OARs of group B. Indeed, with exception of the pituitary stalk, mean
relative volume differences for SVM based system were double than those re-
ported by SDAE settings, independently on the features set used. Taking
results from each structure, it can be observed that by employing either aug-
mented or textural features in SDAE settings did not reduce mean rVD with
respect to classical features. Actually, in some cases, such as both optic nerves,
differences in volume were higher when employing one of these groups. How-
ever, the proposed features set, which comprises all these groups, achieved
the lowest rVD among all the configurations. Mean values for relative volume
differences across the six groups for the 6 OARs follows. The order of the
OARs is: left optic nerve, right optic nerve, pituitary gland, pituitary stalk
and chiasm. For SVM1 mean rVD were 72.58 (± 22.86), 72.14 (± 42.59), 53.37
(± 48.89), 23.44 (± 15.16) and 83.24 % (± 84.49). For SVM including the
proposed AE-FV set: 52.86(± 15.46), 41.48 (± 14.69), 71.49 (± 51.68), 38.10
(± 32.55) and 79.28 (± 43.64). First of SDAE configurations, which employed
classical features, obtained the following mean values: 22.06 (± 13.92), 15.10
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Figure 6.17: Relative volume differences results for the automatic contours
with different settings for organs of group B.

(± 11.62), 31.14 (± 23.82), 29.13 (± 20.41) and 32.37 (± 27.58). When incor-
porating augmented features into the features set, mean rVD were: 29.13 (±
18.08), 18.67 (± 12.42), 28.95 (± 23.42), 23.38 (± 8.82) and 20.85 (± 14.77).
If we employed textural features instead, mean values of rVD were: 19.68 (±
9.56), 15.68 (± 11.06), 31.89 (± 18.29), 24.46 (± 14.26) and 22.14 (± 15.34).
Finally, our proposed system achieved the following mean rVD values: 16.85
(± 13.39), 16.27 (± 11.09), 18.09 (± 11.29), 22.51 (± 7.55) and 12.48 (±
7.69).

Automatic segmentations presented significant (p < 0.05) differences
across the automatic groups. Paired repeated measures ANOVAs (Table 6.11)
indicate that differences between groups, in terms of volume differences, were
significant in most of the cases. Results from the SVM based scheme that em-
ployed proposed features were significantly different from those obtained by
the classical setting when segmenting both optic nerves and pituitary stalk.
Concerning the use of SDAE as classifier, results from SDAE settings were
significant different than SVM settings in all the organs, with exception of the
pituitary stalk. In this case, with p-values of 0.0961 and 0.7652 for SDAE1 and
SDAEAE−FV , respectively, differences on volume were not statistically signif-
icant between SVM1 and both SDAE groups. On the other hand, the impact
of adding proposed features into the deep learning scheme was statistically
significant only when segmenting the pituitary stalk and chiasm (p=0.0394
and p=0.0068), in terms of volume differences.



144 Chapter 6. Experiments and Results

Paired ANOVA (Relative volume differences)
SVM1 SVMAE−FV SDAE1 SDAEAE−FV

Optiv Nerve (L)

SVM1 1 0.0099 3.2411x10−8 9.3889x10−9

SVMAE−FV - 1 1.3548x10−6 3.2796x10−7

SDAE1 - - 1 0.2633
SDAEAE−FV - - - 1

Optiv Nerve (R)

SVM1 1 0.0135 8.4021x10−6 1.0771x10−5

SVMAE−FV - 1 4.1064x10−6 7.0974x10−6

SDAE1 - - 1 0.8851
SDAEAE−FV - - - 1

Pituitary Gland

SVM1 1 0.3047 0.0114 0.0024
SVMAE−FV - 1 0.0006 6.7363x10−5

SDAE1 - - 1 0.7741
SDAEAE−FV - - - 1

Pituitary Stalk

SVM1 1 0.0004 0.0961 0.7652
SVMAE−FV - 1 6.5727x10−6 0.0005
SDAE1 - - 1 0.0394
SDAEAE−FV - - - 1

Chiasm

SVM1 1 0.9514 0.0002 0.0021
SVMAE−FV - 1 2.4641x10−8 2.4966x10−7

SDAE1 - - 1 0.0068
SDAEAE−FV - - - 1

Table 6.11: Paired ANOVA tests for volume differences between the automatic
approaches to segment OARs from group B.

Sensitivity and specificity. Sensitivity and specificity across OARs of
group B for the six different classifier configurations are reported in table
6.12. In general, SDAE based classifiers achieved the highest sensitivity val-
ues, whereas SVM settings obtained the highest specificity rates. Mean sensi-
tivity values for both SVM configurations commonly ranged between 60 and
70, with exception of the pituitary stalk, where sensitivity was around 70 for
SVM1 and close to 80 for SVMAE−FV . Employing the SDAE system with
classical features improved sensitivity, leading to values close to 80 for all
the organs with exception of the chiasm, which mean sensitivity value was
71.67. Adding any single of the investigated features set (SDAEAugmented or
SDAETextural) typically increased sensitivity with respect to classical settings,
with mean values nearly 80, or little bit higher. At last, the proposed system
achieved sensitivity values greater than 80 in all the structures. Contrary,
concerning the specificity, any pattern was noticed. For instance, regarding
the use of SVM with classical or proposed features, specificity was increased
when segmenting both optic nerves, whilst it was decreased when segmenting
pituitary stalk or chiasm.

Combination of higher sensitivity and specificity metrics obtained from the
AE-FV based classifier indicated that the proposed system correctly identified
more tissue voxels than the others settings did, and also was better at rejecting
tissue voxels that were not related to the tissue class of interest.

The performance of the automatic delineations according the features set
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Configuration Sensitivity Specificity

Optic nerve (L)

SVM1

SVMAE−FV

SDAE1

SDAEAugmented

SDAETextural

SDAEAE−FV

66.68 (± 10.74)
67.46 (± 5.69)
85.41 (± 5.76)
79.18 (± 4.01)
81.87 (± 3.49)
82.23 (± 3.71)

79.19 (± 23.57)
92.86 (± 6.64)
79.38 (± 15.07)
90.44 (± 7.27)
89.34 (± 7.65)
91.02 (± 7.31)

Optic nerve (R)

SVM1

SVMAE−FV

SDAE1

SDAEAugmented

SDAETextural

SDAEAE−FV

64.74 (± 12.81)
66.31 (± 8.68)
79.30 (± 6.13)
80.53 (± 5.18)
80.19 (± 4.84)
81.54 (± 4.45)

76.52 (± 23.82)
91.29 (± 10.32)
82.79 (± 13.28)
87.67 (± 10.82)
87.86 (± 10.86)
88.09 (± 9.52)

Pituitary gland

SVM1

SVMAE−FV

SDAE1

SDAEAugmented

SDAETextural

SDAEAE−FV

62.31 (± 15.18)
67.81 (± 14.89)
80.85 (± 9.69)
83.13 (± 9.29)
82.24 (± 10.05)
84.22 (± 7.94)

94.84 (± 6.52)
88.51 (± 10.62)
80.86 (± 14.32)
79.85 (± 19.35)
81.07 (± 13.79)
82.69 (± 15.09)

Pituitary stalk

SVM1

SVMAE−FV

SDAE1

SDAEAugmented

SDAETextural

SDAEAE−FV

70.33 (± 6.94)
80.78 (± 7.76)
79.19 (± 8.02)
81.66 (± 6.47)
79.62 (± 8.17)
82.28 (± 7.53)

84.42 (± 10.62)
77.61 (± 14.54)
76.52 (± 17.42)
77.29 (± 14.28)
77.98 (± 17.19)
73.14 (± 16.86)

Chiasm

SVM1

SVMAE−FV

SDAE1

SDAEAugmented

SDAETextural

SDAEAE−FV

65.09 (± 7.78)
69.74 (± 11.39)
71.67 (± 12.07)
83.93 (± 5.16)
84.32 (± 7.40)
83.94 (± 4.34)

94.37 (± 7.88)
88.43 (± 10.57)
89.84 (± 15.23)
86.64 (± 9.69)
82.42 (± 17.78)
86.11 (± 9.71)

Table 6.12: Sensitivity and specificity mean values for the six automatic con-
figurations across the OARs of group B.
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(a) Left optic nerve
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(b) Right optic nerve
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(c) Pituitary gland
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(d) Pituitary stalk
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(e) Optic chiasm

Figure 6.18: ROC sub-division analysis for the six automatic approaches for
organs of group A.
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employed is also compared by using ROC region analysis (Fig. 6.18). On this
figure, crosses indicate the correspondence between sensitivity and (1 - speci-
ficity) for each patient for the six automatic settings. Therefore, each cross
represents a single patient and its color indicates the setting employed. First,
it can be observed that for the six configurations nearly all results lie on the
left-top sub-space, which indicates contours would be considered acceptable
for RTP. Nevertheless, there are cases which should be taken into considera-
tion. Some contours generated by SDAE1 approach, or are inside, the "high
risk" area when segmenting both optic nerves. In addition, although contours
provided by both SVM configurations lie inside the "acceptable" area, they
dangerously surround the "poor" region, where the OARs are not spared.
Automatic segmentations of pituitary gland and pituitary stalk, from all the
settings, also presented some contours that lie outside the acceptable region.
Two pituitary gland contours from SDAEAugmented, one from SDAEAE−FV and
two from both SVM1 and SVMAE−FV were in the "poor" and "high risk" re-
gions. Again, several contours generated by both SVM settings were very close
to the "poor" region. In the case of the pituitary stalk, one contour for each
SDAE configuration and one from SVMAE−FV were found in the "high risk"
region. However, more automatic contours from several settings were close
to the line that divided the "acceptable" and "high risk" region. Last, only
few contours generated by both settings employing classical features, SVM1

and SDAE1, were not in the "acceptable" region when segmenting the chiasm.
As in some previous cases, automatic contours generated by SVM1 were very
close to the "poor" region.

Figure 6.19 displays the automatic contours generated by the evaluated
configurations. To investigate the effect on the segmentation of employing
different classifiers, segmentations from configurations employing either SVM
or SDAE are presented on the top-row of this figure. Visual results show that
SVM based classifiers provided contours much larger than the reference. This
was particularly noticeable in the contours from SVM setting employing clas-
sical features. In the case of the chiasm, for example, SVM configurations were
not capable of distinguish between chiasm and pituitary stalk. Contrary, clas-
sifiers based on SDAE correctly classify the chiasm avoiding the neighboring
region of the pituitary stalk. Comparison of the impact on the segmentation
performance when adding the different features sets on the SDAE settings
can be seen in the bottom-row. Including either augmented or textural fea-
tures into the classification system typically improved segmentations respect
to classical features. Nevertheless, combining all features into the AE-FV set
achieved the best contours among the SDAE frameworks.
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Figure 6.19: Segmentation results produced by the proposed classification
system when segmenting the right optic nerve (left), pituitary gland (middle)
and chiasm (right), and comparison with the other automatic configurations.

6.2.2.2 Comparison across manual contours and the proposed
scheme

As for the case of OARs of group A, this section evaluates manual segmenta-
tions in relation with the reference standard and compares with the automatic
segmentation obtained with our approach. The goal is again to quantitatively
demonstrate that segmentations generated by our proposed learning scheme
lies on the variability of the experts. Additionally, in cases where performance
of automatic segmentation does not lie on the expert variability, we aim at
demonstrating that no significant differences exist between the manual raters
and the contours generated by our approach.

Dice Similarity Coefficients. Dice similarity coefficients distribution for
the three observers and our proposed approach across all the OARs of group
B are plotted in Figure 6.20. Each box group contains several columns rep-
resenting distributions of the segmentations results for a given organ. While
the three first columns of each box group represent to the manual raters, the
last columns represent our automatic method. Mean DSC over all the OARs
of group B is distributed as follows: 0.83(± 0.07) for observer 1, 0.75(± 0.09)
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Figure 6.20: DSC results of manual and our proposed approach for the OARs
of group B.

ANOVA analysis (DSC)
Within-subjects ANOVA Paired ANOVA

All Obs 1 Obs 2 Obs 3
Optic nerve L 0.0108 SDAEAE−FV 0.2946 0.0281 0.3881
Optic nerve R 0.0259 SDAEAE−FV 0.1158 0.0243 0.1327
Pituitary gland 0.0081 SDAEAE−FV 0.0083 0.3913 0.2247
Pituitary stalk 0.0001 SDAEAE−FV 0.0035 0.0385 0.8671
Chiasm 0.0001 SDAEAE−FV 0.6047 0.0018 0.0001

Table 6.13: P-values of the ANOVA for Dice similarity coefficient results of
the OARs of group B.

for observer 2, 0.76(± 0.10) for observer 3 and 0.79(± 0.06) for our automatic
approach. Looking at individual structures, mean DSC values obtained from
segmentations made by observer 1 were 0.81(± 0.09), 0.82(± 0.08), 0.86(±
0.03), 0.84(± 0.06) and 0.84(± 0.06), for left optic nerve, right optic nerve,
pituitary gland, pituitary stalk and chiasm, respectively. In the same order,
mean DSC values were 0.73(± 0.08), 0.74(± 0.11), 0.82(± 0.05), 0.72(± 0.06)
and 0.73(± 0.09) for segmentations of observer 2 and 0.80(± 0.05), 0.81(±
0.04), 0.75(± 0.15), 0.77(± 0.05) and 0.69(± 0.10) for segmentations of ob-
server 3. Last, our proposed system achieved mean DSC values of 0.78(±
0.05), 0.80(± 0.06), 0.80(± 0.08), 0.77(± 0.08) and 0.83(± 0.06), respectively.
It can be observed on figure 6.20 that mean DSC achieved by the proposed
system is always between the highest and lowest values reported by manual
segmentations when compared with the reference standard.

Results from the ANOVA analysis conducted between all groups together,
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as well as between results provided by the proposed automatic approach and
each of the manual raters are presented in Table 6.13. The within-subjects
ANOVA tests conducted on the DSC values of all the groups indicated that
there were significant differences among them (p < 0.05) in all the OARs.
Values from the paired ANOVA tests indicated that there were not significant
differences on DSC values between observer 3 and our method in four out of
five OARs. Only DSC results from the chiasm presented significant differences
between observer 3 and our method. However, if we look at the mean DSC
distributions (Figure 6.20), we can observe that in this case our approach
outperformed the performance of observer 3, in terms of DSC. Significant
differences (p < 0.05) between observer 2 and our approach come from the
segmentation of left and right optic nerves, pituitary stalk and chiasm. Nev-
ertheless, and as in the previous case, mean DSC distributions (Figure 6.20)
indicated that in these cases our approach outperformed the performance
of observer 2, in terms of DSC. Regarding the comparison with observer 1,
although DSC values were higher for this observer, only segmentations of pi-
tuitary gland and pituitary stalk presented significant differences with respect
to results provided by our approach. An example of multi-group ANOVA
comparison between the four groups (three manuals and one automatic) is
shown in Figure 6.21. It displays the multi-group comparison of DSC results
when segmenting the chiasm. Blue indicates the group representing results
from the proposed approach. Whilst in red are drawn groups with means
significantly different from our method, grey indicates that results from group
1, i.e. observer 1, do not present significant differences with respect to our
approach.

0.65 0.7 0.75 0.8 0.85 0.9

SDAE AE−FV

Obs. 3

Obs. 2

Obs. 1

DSC ANOVA multi−group comparison

DSC

Figure 6.21: Multi-group comparison of DSC results of manual and our pro-
posed approach for the chiasm.
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Figure 6.22: Hausdorff distance results of manual and our proposed approach
for OARs of group B.

Hausdoff distances. Figure 6.22 plots Hausdorff distances distributions for
the group of manual observers and the automatic proposed approach. Mean
HD values for the three observers ranged from 1.78 to 4.47 mm across all the
OARs. Maximum and minimum values for the automatic approach ranged
from 2.58 to 3.67 mm. Mean HD values for each of the OARs for observer
1 were 2.38(± 0.47), 2.91(± 2.17), 1.81(± 0.52), 1.78(± 0.41) and 2.27(±
0.97) mm for left optic nerve, right optic nerve, pituitary gland, pituitary
stalk and chiasm, respectively. Manual delineations from observer 2 provided
mean HD values of 4.47(± 1.96), 3.93(± 1.89), 2.42(± 0.31), 2.14(± 0.61) and
3.56(± 1.05) mm, while mean HD values for observer 3 were 3.16(± 1.32),
2.86(± 0.85), 2.70(± 1.08), 1.96(± 0.68) and 3.35(± 0.99) mm, respectively.
Finally, contours automatically generated by our approach provided the fol-
lowing mean HD values: 3.51(± 0.87), 3.67(± 0.67), 3.09(± 0.85), 2.78(±
0.76) and 3.29(± 1.19) mm, in the same order. Although minimum HD val-
ues were not decreased when employing the deep learning scheme, they ranged
inside the variability of the experts or very close to values obtained by manual
delineation. Furthermore, variability of reported HD values was decreased by
the proposed system for some organs in comparison to some observers. Such
is the case in both optic nerves in relation with observer 2 and 3. Variability
of HD in segmenting the left optic nerve by observer 2 and 3 was of 1.96 and
1.32. Respectively, HD variability of right optic nerve was 1.89 and 0.85. By
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ANOVA analysis (HD)
Within-subjects ANOVA Paired ANOVA

All Obs 1 Obs 2 Obs 3
Optic nerve L 0.0005 SDAEAE−FV 0.0001 0.0938 0.3926
Optic nerve R 0.0014 SDAEAE−FV 0.2015 0.6217 0.0261
Pituitary gland 0.0002 SDAEAE−FV 0.0001 0.0077 0.2768
Pituitary stalk 0.0040 SDAEAE−FV 0.0004 0.0659 0.0418
Chiasm 0.0064 SDAEAE−FV 0.0142 0.5359 0.8895

Table 6.14: P-values of the ANOVA for Hausdorff distances results of the
OARs of group B.

employing the proposed system this variability decreased to 0.87 and 0.66 for
the left and right optic nerve.

The within-subjects ANOVA test conducted on the HD of all the groups
indicated that there were significant differences among them (Table 6.14) in
all the OARs. Differences on HD values were significantly important between
the automatic approach and observer 1 in almost all the OARs, as reported
by the paired ANOVA tests. Nevertheless, when comparing HD values from
our approach with those from observer 2 and 3, differences were not signifi-
cantly important in most of the cases. As example of differences statistically
significant between observers 2 or 3 and our proposed approach we can find
the HD results from segmentations of pituitary stalk between observer 3 and
the proposed system (Figure 6.23). In addition to observer 3, differences with
respect to observer 1 were also significantly important in this case. In this
figure, blue represents the automatic group, while red represent the manual
groups which had means significantly different.

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

SDAE AE−FV

Obs. 3

Obs. 2

Obs. 1

Hausdorff distances ANOVA multi−group comparison

Hausdorff distance (mm)

Figure 6.23: Multi-group comparison of HD results of manual and our pro-
posed approach for the pituitary stalk.
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Relative Volume differences. Distribution of relative volume differences
(rVD) across all the OARs for the four groups is plotted in Figure 6.24. Seg-
mentations from observer 1 presented the lowest rVD among the four groups,
with a mean value of 11.55% (± 12.78) over all the OARs. Mean rVD over all
the OARs for segmentations of observer 2 and 3 were 22.80% (± 25.24) and
18.17% (± 15.11), respectively. Last, segmentations generated by the pro-
posed classification scheme provided a mean rVD of 17.24% (± 10.67) over all
the organs. Isolating results by group and organ, segmentations from observer
1 achieved the lowest mean rVD values across all the OARs. These values were
reported to be of 10.34% (± 7.01), 8.78% (± 7.94), 5.69% (± 5.28), 24.51%

(± 20.42) and 8.40% (± 8.31) for left optic nerve, right optic nerve, pituitary
gland, pituitary stalk and optic chiasm, respectively. For both optic nerves
and pituitary stalk, contours from observer 2 obtained the highest mean rVD
values, which were 26.26%, 22.78% and 26.12%, respectively. Observer 3 pro-
duced the segmentations of the chiasm with highest mean rVD values. And
last, our method was ranked at last when segmenting the pituitary gland,
with a mean rVD value of 18.09%.
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Figure 6.24: Volume differences results of manual and our proposed approach
for OARs of group B.

An important point to take into consideration for the paired ANOVA anal-
ysis is that real values of relative volume differences are analyzed in these tests,
instead of absolute values. Thus, results obtained by the ANOVA tests (table
6.15) may not correspond with the graphics on figure 6.24, where absolute
volume differences were employed. Results extracted from volume differences



154 Chapter 6. Experiments and Results

ANOVA analysis (Vol Diff)
Within-subjects ANOVA Paired ANOVA

All Obs 1 Obs 2 Obs 3
Optic nerve L 0.0004 SDAEAE−FV 0.0001 0.0013 0.0763
Optic nerve R 0.0057 SDAEAE−FV 0.0199 0.0069 0.0519
Pituitary gland 0.3519 SDAEAE−FV 0.4769 0.1794 0.8961
Pituitary stalk 0.0006 SDAEAE−FV 0.0024 0.1782 0.1295
Chiasm 0.5287 SDAEAE−FV 0.9985 0.8655 0.1827

Table 6.15: P-values of the ANOVA for volume differences results of the OARs
of group B.

−30 −20 −10 0 10 20 30

SDAE AE−FV

Obs. 3

Obs. 2

Obs. 1

Relative volume differences ANOVA multi−group comparison

Relative volume differences (%)

Figure 6.25: Multi-group comparison of relative volume differences results of
manual and our proposed approach for the left optic nerve.

presented significant differences between groups in three out of five OARs,
as indicated by the within-subjects ANOVA tests (p < 0.05). The paired
ANOVA tests showed that rVD results were significant different between ob-
server 1 and our approach when segmenting both optic nerves and pituitary
stalk. In the same way, segmentations of both optic nerves presented sig-
nificant differences, in terms of rVD, between observer 2 and our automatic
approach. However, segmentations generated by our method did not show
differences significantly important with respect to segmentations of observer
3. An example of ANOVA multi-group comparison is shown in Figure 6.25.
The blue line represents the automatic setting. Red lines symbolize the groups
comprising the manual raters which means presented statistically significant
differences respect to it.

Some visual examples of manual and contours generated by our approach
are shown in Figure 6.26. These images display contours of left and right optic
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nerves. From these images, it can be observed that automatic contours (in
red) are typically between the variability of manual contours (in blue, yellow
and magenta). This fact is supported by the results presented in previous
section.

Reference

Obs. 1

Obs. 2

Obs. 3

SDAE AE−FV

Reference

Obs. 1
Obs. 2

Obs. 3SDAE AE−FV

Reference

Obs. 1
Obs. 2

Obs. 3

SDAE AE−FV Reference

Obs. 1
Obs. 2

Obs. 3
SDAE AE−FV

Figure 6.26: Segmentation results produced by the proposed classification
system and comparison with the manual annotations.

6.2.3 Segmentation time

To compare segmentation times across all the OARs we analyze several clas-
sifier configurations. Basically, we are interested in obtaining times of SVM1

and SDAE1 configurations to be able to evaluate differences related to the
employed classifier. In addition, time for both classifiers containing the pro-
posed features is also evaluated, which represents the last features vector for
each group. Therefore, for simplicity, we will refer to this configuration to as
SVMLast and SDAELast, respectively. This is interesting to investigate whether
adding more features into the classifier has repercussions on the classification
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time. Thus, SVMLast or SDAELast for the OARs from group A will repre-
sent the set of enhanced features in Table 6.2. On the other hand, SVMLast

or SDAELast for OARs belonging to group B will be composed by the set of
proposed features, AE-FV, which is presented in the same table.

Segmentation time (seconds)
SVM1 SVMLast SDAE1 SDAELast

Brainstem 51.7023 (± 4.4485) 24.7518 (± 3.1274) 0.2460 (± 0.0145) 0.1793 (± 0.0262)
Eye (L) 12.8483 (± 0.3949) 6.2158 (± 0.2451) 0.0827 (± 0.0092) 0.0381 (± 0.0034)
Eye (R) 12.0402 (± 0.5351) 5.9896 (± 0.2185) 0.0871 (± 0.0105) 0.0374 (± 0.0031)
Lens (L) 1.1560 (± 0.1212) 1.0164 (± 0.3240) 0.02857 (± 0.0031) 0.02075 (± 0.0016)
Lens (R) 1.2104 (± 0.1564) 1.0921 (± 0.2972) 0.02913 (± 0.0033) 0.02172 (± 0.0013)
Optic nerve (L) 173.4234 (± 5.4534) 221.3296 (± 6.7034) 0.1915 (± 0.0124) 0.2628 (± 0.0172)
Optic nerve (R) 167.7524 (± 6.7484) 214.4560 (± 9.3614) 0.1726 (± 0.0091) 0.2517 (± 0.0194)
Pituitary gland 15.5368 (± 0.7802) 19.3440 (± 0.8235) 0.0536 (± 0.0066) 0.0748 (± 0.0065)
Pituitary stalk 3.0150 (± 0.1485) 4.1328 (± 0.3899) 0.0146 (± 0.0018) 0.0262 (± 0.0027)
Chiasm 5.2022 (± 0.3214) 5.8751 (± 0.5424) 0.0628 (± 0.0065) 0.1315 (± 0.0124)

Table 6.16: Segmentation times.

Table 6.16 presents mean segmentation times for first and last features
sets, as explained, for both SVM and SDAE classifiers. Mean times for SVM
based systems ranged from few seconds in small structures, to one or several
minutes in large structures or structures presenting large shape variations.
The use of proposed features into the SVM classifiers modified segmentation
times. While in OARs of group A segmentation time was reduced to nearly
half in most cases when employing the proposed features set, segmentation
time of OARs of group B increased. This is reasonable if we take into account
that sizes of proposed features sets was smaller in group A and larger in
group B. On the other hand, SDAE based classification schemes achieved the
segmentation in less than a second, for all the OARs. Regarding the use of
proposed features, the same trend than in SVM groups is observed.

6.3 Discussion

According to some structure characteristics, results have been divided into two
groups. As a reminder, group A comprises organs with homogeneous texture
and small shape variation, such as the eyes or brainstem. On the other hand,
organs with heterogeneous texture, and large variations in shape and locations
are included in group B. For instance, optic nerves or chiasm are contained in
this second group. Results from proposed system have been compared with a
machine learning approach which has been widely and successfully employed
for classification, i.e. support vector machines. Additionally to traditional
spatial and intensity based features used in machine learning approaches, the
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inclusion of several features has been proposed and evaluated. These fea-
tures are usually organ-dependent, and their evaluation has been performed
accordingly to the division of groups A and B.

Results provided in this work demonstrate that the proposed deep learning-
based classification scheme outperformed all classifier configurations taken
into account in the present work. These configurations comprised, either
SVM or SDAE as classifier, and one of the features sets evaluated. The basic
setting in each of the classifiers was composed by classical features, i.e. spatial
and intensity based features. The addition of the novel features, i.e. Geodesic
transform map and LBTP-3D for OARs of group A and the AE-FV for OARs
of group B, in the classifier increased volume similarity at the same time that
reduced Hausdorff distances. Across all the OARs, proposed classifications
schemes for groups A and B achieved the best results for similarity, surface
and volume differences. Sensitivity and specificity also benefited from the use
of the proposed classification scheme. First, sensitivity values were higher in
SDAE based configurations than in SVM based settings. Second, the inclusion
of suggested features into the classification scheme improved sensitivity values
with respect to the other SDAE based settings. This trend was identified in all
the OARs from both groups. Specificity values achieved by proposed systems
in both groups were in around half of the cases among the top-ranked ones.
Unlike in sensitivity case, specificity did not show any pattern with respect to
either the classifier or the features set employed. Nevertheless, combination
of higher sensitivity and specificity metrics obtained from proposed classifiers
indicated that our system correctly identified more tissue voxels than the oth-
ers settings did, and also was better at rejecting tissue voxels that were not
related to the tissue class of interest. Statistical analysis on automatic seg-
mentations demonstrated that results achieved by the proposed system were
typically significantly different from the other groups. Particularly, significant
differences often came from both SVM settings in relation with the proposed
scheme. In addition, significant differences existed between SDAE settings
employing classical or proposed features in some OARs.

It is important to note that similarity metrics are very sensitive in small
organs. Differences in only few voxels can considerably increase or decrease
comparison values. Therefore, we consider that having obtained DSC values
higher than 0.7 in small OARs is very satisfactory, in addition with good
values for the other metrics. Even in the worst cases, where DSC was above
0.55-0.60 for all the organs analyzed, the automatic contours can be considered
as a good approximation of the reference. As example, Figure 6.27 shows the
best and worst segmentation for both left and right optic nerves. While best
segmentations achieved a DSC of 0.80 and 0.84 for left and right optic nerve
(top), respectively, DSC values for worst segmentations were 0.64 and 0.60



158 Chapter 6. Experiments and Results

(bottom).

Reference
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Figure 6.27: Best and worst optic nerves segmentations generated by the
proposed deep learning approach. While best segmentations are shown on the
top, worst segmentations cases are shown on the bottom.

In RTP context, a method that is capable of managing deformations and
unexpected situations on the OARs is highly desirable. The employed dataset
contained some cases where tumors inside the brainstem changed its texture
properties. The proposed method correctly discarded voxels inside the brain-
stem that indeed belonged to tumor regions in some patients. In some others,
however, tumor and brainstem were both considered as brainstem. Figure
6.28 presents a successful (top) and an unsuccessful (bottom) case. Images in
the first column show segmentations generated by the four settings of group
A and the reference contours. While segmentations generated by settings
including proposed features, i.e SVM2 and SDAE2, successfully differentiate
between brainstem and tumor in the top case, they included both in the seg-
mentation of the brainstem in the bottom case. The reason of this effect
mainly lies on the use of the geodesic distance transform map. This feature
encourages spatial regularization and contrast-sensitivity. To generate this
transformation, as it was presented, a binary mask is required. This mask is
obtained in 3D from the probability map of the brainstem and it is used to
seed the beginning of the geodesic map. Since this mask is eroded to ensure
it will fall inside the brainstem, it will happen that the binary mask to gen-
erate the geodesic map will not appear in all the analyzed slices, particularly
on both extremes. Hence, if some intensity values are not taken into account
when starting the geodesic transform map, they will present differences on the
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Figure 6.28: Axial slice of brainstem segmentation with tumors causing prop-
erties changes in the inner texture for two patients (left). Corresponding bi-
nary masks (middle) to generate the geodesic distance transform map (right)
are also shown.

geodesic map. This is the case of patient shown in Fig 6.28, top, where tumor
is located at the limit superior of the brainstem. Therefore, the geodesic map
generated in this patient will make a big difference between homogeneous tex-
ture (brainstem) and heterogeneous texture (tumor), as can be seen in the
top-right image on this figure. Contrary, patient shown in the bottom row
presents a tumor approximately in the middle of the brainstem. In this case,
binary mask employed to generate the geodesic map will contain brainstem
and tumor regions. Consequently, the geodesic transform will assign similar
values to these textures, since both are taken into account when creating the
geodesic map (Fig 6.28), right, bottom.

In regard to comparison with manual annotations, the segmentation error
we have obtained is comparable to the inter-rater difference observed when
contours are delineated without time constraints. This is supported by the re-
sults obtained when comparing with manual raters. In those comparisons, we
can observe that segmentation results generated by the proposed approach lie
on the variability on the experts in most cases. Statistical analysis on results
from manual and the proposed classification scheme point out that differences
among them were not generally statistically significant. In addition, in cases
where differences were significant, our automatic classifier outperformed man-
ual rater that presented those significant differences. We can thereby say that
automatic contours generated by the proposed classification system are similar
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to manual annotations. Therefore, its inclusion in RTP should not represent
differences with respect to the use of manual contours.

Among the approaches proposed to segment brain structures included in
the RTP, atlas-based techniques have attracted most attention from research.
In the evaluation made by Babalola et al. [190], four approaches to segment
the brainstem were compared: an atlas-based approach called Classifier Fu-
sion and Labelling (CFL), two statistical based models - Profile Active Ap-
pearance Models (PAM) and Bayesian Appearance Models (BAM)- and an
Expectation-Maximisation-based approach (EMS). CFL method provided the
most accurate results, with a mean DSC of 0.94 and mean percentage rVD of
3.98 for the BS. However, segmentation time for all the OARs was reported
to be 120-180 minutes. The two statistical based models - PAM and BAM
- provided DSC values of 0.88 and 0.89, and percentage mean rVD of 6.8
and 7.8, respectively. Segmentation time was less than 1 min per structure
for the first statistical approach and 5 min for the second one. Nevertheless,
while PAM approach required a pre-registration step which took around 20
min, linear registration required by BAM took around 3 min. The last ap-
proach, EMS, underperformed the other 3 approaches, with a mean DSC of
0.83 and percentage mean rVD of 21.10, and 30 minutes to segment all the
OARs involved.

Other structures, such as optic nerves and optic chiasm, have also benefit
from the trend to employ atlas based approaches for segmentation. An atlas-
navigated optimal medial axis and deformable model algorithm (NOMAD)to
segment these two structures in MRI and CT images was presented in the
work of Noble and Dawant [79]. Ten CT/MRI pairs were used for evaluation
purposes. Mean DSC values achieved for the testing set were just below 0.8
for both the optic nerves and at 0.8 for the chiasm. In their work, they also
reported that segmentation error obtained was comparable to the inter-rater
difference observed when contours were delineated without time constraint
in a laboratory setting. Segmentation of the optic nerves in a test volume
required approximately 20 minutes. As alternative to atlas-based methods,
Bekes et al. [124] proposed a geometrical model-based segmentation technique.
In addition to optic chiasm and nerves, the eyes and lenses were also included
in the evaluation, where sensitivity and specificity are used instead of DSC.
Mean sensitivity values of 97.71, 97.81, 65.20 and 76.79 were achieved by
their method when segmenting the eyes, lenses, optic chiasm and optic nerves,
respectively. Analogously, reported mean specificity values were 98.16, 98.27,
93.50 and 99.06. The running time for all the structures was around 6-7
seconds for a whole CT volume. Whilst segmentation of eyes and lenses
were satisfactory, segmentation of optic nerves and chiasm was below their
expectations. Repeatability and reproducibility of the automatic results made
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the method not being usable for RTP for these two challenging structures.
Additionally to the presented works, where segmentation is done in healthy

patients, other works have focused on the evaluation of segmentation perfor-
mance of one or a set of OARs in radiotherapy context. Bondiau et al. [5]
presented a study aiming to evaluate an atlas-based method to segment the
brainstem in a clinical context. To carry out such evaluation, a total of 7 ex-
perts and 6 patients were employed. The automatic method achieved a mean
sensitivity value of 0.76, which was below the mean sensitivity of any of the ex-
perts. However, only in 2 out of the 6 cases the automatic approach presented
the lowest sensitivity value. In the other four cases, sensitivity was between
the expert variation. With regards to the specificity, means of the experts
ranged from 0.86 to 0.99, whilst it was 0.97 for the automatic approach. Vol-
ume measurements revealed that, although the automatic results mostly lie
between the variability of the experts, it tend to underestimate the segmented
volume with respect to the mean of the manual delineations. With these re-
sults, authors suggested that this method provided a good trade-off between
accuracy and robustness. Additionally, reported results could be comparable
to those from the experts. Results reported that the total duration of the
automatic segmentation process to obtain a fully labeled MRI was of 20 min.

In the work of Isambert et al. [78] another atlas-based segmentation
(ABAS) software, which is included in a commercial solution for RTP, was
also evaluated in therapy clinical context. Automatic segmentations of the
brainstem, cerebellum, eyes, optic nerves, optic chiasm and pituitary gland of
11 patients on MRI T1-weighted images were evaluated. It was found that for
large organs, DSC reported values were higher than 0.8; whereas for smaller
structures, DSC was lower than 0.4. More specifically, mean DSC distribu-
tion across all the OARs was: 0.85, 0.84, 0.81, 0.38, 0.41 and 0.30, for the
brainstem, cerebellum, eyes, optic nerves, optic chiasm and pituitary gland,
respectively. With exception of the optic nerves, the atlas-based approach
underestimated all the volumes from 15 % in the case of the brainstem to
50 % when segmenting the optic chiasm. The mean time required to auto-
matically delineate the set of 6 structures was 7-8 min. Following the ROC
analysis that we also employed in the present work, segmentations generated
by the automatic approach were clinically acceptable for the brainstem, eyes
and cerebellum. On the other hand, all the segmentations for the optic chi-
asm, and most of the segmentations for optic nerves and pituitary gland were
considered as poor.

In a more recent study on RTP context, Deeley et al. [6] compared man-
ual and automated approaches to segment brain structures in the presence
of space-occupying lesions. The objective of this work was to characterize
expert variation when segmenting OARs in brain cancer, and to assess an au-
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Reference Number of patients Reference contours Notes
Babalola [190] 270 Images N.A.
Bekes [124] 41 Images N.A. Not gold standard. STAPLE

Bondiau [5] 20 Images (Training)
6 Images (Testing) 7 physicians No lesions inside the brainstem

Deeley [6] 20 Images 8 experts Large space-occupying lesions.
Often close to the OARs

Fritscher [191] 18 Images 1 expert

Harrigan [193] 501 images
from 183 patients N.A.

Hoang [192] 100 patients 2 experts (Expert 1 contoured 43 images.
Expert 2 contoured 57 images.

Isambert [78] 11 patients 2 experts The two experts made
the contours together.

Noble [79]
4 Images (Model training)

10 Images (Parameter training)
10 Images (Testing)

1 observer A student made the contours.
Then, corrected by 2 experts.

Panda [81] 30 patients 1 expert

Table 6.18: Experimental setting-up of related works.

tomatic segmentation method in such context. To achieve the automation of
the segmentation process, a registration-driven atlas-based algorithm was em-
ployed. A set comprising the brainstem, optic chiasm, eyes and optic nerves
was evaluated. Main results disclosed in their evaluation showed that the
analyzed automatic approach exhibited mean DSC values between 0.8-0.85
for larger structures, i.e. brainstem and eyes. Contrary, DSC reported for
smaller structures, i.e. optic chiasm and optic nerves, were of 0.4 and 0.5, re-
spectively. Results demonstrated that although both manual and automatic
methods generated contours of similar volumes, experts exhibited higher vari-
ation with respect to tubular structures. Coefficients of variation across all
the patients ranged from 21-93 % of mean structure volume.

Although presented works have demonstrated to perform well when seg-
menting some structures, most of them have resulted ineffective when applied
to a multi-structure environment. In this context, this situation is aggravated
if small structures, such as the chiasm, are included in the segmentation. On
the other hand, works presenting the highest results represented the longest
ones in terms of processing times. These times ranged from 1 or 2 minutes
to several minutes, per structure. A summary of the performance from these
previous works, as well as from our proposed method, are presented in Table
6.17. In this table we observe that, in terms of similarity metrics (volume and
surface), our method beat all other works in most situations. Additionally, a
noteworthy aspect to highlight from our approach is its significantly low seg-
mentation time, which is several orders of magnitude in comparison with the
others. In order to have a more relevant comparison between methods, table
6.18 is added. In this table, experimental settings up for each work shown in
table 6.17 are presented. With all this we may thereby say that the presented
approach outperforms, up to date, to all the other segmentation methods to
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segment OARs in brain cancer.
Results also demonstrate that the proposed deep learning-based classifi-

cation scheme outperformed all previous works when segmenting the set of
OARs analyzed. Nevertheless, it is important to note that differences in
data acquisition, as well as metrics used to evaluate the segmentation, of-
ten compromise comparison to other works. Although it was not possible
in this work to use the same datasets as those used in previous studies, the
consistently higher performance our approach achieved, as indicated by the
results, suggests that the method presented in this thesis outperforms previ-
ously presented approaches to segment these structures. Results show that
by employing SDAE as classifier, segmentation time was significantly reduced
in comparison to other classical machine learning approaches, such as SVM.
This is particularly noteworthy if we take into consideration that most works
referenced in this thesis to segment involved structures are atlas-based, and
therefore registration dependent. This makes their segmentation times very
expensive in comparison with the proposed approach, which is between two
and three orders of magnitude faster. Current implementation of the pro-
posed system is not computationally optimized and the bottle neck of the
process is the features extraction step, which processing time ranges between
1-6 seconds for each of the OARs. Although it is not an expensive stage, it
represents more than 95% of the total process. Since the extraction of the
features does not require difficult programming operations, its parallelization
is easily affordable. This may substantially decrease the whole segmentation
process up to segmentation times below one second for an entire organ.

One of the strengths of deep learning methods relies on their ability to
transfer knowledge from human to machine. They ’learn’ from a given train-
ing data set. Hence, for example, when no visible boundaries are present, the
classifier uses its transferred intelligence from doctors to perform the segmen-
tation as they would do. As a prove of this learning, results presented in this
thesis have shown how well the proposed system learned from the available
dataset.

Nevertheless, one of the main concerns of this thesis was the generation
of a simulated ground truth. It was obtained in this work by using the com-
putationally simple concept of probability maps. In this method, which is
analogous to the voting rule approach, probability maps were thresholded at
a variable level in order to create the mask. Although thresholds values were
fixed according to the number of available contours, which also corresponded
with the suggestion of Biancardi [185], thresholding probability maps at a
static predetermined level may be problematic. Determination of the most
suitable threshold for each organ presents a challenge. A reasonable first
choice is to fix its value to 50% as it represents the threshold for majority
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voting rule. Nevertheless, as pointed out in the work of Deeley [6], 50% might
not be reliable with such statistically small number of raters with unknown
individual variance. Thus, an appropriate threshold value for one cohort of
experts may not suit for another different cohort. The same reasoning can be
extended for different organs, where consensus among raters is dependent on
organ. Therefore, to be able of simulating more consistent reference standard
we encourage further studies to involve more experts in the manual delineation
step.





Chapter 7

Conclusions and Future Work

“The two most important days in your life are the day you are born and the
day you find out why.”

Mark Twain

In this chapter we review the motivations for this work, as well as the im-
portant contributions of this thesis. Following this, possible future directions
are also discussed.

7.1 Discussion

This dissertation addresses the problem of organs at risk segmentation in brain
cancer towards enabling its adoption in clinical routine. To achieve this, the
work in this thesis puts forth a practical application in the field of medical
image segmentation of one of the hottest research topics nowadays, i.e. deep
learning.

Segmentation of medical images is a field that have spurred an overwhelm-
ing amount of research. However, open issues abound with regard to ap-
proaches to segment organs at risk in brain cancer and its usability in clin-
ical practice. Nowadays, and up until a few years ago, atlas and statistical
based models have represented the most employed techniques to perform a
sort of automatic delineation in medical images, particularly for brain struc-
tures. However, they present some disadvantages and therefore suffer from
slow adoption in clinical routine.

Atlas-based segmentation approaches rely on registration techniques. In
these methods, anatomical information is exploited by means of images al-
ready annotated by experts, referred to as atlases, to be matched on the
patient under examination. To compute such transformation, deformable reg-
istration is often used. After registration, deformed contours are transferred
to the target image. The quality of the deformed contours directly depends
on the quality of the deformation. Nevertheless, this is difficult to evalu-
ate. Furthermore, registration techniques encompasses regularization models
of the deformation field, whose parameters are complex to adjust, particularly
in inter-patient cases. Another limitation of atlas-based methods is that con-
tours included in the atlases contain prior knowledge about organs pictured
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in the image which is not commonly exploited. To perform the segmentation,
contours are merely deformed. As a consequence, most of the information
conveyed by the contours, such as shape or appearance, remains implicit and
likely underexploited. Statistical models present an alternative to address this
issue by making a more explicit use of such prior information to assist the im-
age segmentation. Unlike atlases, images are not registered but shapes and,
sometimes, the appearance of the organ, are learned in order to be found in
a target image. Because of target points are searched in a local constrained
vicinity of the current estimation for each location, a sufficiently accurate ini-
tialization needs to be provided to make the model converge to the proper
shape. Therefore, search of shape and/or appearance requires an initializa-
tion. If the initial position is too distant from the searched object, in terms
of translation, rotation or scale, this can lead to poor object identification.
Details of these, and other published works to segment brain structures were
disclosed in Chapter 3.

The objective of this thesis was therefore to propose an approach as alter-
native to these existing methods that also addresses their limitations. Par-
ticularly, an organ segmentation scheme based on a deep learning technique
was suggested. This approach, as most of machine learning based methods,
attempts to reproduce the way radiation oncologists manually delineate the
organs. First, all information required to learn how to segment each of the
organs at risk is extracted from images where organs were delineated. This
information is transformed into a features array that serves as input of the
network. Then, the network learns a hierarchical representation of the input,
which is later employed for classification. The strength of deep architectures
is to stack multiple layers of nonlinear processing, a process which is well
suited to capture highly varying functions with a compact set of parame-
ters. The deep learning scheme, based on a greedy layer-wise unsupervised
pre-training, allows to position deep networks in a parameter space region
where the supervised fine-tuning avoids local minima. Deep learning meth-
ods achieve very good accuracy, often the best one, for tasks where a large
set of data is available, even if only a small number of instances are labeled.
In addition, deformable registration techniques are no longer required in our
approach, but a simple manual rigid alignment. Even though we have not
investigated a solution to automatically perform the required alignment, it
should be easily automatized.

Details of the technique employed to create the deep network, as well as the
features propose to improve the segmentation performance were introduced
in Chapter 4, where main contributions of this work were presented. The
learning network is generated by stacking denoising auto-encoders in a deep
architecture. To train a learning system, a set of features is commonly fed
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into the network. Particularly, in deep learning architectures, such as convolu-
tional neural networks, restricted Boltzman machines, or even auto-encoders,
two or three-dimensional patches from one or multiple images are typically
employed as features vector. From these patches, the network unsupervisedly
learns the most discriminative representation of the input. Although they
have demonstrated to break records in several domains, such as speech recog-
nition or image classification, we consider that by using patches they do not
fully exploit relevant information coming from traditional machine learning
approaches to analyze medical images in general. This unexploited knowledge
may come in the form of likelihood to belong to some class, voxel location or
textual properties, for example. Thus, the feature set proposed in this work
is very different from features sets employed on most of the deep learning
settings applied to medical imaging.

Typical machine learning schemes to segment medical images employ pixel
or voxel intensity values, intensity of a neighboring area, likelihood of belong-
ing to a given class and location. Although these hand-crafted features may
be sufficient for some well-defined structures, they do not provide the best so-
lution when attempting to segment challenging structures. Thus, additional
features have been proposed in this thesis to enhance the discriminative power
of the features vector. Since properties are different from one organ to an-
other, some of the proposed features are organ-dependent. Hence, for exam-
ple, for organs with homogeneous texture and small shape variations we have
proposed features that encourage spatial regularization, such as the geodesic
distance transform map. On the other hand, for organs with strong variations
on shape and intensity we have suggested the combined use of contextual and
textural properties. As a consequence, features set varies from one group of
organs to another.

We designed an evaluation study to evaluate the performance of the pro-
posed approach, quantify variation among experts in segmenting organs at risk
in brain cancer, and assess the proposed automatic classification scheme in this
context. First, a reference standard was created from the manual contours,
which served as ground truth to compare with. To evaluate the performance
of our approach, results were compared to those provided by a state-of-the-
art machine learning classifier, i.e. support vector machine (SVM). In the
second part of the evaluation, automatic contours generated by the proposed
approach were also compared to manual annotated contours by experts.

Results demonstrated that by only employing a network composed by a
stacked of denoised auto-encoders, segmentation performance increased with
respect to SVM. Additionally, when proposed features were included in the
features set, reported results showed that improvement on segmentation per-
formance was noticeable. Across the experiments we noticed that segmenta-
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tions of OARs of group B, in some patients, were highly different when using
either augmented or textural features. While in some patients the features set
composed by augmented features achieved the best results, in some other pa-
tients the best result was obtained by the textural features set. Nevertheless,
when combining both of them, results were more homogeneous, which can be
observed in the standard deviation on the results section. For the other groups,
the classification performed with the proposed features set outperformed the
classical set in most cases.

Even though the presented work is not pioneering on the evaluation of
automatic segmentation of OARs in the context of brain radiation therapy, it
presents important improvements respect to the others (See Table 6.17). Large
structures, such as eyes or brainstem, have been successfully segmented in all
previous works evaluating segmentation performance in brain cancer context.
Contrary, segmentation of small structures was not always satisfactory. By
employing the proposed classification system we: i) improved segmentation
performance of structures already successfully segmented and ii) provided a
satisfactory segmentation for those structures which segmentation could not
be always achieved. Furthermore, all presented works to analyze OARs seg-
mentation in radiotherapy context are based on atlas and thus registration
dependent. This makes segmentation times to be over several minutes, which
might be clinically impractical in some situations. In addition to the segmen-
tation times, other disadvantages of atlas-based methods have already been
discussed. Our method, however, performs the segmentation in few seconds
for each single OAR. A noteworthy point is that features extraction repre-
sented nearly 97.5% of the whole segmentation process. Since this stage is
composed by simple and independent image processing steps, this can be eas-
ily parallelized. By doing this, the total segmentation time may be drastically
reduced to less than a second per structure. Another remarkable difference
with respect to some other approaches is that the proposed system does not
require combination of more than one image modalities.

When comparing the results with the manual contours, it can be observed
that they lie inside the variability of the observes. Statistical tests demon-
strated that there were not significant differences between automatic and man-
ual delineations for many of the cases. All this, together with the remarkably
low segmentation time reported in the experiments, makes this technique suit-
able for being used in clinical routine. Therefore, the introduction of such
technique may help radiation oncologists to save time during the RTP, as well
as reducing variability in OAR delineation.

This thesis has represented therefore a first step in developing and ex-
ploring deep denoised autoencoders for being applied to the segmentation of
organs at risk on brain cancer. Its evaluation has been assessed in a multi-rater
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context. In addition, it does so without being subject to fatigue or inatten-
tiveness, which can affect human measurements and diminish reliability in
studies of large samples over a long time.

7.2 Future work

In this thesis, we have proposed an approach that solely employs information
extracted from magnetic resonance images (MRI). More specifically, only the
sequence T1 from the MRI set is used. Nevertheless, having employed exclu-
sively T1 sequences might have underestimated the power of our approach.
The reason is that contouring of some OARs on FLAIR or T2 sequences would
probably have improved the inter-observer reproducibility without degrading
learning and automatic segmentation. However, all the sequences were not
available in all the patients contained on the employed dataset. We have also
shown that for training and classifying we utilize the features vector. Includ-
ing additional information on this vector is straightforward. Since more MRI
sequences other than T1 are typically acquired to plan the treatment and
diagnosis, we suggest to combine MRI-T1 with other modalities, such as T2
for example, when available. The combination of different MR sequences can
enhance the segmentation, particularly on those regions where these image
sequences are complimentary. Independently on the sequence added, any rel-
evant information included into the classifier may help to improve the segmen-
tation performance. We therefore encourage future research on this topic to
include other image sequences in both contouring and learning/classification
steps. Another main direction for future research is to examine the contribu-
tion of other image properties as features during the training and classification.

In this work, good segmentation performance has been reported by the pro-
posed classification scheme by training huge networks with a relatively small
amount of data. Indeed, these networks were sometimes composed by several
millions of parameters, while number of training samples were of several thou-
sands. Even though trained deep networks overfit training dataset, they still
generalized pretty well to unseen samples. This may be explained by the fact
that brain MRI images are highly structured, often presenting small variabil-
ity between regions from one brain to another. Using more patient cases in
the training set aiming to capture more variability would ideally be the best
solution to prevent from overfiting. Additionally, this increase of the training
set might also positively impact on classification performance. Unfortunately,
labeled datasets are rare and difficult to obtain. Consequently, generation of
artificial MRI cases from existing ones should be considered in further works,
i.e. data augmentation. This could include small transformations such as
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rotations, scaling, noise or some other small distortions.
In addition, in our experiments, and in most of proposed works employ-

ing deep architectures, the number of hidden units in each layer, as well as
the number of layers is manually determined. Therefore, the network ar-
chitectures employed might not be necessarily optimal. By employing deep
learning a better representation of an input is automatically extracted. How-
ever, network architecture is still manually tuned. I believe that performing
more intensive studies such as learning optimal network structure from input
data for its practical use in clinical setting would bring more power to neural
networks.

The work presented in this thesis has been mostly developed within an
enterprise, in an industrial environment. As such, one of the main goals of
the company is to integrate this work into its products. The code developed
represents a first functional prototype that can be employed to obtain re-
sults such as the ones presented in this dissertation. Nevertheless, its use in
clinical routine in its current state still requires some efforts from the devel-
opment side. Development of an optimized prototype would represent one
of the first tasks to carry out. Although its current performance allows to
segment a structure in relatively small amount of time, this process can still
be optimized by programming the features extraction step on GPU. In ad-
dition to processing time, user experience is of high importance when trying
to develop software that will be employed by non-experts users through an
interface. Before deploying a clinical usable version of the final product, a
clinical validation with a larger dataset should be also envisaged.
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Chapter 9

French Summary

De nos jours, les techniques de segmentation automatique sont rarement util-
isées en routine clinique. Le cas échéant, elles s’appuient sur des étapes préal-
ables de recalages d’images. Ces techniques sont basées sur l’exploitation
d’informations anatomiques annotées en amont par des experts sur un “pa-
tient type”. Ces données annotées sont communément appelées “Atlas” et
sont déformées afin de se conformer à la morphologie du patient en vue de
l’extraction des contours par appariement des zones d’intérêt. La qualité des
contours obtenus dépend directement de la qualité de l’algorithme de recalage.
Néanmoins, ces techniques de recalage intègrent des modèles de régularisation
du champ de déformations dont les paramètres restent complexes à régler et
la qualité difficile à évaluer. L’intégration d’outils d’assistance à la délinéation
reste donc aujourd’hui un enjeu important pour l’amélioration de la pratique
clinique.

L’objectif principal de cette thèse est de fournir aux spécialistes médicaux
(radiothérapeute, neurochirurgien, radiologue) des outils automatiques pour
segmenter les organes à risque des patients bénéficiant d’une prise en charge de
tumeurs cérébrales par radiochirurgie ou radiothérapie. Pour réaliser cet ob-
jectif, les principales contributions de cette thèse sont présentées sur deux axes
principaux. Tout d’abord, nous considérons l’un des derniers sujets d’actualité
dans l’intelligence artificielle pour résoudre le problème de la segmentation, à
savoir le “deep learning”. Cet ensemble de techniques présente des avantages
par rapport aux méthodes d’apprentissage statistiques classiques (Machine
Learning en anglais). Le deuxième axe est dédié à l’étude des caractéristiques
d’images utilisées pour la segmentation (principalement les textures et in-
formations contextuelles des images IRM). Ces caractéristiques, absentes des
méthodes classiques d’apprentissage statistique pour la segmentation des or-
ganes à risque, conduisent à des améliorations significatives des performances
de segmentation. Nous proposons donc l’inclusion de ces fonctionnalités dans
un algorithme de réseau de neurone profond (deep learning en anglais) pour
segmenter les organes à risque du cerveau.

Nous démontrons dans ce travail la possibilité d’utiliser un tel système de
classification basée sur techniques de “deep learning” pour ce problème par-
ticulier. Finalement, la méthodologie développée conduit à des performances
accrues tant sur le plan de la précision que de l’efficacité.
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9.1 Introduction

Le cancer représente un groupe de maladies communes, non transmissibles,
chroniques et potentiellement mortelles affectant la plupart des familles dans
les pays développés, et un contributeur de plus en plus important à une mort
prématurée au sein de la population de ces pays [2]. En particulier, les tumeurs
cérébrales sont la deuxième cause la plus fréquente de décès par cancer chez
les hommes âgés de 20 à 39 ans et la cinquième cause la plus courante de
cancer chez les femmes âgées de 20 à 39 ans [4].

Une tumeur cérébrale est toute masse provoquée par une croissance anor-
male ou incontrôlée de cellules qui surviennent à l’intérieur ou à proximité du
cerveau. En général, ces tumeurs sont classées en fonction de plusieurs fac-
teurs, y compris l’emplacement, le type de cellules impliquées, et le taux de
croissance. Les tumeurs cérébrales dites “primaires” sont des tumeurs à crois-
sance plus ou mois rapide, localisées dans le parenchyme cérébrale et sans
capacité de ce propager sur des sites distants. Leur degré de croissance con-
stitue notamment un facteur de malignité et elles sont ainsi classées “benignes”
(ex. neurinomes, méngiomes) ou “malignes” (ex. gliome de bas grade, glioblas-
tome). Les tumeurs issues d’une localisation distante (ex. poumon, foie, sein)
ont une croissance généralement plus rapide et sont dites “secondaires”. Il
s’agit de métastases cérébrales consécutives à un cancer d’une localisation ex-
tracérébrale. Ces dernières sont toujours des tumeurs malignes. Cependant,
primaire ou secondaires, bénigne ou maligne, les tumeurs cérébrales restent
toujours potentiellement invalidantes et critiques pour la survie du patient.

La radiothérapie (RT) et la radiochirurgie (SRS) sont parmi l’arsenal de
techniques disponibles pour traiter les tumeurs cérébrales. Le terme radio-
thérapie décrit les applications médicales des rayonnements ionisants pour
détruire les cellules malignes en endommageant leur ADN [9]. La RT est sou-
vent organisé en deux phases: la planification et la délivrance. Les images
sont acquises, les régions d’intérêt sont identifiées et la balistique est planifiée
à partir de ces données d’imagerie. Le traitement planifié est ensuite délivré
au patient. Afin de calculer la dose a délivrer, la position des volumes cibles
doit être précisément déterminée.

Un objectif majeur de RT est de priver les cellules cancéreuses de leur
potentiel de multiplication et éventuellement tuer les cellules cancéreuses.
Cependant, le rayonnement créée également des lésions aux tissus sains. Par
conséquent, l’objectif principal de la radiothérapie est délivrer une dose im-
portante à la tumeur, tout en veillant à ce que les tissus sains avoisinant
soient épargnés autant que possible. En particulier pour les traitements ra-
diochirurgicaux, où la dose de rayonnement est considérablement plus élevée et
délivrée en séance unique, des erreurs de configuration ou de localisation peu-
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vent entraîner une surdose sévère du tissu sain adjacent. Cette surexposition
aux rayonnements peut conduire à des complications sévères, progressives et
irréversibles, qui se produisent souvent des mois ou des années après le traite-
ment. Ces structures critiques à conserver sont désignées comme organes à
risque (OAR). Dans la RT cérébrale, les nerfs optiques, le chiasma, le tronc
cérébral, les yeux, le cristallin, l’hippocampe et l’hypophyse sont généralement
considérés comme OARs.

Au cours des dernières décennies, l’imagerie médicale, initialement util-
isée pour la visualisation des structures anatomiques, a évolué pour devenir
un outil essentiel au diagnostic, au traitement et au suivi de l’évolution
des pathologies. En particulier, dans l’oncologie, l’évolution des techniques
d’imagerie a permis d’améliorer la compréhension du cancer, de son diag-
nostic à sa prise en charge thérapeutique et du suivi évolutif. Les techniques
d’imagerie médicale avancées sont donc utilisées pour la chirurgie et pour la ra-
diothérapie. Il existe un large éventail de modalités d’imagerie médicale. Les
premières méthodes d’imagerie, invasives et parfois risquées, ont depuis été
abandonnées en faveur de modalités non-invasives, de haute résolution, telles
que le scanner (CT) ou, en particulier, l’imagerie par résonance magnétique
(IRM). L’IRM possède une sensibilité plus élevée pour détecter une tumeur,
ou des changements au son sein et un meilleure contraste pour délimiter les
structures cérébrales saines. Pour ces raisons, et parce que l’IRM ne repose
pas sur des rayonnements ionisants, l’IRM a progressivement supplanté le CT
comme pilier de l’imagerie en neuro-oncologie clinique, devenant la modalité
de référence pour le diagnostic, le suivi et la planification des traitements de
lésions cérébrales [26].

Parce que RT et SRS s’appuient sur une irradiation importante, la tumeur
et les tissus sains environnants doivent être précisément définies. En partic-
ulier pour les OARs pour lesquels la connaissance de leur localisation et de
leur forme est nécessaires pour évaluer et limiter le risque de toxicité sévère.
Parmi les modalités d’image disponibles, les images IRM sont largement util-
isées pour segmenter la plupart des OARs. Dans la pratique, cette délinéation
est principalement réalisée manuellement par des experts avec éventuellement
un faible support informatique d’aide à la segmentation [28]. Il en découle
que le processus est fastidieux et particulièrement chronophage avec une vari-
abilité inter ou intra observateur significative. Une part importante du temps
médical s’avère donc nécessaire à la segmentation de ces images médicales. Si
en automatisant le processus, il devient possible d’obtenir un ensemble plus
reproductible des contours acceptés par la majorité des oncologues, cela per-
met d’améliorer la planification et donc la qualité du traitement. En outre,
toute méthode de réduction du temps nécessaire à cette étape contribue à une
une utilisation plus efficace des compétences de l’oncologue.
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Pour remédier à ces problématiques, divers systèmes assistés par ordina-
teur pour (semi-) automatiquement segmenter les OARs ont été proposés et
publiés au cours des dernières années. Néanmoins, la segmentation (semi-
)automatique des structures cérébrales reste encore difficile, en l’absence de
solution générale et unique. De plus, en raison de l’augmentation du nombre
de patients à traiter, les OARs ne peuvent pas toujours être segmentés avec
précision, ce qui peut conduire à des plans sous-optimaux [32]. Cela rend
l’implémentation en routine clinique d’un outil de segmentation des OARs
assistée par ordinateur hautement souhaitable.

9.2 Etat de l’art

La segmentation d’image est un problème de partitionnement d’une image
d’une manière sémantiquement résolue. La subdivision de l’image en régions
significatives permet une représentation compacte et plus facile de l’image.
L’agrégation des pixels d’une forme donnée se fait selon un critère prédéfini.
Ce critère peut être basé sur de nombreux facteurs, tels que l’intensité, la
couleur ou la texture, la continuité des pixels, et certaines autres connaissances
de niveau supérieur sur le modèle d’objets. Pour de nombreuses applications,
la segmentation se résume à trouver un objet dans une image donnée. Cela
implique le partitionnement de l’image en deux classes de régions uniquement.
La segmentation d’image reste souvent une étape préalable et essentielle pour
une analyse plus approfondie de l’image, la représentation de l’objet ou la
visualisation.

9.2.1 Segmentation des images médicales

Comme la segmentation joue un rôle central dans la récupération des in-
formations significatives à partir d’images, l’extraction efficace de toutes ces
informations et des caractéristiques des images multidimensionnelles est de
plus en plus importante. Dans leur forme brute, les images médicales sont
représentées par des tableaux de valeurs représentant des quantités qui mon-
trent le contraste entre les différents types de tissus du corps. Le traitement et
l’analyse des images médicales sont utiles pour transformer cette information
brute en une forme symbolique quantifiable. L’extraction de cette information
quantitative significative peut aider au diagnostic, ainsi que dans l’intégration
de données complémentaires provenant de multiples modalités d’imagerie. Par
conséquent, dans l’analyse d’images médicales, la segmentation a une grande
valeur clinique car elle est souvent la première étape dans l’analyse quantita-
tive de l’image.
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Néanmoins, la segmentation d’images médicales se distingue des tâches
de segmentation d’images classiques et reste généralement difficile. Première-
ment, de nombreuses modalités d’imagerie médicale produisent des images
très buitées et floues en raison de leurs mécanismes d’imagerie intrinsèques.
Deuxièmement, les images médicales peuvent être relativement mal échantil-
lonnés. De nombreux voxels peuvent contenir plus d’un seul type de tissu,
(effet de volume partiel). Dans ce cas, la perte de contraste entre deux tissus
adjacents rend plus difficile leur délimitation. En plus de ces effets, certains
tissus ou organes d’intérêts partagent des niveaux d’intensité similaires avec
les régions voisines, conduisant à une absence de limites francches des objets.
Cela implique que ces structures d’intérêt restent très difficiles à isoler de leur
environnement. Par ailleurs, si l’objet à une forme complexe, ce manque de
contraste sur ses limites rend la segmentation encore plus fastidieuse. Enfin, en
plus des informations de l’image, une connaissance approfondie de l’anatomie
et de la pathologie peut s’avérer importante pour segmenter les images médi-
cales. L’expertise médicale est donc nécessaire afin de mieux comprendre
et interpréter l’image de sorte que les algorithmes de segmentation puissent
répondre aux besoins du clinicien.

Les approches initiales pour segmenter le cerveau en IRM se sont princi-
palement concentrées sur la classification du cerveau en trois classes princi-
pales : la substance blanche (SB), la substance grise (SG) et le liquide céphalo-
rachidien (LCR) [34]. Des méthodes plus récentes intégrent la segmentation
des tumeurs et régions adjacentes, telles que les zones nécrotiques [37]. Ces
méthodes ne sont basées que sur l’intensité du signal. Cependant, la segmen-
tation des structures sous-corticales (à savoir les OARs) peut difficilement être
réalisée uniquement sur la base de l’intensité du signal, en raison des faibles
limites visibles et des valeurs d’intensité similaires entre les différentes struc-
tures sous-corticales. Par conséquent, des informations additionnelles, telles
qu’un a priori de forme, de apparence ou de localisation, sont nécessaires pour
effectuer la segmentation.

Parmi les techniques de segmentation qui ont exploité cette information,
on peut citer : les méthodes basées sur les “atlas”, les méthodes statistiques,
les modèles déformables et les techniques basées sur l’apprentissage (Machine
learning).

9.2.2 Methodes basées sur les atlas

Les méthodes basées sur les atlas sont largement utilisées pour l’exploitation
de connaissances a priori. Un "atlas" est une image d’un patient “type” préal-
ablement segmentée et qui sert de référence à l’image du patient à segmenter.
Ces informations anatomiques sont exploitées au moyen des atlas pour être
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adaptés au patient en cours d’examen. La procédure générale pour effectuer
des segmentations sur les images d’un patient en utilisant un ou plusieurs
atlas respecte le plus souvent le même principe : recalage et propagation des
contours. Tout d’abord, un champ de déformation qui met en correspondance
l’atlas avec l’image du patient à segmenter est calculé en utilisant des méth-
odes de recalage appropriées [85]. En second lieu, le champ de déformation
ainsi calculé est appliqué aux structures d’intérêt déjà segmentées sur les atlas
vers l’image originale.

Presque toutes les techniques basées atlas exigent une recalage d’images
durant la phase initiale. Cela signifie que le succès de la propagation des
atlas dépend fortement de l’étape de recalage. L’utilisation d’un seul at-
las pour propager des structures segmentées au sein d’un seul patient est
généralement suffisante. Cependant, compte tenu de la grande variabilité
inter-individuelle, l’utilisation d’un seul atlas peut conduire à des résultats
insatisfaisants. L’utilisation de plus d’un atlas améliore la qualité de la seg-
mentation dans ces situations. En augmentant le nombre d’atlas dans la base
de données, la méthode devient plus représentative de la population et donc
plus robuste lors du traitement des patients qui présentant des variations
anatomiques. Cependant, lors de l’utilisation de plusieurs atlas, le point clé
est de déterminer quel atlas doit être utilisé pour un patient donné. Pour ce
faire, certains paramètres de similitude sont utilisés après l’étape de recalage
afin de sélectionner l’atlas le plus “proche” parmi toutes les autres dans la
base de données. Comme alternative à la sélection des atlas les plus proches
de l’image cible, plusieurs atlas peuvent être propagés, conduisant à plusieurs
solutions de segmentation, fusionnées à la fin du processus. La fusion des
solutions peut finalement générer des artefacts, notamment des organes dis-
continus non représentatif de l’anatomie. Du point de vue clinique, la nécessité
de corriger manuellement les contours automatiques a fait l’objet de plusieurs
évaluations cliniques récentes [98].

Une des principales limitations des méthodes basées sur l’atlas est que
les connaissances a priori incluses dans les contours du modèle ne sont pas
exploitées. Pour effectuer la segmentation, ces contours sont simplement dé-
formés. En conséquence, la plupart de l’information intégrée dans les con-
tours, telles que la forme ou l’apparence, reste implicite et probablement
sous-exploitée. Les modèles statistiques sont une alternative qui abordent
cette problématique en faisant une exploitation plus explicite de ces informa-
tions pour aider à la segmentation d’images. Contrairement, aux atlas, les
images ne sont pas recalées, mais les formes et, parfois, l’aspect de l’organe,
sont appris afin d’être identifiés sur une image cible.
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9.2.3 Modèles statistiques

Les modèles statistiques (MS) ont largement été utilisés dans le domaine de la
vision par ordinateur et de la segmentation des images médicales au cours de la
dernière décennie [48,58–64,99–113]. Fondamentalement, les MS utilisent une
connaissance a priori de la forme par apprentissage de sa variabilité observée
sur une base de données convenablement annotée. L’espace de recherche est
contraint par le modèle ainsi défini. La procédure basique de MS de forme
et/ou de texture est : 1) les sommets ou points de contrôle d’une structure
sont modélisés comme une distribution gaussienne multivariée; 2) la forme et
la texture sont modélisées en termes de moyenne et de vecteurs propres; 3) des
nouvelles instances du contour sont générées grâce aux modes de variations
définis par les vecteurs propres et en respectant les contraintes des sous-espaces
de formes et de textures acceptables. Par conséquent, si la taille de la forme
à segmenter est supérieure à la taille des données d’apprentissage, les seules
formes et textures acceptables sont des combinaisons linéaires des données
d’apprentissage initial.

Contrairement aux méthodes de segmentation basées sur atlas, les modèles
statistiques ont besoin d’un modèle d’apprentissage. Les formes moyennes,
les textures et leurs modes de variations qui définissent ce modèle sont appris
à partir de d’une base de données manuellement segmentée. Si le nombre
d’échantillons utilisés pour construire le modèle d’apprentissage est insuffisant,
il y a un risque important de surestimation de la segmentation. De plus, la
présence de bruit sur les images de la base d’apprentissage affecte la robustesse
lors de la segmentation des images cibles.

Selon l’objet cible, des points du contour sont recherchés au voisinage de la
forme en respectant des contraintes locales. Ainsi, une initialisation manuelle
suffisamment précise doit être réalisée afin de faire converger le modèle vers la
forme cible. Cette initialisation peut être fournie soit par interaction directe
de l’utilisateur soit par des techniques automatiques. Cependant, si la position
initiale est trop éloignée de l’objet recherché, en termes de translation, rotation
ou d’échelle, cela peut conduire à une mauvaise identification d’objet.

9.2.4 Modèles Deformables

Le terme ”modèle déformable” (MD) a initialement été utilisé par Terzopou-
los et al. [115] pour se référer à des courbes ou surfaces, définies dans le
domaine de l’image, et qui sont déformés sous l’influence de forces internes et
externes. Les forces internes sont définies sur les propriétés de la courbe afin
de préserver le lissage des contours pendant le processus de déformation. Les
forces externes quant à elles permettent de déformer le contour en fonction des
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caractéristiques de l’image dans son voisinage afin de faire évoluer le modèle
vers la structure d’intérêt. Par conséquent, les MD abordent le problème de
la segmentation par la recherche d’une limite de l’objet vu comme une struc-
ture unique et connecté. Ces modèles peuvent être divisés en deux grandes
catégories: paramétrage explicite, basés sur des représentations en maillage,
et paramétrage implicite, ensembles de niveau (level-sets), représentés comme
une isovaleur d’une fonction scalaire dans un espace de dimension supérieure.

Contrairement aux modèles statistiques, aucun apprentissage ou connais-
sance a priori n’est nécessaire pour ces modèles déformables. Ils peuvent
évoluer vers la forme souhaitée, démontrant une plus grande souplesse que
les autres méthodes. Néanmoins, la définition des critères d’arrêt est difficile,
et elle dépend des caractéristiques du problème. Les modèles déformables
paramétriques ont été utilisés avec succès dans un large éventail d’applications
et de problèmes. Une propriété importante de ce type de représentation est
sa capacité à représenter les limites à une résolution infra-pixel, ce qui est es-
sentiel dans la segmentation des structures minces. Cependant, ils présentent
deux limitations principales. Tout d’abord, si la variation de la taille et de la
forme entre le modèle initial et l’objet cible est importante, le modèle doit être
paramétré dynamiquement pour récupérer fidèlement la limite de l’objet. La
seconde limitation est liée aux complications qu’elles présentent pour faire face
aux changements topologiques, telles que le fractionnement ou la fusion de par-
ties du modèle. Les modèles géométriques fournissent une solution élégante
pour répondre à ces limitations car, en se basant sur théorie de l’évolution
de la courbe, courbes et surfaces évoluent indépendamment du paramétrage.
Cela permet une gestion automatique des transitions topologiques.

Un inconvénient commun aux deux modèles, géométriques et
paramétriques, est que les images auxquelles appliquer l’un de ces modèles
doivent avoir des bords suffisamment nets et des régions homogènes pour une
modélisation explicite. En conséquence, les modèles déformables traditionnels
ne parviennent généralement pas segmenter en présence d’inhomogénéités
d’intensité importantes et/ou de faibles contrastes.

9.2.5 Machine Learning

L’apprentissage automatique ou apprentissage statistique (machine learning
en anglais) a été largement utilisé dans le domaine de l’analyse IRM presque
depuis sa création. Ces méthodes de segmentation bases sur un apprentissage
supervisé d’abord extraient caractéristiques de l’image avec des informations
souvent plus riches que des information de nievau de gris seule. Puis ils
construisent un modèle de classification basé sur les caractéristiques de l’image
en utilisant des algorithmes d’apprentissage supervisé.
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Parmi toutes les informations possibles qui peuvent être extraites afin de
segmenter des structures cérébrales dans les images médicales, les plus couram-
ment utilisées sont : basées sur le niveau de gris, basées sur la probabilité et
l’information spatiale. Elles représentent les cas les plus simples de caractéris-
tiques. Les caractéristiques basées sur le niveau de gris exploitent le niveau
de gris d’un voxel et l’aspect de son voisinage. Dans sa représentation la plus
simple, des patches carrés autour d’un pixel ou d’un voxel sont utilisées en 2D
et 3D, respectivement, avec des valeurs de taille de patch typique allant de 3
à 9 pixels ou voxels. Les caractéristiques basées sur la probabilité analysent la
probabilité d’un voxel d’appartenir à une structure déterminée. La carte qui
contient ces probabilités est créée à partir d’une base de données préalable-
ment annotée. En plus du niveau de gris et de la probabilité, la localisation
du voxel dans l’espace de l’image peut également être utilisée.

L’objectif de nombreux algorithmes d’apprentissage consiste à rechercher
une famille de fonctions afin d’identifier un membre de la famille mentionnée
qui minimise un critère d’apprentissage. Les réseaux de neurones artificiels (en
anglais Artificial Neural Network, ANN) et les machines à vecteurs de support
ou séparateurs à vaste marge (en anglais Support Vector Machine, SVM) sont
parmi les méthodes d’apprentissage les plus populaires utilisées non seulement
pour la segmentation des structures anatomiques du cerveau [42, 43, 47, 73–
76, 126–128], mais aussi pour la classification des tumeurs [129–131] ou le
diagnostic automatique [132].

ANN représente un système de traitement d’informations comportant un
grand nombre de composants interconnectés de traitement individuels, à savoir
les neurones. Motivé par la façon dont le cerveau humain traite les informa-
tions d’entrée, les neurones travaillent ensemble d’une manière distribuée à
l’intérieur de chaque réseau pour apprendre des connaissances d’entrée, traiter
ces informations et de générer une réponse significative. Chaque neurone n
dans le réseau traite l’entrée grâce à l’utilisation de son propre poids wn, une
valeur biais bn, et une fonction de transfert qui prend la somme de wn et bn.
En raison de leur efficacité dans la résolution de problèmes d’optimisation,
ANNs ont été largement intégrés dans les algorithmes de segmentation pour
définir les structures sous-corticales [42, 73,74,76,126,128]..

Fondamentalement, l’idée principale derrière SVM est de trouver le plus
grand hyperplan de marge qui sépare deux classes. La distance minimale
de l’hyperplan de séparation entre deux classes est appelée marge. Ainsi,
l’hyperplan optimal est celui qui fournit la marge maximale, représentant la
plus grande séparation entre les classes. En transformants les objets de leur
espace d’origine vers un espace de caractéristiques de dimension supérieure
[143], SVM peut séparer les objets qui ne sont pas linéairement séparables.
Leur bonne capacité de généralisation et leur capacité à classer correctement
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les données non-linéairement séparables ont conduit à un intérêt croissant sur
eux pour les problèmes de classification.

En introduisant des méthodes de Machine Learning, les algorithmes
développés pour le traitement d’images médicales deviennent souvent plus
“intelligents” que les techniques conventionnelles. Les techniques Machine
Learning ont montré de meilleures performances que les autres approches
plus traditionnelles pour la segmentation segmentant des structures cérébrales
[43, 47, 75, 76]. Les développements récents des techniques d’acquisition
d’imagerie médicale ont conduit à une augmentation de la complexité de
l’analyse des images. Cela apporte de nouveaux défis où l’analyse manuelle
d’une grande quantité de données est limitée. Dans ce contexte, les techniques
Machine Learning nous semblent les plus adaptées pour faire face à ces nou-
veaux défis. Par ailleurs, un nouveau domaine de l’apprentissage automatique
a récemment émergé avec l’intention de rapprocher le Machine Learning de ses
objectifs initiaux : l’intelligence artificielle. Il s’agit du Deep Learning. Les
progrès récents sur l’utilisation des réseaux profonds pour la reconnaissance
d’image, reconnaissance de la parole, ou d’autres applications ont montré
qu’ils offrent actuellement les meilleures solutions à bon nombre de ces prob-
lèmes. Par conséquent, nous allons considérer l’utilisation du Deep Learning
pour résoudre le problème de la segmentation des structures cérébrales en
radiothérapie.

9.3 Contribution

9.3.1 Deep Learning

Le Deep learning est un nouveau sous-domaine du machine learning qui met
l’accent sur l’apprentissage des modèles hiérarchiques de données. L’étude
du deep learning moderne prend beaucoup de son inspiration dans la
recherche des ANN des décennies précédentes. La plupart des algorithmes
d’apprentissage actuels correspondent aux architectures peu profondes avec
1 jusqu’à 3 niveaux d’abstraction. Inspirés par l’architecture “profonde” du
cerveau, les chercheurs dans les domaines des réseaux de neurones ont tenté
pendant des décennies de former des ANN multicouches profonds. Néan-
moins, les premières tentatives rencontrant un succès n’ont été publiées qu’à
partir de 2006. Malgré les résultats remarquables des ANN pour effectuer
certaines tâches [147], d’autres approches ont dominé pendant les années 90
et 2000 [141, 143, 148]. L’une des principales raisons de l’abandon des ANN
en faveur de ces approches est la difficulté de former des réseaux profonds.
L’apprentissage d’architectures profondes est une tâche difficile et les méth-
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odes classiques qui ont prouvé leur efficacité lors d’application à des architec-
tures peu profondes ne sont plus adaptées. Finalement, le simple fait d’ajouter
des couches ne conduit pas nécessairement à de meilleures solutions. Au con-
traire, lorsque le nombre de couches cachées augmente il devient plus difficile
d’obtenir une bonne généralisation.

Par conséquent, jusqu’à récemment, la plupart des techniques de Machine
Learning ont exploité des architectures peu profondes, où les réseaux étaient
généralement limités à une ou deux couches cachées.

Cependant, en 2006, le concept de Greedy Layer-Wise Learning a été
introduit [149, 151, 152]. Ce nouveau concept bénéficie d’une procédure
d’apprentissage semi-supervisé. L’apprentissage non supervisé est utilisé dans
une première étape pour initialiser les paramètres des couches, une couche à
la fois, et puis un réglage fin de l’ensemble du système se fait par une tâche
supervisée. Depuis, le deep learning a émergé comme un nouveau domaine de
recherche du Machine Learning, avec un fort impact sur un large éventail de
domaines de recherche [151,153].

L’un des avantages du deep learning par rapport aux ANN peu profonds est
que des fonctions complexes peuvent souvent être estimées avec la même pré-
cision en utilisant un réseau plus profond mais avec beaucoup moins d’unités
par rapport à un réseau typique de deux “grandes” couches cachées. En outre,
avec de plus petits degrés de liberté, le deep learning nécessite des ensem-
bles de données plus petits pour l’apprentissage. Un autre facteur, prob-
ablement plus convaincant, est que les approches typiques de classification
doivent être généralement précédés par une étape de sélection de caractéris-
tiques, où les caractéristiques les plus discriminantes sont privilégiées pour
un problème donné. Les approches de deep learning quant à elles, ont la ca-
pacité d’apprendre automatiquement les caractéristiques des données. Cette
spécificité a largement contribué à l’amélioration en termes de précision.

Parmi les différentes techniques de deep learning disponibles, nous utilis-
erons Auto-encoders (AE). Dans sa représentation la plus simple, un AE se
compose de deux éléments: un codeur h(·) et un decodeur g(·). Tandis que le
codeur transforme l’entrée à une certaine représentation cachée, le décodeur
transforme la représentation cachée à une version reconstruite de l’entrée x.
Un AE est donc formé pour minimiser la contradiction entre les données et sa
reconstruction. Néanmoins, si aucune autre restriction outre la minimisation
d’erreur n’est imposée, l’AE peut potentiellement n’apprendre que la fonction
identité. Une solution pour éviter cela est d’ajouter un processus aléatoire
dans la transformation de l’entrée à sa reconstruction, il s’agit du Denoising
Auto-encodeurs (DAE) [161–166].

En général, un DAE est implémenté comme un réseau neuronal d’une
couche cachée formée pour reconstruire un point x à partir de sa version
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corrompue x. Par conséquent, un AE est converti en un DAE, en ajoutant
simplement une étape de corruption stochastique modifiant l’entrée. Par ex-
emple, dans [161], le processus de corruption stochastique consiste à mettre
au hasard quelques-unes des entrées à zéro. Plusieurs DAE peuvent être em-
pilés pour former un réseau profond en alimentant la représentation cachée
d’un DAE de la couche inférieure alimentant lui même l’entrée de la couche
suivante [159]. Il s’agit alors de Stacked Denoising Auto Encoder (SDAE).

L’apprentissage du SDAE est composé de deux étapes : apprentissage non-
supervisé et supervisé. Les poids entre les couches du réseau sont d’abord ap-
pris par l’étape de pré-apprentissage non supervisé. Le pré-apprentisage non-
supervisé de l’architecture proposée est réalisé une couche à la fois. Chaque
couche est formée en tant que DAE, en minimisant l’erreur de reconstruction
de son entrée. Le DAE de la couche supérieur utilise alors la sortie du DAE
de niveau inférieur comme entrée. Une fois que les premières couches k sont
formées, la couche k+1 peut être formée parce que la représentation latente
de la couche inférieure peut être alors calculée. Une fois que tous les poids du
réseau sont calculés le réseau passe par une deuxième étape d’apprentissage
appelée supervisé appelée fine-tunning, où l’erreur de prédiction est réduite
sur une tâche supervisée

9.3.2 Caractéristiques utilisées pour la segmentation

Quelle que soit l’efficacité de la stratégie d’apprentissage automatique ap-
pliqué, le choix de caractéristiques pertinentes est crucial pour des problèmes
de classification. Les recherches récentes sur la segmentation des structures
du cerveau par des techniques de Learning Machine ont tendance à se concen-
trer sur l’utilisation de plusieurs algorithmes d’apprentissage plutôt que dans
l’ajout de caractéristiques plus discriminantes dans le système. Les carac-
téristiques traditionnelles, introduites précédemment, ont souvent été utilisées
lors de la segmentation de structures cérébrales avec un succès considérable.
Cependant, l’utilisation des caractéristiques alternatives peut : i) améliorer
les performances de classification, ii) réduire, dans certains cas, le nombre de
caractéristiques utilisées pour décrire les informations de texture d’une région
donnée. En dehors de l’application de SDAE au problème de la segmentation
des OARs, l’une des principales contributions de ce travail est l’utilisation des
caractéristiques qui ne sont pas encore utilisées pour la segmentation de ces
structures du cerveau.

Parmi l’ensemble des OARs impliqués dans la RT, certains présentent une
homogénéité de texture plus importante et une variation plus limitée de la
forme que d’autres. Dans ce premier groupe, nous pouvons inclure le tronc
cérébral, les yeux et le cristallin. A l’inverse, d’autres OARs ont une tex-
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ture plus hétérogène des variations inter-individuelles plus importantes en
termes de taille ou de localisation. Ce deuxième groupe est constitué par les
nerfs optiques, le chiasma, l’hypophyse et la tige pituitaire. En raison des
différences entre les caractéristiques des deux groupes, certaines des carac-
téristiques proposées dépendent de l’organe à segmenter et ne sont pas adap-
tées à tous les organes étudiés dans ce travail. Alors que la segmentation
de certains organes exploite l’utilisation d’une carte de distances géodésiques
et de descripteurs fondés sur les motifs binaires locaux en 3D pour obtenir
de meilleurs résultats (groupe A), la segmentation d’autres OARs utilise la
texture et l’analyse contextuelle (groupe B). Le gradient d’image est exploré
dans ce groupe. Parmi toutes les caractéristiques qui peuvent être extraites
de l’analyse de texture, nous utilisons les suivantes : la moyenne, la variance,
l’asymétrie, l’aplatissement, l’énergie et l’entropie. De plus, la décomposition
discrète en ondelettes compos également le vecteur de caractéristiques.

9.3.3 L’apprentissage

Un pré-traitement est appliqué extraire les caractéristiques à l’ensemble des
patients. Toutes les images sont redimensionnées à la résolution 1 x 1 x 1
mm3. Toutes les images IRM T1 sont spatialement alignées de telle sorte que
la ligne de la commissure antérieure et la commissure postérieure (AC-PC) est
orientée horizontalement dans le plan sagittal, et la fissure inter hémisphérique
est alignée sur les deux autres axes. Ce procédé représente donc également
l’étape d’initialisation pour la segmentation d’un nouveau patient. Enfin, les
images sont normalisées.

Une carte de probabilité et un masque de recherche sont créés lors de
la phase d’apprentissage. Les zones d’intérêts manuellement contourées sur
l’ensemble des données d’apprentissage sont sommées dans un volume pour
créer une carte de probabilité pour chaque OAR. Cette carte contient ainsi
des valeurs continues par voxel dans l’intervalle [0,1], indiquant la fréquence
à laquelle un organe apparaît dans l’ensemble de données. Cette valeur in-
dique la probabilité qu’un voxel donné appartienne à une structure. La carte
de probabilité est également utilisée pour réduire le nombre d’échantillons
qui sont introduits dans le classificateur. De cette carte, une région d’intérêt
(ROI) est générée. Le critère d’élagage est basée sur la probabilité d’un voxel
d’appartenir à une quelconque des structures d’intérêt. Ainsi, tout voxel con-
tenant une probabilité supérieure à zéro est pris en compte pour créer le
masque de recherche, pour chaque structure, et qui sera utilisé pour élaguer
les voxels dans l’étape d’extraction de caractéristiques. Pour être sur de que
les OARs des nouveaux patients seront à l’intérieur de ce masque commun une
marge de sécurité est générée par l’application d’une dilatation morphologique.
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9.3.4 Classification

La classification est faite à une classe à la fois. Cela signifie qu’un classi-
fieur binaire est utilisé pour chacune des structures. Le pré-traitement de
l’image à segmenter est le même que celui utilisé pendant l’apprentissage.
Pour l’extraction des caractéristiques, la carte de probabilités et la ROI de
recherche crées pendant l’apprentissage sont aussi utilisées. Les valeurs des
caractéristiques pour la classification sont mises à l’échelle en concordance avec
la mise à l’échelle des valeurs utilisées lors de la phase de d’apprentissage.

9.4 Matériels et méthodes

Tout le code qui a été utilisé dans cette thèse a été mis en œuvre en utilisant
les plates-formes suivantes: MATLAB (The MathWorks Inc., Natick, MA,
2000) et Microsoft Visual Studio (MSVC) 2010.

Les examens IRM de 15 patients pris en charge dans le cadre d’une ra-
diochirurgie Leksell Gamma Knife ont été utilisés dans ce travail. Au total,
quatre experts ont participé à aux sessions de contourage manuel des OARs.
Ces contours manuels ont été utilisés pour créer les contours de référence. Les
contours de référence ont été obtenus dans cette thèse en utilisant le concept
de calcul de cartes de probabilité. Les cartes de probabilité sont seuillées à un
niveau variable afin de créer le masque. Le seuil a été fixé à 50% ou à 75%,
en fonction du nombre d’experts impliqués (3 ou 4 selon l’OAR étudié).

Les techniques typiques de validation pour évaluer la performance d’un
classifieur s’appuient sur un partage des données en deux groupes : ap-
prentissage et test. Compte-tenu du nombre limité d’examens dans cette
thèse, nous avons utilisé la méthode Leave-one-out Cross validation (LOOCV).
Cette technique consiste à utiliser un seul patients pour le test et les autres
pour l’apprentissage. Ce processus est répété autant de fois que de patients
disponibles, à savoir 15. Ainsi, à chaque itération, 14 examens sont utilisés
pour l’apprentisage et 1 pour la classification.

Plusieurs critères permettent d’évaluer la qualité de segmentation d’une
image et selon lesquels différentes métriques d’erreur sont définies. Ces dif-
férents critères d’évaluation de segmentation ont été classés par [186] : ex-
actitude, précision, répétabilité et efficacité. Les métriques sont estimées à
partir du contour et la taille/le volume de l’objet segmenté. Chaque métrique
reporte une information différente et doit être considérée dans un contexte ap-
proprié. Bien que les mesures basées sur le volume, telles que Dice Similarity
Coefficient (DSC) sont largement utilisées pour comparer les similitudes entre
volumes, elles sont assez peu sensibles aux différences sur les bords lorsque
ces différences ont un faible impact sur le volume global. Ainsi, les mesures
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fondées sur la distance, telles que la distance de Hausdorff, sont également util-
isées pour évaluer la qualité d’une segmentation. En complément, la sensibilité
et la spécificité sont aussi évaluées. Finalement, pour évaluer l’efficacité, le
temps nécessaire à l’exécution de l’algorithme est également mesuré et analysé.
A titre de comparaison à des algorithmes de référence dans la littérature, un
autre classifieur basé sur SVM a été étudié. En outre, les segmentations
automatiques générées par notre système de deep learning, sont comparées
aux segmentations manuelles obtenues par les experts. A partir des valeurs
des métriques ainsi recueillies une analyse statistique est réalisée afin de dé-
montrer que les différences de volume et de surface étaient significativement
différentes entre le system basé sur SVM et notre système de classification basé
sur SDAE. D’autre part, nous avons également réalisé une analyse statistique
entre le résultat des segmentations manuelles et les contours générés par notre
système. Dans ce cas, nous souhaitons prouver que, bien que les résultats de
certains observateurs manuels ont été meilleurs que les résultats fournis par
notre approche, les différences ne sont pas significatives.

9.5 Résultats et discussion

Selon les caractéristiques intrinsèques de certains OARs, les résultats ont été
séparés en deux groupes. Les résultats du système proposé ont été comparés
avec une approche de Learning Machine largement utilisé pour la classification
: SVM. En plus des caractéristiques usuelles basées sur l’espace et l’intensité,
nous avons ajouté des nouvelles caractéristiques. Ces caractéristiques sont
généralement dépendant des organes, et leur évaluation a ainsi été réalisée en
conséquence selon deux groupes A et B.

Les résultats fournis dans ce travail montrent que le système de classifica-
tion proposé surpasse toutes les configurations des classifieurs SVM ou SDAE
avec les caractéristiques usuelles. L’ajout de nouvelles caractéristiques dans
chaque groupe a augmenté la similitude entre volumes tout en réduisant la
distance de Hausdorff. Pour tous les OARs, les schémas de classification pro-
posées pour les groupes A et B ont obtenu les meilleurs résultats pour les
différences mesures de similarité, de surface et de volume. La sensibilité et
la spécificité sont également améliorés par l’utilisation du système de classi-
fication proposé. Premièrement, les valeurs de sensibilité étaient plus élevées
dans les configurations basées sur SDAE que dans configurations basées sur
SVM. Deuxièmement, l’inclusion de nouvelles caractéristiques dans le système
de classification a améliorée des valeurs de sensibilité par rapport aux autres
configurations dans les systèmes basées sur SDAE. Cette tendance a été iden-
tifiée pour tous les OARs des deux groupes. Les valeurs de spécificité obtenus
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par les systèmes proposés dans les deux groupes étaient dans environ la moitié
des cas parmi ceux les mieux classés.

L’analyse statistique sur les segmentations automatiques a démontré que
les résultats obtenus par le système proposé sont significativement meilleurs
que les autres groupes.

En ce qui concerne la comparaison aux annotations manuelles, l’erreur de
segmentation que nous avons obtenu est comparable à celle obtenue entre les
observateurs lorsque les contours sont délimités sans contraintes de temps.
Dans ces comparaisons, nous pouvons observer que les résultats de segmenta-
tion générés par l’approche proposée sont distribues avec la même variabilité
que les experts dans la plupart des cas. L’analyse statistique sur ces résultats
du système de classification comparés aux contours manuels souligne que les
différences ne sont généralement pas statistiquement significative. En outre,
dans certains cas où les différences sont significatives, notre classificateur au-
tomatique offre un meilleur résultat que le contourage manuel. Nous pouvons
ainsi conclure que les contours automatiques générés par le système de classi-
fication proposé sont similaires aux annotations manuelles.

Les résultats démontrent également que le système de deep learning pro-
posé reposant sur l’apprentissage a surpassé tous les travaux précédents
lorsque l’on s’intéresse à l’ensemble des OARs analysés. Bien qu’il n’a pas
été possible dans ce travail d’utiliser les mêmes ensembles de données que
celles utilisées dans les études précédentes, les performances plus élevées de
notre approche, comme indiqué par les résultats, suggère sa supériorité pour
segmenter ces structures. Les résultats montrent qu’en utilisant SDAE comme
classificateur, le temps de segmentation a été significativement réduit par rap-
port à d’autres méthodes classiques de machine learning, telles que SVM. Cela
est particulièrement remarquable si on tient en compte le fait que la plupart
des travaux en références dans cette thèse pour segmenter les OARs sont
basés sur des techniques atlas, et donc dépendantes du recalage. Cette étape
de recalage rend la segmentation chronophage en comparaison de l’approche
proposée.

L’implémentation actuelle du système proposé n’est pas optimisée infor-
matiquement et goulot d’étranglement du processus reste l’étape d’extraction
de caractéristiques. Cependant son temps de traitement varie entre 1 à 6
secondes pour chacun des OARs. Bien qu’elle ne soit pas une étape très
coûteuse en temps de calcul, elle représente plus de 95% du temps total de
la segmentation. Comme l’extraction des caractéristiques ne nécessite pas
d’opérations complexes de programmation, sa parallélisation est facilement
abordable. Cela peut réduire sensiblement l’ensemble du processus de seg-
mentation jusqu’à moins d’une seconde pour un organe entier.

L’un des points forts des méthodes de deep learning repose sur leur capacité
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à transférer les connaissances de l’homme à la machine. Ces machines “ap-
prennent” à partir d’un ensemble de données. Ainsi, par exemple, en l’absence
de limites visibles, le classifieur utilise l’expertise des médecins transférée au
système pour la réalisation de cette tâche.





Appendix A

Artificial Neural Networks

A.0.1 Artifical Neural Networks

Artificial Neural Networks (ANN) based methods provide a robust approach
for approximating real-valued, discrete-valued or vector-valued targeted func-
tions. They are massively parallel computing systems consisting of an ex-
tremely large number of simple processors with many interconnections be-
tween them. For certain types of problems, ANN are among the most effective
learning methods employed during the last decades [REF?].

A.0.1.1 Biological motivation

The observation that biological learning systems are built of very complex
networks of interconnected neurons inspired the study and development of
ANN based systems. Thus, in a fuzzy analogy, ANN are composed by a
densely interconnected set of simple units. Each of these units takes a number
of real-valued inputs and produces a single real-valued output. Inputs and
outputs at each neuron may represent the outputs and inputs of other units,
respectively.

To develop the basis of this similarity, let us consider some certainties
from neurobiology. A neuron is a special biological cell that has the ability to
process information. It is estimated that the human brain contains a densely
interconnected network of nearly 1011 of neurons. Each neuron is connected to
103 to 104 other neurons, on average. Neuron activity is commonly inhibited or
excited through connections to other neurons. Neurons communicate through
a very short train of pulses, typically with a duration of milliseconds. Although
the fastest neuron switching times are estimated to be on the order of 10−3

seconds, this time is much slower than computer switching times, which are on
the order of 10−10 seconds. However, complex decisions performed by humans
can be done surprisingly quick. For instance, visually recognizing a familiar
person, such as your mother or father, it requires approximately 10−1 seconds.
Taking into account biological switching times, this implies that the sequence
of neurons being excited during this 10−1 seconds interval cannot be longer
than a few hundred of serial stages. This observation led to many researchers
during the beginning of ANN to speculate that the information processing
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abilities of biological neural systems must follow from highly parallel processes
operating on representations that were distributed over many neurons. Thus,
one motivation of ANN-based systems is to capture this type of highly parallel
computation based on distributed representations.

Figure A.1: Comparative schemes of biological and artificial neural system.

A.0.1.2 The basics of artificial neural networks

ANN are therefore a biologically inspired computational framework where a
number of simple computational units, referred as to neurons, are connected
together to compute a more complex function. The complexity of biological
neurons is highly abstracted when modeling artificial neurons. These basically
consist of inputs, which are multiplied by weights, and then computed by a
mathematical function which determines the activation of the neuron. The
activation function associated with each neuron determines how that neuron’s
value (or activation) is updated. A typical example of an artificial neuron is
shown in figure A.2,b.

Benefit of artificial neuron model simplicity can be seen in its mathematical
description defined in equations A.1 and A.2, which represent the neuron pre-
activation or input activation and the neuron activation or output activation,
respectively:
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(a) Biological neuron (b) Artificial neuron

Figure A.2: Appearance of a biological(a) and an artificial(b) neuron.

a(x) =
m∑
i=0

xi · wi + b (A.1)

y = f(
m∑
i=0

xi · wi + b) (A.2)

where xi represents the i unit inputs, wi are the weight values for each
input i, b is the bias term and f is the transfer or activation function. Lastly,
y represents the output value of the neuron. As seen from the artificial neu-
ron model and its equation (A.2), the major unknown variable is its transfer
function. Figure A.3 shows some of the most common activation functions
employed in ANN. In each case, the x-axis represents the value of the net
input whilst the y-axis is the output from the neuron. Among these activa-
tion function types, sigmoid functions are widely employed in ANN due to its
remarkable computational and mathematical properties. Additionally, most
biological neurons are sigmoid units, in the sense that their frequency response
on input has a region of maximum sensitivity somewhere between a threshold
and a saturation point. Mathematical formulation of the sigmoid activation
function is described below:

f(a) = sigm(a) =
1

1 + exp(−a)
(A.3)

where a denotes the pre-activation function defined in equation A.1.
Since a neural network is built out of interconnected neurons, the func-

tion of an entire neural network is simply the computation of the output of
all the neurons. Training the network involves presenting the network with
some sample data and modifying weights to better approximate an activa-
tion function to obtain the desired output. Even though a precise definition
of learning is ambitious to formulate, a learning process in an ANN context
can be viewed as the issue of updating the artificial network architecture and
connection weights so that a network can efficiently perform a specific task.
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(a) Threshold (b) Linear (c) Gaussian (d) Sigmoid

Figure A.3: Common activation functions.

A.0.1.3 Multilayer feed-forward networks

A single neuron, however, is not very useful due to its limited mapping abil-
ity. Regardless of which activation function is used, the neuron is only able
to represent an oriented ridge-like function, being able to only handle linearly
separable or linearly independent problems. Further extensions of single neu-
ron based networks concern models in which many neurons are interconnected
and organized into layers, building blocks of a larger, much more practical
structures. Neurons in the same layer are fully connected to the neurons in
the previous layer, except for the first layer, because this layer is not formed
by neurons but by the vector x(i) that will be the input to the network.

Neural networks can be built following multiple and diverse architectures.
According to the direction of connections between layers ANN can be grouped
into two major categories: (i) feed-forward networks, in which no loops exist
in the graph, and (ii) feedback networks, also known as recurrent, where loops
are present due to feedback connections. Different network architecture leads
to different learning algorithms. The most common choice is a nl-layered
network, where the first layer represents the input layer, layer nl is the output
layer, and each layer l is densely connected to layer l+ 1. We will discuss the
former, since no other network topology will be analyzed in this dissertation.

Multilayer feed-forward (MLF) neural network represents one of the most
popular multilayer ANN. In a feed forward neural network, neurons are only
connected forward. Each layer of the neural network contains connections
to the next layer, but there are no connections back. This means the signal
flow is from input to output units, strictly in a feed-forward direction. Typi-
cally, the network consists of a set of sensory units that constitute the input
layer, one or more hidden layers of computation nodes, and an output layer
of computation nodes. In its common use, most neural networks will have
one hidden layer, and it’s very uncommon for a neural network to have more
than two hidden layers. The input signal propagates through the network in
a forward direction, on a layer by layer basis. In this context, to compute the
output of the network, activations in primary layers are computed first, up to
reach the last layer, Lnl . In figure A.4 a simple MLF with 3 inputs, 1 output,
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and 1 hidden layer containing 3 neuron units is shown.

Figure A.4: A simple MLP with 3 inputs, 1 output, and 1 hidden layer con-
taining 3 hidden units.

A.0.1.4 Training a Multilayer Network

The way in which this model learns to predict the label y(i) associated to the
input x(i) is by calculating the function

hW,b(x) = a(n) = f(z(n)) (A.4)

where n is the number of layers, b is a matrix formed by n− 1 vectors storing
the bias term for the s neurons in each layer, andW is a vector of n−1 matrices
each of which is formed by s vectors, each one representing the weight of one of
the neurons in one of the layers. To achieve the learning process the training
set is fed into the function in equation A.4. Calculating the value of hW,b(x)

is called a feedforward pass. Therefore, to train the network, the first thing
to do is to initialize the weights W and the bias term b. This should be done
using random values near zero. Otherwise, all the neurons could end up firing
the same activations and not converging to the solution.

Let consider the network shown in figure A.4 as example. In this setting,
the number of layers, nl is equal to 3. Each layer l is denoted as Ll, so input
layer is represented by L1, and L3 is the output layer in our network. Let
denote W l

ij to refer to the weight associated with the connection between the
unit j in layer l, and the unit i in layer l+1. In addition, bli is used to represent
the bias associated with the unit i in layer l+1. The output value, also known
as activation, of a unit i in layer l is denoted by ali. Therefore, for the first
layer, the activation, a1

i is simply the i-th input. Thus, given a fixed setting
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of the parameters W and b, the neural network defines a hypothesis hW,b(x)

(equation A.4), which output is a real number. Particularly, computation of
our neural network is represented by:

a
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1 = f(W

(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 + b

(1)
1 ) (A.5)
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Thus, we have in this network that W (1) ∈ R3x3 and W (2) ∈ R1x3.
If we now let z(l)

i denote the total weighted sum of inputs to unit i in layer
l, including the bias term:

z
(2)
i =

n∑
j=1

W
(1)
ij xj + b

(1)
i (A.9)

activation of unit i in layer j can be reformulated in a more compact
notation as:

a
(l)
i = f(zli) (A.10)

Extension of the activation function f(·) to be applied to vectors in an
element-wise function (i.e., f([z1, z2, z3]) = [f(z1, f(z2, f(z3)]) will allow equa-
tions (A.5-A.8) to be reformulated as:

z(2) = W (1)x+ b(1) (A.11)

a(2) = f(z(2)) (A.12)

z(3) = W (2)a(2) + b(2) (A.13)

hW,b(x) = a(3) = f(z(3)) (A.14)

More generally, in order to calculate activations of layer l + 1, a(l+1) ,
we need to calculate, for each layer l, starting with l = 1 and knowing that
a(1) = x

z(l+1) = W (l)a(l) + b(l), (A.15)
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a(l+1) = f(z(l+1)) (A.16)

Once we have produced a feed-forward pass, we need to calculate the cost
function. We define the cost function of a single training example (x, y) as

J(W, b;x, y) =
1

2
‖y − hW,b(x)‖2 (A.17)

that is, half of the squared distance from the prediction to the ground
truth. For a whole training set (x(1), y(1)), ..., (x(m), y(m)) we will use

J(W, b) =
1

m

m∑
i=1

J(W, b;x(i), y(i)) +
λ

2

n−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ij )2 (A.18)

where m is the number of examples and λ is the weight decay parameter.
This parameter λ helps to prevent overfitting by penalizing the cost when the
weights grow too much.

Now that we have a function that measures the cost of all predictions with
a particular set of weights, we need a way to update those weights so that,
in next iteration, the cost will be reduced and the training may converge to a
minimum, hopefully the global one. This update value is:

∇W =
∂

∂W (l)
J(W, b) = [

1

m

m∑
i=1

∇W (l)J(W, b;x(i), y(i))] + λW (l)

[
1

m

m∑
i=1

∂

∂W (l)
J(W, b;x(i), y(i))] + λW (l)

(A.19)

∇b =
∂

∂b(l)
J(W, b) =

1

m

m∑
i=1

∇b(l)J(W, b;x(i), y(i))]

1

m

m∑
i=1

∂

∂b(l)
J(W, b;x(i), y(i))

(A.20)

Therefore, the first step is to calculate ∇W (l)J(W, b;x(i), y(i)) and
∇b(l)J(W, b;x(i), y(i)) for each example independently. This step is done with
the backpropagation algorithm.
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A.0.1.5 Backpropagation Algorithm

Backpropagation is a method of supervised learning often used to train feed-
forward neural networks. Its use allows to calculate the factors by which each
weight should be updated in order to minimize the error produced between
the prediction and the ground truth given a set of weights W and a bias term
b. It proceeds as follows:

• Perform a feed-forward pass, that is, calculate the final activations
hW,b(x) = a(n), where n is the number of layers, and denoting that
a(n) are the activations of the last layer. This will give us a vector of
predictions achieved by the actual weights θ. Moreover, store all the
intermediate z(l) and a(l) for each layer l for a later use.

• For each final activation a(n)
i with i = 1, ..., l, calculate the penalization

term

δ
(n)
i =

∂

∂z(n)

1

2
‖y − hW,b(x)‖2 = −(yi − a(n)

i ) · f ′(z(n)
i ) (A.21)

This factor indicates how different the prediction of the model is from
the ground truth.

• Propagate the penalization term to the previous layers by calculating
for each node i in layer l except the first layer, because the input does
not need to be corrected

δ
(l)
i = ((W

(l)
i )T δ

(l+1)
i ) · f ′(z(l)

i ) (A.22)

• Finally, compute the partial derivatives

∇W (l)J(W, b;x, y) = δ
(l+1)
i (a(l))T (A.23)

∇b(l)J(W, b;x, y) = δ
(l+1)
i (A.24)

Now, we can calculate ∇W and ∇b with the formulas in the previous sec-
tion (equations A.19 and A.20,respectively). These partial derivatives should
now be used to properly update the old weights with some optimization tech-
nique such as gradient descent, conjugate gradient or L-BFGS algorithm [194],
for example.
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Support Vector Machines

B.0.2 Support Vector Machines

Another widely employed ML system, which also represents a state-of-the-art
classifier, is Support Vector Machines (SVM). It was originally proposed by
Vapnik [141] and [142] for binary classification. In contrast with other ma-
chine learning approaches like artificial neural network which aims at reducing
empirical risk, SVM implements the structural risk minimization (SRM) that
minimizes the upper bound of generation error.

Support vector machines and their variants and extensions, often called
kernel-based methods, have been studied extensively and applied to wide spec-
trum of pattern classification and function approximation problems. Basically,
the main idea behind SVM is to find the largest margin hyperplane that sep-
arates two classes, among all the possible hyperplanes. The minimal distance
from the separating hyperplane to the closest training example is called mar-
gin. Thus, the optimal hyperplane is the one providing the maximal margin,
which represents the largest separation between the classes. This will be the
line such that the distances from the closest point in each of the two groups
will be farthest away. The training samples that lie on the margin are re-
ferred as support vectors, and conceptually are the most difficult data points
to classify. Therefore, support vectors define the location of the separating
hyperplane, being located at the boundary of their respective classes. See
Figure B.1 to find a representation of support vectors and margin.

In the binary classification setting, let ((x1, y1)...(xn, yn)) be the train-
ing dataset where xi are the feature vectors representing the instances and
yi ∈ {−1,+1} denote the labels of the instances. Support vector learning
is the problem of finding a separating hyperplane that separates the positive
examples from the negatives examples with the largest margin. The margin
of the hyperplane is defined as the shortest distance between the positive and
negative instances that are closest to the hyperplane. The intuition behind
searching for the hyperplane with a large margin is that a hyperplane with
the largest margin should be more resistant to noise than a hyperplane with
a smaller margin. Supposing that all the training data satisfy the following
constraints:
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Figure B.1: The max-margin approach favored by Support Vector Machines.

w · xi + b ≥ +1, for yi = +1 (B.1)

w · xi + b ≤ −1, for yi = −1 (B.2)

where w is normal to the hyperplane, |b|/‖w‖ is the perpendicular distance
from the hyperplane to the origin, and ‖w‖ is the Euclidean norm of w. For the
linearly separable case, the support vector algorithm looks for the separating
hyperplane with largest margin, which can be formulated as follows:

yi(w · xi + b− 1) ≥ 0 ∀i (B.3)

Figure B.2: Linear separating hyperplanes for the binary separable case. Cir-
cled exampled that lie on the hyperplane are called support vectors.

Let consider now that points in Eq. B.1 and Eq. B.2 lie on the hyperplanes
H1 and H2 in Figure B.2, respectively:

H1 : w · xi + b = 1 (B.4)

H2 : w · xi + b = −1 (B.5)
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with normal w and perpendicular distance from the origin |1− b|/‖w‖ for
the first case, and | − 1 − b|/‖w‖ for the second case. Hence, the shortest
distance from the separating hyperplane to the closest positive and negative
examples is defined as 1/‖w‖, and the margin is simply two times this distance,
2/‖w‖. Thus, the maximum margin that separates the two classes can be
constructed by solving the following primal optimization problem

minimize
1

2
‖w‖2 (B.6)

subject to the constraints given by Eq. B.3. In other words, the margin is
maximized, subject to the constraints that all training cases fall on either side
of the support hyper-planes. The cases that lie on the hyperplane are called
support vectors, since they support the hyper-planes and hence determine the
solution to the problem. The primal problem can be solved by a quadratic
program. However, it is not ready to be kernelised, because its dependence is
not only on inner products between data-vectors.

A switch to Lagrangian formulation of the primal problem is done at this
point mainly because of two reasons. First, the constraints are easier to han-
dle. And second, the training data only appears as a dot product between
vectors in this reformulation. This second characteristic of the Lagrangian re-
formulation is an essential property in order to generalize the procedure to the
nonlinear case. Hence, positive Lagrange multipliers αi, i = 1, ..., l, for each of
the inequality constraints in B.3 are introduced. The generalized Lagrangian
function is then defined as:

L(w, b, α) =
1

2
‖w‖2 −

l∑
i=1

αiyi(xiw + b) +
l∑

i=1

αi (B.7)

The goal is to minimize (B.7) with respect to w, b, and simultaneously
require that the derivatives of L(w, b, α) with respect to all the αi vanish,
subjected to the constraints αi ≥ 0.

B.0.2.1 Duality

Optimization problems can be converted to their dual form by differentiating
the Lagrangian with regards to the original variables, solving the obtained re-
sults for those variables if possible, and substituting the resulting expression(s)
back into the Lagrangian, thereby eliminating the variables.

Minimizing Eq. B.7 is a convex quadratic programming problem, because
the objective function is itself convex, and points satisfying the constraints also
form a convex set. In these cases, and only then, minimization and maximiza-
tion can be interchanged, allowing to equivalently solve what is known as the
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“dual” problem. Duality of the problem is defined as maximizing L(w, b, α)

subject to the constraints that the gradient of L(w, b, α) with respect to w
and b vanish, and also subject to the constraints that the αi ≥ 0. Forcing the
gradient of L(w, b, α) with respect to w and b vanish give the conditions:

w =
∑
i=1

αiyixi (B.8)

∑
i=1

αiyi = 0 (B.9)

Inserting this back into the Lagrangian formulation (Eq. B.7), the formu-
lation of the dual problem becomes:

maximize LD =
N∑
i=1

αi −
1

2

∑
ij

αiαjyiyjxi · xj (B.10)

which is subject to the constraints of B.9. The hyperplane whose weight

vector w∗ =
n∑
i=1

yiαixi solves this quadratic optimization problem is the max-

imal margin hyperplane with geometric margin λ = 1
‖w‖ .

The theory of duality guarantees that for convex problems, the dual prob-
lem becomes concave with an unique solution of the primal problem that
corresponds to the unique solution of the dual problem. The important point
of problem dualization is that the dual problem only depends on xi through
the inner product xixj. A clear advantage is that the dual problem lends
itself to kernelization, via the substitution xixj −→ k(xi, xj), while the primal
problem does not.

B.0.2.2 The Karush-Kuhn-Tucker Conditions

The Karush-Kuhn-Tucker (KKT) conditions [195, 196] establish the require-
ments that need to be satisfied by an optimum solution to a general optimiza-
tion problem. Given the primal problem in B.7, KKT conditions state that
the solutions w∗, b∗ and α∗ should satisfy the following conditions (where i
runs from 1 to the number of training points and v from 1 to the dimension
of the data d)

∂L(w∗, b∗, α∗)

∂wv
= wv −

∑
i

αiyixiv = 0 v = 1, ..., d (B.11)

∂L(w∗, b∗, α∗)

∂b
= −

∑
i

αiyi = 0 (B.12)
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yi(xi · w + b)− 1 ≥ 0, ∀i (B.13)

αi ≥ 0, ∀i (B.14)

αi(yi(w · xi + b)− 1) = 0, ∀i (B.15)

Since the problem for SVM is convex, KKT conditions are necessary and
sufficient for w∗, b∗ and α∗ to be a solution [197]. Hence, solving the SVM
problem is equivalent to finding a solution to the KKT conditions. The first
KKT condition ( Eq. B.11) defines the optimal hyperplane as a linear combi-
nation of the vectors in the training set:

w∗ =
∑
i

α∗i yixi (B.16)

In the other hand, the second KKT condition (Eq. B.12) requires that the
αi coefficients of the training instances should satisfy:

n∑
i=1

α∗i yi = 0, α∗i ≥ 0 (B.17)

As an application of the KKT conditions, the decision function that can
be used to classify future test cases is defined as:

f(x) = wTxi + b =
∑
i

αiyix
T
i x+ b (B.18)

where the sign of the decision function determines the predicted classifica-
tion of x.

The most important conclusions are that, first, this function f(·) can be ex-
pressed solely in terms of inner products xTi xi, that can be later replaced with
kernel matrices k(xi, xj) to move to a higher dimensional non-linear spaces.
Second, only support vectors are needed to express the solution w.

B.0.2.3 The Non-Separable Case

However, most of the real data is not linearly separable and, even in cases
where the data is linearly separable, SVM may overfit to the training data
in its search for the hyperplane that completely separates all of the instances
of both classes. Sometimes, even if a curved decision boundary is possible,
exactly separating the data is probably not desirable: if the data has noise and
outliers, a smooth decision boundary that ignores a few data points is better
than one that loops around the outliers. Therefore, linear separation may
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present a high sensivity to ourliers. To address these problems, the concept
of “soft margin” were introduced in SVM by [141]. The basic is to relax
the constraints in B.1 and B.2, only when necessary, via the introduction a
further cost in the primal objective function ( Eq. B.6). This can be done by
introducing positive “slack variables” ξi in the constraints. With the addition
of the “slack variables”, the modified relaxed constraints become

w · xi + b ≥ +1− ξi, for yi = +1 (B.19)

w · xi + b ≤ −1− ξi, for yi = −1 (B.20)

ξi ≥ 0 (B.21)

Figure B.3: Soft Margin SVM.

The introduction of “slack variables” allows for violations of the constraint,
i.e. permits some instances to lie inside the margin or even cross further among
the instances of the opposite class (Fig. B.3). To avoid arbitrarily large values
for ξi that would cause the SVM to obtain trivial and suboptimal solutions, the
relaxation must be constrained. Adding the “slack variables” in the objective
function (Eq. B.6) allows to control the relaxation. The new primal “relaxed”
problem this becomes

minimize LP =
1

2
‖w‖2 + C

∑
i

ξi (B.22)

subject to B.19, B.20 and B.21. The penalty parameter C > 0 controls the
trade-off between the penalty and margin, i.e. specifies the misclassification
penalty. Its value is tuned by the user and it is based on the classification
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problem and dataset characteristics. Small C values allow constraints to be
easily ignored, i.e. large margin, while large C values makes constraints hard
to ignore, i.e. narrow margin.

As in the linear case, the problem is switched to a Lagrangian formulation,
leading to

L(w, b, ξ, α, µ) =
1

2
‖w‖2 + C

∑
i

ξi −
N∑
i=1

αi[yi(w
Txi − b)− 1 + ξi]−

N∑
i=1

µiξi

(B.23)
Derived KKT conditions are defined as

∂L(w∗, b∗, ξ∗, α∗, µ∗)

∂wv
= wv −

∑
i

αiyixiv = 0 (B.24)

∂L(w∗, b∗, ξ∗, α∗, µ∗)

∂b
= −

∑
i

αiyi = 0 (B.25)

∂L(w∗, b∗, ξ∗, α∗, µ∗)

∂ξi
= C − αi − µi = 0 (B.26)

yi(xi · w + b)− 1 + ξi ≥ 0 (B.27)

ξi ≥ 0 (B.28)

αi ≥ 0 (B.29)

µi ≥ 0 (B.30)

αiyi(xi · w + b)− 1 + ξi = 0 (B.31)

µiξi ≥ 0 (B.32)

Conveniently converting to the dual problem, and using the KKT equa-
tions, the SVM problem can be then efficiently solved, as well as it becomes
readily kernelized. The dual formulation is then defined as

maximize LD =
N∑
i=1

αi −
1

2

∑
ij

αiαjyiyjxi · xj (B.33)
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subjectto 0 ≤ αi ≤ C, and
∑
i

αiyi = 0. (B.34)

The solution is again given by

w =

NS∑
i=1

αiyixi (B.35)

where NS is the number of supported vectors. This solutions is practically
the same than in the linear case, but with an extra constraint on the multipliers
αi which have now an upper bound of C.

B.0.2.4 Non-linear Support Vector Machines

The power of SVMs can be fully realized when linear SVMs are extended
to allow more general decision surfaces. One of the benefits of Lagrangian
reformulation of the SVM problem is that the training data appears as a dot
product between vectors (Section X). This advantage can be exploited by
using the kernel trick, which allows SVM to form non-linear boundaries.

In the dual problem in B.33, the dot product can be replaced with the new
kernel function K,

maximize LD =
∑
i

αi −
1

2

∑
ij

αiαjyiyjK(xi, xj) (B.36)

subject to the conditions defined in B.34.

Figure B.4: Effect of the kernel transformation. Data is not linearly separable
in (a). Mapping features into a higher dimensionality (b) may make the
classification possible.
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B.0.2.5 Kernel selection and parameters tuning

As explained in previous section, to map input features into higher dimension-
ality spaces several kernels can be used, according to the nature of the data.
This is done via some mapping Φ(x) and then, construction of a separating
hyperplane with maximum margin is done in the input space (Figure B.4). As
shown in B.4, the linear decision function in the features space corresponds to
a non-linear decision boundary in the original input space. Typical kernels’
choices are ( [148]):

• Linear Kernel: K(x, y) = 〈x, y〉

• Polynomial Kernel: K(x, y) = (〈x, y〉)2

• RBF Kernel: K(x, y) = exp(−γ‖x− y‖2)

• Sigmoid Kernel K(x, y) = tanh(γ〈x, y〉 − theta)

• Histogram Intersection Kernel K(x, y) = |x− y|

Each kernel function listed above has its own properties and unique re-
sponse to handle a variety of data. Employing a sigmoid kernel function in a
SVM model is equivalent to use a two-layer perceptron neural network [143].
If RBF kernel is used instead, the model approximately behaves like a radial
basis function neural network, where the feature space is in an infinite dimen-
sion. Therefore, selection of a proper kernel function is required to perform
optimal classification tasks with SVM models. Selection of the convenient ker-
nel function is, or should be, based on the requirements of the classification
task.

B.1 SVM Parameter Setting

First choice to make when working with SVM is the kernel to be used.
Despite the several kernels proposed to map features into a higher dimension,
Radial Basis Function (RBF) kernels are one of the most used kernels to
separate data in SVM classifiers in complex classification environments.
Some previous works have found that RBF kernel generally provides better
classification accuracy than many other kernel functions [198]. This kernel
non-linearly maps samples into a higher dimensional space. That means that
RBF kernel can handle the cases when the relation between class labels and
attributes is nonlinear. Second reason to use this kernel is the number of
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hyperparameters which influences the complexity of model selection, which
is lower than in other non-linear kernels, such as the polynomial kernel.
Consider two samples xi = [xi1, xi2, ..., xid]

T and xj = [xj1, xj2, ..., xjd]
T . The

RBF kernel is then defined by:

K(xi, xj) = exp
(
−γ‖xi − xj‖2) , γ > 0 (B.37)

where γ is the width of the Gaussian.
There are two parameters that can be tuned in the RBF kernel and which

depend on the input data: C and γ. While C controls the cost of misclas-
sification on the training data, γ is the parameter of the kernel to handle
non-linear classification. A large C value will provide a low bias and high
variance, because misclassification cost is highly penalized, i.e. hard margin.
Contrary, a small C value makes the cost of misclassification low, i.e. soft
margin, giving a higher bias and lower variance. To “raise” the points used
in the RBF kernel, γ controls the shape of the “peaks" where the points are
raised (Fig. B.5). A large γ will give a pointed bump in the higher dimensions,
while a small γ will give a softer, broader bump. This is translated into low
bias and high variance with a large γ value and higher bias and low variance
for lower γ values. Thus, a γ overestimation will produce an almost linear be-
havior in the exponential and the higher-dimensional projection would start
to lose its non-linear power. However, an underestimated γ value will pro-
duce a lack on regularization, making the decision boundary highly sensitive
to noise in the training data. Therefore, some kind of model selection, i.e.
parameter search, must be done for these two parameters. The goal of this
search is to identify good C and γ values so that the classifier can accurately
predict unknown data, i.e. testing data. Since performing a fully grid search
may become time consuming, a coarse grid search is often initially conducted.
After identifying the best region on the grid, a finer grid search on that region
can be performed.
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Figure B.5: Decision boundaries for a banana shaped dataset generated by
SVM with a RBF kernel for different C and γ values.
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