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Abstract

This thesis focuses on various mathematical questions arising in the non-

anticipative functional calculus, a differential calculus for functionals of

(right-)continuous paths with finite quadratic variation and the application

of this calculus to functionals of stochastic processes. This functional calculus

was initially developed by Dupire [20] and Cont & Fournié [8, 9] using the

notion of vertical derivative of a functional, a concept based on pathwise

directional derivatives. In this thesis we extend the scope and results of

this functional calculus to functionals which may not admit such directional

derivatives, either through approximations (Part I) or by defining a notion

of weak vertical derivative (Part II).

In the first part, we consider the representation of conditional expecta-

tions as non-anticipative functionals. Such functional representations may

fail, in general, to admit directional derivatives. We show nevertheless that

it is possible under very general conditions to approximate such functionals

by a sequence of smooth functionals in an appropriate sense. Combined with

the functional Itô calculus, this approach provides a systematic method for

computing explicit approximations to martingale representations for a large

class of Brownian functionals. We also derive explicit convergence rates of

the approximations under some assumptions on the functionals. These re-

sults are then applied to the problem of sensitivity analysis and dynamic

hedging of (path-dependent) contingent claims. Numerical illustrations are

provided, which show that this approach is competitive with respect to other

methods for computing sensitivities.
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iv Abstract

In the second part, we propose a concept of weak vertical derivative for

non-anticipative functionals which may fail to possess directional derivatives.

The definition of the weak vertical derivative is based on the notion of path-

wise quadratic variation and makes use of the duality associated to the asso-

ciated bilinear form. The weak vertical derivative operator with respect to a

path of finite quadratic variation is shown to be the ‘inverse’ of the pathwise

(Föllmer) integral with respect to this path. Our approach involves only

pathwise arguments and does not rely on any probabilistic notions. When

applied to functionals of a semimartingales, this notion of weak derivative

coincides with the probabilistic weak derivative constructed by Cont and

Fournié [10] in a martingale framework. Finally, we show that the notion of

weak vertical derivative leads to a functional characterization of local mar-

tingales with respect to a reference process, and allows to define a concept

of pathwise weak solution for path-dependent partial differential equations.



Résumé

Cette thèse est consacrée à l’étude du calcul fonctionnel non-anticipatif,

un calcul différentiel pour des fonctionnelles sur l’espace des trajectoires à

variation quadratique finie. Ce calcul fonctionnel est basé sur la notion de

dérivée verticale d’une fonctionelle, qui est une dérivée directionnelle partic-

ulière. Dans cette thèse nous étendons le cadre classique du calcul fonctionnel

non-anticipatif à des fonctionnelles ne possédant pas de dérivée direction-

nelle au sens classique (trajectoriel). Dans la première partie de la thèse

nous montrons comment une classe importante de fonctionelles, définie par

une espérance conditionnelle, peuvent être approchées de façon systématique

par des fonctionnelles régulières. Dans la deuxième partie, nous introduisons

une notion de dérivée verticale faible qui couvre une plus grande classe de

fonctionnelles, et notamment toutes les martingales locales.

Dans la première partie, nous nous sommes intéressés à la représentation

d’une espérance conditionnelle par une fonctionnelle non-anticipative. D’une

manière générale, des fonctionnelles ainsi construites ne sont pas régulières.

L’idée est donc d’approximer ces fonctionnelles par une suite des fonction-

nelles régulières dans un certain sens. A l’aide du calcul d’Itô fonctionnel,

cette approche fournit une façon systématique d’obtenir une approximation

explicite de la représentation des martingales pour une grande famille de

fonctionnelles Browniennes. Nous obtenons également un ordre de conver-

gence explicite sous des hypothèses plus fortes. Quelques applications au

problème de la couverture dynamique sont données à la fin de cette partie.

Dans la deuxième partie, nous étendons la notion de dérivée verticale

v



vi Résumé

d’une fonctionnelle non-anticipative, et nous proposons une notion de dérivée

verticale faible pour des fonctionnelles qui n’admettent pas nécessairement

de dérivée directionnelle. L’approche proposée est entièrement trajectorielle,

et ne repose sur aucune notion probabiliste. Cependant, nous montrons que

si l’on applique cette notion à un processus stochastique, elle cöıncide avec

la notion de dérivée faible proposée dans un cadre probabiliste par Cont

et Fournié [10]. Cette notion nous permet également d’obtenir une car-

actérisation fonctionnelle d’une martingale locale par rapport à un processus

de référence fixé, ce qui donne lieu à une notion de solution faible pour des

équations aux dérivées partielles dépendant de la trajectoire.
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ma soutenance.

Je suis très reconnaissant envers la Fondation Natixis pour avoir participé
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Notations:

Acronyms and abbreviations:

càdlàg = right continuous with left limits

càglàd = left continuous with right limits

SDE = stochastic differential equation

BSDE = backward stochastic differential equation

PDE = partial differential equation

PPDE = path-dependent partial differential equation

s.t. = such that

a.s. = almost surely

a.e. = almost everywhere

e.g. = exempli gratia ≡ example given

i.e. = id est ≡ that is

etc. = et cetera ≡ and so on

Basic mathematical notations:

Md,n(R) = set of d× n matrices with real coefficients

Md(R) = Md,d(R)
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xii Notations

Sd+(R) = set of symmetric positive d× d matrices

D([0, T ],Rd) = space of càdlàg paths from [0, T ] to Rd, d ∈ N

C([0, T ],Rd) = space of continuous paths from [0, T ] to Rd, d ∈ N

· = scalar product in Rd (unless differently specified)

‖ · ‖∞ = supremum norm in spaces of paths, e.g. D([0, T ],Rd) or C([0, T ],Rd)

tr = trace operator, i.e. tr(A) =
∑d

i=1Ai,i for A ∈Md(R).

tA = transpose of a matrix A

x(t) = value of x at time t for x ∈ D([0, T ],Rd)

x(t−) = left limit of x at t, i.e. lims→t,s<t x(s)

x(t+) = right limit of x at t, i.e. lims→t,s>t x(s)

∆x(t) = jump of x at t, i.e. x(t)− x(t−)

xt = x(t ∧ ·) ∈ D([0, T ],Rd) the path of x ’stopped’ at time t

xt− = x1[0,t) + x(t−)1[t,T ] ∈ D([0, T ],Rd)

xet = xt + e1[t,T ] ∈ D([0, T ],Rd) the vertical perturbation of a path x ∈
D([0, T ],Rd) at time t by a vector e ∈ Rd

Λd
T = space of d-dimensional càdlàg stopped paths

Wd
T = subspace of Λd

T of d-dimensional continuous stopped paths

DF = horizontal derivative of a non-anticipative functional F

∇ωF = vertical derivative of a non-anticipative functional F



Introduction

Itô’s stochastic calculus [39, 40, 46, 51, 19, 64, 60] is an important tool at

the core of stochastic analysis and modern probability theory, which extends

the methods of calculus to stochastic processes with irregular paths of infinite

variation. It has many important applications in the analysis of phenomena

with random, irregular evolution in time.

Itô calculus is suited for dealing with functions of stochastic processes

which have non-smooth paths with infinite variation but finite quadratic

variation in a probabilistic sense. Itô’s stochastic integration theory allows to

define integrals
∫ t

0
H(s)dX(s) for a large class of non-anticipative integrands

H with respect to a semimartingale X. It is easy to show that in this case, a

näıve pathwise construction is impossible [60] due to the irregularity of the

paths of X. Another important result is the Itô’s formula, which is a change

of variables formula for smooth functions f(t,X(t)) of the current state of a

stochastic process X. An additional term linked to the notion of quadratic

variation [X] of X appears in the formula, which differentiates it from the

standard differential calculus.

However, in many applications such as statistics of processes, physics or

mathematical finance, uncertainty affects the current state of certain process

even through its entire past history. In these cases, functionals, rather than

functions, of a stochastic process are involved, i.e. quantities of the form

F (Xt) where Xt := {X(s), s ∈ [0, t]}.

For example, in finance, the price of a path-dependent option can be seen

as a functional of the entire past of the underlying. These functionals also

1



2 INTRODUCTION

arise naturally in the study of path-dependent stochastic equations and non-

Markovian stochastic control problems.

Several approaches have been proposed to provide an analytical frame-

work for the systematic study of such path-dependent functionals. One pos-

sible solution is to use the notion of Fréchet derivative for functions defined

on a Banach space, for example, the space of paths D([0, T ]) or C([0, T ]),

but path-dependent quantities in many applications may fail to be Fréchet-

differentiable as it is a very strong notion of differentiability. When the

underlying stochastic process is the Wiener process, the Malliavin calculus

[70, 72, 3, 54, 50, 53] has proven to be a powerful tool for investigating

various properties of Wiener functionals. Yet the construction of Malliavin

derivative, which is a weak derivative for functionals on Wiener space, in-

volves perturbations which apply to the whole path (both past and future) of

the process. This leads to differential representations of Wiener functionals

in terms of anticipative processes [6, 36, 54], whereas in many applications

such as optimal control, or hedging in finance, it is more natural to consider

non-anticipative, or causal versions of such quantities.

In a recent insightful work, inspired by methods used by practitioners to

computer the sensitivity of path-dependent derivatives, Bruno Dupire [20]

proposed a method to extend the Itô calculus to functionals of stochastic

processes in a non-anticipative manner. He introduced two types of path

perturbations, which allows to define two directional derivatives for func-

tionals of the paths, called time and space derivatives, corresponding to the

sensitivity of functionals to such perturbations.

More precisely, consider a (time-dependent) functional F : [0, T ]×D([0, T ]×
R) of a R-valued càdlàg path X : [0, T ] → R such that the value F (t,X)

at time t ∈ [0, T ] depends only on the path X up to time t, i.e. F (t,X) =

F (t,Xt) where Xt := {X(s), s ∈ [0, t]}. Such functionals are called non-

anticipative (or causal) functionals. The idea of Dupire is to analyze the

influence of a smallperturbation of X on the functional F . For t ∈ [0, T ], he

defined:
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• Xh
t as Xt with the endpoint shifted by h ∈ R:

Xh
t (s) = X(ss) for s < t and Xh

t (t) = x(t) + h.

• Xt,h with h > 0 as an extension of Xt by freezing the endpoint over

[t, t+ h]:

Xt,h(s) = X(s) for s ≤ t and Xt,h(s) = X(t) for s ∈ [t, t+ h].

Dupire defined the space derivative (or vertical derivative) of F as

∇ωF (t,Xt) := lim
h→0

F (t,Xh
t )− F (t,Xt)

h
,

(if the limit exists) and the time derivative (or horizontal derivative) of F as:

DF (t,Xt) := lim
h→0+

F (t+ h,Xt,h)− F (t,Xt)

h
.

Clearly ∇ωF still defines a non-anticipative functional, and thus we can sim-

ilarly define the second order space derivative ∇2
ωF as the space derivative

of ∇ωF .

It is important to emphasize that these derivatives are non-anticipative,

i.e. they only depend on the underlying path up to the current time. Another

remarkable observation is that the existence of these derivatives is weaker

than requiring Fréchet or Gâteaux differentiability of F .

However, the main interest of these functional derivatives is that the

knowledge of the second-order jet (DF,∇ωF,∇2
ωF ) allows to capture the

behavior of the functional F along a given path if F and its derivatives satisfy

in addition some continuity assumptions [8, 9, 10]. More precisely, we have a

change of variable formula which is quite similar to the classical Itô formula:

if X is continuous semimartingale, and we assume that the non-anticipative

functional F is once time differentiable and twice space differentiable with

F and its derivatives satisfying some continuity assumptions, then we have:

for t > 0,

F (t,Xt) = F (0, X0) +

∫ t

0

DF (s,Xs)ds+

∫ t

0

∇ωF (s,Xs)dX(s)

+
1

2

∫ t

0

∇2
ωF (s,Xs)d[X](s),



4 INTRODUCTION

where [X] is the quadratic variation of the semimartingale X. This formula

is called the functional Itô formula [8] as it extends the classical Itô formula

to the case of a smooth functional F .

Following Dupire’s idea, Cont and Fournié [8, 9, 10, 7] developed a rig-

orous mathematical framework for a path-dependent extension of the Itô

calculus. While Dupire’s original work [20] only considered functionals of

stochastic processes and used probabilistic arguments in the proof of the

functional Itô formula, Cont and Fournié [8] proposed a purely pathwise

non-anticipative functional calculus without any reference to probability.

In the seminar paper Calcul d’Itô sans probabilités [27], Hans Föllmer

proposed a non-probabilistic version of the Itô formula. The main concept

is the quadratic variation of a path, which was identified by Föllmer as the

relevant property of the path needed to derive the Itô formula. Combining

this insight from Föllmer [27] with the ideas of Dupire [20], Cont and Fournié

[8] constructed a pathwise functional calculus for non-anticipative functionals

defined on the space of càdlàg paths.

Following the work of Dupire, Cont & Fournié, a lot of effort has been

devoted to this functional calculus and its various applications, especially in

the theory of path-dependent partial differential equations and applications

to stochastic control and finance. One of the key topics in stochastic analysis

is the deep link between Markov processes and partial differential equations.

The development of the functional Itô calculus allows to extend this relation

beyond the Markovian setting, leading to a new class of partial differen-

tial equations on the path space, commonly called path-dependent partial

differential equations. The study of such equation, different notions of its

solutions in particular, constitutes currently an active research topic, see for

example [7, 21, 61, 15, 58, 22, 23, 14]. The pathwise functional calculus de-

veloped in [8] also provides naturally a model-free approach to the problem

of continuous-time hedging and trading in finance, which allows to computer

the gain of path-dependent trading strategies and analyze the robustness of

such strategies in a pathwise manner, see for example [65, 68, 69, 59].
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One of the main issues of this functional calculus is that although hori-

zontal et vertical derivatives are directional derivatives, functionals in many

applications are not horizontally or vertically differentiable in the sense of

Dupire, and without these properties, the functional Itô formula may not

be directly applicable [28]. For example, the price of some exotic (path-

dependent) option, defined as the conditional expectation of the payoff, can

be viewed as a non-anticipative functional of the underlying process, which

is in general not horizontally or vertically differentiable (see [65] for some

conditions on the payoff under which the conditional expectation admits a

vertically differentiable functional representation). Another important exam-

ple in which horizontal and vertical differentiabilities of a functional might

be problematic comes from the theory of path-dependent partial differential

equations. Such equations do not always admit a classical (smooth) solution

even in the simple case of functional heat equations. This is also the reason

various notions of solution are proposed for such equations.

This thesis is mainly devoted to dealing with functionals which are not

necessarily horizontally or vertically differentiable. Motivated by applications

in finance, we consider first functionals which represent conditional expecta-

tions. More precisely, let X be the solution of the following path-dependent

stochastic differential equation:

dX(t) = b(t,Xt)dt+ σ(t,Xt)dW (t), X(0) = x0 ∈ Rd

where W is a standard d-dimensional Brownian motion, and Xt denotes the

path of X up to time t. Clearly X is a non-Markovian process. We consider a

functional g : D([0, T ],Rd)→ R. The conditional expectation of g(XT ) with

respect to the natural filtration generated by the process X: E[g(XT )|Ft]
can be viewed as a non-anticipative functional of X or W , i.e. there exist

non-anticipative functionals F or G such that:

E[g(XT )|Ft] = G(t,Xt) = F (t,Wt) a.s. (1)

If there exists some smooth functional F (or G) which satisfies (1), then
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by the functional Itô formula, we have:

g(XT ) = E[g(XT )] +

∫ T

0

∇ωF (t,Wt) · dW (t)

since E[g(XT )|Ft] is a martingale. We have thus an explicit martingale repre-

sentation formula for g(XT ). In finance, the integrand ∇ωF (t,Wt) is closely

related to the delta of the option. So in this case, the delta of the option is

well defined and is explicit.

However, it is not always possible to construct or find smooth functionals

F (or G) which satisfy (1) unless we put very strong assumptions on b, σ and

g. Our idea is thus to construct a sequence of explicit smooth functionals

(Fn)n≥1 which approximates F in an appropriate sense, and approximate the

integrand in the martingale representation of g(XT ) by ∇ωFn(·,W·). The

main advantages of this method are the following. First, we do not need any

strong assumptions (for example differentiability conditions) on the coeffi-

cients b and σ or the functional g. Basically, a Lipschitz-type condition on

these coefficients is sufficient. So our method applies in a very general frame-

work. Another important convenience of this method is that the functionals

constructed Fn are explicit and easy to implement and analyze, leading to

an explicit control of the approximation error.

Another aspect we develop in this thesis to deal with functionals which are

not necessarily smooth is to define a notion of weak derivative. A concept of

weak functional derivative was initially proposed by Rama Cont and David-

Antoine Fournié in [10] in a probabilistic setting. The main idea of their

approach is the following. Let X be a square-integrable Brownian martingale.

Consider now the space C1,2
b (X) of all square-integrable martingales Y which

admits a smooth functional representation of X, i.e. there exists a smooth

functional F of class C1,2
b (which is defined in the following chapter) such

that Y (t) = F (t,Xt) almost surely. They showed this space C1,2
b (X) is dense

in the space M2(X) of all square-integrable martingales with initial value

zero equipped with the norm ‖Y ‖ :=
√
E|Y (T )|2. This means that for any

Y ∈M2(X), there exists a sequence of elements (Yn)n≥1 in C1,2
b (X) such that
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‖Yn − Y ‖ →
n→∞

0. Using the Itô isometry formula, Cont and Fournié showed

that if Fn are smooth functionals such that Yn(t) = Fn(t,Xt) almost surely,

then the sequence of processes ∇ωFn(·, X·) converges to some process φ in an

appropriate sense. This allows to define φ as the weak derivative of Y with

respect to X: φ := ∇XY .

Inspired by this idea, we propose a notion of weak derivative in a strictly

pathwise framework using the pathwise calculus for non-anticipative func-

tionals developed in [8]. More precisely, let x be a Rd-valued continuous

path defined in [0, T ], we would like to know for which functionals F we

may define the weak derivative ∇F (·, x·) of F along the path x. The idea

is always to approximate F by a sequence of smooth functionals. However,

compared to the construction of weak derivative in the probabilistic setting,

several additional difficulties emerge in this pathwise construction. First, we

need some kind of pathwise isometry formula to define the weak derivative.

Using the notion of pathwise quadratic variation proposed by Hans Föllmer

[27], we obtain a pathwise version of the Itô isometry formula which only

holds for a subspace of all smooth functionals. Another obstacle comes from

the fact that the set of paths with finite pathwise quadratic variation along a

given sequence of partitions π does not form a vector space, which makes it

hard to characterize the space of functionals which admit weak derivatives.

The notion of weak vertical derivative constructed in this thesis coincides

with that proposed by Cont and Fournié when applied to a stochastic process.

Moreover, this notion also allows to obtain a functional characterization of

local martingales with respect to a reference process X, which enables us

to define a notion of weak solution for path-dependent partial differential

equations.

The thesis is structured as follows:

Chapter 1 The first chapter introduces the pathwise calculus for non-

anticipative functionals developed by Rama Cont and David-Antoine Fournié

in [8, 7]. We fix notations and recall important notions which will be used
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throughout the thesis, such as quadratic variation along a sequence of par-

titions, non-anticipative functionals, horizontal and vertical derivatives of

such functionals, etc. The most important result of this chapter is a change

of variable formula (theorem 1.16 [8]) which extends the pathwise Itô formula

developed in [27] to the case of non-anticipative functionals.

Chapter 2 introduces the probabilistic counterpart of the pathwise func-

tional calculus, also called the functional Itô calculus, following the work of

Dupire [20] and Cont and Fournié [9, 10, 7]. We present in section 2.2 the

weak functional calculus proposed in [10], which extends the vertical deriva-

tive operator with respect to a given square-integrable martingale X: ∇X ,

to the space of all square-integrable martingales (theorem 2.9). This notion

of weak derivative also allows to obtain a general martingale representation

formula (theorem 2.10). We then recall briefly, in section 2.3, the relation

between the functional Itô calculus and path-dependent partial differential

equations, which extends the relation between Markov processes and partial

differential equations to the path-dependent setting.

Chapter 3 deals with functionals which represent conditional expecta-

tions. Let W be a standard d-dimensional Brownian motion defined on a

probability space (Ω,F ,P) and (Ft) its (P-completed) natural filtration. Let

X be the solution of a path-dependent stochastic differential equation:

dX(t) = b(t,Xt)dt+ σ(t,Xt)dW (t), X(0) = x0 ∈ Rd

where b and σ are two non-anticipative functionals, whose values at time

t may depend on the path of X up to t. Let g : D([0, T ],Rd) → R be

a functional such that g(XT ) is square-integrable. It is well known, by the

martingale representation formula, that there exists a unique (Ft)-predictable

process φ with E[
∫ T

0
tr(φ(t) tφ(t))dt] <∞ such that:

g(XT ) = E[g(XT )] +

∫ T

0

φ · dW.
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However, φ is in general not explicit unless in very specific cases where

b, σ and g are assumed to satisfy strong conditions. The main objective of

this chapter is to provide explicit constructive approximations for φ under

a general framework. The idea is to represent the conditional expectation

E[g(XT )|Ft] as a functional of Wt, i.e. E[g(XT )|Ft] = F (t,Wt) with F a non-

anticipative functional . If F is smooth the Functional Itô formula yields

φ(t) = ∇ωF (t,Wt) dt× dP-a.e.

where ∇ωF denotes the vertical derivative of F . If F is not smooth, we

construct a sequence of smooth functionals (Fn) which converges to F in an

appropriate sense, and such that φn(t) := ∇ωFn(t,Wt) approximates φ.

We construct the sequence of functionals (Fn) in section 3.3 (definition

3.6) using the Euler approximation scheme for path-dependent SDEs intro-

duced in section 3.2. A first main result of this chapter is to show that Fn

is smooth enough to apply the functional Itô formula (theorem 3.7 and the-

orem 3.8). We then establish, in section 3.4, several convergence results for

our approximation method. In particular, we show in theorem 3.10 that we

have an explicit rate of convergence under a slightly stronger assumption on

g. Comparison with Malliavin calculus and some numerical aspects of this

method are discussed respectively in section 3.5 and section 3.6. And finally

in section 3.7, we provide some numerical examples to show that our method

applies naturally to the problem of dynamic hedging of exotic options even

in the case where the volatility might be path-dependent.

Chapter 4 is devoted to developing a notion of weak vertical derivative for

functionals in a strictly pathwise setting. As we have mentioned previously,

unlike the probabilistic construction of weak derivative proposed by Cont and

Fournié [10], in absence of probabilistic assumptions, several supplementary

difficulties need to be tackled in our construction.

First we establish in section 4.2 a pathwise isometry formula for cylindri-

cal functionals (proposition 4.3) after explaining why this formula might not

hold for general smooth functionals. The set Qπ([0, T ],R) of càdlàg paths
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with finite quadratic variation along a given sequence of partitions π is not

a vector space [67]. So to tackle this problem, we propose in section 4.3 a

notion of generalized quadratic variation along a given sequence of partitions

(definition 4.5). The advantage of this notion is that the set Q̂π([0, T ],R) of

càdlàg paths with finite generalized quadratic variation along a sequence of

partitions π forms now a vector space on which a semi-norm might be defined

(proposition 4.4). We then introduce, in section 4.4, the notion of weak ver-

tical derivative along a given path (proposition 4.5) and a characterization

of this notion (proposition 4.6).

The notion of weak functional derivative along a single path x might not

seem very interesting in itself as it provides little information on the func-

tionals. However, this notion leads to interesting applications when applied

to paths of a stochastic process, as shown in section 4.5 and section 4.6.

The first question we are interested in is the relation between the notion of

pathwise weak derivative proposed in this chapter and that of weak derivative

constructed in a probabilistic framework by Cont and Fournié in [10]. The an-

swer is given in subsection 4.5. Let X be a non-degenerate square-integrable

martingale. We first show that every square-integrable FX-martingale M

can be written as a functional of X: M(t) = F (t,Xt) with F weakly verti-

cally differentiable along almost all paths of X (proposition 4.7). Moreover,

the pathwise weak derivative of F along X(ω, ·) coincides almost surely with

the probabilistic weak derivative of M with respect to X defined in [10]

(proposition 4.8).

In the last section 4.6, we examine the converse of the above result: given

a Brownian martingale X, we seek to characterize functionals F such that

F (t,Xt) is a (local) martingale. When F is a smooth functional, it may be

characterized as the solution of a path-dependent PDE [7]. Here we formulate

a more general characterization using the notion of pathwise weak derivative

(theorem 4.17). This result can also be extended to the case X is a continuous

square-integrable semimartingale (proposition 4.11), which leads to a notion

of weak solution for path-dependent PDEs (definition 4.18).



Chapter 1

Pathwise calculus for

non-anticipative functionals

In this chapter, we review main concepts and results of the pathwise calcu-

lus for non-anticipative functionals developed in [8]. In his seminar paper Cal-

cul d’Itô sans probabilités [27] in 1981, Föllmer proposed a non-probabilistic

version of the Itô formula based on the notion of quadratic variation for paths

which lie in the space D([0, T ],Rd) of càdlàg paths along a certain sequence

of partitions. In particular if X = (Xt)t∈[0,T ] is a semimartingale [19, 51, 60],

which is the classical setting for stochastic calculus, the paths of X have al-

most surely finite quadratic variation along a subsequence of such partitions.

This shows clearly that the classical Itô calculus has actually a pathwise inte-

gral, and Itô integrals of the form
∫ T

0
f(X(t−))dX(t) can be constructed as

pathwise limits of Riemann sums for a certain class of functions f . A review

of early results on this pathwise calculus is provided in [71].

Of course, the Itô integral with respect to a semimartingale X may be

defined for a much larger class of adapted or non-anticipative integrands.

So one of the main concerns to a functional extension of Föllmer’s path-

wise calculus is that this non-anticipativeness should be taken into account

for functionals whereas it is automatically satisfied in the function case for

f(X(t−)). This gives rise to the concept of non-anticipative functionals,

11
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which plays an important role in what follows.

The results in this chapter are entirely pathwise and do not make use of

any probability measure. We start this chapter by recalling the notion of

quadratic variation along a sequence of partitions for càdlàg paths and the

concept of non-anticipative functionals, which are the cornerstones of this

pathwise calculus. We then introduce, following Dupire [20], the horizontal

and the vertical derivatives for non-anticipative functionals. Using these

directional derivatives, we obtain the main result of this chapter, a functional

change of variable formula [8] which shows that the variations of a functional

along a càdlàg path with finite quadratic variation can be precisely described

by these derivatives.

1.1 Quadratic variation along a sequence of

partitions

Throughout the thesis, we denote by D([0, T ],Rd) the space of càdlàg

(right-continuous with left limits) paths defined on [0, T ] taking values in

Rd. Let X be the canonical process on D([0, T ],Rd) and (F0
t ) the filtration

generated by X.

Let π = (πm)m≥1 be a sequence of partitions of [0, T ] into intervals:

πm = (0 = tm0 < tm1 < · · · < tmk(m) = T ).

|πm| := sup{|tmi+1 − tmi |, i = 0, · · · , k(m) − 1} will denote the mesh size of

the partition. If in particular for any n ≥ m, every interval [tni , t
n
i+1] of the

partition πn is included in one of the intervals of πm, the sequence (πm)m≥1

is called a nested or refining sequence of partitions. In the following, we

will always assume that π is a nested sequence of partitions unless otherwise

specified.

In [27], Hans Föllmer proposed a notion of pathwise quadratic variation

along a sequence of partitions π. Whereas Föllmer considered initially in his
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paper paths defined on R+, here we limit ourselves to paths defined on a

finite time horizon [0, T ].

Definition 1.1 (Quadratic variation of a R-valued path along a sequence of

partitions [27]). Let πm = (0 = tm0 < tm1 < · · · < tmk(m) = T ) be a sequence of

partitions of [0, T ] with |πm| →
m→∞

0. A càdlàg path x ∈ D([0, T ],R) is said to

have finite pathwise quadratic variation along π if the sequence of the discrete

measures

ξm :=

k(m)−1∑
i=0

(x(tmi+1)− x(tmi ))2δtmi

where δt is the point mass at t, converges weakly to a Radon measure ξ such

that [x]π(t) := ξ([0, t]), [x]π has the following Lebesgue decomposition:

∀t ∈ [0, T ], [x]π(t) = [x]cπ(t) +
∑
s≤t

|∆x(s)|2 (1.1)

with [x]cπ a continuous non-decreasing function and ∆x(s) := x(s) − x(s−).

The non-decreasing function [x]π : [0, T ] → R+ is then called the pathwise

quadratic variation of x along the sequence of partitions π = (πm)m≥1.

An intuitive characterization of this property which makes clear the link

with the usual notion of quadratic variation is provided in [7] for continuous

paths:

Lemma 1.2. Let πm = (0 = tm0 < tm1 < · · · < tmk(m) = T ) be a sequence of

partitions of [0, T ] with |πm| →
m→∞

0. A continuous path x ∈ C0([0, T ],R) has

finite pathwise quadratic variation along π if for any t ∈ [0, T ], the limit

[x]π(t) := lim
m→∞

∑
tmi+1≤t

(x(tmi+1)− x(tmi ))2 <∞ (1.2)

exists and the function t 7→ [x]π(t) is a continuous increasing function.

This characterization is simpler since it only involves pointwise conver-

gence of functions rather than weak convergence of measures.
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Proof. If x has finite quadratic variation in the sense of definition 1.1, since

ξ([0, t]) is continuous in [0, T ], we have, for any t ∈ [0, T ],

ξm([0, t]) =
∑
tmi ≤t

(x(tmi+1)− x(tmi ))2 →
m→∞

ξ([0, t]).

Since |πm| →
m→∞

0, we have:

lim
m→∞

∑
tmi+1≤t

(x(tmi+1)− x(tmi ))2 = lim
m→∞

∑
tmi ≤t

(x(tmi+1)− x(tmi ))2,

which implies [x]π(t) <∞ and [x]π(t) = ξ([0, t]).

We assume now x satisfies (1.2). For t ∈ [0, T ], the cumulative distribu-

tion function of ξm at t converges to [x]π(t). Indeed, since |πm| →
m→∞

0, we

have:

lim
m→∞

ξm([0, t]) = lim
m→∞

∑
tmi ≤t

(x(tmi+1)−x(tmi ))2 = lim
m→∞

∑
tmi+1≤t

(x(tmi+1)−x(tmi ))2 = [x]π(t).

Now as [x]π is continuous and non-decreasing in [0, T ], there exists a Radon

measure ξ such that (ξm) converges weakly to ξ, and we have ξ([0, t]) =

[x]π(t).

For paths which are only càdlàg, these two definitions are not equivalent.

In fact for a path x ∈ D([0, T ],R), pointwise convergence in (1.2) implies

that the partition ’exhausts’ the jump times of x, i.e. if ∆x(s) 6= 0 for

some s ∈ [0, T ], then s ∈ πm for a certain m (thus for any M ≥ m since

we assume π is a nested sequence of partitions). Otherwise [x]π(s) cannot

have a Lebesgue decomposition of the form (1.1). This constraint becomes

problematic if we want a set of càdlàg paths to have finite quadratic variation

along a single fixed sequence of partitions.

However, since we work essentially with continuous paths throughout

the thesis, these two definitions are precisely equivalent. We will use, in

the following, the characterization (1.2) rather than Definition 1.1 as its

formulation seems more natural to us. We denote by Qπ([0, T ],R) the set of

R-valued càdlàg paths x with finite pathwise quadratic variation along π.
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Remark 1.3. One may wonder why we take, in (1.2),
∑

tm+1
i ≤t(x(tmi+1) −

x(tmi ))2 instead of
∑

tmi ≤t
(x(tmi+1)−x(tmi ))2, the cumulative distribution func-

tion ξm([0, t]) of ξm in Föllmer’s definition. Other similar definitions which

use, for example,
∑

tmi ∈πm
(x(tmi+1 ∧ t) − x(tmi ∧ t))2 are also proposed in the

literature. These definitions are equivalent in the case of continuous paths

and define the same quadratic variation function since |πm| →
m→∞

0. How-

ever, the quantity considered in (1.2) seems more natural to us since the

term
∑

tmi+1≤t
(x(tmi+1)− x(tmi ))2 is both ’non-anticipative’ and non-decreasing

in t whereas
∑

tmi ≤t
(x(tmi+1) − x(tmi ))2 depends on the value of x after time

t and
∑

tmi ∈πm
(x(tmi+1 ∧ t) − x(tmi ∧ t))2 is not necessarily monotone in t.

The property of being non-anticipative in the definition of [x]π is especially

convenient if the partitions (tmi )i depend on x, i.e. they are stopping times

with respect to the canonical filtration (F0
t ).

∑
tmi+1≤t

(x(tmi+1)− x(tmi ))2 being

non-decreasing is particularly interesting when x is continuous: the point-

wise convergence of
∑

tmi+1≤t
(x(tmi+1)− x(tmi ))2 to [x]π(t) implies the uniform

convergence in t in this case due to one of Dini’s theorems. One interesting

consequence of this property is the following:

Corollary 1.1. Let πm = (0 = tm0 < tm1 < · · · < tmk(m) = T ) be a sequence of

partitions of [0, T ] with |πm| →
m→∞

0, and let x ∈ Qπ([0, T ],R) be a continuous

path. For any continuous and bounded function h, we have:∑
tm+1
i ≤t

h(tmi )(x(tmi+1)− x(tmi ))2 →
m→∞

∫ t

0

hd[x]π (1.3)

uniformly in t ∈ [0, T ].

Proof. Observe first that (1.3) holds for any bounded function g of the form

g =
∑

j aj1[aj ,aj+1). Consider now a continuous and bounded function h, we

approximate h by a sequence of piecewise constant functions (hn)n≥1 such

that hn converges uniformly to h: ‖h− hn‖∞ →
n→∞

0. Since (hn) is uniformly

bounded, we have:∑
tm+1
i ≤t

hn(tmi )(x(tmi+1)− x(tmi ))2 →
m→∞

∫ t

0

hnd[x]π
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uniformly in t and n. We conclude using the fact that:∑
tm+1
i ≤t

(h− hn)(tmi )(x(tmi+1)− x(tmi ))2 →
m→∞

0

and ∫ t

0

(h− hn)d[x]π →
m→∞

0

uniformly in t.

Note that the quadratic variation [x]π clearly depends on the sequence of

partitions π. Indeed, as remarked in [7, Example 5.3.2], for any real-valued

continuous path, we can construct a sequence of partitions along which that

path has null quadratic variation.

Most stochastic processes have finite quadratic variation in the sense of

Definition 1.1 along a certain sequence of partitions with probability equal

to 1. Indeed, let X be a continuous semimartingale defined on a probability

space (Ω,F , (Ft)t∈[0,T ] ,P), it is well known that for any sequence of partitions

π = (πm)m≥1 with |πm| →
m→∞

0, for any t ∈ [0, T ], the sequence

Sπm(t) :=
∑
tmi+1≤t

(X(tmi+1)−X(tmi ))2

converges in probability to the quadratic variation [X,X](t) defined for semi-

martingales. So there exists a subsequence (πφ(m)) of (πm) such that we have

P-almost sure convergence of Sπφ(m), i.e.

P({ω ∈ Ω, (X(., ω)) has pathwise quadratic variation along πφ}) = 1.

For a pathwise construction of functions with non-trivial quadratic variation

along a sequence of dyadic partitions, we refer to the work of Mishura and

Schied [52].

The notion of quadratic variation along a sequence of partitions is differ-

ent from the p-variation of the path X for p = 2: the p-valuation involves

taking a supremum over all partitions, not necessarily along a given sequence

of partitions. Thus saying a path x is of finite 2-variation is stronger than
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assuming x has finite quadratic variation along a certain sequence of parti-

tions.

In the sequel, we fix a nested sequence π = (πm)m≥1 of partitions with

|πm| →
m→∞

0 and all limits will be considered along the same sequence π. We

drop the subscript in [x]π whenever the context is clear.

The extension of this notion to vector-valued paths is somewhat subtle

[27], since Qπ([0, T ],R) is not a vector space [67].

Definition 1.4 (Quadratic variation for vector-valued paths). A d-dimensional

path x = (x1, · · · , xd) ∈ D([0, T ],Rd) is said to have finite pathwise quadratic

variation along π = (πm)m≥1 if xi ∈ Qπ([0, T ],R) and xi +xj ∈ Qπ([0, T ],R)

for all 1 ≤ i, j ≤ d. Then for 1 ≤ i, j ≤ d and t ∈ [0, T ], we have:∑
tmk ∈πm,t

m
k+1≤t

(xi(tmk+1)− xi(tmk ))(xj(tmk+1)− xj(tmk ))

→
m→∞

[x]ij(t) :=
[xi + xj](t)− [xi](t)− [xj](t)

2
.

The matrix-valued function [x] : [0, T ]→ S+
d whose elements are given by:

[x]ij(t) =
[xi + xj](t)− [xi](t)− [xj](t)

2

is called the pathwise quadratic variation of the path x: for any t ∈ [0, T ],∑
tmi ∈πm,tmi+1≤t

(x(tmi+1)− x(tmi )) t(x(tmi+1)− x(tmi )) →
m→∞

[x](t) ∈ S+
d

and [x] is non-decreasing in the sense of the order on positive symmetric

matrices: for h ≥ 0, [x](t+ h)− [x](t) ∈ S+
d .

We denote by Qπ([0, T ],Rd) the set of Rd−valued càdlàg paths with finite

pathwise quadratic variation along π.

Remark 1.5. Note that in definition 1.4, we require that xi+xj ∈ Qπ([0, T ],R),

which does not necessarily follow from requiring xi, xj ∈ Qπ([0, T ],R). This

indicates that Qπ([0, T ],R) is not a vector space. Indeed, for x, y ∈ Qπ([0, T ],R),
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contrary to the definition of the variation for a path, here for a fixed t ∈ [0, T ],

the sequence (qm) defined by:

qm :=
∑
tmi+1≤t

(x(tmi+1) + y(tmi+1)− x(tmi )− y(tmi ))2 (1.4)

is no longer non-decreasing in m even for a nested sequence of partitions.

Let δxmk = x(tmk+1)− x(tmk ) and δymk = y(tmk+1)− y(tmk ). We have:

|δxmk + δymk |2 = |δxmk |2 + |δymk |2 + 2δxmk δy
m
k .

The cross-product terms may be positive, negative, or have an oscillating sign

which may prevent the convergence of the sequence (qm) defined in (1.4). An

example of two paths x, y ∈ Qπ([0, T ],R) while x+ y /∈ Qπ([0, T ],R) is given

in [67].

The main purpose of this notion of pathwise quadratic variation is to

introduce a non-probabilistic version of the Itô formula [27], in which the

pathwise quadratic variation plays naturally the role of quadratic variation

of a semimartingale in the classical Itô formula to describe the irregularity

of a path, leading to a change of variable formula for paths which may have

infinite variation.

Proposition 1.1 (Pathwise Itô formula for functions [27]). Let πm = (0 =

tm0 < tm1 < · · · < tmk(m) = T ) be a sequence of partitions of [0, T ] with

|πm| →
m→∞

0, and x ∈ Qπ([0, T ],Rd) a càdlàg path. Let f : Rd → R be a

twice continuously differentiable function. We have, ∀t ∈ [0, T ],

f(x(t)) = f(x(0)) +

∫ t

0

∇f(x(s−)) · dπx(s) +
1

2

∫ t

0

tr(∇2f(x(s−))d[x]cπ(s))

+
∑
s≤t

[F (x(s))− F (x(s−))−∇f(x(s−)) ·∆x(s)] (1.5)

where ∇f is the gradient of f , ∇2f its Hessian matrix, and the integral with

respect to dπx is defined as the limit of non-anticipative Riemann sums along

π:∫ t

0

∇f(x(s−))·dπx(s) := lim
m→∞

∑
tmi ∈πm,tmi ≤t

∇f(x(tmi ))·(x(tmi+1)−x(tmi )) (1.6)
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It is easy to deduce from (1.5) that if x ∈ Qπ([0, T ],Rd) and f ∈ C2(Rd,R),

then y = f ◦ x ∈ Qπ([0, T ],R) with

[y]π(t) =

∫ t

0

tr(∇2f(x(s−))d[x]cπ(s)) +
∑
s≤t

|f(x(s))− f(x(s−))|2.

This means that the class of paths with finite quadratic variation along a

fixed sequence of partitions π is stable under C2 transformations. The same

result still holds if we only assume f ∈ C1(Rd,R) (see for example [71]).

The pathwise Itô formula (1.5) was recently generalized by Cont and

Fournié to the case where f is a path-dependent functional [8] using the non-

anticipative functional calculus, which will be presented in the next section.

1.2 Non-anticipative functionals

As usual, we denote by D([0, T ],Rd) the space of càdlàg paths on [0, T ]

with values in Rd. For a path x ∈ D([0, T ],Rd), for any t ∈ [0, T ], we denote:

• x(t) ∈ Rd its value at time t;

• x(t−) = lims→t,s<t x(s) its left limit at t;

• ∆x(t) = x(t)− x(t−) the jump size of x at t;

• xt = x(t ∧ ·) ∈ D([0, T ],Rd) the path of x stopped at time t;

• xt− = x1[0,t) + x(t−)1[t,T ] ∈ D([0, T ],Rd);

• ‖x‖∞ = sup{|x(t)|, t ∈ [0, T ]} the supremum norm of x on [0, T ].

The non-anticipative functional calculus is a functional calculus which

applies to non-anticipative functionals of càdlàg paths with finite pathwise

quadratic variation in the sense of definition 1.4. It was first introduced in

[8], using the notion of directional derivatives proposed by Bruno Dupire [20].

We recall here some key concepts and results of this approach following [7].
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Let X be the canonical process on Ω := D([0, T ],Rd), and (F0
t )t∈[0,T ] the

filtration generated by X. We are interested in non-anticipative functionals

of X, that is, the functionals F : [0, T ]×D([0, T ],Rd)→ R such that:

∀ω ∈ Ω, F (t, ω) = F (t, ωt). (1.7)

The process t 7→ F (t,X) then only depends on the path of X up to time t

and is (F0
t )−adapted.

It is sometimes convenient to define such functionals on the space of

stopped paths [8, 7]: a stopped path is an equivalence class in [0, T ] ×
D([0, T ],Rd) for the following equivalence relation:

(t, ω) ∼ (t′, ω′)⇐⇒ (t = t′ and ωt = ω′t′). (1.8)

The space of stopped paths is defined as the quotient of [0, T ]×D([0, T ],Rd)

by the equivalence relation (1.8):

Λd
T := {(t, ω(t∧.)), (t, ω) ∈ [0, T ]×D([0, T ],Rd)} = ([0, T ]×D([0, T ],Rd))/ ∼ .

We denote by Wd
T the subset of Λd

T consisting of continuous stopped paths.

We endow Λd
T with a metric space structure by defining the following distance:

d∞((t, ω), (t′, ω′)) := sup
u∈[0,T ]

|ω(u∧t)−ω′(u∧t′)|+|t−t′| = ‖ωt−ω′t′‖∞+|t−t′|.

(Λd
T , d∞) is then a complete metric space.

Any map F : [0, T ]×D([0, T ],Rd)→ R satisfying the non-anticipativeness

condition (1.7) can be equivalently viewed as a functional defined on the space

Λd
T of stopped paths:

Definition 1.6. A non-anticipative functional on [0, T ] ×D([0, T ],Rd) is a

measurable map F : (Λd
T , d∞)→ R on the space (Λd

T , d∞) of stopped paths.

Using the metric structure of (Λd
T , d∞), we denote by C0,0(Λd

T ) the set

of continuous maps F : (Λd
T , d∞) → R. We can also define various weaker

notions of continuity for non-anticipative functionals.
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Definition 1.7. A non-anticipative functional F is said to be:

• continuous at fixed times if for any t ∈ [0, T ], F (t, .) is continuous with

respect to the uniform norm ‖.‖∞ in [0, T ], i.e. ∀ω ∈ D([0, T ],Rd),

∀ε > 0, ∃η > 0, ∀ω′ ∈ D([0, T ],Rd),

‖ωt − ω′t‖∞ < η =⇒ |F (t, ω)− F (t, ω′)| < ε.

• left-continuous if ∀(t, ω) ∈ Λd
T , ∀ε > 0, ∃η > 0, ∀(t′, ω′) ∈ Λd

T ,

(t′ < t and d∞((t, ω), (t′, ω′)) < η) =⇒ |F (t, ω)− F (t′, ω′)| < ε.

We denote by C0,0
l (Λd

T ) the set of left-continuous functionals. Similarly,

we can define the set C0,0
r (Λd

T ) of right-continuous functionals.

We also introduce a notion of local boundedness for functionals. We call

a functional F boundedness-preserving if it is bounded on each bounded set

of paths:

Definition 1.8. A non-anticipative functional F is said to be boundedness-

preserving if for any compact subset K of Rd and t0 < T ,

∃C(K, t0) > 0,∀t ∈ [0, t0],∀ω ∈ D([0, T ],Rd), ω([0, t]) ⊂ K =⇒ F (t, ω) < C(K, t0).

We denote by B(Λd
T ) the set of boundedness-preserving functionals.

Lemma 1.9 ([8]). Several properties of regularity of the paths generated

by non-anticipative functionals may be deduced from the regularities of such

functionals:

1. If F ∈ C0,0
l (Λd

T ), then for all ω ∈ D([0, T ],Rd), the path t 7→ F (t, ωt−)

is left-continuous;

2. If F ∈ C0,0
r (Λd

T ), then for all ω ∈ D([0, T ],Rd), the path t 7→ F (t, ωt) is

right-continuous;

3. If F ∈ C0,0(Λd
T ), then for all ω ∈ D([0, T ],Rd), the path t 7→ F (t, ωt) is

càdlàg and continuous at each point where ω is continuous.
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4. If F ∈ B(Λd
T ), then for all ω ∈ D([0, T ],Rd), the path t 7→ F (t, ωt) is

bounded.

We now recall some notions of differentiability for non-anticipative func-

tionals. For e ∈ Rd and ω ∈ D([0, T ],Rd), we define the vertical perturbation

ωet of (t, ω) as the càdlàg path obtained by shifting the path ω by e after t:

ωet := ωt + e1[t,T ].

Definition 1.10. A non-anticipative functional F is said to be:

• horizontally differentiable at (t, ω) ∈ Λd
T if

DF (t, ω) := lim
h→0+

F (t+ h, ωt)− F (t, ωt)

h

exists. If DF (t, ω) exists for all (t, ω) ∈ Λd
T , then the non-anticipative

functional DF is called the horizontal derivative of F .

• vertically differentiable at (t, ω) ∈ Λd
T if the map:(

Rd → R
e 7→ F (t, ωt + e1[t,T ])

)

is differentiable at 0. Its gradient at 0 is called the vertical derivative

of F at (t, ω):

∇ωF (t, ω) := (∂iF (t, ω), i = 1, · · · , d) ∈ Rd

with

∂iF (t, ω) := lim
h→0

F (t, ωt + hei1[t,T ])− F (t, ωt)

h

where (ei, i = 1, · · · , d) is the canonical basis of Rd. If F is vertically

differentiable at all (t, ω) ∈ Λd
T , ∇ωF : (t, ω) → Rd defines a non-

anticipative map called the vertical derivative of F .

We may repeat the same operation on ∇ωF and define similarly ∇2
ωF ,

∇3
ωF , · · · . This allows us to define the following classes of smooth functionals:



1.2. Non-anticipative functionals 23

Definition 1.11 (Smooth functionals). We define C1,k
b (Λd

T ) as the set of

non-anticipative functionals F : (Λd
T , d∞)→ R which are:

• horizontally differentiable with DF continuous at fixed times;

• k times vertically differentiable with ∇j
ωF ∈ C0,0

l (Λd
T ) for j = 0, · · · , k;

• DF,∇ωF, · · · ,∇k
ωF ∈ B(Λd

T ).

We denote C1,∞
b (Λd

T ) =
⋂
k≥1 C

1,k
b (Λd

T ).

Remark 1.12. Since horizontal and vertical derivatives are directional deriva-

tives, the horizontal or vertical differentiability of a functional does not imply

its continuity with respect to d∞. Thus in definition 1.11, we still need to

impose some continuity condition on F and its derivatives even if F is hor-

izontally and vertically differentiable.

However, many examples of functionals in applications may fail to be

globally smooth, especially those involving exit times. Their derivatives may

still be well behaved, except at certain stopping times. The following example

illustrates a prototype of such functionals:

Example 1.13 ([28, Example 4.1]). Let W be a one-dimensional Brownian

motion, b > 0, and M(t) = sup0≤s≤tW (s). Consider the (FWt )-adapted

martingale:

Y (t) = E[1M(T )≥b|FWt ].

Then Y admits the functional representation Y (t) = F (t,Wt) with F a non-

anticipative functional defined as:

F (t, ω) := 1sup0≤s≤t ω(s)≥b + 1sup0≤s≤t ω(s)<b

[
2− 2Φ

(
b− ω(t)√
T − t

)]
,

where Φ is the cumulative distribution function of the standard normal vari-

able. Observe that the functional F 6∈ C0,0
l (Λd

T ) since a path ωt with ω(t) < b

but sup0≤s≤t ω(s) = b can be approximated in the sup norm by paths with

sup0≤s≤t ω(s) < b. However, one can easily check that ∇ωF , ∇2
ωF and DF

exist almost everywhere.
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Fortunately, for such functionals, using a localization argument, we can

still obtain a functional change of variable formula as will be presented in the

following section. We now introduce the notion of locally smooth functionals:

Definition 1.14 (Locally smooth functionals [28]). A non-anticipative func-

tional F is said to be locally smooth of class C1,2
loc(Λ

d
T ) if there exists an in-

creasing sequence (τn)n≥0 of stopping times with τ0 = 0 and τn →
n→∞

∞, and

a sequence of functionals Fn ∈ C1,2
b (Λd

T ) such that:

F (t, ω) =
∑
n≥0

Fn(t, ω)1[τn(ω),τn+1(ω))(t).

Recall that a stopping time (or a non-anticipative random time) on (Ω, (F0
t )t∈[0,T ])

is a measurable map τ : Ω→ R+ such that for any t ≥ 0,

{ω ∈ Ω, τ(ω) ≤ t} ∈ F0
t .

We end this section by giving a particularly important class of smooth

functionals which are frequently used throughout this thesis, the so-called

cylindrical non-anticipative functionals.

Definition 1.15 (Cylindrical functionals). A non-anticipative functional F

is said to be cylindrical if there exists 0 ≤ t1 < t2 < · · · < tn ≤ T such that

for all ω ∈ D([0, T ],Rd),

F (t, ω) = h(ω(t)− ω(tn−))1t>tng(ω(t1−), ω(t2−), · · · , ω(tn−)) (1.9)

for some continuous function g ∈ C(Rn×d,R) and some twice differentiable

function h ∈ C2(Rd,R) with h(0) = 0.

A cylindrical functional can be seen as the middle ground between a

functional which depends on the whole path of ω and a function which at

time t only depends on ω(t): the value of a cylindrical functional at time t

depends only on the value of ω at t and a finite number of points in [0, T ]

which are initially fixed. It is easy to check that the functional F defined by

(1.9) is smooth, i.e. F ∈ C1,2
b (Λd

T ) with DF ≡ 0 and for j = 1, 2,

∇j
ωF (t, ω) = ∇jh(ω(t)− ω(tn−))1t>tng(ω(t1−), ω(t2−), · · · , ω(tn−)).



1.3. Change of variable formula for functionals 25

1.3 Change of variable formula for function-

als

In 2010, Cont and Fournié extended Föllmer’s change of variable formula

(1.5) to non-anticipative functionals defined on Λd
T [8]. A by-product of this

formula is the definition of an analogue of Föllmer’s integral (1.6) for certain

class of functionals. When applying this formula to paths of a stochastic pro-

cess with a properly chosen sequence of partitions, one obtains the functional

Itô formula initially proposed in [20] with probabilistic arguments.

In the functional setting, the main difficulty compared to Föllmer’s change

of variable formula for functions (1.5) is to control the variation of a functional

using its derivatives. In the case of a function, it is rather simple. It suffices

to apply the Taylor expansion to the function as its value only depends on

the value of the path on one point. However, a functional at t may depend on

the whole path up to time t, which is clearly a quantity of infinite dimension.

A direct application of the Taylor expansion is thus impossible.

The idea of Cont and Fournié [8] is to first approximate the path ω by

a sequence of piecewise constant paths (ωm)m≥0 which converges uniformly

to ω. The variation of a non-anticipative functional F along ωm can thus

be decomposed into finite dimensional terms with its horizontal and vertical

derivatives after a Taylor expansion. Then using the continuity assumption

on F and its derivatives, we obtain a change of variable formula for F .

Let πm = (0 = tm0 < tm1 < · · · < tmk(m) = T ) be a nested sequence of

partitions of [0, T ] with |πm| → 0, and ω ∈ Qπ([0, T ],Rd). Since ω has at

most a countable set of jump times, we may always assume that the partition

exhausts the jump times in the sense that:

sup
t∈[0,T ]\πm

|∆ω(t)| →
m→∞

0. (1.10)

We now define the piecewise constant approximations ωm of ω by:

ωm(t) :=

k(m)−1∑
i=0

ω(tmi+1−)1[tmi ,t
m
i+1)(t) + ω(T )1{T}(t). (1.11)
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Clearly under the assumption (1.10), the sequence (ωm)m≥0 converges uni-

formly to ω:

sup
t∈[0,T ]

|ωm(t)− ω(t)| →
m→∞

0.

We now present the main result of this section, the change of variable

formula for non-anticipative functionals of càdlàg paths:

Theorem 1.16 (Pathwise change of variable formula for smooth functionals

[8]). Let ω ∈ Qπ([0, T ],Rd) satisfying (1.10). Then for any non-anticipative

functional F ∈ C1,2
loc(Λ

d
T ), the limit∫ T

0

∇ωF (t, ωt−) · dπω := lim
m→∞

k(m)−1∑
i=0

∇ωF (tmi , ω
m,∆ω(tmi )
tmi −

) · (ω(tmi+1)− ω(tmi ))

(1.12)

exists, and we have:

F (T, ωT ) = F (0, ω0) +

∫ T

0

DF (t, ωt−)dt

+

∫ T

0

∇ωF (t, ωt−) · dπω +
1

2

∫ T

0

tr(∇2
ωF (t, ωt−)d[ω]cπ(t))

+
∑
t∈(0,T ]

[F (t, ωt)− F (t, ωt−)−∇ωF (t, ωt−) ·∆ω(t)] (1.13)

The detailed proof of this theorem can be found in [8] under more general

assumptions. Here we just provide some ideas of proof in the case ω is

continuous.

First, using localization by a sequence of stopping times, we may assume

that F ∈ C1,2
b (Λd

T ). We now decompose the variation of F between tmi and

tmi+1 for 0 ≤ i ≤ k(m)−1 along two directions, the horizontal and the vertical:

F (tmi+1, ω
m
tmi+1−

)− F (tmi , ω
m
tmi −

) = F (tmi+1, ω
m
tmi+1−

)− F (tmi , ω
m
tmi

)

+F (tmi , ω
m
tmi

)− F (tmi , ω
m
tmi −

) (1.14)

Since ωm is piecewise constant, the first term of (1.14) can be written as an

integral of the horizontal derivatives of F along ωm:

F (tmi+1, ω
m
tmi+1−

)− F (tmi , ω
m
tmi

) =

∫ tmi+1

tmi

DF (u, ωmtmi )du,
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and the second term of (1.14) can be developed using a second-order Taylor

expansion into terms involving first and second order vertical derivatives of

F :

F (tmi , ω
m
tmi

)− F (tmi , ω
m
tmi −

) = ∇ωF (tmi , ω
m
tmi −

) · δωmi

+
1

2
tr(∇2

ωF (tmi , ω
m
tmi −

)t(δωmi )δωmi ) + rmi

where δωmi := ω(tmi+1) − ω(tmi ), and rmi is the reminder term in the Taylor

expansion. We now sum all the terms from i = 0 to k(m) − 1. Using the

continuity and boundedness preserving property of F , DF , ∇ωF and ∇2
ωF ,

each sum converges to the corresponding integral. The only difficulty might

be the convergence of the term with ∇2
ωF for which we need a diagonal

argument for weak convergence of measures:

Lemma 1.17 ([8]). Let (µn)n≥1 be a sequence of Radon measures on [0, T ]

converging vaguely to a Radon measure µ with no atoms, and let (fn)n≥1 and

f be left-continuous functions defined on [0, T ] such that there exists K > 0,

for all t ∈ [0, T ], |fn(t)| ≤ K and fn(t) →
n→∞

f(t). Then we have:

∀t ∈ [0, T ],

∫ t

0

fndµn →
n→∞

∫ t

0

fdµ.

1.4 Functionals defined on continuous paths

We end this chapter with a short discussion of functionals defined on the

space of continuous paths. So far, we have been working with functionals

F defined on the space of (stopped) càdlàg paths, which is a natural choice

because even if a path ω is continuous, the definition of ∇ωF (definition

1.10) involves evaluating F on paths to which a jump perturbation has been

added.

However, in some applications, we may only have access to the value of

F along continuous paths. For example, if X is a continuous semimartin-

gale defined on a probability space (Ω,F ,P), we want to study the process
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F (t,Xt) (for instance when it is a local martingale). A priori, we have no

information of F outside the space of (stopped) continuous paths:

Wd
T := {(t, ω) ∈ Λd

T , ω ∈ C([0, T ],Rd)},

or the topological support of the law of X, i.e. F may take any value outside

Wd
T . In this case, the very definition of the vertical derivative ∇ωF becomes

ambiguous.

Fortunately, due to a result of Cont and Fournié [7], the notion of vertical

derivative is still well defined if F satisfies some regularity assumption:

Proposition 1.2 ([7]). If F 1, F 2 ∈ C1,2
b (Λd

T ) coincide on continuous paths,

i.e.

∀ω ∈ C([0, T ],Rd),∀t ∈ [0, T ), F 1(t, ωt) = F 2(t, ωt),

then their first and second vertical derivatives also coincide on continuous

paths: ∀ω ∈ C([0, T ],Rd), ∀t ∈ [0, T ),

∇ωF
1(t, ωt) = ∇ωF

2(t, ωt) and ∇2
ωF

1(t, ωt) = ∇2
ωF

2(t, ωt).

One main interest of this proposition is that it allows us to define the

class C1,2
b (Wd

T ) of non-anticipative functionals F as the restriction of any

functional F̃ ∈ C1,2
b (Λd

T ) on Wd
T without having to extend the definition of

F to the full space Λd
T :

F ∈ C1,2
b (Wd

T ) ⇐⇒ ∃F̃ ∈ C1,2
b (Λd

T ), F̃|Wd
T

= F.

For such functionals, the change of variable formula (theorem 1.16) still

holds if we only consider continuous paths ω:

Theorem 1.18 (Pathwise change of variable formula for functionals defined

on continuous paths [7]). For any F ∈ C1,2
b (Wd

T ) and ω ∈ C([0, T ],Rd) ∩
Qπ([0, T ],Rd), the limit

∫ T

0

∇ωF (t, ωt) · dπω := lim
m→∞

k(m)−1∑
i=0

∇ωF (tmi , ω
m
tmi −

) · (ω(tmi+1)− ω(tmi ))
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exists, and we have:

F (T, ωT ) = F (0, ω0) +

∫ T

0

DF (t, ωt)dt+

∫ T

0

∇ωF (t, ωt) · dπω

+
1

2

∫ T

0

tr(∇2
ωF (t, ωt)d[ω]π(t))

where ωm is the same piecewise constant approximation of ω as in (1.11).
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Chapter 2

Functional Itô calculus

In this chapter, we introduce a probability measure on the space of paths,

and apply the non-anticipative calculus we have presented in the previous

chapter under the probabilistic framework. In the initial work of Dupire

[20], motivated by applications in mathematical finance, especially the prob-

lem of pricing and hedging for path-dependent options, he introduced two

directional derivatives for functionals and obtained the functional Itô formula

in a probabilistic setting.

Whereas Dupire’s initial proof of this formula made use of probabilistic

arguments, we have already seen in the previous chapter that the functional

Itô formula has in fact a pathwise interpretation, with the quadratic variation

for semimartingales replaced by the notion of pathwise quadratic variation

(definition 1.4), and the stochastic integral replaced by the pathwise integral

defined as the limit of non-anticipative Riemann sums (1.12).

Hence the pathwise change of variable formula (theorem 1.16 or theorem

1.18 in the continuous case) is stronger than the functional Itô formula in the

sense that it directly implies the latter formula with a well chosen sequence of

partitions. Moreover, it allows to deal with more general stochastic processes

such as the so-called Dirichlet (or finite energy) processes which are defined

as the sum of a semimartingale and a process with zero quadratic variation

along a sequence of dyadic subdivisions.

31
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So why are we particularly interested in a formula applied to semimartin-

gales even when we already have a stronger pathwise version? First, we have

at our disposal a whole set of stochastic tools when dealing with semimartin-

gales. The notion of quadratic variation and that of stochastic integration

are well known for semimartingales, which makes the functional Itô formula

more natural and comprehensible than its pathwise counterpart. In partic-

ular, terms in this formula no longer depend on the sequence of partitions

chosen.

More importantly, the space of martingales or semimartingales possess

better space structure than the path space D([0, T ],Rd) or C([0, T ],Rd). For

example, the space of square-integrable martingales is a Hilbert space when

equipped with the L2-norm at time T whereas the space of paths with finite

quadratic variation along a sequence of partitions π: Qπ([0, T ],Rd) is not

even a vector space (see remark 1.5). The advantage of these structures

is that they allow us to explore much more than a simple formula with

semimartingales. For example, a notion of weak derivative can be defined for

square-integrable martingales, leading to a general martingale representation

formula, as we shall see in section 2.2 of this chapter.

Another key topic in stochastic analysis is the deep link between Markov

processes and partial differential equations, which can also be extended be-

yond Markovian setting, leading to the so-called path-dependent partial dif-

ferential equations. We review several properties of such equation and its

relation with stochastic processes in section 2.3 following [7].

2.1 Functional Itô formula

Let X be a semimartingale defined on a probability space (Ω,F ,P),

equipped with the natural filtration F = (Ft)t≥0 of X. First we show briefly

why the functional Itô formula can be implied directly by the pathwise change

of variable formula (theorem 1.16) with a well-chosen sequence of partitions,

as we have mentioned. To fix the idea, we only consider the case X is contin-
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uous. We distinguish the pathwise quadratic variation [X(ω, ·)]π (or simply

[X]π) defined for a path X(ω) of X along a sequence of partitions π and [X]

the quadratic variation defined for continuous semimartingales. We start

with a simple lemma which links these two notions of quadratic variation:

Lemma 2.1. There exists a sequence of partitions π = (πm)m≥1 of [0, T ]

with |πm| →
m→∞

0 such that the paths of X lie in Qπ([0, T ],Rd) with probability

1, i.e.

P({ω ∈ Ω, X(ω, ·) ∈ Qπ([0, T ],Rd)}) = 1,

and

P({ω ∈ Ω, [X(ω, ·)]π = [X](ω)}) = 1.

Proof. For any sequence of partitions π = (πm)m≥1 of [0, T ] with |πm| → 0,

by definition of the quadratic variation defined for semimartingales, we have,

for any t ∈ [0, T ], ∑
tmi ∈πm,tmi+1≤t

(X(tmi+1)−X(tmi ))2 →
m→∞

[X](t)

in probability uniformly in t. We can thus extract a sub-sequence of π which

achieves the result.

This lemma means that with a well-chosen sequence of partitions, we have∫ T

0

tr(∇2
ωF (t,Xt)d[X]π(t)) =

∫ T

0

tr(∇2
ωF (t,Xt)d[X](t))

P-almost surely. What remains to show is that the pathwise integral∫ T

0

∇ωF (t,Xt) · dπX(t) := lim
m→∞

k(m)−1∑
i=0

∇ωF (tmi , X
m
tmi −

) · (X(tmi+1)−X(tmi ))

(2.1)

coincides with the stochastic integral
∫ T

0
∇ωF (t,Xt) · dX(t) with probability

1. We recall that Xm is the piecewise constant approximation of X defined

by:

Xm(t) :=

k(m)−1∑
i=0

X(tmi+1)1[tmi ,t
m
i+1)(t) +X(T )1{T}(t).
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Actually the right-hand side of equation (2.1) can also be written as:∫ T

0

fm(t) · dX(t)

with

fm(t) :=

k(m)−1∑
i=0

∇ωF (tmi , X
m
tmi −

)1(tmi ,t
m
i+1](t).

Since the sequence of processes fm(t) converges P-almost surely to the pro-

cess ∇ωF (t,Xt) and (fm) can be bounded independently of m by some

X-integrable process using the boundedness-preserving property of ∇ωF ,

the dominated convergence theorem for stochastic integrals [60] ensures that∫ T
0
fm(t)·dX(t) converges in probability to

∫ T
0
∇ωF (t,Xt)·dX(t). As

∫ T
0
fm(t)·

dX(t) converges almost surely to
∫ T

0
∇ωF (t,Xt) ·dπX(t) par definition of the

pathwise integral, the two limits have to be the same, which ends the proof.

We obtain thus the functional Itô formula in the case X is a continuous

semimartingale:

Theorem 2.2 (Functional Itô formula: continuous case [10]). Let X be a

Rd-valued continuous semimartingale defined on a probability space (Ω,F ,P)

and F ∈ C1,2
loc(Wd

T ). Then for any t ∈ [0, T ], we have:

F (t,Xt) = F (0, X0) +

∫ t

0

DF (s,Xs)ds+

∫ t

0

∇ωF (s,Xs) · dX(s)

+
1

2

∫ t

0

tr(∇2
ωF (s,Xs)d[X](s)) (2.2)

P-almost surely. In particular, Y (t) := F (t,Xt) is a continuous semimartin-

gale: the class of continuous semimartingales is stable under transformation

by C1,2
loc(Wd

T ) functionals.

Actually the same functional Itô formula still holds for functionals whose

vertical derivatives are right-continuous rather than left-continuous. We de-

note by C1,2
b,r (Λ

d
T ) the set of non-anticipative functionals F satisfying:

• F is horizontally differentiable with DF continuous at fixed times;
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• F is twice vertically differentiable with F ∈ C0,0
l (Λd

T ) and ∇ωF,∇2
ωF ∈

C0,0
r (Λd

T );

• DF,∇ωF,∇2
ωF ∈ B(Λd

T );

The localization is more delicate in this case, and we are not able to state a

local version of the functional Itô formula by simply replacing Fn ∈ C1,2
b (Λd

T )

by Fn ∈ C1,2
b,r (Λ

d
T ) in definition 1.14 (see remark 4.2 in [28]). However if the

stopping times τn are deterministic, then the functional Itô formula is still

valid (proposition 2.4 and remark 4.2 in [28]).

Definition 2.3. A non-anticipative functional is said to be locally smooth of

class C1,2
loc,r(Λ

d
T ) if there exists an increasing sequence (tn)n≥0 of deterministic

times with t0 = 0 and tn →
n→∞

∞, and a sequence of functionals Fn ∈ C1,2
b,r (Λ

d
T )

such that:

F (t, ω) =
∑
n≥0

Fn(t, ω)1[tn,tn+1)(t), ∀(t, ω) ∈ Λd
T .

Theorem 2.4 (Functional Itô formula: continuous case with right-continu-

ous vertical derivatives [28]). Let X be a Rd-valued continuous semimartin-

gale defined on a probability space (Ω,F ,P) and F ∈ C1,2
loc,r(Λ

d
T ). Then for

any t ∈ [0, T ], we have:

F (t,Xt) = F (0, X0) +

∫ t

0

DF (s,Xs)ds

+

∫ t

0

∇ωF (s,Xs) · dX(s) +
1

2

∫ t

0

tr(∇2
ωF (s,Xs)d[X](s))

P-almost surely.

The case when X is a càdlàg semimartingale is similar. By applying

the pathwise change of variable formula (theorem 1.16) with a well-chosen

sequence of partitions, we obtain the following càdlàg version of the functional

Itô formula.
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Theorem 2.5 (Functional Itô formula: càdlàg case [8]). Let X be a Rd-

valued càdlàg semimartingale defined on a probability space (Ω,F ,P) and

F ∈ C1,2
loc(Λ

d
T ). Then for any t ∈ [0, T ], we have:

F (t,Xt) = F (0, X0) +

∫ t

0

DF (s,Xs−)ds

+

∫ t

0

∇ωF (s,Xs−) · dX(s) +
1

2

∫ t

0

tr(∇2
ωF (s,Xs−)d[X]c(s))

+
∑
s∈(0,t]

[F (s,Xs)− F (s,Xs−)−∇ωF (s,Xs−) ·∆X(s)] (2.3)

P-almost surely where [X]c denotes the continuous part of the quadratic vari-

ation of X. In particular, Y (t) := F (t,Xt) is a semimartingale: the class of

semimartingales is stable under transformation by C1,2
loc(Λ

d
T ) functionals.

Although these two formulas are implied by the stronger pathwise formula

(theorem 1.16 and theorem 1.18), Cont and Fournié [10] also provided a direct

probabilistic proof based on the classical Itô formula.

The main idea of the proof is quite similar to that of the pathwise change

of variable formula. We first approximate X by a sequence of piecewise

constant processes. We then decompose the increment of F into a horizontal

and a vertical part, and to computer the vertical increment, instead of using

a second order Taylor expansion, we apply directly the classical Itô formula.

Finally to pass from its piecewise constant approximations to the process X

itself, we again use the dominated convergence theorem, and its extension to

stochastic integrals [60].

In [10], Cont and Fournié also introduced a second argument A in the

non-anticipative functional F . A is an S+
d -valued process, which represents

the Radon-Nikodym derivative of the quadratic variation of a continuous

Rd-valued semimartingale X with respect to the Lebesgue measure:

[X](t) =

∫ t

0

A(s)ds.

Although the process A is itself adapted to the natural filtration generated

by X, thus can be considered as a functional of X, many interesting examples



2.1. Functional Itô formula 37

of functionals involving the quadratic variation of X cannot be represented as

a continuous functional with respect to the supremum norm of X, and this

continuity property is essential to apply the functional Itô formula. Thus

introducing A as a second argument allows to control the regularity of the

functional with respect to the quadratic variation of X by simply requiring

continuity of F with respect to the pair (X,A).

We now review briefly the main results of this approach proposed by

Cont and Fournié. More details can be found in their initial paper [10]. Let

ω = (x, v) ∈ D([0, T ],Rd)×D([0, T ],S+
d ), and we define

‖ω‖∞ := ‖x‖∞ + ‖v‖∞.

We define the space (SdT , d∞) of stopped paths:

SdT := {(t, ω(t ∧ ·)), (t, ω) ∈ [0, T ]×D([0, T ],Rd)×D([0, T ],S+
d )}

with

d∞((t, ω), (t′, ω′)) := ‖ωt − ω′t′‖∞ + |t− t′|.

Assumption 2.1. Let F : (SdT , d∞) → R be a non-anticipative functional.

We assume that F has predictable dependence with respect to the second

argument:

∀(t, x, v) ∈ SdT , F (t, x, v) = F (t, xt, vt−). (2.4)

With condition (2.4), the vertical derivatives of F with respect to the

variable v are zero, so the vertical derivative on the product space coincides

with the vertical derivative with respect to the variable x, and we continue to

denote it as ∇ω. The horizontal derivative of F can be defined similarly as in

definition 1.10. We can thus define the corresponding class of smooth func-

tionals C1,2
loc(SdT ) by analogy with definition 1.14. We now state a change of

variable formula for non-anticipative functionals which are allowed to depend

on the path X and its quadratic variation.

Theorem 2.6 (Functional Itô formula with dependence on quadratic vari-

ation [10]). Let X be a Rd-valued continuous semimartingale defined on a
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probability space (Ω,F ,P), and F ∈ C1,2
loc(SdT ) a non-anticipative functional

satisfying (2.4). Then for any t ∈ [0, T ], we have:

F (t,Xt, At) = F (0, X0, A0) +

∫ t

0

DF (s,Xs, As)ds

+

∫ t

0

∇ωF (s,Xs, As) · dX(s) +
1

2

∫ t

0

tr(∇2
ωF (s,Xs, As)d[X](s))

P-almost surely. In particular, Y (t) := F (t,Xt, At) is a continuous semi-

martingale.

2.2 Weak functional calculus and martingale

representation

As we have mentioned earlier, when working with semimartingles or mar-

tingales, we have at our disposal many stochastic tools which allows to ex-

plore more than when working with paths. One useful result in stochastic

calculus is the Itô isometry formula which is particularly interesting in this

case as it links a smooth functional with its vertical derivative.

More precisely, let X be a (continuous) square-integrable martingale, and

we assume that Y (t) := F (t,Xt) is also a square-integrable martingale with

initial value zero where F is a smooth functional (for example ∈ C1,2
loc(Wd

T )).

A simple application of the functional Itô formula 2.2 yields:

Y (T ) =

∫ T

0

∇ωF (t,Xt) · dX(t).

We now apply the Itô isometry formula, and we obtain:

‖Y (T )‖L2 = ‖∇ωF (., X.)‖L2([X]) (2.5)

where

‖φ‖2
L2([X]) := E

[∫ T

0

tr(φ(t) tφ(t)d[X](t))

]
.

Since the space L2([X]) is a Hilbert space, the isometry relation (2.5) allows

to extend the notion of vertical derivative to the closure with respect to the
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L2-norm at time T of the space of square-integrable martingales which admit

a smooth functional representation, which turns out to be the space of all

square-integrable martingales adapted to the filtration generated by X, as

shown in [10].

In the following, we review in more detail this extension of the notion of

vertical derivative developed by Cont and Fournié [10]. In [7], Cont carries

this extension further, that is to the space of square-integrable semimartin-

gales adapted to the filtration generated by X.

Let X be a continuous, Rd-valued semimartingale defined on a probability

space (Ω,F ,P). Since all processes we consider are functionals of X, without

loss of generality, we assume that Ω is the canonical space D([0, T ],Rd) of

càdlàg paths, X(t, ω) = ω(t) is the coordinate process, and P a probability

measure on Ω under which X is a continuous semimartingale. We denote by

F = (Ft)t∈[0,T ] the filtration (FXt+)t∈[0,T ] after P-augmentation.

Again we assume that

[X](t) =

∫ t

0

A(s)ds, ∀t ∈ [0, T ] (2.6)

for some S+
d -valued càdlàg process A.

Assumption 2.2 (Non-degeneracy of local martingale component). We as-

sume that the process A defined in (2.6) is non-singular almost everywhere,

i.e.

det(A(t)) 6= 0 dt× dP-a.e. (2.7)

Consider now an F-adapted process Y which admits the following func-

tional representation of X:

Y (t) = F (t,Xt), ∀t ∈ [0, T ] (2.8)

with F : Λd
T → R a non-anticipative functional. Clearly the functional

representation (2.8) is not unique: if we modify F outside the topological

support of PX , we obtain another non-anticipative functional satisfying (2.8).

In particular, let F 1, F 2 ∈ C1,2
loc(Wd

T ) be such that, for any t ∈ [0, T ),

F 1(t,Xt) = F 2(t,Xt) P-a.s.
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A priori, we do not know if ∇ωF
1(t,Xt) is equal to ∇ωF

2(t,Xt) up to an

evanescent set as the vertical derivative ∇ωF seems to depend on the value

of F on discontinuous paths of the form Xt + e1[t,T ].

However, thanks to the non-degeneracy condition (2.7), ∇ωF (., X.) is

uniquely defined up to an evanescent set, and is independent of the choice

of F ∈ C1,2
loc(Wd

T ) in the representation (2.8), which leads to the following

definition:

Definition 2.7 (Vertical derivative of a process [10]). We define C1,2
loc (X) as

the set of F-adapted processes Y which admits a functional representation of

X in C1,2
loc(Wd

T ):

C1,2
loc (X) :=

{
Y : ∃F ∈ C1,2

loc(W
d
T ), Y (t) = F (t,Xt) dt× dP−a.e.

}
. (2.9)

Under assumption 2.2, for any Y ∈ C1,2
loc (X), the predictable process

∇XY (t) := ∇ωF (t,Xt)

is uniquely defined up to an evanescent set, independently of the choice of

F ∈ C1,2
loc(Wd

T ) in the representation (2.9). We call the process ∇XY the

vertical derivative of Y with respect to X.

This definition leads to the following representation for smooth local mar-

tingales.

Proposition 2.1 (Representation of smooth local martingales [7]). For any

local martingale Y ∈ C1,2
loc (X), we have the following representation:

Y (T ) = Y (0) +

∫ T

0

∇XY · dM

where M is the local martingale component of X.

Now we consider the case where X is a square-integrable Brownian mar-

tingale to explore the link between the notion of vertical derivative and the

martingale representation theorem.
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LetW be a standard d-dimensional Brownian motion with F = (FWt )t∈[0,T ]

its (P-completed) natural filtration. Let X be a Rd-valued process defined

by:

X(t) = X(0) +

∫ t

0

σ(s)dW (s)

where σ is a F-adapted process satisfying

E
[∫ T

0

‖σ(t)‖2dt

]
<∞ and det(σ(t)) 6= 0 dt× dP-a.e. (2.10)

Under these conditions, X is a square-integrable martingale with the pre-

dictable representation property [42, 64]: for any square-integrable FWT -

measurable random variable H, or equivalently, any square-integrable F-

martingale Y defined by Y (t) := E[H|FWt ], there exists a unique F-predictable

process φ with E
[∫ T

0
tr(φ(t) tφ(t)d[X](t))

]
<∞ such that:

H = Y (T ) = E[H] +

∫ T

0

φ(t) · dX(t).

As suggested by proposition 2.1, when the martingale Y admits a smooth

functional representation of X, ∇XY is a natural candidate of φ in the

martingale representation. We denote by L2(X) the Hilbert space of F-

predictable processes such that:

‖φ‖2
L2(X) := E

[∫ T

0

tr(φ(t) tφ(t)d[X](t)

]
<∞.

Proposition 2.2 (Martingale representation formula for smooth martingales

[10]). Let Y ∈ C1,2
loc (X) be a square-integrable martingale. Then ∇XY ∈

L2(X) and Y admits the following martingale representation:

Y (T ) = Y (0) +

∫ T

0

∇XY · dX. (2.11)

As we have mentioned earlier, since L2(X) is a Hilbert space, using the

Itô isometry formula, the operator ∇X : C1,2
loc (X) → L2(X) can be extended

to a larger space by a density argument. We now formalize this idea.
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LetM2(X) be the space of R-valued square-integrable F-martingales with

initial value zero equipped with the norm:

‖Y ‖2
M2(X) := E[Y (T )2].

By proposition 2.2, the vertical derivative ∇X defines a continuous map

∇X : D(X) := C1,2
loc (X) ∩M2(X)→ L2(X)

on the set D(X) of square-integrable martingales with a smooth functional

representation of X. Moreover, we have the following isometry property:

‖Y ‖2
M2(X) = ‖∇XY ‖2

L2(X), ∀Y ∈ D(X). (2.12)

As L2(X) is a Hilbert space, the operator ∇X can then be extended to the

closure D(X) of D(X) with respect to the normM2(X), and ∇X still defines

an isometry on D(X). What remains is to determine this space D(X).

Lemma 2.8 (Density of C1,2
loc (X) in M2(X) [10]). {∇XY |Y ∈ D(X)} is

dense in L2(X) and D(X) is dense in M2(X), i.e. D(X) =M2(X).

We show in fact that the set {∇XY } where Y (t) = F (t,Xt) ∈ D(X) with

F cylindrical functionals of the form:

F (t, ω) = (ω(t)−ω(tn−))1t>tng(ω(t1−), ω(t2−), · · · , ω(tn−)), g ∈ C∞b (Rn,R)

is already dense in L2(X). And the density of {∇XY |Y ∈ D(X)} in L2(X)

entails the density of D(X) in M2(X) since the Itô integral with respect to

X is a bijective isometry.

We can now extend the operator ∇X to the whole space of square-

integrable martingales M2(X).

Theorem 2.9 (Extension of ∇X to M2(X) [10]). The vertical derivative

∇X : D(X)→ L2(X)

admits a unique continuous extension to M2(X), namely

∇X :M2(X)→ L2(X)
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which is a bijective isometry characterized by the following integration by

parts formula: for Y ∈ M2(X), ∇XY is the unique element of L2(X) such

that, for any Z ∈ D(X),

E[Y (T )Z(T )] = E
[∫ T

0

tr(∇XY (t) t∇XZ(t)d[X](t))

]
.

∇X is the adjoint of the Itô stochastic integral

IX : L2(X) → M2(X)

φ 7→
∫ .

0

φ · dX

in the following sense: ∀φ ∈ L2(X), ∀Y ∈M2(X),

E
[
Y (T )

∫ T

0

φ · dX
]

= 〈∇XY, φ〉L2(X).

In particular, we have, for any φ ∈ L2(X),

∇X

(∫ .

0

φ · dX
)

= φ.

This result leads to a general version of the martingale representation

formula, valid for all square-integrable martingales.

Theorem 2.10 (Martingale representation formula: general case [10]). For

any square-integrable F-martingale Y , we have, for any t ∈ [0, T ],

Y (t) = Y (0) +

∫ t

0

∇XY · dX P-a.s.

Cont [7] further extended this weak vertical derivative operator ∇X to

the space of all square-integrable F-semimartingales. He also iterated this

procedure to define a scale of ’Sobolev’ spaces. Here we will not enter in

detail into this extension.

2.3 Functional Kolmogorov equations

In this section, we review briefly the functional extension of main concepts

and results which connect stochastic processes and partial differential equa-

tions developed in [7]. Clearly, under the functional framework, stochastic
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processes are no longer Markovian. One important class of non-Markovian

processes is semimartingales which can be represented as the solution of a

stochastic differential equation whose coefficients are allowed to be path-

dependent.

Let W be a standard d-dimensional Brownian motion defined on a prob-

ability space (Ω,F ,P) and F = (Ft)t∈[0,T ] its (P-completed) natural filtra-

tion. We consider the following stochastic differential equation with path-

dependent coefficients:

dX(t) = b(t,Xt)dt+ σ(t,Xt)dW (t), X(0) = x0 ∈ Rd (2.13)

where b : Λd
T → Rd, σ : Λd

T →Md(R) are non-anticipative maps.

This class of processes is a natural path-dependent extension of diffusion

processes. Various conditions, such as the functional Lipschitz property and

boundedness conditions, may be imposed for the existence and uniqueness

of the solution (see for example [60]). Here we provide one example of such

conditions: b and σ are assumed to be Lipschitz continuous with respect to

the distance d∞ defined on Λd
T by:

d∞((t, ω), (t′, ω′)) := ‖ωt − ω′t′‖∞ + |t− t′|.

Assumption 2.3. We assume that b : (Λd
T , d∞) → Rd, σ : (Λd

T , d∞) →
Md(R) are Lipschitz continuous:

∃KLip > 0, ∀t, t′ ∈ [0, T ],∀ω, ω′ ∈ D([0, T ],Rd),

|b(t, ω)− b(t′, ω′)|+ ‖σ(t, ω)− σ(t′, ω′)‖ ≤ KLip d∞((t, ω), (t′, ω′)).

Under assumption 2.3, (2.13) has a unique strong F-adapted solution X.

Proposition 2.3. Under assumption 2.3, there exists a unique F-adapted

process X satisfying (2.13). Moreover for p ≥ 1, we have:

E
[
‖XT‖2p

∞
]
≤ C(1 + |x0|2p)eCT (2.14)

for some constant C = C(p, T,KLip) depending on p, T and KLip.
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Remark 2.11. Assumption 2.3 might seem to be quite strong. Indeed, the

previous proposition still holds under weaker conditions. For example, the

joint Lipschitz condition in (t, ω) can be replaced by a Lipschitz condition

only in ω together with a boundedness condition in t:

∃KLip > 0, ∀t ∈ [0, T ],∀ω, ω′ ∈ D([0, T ],Rd),

|b(t, ω)− b(t, ω′)|+ ‖σ(t, ω)− σ(t, ω′)‖ ≤ KLip ‖ω − ω′‖∞

and

sup
t∈[0,T ]

|b(t, 0̄)|+ ‖σ(t, 0̄)‖ <∞

where 0̄ denotes the path which takes constant value 0.

Proof. Existence and uniqueness of a strong solution follows from [60] (The-

orem 7, Chapter 5). Let us just prove (2.14). Using the Burkholder-Davis-

Gundy inequality and Hölder’s inequality, we have:

E
[
‖XT‖2p

∞
]
≤ C(p)

(
|x0|2p + E

[(∫ T

0

|b(t,Xt)|2dt
)p]

+ E
[(∫ T

0

‖σ(t,Xt)‖2dt

)p])
≤ C(p, T )

(
|x0|2p + E

[∫ T

0

|b(t,Xt)|2pdt
]

+ E
[∫ T

0

‖σ(t,Xt)‖2pdt

])
≤ C(p, T )

(
|x0|2p + E

[∫ T

0

(|b(0, 0̄)|+ ‖σ(0, 0̄)‖+KLip(t+ ‖Xt‖∞))
2p
dt

])
≤ C(p, T,KLip)

(
|x0|2p + 1 +

∫ T

0

E
[
‖Xt‖2p

∞
]
dt

)
.

We conclude using Gronwall’s inequality.

When considering the link between a diffusion process and the associated

Kolmogorov equation, the domain of the partial differential equation is re-

lated to the support of the random variable X(t). Analogously, we shall also

take into account the support of the law of X on the space of paths when

considering a functional extension of the Kolmogorov equation.

The topological support of a continuous process X is the smallest closed

set supp(X) in (C([0, T ],Rd), ‖ · ‖∞) such that P(X ∈ supp(X)) = 1. It can

also be characterized by the following property: supp(X) is the set of paths
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ω ∈ C([0, T ],Rd) for which every Borel neighborhood has strictly positive

measure, i.e.

supp(X) = {ω ∈ C([0, T ],Rd)| ∀ neighborhood V of ω,P(X ∈ V ) > 0}.

We denote by ΛT (X) the set of stopped paths obtained from paths in

supp(X):

ΛT (X) := {(t, ω) ∈ Λd
T , ω ∈ supp(X)}.

Clearly, for a continuous process X, ΛT (X) ⊂ Wd
T .

Similarly to the Markovian case, for a given process X, we are interested

in the functionals which have the local martingale property, i.e. the func-

tionals F such that F (t,Xt) is a local martingale. We call such functionals

PX-harmonic functionals:

Definition 2.12 (PX-harmonic functionals). A non-anticipative functional

F is called PX-harmonic if Y (t) := F (t,Xt) is a P-local martingale.

Smooth PX-harmonic functionals can be characterized as solutions to the

following functional Kolmogorov equation on the domain ΛT (X).

Theorem 2.13 (Functional Kolmogorov equation [7]). If F ∈ C1,2
loc(Wd

T ) and

DF ∈ C0,0
l (Wd

T ), then Y (t) := F (t,Xt) is a local martingale if and only if F

satisfies

DF (t, ωt) + b(t, ωt) · ∇ωF (t, ωt) +
1

2
tr(∇2

ωF (t, ωt)σ
tσ(t, ωt)) = 0 (2.15)

for all (t, ω) ∈ ΛT (X).

The proof of this theorem is based on the functional Itô formula and

is provided in [7]. When F (t, ω) = f(t, ω(t)) and the coefficients b and σ

are not path-dependent, this equation reduces to the well-known backward

Kolmogorov equation [45].

When X = W is a standard d-dimensional Brownian motion, the topo-

logical support of X is all continuous paths starting from 0, i.e. supp(X) =

C0([0, T ],Rd) with

C0([0, T ],Rd) := {ω ∈ C([0, T ],Rd), ω(0) = 0},
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and the functional Kolmogorov equation reduces to a functional heat equa-

tion:

Corollary 2.1. If F ∈ C1,2
loc(Wd

T ) and DF ∈ C0,0
l (Wd

T ), then Y (t) := F (t,Wt)

is a local martingale if and only if for any t ∈ [0, T ] and ω ∈ C0([0, T ],Rd),

DF (t, ω) +
1

2
tr(∇2

ωF (t, ω)) = 0. (2.16)

By analogy with the classical finite-dimensional parabolic PDEs, we can

also introduce the notions of sub-solution and super-solution of the path-

dependent PDEs. A comparison principle is also established in [7] which

allows to prove the uniqueness of solution.

Definition 2.14 (Sub-solutions and super-solutions). F ∈ C1,2
loc(Λ

d
T ) is called

a sub-solution (resp. super-solution) of (2.15) on a domain U ⊂ Λd
T if for

all (t, ω) ∈ U ,

DF (t, ω) + b(t, ω) · ∇ωF (t, ω) +
1

2
(∇2

ωF (t, ω)σ tσ(t, ω)) ≥ 0 (resp. ≤ 0).

We now state a comparison principle for path-dependent PDEs.

Theorem 2.15 (Comparison principle [7]). Let F ∈ C1,2
loc(Λ

d
T ) be a sub-

solution of (2.15) and F ∈ C1,2
loc(Λ

d
T ) be a super-solution of (2.15) such that

for every ω ∈ supp(X), F (T, ω) ≤ F (T, ω), and

E

[
sup
t∈[0,T ]

|F (t,Xt)− F (t,Xt)|

]
<∞.

Then we have:

∀(t, ω) ∈ ΛT (X), F (t, ω) ≤ F (t, ω).

A straightforward consequence of this comparison principle is the follow-

ing uniqueness result for P-uniformly integrable solutions of the functional

Kolmogorov equation (2.15).
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Theorem 2.16 (Uniqueness of solutions [7]). Let H : (C([0, T ],Rd), ‖·‖∞)→
R be a continuous functional, and let F 1, F 2 ∈ C1,2

loc(Wd
T ) be solutions of the

functional Kolmogorov equation (2.15) satisfying

∀ω ∈ supp(X), F 1(T, ω) = F 2(T, ω) = H(ωT )

and

E

[
sup
t∈[0,T ]

|F 1(t,Xt)− F 2(t,Xt)|

]
<∞.

Then they coincide on the topological support of X, i.e.

∀(t, ω) ∈ ΛT (X), F 1(t, ω) = F 2(t, ω).

Combining this uniqueness result with the characterization of the PX-

harmonic functionals as solutions of a functional Kolmogorov equation leads

to an extension of the well-known Feynman-Kac formula to the path-dependent

case.

Theorem 2.17 (Feynman-Kac formula for path-dependent functionals [7]).

Let H : (C([0, T ],Rd), ‖ · ‖∞) → R be a continuous functional, and let

F ∈ C1,2
loc(Wd

T ) be a solution of the functional Kolmogorov equation (2.15)

satisfying

∀ω ∈ C([0, T ],Rd), F(T, ω) = H(ωT )

and

E

[
sup
t∈[0,T ]

|F (t,Xt)|

]
<∞,

then F has the following probabilistic representation:

∀ω ∈ supp(X), F (t, ω) = E[H(XT )|Xt = ωt] = EP(t,ω) [H(XT )],

where P(t,ω) is the law of the unique solution of the path-dependent SDE

dX(t) = b(t,Xt)dt+ σ(t,Xt)dW (t)

with initial condition Xt = ωt. In particular,

F (t,Xt) = E[H(XT )|Ft] dt× dP-a.s.
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Clearly the above result assumes the existence of a solution to the func-

tional Kolmogorov equation (2.15) with a given regularity, and then derive

a probabilistic representation of this solution. In the case of theorem 2.17,

this is equivalent to constructing, given a functional H, a smooth version of

the conditional expectation E[H|Ft].
Similarly to the case of finite-dimensional PDEs, such so-called strong

or classical solutions, with the required differentiability, may fail to exist in

many examples of interest, even for the functional heat equation (2.16). We

refer to Peng and Wang [58] and Riga [65] for sufficient conditions under

which a path-dependent PDE admits a classical solution.

Various notions of generalized solution have been proposed for such path-

dependent equations. Cont [7] proposed a notion of Sobolev-type weak

solution using the weak functional Itô calculus presented in section 2.2.

Cosso and Russo [13] introduced a notion of strong-viscosity solution as the

pathwise limit of classical solutions to semi-linear parabolic path-dependend

PDEs. Ekren et al. [21] proposed a notion of viscosity solution for semi-

linear parabolic path-dependent PDEs which allows to extend the non-linear

Feynman-Kac formula to non-Markovian case. Ekren et al. [22] generalized

this notion to deal with fully non-linear parabolic path-dependent PDEs. Dif-

ferent comparison results have also been established under this framework

[23, 62, 63] (see also [61] for a review of these concepts). Cosso [12] extended

the result of [23] to the case of a possibly degenerate diffusion coefficient in

the forward process driving the BSDE.
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Chapter 3

Weak approximation of

martingale representations

In this chapter, we present a systematic method for computing explicit

approximations to martingale representations for a large class of Brownian

functionals. The approximations are obtained by computing a directional

derivative of the weak Euler scheme (definition 3.6) and yield a consistent

estimator for the integrand in the martingale representation formula for any

square-integrable functional of the solution of an SDE with path-dependent

coefficients. Explicit convergence rates are derived for functionals which are

Lipschitz-continuous in the supremum norm (theorem 3.10). Our results

require neither the Markov property, nor any differentiability conditions on

the functional or the coefficients of the stochastic differential equations. We

present, in section 3.7, several numerical applications of our method to the

problem of dynamic hedging in finance.

The main results of this chapter were published in [11].

3.1 Introduction

Let W be a standard d-dimensional Brownian motion defined on a proba-

bility space (Ω,F ,P) and F = (Ft)t∈[0,T ] its (P-completed) natural filtration.

51
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Then for any square-integrable FT -measurable random variable H, or equiv-

alently, any square-integrable F-martingale Y (t) := E[H|Ft], there exists

a unique (Ft)-predictable process φ with E
[∫ T

0
tr(φ(t) tφ(t))dt

]
< ∞ such

that:

H = Y (T ) = E[H] +

∫ T

0

φ(t) · dW (t). (3.1)

The classical proof of this representation result (see for example [64]) is

non-constructive. However in many applications, such as stochastic control

or mathematical finance, we are interested in an explicit expression for the

process φ, which represents an optimal control or a hedging strategy.

Expressions for the integrand φ have been derived using a variety of meth-

ods and assumptions, for example Markovian techniques [17, 24, 56, 41, 26],

integration by parts [5] or Malliavin calculus [6, 36, 2, 54, 43, 29, 53]. Some

of these methods are limited to the case where Y is a Markov process; others

require differentiability of H in the Fréchet or Malliavin sense [6, 54, 29, 30] or

an explicit form for the density [5]. Almost all of these methods invariably

involve an approximation step, either through the solution of an auxiliary

partial differential equation (PDE) or the simulation of an auxiliary stochas-

tic differential equation.

A systematic approach to obtaining martingale representation formulas

has been proposed in [10], using the functional Itô calculus [20, 8, 9, 7]

(theorem 2.10), for any square-integrable F-martingale Y ,

∀t ∈ [0, T ], Y (t) = Y (0) +

∫ t

0

∇WY (s) · dW (s) P−a.s.

where ∇WY is the weak vertical derivative of Y with respect to W , con-

structed as limit in L2([0, T ]× Ω) of pathwise directional derivatives.

More precisely, let M2 be the space of R-valued square-integrable F-

martingales with initial value zero equipped with the norm ‖Y ‖2
M2 := E[Y (T )2].

For any Y ∈M2, as D(W ) := C1,2
loc (W )∩M2 is dense inM2 with respect to

the norm ‖ · ‖M2 (lemma 2.8), there exists a sequence (Yn)n≥1 of elements in

D(W ) such that:

‖Yn − Y ‖M2 →
n→∞

0
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and

‖∇WYn −∇WY ‖L2(W ) →
n→∞

0

where L2(W ) is the Hilbert space of F-predictable processes such that:

‖φ‖2
L2(W ) := E

[∫ T

0

tr(φ(t) tφ(t))dt

]
<∞.

Here contrary to φ = ∇WY which is a weak vertical derivative, φn := ∇WYn

is a classical pathwise vertical derivative:

∇WYn(t) = ∇ωFn(t,Wt) = (∂iFn(t,Wt), i = 1, · · · , d) ∈ Rd

with

∂iFn(t,Wt) = lim
h→0

Fn(t,Wt + hei1[t,T ])− Fn(t,Wt)

h

for any Fn ∈ C1,2
loc(Λ

d
T ) such that Yn(t) = Fn(t,Wt) dt × dP-a.e. (definition

2.7). Hence φn is defined as a pathwise limit of finite-difference approxi-

mations, and thus readily computable path-by-path in a simulation setting,

which makes it a natural explicit approximation of the integrand φ in the

martingale representation (3.1).

This approach does not rely on any Markov property nor on the Gaussian

structure of the Wiener space and is applicable to functionals of a large

class of Itô processes. However, lemma 2.8 only ensures the existence of

(Yn)n≥1 in D(W ) (or equivalently (Fn)n≥1 in C1,2
loc(Λ

d
T )), it does not provide an

explicit construction of (Yn)n≥1 (or (Fn)n≥1) which approximates the initial

martingale Y in ‖ · ‖M2 .

In this chapter, we propose a systematic method for constructing such a

sequence of ’smooth’ martingales (Yn)n≥1 in a general setting in which H is

allowed to be a functional of the solution of a stochastic differential equation

(SDE) with path-dependent coefficients:

dX(t) = b(t,Xt)dt+ σ(t,Xt)dW (t) X(0) = x0 ∈ Rd (3.2)

where Xt = X(t ∧ ·) designates the path stopped at t and

b : Λd
T → Rd, σ : Λd

T →Md(R)
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are continuous non-anticipative functionals.

For any square-integrable FT -measurable variable H of the form H =

g(X(t), 0 ≤ t ≤ T ) = g(XT ) where g : (D([0, T ],Rd), ‖ · ‖∞)→ R is a contin-

uous functional, we construct an explicit sequence of approximations φn for

the integrand φ in (3.1). These approximations are constructed as vertical

derivatives, in the sense of definition 1.10, of the weak Euler approximation

Fn of the martingale Y , obtained by replacing X by the corresponding Euler

scheme nX:

φn(t) = ∇ωFn(t,W ), with Fn(t, ω) := E
[
g(nX(ω ⊕

t
W ))

]
(3.3)

where ⊕
t

is the concatenation of paths at t.

The main results of this chapter are the following. We first show that

the functional Fn defined by (3.3) is horizontally differentiable and infinitely

vertically differentiable (theorem 3.7), and Fn and its derivatives satisfy the

necessary regularity conditions for applying the functional Itô formula (the-

orem 3.8), namely Fn ∈ C1,2
loc,r(Λ

d
T ) (definition 2.3). As Yn(t) := Fn(t,Wt) is

a F-martingale, i.e. Yn ∈ D(W ), we establish the convergence of the approx-

imations φn to the integrand φ in (3.1) in proposition 3.3. Under a Lipschitz

assumption on g, we provide in theorem 3.10 an Lp error estimate for the

approximation error. The proposed approximations are easy to compute and

readily integrated in commonly used numerical schemes for SDEs. Some nu-

merical aspects of this approximation method are discussed in section 3.6.

And finally in section 3.7, we apply this method to the hedging problem of

exotic options in finance.

Our approach requires neither the Markov property of the underlying pro-

cesses nor the differentiability of coefficients b and σ of the path-dependent

SDE (3.2), and is thus applicable to functionals of a large class of semimartin-

gales. By contrast to methods based on Malliavin calculus [6, 36, 2, 54, 43,

29], it does not require Malliavin differentiability of the terminal variable H

nor does it involve any choice of ’Malliavin weights’, a delicate step in these

methods.
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Ideas based on the functional Itô calculus have also been recently used by

Leão and Ohashi [47] for weak approximation of Wiener functionals, using

a space-filtration discretization scheme. The approach of [47] essentially re-

duces to approximating the process using a (random-step) binomial tree and

computing the estimators using the underlying tree. Unlike the approach

proposed in [47], our approach is based on a Euler approximation on a fixed

time grid, rather than a random time grid used in [47], which involves a se-

quence of first passage times. Our approach is thus much easier to implement

and analyze and is readily integrated in commonly used numerical schemes

for approximations of SDEs, which are typically based on fixed time grids.

3.2 Euler approximations for path-dependent

SDEs

Let W be a standard d-dimensional Brownian motion defined on a prob-

ability space (Ω,F ,P) and F := (Ft)t∈[0,T ] its (P-completed) natural filtra-

tion. We consider the following stochastic differential equation with path-

dependent coefficients:

dX(t) = b(t,Xt)dt+ σ(t,Xt)dW (t), X(0) = x0 ∈ Rd (3.4)

where b : Λd
T → Rd and σ : Λd

T →Md(R) are non-anticipative maps, assumed

to be Lipschitz continuous with respect to the following distance d defined

on Λd
T :

d((t, ω), (t′, ω′)) = sup
s∈[0,T ]

|ω(s∧t)−ω′(s∧t′)|+
√
|t− t′| = ‖ωt−ω′t′‖∞+

√
|t− t′|.

Assumption 3.1. We assume that b : (Λd
T , d) → Rd, σ : (Λd

T , d) → Md(R)

are Lipschitz continuous:

∃KLip > 0, ∀t, t′ ∈ [0, T ],∀ω, ω′ ∈ D([0, T ],Rd),

|b(t, ω)− b(t′, ω′)|+ ‖σ(t, ω)− σ(t′, ω′)‖ ≤ KLip d((t, ω), (t′, ω′)).
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Remark 3.1. This Lipschitz condition with respect to the distance d is

weaker than a Lipschitz condition with respect to the distance d∞ as in as-

sumption 2.3: it allows for a Hölder smoothness of degree 1/2 in the t vari-

able.

Under assumption 3.1, (3.4) has a unique strong F-adapted solution X.

Proposition 3.1. Under assumption 3.1, there exists a unique F-adapted

process X satisfying (3.4). Moreover for p ≥ 1, we have:

E
[
‖XT‖2p

∞
]
≤ C(1 + |x0|2p)eCT

for some constant C = C(p, T,KLip) depending on p, T and KLip.

The proof of this proposition is exactly the same as that of proposition 2.3.

Again the assumption 3.1 might seem to be strong, and it can be replaced

by the weaker condition given in remark 2.11. However assumption 3.1 is

necessary for the convergence of the Euler approximation described later in

this section, especially the results concerning its rate of convergence.

In the following, we always assume that assumption 3.1 holds. The strong

solution X of equation (3.4) is then a semimartingale and defines a non-

anticipative functional X : Wd
T → Rd given by the Itô map associated to

(3.4).

3.2.1 Euler approximations as non-anticipative func-

tionals

We now consider an Euler approximation for the SDE (3.4) and study

its properties as a non-anticipative functional. Let n ∈ N and δ = T
n

. The

Euler approximation nX of X on the grid (tj = jδ, j = 0, · · · , n) is defined

as follows:

Definition 3.2 (Euler scheme). For ω ∈ D([0, T ],Rd), denote by nX(ω) ∈
D([0, T ],Rd) the piecewise constant Euler approximation for (3.4) computed

along the path ω, defined as follows: nX(ω) is constant in each interval
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[tj, tj+1) for any 0 ≤ j ≤ n−1 with nX(0, ω) = x0, and is defined recursively

by: for 0 ≤ j ≤ n− 1,

nX(tj+1, ω) = nX(tj, ω)+b(tj, nX tj(ω))δ+σ(tj, nX tj(ω))(ω(tj+1−)−ω(tj−)),

(3.5)

where nX t(ω) = nX(t∧·, ω) the path of nX stopped at time t computed along

ω, and by convention ω(0−) = ω(0).

When computed along the path of the Brownian motion W, nX(W ) is

simply the piecewise constant Euler-Maruyama scheme [57] for the stochastic

differential equation (3.4).

By definition, the path nX(ω) depends only on a finite number of incre-

ments of ω: ω(t1−) − ω(0), · · · , ω(tn−) − ω(tn−1−). We can thus define a

map:

pn : Md,n(R)→ D([0, T ],Rd)

such that for ω ∈ D([0, T ]),Rd),

nX(ω) = pn(ω(t1−)−ω(0), ω(t2−)−ω(t1−), · · · , ω(tn−)−ω(tn−1−)). (3.6)

Clearly the map pn only depends on the initial condition x0 and the coef-

ficients b and σ of the SDE (3.4). By a slight abuse of notation, in what

follows, we denote by pt(y) the path pn(y) stopped at t for y ∈Md,n(R).

The map pn : Md,n(R) → (D([0, T ],Rd), ‖ · ‖∞) is then locally Lipschitz

continuous, as shown by the following lemma.

Lemma 3.3. For every η > 0, there exists a constant C(η,KLip, T ) such

that for any y = (y1, · · · , yn), y′ = (y′1, · · · , y′n) ∈Md,n(R),

max
1≤k≤n

|yk|∨|y′k| ≤ η =⇒ ‖pn(y)−pn(y′)‖∞ ≤ C(η,KLip, T ) max
1≤k≤n

|yk−y′k|.

Proof. As the two paths pn(y) and pn(y′) are both piecewise constant by

construction, it suffices to prove the inequality at times (tj)0≤j≤n. We prove

by induction that, for any 0 ≤ j ≤ n,

‖ptj(y)− ptj(y′)‖∞ ≤ C(η,KLip, T ) max
1≤k≤j

|yk − y′k| (3.7)
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with some constant C which only depends on η, KLip, T (and n).

For j = 0, this is clearly the case as p(y)(0) = p(y′)(0) = x0. Assume that

(3.7) is verified for some 0 ≤ j ≤ n− 1, consider now ‖ptj+1
(y)− ptj+1

(y′)‖∞,

by definition of the map pn, we have:

pn(y)(tj+1) = pn(y)(tj) + b(tj, ptj(y))δ + σ(tj, ptj(y))yj+1

and

pn(y′)(tj+1) = pn(y′)(tj) + b(tj, ptj(y
′))δ + σ(tj, ptj(y

′))y′j+1.

Thus

|pn(y)(tj+1)− pn(y′)(tj+1)|

≤ |pn(y)(tj)− pn(y′)(tj)|+ |b(tj, ptj(y))− b(tj, ptj(y′))|δ

+‖σ(tj, ptj(y))‖ · |yj+1 − y′j+1|+ ‖σ(tj, ptj(y))− σ(tj, ptj(y
′))‖ · |y′j+1|

≤ C(η,KLip, T ) max
1≤k≤j

|yk − y′k|+KLipC(η,KLip, T ) max
1≤k≤j

|yk − y′k|δ

+
(
‖σ(0, 0̄)‖+KLip(

√
tj + ‖ptj(y))‖∞)

)
|yj+1 − y′j+1|

+KLipC(η,KLip, T )η max
1≤k≤j

|yk − y′k|

≤ C(η,KLip, T ) max
1≤k≤j+1

|yk − y′k|

(The constant C may differ from one line to another).

And consequently we have:

‖ptj+1
(y)− ptj+1

(y′)‖∞ ≤ C(η,KLip, T ) max
1≤k≤j+1

|yk − y′k|

for some different constant C depending only on η, KLip and T (and n). And

we conclude by induction.

3.2.2 Strong convergence

To simplify the notations, nXT (WT ) will be simply noted as nXT in the

following. The following result, which gives a uniform estimate of the dis-

cretization error, XT − nXT extends similar results known in the Markovian

case [57, 25, 37] to the path-dependent SDEs (3.4) (see also [34]):
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Proposition 3.2. Under assumption 3.1, we have the following estimate

in L2p-norm for the strong error of the piecewise constant Euler-Maruyama

scheme:

E

(
sup
s∈[0,T ]

‖X(s)− nX(s)‖2p

)
≤ C(x0, p, T,KLip)

(
1 + log n

n

)p
, ∀p ≥ 1

with C a constant depending only on x0, p, T and KLip.

Proof. The idea is to construct a ’Brownian interpolation’ nX̂T of nXT :

nX̂(s) = x0 +

∫ s

0

b
(
u, nXu

)
du+

∫ s

0

σ
(
u, nXu

)
dW (u)

where u =
⌊
u
δ

⌋
· δ is the largest subdivision point which is smaller or equal

to u.

Clearly nX̂ is a continuous semimartingale and ‖ sups∈[0,T ] |X(s)−nX(s)|‖2p

can be controlled by the sum of the two following terms:

‖ sup
s∈[0,T ]

|X(s)−nX(s)|‖2p ≤ ‖ sup
s∈[0,T ]

|X(s)−nX̂(s)|‖2p+‖ sup
s∈[0,T ]

|nX̂(s)−nX(s)|‖2p

(3.8)

We start with the first term of (3.8) ‖ sups∈[0,T ] |X(s)− nX̂(s)|‖2p. Using
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the Burkholder-Davis-Gundy inequality and Hölder’s inequality, we have:

E‖XT − nX̂T‖2p
∞ = E

∥∥∥∥∫ ·
0

(
b(s,Xs)− b(s, nXs)

)
ds+

∫ ·
0

(
σ(s,Xs)− σ(s, nXs)

)
dW (s)

∥∥∥∥2p

∞

≤ C(p)

(
E
∥∥∥∥∫ ·

0

(
b(s,Xs)− b(s, nXs)

)
ds

∥∥∥∥2p

∞

+E
∥∥∥∥∫ ·

0

(
σ(s,Xs)− σ(s, nXs)

)
dW (s)

∥∥∥∥2p

∞

)
≤ C(p)

(
E
[∫ T

0

|b(s,Xs)− b(s, nXs)|ds
]2p

+E
[∫ T

0

∥∥σ(s,Xs)− σ(s, nXs)
∥∥2
ds

]p)
≤ C(p, T )

(
E
[∫ T

0

|b(s,Xs)− b(s, nXs)|2pds
]

+E
[∫ T

0

∥∥σ(s,Xs)− σ(s, nXs)
∥∥2p

ds

])
≤ C(p, T,KLip) E

[∫ T

0

(
(s− s)p + ‖Xs − nXs‖2p

∞
)
ds

]
≤ C(p, T,KLip)

(
1

np
+

∫ T

0

E ‖Xs − nXs‖2p
∞ ds

)

We have used the fact that nXs = nXs since nX is piecewise constant by

definition.

Consider now the second term of (3.8) ‖ sups∈[0,T ] |nX̂(s) − nX(s)|‖2p.

First we observe that:

nX̂(s)−nX(s) = nX̂(s)−nX̂(s) = b
(
s, nXs

)
(s−s)+σ

(
s, nXs

)
(W (s)−W (s)),

thus we have:

‖nX̂T − nXT‖∞ ≤ sup
0≤s≤T

(
|b(s, nXs)|+ |σ(s, nXs)|

)( 1

n
+ sup

s∈[0,T ]

|W (s)−W (s)|

)

≤ C(KLip, T )(1 + ‖nXT‖∞)

(
1

n
+ sup

s∈[0,T ]

|W (s)−W (s)|

)
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and

E‖nX̂T − nXT‖2p
∞ ≤ C(p,KLip, T )

1

n2p
E
[
(1 + ‖nXT‖∞)2p

]
+C(p,KLip, T ) E

[
(1 + ‖nXT‖∞)2p sup

s∈[0,T ]

|W (s)−W (s)|2p
]

≤ C(p,KLip, T )
1

n2p

(
1 + E‖nXT‖2p

∞
)

+C(p,KLip, T ) E sup
s∈[0,T ]

|W (s)−W (s)|2p

+C(p,KLip, T ) E

[
‖nXT‖2p

∞ sup
s∈[0,T ]

|W (s)−W (s)|2p
]

The Cauchy-Schwarz inequality yields:

E‖nX̂T − nXT‖2p
∞ ≤ C(p,KLip, T )

1

n2p

(
1 +

√
E‖nXT‖4p

∞

)
+C(p,KLip, T )

√
E sup
s∈[0,T ]

|W (s)−W (s)|4p

+C(p,KLip, T )

√
E‖nXT‖4p

∞ ·
√

E sup
s∈[0,T ]

|W (s)−W (s)|4p

≤ C(p,KLip, T )

(
1 +

√
E‖nXT‖4p

∞

)
·

(
1

n2p
+
√

E sup
s∈[0,T ]

|W (s)−W (s)|4p
)

(3.9)

We now show that E‖nXT‖4p
∞ can be bounded independently of n. Using

again the Burkholder-Davis-Gundy inequality and Hölder’s inequality, we

obtain:

E‖nXT‖4p
∞ ≤ E‖nX̂T‖4p

∞

≤ C(p)

(
x4p

0 + E
(∫ T

0

|b(s, nXs)|ds
)4p

+ E
(∫ T

0

∥∥σ(s, nXs)
∥∥2
ds

)2p
)

≤ C(x0, p, T )

(
1 +

∫ T

0

(
E|b(s, nXs)|4p + E

∥∥σ(s, nXs)
∥∥4p
)
ds

)
≤ C(x0, p, T,KLip)

(
1 +

∫ T

0

E‖nXs‖4p
∞ ds

)
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And we deduce from Gronwall’s inequality that E‖nXT‖4p
∞ is bounded by a

constant which depends only on x0, p, T and KLip.

What remains is to control the term
√

E sups∈[0,T ] |W (s)−W (s)|4p in

(3.9). For this, we make use of the following result [55, p.209]:

∀p > 0, ‖ sup
0≤s≤T

|W (s)−W (s)|‖p ≤ C(W, p)

√
T

n
(1 + log n)

where C(W, p) is a constant which only depends on p and W . This result is

a consequence of the following lemma [55, Lemma 7.1]:

Lemma 3.4. Let Y1, · · · , Yn be non-negative random variables with the same

distribution satisfying E
(
eλY1

)
<∞ for some λ > 0. Then we have:

∀p > 0, ‖max(Y1, · · · , Yn)‖p ≤
1

λ
(log n+ C(p, Y1, λ))

for some constant C(p, Y1, λ) which only depends on p, Y1 and λ.

We have thus:√
E sup
s∈[0,T ]

|W (s)−W (s)|4p ≤ C(p, T )

(
1 + log n

n

)p
.

And inequality (3.9) can now be written as:

E‖nX̂T − nXT‖2p
∞ ≤ C(x0, p, T,KLip)

(
1 + log n

n

)p
.

Finally (3.8) becomes:

E‖XT − nXT‖2p
∞

≤ C(p)
(
E‖XT − nX̂T‖2p

∞ + E‖nX̂T − nXT‖2p
∞

)
≤ C(x0, p, T,KLip)

((
1 + log n

n

)p
+

∫ T

0

E‖Xs − nXs‖2p
∞ds

)
.

And we conclude by Gronwall’s inequality.

We may also deduce from proposition 3.2 an almost-sure rate of conver-

gence.
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Corollary 3.1. Under assumption 3.1, we have the following almost-sure

rate of convergence of the piecewise constant Euler-Maruyama scheme:

∀α ∈ [0,
1

2
), nα‖XT − nXT‖∞ →

n→∞
0, P−a.s.

Proof. Let α ∈ [0, 1
2
). For a p large enough, by proposition 3.2, we have:

E

[∑
n≥1

n2pα‖XT − nXT‖2p
∞

]
<∞.

Thus ∑
n≥1

n2pα‖XT − nXT‖2p
∞ <∞, P−a.s.

and

nα‖XT − nXT‖∞ →
n→∞

0, P−a.s.

3.3 Smooth functional approximations for mar-

tingales

Now return to the initial setting of our problem. We have a continu-

ous semimartingale X which is the (strong) solution of the following path-

dependent PDE:

dX(t) = b(t,Xt)dt+ σ(t,Xt)dW (t), X(0) = x0 ∈ Rd.

We have a functional g : D([0, T ],Rd)→ R, and we would like to find an ap-

proximation of the martingale representation of the FT -measurable variable

g(XT ) or equivalently the martingale Y (t) := E[g(XT )|Ft].
First we impose a condition on the functional g to ensure the integrability

of g(XT ).

Assumption 3.2. We assume that the functional g : (D([0, T ],Rd), ‖·‖∞)→
R is continuous with polynomial growth:

∃q ∈ N,∃C > 0,∀ω ∈ D([0, T ],Rd), |g(ω)| ≤ C (1 + ‖ω‖q∞) .
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Under this assumption, g(XT ) (or the martingale Y ) is square-integrable

by proposition 3.1. This is still true if we replace XT with its piecewise

constant Euler-Maruyama scheme nXT as we have shown in the proof of

proposition 3.2 that E‖nXT‖4p
∞ is bounded independently of n.

The (square-integrable) martingale Y may be represented as a non-anticipative

functional of W :

Y (t) = F (t,Wt)

where the functional F is square-integrable but fails to be smooth a priori (see

[65] for conditions under which Y admits a smooth functional representation

of W ). By theorem 2.10, we have:

g(XT ) = Y (T ) = Y (0) +

∫ T

0

∇WY (s) · dW (s) P−a.s.

where ∇WY is the weak vertical derivative of Y with respect to W (theorem

2.9), which cannot be computed directly as a pathwise directional derivative

unless F is a smooth functional (for example ∈ C1,2
loc,r(Λ

d
T )).

The main idea is to approximate the martingale Y by a sequence of

smooth martingales Yn which, contrary to Y , admit a smooth functional rep-

resentation Yn(s) = Fn(s,Ws) with Fn ∈ C1,2
loc,r(Λ

d
T ). Then by the functional

Itô formula, we have:∫ T

0

∇ωFn(s,Ws) · dW (s) = Yn(T )− Yn(0)

→
n→∞

Y (T )− Y (0) =

∫ T

0

∇WY (s) · dW (s).

We recall that the existence of such sequence (Yn)n≥1 is ensured by lemma

2.8. Here we focus on an explicit construction of (Yn)n≥1 (or (Fn)n≥1). Once

(Fn)n≥1 is given, we then obtain the following estimator for ∇WY :

Zn(s) = ∇ωFn(s,Ws),

where the vertical derivative ∇ωFn(s,Ws) = (∂iFn(s,Ws), 1 ≤ i ≤ d) may be

computed as a pathwise directional derivative

∂iFn(s,Ws) = lim
h→0

Fn(s,Ws + hei1[s,T ])− Fn(s,Ws)

h
,
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yielding a concrete procedure for computing the estimator.

We will show in the following that the weak Euler approximation (defini-

tion 3.2) provides a systematic way of constructing such smooth functional

approximations in the sense of definition 2.3.

Remark 3.5. If we assume that the local martingale component of the process

X is non-degenerate, i.e. det(σ(t,Xt)) 6= 0, dt× dP-a.e. then X also admits

the predictable representation property [42, 64]: g(XT ) = Y (T ) can also be

represented as an integral with respect to the local martingale component M

of X, which is an easy extension of theorem 2.10 to the case where X is a

semimartingale:

g(XT ) = Y (T ) = Y (0) +

∫ T

0

∇XY (s) · dM(s) P−a.s.

We can also attempt to construct a sequence of smooth martingales Yn which

admit a smooth functional representation with respect to X: Yn(s) = Fn(s,Xs).

In some applications, this approach might seem to be more natural. For ex-

ample, in mathematical finance, if X represents the price of an underlying

asset and g is the payoff of some path-dependent option, then ∇XY represents

the sensitivity of the option price with respect to the underlying, commonly

called the delta of the option.

However in this case, it is more difficult to construct such smooth func-

tionals Fn, which ofter requires some differentiability condition on the coeffi-

cients b and σ of the SDE (3.4) satisfied by X. Indeed, as we shall see in the

proof of theorem 3.7, in our approach, the smoothness of the functionals Fn

relies on the smoothness of the density of increments of W . If we now work

with functionals of X, as the density of increments of X is not necessarily

smooth, (unless with some additional differentiability condition on b and σ),

the smoothness of Fn might be problematic in this case.

Now we define explicitly the functional Fn. Define first the concatenation

of two càdlàg paths ω, ω′ ∈ D([0, T ],Rd) at time s ∈ [0, T ], which we note
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ω ⊕
s
ω′, as the following càdlàg path on [0, T ]:

ω ⊕
s
ω′ = ωs ⊕

s
ω′ =

ω(u) u ∈ [0, s)

ω(s) + ω′(u)− ω′(s) u ∈ [s, T ]
.

Observe that if ω, ω′ ∈ C([0, T ],Rd), then ω⊕
s
ω′ is also continuous. And for

any z ∈ Rd, we have:

ωzs ⊕
s
ω′ = (ωs ⊕

s
ω′) + z1[s,T ].

Definition 3.6 (Weak Euler approximation). We define the (level-n) weak

Euler approximation of F as the functional Fn by, for any ω ∈ D([0, T ],Rd),

Fn(s, ωs) := E
[
g

(
nX(ωs ⊕

s
BT )

)]
(3.10)

where B is a Wiener process independent of W .

Applying this functional to the path of the Wiener process W , we obtain

a F-adapted process:

Yn(s) := Fn(s,Ws).

Using independence of increments of W , we have:

Yn(s) = E
[
g(nX(ωs ⊕

s
BT ))

]
|ωs=Ws = E

[
g(nX(Ws ⊕

s
BT ))|Fs

]
= E

[
g(nX(Ws ⊕

s
WT ))|Fs

]
= E [g(nX(WT ))|Fs]

In particular Yn is a square-integrable martingale, so is weakly differentiable

in the sense of theorem 2.9. We will now show that Fn is in fact a smooth

functional in the sense of definition 2.3, i.e. Fn ∈ C1,2
loc,r(Λ

d
T ).

Theorem 3.7. Under Assumptions 3.1 and 3.2, the functional Fn defined

in (3.10) is horizontally differentiable and infinitely vertically differentiable.

Proof. First, note that under assumption 3.1, nX(ω) is bounded by a polyno-

mial in the variables ω(t1−)−ω(0), ω(t2−)−ω(t1−), · · · , ω(tn−)−ω(tn−1−)).
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Combined with assumption 3.2, this implies that all expectations in the proof

of this theorem are well defined.

Let (s, ω) ∈ Λd
T with tk ≤ s < tk+1 for some 0 ≤ k ≤ n − 1. We start

with the vertical differentiability of Fn at (s, ω), which is equivalent to the

differentiability at 0 of the map v : Rd → R defined by:

v(z) := Fn(s, ωzs) = E
[
g(nX(ωzs ⊕

s
BT ))

]
, z ∈ Rd.

The main idea of the proof is to absorb the dependence of the map v on z

in the Gaussian density function when taking the expectation, which then

implies smoothness in z since the Gaussian density function is infinitely dif-

ferentiable.

As we have already shown, nX(ωzs⊕
s
BT ) depends only on (ωzs⊕

s
BT )(t1−)−

(ωzs ⊕
s
BT )(0), · · · , (ωzs ⊕

s
BT )(tn−)− (ωzs ⊕

s
BT )(tn−1−), which are all explicit

using the definition of the concatenation. For j < k, we have:

(ωzs ⊕
s
BT )(tj+1−)− (ωzs ⊕

s
BT )(tj−) = ω(tj+1−)− ω(tj−).

In the case where j = k, we have:

(ωzs ⊕
s
BT )(tk+1−)− (ωzs ⊕

s
BT )(tk−)

= B(tk+1)−B(s) + ω(s) + z − ω(tk−)

= B(tk+1)−B(s) + z + ω(s)− ω(tk−).

And for j > k, we have:

(ωzs ⊕
s
BT )(tj+1−)− (ωzs ⊕

s
BT )(tj−)

= B(tj+1)−B(s) + ω(s) + z − (B(tj)−B(s) + ω(s) + z)

= B(tj+1)−B(tj).

Thus we have:

nX(ωzs ⊕
s
BT ) = pn

(
ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−),

B(tk+1)−B(s) + z + ω(s)− ω(tk−),

B(tk+2)−B(tk+1), · · · , B(tn)−B(tn−1)
)
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where pn : Md,n(R)→ D([0, T ],Rd) is the map defined in (3.6).

Observe from the previous expression of nX(ωzs ⊕
s
BT ) that, for a fixed z

and s, the randomness of the piecewise constant stochastic process nX(ωzs ⊕
s

BT ) only comes from a finite number of Gaussian variables: B(tk+1)−B(s),

B(tk+2)−B(tk+1), · · · , B(tn)−B(tn−1). Since the joint distribution of these

Gaussian variables is explicit, v(z) = E
[
g(nXT (ωzs ⊕

s
BT ))

]
can be computed

explicitly as an integral in finite dimension.

Let y = (y1, · · · , yn−k) ∈Md,n−k(R).

v(z) = E
[
g(nXT (ωzs ⊕

s
BT ))

]
= E

[
g
(
pn(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−),

B(tk+1)−B(s) + z + ω(s)− ω(tk−), B(tk+2)−B(tk+1), · · · , B(tn)−B(tn−1)
)]

=

∫
Rd×(n−k)

g
(
pn(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + z + ω(s)− ω(tk−),

y2, · · · , yn−k)
)

Φ(y1, tk+1 − s)
n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k

=

∫
Rd×(n−k)

g
(
pn(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + ω(s)− ω(tk−),

y2, · · · , yn−k)
)

Φ(y1 − z, tk+1 − s)
n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k (3.11)

with δ = T
n

and

Φ(x, t) = (2πt)−
d
2 exp

(
−|x|

2

2t

)
, x ∈ Rd

the density function of a d-dimensional N(0, tId) random variable.

Since the only term which depends on z in the integrand of (3.11) is

Φ(y1 − z, tk+1 − s), which is a smooth function of z, thus v is differentiable

at all z ∈ Rd, in particular at 0. Hence Fn is vertically differentiable at
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(s, ω) ∈ Λd
T with: for 1 ≤ i ≤ d,

∂iFn(s, ω) =

∫
Rd×(n−k)

g
(
pn(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−),

y1 + ω(s)− ω(tk−), y2, · · · , yn−k)
)

y1 · ei
tk+1 − s

Φ(y1, tk+1 − s)
n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k

= E
[
g(nX(ωs ⊕

s
BT ))

(B(tk+1)−B(s)) · ei
tk+1 − s

]
. (3.12)

Remark that when s tends towards tk+1, ∇ωFn(s, ω) may tend to infinity

because of the term tk+1 − s in the denominator. However in the interval

[tk, tk+1), ∇ωFn(s, ω) behaves well and is locally bounded.

Iterating this procedure, one can show that Fn is vertically differentiable

for any order. For example, we have:

∂2
i Fn(s, ω) =

∫
Rd×(n−k)

g
(
pn(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−),

y1 + ω(s)− ω(tk−), y2, · · · , yn−k)
)( (y1 · ei)2

(tk+1 − s)2
− 1

tk+1 − s

)
Φ(y1, tk+1 − s)

n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k.

And for i 6= j:

∂ijFn(s, ω) =

∫
Rd×(n−k)

g
(
pn(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−),

y1 + ω(s)− ω(tk−), y2, · · · , yn−k)
)(y1 · ei)(y1 · ej)

(tk+1 − s)2

Φ(y1, tk+1 − s)
n−k∏
l=2

Φ(yl, δ)dy1 · · · dyn−k.

The horizontal differentiability of Fn can be proved similarly. Consider

the following map:

w(h) := Fn(s+ h, ωs) = E
[
g(nX(ωs ⊕

s+h
BT ))

]
, h > 0.

The objective is to show that w is right-differentiable at 0.
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We assume again that tk ≤ s < tk+1 for some 0 ≤ k ≤ n− 1, and we can

always choose an h > 0 small enough such that s+h < tk+1. Using the same

argument as in the proof of the vertical differentiability of Fn and the fact

that ωs(s+ h) = ω(s), we have:

nX(ωs ⊕
s+h

BT ) = pn

(
ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−),

B(tk+1)−B(s+ h) + ω(s)− ω(tk−),

B(tk+2)−B(tk+1), · · · , B(tn)−B(tn−1)
)
.

Let y = (y1, · · · , yn−k) ∈Md,n−k(R). We compute explicitly w(h):

w(h) = E
[
g(nXT (ωs ⊕

s+h
BT ))

]
= E

[
g
(
pn(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−),

B(tk+1)−B(s+ h) + ω(s)− ω(tk−),

B(tk+2)−B(tk+1), · · · , B(tn)−B(tn−1))
)]

=

∫
Rd×(n−k)

g
(
pn(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + ω(s)− ω(tk−),

y2, · · · , yn)
)

Φ(y1, tk+1 − s− h)
n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k. (3.13)

Again the only term which depends on h in the integrand of (3.13) is

Φ(y1, tk+1− s−h), which is a smooth function of h. Therefore Fn is horizon-

tally differentiable with:

DFn(s, ωs) =

∫
Rd×(n−k)

g
(
pn(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−),

y1 + ω(s)− ω(tk−), y2, · · · , yn)
)( d

2(tk+1 − s)
− |y1|2

2(tk+1 − s)2

)
Φ(y1, tk+1 − s)

n−k∏
l=2

Φ(yl, δ)dy1 · · · dyn−k. (3.14)

The following result shows that the functional Fn and its derivatives sat-

isfy the necessary regularity conditions for applying the functional Itô formula

(theorem 2.4):
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Theorem 3.8. Under assumption 3.1 and assumption 3.2, Fn ∈ C1,2
loc,r(Λ

d
T ).

Proof. We have already shown in Theorem 3.7 that Fn is horizontally dif-

ferentiable and twice vertically differentiable. Using the expressions of DFn,

∇ωFn and ∇2
ωFn obtained in the proof of 3.7, and the assumption that g

has at most polynomial growth with respect to ‖ · ‖∞ (assumption 3.2), we

observe that in each interval [tk, tk+1) with 0 ≤ k ≤ n − 1, DFn, ∇ωFn

and ∇2
ωFn satisfy the boundedness-preserving property. It remains to show

that Fn is left-continuous, ∇ωFn and ∇2
ωFn are right-continuous, and DFn is

continuous at fixed times.

Let s ∈ [tk, tk+1) for some 0 ≤ k ≤ n − 1 and ω ∈ D([0, T ],Rd). We

first prove that Fn is right-continuous at (s, ω), and is jointly continuous at

(s, ω) for s ∈ (tk, tk+1). By definition of joint-continuity (or right-continuous)

(definition 1.7), we want to show that: ∀ε > 0,∃η > 0,∀(s′, ω′) ∈ Λd
T (for the

right-continuity, we assume in addition that s′ > s),

d∞((s, ω), (s′, ω′)) < η ⇒ |Fn(s, ω)− Fn(s′, ω′)| < ε.

Let (s′, ω′) ∈ Λd
T (with s′ > s for the right-continuity). We assume that

d∞((s, ω), (s′, ω′)) ≤ η with an η small enough such that s′ ∈ [tk, tk+1) (this

is always possible as for s = tk, we are only interested in the right-continuity

of Fn on (s, ω)). It suffices to prove that |Fn(s, ω)− Fn(s′, ω′)| ≤ C(s, ωs, η)

with C(s, ωs, η) a quantity depending only on s, ωs and η (thus independent

of (s′, ω′)), and C(s, ωs, η) →
η→0

0.

Now we use the expression of Fn obtained in the proof of theorem 3.7.

Let y = (y1, · · · , yn−k) ∈Md,n−k(R). We have:

Fn(s, ω) =

∫
Rd×(n−k)

g
(
pn(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + ω(s)− ω(tk−),

y2, · · · , yn)
)

Φ(y1, tk+1 − s)
n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k
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and

Fn(s′, ω′) =

∫
Rd×(n−k)

g
(
pn(ω′(t1−)− ω′(0), · · · , ω′(tk−)− ω′(tk−1−), y1 + ω′(s′)− ω′(tk−),

y2, · · · , yn)
)

Φ(y1, tk+1 − s′)
n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k.

To simplify the notations, we set:

p̃(ω, s, y) = pn(ω(t1−)−ω(0), · · · , ω(tk−)−ω(tk−1−), y1+ω(s)−ω(tk−), y2, · · · , yn)

and

p̃(ω′, s′, y) = pn(ω′(t1−)−ω′(0), · · · , ω′(tk−)−ω′(tk−1−), y1+ω′(s′)−ω′(tk−), y2, · · · , yn).

We denote by p̃t(·) the path of p̃(·) stopped at time t. Since ‖ωs−ωs′‖∞ ≤ η,

for any 0 ≤ j ≤ k − 1, |(ω(tj+1−) − ω(tj−)) − (ω′(tj+1−) − ω′(tj−))| ≤ 2η

and |(y1 + ω(s)− ω(tk−))− (y1 + ω′(s′)− ω′(tk−))| ≤ 2η, using lemma 3.3,

we have:

‖p̃(ω, s, y)− p̃(ω′, s′, y)‖∞ ≤ C(s, ωs, y,KLip, T )η.

We can now control the difference between Fn(s, ω) and Fn(s′, ω′).

|Fn(s, ω)− Fn(s′, ω′)|

≤
∫
Rd×(n−k)

|g(p̃(ω, s, y))Φ(y1, tk+1 − s)− g(p̃(ω′, s′, y))Φ(y1, tk+1 − s′)|

n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k

≤
∫
Rd×(n−k)

(
|g(p̃(ω, s, y))− g(p̃(ω′, s′, y))|Φ(y1, tk+1 − s′)

+|g(p̃(ω, s, y))| · |Φ(y1, tk+1 − s)− Φ(y1, tk+1 − s′)|
)

×
n−k∏
l=2

Φ(yl, δ)dy1dy2 · · · dyn−k. (3.15)

Observe that |Φ(y1, tk+1 − s) − Φ(y1, tk+1 − s′)| ≤ |s − s′| · ρ(y1, η) ≤
ρ(y1, η) · η with

ρ(y1, η) := sup
t∈[tk+1−s−η,δ]

|∂tΦ(y1, t)|,
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and we have:

ρ(y1, η) →
η→0

sup
t∈[tk+1−s,δ]

|∂tΦ(y1, t)| = sup
t∈[tk+1−s,δ]

∣∣∣∣Φ(y1, t)

(
|y1|2

2t2
− d

2t

)∣∣∣∣ <∞.
So the second part of (3.15) can be controlled by:∫

Rd×(n−k)
|g(p̃(ω, s, y))| · |Φ(y1, tk+1 − s)− Φ(y1, tk+1 − s′)|

n−k∏
l=2

Φ(yl, δ)dy

≤ C(s, ωs, η)

with

C(s, ωs, η) →
η→0

0.

For the first part of (3.15), we use the continuity of the functional g. As

g is continuous at p̃(ω, s, y), we have:

|g(p̃(ω, s, y))− g(p̃(ω′, s′, y))| ≤ C(s, ωs, y, η).

with

C(s, ωs, y, η) →
η→0

0, y ∈Md,n−k(R).

And Φ(y1, tk+1 − s′) can be bounded independently of s′:

Φ(y1, tk+1 − s′) ≤ sup
t∈[tk+1−s−η,δ]

Φ(y1, t) <∞.

An application of the dominated convergence theorem yields:∫
Rd×(n−k)

|g(p̃(ω, s, y))− g(p̃(ω′, s′, y))|Φ(y1, tk+1 − s′)
n−k∏
l=2

Φ(yl, δ)dy

≤ C(s, ωs, η)

with

C(s, ωs, η) →
η→0

0.

We conclude that |Fn(s, ωs) − Fn(s′, ω′s′)| ≤ C(s, ωs, η) with C(s, ωs, η)

depending only on s, ωs and η, and C(s, ωs, η) →
η→0

0, which proves the right-

continuity of Fn and the joint-continuity of Fn at all (s, ω) ∈ Λd
T for s 6= tk,

0 ≤ k ≤ n− 1.
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The right-continuity of ∇ωFn, ∇2
ωFn and the continuity at fixed times

of DFn can be deduced similarly from the expressions of ∇ωFn, ∇2
ωFn and

DFn obtained in the proof of theorem 3.7. Now it remains to show that

for 1 ≤ k ≤ n and ω ∈ D([0, T ],Rd), Fn is left-continuous at (tk, ω). Let

(s′, ω′) ∈ Λd
T with s′ < tk such that d∞((tk, ω), (s′, ω′)) ≤ η. We can always

choose an η < δ in order that s′ ∈ [tk−1, tk). The objective is to show that

|Fn(tk, ω) − Fn(s′, ω′)| ≤ C(tk, ωtk , η) for some C(tk, ωtk , η) depending only

on tk, ωtk and η with C(tk, ωtk , η) →
η→0

0.

We first decompose |Fn(tk, ω)− Fn(s′, ω′)| into two terms:

|Fn(tk, ω)− Fn(s′, ω′)| ≤ |Fn(tk, ω)− Fn(s′, ωs′)|+ |Fn(s′, ωs′)− Fn(s′, ω′)|.

For the second part, since Fn is continuous at fixed time s′ by the first

part of the proof, and ‖ωs′ − ω′s′‖∞ ≤ η, we have |Fn(s′, ωs′) − Fn(s′, ω′)| ≤
C(tk, ωtk , η) with C(tk, ωtk , η) →

η→0
0.

For the first part |Fn(tk, ω)−Fn(s′, ωs′)|, the difficulty is that s′ and tk no

longer lie in the same interval of the level-n Euler approximation, thus one

more integration appears in the expression of Fn(s′, ωs′) compared to that of

Fn(tk, ω). Let y = (y1, · · · , yn−k) ∈ Md,n−k(R) and y′ ∈ Rd. Using again the

expression of Fn obtained in the proof of theorem 3.7, we have:

Fn(tk, ω) =

∫
Rd×(n−k)

g
(
pn(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−),

y1 + ω(tk)− ω(tk−), y2, · · · , yn−k)
) n−k∏
l=1

Φ(yl, δ)dy

and

Fn(s′, ωs′) =

∫
Rd×(n−k+1)

g
(
pn(ω(t1−)− ω(0), · · · , ω(tk−1−)− ω(tk−2−),

y′ + ω(s′)− ω(tk−1−), y1, · · · , yn)
)

Φ(y′, tk − s′)dy′
n−k∏
l=1

Φ(yl, δ)dy

=

∫
Rd

(∫
Rd×(n−k)

g(p(ω(t1−)− ω(0), · · · , ω(tk−1−)− ω(tk−2−),

y′ + ω(s′)− ω(tk−1−), y1, · · · , yn))
n−k∏
l=1

Φ(yl, δ)dy
)

Φ(y′, tk − s′)dy′.
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We now define ζ : Rd → R by: for y′ ∈ Rd,

ζ(y′) :=

∫
Rd×(n−k)

g
(
pn(ω(t1−)− ω(0), · · · , ω(tk−1−)− ω(tk−2−),

y′ + ω(s′)− ω(tk−1−), y1, · · · , yn)
) n−k∏
l=1

Φ(yl, δ)dy.

By lemma 3.3 and the continuity of g with respect to ‖ · ‖∞, the map

y′ 7→ g
(
pn(ω(t1−)− ω(0), · · · , ω(tk−1−)− ω(tk−2−),

y′ + ω(s′)− ω(tk−1−), y1, · · · , yn)
)

is continuous. Since g has at most polynomial growth with respect to ‖ · ‖∞
(assumption 3.2), by the dominated convergence theorem, ζ is also contin-

uous, and has at most polynomial growth in y′. And as tk − s′ ≤ η, we

have:

Fn(s′, ωs′) =

∫
Rd
ζ(y′)Φ(y′, tk − s′)dy′

=

∫
Rd

(ζ(y′)− ζ(0))Φ(y′, tk − s′)dy′ + ζ(0).

with ∣∣∣∣∫
Rd

(ζ(y′)− ζ(0))Φ(y′, tk − s′)dy′
∣∣∣∣ ≤ C(tk, ωtk , η),

and C(tk, ωtk , η) →
η→0

0.

It remains to control the difference between Fn(tk, ω) and ζ(0). Remark

that:

ζ(0) =

∫
Rd×(n−k)

g
(
pn(ω(t1−)− ω(0), · · · , ω(tk−1−)− ω(tk−2−),

ω(s′)− ω(tk−1−), y1, · · · , yn)
) n−k∏
l=1

Φ(yl, δ)dy

= E
[
g

(
nXT (ωs′ ⊕

tk
BT )

)]
= Fn(tk, ωs′).

As ‖ωs′−ωtk‖∞ ≤ ‖ωs′−ω′s′‖∞+‖ω′s′−ωtk‖∞ ≤ 2η, using again the continuity

of Fn at fixed time tk established in the first part of the proof, we obtain:

|Fn(tk, ω)− ζ(0)| ≤ C(tk, ωtk , η)
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with C(tk, ωtk , η) →
η→0

0.

We conclude that

|Fn(tk, ω)− Fn(s′, ω′)| ≤ C(tk, ωtk , η)

with C(tk, ωtk , η) →
η→0

0, which proves the left-continuity of Fn at (tk, ω) for

1 ≤ k ≤ n.

Corollary 3.2. Under assumption 3.1 and assumption 3.2, we have:

Fn(T,WT )− Fn(0,W0) =

∫ T

0

∇ωFn(s,Ws) · dW (s), P−a.s. (3.16)

Proof. As Fn ∈ C1,2
loc,r(Λ

d
T ), we can apply the functional Itô formula (theorem

2.4), and we observe that the finite variation term is zero since Yn(s) =

Fn(s,Ws) = E [g(nX(WT ))|Fs] is a martingale.

Remark 3.9. Using the expressions of DFn and ∇2
ωFn obtained in the proof

of theorem 3.7, we can also verify by direct computation that the finite varia-

tion terms in (3.16) cancel each other. By the functional Itô formula (theorem

2.4), the finite variation term in (3.16) equals to DFn(s,Ws)+
1
2
tr(∇2

ωFn(s,Ws)).

And for (s, ω) ∈ Λd
T with s ∈ [tk, tk+1), 0 ≤ k ≤ n− 1, we have:

tr
(
∇2
ωFn(s, ω)

)
=

d∑
i=1

∂2
i Fn(s, ω)

=

∫
Rd×(n−k)

g (pn(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + ω(s)− ω(tk−), y2, · · · , yn))

d∑
i=1

(
(y1 · ei)2

(tk+1 − s)2
− 1

tk+1 − s

)
Φ(y1, tk+1 − s)

n−k∏
l=2

Φ(yl, δ)dy1 · · · dyn−k

=

∫
Rd×(n−k)

g (pn(ω(t1−)− ω(0), · · · , ω(tk−)− ω(tk−1−), y1 + ω(s)− ω(tk−), y2, · · · , yn))(
|y1|2

(tk+1 − s)2
− d

tk+1 − s

)
Φ(y1, tk+1 − s)

n−k∏
l=2

Φ(yl, δ)dy1 · · · dyn−k

= −2DFn(s, ωs)

which confirms that Fn is indeed a solution of the path-dependent heat equa-

tion (2.16):

DFn(s, ωs) +
1

2
tr
(
∇2
ωFn(s, ωs)

)
= 0, ω ∈ D([0, T ],Rd).
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3.4 Convergence and error analysis

In this section, we analyze the convergence and the rate of convergence of

our approximation method. After having constructed a sequence of smooth

functionals Fn defined by (3.10) (theorem 3.7 and theorem 3.8), we can now

approximate ∇WY by:

Zn(s) := ∇ωFn(s,Ws)

which, in contrast to the weak derivative ∇WY , is computable as a pathwise

directional derivative. In practice,∇ωFn(s,Ws) can be computed numerically

via a finite difference method or a Monte-Carlo method using the expression

(3.12) of ∇ωFn.

We can measure the error of our approximation method by the integral

of ∇WY − Zn with respect to W , i.e.∫ T

0

(∇WY − Zn) · dW =

∫ T

0

∇WY (s) · dW (s)−
∫ T

0

∇ωFn(s,Ws) · dW (s).

By the martingale representation formula theorem 2.10 and corollary 3.2, we

have P-a.s.∫ T

0

(∇WY − Zn) · dW = Y (T )− Y (0)− (Yn(T )− Yn(0))

= g(XT )− g(nX(WT ))− E [g(XT )− g(nX(WT ))]

where nX is the path of the piecewise constant Euler-Maruyama scheme

defined in definition 3.2. We first establish the almost sure convergence and

the convergence in L2p for p ≥ 1 of our approximation.

Proposition 3.3. Under assumption 3.1 and assumption 3.2, we have:∫ T

0

(∇WY − Zn) · dW →
n→∞

0, P−a.s.

Proof. Since g is assumed to be continuous with respect to ‖ ·‖∞ by assump-

tion 3.2, and ‖XT − nX(WT )‖∞ →
n→∞

0 P-a.s. by corollary 3.1, we have:

g(XT )− g(nX(WT )) →
n→∞

0, P−a.s.
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Moreover, under assumption 3.2, {(g(nX(WT )))n≥1, g(XT )} is bounded in L2

thus uniformly integrable, therefore we also have:

E [g(XT )− g(nX(WT ))] →
n→∞

0.

Corollary 3.3. Under assumption 3.1 and assumption 3.2, we have:∥∥∥∥∫ T

0

(∇WY − Zn) · dW
∥∥∥∥

2p

→
n→∞

0, ∀p ≥ 1.

Proof. g has at most polynomial growth with respect to ‖·‖∞ by assumption

3.2, which ensures the uniform integrability of |g(nX(WT ))|2p for any p ≥ 1.

We conclude by applying the dominated convergence theorem.

To obtain a rate of convergence of our approximation, we need some

stronger Lipschitz-type assumption on g.

Theorem 3.10 (Rate of convergence of approximation). We assume g :

(D([0, T ],Rd), ‖ · ‖∞)→ R is Lipschitz continuous:

∃gLip > 0, ∀ω, ω′ ∈ D([0, T ],Rd), |g(ω)− g(ω′)| ≤ gLip‖ω − ω′‖∞.

Under assumption 3.1, the L2p-error of the approximation Zn of ∇WY along

the path of W is bounded by:

E
∥∥∥∥∫ T

0

(∇WY − Zn) · dW
∥∥∥∥2p

≤ C(x0, p, T,KLip, gLip)

(
1 + log n

n

)p
, ∀p ≥ 1

where the constant C depends only on x0, p, T , KLip and gLip. In particular,

we have:

∀α ∈ [0,
1

2
), nα

(∫ T

0

(∇WY − Zn) · dW
)
→
n→∞

0, P−a.s.

Proof. This result is a consequence of proposition 3.2 since∥∥∥∥∫ T

0

(∇WY − Zn) · dW
∥∥∥∥

2p

≤ ‖g(XT )− g(nX(WT ))‖2p + ‖E[g(XT )− g(nX(WT ))]‖2p

≤ 2 ‖g(XT )− g(nX(WT ))‖2p

≤ 2gLip

∥∥∥∥ sup
0≤s≤T

|X(s)− nX(s)|
∥∥∥∥

2p

.
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We now provide an example to show how our result may be used to

construct explicit approximations with controlled convergence rates for con-

ditional expectation of non-smooth functionals:

Example 3.11. Let X be the strong solution of the SDE (3.4) with b and σ

satisfying assumption 3.1, and let

g(ωT ) := φ

(
ω(T ), sup

0≤t≤T
‖ω(t)‖

)
where φ : Rd × R+ → R is a continuous function with polynomial growth.

Set Y (t) := E[g(XT )|Ft]. Then g satisfies assumption 3.2, and our approxi-

mation method applies. Moreover, if φ is Lipschitz continuous, then theorem

3.10 provides an explicit control of the approximation error with a conver-

gence rate of order
√

logn
n

.

3.5 Comparison with approaches based on the

Malliavin calculus

The vertical derivative ∇WY which appears in the martingale represen-

tation formula may be viewed as the ’sensitivity’ of the martingale Y to the

Brownian motion W . Thus, our method can be compared to other methods

proposed in the literature for ’sensitivity analysis’ of Wiener functionals, in

particular the Malliavin calculus.

Such methods can be roughly classified into two categories [5]: methods

that differentiate paths and methods that differentiate densities. When the

density of the functional is known, the sensitivity of an expectation with

respect to some parameter is to differentiate directly the density function

with respect to the parameter. However, as this is almost never the case

in a general diffusion model, let alone a non-Markovian model, alternative

methods are used. Usually the idea is to differentiate either the functional

g, or the process with respect to the parameter under the expectation sign,

then estimate the expectation with the Monte-Carlo method. To differentiate
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process, one requires the existence of the so-called first variation process,

which requires the regularity of the coefficients of the SDE satisfied by X.

Sensitivity estimators for non-smooth functionals can be obtained using

Malliavin calculus: this approach, proposed by Fournié et al. [29], and de-

veloped by Cvitanić, Ma and Zhang [16], Fournié et al. [30], Gobet and

Kohatsu-Higa [33], Kohatsu-Higa and Montero [44], Davis and Johansson

[18] and others, uses the Malliavin integration by parts formula on Wiener

space in the case when g is not smooth. These methods require quite de-

manding regularity assumptions (differentiability and ellipticity condition on

σ for example) on the coefficients of the initial SDE satisfied by X.

By contrast, the approximation method presented in this chapter allows

for any continuous functional g with polynomial growth and requires only a

Lipschitz continuity assumption on the functional σ, which also allows for de-

generate coefficients. It is thus applicable to a wider range of examples than

the Malliavin approach, while being arguably simpler from a computational

viewpoint. Contrary to the Malliavin approach, which involves differentiating

in the Malliavin sense, then discretizing the tangent process, our method in-

volves discretizing then differentiating (the Euler-Maruyama scheme) which,

as argued in [5], may have computational advantages.

In this chapter, we have shown that Fn ∈ C1,2
loc,r(Λ

d
T ) (theorem 3.8), which

is sufficient for obtaining an approximation of martingale representation via

the functional Itô formula. A natural question is whether the same type of

result can be obtained using the Malliavin calculus, for example via a Clark-

Haussmann-Ocone type formula. While under our quite general setting, the

initial FT -measurable random variable H := g(XT ) has no reason to be

Malliavin differentiable, one may ask if the Malliavin calculus is applicable

to the piecewise constant Euler approximation nX (definition 3.2). And in

this case, whether the pathwise vertical derivative ∇ωFn(t,Wt) leads to the

same representation as in the Clark-Haussmann-Ocone formula.

Let n ∈ N, and we define Hn := g(nX(WT )) with nX the weak piecewise

constant Euler-Maruyama scheme defined by (3.5). By the definition of nX,
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the FT -measurable random variable Hn actually depends only on a finite

number of Gaussian variables: W (t1), W (t2)−W (t1), · · · , W (tn)−W (tn−1),

thus it can be written as:

Hn = hn(W (t1),W (t2)−W (t1), · · · ,W (tn)−W (tn−1))

with hn : Md,n(R)→ R (hn is actually the composition of g and pn: h = g◦pn
with pn defined by (3.6)).

Clearly if hn is a smooth function with polynomial growth, then Hn is

Malliavin differentiable (Hn ∈ D1,2) with Malliavin derivative [53]:

DtHn = (Dk
tHn, 1 ≤ k ≤ d) ∈ Rd, t ∈ [0, T )

where

Dk
tHn =

n−1∑
j=0

∂kjhn(W (t1),W (t2)−W (t1), · · · ,W (tn)−W (tn−1))1[tj ,tj+1)(t).

Using the Clark-Haussmann-Ocone formula [54, 53], we have thus:

Hn = E[Hn] +

∫ T

0

E[DtHn|Ft] · dW (t).

The integrand E[DtHn|Ft] can be computed explicitly in this case. Assume

that t ∈ [tj, tj+1) for some 0 ≤ j ≤ n− 1, we have, for 1 ≤ k ≤ d,

E[Dk
tHn|Ft]

= E [∂kjhn(W (t1),W (t2)−W (t1), · · · ,W (tn)−W (tn−1))|Ft]

= E
[
∂kjhn(ω(t1), ω(t2)− ω(t1), · · · , ω(tj)− ω(tj−1), ω(t)− ω(tj) +W (tj+1)−W (t),

W (tj+2)−W (tj+1), · · · ,W (tn)−W (tn−1))
]
|ωt=Wt

= E
[ ∂
∂h
hn(ω(t1), ω(t2)− ω(t1), · · · , ω(tj)− ω(tj−1), ω(t)− ω(tj) +W (tj+1)−W (t) + hek,

W (tj+2)−W (tj+1), · · · ,W (tn)−W (tn−1))|h=0

]
|ωt=Wt

=
∂

∂h

(
E
[
hn(ω(t1), ω(t2)− ω(t1), · · · , ω(tj)− ω(tj−1), ω(t)− ω(tj) +W (tj+1)−W (t) + hek,

W (tj+2)−W (tj+1), · · · ,W (tn)−W (tn−1))
]
|ωt=Wt

)
|h=0
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which is none other than

∂kFn(t,Wt) = lim
h→0

Fn(t,Wt + hek1[t,T ])− Fn(t,Wt)

h

where Fn is the non-anticipative functional defined by (3.10). So in the case

when hn is smooth, our method provides the same representation as given

by the Clark-Haussmann-Ocone formula. However, in our framework, as the

functional g is only assumed to be continuous with polynomial growth, the

function hn may fail to be differentiable. So even in this simple case with the

weak piecewise constant Euler-Maruyama scheme nX, it is not clear whether

the random variable Hn is differentiable in the Malliavin sense, and even if

it is the case, it is difficult to obtain an explicit form for the conditional

expectation E[DtHn|Ft] using the Malliavin calculus.

However our approximation method applies even in the cases when Hn is

not differentiable in the Malliavin sense: indeed, as shown in section 3.3, as

soon as H is square-integrable, the martingale Yn := E[Hn|Ft] has a smooth

functional representation which is differentiable in the pathwise sense, even

though Hn is not differentiable, neither in a pathwise nor in the Malliavin

sense. This reveals one important difference between the Malliavin approach

and our method. While the Malliavin approach requires in general condi-

tions on the final FT -measurable random variable H or Hn (for example

Hn ∈ D1,2), as the construction of Malliavin derivative involves perturba-

tions which apply to the whole path of the process, our method, based on a

non-anticipative calculus, focuses instead on the process Yn(t) := E[Hn|Ft]
(or equivalently the functional Fn). Since the condition expectation of a ran-

dom variable possesses in general better regularity than the variable itself (as

shown in the proof of theorem 3.7), our method applies under quite general

setting even when Hn might not be Malliavin differentiable.

Another interesting observation comes from the expression of∇ωFn(t,Wt)

obtained in the proof of theorem 3.7. By (3.12), we have, for t ∈ [tk, tk+1),

∂iFn(t, ω) = E
[
g(nX(ωt ⊕

t
BT ))

(B(tk+1)−B(t)) · ei
tk+1 − t

]
.
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Taking ω = Wt and using independence of Brownian increments,∇ωFn(t,Wt)

can be written as:

∇ωFn(t,Wt) = E
[
g(nX(WT ))

W (tk+1)−W (t)

tk+1 − t
|Ft
]
. (3.17)

The factor π(t) := W (tk+1)−W (t)

tk+1−t
in (3.17) can be viewed as a weight function

frequently used in Malliavin methods, which is similar to the weight proposed

for Brownian models, i.e. dX(t) = bdt+ σdW (t) with b and σ two constants

(see for example [29, 30]). Indeed, in our method, we first approximate X by

its piecewise constant Euler-Maruyama scheme, which consists of ’freezing’

the coefficients of the SDE satisfied by X between two time grids. Even the

initial coefficients b and σ of the SDE are general path-dependent functionals,

by considering a piecewise constant approximation of X, b and σ become

locally constant, which allows us to obtain a simple ’local’ weight function

as shown in (3.17).

3.6 Some numerical aspects of the approxi-

mation method

Unlike some applications, for example sensitivity analysis in finance, where

the focus is to compute the sensitivity of an option price with respect to

some parameter at a given time (usually the current time), our approxima-

tion method approximates ∇WY as a process along the whole interval [0, T ].

Thus the approximation error we consider, as shown in section 3.4, is∫ T

0

(∇WY (t)−∇ωFn(t,Wt)) · dW (t),

not the pointwise error in ∇ωFn(t,Wt), such as |∇WY (t)−∇ωFn(t,Wt)| for

a given t or ‖∇WY −∇ωFn(·,W )‖∞.

However in practice, it is only possible to simulate the process∇ωFn(·,W )

at a finite number of points in [0, T ], which consists of approximating∇ωFn(·,W )

by a piecewise constant process which coincides with ∇ωFn(·,W ) at, for ex-

ample, the time grid (ti)0≤i≤n. Here we are interested in this discretization



84 Chapter 3. WEAK MARTINGALE REPRESENTATIONS

error of ∇ωFn(·,W ), i.e.∫ T

0

∇ωFn(t,Wt) · dW (t)−
n−1∑
i=0

∇ωFn(ti,Wti) · (W (ti+1)−W (ti)). (3.18)

Let Zn(t) := ∇ωFn(t,Wt) and Yn(t) := E[g(nX(WT ))|Ft] for t ∈ [0, T ].

Recall that by (3.17), we have, for t ∈ [tk, tk+1) for some 0 ≤ k ≤ n− 1,

Zn(t) = E
[
Yn(T )

W (tk+1)−W (t)

tk+1 − t
|Ft
]

= E
[
E
[
Yn(T )

W (tk+1)−W (t)

tk+1 − t
|Ftk+1

]
|Ft
]

= E
[
Yn(tk+1)

W (tk+1)−W (t)

tk+1 − t
|Ft
]
. (3.19)

The expression (3.19) seems to be similar, for those who are familiar

with the theory of backward stochastic differential equations (BSDE), to the

commonly used numerical scheme of BSDEs [73, 4]. Indeed, a SDE can be

viewed as a special case of BSDE. Let us consider the following decoupled

path-dependent forward-backward stochastic differential equation (FBSDE): dX(t) = b(t,Xt)dt+ σ(t,Xt)dW (t), X(0) = x0 ∈ Rd

−dY (t) = f(t,Xt, Y (t), Z(t))dt− Z(t) · dW (t), Y (T ) = g(XT )

with b and σ non-anticipative functionals satisfying assumption 3.1, and f :

Λd
T ×R×Rd → R the driver of the BSDE. In the peculiar case where f ≡ 0,

the solution (Y, Z) of the BSDE is explicit: Y (t) = E[g(XT )|Ft] et Z is the

integrand in the martingale representation of Y .

With our method, we approximate X by the piecewise constant Euler

scheme nX(WT ), Y by Yn = E[g(nX(WT ))|Ft], and Z by Zn = ∇WYn which

admits also the representation (3.19). Since the above expression of (Yn, Zn)

coincides with the numerical scheme of BSDEs [73, 4] at (ti)0≤i≤n, the results

concerning (Yn, Zn) in the BSDE literature also apply here. We start with

a simple result proven in [4]. Here we provide an elementary proof which

does not make use of Malliavin calculus as in [4]. Recall that in our setting,

tk = k · δ with δ = T
n

.
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Lemma 3.12. For all 0 ≤ k ≤ n− 1, we have:

Zn(tk) =
1

δ
E
[∫ tk+1

tk

Zn(t)dt|Ftk
]
. (3.20)

Proof. Let 0 ≤ k ≤ n − 1. Since Zn is the integrand in the martingale

representation of Yn, we have:

Yn(tk+1) = Yn(tk) +

∫ tk+1

tk

Zn(t) · dW (t).

Now using the expression (3.19) of Zn, we have:

Zn(tk) =
1

δ
E [Yn(tk+1)(W (tk+1)−W (tk))|Ftk ]

=
1

δ
E [Yn(tk)(W (tk+1)−W (tk))|Ftk ]

+
1

δ
E
[(∫ tk+1

tk

Zn(t) · dW (t)

)(∫ tk+1

tk

dW (t)

)
|Ftk

]
=

1

δ
E
[∫ tk+1

tk

Zn(t)dt|Ftk
]

where we have used the (conditional) Itô isometry in the last equality.

This lemma still holds if we consider now the value of Zn at any t ∈
[tk, tk+1), i.e. for all t ∈ [tk, tk+1), we have:

Zn(t) =
1

tk+1 − t
E
[∫ tk+1

t

Zn(s)ds|Ft
]
.

. The property (3.20) of Zn has an important numerical implication: Zn(tk)

is actually the best Ftk-measurable approximation of Zn in [tk, tk+1) with

respect to the L2-norm:

Corollary 3.4. For any 0 ≤ k ≤ n − 1, Zn(tk) solves the following mini-

mization problem:

min
U :Ftk−measurable

E

[(∫ tk+1

tk

(Zn(t)− U) · dW (t)

)2

|Ftk

]
. (3.21)
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Proof.

E

[(∫ tk+1

tk

(Zn(t)− U) · dW (t)

)2

|Ftk

]

= E
[∫ tk+1

tk

tr((Zn(t)− U) t(Zn(t)− U))dt|Ftk
]

= δ · |U |2 − 2E
[∫ tk+1

tk

Zn(t)dt|Ftk
]
· U + E

[∫ tk+1

tk

|Zn(t)|2dt|Ftk
]
.

Clearly the Ftk-measurable random variable which minimizes (3.21) is given

by:

Umin :=
1

δ
E
[∫ tk+1

tk

Zn(t)dt|Ftk
]

= Zn(tk).

What remains is to control explicitly the discretization error (3.18). We

now state a result from [73, 4] adapted to our case.

Proposition 3.4. We assume that the coefficients b and σ of the SDE satisfy

assumption 3.1, and g : (D([0, T ],Rd), ‖ · ‖∞)→ R is Lipschitz continuous:

∃gLip > 0, ∀ω, ω′ ∈ D([0, T ],Rd), |g(ω)− g(ω′)| ≤ gLip‖ω − ω′‖∞.

Under these assumptions, the L2-discretization error of Zn is bounded by:

n−1∑
k=0

E
[∫ tk+1

tk

|Zn(t)− Zn(tk)|2dt
]
≤ C

(
1 + log n

n

)
, (3.22)

where C is a constant which only depends on x0, T , KLip and gLip.

Combining (3.22) with theorem 3.10, we obtain the L2-approximation

error of the martingale representation of g(XT ) by the piecewise constant

process
∑n−1

k=0 Zn(tk)1[tk,tk+1).

Corollary 3.5. Under the assumptions of proposition 3.4, we have:

n−1∑
k=0

E
[∫ tk+1

tk

|Z(t)− Zn(tk)|2dt
]
≤ C

(
1 + log n

n

)
,
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where C is a constant which only depends on x0, T , KLip and gLip, and Z

the integrand in the martingale representation of g(XT ), i.e. Z satisfies:

g(XT ) = E[g(XT )] +

∫ T

0

Z(t) · dW (t).

The numerical computation of Zn(tk), as we have shown earlier, can be

performed via either a finite difference method: Zn(tk) = (Zi
n(tk), 1 ≤ i ≤ d)

with:

Zi
n(tk) = lim

h→0

Fn(tk,Wtk + hei1[tk,T ])− Fn(tk,Wtk)

h
,

or a Monte-Carlo method using directly the expression (3.17) of Zn.

Remark 3.13. In some applications, such as sensitivity analysis in finance,

we are more interested in the sensitivity of the martingale Y with respect

to X, i.e. ∇XY , the weak vertical derivative of Y with respect to X. As

we have mentioned in remark 3.5, a direct construction of a sequence of

smooth functionals of X which approximates Y is difficult since we have

little information about the density of the law of X.

However we can still obtain an approximation of ∇XY using our method

since a jump of W and that of X are closely related if σ is non-degenerate.

Let M(t) :=
∫ t

0
σ(s,Xs)dW (s) be the local martingale component of X. We

have: ∫ T

0

∇ωFn(t,Wt) · dW (t)

=

∫ T

0

∇ωFn(t,Wt) · σ−1(t,Xt)dM(t)

=

∫ T

0

(
tσ−1(t,Xt)∇ωFn(t,Wt)

)
· dM(t).

So ∇XY (t) can be approximated by:

tσ−1(t,Xt)∇ωFn(t,Wt),

and the term tσ−1(t,Xt) can again be approximated, for example, by tσ−1(t, nX t)

with nX the piecewise constant Euler approximation of X.



88 Chapter 3. WEAK MARTINGALE REPRESENTATIONS

Remark 3.14. Our method can also be applied to a general decoupled path-

dependent forward-backward SDE: dX(t) = b(t,Xt)dt+ σ(t,Xt)dW (t), X(0) = x0 ∈ Rd

−dY (t) = f(t,Xt, Y (t), Z(t))dt− Z(t) · dW (t), Y (T ) = g(XT )

with f : Λd
T × R × Rd → R a functional which at time t may depend on the

path of X up to t.

We still approximate X by its piecewise constant Euler scheme nX, and

we pose Yn(T ) := g(nXT ). For 1 ≤ k ≤ n, we can show recursively:

• Yn(tk) depends only on W (t1), W (t2)−W (t1), · · · , W (tk)−W (tk−1).

• For t ∈ [tk−1, tk), there exists F k
n ∈ C1,2

b,r (Λ
d
T ) such that E[Yn(tk)|Ft] =

F k
n (t,Wt). Thus Zn(t) := ∇ωF

k
n (t,Wt) is well defined.

• Yn(tk−1) can be defined through the equation: Yn(tk−1) = E[Yn(tk)|Ftk−1
]+

f(tk−1, nX tk−1
, Yn(tk−1), Zn(tk−1))δ.

• We can interpolate Yn in the interval (tk−1, tk) by defining:

Yn(t) := E[Yn(tk)|Ftk−1
]+f(tk−1, nX tk−1

, Yn(tk−1), Zn(tk−1))(tk−t), t ∈ (tk−1, tk).

By the construction of Yn and Zn, (Yn, Zn) is actually the (exact) solution of

the following equation: −dYn(t) = f(t, nX t, Yn(t), Zn(t))dt− Zn(t)dW (t)

Yn(T ) = g(nXT )

with t := b t
δ
cδ, i.e. t is the largest subdivision point which is smaller or equal

to t.

The advantage of this method is that it not only proposes a continuous

numerical scheme of the BSDE, but also leads to a new way of simulating

Zn as the pathwise vertical derivative of Yn with respect to W . Indeed, if we

are able to simulate numerically Yn(tk), using for example a regression-based

method (see [35]), Zn(tk) can be obtained via a finite difference method, or

simply the derivative of Yn(tk) with respect to W (tk) −W (tk−1) if Yn(tk) is

already approximated by an explicit smooth function of increments of W .
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3.7 Applications to dynamic hedging of path-

dependent options

As we have mentioned in the previous section, the weak martingale ap-

proximation method we proposed in section 3.3 allows to provide a system-

atic manner of hedging path-dependent options where the underlying security

prices may following non-Markovian dynamics. Observe also that our method

does not require strong assumptions (for example differentiability assump-

tions) on neither the coefficients of the SDE satisfied by the underlying nor

the payoff functional.

We assume in the following that the financial market considered is com-

plete, and there exists a risk-neutral measure (equivalent martingale mea-

sure) P. Let T > 0, and S = (Si, 1 ≤ i ≤ d) be a d-dimensional process

which represents the prices of d underlying assets. Let r : [0, T ] → R+ be a

deterministic instantaneous interest rate function satisfying∫ T

0

r(t)dt <∞.

We assume that S satisfies the following dynamics:

dS(t) = r(t)S(t)dt+ σ(t, St)dW (t), S(0) = s0 ∈ Rd,

where W is a d-dimensional P-Brownian motion, and σ : Λd
T → Md(R) a

non-anticipative functional which satisfies assumption 3.1. We assume in

addition that σ is non-degenerate, i.e. det(σ(t, St)) 6= 0, dt × dP-a.e. Let

g : D([0, T ],Rd)→ R be the payoff functional of the option. In order to have

an explicit control of the hedging error (theorem 3.10), we assume that g is

Lipschitz continuous with respect to the supremum norm ‖ · ‖.
Denote by F := (Ft)t∈[0,T ] the (P-completed) natural filtration generated

by W . Since the market is complete, the option can be perfectly hedged by

a self-financing portfolio: the value of this portfolio V is equal to the price

of the option at any time t ∈ [0, T ],

V (t) = exp

(
−
∫ T

t

r(s)ds

)
E [g(ST )|Ft] .
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Denote by S̃(t) := exp(−
∫ t

0
r(s)ds)S(t) the discounted asset price, Ṽ (t) :=

exp(−
∫ t

0
r(s)ds)V (t) the discounted portfolio value, and g̃(S̃T ) := exp(−

∫ T
0
r(s)ds)g(ST ).

We have Ṽ (t) = E[g̃(S̃T )|Ft]. So by working with (S̃, Ṽ , g̃) instead of (S, V, g),

we may assume r ≡ 0 in the following without any loss of generality. Under

this assumption, S and V are P-martingales, and there exists a F-adapted

process φ such that:

g(ST ) = V (T ) = V (0) +

∫ T

0

φ(t) · dS(t).

Let n ∈ N, and δ = T
n

. We denote by nS the piecewise constant Euler

approximation of S on the grid (tj = jδ, j = 0, · · · , n) defined in definition

3.2: for ω ∈ D([0, T ],Rd), nS(ω) is constant in [tj, tj+1) for any 0 ≤ j ≤ n−1

with nS(0, ω) = s0, and

nS(tj+1, ω) = nS(tj, ω) + σ(tj, nStj(ω))(ω(tj+1−)− ω(tj−)).

And similarly to definition 3.6, we define: for ω ∈ D([0, T ],Rd),

Fn(t, ωt) := E
[
g

(
nS(ωt ⊕

t
BT )

)]
, t ∈ [0, T ]

where B is a Wiener process independent of W . We have, for t ∈ [0, T ],

Fn(t,Wt) = E[g(nS(WT ))|Ft] P-almost surely, and Fn ∈ C1,2
loc,r(Λ

d
T ) (theorem

3.8). In the following, we note simply nS for nS(WT ), so nS is the classical

piecewise constant Euler-Maruyama scheme of S.

Here we are interested in the problem of dynamic hedging in discrete time,

so the objective is to approximate φ by a piecewise constant process φn. As

suggested by remark 3.13, a natural candidate of φn is: for 0 ≤ j ≤ n− 1,

φn(tj) := tσ−1(tj, nStj)∇ωFn(tj,Wtj).

Here we assume in addition that det(σ(t, nSt)) 6= 0, dt× dP-a.e.

To compute numerically ∇ωFn(tj,Wtj), we can either use directly the

explicit expression of ∇ωFn(tj,Wtj) obtained in (3.17):

∇ωFn(tj,Wtj) = E
[
g(nST )

W (tj+1)−W (tj)

δ
|Ftj

]
,
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and then compute the expectation using the Monte-Carlo method. We can

also use the definition of vertical derivative as sensitivity of a functional with

respect to a jump of the path, and thus approximate it via a finite difference

method: ∇ωFn(tj,Wtj) = (∂iFn(tj,Wtj), 1 ≤ i ≤ d) with

∂iFn(tj,Wtj) '
Fn(tj,Wtj + hei1[tj ,T ])− Fn(tj,Wtj)

h

for h small. The advantage of the first method is that it provides a unbiased

estimator of ∇ωFn(tj,Wtj) contrary to the finite difference method. However

since δ = T
n

is in general quite small for a reasonable number of discretiza-

tion steps, the term in the expectation can be quite considerable, leading to

immense variance which makes the Monte-Carlo method less efficient. So in

the following we adopt the second approach.

Let h > 0. Since Fn is infinitely vertically differentiable, we can use a

centered difference scheme in order to have a more accurate approximation:

∂̂iFn(tj,Wtj) :=
Fn(tj,Wtj + hei1[tj ,T ])− Fn(tj,Wtj − hei1[tj ,T ])

2h
.

Each of these two terms can be computed numerically via the Monte-Carlo

method. For example:

Fn(tj,Wtj + hei1[tj ,T ])

= E
[
g

(
nS((Wtj + hei1[tj ,T ])⊕

tj
BT )

)]
= E

[
g

(
nS((Wtj ⊕

tj
BT ) + hei1[tj ,T ])

)]
= E

[
g
(
nS(WT + hei1[tj ,T ])

)
|Ftj

]
.

In addition, for ω ∈ D([0, T ],Rd), a jump of size ε ∈ Rd at time tj of

ω corresponds to a jump of size σ(tj, nStj(ω))ε ∈ Rd at time tj+1 of nS(ω)

by definition of the Euler scheme nS (a jump at tj of ω does not affect the

value of nS(ω) at tj: nS has ‘predictable’ dependence with respect to ω). So

a natural estimator of φn = (φin(tj), 1 ≤ i ≤ d) at time tj is given by:

φ̂in(tj) :=
E
[
g
(
nS

(tj+1,hei)
)
|Ftj

]
− E

[
g
(
nS

(tj+1,−hei)
)
|Ftj

]
2h

, (3.23)
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where nS
(tj+1,hei) (resp. nS

(tj+1,−hei)) is the piecewise constant Euler-Maruyama

scheme of S with a jump of size hei (resp. −hei) at time tj+1, i.e. nS
(tj+1,±hei)

is constant in each interval [tk, tk+1) for 0 ≤ k ≤ n− 1 with nS
(tj+1,±hei)(0) =

s0. For k 6= j,

nS
(tj+1,±hei)(tk+1) = nS

(tj+1,±hei)(tk) + σ
(
tk, nS

(tj+1,±hei)
tk

)
(W (tk+1)−W (tk)),

and

nS
(tj+1,±hei)(tj+1) = nS

(tj+1,±hei)(tj)+σ
(
tj, nS

(tj+1,±hei)
tj

)
(W (tj+1)−W (tj))±hei.

This might seem quite similar to the classical computation of the delta

at time t of an option in Markovian case where we compute the sensitivity of

the option price with respect to a small jump of S at t. Here we show that

it can be extended to more general non-Markovian models, but with a slight

difference: to compute the delta at time tj, we perturb the path of S at a

later time tj+1. This point is actually crucial to prove that the ‘delta’ is well

defined in our case, i.e. Fn is vertically differentiable (theorem 3.7).

As shown in the previous section, the error of approximation of φ by φn in

discrete time is of order n−
1
2 (we neglect the term log n in the error). Let M

be the number of simulations in the Monte-Carlo method. It is well known

that the error due to the Monte-Carlo method combined with the centered

difference scheme is of order M− 1
2 if we take the same sequence of random

numbers to simulate E[g(nS
(tj+1,hei))|Ft] and E[g(nS

(tj+1,−hei))|Ft] and h is

chosen to be of order M− 1
4 (see for example [31, 32, 49]). In summary if we

take M ' n ' h−
1
4 , then the replication error of the option should be of

order M− 1
2 ' n−

1
2 .

3.7.1 Numerical examples

We end this section with several numerical examples. We start with a

simple case where S is a R-valued process which follows the Black-Scholes

model. We always assume that the interest rate is zero, so S satisfies: for
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t ∈ [0, T ],

dS(t)

S(t)
= σdW (t), S0 = s0 ∈ R

with σ > 0 and W a one-dimensional standard Brownian motion. We

consider a lookback option of maturity T with payoff g(ST ) = S(T ) −
mint∈[0,T ] S(t). Clearly g is Lipschitz continuous with respect to the supre-

mum norm ‖ · ‖.

Since the computational complexity for such dynamic hedging problems

is of order M · n2, we will take n much smaller than M in our numerical

implementations although from a theoretical point of view, n and M should

be of the same order.

In our example, we assume that the underlying process S starts from

s0 = 100, and the maturity T of the option is equal to 1. First we take the

number of time discretization n = 100, the number of Monte-Carlo simulation

M = 104, and h = 0.1. We show in figure 3.1 the hedging error, for a given

scenario, of the lookback option during its entire life with volatility σ equal

to 0.2. We compute, at each time discretization, the Monte-Carlo price based

on all past information, and the value of the portfolio which replicates the

option, i.e. with initial value equal to the option price, and with variation

between two time steps equal to the increments of S multiplied by the delta

given by expression (3.23) (we assume r = 0).
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Figure 3.1: Hedging error of lookback option with n = 100

We observe from figure 3.1 that in this case, the two curves coincide well

with each other, which means that the delta hedging strategy replicates well

the option in this specific scenario. The following table provides the tracking

error in this case:

Tracking error at T = 1 Price of option Relative error

n = 100 -0.5483 14.0994 3.89%

We can also increase the number of time discretization n to n = 500, and

we obtain a similar result (figure 3.2). In this case, the terminal hedging

error is equal to −0.3226, corresponding to a relative error of 2.22% with

respect to the option price.
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Figure 3.2: Hedging error with n = 500 and σ = 0.2

Clearly one specific path of scenario does not provide much information on

the efficiency of our hedging strategy. We present in the following histogram

(figure 3.3) the tracking error at time T = 1 of 100 paths of scenario. In

these simulations, we take n = 100 and σ = 0.2. We also compute the mean

and the variance of these tracking errors, which are given in the following

table:

Tracking errors

mean 0.0495

variance 1.1108

Table 3.1: Mean and variance of tracking error of 100 scenarios for hedging

strategy computed using Euler and functional approximation
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Figure 3.3: Histogram of tracking error for 100 simulations

We observe that even the variance of the tracking errors might seem quite

important, our method works generally well in this simple case provided

that the number of time discretization and the number of simulations in the

Monte-Carlo method are not very significant.

We now move to a more sophisticated example in which the volatility at

time t of the underlying S might depend on the whole path of S up to time

t. Inspired by the path-dependent volatility model proposed by Hobson and

Rogers [38], but for the reason of numerical simplicity, we assume that the

underlying S follows the following dynamics (we always assume that r = 0):

dS(t) = σ0S(t)(1 + kσ(t, St, λ))dW (t), S0 = s0 ∈ R

with σ0, k and λ positive constants, and the functional σ defined by:

σ(t, St, λ) :=

∫ t
0
eλs(S(t)− S(s))ds

S(t)
∫ t

0
eλsds

, and σ(0, S0, λ) := 0. (3.24)
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So σ(t, St, λ) is the weighted average of increments of S over [0, t]. Our

model differs from the Hobson-Rogers model in several aspects, mainly for

the purpose of simplification. First instead of considering an infinite window

(−∞, t] in which the weighted average is taken as in the Hobson-Rogers

model, we assume that only the path of S in the interval [0, t] can affect

the volatility at time t. Secondly, we consider directly the increments of S

instead of those of logS in the functional σ.

We consider a rainbow option with two underlying assets S1 and S2. We

assume further that there might be cross-dependency between the volatility

of S1 and that of S2, i.e. the volatility of S1 may depend on the path of S2

and vice versa. Our model is the following:{
dS1(t) = σ0S

1(t)(1 + k1σ(t, S1
t , λ) + k2σ(t, S2

t , λ))dW (t), S1
0 = s1

0 ∈ R
dS2(t) = σ0S

2(t)(1 + k1σ(t, S2
t , λ) + k2σ(t, S1

t , λ))dB(t), S2
0 = s2

0 ∈ R

where σ0, k1, k2 and λ are all positive constants, W and B two standard

Brownian motions with a constant correlation ρ, i.e. d〈W,B〉(t) = ρdt, and

σ the functional defined in (3.24). Clearly we can take a different σ0, k1, k2 or

λ for S1 and S2, but here for simplicity, we assume that the two underlyings

share the same model parameters.

We decompose the Brownian motion B into two independent Brownian

motions W and W⊥: B = ρW +
√

1− ρ2W⊥. Let S := (S1, S2) ∈ R2 and

W̃ := (W,W⊥) ∈ R2. Our initial model can be rewritten as:

dS(t) = σ̃(t, St)dW̃ (t), S0 = s0 = (s1
0, s

2
0) ∈ R2

with σ̃(t, St) = σ0×(
S1(t)(1 + k1σ(t, S1

t ) + k2σ(t, S2
t )) 0

ρS2(t)(1 + k1σ(t, S2
t ) + k2σ(t, S1

t ))
√

1− ρ2S2(t)(1 + k1σ(t, S2
t ) + k2σ(t, S1

t ))

)
(we omit the parameter λ in the functional σ).

Consider now a rainbow option on S = (S1, S2) whose payoff g at matu-

rity T is given by:

g(ST ) :=

(
max
t∈[0,T ]

(S1(t)− S2(t))−K
)

+
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where K > 0 is the strike of the option.

In our simulation, we take s1
0 = s2

0 = 100, T = 1, σ0 = 0.2, λ = 10,

k1 = 1, k2 = 0.4, K = 10 and ρ = 0.6. We always take the number of

time discretization n = 100, the number of simulations in the Monte-Carlo

method M = 104, and h = 0.1. We show in figure 3.4 the tracking error

of this option for one specific path of S. Again the two curves represent

the option price obtained by the Monte-Carlo method and the value of the

portfolio which replicates the option using the delta proposed in (3.23) at

each time step.

Figure 3.4: Hedging error of rainbow option with n = 100

From this figure, we observe that the gap between two curves is more con-

siderable than in our first example with the Black-Scholes model, especially

when close to the maturity. For this scenario, the tracking error at T = 1 is

equal to 0.4999, corresponding to a relative error of 7.26% (the price of the

option at t = 0 is equal to 6.8827).



3.7. Applications to dynamic hedging of path-dependent options 99

We show in figure 3.5 another example of scenario with n = 200 now.

The final tracking error in this case is 0.4132, corresponding to a relative

error of 6.09%.

Figure 3.5: Hedging error of rainbow option with n = 200

We show finally, as we have done with the Black-Scholes model, the track-

ing error of 100 paths of scenario, presented in figure 3.6, as well as the mean

and the variance of these tracking errors.

Tracking errors

mean -0.0377

variance 1.2287

Table 3.2: Mean and variance of tracking error of 100 scenarios for hedging

strategy computed using Euler and functional approximation
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Figure 3.6: Histogram of tracking error for 100 simulations

We observe from these data that in this example, the variance of tracking

errors is much more important (relative to the option price) compared to our

first example with the Black-Scholes model. But in most of the cases, our

method is still able to replicate the option with a reasonably small tracking

error even the number of simulations in the Monte-Carlo method and the

number of time discretization in our simulation are relatively small due to

numerical complexity.



Chapter 4

Weak derivatives for

non-anticipative functionals

In his seminal paper ’Calcul d’Itô sans probabilités’ [27], Hans Föllmer

proposed a pathwise derivation of the Itô formula, which was then extended

to path-dependent functionals by Cont and Fournié [8], using a notion of

pathwise directional derivative introduced by Dupire [20]. The associated

functional calculus applies to functionals which possess certain directional

derivatives in the strong sense i.e. at all paths in a certain set.

In this chapter, we introduce a notion of weak derivative for functionals

which are not necessarily smooth in the sense of [8, 20]. To achieve this, we

use the concept of pathwise quadratic variation along a sequence of parti-

tions to define a bilinear form on the space of paths, and define a notion of

weak derivative for functionals by duality with respect to this bilinear form.

The whole approach involves only pathwise arguments and does not rely on

any probabilistic notion. Nevertheless, we show that when applied to an Ito

process, this notion of weak derivative coincides with the probabilistic weak

derivative proposed by Cont and Fournié [10]. Our approach also provides a

characterization of non-anticipative functionals which conserve the martin-

gale property under a given probability measure, i.e. when applied to a given

martingale, yield a martingale under the same probability measure.

101
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4.1 Introduction

As discussed in section 2.2, Cont and Fournié introduced in [10] a no-

tion of weak vertical derivative ∇X (Theorem 2.9) with respect to a square-

integrable martingale, in a probabilistic framework. This operator is shown

to be the adjoint of the Itô stochastic integral with respect to X, and yields

martingale representation formula (Theorem 2.10) [10].

The main ingredients of this construction can be thought of as a Sobolev-

type construction on path space with respect to the reference measure d[X](t)×
dPX . First, the classical vertical derivative operator ∇X defines an isometry

(2.12) between two normed vector spaces (or more generally metric spaces)

(D(X), ‖ · ‖M2(X)) and (L2(X), ‖ · ‖L2(X)):

‖Y ‖2
M2(X) = ‖∇XY ‖2

L2(X), ∀Y ∈ D(X). (4.1)

Now let Y ∈ D(X), the closure of D(X) with respect to ‖ · ‖M2(X). By def-

inition of D(X), there exists a sequence of Yn ∈ D(X) such that ‖Yn −
Y ‖M2(X) →

n→∞
0. In particular, (Yn)n≥1 is a Cauchy sequence, and so is

(∇XYn)n≥1 using the isometry (4.1). As the space L2(X) is complete, the

sequence (∇XYn)n≥1 converges to some element of L2(X), which is defined

as the weak vertical derivative ∇XY of Y with respect to X. What remains

is to determine the space D(X), which proves in this case to be the whole

space M2(X) (lemma 2.8).

The main objective of this chapter is to propose a notion of weak vertical

derivative for non-anticipative functionals without intervention of any prob-

ability notions. More precisely, for a given path x ∈ D([0, T ],Rd), we would

like to extend the vertical derivative operator along x, ∇ωF (., x) defined ini-

tially for vertically differentiable functionals F to more general functionals.

The reason we consider vertical derivatives along a fixed path x is that it

is more convenient to manipulate a path ∇ωF (., x) of [0, T ] then a whole

functional ∇ωF which requires much more information. This is in the same

spirit of the construction in [10] in which the derivative operator ∇X is ex-

tended for a given process X. We shall also consider, later in this chapter,
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functionals which are weakly vertically differentiable along a set of paths.

The probabilistic construction in [10] relies on the Ito isometry formula.

Similarly, our construction relies on an isometry formula which makes use

of the notion of pathwise quadratic variation (Definition 1.4) proposed by

Föllmer [27]. However, contrary to the Itô isometry in probability, this path-

wise isometry formula does not always hold for all (vertically differentiable)

functionals. So we will need to limit ourselves to a subspace of smooth func-

tionals. More importantly, the space Qπ([0, T ],Rd) of paths with finite path-

wise quadratic variation along a given sequence of partitions π is not a vector

space (see Remark 1.5), which makes this pathwise construction of weak ver-

tical derivatives technically more involved than its probabilistic counterpart.

The concept of pathwise isometry for integrals of smooth functionals has

been also studied by Ananova and Cont [1] in parallel with this work, but

using a different approach and under stronger regularity assumptions.

The rest of this chapter is organized as follows. In section 4.2, using the

notion of pathwise quadratic variation (definition 1.4), we extend the path-

wise isometry formula initially proposed for functions (see for example [71])

to cylindrical functionals (definition 1.15), and show why it might not hold

for general smooth functionals. We introduce, in section 4.3, a notion of

generalized (pathwise) quadratic variation. The advantage of this notion is

that, contrary to the space Qπ([0, T ],Rd), the space Q̂π([0, T ],Rd) of paths

of finite generalized quadratic variation along π is a vector space, on which

a semi-norm can be defined. We then construct, in section 4.4, weak path-

wise vertical derivatives along a given path x for functionals which are not

vertically differentiable but can be approximated by smooth functionals in

some sense. In section 4.5, we prove that if X is square-integrable martin-

gale, any square-integrable FX-martingale can be represented as a functional

of X which is weakly vertically differentiable along almost all paths of X,

and the weak vertical derivative of this functional along X coincides with

the probabilistic weak derivative ∇X of Cont and Fournié [10]. Finally, in

Section 4.6, we obtain a characterization of functionals which conserve the
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martingale property when applied to a reference martingale.

4.2 Pathwise isometry formula

As we have shown in section 2.2, one of the main ingredients for extending

the operator ∇X to the spaceM2(X) is the Ito isometry formula (4.1), which

involves a probability measure P. In a pathwise setting, we can no longer

use the same norms as in (4.1) since the probability measure P is involved in

both norms. However, the notion of pathwise quadratic variation defined in

definition 1.4 seems relevant to our pathwise setting.

Throughout this section, we fix a sequence of partitions π = (πm)m≥1

with πm = (0 = tm0 < tm1 < · · · < tmk(m) = T ) and a continuous path

x ∈ C([0, T ],Rd) ∩ Qπ([0, T ],Rd). Recall first a simple result of pathwise

quadratic variation given in [66]:

Lemma 4.1. Let z ∈ C([0, T ],R) such that [z]π(T ) = 0. Then for x ∈
C([0, T ],R) and t ∈ [0, T ], the quadratic variation [x]π(t) exists if and only

if [x + z]π(t) exists. And in this case, we have [x]π(t) = [x + z]π(t) for all

t ∈ [0, T ].

Consider now a function f : Rd → R. The following result shows that

if f is smooth, then the path t 7→ f(x(t)) also has finite pathwise quadratic

variation along the same sequence of partitions π.

Proposition 4.1 (Pathwise isometry formula for functions). Let f : Rd →
R be a twice continuously differentiable function, and x ∈ C([0, T ],Rd) ∩
Qπ([0, T ],Rd). Then the path f(x(·)) has finite quadratic variation which is

given by: for t ∈ [0, T ],

[f(x(·))]π(t) =

[∫ ·
0

∇f(x(s)) · dπx(s)

]
π

(t)

=

∫ t

0

tr
(
∇(f(x(s)) t∇f(x(s))d[x]π(s)

)
. (4.2)
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This result may be found in [71] for example; we provide a succinct proof

below for the sake of completeness. In fact, the proposition holds even if

f is only once continuously differentiable. However, we will still assume f

to be at least twice continuously differentiable (and in the functional case

F ∈ C1,2
b (Λd

T )) in order to apply the Itô formula for later applications.

Proof. Recall first the pathwise Itô formula for functions (proposition 1.1) in

continuous case: for t ∈ [0, T ], we have:

f(x(t)) = f(x(0)) +

∫ t

0

∇f(x(s)) · dπx(s) +
1

2

∫ t

0

tr
(
∇2f(x(s))d[x]π(s)

)
.

(4.3)

Remark that the integral with respect to d[x]π in (4.3) has zero quadratic

variation as it has finite variation. By lemma 4.1, the quadratic variation (if

exists) of the path f(x(·)) and that of
∫ ·

0
∇f(x(s)) ·dπx(s) shall be the same.

Let m ∈ N. We note δxmi := x(tmi+1) − x(tmi ). By a Taylor expansion of

second order, we have:

f(x(tmi+1))−f(x(tmi )) = ∇f(x(tmi ))·δxmi +
1

2
tr
(
∇2f(x(tmi ))(δxmi ) t(δxmi )

)
+εmi |δxmi |2

(4.4)

with εmi →
m→∞

0.

Now taking the square of both sides in (4.4), summing up for all tmi ∈ πm
and taking the limit when m tends to infinity, we can readily check that the

only term which does not tend to zero in the right-hand side of (4.4) is the

square of ∇f(x(tmi )) · δxmi . So the quadratic variation of f(x(·)) (if exists) is:

[f(x(.))]π(t) = lim
m→∞

∑
tmi+1≤t

tr
(
∇f(x(tmi )) t∇f(x(tmi ))(δxmi ) t(δxmi )

)
. (4.5)

The limit on the right-hand side of (4.5) exists indeed, and is equal to∫ t
0

tr(∇f(x(s)) t∇f(x(s))d[x]π(s)) using lemma 1.17 and the definition of

[x]π.

The extension of the pathwise isometry formula (4.2) to the case of non-

anticipative functionals is subtle. A key ingredient in the proof of proposition
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4.1 is a Taylor expansion. For a (twice) vertically differentiable functional

F ∈ C1,2
b (Λd

T ), we dispose of a Taylor expansion along piecewise-constant

paths. Replacing x by a piecewise-constant approximation xm along the

partition πm defined by

xm(t) :=

k(m)−1∑
i=0

x(tmi+1−)1[tmi ,t
m
i+1)(t) + x(T )1{T}(t) (4.6)

we obtain a convergent approximation:

Proposition 4.2. Let F ∈ C1,2
b (Λd

T ) be a R−valued non-anticipative func-

tional. We have, for t ∈ [0, T ],∑
tmi+1≤t

(
(F (tmi+1, x

m
tmi+1−

)− F (tmi , x
m
tmi −

)
)2

→
m→∞

∫ t

0

tr
(
(∇ωF (s, xs)

t∇ωF (s, xs)d[x]π(s)
)
. (4.7)

Proof. First we proceed as in the proof of the pathwise change of variable

formula (theorem 1.16) by decomposing F (tmi+1, x
m
tmi+1−

)−F (tmi , x
m
tmi −

) into two

terms representing respectively the horizontal and vertical perturbations of

a path:

F (tmi+1, x
m
tmi+1−

)− F (tmi , x
m
tmi −

)

= (F (tmi+1, x
m
tmi+1−

)− F (tmi , x
m
tmi

)) + (F (tmi , x
m
tmi

)− F (tmi , x
m
tmi −

)). (4.8)

The first term in (4.8) can be written as an integral of the horizontal deriva-

tive:

F (tmi+1, x
m
tmi+1−

)− F (tmi , x
m
tmi

) =

∫ tmi+1

tmi

DF (u, xmtmi )du.

Let δxmi = x(tmi+1) − x(tmi ). Next, using a second order Taylor expansion of

e 7→ F (tmi , x
m
tmi −

+ e1[tmi ,∞)), the second part of (4.8) can be written as:

F (tmi , x
m
tmi

)− F (tmi , x
m
tmi −

) = ∇ωF (tmi , x
m
tmi −

) · δxmi +
1

2
tr
(
∇2
ωF (tmi , x

m
tmi −

)(δxmi ) t(δxmi )
)

+εmi |δxmi |2

with εmi →m→∞ 0.
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By the same argument as in the proof of proposition 4.1, the left-hand

side term in (4.7) tends to (if the following limit exists):

lim
m→∞

∑
tmi+1≤t

tr
(
∇ωF (tmi , x

m
tmi −

) t∇ωF (tmi , x
m
tmi −

)(δxmi ) t(δωmi )
)
.

Since∇ωF (t, xmt−)→m→∞∇ωF (t, xt) for all t ∈ [0, T ] as∇ωF is left-continuous

(definition 1.11), we obtain (4.7) using again lemma 1.17.

Observe that the left-hand side term in (4.7) differs in general from the

pathwise quadratic variation of the path t 7→ F (t, xt). Indeed, the approxi-

mation of x by the piecewise constant path xm works well to derive the func-

tional Ito formula as in this case, we only require the sequence (F (t, xmt−))m≥1

converges to F (t, xt) for a given t, i.e. the sequence of paths F (·, xm·−) con-

verges pointwise to F (·, x·). This pointwise convergence does not imply, for

example, ∑
tmi ∈πm

(
F (tmi , xtmi )− F (tmi , x

m
tmi −

)
)2

→
m→∞

0. (4.9)

So proposition 4.2 does not tell anything about the pathwise quadratic

variation [F (·, x·)]π, and we do not even know if it exists for any F ∈ C1,2
b (Λd

T ).

However, if we assume in addition that the functional F satisfies (4.9), then

the pathwise quadratic variation of F (·, x·) exists and is equal to the right-

hand side term of (4.7).

Corollary 4.1. Let F ∈ C1,2
b (Λd

T ) be a R−valued non-anticipative functional

satisfying (4.9). Then the path F (·, x·) has finite pathwise quadratic variation

along π, given by: for t ∈ [0, T ],

[F (·, x·)]π(t) =

[∫ ·
0

∇ωF (s, xs) · dπx(s)

]
π

(t) =

∫ t

0

tr
(
∇ωF (s, xs)

t∇ωF (s, xs)d[x]π(s)
)
.

(4.10)

Proof. We observe first that:

F (tmi+1, xtmi+1
)− F (tmi , xtmi )

= (F (tmi+1, xtmi+1
)− F (tmi+1, x

m
tmi+1−

)) + (F (tmi+1, x
m
tmi+1−

)− F (tmi , x
m
tmi −

))

+(F (tmi , x
m
tmi −

)− F (tmi , xtmi )). (4.11)
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The only term which contributes to [F (·, x·)]π(t) (if it exists) in (4.11) is the

sum of (F (tmi+1, x
m
tmi+1−

)−F (tmi , x
m
tmi −

))2 along πm: the terms with (F (tmi+1, xtmi+1
)−

F (tmi+1, x
m
tmi+1−

))2 and (F (tmi , x
m
tmi −

) − F (tmi , xtmi ))2 tends to zero by assump-

tion (4.9), and the cross-product terms also tend to zero due to the Cauchy-

Schwarz inequality. We conclude using proposition 4.2.

To the best of our knowledge, contrary to the case of smooth functions,

we do not know if the path F (·, x·) has finite pathwise quadratic variation of

the form (4.10) for any non-anticipative functional F ∈ C1,2
b (Λd

T ) (see also [1]

for other conditions on F under which (4.10) holds). To tackle this problem,

one possible solution, as suggested by proposition 4.2, is to define, for a

non-anticipative functional F , a ’pseudo’ quadratic variation along x defined

as a ‘diagonal’ limit of squared increments along πn computed at piecewise

constant approximations along πn:

Definition 4.2. A non-anticipative functional F : ΛT → R is said to have

finite pseudo quadratic variation along x if for any t ∈ [0, T ], the limit

[F̃ (·, x·)]π(t) := lim
m→∞

∑
tmi+1≤t

(
F (tmi+1, x

m
tmi+1−

)− F (tmi , x
m
tmi −

)
)2

<∞

exists, where xm is the piecewise constant approximation of x defined by (4.6).

Using this notion of pseudo quadratic variation, proposition 4.2 can be

reformulated as: for any F ∈ C1,2
b (Λd

T ), for t ∈ [0, T ],

[F̃ (·, x·)]π(t) =

∫ t

0

tr
(
∇ωF (s, xs)

t∇ωF (s, xs)d[x]π(s)
)
. (4.12)

The isometry formula (4.12) holds for all smooth functionals in C1,2
b (Λd

T )

without any further conditions. However, one major drawback of this notion

of pseudo quadratic variation is that its definition requires the knowledge of F

evaluated not only at x but also at xm. So this notion is not a property of the

path F (·, x·), but a property of the functional F . In other words, this notion

depends on the values taken by the functional F not just along the path x

in the ’neighborhood’ of x. For example, consider a stochastic process X
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which admits a functional representation with respect to a Brownian motion

W : X(t) = F (t,Wt) for some non-anticipative functional F . In general the

only thing we know about F is its value along W , while [F̃ (·,W·)] seems to

depend on the values of F along discrete approximations of W .

In the following, we still use the notion of pathwise quadratic variation,

but we limit ourselves to a subset of C1,2
b (Λd

T ) such that the pathwise isometry

formula (4.10) holds for all functionals in this subset. Corollary 4.1 provides

one such subset: smooth functionals satisfying (4.9). We now define another

subset of C1,2
b (Λd

T ) which is simpler to characterize than condition (4.9): the

space of cylindrical functionals, and we show that the pathwise isometry for-

mula (4.10) holds for such functionals. Recall first the definition of cylindrical

functionals:

Definition 4.3. A non-anticipative functional F is said to be cylindrical if

there exists 0 ≤ t1 < t2 < · · · < tn ≤ T such that for all x ∈ D([0, T ],Rd),

F (t, x) = h(x(t)− x(tn−))1t>tng(x(t1−), x(t2−), · · · , x(tn−)) (4.13)

for some continuous function g ∈ C(Rn×d,R) and some twice differentiable

function h ∈ C2(Rd,R) with h(0) = 0.

The condition h(0) = 0 ensures that if x is a continuous path, then the

path F (·, x·) is also continuous. It is clear that all cylindrical functionals are

smooth (i.e. ∈ C1,2
b (Λd

T )) [7].

Lemma 4.4. Let F be a non-anticipative cylindrical functional of the form

(4.13). Then F ∈ C1,2
b (Λd

T ) with DF ≡ 0, and for j = 1, 2,

∇j
ωF (t, x) = ∇jh(x(t)− x(tn−))1t>tng(x(t1−), x(t2−), · · · , x(tn−)).

We denote by S(Λd
T ) the linear span of all cylindrical functionals of the

form (4.13). Clearly we have S(Λd
T ) ⊂ C1,2

b (Λd
T ). And for any F ∈ S(Λd

T ), F

can be written as:

F (t, x) =
k∑
j=1

hj(x(t)− x(sj−))1t>sjgj(x(s1−), x(s2−), · · · , x(sj−)) (4.14)
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with gj ∈ C(Rj×d,R), hj ∈ C2(Rd,R), hj(0) = 0 and 0 ≤ s1 < s2 < · · · <
sk ≤ T . We now show that any functional F in S(Λd

T ) satisfies the pathwise

isometry formula (4.10).

Proposition 4.3 (Pathwise isometry formula for cylindrical functionals).

Let x be a continuous path in C([0, T ],Rd) ∩Qπ([0, T ],Rd). For F ∈ S(Λd
T ),

the path F (·, x·) has finite quadratic variation along π, and we have: for

t ∈ [0, T ],

[F (·, x·)]π(t) =

∫ t

0

tr
(
∇ωF (s, xs)

t∇ωF (s, xs)d[x]π(s)
)
. (4.15)

Proof. Assume that F takes the form (4.14). We calculate the increments

of the path F (·, x·) between two consecutive time grids tmi and tmi+1 of the

partition πm. We distinguish two cases:

• If tmi and tmi+1 are in the same interval [sj, sj+1) for some 1 ≤ j ≤ k (we

assume sk+1 = T ), then for t ∈ [tmi , t
m
i+1] ⊂ [sj, sj+1), F (t, ω) can be

viewed as a smooth function of x(t) as other terms are constant in this

interval. So we can apply a second order Taylor expansion between tmi

and tmi+1, and we obtain using the same argument as in proposition 4.1:(
F (tmi+1, xtmi+1

)− F (tmi , xtmi )
)2

'
∫ tmi+1

tmi

tr
(
∇ωF (s, xs)

t∇ωF (s, xs)d[x]π(s)
)
.

If we sum all i in this category, and as |πm| decreases to zero, we have:∑
tmi+1≤t,[tmi ,tmi+1]⊂[sj ,sj+1)

(
F (tmi+1, xtmi+1

)− F (tmi , xtmi )
)2

→
m→∞

∫ t

0

tr
(
∇ωF (s, xs)

t∇ωF (s, xs)d[x]π(s)
)
.

• There exists 1 ≤ j ≤ k such that tmi < sj ≤ tmi+1. Since the path F (·, x·)
is continuous, and there exists only a finite number of such i (at most

k), we have: ∑
tmi+1≤t,tmi <sj≤tmi+1

(
F (tmi+1, xtmi+1

)− F (tmi , xtmi )
)2

→
m→∞

0.
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We conclude combining these two cases.

As the space S(Λd
T ) is a vector space, we can always define, for F,G ∈

S(Λd
T ), the quadratic covariation of the paths F (·, x·) and G(·, x·) by: for

t ∈ [0, T ],

[F (·, x·), G(·, x·)]π(t) :=
[(F +G)(·, x·)]π(t)− [F (·, x·)]π(t)− [G(·, x·)]π(t)

2
.

Using the expression of quadratic variation for cylindrical functionals (4.15),

we obtain immediately:

[F (·, x·), G(·, x·)]π(t) =

∫ t

0

tr
(
∇ωF (s, xs)

t∇ωG(s, xs)d[x]π(s)
)
. (4.16)

The aim of this chapter is to define, using the isometry formula (4.15), a

notion of weak pathwise vertical derivatives for non-anticipative functionals

which are not necessarily smooth. One natural approach is to consider the

closure of S(Λd
T ) with respect to the pathwise quadratic variation along x,

i.e. we consider the space H̃π(Λd
T , x) of non-anticipative functionals:

H̃π(Λd
T , x) :=

{
G,∃(Fn) ∈ S(Λd

T )N, [(G− Fn)(·, x·)]π(T ) →
n→∞

0
}
.

By the isometry formula (4.15), the vertical derivatives of Fn along x:

∇ωFn(·, x·) will converge to some path φ in the sense that:∫ T

0

tr
(
(∇ωFn(s, xs)− φ(s)) t(∇ωFn(s, xs)− φ(s))d[x]π(s)

)
→
n→∞

0.

φ may thus be defined as the weak vertical derivative of G along x. However,

one of the problems of this approach is that since Qπ([0, T ],R) is not a vector

space (see remark 1.5), in the definition of the space H̃π(Λd
T , x), even if we

assume G has finite quadratic variation along x, it might not be the case

for G − Fn. So it might seem difficult to characterize precisely the space

of functionals H̃π(Λd
T , x). To tackle this problem, we introduce the notion

of ’generalized’ pathwise quadratic variation in the following section, whose

domain of definition is a vector space.
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4.3 Generalized quadratic variation

As we have mentioned in the previous section, one drawback of the notion

of pathwise quadratic variation along a fixed sequence of partitions π is that

the set of càdlàg paths with finite quadratic variation along π: Qπ([0, T ],R)

is not a vector space [67]. Let x, y ∈ Qπ([0, T ],R). The reason x+y may not

have finite quadratic variation, as explained in remark 1.5, stems from the

fact that the cross-product terms may have an oscillating sign which prevents

the convergence of the sequence (qm)m≥1 defined by:

qm :=
∑
tmi ∈πm

(δxmi + δymi )2

with δxmi := x(tmi+1)− x(tmi ) and similarly for δymi .

However, a simple application of the Cauchy-Schwarz inequality shows

that the cross-product term
∑

i δx
m
i δy

m
i is bounded by:(∑

i

δxmi δy
m
i

)2

≤

(∑
i

|δxmi |2
)(∑

i

|δymi |2
)

which converges when m tends to infinity since x, y ∈ Qπ([0, T ],R). This

means that if x, y ∈ Qπ([0, T ],R), the sequence (qm)m≥1 is bounded even if

it does not converge. This observation inspires us to define:

Definition 4.5 (Generalized quadratic variation of paths along a sequence

of partitions). Let πm = (0 = tm0 < tm1 < · · · < tmk(m) = T ) be a sequence of

partitions of [0, T ] with |πm| →
m→∞

0. The generalized quadratic variation of a

càdlàg path x ∈ D([0, T ],R) along π is defined by: for t ∈ [0, T ],

[̂x]π(t) := lim sup
m→∞

∑
tmi+1≤t

(
x(tmi+1)− x(tmi )

)2 ∈ R+ ∪ {+∞}. (4.17)

We may drop the subscript in [̂x]π when the context is clear. We denote by

Q̂π([0, T ],R) = {x ∈ D([0, T ],R), ∀t ∈ [0, T ], [̂x]π(t) <∞}

the set of R−valued càdlàg paths with finite generalized quadratic variation

along π.
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Observe that the set Q̂π([0, T ],R) is much larger than Qπ([0, T ],R). In-

deed, for a càdlàg path x to have finite generalized quadratic variation, we

only require the sequence
∑

(x(tmi+1)−x(tmi ))2 to be bounded, which is much

weaker than requiring it to be convergent. Moreover we no longer need that

[̂x]π admits a Lebesgue decomposition of the form (1.1) as in the definition

of the pathwise quadratic variation.

The main advantage of this notion of generalized quadratic variation is

that, contrary to the set Qπ([0, T ],R), the set of paths with finite generalized

quadratic variation along a given sequence of partitions Q̂π([0, T ],R) is a

vector space.

Proposition 4.4. Q̂π([0, T ],R) is a vector space, and ‖·‖QV : x 7→
√

[̂x]π(T )

defines a semi-norm on Q̂π([0, T ],R).

Proof. Observe first that for x, y ∈ Q̂π([0, T ],R), we have:

̂[x+ y]π(t) ≤ 2
(

[̂x]π(t) + [̂y]π(t)
)
<∞, ∀t ∈ [0, T ].

This follows immediately from the inequalities (a + b)2 ≤ 2(a2 + b2) and

lim supm(am + bm) ≤ lim supm am + lim supm bm. So x + y ∈ Q̂π([0, T ],R),

and Q̂π([0, T ],R) is a vector space.

Now we prove that ‖ · ‖QV defines a semi-norm. For x, y ∈ Q̂π([0, T ],R),

we shall show that:

‖x+ y‖QV ≤ ‖x‖QV + ‖y‖QV .

Note again δxmi = x(tmi+1)− x(tmi ) and similarly for y. For m ∈ N, using the

Cauchy-Schwarz inequality, we have:∑
i

(δxmi + δymi )2

=
∑
i

(δxmi )2 +
∑
i

(δymi )2 + 2
∑
i

δxmi δy
m
i

≤
∑
i

(δxmi )2 +
∑
i

(δymi )2 + 2

√√√√(∑
i

(δxmi )2

)(∑
i

(δymi )2

)
.
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So

‖x+ y‖2
QV = lim sup

m

∑
i

(δxmi + δymi )2

≤ lim sup
m

∑
i

(δxmi )2 + lim sup
m

∑
i

(δymi )2 + 2 lim sup
m

√√√√(∑
i

(δxmi )2

)(∑
i

(δymi )2

)

= ‖x‖2
QV + ‖y‖2

QV + 2

√√√√lim sup
m

(∑
i

(δxmi )2

)(∑
i

(δymi )2

)
≤ ‖x‖2

QV + ‖y‖2
QV + 2‖x‖QV ‖y‖QV = (‖x‖QV + ‖y‖QV )2

where we have used in the last inequality: lim supm(ambm) ≤ lim supm am lim supm bm

for am, bm two non-negative sequences.

Corollary 4.2. Let (xn)n≥1 be a sequence of paths in Q̂π([0, T ],R) and x ∈
Q̂π([0, T ],R). If ̂[xn − x]π(T )→n→∞ 0, then the sequence [̂xn]π(T ) converges

and its limit is [̂x]π(T ).

Proof. ̂[xn − x]π(T )→n→∞ 0 implies ‖xn − x‖QV →n→∞ 0. Thus we have:∣∣∣[̂xn]π(T )− [̂x]π(T )
∣∣∣ =

∣∣‖xn‖2
QV − ‖x‖2

QV

∣∣ ≤ ‖xn−x‖QV (‖xn‖QV +‖x‖QV ) →
n→∞

0

as ‖·‖QV is a semi-norm and ‖xn‖QV +‖x‖QV can be bounded independently

of n.

The notion of generalized quadratic variation can be easily extended to

paths of dimension d > 1.

Definition 4.6. A d-dimensional path x = (x1, · · · , xd) ∈ D([0, T ],Rd) is

said to have finite generalized quadratic variation along π if xi ∈ Q̂π([0, T ],R)

for all i = 1, · · · , d. The matrix-valued function [̂x] : [0, T ] → Md whose

elements are given by:

[̂x]ij(t) :=
̂[xi + xj](t)− [̂xi](t)− [̂xj](t)

2

is called the generalized quadratic variation of the path x.
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We denote by Q̂π([0, T ],Rd) the set of Rd−valued càdlàg paths with finite

generalized quadratic variation along π.

Remark 4.7. There are several differences between this definition and def-

inition 1.4 of Rd-valued paths with finite quadratic variation. First of all,

as Q̂π([0, T ],R) is a vector space, we no longer need to require xi + xj ∈
Q̂π([0, T ],R) which is now automatically implied by xi, xj ∈ Q̂π([0, T ],R).

Secondly, in definition 4.6, the matrix-valued function [̂x] : [0, T ]→Md does

not necessarily take values in S+
d as lim sup is not a linear operator. And

[̂x]ij(t) does not necessarily equal to:

lim sup
m

∑
tmi+1≤t

(xi(tmi+1)− xi(tmi ))(xj(tmi+1)− xj(tmi )).

So the notion of generalized quadratic covariation is not well defined. Never-

theless if x ∈ Qπ([0, T ],Rd), then the two definitions coincide, and we have

[x]π = [̂x]π.

4.4 Weak pathwise vertical derivatives

The generalized pathwise quadratic variation defines a bilinear form and

a semi-norm on its domain, which is a vector space. We now use the duality

structure associated with this bilinear form to define the notion of weak

pathwise vertical derivatives for non-anticipative functionals which are not

necessarily smooth. We always fix a sequence of partition π = (πm)m≥1, and

a continuous path x ∈ Qπ([0, T ],Rd).

We denote by L2([0, T ], [x]π) the space of Rd−valued paths φ such that:∫ T

0

tr
(
φ(t) tφ(t)d[x]π(t)

)
<∞.

For two elements φ, ψ in L2([0, T ], [x]π), we define the following equivalence

relation:

φ ∼ ψ ⇐⇒
∫ T

0

tr
(
(φ(t)− ψ(t)) t(φ(t)− ψ(t))d[x]π(t)

)
= 0. (4.18)
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Let L2([0, T ], [x]π) be the quotient of the space L2([0, T ], [x]π) by the equiv-

alence relation (4.18):

L2([0, T ], [x]π) := L2([0, T ], [x]π)/ ∼ .

Endowed with the inner product: for φ, ψ ∈ L2([0, T ], [x]π),

〈φ, ψ〉L2
x

:=

∫ T

0

tr
(
φ(t) tψ(t)d[x]π(t)

)
,

L2([0, T ], [x]π) is a Hilbert space.

Let F be a R−valued non-anticipative functional. We define:

‖F‖x,QV := ‖F (·, x·)‖QV ∈ R+ ∪ {+∞}. (4.19)

Denote by Q̂(Λd
T , x) the space of non-anticipative functionals F such that

‖F‖x,QV < ∞. By proposition 4.4, Q̂(Λd
T , ω) is also a vector space, and

‖ · ‖x,QV defines a semi-norm on Q̂(Λd
T , x).

Consider now a non-anticipative functional F ∈ S(Λd
T ), by proposition

4.3, F ∈ Q̂(Λd
T , x) (the limit superior in the definition of the generalized

quadratic variation becomes simply a limit), which implies that S(Λd
T ) ⊂

Q̂(Λd
T , x). Moreover, we have ∇ωF (·, x·) ∈ L2([0, T ], [x]π), and

‖F‖x,QV = ‖∇ωF (·, x·)‖L2
x
,

which shows that the vertical derivative of a functional along x defined on the

space of cylindrical functionals,∇ω(·, x·) : (S(Λd
T ), ‖·‖x,QV )→ (L2([0, T ], [x]π), ‖·

‖L2
x
) with:

∇ω(·, x·)(F ) := ∇ωF (·, x·)

is an isometry.

Since L2([0, T ], [x]π) is a Hilbert space, this implies that the map ∇ω(·, x·)
admits a unique extension defined on the closure Hπ(Λd

T , x) of S(Λd
T ) with

respect to the semi-norm ‖ · ‖x,QV :

Hπ(Λd
T , x) :=

{
G ∈ Q̂(Λd

T , x),∃(Fn) ∈ S(Λd
T )N, ‖G− Fn‖x,QV →

n→∞
0
}
.

(4.20)

Hπ(Λd
T , x) is also a vector space, and ∇ω(·, x·) : (Hπ(Λd

T , x), ‖ · ‖x,QV ) →
(L2([0, T ], [x]π), ‖ · ‖L2

x
) still defines an isometry.



4.4. Weak pathwise vertical derivatives 117

Proposition 4.5. Let G be a functional in Hπ(Λd
T , x). There exists a unique

φ ∈ L2([0, T ], [x]π) satisfying the following property: for any sequence Fn ∈
S(Λd

T ) such that ‖G−Fn‖x,QV →
n→∞

0, ∇ωFn(·, x·) converges to φ in (L2([0, T ], [x]π), ‖·
‖L2

x
). And we have:

‖G‖x,QV = ‖φ‖L2
x
. (4.21)

We define φ = ∇π
xG(·, x·) as the weak vertical derivative of G along x.

Remark 4.8. The weak vertical derivative along a path x can be viewed

as the ’inverse’ of the pathwise integral with respect to x defined in (1.12).

Indeed, consider a non-anticipative functional F ∈ S(Λd
T ), we define another

non-anticipative functional G such that for any ω ∈ Qπ([0, T ],Rd), G(t, ω) :=∫ t
0
∇ωF (s, ωs) ·dπω(s) (the integral is well defined as F ∈ S(Λd

T ) ⊂ C1,2
b (Λd

T )).

Then G ∈ Hπ(Λd
T , x), and ∇πG(·, x·) = ∇ωF (·, x·) in L2([0, T ], [x]π) (we

may take Fn ≡ F in the definition of the space Hπ(Λd
T , x)). And for F ∈

S(Λd
T ), its weak vertical derivative along x coincides with its (strong) vertical

derivative in the sense of Dupire, evaluated at x, i.e. ∇πF (·, x·) = ∇ωF (·, x·)
in L2([0, T ], [x]π).

As we shall see in the following section, in most of the cases, the lim sup

in the definition of the generalized quadratic variation reduces to a limit, and

‖ · ‖2
x,QV is nothing but the quadratic variation of a functional along x.

Since lim sup is not a linear operator, the notion of generalized quadratic

covariation is not well defined for all pairs of paths in Q̂π([0, T ],R). However,

as shown in (4.16), the generalized quadratic covariation along x is well

defined for cylindrical functionals as all limits superior in this case are simply

limits. And since Hπ(Λd
T , x) is the closure of S(Λd

T ) with respect to the semi-

norm ‖·‖x,QV , we may also equip Hπ(Λd
T , x) with a degenerate inner product

〈·, ·〉x,QV defined by: for G1, G2 ∈ Hπ(Λd
T , x) with two sequences (F

(1)
n ) and

(F
(2)
n ) in S(Λd

T ) such that ‖G1 − F (1)
n ‖x,QV → 0 and ‖G2 − F (2)

n ‖x,QV → 0,

〈G1, G2〉x,QV := lim
n→∞

[
F (1)
n (·, x·), F (2)

n (·, x·)
]
π

(T ). (4.22)
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(4.22) is well defined as

[F (1)
n (·, x·), F (2)

n (·, x·)]π(T ) =
‖F (1)

n + F
(2)
n ‖2

x,QV − ‖F
(1)
n ‖2

x,QV − ‖F
(2)
n ‖2

x,QV

2
,

and by corollary 4.2, when taking the limit when n tends to infinity, we

obtain:

〈G1, G2〉x,QV =
‖G1 +G2‖2

x,QV − ‖G1‖2
x,QV − ‖G2‖2

x,QV

2
.

This shows that the limit on the right-hand side of (4.22) exists and is in-

dependent of the sequences (F
(1)
n ) and (F

(2)
n ) chosen. Moreover, 〈·, ·〉x,QV

is a semi-definite bilinear form on Hπ(Λd
T , x), which leads to the following

characterization of weak vertical derivatives:

Proposition 4.6. Let G ∈ Hπ(Λd
T , x). The weak vertical derivative of G

along x: ∇πG(·, x·) is the unique element of L2([0, T ], [x]π) which satisfies:

∀F ∈ S(Λd
T ), 〈F,G〉x,QV = 〈∇ωF (·, x·),∇πG(·, x·)〉L2

x
. (4.23)

Proof. Clearly using the definition (4.22) of 〈·, ·〉x,QV and proposition 4.5,

∇πG(·, x·) satisfies (4.23). To prove the uniqueness, it suffices to show

that {∇ωF (·, x·), F ∈ S(Λd
T )} is dense in L2([0, T ], [x]π). Let C ∈ Rd and

t0 ∈ [0, T ]. We consider functionals of the form: F (t, ωt) := C · (ω(t) −
ω(t0))1t>t0 , for ω ∈ D([0, T ],Rd). Clearly such functionals are cylindri-

cal, and ∇ωF (·, x·) = C1t>t0 . Since the set of simple functions is dense

in L2([0, T ], [x]π), {∇ωF (·, x·), F ∈ S(Λd
T )} is also dense in L2([0, T ], [x]π),

which proves the uniqueness of ∇πG(·, x·).

So far we have defined a weak vertical derivative of a functional G along a

given path x. Actually the construction of this weak derivative only involves

the value of G along x, i.e. the path t 7→ G(t, xt). So this weak derivative is

a local property, i.e.

F,G ∈ Hπ(Λd
T , x), G(., x) = F (., x) ⇒ ∇πG(·, x·) = ∇πF (·, x·).

This echoes an anologous property of the (strong) vertical derivative [7, Sec.

5.4].
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We shall now exploit this ‘locality’ property to define a weak derivative

along a (closed) set of paths.

4.5 Application to functionals of stochastic

processes

4.5.1 Weak differentiability along a set of paths

To apply the concepts above to path-dependent functionals of a stochastic

process, we need to require the property of weak differentiability along any

typical sample path of the process. For this purpose, we consider functionals

which are weakly vertically differentiable along a set of paths A, which will

then be chosen to be a set with full measure with respect to the law of some

process.

Let π = (πm)m≥1 be a sequence of partitions of [0, T ]. We still limit the

paths along which the weak derivative is defined to continuous paths with

finite quadratic variation along π, i.e. A ⊂ C([0, T ],Rd) ∩Qπ([0, T ],Rd).

Definition 4.9. Let π = (πm)m≥1 be a sequence of partitions and A ⊂
C([0, T ],Rd) ∩ Qπ([0, T ],Rd). We define Hπ(Λd

T , A) as the space of non-

anticipative functionals which can be approximated by cylindrical functionals

in quadratic variation along all paths in A:

Hπ(Λd
T , A) :=

{
G ∈ Q̂π(Λd

T , A),∃(Fn) ∈ S(Λd
T )N,∀x ∈ A, ‖G− Fn‖x,QV →

n→∞
0
}

(4.24)

where

Q̂π(Λd
T , A) := ∩x∈AQ̂π(Λd

T , x).

Remark thatHπ(Λd
T , A) is a vector space, and the conditionG ∈ Hπ(Λd

T , A)

is stronger than G being weakly vertically differentiable along any x ∈ A as

in (4.24) we require the approximating (Fn)n≥1 to be independent of x ∈ A.
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4.5.2 Weak derivatives and martingale representation

As discussed in section 2.2, Cont and Fournié [10] developed a notion of

weak vertical derivatives in a probabilistic framework, and derived a con-

structive martingale representation formula (Theorem 2.10). In this section,

we show that the weak pathwise derivative we have constructed in Section

4.4, when applied to a martingale X, coincides with Cont and Fournié’s con-

cept of weak derivative with respect to X. However in our construction we do

not require the martingale property or square-integrability of the canonical

process, which are used in an essential way in [10].

We will work under the same framework as in section 2.2. Let W be

a standard d−dimensional Brownian motion defined on a probability space

(Ω,F ,P) and F := (FWt )t≥0 its (P−completed) natural filtration. Let X be

a Rd−valued Brownian martingale defined by: for all t ∈ [0, T ],

X(t) = X(0) +

∫ t

0

σ(s) · dW (s), (4.25)

where σ : [0, T ]→Md(R) is a F−adapted process satisfying (2.10), i.e.

E
[∫ T

0

‖σ(t)‖2dt

]
<∞ and det(σ(t)) 6= 0 dt× dP-a.e. (4.26)

Similarly to definition 2.7, we define S(X) the set of F−adapted processes

Y which admits a functional representation Y (t) = F (t,Xt) with respect to

X with F ∈ S(Λd
T ):

S(X) :=
{
Y : ∃F ∈ S(Λd

T ), Y (t) = F (t,Xt) dt× dP-a.e.
}

(4.27)

Since S(X) ⊂ C1,2
loc(X), in Assumption (4.26), for Y ∈ S(X), ∇XY is

uniquely defined up to an evanescent set, independently of the choice of

F ∈ S(Λd
T ) in (4.27).

Recall that we denote by 〈X〉 the quadratic variation of the martingale

X (to distinguish from the pathwise quadratic variation [x] of a path x). Let

L2(X) be the space of F−predictable process φ such that:

‖φ‖2
L2(X) := E

[∫ T

0

tr
(
φ(t) tφ(t)d〈X〉(t)

)]
<∞,
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and M2(X) the space of R-valued square-integrable F−martingales Y with

initial value zero equipped with the norm:

‖Y ‖2
M2(X) := E[Y (T )2].

L2(X) and M2(X) are both Hilbert spaces. Let D(X) := S(X) ∩M2(X).

Using the same arguments as in the proof of lemma 2.8, we still have the

density of D(X) in M2(X).

Let M ∈M2(X). We will show that there exists a sequence of partitions

π, a set A ∈ C([0, T ],Rd) ∩Qπ([0, T ],Rd), and a non-anticipative functional

F ∈ Hπ(Λd
T , A) such that P(X ∈ A) = 1 and M(t) = F (t,Xt) up to an

evanescent set. We start with some preliminary results.

Lemma 4.10. There exists a sequence (Mn)n≥1 of elements in D(X) such

that:

〈M −Mn〉(T ) →
n→∞

0 P-a.s. (4.28)

Proof. As D(X) is dense inM2(X), there exists a sequence (Mn)n≥1 in D(X)

such that ‖M−Mn‖M2(X) →
n→∞

0, which implies that E[〈M−Mn〉(T )]→n→∞ 0.

Thus there exists a sub-sequence (Ml(n))n≥1 such that 〈M −Ml(n)〉(T ) con-

verges to zero P-almost surely.

Consider now a sequence (Mn)n≥1 of elements in D(X) satisfying (4.28).

By definition of the space D(X), there exists a sequence of non-anticipative

functional (Fn)n≥1 in S(Λd
T ) such that Mn(t) = Fn(t,Xt) up to an evanescent

set. Let M(t) = F (t,Xt) for some non-anticipative functional F (clearly such

functional F is not unique). We shall now construct a sequence of partitions

π and a set A ∈ C([0, T ],Rd) ∩ Qπ([0, T ],Rd) such that P(X ∈ A) = 1,

and for any x ∈ A, F ∈ Q̂π(Λd
T , x) and ‖Fn − F‖x,QV →

n→∞
0 using simply

the definition (4.24) of the space Hπ(Λd
T , A). This is equivalent to finding a

sequence of partitions π which satisfies:

C.1 P(X ∈ Qπ([0, T ],Rd)) = 1.

C.2 P(M ∈ Q̂π([0, T ],R)) = 1.
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C.3 P
(

̂[Mn −M ]π(T )→ 0
)

= 1.

The idea is thus to construct a sequence of partitions π such that P-almost

surely, X ∈ Qπ([0, T ],Rd) and M,Mn −M ∈ Qπ([0, T ],R) for any n ≥ 1. If

this is the case, then we have immediately, for any n ≥ 1, [M ]π = 〈M〉 and

[Mn −M ]π = 〈Mn −M〉 P-almost surely. Since the generalized quadratic

variation coincides with the standard quadratic variation in this case and

(Mn)n≥1 verifies (4.28), C.1, C.2 and C.3 are satisfied.

Let φm = (0 = tm0 < tm1 < · · · < tmk(m) = T ) be a sequence of partitions of

[0, T ] with |φm| →
m→∞

0. For Z ∈M2(X), we define:

〈Z〉φm(t) :=
∑
tmi+1≤t

(Z(tmi+1)− Z(tmi ))2.

By the definition of quadratic variation for a square-integrable martingale,

we have: 〈Z〉φm(t) →
m→∞

〈Z〉(t) in probability uniformly in t ∈ [0, T ]. We can

thus extract a sub-sequence of partitions (φl(m))m≥1 from (φm)m≥1 such that

〈Z〉φl(m)(t) converges to 〈Z〉(t) almost surely uniformly in t ∈ [0, T ].

Here as we are working with a sequence of martingales (Mn)n≥1, a natural

question is whether we can still find a sub-sequence (φl(m)))m≥1 of (φm)m≥1

such that for a sequence (Zn)n≥1 of elements in M2(X), 〈Zn〉φl(m)(t) con-

verges to 〈Zn〉(t) P-almost surely uniformly in t ∈ [0, T ] along this same

sub-sequence for all n ≥ 1. This is ensured by the following lemma.

Lemma 4.11. Let (Rm,n)m,n≥1 and (Rn)n≥1 be random variables defined on

a probability space (Ω,F ,P) such that Rm,n→m→∞Rn in probability for all

n ∈ N. Then there exists a sub-sequence l(m) such that Rl(m),n→m→∞Rn

almost surely for all n ∈ N.

Proof. We use a ’diagonal’ argument. We first construct a sequence of sub-

sequences li(m) by induction: for i = 1, there exists a sub-sequence l1(m)

such that Rl1(m),1 converges almost surely to R1. Having constructed li(m),

we extract from li(m) a sub-sequence li+1(m) (i.e. {li+1(m),m ∈ N∗} ⊂
{li(m),m ∈ N∗}) such that Rli+1(m),i+1 converges almost surely to Ri+1. By
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the construction of li(m), for all j ≤ i, Rli(m),j converges almost surely to Rj.

Now we define l(m) := lm(m). For any n ∈ N∗, for m ≥ n, Rl(m),n = Rlm(m),n

converge almost surely to Rn since {lm(m),m ≥ n} ⊂ {ln(m),m ≥ 1}.

Applying lemma 4.11, we can extract from (φm)m≥1 a sub-sequence of

partitions πm := φl(m) such that P-almost surely, for any t ∈ [0, T ] and for

any n ≥ 1,

〈X〉πm(t) →
m→∞

〈X〉(t), 〈M〉πm(t) →
m→∞

〈M〉(t)

and 〈Mn −M〉πm(t) →
m→∞

〈Mn −M〉(t),

which is equivalent to P-almost surely, for any n ≥ 1,

[X]π = 〈X〉, [M ]π = 〈M〉 and [Mn −M ]π = 〈M −Mn〉.

Such sequence of partitions π clearly satisfies C.1, C.2 and C.3.

Proposition 4.7. Let M ∈ M2(X). There exists a sequence of partitions

π, a set of paths A ⊂ C([0, T ],Rd) ∩Qπ([0, T ],Rd) satisfying P(X ∈ A) = 1,

and a non-anticipative functional F ∈ Hπ(Λd
T , A) such that M(t) = F (t,Xt)

up to an evanescent set.

Remark 4.12. We can actually be more precise about the set of paths A.

If σ in Definition (4.25) is a non-anticipative functional of X, i.e. σ(t) :=

σ(t,Xt) for any t ∈ [0, T ], then A is in fact a subset of

Cσ :=

{
x ∈ C([0, T ],Rd), [x]π(t) =

∫ t

0

(
σ(s, xs)

tσ(s, xs)
)
ds, ∀t ∈ [0, T ]

}
.

We refer to Mishura and Schied [52] for a pathwise construction of Cσ.

By proposition 4.7, the weak vertical derivative of the functional F along

X: ∇πF (·, X·) is well defined P-almost surely. We now show that the process

∇πF (·, X·) has an intrinsic character, independent of the functional F and

the sequence of partitions π chosen in proposition 4.7. More precisely, it

coincides with the weak derivative ∇XM defined in theorem 2.9.
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Proposition 4.8. Let M ∈ M2(X). Let π be a sequence of partitions of

[0, T ], A ⊂ C([0, T ],Rd) ∩ Qπ([0, T ],Rd) satisfying P(X ∈ A) = 1 and

F ∈ Hπ(Λd
T , A) such that M(t) = F (t,X). Then the weak pathwise ver-

tical derivative of F along X(., ω) is a version of the the (probabilistic) weak

derivative ∇XMof M with respect to X as defined in [10], i.e.

∇πF (t,Xt) = ∇XM(t) dt× dP-a.e.

Proof. Since F ∈ Hπ(Λd
T , A), there exists a sequence of functionals (Fn)n≥1

in S(Λd
T ) such that for any x ∈ A, ‖F−Fn‖x,QV →

n→∞
0. Let Sn(t) := Fn(t,Xt)

for t ∈ [0, T ]. By the functional Itô formula (theorem 2.2), Sn is a continuous

semimartingale, and its (local) martingale part is Mn(t) :=
∫ t

0
∇ωFn(s,Xs) ·

dX(s).

Without any loss of generality, we may assume that [X]π = 〈X〉, and for

any n ≥ 1, [M−Mn]π = 〈M−Mn〉 P-almost surely (otherwise we can always

extract from π a sub-sequence of partitions φ such that these conditions hold,

and we have ∇φF (t,Xt) = ∇πF (t,Xt) dt×dP-a.e.). Now using the extension

of the isometry formula to Hπ(Λd
T , x) (4.21), x ∈ A, we have:

[M −Mn]π(T )

=

∫ T

0

tr
(
(∇πF (t,Xt)−∇ωFn(t,Xt))

t(∇πF (t,Xt)−∇ωFn(t,Xt))d[X]π(t)
)

→
n→∞

0 P-a.s. (4.29)

On the other hand, since M ∈M2(X), by the martingale representation

formula (theorem 2.10), we have, for any t ∈ [0, T ], M(t) =
∫ t

0
∇XM(s) ·

dX(s) P-almost surely, which implies:

〈M −Mn〉(T )

=

∫ T

0

tr
(
(∇XM(t)−∇ωFn(t,Xt))

t(∇XM(t)−∇ωFn(t,Xt))d〈X〉(t)
)

=

∫ T

0

tr
(
(∇XM(t)−∇ωFn(t,Xt))

t(∇XM(t)−∇ωFn(t,Xt))d[X]π(t)
)

→
n→∞

0 P-a.s. (4.30)
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Combining (4.29) with (4.30), and using the assumption (4.26) on σ, we

obtain:

∇πF (t,Xt) = ∇XM(t) dt× dP-a.e.

Corollary 4.3 (Martingale representation formula with weak pathwise deriva-

tives). Let M ∈ M2(X). π be a sequence of partitions of [0, T ], A ⊂
C([0, T ],Rd) ∩ Qπ([0, T ],Rd) satisfying P(X ∈ A) = 1, and F ∈ Hπ(Λd

T , A)

such that M(t) = F (t,X). Then

∀t ∈ [0, T ], M(t) =

∫ t

0

∇πF (s,Xs) · dX(s) P-a.s.

4.6 Pathwise characterization of martingale

functionals

Let X be the canonical process on Ω = C0([0, T ] × Rd) and P be a

probability measure on Ω such that X is a square-integrable P−martingale

satisfying (4.25) with integrand σ satisfying (4.26) and F := (FXt )t≥0 the

(P−completed) natural filtration of X.

We have shown, in Proposition 4.7, that every square-integrable mar-

tingale M ∈ M2(X) admits a functional representation in Hπ(Λd
T , A) with

respect to X with A a set of paths satisfying P(X ∈ A) = 1 for some sequence

of partitions π.

Now we would like to study the converse of this problem. Given a non-

anticipative functional F , can we give conditions on F such that the process

F (·, X·) is a P-(local) martingale? We call such a functional F an (P−)

harmonic functional (or simply harmonic functional in the case where P is

the Wiener measure). Smooth P−) harmonic functionals i.e. satisfying F ∈
C1,2(ΛT ) may be characterized as solutions of the path-dependent PDE [7]:

DF (t, xt) +
1

2
tr(∇2

ωF (t, xt)σ(t, x)tσ(t, x)) = 0
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on the space of continuous functions. However, examples abound of function-

als which have the martingale property but which fail to have the required

directional derivatives [28]. In this section we present a different approach to

the characterization of harmonic functionals which bypasses the smoothness

requirement.

4.6.1 Martingale-preserving functionals

Let π be a sequence of partitions, and A ⊂ C([0, T ],Rd) ∩Qπ([0, T ],Rd)

such that P(X ∈ A) = 1. Consider first functionals in Hπ(Λd
T , X). Clearly

the process F (·, X·) is not necessarily a (local) martingale for an arbitrary

choice of F ∈ Hπ(Λd
T , A). Indeed, since ‖ · ‖x,QV defined by (4.19) is only

a semi-norm, if for some functional F ∈ Hπ(Λd
T , A), F (·, X·) is a (local)

martingale, we can always add to F a non-anticipative functional G such

that ‖G‖x,QV = 0 for any x ∈ A. By definition of the space Hπ(Λd
T , A),

F +G is still in Hπ(Λd
T , A). However, the process (F +G)(·, X·) is no longer

a (local) martingale as it may possess a zero quadratic variation component

given by G. This means for any sequence of partitions π, and for any set

of paths A satisfying P(X ∈ A) = 1, the space Hπ(Λd
T , A) is too large for

F (·, X·) to be a (local) martingale for any F ∈ Hπ(Λd
T , A).

The idea is to find a subspace of Hπ(Λd
T , A) such that for functionals F

in this subspace, when applied to the square-integrable martingale X, the

process F (·, X·) is no longer allowed to have a zero quadratic variation part.

Clearly a condition which only controls the (generalized) quadratic variation

of F by a sequence of cylindrical functionals, as in the definition of the space

Hπ(Λd
T , A) or Hπ(Λd

T , x), is not sufficient to eliminate the zero quadratic

variation part of F (·, X·). We need another condition on F which allows

to control the supremum norm of F in [0, T ], which motivates the following

definition.

Definition 4.13 (Martingale-preserving functionals). Let π be a sequence

of partitions of [0, T ]. For a continuous path x ∈ Qπ([0, T ],Rd), we define
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Iπ(Λd
T , x) as the space of non-anticipative functionals which can be approx-

imated in (generalized) quadratic variation and in supremum norm along x

by a sequence of cylindrical functionals:

Iπ(Λd
T , x) :=

{
G ∈ Q̂(Λd

T , x),∃(Fn) ∈ S(Λd
T )N, ‖G− Fn‖x,QV →

n→∞
0,

and

∫ ·
0

∇ωFn(t, xt) · dπx(t) →
n→∞

G(·, x·) in ‖ · ‖∞
}
.

(4.31)

We can easily check that Iπ(Λd
T , x) is a vector space, and Iπ(Λd

T , x) ⊂
Hπ(Λd

T , x). We also observe that the space Iπ(Λd
T , x) is not empty. For

example, assume that d[x]π is absolutely continuous with d[x]π
dt

:= a(t) ∈
S+
d (R). Consider now a functional F ∈ S(Λd

T ) which satisfies DF (t, xt) +
1
2
tr(∇2

ωF (t, xt)a(t)) = 0 for all t ∈ [0, T ] (this equation only needs to be

satisfied along x). Then F ∈ Iπ(Λd
T , x) (we may take Fn ≡ F ).

Remark 4.14. The idea behind Definition 4.13 of the space Iπ(Λd
T , x) is

that, intuitively, for G ∈ Iπ(Λd
T , x), G(·, x·) can be viewed as the pathwise

integral of its weak pathwise derivative ∇π(·, x·) with respect to x, i.e.

′′G(t, xt) =

∫ t

0

∇πG(s, xs) · dπx(s)′′

even though the latter pathwise integral is not defined as a limit of Riemann

sums. Nevertheless, we will see that when applied to the martingale X, the

functional in such space is indeed equal to the stochastic integral of its weak

derivative with respect to X.

Now let A ∈ C([0, T ],Rd) ∩Qπ([0, T ],Rd) be a set of paths. Similarly to

the definition 4.9 of the space Hπ(Λd
T , A), we define Iπ(Λd

T , A) as the space of

non-anticipative functionals G such that we can find a sequence of functionals

(Fn)n≥1 in S(Λd
T ) which satisfies (4.31) for any path x ∈ A:

Iπ(Λd
T , A) :=

{
G ∈ Q̂(Λd

T , A),∃(Fn) ∈ S(Λd
T )N,∀x ∈ A, ‖G− Fn‖x,QV →

n→∞
0,

and ‖
∫ ·

0

∇ωFn(t, xt) · dπx(t)−G(·, x·)‖∞ →
n→∞

0.
}
.
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Clearly Iπ(Λd
T , A) ⊂ Hπ(Λd

T , A). We have shown in proposition 4.7 that

every martingale inM2(X) admits a functional representation in Hπ(Λd
T , A)

for some sequence of partitions π and some set of paths A satisfying P(X ∈
A) = 1. We now prove that the same result still holds if we replace the

space Hπ(Λd
T , A) by Iπ(Λd

T , A). First we establish a useful result for smooth

functionals.

Lemma 4.15. Let G ∈ C1,2
b (Λd

T ) and π a sequence of partitions satisfying:

P ( {ω ∈ Ω,∀t ∈ [0, T ], [X(., ω)]π(t) = 〈X〉(t, ω)) = 1. (4.32)

Then:

P-a.s. ∀t ∈ [0, T ],

∫ t

0

∇ωG(s,Xs) · dπX(s) =

∫ t

0

∇ωG(s,Xs) · dX(s).

Remark first that such a sequence of partitions π satisfying (4.32) exists.

We observe also the difference between the two integrals. The first integral

is a pathwise integral defined as limit of the non-anticipative Riemann sums

along π evaluated on X, which is well defined P-almost surely as P(X ∈
Qπ([0, T ],Rd)) = 1 by assumption (4.32). And the second integral is the

classical stochastic integral with respect to the martingale X. This lemma

shows that these two integrals coincide P-almost surely.

Proof. Using the pathwise Itô formula for functionals (theorem 1.18) and

functional Itô formula (theorem 2.2), we have:

G(t,Xt) = G(0, X0) +

∫ t

0

DG(s,Xs)ds+

∫ t

0

∇ωG(s,Xs) · dπX(s)

+
1

2

∫ t

0

tr
(
∇2
ωG(s,Xs)d[X]π(s)

)
P-a.s.

= G(0, X0) +

∫ t

0

DG(s,Xs)ds+

∫ t

0

∇ωG(s,Xs) · dX(s)

+
1

2

∫ t

0

tr
(
∇2
ωG(s,Xs)d〈X〉(s)

)
P-a.s.

And we conclude using assumption (4.32).
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We can now state a refined version of Proposition 4.7:

Proposition 4.9. Let M ∈ M2(X). There exists a sequence of partitions

π, a set of paths A ⊂ C([0, T ],Rd) ∩Qπ([0, T ],Rd) satisfying P(X ∈ A) = 1,

and a non-anticipative functional F ∈ Iπ(Λd
T , A) such that M(t) = F (t,Xt)

up to an evanescent set.

Proof. The proof is quite similar to that of proposition 4.7. The only thing

we shall prove in addition is that F (·, x·) is the limit in the supremum norm of

a sequence of pathwise integrals of cylindrical functionals (Fn)n≥1 along x for

all x ∈ A, i.e. the process F (·, X·) is the almost sure limit in the supremum

norm of
∫ ·

0
∇ωFn(t,Xt) · dπX(t) which is well defined for π satisfying (4.32).

Let (Mn)n≥1 be a sequence of elements in D(X) := S(X)∩M2(X) which

converges to M in ‖ · ‖M2(X), and (Fn)n≥1 a sequence of non-anticipative

functionals in S(Λd
T ) such that Mn(t) = Fn(t,Xt) up to an evanescent set.

Consider a sequence of partitions π which satisfies (4.32). Since Fn(·, X·) is

a martingale, by lemma 4.15, we have: for any t ∈ [0, T ],

Fn(t,Xt) =

∫ t

0

∇ωFn(s,Xs) · dX(s) =

∫ t

0

∇ωFn(s,Xs) · dπX(s) P-a.s.

Thus the additional condition on F of convergence in supremum norm is

equivalent to, in terms of probability, the almost sure convergence of sup0≤t≤T |Mn(t)−
M(t)| to 0. Such sequence (Mn)n≥1 (or equivalently (Fn)n≥1) exists since

sup0≤t≤T |Mn(t)−M(t)| converges to 0 in L2 by Doob’s martingale inequal-

ity.

We can also state a ’local’ version of proposition 4.9 by introducing a

sequence of stopping times in the definition of the space Iπ(Λd
T , A). Let π

be a sequence of partitions, and A ∈ C([0, T ],Rd) ∩ Qπ([0, T ],Rd) a set of

paths, we define Iπloc(Λ
d
T , A) as the space of non-anticipative functionals G

such that there exists an increasing sequence (τk)k≥1 of stopping times (with

respect to the filtration generated by the canonical process on C([0, T ],Rd))

with τk →
k→∞
∞ such that the functional G stopped at τk: Gτk belongs to

Iπ(Λd
T , A) for any k ≥ 1. We denote by Mloc(X) the space of continuous
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F-local martingales with initial value zero. Then every local martingale in

Mloc(X) admits a functional representation in Iπloc(Λ
d
T , A) with respect to

X for some sequence of partitions π and some set of paths A satisfying

P(X ∈ A) = 1.

Corollary 4.4. Let M ∈ Mloc(X). There exists a sequence of partitions π,

a set of paths A ⊂ C([0, T ],Rd) ∩ Qπ([0, T ],Rd) satisfying P(X ∈ A) = 1,

and a non-anticipative functional F ∈ Iπloc(Λd
T , A) such that M(t) = F (t,Xt)

up to an evanescent set.

Proof. Denote by Fc := (F ct )t≥0 the filtration generated by the canonical pro-

cess on C([0, T ],Rd). Recall that F = (FWt )t≥0 = (FXt )t≥0 is the P-completed

natural filtration of X (or W ). Since M is a continuous F-local martingale,

there exists a sequence of F-stopping times (µk)k≥1 with µk →
k→∞
∞ such that

Mµk ∈ M2(X) for all k ≥ 1. By proposition 4.9, there exists a sequence

of partitions πk, a set of paths Ak ∈ C([0, T ],Rd) ∩Qπk([0, T ],Rd) satisfying

P(X ∈ Ak) = 1, and a non-anticipative functional F k ∈ Iπ
k
(Λd

T , A
k) such

that Mµk(t) = F k(t,Xt) up to an evanescent set. Moreover, since µk are

F-stopping times, there exists a sequence of Fc-stopping times (τk)k≥1 such

that µk = τk P-almost surely for all k ≥ 1.

Without loss of generality, we may assume that for any k ≥ 1, πk+1 is

a sub-sequence of πk, i.e. {πk+1
m ,m ∈ N∗} ⊂ {πkm,m ∈ N∗}. Now define

π := (πm)m≥1 = (πmm)m≥1, and B = ∩k≥1A
k. Clearly we have P(X ∈ B) = 1,

and we can readily check that B ∈ C([0, T ],Rd) ∩ Qπ([0, T ],Rd) and F k ∈
Iπ(Λd

T , B) for any k ≥ 1. For x ∈ A, set F (t, x) := limk→∞ F
k(t, x) if the

limit exists, and F (t, x) = 0 otherwise. By definition of the functionals F k,

F (t,Xt) = limk→∞ F
k(t,Xt) = limk→∞M

µk(t) = M(t) P-almost surely, we

have F (t,Xt) = M(t) up to an evanescent set. Moreover, since µk = τk

P-almost surely, F τk(t,Xt) = Mµk(t) = F k(t,Xt) up to an evanescent set.

Let A ⊂ B be the set of x such that limk→∞ F
k(t, x) exists and F τk(t, x) =

F k(t, x) for any t ∈ [0, T ]. We have P(X ∈ A) = 1 and F ∈ Iπloc(Λd
T , A).

Now we prove a converse result to Proposition 4.7 (more precisely, a
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converse to Corollary 4.4):

Proposition 4.10. If there exists a sequence of partitions π such that F ∈
Iπloc(Λ

d
T , A) for some A ⊂ C([0, T ],Rd)∩Qπ([0, T ],Rd) satisfying P(X ∈ A) =

1 then the process F (·, X·) is a local martingale.

Proof. Let π be a sequence of partitions, A ⊂ C([0, T ],Rd)∩Qπ([0, T ],Rd) a

set of paths satisfying P(X ∈ A) = 1, and F a non-anticipative functional in

Iπloc(Λ
d
T , A). By definition of the space Iπloc(Λ

d
T , A), there exists a sequence of

Fc-stopping times (τk)k≥1 with τk →
k→∞
∞ (which are also F-stopping times)

such that F τk ∈ Iπ(Λd
T , A) for any k ≥ 1. And if F τk(·, X·) is a local mar-

tingale for any k ≥ 1, then it is a classical result of stochastic calculus that

F (·, X·) is itself a local martingale. So in the following we may assume with-

out loss of generality that F ∈ Iπ(Λd
T , A).

First observe that, up to extraction of a sub-sequence of π, we may always

assume that the sequence of partitions π satisfies condition (4.32). The main

idea of the proof is to show that: for any t ∈ [0, T ],

F (t,Xt) =

∫ t

0

∇πF (s,Xs) · dX(s) P-a.s.

Remark that the previous stochastic integral is well defined since by defi-

nition, the weak vertical derivative of F along the paths of X: ∇πF (·, X·)
belongs to the space L2([0, T ], [X]π) = L2([0, T ], 〈X〉) P-a.s.

By definition of the space Iπ(Λd
T , A) and the fact that P(X ∈ A) = 1,

there exists a sequence of functionals (Fn)n≥1 in S(Λd
T ) such that:

‖F − Fn‖X,QV →
n→∞

0 P-a.s. (4.33)

and ∫ ·
0

∇ωFn(t,Xt) · dπX(t) →
n→∞

F (·, X·) in ‖ · ‖∞ P-a.s. (4.34)

(4.33) implies, by the extension of the isometry formula to the spaceHπ(Λd
T , x)
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(4.21) for x ∈ A, that:∫ T

0

tr
(
(∇πF −∇ωFn)(t,Xt)

t(∇πF −∇ωFn)(t,Xt)d[X]π(t)
)

=

∫ T

0

tr
(
(∇πF −∇ωFn)(t,Xt)

t(∇πF −∇ωFn)(t,Xt)d〈X〉(t)
)
→
n→∞

0 P-a.s.

(4.35)

Let Mn(t) :=
∫ t

0
(∇πF −∇ωFn)(t,Xt) · dX(t) be a sequence of local mar-

tingales. By (4.35), we have 〈Mn〉(T ) →
n→∞

0 P-almost surely. On the other

hand, combining (4.34) with lemma 4.15, we have:∫ ·
0

∇ωFn(t,Xt) · dX(t) →
n→∞

F (·, X·) in ‖ · ‖∞ P-a.s.

So if we are able to show that the sequence of martingales (Mn)n≥1 converges

uniformly in [0, T ] to 0 in some sense, by identification of the limit, the process

F (·, X·) is necessarily equal to
∫ ·

0
∇πF (t,Xt) · dX(t) P-almost surely, thus is

a local martingale. This is ensured by the following result:

Lemma 4.16. Let (Mn)n≥1 be a sequence of continuous local martingales

starting at zero. If 〈Mn〉(T ) converges to 0 in probability, then supt∈[0,T ] |Mn(t)|
converges to 0 in probability.

This is a classical exercise of stochastic calculus, which can be found in,

for example [64], or [48] for more details. In our case, 〈Mn〉(T ) converges to

0 P-almost surely (thus in probability). By lemma 4.16, supt∈[0,T ] |Mn(t)| con-

verges to 0 in probability. SinceMn(t) =
∫ t

0
∇πF (s,Xs)·dX(s)−

∫ t
0
∇ωFn(s,Xs)·

dX(s) converges to
∫ t

0
∇πF (s,Xs) · dX(s) − F (t,Xt) in ‖ · ‖∞ P-almost

surely, we have, P-almost surely, F (t,Xt) =
∫ t

0
∇πF (s,Xs) · dX(s) for any

t ∈ [0, T ].
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Combining corollary 4.4 with proposition 4.10, we arrive at our main

result:

Theorem 4.17 (Characterization of martingale-preserving functionals). Let

X be a square-integrable martingale of the form (4.25) with σ satisfying

condition (4.26), and let F be a non-anticipative functional. The process

F (·, X·) is a (P,F)-local martingale starting at 0 if and only if there ex-

ists a sequence of partitions π such that F ∈ Iπloc(Λ
d
T , A) for some A ⊂

C([0, T ],Rd) ∩Qπ([0, T ],Rd) satisfying P(X ∈ A) = 1.

This result can be viewed as a functional characterization of local mar-

tingales with respect to the filtration F of a square-integrable martingale X.

This characterization is not entirely pathwise but depends on the probability

measure P only through its null sets.

4.6.2 Extension to the case of Itô processes

This result can also be extended to the case X is a square-integrable Itô

process. Let (X,P) be the weak solution to the following path-dependent

SDE:

dX(t) = b(t,Xt)dt+ σ(t,Xt)dW (t), X(0) = x0 ∈ Rd (4.36)

Let b and σ two non-anticipative functionals assumed to satisfy conditions

for (4.36) to admit a unique weak solution P on the canonical space. We

assume in addition that σ satisfies (4.26).

The objective is to characterize non-anticipative functionals F such that

F (·, X·) is a F-local martingale. If we still take F ∈ Iπloc(Λd
T , A) for some se-

quence of partitions π and some set of paths A ⊂ C([0, T ],Rd)∩Qπ([0, T ],Rd)

satisfying P(X ∈ A) = 1, using the same argument as in the case X is a

square-integrable martingale, for t ∈ [0, T ], F (t,Xt) =
∫ t

0
∇πF (s,Xs) ·dX(s)

P-almost surely which is clearly not a local martingale.

The idea is to eliminate the finite variation part of X in the definition

of Iπloc(Λ
d
T , A). Let π be a sequence of partitions, and A ⊂ C([0, T ],Rd) ∩
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Qπ([0, T ],Rd) a set of paths. We define the space of non-anticipative func-

tionals Iπb (Λd
T , A) as follows:

Iπb (Λd
T , A) =

{
G ∈ Q̂(Λd

T , A),∃(Fn) ∈ S(Λd
T )N,∀x ∈ A, ‖G− Fn‖x,QV →

n→∞
0,∫ ·

0

∇ωFn(t, xt) · dπx(t)−
∫ ·

0

∇ωFn(t,Xt) · b(t, xt)dt →
n→∞

G(·, x·) in ‖ · ‖∞
}
.

Let M(t) :=
∫ t

0
σ(s,Xs)dW (s) be the martingale part of X. Using the same

argument as in the proof of proposition 4.10, for F ∈ Iπb (Λd
T , A) with P(X ∈

A) = 1, we have, P-almost surely, F (t,Xt) =
∫ t

0
∇πF (s,Xs) · dM(s) for

any t ∈ [0, T ]. We define similarly a local version Iπloc,b(Λ
d
T , A) of the space

Iπb (Λd
T , A), and we obtain the following functional characterization of local

martingales with respect to X.

Proposition 4.11. Let (X,P) be a semimartingale defined by (4.36) with

σ satisfying the integrability and non-singularity condition (4.26), and F be

a non-anticipative functional. The process F (·, X·) is a F-local martingale

starting at 0 if and only if there exists a sequence of partitions π and a set

of paths A ⊂ C([0, T ],Rd)∩Qπ([0, T ],Rd) satisfying P(X ∈ A) = 1 such that

F ∈ Iπloc,b(Λd
T , A).

4.6.3 A weak solution concept for path-dependent PDEs

The above characterization of local martingales gives rise to a notion of

weak solution for linear path-dependent PDEs. Consider the following path-

dependent PDE:

DF (t, xt) + b(t, xt) · ∇ωF (t, xt) + 1
2
tr (σ(t, xt)

tσ(t, xt)∇2
ωF (t, xt)) = 0,

t ∈ [0, T ], x ∈ C([0, T ],Rd), (4.37)

where b and σ are two non-anticipative functionals which satisfy assumption

3.1, and det(σ(t, xt)) 6= 0 for any t ∈ [0, T ] and x ∈ C([0, T ],Rd). Let W be

a standard d-dimensional Brownian motion defined on a probability space

(Ω,F ,P), and (X,P) a semimartingale defined by (4.36). Under assumption
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3.1, X is square-integrable (proposition 3.1) and we have:

EP
[∫ T

0

‖σ(t,Xt)‖2dt

]
<∞.

Definition 4.18 (Weak solution of path-dependent PDEs). A non-anticipative

functional F is a weak solution of the path-dependent PDE (4.37) if there

exists a sequence of partitions π, and a set of paths A ⊂ C([0, T ],Rd) ∩
Qπ([0, T ],Rd) satisfying P(X ∈ A) = 1 such that F ∈ Iπloc,b(Λd

T , A).

Under technical assumptions on σ and b, the choice of the set A depends

only on σ, not on b.

The following result shows that the above Definition extends the notion

of C1,2
loc(Wd

T ) (strong) solution of the path-dependent PDE (4.37): any C1,2
b

solution is also a weak solution in the sense of definition 4.18:

Proposition 4.12. If F ∈ C1,2
loc(Wd

T ) is a strong solution of the path-dependent

PDE (4.37) with DF ∈ C0,0
l (Wd

T ), then F is also a weak solution of (4.37)

in the sense of Definition 4.18.

Proof. This is an immediate consequence of theorem 2.13 and proposition

4.11 since the topological support of the semimartingale X is the set of all

continuous paths starting from x0 as we have assumed det(σ(t, xt)) 6= 0 for

any t ∈ [0, T ] and x ∈ C([0, T ],Rd).

Our notion of weak solution is actually at least as weak as most of the

other notions of solution for linear path-dependent PDEs such as the viscosity

solution proposed in [21] or the Sobolev-type weak solution proposed in [7].

Indeed, in our definition, for F to be a weak solution of (4.37), we only

require F (·, X·) is a local martingale by proposition 4.11.
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One of the obstacles to the use of strong solutions is that the conditional

expectation of a functional H : C0([0, T ],Rd) 7→ R does not necessarily have

the (continuous) directional derivatives, even when H is smooth [65, 58]. Our

concept of weak solution bypasses this difficulty. The versatility of Definition

4.18 is illustrated by the following existence result, which is a reformulation

of 4.11:

Proposition 4.13 (Existence of weak solutions). Let b and σ two non-

anticipative functionals such that (4.36) admits a unique weak solution (X,P)

on the canonical space, and σ further satisfies (4.26). Then for any functional

H : C0([0, T ],Rd) 7→ R such that H(XT ) ∈ L1(Ω,FXT ,P), the path-dependent

PDE

DF (t, xt) + b(t, xt) · ∇ωF (t, xt) +
1

2
tr
(
σ(t, xt)

tσ(t, xt)∇2
ωF (t, xt)

)
= 0,

F (T, x) = H(x), t ∈ [0, T ], x ∈ C([0, T ],Rd).

admits a weak solution. Furthermore, if F1, F2 are two such weak solutions

then

F1(t,X) = F2(t,X) dt× dP− a.e.
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for non-anticipative functionals on path space. J. Funct. Anal., 259(4):

1043–1072, 2010. ISSN 0022-1236. doi: 10.1016/j.jfa.2010.04.017. URL

http://dx.doi.org/10.1016/j.jfa.2010.04.017.

[9] Rama Cont and David-Antoine Fournié. A functional extension of the
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