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constructive lessons in several aspects of my PhD subject. Also, I thank Prof. Alain

COMBESCURE for being available for discussions.

It was an excellent opportunity to work in collaboration with the R&D department of

ANDRITZ Hydro. I thank Etienne PARKINSON and Jean-Christophe MARONGIU,

my co-supervisor, for having o↵ered me this opportunity. In particular, I thank sincerely

Jean-Christophe for his help about technical aspects (like SPH) but also because he was

always available for discussing any aspect of my thesis project. I thank my colleagues
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Abstract

Hydraulic turbines can experience cavitation, which is a phenomenon occurring when

vapor bubbles collapse in the vicinity of the machine’s surface. This phenomenon can

lead to negative consequences, such as erosion, that a↵ect the machine’s performance.

The compression of a non-condensable gas bubble in water is simulated with the Smoothed

Particle Hydrodynamics method following the Arbitrary Lagrange Euler approach (SPH-

ALE), where a compressible and multiphase model has been developed. The model

solves the mass, momentum and energy conservation equations of the Euler system using

the Sti↵ened Gas EOS for water and the ideal gas EOS for the non-condensable gas

inside the bubble. Both phases are modeled as compressible and the phase change is not

considered.

The meshless feature of the SPH-ALE method allows the calculation of multiphase flows

where the interface is sharply defined. For cavitation applications, where the Mach

number reaches values of 0.5, the distribution of particles must be corrected, which is

achieved by the ALE feature. The compressible model was validated through mono-

dimensional configurations, such as shock tube test cases for monophase and multiphase

flows.

The bubble compression close to the wall has been addressed as the fundamental mech-

anism producing damage. Its general behavior is characterized by the formation of a

water jet and by the collapse of the bubble by itself. The phenomenon is analyzed by

considering the major parameters that govern the bubble collapse dynamics, such as the

initial distance between the bubble center and the wall (H0), the bubble size (R0), and

the collapse driven pressure ratio (pw/pb). It is shown that the intensity of the collapse

depends mainly on the pressure ratio between the liquid and the bubble (pw/pb). As

well, four indicators, such as the pressure at the wall, the impulse, the water-hammer

pressure and the water jet velocity, are used to determine the loading. This analysis

gives that the bubble initially located at a distance lower than H0/R0 = 2 presents high

potential to cause damage.

In order to predict the damage due to the bubble collapse, the solid mechanics is analyzed

through fluid-structure interaction simulations. It is obtained that the material reacts to

the hydraulic loads by having compression and traction zones, suggesting that a fatigue

mechanism drives the damage phenomenon. Additionally, it is found that the highest

stresses are located below the material surface, indicating that this zone may reach plastic

deformation. Key words: cavitation, bubble collapse, numerical simulation, SPH-ALE,

material erosion.
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Résumé

La cavitation peut avoir lieu dans les turbines hydrauliques. Ce phénomène se produit

lorsque les bulles de vapeur s’e↵ondrent à proximité de la surface de la machine. Ceci

entrâıne des conséquences négatives, telles que l’érosion, a↵ectant ainsi les performances

de la machine.

L’e↵ondrement d’une bulle de gaz non-condensable dans l’eau est simulé en utilisant la

méthode sans maillage SPH-ALE, qui intègre un modèle pour simuler les écoulements

compressibles et multiphases. Le modèle résout les équations de conservation de masse,

de quantité de mouvement et d’énergie du système d’Euler, en utilisant l’équation d’état

de Sti↵ened Gas pour l’eau et l’équation d’état de gaz parfait pour le gaz non-condensable

à ĺıntérieur de la bulle. Les deux phases sont modélisées comme compressibles et le

changement de phase n’est pas considéré.

La caractéristique sans maillage de la méthode SPH-ALE permet le calcul des écoulements

diphasiques où l’interface est nettement définie. Pour les applications de cavitation, où le

nombre de Mach atteint des valeurs de 0.5, la distribution de particules doit être corrigée.

Cela est réalisé grâce à la fonctionnalité ALE. Le modèle compressible a été validé à

l’aide de configurations monodimensionnelles, comme le cas du tube à choc pour des

écoulements monophase et multiphases.

L’e↵ondrement de la bulle près dúne paroi a été abordé comme le mécanisme fondamental

qui produit des dégâts. Son comportement général se caractérise par la formation d’un

micro jet d’eau et par l’e↵ondrement de la bulle sur elle-même. Le phénomène est analysé

en tenant compte des principaux paramètres qui le régissent, comme la distance initiale

entre le centre de la bulle et la paroi (H0), la taille de la bulle (R0) et le taux de pression

qui entrâıne l’e↵ondrement (pw/pb). Il est démontré que l’intensité de l’e↵ondrement

dépend principalement du rapport de pression entre le liquide et la bulle (pw/pb). De

plus, quatre indicateurs, comme la pression en paroi, l’impulsion, la pression du coup de

bélier et la vitesse du micro jet d’eau, servent à déterminer le chargement. Cette analyse

indique qu’une bulle initialement située à une distance inférieure à H0/R0 = 2 présente

un haut potentiel d’endommagement.

Afin de prédire cet endommagement, la mécanique du solide est analysée à l’aide de

simulations d’interaction fluide-structure. On obtient que le matériau réagit aux charges

hydrauliques en ayant des zones de compression et de traction. Ceci suggère qu’un

mécanisme de fatigue entrâıne le phénomène d’endommagement. En plus, on constate

que les contraintes les plus importantes sont situées sous la surface du matériau, indiquant

que cette zone peut être sujette à une déformation plastique. Mots clés: cavitation,

e↵ondremment de bulle, simulation numérique, SPH-ALE, érosion de matériau.
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Chapter 1

Introduction

1.1 Motivation

This thesis addresses the study of cavitation erosion in Pelton turbines. Specifically,

it focuses on the prediction of material response to cavitation in flow regions where

unsteady cavitation pockets exist.

Cavitation is the formation of vapor bubbles in a liquid flow due to local low pressures.

The initial bubble growth phase is developed in the low pressure regions, or in high

velocity regions. Later, cavitation bubbles are transported by the flow arriving to zones

of higher pressure. There, they collapse. When the collapses occur repeatedly close to a

solid boundary, they may induce wear and erosion.

The cavitation bubble collapse is characterized by high pressure amplitudes produced

on relatively small sizes (e.g. micrometers) and within short characteristic times (e.g.

microseconds). These pressure amplitudes are the consequences of pressure waves emitted

during the collapse of one or several cavitation bubbles. Then, if the bubble collapse is

produced near a wall, it can generate pressure signals. At some moments, these pressure

signals can be compared to the yield stress of common materials (e.g. aluminum and

steel), representing thus a threat on the material integrity.

As it was brought out, cavitation erosion involves fluid flow and material properties. On

the fluid side, cavitation erosion depends on the magnitude of the cavitating flow, which

is defined in terms of the frequency and intensity of the collapses. On the material side, it

depends on material properties, which govern the response to the cavitating flow. Hence,

1
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the actual damage will be the result of the relation between the cavitation intensity and

the material strength.

It is well known that cavitation can have detrimental consequences in rotating machines.

Strong variations of pressure may induce bubble collapse generating damage on solid

surfaces. So, it threats the structural integrity and declines the machine’s e�ciency.

Understanding the unsteady nature of gas pockets is very important for the prediction of

erosion because it is their frequent collapse that causes damages to hydraulic components.

Since this work is in the frame of hydraulic turbines, specifically it is related to Pelton

turbines, a presentation of this type of turbine is needed. Pelton turbines are impulsive

turbines that are used for high head (e.g. 200 to 2000 m) and low flow rates (e.g. 0.05 to

30 [m3/s]). Its operative system consists of water jets impinging on the Pelton buckets to

transform the kinetic energy of water to mechanical energy and thus, to produce electric

energy. For illustration, representations of Pelton turbines are shown in Fig. 1.1. It is

observed a Pelton turbine prototype of horizontal shaft and a general view of the flow

(in blue) in a Pelton turbine wheel obtained by numerical simulations.

(a) Pelton turbine of horizontal shaft [35]. De-
tail of the water injector and wheel on the left

(b) General view of the flow
in a Pelton turbine wheel.
Numerical simulations using
SPH method from Marongiu
[62]

Figure 1.1: Di↵erent representations of a Pelton turbine: prototype and numerical
simulation

In general, this type of turbine presents an acceptable e�ciency, around 92%. However,

some improvements are desirable. In this context, a better comprehension of the fluid

flow and its perturbations, such as erosion due to cavitation, is required in order to

improve its conception and optimization.

Because of the small characteristic dimensions (i.e. size and time), a numerical approach

seems suitable for studying this physical phenomenon. In this context, in order to simulate
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the fluid flow, this thesis follows a numerical approach using the Smoothed Particle

Hydrodynamics method considering the Arbitrary Lagrangian Eulerian description, which

is called SPH-ALE. Historically, SPH-ALE has been used in ANDRITZ Hydro S.A. to

simulate the flow behavior inside Pelton turbines ([62], [68], [54]). The flow inside a

Pelton turbine is mainly dominated by free surface flow, so the messless feature and the

Lagrangian description of SPH-ALE represent an interesting advantage to model it.

In SPH, two di↵erent strategies have been followed to model fluids. Firstly, we mention

the weakly compressible SPH (WC-SPH) method, which is a density based method

where pressure is modeled using an equation of state (EOS). This method is divided in

two branches: the classical WC-SPH from Monaghan [64] and the WC-SPH from Vila

[105]. The major di↵erence between them lies on the strategy to treat the equations.

The classical WC-SPH from Monaghan adds an artificial viscosity into the momentum

equation in order to guarantee its conservation and to stabilize the method [64]. On the

other side, the WC-SPH from Vila [105] uses the Riemann solver to compute numerical

fluxes adding a decentered discretization in space in order to stabilize the method.

Secondly, we have the incompressible SPH (I-SPH) method, which is a pressure-based

method where incompressibility is achieved solving a Poisson solver for the computation

of pressure [16]. In these two strategies, i.e. weakly compressible and incompressible

SPH, the fluid dynamic has been described using the Navier-Stokes equation system of

conservation of mass and momentum. Thus, the energy equation is not solved.

This approach fits for large physical applications such as the modeling of fluid flow

inside a hydro-machine, the free surface flow of Newtonian and non-Newtonian fluids,

shallow-water experiences, mono-phase and multiphase flows. However, in this work,

we are interested in the simulation of the cavitation phenomenon and its impact on

the material, where the interaction between liquid and gas is mandatory in order to

properly model the pressure waves that characterize this physical phenomenon. Therefore,

compressibility e↵ects are important and must be taken into consideration. In these cases

the temperature is involved and thus the solution of the energy equation is mandatory.

Hence, a fully compressible model in SPH-ALE has been developed throughout this thesis

to solve the hydrodynamic equations describing the conservation of mass, momentum

and energy ([76], [77]). This numerical implementation was required because a proper

representation of the bubble collapse phenomenon is the first step towards the prediction

of cavitation erosion.
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Regarding the material response, the pressure profile generated on the solid surface is

usually considered in order to predict the material reaction. An approach taken quite

often is to represent this pressure pulse as a synthetic load in order to use it as input

in solid simulations. But, a more complete way to address the problem is considering

the flexible solid and the fluid domain. In this case, the fluid and the solid domains are

solved together, giving the possibility to analyze the solid response due to the actual

pressure signals emitted by the flow behavior. The latter approach is followed in this

work.

The solid domain is solved through the finite element method implemented in the

research solver EUROPLEXUS, which is developed by The French O�ce of Atomic

Energy (Commissariat à l’Énergie Atomique) and the European Commission Joint

Research Centre. Meanwhile, the fluid domain is solved through the in-house solver

developed by ANDRITZ Hydro S.A., called ASPHODEL. It uses the SPH-ALE method,

in which modifications have been implemented along this work in order to model the

bubble collapse. The coupling solver to connect the fluid and the solid solvers was done

in parallel by another doctoral thesis also involved in the frame of the present project.

1.2 PREDHYMA Project

This thesis is enclosed in a project called PREDHYMA (Prediction of Erosion Damages in

Hydraulic Machines). PREDHYMA is an European project belonging to the Marie-Curie

European Industrial Doctorates program. It assembles two universities (INSA Lyon and

École Centrale de Lyon) and the company ANDRITZ Hydro S.A. This company is a

global supplier of electro-mechanical systems and services for hydropower plants, as well

as one of the leaders in the world market for hydraulic power generation.

The main motivation of ANDRITZ Hydro S.A. in developing this project is because

the hydraulic turbines can experience severe wear during operation due to adverse flow

conditions and poor quality water. So, facing the turbine damage induces maintenance

costs, losses in power production and it could increase the risk of accidents in the

facilities. Under this situation, turbine manufacturers and hydropower plants operators

are interested in extending overhaul periods by reducing the intensity of the erosion and

protecting the turbine components with appropriate surface treatments.
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In this context, the PREDHYMA project aims at developing predictive tools addressing

damaging mechanisms encountered during Pelton turbine operations.

The program is composed by four thesis projects: the hydro abrasive erosion, the wear by

the impact of gravels and stones, the droplets impact erosion and the cavitation erosion.

A short description of each phenomenon is given below.

The hydro abrasive erosion is the material wear caused by the impact of small sediments

traveling in the water flow. The gravel and stones impacts produce another erosion

mechanism, which happens when relatively large stones hit the turbine components. This

impact usually produces fracture of the turbine components. The droplet impact erosion

is caused by the impact of high-speed water droplets on the components, producing,

similarly to cavitation, high-pressure pulses. Finally, the cavitation erosion is the material

wear caused by the impact of several pressure waves of high amplitude emitted during

the bubble compression near a solid. This subject represents the core of the present

research work.

1.3 Objectives

The main objective of this thesis is the prediction of the material response due to

cavitation loading. In order to achieve it, two sub-objectives are set-up.

First, we address the fluid flow side. In this context, it is developed a two-phase model,

in the SPH-ALE method, able to treat fully compressible fluids in order to correctly

simulate the compression of a non-condensable gas bubble and estimate the pressure

loads when it collapses near a solid wall. The SPH-ALE method enables the calculation

points to move and adapt themselves to the flow interface and to the solid geometry,

giving an interesting approach to treat two-phase flows in which the interface is sharply

and always defined. So, special mesh treatments, such as mesh refining, near the interface

zone are not needed. The model needs to deal with a proper algorithm to correct the

particle motion because the pure Lagrange motion of SPH particles is not adequate for

compressible flows with Mach number larger than 0.1. For this type of application, where

cavitation flow is involved, the Mach number reaches values of 0.5 and in the validation

process Mach number values of 0.6 were reported. In this regard, the ALE feature of the

scheme is exploited.
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Second, an insight towards the erosion by cavitation is addressed by conducting fluid-

structure interaction simulations. The coupling algorithm plays as a link between the

fluid and the solid domains using the fluid pressure as an input for its calculations. In

the system of hydrodynamic equations considered (i.e. conservation equations of mass,

momentum and total energy), the pressure depends on the density and the internal

energy. In this regard, some modifications must be done in order to adapt the coupling

algorithm that was developed for solving a barotropic system (i.e. pressure depends only

on density).

1.4 Outline of this document

The present document is organized as follows.

Chapter 2 presents a description of the cavitation phenomenon and the cavitation erosion.

It includes the description of bubble dynamics and physical aspects usually considered

in cavitation analyses, like compressibility, mass transfer, viscosity and surface tension

e↵ects. It also discusses the erosion process, the material response and some examples of

cavitation erosion in Pelton turbines. Chapter 3 presents thermodynamic considerations

on the physical model involved in non-condensable gas bubble dynamics and compressible

regimes.

The numerical model is addressed in Chapter 4, where the governing equations are

presented. The SPH method is described with emphasis in the Arbitrary Lagrange Euler

approach. Then, the computation of the numerical fluxes is detailed by describing the

Riemann problem and the solution developed in this work. Next, the correction method

for the compressible SPH-ALE is given. Finally, the multiphase flow model is presented

followed by a discussion regarding the validation cases.

In Chapter 5, it is presented the numerical simulations related to the non-condensable

gas bubble compression in a free field and near a rigid surface. Corresponding analyses

in order to understand the non-condensable gas bubble dynamics in the presence of

neighboring surfaces are discussed. Next, in Chapter 6, the fluid-structure interaction

approach is described, making emphasis on the coupling algorithm and the material

properties. Corresponding analysis is taken up to estimate the material response due

to hydrodynamics loads. In the end, in Chapter 7, conclusions are given and further

perspectives are discussed.



Chapter 2

Cavitation and cavitation erosion

In this chapter, an introduction to cavitation and cavitation erosion is presented. Cavita-

tion occurs when a liquid in a continuous medium breaks down under very low pressures

[25], [94], generating a phase change, the formation of vapor bubbles and vapor pockets

[1], [6].

Cavitation involves the development of several types of vapor structures, such as attached

cavities, travelling bubbles, vortical cavities and bubble clouds. These vapor structures

appear in liquid flow due to a drop in the local pressure below a critical value, which is

usually close to the vapor pressure [45]. These structures are created from cavitation

nuclei. Typically, it is about gas microbubbles contained in the liquid. If a nucleus is

subject to pressure lower than its critical pressure, it will grow into a macroscopic bubble.

Eventually, the bubble will collapse when it is transported by the liquid flow into regions

of higher pressure. If the collapse occurs near a wall, the resulting high amplitude and

small duration impulsive loads may cause local damage. The critical pressure is defined

as the particular value of the pressure below which no equilibrium is possible. This

critical value varies with nuclei size. Chahine et al. [45] have shown that for initial nuclei

sizes of 10 µm the critical pressure is close to the vapor pressure. The consideration of

the nuclei size distribution in the liquid is important for an accurate cavitation inception

prediction. However the cavitation inception is not part of the present thesis, because in

the current state of knowledge at ANDRITZ Hydro S.A. the most important point, at

the beginning of this work, was how a non-condensable gas bubble can damage a solid

and not how it is formed.

7
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Cavitation can be present in several industrial systems, like the hydraulic and aeronautical

one, but also in the medical domain. For example, the lithostropy techniques use pressure

waves to break up stones formed in the kidney [6], [100]. In the case of hydraulic machines,

the innovative designs demand to have particular flow conditions such as higher rotating

speed or higher water head, increasing thus the cavitation risk. Following this idea,

cavitation represents an important challenge in the design and operation of hydraulic

machines. Hence, there is a big interest in understanding it better to avoid negative

e↵ects, such as low e�ciency, noise, vibration and erosion of solid surfaces.

2.1 Cavitation phenomenon

Chahine in [45] defines cavitation as the growth and intense collapse of bubble nuclei in

a liquid when it is exposed to large pressure variations. In a practical manner, cavitation

is identified as either the visual appearance of cavities in the absence of air injection

and heat input, or the acoustical emission of repeated sound produced by these cavities.

Sound emission usually occurs earlier than visual identification. It happens at lower

speeds and/or higher local pressures because microscopic bubbles can experience very

strong dynamics and emit pressure impulses before they can be visible.

It is often assumed that cavitation occurs when the local pressure in the liquid drops

below its vapor pressure at the given temperature. This assumption comes from the

phase diagram of a substance, i.e. the curves which separate solid, liquid, and vapor

phases of the substance at di↵erent temperatures (see Fig. 2.1).

As the liquid pressure decreases su�ciently, a part of the liquid changes its phase

suddenly. The fluid goes from the liquid phase to the vapor phase. Thermodynamically

speaking, this phenomenon can occur due to two physical phenomena: cavitation and

boiling. These two phenomena are explained by Saurel in [90] as follows. Cavitation

in a liquid is a phase change phenomenon due to a pressure drop driven by acoustic

waves generating gas cavities. When liquid pressure is lower than the saturation one

at the local temperature, phase change happens. Actually, during a pressure drop, the

liquid temperature varies weakly and at low pressure it becomes hot with respect to the

saturation temperature, this latter being highly dependent of pressure. Boiling is another

phase transition phenomenon produced by a heating process in a liquid, usually by heat
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conduction from a hot wall. The heating increases the liquid temperature and when it

becomes greater than the saturation temperature at local pressure phase change appears.

From this, cavitation in a liquid can occur by reducing the pressure at approximately

constant temperature. Cavitation thus appears similar to boiling, except that the driving

mechanism is not due to a temperature change but to a pressure change, generally

controlled by the flow dynamics [25].

These two phenomena can been observed in the phase diagram shown in Fig 2.1. Consid-

ering a fluid like water, the curve from the triple point to the critical point separates the

liquid and vapor phases. Passing through that curve produces a reversible transformation

under static conditions of the fluid at vapor pressure pv, which is function of temperature

T .

Figure 2.1: Phase diagram of water. The curve that joins the triple point (T
r

) to the
critical point (C) is the vapor pressure curve [25].

Two steps can be distinguished during the first instants of cavitation, also known as

nucleation of vapor cavities in a homogeneous liquid. The first aspect is represented by

the breakdown or void creation. Then, the second aspect corresponds to the filling of

this void with vapor.

In the present work, the cavitation inception or nucleation is not considered; the interest

is in the vapor cavity dynamics. Following this line, a brief explanation of di↵erent ways

of cavitation development is presented in the next section.
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2.1.1 Types of cavitation

Cavitation can take a variety of forms depending on geometry, hydrodynamic conditions

and liquid quality. In turbomachines, these forms are classified in patterns that can be

divided in three groups as cavitation develops from inception [25].

2.1.1.1 Cavitation of isolated bubbles

Traveling bubble cavitation is favored by the presence of microbubbles, which depend

on water quality [25], [45]. Bubbles are developed in low pressure regions as a result of

the rapid growth of air nuclei present in the liquid. Next, they are carried along the

flow (see Fig 2.2). Eventually, they implode when the flow has moved them to higher

pressure regions. In general, the bubble development is mainly controlled by the pressure

distribution and the liquid nuclei content.

In practice, bubble cavitation can be observed over the blades of hydraulic machinery

when working at high velocity or when the local pressure drops due to operation conditions.

For example, it can be seen at the outlet of Francis turbine models and at the inlet of

centrifugal pumps near their design point [25].

Figure 2.2: Isolated bubble cavitation on a hydrofoil. Flow is from left to right [25]

According to Franc in [25] when bubbles explode on the upper side of the hydrofoil there

is almost no slip between the bubbles and the liquid. Usually, the di↵erence between the

bubble and liquid velocities does not exceed 10%.

2.1.1.2 Attached or sheet cavities

This type of cavitation appears in low-pressure zones, generally on the depression zone

of a profile, for example in low-pressure sides of blades and hydrofoils. As the pressure
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decreases or the fluid velocity increases, a small cavity attached to a hydrofoil will extend

and grow. Depending on the length of the attached cavity, this cavitation pattern is

classified in partial cavity or supercavity. It is known as a partial cavity if the cavity

length finishes on the cavitator wall (see Fig. 2.3(a)). On contrary if the cavity close

inside the liquid, downstream of the cavitator, it is known as supercavity (see Fig. 2.3(b))

[25].

(a) Attached partial cavitation pocket on a profile (b) Supercavitation pocket on a profile

Figure 2.3: Cavitation due to attached cavities [25]

Partial cavity

Partial cavities usually develop in regions of separated flow. They are found in two main

practical situations, either on the upperside of hydrofoils and blades or in internal flows,

such as Venturi nozzles [25].

In general, there are two types of behavior of partial cavitation. When cavities are rather

short and thin, the length of the cavity is constant and the flow is stable on the whole.

On contrary, when the cavities are thicker, they become unstable and their length is

variable because of the cavity shedding.

For thicker cavities, as the pressure inside the cavity decreases, a particular dynamics

is developed in their closure. The curvature of the surrounding streamlines tends to be

directed towards the cavity generating a re-entrant jet which carries a small quantity of

the liquid inside the cavity [25]. This configuration is not steady and depends on the

re-entrant flow rate, the jet may arrive to the front section of the cavity. The jet may also

tear o↵ a part of the cavity. This detached part is broken into smaller vapor structures

such as bubbles. These smaller vapor structures are convected downstream where they

collapse [28]. Then, the part of the pocket that remains attached to the profile develops

again and the cycle is repeated [1]. This process is mainly controlled by inertia and it

can be either random or periodic [25].
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This type of cavitation is generally associated with flow separation near the leading edge.

Cavity closure is usually more unstable than cavity detachment because the fluctuations

at closure are accompanied by the shedding of vapor clouds. An example of this type of

cavitation is taken from the work of Grekula [28]. Fig. 2.4 shows the starting cavitation

at the suction side of a blade of a Kaplan model turbine. It is observed two attached

sheet cavities at the leading edge of di↵erent sizes and another one closer to the hub. It

is also observed relatively large cavitating vortices that break o↵ from the small sheet

cavity attached to the leading edge.

(a) Cavitation starts from the join between the rotating
hub and the stationary inner head cover as shown at A.
The flow is from above.

(b) Attached sheet cavity on the suction side of a Kaplan
turbine. Two partial cavitation sheets are observed at the
leading edge and one sheet closer to the hub. Relatively
large cavitating vortices broken o↵ from the small sheet
cavity attached to the leading edge. The trace of a re-
entrant jet front in the large sheet cavity has been marked
with a white dashed curve.

Figure 2.4: Sheet cavities in a Kaplan turbine [28].

Supercavity

A small cavity attached to a hydrofoil that extends becomes a supercavity when it stops

closing on the body wall but inside the liquid, downstream of the hydrofoil. It is formed

behind small size bodies and it usually happens for very high relative velocities between

the liquid and the body [25].

As the cavity pressure is lower than the surrounding pressure, the liquid tends to penetrate

into the cavity forming a re-entrant jet in the closure region. This region is unstable

and presents two main regimes. There is the re-entrant jet that tends to confine the

gas and vapor mixture inside the cavity, and at the same time, there is an emission of

vortices that take o↵ gas and vapor from the cavity. This phenomenon stimulates the

vaporization at the cavity interface. Vaporization usually happens at the front part of



Chapter 2. Cavitation and cavitation erosion 13

the cavity and it regularly feeds the cavity with vapor and compensates the amount of

vapor released at the rear.

The wake of a cavity is the region just downstream of the attached cavity. There, the

flow contains many bubbles, which are released from the cavity and appear more or less

entrapped in the core of alternating vortices. This region is always highly turbulent due

to the instability of the cavity closure.

2.1.1.3 Cavitating vortices

Rotational structures generate zones of strong vorticity that can create low-pressure

regions inside the liquid itself. Such pressure drops can be very intense [25] generating

noise and vibrations [104].

In a simple form, a cavitating tip vortex is just a tube of vapor of approximately constant

diameter [104] as it is shown in Fig. 2.5(b).

In a practical approach, cavitation vortices can occur at the pump suction [67], in tip

vortices of wings and in propeller blades [104]. Fig. 2.5(a) comes from the work of Nagara

et al. [67] and shows the flow structure of the vortex occurring in a pump suction intake.

They showed that the mean velocity and the swirl flow at the lower part of the pump inlet

causes the submerged vortex cavitation. They also showed that some increment in the

swirl flow strength increases the vortex diameter and intensity. For the propeller blades,

Van Wijngaarden et al. [104] report that the cavitating tip cavity (see Fig. 2.5(b)) varies

in diameter due to changes in tip loading as the propeller goes through the wake peak

of the ship. Thus, pressure pulses at the blade are generated by the acceleration and

deceleration of the cavitating core. They state that the tubular cavity is very sensitive to

perturbations, highlighting that cavitating vortices show break-ups and even local cloud

formation.

To conclude, it can be highlighted that whatever the type of cavitation, its occurrence is

strongly dependent on the minimum pressure in the flow. As well, during the cavitation

development, it has been shown that breaking vapor structures containing bubbles

are present for the three cavitation patterns (e.g. isolated bubbles, sheet cavities and

cavitating vortices).
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(a) Submerged vortex cavitation in the inlet part of a
pump [67]

(b) Cavitating tip vortices on a
propeller in open water [104]

Figure 2.5: Cavitating vortices

2.1.2 Dynamics of bubbles

In the current section, it is considered the dynamic evolution of a bubble surrounded by

liquid whose pressure is uniform at infinity. This simple model can be used to explain the

main features of many practical cases such as bubble collapse and bubble formation [25].

In terms of isolated bubble dynamics, the liquid motion induced by a spherical cavity in

an infinite medium under uniform pressure was first considered by Besant in 1859 [25],

[81]. Rayleigh in 1917 [81] developed theoretical formulations on the movement of an

empty cavity in a incompressible and inviscid liquid, deriving his analytical formulation

to interpret the phenomenon of bubble collapse. In 1948, Cole used the model of a

spherical bubble containing gas and applied it to sub-marine explosions [25]. Plesset in

1949 [78] considered the case of bubble evolution, modifying the Rayleigh equation by

including surface tension. Then in 1954, Plesset considered the general case adding the

viscous e↵ects [25], [79].

2.1.2.1 Rayleigh-Plesset equations

The Rayleigh-Plesset equation constitutes one of the basic equations when analyzing the

bubble dynamics. In this frame some assumptions are taken. The liquid is considered

incompressible, the gravity is neglected and the exchange of heat with the surrounding is

neglected.
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It is assumed that the bubble is filled with gas and vapor and that its content is constant.

In a gas mixture, the partial pressure of a gas is the hypothetical pressure of that gas if

it occupied alone the entire volume of the original mixture at the same temperature [8].

For the bubble, the partial pressure of vapor is the vapor pressure (pv) at the liquid bulk

temperature.

Fig. 2.6 shows the domain of interest. The liquid domain corresponds to r � R(t)

and since the domain presents a spherical symmetry only the radial evolution in time

is considered. Hence, the functions to be determined are the velocity ur(r, t) and the

pressure p(r, t) induced within the liquid by the evolution of the bubble.

R(t)

ur(r,t)

bubble

liquid

pamb

far from bubble r p(r,t)

Figure 2.6: Scheme of a bubble in a infinite fluid

In the case of viscous liquid of dynamic viscosity ⌅, the normal stress (�rr) at the

interface is given by [3], [25],

�rr(R, t) = �p(R, t) + 2 ⌅
@ur
@r

���
r=R

. (2.1)

The balance of normal forces is given by

�rr(R, t) + pv + pg(t)�
2Stension

R
= 0, (2.2)

where Stension is the surface tension and it can be defied for a pure liquid as the

”macroscopic manifestation of the intermolecular forces that tend to hold molecules

together and prevent formation of large holes” [3]. Additionally, pg stands for the

partial pressure of the non-condensable gas inside the bubble. An expression for the
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partial pressure can be obtained assuming an adiabatic transformation of this gas. Its

instantaneous pressure is related to the initial pressure pg0 by the Eq. 2.3,

pg(t) = pg0


R0

R(t)

�3�
, (2.3)

where � is the ratio of gas heat capacities.

Thus, the pressure on the interface is given by

p(R, t) = pv + pg0


R0

R(t)

�3�
� 2Stension

R
+ 2 ⌅

@ur
@r

���
r=R

. (2.4)

Far from the bubble the liquid is assumed at rest and the pressure pamb is known.

The Rayleigh-Plesset equation is developed following the explication proposed by Brennen

[3]. Due to spherical symmetry and by conservation of mass, the inverse-square law

requires that the radially outward velocity ur(r, t) must be inversely proportional to the

square of the distance from the origin (e.g. the center of the bubble), i.e.

ur(r, t) =
F (t)

r2
, (2.5)

where F (t) is some function of time.

The mass transfer through the interface is neglected, i.e. phase change is not considered,

so the liquid velocity at the interface ur(R, t) is equal to the interface velocity Ṙ = dR
dt .

This expression gives a form to F (t), i.e. F (t) = ṘR2, and therefore to ur(r, t), i.e.

ur(r, t) = Ṙ
R2

r2
. (2.6)

Assuming a Newtonian liquid, the Navier-Stokes equation for motion in the r direction

is [3]

@ur
@t

+ ur
@ur
@r

= �1

⇢

@p

@r
+

⌅

⇢


1

r2
@

@r

✓
r2

@ur
@r

◆
� 2ur

r2

�
. (2.7)



Chapter 2. Cavitation and cavitation erosion 17

After substituting ur (Eq. 2.6) in Eq. (2.7), the viscous term of the Navier-Stokes

equation cancels. Thus, for a viscous and non-viscous fluid, the momentum equation is

given by Eq. (2.8), i.e.

@ur
@t

+ ur
@ur
@r

= �1

⇢

@p

@r
. (2.8)

Continuing, the resulting expression is:

R̈
R2

r2
+ 2Ṙ2


R

r2
� R4

r5

�
= �1

⇢

@p

@r
. (2.9)

Integrating with respect to r, from r to r ! 1, it is obtained:

p(r, t)� pamb(t)

⇢
= R̈

R2

r
+ 2Ṙ2


R

r
� R4

4r4

�
. (2.10)

On the interface r = R, Eq. (2.10) gives:

p(R, t)� pamb(t)

⇢
= RR̈+

3

2
Ṙ2. (2.11)

Finally, with the expression in Eq. (2.4) for the pressure at the interface, and noting

that @u
r

@r

���
r=R

= �2Ṙ
R , the equation of Rayleigh-Plesset is obtained [25]:

⇢


RR̈+

3

2
Ṙ2

�
= pv � pamb(t) + pg0


R0

R

�3�
� 2Stension

R
� 4 ⌅

Ṙ

R
. (2.12)

It is to notice that only the viscous contribution to the Rayleigh-Plesset equation comes

from the balance of forces at the bubble surface.

Using this equation, it is possible to determine the temporal evolution of the radius R

and consequently the pressure field in the liquid (Eq. 2.10) when pamb(t) is known. In

most cases, the inertial forces are dominant and viscosity does not play a significant role.

The surface tension is often secondary in the case of bubble collapse [25].

Rayleigh-Plesset equation in two dimensions
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In some cases, two-dimensional configurations are used in order to simplify experimental

situations. This is the case of Lohse et al. [60] that studied the jet formation during

the impact on soft sand. Very soft sand is prepared in a fully not-compact state by

letting gas bubbles through it. Then, a steel ball is dropped on the sand generating

a granular jet into the air. In order to analyze this phenomenon, they performed 2D

experiments of jet formation by letting fall a cylinder into this prepared sand. They

confirmed the jet formation process. Although the jet is less pronounced than in 3D

experiments, the whole physics is observed [60]. In this case, it is about a granular

medium; nevertheless the authors found an analogy with water that allowed them to use

the Rayleigh-Plesset equation in 2D for the analysis. Another case is reported by Oguz

and Prosperetti in 1993 [71]. They analyzed several aspects of the growth and departure

of bubbles from a submerged needle. Specifically, they remarked a situation similar to a

radially collapsing cylinder (i.e. a two-dimensional sink) during the process by which the

gas neck connecting the bubble to the needle collapses and releases the bubble. So, for

this point of the analysis the Rayleigh-Plesset equation developed in 2D was used.

For developing the Rayleigh-Plesset equation in 2D the same steps presented previously

in Section 2.1.2.1 are followed, except that in this case the cylindrical symmetry is

considered. Hence, by conservation of mass, the radially outward velocity ur(r, t) must

be inversely proportional to the distance from the origin. Also considering that the mass

transfer is negligible through the interface, we have the radial velocity as,

ur(r, t) = Ṙ
R

r
, (2.13)

which compares to Eq. (2.6).

Next, we consider only non-viscous flows. So, using the momentum equation (Eq. 2.8)

and the radial velocity for two-dimensional cases (Eq. 2.13), we have:

R̈
R

r
+ Ṙ2


1

r
� R2

r3

�
= �1

⇢

@p

@r
, (2.14)

which compares to Eq. (2.9).
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As done in the previous case to obtain the Eq. (2.10), here the Eq. (2.14) is integrated

with respect to r (from r to r ! 1) to give the following expression,

p(r, t)� pamb(t)

⇢
=
⇣
R̈R+ Ṙ2

⌘
log

✓
R1
r

◆
+

Ṙ2

2
R2

✓
1

R2
1

� 1

r2

◆
. (2.15)

It is important to mention that the logarithm appears after the integration and so, a

cut-o↵ distance R1 is used. This distance starts from the axis and represents an outer

surface of radius R1 that delimits the zone at which the velocity in the fluid does not

change.

To be compared to Eq. (2.11), it is taken that on the interface r = R, so Eq. (2.15) gives:

⇣
R̈R+ Ṙ2

⌘
log

✓
R

R1

◆
+

Ṙ2

2

✓
1� R2

R2
1

◆
=

pamb(t)� p(R, t)

⇢
. (2.16)

The expression for the pressure at the interface (Eq. 2.4) can again be used to take into

account the pressure inside the bubble, the surface tension and the viscous e↵ects.

Here, the Rayleigh-Plesset equation for two-dimensional configurations is presented as

⇣
R̈R+ Ṙ2

⌘
log

✓
R

R1

◆
+

Ṙ2

2

✓
1� R2

R2
1

◆
=

pamb(t)� pv � pg0
⇥
R0
R

⇤3�
+ 2S

tension

R � 2 ⌅ @u
r

@r

���
r=R

⇢
,

(2.17)

which compares to Eq. (2.12).

2.1.2.2 Compression of a non-condensable gas bubble inside an incompress-

ible liquid

In this section, the e↵ects of viscosity and surface tension are ignored. In addition, it is

considered that the bubble is filled only with non-condensable gas, in other words, there

is no vapor inside the bubble. The resulting model allows to describe the global features

of the non-condensable gas bubble collapse for an almost inviscid liquid such as water.

During the bubble compression, the radius tends to zero and the radial inwards motion

tends to infinity. If the Rayleigh-Plesset equation (Eq. 2.12) is integrated following the

previous assumptions, the velocity of the bubble surface is obtained.
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To do so, the Rayleigh-Plesset equation is re-written as,

1

2ṘR2

d

dt

⇣
Ṙ2R3
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The above equation is integrated as follows,
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Ṙ2 =
2

⇢R3

"
pg0R

3�
0

(1� 3�)

⇣
R(1�3�) �R

(1�3�)
0

⌘
� pamb

3

�
R3 �R3

0

�
#

(2.23)

As Ṙ is negative during the compression, it is obtained
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Measurements in several works ([25], [107], [9], [45]), present high values of interface

velocity during the collapse. For example values of about 800 m/s depending on the

ambient pressure have been reported. Such high velocity values, of the order of half of

the speed of sound of water (e.g. 1500 m/s), indicate that liquid compressibility must be

taken into account in the final stages of collapse.

Then, in order to find the characteristic time of collapse, the Rayleigh-Plesset equation

should be solved numerically. Eq. 2.12 and Eq. 2.17 are solved for a spherical bubble

and for a circular bubble (i.e. in two dimensions), respectively.

Pressure field during bubble compression
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Regarding the pressure field, it has been mentioned in the literature ([25], [40]) that high

pressure values close to the interface are reached during the collapse of a bubble. These

high pressure values in the liquid generate a violent behavior during the non-condensable

gas bubble collapse. Being interested on the pressure field inside the liquid, an analytic

analysis is done thereafter. In this regard, the Rayleigh-Plesset equations for spherical

(Eq. 2.12) and cylindrical (Eq. 2.17) configurations are considered.

• Spherical configuration

For a spherical bubble, the pressure field p(r, t) can be determined from the

Eq. (2.10), in which R̈ is taken from the Rayleigh-Plesset equation (Eq. 2.12)

with the previous assumptions (i.e. ignoring viscous and surface tension e↵ects,

and considering that the bubble is only filled with non-condensable gas). The

corresponding expression for R̈ is given by,

R̈ =
1

R
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Including Eq. (2.25) in Eq. (2.10), an expression for the pressure field in the liquid

is obtained, i.e.
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It is to notice that for solving this expression, it is required to know the radius R

and the interface velocity Ṙ, which are calculated by integrating numerically the

Rayleigh-Plesset equation (Eq. 2.12) with the same previous assumptions.

• Cylindrical configuration

In the case of a cylindrical configuration, the expression for the pressure field in the

liquid can be obtained following the same steps presented for the spherical shape.

Eq. (2.15) is considered, in which R̈ comes from the Eq. (2.17). Ignoring viscous

and surface tension e↵ects, and considering that the bubble is only filled with
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non-condensable gas, the expression for R̈ is given by,
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Then, including Eq. (2.27) in Eq. (2.15), the pressure field in the liquid is obtained,

i.e.
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Similarly to the spherical bubble case, for solving the pressure field is needed to

know the radius R and the interface velocity Ṙ, which are numerically calculated

by integrating in time the Rayleigh-Plesset equation (Eq. 2.17).

Fig. 2.7 shows the behavior of the pressure in the liquid near the interface p(r, t) for

each configuration (i.e. 3D and 2D). It is used the Eq. 2.26 for the 3D configuration

and the Eq. 2.28 for the 2D configuration. It exhibits the liquid pressure field at

several instants during the compression. Each curve corresponds to a specific moment

linked to bubble instantaneous radius, which here are expressed dimensionless, i.e.

R/R0 = 0.9, 0.5, 0.3 and 0.25.

In the present development the pressure from the non-condensable gas is considered as

the only pressure contribution inside the bubble. The parameters used are shown in

Table 2.1.

Table 2.1: Parameters used in the model to estimate the pressure in the liquid

Ambient pressure p
amb

[MPa] 10

Initial pressure of the non-condensable gas p
g0 [MPa] 0.1

Initial radius of the bubble R0 [m] 0.010

Ratio of heat capacities � 1.4

Liquid density ⇢ [kg/m3
] 1000

As illustrated in Fig. 2.7, the pressure in the liquid near the interface becomes higher

than the ambient pressure over some time interval during the last stages of compression.

Under adiabatic conditions, the pressure at the interface is pg0
⇥
R0
R

⇤3�
and this term
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(a) Pressure in the liquid in 3D, using the Eq. 2.26
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(b) Pressure in the liquid in 2D, using the Eq. 2.28

Figure 2.7: Pressure [MPa] in the liquid as a function of the radial distance at
di↵erent times corresponding to di↵erent bubble instantaneous radius. Blue solid line:
R/R0 = 0.9, red dashed-dotted line: R/R0 = 0.5, green dashed line: R/R0 = 0.3, violet

dotted line: R/R0 = 0.25

dominates the equations 2.26 in 3D and 2.28 in 2D in the last stages of compression,

while the liquid pressure tends to the ambient pressure far away from the bubble.

The liquid pressure increases with the decrease of R/R0. It is observed that this growth

in the liquid pressure is faster close to the interface. So, high pressure values close to the

bubble interface (i.e. r
R ⇡ R

R0
) are reached as the bubble size decreases.

The e↵ect of the non-condensable gas on the liquid pressure field is observed at the

bubble interface, i.e. at the lowest value of r/R0 of each curve. It is not evident on the

figure, but the pressure value of the liquid at the bubble-liquid interface is the same for

both cases (i.e. 3D and 2D). This is because the term that quantifies the non-condesable
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gas does not depend on the configuration. It depends on the radius evolution (i.e. R(t))

and here, both figures (Fig. 2.7(a) and Fig. 2.7(b)) present the same instantaneous

radius R/R0.

At early times, the liquid pressure increases from the low initial non-condensable gas

bubble pressure to the ambient pressure (pamb). As the non-condensable gas bubble is

compressed, the bubble pressure increases, so that, as a consequence, the liquid pressure

rises and eventually exceeds pamb.

Because only pressure and inertia forces are taken into account, the pressure field is

considered as the e↵ect of inertia forces only. This liquid pressure behavior can be also

explained as the result of the conservation of the liquid volume that tends to concentrate

liquid motion to a smaller region [25]. This means that the liquid convergences into a

region generating an increase of pressure. If we consider the divergence of the transport

velocity of liquid, it is negative, then its volume decreases, and because the mass remains

constant, its pressure increases.

So, the liquid pressure field presented in both configurations (3D and 2D) is a consequence

of the velocity field generated by the bubble interface velocity (Ṙ).

In summary, both 3D and 2D models present a liquid pressure field alike: near the

interface the liquid pressure rises due to the non-condensable gas inside the bubble, and

far away from the bubble the liquid pressure tends to pamb. Of course there is a di↵erence

in the liquid pressure field linked to the dimensional approach (3D and 2D), which will

be addressed in the next part.

It is observed that a 3D collapse presents pressure levels higher than the pressure levels in

the 2D configuration. If we compare the pressure peak found near the bubble interface, it

is noted one order of magnitude of di↵erence between both configurations. This di↵erence

indicates that the use of the 2D model would underestimate the pressure peak at the

bubble collapse.

After this peak and towards the growing direction of r/R0, the pressure profile rapidly

decreases in both cases. But the decreasing rate is also di↵erent for each configuration.

To explain this behavior, both pressure field expressions (Eq. 2.26 and Eq. 2.28 for 3D

and 2D models, respectively) are considered. There are two terms in the right-hand

side of each expression. In the 3D model, the decreasing behavior is controlled by two

functions, i.e. 1/r and 1/r4. These functions decrease faster than log(1/r) and 1/r2
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in the 2D configuration, explaining from a mathematically point of view the profile

behavior. From a physical approach, the pressure decay rate may be attributed to the

inverse-square law in 3D and to the inverse law in 2D. In 3D, the pressure field is governed

by the inverse of the square of the distance and in 2D it is governed by the inverse of the

distance, showing that the decay will be faster in 3D than in 2D configurations.

Although the amplitude value and the decreasing rate is a↵ected by the 2D assumption,

the liquid pressure tendency is comparable qualitatively in both configurations. So, the

2D assumption allows us to estimate the fluid dynamics during the non-condensable gas

bubble compression.

2.1.2.3 Pressure waves during the bubble compression inside a compressible

liquid

As our interest is to go towards the erosion caused by the cavitation phenomenon, an

explanation of the pressure wave generated by the compression of a non-condensable gas

bubble is given. Fig. 2.8 shows a sketch of two situations, it is shown the compression of

an isolated bubble on the top of the figure, and the compression of a bubble near a solid

surface on the bottom.

Figure 2.8: Bubble compression scheme. On top: bubble compression in free field.
Bottom: bubble compression next to a solid boundary

The liquid compresses the bubble, causing that the non-condensable gas bubble is no

longer able to support its structure because of its small internal pressure in comparison

with the liquid pressure. In consequence, the bubble size decreases until its collapse,

generating a pressure wave that propagates into the surrounding liquid. In other words,
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before the ”bubble collapse event” the liquid goes towards the non-condensable gas

bubble, but after the ”bubble collapse event” the liquid near the non-condensable gas

bubble is pushed outwards by the pressure wave generated. This particular instant is

highlighted on Fig. 2.8.

The compression of the non-condensable gas bubble near a wall shows di↵erent features.

The solid wall boundary creates a geometrical asymmetry that causes the asymmetry

shape of the bubble along the compression. The wall prevents the flow of filling the space

between the bubble bottom and the wall. This generates a velocity di↵erence between

the upper side and the bottom side of the bubble, i.e. the upper side presents a higher

velocity than the bottom side. Consequently, the farther side of the bubble with respect

to the solid accelerates inward more rapidly than the opposite side, resulting in a micro

jet that penetrates the bubble. Afterwards, the bubble collapses, generating a pressure

wave that can damage structurally the material. It has been shown that the micro jet

event also generates a pressure wave that propagates in the liquid ([26], [45], [40]). The

”micro jet event” is highlighted on Fig. 2.8.

The later phenomenon has been studied experimentally highlighting additional features

during the compression phase. For example, Vogel et al. [107] remarked a displacement

of the bubble towards the solid wall when the bubble is initially located farther from

the wall. This displacement is caused by the velocity di↵erence between the upper and

lower side of the bubble. The authors also observed a deformation of its shape, precisely

the spherical bubble deforms into a ring as the compression is happening. Meanwhile,

Fujikawa et al. [26] have studied the growth, collapse and rebound of a bubble close to a

solid wall. Authors have observed that the bubble close to the solid wall emits a water jet

towards the boundary in the final stages of collapse, then it rebounds. Authors describe

that the bubble, during growth, becomes elongated in the direction parallel to the solid

boundary, but as the bubble proceeds to collapse, it becomes elongated in the direction

normal to the boundary and then approaches the boundary forming a water jet.

Additionally, estimations of the micro jet velocities were conducted, obtaining some

orders of magnitudes. Values up to 100 m/s are reported from experimental works [107],

and values in the range of 100 m/s to 800 m/s depending on the ambient pressure are

obtained from numerical works ([45], [40]). Regarding pressure emissions during the

collapse of bubbles attached to a rigid wall, it has been reported wall pressures of about

0.8 GPa [43] and 1GPa [4].
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Sensitivity analysis has been done about the bubble collapse close to a boundary. It is

considered a free surface boundary([56], [74], [112], [109], [101], [102]) and a rigid wall

boundary ([39], [40], [45], [49], [113]). In all cases the boundary influences the bubble

compression mechanism generating the physical conditions to develop a micro jet directed

towards the boundary. Additionally, the e↵ect of buoyancy has been studied by changing

the inclination of the adjacent rigid wall with respect to the gravity direction [111]. In

this case, a micro jet is also observed, however, some di↵erences can be mentioned. For

example, changing the inclination of the wall causes a distortion in the direction of the

micro jet, i.e. the jet is not directed perpendicular towards the wall. Thus, the micro jet

is formed and directed in a oblique direction with respect to the wall [111].

Furthermore, experimental ([5], [12]) and numerical [39] works indicate that multiple

pressure peaks on the wall are registered during one bubble collapse event. Two major

pressure peaks are usually identified, one corresponding to the impact of the micro jet

and the other one from the pressure wave generated when the bubble collapses. The

relative magnitudes of these two peaks depend on the ambient pressure and on the

distance between the bubble and the wall. In some cases, the peak from the micro jet is

higher, while in some other cases the one from the bubble collapse is higher.

Another typical configuration considered is the shock-induced collapse. It is the repre-

sentation of a bubble that receives a high pressure wave generated by the collapse of

neighbor bubbles. Results show that a jet forms in the direction of propagation of the

wave and penetrates the bubble during collapse ([39], [75], [110], [43]). As a result of

the propagation of this wave, high pressures are achieved for bubbles collapsing close to

the wall, reporting values of about 0.7 GPa [43] and 1 GPa [39]. These wall pressure

values are comparable with the ones obtained from a classical configuration, in which the

bubble collapses due to an uniform pressure in the liquid higher than in the gas. The

incoming shock retards the bubble collapse in comparison with the classical configuration

[43]. Additionally, it is mentioned that as the pulse amplitude increases, the pressure on

the wall also increases [39].

In conclusion, the high speed of the micro jet and the high pressure wave emissions cause

large pressure amplitudes at the solid surface leading to material damage or erosion

[9], [107]. Therefore, special interest is given to represent these two phenomena in the

cavitation prediction. In this line, a brief description and some remarks on viscosity and
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surface tension e↵ects are presented, because they may a↵ect the behavior of the micro

jet and pressure waves under certain conditions.

2.1.2.4 E↵ect of viscosity on the bubble collapse

The e↵ect of viscosity is studied due to its ability to damp out the perturbations in the

flow field and consequently to a↵ect the flow dynamics during the bubble collapse.

In the literature ([3], [25], [94], [2], [95], [58]) it is found that the collapse is slowed down

by the viscosity. In general, for single bubble dynamics, viscosity plays a role for very

small bubbles, i.e. bubbles having a radius of the order of 1 µm [3].

The influence of viscosity in the bubble collapse was also considered by Poritsky in 1952

and then by Shima and Fujiwara in 1980 [95]. They showed that viscosity retards the

collapse. However, in the case of water this slow down is not large [25]. Likewise, in

1965, Ivany and Hammitt showed that the damping e↵ect of viscosity does not play a

significant role and thus it can be neglected for low viscous fluids like water [3], [94].

Later, in 2009, Johnsen and Colonius [40] analyzed the viscosity influence based on the

Reynolds number (Re), which measures the ratio of inertial forces to the viscous forces.

They calculated the Reynolds number considering the maximum jet velocity and the

jet size (which is approximately 0.25R0) during compression and found out that the

Reynolds number varies from 102 to 103 for bubbles of 10 µm. So, based on these values

they conclude that viscosity does not influence the flow dynamics during the bubble

collapse, because the inertial forces are 100 to 1000 times higher than the viscous forces.

In 2012, Lind et al. [59] have investigated the dynamics of multiple bubbles initially

placed near a rigid boundary including the viscous e↵ect. They considered two bubbles

positioned along a vertical axis of symmetry, where one bubble is closest to wall. They

analyzed their dynamics varying the Reynolds number. It was found that viscosity

influences the dynamic interaction between these two bubbles for low Reynolds numbers

(e.g. Re = 2). For example they remarked a di↵erence in the time when the micro jet is

formed. For inviscid flow, the micro jet is first developed in the upper bubble (i.e. the

one that is farther from the boundary), but for viscous flow (e.g. Re = 2), the micro jet

is first formed in the lower bubble (i.e. the one that is closer to the boundary), showing

that this behavior is almost the opposite. They also reported that viscosity does not play

a significant role for Reynolds numbers larger than 100. Therefore, viscosity e↵ects are
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relevant for applications involving very low Reynolds numbers, ergo where the inertial

forces are not important.

Regarding the flow dynamics for cavitating flow, such as the cloud shedding behavior,

the inertia e↵ects mainly drive its collapse and in consequence viscosity e↵ects are not

significant. Nevertheless, special care might be taken into account when neglecting

viscosity in flow where viscous separation could occur. So, a verification that the single-

phase flow remains attached to the geometry at the same flow conditions is recommended

[94].

Since we are interested in modeling the collapse of a non-condensable gas bubble, whose

initial radius is about 10 [mm] and it is located in water, an estimation of the Reynolds

number can be done. So, considering the following values:

• the water kinematic viscosity at 20 �C is 1 · 10�6[m2/s] [108],

• the jet velocity is about half the water speed of sound [25] (i.e. 1500
2 [m/s]) and

• the characteristic length corresponds to the jet size (i.e. 0.25 R0 [40]),

the Reynolds number is: Re = 2 · 106. This results highlights that the inertial forces

dominate the dynamics during the bubble compression in the case that we are interested

in.

To summarize, since the bubble compression is mainly driven by inertial forces and we

consider machines (e.g. Pelton turbines) working with water, the e↵ect of viscosity is

neglected in the frame of this investigation.

2.1.2.5 E↵ect of surface tension on the bubble collapse

Concentrating our attention in the bubble dynamics, surface tension influences the whole

bubble development. It has a significantly influence during the nucleation phase [3], [72],

a stabilizing e↵ect when instabilities are present [41], and a slightly acceleration e↵ect

during collapse [25]. It should be noted that instabilities exist, mainly but not only,

during the bubble collapse [3]. Now, we examine in detail the compression phase and the

range where this acceleration e↵ect is significant.
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In this regard, it is considered the Rayleigh-Plesset equation (Eq. 2.12), where the bubble

is filled exclusively with non-condensable gas (there is no vapor inside the bubble) and

only the surface tension term is considered, i.e.

⇢
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, (2.29)

where pg stands for the partial pressure of the gas inside the bubble, Stension is the

surface tension and pamb is the pressure far away from the bubble.

It is to notice that the viscous term are not considered.

Eq. (2.29) is integrated to obtain an expression for the interface velocity (Ṙ = dR/dt).

The resulting expression is given by [25], i.e.

dR

dt
= �

✓
2

3

✓
pamb � pg

⇢

◆
R3

0

R3
� 1

�
+

2Stension

⇢R0

R3
0

R3


1� R2

R2
0

�◆1/2

, (2.30)

where R0 is the initial and maximum bubble radius.

The pressure and the surface tension term are compared to determine under which

conditions the surface tension e↵ect is important. Since we search to compare the

influential terms, we take the ones involving the ratio R0/R with the highest exponent.

Then, it was shown by Franc in [25] that the surface tension e↵ect is significant if:

2Stension

⇢R0
>

2

3

pamb � pg
⇢

. (2.31)

Taking out R0 from Eq. (2.31), we have an expression (Eq. 2.32) indicating the maximum

bubble radius that is influenced by the surface tension for certain physical values, i.e.

R0 <
3Stension

pamb � pg
. (2.32)

Some physical values for water are taken to show the surface tension e↵ect. Assuming

1 bar as pressure di↵erence and knowing the water-air surface tension at 20 �C (e.g.

Stension = 0.072 N/m), it is obtained a value of 2 µm for the maximum bubble radius.

This small value is quite rare in hydraulic application [25]. Hence, the e↵ect of surface

tension is not significant in the case of bubble collapse in hydro-machines.
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In summary, the surface tension does not influence the bubble dynamics in terms of our

applications.

2.1.3 Considerations in the physical model of cavitating flows

Liquid compressibility and mass transfer are contemplated when studying the cavitation

phenomenon. They allow investigating di↵erent aspects, such as the pressure wave

propagation in micro-scale models when considering the liquid compressibility and the

generation of vapor pockets when considering the mass transfer in macro-scale models.

So, their explanation is relevant in order to define the physical model to be used during

this work.

2.1.3.1 Liquid compressibility

Compressible flows are characterized by undergoing density variations due to a pressure

field established. The compressibility of a fluid denoted by ✓ can be interpreted as the

compression that su↵ers a small element of fluid of specific volume ⌫ due to the increase

of pressure p. So, compressibility is defined by [94],

✓ = �1

⌫

d⌫

dp
. (2.33)

Since the volume is reduced, d⌫ is negative. Thus, a negative sign is added in the Eq.

(2.33) because the compressibility of a substance cannot be negative [94]. This equation

needs some attention, as the compression process may be not adiabatic. Therefore,

the temperature in the fluid is considered and kept constant to obtain the isothermal

compressibility, i.e.

✓T = �1
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���
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. (2.34)

Similarly, for adiabatic and reversible processes (without any dissipation mechanisms)

isentropic compressibility is expressed as,
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���
s
. (2.35)
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The Eq. (2.35) can be rewritten using the fluid density, ⇢, as

✓s =
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s
. (2.36)

For example in the physical problem of an air bubble collapsing in water, the water

compressibility at standard conditions is about 5·10�10 m2/N while the air compressibility

is about 10�5 m2/N . Although water compressibility is very low compared to air

compressibility, all fluids should be treated as compressible substances in order to

properly describe the propagation of waves.

This can be interpreted considering the speed of sound, which is the speed at which a

pressure wave travels through a medium [8]. It is defined as

c2 =
@p

@⇢

���
s
. (2.37)

Therefore, a relation can be found between the isentropic compressibility and the speed

of sound [94], i.e.

c2 =
1

⇢✓s
, (2.38)

showing that if compressibility is not taken into account, i.e. ✓s = 0, a finite wave speed

can not be defined as c ! 1.

Another implication of liquid compressibility is shown considering the water-hammer

phenomenon, where an initially moving liquid is instantaneously stopped. The sudden

flow stagnation generates an upstream traveling wave. So, the water-hammer relation

gives the pressure rise, �p, linked to a conversion of kinetic energy to potential energy

stored in the compressible liquid [85], i.e.

�p = ⇢c�v, (2.39)

where �v is the variation of the flow velocity.

It is noted that for a proper estimation of the water-hammer pressure, the liquid

speed of sound must be considered, and thus the liquid compressibility. Additionally,

incompressible formulations does not allow the formation of pressure waves with finite
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speed of sound (as c ! 1) and so it does not allow to model the pressure di↵erence

created.

A link between the water-hammer phenomenon and the bubble dynamics can be done

during the final stages of a bubble collapse near a wall, when the water micro-jet is

developed. At that moment, the liquid at high velocity inside the jet meets the liquid at

lower velocity, located between the bubble and the wall. From that instant on, it can be

assumed that the kinetic energy of the liquid is transformed to elastic energy (i.e. a form

of potential energy), thus releasing a pressure wave.

Supplementary information is given by Fuster et.al. [27], who studied the e↵ect of

liquid compressibility on the dynamics of a spherical cavitating bubble. Authors report

that liquid compressibility e↵ects are crucial in order to get accurate estimations of the

internal pressures reached inside the bubble, as well as in the estimation of liquid pressure

profiles after the bubble collapse. In addition, authors compare their numerical model

that considers liquid compressibility against analytic models, like the Keller and Miksis

model [44] that considers also liquid compressibility and the Rayleigh-Plesset model that

does not. In conclusion they found out a di↵erence of 5% in the collapse time.

In conclusion, during the compression and collapse phase, liquid compressibility must be

considered. It allows taking into account the emission of pressure waves that are essential

when studying cavitation erosion.

2.1.3.2 Mass transfer

Mass transfer mechanism, which is considered as an internal process inside the flow, is a

physical process occurring under certain flow conditions. Sometimes this internal process

happens in a time scale not negligible with respect to the time scale of the flow, so the

internal process can be considered in the formulation. In some other situations, the time

rate of the internal process can be negligible and therefore, the internal process is not

taken into account in the formulation. So, in order to board the mass transfer subject,

an internal process arising inside the flow is considered.

For that purpose, it is assumed a fluid flow without any dissipation mechanisms, which

corresponds to the Euler equations of fluid dynamics. For any flow, the set of Euler

equations requires an equation of state as a closure relation. For flows having a negli-

gible internal process, an equation of state relating the thermodynamic variables such
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as pressure, temperature and density is usually used. However, for flows having an

internal process, an additional variable should be introduced in order to specify this

non-equilibrium process.

This new variable is analyzed following a control volume approach. It is assumed that

the new variable a is produced or modified due to thermodynamic or chemical process.

For example, in cavitation, vapor is produced inside the control volume due to the phase

transition process. Therefore, a can be taken as the volume fraction (i.e. the ratio

between the vapor volume to the total volume, V
v

V
tot

) or the mass fraction of vapor (i.e.

the ratio of vapor mass to the total mass, m
v

m
tot

).

Then, this process that occurs internally can be represented with the time rate change of

a, i.e.
�
da
dt

�
int.proc

.

The addition of this new variable, a, requires an extra equation in the Euler system.

It is a transport equation as the change of this new variable is influenced by the fluid

flow [94]. Then, taking uk as the velocity in the direction of interest xk and writing the

transport equation along this direction, the transport equation of a can be expressed as

@(⇢a)

@t
+

@(⇢auk)

@xk
= ⇢

✓
da

dt

◆

int.proc

. (2.40)

The right hand side term represents the time rate change of a inside the control volume

due to internal processes, also called source term. The left hand side term corresponds

to the change of variable a due to the net inflow into the control volume. Actually, this

equation presents the same form as the transport equation for the void fraction usually

used when modeling the phase transition, which is assumed to occur in a non-equilibrium

process. This process is modeled by the definition of the source term.

Condensation and evaporation are good examples of flows with phase transition. Con-

densation process can be produced when a vapor at a given temperature is brought at a

pressure higher than the vapor pressure at that certain temperature. This may happen

along an isothermal compression path. So, as the vapor is compressed isothermally, it

reaches its condensation pressure, which is the vapor pressure of the liquid phase of the

same substance [63], then, the vapor condenses. For example, this phenomenon may occur

during the compression of a vapor bubble. On the other hand, the evaporation process
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is a metastable state that results due to a rapid expansion of a liquid flow [91], where

the phase change takes place. This evaporation process is defined by a rate equation for

cavitation and occurs during the growth phase of a vapor bubble.

The source term, on the right hand side of Eq. (2.40), is a defining parameter of several

models. It is a function of the fluid properties and of the phase transition process.

There exist several empirical models for evaporation and condensation that consider the

flow as a homogeneous mixture. Among them we name the model of Kunz [48] that

is based on the creation (m+) and destruction (m�) of liquid. We mention the model

of Zwart based on the simplified Rayleigh-Plesset equation where their coe�cients are

calibrated empirically [65]. Likewise, there is the full cavitation model that is also based

on the simplified Rayleigh-Plesset equation with empiric coe�cients but considering the

turbulent kinetic energy and the surface tension [36], [65]. There are also theoretical

models, like the one proposed by Saurel et al. [91] that guarantees equilibrium conditions

of equal temperatures and equal Gibss free energies during phase change, and the model

proposed by Goncalves et al. [98] which assumes that the mass transfer is proportional

to the divergence of the velocity. Additionally, there are phase change models that do

not consider the flow as homogeneous mixture. Instead, they consider two pure fluid

separated by a sharp interface like the one proposed by Lauer in [49]. In this model the

rate of condensation and evaporation is taken from the kinetic theory of gases explained

in Schrage [93].

In summary, the internal process is not considered in the formulation when the charac-

teristic time of the internal process is much slower than the time scale of the flow. So,

the internal process does not have the time necessary to take place within the flow time

window, in consequence, the time rate of the internal process is negligible with respect to

the time scale of the flow. On the other hand, when the time rate of the internal process

is comparable to the time scale of the flow, the internal process cannot be negligible. In

consequence, the internal process should be modeled by the use of transport equations

and time dependent source terms.

Linking the process of mass transfer between vapor and liquid to the cavitation bubble

phenomenon, a general overview of its development is addressed. During the bubble

growth, there is an important mass transfer e↵ect that leads its growth [3]. Later during

the last stages of the compression phase, condensation is supposed to occur when the

gas inside the bubble exceeds its condensation pressure. So, in order to estimate the
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condensation e↵ect with respect to the inertial e↵ects, it is compared the collapse time

against the time of mass di↵usion in liquid through the bubble surface. To do so, the

di↵usion coe�cient in liquids, D, is taken to be around 10�9[m2/s] [17]. To illustrate

the physical significance of di↵usion coe�cient, it is considered the variable z2

4Dt . When

this variable equals the unity, the di↵usion has happened, i.e. when z2 equals 4Dt, the

di↵usion has penetrated a distance z during the time t [17] .

So, it is considered a bubble of 100 [µm] submerged in water whose density is 1000[kg/m3]

and the water pressure is pamb = 105[Pa]. Using the Rayleigh equation for estimating

the collapse time (Eq. 2.12) considering only non-condensable gas term and neglecting

the surface tension and viscous term, it is obtained 1 · 10�5[s]. Since condensation occurs

in the last stages of compression, it is considered that the bubble’s characteristic length

z is 0.25R0, which corresponds to the bubble size when the micro jet impacts it [40].

Hence, the condensation time of a bubble having this characteristic length is given by

t = (0.25R0)2

4D , so t = 0.16[s].

Comparing these two times, it is evident that the condensation time is much shorter

than the time of the bubble collapse.

In conclusion, the inertial e↵ect are more important in comparison to the phase change

e↵ect during the final stages of the compression phase. So, mass transfer does not play a

relevant role in the resulting pressure waves and jet dynamics, and in consequence, it is

not modeled.

2.1.4 Numerical methods for modeling cavitation

A large variety of numerical methods for simulating cavitating flows have been found

in the literature. Since cavitating flows involved several fluids such as liquid and vapor,

special interest has been given to the treatment of the interface. For example we have the

numerical models using level-sets techniques [7], [34] and volume-of-fluid (VOF) tracking

[29]. High-order schemes, such as accurate WENO schemes [38], have been used as well

to model two phase flows and compressible multi-fluids.

In particular, there is a distinction between the sharp discontinuity interface and the

di↵use interface models. The first one is mostly used in Lagrangian schemes working

with mesh misalignment or using meshless methods. It can be also developed in Eulerian

schemes where the VOF or level-set model are used. The second type of methods considers
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interfaces as numerically di↵used zones. Di↵use interfaces correspond to artificial mixtures

created by numerical di↵usion, where the determination of thermodynamic variables

is done following the multiphase flow theory. The challenge is to derive physically,

mathematically and numerically consistent thermodynamic laws for the artificial mixture

[92]. In addition, when using the second type of interface, models based on hyperbolic

multiphase flows are usually constituted. There, we find two types of mixture models:

considering total non-equilibrium and considering mechanical equilibrium. Afterward,

one of theses mixture models is used to simulate phase change and mass transfer [91],

[92], [98], [49].

As mentioned in Chapter 1, in this work the SPH-ALE method is used to model the

cavitation erosion, where the emphasis is given in the representation of the bubble

collapse phenomenon (i.e. pressure waves and micro jet event).

It is known that SPH method represents the physics of incompressible or weakly-

compressible flows in a good way ([62], [68], [54], among others). However, few in-

formation concerning compressible flows modeled by SPH has been found, and the

little information in this regard ([114], [115]) indicates the di�culty to treat the shock

propagation problems present in compressible regimes. This exhibits one of the challenges

of this thesis.

In relation to the interface treatment, since SPH-ALE is a meshless method following

a Lagrangian approach, the interface is interpreted as a sharp discontinuity. Further

information about the SPH-ALE method, including numerical considerations about

compressibility and multiphase flow models is given in Chapter 4.

As we are interested in the study of the solid reaction due to the hydrodynamic impact

caused by the bubble collapse phenomenon, coupling methods are addressed. Here, we

present works related to the fluid-solid coupling of SPH methods. First, we present

works about the coupling of SPH and Finite Element (FE) methods, where the fluid

is represented by the SPH method and the solid by the FE method. We mention the

work of Li [57] that couples in a non-intrusive and synchronized manner both solvers. By

imposing the normal velocity continuity at the interface, this coupling method ensures

that there is no energy dissipation nor energy production at the interface. The code

has been developed for applications using the same time-step for the fluid and solid

domain. Then, we present the work of Nunez et al. [69] developed in the frame of the

PREDHYMA project and hence, it is the approach used in this thesis. The authors
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propose an approach for transient nonlinear fluid structure interaction problems. They

suggest that this coupling approach is suitable for the prediction of fluid-structure

interaction phenomena occurring during a very short time. For example, authors present

the case scenario of a rock immerse in a water jet that flows at high velocity and eventually

the rock impacts against a steel plate. The strong point of their work is, similar to Li’s

contribution, that the energy exchange through the interface between fluid and solid is

well controlled. In complement, Nunez et al. developed an approach capable of handling

di↵erent time-steps in each domain. Second, we mention the coupling of fluid and solid,

where both domains are represented by the SPH method, i.e. a fluid SPH - solid SPH

coupling approach. In this frame, we found the work of Joshi et al. [42], whose authors

main motivation is to develop a SPH cavitation erosion solver in order to estimate the

structure reaction due to bubble collapses. The authors consider the fluid and solid

within a same mathematical framework that allows to develop a single system for both

domains (fluid and solid domain). The equations for both, fluid and solid, are fit into a

stress stencil form, such that the interactions between fluid and solid can be considered

within the kernel interaction itself.

In the next section a structural approach is presented in order to address the damage on

solid walls caused by cavitation. The response of the material to cavitation impulsive

loads and material properties most relevant to cavitation erosion are presented.

2.2 Cavitation erosion

The introduction about the general process of cavitation erosion given in this section

comes from [45]. The collapse of bubbles is generally very violent. This is because the

di↵erence between the liquid pressure and the bubble inner pressure is quite large and it

is able to provide a huge acceleration of the bubble surface. The bubble collapse comes

with the compression of its content and the consequent emission of a large pressure wave.

The impulsive pressure resulting from the impact of the micro-jet or from the impact of

the pressure waves may exceed some appropriate material threshold (such as its yield

stress) inducing local damage.

Material damage depends on the duration of exposure to cavitation. For metallic surfaces,

there is an incubation period during which no measurable mass loss occurs [25]. During

this period, damage takes the form of small permanent plastic deformations or pits.
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These pits are present due to bubble collapses whose intensities exceed the elastic limit

of the material [45]. Pit diameters are in the order of microns [10].

In general, when a material surface has received several cavitation impacts, failure and

material removal usually occurs. This is the mass loss period. The erosion process

involving these two period, i.e. incubation and mass loss, is the generalized process

followed by most materials used in hydrodynamic applications [25]. Nevertheless, for

brittle materials such as coating and composites, failure can occur before pits overlap.

2.2.1 General erosion process

The general erosion process describes the evolution of mass loss rate with exposure time.

Normally, there are four stages in the material erosion process: incubation, acceleration,

deceleration and steady-state periods [25], [45]. This stages can be observed in the weight

or volume loss curve illustrated in Fig. 2.9.

Incubation period

Initially, the material surface deforms without material loss. In this phase the material

surface follows a work hardening that makes the material more resistant to stress [45].

During this initial phase, permanent deformation may occur as well as the development

of micro-cracks. This is a very short initial period that is di�cult to observe, but its

duration can be important to the determination of the material life under cavitation, as

it is shown by some correlations between material incubation and lifetime [99].

Acceleration period

After the incubation phase, the erosion process accelerates. During the acceleration

phase, the erosion rate increases until it attains a maximum value. In this phase, the

material experiences weight loss and fractures. The duration of this phase depends on

material properties. Normally, it ends once the surface properties have changed so much

that it begins a di↵erent interaction between the new material surface shape and the

cavitation field.

Deceleration period
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The deceleration period starts with a new material surface shape. According to Chahine

[45], entrapped gas and liquid in the deep craters of the new roughness can damp the

incoming cavitation pressure waves, so attenuating the erosion process.

Steady-state period

Finally, equilibrium between the erosive power of the cavitation field and the response of

the material occurs. The erosion process reaches the steady-state period (or terminal

stage), where the weight loss rate reaches a quasi-constant value.

Figure 2.9: Rate of volume loss versus time curve [45].

The four stages described above depend on the type of materials and the erosive cavitation

field. For some materials and test conditions, the erosion curve does not always show all

four stages. For long duration tests, it has been observed a second attenuation period, in

which erosion rate decreases. It arrives usually after the steady-state period [25].

2.2.2 Flow velocity influence

Cavitation erosion is greatly dependent on the flow velocity for two main reasons. First,

it is linked to the bubble nucleation rate, which increases with flow velocity [25]. Second,

it is because the impulsive pressure pulses induced by the bubble collapse increase with

the flow velocity. A larger velocity results in a larger pressure drop, and so in larger

pressure gradients. Thus, the bubble encounters greater pressure gradient at collapse. It

results in an increment of the collapse intensity and pressure pulses [45].

Franc in his book [25] states that, in a general situation of hydraulic systems, the

cavitation erosion damage increases with the liquid velocity. The material loss rate
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increases as a power between 4 and 9 of the flow velocity. So, flow velocity could be an

important factor in the hydrodynamic system su↵ering cavitation erosion.

2.2.3 Cavitation impact loads

Pressure pulses distributed in space and time characterize a cavitation flow field. They

present high frequencies and high amplitudes producing a particular cavitation sound

[45]. The pulse spectrum results from a statistical distribution of bubbles with violent

dynamic behavior including explosive growth, collapse and rebound. An example of the

pressure pulse can be observed in Fig 2.10, where the signal shows successive pulses of

several amplitudes whose highest ones are suspected to be responsible for erosion damage

[45].

Figure 2.10: Typical pressure signal in a cavitation flow. The signal shows successive
pulses of various amplitudes whose highest ones are likely responsible for erosion damage

[45].

Therefore, a material placed in the vicinity of a cavitation field will be subjected to

repeated impulsive loads distributed in space and time.

Another feature of the cavitation impulsive loads is the small size of the damaged area.

Impacting microjets is only a portion of the maximum bubble size, approximately 1/10

of its maximum radius [33]. The characteristic size of the a↵ected zone is of the same

order of magnitude as the size of the cavitation erosion pits, i.e. few micrometers to

several hundreds of micrometers [45].

Cavitation loads also have high amplitudes. Values on the order of GPa have been

reported in the literature ([107], [99], [25]) for a load applied on a small surface area (i.e.

of the order of micrometers). These high values might exceed the conventional yield

stress of usual materials, explaining why cavitation impulsive loads can induce plastic

deformations.
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The characteristic values, such as duration, size, and amplitude, are di�cult to measure

accurately. In this regard two main experimental techniques have been reported in the

literature [25], [45]. One is based on the use of small pressure sensors able to measure

high frequency responses. The sensors may be directly exposed to the cavitating flow, so

they may approach their limit of risk of damage [73], [45]. Another is based on controlled

pitting tests carried out on materials. The method consists in estimating the impact

load that is at the origin of each pit [25], [45]. The method uses the information from

geometrical features of the pit and material properties. The pitting tests are limited to

the incubation period during which pits do not overlap [25].

In the work of Okada et al. [73] is presented a pressure detector capable to measure

impact loads and erosion damage (i.e. size of indents and volume loss) in order to study

the relation between the load generated by the bubble collapse and the erosion. They

express the impact energy as the accumulated summation of squares of impact loads.

Then, using this definition, they conclude that there is a linear relationship between the

impact energy and the material volume loss. Specially, in the stable period, it is found

that the volume loss increases in proportion to the impact energy.

In addition, numerical methods have been used to estimate the violence of a cavitation

flow. Simulations considering larger scales than the one followed in bubble dynamics

approaches have been used in order to estimate the flow aggressiveness that causes

material damage. Geometries such as hydrofoil profiles and venturi type sections have

been simulated.

Among these models we have the erosion intensity model proposed by Fortes-Patella ([22],

[47], [53]), where potential energy variations of the cavitation structures are considered

as the main factor that produces erosion [53]. This model shows the influence of the

flow velocity on the cavitation intensity and allows the prediction of the location of the

damaged area.

The work of Ochiai et al. [70] proposes a new prediction method involving macro and micro

scales. It is a one-way coupled analysis of the cavitating flow field (Eulerian approach) and

of the bubble dynamics (Lagrangian approach) to treat di↵erent scale phenomena, such

as the macroscopic phenomenon of a cavitating flow and the microscopic phenomenon of

bubble collapse. They evaluated impulsive pressures acting on a material surface based

on the bubble collapse features (i.e. position, time and intensity). On the other hand,

they predicted the erosion rate using an existing material-dependent relationship between
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the impulsive energy (square of the impulsive force) and the maximum erosion rate.

Authors concluded that high impulsive pressures occur near the sheet cavity closure,

the leading edge of the hydrofoil and the position of collapse of the cloud cavity. Also,

the impulsive pressures are higher when the distance from a bubble collapse to the wall

boundary decreases. Regarding the erosion rate, they found that the model over-predicts

it if a constant bubble radius is considered. But, the model gives the same order of

magnitude when the bubble nuclei distribution is considered. So, they concluded that

considering the bubble nuclei distribution is important for the prediction of cavitation

erosion.

2.2.4 Material response to impact loads

As discussed before, the material experiences pressure pulses of high intensity and short

duration able to induce plastic deformation. The concentration of such mechanical energy,

on small zones of the solid boundary, will then cause high stress levels that could exceed

the material resistance (i.e. yield strength, ultimate strength and fatigue limit) [25] and

ultimately produce mass loss of the material [45].

Aggressiveness power of cavitation flows was evaluated by Fortes-Patella et al. [23]

in order to evaluate numerically the dynamic response and the surface deformation

(i.e. pit profile and pit volume) of various materials exposed to pressure wave impacts.

According to previous work [21], the main contribution to cavitation damage comes from

the emission of pressure waves generated by spherical bubble collapses and by micro jet

formation. The emitted pressure waves interact with neighboring solid surfaces, leading

to material damage. In addition, the damage of material could be related to the energy

of the pressure wave emitted by vapor structure collapses [21]. The authors characterized

the pressure waves by the emitted energy, which is evaluated by an acoustic energy

approach [23]. Further, the solid damage represented by the pit volume is found to be

directly proportional to the pressure wave energy. The proportionality constant that

relies the solid damage and the pressure wave energy is found to be a useful tool in the

prediction of cavitation erosion because it depends strongly on the material properties,

such as the yield limit, but it is almost independent on the impact amplitude.

Another consequence which follows from the energetic approach proposed by Fortes-

Patella in [23] is the development of a erosion model, known as LEGI model [20]. In this
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model the idea is to evaluate the erosion power of a cavitating flow, which depends on

the surrounding pressure, the vapor pressure and the vapor volume during the emission

of the pressure waves (i.e. during the collapse phenomenon). This numerical model was

tested on a 2D hydrofoil geometry having good qualitative agreement between simulations

and experiments. However, to obtain a better quantitative prediction of damage some

numerical and model parameters have to be calibrated.

Choi and Chahine [11] studied the relationship between the impact pressure load and

the resulting pit size through fluid structure interaction (FSI) simulations. They found

out that the highest stresses are observed below the material surface, at a depth of the

same order as the load radial extent. The e↵ective strain also reaches a maximum at the

same location below the surface. Authors explain that as the load increases during the

impulsive loading, the compressive stress below the surface may reach the material yield

point. From there on, plastic deformations continue to increase. If the load continues to

rise, an increasing volume of the material undergoes plastic deformation. Later on, as the

load amplitude decreases, unloading occurs and a permanent indentation or ”pit” remains

once the load is relaxed. Additionally, they found that the same impulsive pressure

obtained from di↵erent bubble collapse conditions could produce very di↵erent pitting

characteristics. Similarly, di↵erent values of loads produce the same pitting features.

They explain that this response is because a pressure function shape linked to the same

impulsive pressure peak level can vary significantly in space and time, for di↵erent bubble

sizes, distance from the wall and collapse driving pressure functions.

A complementary approach to estimate the material loss due to cavitation is proposed

by Fortes-Patella et al. [24]. This method uses data provided by pitting tests to estimate

mass loss of a material that follows an elasto-plastic behavior. It is based on an oligocyclic

fatigue approach, which is the process followed by a material when it is loaded between

its elastic limit and its rupture limit. Since the material experiences plastification at each

cycle, its rupture is produced after few cycles. This approach is able to simulate all the

stages of the erosion process, i.e. incubation, acceleration, maximum rate, deceleration

and terminal periods, highlighting the possibility of estimating the incubation and steady-

state periods by numerical simulations. Similarly to Choi et al. [11], authors found the

maximum of the residual internal stresses located below the material surface, at a depth

depending on the loading shape.
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These two works show promising results but also show the di�culties encountered in this

type of analysis, such as the lack of material data (for example a criterion for fatigue

damage). Consequently, specific tests should be done to get the required values.

The research about material reaction under high intensity loads constitutes an important

aim in hydraulic applications. In particular, predicting the material response allows the

improvement of surface treatment and coating selection. For example, experimental tests

considering di↵erent metals and di↵erent coating materials have been done in order to

select the proper coating for hydraulic machines, such as pumps and turbines. Recently,

these tests involve also polymeric coating materials for ship applications because of

polymers benefits in reducing noise and drag [12].

2.2.5 Cavitation erosion in Pelton turbines

Since this work is in the frame of PREDHYMA project, which seeks to predict the

erosion in hydro-machines, particularly in Pelton turbines, the following description of

cavitation erosion in Pelton turbines is given.

A pelton turbine is constituted mainly by nozzle injectors and a wheel containing buckets.

Its working principle consists in the injection of high speed water jet, through a nozzle,

to hit the buckets on the Pelton wheel in order to produce an impulsive force (see Fig.

2.11). This force makes the turbine rotate. The rotating shaft runs a generator and

produces electricity.

Figure 2.11: 3D model of a Pelton turbine and the water jet impinging on a Pelton
bucket to develop the wheel rotation [52].

A work developed by Rossetti et al. [86] addresses the erosion on Pelton turbines through

numerical simulations and experiment observations, showing the zones where hydraulic

damage could occur. Fig. 2.12, which is taken from [86], shows seven locations of

hydraulic damage on a Pelton bucket. Zone 1 is related to the presence of cavitation
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in the last stages of the bucket-jet interaction. It is suggested that the zone 2 could

be a↵ected by droplet erosion in turbines having multi-jet configurations, when the

discharged flow disturbs the next jet. This generates a droplet cloud that could hit

and damage the back of the cutout. Zone 3 and 4 could be related to the presence of

surface irregularities, which promote the flow detachment and cavitation. Zone 5 could

be damaged by caviation and droplet erosion due to significant disturbance on the jet

caused by the following bucket back. Cavitation pitting could be observed on zones 6

and 7 due to an improper bucket discharge angle.

Figure 2.12: Location of hydraulic damage on a Pelton bucket [86]

Additionally, experimental essays carried out in ANDRITZ Hydro S.A. allow to observe

cavitation erosion marks in Pelton turbines. Mainly, they are located on the buckets,

near the cutout edge (zone 1 from Fig. 2.12) and at the bottom of the bucket (zone 5

from Fig. 2.12). Since Pelton turbines operate in power plants of high head (� 800 m),

strong pressure drop is expected in zone with change in curvature, like near the cutout

edge. Additionally, jet disturbance due to high velocity might cause flow detachment,

particularly at the bottom of the bucket. For visualization, Fig. 2.13 shows cavitation

erosion at the cutout edge of the bucket.

In some configurations it is found ”jet interference”, which is a mechanism happening

when water of a first jet is still in the bucket when water of the subsequent jet comes in.

This two-way encounter may cause erosion. As mentioned before, another mechanism

associated with cavitation erosion is the erosion by high-speed droplets. It occurs when

a water drop hits the material surface: rarefaction waves are generated after the impact

causing a pressure decrease inside the drop. This mechanism generates vapor structures

that collapse and may produce cavitation erosion.
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Figure 2.13: Cavitation erosion at the cutout edge of the bucket [ANDRITZ Hydro
S.A.].

Characteristic times in Pelton turbines

An analysis about the characteristic time in Pelton turbines has been done in order to

estimate if a bubble that travels in the water jet could collapse close to a bucket.

Two characteristic times are considered, t1 which corresponds to the time taken by a

fluid particle to go from the injector to the bucket, and t2 which is the time that a fluid

particle passes in the bucket (see Fig. 2.14(a)).

For the analysis, a turbine model and two prototypes are considered. Table 2.2 shows

the associated values.

Table 2.2: Geometrical values for a Pelton turbine model and two prototypes, including
the corresponding flow conditions. Values given by ANDRITZ Hydro S.A.

Model Prototype 1 Prototype 2

D1 [m] 0.46 1.665 3.993

B2 [m] 0.14 0.480 0.620

Number of jets 4 6 5

head [m] 93.5 437.50 1869.0

flow [m3/s] 0.2 9.85 25.0

The distance B2 is the width of the bucket, d is the distance between the injector and

the bucket (when the water jet impinges perpendicularly to the bucket) and dI the jet

diameter (see Fig. 2.14). Then, the jet velocity can be estimated by Eq. (2.41),

VI =
( flow
Number of jets)

AI
, (2.41)
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t1t2

(a) Scheme of a wa-
ter injector and a pel-
ton bucket showing the
characteristic times: t1
and t2

d

B2

dI

(b) Geometrical representation of the jet diameter d
I

,
bucket width B2 and the distance between the injector
outlet and the bucket d

D1

(c) Geometrical representa-
tion of a Pelton wheel diam-
eter D1

Figure 2.14: Geometric representation of a wheel, bucket and injector of a Pelton
turbine (Pictures taken from [52] to be then modified)

where AI is the transversal area of the jet, i.e. AI = ⇡
4d

2
I .

The characteristic times, t1 and t2 are calculated through fundamental kinematic equa-

tions, i.e.

8
>><

>>:

t1 =
d

VI

t2 =

�
B2
2

�

VI

. (2.42)

The characteristic times for each Pelton turbine are shown in Table 2.3. We remark that

both times have the same order of magnitude, i.e. 10�4 [s].

Table 2.3: Characteristic times for each Pelton turbine. t1: time taken by a fluid
particle to go from the injector to the bucket. t2: time that a fluid particle passes in

the bucket

Model Prototype 1 Prototype 2

t1 [s] 2.53 · 10�4
3.10 · 10�4

2.19 · 10�4

t2 [s] 3.37 · 10�4
4.13 · 10�4

2.92 · 10�4

These times are compared against the collapse time of a bubble filled only with non-

condensable gas already formed. In this regard, it is considered a non-condensable gas

bubble whose radius is set at R0 = 100 [µm] according to the literature ([49], [45], [25]).

The bubble is submerged in water whose density is ⇢ = 1000 [kg/m3] and the water

pressure is the atmospheric pressure, i.e. pamb = 105 [Pa]. Using the Rayleigh equation
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for estimating the collapse time (Eq. 2.12) considering only the non-condensable gas

term and neglecting the surface tension and viscous term, it is obtained: 1 · 10�5[s].

During t1, if the water jet contains bubble nuclei, they are translated along the flow.

The water flow impinges the bucket and fluid detachment could occur due to the bucket

displacement. This generates a zone of pressure drop favorable to the nuclei growth and

to create vapor structures. When the bucket completes the transit through the jet, the

pressure is again the atmospheric pressure. This increase of the local pressure may lead

to a bubble collapse shortly after. Since t2 is 10 times larger than the bubble collapse

time, we can conclude that the bubbles formed during the fluid detachment will have the

time necessary to collapse close to the bucket and more likely near the cutout edge.

Regarding the small sizes of the bubbles, ranging from 0.01 to 0.5 [mm], and the bucket

size, ranging from 140 to 700 [mm], it is taken the hypothesis of considering the bucket

as a flat plate with respect to the non-condensable gas bubble. So, the present research

work is focused on predicting the erosion caused by a non-condensable gas bubble in the

vicinity of a flat plate, neglecting any curvature e↵ects.

2.3 Conclusion

The cavitation phenomenon has been presented showing its di↵erent stages in order to

determine the predominant physical factors that could cause damage. It has been seen

that the most severe stage is mainly represented by the bubble collapse since it is during

this event that high-pressure levels are emitted. In particular, if the bubble collapses near

a material, the high pressures emitted could damage it. In this frame, the bubble collapse

near a wall represents our main target towards the prediction of cavitation erosion.

In order to properly model the physical events involved in the bubble collapse, such as

pressure waves and micro jets, a compressible regime must be considered for the fluids. It

has been seen that mass transfer does not play a relevant role during the collapse phase,

so it is not modeled. Following this idea, since the phase change is not modeled, the

bubble contains only non-condensable gas, which is modeled as ideal gas. The inclusion

of ideal gas model brings in the temperature variable, which is considered for both fluids

(i.e. water and gas). Although the liquid temperature does not change appreciably during

cavitation, this consideration is taken because the compression process is not adiabatic

and to be consistent in the modelisation of both fluids.
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Mainly inertial forces control the bubble collapse; so the viscosity and surface tension

e↵ects are neglected.

With respect to the erosion process, the general stages have been described with em-

phasis in the material response under cavitation loading. Major characteristics, such as

the distance between the bubble and the material surface, high pressure levels and a

comparison against material properties (e.g. yield stress) have come in order to analyze

the material response. These characteristics will be taken in consideration when studying

the cavitation phenomenon near a solid boundary.

Additionally, we highlight the fact that the highest stress are observed below the material

surface and that the fatigue mechanism is considered to explain the structural damage. All

these inputs will be considered when estimating the material reaction due to cavitation.



Chapter 3

Physical model of cavitation flow

Cavitation phenomenon involves compressible flow in order to correctly represent the

pressure waves present during the bubble collapse. It is called compressible flow when a

fluid moves at speed comparable to its speed of sound, so generating significant density

changes [108]. In this case, the temperature and pressure changes are also important.

The variables such as temperature, density, pressure and internal energy are known as

state variables and their relation (e.g. p = p(⇢, T ) or e = e(⇢, T )) is given by equations

of state. The equations of state are important in this work because they allow the

description of properties of each fluid, i.e. water and gas. Therefore, an explanation

following a thermodynamic approach is given to present the state variables and the

equations of state concerned. As well, this chapter focuses on the physical definitions

about compressible flow and the corresponding physical model used by the numerical

method.

3.1 Thermodynamic variables in compressible flow

This part is devoted to explain the thermodynamic variables and concepts regarding

compressible fluid flow before proposing any physical model.

First law of thermodynamics

The first law of thermodynamics gives a relation between the variation of the internal

energy of a fluid, the heat exchanged with the environment and the work done by the

51
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environment. If the pressure forces are the only forces acting on the system, this law can

be expressed by,

de = dq � pd(1/⇢), (3.1)

where e is the internal energy by mass unit, q is the heat transfer, also by mass unit.

The internal energy, pressure and density are related to define the enthalpy as,

⌘ = e+ p/⇢, (3.2)

and in consequence,

d⌘ = dq + (1/⇢)dp. (3.3)

The Eq. (3.1) and Eq. (3.3) are thus equivalent.

The total derivatives of e = e(⇢, T ) and ⌘ = ⌘(p, T ) can be expressed as,

de =


@e

@T

�

⇢

dT +


@e

@⇢

�

T

d⇢ (3.4)

and

d⌘ =


@⌘

@T

�

p

dT +


@⌘

@p

�

T

dp. (3.5)

Now, we address the specific heat concept, which is defined as the energy required to

raise the temperature of a unit mass of a substance by one degree [8]. In general, this

energy depends on how the process is executed. In thermodynamics, we are interested

in two kinds of specific heats: specific heat at constant pressure Cp and specific heat at

constant volume Cv. The specific heat at constant pressure is represented as the change

of enthalpy with respect of temperature at constant pressure. Meanwhile, the specific

heat at constant volume is represented as the change of internal energy with respect of

temperature at constant volume.

So, in the frame of the first law of thermodynamics, both specific heats are found through

Eq. (3.2), Eq. (3.4) and Eq. (3.5) as
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
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Cv =


@e

@T

�

⇢

=


@⌘

@T

�

p

+

✓
@⌘

@p

�

T

� 1

⇢

◆
@p

@T

�

⇢

. (3.7)

Second law of thermodynamics

The second law of thermodynamics introduces another property known as entropy that

is expressed for a reversible process by,

ds = dq/T, (3.8)

where s defines the specific entropy of a fluid, i.e. entropy by mass unit.

Taking Eq. (3.1) and Eq. (3.3), we have the following relation for a reversible process,

Tds = de+ pd(1/⇢) = d⌘ � (1/⇢)dp. (3.9)

Note that entropy is a property, in consequence it has fixed values at fixed states.

Now, the second law of thermodynamics is considered to obtain other relations for specific

heats.

We take the total derivative of s = s(p, T ), i.e.

ds =


@s

@T

�

p

dT +


@s

@p

�

T

dp. (3.10)

Then, using Eq. (3.5) and Eq. (3.9), we obtain:

ds =
d⌘

T
� dp

⇢T
=

1

T


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@T

�

p

dT +
1

T

✓
@⌘

@p

�

T

� 1

⇢

◆
dp. (3.11)

Comparing Eq. (3.10) and Eq. (3.11), we have the following relations between s and ⌘:
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where the derivative
h
@⌘
@p

i

T
is [87]:
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Following the same idea, but using the properties e = e(⇢, T ) and s = s(⇢, T ), two new

expressions function of density (⇢), instead of pressure (p), and temperature (T ) are

obtained, i.e.


@s

@T
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⇢

=
1

T
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where the derivative
h
@e
@⇢

i

T
is [87]:
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Eq. (3.14) and Eq. (3.17) are used in the development of the ideal gas model.

Change of entropy

The change of entropy can be calculated from Eq. (3.10) if the expressions for
⇥
@s
@T

⇤
p

and
h
@s
@p

i

T
are known.
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So, we combine Eq. (3.13) and Eq. (3.14) to get:
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(3.18)

Finally, using Eq. (3.12) and Eq. (3.18), the change of entropy can be calculated as

ds =
Cp

T
dT +

1

⇢2


@⇢

@T

�

p

dp. (3.19)

This last equation will be useful in the following section about equations of state.

Speed of sound

Another important quantity is the speed of sound, which is defined in Chapter 2 by Eq.

(2.37). Since the equations of states are usually expressed in function of internal energy,

density and pressure, and not in function of entropy, an equivalent expression for the

speed of sound is searched. For that, we consider p = p(⇢, s) and e = e(p, ⇢), so we have

dp =


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�

s

d⇢+


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ds (3.20)

and
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dp. (3.21)

Then, using Eq. (3.4) and the entropy relation (Eq. 3.9) it is obtained:

Tds =
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Eq. (3.20) is substituted in Eq. (3.22) to give

Tds =
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Rearranging the Eq. (3.23) and because we search
h
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s
, we impose ds = 0 to have


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Therefore, using the Eq. (2.37), the speed of sound expression is given by

c2 =

p
⇢2

�
h
@e
@⇢

i

ph
@e
@p

i

⇢

. (3.25)

3.2 Equations of state

In the previous section, a brief review about the thermodynamics variables and concepts

involved in the compressible flow analysis has been exposed. Now, it is given a description

about the equations of states, considering the physical model for each phase, i.e. gas and

water.

An equation of state is a constitutive relation that provides a mathematical relationship

between two or more state variables. This thermodynamic equation describes the state

of a substance under a given set of physical conditions in order to describe the fluid

properties.

3.2.1 Ideal gas

We start considering the gas phase, which models the bubble. As it was presented in

Chapter 2, the mass transfer between liquid and gaseous phases is not expected to have

an e↵ect on the bubble collapse, so it is not modeled. Under this condition, it is assumed

that the bubble contains only non-condensable gas, and thus the bubble medium is

modeled as an ideal gas.

The thermodynamic equation of state for an ideal gas is given by [87],

p = ⇢RGT, (3.26)

with RG denoting the particular gas constant in [J/(Kkg)], which is given by RG = R/M,

where M is the molecular weight in [kg/mol] and R is the universal gas constant

(R = 8.31451[J/(molK)]).

Applying Eq. (3.14) and Eq. (3.17) for an ideal gas, it is obtained that
h
@⌘
@p

i

T
= 0 and

h
@e
@⇢

i

T
= 0. This implies that the enthalpy and the internal energy for an ideal gas are

only function of temperature T, i.e. ⌘ = ⌘(T ) and e = e(T ). Then, following Eq. (3.6)

and Eq. (3.7), the specific heats are also function only of temperature.
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In consequence, the change of internal energy and enthalpy for an ideal gas can be

expressed in a short form as,

de = Cv(T ) dT, (3.27)

d⌘ = Cp(T ) dT. (3.28)

For all real gases, Cp and Cv vary with temperature, but only moderately; for example,

Cp of air increases 30 % as temperature increases from 0 to 3000 K [108]. Since we do

not deal with such large temperature changes, specific heats are assumed constant.

Hence, we have:

�e = Cv�T, (3.29)

�⌘ = Cp�T. (3.30)

Next, Eq. (3.6), Eq. (3.7) and Eq. (3.26) are combined together to find a relation

between both specific heats for an ideal gas, which is given as,

Cv = Cp �
1

⇢


@p

@T

�

⇢

= Cp �RG. (3.31)

So, the relation Cp � Cv = RG that does not depend on temperature.

In addition, � is defined as the ratio of specific heats � = Cp/Cv. From experimental

values of common gases, it is observed that � lies between 1 and 1.7, and for air it is

usually taken equal to 1.4 [108].

Regarding the change of entropy of an ideal gas, we can infer it using Eq. (3.19) and Eq.

(3.26). Thus, the entropy for ideal gas is defined as:

s� sref = Cp ln

✓
T

Tref

◆
�RG ln

✓
p

pref

◆
, (3.32)

where the subscript ”ref” indicates a reference state such that sref = s(pref , Tref ). Eq.

(3.32) can be used to quantify entropy variations during non-isentropic transformations,

such as shock waves.
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In conclusion, the ideal gas model considers a dependency of density upon pressure and

temperature, showing the requirements necessary to model compressibility. Thus, it can

be used to model the compression of a non-condensable gas bubble.

3.2.2 Sti↵ened Gas equation of state

For liquid water, the compressibility must be taken in consideration in order to properly

represent the pressure waves generated during the bubble collapse. The inclusion of

compressibility brings in the consideration of temperature in the analysis, although the

temperature does not change significantly during the cavitation phenomenon. In addition,

the ideal gas equation of state is used for the gas phase; in this equation the density

depends on temperature and pressure. So, the use of an equation of state involving

the density, temperature and pressure for the liquid phase is recommended in order to

guarantee the consistency of the physical model.

The equation of state considered for the liquid phase is the Sti↵ened Gas equation of

state or sometimes called ”Tammann Equation” [37]. It is expressed as,

p = p(⇢, e) = (� � 1)⇢e� �p1, (3.33)

where p1 denotes the sti↵ened constant pressure and it is fluid dependent as �. The

term �p1 corresponds to attractive e↵ects leading to matter cohesion in liquids states

[51].

To estimate the temperature, it is necessary to determine thermal expressions, such as

T (⇢, p) or p(⇢, T ), which are not yet available at this stage. In order to determine them,

the fundamental relation expressed in Eq. (3.17) is used.

Determination of thermal expressions for the Sti↵ened Gas EOS

Here, the determination of thermal expressions (i.e. T (⇢, p) and p(⇢, T )) for the Sti↵ened

Gas EOS is in focus. The development presented hereafter is taken from [51].

Re-writing the Eq. (3.33), we get

e(⇢, T ) =
p(⇢, T ) + �p1

(� � 1)⇢
, (3.34)

where p(⇢, T ) is unknown at this stage.
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The following partial derivatives are deduced from Eq. (3.34),
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The Eq. (3.17) and the Eq. (3.36) are combined to give
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Introducing the Eq. (3.7) in Eq. (3.35), it is obtained


@p

@T

�

⇢

= Cv(� � 1)⇢. (3.38)

Then, Eq. (3.38) is integrated over temperature T to give

p(⇢, T ) = Cv(� � 1)⇢T +K(⇢), (3.39)

where K(⇢) is a function of the density ⇢.

The Eq. (3.39) is derived over ⇢ at constant temperature T to give


@p

@⇢

�

T

= Cv(� � 1)T +
dK

d⇢
. (3.40)

Now, the Eq. (3.38) and the Eq. (3.39) are introduced in the Eq. (3.37), i.e.


@p

@⇢

�

T

= Cv(� � 1)T +
�

⇢
(K(⇢) + p1). (3.41)

The equality between Eq. (3.37) and Eq. (3.41) leads to the following first order

di↵erential equation,
dK

d⇢
� �

⇢
K � �

⇢
p1 = 0, (3.42)

whose solution is given by

K(⇢) = C⇢� � p1, (3.43)
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where C is a constant to be determined. According to Le Métayer and Saurel in [51], the

constant C must be imposed null in order to avoid nonphysical behavior.

Hence, the corresponding solutions is,

p(⇢, T ) = Cv(� � 1)⇢T � p1. (3.44)

Consequently, an expression for the temperature is given as,

T (⇢, p) =
p+ p1

Cv(� � 1)⇢
. (3.45)

Entropy for the Sti↵ened Gas EOS

As for the ideal gas equation, the entropy is considered for the Sti↵ened Gas EOS. From

Eq. (3.19) and Eq. (3.45), it is obtained the entropy change as,

ds =
Cp

T
dT � 1

⇢T
dp, (3.46)

and consequently,

s� sref = Cp ln

✓
T

Tref

◆
� (� � 1)Cv ln

✓
p+ p1

pref + p1

◆
, (3.47)

where the subscript ”ref” indicates a reference state.

Similar to the entropy of an ideal gas, Eq. (3.47) can be used to quantify entropy

variations during non-isentropic process, like shock dynamics situations (e.g. underwater

explosions and bubble compression [37], [91]) present in the phenomenon of interest.

Also, the Sti↵ened Gas EOS exhibits its resemblance with the ideal gas EOS when it is

considered p1 = 0 and 1 < � < 2. This is an advantage in the numerical implementation.

In conclusion, the goal in using the Sti↵ened Gas EOS is to take in consideration the

essential of the thermodynamics under a single formulation. Indeed, this equation of

state contains the main properties of both fluids, as the repulsive and attractive e↵ects

in liquids, and repulsive e↵ects in gases [50].
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3.2.3 Additional consideration about the EOS for each phase

As it was presented, the Sti↵ened Gas EOS models the gas and liquid phases, because

setting appropriate values for p1 and � allows defining each phase.

In order to complete the model for each phase, the speed of sound expressions for liquid

and gas are searched. Consequently, the Eq. (3.25) is used and the following expressions

are obtained,

c2liq =
�(p+ p1)

⇢
(3.48)

and

c2gas =
�p

⇢
. (3.49)

Finally, the relations that describe both phases including the speed of sound expressions

are established for the numerical implementation.

3.2.4 Comparative analysis of Tait and Sti↵ened Gas EOS

The Tait EOS relates the pressure and the density as,

p = p(⇢) =
⇢refc

2
ref

�

✓
⇢

⇢ref

◆�

� 1

�
+ pref , (3.50)

where ⇢ref , cref and pref are constants depending of the fluid. They denote the reference

density, reference speed of sound and reference pressure, respectively.

It is a quite accurate equation for water up to 25000 bar [94] and it has been successfully

used for modeling engineering applications in the actual SPH solver ASPHODEL ([62],

[68], [54]). However, it is not used in the current application since it describes a barotropic

process, i.e. p = p(⇢), where temperature dependence is neglected, so the equation of

energy conservation is not considered.

This section presents an analysis between the Tait EOS and the Sti↵ened Gas EOS for

the liquid phase in order to find a relation between both equations and to estimate the

impact of the Sti↵ened Gas EOS implementation on the in-house SPH solver.



Chapter 3. Physical model 62

To develop the thermodynamic analysis, we consider both EOS and the associated entropy

expressions. For the Sti↵ened Gas EOS, it is given by Eq. (3.47). Here, it is re-written

to give:

1

Cv
(s� sref ) = �ln

✓
T

Tref

◆
� (� � 1)ln

✓
p+ p1

pref + p1

◆
. (3.51)

Now, considering the Tait EOS, since it does not depend on temperature, Eq. (3.19)

leads to no entropy variations, ds = 0.

So, in order to compare both EOS, the change of entropy for the Sti↵ened Gas EOS is

imposed to be zero also.

Introducing the Eq. (3.45) in the Eq. (3.51) and rearranging it, it is obtained

0 = �ln

✓
⇢ref
⇢

◆
+ ln

✓
p+ p1

pref + p1

◆
. (3.52)

Then, the Eq. (3.52) leads to:

✓
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=
p+ p1
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. (3.53)

And thus, it leads to:

p = pref
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That can be written as

p = (pref + p1)

✓
⇢

⇢ref

◆�

� 1

�
+ pref . (3.55)

Hence, the factor (pref + p1) for Sti↵ened Gas EOS equals to
⇢
ref

c2
ref

� for the Tait EOS,

and thus the Tait EOS is recovered, i.e.

p =
⇢refc

2
ref

�

✓
⇢

⇢ref

◆�

� 1

�
+ pref . (3.56)

In conclusion, the Sti↵ened Gas EOS reduces to the Tait EOS if an isentropic trans-

formation is considered. This shows that equations of state relating the temperature,
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density and pressure allow the calculation of reversible entropy changes; by cons it is not

possible from barotropic equations. From a numerical point of view, the implementation

of a more complete equation of state, i.e. p = p(⇢, T ), gives a wider range of applicability

of the in-house solver, such as the simulation of compressible regimes. This last point

is addressed below by introducing the Mach number, which is a useful dimensionless

quantity for the analysis of compressible flow.

3.3 Mach number

In fluid dynamics, the Mach number is a dimensionless quantity representing the ratio of

the fluid velocity and the speed of sound in the flow [108], i.e.

Ma =
kvk
c

. (3.57)

This dimensionless number is a criterion to determine when we could neglect the compress-

ibility inherent in every real fluid. Under small Mach number conditions (e.g. Ma  0.3),

changes in fluid density are small everywhere in the flow field. The energy equation

becomes uncoupled and temperature e↵ects can be ignored. This means that the flow is

considered as incompressible or only weakly-compressible. In the incompressible case,

the density is considered constant and it is required to solve only the continuity and

momentum equations. In the weakly-compressible case, the analysis requires to solve

the continuity and momentum equations, as well as a barotropic equation of state (i.e.

density varies only with pressure) to close the system. This latter approach has been

used by ASPHODEL in many applications ([62], [68], [57], [54], [82]).

On the other hand, when Mach numbers are greater than 0.3, density variations are

not negligible. This implies that pressure and internal energy vary. So, the energy

equation can not be neglected and a system of four equations is solved: continuity,

momentum, energy and equation of state (e.g. p = p(⇢, e)). This system is solved to find

simultaneously four unknowns: density, flow velocity, internal energy and pressure.

In the applications of non-condensable gas bubble collapse, the Mach number reaches

values of 0.5 during the micro jet event, justifying the consideration of a compressible

approach.
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3.4 Conclusion

In this chapter the equations of state considered to model the gas and liquid phases,

together with thermodynamic concepts involved in compressible flows have been presented.

It is highlighted the Sti↵ened Gas EOS to model the fluids due to its non-isentropic

feature, i.e. it includes the density changes as function of pressure and temperature, and

its single form to represent both phases, i.e. gas and liquid.

Then, it has been presented that the Tait EOS, the barotropic equation usually used to

model weakly-compressible flows in ASPHODEL, can be interpreted as the isentropic

expression of the Sti↵ened Gas EOS. So, basically because the temperature is not involved

in the Tait EOS, it is not suitable to model the liquid compressibility and thus shock

dynamics situations.



Chapter 4

Numerical Method: Compressible

SPH-ALE

In this chapter the numerical method used for solving the Euler equations is introduced.

The Smoothed Particle Hydrodynamics (SPH), a mesh-less method, is used to discretize

the conservation of mass, momentum and energy equations in Arbitrary Lagrange Euler

(ALE) formulation.

The calculation of flux exchanges between particles in multiphase flows and the numerical

strategy to treat compressible flows are presented. In the end, it is given a set of validation

cases for the compressible SPH solver. It is considered changes in fluid density, pressure

and internal energy; fluid compressibility is also addressed through the Mach number.

4.1 Governing equations

The governing equations involved in inviscid flows are known as Euler equations, which

are a set of non-linear equations based on the physical principles of conservation of mass,

momentum and energy. They form a system of first-order partial di↵erential equations

hyperbolic in time [31].

These equations can be seen as particular Navier-Stokes equations without viscous and

thermal di↵usive e↵ects (i.e. di↵usion of heat in a medium, generally written as the law

of heat conduction) [103]. In the following the system of partial di↵erential equations is

given in conservative form as

65
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8
>>>>><

>>>>>:

@⇢

@t
+r · (⇢v) = 0

@⇢v

@t
+r · (⇢v ⌦ v) +r · (pI) = Se

@⇢E

@t
+r · (⇢vE + pv) = Se · v

(4.1)

where ⇢ is the density, p is the static pressure, v the velocity vector and Se the vector of

external forces. The total energy per mass unit, E , is defined by

E = e+
1

2
v2 (4.2)

as sum of the internal energy e and the kinetic energy.

The symbol ⌦ denotes the outer product. Considering two column vectors a 2 Rm and

b 2 Rn, the outer product is

a⌦ b = abT 2 Rm⇥n. (4.3)

The system of equations (Eq. 4.1) has to be complemented by the constitutive laws, like

the equation of state. It is used the Sti↵ened Gas EOS, already presented in Section

3.2.2.

Next, the Euler equation system (Eq. 4.1) is re-written in a flux vector form,

@�

@t
+r · FC = ST (4.4)

with

� =

0

BBB@

⇢

⇢v

⇢E

1

CCCA
(4.5)

FC =

0

BBB@

⇢v

⇢v ⌦ v + pI

v(⇢E + p)

1

CCCA
, ST =

0

BBB@

0

Se

Se · v

1

CCCA
, (4.6)
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the vector � is called the vector of conservative variables and FC is the convective flux

tensor. In our case, the vector of source terms, ST , contains the e↵ect of the volume

forces, i.e. gravity force.

4.2 Arbitrary Lagrange Euler

The Eulerian approach establishes that the fluid quantities are analyzed in a fixed frame

of reference, meaning that the material fluid particles are passing through a fixed region

in space. In contrary, the Lagrangian description establishes that the frame of reference

follows the material fluid particles in their motion. In order to have a generalization

of both approaches, the velocity of the frame of reference v0 is introduced [32]. The

approach is called Arbitrary Lagrange Euler (ALE) because this velocity can be null to

have the Eulerian formalism, it can be equal to the fluid velocity to obtain the Lagrangian

approach, and it can also be arbitrary in order to move the calculation points in a way

that is advantageous for certain numerical simulations [62], [68], [82].

Using the flux vector notation of equations (4.5) and (4.6), we have the Euler equations

in conservative form and linked to the transport velocity v0 by

L
vo

(�) +r · (FC � v0 ⌦�) = ST , (4.7)

where L
vo

is the transport operator linked to v0

L
vo

(�) =
@�

@t
+r · (v0 ⌦�) . (4.8)

To simplify the notation, the flux tensor F is introduced as

F(�,v0) = FC(�)� (v0 ⌦�) . (4.9)

Using the Reynolds transport theorem (also known as Leibniz � Reynolds transport

theorem) for developing the volume integral in the moving frame of reference, and the

Divergence or Gauss’ theorem for passing from the volume integral to the surface integral

of the flux vector, we have the corresponding integral representation by
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d

dt

Z

⌦
�dV +

Z

@⌦
F(�,v0) · dS =

Z

⌦
STdV, (4.10)

where the time derivative is considered in the moving system and the boundary @⌦ is

moving at speed v0.

4.3 Smoothed Particle Hydrodynamics (SPH)

Smoothed Particle Hydrodynamics (SPH) is a numerical method to solve partial di↵eren-

tial equations considering a group of calculation points xi in a computational domain

⌦. It was first introduced by Lucy [61] in the area of astronomy and astrophysics, and

by Monaghan [64] in the area of fluid flows. It is known as a meshless method because

there is no connectivity between the calculation points [68]. The calculation points are

considered as particles that can describe the flow in Lagrangian motion.

An extensive introduction to SPH can be found in several publications ([106], [62], [54]).

In the following sections an overview of the SPH method and its variant for SPH-ALE

is presented with emphasis in the particle approximation, the SPH operators and its

properties.

4.3.1 SPH approximation

In the following, a discrete representation of the equations is presented. The interpolation

points (”particles”) are moved with the local velocity (v) and derivatives are calculated

via a kernel approximation.

First, we consider a smooth scalar or vector field f(x) in ⌦ written as a spatial convolution

product with the Dirac delta function �,

f(x) =

Z

⌦
f(x0)�(x� x0)dV 0. (4.11)
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Then, the delta function is replaced by a smooth kernel function, which is the central

feature of SPH. It gives the so-called integral representation or kernel approximation of a

function f . That is

f(x) ⇡< f(x) >h=

Z

⌦
f(x0)W (x� x0, h)dV 0, (4.12)

where W (x� x0, h) is the smoothing kernel function and h is the smoothing length [68].

The kernel function W is regular, continuous and di↵erentiable, whose gradient can be

calculated analytically.

For the approximation f(x) ⇡< f(x) >h to be accurate to the first order, the two

following conditions have to be verified [106]:

Z

⌦
W (x� x0, h)dV 0 = 1 (4.13)

and

Z

⌦
(x� x0)W (x� x0, h)dV 0 = 0. (4.14)

The normalization condition (Eq. 4.13) designates that the kernel average should be

equal to 1 (like the Dirac function) and it represents that the function can reproduce a

constant field [106], [62]. The symmetry condition (Eq. 4.14) stipulates that the kernel

function must be a symmetric (even) function, i.e. W (x� x0, h) = W (x0 � x, h) [68].

Additionally, the kernel function W (x� x0, h) is positive in order to avoid non-physical

approximations. It tends to the Dirac delta function if h tends to zero. It is monotonically

decreasing when the distance between x and x0 increases. Finally, it has a compact

support, that depends on the smoothing length h, i.e.

W (x� x0, h) = 0, if kx� x0k > h, (4.15)

where  is a constant related to the kernel function, e.g.  = 2.
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The kernel support of x is defined by [68]

D(x) =
�
x0 2 ⌦ : W (x� x0, h) 6= 0

 
=
�
x0 2 ⌦ : kx� x0k  h

 
. (4.16)

Since the kernel function has a compact support, the kernel approximation (Eq. 4.12)

is integrated, now, over the support D(x). So, it depends on the compact sub domain

that depends on the smoothing length h and not anymore on the whole computational

domain. It is rewritten as

< f(x) >h=

Z

D(x)
f(x0)W (x� x0, h)dV 0. (4.17)

It has been shown in previous works ([62], [68]) that linear consistency is obtained if

kernel functions are chosen to be positive and following the conditions in Eq. (4.13) and

Eq. (4.14). Therefore, it is guaranteed that linear functions are reproduced. However,

this is only valid if x is located far away from the boundary of the numerical domain

@⌦, otherwise the support D(x) is truncated by the boundary and the normalization

condition is no longer satisfied. The subject about boundary truncation and its technique

of treatment will not be addressed in the present document because it is out of the scope

of this work. However additional information regarding this subject can be found in the

work of Marongiu [62], Li [57], Neuhauser [68].

The gradient of the field rf can be also calculated using the kernel approximation, i.e.

< rf(x) >h=

Z

D(x)
f(x0)rW (x� x0, h)dV 0 +

Z

@D(x)
f(x0)W (x� x0, h)ndS, (4.18)

where the gradient of the kernel function rW (x� x0, h) is calculated analytically. The

boundary of the support D(x) is denoted by @D(x). The second integral is not zero only

when the boundary of the domain intersects the kernel support.

From the symmetry condition of the kernel function it is stated that its gradient is

anti-symmetric, i.e.

r
x

W (x� x0, h) = �r
x

0W (x� x0, h), (4.19)

where r
x

is the gradient evaluated at x.
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4.3.2 Particle approximation

In SPH the domain of interest is populated with a finite amount of calculation points

without any connectivity between them. The discrete equation equivalent to Eq. (4.17)

represents the reconstructed value of f at the position xi, it is called particle approximation

and it is defined by,

< fi >=
X

j2D
i

!jfjWij , (4.20)

where Di = D(xi) is the kernel support of xi and its boundary @Di, !j is the integration

weight of the calculation point j, and the discretized kernel is Wij = W (xj �xi, hij) with

hij =
h
i

+hj
2 .

Congruently, the reconstructed value of the gradient rf at the position xi is

< rfi >=
X

j2D
i

!jfjriWij +
X

j2@D
i

!@
j fjWijnj , (4.21)

where riWij is the gradient of the kernel function Wij evaluated at the particle position

xi. The second term in Eq. (4.21) corresponds to the discretization of the surface

integral over the boundary of the support [62]. Consequently, it is needed to discretize

the boundary in surface elements with surface area !@ .

The kernel function is still a symmetric function, i.e. Wij = Wji, and the gradient of the

kernel function is anti-symmetric,

riWij = �rjWij . (4.22)

The anti-symmetric characteristic of the gradient is important to ensure conservation

properties as will be seen in Section 4.3.4.

In practice, Eq. (4.21) is not able to calculate correctly the gradient of a constant function

[68]. Consequently, zero consistency is not achieved. So, to enforce zero consistency for

the computation of a gradient, the Eq. (4.21) is rewritten as [68],

< rfi >=
X

j2D
i

!j(fj � fi)riWij +
X

j2@D
i

!@
j (fj � fi)Wijnj . (4.23)
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Making a connection between the particle approximation with the physical quantities, the

calculation points are interpreted as particles with a volume !i. The particle position is

denoted by xi and each particle brings its physical fields: pressure pi, velocity vi, energy

Ei. The surface elements are represented by a surface area in 3D, by a line segment in

2D and by a point in 1D.

4.3.3 Convergence in space of the SPH method

The SPH method has two parameters for the space discretization: �x that is the distance

between two particles and h that is the smoothing length. This last parameter is the size

of the kernel function and it allows controlling the amount of neighbor particles used in

the interpolation. These two parameters are shown in Fig. 4.1.

Figure 4.1: Spacial discretization parameters in the kernel function [82]

The SPH method converges if the numerical solution tends towards the exact solution

when the space discretization tends to zero. Since the SPH method has two space

discretization parameters, it is necessary that the distance between particles and the

integration volume tend to zero to have convergence in space ([62], [82]),

8
>>>><

>>>>:

�x ! 0

h ! 0

h

�x
! 1

. (4.24)

The limit of the ratio h
�x means that the distance between particles decreases faster than

the kernel length.
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Because we search finite ratios of h
�x , it is found in the literature ([105], [62], [82]) a

suitable ratio value, i.e.

h

�x
= 1.23. (4.25)

This ratio corresponds to have approximately twenty neighbor particles inside the kernel

function for a 2D domain.

4.3.4 SPH-ALE

The SPH-ALE method was introduced by Vila in 1999 [105] in order to give a contribution

towards the design of SPH methods for conservation laws.

First, to get a particle approximation of the Euler equations in ALE form (Eq. 4.7),

we take a set of moving particles considering its geometric properties: the position of

the particle xi and its volume or weight !i [105]. The particles move along the field v0

describing the temporal evolution of the particle position in ALE form:

d(xi)

dt
= v0(xi, t). (4.26)

As well, the evolution of the particle volume is considered in order to take into account

its deformations due to the field v0:

d(!i)

dt
= !ir · (v0(xi, t)). (4.27)

As the particle approximation expression (Eq. 4.23) can be applied to the gradient or

divergence of a function [57], the previous expression is discretized as

d(!i)

dt
= !i

X

j2D
i

!j(v0(xj , t)� v0(xi, t)) ·riWij

+!i

X

j2@D
i

!@
j (v0(xj , t)� v0(xi, t)) · njWij .

(4.28)
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Next, the Euler equations in ALE approach expressed in integral form (Eq. 4.10) are

re-written using the Divergence theorem,

d

dt

Z

⌦
�dV +

Z

⌦
r · F(�,v0)dV =

Z

⌦
STdV. (4.29)

Then, considering the local equations for the particle i, we have

d

dt

Z

D
i

�dV +

Z

D
i

r · F(�,v0)dV =

Z

D
i

STdV. (4.30)

The evaluation of volume integrals needs the definition of the average value of the field �

in a volume Di. Because SPH-ALE is a method centered on the particles i, the volume

Di is taken as the volume of the particle, i.e. Di = !i. So, it is given [82]

�i =
1

!i

Z

D
i

�dV. (4.31)

In consequence, Eq. (4.30) becomes

d

dt
(!i�i) + !iri · F(�,v0) = !iST i. (4.32)

Now, to obtain the ALE formulation for the Euler system, we focus on the second term

of Eq. (4.32). This term is discretized using the Eq. (4.21), to give [105]:

!iri · F(�,v0) ⇡ !i

X

j2D
i

!jFj ·riWij + !i

X

j2@D
i

!@
j Fj · njWij (4.33)

However, the Eq. (4.33) does not ensure to be a conservative formulation. This

statement can be explained by recalling that the kernel function is anti-symmetric

(i.e. riWij = �rjWij). So, the following relation:

!i!j(Fj) ·riWij = �!j!i(Fi) ·rjWij (4.34)

is not satisfied because usually Fj 6= Fi.

So, following the mathematical development explained by Vila [105], an additional term

is introduced in order to ensure the conservation. It is taken an unit function H(x) = 1,
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so rH(x) = 0. Later, it is introduced Fi ·rH(x) into Eq. (4.29) to give

d

dt

Z

⌦
�dV +

Z

⌦
(r · F(�,v0) + Fi ·rH)dV =

Z

⌦
STdV. (4.35)

Since Fi ·rH = 0, equations (4.35) and (4.29) are equivalent.

Next, it is used the SPH approximation on this additional term,

Z

⌦
Fi ·rHdV = Fi ·

Z

⌦
rHdV ⇡ Fi ·

0

@!i

X

j2D
i

!jHjriWij + !i

X

j2@D
i

!@
j HjnjWij

1

A

= !i

X

j2D
i

!jFi ·riWij + !i

X

j2@D
i

!@
j Fi · njWij ,

(4.36)

where Hj = H(xj) = 1.

Finally, with Eq. (4.36), it is obtained the particle approximation for the Euler system

in ALE formulation,

d (!i�i)

dt
+ !i

X

j2D
i

!j(Fi(�i,v0) + Fj(�j ,v0)) ·riWij

+!i

X

j2@D
i

!@
j (Fi(�i,v0) + Fj(�j ,v0)) · njWij

= !iST i.

(4.37)

where Fi and Fj correspond to the flux vector F given in Eq. (4.9), evaluated at xi and

xj respectively. The first sum for j 2 Di is computed for the fluid particles, and the

second sum computed for j 2 @Di represents the boundary term, which is zero far away

from the boundaries of the domain @⌦.

Because

!i!j(Fi + Fj) ·riWij = �!j!i(Fj + Fi) ·rjWij , (4.38)

Eq. (4.37) is a conservative formulation.

The centered discretization in space present in Eq. (4.37) is not stable [55], so a decentered

scheme should be used. Vila [105] proposed to replace the term (Fi + Fj) by two times
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a decentered numerical flux computed at xij =
x

i

+x

j

2 in order to stabilized it, i.e.

Fi(�i,v0) + Fj(�j ,v0) ⇡ 2Fij(�ij ,v0). (4.39)

The decentered scheme (4.39) is applied to Eq. (4.37) to give the ALE discretization

of the conservation of mass, momentum and energy. Assembling it with the temporal

evolution of the particle position (Eq. 4.26) and particle volume (Eq. 4.28), it is obtained

the discrete SPH-ALE formulation of the Euler equations, i.e.

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

d(xi)

dt
= v0(xi, t)

d(!i)

dt
= !i

X

j2D
i

!j(v0(xj , t)� v0(xi, t)) ·riWij

+ !i

X

j2@D
i

!@
j (v0(xj , t)� v0(xi, t)) · njWij

d(!i�i)

dt
= �!i

X

j2D
i

!j2Fij(�,v0) ·riWij � !i

X

j2@D
i

!@
j 2Fij(�,v0) · njWij + !iST i.

(4.40)

The two first equations are related to the ALE feature of the method and the last equation

represents the conservation equations. The calculation of the fluxes (Fij) requires to

solve Riemann problems between fluid particles in the fluid domain Di [105], and to solve

partial Riemann problems between fluid particles and boundary elements along @Di [62].

4.4 Computation of the numerical fluxes

4.4.1 Classical Riemann problem

The Riemann problem is the initial value problem for a hyperbolic system of conservation

equations [37], i.e. the Euler system (Eq. 4.4).

From a numerical point of view the Riemann problem is considered in the direction of

the connecting line between two fluid particles, and the initial discontinuity is located at

the midpoint of this connecting line [68].

A direction of observation (nk) is considered with origin at xk (see Fig. 4.2). The

direction of interest is the unit vector between two fluid particles and it is parallel to
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the x� direction. Then, the one-dimensional Riemann problem for the time dependent

Euler equations (Eq. 4.4) in the nk direction is given as,

xk
nk

Figure 4.2: One-dimensional Riemann problem between fluid particles (in grey)
showing the initial discontinuity

@(�)

@t
+

@(F · nk)

@x
= 0, �(x, 0) =

8
<

:
�L if x < 0

�R if x > 0
, (4.41)

with initial conditions consisting in two constant states (�L and �R) separated by a

discontinuity defined at the interface. Here, �L and �R are the vectors written in

conservative variables for each particle.

In the ALE formulation, F is given by Eq. (4.9), i.e. F = F(�,v0) = FC(�)� (v0 ⌦�).

So, considering this expression in the one-dimensional Riemann problem formulation, we

obtained a moving Riemann problem,

@(�)

@t
+

@

@x
(FC(�) · nk � v0 · nk�) = 0, �(x, 0) =

8
<

:
�L if x < 0

�R if x > 0
. (4.42)

In this case, the interface moves with the ALE velocity v0(xk, t).

Hence, the solution of the Riemann problem, i.e. �E
k = (⇢Ek , ⇢

E
k v

E
k , ⇢

E
k E

E
k )T , is obtained

with the following relation,

8
><

>:

x/t = �k = v0(xk, t) · nk

�E
k = �E

k (�k)
. (4.43)

The solution of the moving Riemann problem is thus inserted into the flux vector to

calculate the numerical flux, i.e.

F(�,v0) = FC(�
E
k )�

�
v0(xk, t)⌦�E

k

�
. (4.44)
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To solve the Riemann problem, it is usually preferable to use the vector of primitive

variables W rather than the vector of conservative variables � [103]. For the Sti↵ened

Gas EOS, the primitive variable vector in one-dimension is W = (⇢, u, p)T , with p given

by the equation of state (p = p(⇢, e)).

Instead of Eq. (4.41), the new system of equations has the form

@W

@t
+A

@W

@x
= 0, (4.45)

where A is the Jacobian matrix of the system in Eq. (4.45), i.e.

A =

✓
@(�)

@W

◆�1 @(F · nk)

@W
. (4.46)

Using the expression for the speed of sound Eq. 3.48, c2 = �
⇢ (p+ p1), the coe�cients of

A in 1D for the Sti↵ened Gas EOS are

A =

2

6664

u ⇢ 0

0 u 1/⇢

0 ⇢c2 u

3

7775
. (4.47)

This system has three real eigenvalues: �1 = u�c, �2 = u, �3 = u+c, with corresponding

right eigenvectors:

8
>>>><

>>>>:

R1 = (1,�c/⇢, c2)T

R2 = (1, 0, 0)T

R3 = (1, c/⇢, c2)T

, (4.48)

and left eigenvectors:

8
>>>><

>>>>:

L1 = (0, 1,�1/(⇢c))

L2 = (1, 0,�1/(c2))

L3 = (0, 1, 1/(⇢c))

. (4.49)

Following Ivings [37] and Toro [103], Fig. 4.3 shows the structure of the Riemann

problem for Sti↵ened Gas EOS. There are three waves associated with the eigenvalues

(�i, i = 1, 2, 3), two non-linear waves which are either shock or rarefaction waves, and the
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middle wave which is a contact wave. In the case of two and three dimensions in space,

the contact wave is associated to the repeated eigenvalue � = u. The Star Region is the

zone that lies in between the two waves �1 and �3 (see Fig. 4.3). The density varies

discontinuously across the contact wave, from ⇢⇤L to ⇢⇤R. On the contrary, the pressure

p⇤ and the particle velocity u⇤ that lie in the Star Region are constant.

t

x

rL

uL

pL

l1

l2

l3
r*L

u*
p*

r*R

u*
p*

rR

uR

pR

star region

Figure 4.3: Structure of a one-dimensional Riemann problem along a direction of
observation parallel to the x� axis for the Euler equations using Sti↵ened Gas EOS

Next, it is presented a procedure to derive a solution for the Star Region in order to have

an expression for the physical quantities p⇤, u⇤, ⇢⇤L, ⇢
⇤
R.

4.4.2 Riemann solvers

The purpose is to find an approximate solution of the Riemann problem. A linearized

Riemann solver, often known as the primitive variable Riemann solver (PVRS) ([37],

[103]) is explained thereafter.

Previously, the Riemann solver with the Tait equation of state has been used to solve the

Euler system using the SPH-ALE method. Supplementary information regarding this

Riemann solver can be found in the work of Marongiu [62], Leduc [54], Neuhauser [68]

and Renaut[82]. In addition, we have seen that in order to solve the non-isentropic Euler

equations another equation of state must be considered, thus another Riemann solver

must be regarded. Continuing with this idea, we present first the PVRS for Sti↵ened

Gas EOS, and at the end some comments comparing both solvers are done.

Instead of PVRS, another way of obtaining the approximate solution for the star region

is also described. It is about the use of characteristic equations in the direction of
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the eigenvalues. This method, known as acoustic solver, is especially helpful for the

calculation of multi-phase flow.

Primitive Variable Riemann Solver (PVRS)

In order to solve the system of Eq. (4.45), we assume that the initial data WL, WR and

the solution W are close to a constant state W̄ [103]. So, the primitive variable system

(Eq. 4.45) is linearized about some average state [103] i.e. W̄ = (⇢̄, ū, p̄)T .

Then, by setting Ā = A(W̄) i.e.

Ā =

2

6664

ū ⇢̄ 0

0 ū 1/⇢̄

0 ⇢̄c̄2 ū

3

7775
, (4.50)

we have the Riemann problem for the linear hyperbolic system with constant coe�cients,

@W

@t
+ Ā

@W

@x
= 0. (4.51)

The eigenvalues �̄i associated to the matrix Ā for the Sti↵ened Gas EOS represent each

wave speed. They are given by,

8
>>>><

>>>>:

�̄1 = ū� c̄

�̄2 = ū

�̄3 = ū+ c̄

. (4.52)

Then, across a wave of speed �̄i we have

Ā�W = �̄i�W. (4.53)

After solving Eq. (4.53), the solution in the star region is:

8
>>>>>>>><

>>>>>>>>:

p⇤ = 1/2(pL + pR) + 1/2(uL � uR)(⇢̄c̄)

u⇤ = 1/2(uL + uR) + 1/2(pL � pR)/(⇢̄c̄)

⇢⇤L = ⇢L + (uL � u⇤)(⇢̄/c̄)

⇢⇤R = ⇢R + (u⇤ � uR)(⇢̄/c̄)

. (4.54)
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Because we are dealing with a linearized solution, we specify constant values for the

density ⇢̄ and the speed of sound c̄, given by

8
<

:
⇢̄ = 1/2(⇢L + ⇢R)

c̄ = 1/2(cL + cR)
. (4.55)

In the case of two dimensions, the tangential velocity component v across the contact

wave is given by ([37], [103]),

v =

8
<

:
vL if x/t < u⇤

vR if x/t > u⇤
. (4.56)

The main di↵erence between the Riemann solver for the Tait EOS and for the Sti↵ened

Gas EOS lies in calculating the solution in the star region. For the Tait EOS only ⇢⇤ and

u⇤ are searched. Di↵erently, for the Sti↵ened Gas EOS, there are calculated the pressure

p⇤ and the densities ⇢⇤L and ⇢⇤R, in addition to the velocity u⇤.

Acoustic Riemann Solver

In the PVRS solver, we assume a linearized solution, so the density and the speed

of sound are calculated as an average between each state (Eq. 4.55). However, this

assumption can not be taken when considering multiphase flows involving fluids with

high density ratio. So, another way to obtain the approximate solution for the star values

is presented thereafter. In this case, the characteristic equations in the direction of the

eigenvalues are used.

The left eigenvectors (Eq. 4.49) associated to the mentioned eigenvalues are used in

order to obtain the characteristic equations,

8
>>>><

>>>>:

dp� ⇢cdu = 0 along u� c

dp� c2d⇢ = 0 along u

dp+ ⇢cdu = 0 along u+ c

. (4.57)

These expressions are valid along characteristic directions [103]. Then, in order to find the

star values, we connect the state W⇤
L to the state WL by integrating the characteristic

equation along u+ c. Similarly, we connect W⇤
R to the state WR by integrating along
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u� c. Finally, to obtain the expressions for ⇢⇤L and ⇢⇤R we connect W⇤
L to WL and W⇤

R

to WR along u, respectively.

With Z = ⇢c evaluated for each state L and R, the complete solution is [103]:

8
>>>>>>>>><

>>>>>>>>>:

p⇤ =
1

ZL + ZR
[ZRpL + ZLpR + ZLZR(uL � uR)]

u⇤ =
1

ZL + ZR
[ZLuL + ZRuR + (pL � pR)]

⇢⇤L = ⇢L + (p⇤ � pL)/c
2
L

⇢⇤R = ⇢R + (p⇤ � pR)/c
2
R

. (4.58)

Di↵erent with the PVRS solver, it is noted that the density is not calculated as the

average between two control volumes. So, this solver is adapted for multi-phase flow

simulations.

Strategy to compute the solution state for the numerical fluxes

Considering the structure of the Riemann problem, there are four possible wave patterns

of shock and rarefaction waves, see Figure 4.4. Theses regions are delimited by the wave

speed, denoted by x/t = µ and µi  µi+1. For the case of two shock waves, there are

three lines x/t = µ1 = µ2, x/t = µ3 and x/t = µ4 = µ5, so four regions. For the case of

two rarefaction waves, two additional lines are added considering the speeds of the head

and tail of each rarefaction wave, giving six regions and having five di↵erent wave speeds.

Additionally, for the case of one shock and one rarefaction wave, there are five regions.

In the following, we develop the general case of one shock and one rarefaction wave (Fig.

4.4(c) and Fig. 4.4(d)).

To determine in which zone the solution has to be picked using Eq. 4.43, the wave speeds

are computed. We know that the contact wave associated to µ3 travels at speed u⇤.

Pursuing, the other wave speeds are presented.

• The left wave is a rarefaction wave if p⇤  pL (Fig. 4.4(b) and Fig. 4.4(d))

8
><

>:

µ1 = uL � cL

µ2 = u⇤ � c⇤
. (4.59)
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Figure 4.4: Possible wave patterns in the solution of the Riemann problem: (a) left
shock, contact, right shock (b) left rarefaction, contact, right rarefaction (c) left shock,

contact, right rarefaction (d) left rarefaction, contact, right shock

• The left wave is a shock wave if p⇤ > pL (Fig. 4.4(a) and Fig. 4.4(c))

⇢
µ1 = µ2 = uL � QL

⇢L
. (4.60)

with

QL =
h
[(p⇤ + p1L)(�L + 1) + (pL + p1L)(�L � 1)]

⇢L
2

i1/2
. (4.61)

• The right wave is a rarefaction wave if p⇤  pR (Fig. 4.4(b) and Fig. 4.4(c))

8
><

>:

µ4 = u⇤ + c⇤

µ5 = uR + cR

. (4.62)
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• The right wave is a shock wave if p⇤ > pR (Fig. 4.4(a) and Fig. 4.4(d))

⇢
µ4 = µ5 = uR +

QR

⇢R
. (4.63)

with

QR =
h
[(p⇤ + p1R)(�R + 1) + (pR + p1R)(�R � 1)]

⇢R
2

i1/2
. (4.64)

It is to notice that QL/R is calculated using the Sti↵ened Gas EOS constants, � and p1.

Once we have the solution for the star region using the primitive variable solver (Eq.

4.54) or the acoustic one (Eq. 4.58) and the nature of the left and right waves, we are

able to compute the solution state (�E
k ) needed for the calculation of the numerical

fluxes. This solution is searched in the direction x/t = �k = v0(xk, t) · nk.

To determine in which region the sought solution lies, we evaluate where is located the

wave speed �k with respect to the other wave speeds µ↵,↵ = 1, ..., 5.

First, we introduce the most probable cases that correspond to the cases where the

solution lies in the Star Region.

• µ2 < �k  µ3

8
>>>>>>>>><

>>>>>>>>>:

⇢Ek = ⇢⇤L

vE
k = vL + [u⇤ � vL · nk] · nk

pEk = p⇤

eEk =
pEk + �Lp1L

⇢Ek (�L � 1)

. (4.65)

• µ3 < �k  µ4

8
>>>>>>>>><

>>>>>>>>>:

⇢Ek = ⇢⇤R

vE
k = vR + [u⇤ � vR · nk] · nk

pEk = p⇤

eEk =
pEk + �Rp1R

⇢Ek (�R � 1)

. (4.66)

Next, we have the cases where the solution lies in a rarefaction wave.
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• µ1 < �k  µ2

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

⇢Ek = ⇢L


unormal � �k

cL

�2/(�
L

�1)

vE
k = vL + [unormal � vL · nk] · nk

pEk = (pL + p1L)


unormal � �k

cL

�(2�
L

)/(�
L

�1)

� p1L

eEk =
pEk + �Lp1L

⇢Ek (�L � 1)

. (4.67)

with unormal =
2

�
L

+1(cL + 0.5uL(�L � 1) + �k).

• µ4 < �k  µ5

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

⇢Ek = ⇢R


�k � unormal

cR

�2/(�
R

�1)

vE
k = vR + [unormal � vR · nk] · nk

pEk = (pR + p1R)


�k � unormal

cR

�(2�
R

)/(�
R

�1)

� p1R

eEk =
pEk + �Rp1R

⇢Ek (�R � 1)

. (4.68)

with unormal =
2

�
R

+1(�cR + 0.5uR(�R � 1) + �k).

Finally, extreme cases are presented.

• �k  µ1 The solution state is equal to the left initial state, i.e.

8
>><

>>:

WE
k = WL

eEk =
pEk + �Lp1L

⇢Ek (�L � 1)

. (4.69)

• �k > µ5 The solution state is equal to the right initial state, i.e.

8
>><

>>:

WE
k = WR

eEk =
pEk + �Rp1R

⇢Ek (�R � 1)

. (4.70)

It is important to highlight that the calculation of the internal energy for each case is

done using the equation of state given in Eq. (3.33) and paying attention to the physical

parameters in the case of multi-phase simulations, e.g. � and p1 values. Next, the
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calculation of the total energy, also needed for the computation of the numerical fluxes,

is done using the Eq. (4.2).

4.4.3 Discrete SPH-ALE equations

Using the computed solution of the states WE
k = (⇢Ek , u

E
k , p

E
k )

T , we are able to calculate

the sought solution for the numerical fluxes �E
k , and afterwards to obtain the numerical

fluxes for the system of discrete equations (4.40). Hence, the resulting system of discrete

SPH-ALE equations is given by

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

d(xi)

dt
= v0(xi, t)

d(!i)

dt
= !i

X

j2D
i

!j(v0(xj , t)� v0(xi, t)) ·riWij

+ !i

X

j2@D
i

!@
j (v0(xj , t)� v0(xi, t)) · njWij

d(!i⇢i)

dt
+ !i

X

j2D
i

!j2⇢
E
ij(v

E
ij � v0(xij , t)) ·riWij

+ !i

X

j2@D
i

!@
j 2⇢

E
ij(v

E
ij � v0(xij , t)) · njWij = 0

d(!i⇢ivi)

dt
+ !i

X

j2D
i

!j2[⇢
E
ijv

E
ij ⌦ (vE

ij � v0(xij , t)) + pEij ] ·riWij

+ !i

X

j2@D
i

!@
j 2[⇢

E
ijv

E
ij ⌦ (vE

ij � v0(xij , t)) + pEij ] · njWij = !iSei

d(!i⇢iEi)

dt
+ !i

X

j2D
i

!j2[⇢
E
ijE

E
ij (v

E
ij � v0(xij , t)) + pEijv

E
ij ] ·riWij

+ !i

X

j2@D
i

!@
j 2[⇢

E
ijE

E
ij (v

E
ij � v0(xij , t)) + pEijv

E
ij ] · njWij = !iSeiv

E
ij

. (4.71)

The two first equations are related to the feature of the ALE method, computing the

particle position and updating the particle volume. The three last equations represent

the conservation of mass, momentum and energy. This discrete equation system includes

the boundary and source terms.

Interface velocity in the volume evolution equation
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In the discrete SPH-ALE system (Eq. 4.71) the equation to compute the volume

evolution considers the di↵erence between the velocities of two particles i and j, i.e.

v0(xj , t)� v0(xi, t), and not the average of both velocities, i.e.

v0(xij , t) =
v0(xj , t) + v0(xi, t)

2
, (4.72)

like in the discretization of the conservation equations (mass, momentum and energy

equations). Hence, the idea is to introduce the average of velocities (Eq. 4.72) into the

discretization of the volume evolution (Eq. 4.28), so it will be consistent with the other

equations.

We start the analysis by considering the Eq. (4.72) that is re-written as

v0(xj , t) = 2v0(xij , t)� v0(xi, t). (4.73)

Then, the term v0(xi, t) is subtracted on both sides, i.e.

v0(xj , t)� v0(xi, t) = 2 (v0(xij , t)� v0(xi, t)) . (4.74)

Hence, we obtain the expression for the term v0(xj , t)�v0(xi, t) in the volume evolution

equation in order to be consistent in the use of an arbitrary interface velocity among the

SPH-ALE equations.

Finally, it is presented the set of discretized equations used for the numerical simulations

developed in the frame of this work, i.e.
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8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

d(xi)

dt
= v0(xi, t)

d(!i)

dt
= !i

X

j2D
i

!j2(v0(xij , t)� v0(xi, t)) ·riWij

+ !i

X

j2@D
i

!@
j 2(v0(xij , t)� v0(xi, t)) · njWij

d(!i⇢i)

dt
+ !i

X

j2D
i

!j2⇢
E
ij(v

E
ij � v0(xij , t)) ·riWij

+ !i

X

j2@D
i

!@
j 2⇢

E
ij(v

E
ij � v0(xij , t)) · njWij = 0

d(!i⇢ivi)

dt
+ !i

X

j2D
i

!j2[⇢
E
ijv

E
ij ⌦ (vE

ij � v0(xij , t)) + pEij ] ·riWij

+ !i

X

j2@D
i

!@
j 2[⇢

E
ijv

E
ij ⌦ (vE

ij � v0(xij , t)) + pEij ] · njWij = !iSei

d(!i⇢iEi)

dt
+ !i

X

j2D
i

!j2[⇢
E
ijE

E
ij (v

E
ij � v0(xij , t)) + pEijv

E
ij ] ·riWij

+ !i

X

j2@D
i

!@
j 2[⇢

E
ijE

E
ij (v

E
ij � v0(xij , t)) + pEijv

E
ij ] · njWij = !iSeiv

E
ij

. (4.75)

4.4.4 Reconstruction strategy: MUSCL

The Godunov scheme is a first order conservative scheme where the initial states of

primitive variables for the Riemann solver, WL and WR, are taken to be equal to the

states of the corresponding particles, i.e. WL = Wi and WR = Wj . It has been shown

that this method presents numerical dissipation in the Riemann solver [62], [83]. So, a

reconstruction strategy, such as MUSCL [62], has been implemented in order to reduce

it.

The idea is to replace the constant approximation of the Riemann problem states by

linear approximation at the midpoint between particles i and j. It means to interpolate

the interface states WL and WR by the following expression:

8
><

>:

WL = Wi + ↵(Wi,Wj ,riW)riW · (xj � xi

2
)

WR = Wj � ↵(Wi,Wj ,rjW)rjW · (xj � xi

2
)
, (4.76)
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where the local gradients riW and rjW are estimated following a SPH gradient

approximation (Eq. 4.21) [82]. A limiter function ↵ is needed to prevent spurius

oscillations to appear at discontinuities [68]. For all the simulations presented in this

work, we have used the minmod limiter.

It is to notice that the vector of primitive variables for the non-isentropic model, i.e.

W = (⇢, u, p)T includes an additional variable with respect to the barotropic case, i.e

W = (⇢, u)T ([62], [68], [83]). Hence, it is mandatory to do the reconstruction for the

density, velocity and pressure.

4.5 Boundary conditions

In SPH, a particle close to the boundary of the computational domain has a kernel

support truncated, so a special treatment must be done in order to deal with boundary

conditions.

For solid boundaries like walls, the boundary conditions are calculated using the technique

based on the work of Marongiu [62], where partial Riemann solvers on surface elements

are solved. At the wall boundary, one initial state is missing, so the missing information

is calculated using the fluid information. For the Sti↵ened Gas EOS, the fluid information

includes density, pressure and velocity. For inlets and outlets boundaries, an analysis

of eigenvalues is done in order to establish the fluid information required to impose the

conditions. These boundary condition analyses were already presented by Marongiu [62],

Li [57] and Neuhauser [68] for the Tait EOS case, but thereafter they are presented for

the Sti↵ened Gas EOS emphasizing the di↵erences with respect to the previous EOS.

4.5.1 Solid wall

In the SPH method, the treatment of solid wall boundary condition is a di�cult subject.

In the literature we can find several approaches to treat it, like the fictive particle method

[66] and the ghost particle method [30]. However these methods present di�culties

when handling complex geometries. In this work we treat the solid boundary conditions

following the work of Marongiu (2010) [62] where partial Riemann solvers on surface

elements are solved. That is suitable for complex geometries [68].
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Because the fluid is assumed to be inviscid, the solid wall boundary is treated with

the so-called slip condition, which establishes the equality of velocities in the normal

direction of the solid boundary. This condition is translated into the following equation

(v(xk, t)� vw(xk, t)) · nk = 0, (4.77)

where xk denotes a point at the wall and vw the velocity of the solid boundary. The

purpose here is to consider partial Riemann problems on boundaries where the interface

is located at the solid wall (e.g. at xk) [18], [62].

Partial Riemann problem

For the classical Riemann problem, we have seen that it consists in two non-linear waves

associated with the eigenvalues �1 = u� c and �3 = u+ c, and a contact wave associated

with the eigenvalue �2 = u. Then, an analysis of the characteristic fields considering

the eigenvalues �i, i = 1, 2, 3 is developed in order to relate the state in the star region

with the states in the left and the right zones (see Section about Riemann solvers 4.4.2).

However, at the boundary, one initial state is missing because there is no fluid particle

inside the solid. We assume that the missing state that comes from the boundary is WR

and the fluid state is WL. So, we have only one relation across the wave associated with

the eigenvalue �1 = u� c. This is called the partial Riemann solver and its structure is

given in Fig. 4.5 to be compared to Fig. 4.3.

t

x

u-c

Solid BoundaryFluid Domain

Star Region

Figure 4.5: Structure of a one-dimensional Partial Riemann problem along a direction
of observation parallel to the x� axis for the Euler equations using Sti↵ened Gas EOS
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Then, across the wave of speed u� c we solve the following relation,

A�W = �1�W, (4.78)

in order to calculate the solution in the star region.

Since the interface of the partial Riemann problem is located at the solid wall, the

velocity of the interface, v0(xk, t), is equal to the solid velocity, vw(xk, t), along the

normal direction nk, i.e. v0(xk, t) · nk = vw(xk, t) · nk. Thus, the velocity in the Star

Region (u⇤) from the partial Riemann solver is already known and it is the velocity of

the solid wall projected on the normal direction,

u⇤ = vw · nk. (4.79)

Continuing, the solution from the partial Riemann solver is given by,

8
><

>:

p⇤ = pL + (uL � u⇤)(⇢LcL)

⇢⇤L = ⇢L + (uL � u⇤)(⇢L/cL)
, (4.80)

where pL, ⇢L and cL are the pressure, density and speed of sound of the fluid particle,

respectively. And uL is the normal component of the fluid velocity, i.e. uL = vL · nk.

Then, the state solution useful for computing the boundary flux is given by,

8
>>>>>>>>><

>>>>>>>>>:

⇢Ek = ⇢⇤L

vE
k = vL + [u⇤ � vL · nk] · nk

pEk = p⇤

eEk =
pEk + �Lp1L

⇢Ek (�L � 1)

. (4.81)

From the expressions above, we can obviously observe that the fluid and solid velocities

in the normal direction are equal, i.e. (vE
k � vw(xk, t)) · nk = 0, according to Eq. (4.77).

Subsequently, it results that (vE
k � v0(xk, t)) · nk = 0. This cancels the convective part

of the boundary flux in Eq. (4.75) and it establishes that the mass transfer between the

fluid and the wall is null.
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4.5.2 Inlet and outlet

In the frame of this work, we consider subsonic conditions because the fluid velocity is

smaller than the speed of sound, kvk < c. It is considered a 2D numerical domain where

the normal vectors at the inlet and outlet point inside the fluid domain.

The Riemann problem in primitive variables in 2D is given by

@W

@t
+A

@W

@x
+B

@W

@y
= 0, (4.82)

with,

W =

0

BBBBBB@

⇢

u

v

p

1

CCCCCCA
, A =

2

6666664

u ⇢ 0 0

0 u 0 1/⇢

0 0 u 0

0 ⇢c2 0 u

3

7777775
, B =

2

6666664

v ⇢ 0 0

0 v 0 0

0 0 v 1/⇢

0 0 ⇢c2 v

3

7777775
. (4.83)

This system has the following four eigenvalues:

8
>>>><

>>>>:

�1 = v · nk � c

�2 = �3 = v · nk

�4 = v · nk + c

, (4.84)

where nk is the unit vector in the direction of interest when considering the Riemann

problem solution, which is usually chosen to be the normal vector when studying boundary

conditions.

For the following analysis, it is assumed that the normal vector nk for inlet and outlet

boundaries lies on the x� axis. For inlet, nk is pointing towards the positive direction of

the x� axis, and for outlet nk is pointing towards the negative direction of the x� axis.

In consequence, the fluid velocity in the x� direction is v · nk = u.

So, the eigenvalues for analyzing inlet and outlet boundary conditions are:

8
>>>><

>>>>:

�1 = v · nk � c = u� c

�2 = �3 = v · nk = u

�4 = v · nk + c = u+ c

. (4.85)
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At the inlet, the eigenvalues fulfill �1 < 0 < �2 = �3 < �4, showing three positive eigenval-

ues and one negative eigenvalue. The positive eigenvalues correspond to information that

come in from the outside, and the negative ones correspond to information going outside

of the domain. Hence, for the inlet, there are imposed three components of the vector

of primitive variables W, usually the fluid density ⇢, and the two velocity components,

i.e. (⇢, u, v). In contrary, the Tait EOS implementation requires two components of the

primitive vector and in this case is usually imposed the two components of the velocity

(u, v).

For the outlet, the eigenvalues satisfy �1 < �2 = �3 < 0 < �4, giving one positive

eigenvalue. Hence, for the outlet, the same as for the Tait EOS case, it is usually imposed

the pressure p.

4.5.3 Symmetry and periodic boundary conditions

To apply periodic and symmetry boundary conditions, SPH particles are added to

complete the numerical stencil or kernel support. Physical fields of each added particle

are taken equal to the physical fields from the ”real” particle, excepting the velocity field

for symmetry conditions. In this regard, only the velocity component in the perpendicular

direction to the symmetry plane is taken in the opposite direction with respect to the

”real” particle.

4.6 Time integration

The time integration scheme used is an explicit Runge-Kutta method implemented for

the hyperbolic Euler system. In particular, the following schemes were implemented:

Euler scheme, Heun scheme and the Runge-Kutta methods for second, third and fourth

orders. They can be found in books about numerical computation, e.g. [32].

The time step is subjected to the Courant-Friedriech-Levy (CFL) condition,

�tCFL = KCFL ·mini2⌦
hi

ci + kvik
, (4.86)
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where hi, ci, vi are the smoothing length, the speed of sound and the velocity of particle

i. The constant KCFL is less than one for explicit schemes. �tCFL is calculated at each

time step.

This condition establishes that an acoustic wave does not cross a characteristic size of

the discretized domain during one time step. One consequence of this relation is that it

is computationally expensive because the real physical speed of sound for water and gas

must be used. In consequence, the use of the numerical speed of sound to decrease the

computational cost usually employed for the barotropic simulations (i.e. using Tait EOS

[68], [82]) can not be used for non-isentropic simulations (i.e. using Sti↵ened Gas EOS).

4.7 Correction method for the compressible SPH

It is well known that SPH has a lack of consistency due to the discretization of the

kernel approximation [68]. In literature, di↵erent methods can be found to correct

the kernel function and/or its gradient satisfying the consistency conditions for the

particle approximation. For example we mention the Shepard correction that ensures

the normalization condition [84], the renormalization that corrects the kernel gradient

to increase the order of consistency of the particle approximation [80] and the work of

Neuhauser [68] about a novel correction method that ensures zeroth order consistency

for the computation of the divergence of the flux vector.

It is interesting to point out that the SPH method fails to satisfy the consistency

conditions not only because of the discretization of the kernel approximation. Following

Colagrossi [13], the particles position setting at the beginning of a numerical simulation

has a crucial role in order to simulate correctly the fluid flow. Otherwise particles may

resettle, causing spurious motions which can create non-physical momentum.

If the particle distribution is not adequate for the SPH operators, an error term is

introduced, thus generating an artificial velocity. The error term has been defined by

Neuhauser [68] as,

bi =
X

j2Di

!jriWij +
X

j2@Di

!@
j Wijnj (4.87)

and it is called the closed box error. bi should be zero according to Eq. (4.21) with

f = 1, what is false in practical configurations.
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It is found that the particles distribution is an issue especially for compressible flows with

large Mach number, e.g. 0.5, as we are interested in. This could be further explained,

stating that the Lagrangian displacement of a particle in a time step becomes equivalent

to the transport of information to the neighborhood through acoustic waves. So, the

usual particle resettlement observed in low Mach number applications can no longer

”e�ciently” take place for applications involving Mach number higher than 0.3.

In consequence, the ALE feature of the scheme is exploited through a specific correction

of the motion of the particles. Hence, adapting the particles distribution itself using a cor-

rected particle velocity can reduce the errors introduced by an unacceptable distribution

of particles.

The main idea is, without generating an artificial fluid velocity, to use the intrinsic

re-meshing capacity of SPH ([13], [68]) in order to correct the particle velocity at every

time step throughout the simulation. So, we shift the particles in the adequate direction

in order to improve the particles distribution. For that purpose, a pressure field is applied

to all particles with,

8i 2 ⌦ : pci = �⇢ic
2
c , (4.88)

where ⇢i is the corresponding density of each particle, cc is the speed of sound for the

correction and � is a numerical parameter. cc is established equal to the speed of sound

of the fluid in monophase simulations and, for multiphase simulations, it is established

equal to the speed of sound of the heaviest fluid, ergo, the fluid having the highest

speed of sound. The transport of information to the neighborhood is done following

the same speed of sound for multiphase applications. When � = 100, the correction of

movement behaves properly for the cases presented thereafter and it is the value used for

all the cases presented in this thesis. This value of � was established by trial and error.

Nevertheless additional research should be done in order to establish a link between this

parameter and the flow conditions, such as the Mach number.
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The pressure pci only acts on the particle velocity v0(xi) and the particle position xi.

Hence, the correction on the particle velocity is computed by

✓
dv0(xi)

dt

◆

c

=

X

j2D
i

!j


pci
⇢i

+
cc
2
(v0(xi) � v0(xj)) · nij

�
riWij+

X

j2@D
i

!@
j


pci
⇢i

+
cc
2
(v0(xi) � v0(xj)) · nj

�
Wijnj .

(4.89)

When Eq. (4.88) is introduced in Eq. (4.89), it is observed that the correction p
ci

⇢
i

is

uniform and constant for all the particles.

Equation (4.89) is used to correct the particle kinematic.

For illustration purpose, we employ the Euler time integration scheme. It has been

shown by Neuhauser [68] that correcting also the particle position improves the numerical

results. Hence, the particle position is also corrected using the computed value from Eq.

(4.89).

Then, the particle velocity is calculated as:

vn+1
0 (xi) = vn

0 (xi)��t

✓
dv0(xi)

dt

◆

c

, (4.90)

noting that at the initial time, vn=0
0 (xi) is the initial fluid velocity, i.e. vn=0

0 (xi) =

vn=0(xi).

And the particle position is updated as follows:

xn+1
i = xn

i + vn
0 (xi)�t� 0.5(�t)2

✓
dv0(xi)

dt

◆

c

. (4.91)

Additionally, the closed box error (Eq. 4.87) is calculated at each time step in order to

verify that the ALE velocity correction is well implemented.

As a consequence of using the velocity particle correction, the time step is a↵ected. It is

reduced due to the term �c2c , and thus it reaches values of 10�10 s for multiphase cases.

Of course this value depends on the particle size. The time step becomes more restrictive

in cases involving smaller particle sizes. Also, it is important to mention that multiphase
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simulations without correction do not behave properly because the particles distribution

is not adequate and so this correction is mandatory to have satisfactory results.

4.8 Multi-phase model

The multi-phase model implemented in the frame of this work allows the simulation

of flow with strong density variation without di↵usion at the interface. It was taken

from the work of Leduc [54] where the main idea is to cancel the mass flux between two

particles associated to di↵erent fluids. To do so, the interface velocity between these two

particles is chosen to be not arbitrary.

Choice of the interface velocity for the multi-phase model

In agreement with the approach of Leduc [54], in order to cancel the mass flux between

two particles associated to di↵erent fluids, the interface velocity between these two

particles is imposed to be equal to the velocity from the Riemann solver solution, i.e.

v0(xij , t) = vE
ij . (4.92)

In consequence and for the case involving two particles associated to di↵erent fluids, the

velocity from the Riemann solver solution is substituted into the discretized system of

equations (Eq. 4.75). Then, it is obtained that the mass transfer and the convective flux

are zeroed.

In consequence, the interface between two di↵erent fluids is not di↵used during the

advance in time of the simulation.

Along with this assumption, it is used a suitable Riemann solver that takes in consideration

the physical discontinuities between both fluids, as the acoustic Riemann solver presented

in Section 4.4.2. For calculating the solution, this Riemann solver relies on p⇤ and u⇤,

which are continuous through the interface in absence of surface tension. In addition,

it does not take into account an average state, because the solution is calculated along

characteristic equations associated to each fluid (Eq. 4.57).
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4.9 Validation cases

In this work we are focused on developing two phase flow simulations considering the

interactions of liquid and gas.

We choose the shock tube configuration because it allows us to test the correct evolution

of shock and rarefaction waves, since these waves are present in the collapse phenomenon

of a non-condensable gas bubble and its correct calculation is important in the erosion

estimation. First, we present a mono-phase shock tube for validation purpose of the

Riemann solver for the Sti↵ened Gas EOS. Then, a two-phase (liquid-gas) shock tube is

presented to show the capabilities of the multi-phase model in the numerical resolution

of interface problems. Additionally, a comparison between the actual model in SPH (i.e.

a non-isentropic model) and the previous model (i.e. a barotropic model) is presented

for a mono-phase dam break case in the Appendix A.

4.9.1 Mono-phase shock tube

It is considered the monophasic shock tube test case proposed by Ivings [37]. It consists

in a flow reaching a Mach number of 0.2. We consider a shock tube of unity length

with a discontinuity at x = 0.5 separating two liquid states. Table 4.1 shows the initial

left and right states data. The constant values for the Sti↵ened Gas EOS are � = 7.15,

p1 = 300 MPa and Cv = 587 J/(kgK). At t = 0.0 s both fluids are instantaneously in

contact.

Table 4.1: Initial states for mono-phase shock tube validation case

Initial data states
Primitive variables Left Right
Density [kg/m3] 1100.0 1000.0
Velocity x [m/s] 500.0 0.0
Velocity y [m/s] 0.0 0.0
Pressure [MPa] 5000.0 0.1

Table 4.2: Numerical parameters for mono-phase shock tube validation case

Reconstruction scheme MUSCL
Limitor minmod

SPH particles in the length of the domain 500



Chapter 4. Numerical method 99

The results presented were obtained using the PVRS Riemann solver developed for the

Sti↵ened Gas EOS (see Section 4.4.2). The numerical parameters for this validation case

are shown in Table 4.2. It is mentioned that the particle distribution correction is not

used because the Mach number is lower than 0.3.

Fig. 4.6 presents the spatial distribution of density, velocity, pressure and internal energy.

The results are shown at time t = 7 · 10�5 s and consist in three conventional waves: a

shock wave and a contact wave travelling to the right and a rarefaction wave going to

the left. The SPH-ALE numerical solution is compared to the exact solution taken from

the work of Ivings in [37] and good agreement is obtained.

Fig. 4.7 shows the temperature profile throughout the shock tube. The temperature

profile is smooth and as expected the temperature and the internal energy curves have

the same shape. This similarity in the shape is due to the equation of state used (i.e.

the Sti↵ened Gas EOS). Indeed according to Eq. 3.33 and Eq. 3.45, we can write

T =
e

Cv
� p1

⇢Cv
. (4.93)

So, if density does not vary significantly, the temperature curve is proportional to the

internal energy curve but shifted of p1
⇢C

v

.
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Figure 4.6: Shock tube test case. Flow fields in spatial distribution at t = 7 · 10�5 s.
Comparison between SPH-ALE numerical results (solid lines) and the exact solution

from Ivings in [37] (dashed lines)
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Figure 4.7: Shock tube test case. SPH numerical results of temperature at t = 7·10�5 s.
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4.9.2 Multi-phase shock tube

The multiphase shock-tube test case without mass transfer presented in [91] is used for

validation purpose. In this example, the left part of a shock tube is filled with liquid

dodecane at high pressure and the right side is filled with vapor dodecane at atmospheric

pressure. The initial discontinuity is located at x = 0.75 of a 1 m long tube. Table 4.3

shows the initial left and right states data. The suitable parameters for the Sti↵ened

Gas EOS are taken from Saurel [91] and they are presented in Table 4.4.

Table 4.3: Initial states for multi-phase shock tube validation case

Initial data states
Liquid - left side Vapor - right side

Density [kg/m3] 500.0 2.0
Velocity x [m/s] 0.0 0.0
Velocity y [m/s] 0.0 0.0
Pressure [MPa] 100.0 0.1

Table 4.4: Sti↵ened Gas EOS parameters for liquid and vapor dodecane

Dodecane p1 [Pa] Cp [Jkg�1K�1] Cv [Jkg�1K�1] �

liquid 4 . 108 2534 1076 2.35
vapor 0 2005 1956 1.025

The numerical parameters for the multiphase validation case are shown in Table 4.5.

Because the flow has a Mach number of 0.6 in the gas side of the tube, the particle

motion correction is used imperatively in order to have a good numerical estimation of

the flow fields. The results were obtained using the acoustic solver developed for the

Sti↵ened Gas EOS (see Section 4.4.2).

Table 4.5: Numerical parameters for multiphase shock tube validation case

Reconstruction scheme MUSCL
Limitor minmod

SPH particles in the length of the domain 1000
Parameter for particle distribution correction � 100

The liquid-gas interface is solved as a contact discontinuity. At t = 0.0 s both fluids are

instantaneously in contact. The results are shown at time t = 473 µs and consists of

three conventional waves. A rarefaction wave propagates through the liquid to the left,

the contact discontinuity is moving from left to right and a shock propagates through

the vapor to the right.
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Fig. 4.8 presents the spatial distribution of density, velocity, pressure and vapor fraction.

The SPH-ALE numerical solution is compared to the one from Saurel in [91] and good

agreement is observed. The model is able to reproduce the density variations in the

liquid and gas sides. The velocity distribution is well described also, although the head

and tail of the rarefaction wave present a smooth behavior that we could link to the

numerical dissipation associated to the method. Fig. 4.8(d) shows the vapor fraction

where 0 represents liquid and 1 vapor. Because we do not use a mixture model, the vapor

fraction value is either 0 or 1, there are not intermediate values. This graph also presents

the interface position showing very good agreement with respect to the reference solution.

For validation purpose the pressure distribution is shown in Fig. 4.8(c). Likewise, it has

very good agreement with the reference solution; nevertheless the pressure variations

are not appreciated here. So, Fig. 4.9(a) shows the same pressure distribution in log

scale. There, we observe the pressure changes along the shock tube; the pressure profile

is very smooth even in the liquid-gas interface, where normally the numerical problems

are located. The Mach number calculated in each fluid along the shock tube is plotted

in Fig. 4.9(b). We observe the maximal value in the gas side, i.e. Ma = 0.62, specifically

for the gas particles that are close to the liquid ones, which represent the gas particles

that su↵er compression.

Fig. 4.10 shows the temperature profile throughout the multiphase shock tube. The

temperature profile is smooth in the liquid and gas side. However a discontinuity at the

liquid-gas interface is observed. This discontinuity is due to the density discontinuity

also observed through the interface and to the fluid parameters (i.e. � and p1) that are

di↵erent for each fluid. It is important to highlight that the pressure and velocity profiles

trough the interface are smooth and continuous. So, in multiphase simulations, there is a

pressure equilibrium between both fluids, but there is a discontinuity in the temperature

profile trough the liquid-gas interface.
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Figure 4.8: Multiphase shock tube test case. Numerical results in spatial distribution
at t = 473 µs. Comparison between SPH-ALE results (solid line) and results from

Saurel in [91] (dashed lines)
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4.10 Conclusion

Since the fluid flow is assumed inviscid and the heat transfer is not considered, this

section has addressed the Euler system and the numerical method used to solve it. It is

the SPH-ALE, a mesh-less numerical method widely used to model weakly-compressible

flows. In this regard, some modifications have been done in order to make SPH-ALE

suitable to simulate compressible flows. Firstly, we have considered the energy equation

among the Euler system, and in consequence it is involved another variable, such as the

internal energy. This additional variable a↵ects the calculation of fluxes (i.e. Riemann

solvers) and the reconstruction strategy (i.e. the MUSCL approach). Regarding the flux

calculation, two Riemann solvers were implemented and validated for compressible flows.

One of them is the acoustic Riemann solver, which is specially developed for multiphase

flows. On this subject, it has been presented the use of a particular velocity for solving

the Riemann solver between particles of di↵erent fluids (e.g. liquid and gas) in order to

cancel the mass flux between them, and thus to guarantee no di↵usion of the interface.

As well, it has been presented that the particles distribution resettlement does not

e�ciently work anymore for compressible flows. For that reason, a correction strategy

is implemented through the ALE particle velocity. It exploits the ALE feature of the

method to improve the particles distribution, which is crucial for flows of large Mach

number, e.g. 0.5.

To summarize, in order to simulate the collapse of a non-condensable gas bubble in

liquid, it is solved the Euler equations, i.e. conservation of mass, momentum and energy

equations. For that, it is used the compressible SPH-ALE method, considering the

acoustic Riemann solver to model multiphase flows, the particle velocity correction

for compressible flows and the MUSCL reconstruction to improve the accuracy of the

numerical results and to reduce the numerical di↵usion.



Chapter 5

Simulation of the collapse of a

non-condensable gas bubble

The dynamics of a non-condensable gas bubble during compression in a free field is

studied and compared against the analytic solution from Rayleigh-Plesset equation (Eq.

2.17 considering only non-condensable gas inside the bubble and neglecting viscosity

and surface tension e↵ects) in order to show the capabilities of the numerical model to

represent the bubble collapse phenomenon. Then, the dynamics and the loading caused

by the bubble collapse near a surface is analyzed and characterized.

5.1 General considerations about simulations of non-condensable

gas bubble compression

This section is intended to present the general considerations applied to all simulations

about the collapse of a non-condensable gas bubble, i.e. simulations in free field and near

a solid boundary (rigid and non rigid).

Particularly, for all the numerical simulations, it is considered the following assumptions:

• The bubble contains only non-condensable gas;

• the bubble pressure is initially smaller than the uniform pressure of the surroundings;

• the collapse starts from the bubble’s maximum radius, i.e. the initial condition

corresponds to the maximum radius of the bubble.

106
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Additionally, the calculations were carried out following a two dimensional approach

due to computational cost issues. As it was explained in Section 2.1.2.2, the pressure

field is qualitatively comparable between the 3D and 2D descriptions. As well, the fluid

dynamics is well represented by the 2D simplification.

5.1.1 Physical considerations on the compression of a non-condensable

gas bubble

As explained in Chapter 3, the gas inside the bubble is modeled as ideal gas and the

liquid as water following the Sti↵ened Gas EOS. The dynamics of gas and liquid phases

are modeled using compressible multiphase flows, in which the two fluids are assumed

immiscible. Then, following Chapter 2, surface tension and phase change are not expected

to a↵ect significantly the bubble dynamics during the compression phase and are therefore

neglected. Additionally, body forces are ignored. The appropriate parameters for the

equation of state are taken from Saurel [91] and are shown in Table 5.1.

Table 5.1: Sti↵ened Gas EOS parameters for water and gas

p1 [Pa] Cp [Jkg�1K�1] Cv [Jkg�1K�1] �

water 1 · 109 4267 1816 2.35
gas 0 1487 1040 1.43

Since the fluid components are considered immiscible, there is no mixture and the mesh-

less feature of the SPH-ALE method is exploited to model sharp interfaces. Each SPH

particle contains the information associated to one fluid phase, i.e. there are particles

representing only the water and particles that represent only the non-condensable gas.

The collapse is driven by the pressure ratio between the liquid (pw) and the gas (pb).

The subscripts w and b denote water and gas respectively. The bubble pressure is set

initially as atmospheric (i.e. 1 · 105 [Pa]). So, this quantity (i.e. p
w

p
b

) will be used to

characterize each simulated case.

The initial water density (⇢w), the initial speed of sound on the water (cw) and the

initial bubble radius (R0) are used to non-dimensionalize the variables. From the

equation of motion we have the following non-dimensional groups: x/R0, y/R0, z/R0,

u/cw, v/cw, w/cw, p/(⇢wc2w), t(cw/R0) and from the problem description we can

add pw/pb.
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The initial conditions used for all the simulations about the compression of a non-

condensable gas bubble are presented in Table 5.2. It is highlighted the initial pressure

for water, its value is used to characterized each simulation, so the initial pressure for

water will be mentioned for each simulation. On the other hand, the initial bubble

radius presented in Table 5.2 is used for most of the simulations, but in cases where this

initial value does not correspond to the one displayed, the new value will be explicitly

mentioned.

Table 5.2: Initial conditions for simulations of the compression of a non-condensable
gas bubble

pinitial [Pa] vinitial [m/s] ⇢initial [kgm�3] R0[mm]
water ⇤ 0 1000 -
gas 1 · 105 0 1 10⇤⇤
⇤ this value will be given in the set up of each simulation
⇤⇤ this value is used for most of the cases and when exception, the new value will be
mentioned

In the next section, it is analyzed the influence on the numerical results of the particle

refining, the reconstruction strategies (i.e. Godunov and MUSCL) and the kernel length

variation. Precisely, it is about changing the kernel size of particles when the particle size

varies. This situation can be encountered along the simulation when the gas particles

have reduced their volume due to the compression e↵ect. This volume reduction is more

important on gas particles than on water particles. So, the variation of the kernel size

may not be the same for gas and water particles and this may cause instabilities.

5.1.2 Numerical considerations on simulations about the compression

of a non-condensable gas bubble

For all the bubble collapse simulations, a numerical limit is estimated in order to guarantee

that the SPH particles represent accurately the bubble, especially in the last stages of

compression. This limit is established at 5 times the initial SPH particle size. This means

that the minimum bubble radius corresponds to 5 times the initial SPH particle size. In

percentage, the allowed minimum radius corresponds to 12.5% of the initial radius.

Numerical techniques to reduce the numerical dissipation
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To reduce the numerical dissipation, it is usually used the refining technique. In meshless

methods, this technique is addressed by the discretization of the computational domain

introducing more and more particles. For these simulations, the particle refining is

addressed as the number of particles in the bubble radius, i.e. more particles in the bubble

radius indicates more particles in the whole numerical domain, and thus a better refining.

However, the computational cost is a drawback of this technique. Another technique used

to reduce the numerical dissipation is the implementation of reconstruction methods,

like the MUSCL method, which was implemented to improve the results obtained by the

Godunov scheme.

Figure 5.1(a) shows the history of the bubble volume until the bubble achieves the

minimum volume, for di↵erent amount of SPH particles in the bubble radius (i.e. 20 and

40) and two reconstruction strategies (Godunov and MUSCL). The bubble volume is

calculated by summing the volume in each gas particle. As expected, the bubble volume

tends to converge in a global sense as the amount of particles in the radius increases and

for the reconstruction method of higher order, i.e. MUSCL method.

In conclusion, for the numerical simulations of the bubble collapse, it is chosen to

use the MUSCL method and 40 SPH particles in the bubble radius, satisfying good

discretization of the numerical domain, a reduction of numerical dissipation and an

acceptable computational cost.

Kernel size variation

It has been presented in Section 4.3.3 that the kernel size (h) allows controlling the

amount of neighbor particles used in the interpolation. So, its possible variation along

the simulation may have an influence on the numerical results.

When the initial kernel length of each SPH particle is maintained constant during the

entire time of the simulation, a minimum number of neighbor particles is guaranteed. It

corresponds to the amount of neighbor particles at the beginning. Otherwise, when the

kernel length varies along the simulation, the amount of neighbor particles may change.

Then, we may find a situation where a particle is having less or more neighbors than

another particle. We may think that a gas particle would have fewer neighbors than

a liquid particle, because its kernel becomes smaller than the one for liquid particles.

However, this situation is not straightforward because the gas particle also reduces its
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volume in a more important way than the liquid particle, so more gas particles may be

part of the kernel.

For the case of maintaining constant the kernel size, we consider the gas and close-to-

interface particles. For them, the amount of neighbor particles increases gradually with

the compression of gas particles. In consequence, the interpolation inside the kernel is

improved, however the CPU calculation time is raised. On contrary, allowing the kernel

variation may introduce instabilities due to its frequent update. This situation is found,

particularly, in the last stages of the calculation, where the gas particle has a reduced

volume in comparison with the liquid particles.

To analyze this e↵ect, it is considered the case involving the MUSCL method. Fig.

5.1(b) shows the evolution of the bubble volume. There, three simulation results are

presented. To compare the kernel variation influence two simulations of 20 SPH particles

in the bubble radius are considered, one allowing the kernel variation and the other one

forbidding its variation. The third numerical result corresponds to the case of 40 SPH

particles in the bubble radius (red dashed line) and it is presented just as a reference.

The three numerical results are very similar, but a small di↵erence in the last stages

is found for the simulation allowing the kernel variation (green dot-dashed line). This

di↵erence can be an indication of numerical dissipation, however it is not conclusive. On

the other hand, for the case maintaining constant the kernel size (blue dashed line), the

numerical dissipation is less marked and the curve behavior is in agreement with the

less-di↵usive result (red dashed line).

Although the kernel variation along the simulation does not significantly a↵ect the

numerical results of the bubble collapse, it is chosen to maintain the kernel size constant

in order to have results with less numerical dissipation and to guarantee good interpolation

in the interface between both fluids.

To summarize, the numerical parameters taken for all the simulations about the com-

pression of a non-condensable gas bubble in water are shown in Table 5.3.
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(a) History of the bubble volume using two amount of
SPH particles in the bubble radius (20 and 40) and two
reconstruction schemes (Godunov and MUSCL)
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(b) History of the bubble volume using the MUSCL
method, two amount of SPH particles in the bubble ra-
dius (20 and 40) and allowing the kernel variation

Figure 5.1: History of the bubble volume for free-field collapse (p
w

/p
b

= 100)

Table 5.3: Numerical parameters for simulations of a non-condensable gas bubble in
water

Reconstruction scheme MUSCL
Limitor minmod

SPH particles in the bubble radius 40
Parameter for particle distribution correction � 100

Kernel size is constant throughout the whole simulation.

5.2 Compression of a non-condensable gas bubble in free

field

The compression of a non-condensable gas bubble in free field corresponds to the collapse

driven by the ratio between the water pressure and the one inside the bubble. This

problem is the classical example of the bubble collapse and occurs in most cavitation

situations [40].

The known Rayleigh collapse (already presented in Chapter 2) makes reference to the

symmetric collapse of an empty cavity in an infinite-incompressible-irrotational field [40].

Because of its resemblances with the bubble collapse in free field, a comparison of our

numerical results is made with respect to the analytic solution of the Rayleigh collapse.
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5.2.1 Simulation description about the non-condensable gas bubble

compression in free field

The set-up problem consists in a square where the two-dimensional bubble of initial

radius R0 is located at the center. The square side is 40 times the bubble radius R0,

in order to guarantee that the possible wave reflections on domain boundaries do not

influence the region of interest (close to the bubble) throughout the whole time period

covered by the simulations. In addition, boundary conditions are set periodic.

Figure 5.2 shows the scheme of the computational domain, noting that it is not at scale.

Bubble
pbPeriodic Periodic

Water
pw

R0

Periodic

Periodic
Figure 5.2: Scheme of the computation domain for free-field simulations. Not at scale

The collapse is driven by the pressure ratio between the liquid (pw) and the non-

condensable gas (pb). For this section, two cases linked to two pressure ratios are

considered, i.e. pw/pb = 100, which is a pressure ratio usually taken in the literature

([45], [43]) and pw/pb = 353, which corresponds to lithotripsy conditions [39] and it is

chosen for comparison purpose.

5.2.2 Rayleigh collapse comparison

Since the numerical simulations are set-up in two dimensions, the comparison against

theanalytical solution of the 2D Rayleigh-Plesset equation (Eq. 2.17), considering that

the bubble is filled only with non-condensable gas and ignoring viscous and surface

tension e↵ects, is done.



Chapter 5. Simulation of the bubble collapse 113

It is reminded that R1 is the distance at which the velocity in the fluid has dropped to zero.

In the following numerical simulations, R1 is identified with the computational domain

boundaries. The bubble is located in the center and the limits of the computational

domain are situated at 20 times its radius, so R1 = 20R0.

Special attention is taken in terms of initial conditions in order to correctly compare

the Rayleigh problem and the one simulated. In the simulations, at the beginning, both

fluids are at rest and the movement is caused by the pressure di↵erence between the

gas and liquid, leading to a Riemann problem at the interface. Hence, for the numerical

results, the initial velocity corresponds to the velocity of the Riemann problem at the

interface liquid-gas, i.e. u⇤, which is calculated from the Eq. (4.58). Following this idea,

the 2D Rayleigh equation is integrated using u⇤ as the initial velocity, and R0 as the

initial bubble radius.

Figure 5.3 shows the behavior of the bubble radius R and the interface velocity Ṙ (i.e. the

derivative of the bubble radius) as a function of time. The radius is non-dimensionalized

with respect to R0 and the time with respect to tc, which is the analytic Rayleigh collapse

time obtained after solving Eq. (2.17). The bubble radius is calculated from the bubble

volume, which has been determined by summing the volume in each gas particle. In

terms of physical assumptions, the liquid compressibility is taken into account for the

numerical solution. In contrary, it is not considered in the Rayleigh model (Eq. 2.17).

Figure 5.3 shows good agreement between the analytic and numerical results. The

di↵erence in the last stages may be attributed to the liquid compressibility assumptions.

It is known from Fuster [27] that the liquid compressibility causes a delay in the bubble

collapse, particularly for collapses of high intensity (e.g. p
w

p
b

= 100), like the one simulated.

Similarly as Fuster et al., we found a di↵erence of 5% between the collapse time estimated

by the Rayleigh-Plesset model and the one calculated by our compressible model.

In conclusion, we can say that the compressible SPH-ALE method predicts satisfactorily

the bubble collapse of high intensity.

5.2.3 Evolution of the non-condensable gas bubble compression

The behavior of the free-field collapse is represented qualitatively in Fig. 5.4. The

phenomenon is started by a pressure di↵erence between the liquid and the non-condensable

gas, where the liquid pressure is higher than the one of gas. This pressure di↵erence
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Figure 5.3: Comparison between numerical and analytic results of the Rayleigh collapse
in free-field (p

w

/p
b

= 100). (a) Non-dimensional radius vs. non-dimensional time. t
c

is
the analytic Rayleigh collapse time determined from the 2D Rayleigh-Plesset equation

(Eq. 2.17)

leads to a Riemann problem across the interface. A shock wave converges in the bubble

and an expansion wave travels inside the liquid. This Riemann problem is found during

the first instants of the non-condensable gas bubble compression, the velocity of the

liquid-gas interface increases and the liquid pressure near the non-condensable gas bubble

decreases. Then over the final stages of compression, another phenomenon is observed.

As the bubble radius decreases, the liquid pressure close to the interface increases. This

pressure behavior can be explained as the result of the conservation of the liquid volume

that tends to concentrate liquid motion into a smaller region. Continuously, the bubble

volume decreases until collapse.

The temperature field along with the interface contour are presented in Fig. 5.5. As

explained in Section 4.9.2, it is observed a discontinuity in the temperature through

the liquid-gas interface during the whole compression phenomenon, which is due to the

di↵erence in fluid properties, i.e. both fluids have di↵erent densities and di↵erent specific

heats. It is observed that water temperature does not significantly vary during the bubble

compression. However the non-condensable gas temperature notably increases in the last

stages of compression due to the high pressure levels that the bubble attains.

In the last stages of compression the bubble shape does not remain circular. This

could be the consequence of numerical or physical instabilities. In terms of the physical

instabilities for this type of problems, it is found the Taylor instabilities, which are

short-wave instabilities of the Hadamard type [41]. They are found particularly when
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(a) Interface, t/(R0/cw) = 16 (b) Pressure (Pa), t/(R0/cw) = 16 (c) Velocity (m/s), t/(R0/cw) = 16

(d) Interface, t/(R0/cw) = 20 (e) Pressure (Pa), t/(R0/cw) = 20 (f) Velocity (m/s), t/(R0/cw) = 20

(g) Interface, t/(R0/cw) = 24 (h) Pressure (Pa), t/(R0/cw) = 24 (i) Velocity (m/s), t/(R0/cw) = 24

(j) Interface, t/(R0/cw) = 26 (k) Pressure (Pa), t/(R0/cw) = 26 (l) Velocity (m/s), t/(R0/cw) = 26

(m) Interface, t/(R0/cw) = 26.8 (n) Pressure (Pa), t/(R0/cw) = 26.8 (o) Velocity (m/s), t/(R0/cw) = 26.8

Figure 5.4: Evolution of free field collapse (p
w

/p
b

= 100). At times: (a),(b) and (c)
t/(R0/cw) = 16; (d),(e) and (f) t/(R0/cw) = 20; (g),(h) and (i) t/(R0/cw) = 24; (j), (k)
and (l) t/(R0/cw) = 26; (m), (n) and (o) t/(R0/cw) = 26.8. Left: interface contour (red:

gas, blue: liquid), center: pressure, right: velocity
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(a) Interface, t/(R0/cw) = 16 (b) Temperature (K), t/(R0/cw) = 16

(c) Interface, t/(R0/cw) = 20 (d) Temperature (K), t/(R0/cw) = 20

(e) Interface, t/(R0/cw) = 24 (f) Temperature (K), t/(R0/cw) = 24

(g) Interface, t/(R0/cw) = 26 (h) Temperature (K), t/(R0/cw) = 26

(i) Interface, t/(R0/cw) = 26.8 (j) Temperature (K), t/(R0/cw) = 26.8

Figure 5.5: Evolution of free field collapse (p
w

/p
b

= 100). At times: (a),(b) and (c)
t/(R0/cw) = 16; (d),(e) and (f) t/(R0/cw) = 20; (g),(h) and (i) t/(R0/cw) = 24; (j), (k)
and (l) t/(R0/cw) = 26; (m), (n) and (o) t/(R0/cw) = 26.8. Left: interface contour (red:

gas, blue: liquid), right: temperature
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collapsing bubbles reach the minimum radius [40], [41]. On the other hand, numerical

instabilities can be present when di↵usive e↵ects like surface tension are neglected [41].

Since we do not considered the surface tension e↵ects and the liquid SPH particles located

on the interface are relatively large for the bubble size found in the last stages of collapse,

we can assume that our numerical results present numerical instabilities at this stage.

They are observed only in the case of free-field collapse, because it is in this case where

the bubble achieves such a small size. Using an adaptive refining method for SPH-ALE,

where the refining is done around the liquid-gas interface, could solve this issue. Actually,

smaller SPH particles can help improving the simulations because they allow going down

to smaller limit bubble sizes (see Section 5.1.2).

For this case of pw/pb = 100, the relation between both dimensionless times (i.e. tc and

R0/cw) is given by t
c

(R0/cw) = 27.1.

Fig. 5.6 represents the evolution of geometrical features of the collapsing bubble. It

shows the history of the bubble volume V/V0, the bubble circularity and the displacement

of the bubble centroid XC with respect to its initial position X0. The centroid (XC) is

calculated as the arithmetic mean (i.e. average) position of all SPH particles located at

the interface liquid-gas.

A quantitative measure of the bubble circularity is given by the ratio of the radius

calculated from the volume V and the average radius calculated from the position of

each particle located on the interface, i.e.

circularity =
radius calculated from volume

2⇥ (average radius)
. (5.1)

A value of 0.5 corresponds to a bubble whose interface is not deformed, while a value of

zero indicates that the bubble interface is highly deformed.

In agreement with a symmetric phenomenon, the bubble displacement is null and the

liquid-gas interface during the collapse remains circular. It is important to mention that

the simulations are done without imposing the symmetry condition. This shows that

the numerical method represents well the symmetric feature of the phenomenon without

additional conditions, and so this highlights its robustness.
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Figure 5.6: Rayleigh collapse in free-field (p
w

/p
b

= 100). History of the normalized
volume V/V0 (blue solid line), circularity (red dashed-dotted line) and displacement

(X
C

�X0)/R0 (magenta dashed line).

5.2.4 Pressure field

Fig. 5.7 shows the pressure as a function of the radial coordinate at di↵erent times.

For verification purpose, three di↵erent radial lines were taken, these lines can be seen

as horizontal, vertical and oblique. The data extracted from these three lines are the

same, which is congruent with the symmetry feature of this phenomenon. Fig. 5.7 shows

then the pressure values extracted from the radial line placed horizontally. Each curve

shows the pressure evolution inside the bubble and in the liquid phase along a radial

coordinate. Then, each curve is linked to a specific time during the simulation, i.e. each

curve represents the pressure distribution along a radial coordinate for a given instant,

and thus for a given bubble radius.

The pressure profile is uniform when r/R0 is close to zero. This part corresponds to the

pressure inside the bubble. Then, the pressure profile changes abruptly, increasing its

value. This part corresponds to the pressure in the liquid phase. It is observed that the

bubble pressure also increases with time due to the compression.

As explained before, during the final stages of bubble compression, the velocity and

pressure at the interface increase because of the concentration of liquid motion into a

small region. As a consequence the liquid pressure near the bubble rises and eventually

becomes higher than the pressure far away from the bubble. This high pressure behavior

has been also presented when analyzing the analytic model in 2D and 3D configurations,

see Section 2.1.2.2.
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Figure 5.7: Pressure profile along a radial coordinate at di↵erent times, for free field
collapse (p

w

/p
b

= 100). At times: blue t/(R0/cw) = 15; red t/(R0/cw) = 18.75; yellow
t/(R0/cw) = 22.5; violet t/(R0/cw) = 24.75; green t/(R0/cw) = 26.25. (a) scheme and
representation of the radial coordinate; (b) pressure as a function of radial coordinate

5.2.5 Pressure and velocity at the interface

Figures 5.8 and 5.9 show the evolution of the velocity and the pressure at the interface in

order to better understand the local details during the compression. These two quantities

(i.e. velocity and pressure) are calculated as the average among the SPH particles, that

model the liquid, located at the interface. The standard deviation is also presented in

the figures as a shaded envelop around the main curve, showing that the data points

tend to be close to the mean value and so, the dispersion of the numerical results is low.

In general, the interface moves towards the bubble center. The velocity interface increases

with time, presenting acceleration in the final instants of the bubble compression (e.g.

after t/(R0/cw) ⇡ 20 and after t/(R0/cw) ⇡ 10 for pw/pb = 100 and pw/pb = 353,

respectively). Later, the velocity presents a maximum value. After this velocity peak,

the interface decelerates and the bubble undergoes the collapse.

Respecting the continuity of pressure at the interface, it is first observed the wave

expansion e↵ects, so the pressure value goes down. Then, the inter-facial pressure slowly

increases until it reaches a value higher than the pressure far away from the bubble

(e.g. at t/(R0/cw) ⇡ 26 and at t/(R0/cw) ⇡ 12.5 for pw/pb = 100 and pw/pb = 353,

respectively). Finally, the pressure at the interface greatly increases until the bubble

collapses. It is noted that the liquid concentration into a region creates an increase of

pressure. If we consider the divergence of the transport velocity of liquid particles, it
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is negative, so their volume decreases, and because the mass remains constant, their

pressure increases.
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Figure 5.8: Rayleigh collapse in free-field (p
w

/p
b

= 100). History of the velocity and
pressure at the interface. (a) velocity at the interface, (b) pressure at the interface. The

standard deviation is shown by the shaded area
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Figure 5.9: Rayleigh collapse in free-field (p
w

/p
b

= 353). History of the velocity and
pressure at the interface. (a) velocity at the interface, (b) pressure at the interface. The

standard deviation is shown by the shaded area

Regarding the collapse time, it depends on the pressure ratio driving the collapse [3]

and it is observed that the phenomenon is faster for the case of larger pressure ratio.

Additionally, it can be observed in Fig. 5.10 that the collapse time estimated in the

numerical simulations and the analytic Rayleigh-Plesset collapse time are in agreement.

It is to notice that the analytic equation (Eq. 2.17) is solved considering that there

is only non-condensable gas inside the bubble and neglecting the surface tension and
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viscous e↵ects. The di↵erence between simulated and analytic results is attributed to the

physical considerations followed in our simulation that are not present in the analytic

model, i.e. liquid compressibility, as already explained in Section 5.2.2.
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Figure 5.10: Collapse time for free field collapse. Squares: analytic solution from the
2D Rayleigh equation, Circles: SPH-ALE numerical results

5.2.6 Comparison against numerical results

With the idea of comparing our results and estimating a link between 2D and 3D solutions,

a comparison against the axisymmetric numerical results of Johnsen and Colonius (2009)

[40] is presented. These authors use a mesh method with a high order interface-capturing

WENO scheme. Both numerical simulations present the same pressure ratio, pw/pb = 353.

Fig. 5.11 shows that the overall behavior of the bubble volume evolution is similar in

both cases. The bubble remains symmetric and it does not move with respect to its

initial centroid position. So, from a qualitative point of view, the 2D simulations allow us

to capture and to understand correctly the bubble dynamics. However, they overestimate

the bubble collapse time. For the same pressure ratio, this e↵ect was addressed through

the simplified model presented in Section 2.1.2.2. The collapse time is shorter when

considering three-dimensional e↵ects, which is reasonable. Therefore, the bubble collapse

will occur faster than in the 2D simulations.
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Figure 5.11: Rayleigh collapse in free-field (p
w

/p
b

= 353). (a) SPH-ALE Numerical
results in 2D, history of the normalized volume V/V0 (blue solid line), circularity
(red dashed-dotted line) and displacement (X

C

�X0)/R0 (magenta dashed line). (b)
Axisymmetric numerical results from [40], history of the normalized volume V/V0 (solid
line), circularity (dashed-dotted line) and displacement (X

C

�X0)/R0 (dashed line)
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5.3 Compression of a non-condensable gas bubble near a

rigid surface

The non-spherical collapse of a non-condensable gas bubble near a wall is simulated in

order to study the micro jet formation, the emission of pressure waves and eventually

the loading on the nearby surface. In this section, the e↵ects of the major parameters

governing the bubble collapse dynamics are presented, analyzing the e↵ect of the initial

distance between the bubble center and the wall (H0), the bubble size (R0), and the

pressure ratio (pw/pb) driving the collapse.

5.3.1 Simulation description

For the collapse near a wall, the domain is rectangular whose largest side measures 50

times the bubble radius, the bottom side represents the rigid wall and the bubble is

initially circular and situated close to it at a distance H0, which is the initial distance

between the bubble center and the wall. The upper side is located at 20 times the bubble

radius in order to guarantee as before, that the numerical results are not influenced by

the eventually reflection of waves against the boundaries. The wall is assumed rigid, so

all waves are reflected there. The geometric configuration (not at scale) is shown in Fig.

5.12.

Bubble
pb

Periodic Periodic

Water
pw

R0

Wall

Wall
H0

Figure 5.12: Scheme of the computation domain for bubble collapse near a wall case.
Not at scale

The numerical simulations are conducted using the physical parameters and the assump-

tions already explained in Section 5.1. In short, the bubble is modeled as ideal gas and
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the liquid as water, the physical parameters for the equation of state are shown in Table

5.1.

The initial stando↵ distance between the bubble center and the wall is non-dimensionalized

with respect to the bubble radius (H0/R0), and it is part of the dimensionless variables

of the problem, which are the same as before (see Section 5.1).

The dependence of the results to the pressure ratio that controls the collapse is investigated

by considering two pressure ratios: pw/pb = 34 and pw/pb = 353. The pressure ratio

of pw/pb = 34 corresponds to the cavitation conditions (patm/pv ⇡ 34, where pv is the

saturation pressure for water at T = 25 �C) and the pressure ratio of pw/pb = 353

corresponds to lithotripsy conditions [39]. The latter is done in order to compare

the results from this new configuration with the results obtained in free field. In

addition, the e↵ect of the initial stando↵ distance is considered by varying it in the range

1.1  H0/R0  5, keeping R0 constant.

5.3.2 Evolution of the non-condensable gas bubble compression near

a wall

The compression of a non-condensable gas bubble near the wall starts by suddenly

subjecting the bubble to a high ambient pressure. This produces a rarefaction wave that

expands in the liquid. Fig. 5.13 shows a qualitative description of events; the pressure

and velocity are shown, along with a representation of the interface. It illustrates the

propagation of an expansion wave travelling in the liquid. The rarefaction wave reflects

from the rigid wall, and then it goes towards the bubble interacting with the bubble

in a complex way as the number of reflections increases. Afterwards, as the bubble

is compressed due to the pressure di↵erence, its farther side with respect to the wall

flattens, thus leading to a displacement of its centroid towards the rigid surface. As the

compression continues, the farther side involutes to form a micro jet. In Fig. 5.13(i) the

micro jet is observed and in Fig. 5.13(l) it is completely developed. Later, when the

collapse is imminent, the bubble shape is highly non-cylindrical. The numerical results

presented are in agreement with previous works [40], [45], [43].

In Figures 5.13(j), 5.13(k) and 5.13(l) is observed the moment when the micro jet impacts

the bubble side the closest to the wall. The high velocity present at this moment can be

translated into a water-hammer pressure.
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(a) Interface, t/(R0/cw) = 2.9 (b) Pressure (Pa), t/(R0/cw) = 2.9 (c) Velocity (m/s), t/(R0/cw) = 2.9

(d) Interface, t/(R0/cw) = 13.9 (e) Pressure (Pa), t/(R0/cw) = 13.9 (f) Velocity (m/s), t/(R0/cw) = 13.9

(g) Interface, t/(R0/cw) = 15.3 (h) Pressure (Pa), t/(R0/cw) = 15.3 (i) Velocity (m/s), t/(R0/cw) = 15.3

(j) Interface, t/(R0/cw) = 16.8 (k) Pressure (Pa), t/(R0/cw) = 16.8 (l) Velocity (m/s), t/(R0/cw) = 16.8

Figure 5.13: Evolution of collapse near a wall (p
w

/p
b

= 353 and H0/R0 = 1.25). At
times: (a),(b) and (c) t/(R0/cw) = 2.9; (d),(e) and (f) t/(R0/cw) = 13.9; (g),(h) and
(i) t/(R0/cw) = 15.3 (j),(k) and (l) t/(R0/cw) = 16.8. Left: interface contour (red: gas,

blue: liquid), center: pressure, right: velocity
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Then, Fig. 5.14 shows three close instants after the bubble is impacted by the micro

jet in order to analyze what happens afterwards. Fig. 5.14(b) shows the moment when

the pressure wave emitted due to the impact of the micro jet hits the wall. Fig. 5.14(e)

presents the pressure wave traveling and impacting the wall. We also observed a high

pressure at the bubble-liquid interface, which corresponds to the collapse of the bubble

by itself. This generates a second pressure wave. Afterwards, this second pressure wave

hits the wall (Fig. 5.14(h)). Hence, two pressure waves are observed, one produced by

the micro jet and a second one generated by the bubble collapse.

(a) Interface, t/(R0/cw) = 17.2 (b) Pressure (Pa), t/(R0/cw) = 17.2 (c) Velocity (m/s), t/(R0/cw) = 17.2

(d) Interface, t/(R0/cw) = 17.4 (e) Pressure (Pa), t/(R0/cw) = 17.4 (f) Velocity (m/s), t/(R0/cw) = 17.4

(g) Interface, t/(R0/cw) = 17.7 (h) Pressure (Pa), t/(R0/cw) = 17.7 (i) Velocity (m/s), t/(R0/cw) = 17.7

Figure 5.14: Evolution of collapse near a wall after the bubble collapse (p
w

/p
b

= 353
and H0/R0 = 1.25). At times: (a),(b) and (c) t/(R0/cw) = 17.2; (d),(e) and (f)
t/(R0/cw) = 17.4; (g),(h) and (i) t/(R0/cw) = 17.7. Left: interface contour (red: gas,

blue: liquid), center: pressure, right: velocity

The temperature field and the interface contours are represented in figures 5.15 and 5.16.

Similarly as the bubble compression in free field, the water temperature does not vary

significantly. On the contrary, the non-condensable gas temperature greatly increases
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during the last stages of the bubble compression. The non-condensable gas temperature

slightly increases during the first instants of compression (Fig. 5.15(b), 5.15(d) and

5.15(f)). Later, when the water jet is developed and hits the bottom side of the bubble,

the non-condensable gas temperature greatly increases there (see Fig. 5.15(h)). As the

bubble compression continues, the high temperature is distributed throughout the whole

bubble as a consequence of the high pressure levels attained by the non-condensable gas

as the bubble collapses (Fig. 5.16(d)).

For the case involving a pressure ratio of 353, we show an overview of the phenomenon

for all the stando↵ distances, i.e. H0/R0. Fig. 5.17 shows the evolution of the normalized

bubble volume, the bubble circularity and the displacement of its centroid. As a reminder,

the quantitative measure of circularity indicates the interface deformity. A value of 0.5

indicates that the bubble interface is circular, while a value of 0 implies that the interface

has deformed. Particular times of the phenomenon are also shown. In black vertical lines

are shown the times related to the fluid flow and in red vertical lines are presented the

times related to the solid reaction. From the bubble dynamics we highlight the time

when the jet impacts the bubble (left most black vertical line) and the time when the

bubble collapses (right most black vertical line). From the solid side, we show the time

when the solid wall is impacted by the first pressure wave (left most red vertical line) and

the time when the wall is hit by the second pressure wave (right most red vertical line).

In order to relate specific images to these instants, we take the H0/R0 = 1.25 case, which

was already presented in figures 5.13 and 5.14. It is observed in Fig. 5.17(b) the four

instants of interest. The left most black line corresponds to the moment when the jet

impacts the bubble at t/(R0/cw) = 16.8, which correspond to figures 5.13(j), 5.13(k) and

5.13(l). The second vertical line (i.e. left most red vertical line) in Fig. 5.17(b) is linked

to the moment when the solid is impacted by the pressure wave at t/(R0/cw) = 17.2;

this event is observed in figures 5.14(a), 5.14(b) and 5.14(c). The third vertical line

corresponds to the moment when the bubble collapses at t/(R0/cw) = 17.4; it is shown

in figures 5.14(d), 5.14(e) and 5.14(f). Finally, the moment when the wall is hit by the

second pressure wave is shown by the right most red line and in figures 5.14(g), 5.14(h)

and 5.14(i).

It is observed for all the values of H0/R0 that the bubble remains circular during a

certain time; then at a particular moment its shape starts to deform until to achieve

its maximal non-circular shape at collapse. As seen in previous works ([40], [107], [39])
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(a) Interface, t/(R0/cw) = 2.9 (b) Temperature (K) , t/(R0/cw) = 2.9

(c) interface, t/(R0/cw) = 13.9 (d) Temperature (K), t/(R0/cw) =
13.9

(e) interface, t/(R0/cw) = 15.3 (f) Temperature (K), t/(R0/cw) = 15.3

(g) interface, t/(R0/cw) = 16.8 (h) Temperature (K), t/(R0/cw) =
16.8

Figure 5.15: Evolution of collapse near a wall (p
w

/p
b

= 353 and H0/R0 = 1.25). At
times: (a),(b) and (c) t/(R0/cw) = 2.9; (d),(e) and (f) t/(R0/cw) = 13.9; (g),(h) and
(i) t/(R0/cw) = 15.3 (j),(k) and (l) t/(R0/cw) = 16.8. Left: interface contour (red: gas,

blue: liquid), right: temperature
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(a) Interface, t/(R0/cw) = 17.2 (b) Temperature (K), t/(R0/cw) =
17.2

(c) Interface, t/(R0/cw) = 17.4 (d) Temperature (K), t/(R0/cw) =
17.4

(e) Interface, t/(R0/cw) = 17.7 (f) Temperature (K), t/(R0/cw) = 17.7

Figure 5.16: Evolution of collapse near a wall after the bubble collapse (p
w

/p
b

= 353
and H0/R0 = 1.25). At times: (a),(b) and (c) t/(R0/cw) = 17.2; (d),(e) and (f)
t/(R0/cw) = 17.4; (g),(h) and (i) t/(R0/cw) = 17.7. Left: interface contour (red: gas,

blue: liquid), right: temperature

the bubble migrates towards the wall (XC � X0 < 0). Evidently, the bubble volume

decreases during the compression until to achieve the minimum volume at collapse.

Two bubble dynamics are observed. For the stando↵ distances between 1.1  H0/R0 

1.85, the bubble dynamics presents two events generating high pressure peaks, firstly the

moment when the jet impacts the bubble and secondly the moment when the bubble

collapses. These two events produce two pressure peaks on the solid wall (i.e. two

red vertical lines in Fig. 5.17). On the other hand, for cases of H0/R0 � 2, only one

high-pressure-peak event is registered, producing only one pressure peak on the solid

surface. This phenomenon could be explained considering the stando↵ distance. As the

stando↵ distance increases, the di↵erence between the bubble collapse time and the time
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Figure 5.17: History of the normalized volume V/V0 (blue solid line), circularity (green
dashed line) and displacement (X

C

�X0)/R0 (violet dashed-dotted line) of collapse
near a wall for p

w

/p
b

= 353. Jet impact time (first black vertical line), bubble collapse
time (second black vertical line), pressure peaks on the wall (two red vertical lines)

when the micro jet hits the bubble is shorter (see the shift between the two black vertical

lines in Fig. 5.17). Hence, both wave emissions are getting closer until the moment when

both waves are emitted at the same time. Thus, only one pressure wave impacts the

wall. For the particular case of H0/R0 = 5, a micro jet is not even clearly observed,

what indicates that the influence of the wall in the collapse is not so important anymore,

so the bubble collapses by itself and it does not experiences the micro jet phenomenon.
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The di↵erence between the time of the bubble collapse and the one of the jet impact

is presented in Fig 5.18 in order to support this explanation. The case H0/R0 = 5 is

excluded from this figure because the micro jet is not clearly observed.
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Figure 5.18: Di↵erence between the jet impacting time and the collapse time for case
of p

w

/p
b

= 353 and 1.1  H0/R0  3
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Figure 5.19: History of the normalized volume V/V0 (blue solid line), circularity (green
dashed line) and displacement (X

C

�X0)/R0 (violet dashed-dotted line) of collapse
near a wall (H0/R0 = 1.25). (a) p

w

/p
b

= 34, (b) p
w

/p
b

= 353

Additionally, the influence of the pressure ratio driving the collapse is analyzed. It is

considered pw/pb = 34 and pw/pb = 353. Fig. 5.19 shows the evolution of the bubble

volume, circularity and centroid displacement, as well as the four particular times (i.e.

jet impact time, bubble collapse time, first and second solid impact times) for each case.

It is observed that the general behavior is alike. However, the two-peaks episode is
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not observed for the smaller pressure ratio (i.e. pw/pb = 34), for which only one high-

pressure-peak event is observed, and consequently, only one pressure peak is recorded on

the wall.

In addition, from figures 5.17 and 5.19, it is concluded that the bubble displacement

towards the wall depends mainly on the stando↵ distance and not on the pressure ratio

driving the collapse.

(a) interface, t/(R0/cw) = 70.5 (b) Pressure (Pa), t/(R0/cw) = 70.5 (c) Velocity (m/s), t/(R0/cw) = 70.5

(d) interface, t/(R0/cw) = 73 (e) Pressure (Pa), t/(R0/cw) = 73 (f) Velocity (m/s), t/(R0/cw) = 73

(g) interface, t/(R0/cw) = 73.2 (h) Pressure (Pa), t/(R0/cw) = 73.2 (i) Velocity (m/s), t/(R0/cw) = 73.2

Figure 5.20: Evolution of collapse near a wall after the bubble collapse (p
w

/p
b

= 34
and H0/R0 = 1.25). At times: (a),(b) and (c) t/(R0/cw) = 70.5; (d),(e) and (f)
t/(R0/cw) = 73; (g),(h) and (i) t/(R0/cw) = 73.2. Left: interface contours (red: gas,

blue: liquid), center: pressure, right: velocity

This one-pressure-peak episode is discussed following the sequence of the bubble com-

pression for pw/pb = 34, shown in Fig. 5.20. The bubble shape becomes elongated as it

is compressed, similarly to the case of higher-pressure ratio (i.e. pw/pb = 353). However,

a di↵erence in shape with respect to the case of pw/pb = 353 is observed when the micro

jet is developed. The ”U” shape that the bubble adopts due to the micro jet development
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is less pronounced. This might be the consequence of a slower micro jet, i.e. the jet

velocity is smaller than the jet velocity in the case of pw/pb = 353. Therefore, the bubble

collapses by itself before the micro jet hits its bottom side. This moment happens at

t/(R0/cw) = 73 and it is observed in figures 5.20(d), 5.20(e) and 5.20(f). Later, the

pressure wave impacts the wall at t/(R0/cw) = 73.2 as shown in figures 5.20(g), 5.20(h)

and 5.20(i). This result suggests that the intensity of the micro jet depends also on the

pressure ratio that drives the collapse and not only on the stando↵ distance with respect

to the wall.

(a) interface, t/(R0/cw) = 70.5 (b) Temperature (K), t/(R0/cw) =
70.5

(c) interface, t/(R0/cw) = 73 (d) Temperature (K), t/(R0/cw) = 73

(e) interface, t/(R0/cw) = 73.2 (f) Temperature (K), t/(R0/cw) = 73.2

Figure 5.21: Evolution of collapse near a wall after the bubble collapse (p
w

/p
b

= 34
and H0/R0 = 1.25). At times: (a),(b) and (c) t/(R0/cw) = 70.5; (d),(e) and (f)
t/(R0/cw) = 73; (g),(h) and (i) t/(R0/cw) = 73.2. Left: interface contour (red: gas,

blue: liquid), right: temperature

The temperature field and the interface contours are represented in Fig. 5.21. Similarly as

the case of higher pressure ratio, the non-condensable gas temperature greatly increases

during the last stages of the bubble compression. When the water jet is developed and
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goes through the bubble, the non-condensable gas temperature greatly increases due

to the high pressure levels attained. It is important to mention that the temperature

levels attained are lower than the ones attained in the case where the pressure ratio

is larger (pw/pb = 353). This is another consequence of a lower initial pressure ratio

and so, a slower micro jet. Therefore, for this case of pw/pb = 34, the pressure levels

attained by the non-condensable gas produce a lower increment of the non-condensable

gas temperature with respect the previous case (i.e. pw/pb = 353).

5.3.3 Bubble properties at collapse

Fig. 5.22(a) shows the displacement of the bubble’s centroid at the moment when the

micro jet impacts the lower side of the bubble, for di↵erent stando↵ distances. It shows

that the bubble displacement depends on the wall position (i.e. H0/R0). This e↵ect of

attraction created by the wall is explained analyzing the flow locally. The wall creates a

restriction of the fluid flow in the region between the bubble and the wall. It generates

a higher pressure on the top of the bubble with respect to its bottom side, and so a

pressure gradient is directed towards the wall. This pressure gradient pushes the bubble

towards the wall generating its displacement. When the wall is farther from the bubble,

the wall e↵ect is less noticeable.
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(a) Displacement of the bubble when the micro jet im-
pacts its lower side as a function of the stando↵ distance
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(b) Times of interest during the bubble collapse as a
function of the stando↵ distance. Blue circle: time when
the re-entrant jet impacts the bubble bottom side. Red
square: time when the bubble collapses

Figure 5.22: Collapse features as a function of the stando↵ distance H0/R0 for
p
w

/p
b

= 353. (a) Displacement of the bubble at collapse and (b) times of interest during
the bubble collapse, dotted line represents the collapse time for free-field configuration
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Regarding the collapse time, Fig. 5.22(b) shows the dimensionless times corresponding

to the impact of the micro jet on the bubble and to the bubble collapse by itself as a

function of the stando↵ distance. Also, the collapse time for the bubble in free-field is

presented in dotted line as a reference. It is observed that these times decrease if H0/R0

increases, showing an asymptotical tendency towards the collapse time of the free-field

configuration. This result can be explained by describing the bubble collapse. When

the compression starts, the bubble shape becomes elongated in the direction normal to

the wall (see Fig. 5.13(d)). The compression of the lower part of the bubble is a↵ected

by the presence of the wall, because it retards the flow filling the space between the

lower part of the bubble and the wall. So, the overall collapse is slower. In addition, the

wall reflects back the expansion waves released by the initial Riemann problem. This

reflection reduces locally the pressure in the liquid, increasing thus the collapse time.

In conclusion, the closer the bubble is to the wall, the longer is its collapse time. This

behavior has been observed in experimental and numerical works ([111], [107], [46], [40],

[45]).

With respect to the pressure ratio driving the collapse, it is noted that as the bubble is

subjected to a higher pressure in the surrounding, its collapse arrives sooner, as expected.

For example, the collapse time is reported at t/(R0/cw) = 73 for the case of pw/pb = 34,

and at t/(R0/cw) = 17.4 for the case pw/pb = 353.

5.3.4 Jet velocity and water-hammer pressure

During the bubble compression, a micro jet is generated. When the jet impacts the

lower part of the bubble, which moves at some velocity, vd, a water-hammer pressure is

generated. The value of jet velocity, vj , and vd are important because they determine

the water-hammer pressure, which is an indicator of potential loading of the surface.

First, we start the analysis by explaining the jet formation. As observed previously, the

solid boundary retards the fluid flow towards the space between the bubble and the wall.

This produces a di↵erence in the liquid pressure above and below the bubble, causing an

acceleration of the upper bubble-liquid interface with respect to the lower one, and thus,

a displacement of the bubble centroid towards the wall. This pressure gradient normal

to the wall increases with time, creating a gain in the velocity of the bubble’s centroid.

Thus, the velocity of the upper bubble-liquid interface becomes much more important

than the one of the lower part, and it generates the liquid jet pointing to the wall.
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(a) Jet velocity as a function of H0/R0 for p
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The standard deviation is shown by the shaded area.

34 353
-600

-500

-400

-300

-200

-100

0

(b) Jet velocity as a function of p
w

/p
b

for H0/R0 = 1.25

Figure 5.23: Jet velocity as a function of the stando↵ distance H0/R0 for p
w

/p
b

= 353
and as a function of the pressure ratio driven the collapse p

w

/p
b

for H0/R0 = 1.25.

Fig. 5.23(a) shows the jet velocity as a function of H0/R0 for a pressure ratio driving the

collapse of 353. The jet velocity is calculated as the average of the vertical component of

the velocity of all the SPH particles located along the axis of symmetry at each instant

considered. There are taken in consideration for the average calculation four instants

around the moment when the micro jet impacts the bottom side of the bubble. It is

observed that the standard deviation is larger for the cases (H0/R0 = 1.55, 1.7, 1.85, 2)

where the four numerical instants considered for the average are saved more distantly

relative to one another.

For decreasing values of H0/R0, the jet velocity increases until it attains values around

520 m/s for pw/pb = 353. An increase of jet velocity with decreasing stando↵ distance was

also reported in the numerical studies by Johnsen and Colonius [40]. When comparing

our 2D results against 3D simulations, it is found that our results, for this pressure ratio

(pw/pb = 353), underestimate the jet velocity. Chahine [45] reports values of 800 m/s for

pw/pb = 353 in 3D.

Fig. 5.23(b) shows the influence of the pressure ratio driving the collapse on the jet

velocity. It is observed that as the pressure ratio increases, the jet velocity also increases.

This behavior has also been presented in experimental and numerical works ([40], [43],

[45]). For the case of pressure ratio of 34 (cavitation conditions), we have found values

of 90 m/s. As expected, our results understimate the jet velocity. For example, Vogel et

al. [107] reported values up to 130 m/s for H0/R0 = 1 in cavitation conditions.
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In free-field collapse there is no jetting. As expected, the velocities of the lower and

upper part of the bubble increase with the initial pressure ratio symmetrically. So, the

jet is created by the non-symmetry caused by the wall.

For our case, the water-hammer pressure is generated when the liquid at high velocity

(vj) impacts the lower part of the bubble, which moves at a certain velocity vd. Therefore,

the water hammer pressure is calculated following the expression [39]:

pwh = ⇢wcw
|vj � vd|

2
. (5.2)

The jet may hit the wall afterwards but its velocity is reduced by the impact with the

bubble interface. Fig. 5.24 shows the water hammer-pressure computed by Eq. 5.2 (using

the average of vj and vd) as a function of the stando↵ distance and as a function of the

pressure ratio. Fig. 5.24(a) shows that the highest values of the water hammer pressure

are achieved for small values of H0/R0, because the velocity di↵erence is the largest.

These observations suggest that the bubbles that cause an important damage would be

the bubbles the nearest to the wall. For example, if we consider a bubble attached to the

wall (H0/R0 = 1), in this case the jet would hit the wall directly.
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(a) Water hammer pressure as a function of the stand-
o↵ distance H0/R0 for p
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= 353.

34 353
0

50

100

150

200

250

(b) Water hammer pressure as a function of p
w

/p
b

for
H0/R0 = 1.25.

Figure 5.24: Water hammer pressure as a function of the stando↵ distance H0/R0 for
p
w

/p
b

= 353 and as a function of p
w

/p
b

for H0/R0 = 1.25.

As explained before, the micro jet is observed in cases where H0/R0  3; beyond this

stando↵ distance, the jet is not clearly formed. This suggests that the jet does not

penetrates the bubble enough to impact its lower side. And therefore, the emitted

pressure wave is due only to the compression of the gas bubble at collapse.
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Regarding the pressure ratio driving the collapse (see Fig. 5.24(b)), consistently it is

noted that for a smaller pressure ratio, the water-hammer pressure calculated is also less

important. We report pressure values of 50 [MPa] for pw/pb = 34 and 250 [MPa] for

pw/pb = 353, both cases having a stando↵ distance (H0/R0) of 1.25.

5.3.5 Pressure on the wall

The pressure along the wall is considered as a measure of the potential damage induced

by the bubble collapse. Fig. 5.25 shows the history of the wall pressure registered at the

center of the wall for several stando↵ distances (1.1  H0/R0  5) and for pw/pb = 353.

All situations show similar features. Initially, the pressure value registered corresponds

to the surrounding pressure (pw = 35.3[MPa]). Then, during the first moments, the

pressure wave reflects against the wall creating pressure pulses on the wall. After this

transitory phenomenon has passed, the pressure on the wall is uniform. This behavior is

also present when the bubble is located farther from the wall, but the oscillations are

more distant (see Fig. 5.25(i)).

For t/(R0/cw) > 15, the pressure on the wall suddenly increases. Two peaks of pressure

are noted in cases where the stando↵ distance (H0/R0) is lower than 2. The first peak is

related to the pressure wave emitted due to the impact of the micro jet to the lower side

of the bubble, and the second one is linked to the pressure wave emitted by the collapse

of the bubble.

When the stando↵ distance increases, the two pressure peaks get closer in time and in

amplitude. Eventually, in cases where the stando↵ distance is equal or larger than 2, the

micro jet and the bubble collapse events happen within a time window that suggests

that the two phenomena occur at the same time. This indicates that both phenomena

(jet impact and bubble collapse) are superposed, as explained in previous sections. In

consequence, the only peak observed on the wall is due to the superposition e↵ect of

both waves traveling together towards the wall.

Fig. 5.26 shows the history of the wall pressure at di↵erent locations along the wall

(x/R0 = 0, 0.5, 1, 2) for two stando↵ distances (H0/R0 = 1.1 and 3) and the

pressure ratio driving the collapse set to pw/pb = 353. For small stando↵ distance (see

Fig. 5.26(a)) the bottom side of the bubble barely moves because it is very close to the

wall. Thus, the pressure wave impacts the wall shortly after the wave has been emitted.
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Figure 5.25: Pressure on the center of the wall over time for collapse near a wall
(p

w

/p
b

= 353) for several stando↵ distances (1.1  H0/R0  5)

Consequently, the wall pressure strongly increases along the center-line (x/R0 = 0), but

o↵-axis the pressure values quickly decrease. On the other hand, when the bubble is

initially farther from the wall (see Fig. 5.26(b)), the decrease in the pressure values

o↵-axis is slower. It is even noted that the pressure behavior at x/R0 = 0.5 and x/R0 = 1

are very similar as both curves overlap. This behavior is explained below.

The pressure waves emitted during the bubble compression propagate radially from

its origin. Hence, the curvature radius of the wavefront increases with its propagation.
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Figure 5.26: History of the wall pressure at di↵erent locations along the wall for
p
w

/p
b

= 353. (a) H0/R0 = 1.1 and (b) H0/R0 = 3. Blue (x/R0 = 0), red (x/R0 = 0.5),
violet (x/R0 = 1) and green (x/R0 = 2)

When the wavefront arrives to the wall, the curvature radius of a wave emitted farther

from the wall is larger than the curvature radius of a wave emitted closer to the wall. In

consequence, for cases where the wave emission occurs at a large distance with respect

to the wall, the front propagation behaves like a planar wave at the moment it arrives at

the wall. So, the wave arrives at the same time at all the points near the centerline.

Fig. 5.27 shows the water-hammer pressure computed by Eq. (5.2) and the pressure

values related to the first pressure peak on the wall. For H0/R0  1.55, the values of

the pressure peak are lower than the water-hammer pressure calculated. This result

is due to the radial attenuation of the pressure wave while it travels into the liquid.

For H0/R0 � 1.7, the superposition e↵ect is present. Pressure values higher than the

water-hammer pressure values are registered. Since the wavefront can only be attenuated

in the liquid, these higher values are reached due to the contribution of the bubble

collapse (i.e. the second pressure peak), whose wave emission occurs shortly after the

wave emission of the micro jet. Therefore, the pressure values at the wall are higher than

the water-hammer pressure values alone.

5.3.5.1 Bubble size e↵ect on the wall pressure

The bubble size e↵ect on the wall pressure is analyzed by considering two bubble radii,

R0 = 1 mm and R0 = 10 mm, located at a stando↵ distance H0/R0 of 1.25 and
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Figure 5.27: Pressure as a function of the stando↵ distance H0/R0 for p
w

/p
b

= 353.
Blue circle: water hammer pressure calculated by Eq. 5.2, red square: First pressure

peak on the wall measured in the simulations

experiencing a pressure ratio driving the collapse pw/pb of 353. Fig. 5.28 shows the

evolution of the pressure at the center of the wall for these two cases. A zoom in the

scale is presented in Fig. 5.28(b). It is illustrated that for a given stando↵ distance,

the pressure peak value and the pressure curve behavior agree quite well between both

bubble sizes, showing that the pressure generated on the wall does not depend on the

bubble size.

0 5 10 15 20
-50

0

50

100

150

200

250

300

350

(a)

16 18 20 22
0

50

100

150

200

250

300

350

(b)

Figure 5.28: History of the wall pressure at the center of the wall for p
w

/p
b

= 353
and H0/R0 = 1.25 considering two bubble radius: blue line R0 = 10 mm and red line

R0 = 1 mm.

Regarding the bubble collapse period, it is obtained a shorter collapse time for the case

involving the smaller bubble, i.e. for the bubble of R0 = 1 mm the collapse time is
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1.1 · 10�5 [s] and for the bubble of R0 = 10 mm the collapse time is 1.1 · 10�4 [s]. So,

comparing these two cases, it is observed that the bubble with a radius 10 times larger

has a collapse time 10 times longer. This shows a direct relation with respect to the

bubble initial radius.

It is interesting to note that for a given stando↵ distance, the jet velocity estimated

for both bubble radii are similar. For both cases (R0 = 1 mm and R0 = 10 mm), it

is obtained a jet velocity of about 520 m/s. This shows that the jet velocity is mostly

controlled by the stando↵ distance and the pressure ratio, as we have seen before, and

not by the bubble size.

5.3.5.2 Pressure ratio driving the collapse e↵ect on the wall pressure

The influence of the initial pressure ratio on the pressure at the wall is regarded by

considering two scenarios, the one linked to the cavitation condition (pw/pb = 34) and

the other one related to the lithotripsy (pw/pb = 353). Fig. 5.29 shows the evolution of

the pressure at the center of the wall. In both cases, the stando↵ distance (H0/R0) is 1.25

and the initial bubble radius is the same (R0 = 10 [mm]). In general, both results show

that the pressure suddenly increases due to the bubble collapse and a well-defined peak of

pressure is present. For the cavitation conditions, only one peak of pressure is observed,

suggesting that the two peaks feature is mostly linked to cases of higher-pressure ratios

because in those cases, the bubble collapses after the water jet has gone through it.

However, it is not conclusive and additional simulations considering several stando↵

distance and pressure ratio in between these two limits (i.e. 34 and 353) are suggested.

Another feature to consider is the phase change. In reality, during the compression of a

vapor bubble, the vapor may condense. This mechanism may influence the amplitude

of the pressure wave for cases where the driving pressure ratio is low, because in those

cases the inertial e↵ects are less important than in high-pressure ratio situations. It may

be interesting to consider the bubble filled with vapor and to consider the phase change

phenomenon in order to simulate a more realistic case.

Otherwise, as expected, the pressure peak value is lower when the pressure ratio is

smaller, and the collapse time is shorter when increasing the pressure ratio.
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Figure 5.29: History of the wall pressure at the center of the wall for H0/R0 = 1.25.
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5.3.5.3 Estimation of potential damage

For estimating the potential damage, the maximum value of the pressure on the wall

is important, but also it is important to consider the time during which the pressure

pulse is applied. This magnitude is called impulse and it is calculated as the integral

of the pressure during a certain amount of time, 20 µs, around the peak of pressure.

Thus, the impulse is a better indicator of the energy exchanged between the fluid and the

solid because it considers the transient characteristic of the problem. So, the important

quantity to estimate the loading on the solid is the impulse and not the maximum values

of pressure that might be brief in time.

As the impulse value is high, the potential damage on the solid wall may be also important.

Nevertheless, it is just an indicator and further solid analyses involving the material

properties are required. Fig. 5.30 shows the maximum value of the wall pressure and the

impulse as a function of the stando↵ distance H0/R0, for a pressure ratio of 353. It is

interesting to mention that for the cases considered in this work, both indicators present

the same tendency.

For the bubble located initially close to the wall, we obtain values of impulse and wall

pressures higher than when the bubble is farther. This is consistent with the velocity jet

values and water-hammer pressure values found. This also suggests that the collapse of

bubbles close to the wall present more potential to damage the material.
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Figure 5.30: Maximum wall pressure (a) and impulse (b) as a function of the stando↵
distance (H0/R0) for pw/pb = 353.

Regarding the pressure ratio driving the collapse, we obtain, for the impulse, values of

500 [Pa s] for pw/pb = 34 and 3120 [Pa s] for pw/pb = 353, both cases with a stando↵

distance of 1.25. This suggests that cases having high pressure ratio will produce more

damage.

In the literature, material properties values are found, i.e. yield stress. These material

properties allow estimating if a load can damage the material and actually wear it.

Comparing standard values for steel (i.e. yield stress ⇡ 500[MPa] [88]) and the pressure

values found in our caculations (i.e. 450[MPa]), it may be said at first sight that the

maximum pressure values seem to be too small to actually wear the material. Nevertheless,

a parallel work on material resistance for these type of fluid phenomenon has shown

that one main cause of material damage is fatigue [15], [14], i.e. the localized structural

damage caused by a repeated and localized applied load. In this case, the load comes

from the pressure waves emitted during the compression of the non-condensable gas

bubble. Thus, several bubbles or a cloud of bubbles collapsing during a certain time in

a localized region may cause structural damage. The structural response is studied in

the next chapter through the execution of fluid-structure interaction simulations of the

bubble collapse near a non-rigid surface, towards the prediction of structural damage.
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5.4 Conclusion

The simulation of the bubble collapse in free field has been compared with the Rayleigh-

Plesset analytic solution and with existing numerical results, showing good agreement.

These comparisons indicate that the compressible SPH-ALE is able to model the bubble

dynamics.

The collapse of a non-condensable gas bubble close to the wall has been addressed

as an approximation of the fundamental mechanism producing damage in cavitation

applications. The general behavior of the non-condensable gas bubble dynamics near the

wall is characterized by the formation of a micro jet and by the collapse of the bubble by

itself. These two phenomena are responsible of generating high-pressure levels on the

solid boundary. It is obtained that the intensity of the collapse depends mainly on the

pressure ratio between the liquid and the bubble. As the pressure ratio is larger, the

pressure levels on the wall are higher and the collapse time is shorter.

The influence of the distance between the bubble and the wall has been examined. In

this regard, it is obtained that the higher wall pressure and the higher impulse values

belong to bubbles located initially close to the wall. The bubble size was also analyzed,

concluding that it does not influence the wall pressure. In summary, the pressure signal

registered on the wall depends on the pressure driving the collapse and the stando↵

distance, but not on the bubble size.

Regarding the velocity of the micro jet, it is linked to the water-hammer pressure. As

well, the highest values of the micro jet velocity and of the water-hammer pressure are

also associated to the bubbles collapsing near the wall. Specifically, for all these loading

indicators (pressure at the wall, impulse, water-hammer pressure and micro jet velocity),

it is found that the bubbles with high potential loading are initially located at a distance

lower than H0/R0 = 2.



Chapter 6

Fluid-structure interaction

simulations of the collapse of a

non-condensable gas bubble near

a solid material

Previous chapter focused on presenting and interpreting the fluid dynamics involved in

the bubble collapse phenomenon in order to predict the potential load that impacts on a

solid boundary. This analysis can be enlarged by considering a fluid-structure interaction

approach in order to take into account the material reaction over time.

This chapter presents numerical simulations of the non-symmetric dynamics of a non-

condensable gas bubble near a deformable solid in order to analyze the response of the

material to the loads generated during the last stages of bubble compression. Since

the nearest non-condensable gas bubbles to the wall present more potential to wear the

material, we have considered only two configurations associated to the smallest value of

H0/R0 to conduct this study. The aim is then to estimate the material response to the

impulsive pressures resulting from the bubble dynamics.

146
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6.1 Structural model and coupling approach

In this work, the fluid-structure interaction involves the simulation of the material

response due to the dynamics of two-fluid flows (liquid-gas) highly compressible. A

robust and accurate coupling technique developed by Nunez-Ramirez [69], in the frame of

the PREDHYMA Project, is used to simulate these fluid-structure interactions. In this

part of the work, we consider a technique that couples, in a synchronized way, two solvers:

one based on the finite element method to model the solid and another one following

the compressible SPH-ALE method to model the fluid. By imposing the normal velocity

continuity at the interface, this coupling method ensures the energy conservation at the

fluid-solid interface, thus guaranteeing coupling simulation’s stability over time [69].

The computations of each domain are performed with specialized solvers. The Europlexus

code [89] is used for the solid domain. It is developed by the French o�ce of atomic energy

(Commissariat à l’Énergie Atomique) and the European Commission Joint Research

Centre. This code is suitable for the simulation of transient fast dynamic phenomena

involving strong nonlinearities. The compressible SPH-ALE fluid solver Asphodel,

presented in Chapter 4, is employed for simulating the fluid. These codes are linked by

an external coupling software, managing only the interface computation considering the

normal velocity continuity at the interface between the fluid and solid domains. For

solving the interface problem, the method uses the pressure exerted by the fluid on

the interface as input for each solver (fluid and solid) to complete their computations

for a given time-step [69]. Each code uses di↵erent time integrators, i.e. second-order

Runge-Kutta scheme for the fluid and an explicit Newmark time integrator for the solid.

6.1.1 Stress tensor

The stress tensor is a representation used in the mechanics of continuous medium to

characterize the stress state of a material, i.e. the internal forces involved.

If we take an orthonormal base xi, the stress tensor is represented by a matrix of elements

�ij (i, j = 1, 2, 3) [97], [19], i.e.
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Figure 6.1: General stress tensor [97]

The diagonal components (i.e. �11,�22,�33) are therefore normal stresses, while the

non-diagonal components (i.e. �12,�13,�23, �21,�31,�21) are shear stresses (see Fig. 6.1).

The symmetry of the stress tensor, e.g. �12 = �21, expresses the equality of the shear

stress associated with two perpendicular faces.

Dimensionally, a stress is homogeneous to a force per unit area, and therefore to a

pressure. In the SI unit, the unit is Pascal (1Pa = 1N/m2).

Hydrostatic pressure

The hydrostatic pressure, ph, is defined as the third of the trace of the stress matrix,

that is to say as the average of the diagonal terms, i.e.

ph =
�11 + �22 + �33

3
. (6.1)

If the hydrostatic pressure is negative, the material is under a compression stress;

otherwise it is under a tension stress [97].

von Mises stress

The von Mises stress, �v, is an equivalent stress used in estimating whether an isotropic

and ductile material will yield when subjected to a loading condition. A material starts

yielding when the von Mises stress reaches a value known as the material yield strength,

�y.
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The von Mises stress is calculated through the components of the stress tensor as

�v =


1

2

⇥
(�11 � �22)

2 + (�22 � �33)
2 + (�33 � �11)

2 + 6(�2
23 + �2

31 + �2
12)

⇤�1/2
. (6.2)

6.1.2 Europlexus

Europlexus is able to simulate fast dynamic problems, such as explosions and impacts.

It takes into account geometric non-linearity (i.e. large displacement, large rotations and

large strains) and material non-linearity (i.e. plasticity) [89].

The spatial discretization is based on the Finite Element Method adopting the Lagrangian

scheme to discretize the governing equations. An external Computer-aided-design (CAD)

solver, called Salome, enables conducting the pre-processing stage, which involves the

development of the geometry and the meshing. Later, the post-treatment stage is done

using Paraview.

6.1.3 Coupling solver

In this section a brief description of the coupling method is developed. The fundamental

elements are taken from Nunez-Ramirez [69] in order to have the basics for understanding

this coupling approach. Three main parts of the numerical treatment are identified: the

fluid, the solid and the coupling treatment.

6.1.3.1 Strategy for fluid domain

The numerical approach followed for the fluid domain considers the solution of the partial

Riemann problem already presented in Section 4.5.1. The term pEij is established as the

pressure solution of a partial Riemann problem that can be expressed between a fluid

particle i and the boundary element j in its neighborhood.

In order to obtain the expression of the pressure value on a solid wall element j, the

boundary term of the momentum equation in Eq. (??) must be considered. Hence, this

momentum equation is re-written taking only the boundary term:

d(!i⇢ivi)

dt
= �!i

X

j2@D
i

!@
j 2p

E
ij · njWij , (6.3)
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where we consider, for a solid wall element j, all the fluid particles i whose support domain

(i.e. kernel support) is truncated by j. nj is the normal direction pointing-outward the

fluid domain.

For the fluid particle i, the force exerted by the solid wall element j is

Fj!i = �!i2p
E
ijnjWij!

@
j . (6.4)

Inversely, the force applied to the solid wall element j by the fluid particle i is

Fi!j = �Fj!i = !i2p
E
ijnjWij!

@
j . (6.5)

Then, the force exerted to the solid wall element j by the fluid can be calculated by

X

i2@D
j

Fi!j =
X

i2@D
j

!i2p
E
ijnjWij!

@
j . (6.6)

The hydrodynamic force exerted by the fluid on the solid wall element j is given by

pjnj!
@
j , where pj is the fluid pressure at the solid wall element. So, we can write

pjnj!
@
j =

X

i2@D
j

!i2p
E
ijnjWij!

@
j . (6.7)

Then, the fluid pressure is calculated by

pj =
X

i2@D
j

!i2p
E
ijWij . (6.8)

From the pressure expressions in Eq. (4.79), Eq. (4.80) and Eq. (4.81), the solution for

the pressure pEij can be derived as a function of the wall velocity vj and it is written as

pEij = pi � ⇢ici(vj � vi) · nj . (6.9)

Eq. (6.9) is substituted in Eq. (6.8) to have:

0

@
X

i2@D
j

2!i⇢iciWij

1

A vfj + pj =
X

i2@D
j

2!i(pi + ⇢icivi · nj)Wij , (6.10)
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where vfj = vj ·nj and it corresponds to the solid element velocity in the normal direction

pointing outward the fluid domain.

Eq. (6.10) can be written in matrix form as

Mfvfj +⇤ = Gf , (6.11)

where Mf is a square diagonal matrix of dimensions (Nj ,Nj) and Nj is the total number

of solid wall elements. The vectors vfj , ⇤ and Gf are of dimensions (1,Nf ). The

respective coe�cients are given by [69]

8
>>>>>>>>>>><

>>>>>>>>>>>:

Mf (j, j) =
X

i2@D
j

2!i⇢iciWij

vfj(j) = vfj = vj · nj

⇤(j) = pj

Gf (j) =
X

i2@D
j

2!i(pi + ⇢icivi · nj)Wij

. (6.12)

In order to integrate in time the fluid status, it is used the second-order accurate Runge-

Kutta 2 mid-point scheme. To find the solution at (n + 1) it is required to have the

prediction solution at (n+ 1/2). So, the system (Eq. 6.11) is expressed at both time

stages as

8
><

>:

Mn+1/2
f vn+1/2

fj +⇤n+1/2 = Gn+1/2
f

Mn+1
f vn+1

fj +⇤n+1 = Gn+1
f

. (6.13)

Finally, Eq. (6.13) is the first equation of interest for the coupling scheme. It gives

the relation between the solid boundary velocity (vn+1
fj ) and the pressure (⇤n+1) at

the solid-fluid interface. They correspond to the unknowns of the system for the fluid

domain.

6.1.3.2 Strategy for solid domain

The solid domain is discretized using the FEM where us, vs and as are the displacement,

velocity and acceleration vectors, respectively. In an explicit scheme, the matrix Ms
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is the positive diagonal mass matrix whose components are related to the degrees of

freedom of the system.

According to [69], the equilibrium equation for the coupled solid domain is expressed in

Eq. (6.14)

Msas + f ints + Lp⇤� f exts = 0, (6.14)

where the internal and external forces of the solid material are illustrated by f ints and f exts ,

respectively. And Lp⇤ is interpreted as an interface force acting on the solid domain.

As seen in Section 6.1.3.1, ⇤ is homogeneous to a pressure applied by the fluid on the

solid domain. The matrix Lp contains information about the surface area of each element

along the interface. In this way, the force vector related to the fluid pressure on the solid

is found when the product Lp⇤ is operated.

To compute the unknowns for the solid domain, Eq. (6.14) is discretized with the central

di↵erence explicit Newmark algorithm,

8
>>>>><

>>>>>:

an+1
s = [M

s

]�1(f ext
n+1

s � f int
n+1

s � Ln+1
p ⇤n+1)

vn+1
s = pvn+1

s +
1

2
�tsa

n+1
s

un+1
s = pun+1

s

, (6.15)

where pvn+1
s and pun+1

s depend exclusively on the expression of the kinematic vectors

from the known (initial) condition, and they are called the predictors for the velocity

and displacement vector, respectively.

The expression for the predictors is given by

8
><

>:

pvn+1
s = vn

s +
1

2
�tsa

n
s

pun+1
s = un

s +�tsv
n
s +

1

2
�t2sa

n
s

. (6.16)

So, from Eq. (6.15) and Eq. (6.16), the unknowns are the solid acceleration an+1
s and the

pressure ⇤n+1 at the solid-fluid interface. Finally, Eq. (6.15) gives the second equation

needed for solving the coupled system along Eq. (6.13).
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6.1.3.3 Coupling strategy

The coupling strategy establishes the kinematic continuity at the interface in terms of

normal velocities, guaranteeing the energy conservation at the interface. So, the normal

velocity equilibrium at the fluid-solid interface is established by

Lsvs + Lfvf = 0, (6.17)

where the subscript s denotes solid and f denotes fluid.

As explained in [69], Ls and Lf are matrices that extract the interface velocity of the

degrees of freedom of the system and project them along the normal direction.

For any solid element j, let xj be at the geometrical barycenter of the interface element.

It is considered that the normal direction pointing outward the solid domain ns(xj) is

opposite in sign to the outward pointing normal of the fluid domain nf (xj). Then, it is

introduced that njs(xj) = �njf (xj) = nj (see Fig. 6.2).

Figure 6.2: Illustration of the outward pointing normals, n
s

and n
f

, for each domain
(solid and fluid) [69]

This condition is applied to Eq. (6.17) to have

nj · (vs(xj)� vf (xj)) = 0, (6.18)

getting in mind that nj · vf (j) = vfj(j) for j an element at the interface.

Then, the Eq. (6.17) can be written in matrix notation for the whole domain as

Lsvs + vfj = 0. (6.19)
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Taking into account the time integration aspects, it is presented the discretization of

Eq. (6.19) using a two-step Runge-Kutta scheme, to be in agreement with the fluid

integration. Hence, it is given as

8
><

>:

Ln+1/2
s vn+1/2

s + vn+1/2
fj = 0

Ln+1
s vn+1

s + vn+1
fj = 0

. (6.20)

Eq. (6.20) represents the third equation needed for solving the coupled system along Eq.

(6.13) and Eq. (6.15). In geometrically nonlinear cases, it is not possible to consider the

reference geometry for the whole duration of the simulation. Therefore, the operators Ls

and Lp have to be updated at each time-step [69].

6.1.3.4 Explicit solver

The system of coupled equations to be solved at each time step in order to obtain

the values of the unknown quantities, an+1
s , vn+1

fj , ⇤n+1, at time t = tn+1 from the

configuration known at t = tn, can be expressed as:

8
>>>>><

>>>>>:

Mn+1
f vn+1

f
j

+⇤n+1 = Gn+1
f

Msa
n+1
s + Ln+1

p ⇤n+1 = f ext
n+1

s � f int
n+1

s

Ln+1
s

✓
pvn+1

s +
�ts
2

an+1
s

◆
+ vn+1

f
j

= 0

(6.21)

where (n+ 1)-superscripted quantities indicate values that need to be updated at each

time-step. In the third equation of Eq. (6.21) which imposes normal velocity continuity at

the interface, the solid velocity vector vn+1
s is expressed in terms of the solid acceleration

vector an+1
s and a predictor of the velocity vector pvn+1

s by using Newmark’s explicit

central di↵erence scheme. The whole solution process is detailed by Nunez-Ramirez in

[69].
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6.2 Material deformation due to hydrodynamic impulsive

loads

The simulation approach presented in Section 5.3.5 enables the analysis of impulsive

loads on a solid-rigid wall, without considering the material response. This corresponds

to the one-way coupled approach. A more accurate analysis involves a two-way coupled

simulation. This means the development of two computations simultaneously, one

involving the bubble dynamics within the fluid domain and another one considering the

structural mechanics of the solid response. With this goal in mind, this section shows

numerical simulations of fluid-structure interactions about a non-condensable gas bubble

that undergoes compression in the vicinity of a deformable solid plate taking into account

material properties.

6.2.1 Simulation set-up of the fluid-structure interaction simulations

In this section, it is presented the numerical and physical considerations followed in the

development of FSI simulations.

6.2.1.1 Time step selection

Regarding the time-step selection for the coupled simulation, we remind that both

solvers use explicit time integrators, avoiding the need of executing iterative procedures

to update the fluid and solid status. However, these schemes are known to present

numerical instabilities if the stability condition (i.e. Courant-Friedrich-Lewy (CFL)) is

violated. Thus, when working with explicit time integrators, the CFL condition has to be

considered for each domain. In a general way, the CFL condition can be written as [69],

�t  KCFL ·min
�xi

cwp
, (6.22)

where �t is the required time-step, �xi is the characteristic size of the SPH distribution

or the FEM mesh elements, cwp is the speed of wave propagation in the domain, and

KCFL 2 ]0, 1].

For similar initial characteristic sizes in the SPH distribution and FEM elements, the

application of the CFL condition requires a smaller time-step for the domain where
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the wave propagation is the fastest. Hence, at first sight, for the domains considered,

fluid (i.e. water and gas) and steel, the smaller time-step is usually related to the solid.

Nevertheless, in our case, the fluid SPH domain presents a numerical correction (see

Section 4.7) that causes a reduction in the fluid time step. So, the fluid time step is

actually lower than the solid time step. For that reason, it was chosen the same time

step for both domains, the fluid time step being the decisive value.

6.2.1.2 Meshing and boundary conditions

A finite element mesh for a rectangular plate is generated using the CAD solver Salome.

The plate is 40R0 wide and 18R0 thick. The mesh was generated using quadrangular

elements and a linear refining method in the vertical direction in order to have smaller

elements close to the fluid-solid interface. It is obtained 256000 cells and 257761 nodes.

The elements close to the interface are squares measuring the same size as the SPH

particle radius. The mesh is illustrated in Fig. 6.3 showing the whole mesh (Fig. 6.3(a)),

a zoom near the fluid-solid interface (Fig. 6.3(b)) and a second zoom to highlight the

vertical refinement (Fig. 6.3(c)). The thickness of the solid domain was selected to be

su�ciently large to not have reflected waves in the material that could a↵ect the results.

(a) FEM domain (b) First zoom near the fluid-solid interface
(at the top)

(c) Second zoom showing the vertical refine-
ment at the top

Figure 6.3: Mesh for the solid domain. Quadrangular elements. Whole and zoomed
mesh representations near the fluid-solid interface

The most significant impulsive loads on the material occur when the pressure waves

emitted by the water jet and the bubble collapse phenomena impact the solid. Therefore,

the coupled simulations start when the micro water jet begins its formation. For that, a
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not coupled fluid simulation was done in order to have the initial condition of velocity,

density and pressure fields for the coupled simulations.

Fig. 6.4 illustrates the coupled (fluid + solid) domain. It shows the initial conditions for

the coupled simulation, which corresponds to the beginning of the compression phase. In

the fluid SPH domain, the blue particles represent the water and the red ones the gas.

The solid SPH wall and the solid FEM wall are shown in green.

(a) Coupled (fluid + solid) domain (b) Closer view of the bubble initial condition for
the coupled simulation

Figure 6.4: Coupled (fluid + solid) domain. Initial conditions for the fluid SPH domain,
the solid SPH wall and the solid FEM wall in green. Case H0/R0 = 1.25 p

w

/p
b

= 353.

The coupled simulations are done in two-dimensions considering a Cartesian coordinate

system for simplicity, where the domain is located on the x� y plane and z direction is

the outward axis. For the structural model, it is considered the plane strain calculation

assumption. This assumption considers that the strain in the outward direction is null. It

means that the stress tensor in 2D has all the components non-null (i.e. �x, �y, �z, �xy)

and the strain tensor in 2D only presents zero for the normal strains on the outward axis

(i.e. ✏x, ✏y, ✏z = 0, �xy).

In addition, the boundary conditions imposed on the solid domain are non-reflecting

boundary condition on the three edges of the plate (i.e. two vertical and the bottom

edges), except at the fluid-solid interface.

6.2.1.3 Physical considerations

Two materials are considered for this study, a standard steel and a stainless steel (SS)

whose properties have been estimated by an internal study developed by ANDRITZ

Hydro and the Stuttgart University [88]. Material properties, such as Young’s modulus,

yield stress and density, are presented in Table 6.1 and are specified as input in the
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calculations. Fig. 6.5 shows the relation between the strain and the stress for both

materials.
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Figure 6.5: Stress-strain curves used in Europlexus to model elasto-plastic behavior of
the two materials considered

Table 6.1: Material properties used for Europlexus simulations

Material Yield stress [MPa] Young’s Modulus

[GPa]

Poisson Modulus Density [Kg/m3
]

steel 200 200 0.3 7800

SS CrNi13 4 [88] 560 200 0.288 7700

It is used an isotropic elasto-plastic law to model the material. This law means that as

long as the local stresses do not exceed the Yield stress, the material deforms elastically

during the loading, and then it returns to its initial state once the load is not longer

applied. However, permanent deformation occurs if the Yield stress is surpassed.

For the fluid domain, it is considered the most severe cases. The pressure ratio driving

the collapse corresponds to 353 and the stando↵ distances considered are H0/R0 = 1.1

and H0/R0 = 1.25.

6.2.2 Analysis of FSI simulations

The response of the solid material to impulsive loads from a non-condensable gas bubble

has been studied through FSI simulations.
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6.2.2.1 Pressure field in the fluid and the stresses in the solid domain

The FSI simulations are analyzed considering the pressure field in the fluid and the

hydrostatic stress in the solid. According to the Cartesian coordinate system considered

in the calculations, the domain is located in the x�y plane and z direction is the outward

axis, so the hydrostatic pressure involves the following stress components: �x, �y, �z.

Since the plain strain calculation assumption is used, the three normal stress components

are a priori non-zero.

In this section, we consider the hydrostatic pressure, which is a measurement of the

normal stresses.

Fig. 6.6 shows the hydrostatic pressure evolution inside the solid due to pressure wave

impacts. It shows the instants when the solid is impacted by the pressure waves. The

first instant corresponds to the impact of the pressure wave emitted by the hit of the

water jet against the bottom side of the bubble (Fig. 6.7(a)), while the second impact is

due to the pressure wave emitted by the bubble collapse (Fig. 6.7(b)). The third instant

is shortly after.

The hydrostatic pressure in the solid results from the pressure exerted by the fluid and

it is transmitted through the fluid-solid interface. Color contours show negative and

positive values of the hydrostatic pressure. The positive values indicate that the solid is

under traction and the negative ones indicate that the solid is under compression.

The highest pressure in the fluid arrives to the solid as a loading that causes compression

on the material at the impact zone. Then, the compression wave generated inside the

material travels causing traction zones. Also, since the waves travel faster in the solid

than in the water (i.e. the speed of sound is larger in the steel than in the water), the

waves inside the material reach a larger zone than in the fluid.

In practice, an impulsion load generates two waves in the solid material, a normal wave

and a shear wave. The normal wave can be represented by the hydrostatic pressure,

while the shear wave can be addressed by the von Mises stress because it involves the

shear components of the stress tensor. So, when the hydrostatic pressure is non-null, the

material experiences normal waves. Otherwise, when the hydrostatic pressure is zero, it

just means that the material does not experience normal waves, but it can undergo shear

waves.
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(a) t/(R0/cw) = 17.2

(b) t/(R0/cw) = 17.7

(c) t/(R0/cw) = 17.8

Figure 6.6: Evolution of pressure field [Pa] in the fluid and solid domain due to
the bubble collapse (p

w

/p
b

= 353 and H0/R0 = 1.25). Material: steel. (a) shows the
instant of first impact on the wall (t/(R0/cw) = 17.2); (b) shows the instant of second
impact on the wall ( t/(R0/cw) = 17.7); (c) shows a moment after the second impact

(t/(R0/cw) = 17.8).

Actually, the load produced by the fluid dynamics generates a compression stress in the

normal direction with respect to the solid-fluid interface. The stress component normal

to the solid-fluid interface (in this case �y) is the reaction to the fluid pressure. So, the
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value of this stress component (�y), at the solid-fluid interface, is the fluid pressure at

the interface with negative sign. The negative sign indicates that the material is under

compression at this zone.

The evolution of �y is observed in Fig. 6.7. The instants are the same as represented in

Fig. 6.6. The color palette in the solid domain has been inverted in order to compare

�y with the fluid pressure. It is shown that the material reaction in the y-direction

corresponds to the fluid pressure at the interface.

The components �x and �z are considered in order to show their contribution in the

hydrostatic stress. Fig. 6.8 shows the evolution of �x and �z at the same three instants

as in figures 6.6 and 6.7.

The stress component �x corresponds to the parallel direction with respect to the solid-

fluid interface and �z corresponds to the stress in the outward direction with respect to

the domain. It is observed that the material reacts to the fluid impulses by generating

stress in all the directions. In the two direction considered here (x and z), compression

waves are present in the material near the pressure pulse location, generating thus traction

waves. It is noted that the compression and traction waves are less important in the

z-direction than in the x-direction. Nonetheless, the three stress components �x, �y

and �z present the same order of magnitude. Then, all these normal stress components

contribute to the calculation of the hydrostatic pressure.

6.2.2.2 Material response: Hydrostatic pressure and von Mises stress

To analyze the material reaction under the impulsive load, the hydrostatic pressure and

the von Mises stress are considered. Fig. 6.9 presents the hydrostatic pressure and the

von Mises stress of the stainless steel CrNi13 4 subjected to the loading caused by a

non-condensable gas bubble. This bubble is initially located at H0/R0 = 1.25 and its

collapse is driven by a pressure ratio of pw/pb = 353.

Initially, pressure waves travel inside the solid due to the rarefaction waves emitted

along the bubble compression. Then, the solid receives two impulsing loads, the first

one comes from the micro jet event (Fig. 6.9(a)) and the second one develops from

the bubble collapse event (Fig. 6.9(c)). So, the material experiences compression in

a concentrated zone. The material reacts to these loads by generating pressure waves

that travel inside it. Traction zones moving along the surface followed by compression
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(a) t/(R0/cw) = 17.2

(b) t/(R0/cw) = 17.7

(c) t/(R0/cw) = 17.8

Figure 6.7: Evolution of pressure field [Pa] in the fluid and the stress component �
y

in
the solid domain due to the bubble collapse (p

w

/p
b

= 353 and H0/R0 = 1.25). Material:
steel. (a) shows the instant of first impact on the wall (t/(R0/cw) = 17.2); (b) shows
the instant of second impact on the wall ( t/(R0/cw) = 17.7); (c) shows a moment after

the second impact (t/(R0/cw) = 17.8).

zones are observed in figures 6.9(c) and 6.9(e). At the end, the material has experienced

traction and compression states.

It is interesting to point out that during the hydrodynamic loading, several bubbles
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(a) �
x

, t/(R0/cw) = 17.2 (b) �
z

, t/(R0/cw) = 17.2

(c) �
x

, t/(R0/cw) = 17.7 (d) �
z

, t/(R0/cw) = 17.7

(e) �
x

, t/(R0/cw) = 17.8 (f) �
z

, t/(R0/cw) = 17.8

Figure 6.8: Evolution of pressure field [Pa] in the fluid and the stress components �
x

and �
z

in the solid domain due to the bubble collapse (p
w

/p
b

= 353 and H0/R0 = 1.25).
Material: steel. (a, b) shows the instant of first impact on the wall (t/(R0/cw) = 17.2);
(c, d) shows the instant of second impact on the wall ( t/(R0/cw) = 17.7); (e, f) shows

a moment after the second impact (t/(R0/cw) = 17.8).

implode near the solid material causing that the material is under this repeated mechanism

(i.e. the material passes from traction to compression states). In consequence and

according to the literature ([24], [15], [14]), this repeated mechanism can produce fatigue

failure in the material.

It is also observed the contours of the e↵ective stress distribution or von Mises stress,

which allow the estimation of zones where the stresses are concentrated. The e↵ective

stress appears when the material receives the impacts. The stressed zone is enlarged

deeper in the material when the impacts are frequent and repeated (the material receives

two loads, one from the micro jet event and the second one from the bubble collapse) as

it is observed in figures 6.9(b) and 6.9(d). Then, Fig. 6.9(f) shows an instant shortly

after the second load to exhibit that the load is still applied. Finally, the stress dissipates

after the loading has passed.
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For all the cases simulated, the highest stresses are observed below the material surface

(see Fig. 6.9(f)), which is in agreement with previous works ([10], [24]).

(a) Hydrostatic pressure (Pa) at t/(R0/cw) = 17.2 (b) Von Mises stress (Pa) at t/(R0/cw) = 17.2

(c) Hydrostatic pressure (Pa) at t/(R0/cw) = 17.7 (d) Von Mises stress (Pa) at t/(R0/cw) = 17.7

(e) Hydrostatic pressure (Pa) at t/(R0/cw) = 17.8 (f) Von Mises stress (Pa) at t/(R0/cw) = 17.8

Figure 6.9: Evolution of the material response due to the bubble collapse (p
w

/p
b

= 353
H0/R0 = 1.25). Material: stainless steel. (a) and (b) show the moment of the first wave
impact on the wall (at t/(R0/cw) = 17.2)); (c) and (d) show the moment of the second
wave impact on the wall (at t/(R0/cw) = 17.7)); (e) and (f) show a moment after the

second impact (t/(R0/cw) = 17.8)).

It is considered thereafter the instant when the highest stress is registered in order to

compare the stando↵ distance influence. Fig. 6.10 presents the stainless steel material

reaction for stando↵ distances of H0/R0 = 1.1 and H0/R0 = 1.25. The color palette is

the same for both cases in order to compare them.

Fig. 6.10 shows that the case of H0/R0 = 1.1 presents the highest compression and the

highest von Mises stress values. This result is consistent with the one-way coupled results

where the severe case corresponds to the bubble nearest to the wall. Additionally, the

stress value increases as the amplitude value of the loading increase. This can be taken
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(a) Hydrostatic pressure (Pa) for H0/R0 = 1.1 at
t/(R0/cw) = 18

(b) Von Mises stress (Pa) for H0/R0 = 1.1 at t/(R0/cw) =
18

(c) Hydrostatic pressure (Pa) for H0/R0 = 1.25 at
t/(R0/cw) = 17.8

(d) Von Mises stress (Pa) forH0/R0 = 1.25 at t/(R0/cw) =
17.8

Figure 6.10: Material response at the moment of the highest stress due to the bubble
collapse (p

w

/p
b

= 353 for two H0/R0 values). Material: stainless steel.

from figures 6.10(b) and 6.10(d), because it is known that higher loads are registered

from the bubbles initially located closer to the solid (see Section 5.3.5).

Since the simulation domain is dimentionalized with respect to the bubble radius, we are

able to give some orders of magnitude (see Fig. 6.11(a)). Firstly, it is chosen the case

involving the stainless steel; it is found that the location of the maximum stress depends

on the stando↵ distance between the bubble and the wall. The maximum stress location

from the material surface is at 0.2R0 for H0/R0 = 1.1 and 0.4R0 for H0/R0 = 1.25. So,

the maximum stress location is closer to the material surface when the bubble implodes

closer to the solid. Secondly, the material e↵ect is also addressed by analyzing the results

obtained with steel. In this case, the stress location is at 0.5R0 for H0/R0 = 1.25. This

shows that material properties also a↵ect the maximum stress location. The potential

damage would be placed deeper in the material for materials having weaker stress yield.

In addition, it is known from the literature [45] that the range of a real cavitation bubble

radius is between 50 µm and 500 µm. Thus for the estimation, a value of 300 µm for

the bubble radius is taken. With this value, we estimate that the maximum stresses

are located at 60 µm for the case where H0/R0 = 1.1 and at 120 µm for the case

H0/R0 = 1.25, these results corresponding to the stainless steel (see Fig. 6.11(b)). For

the steel, we found the maximum stress location at 150 µm for H0/R0 = 1.25. These
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results highlight the stress location dependency to the stando↵ distance and the material.

Of course, these stress locations varies with the bubble size.
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(a) Maximum stress location expressed in function of R0
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(b) Estimation of the maximum stress location considering R0 =
300 µm

Figure 6.11: Maximum stress location in the material for p
w

/p
b

= 353 and for two
H0/R0 values. Material: stainless steel.

Additionally, from an industrial point of view, the material surface is usually coated.

The coating thickness is between 100 µm and 500 µm. So, these findings suggest that

the concentrated stresses may be located in the vicinity of the interface between the

material and the coating. However, an extended study considering the coating and the

material in the FSI simulations is recommended in order to go deeper in this regard.

6.2.2.3 Material response: von Mises stress and strain

Strain characterizes a deformation that could happen when the material is under a

certain stress. When the stress is removed and the material returns to its initial shape,

the deformation is non permanent, so the material has an elastic strain. On the other

hand, when the stress is removed and the material does not return to its initial shape,

the material experiences a plastic strain. Hence, we are interested in analyzing the cases

where plastic strain has been reached as an indicator of damage.

The plastic strain is only registered in the simulation where the steel material is considered,

in which stress values are higher than the steel Yield stress. Fig. 6.12 shows the von

Mises stress and the strain at the instant when the highest stress is registered. This

moment arrives shortly after the second pressure wave coming from the bubble collapse
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impacts the wall. This figure corresponds to the case of H0/R0 = 1.25 and pw/pb = 353.

For stainless steel cases, plastic strain values are not observed, basically because the

stress values do not exceed the stainless steel Yield stress.

(a) von Mises stress (Pa) (b) strain

Figure 6.12: Material response at t/(R0/cw) = 17.8, moment of highest stress due to
the bubble collapse for p

w

/p
b

= 353 and H0/R0 = 1.25. Material: steel.

The plastic strain maximum value is observed around the same location where the

maximum stress is registered, i.e. below the surface. It is important to mention that the

plastic strain value is just an indicator of material plasticity. Hence, we can argue that

during several impulsive loads, the compression stress below the surface may reach the

material yield, generating a zone of plastic strain. From there on, the plastic strain region

continues to grow inducing a progressive hardening. The material gradually becomes

more fragile and the probability of micro-ruptures increases, leading to the material

erosion.

6.3 Conclusion

The fluid-structure interaction approach has been addressed through out this Chapter.

The solver (Europlexus) used for the solid domain has been described, as well as the

coupling solver developed by Nunez-Ramirez [69]. Two materials, i.e. steel and stainless

steel, are considered to study the material response under the bubble dynamics. The

materials are considered as isotropic and they follow the elasto-plastic law.

There are two main impulsive loads that could damage the material. The first one comes

from the micro jet event and the second one develops from the bubble collapse event.

The material reacts to these loads by having compression and traction zones that travel

inside the material. Since the material passes from traction to compression states in a

repeatedly way, a fatigue mechanism could drive the damage phenomenon.
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The highest stresses are located below the material surface indicating that the damage

starts under the material surface, making this region more fragile, and thus, more

subjected to micro-ruptures. This location depends on the bubble size, the stando↵

distance and the material properties. This result suggests that under certain conditions,

the highest-stress location may coincide with the coating-steel interface. However further

investigation in this regard is suggested.



Chapter 7

Conclusion and perspectives

7.1 Conclusions

The first objective of this thesis is the development of a numerical model able to simulate

the compression of non-condensable gas bubble and to estimate the pressure loads emitted

during this phenomenon near a solid boundary. For this purpose, a two-phase model

in the SPH-ALE method able to deal with fully compressible fluids was developed and

validated. It solves the mass, momentum and energy conservation equations of the Euler

system using the Sti↵ened Gas EOS for water and the ideal gas EOS for the gas bubble.

The meshless feature of the SPH-ALE method allows the calculation of two-phase flow

defining a sharp interface and avoiding special mesh treatments near the interface zone,

typically present in mesh-based methods. However, for this type of applications where

the Mach number is around 0.5, the Lagrangian motion of SPH particles is not adequate.

In consequence, the ALE scheme was exploited through the implementation of a proper

algorithm to correct the motion of particles for compressible flows. This implementation

allows the simulation of compressible flows and the propagation of pressure waves in

order to take into account the compression of a non-condensable gas bubble.

The compression of a non-condensable gas bubble in free field was simulated to study the

fluid dynamics and validated against analytic and numerical results. Then, the bubble

dynamics near a wall was simulated in order to investigate the bubble dynamics and the

loading caused by its collapse. Characteristic quantities, such as collapse times, bubble

displacements, velocities and pressures, were analyzed as a function of time and with

169
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respect to the initial-stando↵ distance between the bubble and the wall. As well, these

quantities were compared against available theories and numerical simulations showing

good agreement.

Due to computational cost issues, the simulations were carried out following a 2D

configuration. In consequence, an analytic comparison between 3D and 2D configurations

was conducted showing that the 2D configuration allows the description of the fluid

dynamics. Nevertheless, some di↵erence between the 2D and 3D models are encountered

and discussed. Particularly, there is a di↵erence in the pressure peak and the pressure

profile in the liquid during the bubble compression. The pressure decay described by the

2D simulation is slower than the one described by the 3D simulation. This di↵erence is

due to the law used for the description of each configuration, i.e. the inverse-square law

is used in the 3D configuration and the inverse-law used in the 2D assumption. Although,

the pressure peak and the decreasing rate is a↵ected by the 2D assumption, the liquid

pressure tendency is comparable qualitatively in both configuration.

In the case of the bubble compression near a wall, a micro jet directed towards the

surface is observed. This micro jet is developed due to the non-symmetric configuration

given by the solid boundary. It impacts the bottom side of the bubble generating a

pressure wave that propagates radially outwards. Additionally, high velocities are linked

to the micro water jet formation, producing a water-hammer phenomenon in the liquid.

Afterwards, the bubble collapses by itself emitting a second pressure wave that also

propagates radially inside the liquid. These two phenomena lead to high pressures pulses

on the wall.

The pressure waves generated by the water jet and the bubble collapse propagate in the

liquid and eventually impact the solid wall. The wall is thus a↵ected by the loading

generated during the bubble compression. The wall receives a loading characterized by

two pressure peaks that are linked to the two pressure waves emitted in the fluid. In

consequence, one or two pressure peaks are observed depending on the stando↵ distance.

For bubbles initially located at relatively short distance with respect to the wall (e.g.

H0/R0 < 2), two pressure waves well separated are observed. On the other hand, for

bubbles initially located at H0/R0 = 2 and H0/R0 = 3, only one pressure peak is

observed. This occurs because as the stando↵ distance increases, the two pressure wave

emissions get closer until the case where both wave emissions occur at the same time.

Consequently, only one pressure peak is registered on the wall. For bubbles far away
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from the wall (e.g. H0/R0 = 5) the micro jet is not clearly formed and only the pressure

wave generated by the collapse of the bubble itself is present.

In cases where the water jet is observed (e.g. H0/R0  3), the water-hammer event is

present, the corresponding pressure wave is generated and thus, it arrives to the wall.

This wavefront is attenuated while it travels inside the liquid, producing pressure pulse

of less amplitude for cases where the wave emission happens farther away from the wall.

It is to remark that as the initial stando↵ distance is shorter, the pressure amplitudes

registered on the wall increase. Hence, the bubbles that can cause more damage are

the ones located initially closer to the wall. This is also shown through the impulse

calculation, which is an indicator of the potential loading by considering not only the

pressure value but also the applied time of the pulse.

The second objective of this thesis is to have an insight towards the erosion by cavitation

through fluid-structure interaction simulations. Two materials (steel and stainless steel)

are considered to study the material response under the non-condensable gas bubble

dynamics. Both materials are considered as isotropic and they follow the elasto-plastic

law.

The response of the solid material to these impulsive loads is described as an alternating

behavior that involves compression and traction mechanisms on the material. This

material reaction can lead to fatigue as a damage phenomenon.

Additionally, it was found that the zones of highest stress are located below the material

surface, indicating that the damage starts there, making this region more fragile, and thus,

more subjected to micro-ruptures. The stress location was determined in function of the

bubble size, the stando↵ distance and the material properties. This result suggests that

under certain conditions, the highest-stress location may coincide with the coating-steel

interface.

7.2 Perspectives

In order to simulate real bubbles and be able to do a direct comparison against existing

experiments, a numerical tool that allows the running of 3D simulations must be imple-

mented. To do so, an adaptive particle refinement for SPH-ALE method is contemplated

in order to reduce the amount of particles in the liquid domain and to make possible 3D
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calculations in a acceptable computational time. Additionally, it would be interesting to

carry out an extended study considering pressure ratios around the cavitation pressure

ratio, i.e. 34, in order to analyze if there are changes in the fluid flow and what is the

influence on the pressure profile on the wall.

In nature, a cavitation bubble that undergoes compression contains mainly vapor and only

a small amount of non-condensable gas. During the collapse, the vapor may condense.

Hence, for the same initial radius, the minimum radius attained is smaller for a vapor

bubble than for the simulated non-condensable gas bubble. In consequence, the pressure

amplitudes may be influenced by the phase change phenomenon. This suggests that the

consideration of vapor inside the bubble and the inclusion of phase change phenomenon

seem necessary in the simulation of cavitation bubble collapse.

Another phenomenon that may influence the bubble dynamics is the flow velocity. Then,

it can be interesting to analyze the dynamics of a bubble subjected to a velocity field

parallel to the wall. The velocity field may increase the flow aggressiveness and so change

the pressure profile on the wall.

Simulations of the interaction between several bubbles can be considered because it is

believed that their interaction increases the aggressiveness of the fluid flow and thus

increases the material damage. In this regard, it is proposed to take advantage of the

mesh-less feature of the compressible SPH-ALE method to simulate the interaction of

several bubble without the inconvenient of constant re-meshing.

It has been suggested that the fatigue could be the erosion mechanism followed by the

material when a cavitating flow is present. So, a fatigue analysis must be included in

order to predict the material life cycle under a repeated hydrodynamic load.

Additionally in terms of material response, the coating that is used to protect the material

of Pelton turbines should be considered in the FSI simulation in order to determine its

influence in the material response. Actually, the coating properties are di↵erent than the

stainless steel ones. So, its behavior face to hydrodynamic loading might not be exactly

the same as the behavior followed by the stainless steel. As well, the contact between the

stainless steel and the coating may change the material behavior, for example by changing

the location of maximum stresses. Hence, the interaction between both materials (i.e.

coating and stainless steel) should be evaluated in order to determine its influence on

the material response.
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Appendix A

Comparison between Tait and

Sti↵ened Gas EOS

The dam break flow is a typical free surface problem often used as a benchmark for SPH

implementations [54]. It is considered a 2D simulation. The fluid is confined between two

vertical walls. After a sudden removal of one of these barriers holding the water at rest,

the fluid can flow. The initial fluid column is 1 m wide and 2 m high that is contained in

a square box of 4 m. The water column is represented with 5000 fluid particles.

In this test case, the flow using the Sti↵ened Gas EOS is simulated and the idea is to

compare it with respect to the Tait EOS results already presented and validated [83],

[54]. Both numerical results were solved using the SPH-ALE method with a MUSCL

reconstruction scheme. The Tait and the Sti↵ened Gas EOS simulations use the same

initial particle configuration.

Table A.1 shows the fluid parameters for the simulation using Tait EOS and the one

using Sti↵ened Gas EOS. The constant parameters � and p1 for the Sti↵ened Gas EOS

are chosen to have the same speed of sound value that the one used in Tait EOS. Hence

both simulations can be compared for the same Mach number. The maximum Mach

number along the simulation is 0.13.

Regarding stability limits, it has been observed a lower limit in the CFL condition using

the Sti↵ened Gas EOS. Considering the Heun method for numerical integration, we

have seen that the CFL condition is 0.2 with the Tait EOS, but using the Sti↵ened Gas
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Table A.1: Fluid parameters for 2D dam break simulation

Tait EOS Sti↵ened Gas EOS
� 7.15 � 1.86

⇢ref [kg/m3] 1000 ⇢ [kg/m3] 1000
pref [MPa] 0 p1 [MPa] 3
cref [m/s] 75 c [ms] 75

EOS the CFL condition is 0.1. This restriction in the stability condition increments the

computational time and the CPU workload when using the Sti↵ened Gas EOS.

For comparative purposes, figures (A.1) and (A.2) show the velocity and pressure fields

for t = 0.70 s and t = 1.5 s. We observe that the particles have a good spatial distribution

along the simulation. These fields are in good agreement between both simulations.

The computed water depth as a function of time is compared for the Tait EOS, the

Sti↵ened Gas EOS and experimental values from [96]. The dimensionless parameters are

given by h⇤ = h/(2L) and t⇤ = t
p
2g/L, where L and h are the initial length and height

of the water column respectively, in this case L = 1 and h = 2.

Figure A.3 shows the water height evolution. First, we observe the numerical results using

Tait and Sti↵ened Gas EOS are in very good agreement. Both results predict similarly

the water height evolution for the time recorded. Second, comparing the numerical

results to the experimental one, we observe that the numerical results roughly predict

the experimental behavior; di↵erences can be due to the numerical viscosity that is not

fully reduced.

The main topic here is the comparison of the same numerical method using di↵erent

equations of state. So, focusing on this subject, the results from both models are analyzed.

It is obtained that both results are equivalent. This is because the fluid flow behaves like

a weakly-compressible flow, i.e. the density variations are very small. Consequently, the

non-isentropic model reduces to the barotropic model, and thus they are equivalent (see

Section 3.2.4). To demonstrate the weakly compressible feature, Fig. A.4 shows that

negligible variations (less than 0.1%) in density and internal energy in the system are

recorded.

About the numerical viscosity, it is linked to the numerical method, in this case SPH-ALE,

and it does not depend on the equation of state. Therefore, both approaches present

equal numerical dissipations.
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Figure A.1: Dam break test case. Numerical results for the Tait EOS and the Sti↵ened
Gas EOS. Numerical results at t = 0.70 s
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Gas EOS. Numerical results at t = 1.50 s
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lines) and experimental results [96] (triangle)
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