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Directeur de thèse Frédéric BOURQUIN Université Paris Est, IFSTTAR
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Abstract

Key Words: Reduced Basis Method, Model Order Reduction, Data Assimilation, Air Quality
Modeling

The principal objective of this thesis is the development of low-cost numerical tools for spatial mapping
of pollutant concentrations from field observations and advanced deterministic models. With increased
pollutant emissions and exposure due to mass urbanization and development worldwide, air quality mea-
surement campaigns and epidemiology studies of the association between air pollution and adverse health
effects have become increasingly common. However, as air pollution concentrations are highly variable
spatially and temporally, the sensitivity and accuracy of these epidemiology studies is often deteriorated
by exposure misclassification due to poor estimates of individual exposures. Data assimilation methods
incorporate available measurement data and mathematical model to provide improved approximations of
the concentration. These methods, when based on an advanced deterministic air quality models (AQMs),
could provide spatially-rich small-scale approximations and can enable better estimates of effects and
exposures. However, these methods can be computationally expensive. They require repeated solution of
the model, which could itself be costly.

In this work we investigate a combined reduced basis (RB) data assimilation method for use with
advanced AQMs on urban scales. We want to diminish the cost of resolution, using RB arguments, and
incorporate measurement data to improve the quality of the solution. We extend the Parameterized-
Background Data-Weak (PBDW) method to physically-based AQMs. This method can rapidly estimate
”online” pollutant concentrations at urban scale, using available AQMs in a non-intrusive and computa-
tionally efficient manner, reducing computation times by factors up to hundreds. We apply this method
in case studies representing urban residential pollution of PM2.5, and we study the stability of the method
depending on the placement of air quality sensors. Results from the PBDW are compared to the Gen-
eralized Empirical Interpolation Method (GEIM) and a standard inverse problem, the adjoint method,
in order to measure efficiency of the method. This comparison shows possible improvement in precision
and great improvement in computation cost with respect to classical methods. We find that the PBDW
method shows promise for the real-time reconstruction of a pollution field in large-scale problems, pro-
viding state estimation with approximation error generally under 10% when applied to an imperfect model.
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Résumé

Mots Clés: Méthodes des Bases Réduites, Réduction de Modèle, Assimilation de Données, Modélisation
de la Qualité de l’Air

L’objectif principal de cette thèse est le développement d’outils numériques peu coûteux pour la
cartographie de concentrations de polluants à partir de mesures et de modèles déterministes avancés.
L’urbanisation de la population et le développement mondial de ces dernières années a entrainé une hausse
des émissions de polluants. Avec une population de plus en plus exposée à la pollution, les campagnes de
mesure de qualité de l’air et les études sur les effets de la pollution sur la santé n’ont cessé d’augmenter.
Cependant, la sensibilité et la précision de ces études est souvent altérée par des estimations grossières
des taux d’expositions individuelles. Ceci à cause d’un manque d’information sur la concentration des
polluants qui est très variable dans l’espace et dans le temps. Les méthodes d’assimilation de données
intègrent des données de mesures et des modèles mathématiques afin de mieux approcher le champ de
concentration. Quand ces méthodes sont fondées sur un modèle de qualité de l’air déterministe avancé, elles
sont capables de fournir des approximations détaillées. Ces informations précises permettraient d’avoir
de meilleures estimations des taux d’exposition. Néanmoins, ces méthodes sont souvent très coûteuses.
En effet, elles nécessitent de multiples résolutions du modèle, souvent coûteuses.

Dans cette thèse nous nous intéressons à l’étude et la mise en oeuvre de méthodes reposant sur la
méthode des bases réduites et l’assimilation des données pour des modèles déterministes de qualité de
l’air à l’échelle urbaine. Nous souhaitons diminuer le coût de résolution en utilisant des bases réduites
et incorporer des données de mesure afin d’améliorer la qualité de la solution. On étend la méthode
Parameterized-Background Data-Weak (PBDW) à des modèles de qualité de l’air. Cette méthode est
capable d’estimer online des concentrations de polluants rapidement, à l’échelle du quartier. Cette méth-
ode, qui est non intrusive, permet de diviser le coût de résolution par cent, sans détériorer la qualité des
solutions. Nous avons implanté cette méthode et étudié sa stabilité en fonction de la position des cap-
teurs. Cette étude a été faite pour différents scénarios de pollution d’une zone résidentielle. Ces résultats
ont été comparés à ceux donnés par la méthode d’interpolation empirique généralisée (GEIM) et ceux d’
une méthode inverse de type problème adjoint. Cette comparaison montre la possibilité d’augmenter la
précision de la solution et de réduire significativement les temps de calcul par rapport aux méthodes clas-
siques. Lorsque la méthode PBDW est utilisée avec un modèle imparfait, elle donne des cartographies de
concentration avec une erreur d’approximation de moins de 10%. Les résultats de la PBDW se montrent
prometteurs pour la reconstruction en temps réel de champs de pollution à grande échelle.
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Introduction

An English version of the introduction can be found in Appendix A.

L’objectif principal de cette thèse est le développement d’outils numériques pour la
cartographie en temps réel de concentrations de polluants à partir de mesures et de modèles
déterministes avancés.

Motivation et Contexte

D’après [101], au moins 40000 morts par an ont été attribués à la pollution extérieure
en Autriche, en Suisse, et en France. Par ailleurs, une étude sur 22 groupes dans 13 pays
d’Europe [18] a révélé que l’exposition à long terme aux particules fines PM2.5 est associée
à la mortalité par cause naturelle, et que cette association reste statistiquement signifi-
cative pour des concentrations en-dessous des seuils annuels moyens en Europe (25 µg

m3 ).
D’autre part, d’après l’OMS (Organisation Mondiale de la Santé), un neuvième de la mor-
talité mondiale en 2012 pouvait être liée à la pollution de l’air, dont 3 millions uniquement
dus à la pollution de l’air extérieur [144]. Des effets sur la santé tels que les infections
respiratoires aigües, la bronchopneumopathie chronique obstructive, les AVC (Accident
Vasculaire Cérébral), les pathologies cardiaques et les cancers du poumon, avaient été
analysés afin d’estimer la morbidité globale que représentent les maladies liées à la pol-
lution de l’air. Néanmoins de nombreuses autres maladies associées à la pollution de l’air
n’ont pas été incluses dans cette analyse en raison d’un manque de preuves suffisamment
robustes. Point important à noter, ces études se concentrent sur la pollution aux par-
ticules fines, mais de multiples études, comme [147], ont démontré que d’autres espèces
de polluants jouent un rôle important dans de nombreuses pathologies. C’est pourquoi,
des estimations fiables d’expositions et une compréhension des impacts de la pollution de
l’air sont indispensables pour mieux étayer les études sur la morbidité globale, en santé
publique, pour le développement de règlementations, et le développement urbain.

Afin de mieux comprendre les conséquences sur la santé de l’exposition à la pollution
de l’air il faut, pour chacune des espèces de polluant, étudier les relations exposition-
réponse1. Ces études comptent en général un très grand nombre de sujets (par exemple la
cohorte de presque 43.000 naissances examinées dans [147] afin d’étudier le rapport entre
l’exposition aux hydrocarbures aromatiques polycycliques et le risque de naissance préna-
tale) et nécessitent des données individuelles sur le taux d’exposition à la substance mise
en cause avant et durant la période de l’étude [42]. Cependant la taille de l’échantillon
empêche de réaliser des mesures individuelles pour chaque participant. Bien que la tech-

1Les relations exposition-réponse sont les relations observées entre l’exposition à la pollution en tant
que cause et les résultats particuliers en tant qu’effet.
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nologie des capteurs de pollution de l’air ait beaucoup évolué ces dernières années, rendant
ces capteurs plus économiques, plus petits, et plus mobiles, la complexité et la portée des
effets de la pollution de l’air nécessitent plus d’outils pour améliorer la compréhension et
le contrôle de la qualité de l’air. Par exemple, des informations sur la distribution spatiale
des polluants sont nécessaires pour plusieurs types d’études, dont celles relatives aux effets
sur la santé. En effet, plusieurs espèces de polluants ont des concentrations très variables
dans la ville, comme on peut le voir dans le tableau 0.1 qui montre la variabilité spatiale
de la concentration de cinq espèces de polluants dans le centre de Fresno, Californie.

Polluants
Points Valeur 1er 3eme Rapport P90/P10

d’observations Médiane quartile quartile (90eme et 10eme centiles)1

Particules HAP 2 171 0.45 0.25 0.67 9.1
Carbone élementaire 114 0.77 0.42 1.10 6.4

Endotoxine 182 1.20 0.89 1.67 3.7
Particules PM10 278 0.42 0.35 0.51 2.2
Particules PM2.5 283 0.96 0.83 1.14 1.9

Table 0.1 – Variation spatiale de la concentration de polluants extérieurs sur un site
d’observations dans le centre de Fresno (CA), durant la haute saison de chaque polluant
[137].

De plus, pour certaines pathologies, l’analyse des effets se fait sur des expositions de
courtes durées. C’est le cas, par exemple des anomalies congénitales dues à des expositions
d’une à deux semaines. Ceci implique plus de variabilité spatiale et temporelle dans les
évaluations. Dans une ville, les mesures de pollution en continue sur une longue période
sont généralement faites sur un ou deux sites fixés. De plus, un unique profil d’exposition
est attribué à toutes les personnes de l’étude épidémiologique. Des modèles de qualité de
l’air (AQM, pour air quality model) peuvent fournir des approximations de concentration
d’un ou plusieurs polluants à des échelles spatiales et temporelles variées. Ces informations
sont nécessaires pour l’évaluation des taux d’exposition à partir des mesures lorsqu’on ne
peut pas mettre un capteur à proximité de chaque zone d’intérêt. En plus de l’évaluation
des taux d’exposition, la détection et l’identification des sources d’émission sont aussi
des thèmes courants dans les études de qualité de l’air, les études préliminaires avant la
mise en place de réglementation, ou de procédures d’urgence. Par ailleurs, comprendre le
devenir de la pollution de l’air est nécessaire pour la prévision, la régulation (modification
de la composition des carburants, restrictions de circulation pour certains véhicules) et le
développement urbain. Les modèles permettent notamment de prévoir les effets de futurs
accidents ou de pics de pollution sur la qualité de l’air. Ces prévisions peuvent être prises
en compte par exemple dans la mise en place de nouvelles réglementations, mais aussi dans
les études d’urbanisme pour les projets de nouvelles constructions. En effet, ces prévisions
pourraient être utilisées afin de construire de nouveaux hôpitaux et écoles, là où il y aurait
le moins de pollution. Sans modèle de qualité de l’air, aucune de ces études n’aurait la
flexibilité nécessaire, voire ne serait faisable avant la prise de décision et la mise en place
de nouveaux changements. Les prévisions à des échelles spatiales variées proposées par la
simulation numérique, en complément de données de mesures clairsemées, peuvent fournir

1Les centiles Pα correspondent aux valeurs telles que α% des mesures leur soient inférieures.
2Hydrocarbures Aromatiques Polycycliques
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des informations avec un niveau de détail largement amélioré. Elles peuvent être utilisées
dans les études sur l’exposition à la pollution à l’échelle de l’individu, et son effet sur la
santé , la compréhension des émissions et de la dispersion de polluants, le développement
de projets urbains intelligents, et la gestion des crises.

De l’enjeu de société à l’étude scientifique

Il existe de nombreuses méthodes de modélisation de la qualité de l’air de niveaux de
sophistication variable (une excellente revue est donnée par [202]) : approches empiriques,
modèles statistiques et méthodes déterministes. Parmi les modèles déterministes le niveau
de sophistication des approches varie également, allant des simples modèles analytiques de
panache gaussiens [180], en passant par des modèles Lagrangiens [89], jusqu’aux modèles
Eulériens basés sur la CFD (Computational Fluid Dynamics) tel que le modèle simple
utilisé dans cette thèse. Il est connu que la pollution de l’air est très variable à l’échelle
urbaine. C’est pourquoi l’utilisation de modèles capables de fournir des approximations
détaillées à l’échelle locale, et qui prennent en compte la physique est importante. Les
modèles déterministes avancés, lorsqu’ils sont correctement calibrés et mis en œuvre avec
des données précises sur l’environnement et sur les émissions de polluants, peuvent fournir
des informations détaillées dans le temps et dans l’espace sur les concentrations de pol-
luants, ainsi que sur les phénomènes physiques altérant la qualité de l’air. Cependant, la
modélisation de la qualité de l’air est limitée par la nature complexe du problème (effets
physiques non linéaires, géométries urbaines complexes), mais aussi par les incertitudes non
négligeables sur les données d’entrée telles que les conditions météorologiques, conditions
limites, et données d’émissions. Etant donnée la complexité des applications ”in-situ”, nous
ne pouvons pas supposer que même les modèles déterministes les plus avancés et les mieux
calibrés (ou bien des modèles non déterministes) puissent représenter de façon exacte tous
les phénomènes physiques en jeu.

L’amélioration de la qualité des données disponibles (sur la météorologie, les émis-
sions et les concentrations de fond, etc.), du traitement mathématique des phénomènes
physiques (par exemple les schémas de turbulence pour la modélisation du vent) et des
mécanismes chimiques ont permis d’augmenter considérablement la précision des modèles.
Les modèles de qualité de l’air opérationnels peuvent aussi être améliorés en les couplant
à des données de mesures de concentration. Pour cela, il existe des méthodes statistiques,
tels que la correction de biais et la prévision probabiliste, la modélisation par ensemble
(où plusieurs modèles ou données d’entrée sont utilisés et combinés aux solutions dans le
but de réduire l’erreur globale de modélisation), mais aussi des méthodes d’assimilation de
données. Celles-ci reposent sur l’intégration des connaissances de la physique décrites par
un modèle mathématique déterministe et des observations expérimentales. Les méthodes
sont variées et cherchent à corriger un ou plusieurs paramètres du modèle ou l’état du
système. Les méthodes séquentielles (e.g. le filtre de Kalman [127]) se servent des données
dès qu’elles sont disponibles pour trouver la meilleure approximation de l’état du système
physique. Les méthodes inverses cherchent la valeur optimale d’un ou de plusieurs para-
mètres du modèle afin de minimiser l’écart aux mesures. Les méthodes variationnelles se
basent sur la minimisation d’une fonction de coût qui quantifie l’écart entre l’approxima-
tion du modèle et les observations, dans le but de trouver l’état optimal du système. Ceci
permet ainsi aux données de corriger l’erreur du modèle.

De nombreuses études ont été menées sur les processus qui influencent la qualité de l’air
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Figure 0.1 – Illustration de la procédure de modélisation de phénomènes physiques avec
des données de mesure.

et sur les modèles d’exposition à la pollution. Elles vont de la modélisation du trafic, des
émissions, du transport des polluants. L’implantation idéale de toutes ces connaissances
nécessite une chaine de modélisation, utilisant des sorties du ”niveau” précédent comme
données d’entrée pour le suivant. Les données sorties d’un modèle doivent souvent être
converties avant d’être utilisées comme données d’entrée du modèle suivant. De plus ce
chainage de modèle implique le lancement de nombreux calculs couteux à différentes étapes
de la chaine. Il existe des compagnies en France et dans le monde qui sont spécialisées
dans la mise en œuvre de telles chaines de modélisation. Pour répondre aux besoins des
clients elles utilisent des techniques modernes. Elles contribuent ainsi, considérablement
au développement de bibliothèques de logiciels de modélisation pour la qualité de l’air
qui pourront être utilisées dans de futures études. Bien que cela représente un progrès
significatif dans la modélisation de phénomènes physiques complexes et en partie inconnus,
ces outils, de façon générale, sont confrontés au problème de l’explosion des temps de calcul,
lorsqu’ils sont utilisés sur des domaines larges et complexes. C’est pourquoi, l’utilisation
de la réduction de modèle est particulièrement pertinente dans ces applications. En effet,
elles nécessitent toujours plus de précision, sur des échelles de plus en plus petites, afin
d’être utilisées pour l’analyse des causes, du devenir et des effets de la pollution de l’air.

La réduction de modèle fait référence aux méthodes de réduction du coût de calcul
d’une simulation par la simplification du problème ou bien par la réduction de la dimension
du problème en utilisant des connaissances a priori sur le système. Parmi ces méthodes de
réduction on trouve des méthodes de substitution des modèles ou des meta-modèles, pour
lesquelles un modèle plus simple prend la place du modèle coûteux (que l’on nommera P).
Les méthodes de projection font également partie des méthodes de réduction. Elles utilisent
un espace réduit sur lequel sont projetés les opérateurs du modèle. Cette dernière famille
de méthodes, comprenant les méthodes des bases réduites, cherche à exploiter le caractère
paramétrique du problème, et plus particulièrement la dimension de la variété de toutes
les solutions possibles lorsque les paramètres varient. Parmi les méthodes de projection on
trouve également les méthodes de décomposition telles que la décomposition orthogonale
aux valeurs propres (POD) [22] et la décomposition propre généralisée (PGD) [41], mais
aussi les méthodes telles que la méthode d’interpolation empirique (EIM) [16] qui utilise
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la connaissance de la solution aux points d’interpolation dans le domaine.

L’objectif de cette thèse est de combiner la réduction de modèle et l’assimilation des
données pour des applications dans la qualité de l’air. Le reste de cette introduction est
organisé autour d’une série de questions à poser sur un projet de recherche, dénommée
Heilmeier’s Catechism 1.

(1) Quel est le défi ? Les méthodes d’assimilation de données déterministes re-
posent sur le calcul de solutions de modèles. Ces modèles, parfois sophistiqués, dérivent
d’équations aux dérivées partielles (EDP) qui dépendent d’un ou plusieurs paramètres.
Notre objectif est de proposer des méthodes numériques qui rendraient ces modèles plus
abordables, du point de vue des ressources et des temps de calcul nécessaires. Le fait de
pouvoir effectuer les simulations rapidement sur des machines peu onéreuses, sans détério-
rer la qualité des résultats, serait très intéressant. Les modèles avancés de qualité de l’air
pourraient ainsi être plus facilement utilisés pour des études in-situ, la réglementation et
l’amélioration de la qualité de l’air.

(2) Quelle est la solution actuelle ? Il existe aujourd’hui de multiples méthodes
numériques peu coûteuses qui permettent d’élaborer des cartographies de la qualité de
l’air à partir de mesures. Les méthodes de Krigeage [203] qui sont des méthodes d’interpo-
lation stochastiques, permettent de prendre en compte la structure spatiale du phénomène
étudié. Cependant, elles nécessitent des données appropriées et suffisamment nombreuses
pour décrire correctement les phénomènes physiques en jeu. Parmi les méthodes détermi-
nistes, les méthodes inverses peuvent être implantées de façon plus efficace en employant
des méthodes des bases réduites pour réduire le coût de résolution. Cependant, la mise
en œuvre peut se révéler compliquée, par exemple pour des problèmes non linéaires ou
lorsque les données à traiter sont nombreuses. Par ailleurs, cette méthode traite unique-
ment l’erreur due à la variation paramétrique, non celle due à une éventuelle erreur de
modèle.

(3) Que proposons-nous pour améliorer les solutions de demain ? Dans cette
thèse nous proposons des outils numériques non (ou peu) intrusifs qui permettent d’effec-
tuer rapidement des simulations pour l’élaboration de cartes détaillées de concentration
d’un polluant dans un quartier. Ces outils utilisent des mesures de concentration et des
solutions de modèles déterministes avancés (des EDPs qui dépendent de plusieurs para-
mètres). Pour cela nous avons utilisé des techniques qui reposent sur la méthodes des
bases réduites et l’assimilation de données : la méthode d’interpolation empirique géné-
ralisée (GEIM) [114, 115], ainsi que la plus récente méthode de PBDW (Parametrized
Background Data Weak) [117,118]. Nous avons étudié et mis en place ces méthodes pour
les modèles de qualité de l’air où les méthodes de réduction usuelles sont souvent diffi-
ciles à utiliser à cause de la complexité du phénomène à modéliser. Les méthodes PBDW
et GEIM sont non intrusives, directes (contrairement aux méthodes de type adjoint par
exemple) et permettent de fournir des approximations de l’état du système physique en

1G. Heilmeier, ”Some Reflections on Innovation and Invention,”Founders Award Lecture, National Aca-
demy of Engineering, Washington, D.C., as published in The Bridge, National Academey of Engineering,
Winter 1992.
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temps réel, mais aussi de corriger l’erreur due à un modèle imparfait. Par ailleurs, la mé-
thode PBDW est bien adaptée à l’idée d’objets connectés qui fournirait des données de
mesures. Cela pourrait être fait sans avoir à modifier le modèle afin de prendre en compte
un grand nombre de point de mesures, contrairement aux méthodes inverses.

(4) Qu’est-ce qui est nouveau dans notre approche ?

• Méthodes d’assimilation de données déterministes qui sont capables de corriger les
erreurs de modèle.

Les modèles de qualité de l’air déterministes s’appuient sur les données géométriques,
d’émission et météorologiques disponibles pour le site étudié. Ces informations consti-
tuent les données d’entrée du modèle. Cependant, l’utilisation de ce type de modèle est
limitée par les incertitudes non négligeables sur certains phénomènes physiques qui sont
partiellement ou pas connus. Un exemple serait la cinétique de réaction du polluant qui
aurait mal été (ou pas) prise en compte dans le modèle. En effet, étant donnée la com-
plexité des applications “in-situ”, nous ne pouvons pas supposer que les modèles actuels,
même les plus avancés puissent représenter de façon exacte tous les phénomènes physiques
en jeu. L’incorporation de données de mesures pour corriger (a posteriori ou à volée) les
modèles est une voie d’avenir pour améliorer la qualité des cartes de concentration fournies
par les modèles déterministes.

• Méthodes d’ordre réduit et non intrusives pour la simulation en temps réel à partir
de modèles physiques avancés.

Le caractère non intrusif de la PBDW et de la GEIM, ne demande aucune modification
du code associé au modèle choisi, et permet une mise en œuvre avec tous les logiciels de
calcul pour peu qu’ils soient suffisamment ouverts et adaptés aux études paramétriques.
Ce caractère non intrusif permet également le prototypage rapide de ces méthodes numé-
riques pour un problème donné. Ceci afin de les évaluer avant d’engager le développement
nécessaire à les rendre plus robuste en vue d’une utilisation opérationnelle.

• Méthodes qui nécessitent peu de point de mesure des conditions météorologiques.

La PBDW et la GEIM ne sont pas des méthodes inverses, elles ne cherchent ni à identifier,
ni à calibrer des paramètres du modèle. La formulation de ces méthodes permet de calculer
les concentrations de polluants lorsque les paramètres du modèle varient, sans avoir besoin
d’identifier (a priori ou à la volée) les nouvelles valeurs des paramètres. Ainsi, même si
l’écoulement de l’air est considéré comme un paramètre variable du modèle, celui-ci n’a
pas à être recalculé, contrairement au cas des méthodes de type adjoint. En effet, pour
ces méthodes, il faut reconstruire l’écoulement soit uniquement à partir des données sur
les conditions météorologiques (et donc disposer d’une grande base de données), soit à
partir de méthodes d’assimilation de données pour les équations de Navier-Stokes et pour
le modèle de turbulence. La mise à jour du champ de vitesse peut alors se révéler très
coûteuse et/ou complexe à mettre en œuvre. De plus, les méthodes des bases réduites ne
permettent pas toujours de calculer une approximation peu coûteuse du champ de vitesse
lorsqu’il est turbulent. Cependant, l’intégration en temps permet de lisser les effets dus
à la turbulence et d’améliorer la qualité de l’approximation base réduite. Dans notre cas,
considérer le champ vitesse comme un paramètre et construire une base réduite uniquement
pour la concentration, a le même effet de lissage sur l’écoulement turbulent.
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(5) Comment évaluerons-nous nos résultats ? Nous commencerons par étudier
les résultats à partir de données synthétiques sans erreur de modèle afin d’évaluer la capa-
cité de la méthode PBDW à bien reconstruire des cartes de concentration, en corrigeant
l’écart à la mesure dû uniquement à la variation paramétrique. Ensuite nous considérerons
des mesures correspondantes à un modèle décalé, dénommé Ptrial dans le but d’estimer
la capacité de la méthodes à corriger aussi l’erreur de modèle. Les résultats de la PBDW
seront comparés à ceux donné par la GEIM. Nous comparerons également ces résultats
à ceux donnés par une méthode classique d’inversion telle que la méthode de type ad-
joint [134, 193]. Cette comparaison est importante étant donnée l’utilisation courante de
la méthode adjointe.

Plan de la thèse

Cette thèse est divisée en quatre parties.

Partie 1

Cette partie est dédiée à l’état de l’art pour les modèles de qualité de l’air, les méthodes de
réduction de modèle et les méthodes d’assimilation de donnée. Dans le premier chapitre,
on introduira le concept de qualité de l’air. Puis on présentera les espèces de polluant qui
agissent sur la qualité de l’air, ainsi que les sources d’émission. Pour finir, on donnera une
revue détaillée des modèles de qualité de l’air. Le chapitre 2 est consacré à une revue des
méthodes de réduction de modèle et d’assimilation de donnée, suivie d’une discussion sur
l’application de ces méthodes à la modélisation de la qualité de l’air.

Partie 2

La deuxième partie est dédiée à la présentation des méthodes PBDW et GEIM, du modèle
de qualité de l’air choisi pour le calcul des concentrations. Dans le chapitre 3, on trouvera
une présentation générale des méthodes PBDW et GEIM. Le chapitre 4 est consacré à
l’adaptation de ces méthodes pour des applications à grande échelle. Le modèle de qualité
de l’air choisi pour valider ces méthodes est également présenté dans ce chapitre.

Partie 3

La troisième partie contient l’étude numérique de la PBDW pour la modélisation de la
qualité de l’air et les résultats numériques in-situ sur un quartier de Fresno en Califor-
nie. Le chapitre 5 est consacré à la mise en place et à l’étude numérique de la PBDW
sur un problème bi-dimensionnel. Ce cas d’étude représente un site de 75m × 120m qui
comprend une maison, un bâtiment et une aire de jeu à proximité d’une route. Dans ce
chapitre on trouvera une étude sur la stabilité et la convergence de la méthode en fonction
du positionnement des capteurs de concentration et du choix de la norme utilisée dans la
formulation PBDW. La méthode PBDW sera ensuite comparée à la méthode d’interpola-
tion GEIM et à une méthode de type d’adjoint. Pour chacune des trois méthodes, nous
étudierons leur capacité à reconstruire correctement une carte de concentration à partir
de mesures en prenant en compte i) l’erreur due à la variabilité paramétrique, ii) l’erreur
de modèle. Dans le chapitre 6, nous étendrons notre étude numérique à un problème tri-
dimensionnel. Comme dans le cas 2D, nous étudierons la stabilité et la convergence de la
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méthode PBDW en fonction du positionnement des capteurs, et de la norme choisie dans
la formulation PBDW. Dans la seconde partie de ce chapitre nous nous intéresserons à la
convergence de la formulation PBDW lorsque le modèle a été a-dimensionné. Le chapitre
7 portera sur la mise en place de la méthode PBDW pour une application in-situ sur un
site de 800m× 800m à Fresno en Californie.

Partie 4 :

Dans la dernière partie, le but est de mettre en avant la flexibilité et le potentiel d’une
méthode alternative des bases réduites non intrusive (NIRB). Nous quitterons alors le
thème principal de cette thèse : la modélisation de la qualité de l’air. On s’intéressera à la
modélisation urbaine en géotechnique, et plus précisément au calcul des tassements lors
de la construction d’un tunnel en milieu urbain. Contrairement à la PBDW et à la GEIM,
la méthode NIRB n’a pas besoin de données de mesure sur l’état du sytème.
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Overview of Methods and
Contributions

In this section we present an overview of the methods studied in this thesis, as well as
the results we obtained. Our principal contribution lies in the development of low-cost
numerical methods for spatial mapping of pollutant concentration fields from advanced
deterministic models and field observations.

We will treat stationary problems of the generic form

P : Ω×D → R (1)

where P represents a problem (we’ll consider it a parameterized PDE), Ω ⊂ Rd is a
bounded domain, d = 2 or 3, D ∈ RNp the parameter domain, and Np is the number of
parameters. We will consider the solutions u ∈ X for some suitable Banach solution space
X . We assume the problem P can be written in the form

L(p)(u(p)) = F (p) in Ω (2)

+ Conditions on ∂Ω

We also assume we have a second source of information in the form of field observations.
Given a(n unknown) parameter configuration p ∈ D of the physical system represented
by P, and M experimental observations, we assume our data yobsm , 1 ≤ m ≤M , are of the
form

yobsm = `m(utrue(p)). (3)

where utrue(p) represents the true physical state of the system and `m ∈ X ′ are linear
functionals representing the sensors. The scheme used to solve the data assimilation prob-
lem defined by (2) and (3) varies greatly for different methods. The challenge lies in
formulating a scheme to interpret and employ data from measurements in some optimal
way to contribute to the knowledge of the state in the numerical model.

Reduced Order Data Assimilation: PBDW and the GEIM

We explore methods to find the best possible approximation of the physical system being
studied while expending minimal resources, which translates in practice to using the best
model possible and available data without requiring excessive computational investment
to solve the problem, focusing here on methods combining reduction and data assimila-
tion in a non-intrusive procedure. Here we introduce two such non-intrusive reduced order
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methods of data assimilation for parameterized PDEs : the PBDW and the GEIM. These
methods belong to the family of Reduced Basis (RB) methods. Standard reduced basis
methods are projection-based model reduction methods relying on the relatively small
dimension of the solution manifold M associated to the problem P for parameter config-
urations p ∈ D (we note that not all problems have a low-dimensional solution manifold).
If the manifold of solutions is of relatively small dimension, it can be approximated by a
finite set of well-chosen solutions of P, (u(p1), · · · , u(pN )), generating an N -dimensional
space, called the RB space. This space is then used as approximation space in the discrete
method of solving P, for example replacing the large number of simple basis functions
generating a finite element space with N solutions u(pi) 1 ≤ i ≤ N , to P, each providing
information on the solution manifoldM. The idea of reduced basis methods is to compute
an inexpensive and accurate approximation, uN (p), of the solution u(p) to problem P for
any p ∈ D by seeking a linear combination of the particular solutions:

uN (p) =
N∑
i=1

αi(p)u(pi). (4)

Efficient implementation of traditional RBMs requires construction of all parameter-independent
quantities during a prior offline stage, which requires modifying the calculation code, an
intrusive procedure. The methods explored in this work take advantage of the reduction
capacity of RBMs, but utilize the RB space in a non-intrusive manner.

The PBDW method considers our mathematical model to be the ”best-knowledge”
model Pbk (i.e. the best adapted model available for the problem P), and the set of
admissible parameters Dbk. The PDE model Pbk is used to build an N -dimensional RB
background space, ZN , representing solutions to the known problem, designed to handle
parametric uncertainty. Information on physical location and form of the M sensors
providing the data is used to build an M -dimensional update space, UM , representing the
information gathered by the sensors. The PBDW solution, noted uM,N (p) is built from
the two approximation spaces, ZN and UM . We thus aim to approximate the true physical
state utrue(p) by

uM,N (p) = ubkN (p) + ηM (5)

where ηM ∈ UM is an update correction term associated to the experimental observations,
and ubkN (p) ∈ ZN is a reduced basis approximation of the solution to the model Pbk.
The PBDW problem, as with many data assimilation methods, is posed as a minimiza-
tion problem, in which we minimize the update contribution, keeping our approximation
close to the solution manifold Mbk associated to Pbk for Dbk, and imposing experimental
observation values at the sensor points.

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
Find (uN,M , zN , ηM ) such that

(uN,M , zN , ηM ) = arginf
ũN,M∈X
z̃N∈ZN
η̃M∈UM

{
‖η̃M‖2X

∣∣∣∣ 〈ũN,M − z̃N , v〉X = 〈η̃M , v〉X , ∀ v ∈ X
〈ũN,M , φ〉X = 〈utrue, φ〉X , ∀φ ∈ UM

}
.

(6)
We rely on the Euler-Lagrange equations, derived from the minimization problem (6),

to find a linear system of size (M +N)× (M +N) for non-iterative solution of the prob-
lem. The procedure is decomposed into offline and online stages, where the approximation
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space and linear system construction is done offline, allowing a very efficient online stage.

A closely related non-intrusive reduced order data assimilation method, the GEIM,
also relies on a set of M linear forms representing sensors, as in equation (3) and a model
Pbk. From these linear forms and a set of generating functions (well-chosen solutions to
the model, ubk(pi), 1 ≤ i ≤ M), interpolating basis functions are derived, (q̃1, . . . , q̃M ).
We then define the interpolation operator, for any u ∈ X ,

IM (u) =
M∑
j=1

αj q̃j such that `i
(
IM (u)

)
= `i(u) ∀1 ≤ i ≤M (7)

and approximate the solution utrue by its GEIM interpolation with `i(utrue) = yobsi

Applications in air quality

We want to apply these methods to a PDE problem representing a deterministic AQM
modeling pollutant concentration based on a CFD wind field and a simplified Chemical
Transport Model (CTM). The wind field carrying the pollution is solution of an incom-
pressible Navier-Stokes equation with k − ε turbulent closure. We focus in this work on
a stationary transport equation, simplifying for unknown physics, and defining our model
Pbk as

transport︷ ︸︸ ︷
ρ~v · ∇c−

diffusion︷ ︸︸ ︷
div((εmol + εturb︸ ︷︷ ︸

εtot

)∇c) =
source︷ ︸︸ ︷
ρFsrc, (8)

along with appropriate boundary conditions for an exterior calculation domain with open-
air boundaries. The velocity field ~v and turbulent diffusion field εturb can be seen as
parameters of the pollutant transport equation in a decoupling of the velocity and trans-
port phenomena.

For ease of implementation in FreeFem++ [79], we chose to solve the transport equa-
tion (8) by finite elements with a Streamline Upwind Petrov-Galerkin (SUPG) stabilization
scheme [28, 90]. Given the large scale of air quality modeling problems, and the numer-
ical problems caused by differing orders of terms in the PDE, we also want to consider
a dimensionless approach. A dimensionless approach generalizes the problem; it can give
insight into which parameters may be of lesser importance and may be approximated or
ignored, and can help scale the problem if the values of certain terms vary significantly
from others.
In advection-diffusion problems the important physical quantities are the velocity, diffu-
sion, and concentration. We thus a-dimensionalize with respect to these variables, and the
spatial variable by a characteristic length, and consider a dimensionless problem Padim
over a dilation Ω0 of the domain Ω by the characteristic length.

In order to evaluate the capacity of our methods to treat imperfect models, specifically
models which may not account for all physical processes, we used a shifted model Ptrial,
an advection-diffusion-reaction model, to compute synthetic data representing a ”true”
solution used in our case studies.

ρ~v · ∇c− div((εmol + εturb)∇c) + ρRc = ρFsrc, (9)

where ρRc represents a linear reaction term for coefficient R approximation total change
from production and loss during reaction processes.
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Case studies in exterior air quality

We first set a case study for a relatively simple (with respect to the complexity of a
real-world case at urban scale with precise geometry and varying conditions) domain rep-
resenting a small residential neighborhood polluted by traffic on a street and by combus-
tion sources (not shown here) in residential yards. We define source parameter intensities
based on reports made available to the public by the U.S. EPA and on municipality web-
sites [45,85,188], and consider wind velocities pv within the calm and light air categories
of the Beaufort scale (from 0.1ms to 1.3ms ). We study a particulate pollutant, PM2.5, in
this first study, which on the short term can be considered to have negligible reaction.

We start with a two-dimensional version of the domain of dimensions 75m × 120m,
with a traffic pollution source ps, seen in Figure 0.2 along with an example of a solution
ubk(p) to Pbk, seen in figure 0.3 .

Figure 0.2 – 2D test domain with traffic pollution source.

Figure 0.3 – Concentration solution (logarithmic scale) over velocity field with pv = 0.1ms
and ps = 1× 10−3mg

m3 , and inflow velocity direction ~d = (1, 1)T .
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We begin by computing a set of training solutions to the model Pbk over the parameter
set Dbk and selecting the generators of a reduced basis. We compute two different Up-
date spaces, from sensors placed randomly and sensors selected by a GEIM-based Greedy
algorithm. In figure 0.4 we see this comparison.

Figure 0.4 – Sensor locations chosen randomly (left) ; Sensor locations chosen by a Greedy
algorithm (right).

We next provide PBDW state estimation results, comparing to a set of trial solutions of
a shifted model Ptrial for advection-diffusion-reaction, with three sets of 6 trial solutions to
test the method. We take parameters p ∈ Dbk (but different from the solutions generating
ZN ), and each set corresponds to a different model shift, with R ∈ (0, 0.001, 0.0001). In
figure 0.5 we show relative mean PBDW approximation errors for R = 0.001 plotted over
the calculation domain, and in figure 0.6 we see relative mean PBDW approximation errors
in the H1-norm for each trial set, as a function of N for M = 8, 13, 15.

13



Figure 0.5 – Relative mean PBDW approximation error maps for N = 2 (left), N = 6
(right), and for M = 8 (top) and M = 15 (bottom). p ∈ Dtrial, model error with
R = 0.001. Sensors chosen by a Greedy procedure.
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Figure 0.6 – Relative mean PBDW approximation error as a function of N for various M
values, p ∈ Dtrial. No model error (left), and model error with R = 0.001 (right). Sensors
chosen by a Greedy procedure.

A Real-World Application

We extend our study to a real-world application over Fresno, California, city affected by
particularly high pollutant concentrations. This application is in view of epidemiology
exposure assessments employed by a research team at UC Berkeley (UCB). The long-term
goal is to improve the methods for estimating individual exposures and expand the ability
of current UCB epidemiological studies to evaluate the association of these exposures to
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various health conditions. We aim to extend reduced order data assimilation methods
for deterministic PDE-based models to a real-world inspired case study in the hopes of
showing the feasibility of these methods in real applications. Below we can see a geometric
representation of a neighborhood in Fresno, used as calculation domain in our study.

Figure 0.7 – Left: Neighborhood in Fresno over which a wind field was computed using
Code Saturne. Right: Fluid domain used to study pollutant concentrations.

In figure 0.8 we see a wind field with ~vin = 1.3 ∗ z0.4 in SE direction (308 deg) corre-
sponding to real meteorological conditions on April 1, 2001, and an associated dimension-
less trial solution to Ptrial with R = 0.001, where pollution sources are taken to be two
streets.

Figure 0.8 – Wind field corresponding to conditions over Fresno on April 1, 2001 (left).
Dimensionaless concentration solution to Pbk with two pollution sources (right).

In figure 0.9 we show relative mean PBDW approximation errors for R = 0.001 plotted
over the calculation domain over a set of 8 trial solutions to Ptrial. We can see for this
simple first test on our real-world case study, with non-negligible model error by an added
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reaction term, we can reconstruct the concentration field with under 1% error nearly
everywhere, a promising result for future application of these methods.

Figure 0.9 – Relative mean PBDW approximation error over a set of 8 trial solutions to
Ptrial with no model error (left) and with R = 0.0001 (right). Here M = 8 and N = 3.

Non-intrusvie RBMs in urban modeling

In a break from the air quality modeling theme of the thesis, we focus on a different reduced
basis method and application in urban modeling: the two-grid non-intrusive reduced basis
(NIRB) method applied to a problem in tunnel engineering. We would like to show by this
example the flexibility of non-intrusive reduced basis methods and their interest in broader
applications of urban modeling. As mentioned above, classical RBMs are intrusive methods
of reduction for use in implicit studies (where we do not have access to measurements with
exact values of the state, as opposed to the PBDW treatment of explicit measures). If we
have an application using a black-box code, we can consider the NIRB as an alternative
RBM. In this study we investigate the use of reduced basis (RB) methods to diminish the
cost of numerical simulation of elastoplasticity problems arising from urban geotechnics
modeling, and involving parameter-dependent partial differential equations (PDEs). The
chosen application belongs to the field of tunnel engineering. We study the impact of the
construction of a shallow tunnel on existing structures (buildings, foundations, etc.) by
first examining the impact on the ground surface. In our study the geotechnical analysis
requires very specific features such as highly non-linear constitutive laws, making the
necessary modification of the FE calculation code for a standard RB method impossible.
Our non-intrusive approach involves the computation of less expensive (but less accurate)
FE approximation during the online stage and improvement of those solutions using a
RB-based rectification method, by which we attain equivalent precision with respect to a
standard FEM approximation over a sufficiently fine calculation mesh.
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Part I

Background : air quality
modeling, model order reduction
and data assimilation methods
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Chapitre 1

A review of current air quality
models

Résumé :

Dans ce chapitre, nous introduisons le contexte de la modélisation pour la qualité
de l’air. Le terme qualité de l’air fait référence à l’état chimique de l’atmosphère.
Un polluant est une substance nocive pour les être vivants, la végétation, ou les
bat̂ıments. Il existe deux catégories de sources de polluants : stationnaires et mobiles.
Une source mobile particulièrement importante est la pollution de trafic routier. Afin
de bien modéliser la qualité de l’air, il est souvent nécessaire d’abord, en fonction
du modèle choisi, d’estimer les émissions de polluants, par exemple par un modèle
d’émissions de trafic. Une fois qu’on a des informations sur le système physique, on
peut considérer un modèle pour estimer la qualité de l’air.

Il existe de nombreuses méthodes de modélisation de la qualité de l’air de ni-
veaux de sophistication variable : approches empiriques, modèles statistiques et mé-
thodes déterministes. Parmi les modèles déterministes le niveau de sophistication
des approches varie également, allant des simples modèles analytiques de panache
gaussiens [180], en passant par des modèles Lagrangiens [89], jusqu’aux modèles Eu-
lériens basés sur la CFD (Computational Fluid Dynamics) tel que le modèle simple
utilisé dans cette thèse.

Tandis que ces méthodes ont été beaucoup améliorées au cours des dernières
années, elles restent limitées. Par exemple, le traitement détaillé du trafic et la chimie
atmosphérique est encore primitif. Des incertitudes dans les données météorologiques
et sur les émissions, par exemple, se propagent dans les résultats du modèle sur
la concentration. Les modèles opérationnels peuvent aussi être améliorés avec des
techniques utilisant des données de mesures et des modèles statistiques, tels que
la correction de biais et la prévision probabiliste, la modélisation par ensemble (où
plusieurs modèles ou données d’entrée sont appliqués et les solutions sont combinées
dans le but de réduire l’erreur globale de modélisation), et l’assimilation des données.

19



1.1 Introduction

In this chapter we will lay out a brief state of the science on modeling of air quality
with the intent of developing and discussing tools to build sustainable cities. First
we will define the concept of air pollution, discuss important contributing pollutant
species, and discuss modeling. In the second part of this chapter, we will discuss
pollution sources and emissions, including the modeling of emissions. In the third
section we will discuss air quality models (AQMs) in greater detail, from catego-
rizing existing models to limitations and uncertainties, and finally modeling chains
composed of various models for each step of the air quality modeling process. Our
last section will discuss improvements in air quality modeling, advances in technol-
ogy, and improvement techniques such as data assimilation methods and ensemble
forecasting.

1.1.1 Air Pollution

The atmosphere is a stratified fluid composed mainly of gasses such as nitrogen,
oxygen, and argon, as well as traces of other elements. The term air quality refers
to the chemical state of the atmosphere; air is deemed polluted if it contains com-
posites able to cause damage to living beings, vegetation, or constructions. While
the principal composites of the atmosphere are rather stable, minor composites can
vary greatly [52]. Once a pollutant is released into the atmosphere, it undergoes
the phenomena of transport (advection), diffusion, and reaction, often alongside the
evolution of other composites. The combined effects of transport and diffusion are
referred to as dispersion. Each pollutant evolves with a temporal and spatial scale;
the lifetime of the pollutant will affect the spatial scale from micro to global scales.

When discussing a pollutant’s spatial scale, near-field phenomena refers to the
interaction of the plume of pollutant with the air flow field and obstacles in the
domain, and involves a small spatial scale. Far-field phenomena, when horizontal
motion prevails over vertical, involves a larger spatial scale, and the influence of
small-scale obstacles (such as buildings) on the dispersion field becomes relatively
small. [186]

Air pollutants include gaseous and particulate species which can lead to various
adverse health effects, both non-carcinogenic and carcinogenic. Many studies have
been performed on the effects of pollution exposure on human health, showing that
health concerns can be caused by short-term exposure as well as long-term exposure.
Children, the elderly, and those with pre-existing conditions are at even greater risk
for pollution-related adverse health effects. Pollutants and their derivatives can also
have negative effects on the environment and manufacture. [202]
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1.1.2 Pollutants to monitor

It has been estimated that air pollution kills 3 million people each year worldwide.
Particulate matter (PM) in particular has been directly linked to excess deaths in
many countries.

The World Health Organization (WHO) and many countries or states have de-
termined guidelines or regulations for common air pollutants. The United States
Environmental Protection Agency (U.S. EPA) has regulations concerning sulfur
dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), lead
(Pb), and particulate matter (PM2.5 and PM10). [66] The European Union has reg-
ulations for these six pollutants as well as for benzene (C6H6). The PNSE report
in France (http://www.cesel.org/IMG/pdf/PNSE2.pdf) estimates societal costs of
health effects from air pollution to be 50 billion euros over 30 years in the EU. These
regulatory efforts stem from a desire to protect populations from the many adverse
health effects caused by air pollution.

Fine particles smaller than ten micrometers can enter the respiratory system
without being retained in the nose; the smaller they are, the further they can pene-
trate. CO2 has higher concentrations in confined spaces. In some cities, particularly
large cities in Asia, levels of CO2 can be so elevated in the metro that passen-
gers will feel the effects. CO is the number one gas responsible for intoxication in
closed spaces. It is often emitted by poorly aerated heating devices. In naturally
ventilated spaces, however, it shouldn’t pose a serious health risk. Table 1.1 (be-
low) briefly summarizes emissions and associated health concerns of these six major
pollutants. [66,202]

Our focus in this work will be the modeling of air pollution ; we will begin by
discussing in more detail pollution sources, and emissions models which can be used
to improve pollutant emissions knowledge (section 1.1.3). This information is nec-
essary in the subsequent fate and transport modeling of the pollutants, which will
be discussed in section 1.2.

1.1.3 Pollution sources and emissions

On an urban to regional scale, emissions of the pollutants discussed in section 1.1.2
are mostly from urban areas, road transport, and industrial plants. [52] In partic-
ular, traffic is a major source of pollution in cities. [70] While table 1.1 globally
summarized the sources of these pollutants, we will discuss pollution sources and
emissions in detail in this section, from an air-quality-modeling point of view.

1.1.3.1 Sources

Sources of pollution can be divided into two categories: stationary and mobile.
The U.S. EPA defines mobile sources as including cars, trucks, airplanes, and lawn

21



Pollutant Health Effects Sources

CO
Depending on concentrations; behavior alteration, respiratory/cardiac
problems, irreversible respiratory diseases (in the case of excessive
concentrations).

63% road traffic, 17% waste treat-
ment, industrial processes and trans-
portation systems.

NO2 and NO
Effects on humans are not completely clear; high exposure levels have
been linked to significant respiratory/nervous problems.

49% road transportation, 32% in-
dustrial combustion: manufactur-
ing/energy production, 14% other
transportation systems.

SO2

Irritation to eyes and respiratory system, high exposure linked to acute
bronchial constriction and alteration of the nervous system. SO2 can
create a fine composite which penetrates deep in the lungs.

61% natural emissions (e.g. volcanos),
31% industrial combustion for manu-
facturing/energy production, 2% road
transportation.

O3

Can cause many health problems including: chest pain, cough-
ing/throat irritation, respiratory difficulty. Exposure can worsen
bronchitis, emphysema, and asthma, and can reduce lung function
and inflame the linings of the lungs, possible scarring lung tissue.
Children and the elderly are at particular risk.

Ground level ozone is created by re-
actions between nitrogen oxides and
volatile organic compounds (VOC)
(e.g. vehicle exhaust and benzene) in
sunlight.

Pb
Can adversely affect the nervous system, kidney function, immune
system, reproductive and developmental systems and the cardiovas-
cular system (e.g. high blood pressure and heart disease). Exposure
also affects the oxygen carrying capacity of the blood.

Fuels in road traffic and industrial pro-
cesses, fuel combustion of aircraft. Can
lead to lead-contaminated water and
soil.

PM

PM10 has limited consequences on living beings (mucous membranes
and nostril hairs can prevent penetration into lungs). PM2.5 can
penetrate deep into lungs and reach the blood, leading to respiratory
and cardiovascular diseases, increased cancer risk, and more.

PM10 generated principally by natural
erosion and volcano eruption. PM2.5
mostly due to combustion, and by
NOx after combustion.

Table 1.1 – Pollutants to monitor, health concerns, and sources.

mowers, among others. Stationary sources can be subdivided into point sources,
area sources, and biogenic sources. Point sources are single emissions sources with
an identified location such as factories and electric power plants. Area sources consist
of small emissions sources which are widely distributed, but may have substantial
cumulative emissions. Examples include multiple gas stacks of a single industrial
plant, evaporation of volatile liquid spills, open burning and forest fires, and even
consumer products such as lighter fluid and hair spray. Trains on specific tracks
are an example of a line source, which is also considered an area source. Biogenic
sources are natural sources, such as soils, vegetation, volcanic emissions, lightening,
and sea salt.

1.1.3.2 Emission models

The type of emissions input information necessary will depend on the type and scale
of the model. For global models, anthropogenic emissions used are generally based
on well-known global emissions inventories (e.g. Global Emissions Inventory Activ-
ity, Emission Database for Global Atmospheric Research). Regional models often
use anthropogenic emissions data from the GEMS-TNO or MEGAPOLI-TNO emis-
sions databases along with regional or local inventories. These emissions inventories
are often poorly accurate. They can be based, for an example on the regional scale,
on a classification of anthropogenic emissions by economic sector. The time dis-
cretization is often relatively coarse, more so than desired for input to many AQMs.
The emissions can be processed into temporally-resolved gridded emissions using
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emissions models (such as SMOKE or HERMES, see [202]). Modeling over smaller
regions requires more accurate emissions data from inventories with local informa-
tion.

Some models use projected or forcasted emissions information. Anthropogenic
emissions can be calculated using statistic projection from historical with informa-
tion on spatial and temporal variability (e.g. due to known source location), or
using an ”online” approach which depends on meteorology. As for Biogenic emis-
sions, most models use the Biogenic Emissions Inventory System offline. A drawback
to the use of historical emissions patterns for anthropogenic emissions is that vari-
ations in these emissions due to current conditions (such as current weather) is not
accounted for. Emissions information could be improved by including more recent
or even real-time emissions from mobile or biogenic sources, such as wildfires.

Instationary models requiring initial conditions to begin the process can use de-
fault settings based on climatology or measurements, simulations, model outputs
from other (often larger scale) models, and observations (e.g. from satellite or sur-
face data). Boundary conditions, information on the edges of the model domain,
are often based on climatology or other model outputs. [202,203]

Emissions due to road traffic:

Road traffic is considered to be a major contributor to city pollution, and the as-
sociated emissions have been the focus of much study. In 2008, 25% of CO emissions
in France were from road traffic [107]. In [70] road traffic and emissions modeling
are thoroughly reviewed, and the reader is encouraged to refer to the article for more
detailed discussion.

Emissions from traffic can be classed into four categories: exhaust, evaporative,
vehicle-wear, and road wear and dust. Models can use different input data, generally
from traffic models (which will not be discussed here).

Models based on fuel quantities (e.g. IPCC [86]) use fuel consumption and vehicle
categories as input data, but only produce large-scale emissions inventories. Models
based on average traffic volume and vehicle category (e.g. NAEI and IVE [43, 51])
use a single emission factor for each vehicle category, which are means of measure-
ments over varying driving cycles. The model user must provide vehicle volume
and annual mileage per category. They can generate emissions inventories on the
national or regional scale. These types of models cannot account for traffic variation.

Models based on average traffic speed (e.g. COPERT and MOBILE [65, 141])
estimate average emission factors for vehicle classes for varying driving patterns as a
function of average speed, and can generate emissions data for exhaust and evapora-
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tive emissions, and even vehicle and road wear. Models using detailed descriptions
of traffic situations (e.g. HBEFA [78]) use explicit emissions factors for preset traf-
fic situations and road configurations, and can be adapted to small scales as well.
Vehicle kilometer traveled (VKT) data for each traffic situation is the required in-
put, and the models estimate corresponding exhaust and evaporative emissions data
for a large variety of pollutants. These two modeling techniques account for traffic
condition via average values and for major emissions processes for small (road) to
urban scales.

The precision of emissions estimations can be improved by using more detailed
traffic-related input variables. These models (e.g. [125]) generate emissions from
traffic variables such as average speed, density, etc. These models, however, may
not be useful in determining the impact of traffic congestion. Models using more
detailed speed information from kinematic parameters or instantaneous models can
generate average or even explicit emissions estimates. These model types use either
databases (limiting conditions and pollutions covered) or explicit information from
measurements or microscopic traffic models.

Excellent reviews concerning the modeling of road traffic emissions, studying
multiple models (e.g. COPERT, MOVES, MOBILE, and HBEFA) and the coupling
of traffic and emissions models are available [106,107]. Numerous projects studying
traffic emissions have been conducted in recent years in France and internationally
(e.g. TrafiPollu studying the modeling chain from traffic emissions models [105]
to air quality models), and the platform ECOSTAND [30] provides input on best
practices for traffic from pollution modeling.

Emissions due to stationary sources:

Emissions due to stationary sources can include area sources and point sources,
from industrial sources such as factories or refineries, as well as combustion sources
such as wood fires or cooking devices. Gas stations can also be considered stationary
sources of pollution.

Limitations and uncertainties:

Accurate chemical input information (emissions data, initial conditions and bound-
ary conditions) is necessary to reliable modeling, and inaccuracies lead to forecasting
error. The use of input data from larger scale models, spatially or temporally, can
lead to interpolation errors when fitting the data to a smaller scale. Satellite data
used for initial or boundary conditions can be inaccurate due to retrieval algorithms,
cloud contamination, etc. The level of modeling accuracy can also depend on the
pollutant under consideration. Likewise, improving the accuracy of chemical species
emissions information will directly improve modeling accuracy.
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Uncertainty in road traffic emissions modeling, as for anthropogenic emissions in
general, depends on uncertainties in model parameters (emissions factors) and input
data. Particularly, uncertainty in traffic data, vehicle categories, emissions factors
and level of detail, ambient conditions and temporal variations, vehicle parameters
(e.g. milage), and fuel composition play important roles.

When considering an appropriate emissions model for AQM purposes, the need
for spatial/temporal distribution of emissions should be taken into account. While
macroscopic traffic models are accurate enough to estimate pollutant emissions, they
are not suitable for air quality simulations for this reason. In addition, the accuracy
of emissions models depends on the pollutant. The emissions of certain regulated
pollutants such as CO, NOx, V OC, PM mass, and CO2 are relatively well known,
while emissions estimates of NO2, NH3, PAH, PM as a function of size, and heavy
metals are rather poor. [70] gives more detail on the limitations and uncertainties of
emission models.

The importance of accurate emissions information to the efforts of air quality
modeling is clear, and emissions models continue to be a subject of research.

1.2 Air Pollution modeling

Air pollution is highly heterogeneous and variable, which is greatly contributed to by
turbulent air flows. Models have long been used as tools to explain various scientific
phenomena and to make estimations when exact information is not available. Ob-
taining a comprehensive set of measurements on a system of interest is impractical
or impossible. Short or long-term predictions may not coincide with measurement
availability, and can be done with models, as can parametric studies, sensitivity
analysis, and a priori assessment of development decisions. Air quality modeling is
thus indispensable to understanding the effects of air pollution in both urban and
rural areas, and to the development of sustainable urban areas. [84] Many countries
use real-time air quality forcasting for pollutants of particular concern (e.g. O3,
NO2, and PM). They can be used to provide early warnings to the populations to
take measures to reduce pollution and limit exposure. [202]

Air quality modeling integrates science and technology from many domains: me-
teorology, atmospheric chemistry and air quality, fluid and transport mechanics, as
well as mathematics and physics in general, environmental statistics, and computer
science and engineering, to give a surely incomplete list.

All models are simplifications of reality; human and natural systems are more
complex and heterogeneous than a model can capture. Complex relationships are
reduced and some are unknown (or considered unimportant and eliminated), which
leads to uncertainties in the results. More specifically, the inherent simplifications
involved in modeling of scientific phenomena lead to two types of uncertainties: un-
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certainty in the values of key parameters of the models, due to lack of knowledge
and natural variability, and uncertainty in the structure of the model itself. Sim-
plification means that spatial and temporal attributes of processes cannot be fully
resolved; there is no single correct scale for the dynamics of a natural system. Addi-
tionally, cascading effects such as pollutants reacting among themselves can in the
long-term create increasing error.

Over the past few decades there have been major increases in the variety and
complexity of computational models available. Their sophistication and capabilities
have been expanded thanks to advances in computing technology, data availability,
developer creativity, and improved understanding of the phenomena studied. While
models cannot be considered ”truth-generating machines”, they play an important
role in the analysis of systems and available information.

Many regulatory agencies worldwide employ models for retrospective, current,
or prospective evaluations. Air quality models (AQMs) are often used in regulatory
activities, such as those of the U.S. EPA. The information provided by models can be
used to support decision making, as obtaining a comprehensive set of measurements
to support a decision is often impractical or even impossible. Model results must be
used to augment and assess measured data. They can be the basis for decisions on
environmental cleanup and regulation. [84]

In this section we will discuss the development of air quality models and cur-
rent methods available. We will describe various categories of models, as well as
the limitations and uncertainties involved in air quality modeling. We will consider
modeling chain, used to integrate knowledge of multiple processes affecting air qual-
ity. We will also briefly discuss the connection with exposure modeling.

1.2.1 History and development

The first pollution models were forecasts of air stagnation or pollution potential
based on forecast conditions conducive to poor air quality; these forecasts were from
meteorological models, and did not account for emissions, transport, or chemistry
of pollutants. In the 1970’s various tools for pollution modeling in urban areas were
developed, and were mostly based on empirical approaches and statistical models,
which were fitted to historical air quality and meteoroligical data. In the 1990’s
more sophisticated techniques were developed to overcome the limitations of simpler
approaches and to treat non-linearity of systems. Three-dimensional numerical air
quality models with scales ranging from urban to global were developed from the
1970’s, and with advances in computational technology the focus was shifted from
postprocessing of meteorology and statistical methods to the use of 3D AQMs for
meteorology, emissions, transport, chemistry, and removal processes.

Deterministic AQMs, such as chemical transport models (CTMs) have tradition-
ally been used to retrospectively simulate poor air quality scenarios for regulation
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and planning; computational constraints and lack of real-time chemical measure-
ments limited real-time and predictive applications. A significant advance in tech-
nology was the development of real-time databases such as the AIRNow network
(www.airnow.gov), providing air quality information from many centers to the pub-
lic.

Many countries have been developing real-time air quality monitoring methods.
More sophisticated techniques have been developed based on initial AQM techniques;
ensemble modeling (discussed in 1.3.2.2) as well as chemical data assimilation have
been significant advances. CTMs an CFD models have been developed in order to
better model pollutant concentration in complex domains.

Below we will outline general model categories existing today. For an excellent
overview of existing operational models, the reader is encouraged to refer to [202]

1.2.2 Model categories

Of the many different varieties of AQMs developed in recent decades, each was de-
veloped for a specific purpose, with inherent strengths and limitations. Here we will
discuss some common types of models. We note that we will mostly treat physical
phenomena in these models, as chemical reaction is particularly complex and is most
often greatly simplified, even in deterministic models. Complex chemical treatments
are considered in more detail in, for example, [89].

Models vary greatly in terms of scale and precision of the input and output in-
formation. Global approaches don’t study fluid flow, but focus on scalar values (e.g.
concentration of particles in interior or exterior air, exchange factors between inte-
rior and exterior air, emissions factors of a source, etc.). For the example of interior
air quality, some models assess conservation of mass in each zone of a building, then
in the entire building. These global methods are less precise, and undoubtedly not
adapted to domains with high air velocity (and therefore greater turbulent com-
plexity and mixing effects). However, they can be computationally inexpensive with
low calculation times and no meshing of the domain required. More sophisticated
deterministic models can provide more precision; for example, CFD modeling allows
to model fluid flow and predict particle displacement.

Below is a diagram representing the categories of models which will be discussed
here.

27



Figure 1.1 – Diagram representing various types of models used for air pollution studies.

Models can be classed into two broad categories: deterministic and non-deterministic.
In this section we will first discuss common non-deterministic methods, from sim-
pler empirical models to more sophisticated statistical models. We will then consider
deterministic models, mainly Gaussian dispersion and Lagrangian and Eulerian ap-
proaches for AQMs, specifically in the dispersion and reaction framework. We will
then develop the discussion on models based on computational fluid dynamics (CFD)
in a third paragraph as these methods are of particular interest to this work.

1.2.2.1 Non-deterministic models

A non-deterministic system includes some stochastic elements, and a set of fixed
input variables does not guarantee the same output for multiple model runs.

(i) Empirical approaches

We will begin by discussing relatively simple air quality modeling approaches: em-
pirical methods.
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The persistence method operates under the assumption that one day’s observed pol-
lution levels can serve as the next day’s forcasted level. This is a very rapid method
which can function relatively well under stationary conditions and consistently high
or low pollution levels. However it fails to handle abrubt changes in weather, emis-
sions, or air quality, and accuracy in the long term is rather low. It is primarily used
as a reference or base method for other approaches.

The climatology method hypothesizes that air quality is highly dependent on
weather. It is computationally rapid, using historical air pollution data (at least 2-5
years) to guide and bound forecasting. It cannot, however, handle abrupt changes
due to emissions or non-historical weather patterns. While it is simple to use, it
provides low accuracy in results, and like the persistence method, does not provide
sufficient results to be used without combining with other methods.

Empirical approaches operate under the assumption that thresholds of parame-
ters which influence pollution, such as meteorological variables, can indicate future
high pollution levels; if the parameters are forecasted to reach a threshold, then
high pollutant concentrations will be forecasted. Required inputs include observed
and forecasted meteorological and air quality data. It is moderately accurate, al-
though not for exact punctual concentrations. Empiricism cannot handle pollutants
which are weakly dependent on weather conditions, such as carbon monoxide. It
relies on the strong correlation between the pollutant considered and meteorological
variables, such as ozone and temperature. These correlations, however, may not al-
ways hold– high temperatures are not necessarily sufficient for ozone formation– and
can depend on the pollutant under consideration– PM species respond differently
to temperature changes. Empiricism is primarily used to determine whether a more
sophisticated approach is necessary. [202]

(ii) Statistical approaches

Statistical approaches hinge on the statistical relations between weather and air
quality variables. Various functions, such as regression, are used to predict pollutant
concentrations depending on external conditions.
Common methods include: classification and regression trees (CART), regression
methods, artificial neural networks, fuzzy logic method, and Kalman filter methods.
In order to predict pollutant concentrations from input parameters of air quality and
meteorological variables, classification and regression trees use a decision tree, while
regression methods employ regression equations. Artificial neural networks (ANNs)
and fuzzy logic (FL) are based on artificial intelligence techniques. For example,
fuzzy logic uses continuous variables from 0 to 1 representing a trueness spectrum.
Both these methods are computationally rapid with moderate to high accuracy, but
cannot accurately predict extreme concentrations and are limited by observation re-
quirements. Some of these methods can handle non-linearities (CART, ANNs, FL,
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and non-linear regression), which are more accurate than linear regression methods.

Statistical methods are generally best-suited to studying complex site-specific
relationships between concentrations and predictors, and in this case can often have
higher accuracy than deterministic models. However, they require much historical
measured data under varying atmospheric conditions, and are hence confined to the
area and conditions corresponding to the available measurement data; they cannot
be generalized to regions with different chemical and meteorological conditions. In
addition, statistical methods cannot handle significantly unusual emissions or meteo-
rological conditions, nor can they take into consideration distant weather-dependent
sources. Accuracy depends on the meteorological predictors used, which often ne-
glect or simplify some meteorological processes which can be significant players in
the development and dispersion of pollutants. It should also be noted that statistical
models do not improve understanding of the physical and chemical processes gov-
erning the evolution and transport of air pollutants. Direct links between emissions
and pollution concentrations and relationships between different pollutants cannot
be described by statistical methods.

The reader is encouraged to refer to [202] for examples of models applying these
statistical approaches, which have been applied in air quality modeling since the late
1970’s.

1.2.2.2 Deterministic models

A deterministic model of a physical system is a model involving no randomness; the
same output will always be produced from a given configuration of the model.
Deterministic models for air quality discussed here are physically-based approaches,
from basic to more advanced. These air quality models aim to calculate pollu-
tant concentration spatially and temporally using mathematical equations which
describe the processes of atmospheric transport and chemical and physical transfor-
mation. [70] Varying approaches exist on model inputs and outputs, structure, and
spatial and temporal resolution.

The more advanced deterministic models can enable better understanding of
physical and chemical processes, such as links between emissions and pollution con-
centrations and interactions between pollutants, which is essential to the under-
standing of the physical-chemical system, the improvement of air quality modeling
capabilities, and to the development of integrated emission control strategies. [202]

In this paragraph we will first consider near-source dispersion models, then focus
on Lagrangian approaches for modeling the trajectory in dispersion-reaction cases,
and finally introduce an Eulerian approach for fluid and transport dynamics PDE
models.

(i) Box models
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Box models are very simple models in which large domains are considered as
boxes (not gridded by small cells) and concentrations are considered homogeneous
within the box. Pollutants are emitted, undergo chemical and physical processes, and
are advected in and out of the box. While the computational cost is low, these models
are not used operationally, but can be useful in the study of specific processes under
simple configurations and controlled conditions or to study deposition fluxes. [70]

An Eulerian (see paragraph (iv)) box model for gas-phase pollutants would be
based on an averaged dispersion equation of the form

∂〈ci〉
∂t

+ div(〈V (x, t)〉〈ci〉) = div

(
〈ρ〉ε∇

(〈ci〉
〈ρ〉
))

+ χi

(
〈ci〉〈T (x, t)〉, t

)
+ 〈Si(x, t)〉 − 〈Λi〉〈ci〉 (1.1)

where 〈·〉 represents an average, ci is the concentration of species i, V (x, t) the air
flow field and T (x, t) the temperature, ρ is the air density, ε the diffusion coefficient,
Si(x, t) the source term for species i describing emissions, χi the chemical source
term of the species (i.e. reaction term), and Λi is a coefficient for wet scavenging
(see 1.2.2.3), a function of meteorological fields and physical variables.

Boxes can be connected using flux terms at the interfaces, for example with one
box representing the mixing layer (the part of the atmospheric boundary layer where
pollutants mix during daytime, see paragraph on Atmospheric influence in 1.2.2.3)
and another representing the residual layer above.

A Lagrangian (see paragraph (iii)) box model could for example treat equations
for chemical kinetics (including deposition/scavenging and emissions), solving along
the characteristic curves of the flow. [180]

(ii) Near-source dispersion models

Near-source dispersion models use parameterization to represent the transport and
dispersion of pollutants from the source(s) selected. If the domain includes no obsta-
cles to atmospheric transport and atmospheric conditions are stationary, the disper-
sion process can be modeled by a Gaussian distribution of time-averaged pollutant
concentrations. Gaussian models are based on the assumption that atmospheric
dispersion follows a Gaussian distribution of concentration both vertically and hori-
zontally. Operational models based on Gaussian dispersion are widely used as ”fast
response models”, principally to study near-field dispersion from a point source. [186]
While often used in atmospheric dispersion, they are rarely use for interior disper-
sion ; however they could be considered for air quality modeling in, for example, a
train station, with trains treated as line sources.

Gaussian plume models can be used in steady-state atmospheric conditions
(e.g. constant wind speed and direction) with continuous pollutant source. If we
consider the following dispersion equation for the mixing ratio (defined as the ratio
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of the mole number of the pollutant to the mole number of the air)

∂C

∂t
+ ~u · ∇C = Kx

∂2C

∂x2 +Ky
∂2C

∂y2 +Kz
∂2C

∂z2 (1.2)

with velocity ~u and Kx representing turbulent diffusion in the x-direction (respec-
tively y and z), we can derive a solution C(x, y, z, t) given by a Gaussian function.
More specifically for the Gaussian plume model, if we consider a source at x = y = 0
and height z = h, wind velocity ~u = ux and ground BC of total reflection (translating
to a homogeneous Dirichlet BC), we have

C(x, y, z) = S

2πuσyσx
exp
(
− y2

2σ2
y

)[
exp
(
− (z − h)2

2σ2
z

)
+ exp

(
− (z + h)2

2σ2
z

)]
(1.3)

where the variances σ2 are dependent on distance to the source and meteorological
fields. [180]

These models, however, are not designed for atmospheric dispersion in cases of
low wind speed. They can treat deposition processes and simple chemical reaction
systems, however this is rather challenging and can be approached by several meth-
ods. Plume models can estimate concentrations up to 50km from a source, usually
averaging times over one hour or less to accommodate the assumptions of constant
meteorological conditions.

Gaussian puff models can handle variable atmospheric conditions and emis-
sions, and more complex chemical reactions. Atmospheric dispersion is represented
by releasing puffs from the source at specified time intervals. Each puff evolves by a
Gaussian model independently of others, and the total concentration is the sum of
all the puffs. If we consider N puffs at interval ∆t, then ∀ t ≥ N∆t

C(x, y, z, t) = 1
(2π)3/2

N∑
i=1

Si∆t
σxσyσz

exp

[
− (x− xi(t))2

2σ2
x

− (y − yi(t))2

2σ2
y

]
×
[
exp
(
− (z − zi(t)− h)2

2σ2
z

)
+ exp

(
− (z − zi(t) + h)2

2σ2
z

)]
(1.4)

where Si∆t is the emissions at time ti = i∆t, and the evolution of the x-coordinate
(respectively y or z) of puff i is given, as a function of the x-direction (resp. y or z)
wind velocity u(x, t), by [180]

xi(t) = xi(t−∆t) + u
(
xi(t−∆t), t−∆t

)
∆t.

The process of following each puff involves greater computation requirements
than plume models. These models are relatively easy to use and are popular for
passive tracers and short-range dispersion. Puff models have been used for long-
range pollutant dispersion impacts when meteorological fields are computed using
an appropriate model (see [200]). However, they are limited to a small number of
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specific sources, as puffs must be released from each source. The computational
burden thus increases with each additional source. The extension to reaction is
challenging as well, and the parameterization of the time-dependent variances σ2

can prove more complicated than in the plume model.

Often modified Gaussian dispersion models are developed for different purposes.
For example, hybrid models using both plume and puff techniques can better handle
low wind speeds. Other modified models can handle many dispersion processes in-
cluding atmospheric stratification, chemical reaction, deposition, and concentration
fluctuation. Nevertheless these techniques remain limited by the effects of obstacles
on the plume. [70,186]

In the case of domains including obstacles to pollutant dispersion (e.g. buildings,
noise barriers, or vegetation), other parameterizations must be used to model near-
source impact. The case of dispersion around buildings can be treated by modifying
dispersion coefficients to create a wake effect, but is limited to simple cases and does
not treat recirulation effects from multiple buildings. When the domain represents a
street canyon, parameterizations based on the assumptions that there is a well-mixed
zone in the street canyon. For road pollution modeling, a method was proposed
in [177, 178] which simulates each street using a simple box model, and calculates
the advective flux balance at the intersections. Three major transport mechanisms
in the urban canopy are considered by this method: advective mass transfer along
the street due to mean wind along the street axis, turbulent mass transfer across
the interface between streets and the overlying atmospheric boundary layer, and
advective transport at street intersections. At the single-street scale, the method
employs a Gaussian plume model for atmospheric transport and dispersion above
roof level. [70]

(iii) Lagrangian models

Lagrangian models study fluid and particles separately, relying on Newton and
Stokes laws. They provide realistic approximations and require little information
on the particles, but are computationally expensive. A Lagrangian model follows
the trajectory of an air mass along the mean wind flow. Gaussian dispersion models
are included in this category (but were set apart due to their particular importance),
along with numerical particle models and grid-based Lagrangian models (examples
are provided in [70]).

Here we will discuss lagrangian particle trajectory models in more detail.

Particle-trajectory models are based on the tracking of so-called numerical
particles using a stochastic interpretation of a passive dispersion equation. As the
air mass moves along its trajectory , particles are advected with the flow and dis-
persed via turbulent diffusion. These models work well under stationary conditions
over flat terrain as well as variable conditions over complex terrain.
Grid-based trajectory models involve a 1D column or 2D wall of cells which is ad-
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vected by the mean wind. Turbulent dispersion spreads pollutants among the cells
as the air mass moves downwind along its trajectory from the pollutant source
(e.g. [174]).
If we consider a 3D velocity field V = (ux, uy, uz) and turbulent diffusion coefficients
Kx, Ky, Kz, then the trajectory of a numerical particle (x(t), y(t), z(t)) with

x(tn+1) = x(tn) +
(
ux + ∂Kx

∂x

)
∆t+

√
2Kx∆Wx (1.5)

For the x-direction trajectory (similar for y and z). W∗ is a normal stochastic
process of zero mean representing white noise. The concentration can then be calcu-
lated by summing all particles in a given grid cell. If an infinite number of particles
are tracked this process has a continuous limit such that

∂c

∂t
+ div(V c) = div(εturb∇c), (1.6)

which is precisely the advection-diffusion equation which will be discussed more
in paragraph (iv) (conservation equations) and subsection 1.2.2.3 [180], and can
be interpreted as passing from a statistical mechanics point of view to continuum
mechanics as the Knudson number1 decreases with increased number of modeled
particles.

The computational expense of this method is due to the need for a high num-
ber of particles (O(104)) to ensure convergence of the concentration result. The
extension to model reaction is non-trivial, as interactions between particles must be
tracked, however it is possible, and these models can handle non-linear chemistry
owing to the grid. However, complex meteorological conditions such as wind shear,
land-sea breezes, and mountain-valley winds, cause poor representation of pollutant
dispersion. These models are commonly used to model overall dispersion patterns
and temporal development of mean concentrations. An example of an operational
Lagrangian model for air quality used in California can be found in [88,89,102].

(iv) Eulerian models

Eulerian models are based on the hypothesis that the particles form a continuum, a
volume of, at the local scale, homogeneous properties (such as air pollutant concen-
tration as a scalar value, or meteorological variables), and study the flow of those
variables through a 3D gridded mesh of such volumes (cells). Eulerian models em-
ploy chemical transport models (CTMs) which rely on conservation equations, such
as equation (1.6), solved over the discretization (grid), for each cell.
CTMs are deterministic models which can explicitly represent all major physical,
meteorological, and chemical processes involved in the formulation, transport, and

1The Knudsen number helps determine whether statistical mechanics or the continuum mechanics
formulation of fluid dynamics should be used. If the Knudsen number Kn = λ

L
, where λ is the mean

free path (the average distance traveled by a moving particle between successive collisions) and L is a
characteristic length of the problem, Kn ≥ 1, then the mean free path of a molecule is comparable to
a length scale of the problem, and the continuum assumption of fluid mechanics is no longer a good
approximation.
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accumulation of air pollutants. They can take meteorological variables as inputs
(gridded meteorological fields previously calculated by meteorological models) as
well as Initial Conditions (ICs) for the non-stationary case and boundary conditions
(BCs) for treatment on domain boundaries. Conservation equations are solved for
the mass of species of pollutants and for chemical reactions between pollutants. This
type of model has been developed over multiple decades and is used in many coun-
tries. See [70, 202] for examples of operational CTMs. We will consider CTMs as
Eulerian models, but will discuss their relation to Lagrangian trajectory models and
equation (1.6) in the next paragraph.

The fixed grid used by Eulerian models facilitates the treatment of a larger num-
ber of sources and complex chemistry and atmospheric transport phenomena. They
can be used at a variety of scales, from urban to global. [70] Compared with above-
mentioned statistical methods, Eulerian CTM models have multiple strengths. They
can approximate and forecast temporally and spatially resolved concentrations, even
under atypical conditions. In addition, there is the advantage of the physically-based
approach improving understanding of the processes. Long-range transport, interplay
with meteorology, emissions, and chemistry, and air quality changes depending on
meteorology and emissions can all be better addressed. Accuracy is moderate to
high when the model is well-chosen (processes are correctly represented) and cali-
brated (accuracy of ICs, BCs, emissions, etc.). And of course, these models do not
require large quantities of data as most statistical models do.
However, the development and implementation of these models can be difficult and
costly; knowledge of sources and emissions is required, and chemical and transport
processes will be simplified and approximated. The accuracy of CTMs strongly de-
pends on the accuracy of the meteorological input data (as is the case of Lagrangian
trajectory models), and inaccuracies in any input can be propagated. It is also
important to mention the computational cost of CTMs. These limitations will be
discussed further in section 1.2.3.
As compared to Lagrangian models, which track particles by time-stepping and are
therefore not iterative in the computation of concentrations, eulerian models usually
need an iterative method of resolution in the steady state to achieve a convergent
concentration field. In the transient case, the eulerian methods still often need an
iterative method at each time step, depending on the time discretization scheme,
while the Lagrangian models using flow field input still tracks the concentration by
time stepping, saving concentrations at each time. This means that in some time-
dependent cases, Lagrangian models may gain an advantage over eulerian methods
with respect to computational time, depending on the number of particles tracked
and computational architecture.

Specific examples and details are provided in [202]. Chemical transport modeling
using fluid dynamics will be discussed in depth in the next paragraph.

Some models combine Eulerian and Lagrangian concepts: plume-in-grid models
simulate selected sources with Lagrangian models (e.g. a Gaussian puff model)
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embedded within a 3D Eulerian model which simulates the fate and transport of all
other emissions. These models have the advantage of a large domain and multiple
sources inherited from the Eulerian methods, and the fine resolution near a particular
source inherited from the Gaussian model.

1.2.2.3 PDEs for air quality: CFD & CTM models

Key components of CTMs lie in the physical parameterizations (inputs and coeffi-
cients for physical quantities) associated to the modeled processes. We will give a
brief overview of the major phenomena involved. [180]
Emissions can often simply be based on an emissions inventory. As mentioned in
1.1.3.2, however, the time discretization is often much coarser than that needed for
a CTM, and detailed emissions for a specific pollutant may not be available (for
instance, VOCs are treated as a single category). More sophisticated approaches
couple emissions modeling for more accurate input into the AQM (see 1.2.4.2).
Diffusion is an important component, and varies greatly depending on atmospheric
stability, temperature, and flow fields. It is made up of molecular diffusion and
turbulent (eddy) diffusion, although molecular diffusion is often considered negligi-
ble with respect to turbulent diffusion. This will be discussed more in 4.2.2 and in
paragraph (ii).
The chemical mechanisms of reaction must be parameterized, which depends on the
pollutant modeled and other species present, and even on the altitude or solar ex-
posure. This can prove complicated as there is no universal chemical mechanism.
A gas-phase chemical mechanism parameterization may describe 100+ species with
hundreds of reactions. In the case of passive tracers, this term can serve to model
the atmospheric of the species (in practice the lifetime).
Wet scavenging is a poorly understood process accounting for the effects of clouds
and precipitation on gas-phase and particulate species, which governs the atmo-
spheric residence time of the pollutant. The parameterizing in AQMs is difficult
given the lack of understanding of the phenomena.
Dry deposition depends on the pollutant species, meteorological conditions, and on
land use category (LUC). It can be described by a deposition velocity, however un-
certainty in seasonal variation of LUC means questionable accuracy.
Last among the physical processes we’ll discuss here is the air flow field, perhaps
the most important. A common technique is to map the outputs of meteorological
models to the grid used for the CTM, however the required projection and interpo-
lation will add to the modeling error.

(i) CFD and CTMs An alternative to meteorological inputs for CTMs from
another model would be to rely on Computational Fluid Dynamics (CFD). In the
past two decades, Computational Fluid Dynamics (CFD) simulation has been widely
used for pollutant dispersion in urban areas. CFD modeling for pollution, closely
linked to the broader category of CTMs, involves the modeling by partial differential
equations (PDEs) of fluid flow based on the Navier-Stokes equations, and of pollutant
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transport to approximate the dispersion of pollutants. Examples of this method
are given in [70]. These models consist in a transport equation (advection and
diffusion, and possibly reaction) for the concentration of the chosen pollutant, which
is highly dependent on the velocity field provided by the resolution of the Navier-
Stokes equations.

This method is well-suited to studying the relationship between atmospheric
chemistry and meteorology, as well as to air quality forecasting. While CFD models
are quite time-consuming and the dispersion processes involved can be difficult to
implement, they can give detailed spatially-rich information on the flow and con-
centration of pollutants. The coupling of air flow and chemical transport models
can enhance our understanding of the interplay (and of what interplay is possible)
between meteorology, emissions, and chemistry; model evaluations have shown that
these coupled models can provide results which are consistent with or improve upon
those from statistical methods.

Applications of CFD to near-field pollutant dispersion modeling around build-
ings have been rapidly increasing in recent years, and the range of competencies has
expanded to include chemical reaction, fine particle dispersion, etc. CFD modeling
has great potential, however to be used correctly, careful attention must be paid to
the theory and implementation of the models. [186]

(ii) CFDs and Turbulence In order to treat turbulent flow, one needs a tur-
bulence closure equation of the governing PDEs of the CFD models for fluid flow.
Various techniques exist, each of which handles turbulence differently, some being
more accurate than others. However, the relevance of turbulence model choice in
model accuracy for CFD simulations is only significant when other sources of error,
such as numerical and convergence errors, or input and boundary errors, have been
controlled. [70,186]

Common techniques include Direct Numerical Simulation (DNS), Large-Eddy
Simulation (LES), and Reynolds-Averaged Navier-Stokes (RANS).

DNS solves the Navier-Stokes equations without approximation on a very fine
(and well-adapted) grid to catch small eddies in the flow. However, this is very time-
consuming, (although can be useful in studying the minute complexities of turbulent
flow), and does not perform well for high Reynolds numbers as varying scales of
turbulent otions require a very fine mesh; DNS is not feasible for environmental
simulations.

LES separates turbulent motion into large and small eddies. Small eddies are
modeled independently from the flow geometry with parametrization. Large eddies
are simulated explicitly for time-dependent flow. This method is more practical than
DNS, though still relatively time-consuming. It is applied mostly in meteorological
simulations and simple configurations for air quality modeling (such as street canyons
or single stack plumes). LES is not a common approach in operational air pollution
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applications at this time.
RANS solves the time-averaged Navier-Stokes equations with approximation to

simplify turbulent flow. This is the fastest method and has proven useful in air
quality modeling (e.g. in [130] and [62]). This is limited to local applications cur-
rently, such as a single source in complex terrain where flow is complex. Chemical
transformations have been incorporated in recent applications.

For an example of the mathematical equations involved, in [130] Boussinesq’s
turbulent diffusivity model (which accounts for atmospheric stratification, refer to
article for details) is used, which closes the conservation of mass and momentum
equations in the CFD model using the RANS k − ε technique.

(iii) Concentration Modeling A simple CFD-CTM model considered in [52] for
a pollutant which on urban or regional scales does not significantly react with other
composites follows the Eulerian approach to modeling diffusion and transport via
the advection-diffusion equation.{

∂C
∂t
−∇ · (εtot∇C − ~vC) = f in Ω× (0;Tf )

+BCs and ICs
(1.7)

where εtot = εm + εt is the diffusion (molecular and turbulent/eddy) of the pollutant
in the air, ~v is the advection (velocity) field, and f represents the pollutant source.
These parameters usually depend on space and time. If the velocity field of the
fluid is suitably described (e.g. by the Navier-Sotkes equations with a turbulence
model), then the turbulent diffusion εt will dominate the molecular diffusion εm.
We neglect the deposition term here, an assumption which holds, for example, for
smaller particles. In [206] it was considered that for particles of size 0.3 − 1µm
(PM0.03 − PM0.1), the deposition velocity was vd ' 10−5 − 10−6 m

s
in ventilated

indoor chambers. A particle loss coefficient was calculated as β = vd
A
V

depending
on the area (A) of the room and volume (V ) if the interior surfaces, which was of
two magnitude orders lower than the air exchange rate considered in the problem,
and was therefore neglected.

This model, with suitable BCs and IC, could be applied to pollutants such as
CO, NOx, SO2, and PMx on an urban scale, if we choose to consider the reaction
term negligible for the purpose of transport modeling (this assumption would not be
valid in general, and could only be considered reasonable on a case-by-case basis).
This model could be extended by considering parameterizations for the neglected
processes, and will be revisited in part III.
The computational cost of this problem being impractical often leads to replacing ν
with a tensor K for turbulent diffusivity in each direction, giving:{

∂C
∂t
−∇ · (K∇C − ~vC) = f in Ω× (0;Tf )

+BCs and ICs
(1.8)
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where the components of K depend on the properties of the problem (e.g. the
Reynolds number) and are generally unknown. AQMs employing CFD methods of-
ten differ in the choice of the components of K. Models for pollutant concentration
based on the transport equation can also be tweaked to solve for mean concentration
or concentration variance, and used, for example, to predict an annual mean and
standard deviation of a pollutant concentration. [130]

Atmospheric influence

Pollutant dispersion in urban environments is characterized by atmospheric bound-
ary flow and flow around buildings; accurately simulating boundary flow is necessary.
The atmospheric boundary layer (ABL) is the part of the atmosphere sensitive to
varying conditions at the surface of the Earth in the short term (in terms of hours).
Turbulent properties corresponding to actual weather conditions are needed at the
inflow boundaries; this is simpler in RANS than in LES. Studies on the reproduction
of the influence of atmospheric stability on near-field dispersion using CFD model-
ing, such as [14,39,126,172,198,205], confirm that atmospheric stability conditions
significantly affect plume spread and concentration levels. [186]

Even in the case of neutrally- to stably-stratified atmospheric conditions outside
the urban setting, stability effects inside the urban canopy should not be neglected.
Solar energy increases air temperature in the lower levels of the urban canopy during
the day, generating turbulent heat fluxes, and at sunset the transfer of stored heat
within the canopy means warmer air than upwind at the same height. Stability in-
side the canopy increases during the night in the absence of solar radiation. [130] In
the case of a neutral ABL, within the surface boundary layer (tens of meters at the
surface) wind velocity can be considered mostly horizontal with a vertical profile of
modulus ∼ ln(z + z0) (for z0 ≥ 1). Atmospheric stability is a complicated phenom-
ena, discussed in more detail in [179], which is not taken into account in every AQM.

Coupling Flow and CTMs

The coupling of meteorological models and CTMs can be done ”offline” or ”online”,
which we refer to as decoupled and coupled, respectively. Decoupled models, where
the meteorological or CFD field is calculated and given as input to the CTM, can
not provide meteorology-chemistry feedbacks (e.g. aerosol feedbacks to radiation
and photolysis, see [202]); these feedbacks can be important to future air quality
predictions. Biases could also be introduced into the system; for example [59, 145]
reported poor performance due to neglecting aerosol feedbacks to radiation and
cloud formation processes. Additionally, if the CTM requires atmospheric input at
a smaller time scale than the output of the offline meteorological model, information
is lost.
Coupled methods, where meteorology or CFD fields and concentration fields are
solved jointly, are increasingly used when feedbacks are deemed important, such as
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in locations with high frequencies of clouds and high concentrations of larger par-
ticles, and when the local winds can change quickly; coupled meteorology-CTMs
can be essential for accurate model simulations. These models can provide more
realistic treatments of the atmosphere, particularly in locations with fast-changing
meteorological variables, however the cost of computing both flow and concentration
fields simultaneously is higher.
In the case of particulate species, the volume fraction (fraction of pollutant to air
volume) is generally low, and the effect of the pollutant on air flow can be ne-
glected [206], a practice which is often extended to gas-phase pollutants, permitting
the decoupling of CFD and CTM computations.

(iv) Eulerian vs. Lagrangian in the CFD-CTM framework Here we will briefly
discuss a comparison done by [206] of Lagrangian and Eulerian models for indoor
particle dispersion with the intent of showing the relation between a Lagrangian
particle trajectory model and a CTM.

Considering a time-dependent advection-diffusion eulerian method (equation 1.7)
for the eulerian continuum, this was compared to a Lagrangian method solving for
particle trajectory (as opposed to particle position equations given in (1.5) ). [206]

d~up
dt

= C(~u− ~up) + ~g(ρp − ρ)
ρp

+ F (1.9)

where the left-hand-side of the equation describes inertial force per unit mass, ~up is
the particle velocity, ~u the air velocity, the right-hand-side represents a drag term
with constant C, Gravity, and buoyancy. ρ (respectively ρp) represent the density
of the air (particles), and F additional forces per unit mass.
The same CFD flow field can be used in both methods. A comparison between
the two methods can be performed once the Lagrangian particle model results are
summed over the grid cells to calculate a concentration, a process which is statis-
tically stable and convergent to (1.6) if the number of particles is sufficiently high.
Results of the specific applications in [206] will be discussed in paragraph (v). The
Lagrangian model depending on a high number of particles, a balance is needed
between instability in the concentration (fewer particles trajectories) and increased
computation time (many trajectories). The eulerian resolution of conservation equa-
tions, while often done iteratively, is stable once converged.

(v) Applications in urban environments Here we discuss the CFD studies per-
formed on various configurations, the most simple being an indoor or single-building
configuration, which have helped to shed light on the nuances which are not cap-
tured by other modeling methods.

In [206] indoor particle dispersion was studied in a chamber and an airplane cabin
for steady and transient cases, using decouple CFD flow and comparing Lagrangian
trajectory and eulerian continuum methods. In the chamber an eulerian grid of
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60, 000 nodes was used, and 100, 000 particle trajectories were studied. The La-
grangian method gave less diffusive effects in convection-dominated regions, giving
sharp concentration gradient, while the Eulerian method provided a smooth contin-
uum, but overall concentration distributions were similar. In a steady-state problem
the eulerian method calculated concentrations faster, while the Lagrangian method
gives more information on individual particle trajectories. If concentration is not
being calculated, the Lagrangian model could be applied with fewer trajectories,
making it an attractive option for complicated problems. A transient problem with
non-constant particle emission rate again showed less smoothness via Lagrangian
model, however the Eulerian model surpassed the Lagrangian in computation time.
More detail is given in [206]
In [23] simulations of the single-building configuration were performed using a steady
RANS model and found lower lateral turbulent diffusion as compared to wind tunnel
testing.

The street canyon configuration has been the subject of much study. [108] pub-
lished a review of developments of CFD models for wind fields and pollutant trans-
port in street canyons. Simulations in both 2D and 3D have highlighted the high
variability induced by turbulent mixing and diffusion, a phenomena which is highly
three-dimensional; 3D CFD models provide a more complex flow field than 2D.

To take the street canyon configuration to the next level a building array con-
figuration can be studied. While studies have shown that the time-averaged plume
profile far enough into the obstacle arrays can be modeled with a Gaussian distribu-
tion with appropriate diffusion parameters , CFD methods have been shown to be
better for applications with complex geometry. However, more study is necessary
for CFD ability with varying atmospheric conditions. CFD model performance with
RANS has been evaluated in various studies: [29,57,99,171,195]. A validation study
of CFD models has been performed using the Mock Urban Setting Test (MUST)
observation data by [201], and [7, 55, 170] compared CFD model results to exper-
imental data. [27] used DNS, and their results helped to further understanding of
the processes affecting plume structure, such as lateral dispersion, secondary-source
dispersion and plume skewing.

A more involved configuration is that of a building complex, on which many CFD
studies using RANS and LES have been performed to provide reasonably accurate
results: [11,151,152,207]. However for this configuration it can be difficult to get re-
liable observations for validation: [181] performed detailed wind tunnel experiments
on a building group in Montreal, and the resulting data has been used for CFD val-
idation. [76] compared five CFD models in New York City, and projects in London
(e.g. EPSRC, DAPPLE) have provided data used in CFD simulations.

CFD studies of air quality in 3D urban environments have found that the flow
structure around buildings is highly three-dimensional, depending on the building
configuration and wind direction. Near-field phenomena has been shown to have a
fully 3D nature; pollutants can be transported opposite the wind due to eddies and
mean flows caused by structures, caught in recirculation zones , an effect which is
more prevalent in building groups.
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In addition to the 3D flow caused by structures, flow around buildings is known
to be highly unsteady due to oncoming unsteady flow, interaction with the wake
flows caused by structures, and contributed to by ventilation systems (HVAC). This
influences the complex behavior of pollutant dispersion due to advection and turbu-
lent diffusion. We will note here that the full complexity of these flow features can by
modeled by DNS with the appropriately refined grid, but will not be fully captured
by a steady RANS approach, contrarily to unsteady RANS approaches. [186]

(vi) Comparisons of Turbulence Models (for CFD-CTM AQMs) The RANS
model can be used with various turbulence models, where the turbulent viscosity
is defined differently. The standard k − ε model is commonly used for its good
convergence properties. This model poorly represents separated flow, however, and
has been observed to overestimate turbulent kinetic energy near the upwind corner
of a building. This results in poor concentration predictions if the source is located
in recirculation regions on the roof or walls.

Modified k−ε models, such as RNG k−ε model, can provide an alternative. Only
small differences were observed between modified and standard k − ε when applied
to dispersion in the street canyon and building complexes; turbulence produced by
surrounding buildings is dominant. Reynolds stress turbulence models have often
given the worst results in comparative studies, but can occasionally capture near-wall
phenomena. This method requires the optimization of many numerical parameters
as there are many equations to be solved. It depends highly on the mesh used, and
has more difficulty converging than k−ε models. However, this turbulence model can
account for certain effects of complex turbulent flows. A turbulence model similar
to k − ε is the k − ω model. While the k − ω model is more precise near walls, it is
also more sensitive to the initialization, and may have difficulties converging if the
turbulence initialization differs too much from the final solution. k − ε models are
often the preferred choice for various urban flow fields for their robustness.

In k−εmodels, scalar flux estimation is done using the standard gradient diffusion
hypothesis with eddy diffusivity typically expressed by eddy viscosity and the tur-
bulent Schmidt number sct. Using sct is a compromising method which corresponds
to the simplicity of k − ε turbulence models. [184] found that the optimal value of
sct can vary widely, depending on local flow properties. Studies have shown that the
underestimation of turbulent diffusion of momentum by steady RANS models can be
compensated by small values of sct. [38] found that turbulent mixing augmented by
buildings can obscure the underestimation of turbulent diffusion by RANS models.

In developing AQMs, LES and RANS are the turbulence models most often con-
sidered. LES resolves large-scale unsteady motions and requires only small-scale
modeling. Dynamic properties such as the flux of wind pressure on buildings, pri-
marily due to large-scale motions, can be directly represented. Studies show that
LES agrees with experimental data for mean value and turbulent energy approxima-
tions around a simple building. In [55,74,75,168,170,185,199] results are compared
from RANS and LES models for dispersion around buildings. LES was found to
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better estimate concentration distribution results, but the mean value differences
were small.

A study over Montreal compared RANS k− ε to LES turbulence models, finding
estimated surrounding concentrations were lower with LES. LES simulation results
showed very diffusive concentrations, and were more accurate when compared to
experimental data. Complicated turbulent mass diffusion around buildings is con-
sidered too complex for the standard gradient diffusion hypothesis employed by
RANS models; these effects can only be captured by LES models. However, the
CPU time required for LES simulations is about 10-25 longer than steady RANS
models. Unsteady RANS models can reproduce large unsteady structures with lower
spatial and temporal resolution than LES models. Very few studies have tested un-
steady RANS, however results have been better in comparison to experimental data
than steady RANS models. RANS is computationally attractive, and can reproduce
concentration variance in idealized urban environments or lab conditions; however
models for closure of the transport equations should be improved. [186]

1.2.3 Limitations and Uncertainties

1.2.3.1 Limitations Inherent to Air Quality Modeling

While AQMs have improved vastly in the past decades, there remain nontrivial
limitations and uncertainties. The limitations of most models include (but are not
limited to)

• the dispersion in urban areas being complicated by aerodynamic effects of
the street and building geometry and traffic-induced turbulence; unresolved
obstacles and multiscale nature of modeled phenomena.

• the impacts of traffic on air quality, which include a local component as well
as an urban background component, which differs according to the pollutant
species and its temporal and spatial scales

• the estimation of dry or wet atmospheric deposition fluxes strongly depends
on particle size distribution for particulate pollutants’ wet scavenging and dry
deposition velocities still remain difficult to estimate as a function of particle
size, atmospheric conditions, and surface configuration.

• the treatment of atmospheric chemistry, reactions among many different pol-
lutants, secondary reactions and compounding effects.

The multiscale nature of the physical phenomena at play with models relying on
approximated subgrid parametrization may limit AQM outputs. Unresolved obsta-
cles can be a source of major uncertainty in physically-based models which reproduce
the detailed movement of air and pollutants. Many advances have been made in this
area: 3D models of obstacles can be used on relatively small scales. Canopy models
can represent surface roughness effects on wind profiles, and aerodynamic effects of
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unknown obstacles. These canopy models have extra terms added to the governing
equations for drag and increased turbulence.
An example of unresolved obstacles is trees, which reduce wind velocity. Many
studies have been performed on forested areas and trees in street canyons, refer-
enced in [186].
The effects of moving vehicles on dispersion around street canyons, often neglected
in operational models, was studied by [5, 12]. Large variability was observed be-
tween individual concentration time series with moving vehicles in a wind tunnel,
and ensemble averaging was needed. [95] used a 3D Eulerian-Lagrangian approach,
and [131] extended canopy methods to incorporate effects of vehicles based on a k−ε
model adding terms in the transport equations. [189] performed CFD computations
in a moving coordinate system. Advances have been made in the field of obsta-
cle effects, but this remains a significant limitation in operational physically-based
models. [186]

1.2.3.2 Uncertainties in AQMs

Model performance for AQMs on an urban scale has been observed in the following
studies

• ∼ 35% error and ∼ 15% bias for hourly O3 concentrations

• ∼ 20% error and bias for annual NO2

• ∼ 75 + % error and ∼ 60% bias for annual PM concentrations.

Near urban sources found less impressive model performance, where a factor of
two for error is considered acceptable in the short term (e.g. hourly) for gas and
particulate pollutants. [70]

Model inputs (such as emissions, meteorology, and BCs) are the first major
source of uncertainty in AQMs. A review of the sensitivity and uncertainty analysis
of model applications has been done by [163]. Some studies have found that uncer-
tainty in all input data can be ∼ 50%, and even greater for emissions data.
A second significant source of error is the mathematical representation of physio-
chemical processes simulated by the model; chemical mechanisms include many sim-
plifying assumptions and atmospheric turbulence is highly parametrized, for exam-
ple.
A third error source is in numerical approximation, related to the applied numerical
scheme, time step, and horizontal and vertical resolutions.

Difficulty remains in categorizing and analyzing the error and uncertainties in
AQMs. ERCOFTAC [31] developed Best Practice guidelines to categorize the error
and uncertainty in CFD simulations using:

• model uncertainty: reality vs. best knowledge exact solution
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• discretization and numerical error

• iteration and convergence error

• round-off error

• uncertainty inherent to the particular application

• user and code error

The impact of these uncertainties on model output depends on the level of un-
certainty and the sensitivity (e.g. [163]) of the output to the input or parameter of
interest. We can assign confidence levels (H/M/L) to various inputs, representing
the uncertainty associated to each of them.

• Meteorological variables for the urban background, in general representing
±20% of the model uncertainty:

– Wind speed/direction (M)

– Temperature (H)

– Relative humidity (H)

– Pressure (H)

• Meteorology within the urban canopy (street or neighborhood scale) :

– Wind speed/direction (L)

– Temperature (M)

– Relative humidity (M)

• Boundary Conditions : depend on the source.

– BCs from good model simulations with observational data or comprehen-
sive monitoring network (M)

– BCs from sparse monitoring networks, unevaluated model simulations or
generic literature data (L)

– Errors in land use data may propagate

• Emissions data :

– Some regulated gaseous pollutants (e.g. NOx, COx, and SO2) (M)

– PM , V OC, and non-regulated gaseous pollutants (L)

– Anthropogenic emissions: ±50% uncertainty (L)

– Biogenic emissions: only known within a factor of 2 (L)

As for model components, confidence depends on spatial and temporal scales
involved (and the type of model considered, needless to say). At urban to regional
scales :
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• Transport processes (M)

• Chemical transformation (M)

• Atmospheric deposition over long periods (several months) (M)

• Atmospheric deposition over short periods (week or individual events) (L)

• Atmospheric deposition in the urban canopy with complex building/vegetation
configurations (L-M)

On short time scales over a street-neighborhood spatial scale, chemical transfor-
mation is typically less important. Important transformations (e.g. for NOx and
O3 are well known (H confidence), however conversion of emitted gases to PM is
poorly understood (L-M confidence) [70].

More discussion of uncertainty and challenges, and recent improvements of input
data for meteorology and emissions, and of model treatment of physics, can be found
in section 1.3.1.

Uncertainty in CFD models

Model uncertainty includes the first two error sources mentioned above, which
are particularly significant in the case of physically-based models. We will focus
primarily on CFD and CTM models here.
CTMs require knowledge of sources and emissions (in contrast to simple statistical
models which only use measurements), as well as of the processes governing the
fate and transport of pollutants. Approximations and simplifications will always be
involved, which can lead to inaccuracies. Lack of data and high computation costs
may lead to simplified chemical and dynamical mechanisms. Development can be
costly. [202] The challenge of CFD modeling for real meteorological conditions is the
inherently non-stationary conditions and different inflow wind directions, speeds,
and turbulent kinetic energy for each case. Similarly, accuracy of CTMs depends
strongly on the accuracy of the meteorological model providing input data. The
overestimation of mean concentrations has been found to be inherent to Eulerian
models. [130]

The relevance of the chosen turbulence model is only significant in CFD simu-
lations once other error sources (e.g. pollutant sources, particular numerical and
convergence error) have been removed or controlled, however the treatment of flow
as laminar would generally induce more significant error than varying the turbulence
model. Accuracy is also affected by uncertainty in the precise geometry (e.g. unre-
solved obstacles) and uncertain data and models used in boundary conditions. Con-
centration fields and the relationship between dispersion and flow structure should
be investigated, and model results should be compared with experimental data on
both concentration and velocity fields. [186]
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1.2.3.3 Model Evaluation

In order to understand the limitations and uncertainties of various available AQMs,
we must have a means of evaluating different types of models. The evaluation of
physically-based models on an urban scale is a difficult question; accuracy tests are
complicated by the high variation in space and time of concentrations around build-
ings. Many methods and guidelines exist. In [173] protocol is outlined for microscale
urban meteorology, which helps in model evaluation for the use of microscale mete-
orological models in flow and pollutant dispersion modeling.
Evaluation protocol has several elements:

• scientific evaluation process

• verification process

• provision of the appropriate quality datasets

• model validation process

• operational evaluation process reflecting the needs of the user

An important question to consider is which variables should be used for evalu-
ation? Maximum concentration is a key metric for most air quality applications.
However low values are also important: in population exposure assessment, for ex-
ample, dilute plumes affect large areas. Time-averaged concentration, which is easier
to obtain, is often used.

In the case of CFD models, boundary conditions and meteorology inputs should
be evaluated. Ensembles of observations over varying exterior parameters (such as
wind direction) should be obtained. Sufficient data is a constraint in short-range
urban dispersion modeling due to high variability and confounding factors (e.g. traf-
fic). Experimental data sets from wind tunnel sets are available online: CEDVAL [1]
, DAPPLE [3], and MUST [37]. [186]

For example, the MUST database is data from a near full-scale experiment con-
ducted for the US Defense Threat Reduction Agency. Neutral gases (point sources)
were released in an array of shipping containers in a Utah desert. Releases were
performed at dusk and dawn, periods of relatively stable or neutral atmospheric
stratification conditions. In [37] model performance is evaluated using MUST data
on 20 simulations employing statistical measures: mean bias, geometrical variance,
and fraction of prediction within a factor of 2 of observations, considering the influ-
ence of various parameters such as pollutant sources. [130]

1.2.4 Modeling chains

While air pollution modeling involves many uncertainties, much knowledge has been
developed on important components; fully utilizing the information that is available
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is not a trivial matter. A modeling chain could be implemented to this effect, con-
sisting of, for example, traffic models to predict position and kinematic parameters
of vehicles, emissions models to estimate the amounts of pollutants released by the
vehicles, and air quality models for the dispersion and transformation of pollutants in
the atmosphere. [70] Meteorological data also plays an important role in air quality
modeling. Depending on the model, economic activity or impact modeling, anthro-
pogenic and natural emissions modeling, transport modeling, exposure and human
health effect modeling, and environmental and ecosystem impact modeling can be
considered. [84]
Below is a diagram of the main building blocks involved in a modeling chain from
traffic to air and water quality.

Figure 1.2 – Diagram representing the structure of a modeling chain from traffic to air
and water quality models.

We will note that proper interfaces between output from one model and input to
the next must be established. Examples of studies on modeling chains for air and
water quality models are listed in [70].

1.2.4.1 Traffic to Emissions

Important factors in the estimation of vehicle emissions include vehicle operation
(speed, acceleration, engine load, etc.), traffic flow conditions, and road and vehi-
cle characteristics. These factors lead to the determination of parameters in traffic
models. The traffic model can be chosen based on input parameters and compati-
bility of outputs with the input requirements of emissions models. To give a general
overview, major coupling methods in practice can be divided into four types :
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• Macroscopic: static or aggregated dynamic traffic models coupled with aggre-
gated emissions models. Uses macroscopic emissions for large road networks ;
high level of uncertainty.

• Mesoscopic (1): macroscopic traffic models coupled with microscopic emissions
models. Uses more accurate emissions models with speed and acceleration as
inputs ; calculation of acceleration data from the macroscopic traffic model is
required ; less time-consuming than microscopic traffic models.

• Mesoscopic (2): microscopic traffic model coupled with macroscopic emissions
models. Another method to increase accuracy while decreasing computation
time ; advantageous for high numbers of pollutants ; less accurate with con-
gestion.

• Microscopic: microscopic traffic models coupled with instantaneous emissions
models. Computed for short time steps ; predicts individual vehicle emission
rates as a function of time and driver behavior ; computes traffic emissions
with great spatial and temporal detail.

The reader is encouraged to refer to [70] for more detail.

1.2.4.2 Emissions to AQMs

In order to couple emissions models and AQMs, atmospheric dispersion modeling is
necessary to predict spatial and temporal variation of concentrations. Spatial and
temporal emissions, meteorological data, and background concentrations of pollu-
tants are necessary inputs. To account for dispersion from vehicle-induced tur-
bulence, traffic model output is required. Atmospheric dispersion in urban areas
is of course complicated by obstacles, as discussed in previous sections; we recall
that CFD modeling gives detailed representations but is computationally costly.
Gaussian models for atmospheric dispersion of traffic emissions near a road without
considering vehicle-induced turbulence can provide good results. [70] Most emis-
sions model results are not valid for short time scales, and output from macroscopic
emissions models, often around one-hour time scale, are adapted for input to most
AQMs. The output of instantaneous emissions models, up to temporal resolution
of one second, can only be used by CFD models, but can be averaged over time for
use by Gaussian models, which can be advantageous in terms of computation time.
In practice, Gaussian and CFD models are most commonly used; roads are divided
into segments and considered as line sources. Emissions models estimate emissions
on each segment.

In a case study on atmospheric dispersion and deposition of pollution emitted
from traffic on a freeway in eastern France, three steps were involved: emissions
calculation, atmospheric concentration estimation, and finally calculation of atmo-
spheric deposition fluxes. An average-speed emissions model CopCETE was used
in the first step, a Gaussian plume model in the second, and a post-processing step
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for deposition. More detail can be found in [70]. We will note that results showed
rapid decrease in deposition with distance from the roadway.

1.2.4.3 Exposure modeling

Some air quality forecasting models also include forecasts for human exposure to cer-
tain pollutants, e.g. UAQIFS-Norway, -Finland and -Italy2 for NO2 and PM . This
could be another step in modeling chains, useful in the assessment of health effects
on humans. We will not discuss great detail here, but will mention a few established
concepts. The index of instant exposition is the instantaneous concentration in the
air around the subject. The index of point exposition refers to the maximum instant
concentration of the pollutant in the air around the subject in a time range T , while
the integrated average exposition index is the average concentration over T , and
the additive effect index is a sum calculated from the concentration of all pollutants
present and an acceptable threshold of each. Each of these indexes could be used in
exposure modeling, depending on the desired output information. [196]
Exposure modeling of the occupants of a building, for an indoor example, can in-
volve modeling the movement of the occupants in addition to the air quality factor.
Exposition modeling can be done ’indirectly’ using CFD modeling of the air around
subjects, ’directly’ using measurements of exposition, concentrations, and statistical
regression models, or stochastically by giving a distribution of the exposition of the
population. Again, the choice of technique would depend on the desired output
information.

1.3 Improvements in Air Quality Modeling

As discussed in the previous section, many factors contribute to uncertainties and
inaccuracies in AQMs. Many studies on various factors are mentioned in [203].
Improvements are being made not only in the form of scientific advances to improve
air quality forecasts, but techniques are being developed to improve results from
currently available AQMs. In this section we will focus on recent improvements, both
modeling advances which improve uncertainties and inaccuracies, and techniques to
improve AQMs based on available knowledge and data.

1.3.1 Modeling advances

Here we discuss advances in modeling ability from improved inputs to the mathe-
matical treatment of physical phenomena.

1.3.1.1 Meteorological data

Concentrations of ambient air pollutants depend largely upon emissions of the pol-
lutants and precursors and meteorological conditions. Typically it is local-scale cir-
culation and diurnal meteorological variations such as solar intensity, temperature,
and wind which determine concentration variations. Meteorological forecast error is
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thus propagated into the AQMs using the meteorological input data; studies have
even reported higher sensitivity to meteorological data than to emissions inputs and
the chemical mechanism treatment by the AQM.
Conventional numerical meteorological models were not designed for pollution prop-
agation, and thus effective use in AQMs requires improvements to these models.
Conventional models do not treat small-scale physical processes, nor do they pro-
vide additional measurements (such as mixing height) which would be useful in
pollution modeling.
Meteorological models also use larger-scale grids than the often smaller-scaled AQMs;
simulations with grids under 1km are needed for urban AQM implementation. Of-
ten the parameterizations of physical processes modeled in meteorological models are
developed for larger scales and thus need improvement to more accurately represent
effects such as convection and turbulence. In operational larger-scale models, the
parameterization of urban areas is important. This has been considered in multiple
studies, where land-surface modeling incorporating urban structures and vegetative
canopies have been developed and tested. These advances promise to improve rep-
resentation of urban sub-flows such as wind fields and turbulence. [203]

1.3.1.2 Chemical inputs: emissions and background concentrations

Initial conditions and boundary conditions are generally derived via three meth-
ods: output data from a global (or larger-scale) CTM, assumed climatological pro-
files, and adaptation of satellite or surface data for chemical profiles. However,
using output from a global CTM, which are temporally and spatially coarse, would
require interpolation, introducing additional error into the AQM. Global-through-
urban models (e.g. [94, 135]) can help to reduce errors. Satellite measurements can
improve initial and boundary conditions, however there may be uncertainties in re-
trieval algorithms, cloud contamination, etc.
Of course, accurate characterization of emissions will directly improve modeling
capabilities; most models use historically generated offline emissions. Real-time
emissions could greatly improve accuracy, particularly for mobile sources, biogenic
sources, power generation, surface coating, wildfires, dust events, sea salt, and re-
emission from surfaces. Data assimilation (see 1.3.2.3) can be an important tech-
nique in reflecting actual online emissions levels. [203]

1.3.1.3 Treatments of physics in the model

The modeling of pollutant transport in AQMs is highly dependent on the many pa-
rameters involved and the processes governing the model. Improving these processes
and parameters will thus have a significant and continuous effect on AQM accuracy.
Particularly important aspects are the parametrization of the urban environment,
the representation of gas-phase chemistry (essential for O3, NO2, and secondary
PM), and aerosol dynamics and chemistry.
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Parameterizations for urban environments

Much focus has been placed on improving parametrization of urban processes, given
the rapid urbanization of world populations. Micro- and meso-scale urban features
can influence urban processes such as atmospheric flow, turbulence effects, and ur-
ban micro-climate, which in turn modifies the transport, dispersion, and deposition
of air pollutants. The improvement of meteorological fields over urban areas is a
significant method of improving modeling of urban effects. Street-scale CFD models
coupled with mesoscale AQMs are in development. Three methods exist for the
parametrization of urban canopy: single-layer and bulk-type schemes, multi-layer
schemes, and obstacle-resolved microscale models. While the first two methods are
simple enough for operational AQMs, the third requires CFD-type explicit buiding
scale models. The simplest method is to modify existing non-urban approaches.

Other features of urban air quality modeling

In order to treat different pollution deposition rates on surfaces, sub-grid scale emis-
sions (e.g. from traffic), indoor-outdoor pollutant interaction effects, and exposure
and health effects, more detailed models are needed than an urbanization of global
meteorological models; CTMs are well-adapted to considering these specific features
affecting urban air pollution.

While most AQMs show overall satisfactory ability to forecast O3 and PM2.5 on
average over a domain for monthly or seasonal time periods, poor performance of
simulations for hourly localized concentrations has been observed, particularly in
capturing diurnal variations such as daytime peaks, spatial variations between areas
with different source profiles, weekend vs. weekday variations, and magnitudes at lo-
cations with special terrain/emission/meteorological characteristics. Meteorological
forecast and emissions inaccuracies surely contribute to these errors; the treatment
of physical, dynamical, and chemical processes in these models may contribute sig-
nificantly to the error as well. [203]

1.3.1.4 Chemical mechanisms

Limitations in the representation of chemical kinetic mechanisms in operational
AQMs were recently identified. Uncertainties remain in the representation of or-
ganic chemistry in current gas-phase mechanisms. Additionally, gas-phase mecha-
nisms are largely developed for summer conditions, and chemical reactions are often
misrepresented (or not included at all). Some solutions exist, improvements devel-
oped based on identified deficiencies, and are discussed further in [203]

Inaccuracies in aerosol chemical and dynamical mechanisms lead to bias in aerosol
concentration estimations. This is particularly relevant in the case of PM .

In the case of chemical modeling in urban environments, CTMs are needed to
treat chemical transfer specificities such as the effect of street canyons on species
lifetimes and photochemical reaction due to solar radiation.

52



1.3.2 Techniques to improve results

In this section we discuss techniques to improve upon results provided from available
models.

1.3.2.1 Statistical Methods

Zhang et al discuss statistical methods and examples of studies in more detail
in [202,203].

Bias Correction Bias refers to a systematic error due to a small number of causes
(e.g. model mechanisms or parameters), and is in principle correctable. The sim-
plest method of bias correction would be mean subtraction, where the mean bias is
subtracted from the estimated solution at each monitoring site. Other methods ex-
ist, such as multiplicative factors from bias calculations and empirical linear fitting
between estimated and bias-corrected values.

In the case of CTMs, a linear regression model can be developed between a
set of variables from the CTM and an observed variable, in order to correct AQ
approximation bias for a given site.

However, the bias correction approach may not be effective in the case random
errors; it doesn’t give insight into model performance, and may prevent identification
of problematic areas and model uncertainties. The more sophisticated approaches
are also computationally expensive and complex, requiring expertise to implement.

Probabilistic forecast Another approach in the case of a CTM is a probabilistic
forecast. Probabilistic forecasts can be advantageous, providing an estimate of like-
lihood of occurrence of an event. The simplest probabilistic methods use a dichoto-
mous (yes-no) predictand, while multi-category probabilistic methods can handle
several categories using a set of probability values, and methods with ensembles
approximate the full distribution of probabilities (continuous variable) rather than
categories. Ensembles can perform well with uncertainties, but require knowledge of
model errors and uncertainties in model inputs, and multiple different models. This
approach is computationally expensive and requires expertise, leading to a high oper-
ational cost. The MACC project (http://gems.ecmwf.int/d/products/raq/) involves
ten AQMs over Europe, representing the operational state of the art in ensemble
forecasting.

Data fusion combines data from multiple sources to give a single more accurate
output. Such data sources can be observations, reanalysis, and model data, of-
ten using kriging or interpolation for observations. It can be used for AQMs with
statistical methods, deterministic models, and observations. Post-simulation data
fusion (e.g. a regression model with historical data) can be used to improve model
deficiencies.
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1.3.2.2 Ensemble Modeling

Ensemble modeling is a numerical method of producing a representative sample of
possible air quality states. This can be done with multiple models or one model
and varying inputs (parameters, configurations). The case of a single model with
varying parameters is related to the concept of Reduced Basis methods, introduced
in section 2.1.2. Significant improvement has been made with this technology in O3
and PM2.5 modeling. This is perhaps because ensemble forecasting could remove
some unpredictable components of the physical or chemical processes modeled, as
compared to a single deterministic model. Ensemble forecasts are usually weighted
linear combinations of the ensemble members, meaning the accuracy and limitations
of the resulting forecast may be sensitive to accuracy and limitations of the ensem-
ble members, and to the weighting coefficients used. While some methods do not
account for error with respect to observations, some more sophisticated methods
combine ensemble forecasting and data assimilation.

As discussed in section 1.2.3, uncertainties in physical and numerical formulation,
discretization, and input data are not negligible in air quality modeling. Given these
limitations, choosing a single deterministic model with a single set of input data may
not be the best solution for accurate air quality modeling. For example, a stochastic
view allows the concentration to be seen as a random variable. Ensemble forecasting
aims to account for all sources of uncertainty, using several forecasts by different
numerical models relying on different physical formulations and input data sets.

Major techniques for ensemble forecasting include:

• Monte Carlo (MC) simulations

• Multimodel ensembles

• Sequential aggregation

• Coupled sequential aggregation and classical data assimilation

Monte Carlo simulations: Monte Carlo simulations are a form of ensemble fore-
casting where a single model is used with varying input data (chosen based on
probability distributions chosen by the modeler) to generate an ensemble of solu-
tions. The mean, standard deviation, and possibly the probability distribution of
the output concentrations are determined for a large number of simulations. This
mean converges to the expectation of the concentrations at a rate independent of
the dimension (number of pollutant species or discretization), but slowly. These
simulations are relatively simple to implement, however uncertainties in the chosen
model are not treated and may be perpetuated in the ensemble result.

Multimodel ensembles: Multimodel ensembles employ different models (with our
without different input data). These ensembles are often more complex, as they rely
on CTMs with different physical and numerical formulations, and may be difficult
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to implement in practice. However, the question of structural uncertainty (i.e. the
uncertainty in the mathematical mechanism representing the physical phenomena
and numerical resolution) is addressed, in contrast to Monte Carlo schemes. If the
various models are built from the same platform allowing for changes in the model
formulation, one can better control the design of the ensemble, as opposed to models
from different modeling teams. Multimodels have been shown to better handle cases
of high spatio-temporal variability, as input data perturbation failed to compensate
for this variability. In [150] Monte Carlo and multimodel methods were combined.

Uncertainty Estimation: An important concern in ensemble forecasting is the
representation of uncertainties; the main source of this information is prior knowl-
edge on the model(s) used and observations. A method to score ensemble models
is to compare each individual model to observations, and for each observation de-
termine how many forecasted above or below the observation. If the rank is con-
sistent for all observations (i.e. the same number of individual models over-shoot
and under-shoot), then the ensemble is well-balanced. To estimate the reliability
of the probability forecast determined from the ensemble model simulations, one
determines consistency between observed concentration occurrence frequency and
the probabilistic forecasts. Ensembles are also scored based on resolution (the abil-
ity to produce significantly different probabilistic forecasts for the same subsets of
events) and sharpness (the ability to forecast extreme events). More input variation
for MC simulations and more models for multi-model ensembles can improve the
ensemble score. Optimization procedures are not currently feasible due to computa-
tional costs, but automated improvement methods would greatly improve ensemble
forecasting ability. For example, in [72], a general large ensemble overestimating
uncertainty was used, and a more appropriate subensemble was chosen based on the
ensemble scores.

Sequential Aggregation: In order to produce a single improved forecast from the
ensemble, one can use a median or mean solution, but this gives no guarantee
of improvement. Sequential aggregation is a weighted linear combination, where
the weights are computed from past simulations, repeated sequentially before each
forecast. Methods to determine weights include least squares methods (e.g. [122],
practically efficient, but no theoretical guarantee of performance), and regression
methods (e.g. [148]). However, while the framework of these methods guarantees
performance in the long-run, no observational error is considered, and no method
to compute weighting for multivariate fields (multiple observed pollutant species)
has been proposed, nor to account for spatial variation of the weights. The results
for pollutant species without observational data may not be improved with these
methods.

1.3.2.3 Data Assimilation

Data assimilation refers to a process by which measurements of a physical state in
question are used in conjunction with a model of the system to provide an improved
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approximation of reality. These methods require a set of observations of the state,
a mathematical model, and a data assimilation scheme.
The overall goal of data assimilation methods is to combine observations and numer-
ical simulations to provide accurate and realistic state estimations. While this seems
simple enough, the challenge lies in formulating a method to interpret and employ
data from often sparse or noisy measurements in some optimal way to contribute to
the knowledge of the state in the numerical model. We must consider that there will
be not only the anticipated error in numerical simulations from varying parameters,
but also unanticipated error due to the shortcomings of the mathematical model
itself and its imperfect representation of reality.

For example, a solution to determining weights for simulations of multiple species
is coupling sequential aggregation with classical data assimilation, using concentra-
tion forecasts from data assimilation methods instead of simple observations in the
sequential aggregation framework. The weights can be computed independently for
each grid cell and chemical species, giving temporally constant but space/species
dependent weights. However, this requires the implementation of an ensemble and
data assimilation, which can be complex or impractical.

Data assimilation can be used to improve AQ modeling, and is a major focus of
this work. It will thus be discussed in more detail in 2.2 and 2.3.
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Chapter 2

A review of model reduction and
data assimilation techniques

Résumé :

Dans ce chapitre nous présentons des méthodes actuelles de réduction de modèle et
d’assimilation de données, suivi d’une discussion de l’application de ces techniques
pour la qualité de l’air.
Soit Ω ⊂ Rd est un domaine borné, on s’intéresse à des problèmes stationnaires P
de la forme

Lu = F dans Ω,

où l’operateur L est associé à une EDP qui dépend d’un jeu de paramètres p. La
réduction de modèle consiste à reduire le coût de calcul d’une solution, en utilisant
des connaissances à priori sur le système, soit par la simplification du problème P ou
bien par la réduction de la dimension du problème lorsque les paramètres varient.
Parmi les méthodes de réduction on trouve les modèles de substitution ou meta-
modèles et les méthodes de projection. Celles-ci utilisent un espace de dimension
réduite sur lequel sont projetés les opérateurs du modèle. Dans ce chapitre nous
présentons plusieurs méthodes de réduction : des méthodes d’interpolation, de dé-
composition, des bases réduites, et d’inférence.
L’assimilation des données repose sur l’intégration des observations expérimentales
et des connaissances sur la physique décrite par un modèle mathématique. Les mé-
thodes sont variées, cherchant à corriger un ou plusieurs paramètres du modèle ou
l’état du système. Dans ce chapitre on présente des méthodes d’assimilation de don-
nées séquentielles telles que le filtre de Kalman, la méthode inverse de type problème
adjoint, et des méthodes variationnelles telles que le 4D-Var.
Finalement, nous donnons des exemples d’études couplant l’assimilation de données
et réduction de modèle dans le contexte de la qualité de l’air.
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2.1 Model Order Reduction

Numerical modeling has become indispensable in many scientific fields where math-
ematical equations can be used to describe physical phenomena, including but not
limited to fields involved in urban modeling: air and water quality modeling, geotech-
nics modeling, network modeling, and acoustics modeling.
Computation times for large three-dimensional analysis commonly take tens of hours,
making many-query contexts, such as sensitivity analysis and optimization, hardly
feasible. Model reduction methods are of great interest to applications of parametrized
problems involving many-query or real-time study.

Parameters of numerical models can generally be divided into three classes: con-
trol parameters (as will be clarified in 2.3.2.2), physical (as we will see in 4.2.2),
and geometrical (we will see examples in 2.3) [156]. The AQM problem introduced
in equation (1.7) is an intriguing candidate for MOR in the (quasi-)real-time and
many-query context for each of the three classes of parameters.

In this section we will briefly review common surrogate model, projection-based
methods, and a decomposition method of MOR.

We will consider a generic problem (1) as introduced in the Introduction .

P : Ω×D → K

where P represents a problem (we’ll consider it a parameterized PDE), Ω ⊂ Rd is
the physical domain of dimension d = 2, 3, D the parameter domain, and K a field
(R or C). We will consider the solutions u ∈ X for some suitable Banach solution
space X . The problem P can be written in the form (2)

L(p)(u(p)) = F (p) (2.1)

+ Conditions on ∂Ω, (2.2)

where ∂Ω represents the domain boundary.
We will consider that the associated variational problem is of the form: find

u(p) ∈ X such that for any v ∈ Xtest appropriate test space, we have, for parameter
p ∈ D,

a(u, v; p) = b(v; p) (2.3)

We define here Xh a discrete approximation space of dimension Nh for use in
classical approximation methods (e.g. finite elements).

2.1.1 Surrogate model methods

A common approach is to develop simplified models, such as surrogate models, to
approximate the model without significant loss of accuracy. Data-fit surrogate mod-
els, or metamodels, can be built using interpolation and regression methods. The
goal is to discretely describe an input-to-output map, which avoids the construction
of reduced models or operators. Some methods, discussed in [149] construct reduced
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spaces and build a surrogate model which maps inputs to the coefficients of repre-
sentations of full states in the reduced space.
These methods are often applied to different applications than projection-based
models, such as when the notion of state is not important, and regression or in-
terpolation of outputs provide sufficiently accurate results. We will not go deeper
into this topic here, but more information can be found for example in the following
reviews of metamodeling techniques [17,109].

2.1.2 Projection-based methods

Another approach to rapidly compute reliable approximations of solutions to com-
plex problems with many parameters is by projection-based MOR methods, such
as reduced basis (RB) methods [153]. Projection-based methods aim to reduce the
complexity of the model using the, when applicable, relatively small ”width” (in the
sense of Kolmogorov (2.4)) of the manifold of all possible solutions for varying pa-
rameters, relying on the information given by a well-chosen set of particular solutions
to the problem. A basis is constructed of a reduced space, which is a low-dimensional
subspace of the solution space. The equations of the full model are projected onto
the reduced space, which provide the operators of the reduced model [149].

A key factor of these methods is the small Kolmogorov n-width, implying that
the solution manifold Mh = {uh(p) ∈ Xh | p ∈ D} for discrete solutions uh(p) to
P , depending on parameters p may be approximable by a finite set of well-chosen
solutions. We define the Kolmogorov n-width [100] as follows:

Definition LetM be a subset of a Banach space X , and Yn a generic n-dimensional
subspace of X . The angle between M and Yn is

E(M;Yn) = sup
x∈M

(
inf
y∈Yn
‖x− y‖X

)
(2.4)

The Kolmogorov n-width of M in X is

dn(M,X ) = inf{E(M;Yn) ; Yn is an n-dimensional subspace of X}

The n-width measures to what extent the set M can be approximated by an
n-dimensional subspace of X [46]. In order to determine if projection-based model
reduction approaches can be applied to a problem P , we evaluate the complexity
of the manifold Mh of all possible solutions induced by varying parameters. This
analysis consists in a singular value decomposition method applied to the correlation
matrix of solutions of P computed for different values of the parameters. For exam-
ple, this correlation matrix for a set of particular parameter values can be computed
as we will detail in section 2.1.2.2. In [114] the reader can find more discussion of
n-width in the framework of non-POD reduction methods.

Once the rapid decay rate of the singular values is confirmed, one can assume
that a projection-based method is worth investigating. Classical projection-based
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MOR methods include interpolation methods, Proper Orthogonal Decomposition
(POD), Reduced Basis methods (RBM), and Krylov subspace methods. In the case
of the latter three methods, a reduced basis is constructed and a reduced model is
build with a (often intrusive) projection step. For example, in the case of a system
of ordinary differential equations of the form

dtu = Au+ Fu2 (2.5)

the reduced model is defined as

dtũ = Ãũ+ F̃ũ2 (2.6)

where operators Ã and F̃ could be derived for example via a Galerkin projection
onto a reduced basis space.

For further reading we mention the methods of Krylov subspaces [10], reduced
order modeling in the Loewner framework [93], and Balanced Truncation [20], but
we will not discuss these methods in detail here. Below we will describe in more
detail Empirical Interpolation 2.1.2.1, POD 2.1.2.2, Certified RBMs 2.1.2.3, Proper
Generalized Decomposition (PGD) 2.1.3, and Operator Inference 2.1.2.4.

2.1.2.1 Empirical Interpolation

The Empirical Interpolation Method (EIM) [16] can build a linear combination of
fully determined solutions from values of the quantity at some interpolating points
and from some solutions to P for certain instances of the parameter p. The method
simultaneously defines the set of so-called generating functions in M and the asso-
ciated interpolation points. The generating functions are chosen from a sample of
states in M, and the interpolation points are chosen from a pre-defined sample of
points x ∈ Ω̄ over the calculation domain.

The first chosen generating function ψ1 is the ”largest” by L∞-norm (we assume
implicitly that the elements of M also belong to L∞(Ω)), and the associated in-
terpolation point x1 (chosen among the points at which we can easily evaluate the
state) is the point which gives the most ”information” on ψ1. A basis function is
defined by q1 = ψ1

ψ1(x1) .

The interpolation problem is to find {αm−1
j (ψ)}1≤j≤m such that

∀ 1 ≤ i ≤ m− 1 Im−1(ψ)(xi) = ψ(xi), (2.7)

and the EIM operator is

Im−1[ψ] =
m−1∑
j=1

αm−1
j (ψ)qj. (2.8)

The generating functions at each iterationM are then defined recursively by max-
imizing the error of the M−1 interpolator over the solution spaceM in the L∞-norm
(over the functions). The associated interpolation point is taken to maximize the
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pointwise interpolation error of the M th interpolation over the domain Ω̄. On each
generating function a sort of ”orthonormalization” operation is performed by the
interpolation operator to construct a basis function qM = ψM−IM−1(ψM )

ψM (xM )−IM−1(ψM (xM )) . The

L∞ norm of the EIM interpolation error bound depends on the best fit on the func-
tion space generated by the basis functions XM = span{ψi}1≤i≤M = span{qi}1≤i≤M
and the Lebesgue constant [114].

The EIM can be a useful tool in the implementation of Reduced Basis Methods
(see 2.1.2.3) when the problem does not satisfy affine decomposition with respect to
varying parameters (2.13). The EIM can treat nonaffine operators and approximate
them on the linear combination form. This will be disucssed in subsection 2.1.2.3.

There exists a generalized form of the EIM (the GEIM), used when available data
are not pointwise values of the state, which will be discussed in detail in section 3.2,
and applied in part III.

2.1.2.2 The Proper Order Decompostion (POD) method

The Proper Order Decompostion (POD) method, first introduced in [113] and also
referred to as Karhunen-Loève, is widely used, applied to numerous research fields
including computational fluid dynamics (CFD).

Given a set ΞPOD of Nt solutions uh(p;x) ∈ Xh to the problem P , for varying
values of p (a parameter in D or the time component), we want to approximate any
uh(p;x) ∈ ΞPOD by a linear combination of basis function Ψk(x) such that

uh(p;x) '
K∑
k=1

αk(p) Ψk(x).

The POD method relies on the fact that the first few basis functions Ψk(x) are
computed in order to represent the most energetic parts of the system. These basis
functions are called POD modes and are obtained via a spectral decomposition of a
correlation matrix.

Let M ∈ RNt×Nt be the correlation matrix of components

Mij = 〈uh(pi;x), uh(pj;x)〉W , 1 ≤ i, j ≤ Nt, (2.9)

associated to the set ΞPOD and an appropriate scalar product 〈·, ·〉W , and Vk the kth

eigenvector associated to λk the kth largest non-zero eigenvalue of the matrix M.
The basis function Ψk(x) is given by

Ψk(x) = 1√
λk

Nt∑
`=1

Vk(`)uh(p`;x), (2.10)

where Vk(`) is the `th component of the eigenvector Vk. By construction, the POD
basis is orthonormal.
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The size K of the POD approximation is chosen, such that K is small enough
while I(K), the Relative Information Content [4]

I(K) =
∑K

k=1 λk∑N
k=1 λk

is close to one. Let PK be the projection operator on each POD mode Ψk(x),1≤k≤K ,
defined as, for any v ∈ X ,

PK v =
K∑
k=1

〈v,Ψk〉W Ψk. (2.11)

The optimal coefficients αk(p) when measured in the norm associated to the
scalar product 〈·, ·〉W , are

αk(p) = 〈uh(p;x), Ψk(x)〉W
which correspond the coefficients of the projection of uh(p;x) on each POD mode
Ψk(x)

Note that the POD procedure is mostly the same regardless if p is in the time
interval or in the parameter space.

The POD functions (2.10) constitute a basis of a reduced-order approximation
of the solution manifold Mh

X POD
N = span{Ψk}Nk=1. (2.12)

This reduced approximation space can be used in the construction of reduced
models, for example by projection of the full model operators (2.3) onto X POD

N , by a
Galerkin method as in the following section 2.1.2.3, or by a nonintrusive method [149]
described in section 2.1.2.4.

2.1.2.3 Certified Reduced Basis

The Reduced Basis (RB) method relies on the fact that when the parameters vary,
the set of solutions is often of small Kolmogorov dimension, implying that Mh =
{uh(p) ∈ Xh | p ∈ D}, the manifold of all solutions can be approximated by a finite
set of well-chosen FE solutions of the parametrized PDE. One can identify a set of
parameters, SN = (p1,p2, · · · ,pN) ∈ DN , to generate this low-dimension space
made up the particular solutions (uh(p1), · · · , uh(pN)) to P . We perform a Galerkin
method on this RB approximation space, essentially replacing the approximation
space (e.g. by finite element) generated by Nh simple basis functions with a RB
space generated by N << Nh particular solutions to P . The idea of reduced basis
methods is to compute an inexpensive and accurate approximation, uNh (p), of the
solution to problem P for any p ∈ D by seeking a linear combination of the particular
solutions:

uNh (p) =
N∑
i=1

αhi (p)uh(pi). (2.13)
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For a stable implementation of the reduced basis method, it is common practice to
improve the basis of the RB space from the one composed of the {uh(pi)}1≤i≤N , usu-
ally by a Gram-Schmidt method. In what follows, we denote by {ξ1, · · · , ξN} these
X−orthonormalized basis functions, and by XN

h the approximation space which they
span: the reduced basis space.

Let {φih}1≤i≤Nh be the basis functions of Xh. The solution of the variational
problem (2.3) in Xh is equivalent to the solution Uh(p) ∈ RNh of the following linear
system

Ah(p)Uh(p) = Bh(p) (2.14)

where [Ah(p)]i,j = a(φih, φ
j
h; p) with Ah(p) ∈ RNh×Nh and [Bh(p)]j = b(φjh; p) with

Bh(p) ∈ RNh .
The usual RB method is a Galerkin method on the space XN

h , which is of much
smaller dimension than the original approximation space Xh; the resolution of the
problem in XN

h is less expensive than in the true finite element space Xh. Thereby,
the solution of the variational problem (2.3) in XN

h is equivalent to the solution
UN(p) ∈ RN of the following linear system

AN(p)UN(p) = BN(p), (2.15)

where [AN(p)]i,j = a(ξi, ξj; p) with AN(p) ∈ RN×N and [BN(p)]j = b(ξj; p) with
BN(p) ∈ RN .

We also define an output quantity

s(p) = `o(ubk(p); p), (2.16)

where `o(·; p) : X × D → R is a linear and continuous functional (we note that `m
in (3) can be considered a special case of the family of output functionals `o here).
The output quantity on the RB solution uNh (p) is

sN(p) = `o(uNh (p); p), (2.17)

During the implementation of the reduced basis method, the computational work
is separated into two stages: offline and online. This decomposition is a key ingredi-
ent of the method. The reduced basis functions, {ξ1, · · · , ξN}, as well as all expensive
parameter-independent terms are computed once during the offline stage and stored,
whereas during the online stage – for each new value of the parameters – inexpensive
parameter-dependent quantities are evaluated, together with the computation of the
solution UN(p). However, to perform the online stage efficiently, one must isolate
the parametric contribution to the matrix AN(p) and the vector BN(p) of (2.15),
allowing all parameter-independent matrices and vectors to be built only once and
saved during the offline stage, allowing for a cheap online state of complexity O(N3)
depending on the RB size.

If the linear system (2.15) satisfies the affine assumption that

AN(p) =
Na∑
n=1

θan(p)An and BN(p) =
Nb∑
n=1

θbn(p)Bn, (2.18)
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where θan and θbn are parameter dependent functions and An and Bn are parameter
independent matrices and vectors, the decomposition of the computational work
into a offline/online strategy is straightforward. However, in the case of non-affine
parameter dependence of the problem (2.15) the EIM (subsection 2.1.2.1) can be
used to approximate the non-affine operators in the form of (2.18) and allow us to
maintain a low cost online stage (for example in [50], used for CRB implementation
with non-linear industrial problems). The EIM provides a set of parameter S̃N =
{p̃1, . . . , p̃Ñ} such that, for example, the matrix AN(p) can be approximated by

AEIM
N (p) =

Ñ∑
i=1

βn(p)AN(p̃n). (2.19)

The parameter set S̃N used to generate the EIM formula is chosen from the same
discrete training set Ξtrain ⊂ D as in the construction of the reduced basis, however
S̃N can be chosen differently for example using greedy algorithms improved for the
EIM [82].

While the construction of the EIM basis can be costly, it has been done simul-
taneously with the construction of the RB, as in [49], to reduce offline costs. Once
the matrices AN(p̃n) are assembled during the offline stage, during the online stage
a small (Ñ × Ñ) linear system is solved to compute the coefficient βn(p).

Error estimates [146], [192]

The numerical analysis of reduced basis methods relies on standard techniques,
such as finite elements, and therefore inherits discretization error from the so-called
truth approximations:

εh(p) = ‖u(p)− uh(p)‖X (2.20)

The subsequent use of the reduced basis to rapidly approximate new solutions
will then add what we will call the RB error.

εNh (p) = ‖uh(p)− uNh (p)‖X (2.21)

Then the total error committed is bounded by:

εtot(p) ··= ‖u(p)− uNh (p)‖X ≤ εh(p) + εNh (p) (2.22)

The approximation error, FEM error here (we’ll consider the finite element method
for example), εh(p) depends on the discretization, and will decrease as the step size
h → 0. Likewise, an a priori error given in [53] shows that εNh → 0 as N → ∞,
provided the usual assumptions on operator a(·, cdot) of equation (2.3) are satisfied.

As the total error is the sum of these two pieces, increasing N can reduce the
total error. However for a fixed RB size N , as h → 0, the RB error could increase,
as in the a priori estimate given in [53] for an SDFE-stabilized advection-reaction
problem, which authors attributed to increasing ”complexity” of the problem when
discretized on a finer mesh.
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If we want to bound the error of our CRB method, without knowing the true
solution, we need an a posteriori error bound. This can be approached by a primal-
dual strategy [175]. A dual problem associated to (2.3) and the problem output
(2.16) is defined as follows.

Given a parameter p ∈ D, find the dual solution ψh ∈ Xh such that for any
vh ∈ Xh,

a(vh, ψh; p) = −`o(vh; p). (2.23)

We then want to define a RB reduced problem associated to (2.23), as in (2.15),
over a RB approximation space associated to the dual problem, XNdu

h constructed
from particular dual solutions for parameters (pdu1 , . . . ,pduNdu). The RB dual solution
will be ψNh (p).

Let us define the following error functions for the primal RB solution uNh (p) and
the dual RB solution ψNh (p).

eprN (p) = uh(p)− uNh (p) (2.24)

eduN (p) = ψh(p)− ψNh (p) (2.25)

Let us also define the following residuals, for vh ∈ Xh

Rpr
N (vh; p) = b(vh; p)− a(uNh (p), vh; p) = a(eprN (p), vh; p) (2.26)

Rdu
N (vh; p) = −`o(vh; p)− a(vh, ψNh (p); p) = a(vh, eduN (p); p) (2.27)

(2.28)

Next we define the deflated output [53,175].

s̃N(p) ··= sN(p)−Rpr
N (ψNh (p); p). (2.29)

We are interested in the output error s(p)− s̃N(p). In [175] it is shown that

s(p)− s̃N(p) = −Rdu
N (eduN (p); p). (2.30)

This ensures quadratic convergence, as can be shown with a simple application of
the Cauchy-Schwarz inequality .

Proposition (Prop. 6.3 [175])
The output error satisfies

|s(p)− s̃N(p)| ≤ ∆s
N(p) ∀ p ∈ D

where

∆s
N(p) = 1

β̃(p)
||Rpr

N (·; p)||∗||Rdu
N (·; p)||∗, (2.31)

with dual norm ||w(·)||∗ for any functional w ∈ X ′ defined as

||w||∗ = sup
v∈X

w(v)
‖v‖X

, (2.32)
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and β̃(p) depends on the classical inf-sup parameter associated to the problem, and
is defined in [175]. Proposition 6.1 in [175] gives a similarly formed error bound for
eprN (p).

A discussion of a posteriori error for RB methods applied to the Navier-Stokes
equations with physical and geometrical parameters, based on the inf-sup stability
factor, can be found in [123], including an online-offline decomposition of these
quantities. The proposed a posteriori error bound is a joint quantity for both velocity
and pressure, and can account for problems with parameterized trilinear terms in
the variational formulation, which may arise in the case of geometrical parameters,
by considering the continuity factory in the error bound. The stability factor is
approximated by a lower bound, extended to non-linear parameterizations, and an
online-offline strategy is proposed for its evaluation.

In other applications of RBMs, an a posteriori error bound may not be available,
or may not be sufficiently sharp, for example in the selection of basis functions
by a Greedy algorithm. In these cases, some surrogate error estimators have been
represented by the coarse bound:

ēsN(p) = sN(p)− sN/2(p), (2.33)

proposed in [191], and the more computationally expensive

êsN = ‖b(·; p)− a(uN(p), ·; p)‖X , (2.34)

for any vh ∈ Xh.

2.1.2.4 Data-driven Operator Inference

Data-driven operator inference (DDOI) [149] is a non-intrusive method of projection-
based model reduction which derives approximations of reduced operators from in-
formation on the full model, without knowing the full operators. This is in contrast
to the above-presented CRB methods of section 2.1.2.3 which project fully-known
operators onto reduced approximation spaces. Information on the full model can
include, for example, information known from the implementation of a black-box
software for the full model, such as initial conditions, boundary conditions, inputs,
trajectories of the physical states, and outputs. In this summary of the method
we consider the available information to be parameters and physical states. This
method can be used for nonlinear PDEs with polynomial nonlinear terms of low
order (computational costs of the operator inference grows exponentially with the
polynomial order).

We consider here a problem, for example of the form (2.5)

dtu = Au(t,p) + Fu2(t,p),

with full-model discrete operators A(p) ∈ RN×N and F(p) ∈ RN×N associated to a
discretization of dimension N . We could construct an associated projection-based
reduced model, for example of the form (2.6),

dtũ(t,p) = Ãũ(t,p) + F̃ũ2(t,p),
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where reduced operators of dimension N , Ã(p) and F̃(p), are constructed from
some usual projection-based method, such as Galerkin CRB. The goal of the DDOI
method is to approximate the reduced operators Ã(p) and F̃(p) by inferred reduced
operators Â(p) and F̂(p), built with a non-intrusive procedure.

As is the case in POD based methods, DDOI first uses a training set of Ntrain

particular solutions from the full model for parameters (p1, . . . ,pNtrain) to build a
reduced N -dimensional space XN representing the solution manifold. In [149] the
reduced space is built by the first N POD basis functions.

The full model solutions u(t,pi), 1 ≤ i ≤ Ntrain, from the black-box full model
are then projected onto XN , noted û(t,pi) ∈ XN . The construction of the reduced
operators Â(pi) and F̂(pi) is based on a least squares problem to infer the operators
from the available particular solutions to the model. Provided sufficient and accurate
solutions are available, inferred operators will converge toward the reduced operators
Ã(p) and F̃(p) constructed by intrusive means.

If the dynamic full-model states are discretized in K time steps tj, 1 ≤ j ≤ K,
then for each training parameter pi we can infer the associated reduced operators
by posing a minimization problem:

min
Â(pi),F̂(pi)∈RN×N

K∑
j=1

‖dtû(tj,pi)− Â(pi)û(tj,pi)− F̂(pi)û2(tj,pi)‖2 (2.35)

For an arbitrary parameter p ∈ D, the reduced operators can be derived from these
Ntrain operators by elementwise spline interpolation [149].

The offline computational cost of this method is dependent of the number of time
steps and the degrees of freedom of the offline model, and on eventual polynomial
nonlinear terms in the full model. The online cost is comparable to that of the POD
method. This has been applied in numerical experiments with nonlinear terms up
to third order on a large-scale model. Convergence of the inferred reduced operators
towards the intrusive classical reduced operators is discussed in [149].

2.1.3 A decomposition method: Proper Generalized Decomposition

The Proper Generalized Decomposition (PGD) method is based on a separation of
variables to break down the solution into less costly pieces.

Here we will describe the dynamic case, as PGD methods are most commonly
used to reduce solution cost of transient problems. Let us consider our general
problem depending on spatial coordinates, time, and physical parameters (x, t,p) ∈
Ω× [0 : T ]×Dbk.

∂tu(x, t; p) + L(p)(u(x, t; p)) = F (p) (2.36)

We consider that our physical state u(x, t; p) can be written u(x1, . . . , xd), where
(x1, . . . , xd) ∈ Ω1× · · · ×Ωd denote coordinates related to physical space or time, or
parameters of the model. The PGD is an approximation of the form

u(x1, . . . , xd) '
N∑
i=1

F 1
i (x1) · · ·F d

i (xd), (2.37)
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where the functions F j
i (xj) are unknown a priori. The F j

i (xj) will be defined by
successive enrichment, where each functional product for 1 ≤ i ≤ N is determined
in sequence. We note that the number N necessary for a sufficiently precise PGD
approximation is not dependent on the problem dimension d, but on the regularity
of the true solution u.

This PGD formulation can be computed by multiple methods, as described in
[6]. In [140], for example, PGD is used on a transient advection-diffusion-reaction
problem, with

u(x, t) ' uN(x, t) =
N∑
i=1

Xi(x) · Ti(t), (2.38)

constructed using two of these techniques, a minimum residual formulation, and a
Galerkin PGD formulation. For our purposes, we chose to describe in more detail
the Galerkin method used in [40,176] for a parametrized transient PDE model P for
its simple and surprisingly robust iterative method and treatment of parameters.

We consider the following PGD formulation to treat the problem’s parameter
dependence:

u(x, t,p) ' uN(x, t,p) =
N∑
i=1

Xi(x) · Ti(t) · Pi(p), (2.39)

where the (n+ 1)th level approximation is given by

un+1(x, t,p) = un(x, t,p) +Xn+1(x) · Tn+1(t) · Pn+1(p). (2.40)

Our weak formulation of (2.36) reads,∫
Ω×[0:T ]×D

v
(
∂tu(x, t,p) + L[u(x, t,p)]− F

)
dx dt dp = 0, (2.41)

for any test function v(x, t,p) in an appropriate function space V over Ω×[0 : T ]×D.
Problem (2.41) is related to the standard weak form of problem (2.36), however in
this PGD formulation we integrate over each domain Ω×[0 : T ]×D, and we consider
v : Ω × [0 : T ] × D → R. This is because we can view the parameter p as a new
coordinate defined in D. Instead of solving the problem for discrete values of p,
this approach generalizes the problem at the cost of an increase in the problem
dimension.

Let us assume we have computed the first n terms of (2.39), i.e. un(x, t,p). In
order to compute the (n + 1)th functional product of (2.39), we want to use the
formulation (2.40) and insert the approximation un+1(x, t,p) into the weak form
(2.41). This leads to a non-linear problem:∫

Ω×[0:T ]×D
v

(
∂tun(x, t,p) + L[un(x, t,p)]− F

+ Xn+1(x) · ∂tTn+1(t) · Pn+1(p)
+ L[XN+1(x) · TN+1(t) · PN+1(p)]

)
dx dt dp = 0 (2.42)
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such that ∫
Ω×[0:T ]×D

v

(
Xn+1(x) · ∂tTn+1(t) · Pn+1(p)

+ L[Xn+1(x) · Tn+1(t) · Pn+1(p)]
)
dx dt dp

= −
∫

Ω×[0:T ]×D
v Rn dx dt dp, (2.43)

where Rn = ∂tun(x, t,p) + L[un(x, t,p)] − F is the residual of the PGD approx-
imation at enrichment step n. This nonlinear problem can be solved by an it-
erative method such as Newton or a fixed point algorithm. In order to approxi-
mate XN+1(x), TN+1(t), and PN+1(p), one must choose an appropriate test func-
tion for the weak form (2.42). For example in [40], the test function is set to
v = X∗(x) · Tn(t) · Pn(p) + Xn(x) · T ∗(t) · Pn(p) + Xn(x) · Tn(t) · P ∗(p), where
X∗(x), T ∗(t), and P ∗(p) are unknown test functions in each of the input domains
Ω, [0 : T ], and D, respectively. We want to solve individually for Xn+1(x), Tn+1(t),
and Pn+1(p) ; a fixed-point algorithm is chosen for simplicity. Thus, each iteration
would be composed of three steps.

First, to solve for Xn+1 we can fix T ∗ = Tn, and P ∗ = Pn from the previous
iteration n, and set v = X∗(x) · Tn(t) · Pn(p) in equation (2.43):∫

Ω×[0:T ]×D
X∗(x) · Tn(t) · Pn(p)

(
Xn+1(x) · ∂tTn(t) · Pn(p)

+ L[Xn+1(x) · Tn(t) · Pn(p)]
)
dx dt dp

= −
∫

Ω×[0:T ]×D

(
X∗(x) · Tn(t) · Pn(p)

)
Rn dx dt dp. (2.44)

Integrating over [0 : T ] × D reduces to the weak form of an elliptic steady-state
boundary value problem over Ω, which we can solve for the unknown Xn+1 by
classical techniques.

Once we have computed Xn+1, we follow a similar procedure for a new test
function v = Xn+1(x) ·T ∗(t) ·Pn(p), and integrating over Ω×D, the problem reduces
to an ordinary differential equation, which can be solved by classical techniques for
Tn+1.

In the case of the third component of the (n+1)th functional product, we consider
test function v = Xn+1(x) · Tn+1(t) · P ∗(p) and integrate over Ω × [0 : T ]. This
problem may no longer contain any differential operator, if no differential operator
is applied to the parameter p in problem (2.36), and the integral problem can be
solved algebraically.

The complexity of the PGD procedure to build the approximation (2.39) is N
times the iterative procedure involving at each iteration one elliptic steady-state
approximation, one ordinary differential equation approximation, and one algebraic
problem. The size of the PGD decomposition N is determined depending on the
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complexity of the problem, but in many practical applications, an accurate approx-
imation can be obtained with a small number of terms, O(10) or O(100) [40]. This
means we have computational time of some tens of steady-state 3D problems, as
compared to a classical approach where for each parameter value p one must solve
a 3D problem at each time step, which can imply several millions of 3D solutions.
The computational time savings can be of multiple orders, particularly in the case of
high-dimensional models (e.g. many parameters), and can be quite advantageous in
other cases such as problems over degenerate domains where at least one character-
stic dimension is multiple orders smaller than the others [41]. An in-depth discussion
of PGD error estimates can be found in [103]. The reader is encouraged to refer to
recent works involving PGD including [124,155].

2.2 Data Assimilation

Data assimilation refers to combining models and measurements for optimal rep-
resentation of the physical state. Methods include nudging, statistical, variational,
and sequential methods, for example. Here we will briefly introduce linear statistical
methods, and focus on more sophisticated physically-based methods of sequential
and variational categories.

The general framework of the data assimilation problem is based on the parame-
terized PDE problem (2.1), with the additional constraints on the solution to match
the observations as given by (3).{

L(p)(u(p)) = F (p)
Yobs = L

(
u(p)

)
+ ε

(2.45)

where Yobs ∈ RM represents the M experimental data, L(u(p)) represents the func-
tionals `m(u(p)), 1 ≤ m ≤ M as in (3), and ε represents any eventual error in the
measurements, assumed to a zero-mean Gaussian variable.

The goal of data assimilation methods is to improve the approximation of a
physical state using the associated mathematical and available data on the system.
While this seems simple enough, the challenge lies in formulating a scheme to inter-
pret and employ data from (often sparse or noisy) measurements in some optimal
way to contribute to the knowledge of the state in the numerical model. We must
consider that there will be not only the anticipated error in numerical simulations
from varying parameters, but also unanticipated error due to the shortcomings of
the mathematical model itself and its imperfect representation of reality.

Many data assimilation methods involve the minimization of a cost function, such
as least-squares type, designed to compute the mismatch between the model approx-
imation and the observations. Inverse methods seek the optimal parameter value
popt or state source for the parameterized model, approximating the true state by
the PDE solution u(popt). On the other hand, many data assimilation methods use
the measurements to correct the model approximation, rather than the parameter.
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2.2.1 Linear Estimation Theory

Estimation theory, a branch of statistics, provides a basis for data assimilation tech-
niques. Here we briefly discuss linear least squares estimation, as well as two prob-
abilistic methods [160].

Linear least squares estimation is based on the minimization of a cost functional
of the type

J(u) = 1
2‖Y

obs − L
(
u(p)

)
‖2 (2.46)

This minimization is generally treated by a gradient method.
The least squares estimation can be generalized by considering a weighting of

the norm described by the observation covariance matrix.
Another linear estimation technique is the Bayesian approach, in which the phys-

ical state u is treated as a random variable with probability distribution P (u), which
serves as the prior distribution (to be updated with the data) and is based on the
physical model. The observations vector Yobs is also treated as a random variable.
Given the data set Yobs, The Bayesian estimator û is built by minimizing the cost
functional

JBay(û) = E(‖û− u‖2|Yobs), (2.47)

which depends on the conditional probability P (u|Yobs) and is approximated by a
gradient method.

A third linear estimation theory approach, the Best Linear Unbiased Estimator
(BLUE), relies on knowledge of the error covariance matrices, without knowledge
of the probability densities P (u) and P (u|Yobs). This method also relies on the
minimization of a cost function to find the updated analysis state ua,

JBLUE(ua) = E(‖ua − utrue‖2), (2.48)

depending on the error covariance matrices of the data and with respect to the true
state utrue [160].

These estimation theory methods can be relatively simple to implement, but do
not account for physical state dynamics. The probabilistic methods also require
knowledge of either the probability distribution of the state u or of the error covari-
ance matrices with respect to the true state, which may require large quantities of
historical data.

We next move on to Sequential and variational methods, which rely on the math-
ematical model P .

2.2.2 Sequential Methods

Sequential methods, based on the coupling of the results of the BLUE method and
the dynamical model, rely on the assimilation of observations as they arrive to find
the best estimate of the physical state between the observations and prior informa-
tion [160]. Examples include Kalman Filter (KF) [96] and Optimal Interpolation.
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Kalman filtering is a recursive computational solution for real-time tracking of a
state vector with a noisy evolution equation and measurements.

Given a linear dynamical model and a set of observations Yobs, the KF seeks a
so-called analysis state, ua(·,p) which corrects the prior state, ubk(·,p) solution to
the dynamical model. If we consider a transient state, the true state at instant tk+1
is assumed to be representable as

utrue(tk+1,p) = Ak,k+1u
true(tk,p) + ek, (2.49)

where ek represents the model error and Ak,k+1 represents the model operator from
timestep k to instant k+ 1. The KF hypothesizes that model error and observation
noise ε are uncorrelated. The update of the prior state to find the analysis state at
time step tk is done using an operator Kk called the Kalman gain filter matrix. Kk is
built from the observation operator Yobs, the covariance matrix of the expected value
of bias in the model approximation, E(‖ubk − utrue‖2), and the covariance matrix
associated to the observation noise. As each observational measurement arrives, the
model approximation ubk(tk,p) is corrected to give the analysis state at time step
tk

ua(tk,p) = ubk(tk,p) + Kk

(
Yobs − L(ubk(tk,p))

)
(2.50)

The prior analysis state can then be used to provide input to the next model ap-
proximation.

The Extended Kalman Filter (EKF) extends this procedure to handle non-linear
dynamics and observation operators. In this case the covariance matrix of the model
forecast is computed not from the expected bias in the model approximation, but
from a tangent linear operator of the model and the adjoint dynamical model [160].

The KF and EKF can provide estimations of physical states and associated un-
certainties while allowing for time dependence, however it does not perform well for
highly non-linear systems [202], and the computation of the covariance and Kalman
gain filter matrices requires computational and storage resources dependent on the
size of the state space vector, making it less optimal for large systems.

The Ensemble Kalman Filter (EnKF) is an alternative to the EKF using Monte
Carlo methods [160]. Given a prior analysis state ua(tk−1,p) from a previous ap-
proximation at time step tk−1, this is used as an initial condition input. A random-
ization of the dynamical model, obtained by perturbing the parameters or initial
conditions around ua(tk−1,p), is used to compute a set of state approximations
{ubk(tk,p1), . . . , ubk(tk,pN)}.

The ensemble mean and covariance matrix are computed from this set of state
approximations, and an empirical expression is used to build approximations of
the gain matrix Kk and covariance matrices required by the EKF. The Kalman
gain matrix is approximated from an estimated ensemble covariance matrix and
the observation operator L, and is used to build the analysis state ua(tk,p) from
associated observations Yobs(utrue) and model approximations ubk(tk,pi).
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2.2.3 Inverse Methods

Inverse methods are developed considering the often inevitable error introduced in
the parameters and inputs of the model. The goal is to identify the optimal pa-
rameter popt to minimize the mismatch between model approximation and available
data.

Inverse methods can be considered a specific case of variational data assimilation,
but we separate the two cases to simplify the discussion here, and to insist on the
different viewpoints of parameter optimization and state optimization.

2.2.3.1 Adjoint Method

An example of a typical method to treat the reconstruction of a physical state from
a model and measurement data, the adjoint method poses a least squares problem
on the error between model solution and data, often with Tikhonov regularization.
The problem is solved via iterative resolution of the adjoint problem and direct
problem [134,193].

We consider that we have a parameterized PDE model P over a calculation
domain Ω and parameter domain D, as in equation (1), with the strong form as
in (2) with, as an example, non-homogeneous Dirichlet and homogeneous Neumann
boundary conditions:

L(p) (u(p)) = F (p) in Ω (2.51)

u = ud on ΓD (2.52)

∇u · ~n = un on ΓN (2.53)

Assume a variational form as in (2.3): find u ∈ X such that for any v ∈ Xtest
appropriate test space, we have, for parameter p ∈ D,

a(u, v; p) = b(v; p) (2.54)

This is the direct problem. Assume we are given M sensors represented by func-
tionals σk(w)

σk(w) = ϕk w, 1 ≤ k ≤M

where ϕk are chosen such that the linear form

∫
Ω
σk(w) is continuous in L2 for all

w ∈ X . We denote by ek(u(p)) the difference between the solution u(p) of the direct
model and the measurement ukmes given by the kth sensor:

ek(u(p)) =
∫

Ω
σk(u(p))dΩ− ukmes. (2.55)

The inverse problem consists in finding the optimal set of parameters popt by mini-
mizing the cost functional:

J(p) = 1
2

M∑
k=1

‖ek(u(p))‖2 (2.56)
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where ek is defined by equation (2.55). This problem is equivalent to the minimiza-
tion of the functional

I(u) = 1
2

M∑
k=1

‖ek(u)‖2, (2.57)

under the constraint that u is a solution to the direct problem of form (2.54).
We then define the Lagrangian L associated to the cost functional (2.56) and the
direct problem (2.54):

L (p, u, φ, ψ) = I(u)− a(u, φ; p)− b(φ; p) (2.58)

−
∫

ΓD
(u− ud)ψ, (2.59)

where φ and ψ are the Lagrange multipliers associated to the constraints from the
direct problem (2.51):

• φ ∈ X : multiplier associated to the constraint “u is a solution of (2.54)”

• ψ ∈ R : multiplier associated to, e.g., the constraint of a Dirichlet boundary
condition on (2.51).

If we differentiate the Lagrangien (2.58) along a test function w ∈ X in the
solution space, and with respect to the direct solution u, we can deduce a variational
inverse equation from depending on parameters u(p) and ek(u(p)) from

〈∂L
∂u

(p, u, φ, ψ), w〉 =
M∑
k=1

ek(u)
∫

Ω
σk(w)dΩ− a(w, φ; p)−

∫
ΓD
wψ (2.60)

Setting (2.60) equal to zero, we can derive the adjoint problem of the form

aadj(φ,w; p) = badj(w; p), (2.61)

with

aadj(φ,w; p) = a(w, φ; p) +
∫

ΓD
wψ

and

badj(w) =
M∑
k=1

ek(u)
∫

Ω
σk(w)dΩ.

Suppose that p = (p1, . . . , pNp) where Np is the number of parameters of our
model. Then,

∂J(p)
∂pi

λi = ∂L

∂pi
(p, c(p), φ(p))λi (2.62)

where λi ∈ R and 1 ≤ i ≤ Np.

74



For a stable implementation, it is necessary to add a regularization term depend-
ing of the parameter to the cost function J(p). We denote by T (p) the regularization
term

T (p) = ξ

2‖p− p0‖2,

where p0 is a parameter set close to the solution and ξ a positive constant. We thus
introduce a new cost functional

JT (p) = J(p) + T (p)

The derivative of the cost functional with respect to the parameters is now given as
follows

∂JT (p)
∂pi

λi = ∂J(p)
∂pi

λi + ∂T (p)
pi

λi

with
∂T (p)
∂pi

λi = ξ(pi − p0
i )λi, ∀λi ∈ R.

This method employs an iterative procedure in which at each step n, the direct
solution u(pn), the data gap ek(u(pn)) for 1 ≤ k ≤M , the adjoint solution φn, and

the derivatives with respect to each parameter ∂JT (p)
∂pi

will be used to compute the

next parameter set pn+1 via a gradient-type method to minimize JT (p).
Given the costly nature of this method, techniques to reduce computational

effort have been considered. In [36] the adjoint frame work is used for goal-oriented
improvement of mechanical models over a quantity of interest by a partial model
calibration in which the most influential parameters are updated first. RBMs have
also been used in the adjoint inverse method, see [9,104,136]. For the implementation
of CRBMs, a reduced basis is necessary for the solutions to the direct problem (2.54)
to represent the solution space over the parameter set D, for any varying state taken
as a parameter (e.g. a wind or turbulence field), as well as a second reduced basis
for the adjoint solutions (2.61) over the parameters u(p) and ek(u(p)) associated
to the direct solution and data. The steps of approximating the direct and adjoint
solutions are thus replaced by two linear systems of small dimension, Ndir and Nadj

respectively, solved for each new parameter value pn. The RB solutions uN(p) and
φN can then be used in the gradient descent method by derivative of the Lagrangien.

2.2.4 Variational methods

Variational methods involve the minimization of a cost function, such as least-
squares type, designed to compute the mismatch between the model approximation
and the observations, based in techniques of optimal control theory, by imposing the
dynamic model as a constraint. These methods work on a given assimilation time
window, given a background trajectory ubk(t,p) from the model P and observations
Yobs.
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2.2.4.1 Least-Squares based assimilation

Least-squares based variational data assimilation relies on a least-squares type cost
function J dependent on the background and observation covariance matrices, the
mismatch between the background initial condition (a guess) and the optimal initial
condition, and the mismatch on the observational data over the time window. Un-
like the linear version used in sequential methods (section 2.2.2), this cost function
minimizes over an assimilation window [t0 : T ], and unlike the cost function (2.56)
commonly used in inverse methods (section 2.2.3), here we minimize over the initial
condition u0, not the parameter p.

The minimization problem is solved by a gradient-based algorithm, which can
be done in several ways. For example, the gradient can be approximated by a finite
differences scheme, using a sensitivity equation describing the differential of the cost
function in a given direction, or using an adjoint formulation based on a concept
similar to that in section 2.2.3.1, and described in more detail in [160].

2.2.4.2 4DVar and Variations

The 4D-Var method [58] operates on a time window, using the cost function to
optimize results over the time period of the 3D atmosphere (hence 4D variables).
However the minimization of the cost functions requires computing the adjoint of
the tangent linear of the forecast model in addition to the observation operator,
which can be a complex task. The advantages of the 4D-Var method include no loss
of information in the time window and optimal treatment of non-linear operators.

The 4D-Var method also aims to minimize a cost function, generally with respect
to the initial state u0 or in the steady-state case (3D-Var), the state u, minimizing
the difference between the model trajectory from the dynamical model P and the
observation data Yobs by controlling the initial state u0. The cost function can take
the form

J(u0, u
a,p) = 1

2‖u0 − ubk0 ‖2 + τ

2

K∑
k=1

‖Yobs − L(uak)‖2 (2.63)

where ubk0 represents the so-called background initial state, which can be from the
best-knowledge model or a guess. (In the steady-state 3D case this would be ubk the
best-knowledge solution or a state from another model.) The trajectory solution uk
represents the model trajectory at instant tk from the initial state u0. τ = T−t0

K
is

the time step for K steps between time t0 and T . The norm can be chosen in the
dynamical state to be an L2 or H1 norm weighted by a covariance matrix of the
dynamical trajectories u(t,p) and initial states u0.

The minimization problem is under strong constraint by the dynamical model.
The optimal initial state for the cost function J is found by an iterative optimization
method. This can prove costly, considering the solution of the direct and adjoint
problem at each iteration. Reduction methods have been successfully applied to

76



4D-Var, as in [97, 159] for example. This can be done with reduced basis methods,
or using a reduced order model.

A weak constraint form of the 4D-Var method [187] can be used to treat an
unknown initial condition and model error (e.g. a bias in the mathematical model
or state estimation error due to parametric variation) [64,97]. This approach relaxes
the constraint that the solution satisfy exactly the model P , and allows for deviation
from the model depending on what is known about the model error (e.g. a simple
deterministic form as in [97] or a stochastic form as in [64]). Model error can be
treated by adding a forcing term in the minimization equation

J(u0, u
a, e,p) = 1

2‖u0 − ubk0 ‖2 + τ

2

K∑
k=1

‖ek‖2 + τ

2

K∑
k=1

‖Yobs
k − L(uak)‖2, (2.64)

over K time steps for time-step length τ , where ek represents the model error at
the kth time step. The state ua is the equivalent of an analysis approximation to
the model (variational problem (2.3)) with an added forcing term for model error
represented by a bilinear form c(ek, v) in the constraint:

a(ua, v; p) + c(ek, v) = b(v; p) (2.65)

We clarify that ua ∈ XK , u0 ∈ L2, and e ∈ (L2)K . For example in (2.64), c(ek, v) =
〈ek, v〉L2(Ω).

The norms in equation (2.64) depend on the application, and can be dependent
on a covariance matrix associated to the states and measurements [87].

In [97], a posteriori error bounds are proposed for both classical (strong) and
weak 4D-Var RBM approximations, relying on the residual norms of the state ua,
the adjoint, the model error, and the control variable (the initial condition). The
CRB formulation of problem (2.64), as seen in [97], involves an integrated RB space
for both the state and the adjoint, and two separate spaces for the initial condition
and for the model error. Computational times for the 4D-Var problem using a
conjugate gradient iterative procedure were reduced by O(10) per resolution over a
small test domain and 8-second time window, depending on the number of iterations
necessary.

2.3 Model Order Reduction and Data Assimilation in the
Air Quality Modeling context

In this section we wish to discuss MOR and data assimilation methods in the context
of air quality modeling, and give examples of previous studies using these techniques
for pertinent applications.

2.3.1 Data Assimilation for AQM

Data assimilation is a promising method of improving air quality modeling. It can
be used to calibrate existing models to poorly known conditions and to correct state
estimation error in imperfect models, both particularly pertinent to AQ studies.
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The use of data assimilation and its impact on AQM results depends on the
specific dynamics of the model, and data can be in varying forms such as in-situ,
air borne, satellite, and/or observation data. In meteorological models, initial con-
ditions tend to be very important. However, in CTMs, the initial conditions are
less influential when compared to emissions and boundary conditions, particularly
in the case of small-scale domains and long-lived pollutants. As discussed in chapter
1, error in model inputs (such as BCs and emissions) and model parameters (such
as chemical reaction coefficients) will persist through an AQM simulation, generally
unlike initial condition (IC) uncertainties [203]. Emissions uncertainty for common
air pollutants can range from 20− 60% [77].

Difficulties in parameter improvement Improving knowledge of model parame-
ters has interest beyond the estimation of the air quality state at hand; for exam-
ple emissions inventories and spatial representation can be improved. However the
improvement of model parameters is no simple task; it can require specifying the
uncertainty, difficult in and of itself, of parameters of very different natures. When
applied to atmospheric chemistry, controlling for positivity of the resulting concen-
tration and emission approximations is a particular issue. A common solution is to
set negative concentrations or emissions to zero, however this should be treated with
caution as it does not obey the physics of the mechanisms involved.

Another complication is that in practice, emissions fields often depend on many
more variables than data observation points, and these observations of course can-
not provide information over the entire domain. A possible solution is to define an
adaptive grid for the emissions field, which is coarse in areas with no effect on obser-
vations, and refined near measurement stations. The goal is to optimize the assimi-
lation of the available observations. Another possible solution is the optimization of
monitoring networks (i.e. monitoring locations) for an optimal approximation. This
is not always an option, and on the global scale the observation network is relatively
dense, meaning the advantages of this method could be limited currently. [203]

Sequential methods For linear or linearizable models, direct linear sequential
methods can be applied to fit BCs to observations, e.g. over Europe [162]. When
few parameters are to be improved, stochastic filters may be more appropriate than
4D-Var; for example, in [15] a chemical conversion rate of sulfur oxides was esti-
mated.

Statistical methods, such as the global data assimilation model in [111] and the
land-use regression model [138], have been in use for many years. Data assimilation
methods can be very useful for improving sophisticated CTMs, allowing for the
use of real-time or quasi-real-time measurements. Several techniques have been
developed to improve initial conditions and boundary conditions, emissions, and
meteorology models for use in a CTM. (Multiple interesting studies are cited in
[202]). A statistical interpolation method is used in [24] for O3 measurements and
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CHIMERE approximations. Two techniques are compared in [56] for regional PM10
in Europe: statistical interpolation based on residual kriging after a linear regression
of the model, and ensemble Kalman filter.

Common issues with sequential methods for air quality modeling are inflation,
localization, and model error. The sampling of error statistics only being an ap-
proximation can lead to underestimation of true error, which when compensated by
inflation could lead to divergence of the assimilation method.
Model error, such as emissions and boundary conditions, is very significant, but not
always identifiable directly. Unidentified error can be modeled through stochastic
perturbation schemes, adding a stochastic error term to each member of the ensem-
ble, where each perturbation is a linear combination of sources of errors. The finer
these sources of model errors are diagnosed, the better the filter should perform.
Additionally, the sampling schemes cans generate unphysical blobs of pollution in
AQM results, which need to be removed. Localization schemes can be used to con-
sider the error covariance matrix, or to use observation data only locally [203].

Variational and Inverse Methods Adjoint methods have been used in the case
of air quality modeling in [54, 156], both employing RBMs. In [169] a sensitivity
analysis of the adjoint problem is considered for data assimilation on an air quality
model.

In [44] a modified inversion technique using Bayesian inference and Monte Carlo
(see section 2.2.2) was used to identify source position and intensity in an urban
setting.

4D-Var (see 2.2.4.2) has been demonstrated successful for NOX by [157], and for
precursors of O3, SO2, SO2−

4 , NH3, V OCs, etc. by [63]. The 4D-Var method has
also been successfully implemented in meteorology [61]. However if the retrieval of
emissions parameters is not considered, some sequential methods can perform better
than 4D-Var, which may not account for model error (unless a weak constraint 4D-
Var version is considered). 4D-Var lends itself to the optimization of parameters and
initial conditions: a bonus if considering traditional data assimilation techniques for
the optimization of parameters via inverse modeling [203].
Difficulties in the 4D-Var method for AQM include background inter-species error
covariance at the initial time, emissions over the whole time window, computation
of the adjoint, and nonlinearities in the chemistry.

We recall here the convection-diffusion problem considered in [97], where 4D-Var
is applied with RBMs to reduce computational times. A weak 4D-Var formulation,
described above in section 2.2.4, is used to account for an unknown initial condition
as well as model error. The application considered is over a small 2 × 2 domain
with low Peclet number and 5 measurement points for concentration value with
Gaussian-variable noise, over an 8-second time window. We mention this small-scale
application here for its potential in extension to larger-scale air quality modeling
endeavors, however this current application does not quite fit in the AQM context.
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2.3.2 Model Order Reduction for AQM

Data assimilation methods often require the resolution of the problem P for many
parameter values, which can prove costly, particularly in the case of complex models
on large domains, common in air quality modeling. MOR can offer highly advanta-
geous reduction of computational effort in this context.

In [112] for example, a sort of surrogate model is developed for reduced chemical
models in troposhperic chemistry.

Projection-based MOR methods are notoriously difficult in cases dominated by
transport, if the diffusion term is negligible with respect to the advection term. We
note that unstable atmospheric conditions induce more diffusion, which renders the
MOR problem less complex. RBMs can be more stably applied to advection-diffusion
problems in the case of unstable atmosphere [156]

Below we mention some particularly pertinent examples of MOR applied to ap-
plications in AQM.

2.3.2.1 Stabilized Reduced Order Transport Modeling

In [146] the Streamline Upwind Petrov-Galerkin (SUPG) stabilization method (de-
scribed in detail in section 4.2.2.2) was used for a parameterized advection-diffusion
PDE model with high Peclet number and RBMs. The study considered two meth-
ods of implementing RBMs: Offline-Online SUPG, and Ofline-only SUPG. In both
techniques, SUPG stabilization was used in the computation of snapshot solutions
ubk(p1), . . . , ubk(pNt) in the offline stage. The difference was in the construction of
the reduced-order models by Galerkin projection: in the Offline-Online technique,
the SUPG full model was projected onto the reduced approximation space, whereas
in the Offline-only technique only the usual advection-diffusion model was projected.
In applications with both physical and geometrical parameters, the offline-only
method was found to have instabilities, while the offline-online stabilization method
performed well.

In [73] a dynamical SUPG stabilized advection-diffusion model was also consid-
ered, using POD-based MOR. While POD-based reduced models can be efficient
and accurate, they can also be numerically unstable and have non-physical peaks,
such as when applied to Navier-Stokes problems. If unstable snapshot solutions to
the advection-diffusion model are used in the POD basis, oscillatory effects increase.
However, if the snapshots are stabilized by the SUPG (i.e. there are no major per-
turbations), the POD can be stable. A centered-trajectory implementation in which
the POD modes were computed from fluctuations of the snapshots ubk(pi) − ū for
some aggregated solution ū containing Dirichlet boundary condition information,
and the fluctuations can be treated with homogeneous Dirichlet boundaries. The
reduced model is then built using the SUPG-stabilized full model to approximate
the fluctuations by uROM(t, x) ' ubk(pi) − ū, and the reduced approximation is
uN = uROM(t, x) + ū. The SUPG-stabilized reduced model was here too found to
be more stable suppressing instabilities.
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In [53] RBMs are studied for application to an advection-reaction model sta-
bilized by the Streamline Diffusion Finite Element (SDFE) method. A primal-
dual approach is considered, in which the primal problem is the SDFE-stabilized
parameter-dependent advection-reaction problem with weak problem of the form
(2.3), and the goal is to calculate an output quantity s(p) = `o(ubk(p); p), where `o

is defined by (2.16) The dual problem is then defined by (2.23).
Two reduced basis are computed, one for the primal problem (2.3) and one for

the dual problem (2.23), during an offline stage, along with the operators for the
reduced models. During the online stage, for each new parameter p, the primal
and dual reduced models are solved, the dual solution ψ(p) is used to correct the
RBM-approximated output sN(p) defined in (2.17), as defined by (2.29). This tech-
nique allows to improve accuracy of the output computation without increasing
computational time with respect to the primal-only approach, which would require
a higher-dimensional basis for the same accuracy. In [53] the same author studies
these problems for applications in optimal control.

2.3.2.2 Optimal Control for AQM

In [156] RBMs are used in an optimal control problem in air quality modeling. The
problem is to find optimal emissions rates from factory stacks to minimize pollu-
tion over a nearby area of interest, the control parameter being the emissions. A
transport-dominated advection-diffusion problem is used, and solved for the optimal
parameters by inverse method with a stabilized Lagrangien (as opposed to stabiliz-
ing the primal and adjoint problems) solved by gradient method using an adjoint
problem, employing reduced basis approximation spaces for the direct and adjoint
problems.
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Part II

Reduced Order Data Assimilation
Methods and Application in Air

Quality Modeling
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Chapter 3

Reduced Order Data Assimilation:
PBDW and GEIM

Résumé :

Dans ce chapitre, nous introduisons deux méthodes d’assimilation de données pour
les EDP paramétrées, la PBDW et la GEIM, qui sont non intrusives et d’ordre
réduit. Soient un modèle Pbk dépendant d’un jeu de paramètres p et M données
d’observations (yobsm ), 1 ≤ m ≤M .
La méthode PBDW est une méthode de minimisation de type moindres carrés qui
s’appuie sur deux espaces d’approximation. Le premier est l’espace background de
type“bases réduites”, nommé ZN et de dimension N , représentant le modèle Pbk. Le
second est l’espace update nommé UM de dimension M , représentant l’information
collectée par les M capteurs. Nous voulons approcher utrue(p), l’état physique du
système, par l’approximation PBDW

uM,N(p) = ubkN (p) + ηM

où ηM ∈ UM est un terme de correction update associé aux données d’observation,
et ubkN (p) ∈ ZN est une approximation de RB de la solution à Pbk. L’approximation
PBDW est obtenue par la résolution d’un problème de minimisation sous contrainte.
La fonctionnelle à minimiser est la contribution update ηM ∈ UM , et les contraintes
sont yobsm = `m(utrue(p)), 1 ≤ m ≤ M , où `m représente le mième capteur. Le
problème de minimisation peut s’écrire sous forme d’un système linéaire de taille
M + N ×M + N . Dans ce chapitre on introduit la constante de stabilité βM,N et
une estimation à priori de l’erreur d’approximation PBDW.
La GEIM est une méthode d’interpolation qui utilise des solutions du problème Pbk
et les M données. Soit IM(u) l’opérateur d’interpolation défini tel que :

IM(u) =
M∑
j=1

αj q̃j et `m
(
IM(u)

)
= `m(u) ∀ 1 ≤ m ≤M,

où q̃j sont les fonctions d’interpolation construites à partir de solutions de Pbk.
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In most modeling and data assimilation endeavors, the overall goal is to find the
best possible approximation of the physical system being studied while expending
minimal resources. In practice this can translate to using the best model possible
and available data without requiring excessive computational investment required
to solve the problem. These goals are clear in the above-discussed data assimilation
methods (section 2.2), and the goal of reducing computational effort is central to
the MOR methods discussed in section 2.1. In this chapter we will expose two non-
intrusive reduced order methods of data assimilation for parameterized PDEs: the
generalized EIM (GEIM), based on the empirical interpolation in section 2.1.2.1,
first introduced in [114,115], and the more recent Parameterized-Background Data-
Weak (PBDW) method developed in the reduced basis framework, first introduced
in [117, 118]. These methods, born of the need common to other data assimilation
methods to find the best approximation of a true physical state given a mathemati-
cal model and some observation data, are non-intrusive and non-iterative, providing
real-time state estimation. The methods aim to optimally employ model order re-
duction methods combined with data assimilation to best approximate a physical
state, taking into consideration not only parametric variation, but also model error
in an imperfect mathematical model.

3.1 PBDW

3.1.1 Introduction

Given a parameterized model Pbk for a physical system, which we will refer to as
the ”best-knowledge” (bk) model, and a number of measurements of the quantity we
wish to approximate, this PBDW formulation for variational data assimilation aims
to achieve the most precise real-time approximation of the physical state.

Some advantages of this formulation are:

• Correction of unmodeled physics, or unanticipated and non-parametric uncer-
tainty, through an update to the best-knowledge approximation constructed
from M observations.

• Simple non-intrusive and non-iterative implementation.

• Online computational efficiency for real-time state estimation.

• A low-dimensional Reduced Basis space from the best-knowledge model, de-
signed to handle anticipated parametric uncertainty.

• The approximation of the true physical state without identifying the model
parameters.

• In the case of decoupled pollutant transport modeling, independence of the
online stage from fluid calculations.
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• The capability to handle data abundance without up-scaling the model com-
plexity.

As in RBMs, the efficiency of the PBDW formulation depends on an online-offline
breakdown of computations. The PDE model Pbk is used to build a RB background
space of low dimension representing solutions to the known problem, designed to
handle parametric uncertainty. Information on physical location and form of the
sensors used in measurements are used to build an update space of low dimension
representing the information gathered by the sensors. The construction of these
two approximation spaces require expensive computations, but is completed offline
and only once for a given system, parameter range, and set of sensors. A linear
system representing the PBDW formulation is also constructed offline, as will be
described in section 3.1.2. The online stage requires only the input of PBDW data
and resolution of the linear system, allowing for highly efficient state estimation.
In the three-dimensional case study considered in this work, computation time by
P1 finite elements took over 26 minutes for a single concentration field, while the
PBDW approximation required under 40 seconds for a full reconstruction of the field.

The weak formulation of the PBDW method is based on least-squares approx-
imation, as is the case of the adjoint inverse method and many variational data
assimilation methods. A brief discussion of similarities with 3D-VAR (first intro-
duced in [111] and expanded to MOR applications in [190], gappy proper orthogonal
decomposition [69], empirical interpolation, and the use of a Riesz representation in
correcting unmodeled physics [21], can be found in [119].
A recent PhD thesis [182] gives detailed analysis of PBDW error and stability, as well
as discussion of treatment in the case of noisy data. The case of noisy data, which
was first considered in the PBDW formulation in [117], is treated with a probabilistic
distribution, for example independent normal distributions, with an added regular-
ization term over the observations (similarly to the 3D-var formulation), dependent
on the variance of the distribution, in the minimization statement. In this study we
will not consider the case of noisy data, considering that a proposed extension for
this case has been well documented by Taddei [182]. In addition, we could consider
that pollution sensors are not just noisy: relative errors may be large, but are small
on a log scale, which is more pertinent to air quality modeling. We consider relative
errors plotted on log axes to provide insight into the methods from a mathematical
point of view, as our approximation errors are small here.

3.1.2 PBDW Formulation

Let us denote p ∈ D, where D is the set of all parameters of interest, the parameter
configuration of the physical system, encoding information such as operation condi-
tions (e.g. emissions or frequency), environmental factors (e.g. temperature), and
physical components.

Let Ω ⊂ Rd be a bounded domain. We will consider a solution space X , a Hilbert
space, such that H1

0 (Ω) ⊂ X ⊂ H1(Ω), and associated inner product 〈·, ·〉X . We will
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denote X ′ its dual space.

We assume we have some knowledge of the system encoded in the parameterized
PDE model Pbk, resulting in the best-knowledge state ubk(p) ∈ X . The goal of
this formulation is to estimate the true deterministic state utrue(p) ∈ X (or desired
output quantity `out(utrue(p)) ∈ R for some linear functional `out ∈ X ′) using the
model Pbk and M observations associated to the parameter configuration p.

In order to combine the best knowledge of the system modeled by Pbk and the
experimental observations of the physical state, we will consider a PBDW solution
of two parts: background and update. The goal of the following paragraphs is to
formulate the PBDW method in which we will approximate the true physical state
utrue(p) by

ubk(p) + η (3.1)

where η ∈ X is an update correction term associated to the experimental observa-
tions, which will be defined more precisely in section 3.1.2.2.

3.1.2.1 Reduced basis background

We will exploit the above-mentioned RBMs (section 2.1.2) for the construction of a
low-dimensional approximation space representing the manifold of solutions to the
parameterized PDE model Pbk over the parameter space Dbk ⊂ D. This allows for
significant reduction of computation costs in the incorporation of background infor-
mation on the physical system.

As discussed in section 2.1.2, a relatively small Kolmogorov dimension (defined
in section 2.1.2) is necessary to measure to what extent the solution manifoldMbk =
{ubk(p) ∈ X | p ∈ Dbk}, where ubk(p) are solutions to the mathematical problem
Pbk, can be approximated by an n-dimensional subset of X , formed by a set of
well-chosen solutions to Pbk, or to what extent ubk(p) can be approximated by

ubkN (p) ··=
N∑
i=1

βi(p)ubk(pi),

as in equation (2.13).

This RB approximation space will be henceforth referred to as the Background
space ZN , representing solutions to the model Pbk in the PBDW method. We will
construct our Background spaces as a sequence of nested RB spaces

Z1 ⊂ · · · ⊂ ZN ⊂ · · · ⊂ X .

We perform a Gram-Schmidt orthonormalization, and introduce new orthonor-
mal basis functions {ζi}Ni=1 and denote our background RB space as

ZN ··= span{ζi}Ni=1 ⊂ X (3.2)
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To minimize the PBDW appoximation error from discretization error, we need
to construct a suitably precise RB space ZN such that, for a tolerance εZ ,

inf
w∈ZN

‖utrue(p)− w‖X ≤ εZ ∀p ∈ D and N ≥ Nmin. (3.3)

The construction of the Background RB space takes place offline, as it is com-
putationally expensive, allowing for an efficient online phase. The parameters gen-
erating RB spaces can be chosen by multiple methods, and we chose to focus on
Greedy algorithms (see algorithm 3 in appendix C).

This RB space representing the solution manifold to the model described by Pbk
can now be used in various RBMs, such as the certified RBM for example, allowing
to rapidly represent the solution to the model Pbk for a given parameter. In order
to use CRBMs in the context of data assimilation, we need a mechanism to treat
observational knowledge of the system, such as the implementation of CRBMs in
the framework of an inverse problem. However we will note that in certified RBMs
(CRBMs), the Galerkin method on the RB space requires the modification of the
calculation code, an intrusive procedure which can be unfeasible or undesirable, and
non-affine parameter-dependence in the PDE model may require online interpola-
tion, rendering the process less computationally efficient. Here we wish to take
advantage of the simple and non-intrusive character of the PBDW method as an
alternative to this integration of MOR into a classical technique.

3.1.2.2 Data-informed update

Taking the background piece of the PBDW approximation from the RB space ZN of
the model Pbk, we will consider the experimental observations to contribute in the
update piece. If we consider that we have M sensors, which we will mathematically
represent as follows (for example) for 1 ≤ m ≤M and appropriate constant c:

ϕm = 1
c
exp

(
−(x− xm)2

2r2

)
such that

∫
Ω
ϕm(x)dΩ = 1, (3.4)

where xm ∈ Rd is the center of the mth sensor of radius r. The underlying idea of
such a representation is that a sensor, especially a gas sensor (as well as particu-
late sensors), is a complex system with spatial extension. Such a sensor does not
sense pointwise, but rather performs some averaging around the sensor location. In
practice, some advanced ”lab-on-a-chip” devices also introduce a time-delay or even
a time-averaging of the quantity to be observed. But we shall not discuss this issue
any further and consider a simple operational ”sensor model”. From the mathemat-
ical point of view, (3.5) makes the observation continuous over all Sobolev spaces
where the concentration is usually approximated.

To evaluate the information these sensors can gather from a physical state v ∈ X ,
we define the following linear functionals `m ∈ X ′

`m(v) =
∫

Ω
ϕm(x)v(x)dΩ 1 ≤ m ≤M (3.5)
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Given a parameter configuration p, we assume our M observations yobsm (p), 1 ≤
m ≤M , are of the form

yobsm (p) = `m(utrue(p)). (3.6)

We need to use these representations to construct a second approximation space
UM ⊂ X in which we will find the update η from equation (3.1). If we consider
that this approximation space will represent the information which the sensors can
provide, we want the basis functions of UM , denoted qm, 1 ≤ m ≤ M , to represent
the functionals `m. Let us thus define the Riesz operator RX : X ′ → X such that

〈v,RX `〉X = `(v), ∀v ∈ X . (3.7)

We then introduce the so-called update basis functions qm = RX `m ∈ X such
that

〈v, qm〉X = `m(v), ∀v ∈ X , (3.8)

and for any physical state utrue of the configuration

〈utrue, qm〉X = `m(utrue). (3.9)

Let us define the Update Space by UMmax = span{qm}Mmax
m=1 , where Mmax is the

maximum number of sensors available. The construction of this space takes place
offline, as it can be relatively computationally expensive, although often less so than
the construction of the background space.

3.1.2.3 PBDW problem statement

The PBDW aims at approximating the true physical state utrue(p) for some config-
uration p by

uN,M = zN + ηM . (3.10)

where the first right-hand-side term zN is in ZN and corresponds RB approximation
of the best-knowledge solution ubk(p), and the second right hand side term ηM is
in UM and is a correction term associated with the M observations. We pose the
PBDW approximation as the solution to the following minimization problem. Find
(uN,M ∈ X , zN ∈ ZN , ηM ∈ UM) such that

(uN,M , zN , ηM) = arginf
ũN,M∈X
z̃N∈ZN
η̃M∈UM

{
‖η̃M‖2

X

∣∣∣∣ 〈ũN,M − z̃N , v〉X = 〈η̃M , v〉X ,∀ v ∈ X
〈ũN,M , φ〉X = 〈utrue, φ〉X ,∀φ ∈ UM

}
. (3.11)

The minimization over the update term ηM translates to requiring the PBDW
approximation to remain close to the manifoldMbk represented by the RB approx-
imation space ZN . This requirement ensures that the approximation maintains a
physical sense with respect to the physics of the model Pbk. The constraints on
the minimization impose the two-part background-update PBDW solution, and the
measured values at sensor locations. This minimization problem can be expressed
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by a Lagrangian and the derivation of Euler-Lagrange equations, as shown in [119].
Simplifying the Euler-Lagrange equations, the PBDW estimation statement can be
written, for a given physical configuration p ∈ D, as the following mixed prob-
lem [117,119].
Find (ηM(p) ∈ UM , zN(p) ∈ ZN) such that:

〈ηM , q〉X + 〈zN , q〉X = 〈utrue(p), q〉X ∀q ∈ UM , (3.12)

〈ηM , p〉X = 0 ∀p ∈ ZN . (3.13)

We recall here that given the definition of the update basis functions qm ∈ X in
equation (3.8), the right-hand-side of this formulation is assumed to be 〈utrue(p), qm〉X =
yobsm (p), with yobsm (p) = `m(utrue(p))X , 1 ≤ m ≤M .
The corresponding algebraic formulation to problem (3.12) is : find ( ~ηM ∈ RM , ~zN ∈
RN) such that (

A B
BT 0

)(
~ηM
~zN

)
=
(
~yobs

0

)
(3.14)

where

(~yobs)m = yobsm , Am,m′ = 〈qm, qm′〉X and Bm,n = 〈ζn, qm〉X 1 ≤ m,m′ ≤M ; 1 ≤ n ≤ N

The PBDW approximation can then be rewritten as

uN,M =
M∑
m=1

( ~ηM)mqm +
N∑
n=1

( ~zN)n ζn.

The desired output functional can be evaluated without reconstructing the full so-
lution:

`out(uN,M) =
M∑
m=1

( ~ηM)m`out (qm) +
N∑
n=1

( ~zN)n `out(ζn).

This mixed problem is not directly a function of the original PDE, making the
method non-intrusive. Once the background RB space has been constructed from
particular solutions to the model Pbk, the procedure can be independent of the Pbk
computational code provided the mesh information is available.

For a more stable numerical implementation, we can consider solving:

BTA−1B~zN = BTA−1~yobs (3.15)

~ηM = A−1(~yobs −B~zN
)

(3.16)

The construction of the background space ZN , update space UM , as well as the
matrices A and B, takes place during the offline stage — as computation time of
these procedures depends on the mesh with Nh degrees of freedom — allowing for an
efficient online phase. Thus, when observation data is collected, the linear system
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can generally be solved online in O((N + M)3) operations (O((N + M)2) once the
system is factorized).

RBMs are particularly well-suited to problems in which the quantity of interest
is not the full reconstruction of the solution, but the evaluation of a linear output
functional over the solution, allowing for complete independence from the calculation
mesh in the online stage. A quantity of interest could, for example, be the average
value over a domain of interest. In this case, the output quantity over the basis
functions of the two approximation spaces can be precalculated, allowing for evalu-
ation of the output of the PBDW approximation in O(N +M) operations, without
fully reconstructing the PBDW approximation from the basis functions {ζn}Nn=1 and
{qm}Mm=1, a procedure in O(Nh) operations. However depending on the visualization
method, reconstruction of full solutions can be very efficient, making RBMs equally
suitable for the general case.

3.1.3 PBDW error and stability considerations

The well-posedness of the problem depends on the construction of the Background
and Update spaces. In fact we can define the inf-sup stability constant depending
on the two approximation spaces.

βN,M = inf
w∈ZN

sup
v∈UM

〈w, v〉X
‖w‖X‖v‖X

. (3.17)

βN,M is a non-increasing function of N and a non-decreasing function of M , with
βN,M = 0 for N > M .

In [119] an a priori error estimation is derived for the formulation as a function
of the stability constant and the best-fit of the approximation spaces.

‖utrue − uN,M‖X ≤
(
1 + 1

βN,M

)
inf
q∈UM

inf
z∈ZN
‖utrue − z − q‖X (3.18)

Given the strong dependence of the PBDW approximation error on the stability
constant, we need to build the approximation spaces in a manner to maximize the
stability of the formulation.

If we have the option of choosing the M best measurements, we want to:

(a) Maximize the stability constant βN,M for each M with respect to the Back-
ground Space

(b) Minimize the best-fit error in the secondary approximation provided by the
update space:

inf
η∈UM∩Z⊥N

‖ΠZ⊥Nu
true − η‖ ,

where Z⊥N is the orthogonal to ZN in X

If we consider that the model Pbk provides the majority of the information about
the solution, the primary approximation will be taken from the background space
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ZN , as imposed by equation (3.11). The update term η will be taken from outside
the background space, as stated in equation (3.12). The best-fit error in the update
space is thus given by the projection of the portion of the true state not approximated
by the background space onto the update space orthogonal to the background space.

This can be attempted through optimal construction of the update space offline
employing a Greedy-type selection of sensor functions (among a set of possible loca-
tions) to improve the space in the sense of (a) or (b). The latter (b) can be done
using for example a double greedy algorithm in order to minimize the GEIM error
interpolation [114, 115], which selects background space basis functions and update
space basis functions simultaneously, as described in section 4.1.2. The former (a)
can be done for example using an algorithm to maximize βN,M under a certain tol-
erance, reverting otherwise to minimization of the best-fit error, as in [182].

Extended error analysis in [119] gives the following a priori estimate on output
quantity of interest for `out ∈ X ′

|`out(utrue)− `out(uN,M)| = |〈utrue − uN,M , ψ − ΠUMψ〉X |
≤ ‖utrue − uN,M‖X‖ψ − ΠUMψ‖X (3.19)

where ψ = RX `out ∈ X , and ΠUM · is the orthogonal projection operator onto the
update space UM .

The following a posteriori error estimates are also introduced in [118], for M ≤
M ′ ≤Mmax the number of observations.

EN,M,M ′ ··= ‖uN,M ′ − uN,M‖X (3.20)

ON,M,M ′ ··= |`out(uN,M ′)− `out(uN,M)| (3.21)

3.2 GEIM

The GEIM [114, 115] is a non-intrusive MOR and data assimilation method rely-
ing on the knowledge of some particular solutions in a function space X to the
parameterized model Pbk, and some measurements over the physical state to be ap-
proximated, from which an empirical interpolation is constructed. From evaluations
by general measures of the state given by linear forms (i.e. functions represent-
ing sensors) defined on a suitable functional space and the manifold of solutions to
the parameterized problem, the GEIM allows to build an interpolation formula to
approximate solutions to the model Pbk for certain instances of the parameter p.

The GEIM replaces the M pointwise evaluations used by the EIM in section
2.1.2.1 by general measures, linear forms defined on a superspace of the manifoldMbk

of solutions to the parameterized problem. If we don’t have pointwise information
on the function we wish to approximate, ubk(p) ∈Mbk, but we have a set Σ of linear
forms σ ∈ Σ which we can evaluate on the function σ(u), where the linear forms
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are continuous in some way, we want to use this data in a generalization of the EIM
procedure described in section 2.1.2.1. The idea is the same as that of the PBDW
linear functionals `, in that real-world data over a physical state is generally not a
punctual measurement, but some sort of average function.

GEIM Formulation

The GEIM procedure defines a set of generating functions inMbk, (ubk(p1), . . . , ubk(pM))
and a set Σ of associated linear forms (σ1, . . . , σM), from which interpolating basis
functions are derived, (q̃1, . . . , q̃M).

We then define the interpolation operator

IM(u) =
M∑
j=1

αj q̃j such that σi
(
IM(u)

)
= σi(u) ∀1 ≤ i ≤M (3.22)

We will note that if Σ is a dictionary of Dirac masses, the GEIM is equivalent to
the EIM.

Ideally we want to choose the linear forms σi ∈ Σ and basis functions q̃i ∈ Mbk

in an optimal manner. In order to do this, we will consider a Greedy algorithm
aiming at minimizing the interpolation error. The construction of the interpolation
functions q̃ ∈ X and selection of the linear forms σ ∈ Σ is done recursively. Given
a first generating function u(p1) ∈ Mbk, chose as the ”largest” of the generating
functions in ‖ · ‖X , we can choose the associated linear form as that which gives the
”most” information over u:

σ1 ··= argsup
σ∈Σ

|σ(u(p1))| (3.23)

The interpolating basis function is defined as

q̃1 ··=
u(p1)

σ(u(p1)) (3.24)

We then define

u(p2) ··= argsup
u∈Mbk

‖u− σ(u)q̃1‖X

σ2 ··= argsup
σ∈Σ

|σ(u(p2)− σ1(u(p))q̃1)|

q̃2 ··=
u(p2)− σ1(u(p2))q̃1

σ2(u((p2)− σ1(u(p2))q̃1) (3.25)

and so on by induction. For M > 2, we solve the linear system for the state u ∈Mbk

to find the associated interpolation coefficients (α̃M−1
j (u))1≤j≤M−1

σi(u) =
M−1∑
j=1

α̃M−1
j (u)σi(q̃j) ∀1 ≤ i ≤M (3.26)
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and use the interpolation to define the M th generating function u(pM), linear form
σM , and interpolating basis function q̃M :

IM−1(u) =
M−1∑
j=1

α̃M−1
j (u)q̃j

u(pM) ··= argsup
u∈Mbk

‖u− IM−1(u)‖X

σM ··= argsup
σ∈Σ

|σ(u(pM)− IM−1(u(pM))|

q̃M ··=
u(pM)− IM−1(u(pM))

σM(u(pM)− IM−1(u(pM))) . (3.27)

The detailed GEIM algorithm can be found in appendix C (see algorithm 5).
We can define the interpolation matrix by

BM
i,j = σi(q̃j) 1 ≤ i, j ≤M,

BM is lower triangular with unity diagonal (and non-singular), with other entries
BM
i,j ∈ [−1, 1].

The basis functions q̃i are linearly independent, and we can define the M -
dimensional subspace X̃M ··= span{q̃j}Mj=1 = span{u(pj)}Mj=1 ⊂Mbk, proven in [154].
The method is well-posed in L2.

GEIM error and noise

Let us consider X = L2(Ω). Interpolation error through the GEIM is dependent
again on the best fit by the basis functions q̃i, and on the Lebesgue constant in the
L2(Ω)-norm, representing the L2(Ω)-norm of IM :

ΛM = sup
u∈Mbk

‖IM(u)‖L2(Ω)

‖u‖L2(Ω)
, (3.28)

where ΛM is the inverse of the stability constant βM .
Lemma: [114]-2.3 ∀ u ∈Mbk, the interpolation operator satisfies:

‖u− IM(u)‖L2(Ω) ≤
(
1 + ΛM

)
inf

wM∈X̃M
‖u− wM‖L2(Ω)

where a (very) pessimistic upper bound for ΛM (found to be much smaller in prac-
tice) is:

ΛM ≤ 2M−1 max
1≤i≤M

‖q̃i‖L2(Ω)

A high order of convergence was shown in practice for the Laplace problem
in [114], and numerical results were compared to POD projection errors.

In [114] a method of filtering noisy data is discussed. It is assumed that the
sensors measure, for example, an average value computed from a random variable
uε ' N (u, ε2) of normal distribution and variance ε, and that the physical state is
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noisy, not the measurements. Then the GEIM interpolator is also a random vari-
able following the same law. If many data points Mmax >> M are available, then
P ≤ Mmax/M distinct series of sensor forms {σpm}m,p could be selected and the
GEIM performed P times. Averaging these P reconstructions of the physical state,
we expect to improve the variance of the state estimate, and thus reduce the error
induced by noise.

Specific applications studied with the GEIM, particularly its implication in data
assimilation processes, has been discussed in 2.3.

This method provides tools that can optimally select from available sensors pro-
viding data, and even propose optimal placement of new sensors, which we will see
more in chapter 4.1, on adaptations of the PBDW method for pollutant transport
applications.

Numerical Implementation of the GEIM

We will note here some details of the numerical implementation of the GEIM and give
the algorithm used in chapters 5 and 6. Firstly, the resolution of the interpolation
problem in the recursive loop of algorithm 5 (see appendix C) can be done by solving
a linear system: (

ΣQ
)(

αk

)
=
(

ΣUk

)
(3.29)

where ΣQi,j = σi(q̃j) for q̃j corresponding to the jth interpolation function built
during the GEIM algorithm on the training set of the bk model, and σi ∈ Σ corre-
sponding to the ith linear form (e.g. the functionals `m from equation (3.5)).

(
αk
)
i

is the ith interpolation coefficient from equation (4.28) for the kth training function
ubk(pk) ∈Mbk, and

(
ΣUk

)
i

= σi(ubk(pk).
As noted in section 2.1.2.1, the matrix ΣQ is lower triangular with unity diagonal.

We can thus avoid the numerical inversion of the matrix and solve the system of M
equations to find IM [ubk(pk)].

α1(ubk(pk)) = σ1(ubk(pk))
α2(ubk(pk)) = σ2(ubk(pk))− σ2(q̃1)α1

· · ·
αm(ubk(pk)) = σm(ubk(pk))−

∑M−1
i=1 σM(q̃i)αi

(3.30)

This gives us the recursive formula for the mth interpolating operator:

IM(u(p)) = IM−1(u(p)) +
σM
(
u(p)− IM−1(u(p))

)
σM
(
u(pM)− IM−1(u(pM))

)(u(pM)− IM−1(u(pM))
)

(3.31)
This dependence of the mth interpolating basis function q̃m on the m − 1th in-

terpolation Im−1is an iterative procedure which could cause the accumulation of
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numerical errors. We chose to implement a stabilized numerical algorithm for this
part of the GEIM, much like a numerically stabilized version of Gram-Schmidt or-
thonormalization. If we want to construct the interpolating operators q̃m:

q̃m = ubk(pm)− Im−1[ubk(pm)]
σm
(
ubk(pm)− Im−1[ubk(pm)]

)
but want to account for numerical error, we can use the following procedure.

Algorithm 1 : A more stable numerical algorithm for the computation of the mth GEIM
interpolation function.

1: Input: we consider we’ve already found ubk(pm) and σm.
2: Set w = ubk(pm) ∈ Xh.
3: for j = 1 to m− 1 do
4: Set:

rj,m = αj(w)

=
m−1∑
i=0

(
ΣQ−1)

j,i
σi(w)

5: Compute w = w − rj,mq̃j
6: end for
7: Set rm,m = σm(w)
8: Compute q̃m = w

rm,m

We recall that the construction of the GEIM interpolation functions and sensor
set is done during an offline stage. This stage can also be computed using a POD
basis for which we select appropriate sensors by a Greedy algorithm. Once the matrix
LQ is constructed for a fixed M -value, we need only plug in the data in the right-
hand-side of the linear system (3.29) (or the corresponding values in equation (3.30)),
which corresponds to the first M values of the right-hand-side of the PBDW linear
system (3.14), yobs. We can thus solve for the interpolation coefficients α(ubk(pk))
in O(M3) operations.
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Chapter 4

Adaptations for Complex
Large-Scale Applications and
Pollution Modeling

Résumé :

Ce chapitre est divisé en deux parties.
La première est une discussion sur l’adaptation des méthodes PBDW et GEIM pour
des applications de qualité de l’air à l’échelle urbaine. Nous réfléchissons sur la sta-
bilité du système en fonction du choix des fonctions de base qm de l’espace update
UM . Nous introduisons pour cela la norme H̃1, équivalente à la norme H1, qui sera
utilisée afin d’élargir le support des fonctions de base de l’espace update. Nous consi-
dérons deux méthodes pour la construction de l’espace reduit background ZN : la
POD (Proper Orthogonal Decomposition) et une méthode reposant sur un algo-
rithme de type glouton (appelé aussi greedy). Le positionnement optimal (quand il
est possible) des capteurs est egalement considéré dans ce chapitre. Celui-ci est ob-
tenu par un algorithme de double greedy basé sur la GEIM. Cette partie se finit par
une discussion sur les différences, les avantages et les inconvénients de la méthode
PBDW par rapport aux méthodes inverses de type problème adjoint.

Dans la seconde partie, nous présentons en détail les modèles mathématiques utilisés
dans nos applications inspirées par la modélisation de la qualité de l’air. Le modèle
“best-knowledge”, Pbk est donné par l’EDP d’advection-diffusion suivante

ρ ~v · ∇c− div(εtot(x)∇c) = ρFsrc.

Cette EDP et son equivalent adimensionnelle sont résolues par une méthode d’élé-
ments finis avec stabilisation SUPG. Pour évaluer la capacité de notre méthode
à traiter des modèles erronés (c’est à dire qui n’auraient pris pas en compte tous
les phénomènes physiques), nous considérons un second modèle : P trial. Ce modèle
qui repose sur une EDP d’advection-diffusion-réaction, sera utilisé pour calculer des
données synthétiques.
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We introduced in chapter 3 two non-intrusive reduced order data assimilation
methods of particular interest. We want to adapt these methods to problems in-
spired by physically-based air quality models. These applications are complex due
to the turbulent fluid flow underlying a pollutant concentration field, the transport
phenomena, and more physical phenomena such as chemical reaction and deposi-
tion effects. Additionally, calculation domains for AQM problems are commonly
very large, while studies employing the output predictions of these models (e.g. epi-
demiology studies) can benefit from very small scale precision. Over urban areas,
which are often the most pertinent regions of study for air quality modeling, the
geometries can be complex and induce complex fluid flows. We thus find ourselves
applying difficult-to-solve equations over complex CFD wind fields and geometries
in large dimension for small-scale results. We must consider adaptations to these
methods for our complex large dimension problems to ensure stability of the problem
and precision of the results.

4.1 PBDW: technical details and analysis

In this section we will discuss procedural details of the implementation of the PBDW
method to the environmental modeling problems discussed in chapters 4.2, 5, and
6.

4.1.1 PBDW in Practice

Consider the following finite element approximation spaces:

• Xh ⊂ X ⊂ H1(Ω) and dim(Xh) = Nh.

• ZN ⊂ Xh, ZN = span{ζn}Nn=1, where ζn ∈ XN are RB basis functions associ-
ated to the model Pbk, obtained for example via a greedy algorithm.

• UM ⊂ Xh, UM = span{qm}Mm=1, where qm = RX `m ∈ Xh and RX is the Riesz
operator associated to Xh.

The implementation of the PBDW approximation with the discrete space Xh
follows directly, and below we summarize the steps of the method.

1. Build the background space ZN with orthonormal basis {ζn}Nn=1.

2. Given sensor locations and size, define measurement functionals `m(v), 1 ≤
m ≤M for M sensors.

3. Build update space UM with basis {qm}Mm=1 for M sensors

4. Build matrices (A)i,j = 〈qj, qi〉H1 and (B)i,j = 〈ζj, qi〉H1 from basis functions:

100



5. Build full PBDW matrix :
KPBDW =

(
A B

BT 0

)

Once we’ve constructed our linear system and solved for(
~ηM
~zN

)
=
(
KPBDW

)−1 ∗
(
~yobs

~0

)
we can fully reconstruct the PBDW solution:

cN,M =
M∑

(ηiMqi) +
N∑

(ziNζi) ∈ Xh. (4.1)

4.1.1.1 Evaluating the stability coefficient

We’ve seen that the a priori error bound given in equation (3.18) depends on the
stability coefficient defined by equation (3.17). Here we will apply a Galerkin analysis
as used in [81,116] based on analysis first given in [121] to calculate βN,M for given
approximation spaces ZN and UM . Let us first recall the following expression of our
approximation spaces.

ZN = span{ζj | 1 ≤ j ≤ N}
UM = span{qj | 1 ≤ j ≤M} (4.2)

Let us recall the matrices of scalar products of ZN and UM from equation (3.14):

Ai,j = 〈qi, qj〉H1(Ω), A ∈ RM×M

Bj,i = 〈ζi, qj〉H1(Ω), B ∈ RM×N (4.3)

(4.4)

We note, for any v =
∑M

i=1 yiqi ∈ UM and w =
∑N

i=1 xiζi ∈ ZN ,

〈v, w〉H1 = (~y)TB~x ∈ R. (4.5)

We then define
Ci,j = 〈ζi, ζj〉H1(Ω), C ∈ RN×N (4.6)

We thus represent the inf-sup problem posed in equation (3.17) as the following
matricial problem.

βN,M = inf
x∈RN

sup
y∈RM

yTBx(
xTCx

)1/2(
yTAy

)1/2 . (4.7)

The matrices A and C are symmetric positive-definite, as yTAy = ‖Y ‖2
H1 for

Y =
∑i=M

i=1 yiqi ∈ UM , and similarly for C. They can thus be written (theorem
4.1 [142]) as

A = UTU
C = VTV (4.8)
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and we can thus rewrite equation (4.7) as follows:

βN,M = inf
x∈RN

sup
y∈RM

〈y,Bx〉
|Vx||Uy|

. (4.9)

Let us consider the maximization problem. We have

sup
y∈RM

〈y,Bx〉
|Uy|

= sup
w∈RM

〈w,U−TBx〉
‖w‖

= ‖U−TBx‖, (4.10)

and can write

βN,M = inf
x∈RN

sup
y∈RM

〈y,Bx〉
|Vx||Uy|

= inf
x∈RN

‖U−TBx‖
|Vx|

= inf
x∈RN

‖U−TBV−1x‖
‖x‖

, (4.11)

which is the square root of the Rayleigh quotient of
(
U−TBV−1)TU−TBV−1, whose

infimum is given by
√
λmin

(
(U−TBV−1)T (U−TBV−1)

)
. This gives us:

(U−TBV−1)T (U−TBV−1) = V−TBTU−1U−TBV−1

= V−TBTA−1BV−1(
V−TBTA−1BV−1)s = λs (4.12)

We then want to solve the following eigenvalue problem(
BTA−1B

)
s = λCs (4.13)

in order to approximate the stability coefficient βN,M corresponding to the approxi-
mation spaces ZN and UM by

√
λmin the smallest eigenvalue of (4.13).

4.1.1.2 Evaluating the PBDW approximations

In this section we will give the equations used to evaluate error in the PBDW
approximations. We will consider both normed and FE function errors, relative
with respect to the concentration measured in the H1 or L∞ norm.

We stress the importance of relative errors in this context. Not only is an absolute
error all but meaningless without some order of magnitude, percentage errors being
much more useful, but in the case of air pollutant concentrations the evaluation of
interest may well be the order of the concentration on a logarithmic scale. Relative
errors are the answer to both these questions.
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When considering simulated model error (using a shifted model P trial), we want
to determine how much (relative) error we are introducing and trying to correct.
We can consider:

Emod(cbk(p)) = ‖c
bk(p)− ctrial(p)‖X
‖cbk(p)‖X

(4.14)

In order to estimate the precision of the resolution of the PBDW system from
an algebraic point of view, we can look at the residual of the system (3.14) in the
relative `∞ euclidean norm:

‖KPBDWcM,N −Y‖`∞
‖Y‖`∞

(4.15)

with

KPBDW =
(

A B
BT 0

)
,

Y =
(
yobs

0

)
and

cM,N =
(
~ηM
~zN

)
or the relative weak residual at each data point 〈cM,N , qi〉H1 − yobsi :

‖~zTB + ~ηTA− ~yobs‖`∞
‖~yobs‖`∞

, (4.16)

where A and B are defined in equation (3.14).
We recall that in the RBM context, we are commonly interested in a Quan-

tity of Interest (QoI), and the full reconstruction of the PBDW state estimate is
unnecessary. In this case the errors are calculated over the QoI in absolute value.

For purposes of analyzing results and numerically calculating the error bound in
equation (3.18), we will consider the following relative best-fit error onto what we’ll
refer to as the PBDW approximation space ZN ⊕ (UM ∩ Z⊥N):

‖ctrue − ΠZN⊕(UM∩Z⊥N )c
true‖X

‖ctrue‖X
(4.17)

We can thus consider the relative version of the bound in equation (3.18).

‖ctrue − cN,M‖X
‖ctrue‖X

≤
(
1 + 1

βN,M

)‖ctrue − ΠZN⊕(UM∩Z⊥N )c
true‖X

‖ctrue‖X
(4.18)

4.1.1.3 Reflections on Stability and Approximation Quality

In this section we will discuss choices that were made over the course of the appli-
cations to better adapt the PBDW method to the chosen case studies.
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Update Space We’ve seen in section 3.1.3 that the PBDW approximation error
bound (3.18) depends on the stability constant βN,M , which depends by equation
(3.17) on the approximation spaces. Here we wish to consider the effect of the choice
of the Update space UM has on the stability of the problem and quality of the PBDW
state estimation.

The Update space depends firstly on the placement of the data points. In some
applications, the data points may be pre-fixed, in which case only the order in which
these data are used may be chosen. In other applications the location of each data
point may be optimized (under constraints dependent on the system and domain).
As discussed in section 3.1.3, we wish to build the update space to both optimize
the stability coefficient βM,N (3.17) and optimize the state estimation.

A logical method is to choose data points which bring the most information on
the physical state to approximate. We considered in this work methods different
from those employed in [118, 119, 182]: random selection, manual selection, and
selection by a Greedy algorithm over the set of solutions to Pbk and a set of possible
data points (discussed in more detail in section 4.1.2).

In large-scale applications of the PBDW method considered in chapters 5 and
6, we found some instability in the method, perhaps not only linked to the sensor
placement, but also to the form of the associated Update basis functions.

Given the application in pollution field reconstruction, the linear forms `m,
1 ≤ m ≤ M , described in equation (3.5) induced by the mathematical represen-
tation of the sensors (3.4) should be appropriatly chosen to represent air pollutant
measurements. We chose to use the form presented in (3.4) following the example
for similar representation of water quality sensors in [194]. This formulation is a
choice which could be reconsidered, as the form of the sensor functions ϕ can play a
role in the quality of the Update space. Initial tests using a characteristic function
over the ball of radius r multiplied by the sensor function:

ϕm(x) = 1
c
χB(xm,r)(x)f(x;xm, r) such that

∫
Ω
ϕm(x)dΩ = 1 (4.19)

where

f(x;xc, r) = exp
(
−(x− xm)2

2r2

)
(4.20)

and where χB(xc,r) represents a characteristic function over the ball B(xc, r) ∈ Ω of
center xc and radius r. This resulted in a loss of smoothness of the sensor functions,
which translates to the update basis functions. We can see these less smooth update
basis functions build a less stable PBDW system in the following figure 4.1. While
the difference is minimal (a factor of 2), this could contribute to less precise PBDW
approximations.
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Figure 4.1 – βM,N stability coefficients (3.17) for the 2D case study presented in chapter 5.
Comparing stability coefficients for the PBDW system with update basis functions defined
by (3.8) where the functional ϕ is represented with a characteristic function as in (4.19),
or without the characteristic function as in (3.4).

We note that, in real-world applications (e.g. in chapter 7), the actual diameter
of common air quality sensors is generally quite small (in the range of a few cen-
timeters). Given the scale of the calculation domains, this is quasi-pointwise. For
numerical stability over a reasonably fine mesh, we set r = 25cm.

For a given background RB dimension N , we want to evaluate the contribution
of the Update space to the approximation quality using equation (4.17). We will
also note that relatively local data can lead to a poor secondary approximation by
the Update space, as we will see in chapter 5. We can in this case use the L∞-
norm in equation (4.17) in order to see the effect of local improvement on the state
estimation.

Inner Product Given the relatively small size of the sensors providing our ob-
servational data with respect to the large domain of study, we chose to consider a
more drastic method of improving the continuity of the Update basis functions. We
thus consider modifications to the norm used in the definition of the update basis
functions by Riesz representation in equation (3.8). We introduce the H̃1 norm
associated to the following scalar product for u, v ∈ H1.

〈u, v〉H̃1(Ω) = 〈u, v〉L2 + L2
g〈∇u,∇v〉L2 , (4.21)

where Lg > 1 is some characteristic length of the domain. Noticing that

1
L2
g

‖ · ‖H1 ≤ ‖ · ‖H̃1(Ω) ≤ L2
g‖ · ‖H1 ,

the H̃1 norm is clearly equivalent to the H1 norm.
In figure 4.2 we can see the different basis functions qm obtained by either using

the H1 or the H̃1 norm (4.21). In the case of the H̃1 norm, the support of each basis
function is much larger, and the peak much lower, providing more smooth functions
over the domain for a smoother and spatially wider basis for the correction term ηM .
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Figure 4.2 – qm basis functions constructed with the H1 norm (left) and constructed with
the H̃1 norm with Lg = 75m (right), over the 2D case study introduced in chapter 5

For consistency with observational data in the constraints of the PBDW problem
statement (3.11), the same norm must be used in the variational formulation (3.12)
and linear system (3.14). Given the equivalence of the right-hand-side of equation
(3.12) to our observational data by (3.9), which is only the case if the norm ‖ · ‖X
is the norm used in the Riesz definition (3.8) of the update basis functions For q̃m
representing the mth basis function constructed by the Riesz representation in the
H̃1 norm, we have:

RHS of (3.12)

with ‖ · ‖H̃1︷ ︸︸ ︷
〈q̃m, c〉H̃1

Riesz=

data︷ ︸︸ ︷∫
Ω
c ϕm = yobsm (4.22)

6= 〈q̃m, c〉H1︸ ︷︷ ︸
RHS of (3.12)

with ‖ · ‖H1

(4.23)

The following equivalent formulation of the norm was also tested, but provided
no improvement in practice, giving intermediate results between the H1- and H̃1-
norms.

〈u, v〉H̃1
L

= 〈u, v〉L2 + Lg〈∇u,∇v〉L2 ,

which gives supp(qm) between the H1 and H̃1 formulations.

RB Background The reduced basis background space ZN (3.2) can be constructed
by different methods. We chose to focus on Greedy algorithms (see algorithm 3 in
appendix C), but another common technique as discussed in 2.1.2.3 is construction
by POD. POD basis have the advantage that each basis function is constructed using
pieces from the full set of training solutions. This means a POD basis of dimension
N could potentially contain more information than its N -dimensional Greedy RB
counterpart.
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We can consider that, for a model Pbk over a parameter space Dbk, the POD
method is optimal in the L2-norm, but the strong greedy algorithm is nearly optimal
as well.

Let ΠZN be the X orthogonal projection operator from Xh onto the background
space ZN such that for any f ∈ Xh

ΠZNf =
N∑
k=1

〈f , ζk〉H1ζk, (4.24)

where (ζk)1≤k≤N are X -orthonormal basis functions of ZN , and the projection error

EN(c) = c− ΠZN c, (4.25)

for any c ∈ Xh. In the following work, we will denote by mean error the average of
the projection errors EN(c(pi))

1
Np

Np∑
i=1

‖EN(cbk(pi))‖X
‖cbk(pi)‖X

, (4.26)

from a family of Np parameters pi ∈ Dbk.
The maximal error corresponds to

max
1≤i≤Np

‖EN(cbk(pi))‖X
‖cbk(pi)‖X

(4.27)

In figure 4.3 we compare these mean and maximal projection errors onto a Greedy
or POD RB of the training set for the case study presented in chapter 5.
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Figure 4.3 – Relative mean (4.26) (left) and maximal (4.27) (right) projection errors for
the 2D case study presented in chapter 5. Comparing RB background spaces constructed
using a POD method and a Greedy algorithm over an identical set of training solutions
for parameters p ∈ Dbk.

We chose to focus on Greedy methods in what follows.
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4.1.2 GEIM in the PBDW framework

In this section we will elaborate on the use of the GEIM method [114], introduced
in section 3.2, in the PBDW framework.

We recall the interpolation operator corresponding to equation (3.22):

IM(ubk) =
M∑
j=1

βjξj such that `i
(
IM(ubk)

)
= `i(ubk) ∀1 ≤ i ≤M (4.28)

4.1.2.1 Improved selection of sensor locations

For more precise (and stable) implementation of the PBDW method, we want to
choose the linear forms `i in an optimal manner. In the context of PBDW state
estimation, we can consider the GEIM not only as a closely-related reduced order
data assimilation method, but as a tool for the greedy selection, from an available
set, of the sensors which will give the most information on the solution space,Mbk.
If we choose sensors by hand, we may end up with some which give little to no
information, which is at best a waste of a sensor (and increased dimension of the
reduced problem), and at worst could make the linear system ill-posed or poorly
conditioned.
Using GEIM-based tools to choose linear forms `m over a set of generating functions
in the manifold Mbk associated to Pbk allows to select which sensors will give the
most information on the solution manifold from a set of possible locations or forms.
This choice places faith in the precision of the model; as we will see in applications
in chapters 5 and 6, the sensor placement may not be optimal for capturing the
effects of unmodeled physics not accounted for in the mathematical problem. How-
ever this method does give us insight into the best way to capture information on
the physics described by the model, which is (as will be shown in chapter 5 to be)
a clear improvement from random placement.

In this framework, we consider that we have a set of functions ϕm representing
the sensors corresponding to a set of linear functionals `m ∈ X ′ from equation (3.5)
where the centers xm ∈ Rd and radius rm may vary. Hence for consistency with
the PBDW notation, we consider the set of linear forms `m ∈ Σ, for 1 ≤ m ≤ M .
The set of generating functions will be the training set of solutions to the model Pbk
considered in section 3.1.2.1, which is a representative sample of Mbk.

4.1.3 Motivation for PBDW in air quality studies

We aim, in the following chapters, to demonstrate that the modeling of physical
phenomena such as pollutant transport by PBDW can be feasible thanks to the
strategic treatment of parameters (e.g. the careful selection of the parameter space or
eventual decomposition into local RB spaces in view of Kolmogorov dimensionality)
and the non-intrusive data assimilation allowing to correct for unmodeled physics.
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4.1.3.1 Advantages of the PBDW method

The PBDW method provides multiple advantages of particular interest in the air
quality modeling context. A notable feature, the non-intrusive characteristic means
the method can be applied to any suitable parameterized calculation code, allowing
for application with the true best-knowledge model available.

In addition, the PBDW method employs variational data-assimilation techniques
to correct unmodeled physics. Particularly in the field of air quality modeling, pa-
rameters such as meteorology, emissions, reaction, and more are not well known.
The prospect of correcting, to some extent, our lack of knowledge in the final ap-
proximation of air quality is particularly attractive.

Another remarkable feature, and perhaps most importantly, if the physical states
under varying conditions can be represented by a set of RB spaces (note that we do
not expect all meteorological conditions to be represented by a single reduced basis
of small dimension), not only does this allow for online efficiency, but the pollutant
concentration can be estimated by the PBDW method without first reconstructing
the meteorological field separately. With respect to other comparable methods such
as the adjoint method, this characteristic could prove very advantageous.

We also do not aim to identify the parameters involved in the equations; while
this can be a goal of some studies, parameter-identification is often non-trivial and
could complicate approximation procedures when this information is not necessary.
Our goal being to reconstruct the physical state (or a physical output quantity on
it), not needing to identify the parameter is a considerable advantage.

4.1.3.2 Comparing the PBDW to Inverse methods in AQ modeling

In this paragraph we discuss the similarities and differences between the PBDW
method and inverse methods via adjoint problem. As discussed in sections 2.2 and
2.3 of chapter 2, inverse methods by the adjoint problem are typical in treating the
reconstruction of a physical state from a (relatively) precise mathematical model
and measurement data.

Both methods are based on a least-squares type minimization problem with con-
straints. As the PBDW formulation, like certain other variational data assimilation
methods, aims to rectify the model approximation using measurements, and the
minimization statement is thus linearly constrained by the form of the approxima-
tion in ZN⊕UM and imposed values at the data points. The adjoint method, on the
other hand, aims to find the optimal parameter of the model, which minimizes the
gap between the approximation the the measurements. A regularizing term based
on a control parameter or state (e.g. the Tikhonov regularization) is often needed to
ensure well-posedness. The PDE model, providing the physical sense of the solution,
plays a role in the constraints of the minimization problem, whereas in the PBDW
formulation the PDE only intervenes in the background RB space. In certain cases
the PDE can lead to nonlinear constraints in the adjoint minimization problem,
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while the PBDW minimization constraints are always linear. The physical sense
is guaranteed by minimizing the contribution of the update outside the RB space,
keeping the PBDW approximation close to the manifoldMbk, and by requiring the
Update space to be a subspace of the global function space (e.g. H1) in which the
state estimates lie.

From the minimization problem, each method relies on the Lagrangian, standard
step in the resolution of a constrained minimization problem. The adjoint method
presented in section 2.2 [193] then relies on the adjoint to the PDE to optimize
the parameter by descent method, hence the iterative procedure, contrary to the
non-iterative linear system resulting from the PBDW formulation.

One of the drawbacks of the general adjoint approach is that it is intrusive from
a computational point of view, requiring the development of an adjoint calculation
code. While PBDW method is relatively non-intrusive, the adjoint method requires
a more intrusive offline phase for the construction of a linear system associated to
the discrete approximation of the adjoint problem. In some cases this could mean
relatively small modification of the calculation code, while in others more significant
modifications could be required. An additional constraint stemming from usual
RBM implementation to reduced computational cost of the adjoint method, online
interpolation procedure dependent on the parameter in cases of non-affine parameter
dependence. For these reasons, less intrusive options can be valuable.

Inverse methods use available measurement date to optimize the parameter, while
some variational data assimilation methods, the PBDW method included, use the
data to correct the inevitably flawed model.

If we consider the case of, for example, varying wind fields taken as a parameter
in the transport of pollutants, as in section 5.1, the PBDW method relies on RB
representation of variation induced by varying wind fields and avoids the costly re-
construction of CFD states. On the other hand, the implementation of the adjoint
method would in this case still require the reconstruction of the wind field at each
iteration of the adjoint algorithm. The velocity field is necessary during the approx-
imation of the optimal parameter (i.e. for each approximation of adjoint solution),
which can be done using RB spaces, making the online phase relatively efficient,
but requiring a more costly offline phase as compared to the PBDW method with
a single solution space to reduce. This could possibly be advantageous also from
the materials perspective; costly velocity and pressure sensors are not necessary in
the PBDW method if the background space is appropriatly chosen, while they are
mandatory in the adjoint method to reconstruct velocity fields.

An advantage of the adjoint method, with respect to the PBDW method, is that
it works well with a smaller number of sensors: one per parameter to be optimized
generally suffices. The PBDW method requires M > N , where the RB dimension
N depends on the dimension of the solution manifold Mbk. This can be relatively
elevated in cases with complex physical models, of which we see a simple example in
section 6. In cases of saturation measurement campaigns, where many data points
are available, this may not be a negative; the treatment of many sensors in the
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adjoint method results in a more complicated numerical procedure and possibly
more iterations before convergence, meaning higher computation times.

In cases of many query applications where computation time is of importance,
the MOR character of the PBDW method may provide significant gain with respect
to the iterative adjoint method, provided the expensive offline setup stage of the
PBDW method gives adequate return on the investment during repeated online
evaluations.

Figure 4.4 – Chart summarizing differences between the PBDW and classical inverse
method by adjoint problem, as well as the weak constraint 4D-Var.

In figure 4.4 we summarize this comparison in a chart, and we add a brief com-
parison to the weak formulation of the 4D-Var method presented in section 2.2.4.2.
We see similarities between both the adjoint and PBDW methods when compared
to the weak constraint 4D-Var.
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4.2 Pollutant Transport Modeling

As discussed in 1.2.2, we will consider CFD and CTM modeling of particle concen-
tration for the application of RB and PBDW methods. The specific mathematical
models considered for validation of the introduced methods are described below.

4.2.1 Wind field modeling for air quality studies

For increased accuracy of the chemical transport model, we chose to use wind fields
simulated by CFD modeling. This can be coupled with transport equations, or de-
coupled from the transport phenomenon in practice and precalculated if the same
wind field will serve for multiple transport simulations. Relatively low concentrations
involved in air quality modeling do not have an impact on the velocity field.
In our studies, we chose to decouple the computation of the wind fields. We used
Code Saturne, a general purpose CFD software [8], for the CFD simulations. We
first compute the relevant wind fields, then use the velocity and turbulent viscosity
fields in the transport model.

The incompressible Navier-Stokes equations will be considered for the simulation
of fluid flow:

Conservation of mass:

∂ρ

∂t
+ div(ρ v) = 0 (4.29)

Conservation of the
quantity of movement:

acceleration forces︷ ︸︸ ︷
ρ

(
∂v

∂t
+ (v · ∇)v︸ ︷︷ ︸

convection

)
+∇p−∇ ·

(
µ (∇vT +∇v)

)︸ ︷︷ ︸
interior forces

= Fe

(4.30)

where the interior forces include pressure forces and viscosity force, and Fe rep-
resents exterior forces. p(x, t) is the pressure, v(x, t) the velocity field, ρ(x, t) the
density, and µ the viscosity.

When incompressible flow is considered, ρ(x, t) is constant in space and time and
equation (4.29) becomes:

�
�
�∂ρ

∂t
= 0

+ divρv = ρdiv v = 0 ⇒ div v = 0. (4.31)

The stationary incompressible Navier-Stokes equations with the kinematic vis-
cosity ν = µ

ρ
are written:
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{
−∇ ·

(
µ (∇vT +∇v) + v · ∇v + 1

ρ
∇p = 0

div(v) = 0.
(4.32)

The incompressible Navier-Stokes equations (4.31), in addition to suitable bound-
ary conditions, will be the system of equations used for our fluid flow calculations.
Turbulence will be modeled using RANS k − ε closure (see Turbulence in 1.2.2 for
discussion) in Code Saturne. We define a generic representation of the variables k
and ε in the case of two-dimensional mean flow as follows [132]{

∂k
∂t

+ v · ∇k − cν
2
k2

ε
|∇v +∇vT |2 −∇ · (cν k

2

ε
∇k) + ε = 0

∂ε
∂t

+ v · ∇ε− c1
2 k|∇v +∇vT |2 −∇ · (cε k

2

ε
∇ε) + c2

ε2

k
= 0

(4.33)

along with suitable boundary conditions (see [60, 132]), and with cν = 0.09, c1 =
0.126, c2 = 1.92, cε = 0.07. k − ε turbulence modeling in three dimensions can be
done with an added production term created by gravity effects, as described in [60].
The turbulent viscosity variable is then described by

νt = ρcν
k2

ε
(4.34)

Below we will discuss some details specific to wind field modeling for air quality
studies.

First we need a geometry which is large enough to provide a ”buffer zone” around
any obstacles. A standard rule is for the exterior obstacle of size L, one must
leave 15L extra distance between the obstacle and the outlet boundary, and 5L
between the obstacle and any other domain boundary. This is to avoid numerical
implementation of boundary conditions such as a Neumann free outlet causing non-
physical features in the wind field. We will note that it is computationally interesting
to simulate decoupled transport on a reduced domain without the ”buffer zone”
needed for CFD simulations.

General consensus is that a vertical logarithmic (or exponential) velocity profile
is appropriate on the inlet boundary (Dirichlet condition), of the form

~Uin = (0, uy, 0) = (v0 ln(z + z0

z0
)x∗, v0 ln(z + z0

z0
)y∗, 0) (4.35)

in direction (x∗, y∗)T , where the constants v0 and z0 depend on the environment.

An exponential profile can be appropriate, of the form

v0z
α (4.36)

In practice α = 0.4 provides a similar profile to equation (4.35).

In figure 4.6 we can see a representation of the 3D wind field calculated in
Code Saturne.
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Figure 4.5 – Representation of wind field inflow profile: graph of |vin|(z) (left), 2D-view
physical representation of the inflow boundary condition over a 3D domain (right).

Figure 4.6 – Left: Section at z = 1m of velocity field. Right: vertical section of velocity field showing vertical
logarithmic flow profile.

Following standard practice, all open-air boundaries except explicitly outflow
boundaries are set to this Dirichlet condition as ”inlets” with ‖~u‖2 = czα and direc-
tion (x∗, y∗)T .

For more information on the implementation of wind field simulation using
Code Saturne, refer to Appendix C.

4.2.2 Transport modeling for air quality studies

Here we consider the general details of transport modeling for pollutant concentra-
tion in the context of air quality modeling, and expose the specifics of implementa-
tion in exterior modeling.

As discussed in section 1.2.2, the advection-diffusion equation can represent pol-
lutant transport in air or water. We consider first a model with terms for time-
dependent transport, settling (a term dependent on particle size), diffusion (both
molecular and turbulent), non-linear reaction, a pollutant source, and vegetation
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deposition [19].

transport︷ ︸︸ ︷
ρ
∂c

∂t
+ ∇(ρc~v)︸ ︷︷ ︸

convection

−
settling︷ ︸︸ ︷

(ρcvs)z =

diffusion︷ ︸︸ ︷
∇ ·
[
(εmol + εturb)∇c

]
−

reaction︷ ︸︸ ︷
[P (c)−D(c)]c+

source︷ ︸︸ ︷
ρFsrc +

deposition︷︸︸︷
sw

(4.37)
vs is the settling velocity of the particulate pollutant dependent on the diame-

ter, given by the Stokes equation as described in [19], and parameters of velocity ~v,
turbulence εtot = εmol + εturb, and pollutant source Fsrc.

Treatment of the source term Fsrc will be discussed in section 4.2.2.1.
The molecular diffusion εmol = εair depends on the temperature; around T =

22◦C, εair ∼ 1.72× 10−5m2

s
. Similarly for ρ =air density : ρ(T ) ∼ 1.225 kg

m3

The total diffusion term εtot = εmol+εturb where εturb depends on νt, the turbulent
viscosity and can be calculated using the Prandtl number:

σt '
νt
εturb

, (4.38)

which is often considered to have experimental values of 0.7 ≤ σt ≤ 1. With a
k-ε turbulence model in the fluid simulations, turbulent viscosity νt = 0.09ρk2

ε
, and

with a k-ω turbulence model, νt = ρ k
ω

[13].

In our notation, we have εturb = νt
σt

:= νt
0.7 , where νt is a variable solved for in the

velocity field simulations using Code Saturne.

Let us note in table 4.1 the units associated to each term for a coherent transport
model.

Transport model units

Viscosity dynamic µ ; dynamic turbulent µt Pa− s ∼ kg
m−s

kinematic turbulent (eddy viscosity) νt
µt
ρ
m2

s

Density ρ kg
m3

Diffusion molecular ε m2

s

turbulent (eddy) εturb
νt
sct

= µt
ρsct

m2

s

Schmidt number sc = viscous diff. rate
molec. diff. rate dimensionless

turbulent sct = νt
εturb

dimensionless

Concentration c kg
m3

Emissions rate s(c) = s kg
m3−s

Table 4.1 – Table summarizing units in equation (4.37).
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We will also introduce a simplified model by neglecting the time-dependent,
settling, reaction, and deposition terms, and using the velocity field ~v from decoupled
velocity-field simulations. Thus, considering a stationary equation, and recalling
that the velocity field is such that div(~v) = 0, we have:

transport︷ ︸︸ ︷
ρ~v · ∇c−

diffusion︷ ︸︸ ︷
div((εmol + εturb)∇c) =

source︷ ︸︸ ︷
ρFsrc

+ Boundary Conditions

(4.39)

4.2.2.1 Boundary Conditions and Pollution Sources

Commonly used Neumann boundary conditions for transport are:

εturb∇c · ~n = −βa(c) (4.40)

where βa is a coefficient of absorption intensity.

More specifically, for the open-air boundaries of our exterior domain we will
consider:{

c = c0 on ΓD = {x ∈ ∂Ω|~v(x) · ~n < 0}
−εturb(x) ∂c

∂z
= −εturb(x)∇c · ~n = 0 on ΓN = ∂Ω \ ΓD

(4.41)

where εturb is the turbulent diffusion [52,180]. ΓD is the (strict) inflow boundary,
and ΓN represents non-inflow boundaries.
The homogeneous Neumann condition on the non-inflow boundaries represents null
diffusive flux, and can be interpreted as c being (locally) constant on the boundary;
coutside|∂Ω = cinside|∂Ω. The Dirichlet condition on the (strict) inflow boundary can be
interpreted as an entering pollutant concentration of c0. If we add background con-
centration as a uniform value, this boundary condition set to homogeneous Dirichlet
could be appropriate, however a background concentration of c0 could otherwise
be treated as a constant or appropriately profiled inflow conditions and posed as a
non-homogeneous Dirichlet condition.

To treat a pollutant source interior to the domain we have two options. We
could consider the source in the right-hand-side of the equation as Fsrc using a
characteristic function over a domain Ωsrc (see 6 implementation and (4.43)) [52]:

Fsrc =
{
csrc Ωsrc

0 Ω \ Ωsrc

(4.42)

or we could consider the source as a non-homogeneous Neumann boundary condition
in the case of ground-level sources.

In the case of a source representing a street, the domain Ωsrc can be defined for
example using a parabolic function of maximum height 1.5m in the x−y−z domain
to define the source region Ωst by:

z ≤ 1.5
r2 (y − y1)(y − y2) (4.43)
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where the street is parallel to the x-axis, y1 and y2 are its boundaries, and
r =

(1
2(y2 − y1)

)
. This would be an alternative to non-homogeneous Neumann

boundaries, representing that traffic pollution does not come directly from the street
surface.

Otherwise, we could consider the source as a boundary condition with a non-
homogeneous Neumann condition:

−εturb
∂c

∂z
= FN(x, t)− vdep(x, t)c (4.44)

where FN is the surface source emission rate and vdep is the dry deposition velocity
of the pollutant considered, which depends on ground type [180].
In the variational form this translates to:

−εturb
∫

Ω
∆cd dΩ = εturb

∫
Ω∇c · ∇d dΩ −

∫
∂Ω
εturb

∂c

∂n
ddΓ

= εturb
∫

Ω∇c · ∇d dΩ +
∫
∂Ωst

FN(x, t)d dΓ

−
∫
∂Ω\∂Ωst

εturb
∂c

∂n
d dΓ︸ ︷︷ ︸

=0

4.2.2.2 Finite Element Formulation

The variational form corresponding to equation (4.39) will be

a(c, d) = l(d) ∀d ∈ V (4.45)

where V = {c ∈ H1(Ω)|c|ΓD = c0} ⊂ H1(Ω), is the Hilbert approximation space
and 

a(c, d) ··=
∫

Ω

(
(εmol + εturb)∇c · ∇d+∇(ρc · ~v)d dΩ

l(d) ··=
∫

Ω ρFsrcd dΩ
[

+

if non-hom. Neu.︷ ︸︸ ︷∫
ΓN
FN d dΓ

] (4.46)

where a(rc0 , d) is a lifting, and FN represents an eventual non-homogeneous Neu-
mann boundary condition.

We want to approximate the solution by the Finite Element (FE) Method, chosen
for ease of implementation in FreeFem++. We consider a conforming triangulariza-
tion over the calculation domain Th, consisting of triangles Tk for 1 ≤ k ≤ NT the
number of triangles. h represents the step size of the mesh, locally noted hk. We
will note Nh the number of degrees of freedom associated to the mesh for the chosen
FE type. We define a discrete approximation space Vh, for example for P` finite

117



elements Vh = {c ∈ V |c|Tk ∈ P`(Tk) ∀ 1 ≤ k ≤ NT}, and consider the associated FE

basis functions {ξi}Nhi=1.
We thus pose the discrete form of problem (4.39) as follows: find ch ∈ Vh such

that

a(ch, dh) = l(dh) ∀dh ∈ Vh, (4.47)

where 
a(ch, dh) =

∫
Ωh

(
εtot∇ch · ∇dh +∇(ρch · ~v)dh

)
dΩh

l(dh) =
∫

Ωh
ρFsrc dh dΩh

εturb
∂c
∂z

= εturb∇ch · ~n = 0 on ΓN = ∂Ωh \ ΓD

(4.48)

It is well documented that a standard Galerkin finite element method is not
optimal for some first-order problems [67] in that numerical instabilities can oc-
cur, and more particularly in the case of advection-dominated transport problems a
stabilization is necessary in the resolution by finite elements to avoid non-physical
instabilities. An indicator of the influence of advection is the Peclet number, which
can be expressed locally (over the triangulation) as

Pek = hk||~v||∞,K
2εtot

, (4.49)

or globally (over the entire calculation domain Ω) as

PeΩ = LΩ||~v||∞,Ω
‖εtot‖∞,Ω

, (4.50)

for LΩ representing a characteristic length of the domain.
Let us consider the Streamline Upwind Petrov-Galerkin (SUPG) stabilization

scheme [28,90].
We can define:{

aSUPG(ch, dh) ··= a(ch, dh) +
∑

k τk(Lch, ~v · ∇dh)k
lSUPG(dh) ··= l(dh) +

∑
k τk(ρFsrc, ~v · ∇dh)k

(4.51)

where Lch = ρ~v ·∇ch−div(εtot∇ch) and τk is a stabilization parameter over each
element Tk in the triangulation over the domain Ω. The finite element formulation
(4.47) will be replaced by: find ch ∈ Vh such that

aSUPG(ch, dh) = lSUPG(dh) ∀dh ∈ Vh. (4.52)

A common choice of τk is [143]:

τk =


δhk
||~v||k

if Pek > 1 (convection-dominated)

δh2
k

εtot
if Pek ≤ 1 (diffusion-dominated)

(4.53)
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with hk the step size of the Kth element of the mesh and δ variable [26, 71] ,
where Pek is the local Peclet number. Three possibilities for δ were considered:

• δ = 0.5 : this is similar to the choice in [26,71],

• δ = 1 : this increases the stabilization,

• δ = 1
2

(
coth(Pek)− 1

Pek

)
∈ P0 : used in [33].

However we found in practice that the following stabilization coefficient [26]
provided more stable results:

τk = 1
4εtot
h2
k

+ 2‖~v‖∞,K
h

+ |sk|
(4.54)

where sk is the source intensity on the Kth element. In fact, we noticed great in-
stability near interior source terms, so a stabilization coefficient depending on source
terms performs better.

Expanding, we have

aSUPG(ch, dh) =
∫

Ω
(εmol + εturb)∇ch · ∇dh + (ρ~v · ∇ch)dh

+
∑
k

τk

∫
k

[
− div

(
(εmol + εturb)∇ch

)
+
(
ρ~v · ∇ch

)][
~v · ∇dh

]
= a(ch, dh) +

∫
Ω
τk[−∇εtot · ∇ch − εtot∆ch + ρ~v · ∇ch][~v · ∇dh](4.55)

and (in the case of homogeneous boundary conditions)

lSUPG(dh) =
∫

Ω
ρFsrcdh +

∑
k

τk

∫
k

(
ρFsrc

)(
~v · ∇dh

)
(4.56)

We note here that in practice, if the background concentration c0 in equation
(4.41) is null (i.e. a homogeneous Dirichlet boundary condition on the strict inflow
boundaries), the stabilization scheme will have more difficulty rectifying instabilities
near any interior sources, as in equation (4.42), due to increased gradient terms in
the transport problem. We will see examples of this in section 6.

4.2.2.3 Dimensionless Transport Simulations

Here we will give a dimensionless formulation of the transport problem (4.39).
The dimensionless formulation can help scale the problem: if the values of certain

terms vary significantly from others, the problem may have a large condition number
and be difficult to solve numerically. Scaling the problem can make many terms be
of the same order, minimizing numerical errors when calculating the residual.
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Advection-diffusion problems being notoriously difficult to solve numerically, and
our domains of study being relatively large, make this application an excellent can-
didate for study in dimensionless form.

We considered a dimensionless formulation for equation (4.39) similar to the one
applied in [161].

We will consider vmax = ‖~v‖∞, cg is a characteristic or background concentration,
Lg is a characteristic length of the domain (e.g. the width of the calculation domain),
and εmin = min

Tk∈Ω
εtot to a-dimensionalize the stationary convection-diffusion equation:

ρ~v · ∇c− div((εm + εt)∇c) = ρFsrc (4.57)

vmax
~v

vmax
· d

Lgd
x
Lg

c

cg
cg −

1
ρ

d

Lgd
x
Lg

(
εmin

εt + εm
εmin

d

Lgd
x
Lg

c

cg
cg

)
= cg

Fsrc
cg

(4.58)

cgvmax
Lg

ṽ · ∇̃c̃− 1
ρ

cgεmin
L2
g

d̃iv
(
ε̃tot∇̃c̃

)
= cgF̃src (4.59)

where ṽ = ~v
vmax

, c̃ = c
cg

, F̃src = Fsrc
cg

, x̃ = x
Lg

and d̃iv or ∇̃ represent d
Lgd

x
Lg

= 1
Lg

d
dx̃

.

We can then simplify to write:

Lgvmax
εmin

ṽ · ∇̃c̃− 1
ρ
d̃iv
(
ε̃tot∇̃c̃

)
=

L2
g

εmin
F̃src (4.60)

We note that Lgvmax
εmin

= Pemax represents a form of a global Peclet number. In
dimensionless formulations, dimensionless quantities of the problem become more
evident. In the case of transport problems, the global Peclet number, becomes a co-
efficient in the equation, giving insight into which mechanism is dominant, advection
or diffusion.

We thus find the general dimensionless form:

~V · ∇c− 1
ρ
∇ · (E∇c) = S (4.61)

with ~V = Pemaxṽ, E = ε̃tot, and S = L2
g

εmin
F̃src.

We then need to transform our calculation domain according to the adimen-
sionalizing parameter Lg to build the dimensionless formulation domain Ω0. The
simplest way to do this is a linear transformation:

(x, y, z)Ω0 =
(xΩ

Lg
,
yΩ

Lg
,
zΩ

Lg

)
(4.62)

We illustrate this in figure 4.7 on a two-dimensional domain (used in section 5.1).
This transformation can be applied to a mesh built on the original domain Ω.

We then consider our basic approximation space to be V (Ω0).
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Figure 4.7 – Illustration of domain transformation for the dimensionless formulation on a
two-dimensional example which has already been meshed.

The boundary conditions may also need to be in dimensionless form. In the
case of a concentration imposed by non-homogeneous Dirichlet conditions (e.g. for
exterior concentration in the case of interior air quality modeling, or background
concentration in the case of exterior air quality modeling), we have:

c = c0 on ∂Ωin (4.63)

cg
c

cg
= c0 on (∂Ω0)in (4.64)

c̃ = c0

cg
on (∂Ω0)in (4.65)

and we can set c̃0 = c0
cg

.

In the case of a flux imposed by non-homogeneous Neumann conditions, as in
equation (4.44), we have:

εmin
−εturb
εmin

d

Lgd
x
Lg

(
cg
c

cg

)
· ~nz = cg

FN
cg

−Eturb∇c · ~nz = SN (4.66)

where E and ∇c correspond to the general dimensionless form in equation (4.61),
and SN = FN

cgεmin
.

Our variational formulation of (4.61) reads as follows: find c ∈ V such that

ag(c, d) = lg(d) ∀d ∈ V, (4.67)
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where

ag(c, d) =
∫

Ω0

(~V · ∇c)d+ 1
ρ

∫
Ω0

E∇c · ∇d

+
∫

Ω0

τk

(
~V · ∇c− 1

ρ
∆(Ec)

)(
~V · ∇d

)
(4.68)

`g(d) =
∫

Ω0

Sd+
∫

Ω0

τk

(
S
)(
~V · ∇d

)[
+

if non-hom. Neu.︷ ︸︸ ︷∫
ΓN
SN d dΓ − ag(rc̃0 , d)︸ ︷︷ ︸

if non-hom. Dir.

]
(4.69)

4.2.3 Advection-Diffusion-Reaction

We will discuss briefly here a modification to equation (4.39) to account for reaction
phenomena. In the interest of a simple modification, we will treat the reaction
term linearly for a known coefficient R representing a sum of the production and
destruction terms in equation (4.37). This model will be used in chapters 5, 6, and 7
as a shifted model P trial to simulate model error in numerical tests of PBDW state
estimation.

ρ~v · ∇c− div((εmol + εturb)∇c) + ρRc = ρFsrc (4.70)

In dimensionless formulation this gives us:

cgvmax
Lg

ṽ · ∇̃c̃− 1
ρ

cgεmin
L2
g

d̃iv
(
ε̃tot∇̃c̃

)
+ cgRc̃ = cgF̃src (4.71)

Lgvmax
εmin

ṽ · ∇̃c̃− 1
ρ
d̃iv
(
ε̃tot∇̃c̃

) L2
g

εmin
Rc̃ =

L2
g

εmin
F̃src (4.72)

Simplifying we have:

~V · ∇c−∆(Ec) + R̃c = S (4.73)

where with ~V = Pemaxṽ, E = 1
ρ
ε̃tot, R̃ = L2

g

εmin
R, and S = L2

g

εmin
F̃src.

In variational formulation with homogeneous boundary conditions, adding the
SUPG stabilization, we have:

∫
Ω0

(~V · ∇c)d + 1
ρ

∫
Ω0

E∇c · ∇d+
∫

Ω0

(R̃cd) +
∫

Ω0

τk

(
~V · ∇c− 1

ρ
∆Ec+ R̃c

)(
~V · ∇d

)
=

∫
Ω0

Sd+
∫

Ω0

τk

(
S
)(
~V · ∇d

)
(4.74)
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Part III

Numerical Results: RB and
PBDW
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Chapter 5

Application and Analysis in
Exterior Air Quality Modeling: a
2D Case Study

Résumé :

Ce chapitre est consacré à la mise en place et l’étude numérique de la PBDW
sur un problème bi-dimensionnel. Ce cas d’étude consiste en un site de 75m×120m
qui comprend une maison, un bâtiment et une aire de jeu à proximité d’une route.
On s’intéresse à la concentration de particules fines PM2.5 provenant du trafic de la
rue. La direction de vent sur le bord du domaine est fixe et connue. Les paramètres
qui peuvent varier dans notre modèle sont l’intensité de la vitesse sur le bord du
domaine et celle des émissions de polluant. Le champ de vitesse ~v et la diffusion εturb
sont solutions des equations de Navier-Stokes couplés et du modèle de turbulence
k − ε.
On étudie la stabilité et la convergence de la méthode en fonction du positionne-
ment (optimal ou au hasard) des capteurs de concentration et du choix de la norme
utilisée dans la formulation PBDW. La méthode PBDW est ensuite comparée à la
méthode d’interpolation GEIM. Pour chacune des deux méthodes, nous étudions
leur capacité à reconstruire correctement une carte de concentration à partir de me-
sures en prenant en compte i) l’erreur du à la variabilité paramétrique, ii) l’erreur
de modèle. On remarque que dans le cas sans erreur de modèle, la GEIM est la plus
performante. Par contre dans le cas d’erreur de modèle plus significative, la PBDW
est plus performante.

Pour finir, une comparison est faite avec une méthode inverse de type problème
adjointe. Dans cette comparaison le champ de vitesse est solution des equations de
Stokes et la diffusion est fixe.
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5.1 Introduction to the Numerical Case Study

In this chapter we consider a simple case study in outdoor air quality modeling
with our advection-diffusion model Pbk given by (4.39). Below we give the practical
considerations for these case studies, including the realistic choice of parameters
based on air pollutant reports.

We consider the discrete finite element space Vh defined in section 4.2.2.2 over
our calculation domain Ω.

5.1.1 Velocity Field

We first compute a wind field as described in section 4.2.1 using Code Saturne.
In order to employ steady-state transport models on a pre-computed wind field,

we chose to use aggregated CFD simulations to create a quasi-steady velocity field
over N time steps of an unsteady fluid simulation which has reached a stationary
state, denoted as discrete velocity solutions uh(tn, ·) and viscosity solutions νh(tn, ·).
We can compute a single average solution for the wind field:

uh(·) = 1
N

N∑
n=1

uh(tn, ·) (5.1)

Similarly we compute an average viscosity, νt = 1
N

∑N
n=1 ν(tn).

We will note that since Code Saturne is a finite volume based software, the so-
lutions uh and νh are initially constant by element. The velocity and viscosity fields
can be kept as constant-by-element functions (to be considered P0 FEM functions
in FreeFem++) for use in calculating ||~u||∞,K . This avoids adding additional inter-
polation error in converting to P1 or P2 FEM functions.

5.1.2 Parameters

The first study domain considered in chapters 5.1 and 6 represents a neighborhood
with a house, an apartment building, and pollution sources of a street or various
combustion sources. These choices were made to give a simplified case study repre-
senting a residential area with major pollution sources of traffic and wood burning.

In the interest of coherence with application over Fresno exposed in chapter 7, we
would like to consider the transport of PM2.5, and therefore consider main sources
to be traffic and combustion (e.g. wood fires).
The choice of source intensity parameters should represent emissions from wood or
charcoal burning.
For combustion sources interior to the calculation domain, we treat them as functions
of the form presented in equation (4.42).

For wood fire sources [85] we found that a household oak fire burning at a rate
of ∼ 3kg

hr
(3kg of wood per hour) emits approximately 48 g

h
in PM2.5. This was taken

as a general order of magnitude to inform the combustion source intensities csrc. We
need to convert the total emissions rate Esrc

g
h

to an appropriate source intensity
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in kg
m3·s , using the fact that csrc = 1

|Ωsrc|Esrc, where Ωsrc is the emission domain. If

we consider that the combustion source is of size 50cm-cubed, so |Ωsrc| = 1
8m

3 (an
approximate, albeit exaggerated, representation of a home fire combustion source),
then we have csrc = 8Esrc. If we set Efire

src = 48 g
hr

, we have csrc = 1.07e−4 kg
m3·s .

To cover the case of a significantly larger or more polluting fire, we will consider
csrc ∈ [0; 4]e−4 kg

m3·s . This is an order of magnitude used in initial case studies con-
sidering wood-fire combustion sources for exterior air quality modeling.

In the case of a three-dimensional combustion source treated as an area source
(as opposed to a point source), with |Ωst

src = 25m3, we set csrc = 5.32e−7 kg
m3·s and a

range of [1e−7; 1e−6].
We then need to determine orders of magnitude for a residential street source.

We considered an EPA report [188]. A summary of the data in the report which is
taken into consideration for our purposes can be found in table 5.1.

Temperature -
Vehicle Speed

Vehicle Category Emission Types Retained Emissions Factor

40mph - 22◦C 2.2 ton mean weight PM10
g

VKT of which
PM2.5 = 27%− 34%

PM2.5 = [0.08, 0.1] g
VKT

45mph - 20◦C 2.2 ton mean weight PM10
g

VKT of which
PM2.5 = 44%

PM2.5 = 0.86 g
VKT

45mph - 20◦C 2.2 ton mean weight
- fleet average

PM2.5 from exhaust, brake-wear,
tire-wear

PM2.5 = 0.1 g
VKT

45mph - 20◦C light duty PM2.5 PM2.5 = [0.0425; 0.115] g
VKT

20mph 3.1 tons - 0.054 heavy-
duty vehicle fraction

PM10 engine/braking/tire 0.091PM10
g

VKT

45mph 2.2 tons - 0.017 heavy-
duty vehicle fraction

PM10 engine/braking/tire 0.021PM10
g

VKT

Table 5.1 – Table summarizing data used from [188]: general information from various tables in the
document.

An initial order of magnitude for traffic emissions of EC (or PM2.5) will be
Etraffic
src ∈ [0.02; 0.86] g

VKT
.

To determine source emission rate in kg
s

we need to estimate VKT (vehicle kilometers
traveled) on a small city road. For lack of easily accessible data on Fresno, we
considered a document on the city of Calgary (Canada) [45]. Table 7 of [45] gives
us 2009 daily VKT for skeletal roads over a 20km stretch. The estimated weekday
24h aggregated VKT is 137, 000. We will neglect night-time traffic (considering
most traffic is during daytime), and take this as a 12h average, we can consider this
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implies an average of 685VKT per 100m stretch over 12h, then we have an average of
0.016VKT

s
. Let us (somewhat arbitrarily) consider VKT/s ∈ [0.01, 0.1] over a 100m

stretch, giving a highly generalized, very broad estimate on a 100m×5m road, then
we will have a street emission rate

Estreet
src ∈ [2× 10−7; 8.6× 10−5]kg

s

and

cstreet
src ∈ [4× 10−10; 1.72× 10−7] kg

m2s

since |Ω|street
src = 500m2. In our study we will take cstreet

src ∈ [0; 2× 10−7] kg
m2s

.

We also need to estimate a background concentration: clearly not all pollutants
in a given area come from sources within that area. We consider that, excluding the
case of a significant pollutant source just outside the domain of interest, a relatively
uniform background concentration will already cover the area. We implement this
with the non-homogeneous Dirichlet condition in equation (4.41). To determine an
appropriate value of c0, we use average ambient concentrations of PM2.5 posted by
the U.S. EPA (www3.epa.gov) for the Western U.S. of the order 1 × 10−8 kg

m3 . At a
smaller scale, we have LUR model predictions of EC over Fresno provided by Dr.
Noth [138], ranging from [3.23; 5.6]× 10−9 kg

m3 .

5.1.3 2D Case Study

We consider first a simple two-dimensional domain of study of dimensions 75m ×
120m seen in Figure 5.1, and chose a particulate pollutant, PM2.5, which on the
short term can be considered to have negligible reaction.

Figure 5.1 – 2D test domain with boundaries corresponding to the velocity field (left) and
traffic pollution source (right).
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Here the inlet boundaries Γin correspond to ΓD from equation (4.41), and outlet
boundaries Γout correspond to ΓN . We take wind velocity (in a fixed direction (1, 1)T )
and pollutant source intensity as varying parameters (pv,ps) in the best-knowledge
parameter space Dbk ⊂ D, where the parameter space D here represents the inputs
to the problem: the wind fields ~v and the source term Fsrc.

Wind velocities span the calm and light air categories of the Beaufort scale (from
0.1m

s
to 1.3m

s
) and source intensity represents varying traffic, from 1 × 10−3 mg

m3s
to

1× 10−2 mg
m3s

. Dbk = {(pv,ps) ∈ [0.1; 1.3m
s

]× [0.1; 0.3mg
m3 ]}.

In this case study we chose to represent the source term not as a boundary
condition, but as a source function

fsrc = exp
(
−
((x− xc)2

r2
x

+ (y − yc)2

r2
y

))
; (5.2)

where (xc, yc) represents the center of the source domain, and rx and ry represent
the radius in the x− and y− directions, respectively.

In figure 5.2 we can see concentration fields for lowest and highest wind velocity
and emission rates, along with vectors representing the velocity fields.

Figure 5.2 – Concentration solution (logarithmic scale) over velocity field with (pv,ps) =
(0.1ms , 1× 10−3mg

m3 ) (left), and (pv,ps) = (1.3ms , 1× 10−2mg
m3 ) (right).

POD Analysis We began by studying the dimension of the solution manifold: we
calculated a large training set of solutions to Pbk for p ∈ Dbk, and constructed a POD
basis (refer to section 2.1.2.2) of the concentration fields over the 2D domain. To do
this we varied the intensity of the wind from 0.1m

s
to 1.3m

s
and fixed the intensity

of the source at 10−2 mg
m3s

. The concentration depends linearly on the intensity of
the source, meaning this parameter of the model does not need to be varied in the
construction of a reduced basis.
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Figure 5.3 – Eigenvalues of the POD mass matrix M (2.9) (left) ; Relative L2-norm POD
projection (2.11) errors for pollutant concentration simulations (right)

Figure 5.3 shows the POD analysis of the concentration fields in the training set
to study the feasibility of reduced basis methods on our model Pbk. We show the
rapid decay of the eigenvalues of the mass matrix associated to the solutions for
p ∈ Dbk, and the maximal and mean relative projection errors of the concentration
solutions onto the space spanned by the POD reduced basis.

5.2 Implementation of the PBDW method

The goal of this application is to serve as an initial test of the feasibility of the PBDW
method in the air quality context. In the interest of coherence with real-world air
quality studies, we thus want to consider a relatively small number of sensors over
the domain (we’ll consider up to 20) and test various sensor locations. We will
consider PBDW results in the (academic) case of a perfect best-knowledge model,
and in the case of unmodeled physics such as a reaction term or a true solution
calculated with a different computational model.

5.2.1 Background RB space

The construction of a RB background space ZN for the 2D case study was done using
the weak Greedy algorithm in the H1-norm (see algorithm 3 with X = H1(Ω)) on
a training set of dimension Ntrain of particular solutions for varying wind velocity
parameters pv ∈ Ξbk

train, in the parameter set Dbk = {pv ∈ [0.1; 1.3m
s

]} and a fixed
source intensity of ps = 10−2 mg

m3s
.

A sign of a good reduced basis and small Kolmogorov n-width is rapid decay of
projection errors of these training solutions onto the N -dimensional RB space. We
denote Π1

ZN the H1-projection operator (corresponding to equation (4.24)) such that
for all f ∈ H1(Ω)

Π1
ZNf =

N∑
k=1

〈f, ζk〉H1 ζk, (5.3)
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where (ζk)1≤k≤N are H1-orthonormal basis functions of ZN , and EN(c(p)) the pro-
jection error as defined in equation (4.25).

We want to represent the small Kolmogorov n-width of the solution manifold
for Dbk by studying the mean and maximal projection errors EN(c(pi)), equations
(4.26) and (4.27) respectively, of the training set of Ntrain solutions onto the N -
dimensional RB spaces during the Greedy construction of the RB background space
ZN . Relative projection errors over the calculation domain,

EΩ
N(cbk(pi)) = |EN(cbk(p))|

‖cbk(pi)‖L∞
∈ Xh, (5.4)

corresponding to a pointwise error on the calculation mesh, will be used to plot
projection error maps spatially. In figure 5.4 we see the mean and maximal relative
projection errors in H1 norm as a function of N , given by equations (4.26) and
(4.27).

Figure 5.4 – Relative mean and maximal projection errors in H1 norm, equations (4.26)
and (4.27) respectively, during the greedy construction of the RB space ZN , as a function
of N .

In figure 5.5 we see mean relative errors over the domain, as in equation (5.4),
for N = 1 (top left), N = 5 (top right), N = 10 (bottom left), and N = 15 (bottom
right).

We can see that the discretization error of the RB background space rapidly
converges to under 1%. Given the complexity of reducing convection-dominated
problems, we consider this wholly satisfactory. In addition, in air quality applica-
tions, model input errors are commonly much larger, in the range of 30 − 70% if
not higher, as seen in section 1.2.3 ; an additional 1% error (with respect to the
best-knowledge model) from the dimensional reduction of the approximation space
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Figure 5.5 – Mean projection error over domain Ω, equation (5.4), during the greedy
construction of the RB space ZN , for N = 1 (top left),N = 5 (top right), N = 10 (bottom
left), N = 15 (bottom right).

from a finite element space to a RB space would thus be considered negligible. We
will note from the RB discretization error maps over the domain, that for RB dimen-
sion N ≥ 10, we have nearly eliminated the error, excepting small but unavoidable
”shocks” from varying convection fields.

5.2.2 Sensor locations and Update Space

We will compare two cases of sensor locations in these case studies: the case of sensor
locations chosen randomly, and the case of sensor locations chosen simultaneously
with the background RB space generation particular solutions by a weak Greedy
method.

In figure 5.6 we can see a set of sensor locations chosen randomly in 2D. The
PBDW system was constructed from equation (3.14) using the RB background space
discussed in section 5.2.1 and an Update space built from these sensor locations.

In figure 5.7 we can see the set Σ of possible sensor locations chosen for this appli-
cation and those selected by a greedy algorithm minimizing the GEIM interpolation
error, as described in section 4.1.2.1.

In figure 5.8 we see the values of the stability constant βN,M from equation (3.17),
with ‖ · ‖X = ‖ · ‖H1 , for various N -values as a function of M , comparing the PBDW
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Figure 5.6 – Sensor locations chosen randomly.

Figure 5.7 – Sensor locations chosen by a GEIM-based greedy algorithm (section section
4.1.2.1).

system corresponding to random sensor locations from figure 5.6 and greedily-placed
sensors in figure 5.7.

As βN,M is a non-decreasing function of M , we see improvement in the stability
constants for larger numbers of data points, for each fixed background RB dimension
N . We note that in general for N ' M the formulation is less stable, as evidenced
by very low values of βN,M and discussed in [114]. Given this knowledge, we can
make the choice to disregard PBDW results for N ' M (as we will see in section
5.3). If we compare the stability constants in figure 5.8 for randomly chosen sensor
locations (left) to those for sensor locations chosen by a greedy algorithm (right),
we can see that in the 2D case we’ve improved by up to O(105) for some M and N
values, and at least by a factor of 2 for smaller background dimensions.

In figure 5.9 we can see the values of the condition numbers of the PBDW ma-
trices, for N = 5, 6, 8, and 12 as a function of M , with ‖ · ‖X = ‖ · ‖H1 , comparing
the PBDW system corresponding to random sensor locations from figure 5.6 and
greedily-placed sensors in figure 5.7.

If we compare the condition numbers in figure 5.9 for randomly chosen sensor
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Figure 5.9 – Condition number of PBDW matrices, with ‖ · ‖X = ‖ · ‖H1 , as a function
of M for N = 5, 6, 8, 12. PBDW system corresponding to random sensor locations from
figure 5.6 (left) ; PBDW system corresponding to sensor locations chosen by a GEIM-based
greedy algorithm (section 4.1.2.1) (right).

locations (left) to those for sensor locations chosen by a greedy algorithm (right), we
can see that in the 2D case with few sensors and N = 5, the random-sensor system
is better conditioned, but this advantage is quickly lost as M and N increase. For
N = 8 we have improved the condition number by O(102).

5.3 State Estimation Results : PBDW

In this section we will present the numerical results of the PBDW method on the 2D
case study. We will present the PBDW state estimation results over the full domain
and over a domain of interest, considering the variations in sensor choice discussed
in paragraph 5.2.2. We will also compare the results of the PBDW method in 2D
to those obtained by the GEIM, in both precision and computational time.

134



In order to test and validate the PBDW method for our case study, we have
computed trial solutions to the shifted model P trial given by equation (4.70), for
Ntrial = 6 parameter values. We denote by Ξtrial the parameter set for the group
of trial solutions, each parameter corresponding to a parameter ptrial ∈ Dbk \Ξbk

train.
For these Ntrial trial parameters, three sets of FEM approximations representing
ctrue, using three different models, are computed to construct synthetic data for
the PBDW method. One set consists of solutions to equation (4.39) represent-
ing the (unrealistic) case of a perfect best-knowledge model Pbk, with the goal of
demonstrating the error inherent to the MOR approach of the PBDW method. The
remaining trial sets consist of solutions to an advection-diffusion-reaction problem
P trial (4.70) with linear reaction coefficients of R = 0.001 and R = 0.0001. These
sets are used to demonstrate how the method handles two levels of model error, with
an average error of 8% (and up to 17%) and 1%, respectively.

In figure 5.10 we see the relative mean projection errors onto the background RB
space ZN over each of these trial sets defined by

1
Ntrial

Ntrial∑
i=1

‖EN(ctrial(pi))‖H1

‖ctrial(pi)‖H1
, (5.5)

from the set of Ntrial = 6 parameters pi ∈ Ξtrial, where EN(c) is defined in (4.25).
We consider that these errors demonstrate how well our background space ZN can
approximate the trial solutions, both for parametric variation and the case of an
imperfect model.

We define the trial solution corresponding to maximal error ctrial(pmax), where
pmax ∈ Ξtrial is defined by equation (5.6):

pmax = argmax
p∈Ξtrial

‖ctrial(p)− cN,M(p)‖X
‖ctrial(p)‖X

(5.6)

In figure 5.11 we can see the FEM approximations ctrial(pmax) (left), solution to
P trial (4.70), compared with the PBDW approximations cN,M(pmax) using random
sensor locations (figure 5.6) and greedy selected sensors (figure 5.7).

Both PBDW state estimates provide close reconstruction of the physical state
with only N = 6 background RB functions. However, the greedy-placed sensors
better capture the lower peak in concentration than the randomly-placed sensors.

In figure 5.12 we represent again the FEM solution and PBDW state approxi-
mation, but with synthetic data from solutions to P trial with more significant model
error, R = 0.001, to study how the PBDW method handles non-negligible model
error. Again we see reasonable reconstruction of the physical state, but this time the
randomly-placed sensors have an advantage. The greedy-placed sensors were chosen
to best capture information on the advection-diffusion solutions, which vary more
further from the source. The reaction term however has strongest effect where con-
centrations are highest: at the source. Our ”greedy” sensors have less information on
this region and thus misrepresents the concentration. The under representation of
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the concentration remains relatively small however. Additionally we can expect that
when applied to case studies with more variation in the physical state, the ”greedy”
sensors will be chosen to capture more variation.

In figure 5.13 we see PBDW best-fit error corresponding to equation (4.17) for
the sets of trial solutions with significant model error in both the H1 and L∞ norms.
These errors represent the best possible approximation of the trial solutions for
p ∈ Ξtrial by the approximation spaces ZN and UM . We see that while the number
of background basis functions N improves the approximation quality in H1-norm,
we see no improvement for added sensors M . This tells us that while in practice
all the information in the PBDW system on the true solution ctrue(p) for some
parameter configuration p comes from theM sensors, the corresponding update basis
qm functions do not enlarge the span of the approximation space ZN ⊕ (UM ∩ Z⊥N).
This means the update spaces we see here are doing little to correct for unmodeled
physics. However, we will see that increasing M data points does improve the
quality of the PBDW approximation for a given N background dimension. This can
be attributed to the improved local approximations and increase in information on
the physical state informing the system resolution.

If we consider the PBDW approximation error in the L∞ norm, we can quantify
this pointwise error improvement:

1
Ntrial

Ntrial∑
i=1

‖EPBDW
M,N (c(pi))‖L∞
‖cbk(pi)‖L∞

(5.7)

We see this in the pointwise maximal errors (5.7) (averaged over the trial set)
plotted in the same figure.

We define the PBDW state estimation error as follows

EPBDW
M,N (c(p)) = ctrial(p)− cN,M(p), (5.8)

and calculate mean relative error in the PBDW state estimation of the trial set of
solutions to P trial for p ∈ Ξtrial pointwise over the calculation domain:

EPBDW,Ω
M,N (p) =

|EPBDW
M,N (c(p))|
‖ctrial(p)‖L∞

∈ Xh (5.9)

The mean and maximal relative error in the PBDW state estimation with respect
to the trial solutions, in H1 are

1
Ntrial

Ntrial∑
i=1

‖EPBDW
M,N (c(pi))‖X
‖ctrial(pi)‖X

(5.10)

max
p∈Ξtrial

‖EPBDW
M,N (c(p))‖X
‖ctrial(p)‖X

(5.11)

In figures 5.14, 5.16, and 5.17 we represent relative mean and maximal error
curves for the PBDW approximation, corresponding to equations (5.10) and (5.11)
respectively, as a function of N RB basis functions for fixed M number of sensors.
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We want to show the influence of the size of the RB space on the quality of the
PBDW approximation using random sensor locations, on each of the three trial
sets.

In figure 5.14 the observations used in the PBDW system are synthetic data
obtained from a perfect best-knowledge model Pbk, such that ctrue = cbk. In figures
5.16 and 5.17, observations used in the PBDW system are synthetic data from the
shifted model P trial such that ctrue 6= cbk, with a reaction term ofR = 0.0001 andR =
0.001 respectively, to represent a model error in the computation of synthetic data.
We can see that with little or no model error with N = 6 background basis functions
we achieve about 1% error (mean error measure in the H1-norm), and about 3% error
with significant model error (P trial with reaction R = 0.001). We note that the non-
monotone error curves are to be expected: there is no mathematical argument for
strictly decreasing error, as the error depends not only on the best-fit of the PBDW
approximation space, but also on the stability and conditioning of the system. We
can observe that the instability for N approaching M (seen in the stability coefficient
βM,N of equation (3.17)) has an amplified effect on the error in the case of more
significant model error. This is consistent with equation (3.18).

In figure 5.15 we can see PBDW approximation relative mean errors mapped
over the domain, as in equation (5.9), for trial solutions with no model error. We
see significant change between N = 2 and N = 6, as can be expected given the
dimension of the background space. We see less improvement with an increase in
M , unsurprising in the case of a perfect model Pbk.

In figure 5.18 we again see relative mean errors mapped over the domain but for
the case of significant model error. Again we see significant improvement between
N = 2 and N = 6, but negligible change when adding more data points. This
suggests that our Update space does not add significantly to the span of the PBDW
approximation space ZN ⊕ UM . In this simple test, M = 8 is sufficient data for the
PBDW system to approximate the state over the N = 6 background basis functions,
and adding more update basis functions does not enlarge the approximation space,
and so does not improve the approximation.

In figures 5.19, 5.21, and 5.22 we see relative mean and maximal error curves for
the PBDW approximation, corresponding to equations (5.10) and (5.11) respectively,
for each of the three trial sets, using sensors chosen by a greedy procedure. In figure
5.19 the observations used in the PBDW system are synthetic data obtained from
a perfect best-knowledge model Pbk, such that ctrue = cbk. In figures 5.21 and 5.22,
observations used in the PBDW system are synthetic data from the shifted model
P trial such that ctrue 6= cbk, with a reaction term of R = 0.0001 and R = 0.001
respectively, to represent a model error in the computation of synthetic data. We
can see that with little or no model error with N = 6 background basis functions
we again achieve ∼ 1% mean error, and ∼ 3% error with significant model error.
We note that we have more consistent error results, with fewer peaks in the error,
as compared to sensors chosen randomly. We can attribute this to the increased
stability and conditioning of the PBDW linear system. We also note that we did
not significantly improve the error in the best case (of N - and M -values), but did
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in the worst cases. We could thus draw the preliminary conclusion that using data
from sensors placed using a greedy procedure is no guarantee of improved precision
in the PBDW approximation (here it depends on N - and M -values), but seems to
improve the stability of the system and consistency of the results, which would be
a non-negligible advantage in the online stage when precise error analysis is not
feasible.

In figures 5.20 and 5.23 we see relative mean PBDW approximation errors mapped
over the domain, as in equation (5.9), using synthetic data from sensors selected
via a greedy procedure. In figure 5.20 the synthetic data were computed with no
model error from Pbk. Here we see a bit more improvement between M = 8 and
M = 15, which can be attributed to better-placed sensors. If we compare to the
random-sensor case, we can see the effect of sensor placement: in general, the ran-
domly chosen sensor system better approximated concentration near the source, as
multiple data points are placed here. By contrast, the greedy-selected sensors are
well-suited to capturing convective effects of varying wind fields, and we can see this
in improved approximation furthest from the source.

In figure 5.23 the synthetic data were computed from the shifted model P trial
with a reaction term of R = 0.001 to represent significant model error. Here we
see more significant improvement with added data points. We again note that this
PBDW state estimation is less precise at the source, but more precise in determining
convective transport further from the source, again attributable to sensor locations.
We see that with N = 6 and M = 15 the error is under 6% everywhere, and often
under 1%. Compare to corresponding case with randomly placed sensors, where the
error surpasses 6% in a small region. Again we see significant improvement between
N = 2 and N = 6, but negligible change when adding more data points. This
suggests that our Update space does not add significantly to the span of the PBDW
approximation space ZN ⊕ UM . In this simple test, M = 8 is sufficient data for the
PBDW system to approximate the state over the N = 6 background functions, and
adding more update basis functions does not enlarge the approximation space, and
so does not improve the approximation.

In RBM applications it is often unnecessary to reconstruct the approximated
solution over the full domain Ω; instead the solution of some output value on the
solution over a smaller domain of interest Ωout ⊂ Ω is approximated. This is highly
compatible with air quality studies, as often the physical quantity of interest (QoI)
is a concentration peak in an area or the average concentration over a period of time
in an area. This renders RBMs much more advantageous (no online complexity
is dependent on the mesh dimension Nh). In this case study we will consider the
quantity of interest to be the average concentration over a subdomain of interest,
which could represent, for example, a playground.

We define the QoI PBDW state estimation error as follows

EPBDWout
M,N (c(p)) = `out(c(p))− `out(cN,M(p)), (5.12)

where

`out(c(p)) = 1
|Ωout|

∫
Ωout

c(p)dΩ. (5.13)
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In figure 5.24 we can see a representation of a domain of interest in the compu-
tational domain Ω, and in figure 5.25 the PBDW relative mean errors (5.12) in H1

norm over this domain:

1
Ntrial

Ntrial∑
i=1

|EPBDWout
M,N (c(pi))|
‖c(pi)‖H1(Ωout)

(5.14)

We see that while the errors over our chosen domain of interest (chosen to repre-
sent for example a childrens’ playground) suffer the same instabilities as a function
of M and N , the overall error committed is of the order O(10−5) with no model
error or with significant model error.

In figures 5.26 and 5.27 we can see relative mean PBDW approximation errors
and bounds over p ∈ Ξtrial. In figure 5.26 the observations used in the PBDW
system are synthetic data obtained from a perfect best-knowledge model Pbk, such
that ctrue = cbk, and In figure 5.27, observations used in the PBDW system are
synthetic data from the shifted model P trial such that ctrue 6= cbk, with a reaction
term of R = 0.001, to represent a model error in the computation of synthetic data.
Plots show:

• The best-fit error from equation (4.17), projection error of the trial solutions
to P trial onto approximation space ZN ⊕ (UM ∩ Z⊥N)

• PBDW approximation error (5.8) (i.e. the left-hand-side of equation (3.18)),
and

• An a priori error bound given by (the right-hand-side of) equation (3.18),

all in relative mean with respect to ‖ctrial(pi)‖H1 over the trial set, as described by
equation (5.10) for relative mean PBDW approximation error. We choose to fix the
background basis size at N = 6, as would be chosen in the online implementation
of this study. We can see that the PBDW method provides nearly identical approx-
imation precision in both cases, with and without model error. We also notice that
in this case with N chosen well after offline study of results, the improvement by
greedy-placed sensors is negligible.
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Figure 5.10 – Relative mean projection error (5.5) in H1-norm, projection ΠZN defined by
(4.24), of each of the sets of trial solutions for parameter set Ξtrial. Left: no model error
(model Pbk). Right: added reaction term R = 0.001 (model Ptrial).

Figure 5.11 – Approximation of the concentration for p = pmax, logarithmic scale. Trial
solution to Ptrial with model error simulated by areaction term of R = 0.0001. True FEM
solution (left), PBDW approximation using simulated measurement data, with random
sensors (middle), PBDW approximation with greedy selected sensors (right).

Figure 5.12 – Approximation of the concentration for p = pmax, logarithmic scale. Trial
solution to Ptrial with model error simulated by a reaction term of R = 0.001. True FEM
solution (left), PBDW approximation using synthetic data, with random sensors (middle),
PBDW approximation with greedy selected sensors (right).
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Figure 5.13 – Best-fit error, equation (4.17), of the set of trial solutions over p ∈ Dtrial and
model error with an added reaction term of 0.001c, projected onto the approximation space
ZN ⊕ (UM ∩ Z⊥N ) as a function of M . H1-norm (left) and L∞-norm (right). Compared
to mean error (5.7) over trial solutions of relative PBDW approximation error in the L∞

norm (right). Sensors chosen by GEIM.
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Figure 5.14 – Relative mean (5.10) (left) and maximal (5.11) (right) PBDW approximation
error as a function of N for fixed M values. Using synthetic trial data for parameter set
Ξtrial with no model error (model Pbk). Sensor locations chosen randomly.
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Figure 5.15 – Relative mean PBDW approximation error maps for N = 2 (left), N = 6
(right), and for M = 8 (top) and M = 15 (bottom). Using synthetic trial data for
parameter set Ξtrial with no model error (model Pbk). Sensor locations chosen randomly.
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Figure 5.16 – Relative mean (5.10) (left) and maximal (5.11) (right) PBDW approximation
error as a function of N for fixed M values. Using synthetic trial data for parameter
set Ξtrial with added reaction term R = 0.0001 (model Ptrial). Sensor locations chosen
randomly.
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Figure 5.17 – Relative mean (5.10) (left) and maximal (5.11) (right) PBDW approximation
error as a function of N for fixed M values. Using synthetic trial data for parameter
set Ξtrial with added reaction term R = 0.001 (model Ptrial). Sensor locations chosen
randomly.

Figure 5.18 – Relative mean PBDW approximation error maps for N = 2 (left), N = 6
(right), and for M = 8 (top) and M = 15 (bottom). Using synthetic trial data for
parameter set Ξtrial with added reaction term R = 0.001 (model Ptrial). Sensor locations
chosen randomly.
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Figure 5.19 – Relative mean (5.10) (left) and maximal (5.11) (right) PBDW approximation
error as a function of N for fixed M values. Using synthetic trial data for parameter set
Ξtrial with no model error (model Pbk). Sensor locations chosen by a greedy procedure.

Figure 5.20 – Relative mean PBDW approximation error maps for N = 2 (left), N = 6
(right), and for M = 8 (top) and M = 15 (bottom). Using synthetic trial data for
parameter set Ξtrial with no model error (model Pbk). Sensor locations chosen by a greedy
procedure.
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Figure 5.21 – Relative mean (5.10) (left) and maximal (5.11) (right) PBDW approximation
error as a function of N for fixed M values. Using synthetic trial data for parameter set
Ξtrial with added reaction term R = 0.0001 (model Ptrial). Sensor locations chosen by a
greedy procedure.
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Figure 5.22 – Relative mean (5.10) (left) and maximal (5.11) (right) PBDW approximation
error as a function of N for fixed M values. Using synthetic trial data for parameter set
Ξtrial with added reaction term R = 0.0001 (model Ptrial). Sensor locations chosen by a
greedy procedure.
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Figure 5.23 – Relative mean PBDW approximation error maps for N = 2 (left), N = 6
(right), and for M = 8 (top) and M = 15 (bottom). Using synthetic trial data for
parameter set Ξtrial with added reaction term R = 0.001 (model Ptrial). Sensor locations
chosen by a greedy procedure.

Figure 5.24 – Representation of a domain of interest Ωout in the full computational domain
Ω.
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Figure 5.25 – Relative mean error of the PBDW approximation (5.14) over a domain of
interest as a function of N for various M values. Using synthetic trial data for parameter
set Ξtrial with no model error (model Pbk, left), and with added reaction term R = 0.001
(model Ptrial, right). Sensor locations chosen by a greedy procedure.
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Figure 5.26 – Relative mean PBDW results as a function of number of data points M for
background basis dimension N = 6 values. Using synthetic trial data for parameter set
Ξtrial with no model error (model Pbk). Sensor locations chosen by a greedy procedure
(left), and randomly (right).
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Figure 5.27 – Relative mean PBDW results as a function of number of data points M for
background basis dimension N = 6 values. Using synthetic trial data for parameter set
Ξtrial with added reaction term R = 0.001 (model Ptrial). Sensor locations chosen by a
greedy procedure (left), and randomly (right).

5.4 PBDW Norm modifications

In this section we present the state estimation results on our 2D case study using
a modified norm presented in section 4.1.1.3, defined by equation (4.21). We set
Lg = 75m the characteristic length associated to the 2D domain of study. In figures
5.28 and 5.29, we compare stability coefficients (3.17) for the PBDW formulation in
the H1-norm (Lg = 1) and the H̃1-norm with Lg = 75, the system using random
sensor locations and sensor locations chosen by a greedy procedure, respectively.
We see that in these cases we have no significant difference in βN,M induced by the
changed norm.

In figures 5.30 and 5.31, we compare the matrix conditioning for the PBDW
formulation in the H1-norm (Lg = 1) and the H̃1-norm with Lg = 75, the system
using random sensor locations and sensor locations chosen by a greedy procedure,
respectively. We see here a slight improvement in the case of sensor locations chosen
by a greedy procedure induced by the H̃1 norm for Lg = 75, but some deterioration
in the case of randomly-placed sensors.

In figures 5.32 and 5.33, we compare the relative mean PBDW approximation
error (5.10) over the set of trial solution for p ∈ Ξtrial and model Pbk, in the H1-
norm, for the PBDW formulation in the H1-norm (Lg = 1) and the H̃1-norm with
Lg = 75, for each set of sensor locations, respectively. In these figures we see no
significant improvement from the H̃1 norm.

In figures 5.35 and 5.36, we compare the relative mean PBDW approximation
error (5.10) over the set of trial solution for p ∈ Ξtrial and model P trial with reaction
R = 0.001, in the H1-norm, for the PBDW formulation in the H1-norm (Lg = 1)
and the H̃1-norm with Lg = 75, for random sensor locations and sensors chosen by
a greedy procedure. In these figures we see no improvement from the H̃1 norm, and
a slight loss of stability in the case of sensors chosen by the greedy procedure.

We next compare these relative mean PBDW errors mapped over the calculation
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domain, as in (5.9). In figures 5.34 and 5.37 we consider p ∈ Ξtrial with model
Pbk, and model P trial with reaction R = 0.001, respectively. Here, we see a more
significant difference between the choices of norm, and actually find that the H̃1

norm deteriorates the quality of our solution.
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Figure 5.28 – Stability constant βN,M (3.17) in H̃1 norm, for Lg = 1 (left), and Lg = 75
(right) as a function of M , for sensor locations chosen randomly.
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Figure 5.29 – Stability constant βN,M (3.17) in H̃1 norm for Lg = 1 (left), and Lg = 75
(right) as a function of M , for sensor locations chosen by a greedy procedure.
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Figure 5.30 – PBDW matrix conditioning number in H̃1 norm for Lg = 1 (left), and
Lg = 75 (right) as a function of M , for sensor locations chosen randomly.
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Figure 5.31 – PBDW matrix conditioning number in H̃1 norm for Lg = 1 (left), and
Lg = 75 (right) as a function of M , for sensor locations chosen by a greedy procedure.
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Figure 5.32 – Relative mean PBDW approximation errors, calculated in the H1 norm, for
the PBDW system using the H1 norm (left) vs. the H̃1 norm (right), with random sensor
locations. Using synthetic trial data for parameter set Ξtrial with no model error (model
Pbk).
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Figure 5.33 – Relative mean PBDW approximation errors, calculated in the H1 norm, for
the PBDW system using the H1 norm (left) vs. the H̃1 norm (right), with sensor locations
chosen by a greedy procedure. Using synthetic trial data for parameter set Ξtrial with no
model error (model Pbk).

Figure 5.34 – Relative mean PBDW approximation errors, mapped over the domain, for
the PBDW system using the H1 norm (left column) vs. the H̃1 norm (right column), with
M = 8 and N = 5 (top row) and with M = 13 and N = 8 (bottom row). Using synthetic
trial data for parameter set Ξtrial with no model error (model Pbk), and sensor locations
chosen by a greedy procedure.
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Figure 5.35 – Relative mean PBDW approximation errors, calculated in the H1 norm, for
the PBDW system using the H1 norm (left) vs. the H̃1 norm (right), with random sensor
locations. Using synthetic trial data for parameter set Ξtrial with added reaction term
R = 0.001 (model Ptrial).
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Figure 5.36 – Relative mean PBDW approximation errors, calculated in the H1 norm,
for the PBDW system using the H1 norm (left) vs. the H̃1 norm (right), with sensor
locations chosen by a greedy procedure. Using synthetic trial data for parameter set Ξtrial
with added reaction term R = 0.001 (model Ptrial).
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Figure 5.37 – Relative mean PBDW approximation errors, mapped over the domain, for
the PBDW system using the H1 norm (left column) vs. the H̃1 norm (right column), with
M = 8 and N = 5 (top row) and with M = 13 and N = 8 (bottom row). Using synthetic
trial data for parameter set Ξtrial with added reaction term R = 0.001 (model Ptrial), and
sensor locations chosen by a greedy procedure.

5.4.1 Adapted sensor placement

Upon reflection we decided to reconsider the optimal sensor selection in the case of
the H̃1-norm. In fact, the GEIM-based Greedy algorithm as presented in section
4.1.2.1 used to construct the optimal sensor set defined the GEIM set of functionals
Σ to the set of linear functionals `m ∈ X ′ from equation (3.5). This does not take
into account the increased support of each Update basis function qm, 1 ≤ m ≤ M ,
defined by equation (3.8) with the norm H̃1. Here we replaced the linear function-
als `m in the Greedy algorithm by the corresponding basis functions qm (which we
computed over all the possible sensor locations on the grid in figure 5.7).

In figure 5.38 we see the H̃1 adapted Greedy sensor locations.

In figure 5.39 we compare the FEM solution to H̃1 PBDW state estimates for trial
solutions with significant model error of R = 0.001. We can see the trial solution
corresponding to maximal error, ctrial(pmax), as defined by equation (5.6), compared
with the H̃1 PBDW approximations from manually-chosen sensor locations and
the newly adapted Greedy sensors, similarly to figure 5.12 in section 5.3. We see
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reasonable reconstruction of the physical state with both sensor sets. While the
Greedy sensors add a very small phantom concentration in some regions, this error is
negligible. The Greedy system has more accurately reconstructed the concentration
peak near the source, however both PBDW approximations underestimate the peak.
The under-representation of the concentration remains relatively small.

In figure 5.40 we can see relative mean the best-fit errors from equation (4.17)
corresponding to the H̃1 PBDW approximation spaces. The projection error is
computed over a set of trial solutions with significant model error (R = 0.001) in
the H1 norm. Here we see a significant difference induced by the change in Update
space due to the H̃1 norm. We notice that in the case of a perfect model, for
each N -value the relative best-fit error is nearly constant with respect to M . This
implies that, as was the case in figure 5.13, our Update basis functions qm do not
provide new information outside the span of the background approximation space
ZN . This effect is again to be expected, however for a different reason as in section
5.3. The trial solutions were computed with the same bk model as the reduced
basis, which is meant to approximate the associated solution space, meaning the
information on these trial solutions should be in the background space. However,
we see improvement of the best-fit error in the case of an imperfect model, thanks
to our new Update basis with larger support. The added update basis functions

now enlarge the span of the PBDW approximation space ZN ⊕ (UM ∩ ZN⊥) to
capture information on the trial solutions from the shifted model not spanned by
the background space. We also note that additional background basis functions do
not greatly improve the approximation, as the trial solutions do not lie on the same
solution manifold.

In figures 5.41 and 5.42 we see relative mean and maximal error curves for the
H̃1 PBDW approximation with sensor locations in figure 5.38 for each of two trial
sets. We can see that with no model error with N = 6 Background functions we
again achieve ∼ 1% mean error, and ∼ 3% error with significant model error. We
note that we see more consistent error results with respect to figures 5.33, 5.32 5.36,
and 5.35.

In figure 5.43 for adapted Greedy sensors we see relative mean errors mapped
over the domain in the case of no model error, for the H̃1 PBDW system. Here we
see a bit more improvement between M = 8 and M = 15, which can be attributed
to better-placed sensors. However, the background space alone can represent these
trial solutions, so as expected the most improvement is provided by N .

In figure 5.44 we consider adapted Greedy sensors for the case of significant model
error. Here we see more significant improvement with added data points. We again
note that the correction by the update basis functions can add non-physical error
to the approximation, however this is generally of negligible order. Again we see
significant improvement between N = 2 and N = 6. We see that with N = 6 and
M = 15 the error is under 7% everywhere, and often under 1%.
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Figure 5.38 – Sensors locations chosen by a GEIM-based Greedy algorithm over H̃1 Update
basis functions qm defined by equation (3.8).

Figure 5.39 – Approximation of the concentration for p = pmax. Trial solution with
model error simulated by a reaction term of R = 0.001. FEM solution ctrue (left), H̃1

PBDW approximation using synthetic data, with random sensors (middle), H̃1 PBDW
approximation with greedy selected sensors of figure 5.38 (right). We set M = 13 and
N = 6 here.
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Figure 5.40 – Relative mean best-fit error onto the H̃1 PBDW approximation spaces,
equation (4.17). Set of trial solutions over p ∈ Dtrial, as a function of M in H1-norm. No
model error (left), and model error with an added reaction term of 0.001c (right). Greedy
selected sensors of figure 5.38.
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Figure 5.41 – Relative mean (equation (5.10), left) and maximal (equation (5.11), right)
H̃1 PBDW approximation error in H1-norm as a function of Background RB dimension
N for various numbers of data points M , over p ∈ Dtrial with no model error. Greedy
selected sensors of figure 5.38.
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Figure 5.42 – Relative mean (equation (5.10), left) and maximal (equation (5.11), right)
H̃1 PBDW approximation error in H1-norm as a function of Background RB dimension N
for various numbers of data points M , over p ∈ Dtrial, model error with an added reaction
term of R = 0.001. Greedy selected sensors of figure 5.38.
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Figure 5.43 – Relative mean pointwise H̃1 PBDW approximation error maps, equation
(5.9), for N = 2 (left), N = 6 (right), and for M = 8 (top) and M = 13 (bottom), over
p ∈ Dtrial with no model error. The lowest contour line shows 1% error. Greedy selected
sensors of figure 5.38.
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Figure 5.44 – Relative mean pointwise H̃1 PBDW approximation error maps, equation
(5.9), for N = 2 (left), N = 6 (right), and for M = 8 (top) and M = 13 (bottom), over
p ∈ Dtrial with model error by an added reaction term of 0.001c. The lowest contour line
shows 1% error. Greedy selected sensors of figure 5.38.

5.5 Comparison to other methods: GEIM

In this section we want to compare the results of the PBDW state estimation on this
two-dimensional case study to those optained by the GEIM interpolation method
discussed in previous sections. The GEIM method is implemented with M = N ,
equal number of basis functions and data points. Below we can see the results of the
two methods, both of which we implemented offline from the same set of training
solutions and sensors, and applied to the same set of 6 trial solutions of varying
parameters and with added model error.

We can see that the GEIM method performs similarly, and even surpasses for
M = 10, to the PBDW method in the case of little model error. However in the case
of significant model error and M > 10, the PBDW method provides a significantly
better estimation. In this particular case study, we seem to have more consistent
error results for varying M -values, and aspect that could be valuable in online studies
without feasible error analysis.

In figures 5.46, and 5.47 we compare relative mean error maps of the GEIM
and PBDW approximations using synthetic data with little or significant model
error. We consider the case of M = 10, the best case of the GEIM approximation
according to figure 5.45. We can see similar results for little model error, with only a
small region over 1% error in both approximations, while the GEIM approximation
eliminates a region or error with respect to the PBDW estimation. In the case of
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significant model error, however, we see a clear advantage in the PBDW estimation,
with no peak above 14% and only a small under representation of the source intensity.

Figure 5.45 – Relative mean (5.10) and maximal (5.11) PBDW approximation error as a
function of number of data points M for background basis dimension N = 6, and GEIM
interpolation errors as a function of M = N . Using synthetic trial data for parameter
set Ξtrial from model Ptrial with a small added reaction term of R = 0.0001 (left), and
significant model error from R = 0.001 (right). Sensor locations chosen by a greedy
procedure.

Figure 5.46 – Relative mean errors of the GEIM (left) with M = 10 and the PBDW
(right) with M = 10, N = 6, approximations, mapped over the calculation domain. Using
greedy selected sensors and synthetic trial data over parameters Ξtrial on model Ptrial,
with model error added by a reaction term of R = 0.0001. Mapping of the errors is
truncated at 1× 10−6, and the lowest contour line shows 1% error.
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Figure 5.47 – Relative mean errors of the GEIM (left) with M = 10 and the PBDW
(right) with M = 10, N = 6, approximations, mapped over the calculation domain. Using
greedy selected sensors and synthetic trial data over parameters Ξtrial on model Ptrial, with
model error added by a reaction term of R = 0.001. Mapping of the errors is truncated at
1× 10−6, and the lowest contour line shows 1% error.

5.5.1 Norm modifications

This section describes an update to the PBDW and GEIM comparison in light of
improved implementation of the H̃1 norm in section 5.4.1 with Lg = 75m. In figure
5.48 we see that in the case of significant model error and M > 10, the H̃1 PBDW
method provides a significantly better estimation than the GEIM. In this particular
case study, we seem to have more consistent error results for varying M -values, and
aspect that could be valuable in online studies without feasible error analysis.
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Figure 5.48 – Relative mean and maximal H̃1 PBDW errors as a function of number of
data points M for PBDW Background basis dimension N = 6, and GEIM interpolation
errors as a function of M = N , over p ∈ Dtrial. Model error by an added reaction term
0.001c. Greedy selected sensors of figure 5.38 for the PBDW estimation, and of figure 5.7
for the GEIM approximation.

In figure 5.49 we compare relative mean error maps for the GEIM and H̃1 PBDW
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approximations over trial sets with little (R = 0.0001) or significant (R = 0.001)
model error. We consider the case of M = 10. We again see similar results for little
model error, with only a small region over 1% error in both approximations, while
the GEIM approximation reduces a region of error with respect to the H̃1 PBDW
estimation. In the case of significant model error, however, we see a clear advantage
in the H̃1 PBDW estimation, with no peak near or above 15% and only a small
misrepresentation of the source intensity.

Figure 5.49 – Relative mean pointwise GEIM (left) and H̃1 PBDW (right) approximation
error maps for M = 10 and N = 6-M = 10, respectively, over p ∈ Dtrial. Model error
of 0.0001c (top) and 0.001c (bottom). Mapping of the errors is truncated at 1 × 10−6,
and the lowest contour line shows 1% error. Greedy selected sensors of figure 5.38 for the
PBDW estimation, and of figure 5.7 for the GEIM approximation.

5.6 Comparison to other methods: the adjoint problem

In this section we would like to compare the PBDW method not to the similar GEIM
method for non-intrusive reduced-order data assimilation, but to the more classical
adjoint method (section 2.2.3.1) to treat data assimilation with a parameterized PDE
model for urban fluxes. We chose to work with a simplified version of our case study.
Instead of using CFD velocity fields computed with Code Saturne, we used velocity
fields given by the Stokes equations, and we also replaced the turbulent viscosity
field by a single aggregated turbulence field from Code Saturne. This decision was
made because one of the parameters to calibrate by the adjoint problem is actually
the wind field, meaning the adjoint method would be applied, in addition to the
concentration equation (4.52), to both the fluid model from Navier-Stokes (4.31)
and the k − ε turbulence model (4.33). Not only would this feat, which has been
investigated in [193] for water networks using Navier-Stokes with no turbulence
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closure, be far from trivial to implement, but would require measurement data on
the wind field (which we assume a priori is not among the data available). We
thus consider the Stokes formulation for our wind velocity over the computational
domain, given by equation (5.21), and that the direction ~vd of the inflow is fixed but
the intensity vin is a parameter.

5.6.1 Adjoint Transport Problem: problem definition

Here we first we expose the details of the adjoint problem and associated Lagrangien
and gradient descent method, used in the application of the adjoint inverse method
(section 2.2.3.1) for the estimation of optimal parameters of the best-knowledge
transport problem given by (4.52).

If we’ve defined the M sensors as in equation (3.5), then we have that the mis-
match function as described in equation (2.55), for sensor function ϕm from equation
(3.4) and data yobsm , is written:

em(c) =
∫
ϕmc dΩ− yobsm (c) (5.15)

Considering the cost functional given by equation (2.56), the associated Lagrang-
ien is defined by

L (p, c, φ, ψ) = I(c)−
(∫

Ω
ε(x)∇c · ∇φ+

∫
Ω
~v · ∇c φ−

∫
Ω
Fsrc φ

)
−
∫

Γin
(c− c0)ψ, (5.16)

where I(c) is given by equation (2.57), and φ and ψ are the Lagrange multipliers
associated to the following constraints:

• φ ∈ X ′ : multiplier associated to the constraint “c is a solution of (4.52)”

• ψ ∈ R : multiplier associated to the constraint “c = c0 on ΓD”

Differentiating (5.16) along an element w ∈ X0 with respect to c we have:

〈
∂L

∂c
, w

〉
=

M∑
k=1

ek(c)`k(w)−
∫

Ω
ε(x)∇w · ∇φ−

∫
Ω
~v · ∇w φ−

∫
Γin

wψ

=
M∑
k=1

ek(c)
∫

Ω
σk(w)dΩ−

∫
Ω
ε(x)∇w · ∇φ+

∫
Ω
~v · ∇φw

−
∫
∂Ω
φw(~v · ~n)−

∫
Γin

wψ (5.17)
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If we set equation (5.17) to zero we get the variational formulation of the adjoint
problem of which the solution is given by:

−div
(
ε(x)∇φ(p)

)
− ~v · ∇φ(p) =

M∑
k=1

ϕk ek(c(p)) in Ω

φ(p) = 0 on Γin
−ε(x)∇φ(p) · ~n+ φ(p)~v · ~n = 0 on ∂Ω \ Γin

(5.18)

and −ε(x)∇φ · ~n = ψ on Γin because∫
Γin

(
ψ − ε(x)∇φ · ~n+ φ~v · ~n

)
w = 0

The derivative of the Lagrangian L (p, c, φ, ψ) with respect to c is null in (p, c(p), φ, ψ)
with c(p) the solution of (4.52) , and for any (φ, ψ) we have

J(p) = L (p, c(p), φ, ψ)

In this adjoint problem, we see the advection and diffusion terms present, but along
an opposite-direction velocity field ~vadj = −~v, and with the source terms replaced

by
M∑
k=1

ϕk ek(c(p)). We thus will see the same instability problems as in the direct

transport problem and need to implement numerically with a stabilization. As such,
we define the SUPG-stabilized adjoint transport problem:

aSUPGadj (φh, wh) ≡ aadj(φh, wh) +
∑

k τk(Ladjφh, ~vadj · ∇wh)k

lSUPGadj (wh) ≡ ladj(wh) +
∑

k τk(
M∑
k=1

ϕk ek(c(p)), ~vadj · ∇dh)k
(5.19)

where Ladjφh = −div
(
ε(x)∇φ(p)

)
+ ~vadj · ∇φ(p), aadj(φh, wh) =

∫
Ω ε(x)∇w · ∇φ −∫

Ω ~vadj · ∇w φ, and ladj(wh) =
∑M

k=1 ek(c)`k(wh).

5.6.2 Definition of the parameters

We consider that the direction ~vd of the inflow wind is fixed but the intensity vin is
a parameter.

In this study, we will thus have two parameters :

• intensity of the pollution : αi

• intensity of the inflow wind : vin

The source of pollution is of the form

Fsrc =
Ns∑
i=1

αifi (5.20)
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where Ns is the number of possible sources, αi are intensities, and fi represents the
source i (e.g. as in equation (4.43) or (4.42)).

In this case we have Fsrc(x) = α fsrc(x) where α ∈ [0, 10−2] mg
m3·s , but we will start

with α constant. In the interest of maintaining linear constraints and reasonable
computational times for a more direct comparison of methods, the velocity field for
inflow wind direction ~vd and intensity vin can be approximated by the solution of
the following Stokes equation

−ν∆~v(x,P) +∇p(x,P) = 0 in Ω,
div ~v(x,P) = 0 in Ω,

~v(x,P) = vin ~vd on Γin,
~v(x,P) = ~0 on Γwall,

−ν ∂vi
∂n

(x,P) + p(x,P) = 0 on Γout,

(5.21)

where vi, i = 1, 2 are the xi-component of the velocity field. Using a superposition
principle, the solution ~v(x,P) of the problem (5.21), for any value of vin, can be
obtained by

~v(x,P) = vin ~v0(x)

where ~v0(x) is the solution of (5.21) with vin = 1.
As for the turbulent viscosity, we will use an aggregated viscosity defined by

νt = 1
Ntrain

Ntrain∑
k=1

ν̄t(vkin) with vkin ∈ Ξbk
train ⊂ [0.1; 1.3]m

s
, (5.22)

and ν̄t(vkin) is the turbulent viscosity given by a Code Saturne simulation where
we imposed the inlet boundary condition such that |vmax| = vkin at the boundary.

Suppose that P = (p1, . . . , pNp) where Np is the number of parameters of our
model. Then,

∂J(x,P)
∂pi

λi = ∂L
∂pi

(P, c(x,P), φ(x,P))λi (5.23)

where λi ∈ R and 1 ≤ i ≤ Np. For pi = αi, we have

∂J(p)
∂pi

λ = ∂L
∂αi

(α, c(α), φ(α))λ =
∫

Ω
λ fi φ(p), (5.24)

and

∂T (p)
∂pi

λ = ∂T (p)
∂αi

λ = ξ (αi − α0
i )λ, (5.25)

For pi = vin, we have

∂J(x,P)
∂pi

λi = −λi
∫

Ω
~v0 · ∇c(P)φ(P).
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With Tikhonov regularization we have also

∂T (x,P)
∂pi

λi = ξ(pi − p0
i )λi, ∀λi ∈ R.

We will see the implementation of this inverse method in the case studies considered
in sections 5.6.

5.6.3 State estimation results

In order to estimate the Kolmogorov dimension of Mh the manifold of all the
solutions of Pbk (4.52) when the parameters vary, we resort to a POD analysis.
In our study, the parameter α (intensity of the pollution) being linear, we only
need to compute a set of concentration when the velocity intensity vin varies. Let
Ξtrain ⊂ D = [0.1 : 1.3]m/s be the set of parameter used to compute a POD ba-
sis . This POD analysis consist in a singular value decomposition method to the
correlation matrix of H1-norm scalar products 〈ch(Pi), ch(Pj)〉H1(Ω), 1≤i,j≤Ntrain , for
different values of the parameters P ∈ Ξtrain.
An H1-orthonormalized POD basis (2.10) was constructed, as described in section
2.1.2.2, and we define P POD

N be the H1-orthogonal projection operator from Xh into
the space XPOD

N – spanned by the N first POD basis functions wk, as defined by
equation (2.11). Let Dtrial ⊂ D = [0.1 : 1.3]m/s be a set of parameters such that
Dtrial ∩ Dtraining = ∅. Each training solution {ch(Pi),Pi ∈ Ξtrain} and trial solution
{ch(Pi),Pi ∈ Ξtrial} were projected onto Xk,POD

h to analyze the ability of the POD
basis to approach the manifold Mh, depending on the number of POD modes. In
figure 8.5 we can see the associated errors plotted. We observe that the projection
errors decay rapidly and are quite small.

Figure 5.50 – Relative error of the POD projection measured in H1 norm for several sets
of concentration

We first selected sensors by a Greedy GEIM-based algorithm from a sparse grid
of 15 possible locations, seen in figure 5.51.

In figure 5.52 we see the selected sensors.
Let cbk be the solution from the best knowledge model, padj the set of parameters

obtained by the adjoint method and cbk(padj) the corresponding concentration, ctrue
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Figure 5.51 – Sensor locations considered for the Adjoint vs. PBDW comparison, sparse
grid on which we performed a Greedy selection.

Figure 5.52 – Sensor locations considered for the Adjoint vs. PBDW comparison. Selected
sensors for M = 1, 2, 3, 4.

be the true concentration, IM be the ”best-knowledge”-based GEIM interpolation
operator and cpbdw the PBDW approximation. In table 5.2 we have compared relative
error on the reconstructed concentration, measured in H1-norm, with no model error
and M = 2 measurements. We can see that the adjoint and PBDW methods perform
similarly in terms of precision, but the adjoint method requires 26 iterations (i.e. 26
approximations each of the direct and adjoint problem by classical discrete methods),
while the PBDW requires the solution of a 3 × 3 linear system. We also note that
the GEIM method outperforms both the adjoint method by one order of precision,
which is unsurprising given the better performance of the GEIM in the case of a
perfect model in seen in section 5.5.
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Adjoint method with M = 2 GEIM with M = 2 PBDW with M = 2, N = 1
ctrue − cbk(padj) ctrue − IM (ctrue) ctrue − cpbdw

0.00161454 0.000264946 0.00180676
(26 iterations)

Table 5.2 – Global Error measured in H1-norm (relative error) using greedy sensor position
(1 iteration = 1 FEM direct approximation + 1 FEM adjoint approximation)

In table 5.3 we have compared error on the reconstructed concentration, mea-
sured in the H1-norm, when there is model error and M = 2 measurements. We
consider two sources of model error: a reaction term R as in section 5.3, or error in
the calculation of the wind field by (5.21). In the latter case the ”true”wind field ~vrue

is simulated by Navier-Stokes (4.31) with k−ε turbulent closure. We recall here that
the GEIM operator IM was built using solution from the ”best-knowledge” model.

Figure 5.53 – Wind field computed by Navier-Stokes with k − ε turbulence closure (left),
compared to a wind field computed by Stokes (right).

We can in figures 5.53 and 5.54 that this model error in the velocity field is
quite severe, in stark contrast to the the levels of model error induced by the added
reaction terms in section 5.3.

We can see that in the case of a shifted model P trial by a linear reaction term
R = 0.001, the PBDW method performs the best, with under 6% of error, and
the adjoint and GEIM methods follow closely behind. However the adjoint method
needs 34 iterations to achieve these results, a computationally costly procedure.
In the case of model error in the velocity field none of the methods manages to
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Figure 5.54 – Concentrentation field from Pbk over a Navier-Stokes wind/turbulence field
(left), compared to a concentration field over a Stokes wind field with a single aggregated
Navier-Stokes turbulence field (right).

Model Error Adjoint method GEIM PBDW
(M = 2) (M = 2) (M = 2, N = 1)

ctrue − cbk(ptrue) ctrue − cbk(padj) ctrue − IM (ctrue) ctrue − cpbdw
True model: 0.089632 0.0598593 0.0646513 0.0558197
R = 1× 10−3 (34 iterations)

True model: 1.44017 0.918449 0.808705 0.815477
Navier-Stokes (49 iterations)

Table 5.3 – Global Error measured in H1-norm (relative error) using greedy sensor position
(1 iteration = 1 FEM direct approximation + 1 FEM adjoint approximation)

effectively reconstruct the pollution field, however the GEIM and PBDW perform
slightly better than the adjoint method.

In the tables 5.4, 5.5, and 5.6 we compare the reconstructed concentration ob-
tained with the PBDW and the GEIM with M = 2 to M = 4 measurements, in
each of the three trial cases.

In table 5.4 we can see that the GEIM outperforms the PBDW consistantly by
approximately one order of precision.

In table 5.5 the GEIM performs better for only M = 2 sensors, but the PBDW
achieves slightly higher precision for M ≥ 3, thanks to its model error correction in
the update term.
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PBDW GEIM

M N Measured in L2-norm Measured in H1-norm Measured in H1-norm

2 1 0.00167063 0.00180676 0.0002649462 2 0.00225851 0.00221687
3 1 0.00167056 0.00180672

5.66303× 10−63 2 0.00172873 0.00169383
3 3 1.33289× 10−5 1.90045× 10−5

4 1 0.00167056 0.00180671

1.19627× 10−74 2 0.00145774 0.00143721
4 3 1.32982× 10−5 1.89733× 10−5

4 4 3.40861× 10−5 5.52569× 10−5

Table 5.4 – Global Error (relative error) using greedy sensors position with no Model Error

PBDW GEIM

M N Measured in L2-norm Measured in H1-norm Measured in H1-norm

2 1 0.0554883 0.0558197 0.06465132 2 0.135202 0.138185
3 1 0.0554883 0.0558197

0.06240353 2 0.102717 0.104952
3 3 0.051463 0.0599434
4 1 0.0554883 0.0558198

0.08602894 2 0.0842945 0.0860841
4 3 0.0514849 0.0599753
4 4 0.0551605 0.0739137

Table 5.5 – Global Error (relative error) using greedy sensor position with Model Error:
true solution with linear reaction r = 10−3

PBDW GEIM

M N Measured in L2-norm Measured in H1-norm Measured in H1-norm

2 1 0.808053 0.814611 0.8087052 2 1.07974 1.09336
3 1 0.808048 0.814609

0.7555443 2 0.847354 0.853547
3 3 0.767675 0.77688
4 1 0.807876 0.814501

96.96484 2 0.803784 0.810851
4 3 0.735551 0.74329
4 4 289.299 499.063

Table 5.6 – Global Error (relative error) using greedy sensors position with Model Error:
true solution with Navier-Stokes with k − ε turbulence closure wind field
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In table 5.6, both methods perform poorly and provide unstable results, no better
than around 75% error.

We next study the results of the PBDW method when sensors are chosen by a
greedy procedure from a much less sparse set of locations, seen in figure 5.55. Figure
5.56 shows the selected sensors for up to M = 6 sensors.

Figure 5.55 – Sensor locations considered for the PBDW method, a grid of 100 possible
sensors on which we perform a Greedy selection.

Figure 5.56 – Grid of sensor locations considered for the PBDW method. Selected sensors
for M = 1 through M = 6.
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In table 5.7 we see the relative error results of the PBDW method for the three
trial cases, considering up the M = 6 and N = 4. We can see that in the case
of a perfect model Pbk only N = 3 background basis functions are required to
approximate the solution manifold Mbk, and the addition of supplementary basis
functions, which are of very small norm after the Gram-Schmidt orthonormalization
process, renders the method less stable. We see excellent reconstruction of the state
in the case of a perfect model, and wholly satisfactory reconstruction in the case of
P trial with a linear reaction term of R = 0.001. However in the case of model error
in the velocity field, we see instability from N > 1, which we attribute to the strong
differences in the Stokes vs. Navier-Stokes fields.

M N No model error Model Error : Model Error :
linear reaction velocity NS + k − ε

2 1 0.00143845 0.0541295 0.953214
2 2 0.00833031 0.068833 8.92753
3 1 0.00143806 0.0541278 0.953208
3 2 0.00111454 0.0540292 1.07518
3 3 2.37966e− 05 0.0538432 1.24394
4 1 0.00143961 0.0540795 0.96318
4 2 0.00124217 0.0542685 1.18722
4 3 2.36478e− 05 0.0538542 1.22608
4 4 0.000223533 0.0571449 84.2731
5 1 0.00143934 0.0540764 0.954574
5 2 0.00126515 0.0542688 1.68631
5 3 2.37248e− 05 0.0538322 1.37484
5 4 0.000209717 0.055371 94.0984
6 1 0.00143892 0.0540742 0.954564
6 2 0.00125894 0.0542696 1.32241
6 3 2.39223e− 05 0.0538388 1.26228
6 4 0.000108483 0.0538581 92.6699

Table 5.7 – Global relative error (measured in H1 norm) of the PBDW method

We conclude from this comparison that in the case of little to no model error, the
GEIM method outperforms the PBDW in terms of precision, and outperforms the
adjoint method in terms of computational time, while the PBDW only outperforms
the adjoint method in computational time. However, in the case of more significant
model error, such as P trial as in equation (4.70), the PBDW method gives the most
precise results and significantly reduces computational cost as compared with the ad-
joint method. However, each of these methods has limitations, and none was robust
enough to treat the case of severe model error in the transporting wind field. We
note that in the case of PBDW and GEIM, nothing prevents us from using the more
accurate velocity fields from Navier-Stokes with k − ε turbulent closure (excepting
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offline computation time), whereas the adjoint method for problems parameterized
by Navier-stokes velocity with k − ε turbulent closure remains an open problem.

5.7 Computational times

In table 5.8 we compare computational times for the classic FEM approximation
of equation (4.39) (with no model order reduction or data assimilation) for refer-
ence, and the PBDW state estimation and GEIM approximation. In the case of
full reconstruction of the physical state the PBDW method reduces by nearly 20
times the calculation time, and the GEIM method saves even a few more seconds,
given the smaller linear system size. We also compare computational times for the
PBDW estimation and the GEIM approximation of an output quantity, considering
the average pollution concentration over subdomain Ωout as shown in figure 5.24. In
the case of a QoI rendering full reconstruction of the physical state unnecessary, we
see a reduction by a factor of over 500 for both the PBDW method and the GEIM
method, leaving nearly negligible calculation times. These differences could be taken
into consideration in the case of full reconstruction of the pollution field along with
the precision and peaks in error results when determining which MOR data assim-
ilation method is most pertinent and advantageous to the application. However
the improved model error correction provided by the PBDW method for relatively
equivalent calculation times gives a clear advantage to PBDW state estimation.

CPU Times Offline Stage Online Stage (average CPU times)

74GB RAM desktop State Estimate Quantity of Interest
Ω : 125m× 75m Ωout : 20m× 10m

FEM-SUPG cbk(p) - 7.4h+ 61s 85min +1.3s
Nh ∼ 323, 000 (fluid) (disp.) (fluid) (disp.)

MOR Methods
blanc

Training set Ntrain = 40 296.6h - -

PBDW (M = 10, N = 6) 10.26min 5.35s 0.18s
GEIM (M = 10) 42.7min 3.32s 0.17s

Table 5.8 – Computational times of two MOR-data assimilation methods over the full
calculation domain and estimation of average concentration over a subdomain Ωout (see
figure 5.24), compared to FEM approximation. Average over the set of trial solutions
considered here.

In table 5.9 we compare computational times in the case of a simplified Stokes
wind field for the three methods, PBDW, GEIM, and adjoint. We again give the
time required to compute a training set by FEM approximation for reference. We
note that no MOR technique was applied in the adjoint method here. The use of
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RBMs for the direct and adjoint problem would significantly reduce these calculation
times, but add an offline phase (corresponding to the construction of the PBDW
background space in addition to a RB space for the adjoint problem), and the online
approximation would remain iterative and thus (slightly) more costly than both the
PBDW and GEIM.

CPU Times Offline Stage Online Stage (average CPU times)

Training set Ntrain = 40 43min -

PBDW (M = 2, N = 2) 2.1min 1.4s
GEIM (M = 2) 36.4s 0.8s

Adjoint Method (M = 2) - 38.3min

Table 5.9 – Computational times of the adjoint method compared to the PBDW and
GEIM for the state estimate of the Stokes-based 2D case study.
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Chapter 6

Application in Exterior Air
Quality Modeling: a 3D Case
Study
Résumé :

Dans ce chapitre, nous étendons notre étude numérique à un problème tridimen-
sionnel. Comme precedemment, on s’intéresse à la concentration de particules fines
PM2.5 dans un petit quartier résidentiel. Il existe plusieurs sources de pollution pos-
sible : la route, des sources de combustion autour de la maison et du bâtiment. Dans
cette étude l’intensite du vent n’est plus un paramètre qui varie, seule l’intensité des
différentes sources d’émissions peut varier.
Comme dans le cas 2D, nous étudions la stabilité et la convergence de la méthode
PBDW en fonction du positionnement des capteurs (au hasard, sur une grille uni-
forme ou donné par un algorithme de type greedy), et de la norme choisie dans
la formulation PBDW. La convergence de la méthode a également été étudiée en
fonction de l’erreur de modèle. Dans la seconde partie de ce chapitre nous nous
intéresserons à la convergence de la formulation PBDW lorsque le modèle a été
a-dimensionné.

Représentation du domaine 3D avec les zones d’émision de pollution en rouge (à gauche).
Tableau récapitulatif des temps de de calcul de la phase en-ligne de la PBDW (à droite).
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In this section we extend the two-dimensional case study from chapter 5 to a
three-dimensional domain of dimensions 60m× 60m× 20m, seen in Figure 6.1.

Here we will show two separate cases of study: first, we will consider only com-
bustion sources of PM2.5 representing residential backyard fires or grills. In this case
we have 10 possible source locations, and consider solutions with one in each yard
of varying and independent intensities. This is an interesting study because RBMs
are generally not suited to cases of moving sources, however here we have a finite
set of possible locations, with some very close to each other, and we explore how the
PBDW method can reconstruct the concentration field under these conditions.

In the second case, we will modify the parameters to be better suited to RBMs
with only three possible source locations. Here we add a street pollution source and
background concentration as parameters, and treat the combustion sources as area
sources rather than point sources.

We will again use the practical aspects discussed in the two-dimensional case in
section 5.1

6.1 Initial study

The three-dimensional case study on the domain represented in figure 6.1 was con-
sidered for 10 varying parameters of source intensity, in the parameter set Dbktrain =
{pi ∈ [0 : 5× 10−4 kg

m3 ]}.

Figure 6.1 – 3D test domain with boundaries corresponding to the velocity field (left), and
with various combustion pollution sources (right).

A single turbulent velocity field was considered, represented in figure 4.6 on a
larger velocity domain with a mesh of ∼ 600, 000 nodes. We computed the wind
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field as described in section 4.2.1, with a vertical inflow profile given by equation
(4.36), with v0 = 2 and z0 = 1. The inlet BC was set to ‖~u‖ = 2zα and direction
(x∗, y∗)T in practice we set α = 0.4. We then computed a quasi-steady velocity field
as described in section 5.1.1.

The transport domain was meshed with ∼ 1.39 million nodes, giving a global
Peclet number (4.50) of approximately 212.6 with Lg = 60m. At a height of 1m the
wind velocity was set to 7.2km

h
in a due south direction. Here the inlet boundaries

Γin correspond to ΓD from equation (4.41), and outlet boundaries Γout correspond
to ΓN . In figure 6.2 we can see concentration fields for two parameter sets.

Figure 6.2 – Concentration solution over velocity field with parameters (3.33 ×
10−4 kg

m3 , 3.33 × 10−4 kg
m3 ) (left), and (1.11 × 10−4 kg

m3 , 1.11 × 10−4 (right), for two sets of
source locations. Horizontal slice taken at z = 1m.

While we could assume the dimension of the solution manifold to be 10 (the
number of source locations), we chose to treat the problem in the framework of
RBMs for two reasons. First, we wanted to study the effect of numerical instabilities
in our solutions by studying RB projection errors to investigate whether the actual
dimension is greater than 10. Secondly, we wanted to investigate the possibility that
the source locations nearest each other would provide concentration fields resembling
each other, and we’d be able to represent the solution manifold with fewer than
N = 10 solutions.

In figure 6.3 we see the projection errors (4.26) during the construction of a RB
background space using a greedy procedure as in chapter 5 (see algorithm 3).
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Figure 6.3 – Greedy H1 projection errors of a training set of solutions.

As in the two-dimensional case study, we consider that given the physical com-
plexity of the problem and the tendency for some numerical error to persist after
stabilization of the model Pbk, this level of precision offered by a reduced basis space
to approximate the solution manifold Mbk satisfactory.

6.1.1 Sensor locations and update space

We again want to study the PBDW formulation in the case of various sensor con-
figurations Σ. Σ1 is a randomly selected set (figure 6.4 left), Σ2 sensors are placed
on a quasi uniform grid at z = 0.75m height (figure 6.4 right), and Σ3 sensors were
chosen on a quasi uniform grid at heights z = 0.5m, z = 1m, and z = 1.5m (figure
6.5) by a Greedy-based procedure to optimally select sensors.

Figure 6.4 – Sensor locations Σ1 (left-middle), and Σ2 (right).

179



Figure 6.5 – Sensor locations Σ3 chosen by a greedy algorithm. Left: sensors at height
z = 0.5m. Right: sensors at height z = 1.5m.

In figure 6.6 we compare the stability constant βN,M (3.17) for the different sets
of sensor locations Σ. We can see that the best stability is given by the sensors
chosen by a greedy procedure Σ3, and sensors Σ2 attain equivalent stability for
higher M -values, while sensors Σ1 induce overall less stable systems.
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Figure 6.6 – Stability constant βN,M in H1 norm as a function of M for various N values,
for sensor locations Σ1 (top left), and Σ2 (top right), and for sensor locations Σ3 chosen
by a greedy procedure (bottom).

In figure 6.7 we compare the condition numbers of the PBDW matrix for the
different sets of sensor locations. We see the same pattern as with the stability con-
stants here, with the greedy-placed sensors Σ3 inducing an overall best-conditioned
system (even if we do see slight improvement from the grid locations Σ2 for low
values of N and high values of M), and poor conditioning in systems induced by Σ1.
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Figure 6.7 – Condition Number of PBDW matrices in H1 norm as a function of M for
various N values, for sensor locations Σ1 (top left), Σ2 (top right), and for Σ3 chosen by
a greedy procedure (bottom).

6.1.2 PBDW state estimation

Given the different nature of this case study configuration as compared to our 2D
study in chapter 5.1, we first study during an offline stage the compatibility of
this configuration with the PBDW method on a set of 10 training solutions Ξbk

test

for p ∈ Ξbk
train, not included in the background basis. We select these solutions

carefully to represent those which are both closely dependent on the basis functions
of ZN (training solutions with low projection error) and those which are least well
approximated by the basis( training solutions with maximal projection error for
N = 15− 20)

While the full dimension of Mbk is N = 10, we do not rule out a background
basis of dimension N = 8 because two of the source locations are relatively close to
others, and we wish to see if this small spatial shift can be relatively well represented
in overall state estimation on Ω with a smaller background ”basis”.

In figure 6.8 we consider the PBDW approximation of a training solution for
p ∈ Ξbk

test, using background spaces ZN built by a Greedy algorithm or a POD
method. We can see that both background spaces resulted in some ”phantom” pol-
lution being added, but to a lesser extent with the Greedy basis.
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Figure 6.9 compares PBDW errors (5.9) to simple projection errors (5.4) in log-
arithmic scale for this same solution. We can see that both background spaces
resulted in some ”phantom” pollution being added at each of the source positions
represented in the background spaces ZN , but to a lesser extent with the Greedy
basis.

In what follows we chose to use RB background spaces ZN constructed by a
Greedy algorithm. In figure 6.10 we see the PBDW approximations of two training
solutions, one which is very well-approximated by the background space and one
which is less-well approximated. We see good reconstruction of the solution in each
case.

We next considered sets of trial solutions to a shifted model P trial for parameters
p ∈ Ξtrial ⊂ Dbk\Ξbk

train, as seen in chapter 5.1. Here the variations of the parameters
p ∈ Ξtrial are the intensities of the 10 sources, and we used sensor sets Σ2 and Σ3.

In figures 6.11 and 6.12, we see relative mean and maximal PBDW approxima-
tion errors, as defined in equations (5.10) and (5.11), using the sensor set Σ2 6.4,
over a trial set of solutions with p ∈ Ξtrial with no model error and with a reaction
coefficient R = 0.0001, respectively. We see in both figures a significant drop in error
from N = 10, and degraded approximation quality as N approaches M , particularly
in the case of the imperfect model P trial, consistent with the stability coefficients
shown in figure 6.6.

In figures 6.13, 6.14, and 6.15 we consider the optimal sensor set Σ3 6.5 chosen
by a greedy procedure. We again see relative mean and maximal PBDW approxi-
mation errors over p ∈ Ξtrial with no model error and with a reaction coefficients
of R = 0.0001 and R = 0.001. We again see a significant drop in approximation
error from N = 10, particularly in the case of a perfect model Pbk, in which case
we have negligible error both in mean and maximal. In the case of smaller model
error 6.14, we attain about 1% error in the PBDW approximation, and in the case
of significant model error 6.15, we attain about 10% approximation error.

In figures 6.16 and 6.17 we see relative mean approximation errors plotted over
the calculation domain, as defined in (5.9), for M = 20 and N = 12 or N = 10.
We see negligible error in the case of a perfect model, only visible in the intensity
of the sources. In the case of model error by a reaction term of R = 0.0001, we
see more significant error, but still under 1% almost everywhere for sensor set Σ2,
and everywhere for sensor set Σ3. We notice that for N = 10, sensor set Σ2 has
lower error peaks than the greedy-selected sensor set Σ3, however the Σ2 solution is
significantly degraded for N = 12. This coincides with the instability with respect
to M and N values which we see in figures 6.11 and 6.12, where as the Σ3 solutions
remain satisfcatory for various N values.

In figure 6.18 we see the mean approximation error in the case were we neglect to
span the entire solution manifold, and only consider N = 8 background basis func-
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tions. If two locations are very close to one another, we see that we can reasonably
reconstruct the pollution field (but would not expect the new source location to be
identified unless we have a sensor very close by), and in this case of trial solutions
for parameter set Ξtrial we did not correctly identify the intensity of the sources.
We do not consider this result surprising given the dimension of the solution space.
The correction provided by the update space allows for incorporation of the M data
points, but does not make up for an under-represented solution manifold. We note,
however, that relative PBDW approximation error is under 1% over the majority
of the domain, and the majority of the error is committed in the identification of
source intensity.

We conclude from this study that given a finite (and relatively small) set of
possible source locations, the PBDW method is capable of identifying the intensity
of the sources (including the non-existence of the source as zero-intensity), provided
the background space ZN represents each of the possible source locations.
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Figure 6.8 – PBDW approximated concentration using non-noisy synthetic data as com-
pared with the FEM concentration solution with source intensity I = 1.11× 10−4. FEM
solution (top), POD-PBDW approximation (bottom left), Greedy-PBDW approximation
(bottom right).
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Figure 6.9 – Relative PBDW approximation error using non-noisy synthetic data in log
scale. Solution with intensity I = 1.11× 10−4.
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Figure 6.10 – FEM concentration simulation (left) ; relative PBDW approximated con-
centration using non-noisy synthetic data (right).

10-5

10-4

10-3

10-2

10-1

100

101

2 4 6 8 10 12 14 16 18

R
el

at
iv

e 
P

B
D

W
 E

rr
or

N 

M=20 M=15 M=13

10-5

10-4

10-3

10-2

10-1

100

101

2 4 6 8 10 12 14 16 18

R
el

at
iv

e 
P

B
D

W
 E

rr
or

N 

M=20 M=15 M=13

Figure 6.11 – Relative mean (5.10) (left) and maximal (5.11) (right) PBDW approximation
errors in the H1-norm as a function of N for various M -values, using synthetic trial data
for parameter set Ξtrial with no model error (model Pbk), and sensor locations Σ2.
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Figure 6.12 – Relative mean (5.10) (left) and maximal (5.11) (right) PBDW approximation
errors in the H1-norm as a function of N for various M -values, using synthetic trial data
for parameter set Ξtrial with reaction coefficient R = 0.0001 (model Ptrial), and sensor
locations Σ2.
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Figure 6.13 – Relative mean (5.10) (left) and maximal (5.11) (right) PBDW approximation
errors in the H1-norm as a function of N for various M -values, using synthetic trial data
for parameter set Ξtrial with no model error (model Pbk), and sensor locations Σ3.
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Figure 6.14 – Relative mean (5.10) (left) and maximal (5.11) (right) PBDW approximation
errors in the H1-norm as a function of N for various M -values, using synthetic trial data
for parameter set Ξtrial with reaction coefficient R = 0.0001 (model Ptrial), and sensor
locations Σ3.
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Figure 6.15 – Relative mean (5.10) (left) and maximal (5.11) (right) PBDW approximation
errors in the H1-norm as a function of N for various M -values, using synthetic trial data
for parameter set Ξtrial with reaction coefficient R = 0.001 (model Ptrial), and sensor
locations Σ3.
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Figure 6.16 – Relative mean PBDW errors (5.9) for M = 20, using synthetic trial data
for parameter set Ξtrial and sensor locations Σ2. Left: no model error. Right: reaction
coefficient R = 0.0001 (model Ptrial).

190



Figure 6.17 – Relative mean PBDW errors (5.9) for M = 20, using synthetic trial data
for parameter set Ξtrial and sensor locations Σ3. Left: no model error. Right: reaction
coefficient R = 0.0001 (model Ptrial).
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Figure 6.18 – Relative mean PBDW error (5.9) for M = 20 and N = 8, using synthetic
trial data for parameter set Ξtrial, sensor locations Σ3, and reaction coefficient R = 0.0001
(model Ptrial).

CPU times: For this three-dimensional case study we considered a fixed wind field
which took just over 3 days to compute using Code Saturne with 1500 iterations
on a 74GB desktop machine with 8 cores. We considered a training set of 74
concentration solutions (32.6h of concentration calculations), for a total time of
nearly 5 days for the computation of a training ensemble. Table 6.1 gives offline
computation times for the construction of the approximation spaces and PBDW
system for M = 15 and N = 10.

CPU Times Offline Stage
blanc

74GB RAM desktop

Training set Ntrain = 74 < 5days

PBDW (M = 15, N = 10) ∼ 8h

Table 6.1 – Offline computational times of the PBDW method over the 3D calculation
domain.

Figure 6.19 shows online calculation times of the online phase for the FEM so-
lution with SUPG, as compared to the PBDW method online phase.
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Figure 6.19 – Computational times for the PBDW method online for this case study.

Once the computationally-heavy offline stages has been accomplished for our
PBDW configuration, we have the possibility of state estimation in quasi-real-time,
with more than a 100-fold time gain with respect to classical approximation by
finite elements for the reconstruction of the PBDW approximation over the full
computational domain.

6.1.3 PBDW Norm Modifications

In section 5.4 we briefly considered the merits of the alternative H̃1-norm (4.21)
introduced in section 4.1.1.3. Here we want to again make the comparison. In figure
6.20 we see update basis functions computed in the H̃1-norm for sensor locations Σ2
. We can see that the norm change has enlarged the support of each functions and
lowered the maximal values, essentially smoothing the functions.
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Figure 6.20 – Update basis functions constructed by Riesz representation (3.7) in the H1-
norm (left), as compared to those constructed in the H̃1-norm (4.21) (right), presented on
a common scale.

In figure 6.21 we compare PBDW relative mean approximation errors over the
computational domain on a set of trial solutions to P trial with R = 0.001 approxi-
mated by a PBDW system in the H1 or H̃1 norms. We can see that while the error
maps take similar forms, the errors are generally more elevated in the H̃1 PBDW
formulation.

Figure 6.21 – Relative mean PBDW errors (5.9) for M = 20 and N = 12, using synthetic
trial data for parameter set Ξtrial with reaction coefficient R = 0.001 (model Ptrial), and
sensor locations Σ2 . PBDW approximation in H1 norm (left), and H̃1 norm (right).
Relative errors computed in the H1-norm.
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In figure 6.22 we compare PBDW relative mean approximation errors in H1-norm
on the same set of trial solutions to P trial with R = 0.001 approximated by a PBDW
system in the H1 or H̃1 norms. Here we see clear instability in the approximation
results offered by the H̃1 norm. The climb in approximation error seen in the H1-
norm is to be expected as N nears M , as seen in our discussion on stability. However
the large peak in approximation error for the H̃1 PBDW system is not optimal.
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Figure 6.22 – Relative mean PBDW errors in the H1-norm as a function of N for M =
20, using synthetic trial data for parameter set Ξtrain (model error only) with reaction
coefficients R = 0.001 and R = 0.0001 (model Ptrial), and sensor locations Σ2. In H1

norm (left), and H̃1 norm (right).

This initial study of the H̃1 norm using previously chosen sensor locations leads
us to the same initial conclusion we took in the previous study in section 5.4. While
the H̃1 norm does successfully smooth our update basis functions, for the sensor set
Σ2 we see no evidence of improvement of PBDW state estimation results, which we
attribute to a loss in stability of the system. In what follows we will continue to
consider the H1-norm. However, in light of the more recently improved results after
reflection upon sensor placement for the H̃1 Update space described in section 5.4.1,
we add the three-dimensional extension of this H̃1 adapted study to the perspectives
for this work.

In this case study configuration we employed the PBDW method to reconstruct
the pollution field from various sources of varying intensities. The method reasonably
well reconstructed the pollution fields, even when nearby sources were represented
by a single basis function. However, the reconstruction from point sources at discrete
locations is not the most adapted application for RBMs, and we chose to modify the
configuration in what follows.

6.2 Adapted dimensionless case study

In this section we consider an application of the dimensionless formulation from
equation (4.67) presented in section 4.2.2.3. We consider the same three-dimensional
domain in figure 6.1, but here we modify the pollutant source representation. In-
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stead of considering what (for our purposes represent) point sources of combustion,
we consider area sources over a small emission domain. The justification for this
is twofold: in a residential neighborhood we cannot know exactly where backyard
combustion would take place, and in-home wood-burning combustion would be a
fixed source, hence the moving of small combustion sources is not necessarily real-
istic. Secondly, identifying the location of point sources is not always adapted to
MOR methods. Below we see a representation of the emissions domains.

Figure 6.23 – 3D test domain with combustion and traffic pollution sources.

We consider the same wind field shown in figure 4.6. We define the model Pbk as
equation (4.67), with parameters being the intensity of the three pollutant sources
and the background concentration cin. We define the parameter space Dbk as follows.

Dbk = {(cin, ch, cb, cr) ∈ Dbkin ×Dbky ×Dbky ×Dbkr } (6.1)

where

Dbkin = [1× 10−12 : 1× 10−8]
Dbky = [0 : 1× 10−6]
Dbkr = [0 : 1× 10−7]

The emission quantities correspond to those in paragraph subsection 5.1.2, adjusted
for the larger source region. The background concentrations are based on EPA
air quality standards for a three-year average over California (www3.epa.gov). We
consider our characteristic length for the dimensionless equations Lg = 60m, and
characteristic concentration of 1× 10−6.
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Figure 6.24 – Concentration solution (logarithmic scale) over velocity field with p = (1×
10−8, 0, 1× 10−6, 5× 10−10) kg

m3 (left), and p = (1× 10−12, 1× 10−6, 1× 10−7, 1× 10−7) kg
m3

(right).

6.2.1 A Simpler Background Space

In this study configuration, the varying parameters are the source terms and bound-
ary terms of a linear equation. We are thus not in the framework of RBMs, as each
solution affinely depends on just 4 solutions to Pbk. We see these ”basis” functions
in figure 6.25, including the ”zero” solution as the fourth function, serving to treat
varying background concentrations as a parameter, while each of the other three
functions were computed with the same background concentration for stability of
the numerical FEM problem.
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Figure 6.25 – Set of N = 4 solutions to Pbk for p ∈ Dbk, spanning the solution manifold
Mbk.

In figure 6.26 we see the mean and maximal relative projection errors in H1 norm
as a function of N of a training set of particular solutions for varying parameters in
Dbk of equation (6.1) onto a set of up to 4 solutions as seen in figure 6.25. We can
see a sharp drop in error up to N = 4, as expected.
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Figure 6.26 – Projection errors of a training ensemble of solutions to Pbk onto the set of
up to 4 solutions shown in figure 6.25 . Relative mean and maximal errors in H1 norm as
a function of N .

6.2.2 Sensor locations and Update space

We considered here the GEIM-inspired selection of sensor locations presented in
section 4.1.2 over the set Σ of possible locations given in subsection 6.1.1, seen in
figure 6.5.

Figure 6.27 – Sensor locations chosen by GEIM algorithm over the training set in section
6.2. Left: sensors at height z = 0.5m. Middle: sensors at height z = 1m. Right: sensors
at height z = 1.5m

In figure 6.28 we can see the stability constant βN,M (3.17) associated to the
PBDW system. We can see that the stability constant is relatively high, which is
unsurprising given the low value of N .
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Figure 6.28 – Stability constant βN,M in H1 norm as a function of M for various N values,
for sensor locations chosen by a greedy procedure.

6.2.3 PBDW state estimation

In the following we will consider three sets of Ntrial = 20 trial solutions to test the
method. Each of the trials corresponds to parameters within Dbk but different from
the values used in the training set for the RB space. One set consists of solutions to
equation (4.67) representing the (unrealistic) case of a perfect model Pbk, with the
goal of demonstrating the error inherent to the PBDW MOR method. The remain-
ing trial sets consist of solutions to the dimensionless advection-diffusion-reaction
problem (4.73) as in section 4.2.3 with reaction coefficients (be adimensionalizing)
of 0.001c and 0.0001c. These sets are used to demonstrate how the method handles
two levels of model error.

In figures 6.29 and 6.30 we compare the ”true” solution to P trial to the PBDW
approximation, for p = pmax defined as in (5.6), where pmax = (cin, ch, cb, cr) =
(1× 10−12, 5× 10−7, 0, 5× 10−11).

On the left of figure 6.29 we see the FEM solution to Pbk for pmax, and on the
right we see the associated PBDW approximation for M = 8 and N = 3. We can see
that the dominant source and advected pollution is very well represented, as is the
less-intense street source. However our PBDW approximation fails to reconstruct
the correct background concentration, missing its mark by one order of precision.
The instability seen in the PBDW approximation represents an over-shot correction
at a sensor location, corresponding to the subtraction of an update basis function to
match the measurement of the background concentration and some numerical insta-
bility. Given the different orders of the concentration sources and the background
concentration, it is unsurprising that the minimization posed in equation (3.11) does
not correct for this term which is up to 6 orders smaller than the others.

In figure 6.30 we compare the FEM solution to P trial with R = 0.001 for pmax
to the associated PBDW approximation for M = 8 and N = 3. We again see that
the dominant source and advected pollution is very well represented, however in this
case with significant model error present in the best-knowledge model, our PBDW
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approximation apparently has not reconstructed the background concentration or
the secondary source. Again we attribute this to the dimensionality of the dominant
source term, being up to 6 orders larger than the other parameters.

In figures 6.31 and 6.32 we see relative mean and maximal PBDW approxima-
tion errors in the H1 norm, and plotted over the computation domain, respectively,
for trial solutions to Pbk with p ∈ Ξtrial. We can see that from N = 3 we have
quite good precision of the PBDW approximation, around 1% mean and under 10%
maximal error. When we map the relative mean PBDW approximation errrors over
the computation domain, we can see numerical instability in the peaks of the errors,
and that the majority of the error is in a high recirculation zone.

In figure 6.33 we see relative mean and maximal PBDW approxiimation errors in
the H1 norm for trial solutions to P trial with R = 0.001 and parameters p ∈ Ξtrial.
Here we see less precision in the PBDW state estimation, but still relatively good
considering the non-negligible level of model error, and that we consider we have
numerical instabilities adding to our model error. In figure 6.33 we see that with
this added model error M = 5 is not enough sensors for optimal global precision,
but adding over M = 10 data points gains no improvement.

We see promising results here, but remark that the PBDW method is not exempt
from the dimensionality problems which can affect data assimilation methods. A
formulation with weights on the terms corresponding to smaller-dimension in the
selection of sensors by GEIM could be considered in future study.

Figure 6.29 – Trial solution corresponding to maximal error, pmax ∈ Dbktrial (5.6), loga-
rithmic scale. Using synthetic trial data for parameter set Ξtrial with model error with
no model error. FEM solution (left), PBDW approximation (right). We set M = 8 and
N = 3 here.
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Figure 6.30 – Trial solution corresponding to maximal error, pmax ∈ Dbktrial (5.6), logarith-
mic scale. Using synthetic trial data for parameter set Ξtrial with model error with an
added reaction term of R = 0.001. FEM solution (left), PBDW approximation (right).
We set M = 8 and N = 3 here.
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Figure 6.31 – Relative mean (5.10) (left) and maximal (5.11) (right) PBDW approximation
error as a function of N for fixed M values. Using synthetic trial data for parameter set
Ξtrial with no model error (model Pbk). Sensor locations chosen by a greedy procedure.
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Figure 6.32 – Relative mean PBDW approximation error maps for M = 4 and N = 3
(left), and M = 10 and N = 4 (right). Using synthetic trial data for parameter set Ξtrial
with no model error (model Pbk). Sensor locations chosen by a greedy procedure.
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Figure 6.33 – Relative mean (5.10) (left) and maximal (5.11) (right) PBDW approximation
error as a function of N for fixed M values. Using synthetic trial data for parameter set
Ξtrial with R = 0.001 (model Ptrial). Sensor locations chosen by a greedy procedure.
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Chapter 7

A Real-World Application: Air
Quality Modeling for Fresno
Résumé :

Ce chapitre porte sur la mise en place de la méthode PBDW pour une application
in-situ sur un quartier de 800m × 800m à Fresno en Californie. Cette ville est
particulièrement touchée par de fortes concentrations de pollution. Cette applica-
tion est en vue de l’évaluation d’exposition menée par une équipe de recherche en
épidémiologie à l’Université de Californie Berkeley (UCB). Le but à long terme est
d’améliorer les méthodes pour estimer des expositions individuelles. L’écoulement
d’air sur le domaine a été calculé sur la base des données météorologiques du 1 avril
2001. On considère que les sources de pollutions sont deux larges rues. Le position-
nement des capteurs est choisi par un algo de type greedy parmi un ensemble de
2250 positions. On étudie la stabilité et la convergence de la méthode en fonction du
nombre de point de mesure et de l’erreur de modèle (aucune, petite ou moyenne).
On remarque que l’on arrive à reconstruire le champ de concentration jusqu’à 1%
de précision presque partout dans le domaine.

Tableau récapitulatif des temps de calcul de la phase en ligne de la PBDW.

On conclut le chapitre avec une discussion sur les implications de ces résultats, et
des perspectives pour de futurs travaux.
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In this chapter we present a collaboration between two disciplines, the mathe-
matical methods presented in this thesis and the epidemiology exposure assessments
employed by a research team at UC Berkeley (UCB). The long-term goal is to im-
prove the methods for estimating individual exposures and expand the ability of
current UCB epidemiologic studies to evaluate the association of these exposures
to various health conditions from allergies and asthma to birth defects and glucose
dysfunction. As scientific measures of health outcomes have become more refined,
the need for more accurate evaluation of exposure has grown.

7.1 Introduction

In California, the San Joaquin Valley (SJV) air basin is particularly impacted by high
concentrations of ambient particulate matter (PM) and other pollutants. Fresno,
one of the largest cities within the SJV, has been the study area for over a decade of
air pollution epidemiology studies examining the impact of air pollution on children’s
health. The rich UCB measurement data (15 years of hourly data for multiple air
pollutants at numerous locations in one city) provide input data for both model
refinement by PBDW implementation and validation of results. The results of this
method could prove helpful to the research team at UC-Berkeley, and provide the
groundwork for application of these methods in studies closer to home, to serve the
French environmental health program for example.

Figure 7.1 – Geographical location of interest: San Joaquin Valley.

An advantage of this collaboration with UCB is that the state of California is a
leader in air quality studies, with a wealth of data (e.g. emissions) and modeling
expertise.

The collaboration with the team led by Dr. Noth and Professor K. Hammond
began in the framework of a grant application for the France Berkely Fund, and
continued with a visit to UCB as a Visiting Student Researcher in Fall of 2015.
The results from these initial works will be presented here. Dr. Noth and Pr K.
Hammond are currently involved in the on-going Children’s Health and Air Pol-
lution Study (CHAPS), a collaboration of UC Berkeley, Stanford University, UC
San Francisco, and California State University, Fresno, funded as a Children’s En-
vironmental Health Center by NIEHS and USEPA, designed to study the effects of
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pollutant gases, PM, black carbon (BC) and elemental carbon (EC), and polycyclic
aromatic hydrocarbons (PAHs) on health outcomes in a cohort of children. These
studies have employed statistical models for exposure prediction using either spatial
interpolation or linear regression to account for temporal and spatial trends in air
pollution [138,139].
Since 2001, the UCB team has collected hourly data on the criteria air pollutants
(ozone, PM2.5, PM10, carbon monoxide (CO), nitrogen oxides (NO2, NOX), and
sulfur dioxide), and standard meteorology measures (e.g. wind direction and speed,
temperature, relative humidity) from routine air quality measurement networks (run
by the California Air Resources Board, the San Joaquin Valley Air Pollution Con-
trol District and the US EPA). In addition to these routine measurements, hourly
data has also been collected for particle-bound PAH and BC for the past 14 years
at 1-4 sites (e.g., 3 sites for 2002-3; 4 sites from 2014-2018). During two periods of
time extensive spatial sampling was conducted, when data were collected at a larger
number of sites (see figure 7.2).

Figure 7.2 – Maps of sensor locations and subjects’ homes in Fresno. Left: FACES
spatially-rich monitoring. Homes with sampling sites are marked by orange squares, other
subjects’ homes by blue dots. 8 schools were also monitored. Right: CHAPS spatially-rich
monitoring sites, in yellow and magenta. [197]

The goal of this colaboration is to apply the PBDW method to air quality mod-
eling over the city of Fresno, beginning by studying a small neighborhood in Fresno
with simulated data from the LUR model implemented by EM Noth [138]. This
provides a first near-real-world application of the PBDW MOR and data assimila-
tion method, and lays the groundwork for extension to a larger domain using real
measurement data on air pollution and meteorological conditions collected in Fresno
from 2001 through present (see figure 7.3).
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Figure 7.3 – Pollution and meteorological sensors in Fresno [139]

Challenges and Difficulties

This project is exceptionally challenging, and we hoped our initial work would be
the first steps toward a larger collaboration.

A significant hurdle necessary before beginning any modeling effort is to con-
struct a three-dimensional geometry representing the domain of study. It is then
necessary to select a model, and determine whether an operational model could be
incorporated. Furthermore meteorology and emissions data are necessary, to select
a database, understand the format of the data, and integrate it with the model. A
method of validating the simulations and final state estimation is also crucial.

7.2 Fresno Case Study: a central neighborhood

We began by selecting a neighborhood in Fresno measuring approximately 2km2,
represented in map view in figure 7.4.

Figure 7.4 – Maps of calculation domains in Fresno. Left: Full view. Right: Zoom on
reduced domain (Map data: Google 2015)
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This neighborhood was chosen strategically to include a data measurement head-
quarters where meteorological data is available as well as a second data point for
multiple criteria pollutants. The neighborhood is mostly residential and contains
two elementary schools and a park, making it a relatively simple urban geometry
including multiple potential regions of interest for air quality studies.

7.2.1 Geometry and Mesh

The first step toward pollution modeling over Fresno was the construction of a 3D
geometrical representation of the neighborhood using data available online. We note
that this step is often reduced to the selection of a 3D urban model available. In fact
in many European cities, urban models are readily available, and more are being
made available. This was not the case over Fresno.

We started with downloadable layers of Fresno in shapefiles available on the
Fresno city website (https://www.fresno.gov/publicworks/developer-doorway/technical-
library), which provided two-dimensional GIS (geographic information system) data
on the streetplan, locations of addresses, parks, and 2D building footprints. These
can be read in GIS software such as QGIS [183] (free two-dimensional GIS software)
or ArcGIS [68] (more sophisticated GIS software).
We detailed the geographical data more using GoogleEarth (www.google.com/earth/download)
to create three-dimensional representations of the remaining buildings in the neigh-
borhood. A simplified approximation can be made by adding a polygon to MyPlaces
resembling the building, and saving the place as a .kmz file. The painstakingly cre-
ated individual building files can then be imported into ArcGIS as a vector layer,
then added to the map, and eventually merged with other shapefiles as desired.
Once the buildings were added, we removed approximately half the address points
(address numbers are skipped in most cities), and used the ”buffer” feature of the
software to build a rectangular shape around each address point. We then extruded
the rectangles to make simple 3D representations of of a single-story house of similar
size to those in the neighborhood.

In figure 7.5 we see the original shapefiles, along with the trimmed-down address
shapefile and an additional shapefile containing (sparse) 2D building footprints.
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Figure 7.5 – Representations of the domain in QGIS [183]. Left: available GIS data over
Domain 1. Right: supplemented and formatted GIS data.

In figure 7.6 we can see the full 3D geometry in ArcGIS, after complementing
available data using GoogleEarth.

Figure 7.6 – ArcGIS [68] representation of the neighborhood from geographical data, with
constructed residential homes at locations of addresses.

We then exported the GIS data to SolidWorks [2], from which we converted
the file to .step format in 3D with an atmospheric height of 30m, chosen from
literature estimates of a 30m boundary layer. We chose to set the origin at ground
level of the measurement headquarters, and thus converted 2D GIS data into a 3D
cartesian geometrical calculation domain. In figure 7.7 we see this three-dimensional
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geometry in Salome-Platform [32], software used to construct a mesh, in which we
defined boundary labels for use in simulation. We also illustrate a zoom on the
three-dimensional mesh of over 6 million nodes in Salome.

Figure 7.7 – Salomé [32] representation of a 3D geometrical domain made by extrusion of
the 2D data, centered at a chosen data point (left). Zoom on the 3D calculation mesh
(right).

These figures represent the neighborhood of Fresno during the various steps of
creating a calculation mesh for our CFD and CTM studies, first step toward urban-
scale modeling of air quality over Fresno. In case studies over cities where this data
is publicly or privately available, this time-consuming step is unnecessary, as urban
digital maps can be coupled with external softwares to provide the urban geometry
for the code of our choice.

7.2.2 A CFD wind field

Once we disposed of a computation domain and appropriate conforming mesh,
we used historical meteorological data from the measurement headquarters (con-
veniently placed at (0, 0, 0)) to select a time for our study.

Here we employed Code Saturne as described in section 4.2.1 (and appendix
C) to calculate a CFD wind field over the domain constructed to represent Fresno
(figure 7.6). We note that our domain includes an appropriate ”buffer” zone of 15L
where L is the dimension of the most exterior obstacle.

Figure 7.8 represents the velocity field over the calculation domain (a cut at
z = 1m and a vertical cut to represent the logarithmic inflow profile) after 3500
time steps of 0.1s. Boundary conditions correspond to those described in section
4.2.1 and section 6 for a South-Easterly wind (direction 308◦ at 11.4km

h
). This wind

direction and speed was chosen based on meteorological data from April 1, 2001,
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when we found a 12-hour period during which wind direction fluctuated less than 30◦.
We averaged the hourly wind directions and velocities to set our aggregated inflow
conditions. We then consider that the measurement was taken at approximately
10m, to determine the appropriate coefficient c = 1.3 from equation (4.36).

Figure 7.8 – Wind field over a neighborhood of Fresno for ~vin = 1.3 ∗ z0.4 in SE direction
(308 deg), corresponding to conditions over Fresno on 1/4/2001. Left: a horizontal cut at
z = 1m. Right: illustration of the vertical flow profile with an added vertical cut.

As in the 3D case study presented in section 6, the CFD velocity field was
aggregated over 50 time steps in order to treat it as stationary for this first imple-
mentation. This was computed on a desktop machine with 74GB of RAM using 8
cores, and calculation time necessary to reach a stabilized velocity field took 37 days
for 3750 time iterations over nearly 6 minutes of simulation time window.

7.2.3 Pollutant concentration fields

In Fresno, home heating by wood burning is common, contributing to the high con-
centrations of PM. We thus chose to first study PM2.5. Factors taken into consid-
eration in this choice are the numerous measurement sites available for this criteria
pollutant, and the relatively negligible reaction (as opposed to gaseous species).

Given the size of this large residential neighborhood of Fresno and the level of
mesh refinement necessary for transport simulations over an advection-dominated
realistic wind field, the accurate simulation of pollutant dispersion by PDE’s with-
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out the employment of more robust codes and powerful calculation machines was
determined to be impractical. The concentration calculation domain was thus taken
to be a subdomain of the geometry in figure 7.6, as seen in figure 7.9.

Figure 7.9 – Representation (ArcGIS) of a neighborhood in Fresno over which a wind
field was computed using Code Saturne (left). Representation of a subdomain of the fluid
domain used to study pollutant concentrations (right).

This domain is approximately 800m × 800m × 30m, and we considered a mesh
of 1.64 million nodes. We translated the full-sized domain by a characteristic
length of Lg = 100m as in section 4.2.2.3 and used dimensionless equations, where
cg = 1 × 10−12 kg

m3 . We used a reduced velocity field with ~v = ~vtrue/5 for compu-
tational stability without drastically refining the mesh; in future applications mesh
adaptation should be considered to construct an appropriately (but not excessively)
refined mesh for concentration transport computations on the full velocity. Solu-
tion of the stabilized finite element model Pbk given by (4.61) in FreeFem++ took
approximately 31 minutes.

In figure 7.10 we see a trial solution to P trial given by equation (4.73) with
R = 0.001, where pollution sources are taken to be two streets with intensities 5×
10−7 kg

m3 s
−1 and 5×10−9 kg

m3 s
−1, chosen as described in section 5.1.2, and a background

concentration of 5× 10−11 kg
m3 .

We computed a set of 8 trial solutions for source intensities and background
concentrations not represented by the basis functions of the background space ZN
constructed from Pbk
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Figure 7.10 – A concentration solution to Pbk with two street pollution sources.

In order to study the dimension of the solution manifold, which we expect to
be N = 3 given the linearity of the problem Pbk, we perform a POD analysis. We
computed an ensemble solutions with these three parameters p = (p0, p1, p2) ∈ Ξbk

train

such that the background concentration p0 ∈ [1 × 10−12; 1 × 10−8], and the street
source intensities p1, p2 ∈ [0; 1× 10−7].

In figure 7.11 we see the eigenvalues of the H1 norm correlation matrix (2.9) as-
sociated to solutions to Pbk for p ∈ Ξbk

train, along with the H1 POD projection errors
as a function of N , as described by (2.10) and (2.11). These images demonstrate
the relatively small dimension of the solution manifold for the parameter space we
considered, however we can see that the dimension is larger than 3. In fact, the
rank of the stiffness matrix is 13. We attribute this to numerical instabilities in
the computational code for our model Pbk. We could choose to neglect this aspect,
however if we want to account for cases of imperfect best-knowledge models, the
imperfection could very well include numerical instabilities which we can’t always
remove by hand (not to mention that in automatic processes we do not make by-
hand modifications). We thus chose to accept this imperfection in our model and
treat the solution as higher dimension than 3.
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Figure 7.11 – Left: Eigenvalues of H1-norm correlation matrix associated to the ensemble
of solutions to Pbk for p ∈ Dbk. Right: Mean and max relative POD projection errors of
these solutions.

7.2.4 PBDW state estimation

We want to test a first implementation of the PBDW method with this significantly
more complex domain.

In order to compute our Update space we need to select sensor locations in the
domain. We defined a set of 2254 possible locations over the domain and performed
a greedy procedure of selection. In figure 7.12 we see a selection of potential sensor
locations among the relatively dense grid, and we see the set of 25 sensors selected
by a greedy procedure. We can see that many of these sensors are on the very edge
of the domain.

Figure 7.12 – Potential sensor locations, from a set of 2250 at varying heights (left), and
25 Greedy-selected sensors (right).
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In figure 7.13 we see the stability constant βN,M (3.17) for the PBDW system, as
well as the condition numbers of the PBDW matrices. We can see that we greatly
lose stability from N = 6, and the matrix is poorly conditioned.
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Figure 7.13 – Left: stability constant βN,M (3.17) with ‖ · ‖X = ‖ · ‖H1 . Right: condition
number of PBDW matrices, with ‖ · ‖X = ‖ · ‖H1 . As a function of M for N = 3, 5, 8, 13.
Sensor locations chosen by a greedy algorithm

We denote by Ξtrial the parameter set for the group of trial solutions, each pa-
rameter corresponding to a parameter ptrial ∈ Dbk \ Ξbk

train. In order to test the
PBDW method in accuracy and stability on our large and complex domain (with no
more sensors than over the smaller domains), we will use synthetic data from these
trial solutions in order to simulate measurement data and model error, and compute
approximation errors of the PBDW method. The goal is to determine whether the
PBDW method is robust enough for this application before attempting to implement
with real data and no way of precise validation by calculation of true error.

In figure 7.14 we compare the FEM solution to model P trial with R = 0.0001
to the associated PBDW approximation for parameter pmax (5.6). We can see that
the PBDW state estimate closely resembles the ”true” solution, even for this con-
figuration in which we see an effect of pollutant accumulation in a zone of high
recirculation near a traffic source.
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Figure 7.14 – FEM solution (left), PBDW approximation for M = 8 and N = 3 (right)
with pmax ∈ Dbktrial (5.6) and synthetic data with reaction term of R = 0.0001 (model
Ptrial).
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Figure 7.15 – Relative mean (5.10) (left) and maximal (5.11) (right) PBDW approximation
error as a function of N for fixed M values. Using synthetic trial data from Pbk, p ∈ Ξtrial,
no model error. Sensor locations chosen by a greedy procedure.

In figure 7.15 we can see Relative mean (5.10) and maximal (5.11) PBDW ap-
proximation errors as a function of N for fixed M values. We see peaks in the ap-
proximation error correlated the stability and conditioning plots and with N -values.
We determine that the improved span of the solution manifold with numerical in-
stabilities after N = 5 no longer compensates for the instability of adding solutions
which, aside from numerical instabilities, are already included in the span of the
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background space ZN . In figure 7.16 we see these mean and maximal PBDW ap-
proximation errors over a trial set of solutions to model P trial with a R = 0.0001. In
this case we can see that the model error renders the formulation less stable, partic-
ularly for higher numbers of measurement points M . We saw this trend in section 6
as well, and speculated that the poorly-conditioned system may be over-determined,
but this effect calls for more investigation.
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Figure 7.16 – Relative mean (5.10) (left) and maximal (5.11) (right) PBDW approximation
error as a function of N for fixed M values. Using synthetic trial data from Ptrial, p ∈
Ξtrial, reaction term R = 0.0001. Sensor locations chosen by a greedy procedure.

In figure 7.17 we compare the PBDW approximation quality for two levels of
model error, R = 0.0001 and R = 0.0005, in the model P trial. We see that, as
expected, errors for a higher level of model error are higher, up to one order of
precision, but that the curves take the same shape.
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Figure 7.17 – Relative mean (5.10) and maximal (5.11) PBDW approximation error as
a function of N for M = 8. Using synthetic trial data with added reaction terms of
R = 0.0001 andR = 0.0005 in model Ptrial. Sensor locations chosen by a greedy procedure.

In figures 7.18 and 7.19 we show relative mean PBDW approximation errors plot-
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ted over the calculation domain, as defined by (5.9), for two sets of 8 trial solutions
with p ∈ Ξtrial, solutions to Pbk and to P trial with for R = 0.0001, respectively. We
can see that for this example with a background space perfectly representing the
physical phenomena and parameter space (the case of trial solutions to Pbk with
no reaction term), we have entirely negligible error. With model error by an added
reaction term, we can reconstruct the concentration field to at least 1% precision
almost everywhere in the domain, a promising result for future application of these
methods. We also note that the choice of a reaction term in the shifted model P trial
was motivated by the desire to represent a physical phenomena not accounted for
in the model Pbk. In the case of PM2.5 over Fresno, we can reasonably consider
reaction to be less significant than the other physical phenomena accounted for in
Pbk, and thus a small error on reaction modification is not unlikely.

Figure 7.18 – Relative mean PBDW approximation error over a set of 8 trial solutions to
Pbk for p ∈ Ξtrial with no model error. Left: M = 8, N = 3. Right: M = 10 and N = 5.
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Figure 7.19 – Relative mean PBDW approximation error over a set of 8 trial solutions to
Ptrial for p ∈ Ξtrial with R = 0.0001. Left: M = 8, N = 3. Right: M = 10 and N = 5.

In table 7.2 we give computational times required for this first study over our
real-world computational domain. We give offline computational time only in table
7.1 for the calculation of a concentration solution given the CFD wind field, as the
CFD field cost depends on computational power of the machine, and input from
meteorological models may be substituted in future studies.

FEM CPU Times

FEM P1 - SUPG 31min

Table 7.1 – Computational times of the FEM approximation of Pbk. Average over the set
of training solutions considered here.

PBDW CPU Times
Online Stage (average CPU times)

Reconstruction of the full solution cM,N

M = 8, N = 3 7.1s
M = 15, N = 3 12.2s
M = 15, N = 5 13.3s

Table 7.2 – Computational times of the PBDW state estimation for various M and N
values. Average over the set of trial solutions considered here.
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7.3 Conclusion and Perspectives

In this chapter we studied the implementation of the PBDW using our own best-
knowledge model (4.61) with source terms and boundary conditions informed by
literature. We examined the results of the PBDW method using synthetic data
from our trial solutions to (4.73) and a shifted parameter set Ξtrial to study the
stability of and validate this first test.

These results show promise in the expansion of the PBDW reduced basis data
assimilation method from relatively small domains with simple geometry, as has
been studied in previous works and in chapters 5 and 6, toward a large domain
with highly complex geometry, and over complex physical phenomena depending
on turbulent velocity fields. While the extension to application over the full city of
Fresno and use with real observational data will require more study, we believe this
first step demonstrates the feasibility of non-intrusive reduced order variational data
assimilation methods as the PBDW in urban-scale real-world scenarios.

The next step we hope to take is to utilize available operational models, such
as the larger-scale model WRF-Chem [167], combined with meteorological measure-
ment data to inform boundary conditions and background concentration for both
airflow and pollutant transport modeling, and implement more precise pollutant
emissions data available in online data bases. This strategy could greatly improve
the quality of the background space ZN and better inform our model on a more ap-
propriate parameter space Dbk. We could also hope to replace our simplistic CTM
(4.61) with a more sophisticated urban-scale model. Expansion towards larger do-
mains will also be necessary in order to implement this method with more sparse
measurement data, as is available over Fresno. This will require domain decomposi-
tion and geometrical parameters in order to handle large domains with urban-scale
pollution modeling.
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Chapter 8

A non-intrusive reduced basis
method for elastoplasticity
problems in geotechnics

R. Chakir 1 and J.K. Hammond1

Article under review for publicaton by the Journal of Computational and Ap-
plied Mathematics.

Abstract
This work aims at investigating the use of reduced basis (RB) methods to diminish
the cost of numerical simulation of elastoplasticity problems arising from geotechnics
modeling, and involving parameter-dependent partial differential equations (PDEs).
Computation times for large three-dimensional analysis commonly take tens of hours,
making optimization procedures or sensitivity analysis, relying on repeated simula-
tions, hardly feasible. In many cases the geotechnical analysis requires very specific
features such as highly non-linear constitutive laws, making the necessary modifica-
tion of the FE calculation code for a standard RB method impossible. An approach
making it possible to use the reduced basis framework without having to modify
the code gives the so-called non-intrusive reduced basis method a versatility of great
practical interest. Our approach involves the computation of less expensive (but
less accurate) FE approximation during the online stage and improvement of those
solutions using a RB-based rectification method.
Keywords : Reduced Basis method; Finite Element method; Parametric studies;
Elastoplasticity; Soils.

8.1 Introduction

Numerical modeling has met growing success over the last decades, becoming indis-
pensible in the field of geotechnical engineering, leading to the numerical simulation

1Université Paris Est, IFSTTAR, 10-14 Bd Newton, Cité Descartes, 77447 Marne La Vallée Cedex,
France.
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by finite elements of even larger nonlinear problems. This trend stems from the need
to account for the influence of constructing new structures, such as deep foundations
of high-rise buildings or shallow tunnels for transport infrastructures, on neighboring
structures (e.g. sewers, existing buildings, etc.) in dense urban areas. Computa-
tion times for large three-dimensional analysis commonly take tens of hours, making
sensitivity analysis relying on repeated simulations hardly feasible. A common ap-
proach is to develop simplified models, such as metamodels, to approximate the
model without significant loss of accuracy. In [25] a metamodel based on Proper
Orthogonal Decomposition (POD) with radial basis functions (RBF) was applied
to test problems in material mechanics with the goal of illustrating the capability
of these metamodels to reproduce mechanical responses to the loading of complex
non-linear material systems. An extended version of the POD-RBF metamodel was
proposed in [98] to surrogate a 3D finite element simulation of a tunnel using a
Hardening Soil model.

Another approach to rapidly compute reliable approximations of solutions of
complex problems with many parameters is the use of reduced basis (RB) methods
[153]. These methods rely on the parametric structure of the model and that when
the parameters vary, the manifold of all possible solutions can be approximated by
n-dimensional spaces. The performance and efficiency of the reduced basis methods
are governed by the Kolmogorov n-width of the manifold of all the possible solutions
[46] – which measures how well the manifold of all the possible solutions can be
approximated by n-dimensional linear spaces. Thus, when the Kolmogorov n-widths
decay rapidly with the space dimension, the manifold of all possible solutions can
be approximated by a low-dimensional space, the reduced basis space. This reduced
basis space is made of particular solutions of the parametrized problem with well-
chosen parameter values.

Application of the reduced basis method to linear elastic solid mechanics prob-
lems with parameters of different natures (either physical or geometrical) has been
proposed in [83, 92, 110, 129, 191]. One of the keys of RB techniques is the decom-
position of the computational work into offline and online stages. During the offline
stage the reduced basis functions are computed, as well as all parameter-independent
quantities. This is done only once, whereas parameter-dependent quantities are
computed during the online stage. The efficiency of reduced basis or POD-based
reduction methods relies on liberating online calculation costs from dependency on
the discretization, in order to only perform calculations with very low complexity.
However in elasto-plastic problems with highly nonlinear behavior, not uncommon
in the field of soil mechanics, the computational complexity of the local integration
of nonlinear constitutive laws is not reduced.

Several alternative ways to carry out the standard POD-based reduction method
for problems with nonlinear behavior have been investigated. For example in [48,158]
a partial reduction is performed over the region of the domain with elastic behavior,
while the plastified region remains unreduced. This selective POD-based model re-
duction was extended by an adaptive method of sub-structuring POD(A-SPOD) in
which the subdomain where model reduction is applied is determined automatically.
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In [164–166] a hyper-reduction approach was proposed by Ryckelynck to treat the
problem of local dependency and extended by Zhang [204] to a thermo-elasto-plastic
model. The hyper reduction method consists in introducing reduced integration do-
mains for internal variables.
However these methods require modification of the finite element calculation code
leading to an intrusive procedure, which is particularly restrictive in the case of
the considered geotechnics modeling applications. Analysis of the displacement field
around a tunnel opening using numerical techniques is quite sensitive to the consti-
tutive models of the soil used to described the fundamental behavior of the materials
involved. In many cases the analysis requires very specific features which are not
available in all finite element software, such as highly non-linear constitutive laws,
involving a complex description of hardening phenomena in soils. Given a well-
adapted software for the problem considered, an approach making it possible to use
reduced basis methods without modifying the code, and considering it as a ”black
box”, gives the so-called non-intrusive reduced basis method a versatility of great
practical interest. Our approach involves the computation of less expensive (but less
accurate) FE approximations with a black-box FE software, and the improvement
of these solutions using a reduced basis during the online stage.

In order to understand this so-called non-intrusive reduced basis approach, let
us specify that the idea of reduced basis methods is, for a given parameter value, to
compute an inexpensive approximation of the projection of the truth FE solution
onto the reduced basis space. This consists in finding a good approximation of the
coefficients of the decomposition of the truth FE solution in a basis made of partic-
ular solutions for well-chosen parameters values. Our non-intrusive approach aims
at computing inexpensive, yet sufficiently accurate, approximations of the optimal
coefficients by using a ”coarse” FE as a substitute to the truth FE solution, since
”coarse” FE approximations can be computed quickly enough to be used in model
reduction techniques. The goal of our technique is to recover the accuracy of the
truth FE approximation by doing a simple rectification which ensures that, for the
set of parameters used in the construction of the reduced basis, our method returns
exactly the corresponding truth FE solutions. In [34, 35], we have shown on simple
examples the potential of this non intrusive reduced basis approach. In [133] a theo-
retical understanding to this so-called ”rectification method”was given. In this work,
we aim to demonstrate the feasibility of this approach in geotechnics modeling.

This paper is organized as follows. In Section 2, we formulate the elastoplastic
problem providing a brief description of the physical system, the material behavior
laws, the governing equations and boundary conditions. In Section 3, we provide a
brief introduction to reduced basis methods, and discuss a preliminary analysis of
the feasibility and reliability of RB approximations of the elastoplastic problem. In
Section 4 the problem is solved with a non-intrusive reduced basis method. Finally
Section 5 presents our conclusions.
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8.2 The elastoplastic problem

The chosen application belongs to the field of tunnel engineering. In urban areas, it
is necessary to consider the possible impact of the construction of a shallow tunnel
on existing structures (buildings, foundations, etc.). In many cases, the first step
consists of evaluating the settlements that would be induced by the construction of a
tunnel in a ”greenfield ” environment, i.e. with no structure at the surface. Our first
case of study is a circular tunnel built through a 50-m horizontal ground layer. The
tunnel diameter is D=10 m and the axis depth is H=25 m. The analysis is carried
out under the plane strain assumption. If the ground is homogeneous and isotropic,
only half of the ground layer needs to be considered. For practical reasons, the
analysis is limited to a distance of L=100 m from the tunnel axis (see figure 8.1a).
Our second case of study is a twin tunnel built under an existing tunnel through a
75-m horizontal ground layer (see figure 8.1b).

(a)
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H 

D 

D 

H  

L 

H  

(b)

Figure 8.1 – Geometry of the physical domains : single tunnel (left) and twin tunnels
(right)

8.2.1 From material behavior laws to the governing equations

In design calculations, materials (soil, concrete, rock, metal, liquid, gas) are consid-
ered as continuous mediums (or continua). These materials are thus considered to
obey certain general physical and mechanical principles, such as the conservation of
energy and momentum. While everyday experience can tell us that different mate-
rials do not behave in the same way under the same forces, general physics laws do
not allow us to make the distinction between different sorts of materials. We there-
fore want to characterize the specific behavior of the continuum equivalent to the
material under consideration. This is the goal of the constitutive laws associated to
a material; the laws must characterize the evolution caused by given exterior forces
and be specific to the material in question. When switching from one material to
another, the laws must translate the differences in practically observed behavior.
The constitutive law associated to a material is necessary to complete the system of
equations of any mechanics problem of continua or structural design. The behavior
of the soils in our problem is represented by an elastoplastic model used for pul-
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verulent soils (sands) and for long-term coherent soils (clay and silt). Observations
show that irreversible deformations appear when the stress exceeds a certain level.
Let u be the displacement vector; the deformation is assumed to be infinitesimal so

that the strain tensor can be written as ε(u) = 1
2(∇u + t∇u). The framework of

plasticity is based on the assumption that the strains can be split into the sum of
two terms :

ε = εe + εp, (8.1)

where εe is the elastic strain tensor and εp is the plastic part of the total strain
tensor ε, which corresponds to the irreversible part of the strain. The elastic part
of the behavior of the soil is linear2 and isotropic and described by Hooke’s law
(characterized by Young’s modulus E and Poisson’s coefficient ν). The plastic part
of the soil’s behavior is considered nonlinear and is obtained via the Mohr-Coulomb
model [47] (characterized by the cohesion c, the friction angle ϕ, and the dilatancy
angle ψ).

8.2.1.1 Linear elastic behavior : Hooke’s Law

Hooke’s law (8.2) describes the relationship between the stress tensor σ(u) ∈ Rd×d

and the elastic strain tensor εe(u) ∈ Rd×d.

σ(u)− σ0 = E ν

(1 + ν)(1− 2ν) tr
(
εe(u)

)
Id

+ E

(1 + ν) ε
e(u) (8.2)

with σ0 the initial stress tensor, E and ν soil’s parameters.

8.2.1.2 Nonlinear plastic behavior : Mohr Coulomb’s model

It is assumed that the plastic strain does not evolve as long as the stress tensor
remains in the interior of a region of the stress space, called the elastic domain
[47,128]. The elastic domain is generally defined by a condition of the type f(σij) <
0, where f is called the yield function. The yield surface is the boundary of the
elastic domain and thus defined by f(σ) = 0. For sands, the yield function can be
expressed as follows.

f(σij) = (σ` − σs)− (σs + σ`) sinϕ− 2c cosϕ, (8.3)

where σ` and σs represent the largest and smallest eigenvalues of the stress tensor
σ (often called principal stresses in mechanics). The parameters ϕ and c are the
friction angle and the cohesion characterizing the soil. In this study, we focus on the
case of elastic-perfectly plastic models, in which the yield surface does not evolve

2Let us note that here the term ”linear” or ”nonlinear” refers to the behavior of the material, not
necessarily to a linear or nonlinear equation.
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with loading. Let us consider the stress tensor σij corresponding to a given load. If
f(σij) < 0, then σij is in the elastic domain, we have that the deformation variation
is described simply by

dε = dεe.

If f(σij) = 0, then σij is on the boundary of the elastic domain. To describe the
behavior at this point, we need to know if the material is in loading, in which case
the deformation variation is described by

dε = dεp + dεe.

or if the material is unloading and has an elastic behavior. At a regular point σij
of the elasticity boundary, the plastic deformation can be described by the so-called
“plastic flow rule”

dεp = dλ̂
∂g

∂σ
,

where dλ̂ ≥ 0 is a scalar called the plastic multiplier and g is given by

g(σij) = (σ` − σs)− (σs + σ`) sinψ − 2c cosψ. (8.4)

The problem is closed by the ”consistency condition”

df dλ̂ = 0. (8.5)

8.2.1.3 Equilibrium equation

We consider a static process, and the equilibrium describing our system is:

div(σ) + ρF = 0, (8.6)

where ρF =
(

0
−γ

)
is the external body force and γ is the volumetric weight of the

soil.
The elastic deformation is linked to the variation of the stress by a linear relation:

σ − σ0 = C : εe. (8.7)

From (8.2) one can see that Cijkl (representing the elasticity tensor of the material)
is constant, symmetrical (Cijkl = Cjikl = Cijlk = Cklij) and depends only on E and ν.

8.2.1.4 Single tunnel case

In this paper, we consider 2D problems on bounded domains. We denote by Ωa ⊂ R2

the computational domain used in the ”single tunnel” study case (see figure 8.2).

230



Ω𝑎

Γ2

Γ6

Γ4

Γ3
Γ1

Γ1

Figure 8.2 – Boundaries of domain Ωa

We impose zero horizontal displacement on Γ1 and Γ3 and zero horizontal and
vertical displacement on Γ2. The load consists of a surface density of force I applied
on the wall of the tunnel (Γ6) calculated from the initial stress tensor (which we
assumed geostatic):

I = λσ0 · ~n, with σ0 =
(
x2K0γ 0

0 x2γ

)
,

where λ represents the confinement loss caused by the excavation of the tunnel, and
K0 = 1 − sin(ϕ) the coefficient of the earth’s pressure at rest. Let (ui,i=1,··· ,d) be
the displacement components in the xi-directions. The boundary conditions of our
problem read as follows:

σ · −→n = −λσ0 · −→n on Γ6,

(σ · −→n )2 = 0 on Γ1 and Γ3,

σ · −→n = −→0 on Γ4,

u1 = 0 on Γ1,Γ2 and Γ3,

u2 = 0, on Γ2.

(8.8)

8.2.1.5 Twin tunnel case

We denote by Ωb ⊂ R2 the computational domain used in the ”twin tunnel” study
(see figure 8.3) .

Ω𝑏

Γ2

Γ6

Γ4

Γ3

Γ1

Γ1

Γ1

Γ5

Figure 8.3 – Boundaries of domain Ωb
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In this case, the simulation is decomposed into two stages. During the first stage
we compute the stress tensor after the excavation of a single tunnel on boundary Γ6,
by solving the same problem as in case 8.2.1.4. We denote by σa the resulting stress
tensor. Starting from this state, we compute the stress tensor and displacement after
the excavation of the twin tunnel on the boundary Γ5. Thus, during the second stage
of our calculation equation (8.7) is replaced by

σ − σa = C : εe (8.9)

and the boundary conditions read as follows

σ · −→n = −λσ0 · −→n on Γ5,

σ · −→n = σa · −→n on Γ6,

σ · −→n = −→0 on Γ4,

(σ · −→n )2 = 0 on Γ1 and Γ3,

u1 = 0 on Γ1,Γ2 and Γ3,

u2 = 0, on Γ2.

(8.10)

8.2.1.6 F.E. approximation

In what follows, Ω represents a generic computational domain such that Ω = Ωa in
the ”single tunnel” simulations, and Ω = Ωb in the second stage of the ”twin tunnel”
simulations. Associated to the physical domain Ω, we define the following functional
space

X =
{
v ∈ (H1(Ω))2 v1 = 0 on Γ1,Γ2,Γ3

v2 = 0 on Γ2

}
(8.11)

In addition, we decompose the left-hand side of the weak form of our elastoplastic
problem, arising from (8.6) into a linear term:

ae(u, v) =
∫

Ω
ε(u) : C : ε(v) dΩ

and a nonlinear term

ap(εp(u), v) =
∫

Ω
εp(u) : C : ε(v) dΩ,

and denote by L(v) the right-hand-side term.
In ”single tunnel” simulations the right-hand-side term is∫

Ω
ρFv dΩ−

∫
Ω
σ0 : ε(v) dΩ−

∫
Γ6

σ0−→n · v dΓ.

In the second stage of the ”twin tunnel” simulation, the right hand side term is∫
Ω
ρFv dΩ−

∫
Ω
σa : ε(v) dΩ−

∫
Γ5

σ0−→n · v dΓ−
∫

Γ6

σa
−→n · v dΓ.
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The weak form of our elastoplastic problem is: find u ∈ X such that, ∀v ∈ X,

ae(u, v)− ap(εp(u)), v) = L(v). (8.12)

Let {Th}h be a family of regular triangulations of Ω and denote by Xh the following
Pk finite element space

Xh = {v = (v1, v2) ∈ X, ∀K ∈ Th, vi|K ∈ Pk(K)}.

The finite element discretization of (8.12) is as follows : find uh ∈ Xh such that,

ae(uh, vh)− ap(εp(uh), vh) = L(vh). (8.13)

CESAR-LCPC [91], a FEM-based software, was used to solve (8.13), employing a
fixed-point strategy to approximate the displacement uh, the stress tensor σh, the
strain tensor εh, and the plastic strain tensor εph. For more details on the computa-
tional procedure see [47,128].

In what follows we fix the Poisson coefficient at ν = 0.3, the volumetric weight
of the soil at γ = 20kN/m3, and assume that the dilatancy angle is equal to the
friction angle (ψ = ϕ)3.
We want to apply reduced basis methods within this framework to compute the
displacement uh corresponding to different values of E ∈ [100; 300]MPa, ϕ ∈ [22; 34]
degrees, λ ∈ [0.2; 0.4] and c ∈ [20; 40] kPa for the cases introduced in sections 8.2.1.4
and 8.2.1.5.

In the remaining sections we denote by µ = (E, λ, ϕ, c) our parameter set,
by D ⊂ R4 our parameter domain, and denote by uh(µ) the solutions of the
parametrized problem (8.13).

8.3 Methodology

The numerical simulation of the problems introduced in the sections 8.2.1.4 and
8.2.1.5 can prove to be costly, particularly in the many-query context, due to the
parametric nature, making in an ideal candidate for reduced basis methods. The
reduced basis method relies on the fact that when the parameters vary, the set of
solutions may be of small Kolmogorov dimension, implying that Mh = {uh(µ) ∈
Xh | µ ∈ D}, the manifold of all solutions, can be approximated by a finite set
of well-chosen FE solutions of the parametrized PDE. One can identify a set of
parameters, SN = (µ1, µ2, · · · , µN) ∈ DN such that the particular solutions
(uh(µ1), · · · , uh(µN)) will generate this low dimension space. The idea of RB meth-
ods is to compute an inexpensive and accurate approximation, uNh (µ), of the solution
to problem (8.12) for any µ ∈ D by seeking a linear combination of the particular

3The question of the choice of the dilatancy angle ψ is a common issue in geotechnical engineering ;
some authors also recommend to take ψ = 0, or ψ = φ − 30. This question could be discussed in detail,
but falls out of the scope of the present paper.

233



solutions (uh(µ1), · · · , uh(µN)):

uNh (µ) =
N∑
i=1

αhi (µ)uh(µi). (8.14)

The low-dimensional space should be constructed so that for some tolerance ε > 0,
the RB approximations given by equation (8.14) are such that

max
µ∈D
‖uh(µ)− uNh (µ)‖X ≤ ε. (8.15)

For a stable implementation of the reduced basis method, it is necessary to build a
better basis than the one composed of the {uh(µi)}1≤i≤N , usually by a Gram-Schmidt
method. In what follows, we denote by {ξ1, · · · , ξN} these L2-orthonormalized basis
functions, and by XN

h the approximation space which they span: the reduced basis
space. During the implementation of the reduced basis method, the computational
work is separated into two stages: offline and online. This decomposition is a key
ingredient of the method. The reduced basis functions, {ξ1, · · · , ξN}, as well as all
expensive parameter-independent terms are computed once during the offline stage
and stored, whereas during the online stage – for each new value of the parameters –
inexpensive parameter-dependent quantities are evaluated, together with the com-
putation of the coefficients αhi (µ) .
The usual RB method is a Galerkin method on the space XN

h , which is of much
smaller dimension than the original approximation space Xh, so solving the problem
(8.13) in XN

h is less expensive than in the truth FE space Xh. However, to perform
the online stage efficiently, one must isolate the parametric contribution to the corre-
sponding linear system, allowing all parameter-independent matrices and vectors to
be built only once and saved during the offline stage. In the case of Mohr-Coulomb’s
model used in CESAR-LCPC, a parameter-dependent term must be calculated at
each integration point of the mesh during the iterative procedure implemented to
solve (8.13); it is hence impossible to free the online stage of the FE complexity (i.e.
the degrees of freedom in the mesh). This entirely nullifies the advantages of the RB
method applied to our model. To overcome this flaw, we propose to use an alterna-
tive, less intrusive method, introduced in [34, 35], where coarse FE approximations
are computed during the online stage, then projected into the reduced basis space
and improved by a rectification technique.

We will begin by considering an analysis of the feasibility of RB methods for
our problem (section 8.3.1), and will then discuss the non-intrusive method in more
detail in section 8.3.2.

CESAR-LCPC was used as a black-box software to compute the FE approxi-
mation of equation (8.13). FreeFem++ [79] was used for the POD analysis, the
implementation of the two-grid FE/RB method and analysis of the results. Three
meshes were considered: a coarse mesh TH for the inexpensive computation of coarse
solutions, a fine mesh Th for the computation of satisfactory solutions used in the
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construction of the reduced basis, and a reference mesh Tref considered fine enough
to provide truth solutions used for error calculation. See figure 8.4 below.

P2 ndof = 1247 P2 ndof = 4853 P2 ndof = 19143

P2 ndof = 1324 P2 ndof = 5123 P2 ndof = 20149

Figure 8.4 – Top: Embedded meshes used in case study 8.2.1.4 – coarse (left), fine (middle)
and reference (right) – Bottom : embedded meshes in case study 8.2.1.5 – coarse (left),
fine (middle) and reference (right).

8.3.1 POD analysis

In order to determine if model reduction approaches, such as reduced basis meth-
ods or proper orthogonal decomposition, can be applied to this problem, we will
try to evaluate the complexity of the manifold Mh of all possible solutions induced
by varying parameters. This analysis consists in a singular value decomposition
method applied to the correlation matrix of solutions of (8.13) computed for differ-
ent values of the parameters. Once the rapid decay rate of the singular values is
confirmed, one can assume that RB method is worth implementing. Using cesar-
lcpc with mesh Th to compute P1 and P2-FE solutions of (8.13) for varying values
of µ ∈ Ξtest — a parameter set with sample size of Ntest = 525 selected over the pa-
rameter domain D — we computed a correlation matrix of L2-norm scalar products
(uh(µi), uh(µj))L2(Ω), 1≤i,j≤Ntest . An L2-orthonormalized POD basis was constructed
using the following eigenfunctions

wk = 1√
λk

Ntest∑
`=1

vk(`)uh(µ`) 1 ≤ k ≤ Ntest, (8.16)

where vk(`) represents the `th component of the kth eigenvector of the correlation
matrix when ordered by decreasing eigenvalues.
Let P POD

k be the L2-orthogonal projection operator from Xh into the space Xk,POD
h ,

spanned by the k first POD basis functions wk. Each test solution {uh(µi), µi ∈ Ξtest}
was projected onto Xk,POD

h to analyze the ability of the POD basis to approach the
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manifold Mh, depending on the number of POD modes. In figure 8.5 we can see
the associated errors plotted along with the eigenvalues of the matrix, where the
average error is

1
Ntest

Ntest∑
i=1

‖uh(µi)− P POD
k uh(µi)‖L2

and the maximal error is

‖uh(µkmax)− P POD
k uh(µkmax)‖L2 with µkmax = argmax

µi∈Ξtest
‖uh(µi)− P POD

k uh(µi)‖L2 .

We observe that the eigenvalues decay rapidly and that the projection errors are
quite small. Figure 8.6 shows the average POD projection errors of so-called ref-
erence solutions, computed on a reference mesh Tref (see figure 8.4) for parameter
values not included in the sample space solutions. These errors are plotted with
the fine FEM error for comparison. Figure 8.7 displays the corresponding maximal
errors.
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Figure 8.5 – Relative errors of the POD projection. Top: study case 8.2.1.4 using P1 (left)
and P2 (right) FE snapshots ; Bottom: study case 8.2.1.5 using P2-FE snapshots
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Figure 8.6 – Average error of the POD projection vs FEM error. Top: study case 8.2.1.4
using P1 (left) and P2 (right) FEsnapshots ; Bottom: study case 8.2.1.5 using P2-FE
snapshots
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Figure 8.7 – Maximal error of the POD projection vs FEM error. Top: study case 8.2.1.4
using P1 (left) and P2 (right) FEsnapshots ; Bottom: study case 8.2.1.5 using P2-FE
snapshots

We can see for case 8.2.1.4 that with only k = 5 POD modes, the POD projec-
tion errors reach the same level of accuracy as the P1 FEM errors. As for the P2
FE errors, we only need about k = 10 POD nodes. For case 8.2.1.5 with only k = 5
POD modes, the POD projection errors reach the same level of accuracy as the P2
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FEM errors. This suggests that a reduced basis approach is worth implementing for
both case studies.

8.3.2 A non-intrusive reduced basis method : two-grid FE/RB method
with a rectification approach

A popular strategy for constructing a reduced basis in the case of parameter-dependent
problems is to use Greedy algorithms, based on the idea of selecting the locally op-
timal element at each step. This option can be seen as an alternative to the POD
strategy of the previous section. If we have an appropriate a priori error estimator
to avoid fully solving the problem to compute the test solutions, the Greedy algo-
rithm can be very low-cost. Knowing the Kolmogorov dimension of the solution
space is relatively small, we can fix a maximum number Ng of basis functions to
be computed by the Greedy algorithm (given below, algorithm 2). Additionally,
for stable implementation the chosen basis functions are L2-orthonormalized with a
Gram-Schmidt method.

Algorithm 2 : Greedy algorithm to build the reduced basis space

1: Initialization: given

Ξtest = (µ1, . . . , µntest) ∈ Dntest , ntest >> 1
2: Choose randomly µ1 ∈ D
3: Set S1 = {µ1} and X1

h = span(uh(µ1)).
4: for N = 2 to Ng do

5: µN = argmax
µ∈Ξtest

‖uh(µ)−PN−1uh(µ)‖L2
‖uh(µ)‖L2

(where PN−1 is the L2-orthogonal projection operator from Xh into XN−1
h )

6: SN = SN−1 ∪ µN
7: XN

h = XN−1
h + span(uh(µN ))

8: end for

For a given parameter value, RB methods aim to compute an inexpensive ap-
proximation of the projection of the truth FE solution onto the reduced basis space.
This requires approximating the coefficients of the decomposition of the truth FE
solution in the basis of the reduced basis space. As shown in [34, 35], the optimal
coefficients

βhi (µ) = (uh(µ), ξi)L2 (8.17)

intervening in the decomposition of the L2-projection of uh(µ) into the space XN
h ,

can be considered as the best linear combination of the reduced basis functions.
Let {TH}H be a family of “coarse” regular triangulations of Ω, such that H >> h;

we denote by XH the coarse FE approximation space associated to this mesh, and
by uH(µ) the coarse FE approximation of (8.13) on XH .

The two-grid FE/RB method consists in proposing a alternative to the coeffi-
cients βhi (µ) by using

βHi (µ) = (uH(µ), ξi)L2 , (8.18)
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the optimal coefficients intervening in the decomposition of the L2-projection of
uH(µ) into the space XN

h . As the computation of uH(µ), for H >> h, is significantly
less expensive than that of uh(µ), coarse FE approximations can be computed quickly
enough to be used in the online stage, although they may not be accurate enough
for practical use. In [34, 35], we have shown on a simpler example that – with the
mesh size H chosen adequately such that h ∼ H2 – this first NIRB approximation
provides some improvement in accuracy with respect to the coarse solution. In what
follows, we denote by PN the projection operator such that

PN v =
N∑
i=1

(v, ξi)L2 ξi, ∀v ∈ Xh.

Considering that we have used embedded FE spaces, namely XH ⊂ Xh, we can
write

PNuH(µ) =
N∑
i=1

βHi (µ) ξi

To further improve the accuracy of this first NIRB technique we propose to perform
a rectification of the PN uH(µ).

This is so far an empirical approach, which leads to great improvements in prac-
tice. A first explanation of the successful post-processing strategy first presented
in [34] and then used in [80] in the framework of reduced basis simulation of PDEs
can be found in [133]. This treatment will ensure that for the parameters {µi}1≤i≤N
used in the construction of the reduced basis, the method returns exactly uh(µi). In
practice, we want to identify a rectification matrix RN associated to the transfor-
mation RN such that :

RN PN uH(µi) = PNuh(µi) ∀ 1 ≤ i ≤ N.

Since {βhj (µi)}1≤j≤N and {βHj (µi)}1≤j≤N are the optimal coefficients intervening in
the decomposition of PN uh(µi) and PN uH(µi), the standard matrix, denoted by
AN , associated to the transformation RN is equal to

AN =
(
BN
h

)
×
(
BN
H

)−1
with AN ∈ RN×N ,

where BN
h =

 βh1 (µ1) · · · βh1 (µN)
...

...
...

βhN(µ1) · · · βhN(µN)

 and BN
H =

 βH1 (µ1) · · · βH1 (µN)
...

...
...

βHN (µ1) · · · βHN (µN)

 .

Let us note that, contrarily to the uh(µ), which we don’t want to compute for a
large number of values of µ, the truth solutions uh(µi) have already been computed
to build the reduced basis, making the computation of AN relatively cheap. For

each new value of µ, the coefficients βHi (µ) will be replaced by
N∑
k=1

ANik β
H
k (µ), and
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an improved two-grid FE/RB approximation to equation (8.13), for RN = AN , can
be :

RN PN uH(µ) =
N∑

i,j=1

ANij β
H
j (µ) ξNi . (8.19)

In our problem, we noticed that AN was rather poorly conditioned, and pro-
pose here a pre-processing to improve the rectification. Instead of computing the
coefficients from the fine and coarse RB solutions, we will consider the previously
computed POD basis functions to construct another rectification matrix KN . To do
so, in addition to the POD basis function wk introduced in the previous section, we
introduced ”coarse” POD basis function

wHk =
Ntest∑
`=1

vk(`)uH(µ`) 1 ≤ k ≤ N.

We defined a pre-processing matrix

DN =
(
FN
h

)
×
(
FN
H

)−1
,

where FN
h =

 (w1, ξ1)L2 · · · (wN , ξ1)L2

...
...

...
(w1, ξN)L2 · · · (wN , ξN)L2

 and FN
H =

 (wH1 , ξ1)L2 · · · (wHN , ξ1)L2

...
...

...
(wH1 , ξN)L2 · · · (wHN , ξN)L2

 .

We then construct the new rectification matrix KN as follows, for a suitable Nmax.

KN =
(
DNmax 0

0 TN

)
,

with TN = 1
N

 1 0
. . .

0 1

 ∈ R(N−Nmax)×(N−Nmax). By ”cutting off” the chosen

rectification before significant increases in the condition number (at Nmax), we can
prevent associated peaks in error, thus achieving the results of KN .

Figure 8.8 shows condition numbers for the three proposed matrices: AN , DN ,
and KN in case study 8.2.1.4. Figure 8.9 shows rectification errors for the three
proposed rectification matrices in case study 8.2.1.4. We can see that the matrix
DN is better conditioned than the matrix AN , and that the rectification process is
improved. However the most significant improvements are seen with matrix KN .

240



100

102

104

106

108

 5  10  15  20  25  30  35  40  45  50

C
on

di
tio

n 
nu

m
be

r

N (dimension of the reduced basis space)

with RN = AN

with RN = DN

with RN = KN

Figure 8.8 – Condition number of the different rectification matrices: AN , DN , and KN

during the offline stage (P2 FEM solutions) in case study 8.2.1.4
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on the rectification matrix in case study 8.2.1.4

8.4 Numerical experiments

A parameter set Ξtrial with sample size of Ntrial = 16 was selected over D \ Ξtest to
test our method with P2 FEM grids represented in figure 8.4.

While in some applications, the simple rectification with RN = AN will achieve
the desired results, in this case the significant variation between coarse and fine so-
lutions used to build the rectification matrix caused inadequate rectification results.
We thus used matrix RN = KN introduced in the previous section to improve the
rectification.

8.4.1 Single tunnel study case

In this section, we present the results of numerical tests of the two-grid FE/RB
method on case study 8.2.1.4.

Figure 8.10 shows rectification errors during the offline stage. In Figure 8.11, we
can see the two-grid reduced basis method errors using rectification matrix RN =
KN , for N = 16; the error reaches the same order of precision as the P2-FEM fine so-
lutions. We note that while rectification error in Figure 8.10 does not descend further
for N ≥ Nmax, in contrast to the fine projection errors during the offline stage, Figure
8.11 shows that the rectification approximation online does attain the same precision
as the fine FEM solution. Figure 8.12 shows the actual displacement for a given pa-
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rameter, µ = µmax = argmax
µ∈Ξtrial

‖uh(µ) − RNPNuH(µ)‖L2 = (125, 0.35, 23, 0.03). The

application of this problem being to evaluate impact on surface structures, we can
consider displacement at the surface to be a quantity of interest.
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Figure 8.10 – Average (left) and maximal (right) errors during offline stage with RN = KN
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Figure 8.11 – Average (left) and maximal (right) rectified RB projection errors on trial
space during the online stage with RN = KN and Nmax = 16

Figure 8.12 – Displacement value for µmax = (125, 0.35, 23, 0.03)

Figure 8.13 shows error maps with respect to the P2-FE approximation over the
calculation domain at various N -values of the two-grid FE/RB method, with and
without the rectification, where the parameter value µmax = (125, 0.35, 23, 0.03) cor-
responds to the solution with maximal error. We can see the errors of the rectified
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solution with respect to the non rectified solution. Figure 8.14 shows errors over
the calculation domain for N = 15 with respect to the very fine reference solution,
again for µmax = (125, 0.35, 23, 0.03). We can see that the rectified solution errors
closely resemble the fine FEM errors.

Figure 8.13 – Relative error maps of the two-grid FE/RB approximation without (left)
and with (right) rectification as function of N for µ = µmax = (125, 0.35, 23, 0.03)
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Figure 8.14 – Error maps for N=15 and µmax = (125, 0.35, 23, 0.03)

In Figure 8.15 we can see a plot of the vertical displacement of the surface soil
as a function of distance from the tunnel. The most significant displacement occurs,
of course, nearest the tunnel.
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Figure 8.15 – Value of the vertical displacement on the surface for µ = µmax =
(125, 0.35, 23, 0.03)

Figure 8.16 and Table 8.1 show computation times for finite element simulations
and the proposed online reduced basis method. We can see that satisfactory results
can be obtained in a total of 3.17s over the full domain, a reduction by 85% of
computation time compared to a fine finite element approximation. In the case of
many-query approximations – such as parametric studies, and possibly optimization
procedures which are currently too computationally expensive for practical use –
this reduction would prove to be significant.
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Figure 8.16 – Comparaison of calculation times of P2-FE and two-grid FE/RB Methods

CPU Times

Coarse FEM 2.41s

Two-Grid RB/FE 3.17s

Fine FEM 20.22s

Table 8.1 – Comparaison of calculation times of P2-FE and two-grid FE/RB Methods (for
N = 15, providing approximation error equivalent to the fine FEM solution).

8.4.2 Twin tunnel study case

In this section, we present the numerical test results of the two-grid FE/RB method
on case study 8.2.1.5. Figure 8.17 represents the average errors using rectification
matrix RN = KN and Nmax = 21. The error reaches the same order of precision as
the P2-FEM fine solutions.
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Figure 8.18 shows the actual displacement for a given parameter, µ = µmax.

Figure 8.18 – Displacement value for µmax = (125, 0.35, 23, 0.03)

Figure 8.19 shows errors over the calculation domain for N = 15 with respect to
the reference solution, of the two-grid FE/RB method, with and without the rectifi-
cation, with the parameter µmax = (125, 0.35, 23, 0.03). We can see the errors of the
rectified solution with respect to the unrectified solution. We can also see that the
rectified solution errors closely resemble the truth projection error.

Figure 8.19 – Error maps for N=15 and µmax = (125, 0.35, 23, 0.03)Top left : uref −PNuH
; Top right uref −RNPNuH ; Bottom uref − PNuh;
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8.5 Conclusions

In this paper we proposed a non-intrusive reduced basis method for application to the
parametrized PDEs governing an elastoplasticity problem which could not be solved
using a standard reduced basis method. We demonstrated the small dimension of
the solution space affiliated to the problem using POD analysis. We then proposed
two rectification methods in the non-intrusive framework, and found that a modified
rectification method was more adapted to the problem considered. In the first case
study considered, the particular problem being the displacement of the soil around
a shallow tunnel, the displacement at the surface approximated by the reduced
model was considered, showing the successful approximation results held true when
considering only the most important area of the domain. In the second case study
the method was able to account for a second deeper tunnel, showing successful
approximation results of displacement in the domain and around the first shallow
tunnel.
The results of this study demonstrate the feasibility of the presented two-grid non-
intrusive reduced basis method in geotechnics modeling, a domain for which reduced
modeling techniques can provide great benefit. Specifically, this technique is well-
adapted to the particular PDE problem studied considering its non-intrusive nature.
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Conclusions and Perspectives

In this final chapter we reiterate the motivation, context, and goals of the research,
discuss the contributions made in this thesis in adaptations of the PBDW and GEIM
for air quality modeling, numerical results in case studies for exterior air quality
modeling, and extension to a real-world application. We then discuss limitations
and perspectives for future work, and draw our final conclusions.

What was the purpose of this work?

We began the discussion by providing examples of the grave effects of air pollu-
tion worldwide. Detailed air quality data is necessary in many types of studies, on
the health effects of exposure to pollutants, in the identification sources of air pol-
lutants, and on the fate of air pollution. The spatially dense predictions at adaptive
scales offered by numerical simulation of AQMs, in addition to relatively sparse data
measurements, can inform with great detail and precision such indispensable studies
on air quality, the development of smarter urban operations, and crisis management.

Urban modeling problems are notoriously complex and costly for solution for
varying parameters, and calibration of mathematical models to real-world problems
adds a layer of complexity. It would be unrealistic to assume that even a highly in-
formed and sophisticated mathematical model as are currently available can exactly
represent the physics and chemistry of air pollution. Data assimilation methods are
a very useful technique to improve the accuracy of air quality approximations, when
combined with state-of-the-art modeling technology such as small-scale modeling
chains, however require very costly computational work.

The need for model reduction is particularly pertinent in these applications,
requiring ever smaller scales, more precision, and repeated solution for parametric
variation and data assimilation. Robust, precise, reduced-order methods of data
assimilation are of great interest in the field of air quality modeling.

In this thesis we aimed to demonstrate the necessity and feasibility of RB and
data assimilation methods in the context of air quality modeling and even more
broadly in urban modeling, and to advance the application of reduced basis and
data assimilation to PDE-based simulation for pollutant concentration in air.

What contributions have we made?
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Over the course of this thesis, we studied the use of RBMs for exterior air pollu-
tion, and in geotechnics modeling. We found promising results in appropriate imple-
mentation of the PBDW and GEIM methods on relatively simple 2D and 3D case
studies in exterior pollution, and in a simplified implementation over a real-world
problem of concentration estimation in Fresno, CA, which we summarize below.

• Adaptations for Applications in Environmental Modeling
In chapter 4 we discussed adaptations of the PBDW method for applications in pol-
lutant modeling, and we provided an introductory discussion of PDE modeling for
air quality. We covered practical considerations for the use of a PDE model for pol-
lutant concentration by advection-diffusion-reaction including a SUPG stabilization
for the solution by finite element methods and a dimensionless formulation for gen-
eralization of the problem and more clear understanding of the physical quantities
involved. Contributions made in this chapter include the practical considerations
of the PBDW method for air quality modeling, studying the stability of the system
based on an inf-sup coefficient associated to the mathematical model and the Up-
date space, and choice of locations for experimental measurements by a GEIM-based
Greedy procedure. Special attention must be paid to the construction of the RB
and Update spaces with relatively smooth solutions, and sensor placement for the
stability of the system for successful application of these methods.

• Case Studies in Exterior Air Quality
We aimed in this study to demonstrate the feasibility of RBMs in the context of
air quality modeling, and the ability of the PBDW to contribute to the use of
parameterized PDE models for air quality by reducing computational costs and
accounting for unmodeled physics.

The application of two non-intrusive reduced order variational data assimilation
methods provided low-cost state estimation with data fit for imperfect mathemat-
ical models, inducing relatively low approximation errors generally under O(10−1)
in relative error (very low when compared to errors inherent to many air quality
models).

We began with a two-dimensional case study in chapter 5. We presented the
results of the PBDW state estimation in the case of a perfect model Pbk (and thus
only parametric variation), as well as the cases of little or significant model error.
We found that the PBDW method performed nearly equivalently in the cases of no
or little model error, and in the case of significant model error the method was able
to approximate the physical state with an overall error of ∼ 3% and no more than
14% peaks. In the field of air quality modeling, approximation error under ∼ 20%
is slightly to significantly less than error levels of a state-of-the-art AQM due to
complex conditions, unknown inputs, and poorly modeled physics and chemistry.

When compared to the GEIM approximation, results were similar with little
model error, but the PBDW methods proves advantageous in the case of more sig-
nificant model error. Computational times of the two reduction methods are similar,
however the GEIM does have the slight advantage of a smaller linear system. This
advantage is outweighed however by the PBDW’s improved ability to correct from
an imperfect model. These methods were compared to results by the more classical
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data assimilation method of inverse problems, showing similar state estimation pre-
cision and greatly improved computational costs. In particular, the wind field was
not reconstructed for the PBDW method, and neither air flow nor pressure sensors
were necessary in the PBDW formulation for a given parameter range. The PBDW
method also accomodates a potentially large number or sensors.

We compared our variational methods to the adjoint inverse method on a model
with simplified Stokes velocity fields, and found that in the case of model error, the
PBDW and GEIM performed similarly to the adjoint method, in terms of precision
of the state estimation, for each of the model errors considered, while reducing
computational costs. In the case of no model error and sensors selected by a greedy
algorithm, the GEIM performs better by one order of precision. The PBDW method
is non-intrusive in its use of the computational code, and better handles estimation
using an imperfect model, which standard inverse methods do not generally treat.
The analysis of PBDW effectiveness should be continued with a comparison to the
weak constraint 3D-Var method for imperfect model.

When extended to a three-dimensional case study with either point or area
sources in chapter 6, we found similar conclusions on the PBDW method.

The results presented above are encouraging, and show that this method may
prove very useful in larger-scale air quality studies for the case of studies using a
reasonably stable and precise model Pbk.

• A Real-World Application
Chapter 7 treated the next step in application of urban-scale PDE models with
model order reduction and data assimilation by expanding the previous case studies
in exterior pollutant modeling to a larger-scale real-world application over a neigh-
borhood of Fresno, California. Difficulties specific to this application include the
construction of a simplified three-dimensional domain representing a neighborhood
over Fresno from two-dimensional map data freely available online.

We simulated a decoupled concentration field over a velocity field representing
real-world meteorology conditions over this domain, employing the stabilized di-
mensionless formulation from chapter 4, to obtain relatively stabilized concentration
fields resulting from traffic pollution on two surface streets in the domain, which we
considered to be our best-knowledge model. We obtained promising first results in
cases with synthetic data from a shifted model, reconstructing with high precision
the concentration field with relative PBDW approximation errors generally of the
order O(10−2) in the case of a small model error. We were able to reconstruct the
concentration fields in 7.1s, as compared to 31 minutes for a single solution of the
direct problem Pbk.

We consider these results very promising for future operational implementation,
and this work has laid the groundwork for application with more precise real-world
input data (specifically emissions data and meteorological data) and assimilation of
real measurement data to use our RB data-assimilation method for large-scale quasi
real-time air quality approximation.

• RBMs for Geotechnics Modeling
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Finally in chapter 8 we continued in the theme of non-intrusive reduced basis meth-
ods for urban modeling with a different application in the field of tunnel engineer-
ing. This work gives an example of the versatility of reduced basis methods and
non-intrusive techniques in other urban modeling applications, providing a specific
example in which the non-intrusivity is essential and RBMs can be used for geotech-
nics modeling in urban development projects. The two-grid NIRB method applied
with a black-box code for tunnel engineering allowed us to reconstruct the model
solutions at the same precision as a reasonably fine FEM solution while reducing
computational time by 85%.

What are the perspectives of this work?

We believe this work shows promise for the future of reduced basis and varia-
tional data assimilation methods in the context of air quality modeling. However
we end this current project with many open questions to which we have considered
constructive responses for the next steps. Here we will discuss future work on the
theory and practice of the PBDW method, and practical considerations for these
studies in air quality applications.

• Operational use of PBDW state estimation
As described in chapter 4 we used a basic PDE for advection-diffusion-reaction in
our case studies, to allow full understanding of the phenomena we modeled and for
lack of a more precise small-scale operational model. This means of course that we
neglected some less significant physical phenomena. When comparing to real-world
data we may find that the model error is too great for any meaningful correction by
the update of the PBDW formulation. Employing the method with an operational
PDE-based air quality model would be necessary for improved implementation in
real-world studies.

Another promising method of improvement of the model Pbk would be coupling
with larger-scale operational models, as discussed briefly in section 7.3. While larger-
scale models do not provide the small-scale precision we aimed for in our studies,
they could be useful in informing the model Pbk for initial conditions (in the case
of more realistic time-dependent modeling), boundary conditions, and background
conditions. As discussed in chapter 1, error propagation from initial, boundary,
and background conditions is quite significant, and this could be a (relatively) cost-
efficient solution to reduce this source of modeling error. While we do not expect
the PBDW method to compensate for error that is too significant, a model Pbk with
the most precise (while remaining practical) description of the physical states and
best informed conditions and parameters will render the PBDW effective.

• Future work to build upon our progress
In this work we assumed noise in the observations was negligible. Unfortunately,
this is not always a reasonable assumption. Future work should consider a proba-
bilistic element (or at least offer a provision for uncertainty such as the disrepency
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principal or Tikhonov regularization) to the incorporation of the measurement data,
as proposed in [117, 182]. This probabilistic element should ideally be dependent
on the physical quantity being measured; pollutant concentration sensors and air
pressure sensors don’t necessarily follow the same error distribution, for example.

We discussed the importance of the norm used in the variational problem and
the construction of the update space, and this could be a topic of further study.

We must also note that complex states such as air quality are generally not
likely to be associated to low-dimensional solution spaces. While the concept of
”low-dimensional” can evolve depending on computational capacity and available
measurement data (for example O(10) to O(100) or even O(1000) could be consid-
ered low-dimension), we must provide solutions for cases when parametric variation
may influence strong variations of solutions. In [120] locally adaptive RBMs are
proposed to partition the parameter space, and consider N -dimensional RBMs over
a solution manifold Mbk approximated by K >> N solutions, method which could
prove particularly useful in applications where meteorological conditions are param-
eters of the model Pbk. As we saw in chapters 5-7, computational costs for the offline
construction of RB spaces in large-scale problems are high, and a high-dimensional
solution manifold Mbk will only increase these costs. A solution for more efficient
offline Greedy algorithms is proposed in [82] using an algorithm to adaptively en-
rich the training set from which the RB basis functions are selected, and could be
extremely useful in applications when an appropriate error estimator is lacking and
computing a large sample of solutions is necessary.

A logical next step for implementation in air quality applications would be the
extension to treating time-varying wind. We considered here steady velocity repre-
senting wind fields under relatively steady conditions. This is a gross simplification
of reality. If the variations of meteorological conditions are relatively small and
within the span of the parameter set Dbk and the solution manifold Mbk used to
construct the RB space, we assume a priori that the steady-state method may be
able to handle the state estimation. If meteorological conditions are strongly vari-
able during a period of study, techniques for RBMs with unsteady models should be
necessary, but remains a somewhat open question.

We learned during our study that the computation of CFD wind fields and CTM
pollution fields on large-scale domains (from urban neighborhood size to full city
size) at small-scale resolution (read, under 1m grid sizes) is extremely computation-
ally heavy on office computational machines (e.g. machines with less than 80GB of
RAM), and may not be feasible for larger domains than the one studied in chapter
7. We aim to keep these methods feasible for use by those who may have limited or
no access to high-powered computational machines, and thus would like in future
work to consider decomposition methods of the large computational domains into
Nd smaller more manageable blocks, Ω = Ω1 ∪ . . . ∪ ΩNd . A possible method to
implement this would be to incorporate geometrical parameters pg into the reduced
basis, and treat each subdomain Ωi as corresponding to some value of the geo-
metrical parameter pg ∈ Dbkg . Difficulties expected would be the treatment of the
interfaces between subdomains, and the definition and treatment of the appropriate
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geometrical parameters pg.

Concluding Remarks

Operational methods of air quality modeling and data assimilation, of great
importance in research, development and regulation investigations, are generally
known to be computationally heavy endeavors, particularly in cases of urban-scale
application of physically-bases mathematical models. We have shown in this work
that reduced basis data assimilation methods can be feasible even in these com-
plex applications, greatly reducing calculation times and necessity for powerful and
expensive machines, while maintaining the advantages offered by sophisticated mod-
els and assimilation of measurement data to provide precise, real-time air quality
approximations.

The contributions presented here provide a foundation for continued extension
of these methods to application in operational air quality studies, with the potential
to provide detailed, spatially-resolved air pollution data at adaptive scales and time
periods, actionable in real-time for varying inputs and parameters, for an array of
uses in the field of air quality modeling.
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Appendix A

Introduction - English

Motivation and Context

In 2012, a ninth of all deaths worldwide were related to air pollution; three million,
of these deaths were attributed solely to ambient outdoor air pollution [144]. A
study over 22 cohorts from 13 countries across Europe [18] found that long-term
exposure to fine particles PM2.5 was associated with natural-cause mortalities, and
that these associations remained statistically significant over concentrations below
the European annual mean limit value of 25 µg

m3 . In [101] at least 40, 000 deaths
per year were found attributable to outdoor and traffic-related pollution in Austria,
Switzerland and France.

Health outcomes such as acute lower respiratory disease, chronic obstructive pul-
monary disease, stroke, ischemic heart disease and lung cancer, have been analyzed
by the WHO [144] for estimates of the global disease burden of air pollution, however
many other diseases associated with air pollution were not included in the assessment
because the evidence was not considered sufficiently robust. While these studies fo-
cused on fine particle pollution, other pollutant species have been shown to play an
important role in many more adverse health effects, e.g. in [147]. Reliable exposure
estimates and understanding of the impacts from air pollutants are indispensable
to better inform studies on disease burden and public health, policy-making, and
urban developers.

While air pollution sensor technology has greatly improved in recent years and
rendered sensors much more affordable, smaller, and more mobile, the complexity
and range of the effects of air pollution requires more tools for improved understand-
ing and control.

In order to understand the health effects of exposure to air pollution, exposure-
response relationships must be studied for individual pollutant species, requiring
individual exposure data [42]. These studies generally include large sample sizes,
such as in [147] where nearly 43, 000 births were studied for exposure to polycyclic
aromatic hydrocarbons (PAH) in relation to risk of preterm birth. In this study not
only does the sample size preclude any reasonable pretention to individual measure-
ments for each participant, but the focus is on the effects of pollutant species which
are not among the criteria pollutants routinely monitored by air quality sensors.
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Spatial variation of pollutants over Fresno, CA

Pollutant Observations Median Inter-quartile range 90th : 10th percentile ratio

Particle-bound PAH 171 0.45 0.25− 0.67 9.1
Elemental Carbon 114 0.77 0.42− 1.10 6.4

Endotoxin 182 1.20 0.89− 1.67 3.7
PM10 278 0.42 0.35− 0.51 2.2
PM2.5 283 0.96 0.83− 1.14 1.9

Table A.1 – Ratio of daily residential outdoor concentration to central site concentration
measurements, within the high season for each pollutant [137].

Additionally, studies on health effects often need retrospective data on individual
exposures. Some pathologies require the study of exposure on much shorter time
frames, such as birth defects related to exposures over one- to two-week time win-
dows, which implies the necessity for more spatial and temporal detail in exposure
evaluations. Continuous, ongoing measurements of air pollution are typically taken
at only one or two fixed sites for an entire city, and health studies often assign identi-
cal exposures to all people in an epidemiologic study. Air quality models (AQM) can
provide the spatially-resolved pollution approximations necessary for exposure as-
sessment from available measurements over the desired time frame, retrospectively,
and for varied pollutant species without sensors at each point of interest.

The detection and identification of pollutant emission sources is also a common
theme in air quality studies, for regulation and development, as well as crisis man-
agement studies. Doing this without the use of AQMs is entirely unfeasible, unless
the sensors were to be placed in close proximity to the (often unknown a priori)
source.

In addition to the study of pollution sources and health effects, understanding
the fate of air pollution is necessary in prediction, regulation (e.g. changes in fuel or
traffic restrictions) and urban planning. Models allow for the study of hypothetical
air quality, meaning the effects of future accidents or pollution peaks can be esti-
mated, the impacts of proposed regulations can be properly informed, schools and
hospitals can be built in locations with lower pollution, and urban developers can
take into account possible adverse effects of new constructions on air quality. None
of this would have the flexibility it does, or perhaps even be possible, without AQMs
enabling the study of future changes before decision-making.

The spatially dense predictions at adaptive scales offered by numerical simula-
tion of AQMs, combined with the relatively sparse data measurements, can provide
greatly improved detail to inform these indispensable studies on exposure at the
individual scale and the consequent health effects, the understanding of pollutant
emissions and dispersion, the development of smarter urban planning and opera-
tions, and crisis management.
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Figure A.1 – Illustration of the process of modeling physical phenomena with available
measurement data.

From societal problem to scientific study

Many air quality modeling methods exist, of varying sophistication (an excellent
survey can be found in [202], in which methods from empirical and statistical ap-
proaches to various deterministic approaches are described). Within the category of
deterministic models approaches vary in sophistication from simple box models (de-
scribed briefly in [180]), to Gaussian plume models, to physically-based Lagrangian
methods (e.g., a study using a highly sophisticated operational Lagrangian model can
be found in [89]) and Eulerian Computational Fluid Dynamics (CFD) models (such
as the simple model applied in this thesis). The more sophisticated models, when
applied with precise information on the environment and pollutant emissions, and
if correctly calibrated, can provide very detailed information on spatial and time-
varying pollutant concentrations, as well as the physical phenomena affecting air
quality. On urban scales, air pollution is known to be highly variable, and real-world
applications often involve complex geometries. Detailed, small-scale approximations
and improved understanding of the underlying physics offered by physically-based
deterministic models are of great interest to current air quality modeling efforts,
but development and use of such models is challenging due to several significant
limitations.

State of the art air quality modeling is limited by the complex nature of the
problem to be solved: the challenges of highly non-linear physical effects and complex
urban geometries are compounded by significant uncertainties in input data such
as meteorological conditions, boundary conditions, and emissions data. Given the
complexity of real-world applications, one cannot assume that even a highly informed
and sophisticated deterministic (or non-deterministic for that matter) model can
exactly represent all the physical phenomena at play.

Improvements in the quality of available data (meteorological, emissions and
background concentrations, etc.), and in the mathematical treatment of physical
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phenomena (e.g. turbulence schemes for wind field modeling) and chemical mech-
anisms (e.g. chemical reaction) greatly increase modeling accuracy. Operational
AQMs can also be improved upon by techniques from available data and models
such as statistical methods including bias correction and probabilistic forecasting,
ensemble modeling (where multiple models or inputs are used and solutions are com-
bined in the expectation of reducing overall modeling error), and data assimilation.

Data assimilation refers to the integration of this physical understanding de-
scribed by a mathematical model and experimental observations. Methods include
various approaches which focus on the correction of the model parameter. Sequen-
tial methods rely on the assimilation of observations as they arrive to find the best
estimate of the state (e.g. Kalman filtering [127]). Inverse methods aim to identify
the optimal parameter, popt, to minimize the mismatch between model approxima-
tion and available data generally by the minimization of a cost functional, and the
optimal solution is u(popt). Variational methods generally involve the minimization
of a cost function to quantify the gap between model approximation and observa-
tions, seeking the optimal state and thus allowing the observations to correct model
error.

Many studies have been conducted at multiple levels of the processes influencing
air quality, from traffic modeling, to emissions, to pollutant transport and finally
human exposure modeling. Ideal implementation of all this knowledge requires a
modeling chain, using output from the previous ”level” of the chain as input to the
next level to improve results, but requires hefty computations at multiple stages
and calibration of the outputs of one model to inputs of another. Companies in
France and worldwide specialize in the implementation of such modeling chains for
operational use, using in which they utilize state of the art techniques for client needs
and develop modeling software;, these tools contribute significantly to available tools
which could be candidates for use in further research developments.

While data assimilation and modeling chain techniques provide significant im-
provement in the modeling of complex and not-fully-known physics, and operational
models exist, they generally do not treat the problem of explosive computational
times for sophisticated models over large, complex domains and the many forward
solutions necessary for data assimilation methods. The need for model reduction is
particularly pertinent in these applications, which require ever smaller scales and
more precision for studies on causes, fate, and effects of air pollution.

Model order reduction refers to methods of reducing the computational cost of
solution by simplifying the problem or reducing the dimension by representing prior
knowledge of the system in a low-dimensional representation. Methods include sur-
rogate modeling, in which a simpler model is substituted for the initial problem
P , and projection-based methods, for example using reduced spaces onto which the
model operators are mapped. The latter methods, including reduced-basis methods,
seek to exploit the parametric character of the problem, and focus on the dimension
of the solution manifoldM for parameter set D. Methods range from interpolation
methods, such as the Empirical Interpolation Method (EIM) [16] which relies on
knowledge of the solution at so-called interpolation points in the domain, to de-
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composition methods such as Proper Orthogonal Decomposition [22] and Proper
Galerkin Decomposition [41], and Certified Reduced Basis Methods, which can all
be combined together.

The objective of this thesis is to combine model reduction and data assimilation
procedures for air quality modeling applications. The remainder of this introduction
is organized around a series of questions to pose about a research project, known as
Heilmeier’s catechism.

(1) What is the challenge? We aim to advance the feasibility of sophisticated
deterministic air quality models based on partial differential equations (PDEs) by
adapting reduced basis methods and data assimilation techniques to these applica-
tions. Rendering such precise models and sophisticated data assimilation methods
affordable (with respect to computational time) on low-cost machines could allow
the best available techniques to be used in practical application relying on AQMs
for the study, regulation, and improvement of air quality. The combination of model
reduction and methods to efficiently treat the parametric variation with data assim-
ilation is promising for the improvement of practicality.

(2) What is the solution today? Multiple methods exist today to the problem
of fast modeling and data assimilation. For example, kriging [203] is a stochastic
method often used as sequential data assimilation (see section 2.2.2), which relies on
linear interpolation of model outputs and measurements, and accounts for spatial
variability of the physical state. However, while this method is low-cost, it requires
appropriate data at sufficiently numerous points to describe the physical phenomena
at play. Inverse modeling for parameter identification (see section 2.2.3) can be done
in a cost-effective way by employing reduced basis methods to reduce computational
costs of the problem P and its adjoint problem. However, this method treats error
from parametric variation, not from model error, and can be complex to implement
in non-linear problems or cases with many data points.

(3) How do we propose to improve the solution for tomorrow? We want to
build upon available improvements to AQMs and adapt model order reduction and
data assimilation techniques to these complex models. In this thesis we will apply
non-intrusive reduced order methods of data assimilation for parameterized PDEs
modeling pollutant concentration.

More particularly, we will focus on two methods: the generalized empirical inter-
polation method (GEIM), based on empirical interpolation, which was first intro-
duced in [114, 115], and the more recent PBDW method developed in the reduced
basis framework, which was first introduced in [117, 118] with application in acous-
tics. These methods provide particular advantages, which we aim to show may be
extendible to the air quality context, where common model order reduction (MOR)
methods are difficult to use due to the complexity of the phenomena and modeling.
These two methods are non-intrusive and non-iterative, and so provide real-time
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state estimation. The methods aim to optimally employ model order reduction and
data assimilation to approximate best a physical state, taking into consideration not
only parametric variation, but also model error in an imperfect mathematical model.

(4) What’s new about our approach? New contributions to the field tackled
in this thesis include:

• Application of non-intrusive reduced order data assimilation methods to appli-
cations in exterior air quality modeling at the district scale.

• Method compatible with large data sets.

• Data assimilation without the reconstruction of the wind field.

• Real-time approximations.

• Formulation does not require numerous sensors on meteorological conditions.

(5) Why do we think these methods will work? Our motivation for our work
in the context of air quality studies is multiple. The non-intrusive characteristic
of the PBDW and GEIM methods allows for them to be applied to any suitable
parameterized calculation code, whereas more intrusive methods (such as adjoint
inverse methods) require access to the code in order to modify it. Non-intrusivity
can also allow fast prototyping of computational methods for a given problem, to
test before developing more robust applications in an operational context.

The data-assimilation techniques used to correct unmodeled physics (for example
as we see in the simplification from equation (4.37) to (4.39) in section 4.2.2) in the
PBDW method are of particular interest in fields such as air quality modeling, where
many parameters and some physical effects are not well known. Another feature of
these methods is the development of a technique that requires neither assessment
of the velocity parameter (the wind field transporting pollutants) nor data assimila-
tion on a non-linear turbulent Navier-Stokes problem. Neither the PBDW nor the
GEIM are inverse methods and so do not aim to identify the model parameter p.
In our applications the goal is to estimate the state without the necessity to also
identify the parameter; this would be advantageous, since the reconstruction of the
velocity field is known to challenge computational capacities. Additionally, RBMs
applied to turbulent velocity fields often yield inadequate approximation properties;
however, time-averaging the spurious turbulence effects to smooth the solutions may
improve approximations. In our case, considering the velocity field as a parameter
and building the RB on the concentration can have a similar smoothing effect and
seems to help us construct a solution manifold of small dimension.

Moreover, the PBDW is well-suited to the emerging paradigm of connected de-
vices delivering sensor outputs with no need to scale up the computational model
to handle larger numbers of data points. For example in the adjoint inverse method
the optimal parameter which minimizes error at the sensor locations is found, and
a large number of sensors could lead to non-convergence of the iterative method.
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(6) How will we measure progress? We first study the results of these meth-
ods with only parametric variation (no model error), then with measurements from
a shifted model, denoted P trial, and study relative errors. Over our first two-
dimensional test domain, we also consider more extensive study of the PBDW
method results. We first compare the performance of the PBDW and the GEIM.

We then consider a comparison of the PBDW and GEIM methods to the ad-
joint inverse method. An inverse method via adjoint problem [134, 193] is a typical
method to treat the reconstruction of a physical state from a mathematical model
and measurement data. This method is presented in detail in chapter 2. This last
comparison is important given the widespread use of the adjoint method in problems
similar to (2.45) with a relatively precise model P . Finally, we discuss and compare
the advantages of each approach.
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Appendix B

Glossary

GIS: a system designed to capture, store, manipulate, analyze, manage, and present
spatial or geographic data.

Neutrally Stratified Atmospheric Conditions: the ABL dilution state is con-
sidered neutral, as opposed to stable or unstable.

Settling Velocity: the rate at which suspended solids subside and are deposited.

Stably Stratified Atmospheric Conditions: weak dilution state during which
pollutants accumulate at ground level, typically at night. Little turbulent mixing.

Unstably Stratified Atmospheric Conditions: high dilution state, due to
strong turbulent mixing.

Urban Canopy: Assemblage of buildings, trees, other objects composing a town
or city and the spaces in between.

Urban Boundary Layer: The internal boundary lay formed when air flows over a
city. A mesoscale phenomenon, it is characterized by the nature of the urban surface.
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Acronyms

ABL Atmospheric Boundary Layer
AQM Air Quality Model
BC Boundary Condition

CFD Computational Fluid Dynamics
CTM Chemical Transport Model
DNS Direct Numerical Simulation
EPA Environmental Protection Agency
GIS Geographic Information System

HVAC Heating Ventilation and Air Conditioning
IC Initial Condition

LES Large Eddy Simulation
LUC Land Use Category
MC Monte Carlo

MOR Model Order Reduction
MUST Mock Urban Setting Test
PBDW Parameterized-Background Data-Weak
PDE Partial Differential Equation
PM Particulate Matter

RANS Reynolds-Averaged Navier-Stokes
RB Reduced Basis

SUPG Streamline Upwind Petrov-Galerkin
VKT Vehicle Kilometers Traveled

Physical Constants and Symbols

Air Density ρ 1.225 kg
m3

Molecular Diffusion in Air εm 1.72e−5m2

s

Kinematic Viscosity ν m2

s

Schmidt Number sc
Prandtl Number σt
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Appendix C

Technical Implementation Notes

C.1 Code Saturne for Fluid Dynamics

The hydraulic diameter for an inlet is needed for turbulant models in Code Saturne
and is defined as follows:

Dh = 4S
P
, (C.1)

where P is the perimeter of the surface. The hydraulic diameter of a 2D slice is
equal to the usual diameter.

Code Saturne’s module rough walls can represent flow entering non-air-tight
buildings, and coefficient ∼ H

10 was chosen, where H is the building height.

To set an exponential inlet profile for fluid simulations, we set the inlet BC to,
for example, ‖~u‖ = 2zα and direction (x∗, y∗)T in practice: norm u = 2z0.4.

C.2 MOR Algorithms

Algorithm 3 : Weak Greedy algorithm to construct a Reduced Basis approximation
space

1: Initialization: given

Ξtest = (p1, . . . ,pntest) ∈ Dntest , ntest >> 1
2: Choose randomly p1 ∈ D
3: Set S1 = {p1} and X1

h = span(uh(p1)).
4: for N = 2 to Nmax do

5: pN = argmax
p∈Ξtest

‖uh(p)−PN−1uh(p)‖L2
‖uh(p)‖L2

(where PN−1 is the L2-orthogonal projection operator from Xh into XN−1
h )

6: SN = SN−1 ∪ pN
7: XN

h = XN−1
h + span(uh(pN ))

8: end for
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Algorithm 4 : Update Space algorithm

1: Initialization:

• Load mesh and build associated FE space, scalar products.

• Load sensor size and locations

2: for m = 1 to M do
3: Define: sensor functionals over ball B(~xm, r)

ϕm =
(
e(−1.

r2 )∗((x−xm)2+(y−ym)2+(z−zm)2)
)

;

4: Define and solve variational form for test function v:

solve a(q, v) =
∫

Ω

(
∇q · ∇v + q ∗ v

)
−
∫

Ω

(
ϕmh ∗ v

)
= 0

5: Save basis functions qm = q:
6: end for
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Algorithm 5 : GEIM algorithm

1: Initialization: the first interpolating function and associated linear form are, for
example:

u(p1) = argsupu∈Mbk ||u||X
σ1 = argsupσ∈Σ|σ(u(p1))|

2: The first basis function is: q̃1 = u(p1)
σ1(u(p1))

3: The second interpolating function and associated linear form are:

u(p2) = argsupu∈Mbk ||u− σ1(u) · q̃1||X
σ2 = argsupσ∈Σ|σ(u(p2)− σ1(u(p2)) · q̃1)|

4: The second basis function is: q̃2 = u(p2)−σ1(u(p2))·q̃1)
σ2(ψ̃2−σ1(ψ̃2)·q̃1)

5: for m = 3 to M do
6: Solve the mth interpolation problem: find {α̃m−1

j (ϕ)}j such that

∀ 1 ≤ i ≤ m− 1 σi(u) =
m−1∑
j=1

α̃m−1
j (u)σi(q̃j)

7: Compute Im−1[u] =
∑m−1

j=1 α̃m−1
j (u) · q̃j

8: Evalute εm−1(u) = ||u− Im−1[u]||L2(Ω)
9: Define:

u(pm) = argsupu∈Mbkεm−1(u)
σm = argsupσ∈Σ|σ(u(pm)− Im−1[u(pm)])|

q̃m = u(pm)− Im−1[u(pm)]
σm(u(pm)− Im−1[u(pm)])

10: end for
11: Solve the final interpolation problem: find {α̃Mj (u)}j such that

∀ 1 ≤ i ≤M σi(u) =
M∑
j=1

α̃m−1
j (u)σi(q̃j)

12: Compute IM [u] =
∑M

j=1 α̃
M
j (u) · q̃j
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